

Mastering Ruby on Rails

For more information about this series, please visit: https://
www.routledge.com/Mastering-Computer-Science/
book-series/MCS

The “Mastering Computer Science” series of books are
authored by the Zeba Academy team members, led by
Sufyan bin Uzayr.

Zeba Academy is an EdTech venture that develops
courses and content for learners primarily in STEM
fields, and offers education consulting to Universities and
Institutions worldwide. For more info, please visit https://
zeba.academy

Mastering Computer Science
Series Editor: Sufyan bin Uzayr

Mastering Ruby on Rails: A Beginner’s Guide
Mathew Rooney and Madina Karybzhanova

Mastering Sketch: A Beginner’s Guide
Mathew Rooney and Md Javed Khan

Mastering C#: A Beginner’s Guide
Mohamed Musthafa MC, Divya Sachdeva, and Reza Nafim

Mastering GitHub Pages: A Beginner’s Guide
Sumanna Kaul and Shahryar Raz

Mastering Unity: A Beginner’s Guide
Divya Sachdeva and Aruqqa Khateib

Mastering Unreal Engine: A Beginner’s Guide
Divya Sachdeva and Aruqqa Khateib

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://zeba.academy
https://zeba.academy

Mastering Ruby on Rails

A Beginner’s Guide

Edited by Sufyan bin Uzayr

First edition published 2022
by CRC Press

6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2022 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace
the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC
please contact mpkbookspermissions@tandf.co.uk

Trademark Notice: Product or corporate names may be trademarks or registered
trademarks and are used only for identification and explanation without intent to
infringe.

ISBN: 978-1-032-13509-0 (hbk)
ISBN: 978-1-032-13507-6 (pbk)
ISBN: 978-1-003-22960-5 (ebk)

DOI: 10.1201/9781003229605

Typeset in Minion
by KnowledgeWorks Global Ltd.

https://www.copyright.com
https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003229605

v

Contents

About the Editor, xiii

Chapter 1 ◾ Introduction to Ruby on Rails 1
WHAT IS RUBY AND RUBY ON RAILS? 2

MAJOR FEATURES 17

RAILS VS OTHER FRAMEWORKS 28

Ruby on Rails Vs Python 28
Ruby on Rails Vs PHP 29
Ruby on Rails Vs Java 29
Ruby on Rails vs JavaScript 29
Ruby on Rails Vs Node.js 30
Ruby on Rails Vs Ruby 30
Pros and Cons: Ruby 32

Pros 32
Cons 32

Pros and Cons: Ruby on Rails 33
Pros 33
Cons 34

vi ◾ Contents

INSTALLATION AND CONFIGURATION OF
RUBY ON RAILS 35

Creating a Sample Blog Application 38
Saying “Hello” in Rails 42
MVC 45

DATABASE MIGRATIONS 46

Chapter 2 ◾ Getting Started with Ruby
on Rails 53

BASIC RUBY ON RAILS SYNTAX 54

Data Type 54
Naming Convention 55
Input and Output 56
Methods 56
Class 57

Model (ActiveRecord) 59
View (ActionView) 59
Controller (ActionController) 59

ADDING FIELDS 61

Generic Search Form 62
Helpers for Generating Field and Form
Elements 63

Checkboxes 64
Radio Buttons 64
Other Helpers of Interest 65

Contents ◾ vii

Dealing with Model Objects 68
The fields_for Helper 69

ADDING VALIDATIONS 70

Skipping Validations 74
Validation Helpers 77

acceptance 78
validates_associated 79
confirmation 79
exclusion 81
format 81
inclusion 82
length 82
numericality 84
presence 85
absence 87
uniqueness 87
validates_with 89
validates_each 91

Common Validation Options 92
allow_nil 92
allow_blank 92
message 93
on 94

Strict Validations 96

viii ◾ Contents

Conditional Validation 97
Using a Proc with :if and :unless 98
Grouping Conditional Validations 98
Combining Validation Conditions 99

GENERATED FILES 101

Chapter 3 ◾ Ruby Data Types 111
STRING 113

Expression Substitution 114
General Delimited Strings 114
Escape Characters 115
Character Encoding 116
String Built-in Methods 116

NUMBERS 125

Integers 126
Floating-Point Numbers 130
Ruby Rational Numbers 136
Ruby Nil Value 137

ARRAYS AND HASHES 139

Array Built-in Methods 141
Hashes 149

Hash Built-in Methods 150
SYMBOLS 155

Chapter 4 ◾ Basics of Language 161
VARIABLES 163

Ruby Variable Naming Conventions 164

Contents ◾ ix

Ruby Global Variables 168
Ruby Instance Variables 169
Ruby Class Variables 171
Ruby Local Variables 172
Ruby Constants 173
Ruby Pseudo-Variables 174

OPERATORS 174

Ruby Arithmetic Operators 175
Ruby Comparison Operators 176
Ruby Assignment Operators 177
Ruby Parallel Assignment 178
Ruby Bitwise Operators 179
Ruby Logical Operators 180
Ruby Ternary Operator 181
Ruby Range Operators 181
Ruby defined? Operators 182
Double Colon “::” Operator 183
Ruby Operators Precedence 184

BLOCKS AND ITERATORS 185

Blocks and Methods 189
BEGIN and END Blocks 189
Iterators 190

Ruby Each Iterator 191
Ruby Collect Iterator 192

Procs 193
Lambdas 195

x ◾ Contents

COMMENTS 197

The Shebang 199
CONTROL STRUCTURES 199

break Statement 200
next Statement 201
redo Statement 202
retry Statement 203
return statement 205
throw/catch Statement 207

Chapter 5 ◾ Working with Database 209
OBJECT-RELATIONAL MAPPING ON RUBY
ON RAILS 218

Active Record 219
Advantages 223
Disadvantages 224

WHAT ABOUT SQL? 225

How to Make a PostgreSQL Database in Ruby 227
How to Integrate MySQL With Ruby on Rails 230
How to Integrate SQLite With Ruby on Rails? 232
Best Practices of Ruby Database
Development 233
Typical Mistakes of Ruby on Rails Database
Development 235

ACTIVE RECORD BASICS 238

Naming Conventions 240
Creating Active Record Models 242

Contents ◾ xi

CRUD: Reading and Writing Data 244
Validations 247
Migrations 247
Writing a Migration 251

Creating a Join Table 252
Changing Columns 253
Column Modifiers 254
Using the Change Method 255
Active Record and Referential Integrity 257
Old Migrations 258

Chapter 6 ◾ Ruby on Rails IDEs 261
MOBILE DEVELOPMENT IDEs 264

CLOUD IDEs 264

PAID IDE OPTIONS 266

FREE IDE OPTIONS 277

MIDDLEMAN GENERATOR 292

The Skeleton 294
Gemfile 294
config.ru 295
Production Asset Hashing 296
Templates 297
File Size Optimization 297
Custom Extensions 300
Basic Extension 301
Adding Methods to config.rb 302

xii ◾ Contents

Adding Helpers 303
Sitemap Manipulators 304
Callbacks 304

after_configuration 305
after_build 305

APPRAISAL, 307

INDEX, 317

xiii

About the Editor

Sufyan bin Uzayr is a writer, coder, and entrepreneur with
more than a decade of experience in the industry. He has
authored several books in the past, pertaining to a diverse
range of topics, ranging from History to Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT
company specializing in EdTech solutions. He also runs
Zeba Academy, an online learning and teaching vertical
with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies,
such as JavaScript, Dart, WordPress, Drupal, Linux, and
Python. He holds multiple degrees, including ones in
Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between
four countries. He has lived and taught in universities and
educational institutions around the globe. Sufyan takes a
keen interest in technology, politics, literature, history, and
sports, and in his spare time, he enjoys teaching coding
and English to young students.

Learn more at sufyanism.com.

http://taylorandfrancis.com

1DOI: 10.1201/9781003229605-1

C h a p t e r 1

Introduction to
Ruby on Rails

IN THIS CHAPTER

➢ Getting to know the history of Ruby on Rails

➢ Learning about Ruby on Rails key features and tech-
nical requirements

➢ Understanding framework’s installation procedure

Ruby on Rails is a server-side web application develop-
ment framework written in Ruby language. Ruby on Rails’
emergence was greatly influenced web app development,
through innovative attributes such as seamless database
table creations, migrations, and scaffolding of views to
support rapid application development. Ruby on Rails is
known for its model–view–controller (MVC) framework,

https://doi.org/10.1201/9781003229605-1

2 ◾ Mastering Ruby on Rails

providing default structures for a database, a web service,
and web pages. It encourages and eases the use of web stan-
dards such as JSON or XML for data transfer and HTML,
CSS, and JavaScript for user interfacing.

Ruby on Rails’ influence on other web frameworks is
rather apparent today, with many frameworks in other lan-
guages borrowing its ideas, including Django in Python,
Catalyst in Perl, Laravel, CakePHP and Yii in PHP, Grails
in Groovy, Phoenix in Elixir, Play in Scala, and Sails.js in
Node.js. Some currently popular sites that use Ruby on
Rails include Airbnb, Crunchbase, and Bloomberg.

WHAT IS RUBY AND RUBY ON RAILS?
Since Ruby on Rails is written in Ruby, it is only fair to
review the history of Ruby development first. Ruby is a high-
level, interpreted, general-purpose programming language.
It was designed and created in 1993, conceived in a discus-
sion about the possibility of founding a new object-oriented
scripting language between Yukihiro Matsumoto (“Matz”)
and his colleague. Matz stated in his ruby-talk:00382 blog
that he knew Perl but did not like it very much since it was
too plain for him. He also discussed that he knew Python
but did not like its basic operational principles.

At that point of time Matz was simply looking for a lan-
guage perfect for his needs that was:

• Syntactically uncomplicated

• Truly object-oriented

• Included iterators and closures

• Had exception handling

Introduction to Ruby on Rails ◾ 3

• Offered garbage collection

• Was portable

Having looked around and not found a language appro-
priate for his requirements, Yukihiro Matsumoto decided
to create his own. After spending several months writing
an interpreter, Matz finally presented the first public ver-
sion of Ruby (0.95) to various Japanese local newsgroups in
December 1995.

Ruby ended up being everything that other languages
could not offer: dynamically typed and using garbage
collection with just-in-time compilation. Moreover, it
supports multiple programming paradigms, including
procedural, object-oriented, and functional programming.
Ruby was mostly influenced by Perl, Smalltalk, Eiffel, Ada,
BASIC, and Lisp, according to its creator.

Ruby is also said to follow the principle of least astonish-
ment (POLA), meaning that the language is set to behave
in such a way as to reduce confusion for experienced users.
Matsumoto shared that his primary design goal was to cre-
ate a language that he enjoyed using by minimizing pro-
grammer routine and possible disarray.

Ruby was intentionally made purely object-oriented,
meaning that every value it has stands as an object, including
classes and instances of types that many other languages des-
ignate as primitives (such as integers, Booleans, and “null”).
At the same time, variables always hold references to objects.
Every function is treated as a method, and methods are
always called on an object. Methods defined at the top-level
scope become methods of the Object class. Since this class is
an ancestor of every other class, such methods can be called

4 ◾ Mastering Ruby on Rails

on any object. It is also important to remember that rules
applying to objects apply to the entire Ruby. They are also vis-
ible in all scopes, effectively serving as “global” procedures.

Additionally, Ruby supports inheritance with dynamic
dispatch, mixins, and singleton methods (belonging to,
and defined for, a single instance rather than being defined
on the class). Though Ruby does not support multiple
inheritances, classes can import modules as mixins.

Ruby has previously been described as a multi-par-
adigm programming language. Basically, that means it
allows procedural programming (defining functions/vari-
ables outside classes to make them part of the root), with
object-orientation (everything is an object) or functional
programming (supporting anonymous functions, clo-
sures, and continuations; statements all have values, and
functions return the last evaluation). It has support for
introspection, reflection, and metaprogramming, as well
as support for interpreter-based threads. Ruby also has
the capacity for dynamic typing and supports parametric
polymorphism (a programming technique that enables the
generic definition of functions and types).

Since its public release in 1995, Ruby has gained devoted
coders worldwide. In 2006, Ruby achieved mass praise.
Active user groups were particularly fond of Ruby due to
the following key features:

• Flexibility: Ruby is a flexible language as you can eas-
ily delete, redefine, or add existing parts to it. It allows
its users to freely change and advance its essential
parts as they wish. With that, Ruby tries not to restrict
the coder.

Introduction to Ruby on Rails ◾ 5

To illustrate with an example, addition is per-
formed with the plus (+) operator. However, if you
would rather use the readable word plus, you could
add such a method to Ruby’s built-in Numeric
class:

class Numeric
 def plus(x)
 self.+(x)
end
end
y = 5.plus 6
y is now equal to 11

At the same time, Ruby’s operators could be applied
as syntactic links for methods. If necessary, you can
redefine them as well.

• The expressive capacity of Blocks: Ruby’s block could
also be the reason for its great flexibility. A program-
mer can attach a closure to any method, regulating
how that method should act. The closure is called a
block and has become one of the most popular fea-
tures for newcomers to Ruby from other impera-
tive languages like PHP or Visual Basic. Blocks are
mainly inspired by functional languages and could
be demonstrated in the following manner:

search_engines =
 %w[Google Yahoo MSN].map do |engine|
 "http://www." + engine.downcase +
".com"
 end

6 ◾ Mastering Ruby on Rails

In the above code, the block is whatever you see inside
the do … end construct. The map method applies
the block to the provided list of words. Many other
methods in Ruby leave an open space for a coder to
insert their own block to fill in the details of what that
method should achieve.

• Mixins: Unlike many object-oriented languages, Ruby
supports single inheritance only. To put it simply,
Ruby has classes as well as modules. And a module
has methods but no instances. Instead, a module can
be mixed into a class, which adds the method of that
module to the class. It is similar to regular inheritance
but much more flexible.

To illustrate, any class which executes the method
can mix-in the Enumerable module, which adds a
pile of methods that use each for looping:

class MyArray
 include Enumerable

end

• Visual appearance: While Ruby often applies very
limited punctuation and typically prefers English
keywords, some punctuation is still used to decorate
Ruby. At the same time Ruby needs no variable dec-
larations since it uses simple naming conventions to
mark the scope of variables:

var could be a local variable.
@var is an instance variable.
$var is a global variable.

Introduction to Ruby on Rails ◾ 7

These signs advance readability by letting the pro-
grammer easily identify the roles of each variable.
It also becomes unnecessary to insert a tedious self,
prepended to every instance item.

• Dynamic typing and duck typing: It has previously
been stated that Ruby is a dynamic programming
language. Meaning that Ruby programs are not com-
piled—all class, module, and method definition are
built by the code only. This is dynamic typing.

At the same time, Ruby variables are loosely typed
language, which means any variable can hold any
type of object. When a method is called on an object,
Ruby only looks up at the name irrespective of the
type of object. This is duck typing. It lets you take
classes that pretend to be other classes.

• Variable constants: In Ruby, constants do not actu-
ally act as constants. If an already initialized constant
will be edited in a script, it will simply result in a
warning but will not terminate your program.

• Naming conventions: Ruby has particular naming
conventions for its variable, method, constant, and class:

• Constant: Starts with a capital letter.

• Global variable: Starts with a dollar sign ($).

• Instance variable: Starts with a (@) sign.

• Class variable: Starts with a (@@) sign.

• Method name: Allowed to start with a capital letter.

• Keyword arguments: like Python, Ruby methods
can be defined using keyword arguments.

8 ◾ Mastering Ruby on Rails

• Method names: Methods are permitted to end with a
question mark (?) or exclamation mark (!). Normally,
methods that answer questions end with question
marks, and methods that identify that method can
change the state of the object end with an exclama-
tion mark.

• Singleton methods: Ruby singleton methods are per-
object methods. They are only available on the object
you determined it on.

• Missing method: In case a method gets lost, Ruby
calls the method_missing method with the name of
the lost method.

• Statement delimiters: It is a rule that multiple
statements in a single line must hold semi-colon in
between but not at the end of a line.

• Keywords: Ruby has a special set of words that are
considered “reserved” meaning that they should not
be used when naming variables or methods. The fol-
lowing list displays all Ruby reserved words:1

1. BEGIN: Code, enclosed in { and }, to run before
the program runs.

2. END: Code, enclosed in { and }, to run when the
program ends.

3. alias: Creates an alias for an existing method,
operator, or global variable.

1 http://www.java2s.com/Code/Ruby/Language-Basics/Rubysreservedwords.
htm, Java

http://www.java2s.com
http://www.java2s.com

Introduction to Ruby on Rails ◾ 9

4. and: Logical operator; same as && except and has
lower precedence.

5. begin: Begins a code block or group of statements;
closes with end.

6. break: Terminates a while or until loop or a
method inside a block.

7. \case: Compares an expression with a matching
when clause; closes with end.

8. Class: Defines a class; closes with end.

9. def: Defines a method; closes with end.

10. defined?: Determines if a variable, method, super
method, or block exists.

11. do: Begins a block and executes code in that block;
closes with end.

12. else: Executes if previous conditional, in if, elsif,
unless, or when, is not true.

13. elsif: Executes if previous conditional, in if or
elsif, is not true.

14. end: Ends a code block (group of statements)
starting with begin, def, do, if, etc.

15. ensure: Always executes at block termination; use
after last rescue.

16. false: Logical or Boolean false, an instance of
FalseClass. (See true.)

10 ◾ Mastering Ruby on Rails

17. for: Begins a for loop; used within.

18. if: Executes code block if true. Closes with end.

19. module: Defines a module; closes with end.

20. next: Jumps before a loop’s conditional.

21. nil: Empty, uninitialized variable, or invalid, but
not the same as zero; object of NilClass.

22. not: Logical operator; same as !.

23. or: Logical operator; same as || except or has lower
precedence.

24. redo: Jumps after a loop’s conditional.

25. rescue: Evaluates an expression after an exception
is raised; used before ensure.

26. retry: Repeats a method call outside of rescue;
jumps to the top of block (begin) if inside rescue.

27. return: Returns a value from a method or block.
Maybe omitted.

28. self: Current object (invoked by a method).

29. super: Calls method of the same name in the
superclass. The superclass is the parent of this
class.

30. then: A continuation for if, unless, and when.
Maybe omitted.

31. true: Logical or Boolean true, an instance of
TrueClass.

Introduction to Ruby on Rails ◾ 11

32. undef: Makes a method in the current class
undefined.

33. unless: Executes code block if the conditional
statement is false.

34. until: Executes code block while conditional
statement is false.

35. when: Starts a clause (one or more) under case.

36. while: Executes code while the conditional state-
ment is true.

37. yield: Executes the block passed to the method.

38. _ _FILE_ _: Name of the current source file.

39. _ _LINE_ _: Number of the current line in the
current source file.

• Case Sensitive: It is worth noting that Ruby is a case-
sensitive language. Lowercase letters and uppercase
letters are different.

Although we have many reasons to use Ruby, there
are still a few drawbacks as well that you might have
to consider before implementing Ruby:

• Performance Issues: Although it opposes Perl
and Python, it is still an interpreted language that
cannot be compared with high-level program-
ming languages like C or C++.

• Threading model: Ruby does not utilize native
threads. In Ruby threads are simulated in rather
than running as native OS threads.

12 ◾ Mastering Ruby on Rails

Sample Ruby Code to print “Hello Ruby” is quite
straightforward:

The Hello Class
class Hello
 def initialize(name)
 @name = name.capitalize
 end

 def salute
 puts "Hello #{@name}!"
 end
 end

Create a new object
h = Hello.new("Ruby")

Output "Hello Ruby!"
h.salute
Output − This will produce the
following result −
Hello Ruby!

Another important thing about Ruby worth mentioning is
a program called Embedded Ruby (ERB). Ruby provides
an ERB written by Seki Masatoshi that allows you to put
Ruby codes inside an HTML file. ERB reads along, word
for word, and then at a certain point, when it encounters
a Ruby code embedded in the document, it starts running
the Ruby code.

There are two things to take care of when preparing an
ERB document:

If you want some Ruby code executed, enclose it between
<% and %>. If you want the result of the code execution to

Introduction to Ruby on Rails ◾ 13

be printed out, as a part of the output, enclose the code
between <%= and %>. To illustrate with an example:2

<% page_title = "Demonstration of ERB" %>
<% salutation = "Dear programmer," %>
<html>

 <head>
 <title><%= page_title %></title>
 </head>

 <body>
 <p><%= salutation %></p>
 <p>This is an example of how ERB
fills out a template.</p>
 </body>

</html>

Now, run the program using the command-line utility erb.

tp> erb erbdemo.rb

This will produce the following result—

<html>
 <head>
 <title>Demonstration of ERb</title>
 </head>
 <body>
 <p>Dear programmer,</p>
 <p>This is an example of how ERb
fills out a template.</p>
 </body>

</html>

2 https://www.ruby-lang.org/en/about/, Ruby

https://www.ruby-lang.org

14 ◾ Mastering Ruby on Rails

Overall, Ruby is a great language. Matz wanted a pro-
gramming language that catered to his needs, so he created
one. This inspiring example sends a motivating message to
the software development community—if you cannot find
something that you like, just create it yourself. Until 2004,
Ruby was not widely popular across Europe or the United
States. However, because of its impressive capabilities and
a large number of supported platforms, Ruby slowly but
surely exponentially grew the number of its followers. The
real spike of interest in Ruby was provoked by the develop-
ment of Ruby on Rails—a framework for producing web
applications.

Ruby on Rails was created by a Danish programmer,
David Heinemeier Hansson. In 1999, Hansson founded
and built a Danish online gaming website and community
called Daily Rush, which he owned until 2001. After collab-
orating with Jason Fried to work on PHP coding, Hansson
was hired by Fried to build a web-based project manage-
ment tool, which ultimately became 37signals Basecamp
software as a service product. In order to advance the
development process, Hansson used the then-obscure
Ruby programming language to code a custom web frame-
work. He released the framework separately from the proj-
ect management tool in 2004 as the open-source project
called “Ruby on Rails.” A year after that, in 2005, Hansson
was recognized by Google and O’Reilly with the “Hacker
of the Year” award for his creation of Ruby on Rails.

Hansson first released Rails as open source in July 2004
but did not share the commit rights until February 2005.
Soon after, in August 2006, the Apple company announced
that it would ship Ruby on Rails with Mac OS X v10.5
“Leopard.”

Introduction to Ruby on Rails ◾ 15

On March 15, 2009, Rails version 2.3 was released. It was
a notable version as it included major new developments in
templates, engines, and nested model forms.

On December 23, 2008, another web application frame-
work called Merb was launched. Rails announced that it
would work with the Merb project to incorporate the best
ideas of MVC Merb into Rails 3. As a result of such collab-
oration, all the unnecessary duplication of codes in both
frameworks were eliminated. The full Ruby version history
could be viewed in the list below:3

Version Release Date
1.0 December 13, 2005
1.2 January 19, 2007
2.0 December 7, 2007
2.1 June 1, 2008
2.2 November 21, 2008
2.3 March 16, 2009
3.0 August 29, 2010
3.1 August 31, 2011
3.2 January 20, 2012
4.0 June 25, 2013
4.1 April 8, 2014
4.2 December 19, 2014
5.0 June 30, 2016
5.1 May 10, 2017
5.2 April 9, 2018
6.0 August 16, 2019
6.1 December 9, 2020

3 https://weblog.rubyonrails.org/releases/, Ruby on Rails

https://weblog.rubyonrails.org

16 ◾ Mastering Ruby on Rails

The Rails philosophy is founded on two major guiding
principles:4

1. Don’t Repeat Yourself: DRY is a principle of software
development that could be described as

Every piece of knowledge must have a single,
straightforward, authoritative representation
within a system.

By not scripting the same information over and over
again, Rails code looks more maintainable, more
extensible, and uncomplicated.

2. Convention Over Configuration: Rails offers you
some options from which you can choose the best way
to do many things in a web application, and defaults
to this set of conventions, rather than require you to
determine specific rules and tasks through endless
configuration files.

One could guess that Rails could be quite an opinionated
software. It makes the assumption that there is the most
suitable way to achieve things, and it is designed to encour-
age that way—and in some instances to discourage alterna-
tives. If you stick with “The Rails Way” you will probably
discover a significant increase in productivity. On the
other hand, if you persist in bringing old practices from
other languages to your Rails development, and continu-
ing to apply patterns you learned elsewhere, you may have
a less smooth experience.

4 https://guides.rubyonrails.org/getting_started.html, Ruby on Rails

https://guides.rubyonrails.org

Introduction to Ruby on Rails ◾ 17

Experienced programmers choose Ruby on Rails because:

• It allows them to launch a faster web application.

• Helps with maintaining and avoiding issues with
stuff migration.

• They can easily update their apps with the latest
functionality.

• It uses Metaprogramming techniques (by which com-
puter programs have the ability to treat other programs
as their data) to write programs.

You can use Ruby on Rails application in various areas of
web development like long-term projects that require large
transformations, or in the project that has heavy traffic, or
to produce a short prototype or minimum viable product
(MVP), or in a project that requires wide range of complex
functions.

MAJOR FEATURES
As you might know, most programming languages like Java,
HTML, or CSS do not cover the front and back end. They
either cater only to the back end or the front end, but Ruby
on Rails could easily be used for both the front and back
end, acting like a complete set to develop a web application.
Some of the most important features of Ruby on Rails are:

1. MVC Architecture: Ruby on Rails uses MVC archi-
tecture that consists of three key components—
model, view, and controller. The model is used to carry
on the interrelation between object and database.

18 ◾ Mastering Ruby on Rails

The view acts as a template that is applied to build
the data users utilize to create web applications. The
controller is activated to merge the model and view
together.

2. Active Records: The active record framework was first
introduced in Ruby on Rails. It could be described as
a powerful library that allows the developer to design
the database interactive queries.

3. Built-in Testing: Ruby on Rails runs its own set of
tests that will examine and evaluate your code. This
feature alone saves a considerable amount of time
and effort.

4. Programming Language: The basic syntax of Ruby
on Rails is simple because the syntax of the Ruby
programming language is close to English, so it
is easier to structure your thinking and writing it
into code.

5. Convention Over Configuration: In Ruby on Rails,
a programmer can only specify the unconventional
aspects of the application, leaving the conventional
items to the language default settings.

6. Scaffolding: Ruby on rails provides a scaffolding fea-
ture in which the developer is encouraged to define
how the application database should work. Once
the work of the application database is defined, the
framework shall automatically generate the required
code according to the given definition. This tech-
nique permits the automatic creation of interfaces.

Introduction to Ruby on Rails ◾ 19

While you are developing Rails applications, espe-
cially those which are mostly providing you with a
simple interface to data in a database, it can often be
beneficial to follow the scaffold method. Scaffolding
also provides additional benefits such as:

• Quickly getting code in front of your users for
feedback.

• Learning how Rails works by looking at the gen-
erated code.

• Using scaffolding as a foundation to jump-start
your app development.

At the same time there are some incredibly useful advan-
tages of Ruby on Rails one should now:

• Tooling: Rails provides tooling that helps users to
deliver more features in less time.

• Code Quality: Rails code quality is significantly
higher than of PHP or NodeJS equivalents.

• Test Automation: The Rails community is big into
test automation and general code testing.

• Large Community: Rails have a large and supportive
community of users, developers, and experts.

• Productivity: Ruby is incredibly fast from another
language, making its productivity higher than in any
other average programming language.

20 ◾ Mastering Ruby on Rails

Nevertheless, there are certain disadvantages of Ruby
on Rails that need to be mentioned such as:

• Runtime Speed: The run time speed of Ruby on Rails
is slow compared to Node.Js and Golang operational
capacity.

• Lack of Flexibility: As we know that Ruby on Rails
is perfect for standard web applications due to its
established dependency between components and
models. Yet when it comes to adding unique func-
tionality and customization in apps, it could be
challenging.

• Boot Speed: The boot speed is another drawback
of Rails. Due to the dependence upon the number
of gem dependencies and files, it takes some time
to start, which can seriously limit the developer’s
performance.

• Multithreading: Ruby on Rails supports multi-
threading, but some IO libraries do not support
multi threading because they prefer to make use of
the global interpreter lock. It basically means that
if you are not careful enough, your request will get
queued up behind the active requests, and you might
experience certain performance issues.

• Active Record: Due to the access use of Active
records in the Ruby on Rails their hard dependency,
the domain becomes tightly coupled to your persis-
tence mechanism.

Introduction to Ruby on Rails ◾ 21

Most essential tools that have made Rails so widely pop-
ular include the following:

• AJAX Library: Ajax stands for Asynchronous
JavaScript and XML. Ajax is not a single technology
but rather a combination of several technologies. It
successfully incorporates the following:

• XHTML for the markup of web pages

• CSS for the styling

• Dynamic display and interaction using the
DOM

• Data manipulation and interchange using XML

• Data retrieval using XMLHttpRequest

• JavaScript as the glue that meshes all this
together

Ajax enables you to retrieve data for a web page without
having to refresh the entire page’s contents. In the basic
web architecture, the user has to click a link or submit
a form. The form is submitted to the server, which then
sends back a response. The response is then displayed for
the user on a new page.

When you interact with an Ajax-powered web page,
it loads an Ajax engine in the background. The engine is
scripted in JavaScript, and its responsibility is to both com-
municate with the webserver and offer the results to the
user. When you submit data using an Ajax-powered form,
the server returns an HTML item that holds the server’s

22 ◾ Mastering Ruby on Rails

response and presents only the new or modified data
instead of refreshing the entire page.

• Symbol Garbage Collector: Omitting unnecessary
symbols could potentially result in minor attacks on your
system. The symbol garbage collector combines all the
symbols which prevent your system from those attacks.

• Module #prepend: This option allows you to insert a
module in front of the class it was prepended.

• Keyword Arguments: Rails support keyword argu-
ments that help to control memory consumption by
Rails applications.

• Action Mailer: New methods deliver_now or deliver_
later are offered instead of #deliver and #deliver!.

• Action View: Helper methods like content_tag_for
and div_for were eliminated from the core and placed
in a separate gem.

• Turbolinks: Sometimes web pages reload very slowly
because it requests a full page from the server.
Turbolinks 3 reloads only the content of the body and
not the whole page.

• Rails Application Programming Interface (API):
This option enables you to generate API and clean all
the middleware that an application does not require.

• Render From Anywhere: In earlier versions, you had
to use gem render_anywhere to render views outside
the controller. Starting from Rails 5, you can render
your views from anywhere.

Introduction to Ruby on Rails ◾ 23

• Rake Command: Rails 5 provides you a feature
that allows you to restart all your apps with the rake
restart command.

• Customized URL: Search engine-friendly URLs can
be developed or customized in Rails.

• Action Text: Perhaps another notable item for many
applications that play with WYSIWYG editors is the
addition of support for Trix editor natively starting
from Rails 6 applications. Most WYSIWYG HTML
editors are enormous in scope—each browser’s render-
ing has its own set of bugs and quirks, and JavaScript
developers are left to deal with the inconsistencies. Trix
organized these inconsistencies by regulating content
editable as an I/O device. Thus, when input makes its
way to the editor, Trix converts that input into an edit-
ing operation on its internal document model, then
re-renders that document back into the editor. This
gives Trix complete control over all of the processes.
Its installation into Rails is pretty straightforward:

rails action_text:install
app/models/message.rb
class Message < ApplicationRecord
 has_rich_text :content

end

• Security: No serious upgrade is ever complete with-
out a few necessary security enhancements. And
as one might expect, Rails do not disappoint on
the security front, either. The first notable security
upgrade in Rails 6 is the inclusion of support for

24 ◾ Mastering Ruby on Rails

Host Authorization. Host Authorization stands for a
new middleware that guards against DNS rebinding
attacks by explicitly allowing you to whitelist some
hosts for your application and preventing Host header
attacks. What this means is that you can determine
the amount and quality of hosts that can access your
applications.

Another significant security upgrade is meant to
thwart attacks that try and copy the signed/encrypted
value of a cookie and apply it as the value of another
cookie. It does so by collecting the cookie names in
the purpose field, which is then signed/encrypted
along with the cookie value. Then, on the server-side
read, you confirm the cookie names and discard any
unwanted cookies. In order to use this feature, you
just need to enable action_dispatch.use_cookies_
with_metadata which scripts cookies with the new
purpose and expiry metadata embedded.

• Webpack as the Default Bundler: As the basic stan-
dard with many modern JavaScript frameworks for
front-end development, Rails 6 has added Webpack
as the default JavaScript bundler through the web-
packer gem, removing the Rails Asset Pipeline. This
is a relatively straightforward addition, and there is
no need to go into much detail now. Suffice to say that
Webpack was brought to propose certain advance-
ments to overworked front-end developers.

Since the 5.2 version of Rails, credentials have been
named a new “Rails way” to deal with sensitive informa-
tion with a promise to get rid of. env files once and for all.

Introduction to Ruby on Rails ◾ 25

With credentials, encrypted keys for third-party services
can be examined directly into the source control. Yet
until now, Rails used the same encrypted file for all envi-
ronments, which made operating with different keys in
development and production slightly challenging, espe-
cially when managing big projects and legacy code.

In Rails 6, this has finally been solved with support
for per-environment credentials. In fact, Rails 6 could be
viewed as a major update, though few would regard it as a
game-changer. Since Ruby on Rails has been around for a
long time now, few people expect extraordinary changes,
but its sixth incarnation brings a lot to the community.

Some features that came with Rails 6 might seem like
minor corrections, while others have the potential to save
a lot of development time, improve security, and flexibil-
ity. The bottom line here is that Rails is a mature program-
ming language, a lot of developers remain enthusiastic
about its potential, and with the release of Rails 6, it only
got better.

Like other web frameworks, Ruby on Rails applies the
MVC pattern to organize application programming. In a
default configuration, a model in the Ruby on Rails frame-
work maps to a table in a database and to a Ruby file. For
instance, a model class User will usually be identified in
the file “user.rb” in the app/models directory and linked to
the table “users” in the database. While developers are free
to disregard this particular convention and select differ-
ing names for their models, files, and database table, this
is not a prevalent practice and is usually discouraged in
accordance with the “convention-over-configuration” phi-
losophy we have previously mentioned.

26 ◾ Mastering Ruby on Rails

A controller is a server-side unit of Rails that reacts to
external requests from the webserver to the application, by
deciding which view file to render. The controller may also
have to query one or more models for general data and pass
these on to the view. For instance, in an airline reservation
system, a controller executing a flight-search feature would
have to query a model representing individual flights to
find flights matching the search, and might also need to
query models representing airports and airlines to look
for related secondary data. The controller would then pass
some subset of the flight data to the corresponding view,
which would hold a mixture of static HTML and logic that
apply to the flight data to produce an HTML document
that consists of a table with one row per flight. A control-
ler, therefore, can provide one or more actions. In Ruby on
Rails, an action stands for a basic component that states
how to react to a particular external web browser request.
It is also important to keep in mind that the controller/
action will be accessible for external web requests only if
a corresponding route is outlined to it. Rails encourages
developers to use RESTful routes, which include actions
such as create, new, edit, update, destroy, show, and index.
These features of incoming requests/routes to controller
actions can be easily set up in the routes.rb configuration
file. At the same time, a view in the default configuration of
Rails is an erb file, which could be reviewed and converted
to HTML at run-time. Alternatively, many other templat-
ing systems can be used for views.

Since version 2.0, Ruby on Rails offers both HTML
and XML as standard output formats. The latter is the
facility for RESTful web services. With Rails version 3.1,

Introduction to Ruby on Rails ◾ 27

developers introduced Sass as standard CSS templating. By
default, the server still uses ERB in the HTML views, with
files having an html.erb extension. In addition, it also sup-
ports swapping in alternative templating languages, such
as HAML and Mustache.

Ruby on Rails is also noteworthy for its extensive use
of the JavaScript libraries Prototype and Script.aculo.us for
editing Ajax actions. Ruby on Rails initially applied light-
weight SOAP for web services that was later replaced by
RESTful web services. Ruby on Rails version 3.0 separated
the markup of the page (which determined the structure
of the page) from scripting (which decided the function-
ality or logic of the page). jQuery is fully supported as a
replacement for Prototype and is the default JavaScript
library since Rails version 3.1, reflecting an industry-wide
move toward jQuery. Additionally, CoffeeScript was intro-
duced in the same Rails version 3.1 as the default JavaScript
language.

Overall, Ruby on Rails includes great tools that make
common development assignments easier, such as scaf-
folding that can automatically construct some of the mod-
els and views necessary for a basic website. Also included
are WEBrick, a simple Ruby web server that is packaged
with Ruby, and Rake, a build system, distributed as a gem.
Together with Ruby on Rails, these tools provide a great
development environment.

Typically, Ruby on Rails applications are the most com-
mon in the following areas of web development:

• Projects involving a wide range of complex functions;

• Large projects requiring serious transformations;

28 ◾ Mastering Ruby on Rails

• Long-term projects that pass through continuous
modifications in parameters;

• Projects that have heavy traffic;

• Small, quick projects to develop prototypes and MVPs.

Even though there can be no strict rules here, some devel-
opers still do not recommend Ruby on Rails in the follow-
ing cases:

• No significant modifications in the project;

• A project with limited functionality and uniform
operations;

• No need for quick decisions;

• If your project requires low resource consumption.

RAILS VS OTHER FRAMEWORKS
With a variety of programming languages, frameworks,
platforms, and development environments, one cannot
simply go away without comparing one to the other. Rails
is often correlated to other frameworks and environments
due to its multi-capacity and flexibility. It tends to com-
pletely smudge the line that distinguishes conventional
categories like languages and frameworks, providing pro-
fessionals with a handful of tools to produce scalable and
high-quality work.

Ruby on Rails Vs Python

Python is a general-purpose programming language. Some
view Python as an all-purpose language that is able to meet

Introduction to Ruby on Rails ◾ 29

any requirements of the coder without having to look for
any external tools. In contrast to Python, Ruby on Rails is
not a language, it stands out as a framework built upon the
Ruby language and explicitly used for web development.

Ruby on Rails Vs PHP

PHP is a language with an object-oriented programming
(OOP) structure used for scripting. It is mostly applied
in software development, whereas Rails is the framework
sought for web development. Same as with Python, this
comparison with PHP is not entirely correct since Ruby on
Rails is not a language. However, you are very likely going
to face many situations where Ruby on Rails and PHP
would be applied within the same project.

Ruby on Rails Vs Java

Java is one of the oldest and widely used languages. It is
specifically known as a language to develop applications
for a variety of operating systems. This technology is espe-
cially well-known as being a top language for developing
Android apps. In contrast to Java, RoR is commonly used
for web development purposes.

Ruby on Rails vs JavaScript

Although they are similarly named, Java and JavaScript
are entirely different scripting languages that are created
for different purposes. Java’s goal is to enable developers to
apply the same code on different operating systems with-
out having to modify it much. Yet nowadays, Java applets
are getting less popular, with most users preferring Java
support disabled in their browsers. On the other hand,

30 ◾ Mastering Ruby on Rails

JavaScript is more popular than ever as it runs perfectly
well with modern web browsers, especially on mobile.

JavaScript is one of the most widely used front-end
programming languages, particularly applied in creating
versatile user interfaces for web applications for different
devices. Rails and Java share a few basic similarities, but
for the most part, they should be perceived as completely
different languages. They are both strongly typed and OOP
languages, but Rails is an interpreted scripting language
while Java is a compiled coding language.

JavaScript and Ruby on Rails are in high demand, and
both are viewed as lucrative web development program-
ming languages that each have apparent advantages. At the
same time, they go hand in hand really well. That is why,
when choosing whether to learn Ruby or JavaScript, you
should consider taking the third option and learning both
of these computer programming languages.

Ruby on Rails Vs Node.js

Node.js is an open-source platform for implementing
JavaScript code server-side, as it was primarily built on the
JavaScript runtime. Fundamentally, comparing Node.JS to
Rails is like comparing an apple to an orange. Unlike Rails,
Node is not a framework but an application runtime envi-
ronment that allows scripting on the server-side applica-
tion using JavaScript, while Ruby on Rails is a framework.

Ruby on Rails Vs Ruby

One of the most widely applied programming languages,
similar to Java or C, Ruby is an all-purpose language, best-
reviewed for its advantages in web programming. On the

Introduction to Ruby on Rails ◾ 31

contrary, Rails is the software library, which broadens Ruby
language. And since Ruby and Rails have a longstanding
connection, let us observe Ruby with Ruby on Rails in
detail starting from the following on-basis table (Table 1.1):5

5 https://www.monocubed.com/difference-between-ruby-and-ruby-on-rails/,
Monocubed

TABLE 1.1 Comparing Ruby Vs Ruby on Rails

Basis Ruby Ruby on Rails

Principle Ruby was founded on
the principle of user
interface composition.

Ruby on Rails was built on
the principles of convention
over configuration (CoC)
and don’t repeat yourself
(DRY).

Programmed Ruby is programmed in
the C programming
language.

Ruby on Rails is
programmed in Ruby
language.

Framework Ruby is not a framework.
It is a general-purpose
programming language.

Ruby on Rails is a web app
development framework.

Inspiration Ruby took inspiration
from Smalltalk and
Perl.

Ruby on Rails took
inspiration from Django
and Laravel of PHP and
Python correspondingly.

Applications Ruby is used to build
desktop applications.

For building web
applications, Ruby on
Rails is used.

Languages
used

While building
applications, JAVA,
C++, and Vb.net are
mostly used.

While building applications,
XML, JavaScript, CSS, and
HTML are commonly
used.

Syntax The syntax of Ruby is
much related to Python
and Perl.

The syntax of Ruby on
Rails is quite similar to
Python, Phoenix in Elixir.

https://www.monocubed.com

32 ◾ Mastering Ruby on Rails

After reviewing the concepts and detailed comparison
on Ruby with Rails, let us examine each technology’s pros
and cons.

Pros and Cons: Ruby

As previously stated, Ruby is an open-source program-
ming language mostly used to develop services and web
applications. It has been the best fit for the developers, as it
offers an option of blending with other technologies.

Pros
Dependency regulation: Ruby language has a great advan-
tage of automatic regulation of various dependencies. It
offers a flawless way to obtain, operate, and execute them.
Developers do not need to use any other class directories to
manage any added dependencies.

• Instant gratification: Ruby is wired to push developers
to write codes for forming any large application within
a stipulated time, in comparison to other prevalent
programming languages that disregard that function.

• Memory operability: The management of memory
is one of the essential advantages of Ruby, allowing
its users to do it physically. While analyzing complex
algorithms and using a data structure, developers
find this feature to be very helpful.

Cons

• Shared modifiable state: In spite of being object-
oriented, each object is modifiable in Ruby. Even its
originals get an identical state which might issue soft-
ware bugs that can go to exceptions until the end.

Introduction to Ruby on Rails ◾ 33

• Multiple programming pattern: Ruby supports
multiple programming paradigms, which can be an
advantage as well as an obstacle. The logic behind
it is that developers can be confused to depict the
codes while creating a module. This might result
in development complications that developers will
have to overcome independently and not in a single
pattern, which is going to consume much of their
time.

• Syntax complication: It is not recommended to omit
syntax issues, even if the interpreter ignores it due to
its massive codebase. Sometimes these concepts get
overlooked and the developers tend to avoid such
syntaxes.

Pros and Cons: Ruby on Rails

In Ruby and Ruby on Rails, the former language assists in
managing diverse databases that split the process between
two duplications. This, in turn, supplies services and per-
formance advancement for scaling. Its developers can
observe dissimilar database support as an enhancement in
constructing their app designs.

Pros

• Cost-effective: Rails is an open-source structure,
which means that you do not spend any financial
resources to get access to its structure. It allows you
to implement methods without any extra concepts, so
it can save a lot of time.

34 ◾ Mastering Ruby on Rails

• Safe and secure: A number of great security points are
included and authorized within the system. Using Ruby
on Rails activates a secure development lifecycle, which
is an outstanding security maintenance method.

• Flexible: If you hope to attract numerous users to your
applications, you must make sure that it can adjust to
the necessity of your audience. With amazing features
that were listed before, this framework can make the
most productive and flexible applications.

Cons

• Multithreading: Rails supports Multithreading,
which means that if you are not careful, requests
could be lined up at the backside of an active request
creating additional issues in performance.

• Ambiguity due to convention: Apart from the advan-
tages of convention over configuration for beginners,
it adds a certain level of ambiguity to skilled develop-
ers. For instance, with the nonexistence of configura-
tion files, there is no code, which reveals that the data
from a class named “page” is certainly saved to the
table defined “chapter.”

• Boot speed: Most of the programmers who are oper-
ating with Ruby on Rails mention that the speed of
boot is not up to the anticipation. Due to numerous
dependencies and files, it requires considerable time
to begin. And because of this, the performance of the
developers gets affected.

Introduction to Ruby on Rails ◾ 35

Hopefully, this section of Ruby on Rails’ overview has pro-
vided you with enough information about Ruby on Rails as
a leading technology and its position in the software devel-
opment industry.

INSTALLATION AND CONFIGURATION
OF RUBY ON RAILS
Before you install Rails, you should check to make sure
that your system has the proper prerequisites installed.
These include:

• Ruby

• SQLite3

• Node.js

• Yarn

In order to install Ruby, go to https://www.ruby-lang.org/
en/downloads/. Once the download is finished, access a
command-line prompt. If you are working on macOS you
should open Terminal.app; on Windows, choose “Run”
from your Start menu and type cmd.exe. Any commands
prefaced with a dollar sign $should be run in the com-
mand line. Verify that you have a current version of Ruby
installed:

$ ruby --version

https://www.ruby-lang.org
https://www.ruby-lang.org

36 ◾ Mastering Ruby on Rails

Rails requires Ruby version 2.5.0 or later. If the version
number returned is less than that number (such as 2.3.7, or
1.8.7), you will need to install a fresh copy of Ruby.

You will also need an installation of the SQLite3 data-
base. Many popular UNIX-like OS ship with an acceptable
version of SQLite3. In order to verify that it is correctly
installed go to your load PATH:

$ sqlite3 --version

With that, the program should report its version.
Finally, you’ll need Node.js and Yarn installed to man-

age your application’s JavaScript. Find the installation
instructions at the Node.js website (https://nodejs.org/en/
download/) and verify it is installed correctly with the fol-
lowing command:

$ node --version

https://nodejs.org
https://nodejs.org

Introduction to Ruby on Rails ◾ 37

Make sure that the version of your Node.js that should be
printed out as output is greater than 8.16.0.

To install Yarn, follow the installation instructions at
the Yarn website (https://classic.yarnpkg.com/en/) and run
this command to check the available Yarn version:

$ yarn --version

If it states something like “1.22.0,” Yarn has been installed
correctly.

https://classic.yarnpkg.com

38 ◾ Mastering Ruby on Rails

In order to install Rails, apply the following gem install
command provided by RubyGems in https://rails.github.
io/download/:

$ gem install rails

To verify that you have everything installed correctly, you
should be able to run the following:

$ rails --version

If it displays a result that states—“Rails 6.0.0,” then you are
ready to continue.

Creating a Sample Blog Application

Rails come with a variety of scripts called generators that are
designed to make your development process easier by pre-
paring everything that is necessary to start working on a par-
ticular task. One of these is the new application generator,
which will provide you with the foundation of a pre-made
Rails application so that you do not have to write it yourself.

https://rails.github.io
https://rails.github.io

Introduction to Ruby on Rails ◾ 39

To use this generator, you should open a terminal and
navigate to a directory where you have rights to create files,
and run:

$ rails new blog

This will create a Rails application called Blog in a blog
directory and install the necessary gem dependencies. In
case you are using Windows Subsystem for Linux, then
there are a few limitations on file system notifications that
mean you have to disable the spring and listen to gems
which you can do by running rails new blog --skip-spring
--skip-listen instead. In addition, you can access all of the
command-line options that the Rails application generator
supports by running rails new --help.

After you create the blog application, you can focus on
its folder:

$ cd blog

This blog directory will display a number of generated files
and folders that make up the structure of a Rails applica-
tion. Most of the work typically takes place in this app
folder, but there is also a basic rundown on the function
of each of the files and folders that Rails create by default:6

• app/: Contains the controllers, models, views, helpers,
mailers, channels, jobs, and assets for your application.

• bin/: Contains the rails script that starts your app and
can contain other scripts you use to set up, update,
deploy, or run your application.

6 https://guides.rubyonrails.org/getting_started.html, Ruby on Rails

https://guides.rubyonrails.org

40 ◾ Mastering Ruby on Rails

• config/: Contains configuration for your application’s
routes, database, and more.

• config.ru: Rack configuration for Rack-based servers
used to start the application.

• db/: Contains your current database schema, as well
as the database migrations.

• Gemfile.lock: These files allow you to specify what
gem dependencies are needed for your Rails applica-
tion. These files are used by the Bundler gem.

• lib/: Extended modules for your application.

• log/: Application log files.

• package.json: This file allows you to specify what npm
dependencies are needed for your Rails application.

• public/: Contains static files and compiled assets.
When your app is running, this directory will be
exposed as-is.

• Rakefile: This file locates and loads tasks that can be
run from the command line. The task definitions are
defined throughout the components of Rails. Rather
than changing Rakefile, you should add your own
tasks by adding files to the lib/tasks directory of your
application.

• README.md: This is a brief instruction manual for
your application. You should edit this file to tell others
what your application does, how to set it up, and so on.

• storage/: Active Storage files for Disk Service.

Introduction to Ruby on Rails ◾ 41

• test/: Unit tests, fixtures, and other test apparatus.

• tmp/: Temporary files (like cache and pid files).

• vendor/: A place for all third-party code. In a typical
Rails application, this includes vendored gems.

• .gitignore: This file tells git which files (or patterns) it
should ignore.

• .ruby-version: This file contains the default Ruby
version.

By now you actually have a functional Rails application
ready. To see it, you need to start a web server on your
development machine by simply running the following
command in the blog directory:

$ bin/rails server

And if you are using Windows, you have to insert the
scripts under the bin folder directly to the Ruby interpreter
via ruby bin\rails server.

This will start up Puma, a web server distributed with
Rails by default. In order to see your application in action,
you need to open a browser window and navigate to http://
localhost:3000. You should see the Rails default informa-
tion page saying: Yay! You’re on Rails!

In case you want to stop the webserver, just press Ctrl+C
in the terminal window where it is running. In the devel-
opment environment, Rails does not generally require you
to restart the server as any modifications you introduce in
files will be automatically picked up by the server. Keep in

http://localhost:3000
http://localhost:3000

42 ◾ Mastering Ruby on Rails

mind that the “Yay! You’re on Rails!” page is the smoke test
for a new Rails application: it simply ensures that you have
your software configured correctly enough to serve a page.

Saying “Hello” in Rails

To get Rails saying “Hello,” one has to create at minimum
a route, a controller with an action, and a view. It goes the
following way: a route maps a request to a controller action,
which then performs the necessary work to manage the
request, and prepares any data for the view. A view then is
expected to display data in the desired format.

In terms of correct execution: routes here stand for
rules scripted in a Ruby Domain-Specific Language (DSL).
Controllers are Ruby classes, and their public methods are
actions. And views are templates, usually written in a com-
bination of HTML and Ruby.

You start by adding a route to our routes file, config/
routes.rb, at the top of the Rails.application.routes.draw
block:

Rails.application.routes.draw do
 get "/articles", to: "articles#index"
end

This route basically declares that GET/articles requests are
mapped to the index action of ArticlesController. And in
order to create ArticlesController and its index action, you
should run the controller generator using the --skip-routes
option because we already have an appropriate route:

$ bin/rails generate controller Articles
index --skip-routes

Introduction to Ruby on Rails ◾ 43

With that, Rails will create the following files for you:7

• create app/controllers/articles_controller.rb

• invoke erb

• create app/views/articles

• create app/views/articles/index.html.erb

• invoke test_unit

• create test/controllers/articles_controller_test.rb

• invoke helper

• create app/helpers/articles_helper.rb

• invoke test_unit

• invoke assets

• invoke scss

• create app/assets/stylesheets/articles.scss

• create app/controllers/articles_controller.rb

• invoke erb

• create app/views/articles

• create app/views/articles/index.html.erb

• invoke test_unit

• create test/controllers/articles_controller_test.rb

7 https://guides.rubyonrails.org/getting_started.html, Ruby on Rails

https://guides.rubyonrails.org

44 ◾ Mastering Ruby on Rails

• invoke helper

• create app/helpers/articles_helper.rb

• invoke test_unit

• invoke assets

• invoke scss

• create app/assets/stylesheets/articles.scss

The most essential of these is the controller file, app/
controllers/articles_controller.rb. To illustrate with an
example:

class ArticlesController <
ApplicationController
 def index
 end
end

As you can observe, the index action is empty. And when
an action does not explicitly render a def index, Rails will
automatically render an index that matches the name of
the controller and action. Typically, the index action will
render app/views/articles/index.html.erb by default. AS
for now, let us open app/views/articles/index.html.erb, and
replace its contents with:

<h1>Hello, Rails!</h1>

By default, the opening page displays “Yay! You’re on Rails!”
message. You change that and make it display “Hello,
Rails!” text at http://localhost:3000. To achieve that, you

http://localhost:3000

Introduction to Ruby on Rails ◾ 45

can add a route that maps the root path of your application
to the appropriate controller and action. Start by opening
config/routes.rb, and inserting the following root route to
the top of the Rails.application.routes.draw block:

Rails.application.routes.draw do
 root "articles#index"
 get "/articles", to: "articles#index"
end

With that you should be able to see the “Hello, Rails!” text
when accessing the opening page, confirming that the root
route is also mapped to the index action of ArticlesController.

MVC

By now we have discussed routes, controllers, actions, and
views. All of these are key items of a web application that
follows the MVC pattern. MVC is a design pattern that
manages the responsibilities of an application to make it
easier to reason about. Rails follows this design pattern in
accordance with the convention principle.

But since we already have a controller and a view to
work with, it is possible to generate the next essential piece:
a model. A model stands for a Ruby class that is utilized to
represent data. Additionally, models can communicate to
the application’s database through a feature of Rails called
Active Record.

In order to define a model, you are expected to use the
following model generator:

$ bin/rails generate model Article
title:string body:text

46 ◾ Mastering Ruby on Rails

This will create the following files:8

• invoke active_record

• create db/migrate/<timestamp>_create_articles.rb

• create app/models/article.rb

• invoke test_unit

• create test/models/article_test.rb

• create test/fixtures/articles.yml

The two files that we shall use the most in the next
Database Migrations section are the migration file (db/
migrate/<timestamp>_create_articles.rb) and the model
file (app/models/article.rb).

The last thing that is important to keep in mind while
going along with this book is that model names are sin-
gular because an instantiated model represents a single
data record. To help remember this principle, think of how
you would call the model’s constructor: you want to write
Article.new(…), and not Articles.new(…).

DATABASE MIGRATIONS
Migrations are normally performed to advance the structure
of an application’s database. In Rails applications, migrations
are scripted in Ruby so that they can be database-agnostic
or enabled to work with various systems, rather than being
customized for a single system.

8 https://guides.rubyonrails.org/getting_started.html, Ruby on Rails

https://guides.rubyonrails.org

Introduction to Ruby on Rails ◾ 47

The content of a new migration file that we are going to
establish here shall look the following way:

class CreateArticles <
ActiveRecord::Migration
 def change
 create_table :articles do |t|
 t.string :title
 t.text :body
 t.timestamps
 end
 end
end

The above call to create_table states how the articles table
should be constructed. By default, the create_table method
adds an id column as an auto-incrementing primary stan-
dard. So the first record in the table will have an id of 1, the
next record will have an id of 2, and so on.

Additionally, inside the block for create_table, you can
observe two columns defined: title and body. These are
typically inserted by the generator. On the last line of the
block is a call to t.timestamps method that is used to define
two additional columns named created_at and updated_at.
There is no need to worry about these either as Rails will
manage them for you, setting the values when you create or
update a model object.

Now you can activate migration with the following
command:

$ bin/rails db:migrate

48 ◾ Mastering Ruby on Rails

This command is expected to display the output below
indicating that the table was created:9

== <CODE>CreateArticles: migrating ======
=============================
-- create_table(:articles)
 -> 0.0018s
== CreateArticles: migrated (0.0018s)
==========================

Now you can interact with the table using this model.
Moreover, you can apply the same model to manipulate the
Database. But if you are going to do that, you would need to
use a different feature of Rails called the console. The console
stands for an interactive coding environment that automati-
cally loads Rails with your application code. In order to launch
the console, you need to insert the following command:

$ bin/rails console

Once activated, you should be able to see a prompt similar
to this:

Loading development environment (Rails
6.0.2.1)
irb(main):001:0>

Using this prompt, you can initialize a new Article object:

irb> article = Article.new(title: "Hello
Rails", body: "I am on Rails!")
article = Article.new(title: "Hello Rails",
body: "I am on Rails!")

9 https://guides.rubyonrails.org/getting_started.html, Ruby on Rails

https://guides.rubyonrails.org

Introduction to Ruby on Rails ◾ 49

It is important to understand that at this point you have
only initialized this object. This object is not saved to the
database just yet as it is only available in the console.

As an alternative, you can go back to the controller in
app/controllers/articles_controller.rb, and change the index
action to fetch all articles from the database:

class ArticlesController <
ApplicationController
 <CODE>def index
 @articles = Article.all
 end
end

The above controller instance variables can also be accessed
by the view. That means you can reference @articles in app/
views/articles/index.html.erb. To do that, you need to open
the file, and replace its contents with:10

<h1>Articles</h1>

 <% @articles.each do |article| %>

 <%= article.title %>

 <% end %>

As you might notice, the above code is a mixture of HTML
and ERB, a templating system that examines Ruby code
embedded in a document. Here, we can see two types of

10 https://guides.rubyonrails.org/getting_started.html, Ruby on Rails

https://guides.rubyonrails.org

50 ◾ Mastering Ruby on Rails

ERB tags: <% %> and <%= %>. The <% %> tag means
“check the enclosed Ruby code.” The <%= %> tag means
“check the enclosed Ruby code as well as the output value it
returns.” Anything you normally script in a regular Ruby
program can go inside these ERB tags, though it is recom-
mended to keep the contents of ERB tags short for better
readability.

Since there is no need to output the value returned by
@articles.each, we have enclosed that code in <% %>. But,
since you need the output value returned by article.title
(for each article), we have included that code in <%= %>.

It is possible to see the final result of all the modifica-
tions we have introduced in this chapter simply by visit-
ing http://localhost:3000. And here is what would happen
when you do that:

• The browser will send a request: GET http://
localhost:3000.

• Your Rails application receives this request.

• The Rails router shall map the root route to the index
action of ArticlesController.

• The index action will use the Article model to fetch
all articles in the database.

• Rails will automatically render the app/views/arti-
cles/index.html.erb view.

• The ERB code in the view is examined to output
HTML.

• The server shall send a response holding the HTML
back to the browser.

http://localhost:3000
http://localhost:3000
http://localhost:3000

Introduction to Ruby on Rails ◾ 51

And with that, you have connected all the Rails MVC
components together and observed your first controller
action.

In this chapter, you were introduced to the basic his-
tory and main features of Ruby on Rails. We also showed
you how to install and configure essential features of the
framework. You should now have the foundation required
to be able to review and analyze Ruby on Rails syntax with
its specific Terms, various Fields, Validations, and Files.

https://taylorandfrancis.com

53DOI: 10.1201/9781003229605-2

C h a p t e r 2

Getting Started
with Ruby on Rails

IN THIS CHAPTER

 ➢ Getting to know the basic Ruby on Rails Syntax

 ➢ Configuring Ruby on Rails Fields and Validations

 ➢ Reviewing framework’s generated files

In the previous chapter, we learned about the history of
Ruby on Rails and its main characteristics and advan-
tages. This chapter shall walk you through setting up your
basic syntax and development environment so you can fol-
low the instructions and examples in this book. First, we
shall look at the structured form of the framework, review
working with Fields and Validations, and learn more about
its generated files.

https://doi.org/10.1201/9781003229605-2

54 ◾ Mastering Ruby on Rails

BASIC RUBY ON RAILS SYNTAX
Ruby on Rails is a flexible and dynamic language. It is con-
sidered flexible mostly in terms of syntax. For instance, even
if an object of a class is instantiated, you can still edit the
method of the object. In addition, there is no need to specify
the data type of variables. Once you move along with this
book, you will learn about the syntax of Ruby in-depth and
will see why it is so widely popular. In this chapter, we shall
briefly go through the most important components of syntax.

Data Type

In ruby, there are three main types of data:

1. Number

2. String

3. Boolean

> number_of_student = 5 #number
 => 5
> name = "Jane" #String
 => "Jane"

Getting Started with Ruby on Rails ◾ 55

> isFemale = true #boolean
=> true

Therefore, once you give any value to a variable, the vari-
able will sort out data type depending on what value you
gave. So there is no need to specify the data type as you
might require in Java, for instance. As you observe here,
once you give a number to a variable, its data type auto-
matically becomes a number.

Naming Convention

1. Local variables, method parameters, and method
names start with a lowercase letter or an underscore.
To illustrate:

name, _28, fishAndChips

2. Global variable should start with $. For example:

$plan, $CUSTOMER

3. Instance variables are marked with @in the following
way:

@name, @pw

4. Class variables start with @@ and must be initialized
before using it:

@@plays, @@count

5. Class name or Constants start with an uppercase letter:

Person, PI

56 ◾ Mastering Ruby on Rails

Input and Output

1. puts: used to print value and make new line

puts "Hello"
"Jane" => nil

2. print: applied to print value but does not make new
line

print "Hello"
"James" #make new-line
⇨	nil

3. gets: used to get input from prompt

input = gets.chomp.to_i
chomp: Remove the portion corresponding
to this 'Enter'
to_i: convert input into integer value

Methods

1. def: a reserved word applied for declaring a method.
To illustrate with an example:

def sum
 puts 2 + 2
end
sum or sum()

At the same time, if you like to make one method, you can
use “def” keyword before the name of a method or make a

Getting Started with Ruby on Rails ◾ 57

block using the end keyword. In order to run the method,
just call the name of a method or use parenthesis:

def sum(a,b)
 puts a + b
end
sum(4,5)

In case you need to give parameters on method, use paren-
thesis and put parameter variables. That way, when you
call it, you would be calling method with parameters.

Class

• Typically starts with the “class” keyword

• The initialize method is used the same way as a con-
structor in Java

• Class variables begin with “@” are instance variables

The basic structure of Class follows a few certain rules:

• Variables starting with “@@” are treated as class vari-
ables that could be shared between objects of one
class.

• At run-time, you can change the definition of a class,
meaning that member variables/methods can be
added/removed/redefined.

• In order to instantiate an object:

• Without initializing, you can use “new” keyword—
person = Person.new

58 ◾ Mastering Ruby on Rails

• Call initialize with parameters if you have initial-
ized method:

person = Person.new("adam",
"password")

Meantime, if you set out to write a Rails application, leav-
ing aside the configuration and other rulebook chores, you
have to mainly focus on the following three tasks:

• Describing and modeling your application’s domain:
The domain is the central location of your applica-
tion. The domain may be a music database, a phone
book, an address book, or a software inventory. So
here you have to decide what you want in it and what
entities may exist in this universe, and how the com-
ponents in it relate to each other. This could be viewed
as equivalent to modeling a database structure to pre-
serve all the entities and their relationship.

• Specifying what happens in this domain: The
domain model is static, and it is up to you to make it
dynamic. For instance, addresses can be added to an
address book, song scores can be viewed from music
stores, users can log in to a new dating app. You need
to specify all the possible scenarios or actions that the
components of your domain can participate in.

• Choosing and designing the publicly available views
of the domain: At this point, you should be able to think
about your domain in Web-browser terms. You can pre-
view a welcome page, a registration page, or a confirma-
tion page. Each of these pages, or views, demonstrates
to the user how things are managed at a certain point.

Getting Started with Ruby on Rails ◾ 59

Based on the above three tasks, Ruby on Rails deals with
a Model/View/Controller (MVC) framework. The MVC
principle divides the work of an application into three
separate but closely cooperative subsystems that we have
already briefly encountered in the previous chapter:

Model (ActiveRecord)
It regulates the relationship between the objects and the
database and manages validation, association, and trans-
actions. This subsystem is executed in the ActiveRecord
library, which provides an interface and binding between
the tables in a relational database and the Ruby program
code that operates database records. Typically, Rails
method names are automatically generated from the field
names of database tables.

View (ActionView)
ActionView stands for a data illustration in a particular
format, activated by a controller’s decision to present the
data. They are script-based template models similar to PHP
that are quite easy to integrate with AJAX technology. This
subsystem is executed in the ActionView library, which is an
Embedded Ruby-based system for defining presentation tem-
plates for data presentation. Every Web connection to a Rails
application eventually ends up in the displaying of a view.

Controller (ActionController)
ActionController stands for a facility within the applica-
tion that regulates traffic, on the one hand, querying the
models for specific data, and on the other hand, operating
that data (searching, sorting, messaging it) into a form that
satisfies the needs of a given view.

60 ◾ Mastering Ruby on Rails

Assuming a directory representation of MVC frame-
work with a default installation over Linux, you can find
them like this:

tp> cd /usr/local/lib/ruby/gems/2.2.0/gems
tp> ls

With that, you will be able to see subdirectories including
(but not limited to) the following:

actionpack-x.y.z
ActiveRecord-x.y.z
rails-x.y.z

Over a windows installation, you can find them like this:

tp>cd ruby\lib\ruby\gems\2.2.0\gems
ruby\lib\ruby\gems\2.2.0\gems\>dir

Most of the development work will be creating and editing
files in the library/app subdirectories. Here is a brief over-
view of how to use them:

• The controller’s subdirectory is where Rails looks to
find controller classes. A controller manages a web
request from the user.

• The views subdirectory contains the display templates
to fill in with data from your application, convert to
HTML, and return to the browser.

• The model’s subdirectory contains the classes that
shape the data stored in the application’s database.
In most frameworks, this section of the application

Getting Started with Ruby on Rails ◾ 61

can be quite messy and error-prone, but Rails keeps it
very straightforward.

• The helper’s subdirectory keeps any helper classes
used to assist the MVC classes. This helps to keep the
MVC code-focused, uncluttered, and short.

ADDING FIELDS
Fields in web applications are key features for user input.
Nevertheless, fields markup can easily become tedious to
fill and maintain because of the need to regulate field nam-
ing and other multiple attributes. Rails does it through view
helpers for generating fields and forms markup. However,
since these helpers have different use cases, it is important
to know the differences between the helper methods before
utilizing them.

The main field and form helper is form_with:

<%= form_with do |form| %>
 Form contents
<% end %>

When called without arguments like this, it creates a form
tag which, when submitted, will POST to the current page.
For instance, assuming the current page is a home page,
the generated HTML will look like this:

<form accept-charset="UTF-8" action="/"
method="post">
 <input name="authenticity_token"
type="hidden" value="J7CBxfHalt49OSHp27hbl
qK20c9PgwJ108nDHX/8Cts=" />
 Form contents
</form>

62 ◾ Mastering Ruby on Rails

You should be able to notice that the HTML has an input
element with type hidden. This input is important here as
non-GET forms cannot be successfully submitted without
it. The hidden input component with the name authen-
ticity_token is a security notion of Rails called cross-site
request protection, and helpers generate it for every non-
GET form (provided that this security feature is enabled).

Generic Search Form

Another basic form you see on the web is a search form.
This form normally holds the following:

• a form element with “GET” method

• a label for the input

• a text input element

• a submit element

In order to create this form, you need to use form_with and
the form builder object it yields:

<%= form_with url: "/search", method: :get
do |form| %>
 <%= form.label :query, "Search for:" %>
 <%= form.text_field :query %>
 <%= form.submit "Search" %>
<% end %>

This will generate the following HTML:

<form action="/search" method="get" accept-
charset="UTF-8" >
 <label for="query">Search for:</label>

Getting Started with Ruby on Rails ◾ 63

 <input id="query" name="query"
type="text" />
 <input name="commit" type="submit"
value="Search" data-disable-with="Search" />
</form>

For every form input, an ID attribute is generated from its
name. These IDs can be very helpful when it comes to CSS
styling or manipulation of form controls with JavaScript.
Additionally, you can use “GET” as the method for search
forms. This allows users to bookmark a specific search
and get back to it as well as use the right HTTP verb for
an action.

Helpers for Generating Field and Form Elements

The form builder object form_with has various helper
methods for generating fields and form elements such
as text fields, checkboxes, and radio buttons. The first
parameter to these methods is always the name of the
input. When the form is submitted, the name will be for-
warded along with the form data, and will make its way
to the params in the controller with the value entered
by the user for that field. For instance, if the form has
<%= form.text_field :query %>, then you would be
able to get the value of this field in the controller with
params[:query].

When naming inputs, Rails uses specific conventions
that make it possible to submit parameters with non-scalar
values such as arrays or hashes, which will also be acces-
sible in params. You can read more about them in chapter
three of this book.

64 ◾ Mastering Ruby on Rails

Checkboxes
Checkboxes are form controls that provide the user a set of
options they can enable or disable:1

<%= form.check_box :pet_dog %>
<%= form.label :pet_dog, "I own a dog" %>
<%= form.check_box :pet_cat %>
<%= form.label :pet_cat, "I own a cat" %>

This generates the following:

<input type="checkbox" id="pet_dog"
name="pet_dog" value="1" />
<label for="pet_dog">I own a dog</label>
<input type="checkbox" id="pet_cat"
name="pet_cat" value="1" />
<label for="pet_cat">I own a cat</label>

The first parameter to check_box is the name of the input.
The second parameter is the value of the input. When the
checkbox is reviewed, this value will be included in the
form data (and be present in params).

Radio Buttons
Radio buttons, while similar to checkboxes, are controls
that identify a set of options in which they are mutually
exclusive (meaning you can only pick one):

<%= form.radio_button :age, "child" %>
<%= form.label :age_child, "I am younger
than 18" %>

1 https://guides.rubyonrails.org/form_helpers.html, Ruby on Rails

https://guides.rubyonrails.org

Getting Started with Ruby on Rails ◾ 65

<%= form.radio_button :age, "adult" %>
<%= form.label :age_adult, "I am over 18" %>

Output:
<input type="radio" id="age_child"
name="age" value="child" />
<label for="age_child">I am younger than
18</label>
<input type="radio" id="age_adult"
name="age" value="adult" />
<label for="age_adult">I am over 18</label>

As with check_box, the second parameter to radio_button is
the value of the input. Because these two radio buttons share
the same name (age), the user will only be able to select one of
them, and params[:age] will contain either “child” or “adult.”

Another notable thing to mention would be to always
use labels for checkbox and radio buttons. The link text
with a specific option and, by expanding the clickable
region, make it easier for users to find the inputs.

Other Helpers of Interest
Other form controls are text areas, hidden fields, password
fields, number fields, date and time fields:2

<%= form.text_area :message, size: "70x5" %>
<%= form.hidden_field :parent_id, value:
"foo" %>
<%= form.password_field :password %>
<%= form.number_field :price, in:
1.0..20.0, step: 0.5 %>

2 https://guides.rubyonrails.org/form_helpers.html, Ruby on Rails

https://guides.rubyonrails.org

66 ◾ Mastering Ruby on Rails

<%= form.range_field :discount, in: 1..100 %>
<%= form.date_field :born_on %>
<%= form.time_field :started_at %>
<%= form.datetime_local_field :graduation_
day %>
<%= form.month_field :birthday_month %>
<%= form.week_field :birthday_week %>
<%= form.search_field :name %>
<%= form.email_field :address %>
<%= form.telephone_field :phone %>
<%= form.url_field :homepage %>
<%= form.color_field :favorite_color %>

The output would be:

<textarea name="message" id="message"
cols="70" rows="5">
<input type="hidden" name="parent_id"
id="parent_id" value="foo" />
<input type="password" name="password"
id="password" />
<input type="number" name="price" id="price"
step="0.5" min="1.0" max="20.0" />
<input type="range" name="discount"
id="discount" min="1" max="100" />
<input type="date" name="born_on" id="born_
on" />
<input type="time" name="started_at"
id="started_at" />
<input type="datetime-local"
name="graduation_day" id="graduation_day" />
<input type="month" name="birthday_month"
id="birthday_month" />
<input type="week" name="birthday_week"
id="birthday_week" />

Getting Started with Ruby on Rails ◾ 67

<input type="search" name="name" id="name" />
<input type="email" name="address"
id="address" />
<input type="tel" name="phone" id="phone" />
<input type="url" name="homepage"
id="homepage" />
<input type="color" name="favorite_color"
id="favorite_color" value="#000000" />

Make sure to note that hidden inputs are not displayed to
the user but instead hold data like any textual input. If nec-
essary, values inside them can be changed with JavaScript.

The above-applied search, telephone, date, time, color,
DateTime, DateTime-local, month, week, URL, email,
number, and range inputs are HTML5 controls. In case
you want your app to have a consistent experience in older
browsers, you will need an HTML5 polyfill (code that
implements a feature on web browsers that do not support
a particular type of functionality). There are numerous
solutions out there for this, although a popular service at
the moment is Modernizr—https://modernizr.com/, which
offers a simple way to add functionality based on the pres-
ence of detected HTML5 features.

https://modernizr.com

68 ◾ Mastering Ruby on Rails

Dealing with Model Objects

The :model argument of form_with allows us to connect
the form builder object to a model object, meaning that
the form will refer to that model object, and the form’s
fields will be populated with values from that model
object. To illustrate, let us say we have an @article model
object like:3

@article = Article.find(42)
=> #<Article id: 42, title: "My Title",
body: "My Body">

That is a part of the following form:

<%= form_with model: @article do |form| %>
 <%= form.text_field :title %>
 <%= form.text_area :body, size: "60x10" %>
 <%= form.submit %>
<% end %>

The output would then be:

<form action="/articles/42" method="post"
accept-charset="UTF-8" >
 <input name="authenticity_token"
type="hidden" value="..." />
 <input type="text" name="article[title]"
id="article_title" value="My Title" />

3 https://guides.rubyonrails.org/form_helpers.html, Ruby on Rails

https://guides.rubyonrails.org

Getting Started with Ruby on Rails ◾ 69

 <textarea name="article[body]"
id="article_body" cols="60" rows="10">
 My Body
 </textarea>
 <input type="submit" name="commit"
value="Update Article" data-disable-
with="Update Article">
</form>

A few things worth noticing here:

• The form action is automatically packed with an
appropriate value for @article.

• The form fields are automatically filled with the cor-
responding values from @article.

• The form field names are connected to article[…]
meaning that params[:article] will be a hash holding
all these field’s values.

• The submit button is automatically assigned an
appropriate text value.

You should expect that your input will automatically mirror
model attributes. However, If there is other information, you
can include it in your form just as with attributes and access
it via params[:article][:my_nifty_non_attribute_input].

The fields_for Helper

It is also possible to create a similar binding without actu-
ally creating <form> tags with the fields_for helper. This is
most useful for editing additional model objects with the
same form. For instance, if you had a Person model with an

70 ◾ Mastering Ruby on Rails

associated ContactDetail model, you could create a form
for creating both like so:

<%= form_with model: @person do |person_
form| %>
 <%= person_form.text_field :name %>
 <%= fields_for :contact_detail, @person.
contact_detail do |contact_detail_form| %>
 <%= contact_detail_form.text_field
:phone_number %>
 <% end %>
<% end %>

Which would consequently produce the following output:

<form action="/people" accept-
charset="UTF-8" method="post">
 <input type="hidden" name="authenticity_
token" value="bL13x72pldyDD8bgtkjKQakJCp
d4A8JdXGbfksxBDHdf1uC0kCMqe2tvVdUYfidJt0
fj3ihC4NxiVHv8GVYxJA==" />
 <input type="text" name="person[name]"
id="person_name" />
 <input type="text" name="contact_
detail[phone_number]" id="contact_detail_
phone_number" />
</form>

The object provided by fields_for is a form builder like the
one offered by form_with.

ADDING VALIDATIONS
Validations are applied to ensure that only necessary data is
saved into your database. For example, it may be important

Getting Started with Ruby on Rails ◾ 71

to your application to secure that every user inserts a valid
email address and mailing address. Model-level validations
would be the best way, in this case, to ensure that only valid
data is saved into your database. They are database agnos-
tic, cannot be bypassed by end-users, and are simple to test
and maintain. Anyway, Rails provides additional built-in
helpers for common needs and lets you create your own
validation methods if needed.

There are several ways to validate data before it is saved
into your database, including native database constraints,
client-side validations, and controller-level validations. To
summarize the main pros and cons:

• Database constraints and stored methods make the
validation mechanisms database-dependent and can
affect testing and maintenance making it more time-
consuming. However, if your database is used by other
applications, it may be better to use some constraints
at the database level. Moreover, database-level valida-
tions can safely manage some processes such as going
through heavily-used tables that could be difficult to
run otherwise.

• Client-side validations are also very useful, but get
generally unreliable if used alone. If they are executed
using JavaScript, they may be omitted if JavaScript is
turned off in the user’s browser. However, if com-
bined with other techniques, client-side validation
can be the easiest way to provide users with immedi-
ate feedback as they browse your site.

Controller-level validations can be tempting to
apply, but they tend to become heavy and complex

72 ◾ Mastering Ruby on Rails

to test or maintain. Therefore, it is advised to know
your controllers, as it will make your application
a pleasure to operate within the long run. Another
important thing is to choose controllers in regards to
certain, specific cases and assignments.

Validations are typically activated when you create a fresh
object that does not belong to the database yet using the
new method. Once you call save upon that object, it will
be saved into the appropriate database table. Active Record
uses the new_record? instance method to decide whether
an object is already in the database or not. Examine the
following Active Record class:

class Person < ApplicationRecord
end

You can see how it works only by looking at the following
bin/rails console output:

irb> p = Person.new(name: "John Doe")
=> #<Person id: nil, name: "John Doe",
created_at: nil, updated_at: nil>

irb> p.new_record?
=> true

irb> p.save
=> true

irb> p.new_record?
=> false

Setting a new record will send an SQL INSERT command
to the database. Updating an existing record will send an

Getting Started with Ruby on Rails ◾ 73

SQL UPDATE command instead. Validations are nor-
mally executed before these commands are forwarded to
the database. If any validations fail, the object will be dis-
regarded as invalid and Active Record will not permit the
INSERT or UPDATE operation. This helps to prevent stor-
ing an invalid object in the database.

At the same time, there are many ways to change the
state of an object in the database. Some methods might
activate validations, but some will not. This means that it
is possible to save an object in the database in an invalid
state if you are not careful enough. The following methods
activate validations, and will save the object to the database
only if the object is valid:

create
create!
save
save!
update
update!

The bang versions raise an exception if the record is invalid
and the non-bang versions do not.

The simples validation example looks the following way:

class Person < ApplicationRecord
 validates :name, presence: true
end

irb> Person.create(name: "Jane Austin").
valid?
=> true
irb> Person.create(name: nil).valid?
=> false

74 ◾ Mastering Ruby on Rails

As you can observe, the above validation lets us know that
the sample Person is not valid without a name attribute,
therefore it will not be persisted in the database.

Skipping Validations

The following is the list of methods that skip validations,
and are used to save the object to the database regardless of
its validity. They should be used with caution:4

decrement!
decrement_counter
increment!
increment_counter
insert
insert!
insert_all
insert_all!
toggle!
touch
touch_all
update_all
update_attribute
update_column
update_columns
update_counters
upsert
upsert_all

Before saving an Active Record object, Rails examines your
validations. In case these validations produce any errors,

4 https://guides.rubyonrails.org/active_record_validations.html, Ruby on Rails

https://guides.rubyonrails.org

Getting Started with Ruby on Rails ◾ 75

Rails does not proceed to saving the object. You can also
run these validations on your own, use valid? to activate
your validations and it shall return true if no errors were
found in the object, and false otherwise. To demonstrate
with an example:

class Person < ApplicationRecord
 validates :name, presence: true
end
irb> Person.create(name: "Jane Austin").
valid?
=> true
irb> Person.create(name: nil).valid?
=> false

After Active Record has completed checking validations,
any errors found can be reviewed through the errors
instance method, which returns a collection of errors. By
definition, an object is valid if this collection is empty after
running validations.

At the same time, keep in mind that an object instanti-
ated with a new method will not report errors even if it is
technically invalid, since validations are automatically run
only when the object is saved, such as with the create or
save methods:5

class Person < ApplicationRecord
 validates :name, presence: true
end

5 https://guides.rubyonrails.org/active_record_validations.html, Ruby on Rails

https://guides.rubyonrails.org

76 ◾ Mastering Ruby on Rails

Copy
irb> p = Person.new
=> #<Person id: nil, name: nil>
irb> p.errors.size
=> 0

irb> p.valid?
=> false
irb> p.errors.objects.first.full_message
=> "Name can't be blank"

irb> p = Person.create
=> #<Person id: nil, name: nil>
irb> p.errors.objects.first.full_message
=> "Name can't be blank"

irb> p.save
=> false

irb> p.save!
ActiveRecord::RecordInvalid: Validation
failed: Name can't be blank

irb> Person.create!
ActiveRecord::RecordInvalid: Validation
failed: Name can't be blank

Here, invalid? is the inverse of valid?, it activates your
validations, returning true if any errors were found in the
object, and false otherwise.

In order to confirm whether or not a particular attri-
bute of an object is valid, you can use errors[:attribute]. It
is supposed to return an array of all the error messages for
:attribute, but if there are no errors on the specified attribute,

Getting Started with Ruby on Rails ◾ 77

an empty array is displayed. This method is only useful
after validations have been executed because it only exam-
ines the errors collection and does not trigger validations
itself. It is different from the invalid? method explained
above since it does not particularly verify the validity of
the object as a whole but only focuses to see whether there
are errors found on an individual attribute of the object:

class Person < ApplicationRecord
 validates :name, presence: true
end

Copy
irb> Person.new.errors[:name].any?
=> false
irb> Person.create.errors[:name].any?
=> true

Validation Helpers

Rails has many pre-defined validation helpers that you can
apply directly inside your class definitions. These helpers
follow common validation rules and each time a valida-
tion fails, an error is added to the object’s errors collection,
associated with the attribute being validated.

Each helper accepts an arbitrary number of attribute
names, so with a single line of code, you can include the
same kind of validation to several attributes. At the same
time, all of them accept the :on and :message options,
which determine when the validation should be run and
what message should be inserted to the errors collection
if it fails. The :on option takes one of the values :create or
:update. There is a default error message for each one of the

78 ◾ Mastering Ruby on Rails

validation helpers that is typically used when the :message
option is not specified. In this section, we shall take a look
at each one of the available helpers.

acceptance
This helper validates that a checkbox on the user interface
was examined when a form was submitted. This is nor-
mally used when the user has to agree to your application’s
terms of service, confirm that some text is read, or any
similar concept:

class Person < ApplicationRecord
 validates :terms_of_service, acceptance:
true
end

This check is completed only if terms_of_service is not
nil. The default error message for this helper is “must be
accepted” which can also pass as a custom message via the
message option:

class Person < ApplicationRecord
 validates :terms_of_service, acceptance:
{ message: 'must be accepted' }
end

It is also possible to use an :accept option, which determines
the allowed values that will be considered as accepted. It
normally defaults to [“1”, true] and can be easily modified:

class Person < ApplicationRecord
 validates :terms_of_service, acceptance:
{ accept: 'yes' }

Getting Started with Ruby on Rails ◾ 79

 validates :eula, acceptance: { accept:
['TRUE', 'accepted'] }
end

However, this particular validation is very specific to web
applications, and this “acceptance” does not need to be
registered anywhere in your database. If you do not have a
field for it, the helper will create a virtual component. If the
field does exist in your database, the accept option should
be set to true, or else the validation will not run.

validates_associated
This helper should be applied when your model has asso-
ciations with other models, and they also need to be vali-
dated. When you save your object, valid? will be called
upon each one of the associated objects in:

class Library < ApplicationRecord
 has_many :books
 validates_associated :books
end

This validation will operate on all of the association types.
Yet you cannot use validates_associated on both ends of
your associations as they would call each other in an infinite
loop. The default error message for validates_associated is
“is invalid” but each associated object will eventually hold
its own errors collection.

confirmation
You can use this helper when you have two text fields that
should receive exactly the same content. For instance,

80 ◾ Mastering Ruby on Rails

you may want to verify an email address or a password.
This validation results in a virtual attribute with the name
of the field that has to be confirmed with “_confirmation”
appended:

class Person < ApplicationRecord
 validates :email, confirmation: true
end

As your view template you could use the following:

<%= text_field :person, :email %>
<%= text_field :person, :email_confirmation
%>

This check would be fully completed only if email_confir-
mation is not nil. To require confirmation, make sure to
include a presence check for the confirmation attribute as
follows:

class Person < ApplicationRecord
 validates :email, confirmation: true
 validates :email_confirmation, presence:
true
end

Alternatively, there is also a :case_sensitive option that you
can apply to see whether the confirmation constraint will
be case sensitive or not:

class Person < ApplicationRecord
 validates :email, confirmation: { case_
sensitive: false }
end

Getting Started with Ruby on Rails ◾ 81

Keep in mind that the default error message for this helper
would be—“does not match confirmation.”

exclusion
This helper is used to validate that the attributes’ values are
not added in a given set, and set can be any enumerable object:

class Account < ApplicationRecord
 validates :subdomain, exclusion: { in:
%w(www us ca jp),
 message: "%{value} is reserved." }
end

As one can see, the exclusion helper has an option :in that
holds the set of values that should not be accepted for the
validated attributes. The :in option also has an alias called
:within that you can apply for the similar purpose. The
above example uses the :message option to illustrate how
you can add the attribute’s value.

format
This helper validates the attributes’ values by checking
whether they match a given regular statement, which is
marked with the :with option:

class Product < ApplicationRecord
 validates :legacy_code, format: { with:
/\A[a-zA-Z]+\z/,
 message: "only allows letters" }
end

Alternatively, you might require that the specified compo-
nent does not match the regular expression by using the

82 ◾ Mastering Ruby on Rails

:without option. Keep in mind that the standard error mes-
sage would be “is invalid.”

inclusion
This helper sees that the attributes’ values are included in a
given set, where set can be any enumerable object:

class Coffee < ApplicationRecord
 validates :size, inclusion: { in:
%w(small medium large),
 message: "%{value} is not a valid size" }
end

This inclusion helper uses an option :in that holds the set
of values that will be accepted. The :in option has an alter-
native called :within that you can utilize for the similar
purpose. The default error message for this helper would
be “is not included in the list.”

length
This helper is applied to examine the length of the attri-
butes’ values. It has a variety of options, so you can define
length constraints in various ways:6

class Person < ApplicationRecord
 validates :name, length: { minimum: 2 }
 validates :bio, length: { maximum: 500 }
 validates :password, length: { in: 6..20 }
 validates :registration_number, length:
{ is: 6 }
end

6 https://guides.rubyonrails.org/active_record_validations.html, Ruby on Rails

https://guides.rubyonrails.org

Getting Started with Ruby on Rails ◾ 83

The available length constraint options are:

• :minimum: The attribute shall not have less than the
specified length.

• :maximum: The attribute shall not have more than
the specified length.

• :in (or :within): The attribute length has to be included
in a given interval. The value for this option must be
a range.

• :is: The attribute length should be equal to the given
value.

The default error messages in this case typically depend on
the type of length validation being verified. It is possible to
customize these messages using the :wrong_length, :too_
long, and :too_short options and %{count} as a placeholder
for the number corresponding to the length constraint
being used:

class Person < ApplicationRecord
 validates :bio, length: { maximum: 1000,
 too_long: "%{count} characters is the
maximum allowed" }
end

Here, the default error messages would be plural, stating
that it “is too short (minimum is %{count} characters).” For
this reason, when :minimum is 1 it is recommended to pro-
vide a custom message or use presence: true instead. When
:in or :within have a lower index of 1, you should either
provide a custom message or call presence prior to length.

84 ◾ Mastering Ruby on Rails

numericality
This helper makes sure that your attributes have only
numeric values. By default, it will offer an optional sign
followed by an integral or floating-point number.

In order to specify that only integral numbers are allowed,
set :only_integer to true. Then it will activate the /\A[+-]?\d+\z/
regular expression to validate the attribute’s value. Otherwise,
it will attempt to convert the value to a number using Float.
Floats here are cast to BigDecimal using the column’s preci-
sion value or 15. To illustrate this helper with an example:

class Player < ApplicationRecord
 validates :points, numericality: true
 validates :games_played, numericality:
{ only_integer: true }
end

The default error message for :only_integer would be “must
be an integer.” However, besides :only_integer, this helper
also accepts the following features to add constraints to
acceptable values:

• :greater_than: States that the value must be greater
than the supplied value. The default error message
for this option is “must be greater than %{count}.”

• :greater_than_or_equal_to: Indicates that the value
must be greater than or equal to the supplied value.
The default error message for this option is “must be
greater than or equal to %{count}.”

• :equal_to: Makes sure the value is equal to the sup-
plied value. The default error message for this option
is “must be equal to %{count}.”

Getting Started with Ruby on Rails ◾ 85

• :less_than: States that the value must be less than
the supplied value. The default error message for this
option is “must be less than %{count}.”

• :less_than_or_equal_to: Indicates that the value must
be less than or equal to the supplied value. The default
error message for this option is “must be less than or
equal to %{count}.”

• :other_than: Marks that the value must be other than
the supplied value. The default error message for this
option is “must be other than %{count}.”

• :odd: Sets out that the value has to be an odd number
if set to true. The default error message for this option
is “must be odd.”

• :even: Makes sure the value is an even number if set
to true. The default error message for this option is
“must be even.”

By default, numericality does not permit any nil values.
You can use allow_nil: true option to enable it if absolutely
necessary. The default error message when no options are
identified is “is not a number.”

presence
This helper ensures that the specified attributes are not
empty. It applies the blank? method to see if the value is either
nil or a blank string, that is either empty or has whitespace:

class Person < ApplicationRecord
 validates :name, :login, :email,
presence: true
end

86 ◾ Mastering Ruby on Rails

In case you want to be sure that an association is present,
you should test whether the associated object itself is pres-
ent, and not the foreign key utilized to map the association.
This way, it is not only examined that the foreign key is not
empty but also that the referenced object is there:

class Supplier < ApplicationRecord
 has_one :account
 validates :account, presence: true
end

In order to review any associated records whose presence
is required, you must include the :inverse_of option for the
association:

class Order < ApplicationRecord
 has_many :line_items, inverse_of: :order
end

If you validate the presence of an object associated via a
has_one or has_many relationship, it will see that the
object is neither blank? nor marked_for_destruction?.

In case if false.blank? is true, you want to validate the
presence of a boolean field using one of the following
validations:

validates :boolean_field_name, inclusion:
[true, false]
validates :boolean_field_name, exclusion:
[nil]

By using one of these validations, you are making sure the
value will NOT be nil which would result in a NULL value
in most cases.

Getting Started with Ruby on Rails ◾ 87

absence
This helper validates that the marked attributes are absent.
It utilizes the present? method to check if the value is not
either nil or a blank string:

class Person < ApplicationRecord
 validates :name, :login, :email, absence:
true
end

If you need to be certain about an association being absent,
you will need to test whether the associated object itself is
absent, and not the foreign key used to map the association:

class LineItem < ApplicationRecord
 belongs_to :order
 validates :order, absence: true
end

In order to review associated records whose absence is
required, you should add the :inverse_of option to the
association:

class Order < ApplicationRecord
 has_many :line_items, inverse_of: :order
end

Once you validate the absence of an object associated via
a has_one or has_many relationship, it will check that the
object is neither present? nor marked_for_destruction?.

uniqueness
This helper sees that the attribute’s value is unique right
before the object gets saved. It does not result in a uniqueness

88 ◾ Mastering Ruby on Rails

constraint in the database, so it may so occur that two dif-
ferent database connections produce two records with the
same value for a column that you plan to make unique. To
prevent that, it is advised to create a unique index on that
column in your database:

class Account < ApplicationRecord
 validates :email, uniqueness: true
end

The validation processes by performing an SQL query into
the model’s table, looking for an existing record with the
same value in that attribute. Additionally, there is a :scope
option that you can apply to specify one or more compo-
nents that are used to limit the uniqueness check:

class Holiday < ApplicationRecord
 validates :name, uniqueness: { scope:
:year,
 message: "should happen once per year"
}
end

In case you need to create a database constraint to avoid
any violations of a uniqueness validation using the :scope
option, you must do so by creating a unique index on both
columns in your database. Moreover, there is also a :case_
sensitive option that you can add to determine whether the
uniqueness constraint will be case sensitive or not:

class Person < ApplicationRecord
 validates :name, uniqueness: { case_
sensitive: false }
end

Getting Started with Ruby on Rails ◾ 89

Keep in mind that some databases are specifically con-
figured to perform case-insensitive searches anyway. The
default error message for this validation is “has already
been taken.”

validates_with
This helper is used to forward the record to a separate class
for validation:7

class GoodnessValidator <
ActiveModel::Validator
 def validate(record)
 if record.first_name == "Evil"
 record.errors.add :base, "This person
is evil"
 end
 end
end
class Person < ApplicationRecord
 validates_with GoodnessValidator
end

Errors added to the above record.errors[:base] relate to the
state of the record as a whole, and not to a certain attribute.
In the meantime, the validates_with helper takes a class, or
a list of classes to use for validation. Also worth noting that
there is no default error message for validates_with since
you are expected to manually add errors to the record’s
errors collection in the validator class.

7 https://guides.rubyonrails.org/active_record_validations.html, Ruby on Rails

https://guides.rubyonrails.org

90 ◾ Mastering Ruby on Rails

In order to implement the validate method, you must
have a record parameter set and validated. Like all other
validations, validates_with takes the :if, :unless and :on
options. If you add any other options, it will forward those
options to the validator class as options:

class GoodnessValidator <
ActiveModel::Validator
 def validate(record)
 if options[:fields].any? { |field|
record.send(field) == "Evil" }
 record.errors.add :base, "This person
is evil"
 end
 end
end
class Person < ApplicationRecord
 validates_with GoodnessValidator, fields:
[:first_name, :last_name]
end

The above-scripted validator will be initialized only once
for the whole application life cycle, and not on each vali-
dation run, so you want to be thoughtful about inserting
instance variables in it. If your validator is way too compli-
cated that you want instance variables, you can easily use a
basic Ruby object instead:

class Person < ApplicationRecord
 validate do |person|
 GoodnessValidator.new(person).validate
 end
end

Getting Started with Ruby on Rails ◾ 91

class GoodnessValidator
 def initialize(person)
 @person = person
 end

 def validate
 if
some_complex_condition_involving_ivars_
and_private_methods?
 @person.errors.add :base, "This
person is evil"
 end
 end

 # ...
end

validates_each
This helper is applied to validate attributes against a block.
It does not have a predefined validation function therefore
you should create one using a block for each attribute to be
passed to validates_each and be tested against it. To dem-
onstrate with an example:

class Person < ApplicationRecord
 validates_each :name, :surname do
|record, attr, value|
 record.errors.add(attr, 'must start with
upper case') if value =˜ /\A[[:lower:]]/
 end
end

As you can observe, the block receives the record, the attri-
bute’s name, and the attribute’s value. With that, you can

92 ◾ Mastering Ruby on Rails

do anything you like to check for valid data within the
block. In case your validation fails, you can include an
error in the model, thus making it invalid.

Common Validation Options

Now let us review some common validation options:

allow_nil
The :allow_nil option disregards the validation when the
value being validated is nil:

class Coffee < ApplicationRecord
 validates :size, inclusion: { in:
%w(small medium large),
 message: "%{value} is not a valid size"
}, allow_nil: true
end

allow_blank
The :allow_blank option is almost the same as the :allow_
nil option. This option will permit validation pass if the
attribute’s value is blank?, like nil or an empty string for
example:

class Topic < ApplicationRecord
 validates :title, length: { is: 5 },
allow_blank: true
end

irb> Topic.create(title: "").valid?
=> true
irb> Topic.create(title: nil).valid?
=> true

Getting Started with Ruby on Rails ◾ 93

message
The :message option enables you to specify the message that
will be included to the errors collection when validation
fails. If this option is not used, Active Record activates the
respective default error message for each validation helper.
The :message option accepts both the String or Proc:

The String :message value can optionally hold any/all of
%{value}, %{attribute}, and %{model} which will be auto-
matically replaced when validation fails. This replacement
is performed using the I18n gem, and the placeholders
should match values exactly without leaving any spaces.

The Proc :message value is given two arguments :the
object that is being validated, and a hash with :model,
:attribute, and :value key-value pairs:

class Person < ApplicationRecord
 # Hard-coded message
 validates :name, presence: { message:
"must be given please" }
 # Message with dynamic attribute value.
%{value} will be replaced
 # with the actual value of the attribute.
%{attribute} and %{model}
 # are also available.
 validates :age, numericality: { message:
"%{value} seems wrong" }
 # Proc
 validates :username,
 uniqueness: {
 # object = person object being
validated
 # data = { model: "Person",
attribute: "Username", value: <username> }

94 ◾ Mastering Ruby on Rails

 message: ->(object, data) do
 "Hey #{object.name},
#{data[:value]} is already taken."
 end
 }
end

on
The :on option lets you set when the validation should take
place. The default trend for all the built-in validation help-
ers is to be executed on save (both when you are creating
a new record and when you are updating it). If you want
to modify it, you can use on: :create to run the validation
only when a new record is created or on: :update to run the
validation only when a record is updated. To illustrate with
an example:

class Person < ApplicationRecord
 # it will be possible to update email
with a duplicated value
 validates :email, uniqueness: true, on:
:create

 # it will be possible to create the
record with a non-numerical age
 validates :age, numerically: true, on:
:update

 # the default (validates on both create
and update)
 validates :name, presence: true
end

Getting Started with Ruby on Rails ◾ 95

You can also apply on :to determine custom contexts.
Custom contexts need to be executed precisely by passing
the name of the context to valid?, invalid?, or save:8

class Person < ApplicationRecord
 validates :email, uniqueness: true, on:
:account_setup
 validates :age, numericality: true, on:
:account_setup
end

irb> person = Person.new(age:
'thirty-three')
irb> person.valid?
=> true
irb> person.valid?(:account_setup)
=> false
irb> person.errors.messages
=> {:email=>["has already been taken"],
:age=>["is not a number"]}

person.valid?(:account_setup) executes
both the validations without saving the
model. person.save(context: :account_setup)
validates person in the account_setup
context before saving.

8 https://guides.rubyonrails.org/active_record_validations.html, Ruby on Rails

https://guides.rubyonrails.org

96 ◾ Mastering Ruby on Rails

When triggered by an explicit context, validations extent
to that context as well:

class Person < ApplicationRecord
 validates :email, uniqueness: true, on:
:account_setup
 validates :age, numericality: true, on:
:account_setup
 validates :name, presence: true
end

Copy
irb> person = Person.new
irb> person.valid?(:account_setup)
=> false
irb> person.errors.messages
=> {:email=>["has already been taken"],
:age=>["is not a number"], :name=>["can't
be blank"]}

Strict Validations

It is also possible to specify validations to be strict and uti-
lize ActiveModel::StrictValidationFailed when the object
is invalid:

class Person < ApplicationRecord
 validates :name, presence: { strict:
true }
end

irb> Person.new.valid?
ActiveModel::StrictValidationFailed: Name
can't be blank

Getting Started with Ruby on Rails ◾ 97

Additionally, there is also an option to pass a custom
exception to the :strict option:

class Person < ApplicationRecord
 validates :token, presence: true,
uniqueness: true, strict:
TokenGenerationException
end

irb> Person.new.valid?
TokenGenerationException: Token can't be
blank

Conditional Validation

Depending on the project, it is typically advised to vali-
date an object only when a given predicate is satisfied. You
can do that by applying the :if and :unless options, which
stands as a symbol, a Proc or an Array. You may also use
the :if option when you need to mark when the validation
should happen. If you need to specify when the validation
should not happen, then you may use the :unless option.

Moreover, it is possible to associate the :if and :unless
options with a symbol corresponding to the name of a
method that will get called right before validation happens.
This is the most commonly applied option:

class Order < ApplicationRecord
 validates :card_number, presence: true,
if: :paid_with_card?
 def paid_with_card?
 payment_type == "card"
 end
end

98 ◾ Mastering Ruby on Rails

Using a Proc with :if and :unless
Similar to the above example, you can associate :if and :unless
with a Proc object which will be called. Using a Proc object
gives you a chance to write an inline condition instead of
a separate method. This option is best suited for one-liners:

class Account < ApplicationRecord
 validates :password, confirmation: true,
 unless: Proc.new { |a| a.password.
blank? }
end

And since Lambdas are a type of Proc, they can also be
applied to write inline conditions in a shorter way:

validates :password, confirmation: true,
unless: -> { password.blank? }

Grouping Conditional Validations
At some point you would want to have multiple validations
use a singular condition. It can be easily done using with_
options validation:

class User < ApplicationRecord
 with_options if: :is_admin? do |admin|
 admin.validates :password, length: {
minimum: 10 }
 admin.validates :email, presence: true
 end
end

Make sure to note that all validations inside of the with_
options block will have automatically passed the condition
if: :is_admin?

Getting Started with Ruby on Rails ◾ 99

Combining Validation Conditions
On the other hand, if multiple conditions determine
whether or not a validation should happen, an Array could
be used. Moreover, you can apply both :if and :unless to
the same validation:

class Computer < ApplicationRecord
 validates :mouse, presence: true,
 if: [Proc.new { |c|
c.market.retail? }, :desktop?],
 unless: Proc.new { |c|
c.trackpad.present? }
end

Nevertheless, the validation only runs when all the :if con-
ditions and none of them :unless conditions are evaluated
to true.

At the same time, if you find that the built-in valida-
tion helpers are not enough for your needs, you can script
your own validators or validation methods as you wish.
Custom validators should be viewed as classes that inherit
from ActiveModel::Validator. These classes must execute
the validate method which takes a record as an argument
and completes the validation on it. The custom validator is
called using the validates_with method:9

class MyValidator < ActiveModel::Validator
 def validate(record)
 unless record.name.start_with? 'X'

9 https://guides.rubyonrails.org/active_record_validations.html, Ruby on Rails

https://guides.rubyonrails.org

100 ◾ Mastering Ruby on Rails

 record.errors.add :name, "Need a
name starting with X please!"
 end
 end
end

class Person
 include ActiveModel::Validations
 validates_with MyValidator
end

The simplest way to add custom validators for vali-
dating individual components is with the convenient
ActiveModel::EachValidator. In this case, the custom
validator class must run a validate_each method which
includes three arguments: record, attribute, and value.
These correspond to the instance, the attribute to be vali-
dated, and the value of the attribute in the passed instance:

class EmailValidator <
ActiveModel::EachValidator
 def validate_each(record, attribute, value)
 unless value =˜ /\A([^@\s]+)@
((?:[-a-z0-9]+\.)+[a-z]{2,})\z/i
 record.errors.add attribute,
(options[:message] || "is not an email")
 end
 end
end

class Person < ApplicationRecord
 validates :email, presence: true, email:
true
end

Getting Started with Ruby on Rails ◾ 101

As shown in the example above, you can also mix standard
validations with your own custom validators.

GENERATED FILES
Ruby on Rails is a full-fledged web framework that makes
getting started with development easy due to its set of default
files and folders. We have already provided a brief overview
of this topic in chapter one, but this section explains the
basic files and folders generated by Rails in detail.

• app: This is should be counted as the core directory of
your entire app and most of the application-specific
code is placed into this directory. Rails is an MVC
framework, which means the application is separated
into parts per its purpose in the MVC. And all three
sections go inside this directory.

• app/assets: This folder holds the static files nec-
essary for the application’s front-end set into
folders based on their type. The javascript files
and stylesheets (CSS) in these folders should be
application-specific since the external library files
would go into another directory.

• app/assets/images: All the images planned for
the application should locate in this directory. The
images here are available in views through the Rails
helpers like image_tag so that you do not have to
specify the relative or absolute path for images.

• app/assets/javascripts: The javascript files go into
this directory. It is a common practice to cre-
ate JS files for each controller. For instance, for

102 ◾ Mastering Ruby on Rails

books_controller.rb, the JS functions for this con-
troller’s views would be books.js.

• app/assets/javascripts/application.js: The pre-
created application.js is one of the statements for
the entire application’s javascript requirements.
Rails use the asset pipeline for connecting and
serving up assets. This means the application.
js is the file where you reference the application-
specific JS files, which are associated and minified
before passing it to the views.

• app/assets/stylesheets: Similar to/javascript, the
CSS files are located here. The naming convention
is also the same as the javascript assets.

• app/assets/stylesheets/application.css: This file
is a manifest for the stylesheets in your applica-
tion. Similar to application.js, the referenced files
are illustrated as a single stylesheet to the view.

• app/controllers: This is where all the controller files are
located. Controllers are responsible for regulating the
model and views. The script to generate a controller is:

rails generate controller controller_
name action1 action2
app/controllers/application_controller.
rb

This is the main controller from which all other con-
trollers inherit. The methods on ApplicationController
are available to other controllers as well. This controller
inherits from the ActionController::Base module, which
has a standard set of methods to operate controllers.

Getting Started with Ruby on Rails ◾ 103

• app/controllers/concerns: Concerns are sets
that can be applied across controllers. It is
recommended to DRY your code by execut-
ing reusable functionality inside the directory.
The original naming convention for this file is
module_name.rb.

• app/helpers: This is where all the helper functions
for views reside. There are already a few pre-created
helpers available, like the one we reference above
(image_tag) for referring to images in views. You
can create your own functions in a controller-
specific helper file, which will be automatically
created when you use Rails generators to create
the controller. The naming convention is control-
ler_name_helper.rb.

• app/helpers/application_helper.rb: This file
is the default root helper. Similar to applica-
tion_controller.rb, functions scripted here will be
accessible by all the helpers and all the views.

• app/mailers: The mailers directory holds the mail-
specific features for the application. Mailers are
similar to controllers, and they will have their view
files in app/views/mailer_name/. The first time you
activate a mailer, application_mailer.rb is automati-
cally generated for you. This will inherit from the
ActionMailer::Base and sets the default from address
and the layout for your mailer views; subsequent
mailers will inherit from ApplicationMailer.

The naming convention for this file is similar to
controllers: modelname_mailer.rb.

104 ◾ Mastering Ruby on Rails

• app/models: All model files are located in the app/
models directory. Models could be viewed as object-
relational mappers to the database tables that contain
the data. The naming convention is simply model-
name.rb. The model name would be the singular form
of the underlying table that represents the model in
the database. For instance, the Book model will be
mapped on top of the books table in the database.

• app/models/concerns: Model concerns are simi-
lar to Controller concerns, holding methods that
might be applied in multiple model files. This par-
ticular feature can greatly help when organizing
the code.

• app/views: Views constitute an essential part of the
MVC architecture. All the files related to the views
go into this directory. The files are a combination of
HTML and Ruby organized evenly based on the con-
troller to which they correspond. Namely, there is a
view file for each controller action.

• app/views/books/index.html.erb: One of the
Rails’ conventions could be broken. Meaning
that, if necessary, you can explicitly render any
view manually.

• app/views/layouts: This folder has the layout for
all your view files that they inherit. Files placed
here are available across all the view files.

In addition, it is possible to create multiple
layouts scoped to parts of the application. For
instance, if you need to create a separate layout

Getting Started with Ruby on Rails ◾ 105

for administrative or user views, you can achieve
it by creating a layout named after the controller
name. For all AdminController views, it is bet-
ter to create a layout file called admin.html.erb
which will then act as the layout for the admin
views, as well as any controller that inherits from
AdminController. You can also generate partial
views here that could be applied across multiple
controllers.

• app/views/layouts/application.html.erb: This is
the default file created automatically, which acts
as the layout for actions in ApplicationController
and any other controllers that inherit from
ApplicationController.

• bin: This directory holds Binstubs for the Rails appli-
cation. Binstubs here stand for wrappers that run
gem executables modified for your application. The
default available Binstubs are bundle, rails, rake,
setup, and spring. Any of these binstubs can be acti-
vated by: bin/<executable>

• config: To put it simply, config files contain all the
application’s configuration files. The database con-
nection and application behavior can be manipulated
by the files inside this directory.

• config/application.rb: This holds the main config-
uration for the application, such as the timezone,
language, and many other settings. Any configu-
rations made here automatically apply to all envi-
ronments (development, test, and production).

106 ◾ Mastering Ruby on Rails

Various environment-specific configurations will
go into other files that we shall see below.

• config/boot.rb: boot.rb, as the name suggests,
“boots” up the Rails application. Typically, Rails
apps organize gem dependencies in a file called
Gemfile in the root of the project. The Gemfile
is the one holding all the dependencies neces-
sary for the application to run. boot.rb makes
sure that there is actually a Gemfile present and
will store the path to this file in an environment
variable called BUNDLE_GEMFILE for later use.
However, boot.rb requires ‘bundler/setup’ which
will build and regulate the gems located in the
Gemfile using Bundler.

• config/database.yml: This file has all the data-
base configuration the application needs. Here,
various configurations could be set for different
environments.

• config/environment.rb: This file contains applica-
tion.rb necessary to initialize the Rails application.

• config/routes.rb: This is the routes file where
your application could be defined.

• config/secrets.yml: This is a special place for you
to store application secrets. The secrets defined
could easily be accessed throughout the applica-
tion via Rails.application.secrets.<secret_name>.

• config/environments: As stated before, this folder
has the environment-specific configuration files

Getting Started with Ruby on Rails ◾ 107

for the development, test, and production envi-
ronments. Configurations in application.rb are
available in all environments. At the same time,
you can separate out complex configurations for
the different environments by adding settings to
the environment named files inside this direc-
tory. Default environment files available are—
development.rb, production.rb, test.rb, but it is
possible to add others as well if needed.

• config/initializers: This directory holds the list
of files that need to be run during the Rails ini-
tialization phase. Any *.rb file you create here
will run during the initialization automatically.
For instance, constants that you generate here
will then be available throughout your app. The
initializer file is activated from the call in config/
environment.rb to Rails.application.initialize.

There are a few core initializers, which we shall
go through below, but it is also possible for you
to add any Ruby file you like. As a matter of fact,
many Rails gems require an initializer to com-
plete the setup of that gem for your Rails app.

• config/initializers/assets.rb: This holds all con-
figurations for the asset pipeline. It will have
only one default configuration already pre-
defined, Rails.application.config.assets.version,
which is the setting for your assets bundle. You
can then specify other configurations simply by
adding additional assets paths or other items to
precompile.

108 ◾ Mastering Ruby on Rails

• config/initializers/backtrace_silencers.rb: Here
you can add backtrace_silencers and various fil-
ters that are applicable for your app. Backtrace
filters stand for filters that help to refine the noti-
fications when an error occurs. Silencers, on the
other hand, allow you to silence all the notifica-
tions from specified gems.

• config/initializers/cookie_serializer.rb: Not much
configuration takes place in this file. It mainly con-
tains specifications for the app’s cookie serialization.

• config/initializers/filter_parameter_logging.rb:
This file is specified for you to add parameters
that might contain sensitive information and that
you do not want otherwise displayed in your logs.
By default, the “password” parameter is filtered in
advance.

• config/initializers/inflections.rb: You can access
this file in order to add or override the inflections
(singularizations and pluralizations) for any lan-
guage of your preference.

• config/initializers/mime_type.rb: This file was
designed for you to add MIME (Multi-purpose
Internet Mail Extensions) configurations for your
application to manage different types of files you
may need to use.

• config/initializers/session_store.rb: This file
could be viewed as the underlying session plat-
form for your app to save sessions. The default

Getting Started with Ruby on Rails ◾ 109

is :Cookie_store, meaning sessions are located
in browser cookies, but you can change it to
:CacheStore (to store the data in the Rails cache),
:ActiveRecordStore (stores the data in a database
using Active Record) or :MemCacheStore (stores
the data in a memcached cluster).

• config/initializers/wrap_parameters.rb: As the
name suggests, it holds settings for wrapping
your parameters. By default, all the parameters
are combined into a nested hash so that it is avail-
able without a root.

• config/locales: This has the list of YAML files
(data serialization language that is utilized for
writing configuration files) for each language
with the keys and values to translate certain app
components.

• db: All the database-related files could be found in
this folder. The configuration, schema, and migration
files can be accessed here, along with various seed
files.

• db/seeds.rb: This file is used to prefill or regulate
databases with specific pre-requisite records. In
case you are looking for methods for record inser-
tion, you can use the standard ActiveRecord.

• Gemfile: As previously mentioned, the Gemfile is the
place where all your app’s gem dependencies are gen-
erated. This file is mandatory, as it includes the Rails
core gems, among other gems.

110 ◾ Mastering Ruby on Rails

• Gemfile.lock: Gemfile.lock contains the gem
dependency tree, including all versions of the
app. This file is generated by bundle install of the
above Gemfile. It, in effect, locks your app depen-
dencies to specific versions.

• lib: To put it simply, the lib directory is where all
the application-specific libraries locate. Application-
specific libraries stand for re-usable generic code
extracted from the application. You may as well think
of it as an application-specific gem.

• lib/assets: This file contains all the library assets,
as well as several items that are not application-
specific, like scripts, stylesheets, and images.

• lib/tasks: The application’s ongoing tasks and can
be reviewed through this directory.

With that, we have come to the conclusion of this chapter.
Understanding the directory and file structure of a Rails
application can take you a long way to mastering Rails.
Please take time to go through the information and sample
code referenced here as it will help you on your journey
to becoming a full-fledged Rails developer. In the next
chapter, we shall focus on Ruby Data Types, such as String,
Numbers, Arrays, Hashes, and Symbols.

111DOI: 10.1201/9781003229605-3

C h a p t e r 3

Ruby Data Types

IN THIS CHAPTER

 ➢ Learning about Ruby Object Oriented Functionalities

 ➢ Defining essential Ruby Data types

 ➢ Reviewing Data types’ built-in methods

Ruby is a fundamentally object-oriented language, and
everything appears to Ruby as an object. Every value in
Ruby comes through as an object, including the most basic
components: strings, numbers, and true/false features. Even
a class itself becomes an object that is an instance of the
Class class. This chapter will take you through all the major
data types functionalities related to object-oriented Ruby.

To start with, one has to understand that a class in Ruby
is used to identify the form of an object and to combine
data representation and methods for manipulating that
data into one neat set. The data and methods within a class

https://doi.org/10.1201/9781003229605-3

112 ◾ Mastering Ruby on Rails

are called members of the class. Once you define a class, you
determine a blueprint for a data type. This does not particu-
larly define any data, but it does define what the class name
would be, that is, what an object of the class will consist of
and what operations can be executed on such an object.

A class definition has to start with the keyword class fol-
lowed by the class name and is delimited with an end. For
example, let us define the Box class using the keyword class
as follows:

class Box
 code
end

Here, the name must begin with a capital letter, and by
convention, names that have more than one word are run
together with each word capitalized and no separating
characters.

Typically, when you start learning a programming lan-
guage, you should start by learning about its data types, vari-
ables, operators, conditionals, looping, and then into more
various principles. In this chapter, we will see what is Ruby
on Rails data type and how we can define it in different ways.

Ruby has several data types and all ruby data types are
based on classes. The following are the basic data types rec-
ognized in Ruby:

• String

• Numbers

• Arrays and Hashes

• Symbols

Ruby Data Types ◾ 113

These items cover more than 90% of all built-in data types
that you will be using on a day-to-day basis working with Ruby.

Numbers and Strings (which is just another name for
“texts”) are some of the most basic data types that you deal
with in Ruby on a regular basis. They could also be viewed
as lego bricks that you need to master handling in order to
get access to more interesting features, such as how objects,
classes, and methods relate to each other.

Symbols are also very commonly used, a special kind
of concept. You normally would not need to understand
Symbols in order to script your own code. Nevertheless,
we are still going to cover them briefly and use them once
in a while.

Arrays and Hashes are objects that are applied to store
other programming features, and they are very useful and
widely popular. We shall see why later on.

STRING
A String object in Ruby operates and regulates an arbitrary
order of one or more bytes, typically representing charac-
ters that mimic human language.

The simplest string literals are enclosed in single quotes
(with the apostrophe character). The text within the quote
marks is the literal value of the string:

‘This is a basic Ruby string literal’
In case you want to place an apostrophe within a single-

quoted string literal, precede it with a backslash so that the
Ruby interpreter does not regard it as a termination of the
string:

'Won\'t you read O\‘Reilly\'s article?'

114 ◾ Mastering Ruby on Rails

The backslash could also be applied to escape another
backslash so that the second backslash is not itself inter-
preted as an escape character.

Following are the standard string-related features of Ruby:

Expression Substitution

Expression substitution is an instrument of inserting the
value of any Ruby expression into a string using # { and }:1

#!/usr/bin/ruby

x, y, z = 12, 36, 72
puts "The value of x is #{ x }."
puts "The sum of x and y is #{ x + y }."
puts "The average was #{ (x + y + z)/3 }."
This will produce the following result −

The value of x is 12.
The sum of x and y is 48.
The average was 40.

General Delimited Strings

Using general delimited strings, you can create strings
inside a pair of matching though arbitrary delimiter char-
acters like, !, (, {, <, preceded by a percent character (%).
General delimited strings examples:

%{Ruby is great.} equivalent to " Ruby is
great."
%Q{ Ruby is great. } equivalent to " Ruby
is great. "

1 https://www.tutorialspoint.com/ruby/ruby_strings.htm, Tutorialspoint

https://www.tutorialspoint.com

Ruby Data Types ◾ 115

%q[Ruby is great.] equivalent to a single-
quoted string
%x!ls! equivalent to backtick command
output 'ls'

Escape Characters

It is important to remember when dealing with escape
characters that in a double-quoted string, an escape char-
acter is interpreted, but in a single-quoted string, an escape
character is preserved. Following is a list of escape or non-
printable characters that can be represented with the back-
slash notation:2

Backslash
notation

Hexadecimal
character Description

\a 0x07 Bell or alert
\b 0x08 Backspace
\cx Control-x
\C-x Control-x
\e 0x1b Escape
\f 0x0c Form feed
\M-\C-x Meta-Control-x
\n 0x0a Newline
\nnn Octal notation
\r 0x0d Carriage return
\s 0x20 Space
\t 0x09 Tab
\v 0x0b Vertical tab
\x Character x
\xnn Hexadecimal notation

2 https://docs.ruby-lang.org/en/2.4.0/syntax/literals_rdoc.html, Ruby

https://docs.ruby-lang.org

116 ◾ Mastering Ruby on Rails

Character Encoding

The default character set for Ruby is ASCII, whose char-
acters are represented by single bytes. If you use UTF-8-
character encoding or another character set, items may be
represented in one to four bytes.

At the same time, it is possible to change your character
set using $KCODE at the beginning of your program, simi-
lar to—$KCODE = ‘u’. Following are the possible values for
$KCODE:

• a ASCII (same as none). This is the default.

• e- EUC.

• n- None (same as ASCII).

• u- UTF-8.

String Built-in Methods

It is required to have an instance of String object in order
to call a String method. Following is the way to create an
instance of String object:

new [String.new(str = "")]

This will return a new string object containing a copy of str.
Now, using str object, you can use any available instance
methods. For instance:

#!/usr/bin/ruby
myStr = String.new("THIS IS A SAMPLE")
foo = myStr.downcase
puts "#{foo}"

Ruby Data Types ◾ 117

This will produce the following result:

this is a sample

Following Table 3.1 presents the public String methods
(assuming str is a String object).

3 https://www.tutorialspoint.com/ruby/ruby_strings.htm, Tutorialspoint

TABLE 3.1 List of Public String Methods3

1 str % arg
Formats a string using a format specification. arg must be an
array if it contains more than one substitution.

2 str * integer
Returns a new string containing integer times str. In other words,
str is repeated integer times.

3 str + other_str
Concatenates other_str to str.

4 str << obj
Concatenates an object to str. If the object is a Fixnum in the
range 0.255, it is converted to a character.

5 str <=> other_str
Compares str with other_str, returning -1 (less than), 0 (equal),
or 1 (greater than). The comparison is case-sensitive.

6 str == obj
Tests str and obj for equality. If obj is not a String, returns false;
returns true if str <=> obj returns 0.

7 str =~ obj
Matches str against a regular expression pattern obj. Returns the
position where the match starts; otherwise, false.

8 str.capitalize
Capitalizes a string.

9 str.capitalize!
Same as capitalize, but changes are made in place.

(Continued)

https://www.tutorialspoint.com

118 ◾ Mastering Ruby on Rails

TABLE 3.1 (Continued) List of Public String Methods

10 str.casecmp
Makes a case-insensitive comparison of strings.

11 str.center
Centers a string.

12 str.chomp
Removes the record separator ($/), usually \n, from the end of a
string. If no record separator exists, does nothing.

13 str.chomp!
Same as chomp, but changes are made in place.

14 str.chop
Removes the last character in str.

15 str.chop!
Same as chop, but changes are made in place.

16 str.concat(other_str)
Concatenates other_str to str.

17 str.count(str, ...)
Counts one or more sets of characters. If there is more than one
set of characters, counts the intersection of those sets

18 str.crypt(other_str)
Applies a one-way cryptographic hash to str. The argument is the
salt string, which should be two characters long, each character
in the range a.z, A.Z, 0.9,. or /.

19 str.delete(other_str, ...)
Returns a copy of str with all characters in the intersection of its
arguments deleted.

20 str.delete!(other_str, ...)
Same as delete, but changes are made in place.

21 str.downcase
Returns a copy of str with all uppercase letters replaced with
lowercase.

22 str.downcase!
Same as downcase, but changes are made in place.

23 str.dump
Returns a version of str with all nonprinting characters replaced
by \nnn notation and all special characters escaped.

(Continued)

Ruby Data Types ◾ 119

TABLE 3.1 (Continued) List of Public String Methods

24 str.each(separator = $/) { |substr| block }
Splits str using argument as the record separator ($/ by default),
passing each substring to the supplied block.

25 str.each_byte { |fixnum| block }
Passes each byte from str to the block, returning each byte as a
decimal representation of the byte.

26 str.each_line(separator=$/) { |substr| block }
Splits str using argument as the record separator ($/ by default),
passing each substring to the supplied block.

27 str.empty?
Returns true if str is empty (has a zero-length).

28 str.eql?(other)
Two strings are equal if they have the same length and content.

29 str.gsub(pattern, replacement) [or]
str.gsub(pattern) { |match| block }
Returns a copy of str with all occurrences of pattern replaced
with either replacement or the value of the block. The pattern
will typically be a Regexp; if it is a String then no regular
expression metacharacters will be interpreted (that is, /\d/ will
match a digit, but ‘\d’ will match a backslash followed by a ‘d’)

30 str[fixnum] [or] str[fixnum,fixnum] [or] str[range] [or]
str[regexp] [or] str[regexp, fixnum] [or] str[other_str]

References str, using the following arguments: one Fixnum,
returns a character code at fixnum; two Fixnums, returns a
substring starting at an offset (first fixnum) to length (second
fixnum); range, returns a substring in the range; regexp
returns portion of matched string; regexp with fixnum,
returns matched data at fixnum; other_str returns substring
matching other_str. A negative Fixnum starts at end of string
with -1.

31 str[fixnum] = fixnum [or] str[fixnum] = new_str [or]
str[fixnum, fixnum] = new_str [or] str[range] = aString [or]
str[regexp] = new_str [or] str[regexp, fixnum] = new_str [or]
str[other_str] = new_str]

Replace (assign) all or part of a string.

(Continued)

120 ◾ Mastering Ruby on Rails

32 str.gsub!(pattern, replacement) [or] str.gsub!(pattern) {
|match|block }

Performs the substitutions of String#gsub in place, returning str,
or nil if no substitutions were performed.

33 str.hash
Returns a hash based on the string’s length and content.

34 str.hex
Treats leading characters from str as a string of hexadecimal
digits (with an optional sign and an optional 0x) and returns the
corresponding number. Zero is returned on error.

35 str.include? other_str [or] str.include? fixnum
Returns true if str contains the given string or character.

36 str.index(substring [, offset]) [or]
str.index(fixnum [, offset]) [or]
str.index(regexp [, offset])
Returns the index of the first occurrence of the given substring,
character (fixnum), or pattern (regexp) in str. Returns nil if not
found. If the second parameter is present, it specifies the
position in the string to begin the search.

37 str.insert(index, other_str)
Inserts other_str before the character at the given index,
modifying str. Negative indices count from the end of the string,
and insert after the given character. The intent is to insert a
string so that it starts at the given index.

38 str.inspect
Returns a printable version of str, with special characters escaped.

39 str.intern [or] str.to_sym
Returns the Symbol corresponding to str, creating the symbol if it
did not previously exist.

40 str.length
Returns the length of str.

41 str.ljust(integer, padstr = ‘ ’)
If integer is greater than the length of str, returns a new String of
length integer with str left-justified and padded with padstr;
otherwise, returns str.

TABLE 3.1 (Continued) List of Public String Methods

(Continued)

Ruby Data Types ◾ 121

TABLE 3.1 (Continued) List of Public String Methods
42 str.lstrip

Returns a copy of str with leading whitespace removed.
43 str.lstrip!

Removes leading whitespace from str, returning nil if no change
was made.

44 str.match(pattern)
Converts pattern to a Regexp (if it isn’t already one), then invokes
its match method on str.

45 str.oct
Treats leading characters of str as a string of octal digits (with an
optional sign) and returns the corresponding number. Returns 0
if the conversion fails.

46 str.replace(other_str)
Replaces the contents and taintedness of str with the
corresponding values in other_str.

47 str.reverse
Returns a new string with the characters from str in reverse order.

48 str.reverse!
Reverses str in place.

49 str.rindex(substring [, fixnum]) [or]
str.rindex(fixnum [, fixnum]) [or]
str.rindex(regexp [, fixnum])
Returns the index of the last occurrence of the given substring,
character (fixnum), or pattern (regexp) in str. Returns nil if not
found. If the second parameter is present, it specifies the
position in the string to end the search.characters beyond this
point won’t be considered.

50. str.rjust(integer, padstr = ‘ ’)
If integer is greater than the length of str, returns a new String of
length integer with str right-justified and padded with padstr;
otherwise, returns str.

51 str.rstrip
Returns a copy of str with trailing whitespace removed.

52 str.rstrip!
Removes trailing whitespace from str, returning nil if no change
was made.

(Continued)

122 ◾ Mastering Ruby on Rails

53 str.scan(pattern) [or]
str.scan(pattern) { |match, ...| block }
Both forms iterate through str, matching the pattern (which may
be a Regexp or a String). For each match, a result is generated
and either added to the result array or passed to the block. If the
pattern contains no groups, each individual result consists of the
matched string, $&. If the pattern contains groups, each
individual result is itself an array containing one entry per group.

54 str.slice(fixnum) [or] str.slice(fixnum, fixnum) [or]
str.slice(range) [or] str.slice(regexp) [or]
str.slice(regexp, fixnum) [or] str.slice(other_str)
See str[fixnum], etc.
str.slice!(fixnum) [or] str.slice!(fixnum, fixnum) [or]
str.slice!(range) [or] str.slice!(regexp) [or]
str.slice!(other_str)
Deletes the specified portion from str, and returns the portion
deleted. The forms that take a Fixnum will raise an IndexError if the
value is out of range; the Range form will raise a RangeError, and
the Regexp and String forms will silently ignore the assignment.

55 str.split(pattern = $, [limit])
Divides str into substrings based on a delimiter, returning an
array of these substrings.

If the pattern is a String, then its contents are used as the
delimiter when splitting str. If the pattern is a single space, str is
split on whitespace, with leading whitespace and runs of
contiguous whitespace characters ignored.

If the pattern is a Regexp, str is divided where the pattern
matches. Whenever the pattern matches a zero-length string, str
is split into individual characters.

If the pattern is omitted, the value of $; is used. If $; is nil (which
is the default), str is split on whitespace as if ` ` were specified.

If the limit parameter is omitted, trailing null fields are
suppressed. If the limit is a positive number, at most that
number of fields will be returned (if the limit is 1, the entire
string is returned as the only entry in an array). If negative,
there is no limit to the number of fields returned, and trailing
null fields are not suppressed.

TABLE 3.1 (Continued) List of Public String Methods

(Continued)

Ruby Data Types ◾ 123

56 str.squeeze([other_str]*)
Builds a set of characters from the other_str parameter(s)
using the procedure described for String#count. Returns a
new string where runs of the same character that occur in this
set are replaced by a single character. If no arguments are
given, all runs of identical characters are replaced by a single
character.

57 str.squeeze!([other_str]*)
Squeezes str in place, returning either str or nil if no changes
were made.

58 str.strip
Returns a copy of str with leading and trailing whitespace
removed.

59 str.strip!
Removes leading and trailing whitespace from str. Returns nil if
str was not altered.

60 str.sub(pattern, replacement) [or]
str.sub(pattern) { |match| block }
Returns a copy of str with the first occurrence of pattern replaced
with either replacement or the value of the block. The pattern
will typically be a Regexp; if it is a String, then no regular
expression metacharacters will be interpreted.

61 str.sub!(pattern, replacement) [or]
str.sub!(pattern) { |match| block }
Performs the substitutions of String#sub in place, returning str,
or nil if no substitutions were performed.

62 str.succ [or] str.next
Returns the successor to str.

63 str.succ! [or] str.next!
Equivalent to String#succ, but modifies the receiver in place.

64 str.sum(n = 16)
Returns a basic n-bit checksum of the characters in str, where n is
the optional Fixnum parameter, defaulting to 16. The result is
simply the sum of the binary value of each character in str
modulo 2n - 1.

TABLE 3.1 (Continued) List of Public String Methods

(Continued)

124 ◾ Mastering Ruby on Rails

65 str.swapcase
Returns a copy of str with uppercase alphabetic characters
converted to lowercase and lowercase characters converted to
uppercase.

66 str.swapcase!
Equivalent to String#swapcase, but modifies the receiver in place,
returning str, or nil if no changes were made.

67 str.to_f
>Returns the result of interpreting leading characters in str as a
floating-point number. Extraneous characters past the end of a
valid number are ignored. If there is not a valid number at the
start of str, 0.0 is returned. This method never raises an
exception.

68 str.to_i(base = 10)
Returns the result of interpreting leading characters in str as an
integer base (base 2, 8, 10, or 16). Extraneous characters past the
end of a valid number are ignored. If there is not a valid number
at the start of str, 0 is returned. This method never raises an
exception.

69 str.to_s [or] str.to_str
Returns the receiver.

70 str.tr(from_str, to_str)
Returns a copy of str with the characters in from_str replaced by
the corresponding characters in to_str. If to_str is shorter than
from_str, it is padded with its last character. Both strings may
use the c1.c2 notation to denote ranges of characters, and
from_str may start with a ^, which denotes all characters except
those listed.

71 str.tr!(from_str, to_str)
Translates str in place, using the same rules as String#tr. Returns
str, or nil if no changes were made.

72 str.tr_s(from_str, to_str)
Processes a copy of str as described under String#tr, then
removes duplicate characters in regions that were affected by the
translation.

TABLE 3.1 (Continued) List of Public String Methods

(Continued)

Ruby Data Types ◾ 125

NUMBERS
A number in Ruby could be defined as a series of digits,
utilizing a dot as a decimal mark. Additionally, the user
can use the underscore as a separator. At the same time,
there are different kinds of numbers like integers and float.
An extended list of number types is presented in Table 3.2.4

4 https://www.javatpoint.com/ruby-data-types, Javatpoint

73 str.tr_s!(from_str, to_str)
Performs String#tr_s processing on str in place, returning str, or
nil if no changes were made.

74 str.unpack(format)
>Decodes str (which may contain binary data) according to the
format string, returning an array of each value extracted. The
format string consists of a sequence of single-character

75 str.upcase
Returns a copy of str with all lowercase letters replaced with their
uppercase counterparts. The operation is locale insensitive.
Only characters a to z are affected.

76 str.upcase!
Changes the contents of str to uppercase, returning nil if no
changes are made.

77 str.upto(other_str) { |s| block }
Iterates through successive values, starting at strand ending at
other_str inclusive, passing each value in turn to the block. The
String#succ method is used to generate each value.

TABLE 3.1 (Continued) List of Public String Methods

directives. Each directive may be followed by a number,
indicating the number of times to repeat with this directive. An
asterisk (*) will use up all remaining elements. The directives
still may each be followed by an underscore (_) to use the
underlying platform’s native size for the specified type;
otherwise, it uses a platform-independent consistent size.
Spaces are ignored in the format string.

https://www.javatpoint.com

126 ◾ Mastering Ruby on Rails

Integers

Integers should be viewed as a subset of the real numbers.
They are written without a fraction or a decimal compo-
nent and fall within a set Z = {…, -2, -1, 0, 1, 2, …}, therefore
making this set absolutely infinite.

In computer languages, integers are standard data types.
In practice, computers can only manage a subset of integer
values, due to computers’ having limited capacity. Integers
are used to count discrete entities. Thus, we can have 3, 4
or 6 humans, but we cannot have 4.44 humans. Yet unlike
in languages like Java or C, integers in Ruby are objects. Let
us illustrate integers with the following example:

integers.rb
#!/usr/bin/ruby

p -2
p 121
p 123265
p -34253464356
p 34867367893463476

p 1.class
p 23453246.class

TABLE 3.2 Types of Numbers

Class Description Example

Fixnum They are normal numbers 1
Bignum They are big numbers 111111111111
Float Decimal numbers 3.0
Complex Imaginary numbers 4 + 3i
Rational They are fractional numbers 9/4
BigDecimal Precision decimal numbers 6.0

Ruby Data Types ◾ 127

p 234532423563456346.class
p 2345324235632363463456456346.class

p 5 / 2
p 5.div 2

Make sure you notice that there could be positive and neg-
ative integer values of various sizes like in this piece of the
above-mentioned code:

p -2
p 121
p 123265
p -34253464356
p 34867367893463476

This set is used to illustrate the class of integers:

p 1.class
p 23453246.class
p 234532423563456346.class
p 2345324235632363463456456346.class

Remaining two lines show integer division.

p 5 / 2
p 5.div 2

When we divide two integers using the integer division
operator/method, the result is an integer as well:

$./integers.rb
-2
121

128 ◾ Mastering Ruby on Rails

123265
-34253464356
34867367893463476
Integer
Integer
Integer
Integer
2
2

Integers can be specified in different notations in Ruby:
decimal, hexadecimal, octal, and binary. Decimal numbers
are used normally, as we know them. Hexadecimal num-
bers are preceded with 0x characters, octal with 0 charac-
ter and binary with 0b characters. In this code example, let
us print decimal 122 in various notation:

inotations.rb
#!/usr/bin/ruby

puts 122
puts 0x7a
puts 0172
puts 0b1111010

The output of the example would then be:

$./inotations.rb
122
122
122
122

Ruby Data Types ◾ 129

When we work with integers, we operate with discrete items.
To demonstrate, we could use integers to count books.

books.rb
#!/usr/bin/ruby

shelves = 16
books_on_shelves = 24

total = shelves * books_on_shelves

puts "There are total of #{total} books"

In this program, we count the total amount of books.
Working with integers, the output of the program would be:

$./books.rb
There are total of 384 books

Big numbers might be difficult to read and get used to. If
we have a number like 245342395423452, you will not be
able to read it quickly. That is why outside computers, big
numbers are separated by spaces or commas. For readabil-
ity, Ruby allows integers to contain underscores. Yet under-
scores in integers are omitted by the Ruby interpreter. The
example demonstrates the general use of underscores:

underscore.rb
#!/usr/bin/ruby

p 23482345629
p 23_482_345_629
p 23482345629 == 23_482_345_629

130 ◾ Mastering Ruby on Rails

This line shows that the two numbers are actually equal:

p 23482345629 == 23_482_345_629

And the output would therefore be the following:

$./underscore.rb
23482345629
23482345629
True

Floating-Point Numbers

Floating-point numbers stand for real numbers of comput-
ing. And real numbers are mostly applied to measure con-
tinuous quantities like weight, height, or speed. In Ruby,
decimal numbers are objects of the Float or a BigDecimal
class. The BigDecimal class, a Ruby basic class, is part of
Ruby’s standard library.

One needs to know that decimal numbers cannot be
precise, and all float objects represent only inexact real
numbers. Let us illustrate floating-point values in the fol-
lowing example5:

decimals.rb
#!/usr/bin/ruby

p 15.4
p 0.3455
p -343.4563

5 https://zetcode.com/lang/rubytutorial/datatypes/, Zetcode

https://zetcode.com

Ruby Data Types ◾ 131

p 12.5.class
p -12.5.class
p (5.0 / 2).class

p 5.fdiv 2
p 12.to_f

This part of the code represents three decimal numbers
that have a decimal point character.p 15.4:

p 0.3455
p -343.4563

The following code lines show the types of numbers. All
are floats and Integer division applied on the last one pro-
duces a Float too:

p 12.5.class
p -12.5.class
p (5.0 / 2).class

Here we produce floating-point values by applying the
floating-point fdiv division method and the conversion
to_f method:

p 5.fdiv 2
p 12.to_f

This would be the final output:

$./decimals.rb
15.4
0.3455
-343.4563

132 ◾ Mastering Ruby on Rails

Float
Float
Float
2.5
12.0

By default, a decimal number is represented with a maxi-
mum 16 numbers after the decimal point. But it is also
possible to control the format of floating-point values
with the sprintf or printf methods. Basic formatting of
decimal numbers could be completed in the following
format:

format_float.rb
#!/usr/bin/ruby

p 1/3.0
p 1.fdiv 2

puts sprintf "%.4f" % (1/3.0)
puts sprintf "%.7f" % (5/3.0)

The first line shows a decimal with 16 places after the point.
The second line prints two numbers after the point:

p 1/3.0
p 13.fdiv 4
p 1.fdiv 2

Here you can control the number of values after the
decimal point using the sprintf method. There is a preci-
sion in the format specifier of the sprintf method. It is a

Ruby Data Types ◾ 133

number following the % character. The f is a conversion
specifier that indicates you are dealing with floating-
point values:

puts sprintf "%.4f" % (1/3.0)
puts sprintf "%.7f" % (5/3.0)

The output would be the following:

$./format_float.rb
0.3333333333333333
3.25
0.5
0.3333
1.6666667

Ruby also supports the use of scientific notation for float-
ing-point values. Also known as exponential notation, it
is a manner of including numbers too large or small to be
conveniently scripted in standard decimal notation. This
example shows two decimal numbers written in scientific
notation:

scientific.rb
#!/usr/bin/ruby

p 1.2e-3
p 0.0012

p 1.5E-4
p 0.00015

134 ◾ Mastering Ruby on Rails

The output of the above program would then be:

$./scientific.rb
0.0012
0.0012
0.00015
0.00015

As we have previously stated, floating-point values could
be inaccurate. For most basic computations, ordinary
floating-point numbers are sufficiently exact: consider-
ing that it might not be that important if you are deal-
ing with the weight of 60 kg or 60.000019 kg. For other
computations, including many scientific and engineering
applications, precision is of utmost importance. That is
why Ruby has a BigDecimal in the standard library. This
particular class is used to provide arbitrary precision for
very large or very accurate floating-point numbers. In this
example, we compare the precision of a Float compared to
a BigDecimal:6

big_decimal.rb
#!/usr/bin/ruby
require 'bigdecimal'
sum = 0

1000.times do
 sum = sum + 0.0001
end
p sum

6 https://zetcode.com/lang/rubytutorial/datatypes/, Zetcode

https://zetcode.com

Ruby Data Types ◾ 135

sum = BigDecimal("0")
1000.times do
 sum = sum + BigDecimal("0.0001")
end

puts sum.to_s('F')
puts sum.to_s('E')

Keep in mind that the BigDecimal class should be imported:

require 'bigdecimal'

After that, you are expected to form a loop, where you add
a small floating-point value to a sum variable. As a result,
there will be a small inaccuracy:

sum = 0
1000.times do
 sum = sum + 0.0001
end
p sum

You can create the same loop with the BigDecimal values
sum = BigDecimal(“0”):

1000.times do
 sum = sum + BigDecimal("0.0001")
end

The sum would then be displayed in floating-point and
engineering notation:

puts sum.to_s('F')
puts sum.to_s('E')

136 ◾ Mastering Ruby on Rails

This output clearly shows how computing with BigDecimal
is more precise than with Floats:

$. /big_decimal.rb
0.10000000000000184
0.1
0.1e0

Ruby Rational Numbers

Additionally, Ruby has built-in support for rational
numbers as well. A rational number stands for an exact
number. Using rational numbers, we avoid the chance
to get rounding errors. In Ruby, a rational number is an
object of the Rational class. Meaning that you can create
rational numbers with a special to_r method from some
objects.

A rational number is any number that can be evoked as
a fraction of two integers a/b, where b!=0. Since b may be
equal to 1, every integer is a rational number. This example
illustrates a few rational numbers:

rationals.rb
#!/usr/bin/ruby

puts 2.to_r
puts "23".to_r
puts 2.6.to_r

p Rational 0
p Rational 1/5.0
p Rational 0.5

Ruby Data Types ◾ 137

This line of code converts a 2 integer to 2/1 rational num-
ber using the to_r method:

puts 2.to_r

And here you create a rational number using the Rational
class:

p Rational 0.5

The output of the above manipulation would then be:

$./rationals.rb
2/1
23/1
5854679515581645/2251799813685248
(0/1)
(3602879701896397/18014398509481984)
(1/2)

Ruby Nil Value

Ruby has a special value nil that represents an absolute
absence of a value. The nil is a singleton object of a NilClass.
There can only be one-nil, and thus you cannot have more
of it. To demonstrate with an example:7

nil_value.rb
#!/usr/bin/ruby

puts nil
p nil

7 https://zetcode.com/lang/rubytutorial/datatypes/, Zetcode

https://zetcode.com

138 ◾ Mastering Ruby on Rails

p $val
p [1, 2, 3][4]
p $val1 == $val2

Naturally, when you print the nil value to the console, the
puts method prints an empty string while the p method
prints ‘nil’ string:

puts nil
p nil

If you try to refer to a global variable that was not set, you
will eventually get the nil value:

p $val

In the following line of code, if you refer to the fourth ele-
ment of a three-element array, you will get nil. Because
many methods in Ruby return nil for invalid values:

p [1, 2, 3][3]

At the same time, the next line shall return true. This is
a consequence of the fact that the nil value is a singleton
object of a NilClass:

p $val1 == $val2
$./nil_value.rb
nil
nil
nil
true

Ruby Data Types ◾ 139

ARRAYS AND HASHES
Ruby arrays are ordered, an integer-indexed listing of
objects. Each item in an array is linked with and referred
to by an index.

Array indexing starts at 0, as in C or Java. A negative
index is read relative to the end of the array—that is, an
index of -1 indicates the last element of the array, -2 is the
next to last element in the array, and so on.

Moreover, Ruby arrays can consist of objects such as
String, Integer, Fixnum, Hash, Symbol, and even other
Array objects. Ruby arrays are not as fixed as arrays in
other languages; they tend to grow automatically while
adding elements to them. There are many ways to cre-
ate or initialize an array. One way is with the new class
method:

names = Array.new

You can also edit the size of an array at the time of creating
array:

names = Array.new(10)

Yet keep in mind that the array names have a size or length
of 20 elements. But you can return the size of an array with
either the size or length methods:

#!/usr/bin/ruby
names = Array.new(10)
puts names.size # This returns 10
puts names.length # This also returns 10

140 ◾ Mastering Ruby on Rails

This will produce the following result:

10
10

It is also possible to assign a value to each element in the
array as follows:

#!/usr/bin/ruby
names = Array.new(4, "book")
puts "#{names}"

This will produce the following result:

["book", " book ", " book ", " book "]

You can also apply a block through the new method, popu-
lating each element with what the block evaluates to:

#!/usr/bin/ruby
nums = Array.new(10) { |e| e = e * 2 }
puts "#{nums}"

This will produce the following output:

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

One more form of array creation is as follows:

nums = Array[1, 2, 3, 4,5]

Ruby Data Types ◾ 141

In addition, the Kernel module available in core Ruby has
an Array method, which only accepts a single argument.
This method takes a range as an argument to create an
array of digits:

#!/usr/bin/ruby
digits = Array(0..9)
puts "#{digits}"

Which will produce the following result:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Array Built-in Methods

It is required to have an instance of Array object to call an
Array method. As we have already stated, the following is
the way to create an instance of Array object:

Array (…) [or] Array[…] [or] […]

This will return a new array populated with the given
objects. Now, using the created object, you can call any
available instance methods. For instance:

#!/usr/bin/ruby
digits = Array(0..9)
num = digits.at(6)
puts "#{num}"

This will produce the following result:

6

142 ◾ Mastering Ruby on Rails

It is also important to know the public array methods.
Following is the table (Table 3.3) of the most widely-used
public methods (assuming array is an array object)8:

8 https://www.tutorialspoint.com/ruby/ruby_arrays.htm, Tutorialspoint

TABLE 3.3 The Public Array Methods
1 array & other_array

Returns a new array containing elements common to the two
arrays, with no duplicates.

2 array * int [or] array * str
Returns a new array built by concatenating the int copies of self.

3 array + other_array
Returns a new array built by concatenating the two arrays
together to produce a third array.

4 array - other_array
Returns a new array that is a copy of the original array, removing
any items that also appear in other_array.

5 array <=> other_array
Compares str with other_str, returning -1 (less than), 0 (equal),
or 1 (greater than). The comparison is case-sensitive.

6 array | other_array
Returns a new array by joining array with other_array, removing
duplicates.

7 array << obj
Pushes the given object onto the end of array. This expression
returns the array itself, so several appends may be chained
together.

8 array <=> other_array
Returns an integer (-1, 0, or +1) if this array is less than, equal to,
or greater than other_array.

9 array == other_array
Two arrays are equal if they contain the same number of
elements and if each element is equal to (according to
Object.==) the corresponding element in the other array.

(Continued)

https://www.tutorialspoint.com

Ruby Data Types ◾ 143

10 array[index] [or] array[start, length] [or]
array[range] [or] array.slice(index) [or]
array.slice(start, length) [or] array.slice(range)
Returns the element at index, or returns a subarray starting at
start and continuing for length elements, or returns a subarray
specified by range. Negative indices count backward from the
end of the array (-1 is the last element). Returns nil if the index
(or starting index) is out of range.

11 array[index] = obj [or]
array[start, length] = obj or an_array or nil [or]
array[range] = obj or an_array or nil
Sets the element at index, or replaces a subarray starting at start
and continuing for length elements, or replaces a subarray
specified by range. If indices are greater than the current
capacity of the array, the array grows automatically. Negative
indices will count backward from the end of the array. Inserts
elements if the length is zero. If nil is used in the second and
third form, deletes elements from self.

12 array.abbrev(pattern = nil)
Calculates the set of unambiguous abbreviations for the strings
in self. If passed a pattern or a string, only the strings matching
the pattern or starting with the string are considered.

13 array.assoc(obj)
Searches through an array whose elements are also arrays
comparing obj with the first element of each contained array
using obj.==. Returns the first contained array that matches or
nil if no match is found.

14 array.at(index)
Returns the element at index. A negative index counts from the
end of self. Returns nil if the index is out of range.

15 array.clear
Removes all elements from array.

16 array.collect { |item| block } [or]
array.map { |item| block }
Invokes block once for each element of self. Creates a new array
containing the values returned by the block.

TABLE 3.3 (Continued) The Public Array Methods

(Continued)

144 ◾ Mastering Ruby on Rails

17 array.collect! { |item| block } [or]
array.map! { |item| block }
Invokes block once for each element of self, replacing the element
with the value returned by block.

18 array.compact
Returns a copy of self with all nil elements removed.

19 array.compact!
Removes nil elements from array. Returns nil if no changes were
made.

20 array.concat(other_array)
Appends the elements in other_array to self.

21 array.delete(obj) [or]
array.delete(obj) { block }
Deletes items from self that are equal to obj. If the item is not
found, returns nil. If the optional code block is given, it returns
the result of the block if the item is not found.

22 array.delete_at(index)
Deletes the element at the specified index, returning that
element, or nil if the index is out of range.

23 array.delete_if { |item| block }
Deletes every element of self for which block evaluates to
true.

24 array.each { |item| block }
Calls block once for each element in self, passing that element as
a parameter.

25 array.each_index { |index| block }
Same as Array#each, but passes the index of the element instead
of the element itself.

26 array.empty?
Returns true if the self array contains no elements.

27 array.eql?(other)
Returns true if array and other are the same object, or are both
arrays with the same content.

TABLE 3.3 (Continued) The Public Array Methods

(Continued)

Ruby Data Types ◾ 145

28 array.fetch(index) [or]
array.fetch(index, default) [or]
array.fetch(index) { |index| block }
Tries to return the element at position index. If index lies outside
the array, the first form throws an IndexError exception, the
second form returns default, and the third form returns the
value of invoking block, passing in index. Negative values of
index count from the end of the array.

29 array.fill(obj) [or]
array.fill(obj, start [, length]) [or]
array.fill(obj, range) [or]
array.fill { |index| block } [or]
array.fill(start [, length]) { |index| block } [or]
array.fill(range) { |index| block }
The first three forms set the selected elements of self to obj. A
start of nil is equivalent to zero. A length of nil is equivalent to
self.length. The last three forms fill the array with the value of
the block. The block is passed with the absolute index of each
element to be filled.

30 array.first [or]
array.first(n)
Returns the first element, or the first n elements, of the array. If
the array is empty, the first form returns nil, and the second
form returns an empty array.

31 array.flatten
Returns a new array that is a one-dimensional flattening of this
array (recursively).

32 array.flatten!
Flattens array in place. Returns nil if no modifications were
made. (array contains no subarrays.)

33 array.frozen?
Returns true if array is frozen (or temporarily frozen while being
sorted).

34 array.hash
Computes a hash-code for array. Two arrays with the same
content will have the same hash code.

TABLE 3.3 (Continued) The Public Array Methods

(Continued)

146 ◾ Mastering Ruby on Rails

35 array.include?(obj)
Returns true if obj is present in self, false otherwise.

36 array.index(obj)
Returns the index of the first object in self that is == to obj.
Returns nil if no match is found.

37 array.indexes(i1, i2, ... iN) [or]
array.indices(i1, i2, ... iN)
This methods is deprecated in latest version of Ruby so please use
Array#values_at.

38 array.indices(i1, i2, ... iN) [or]
array.indexes(i1, i2, ... iN)
This method is deprecated in the latest version of Ruby, so please
use Array#values_at.

39 array.insert(index, obj...)
Inserts the given values before the element with the given index
(which may be negative).

40 array.inspect
Creates a printable version of the array.

41 array.join(sep = $,)
Returns a string created by converting each element of the array
to a string, separated by sep.

42 array.last [or] array.last(n)
Returns the last element(s) of self. If array is empty, the first form
returns nil.

43 array.length
Returns the number of elements in self. May be zero.

44 array.map { |item| block } [or]
array.collect { |item| block }
Invokes block once for each element of self. Creates a new array
containing the values returned by the block.

45 array.map! { |item| block } [or]
array.collect! { |item| block }
Invokes block once for each element of array, replacing the
element with the value returned by block.

TABLE 3.3 (Continued) The Public Array Methods

(Continued)

Ruby Data Types ◾ 147

46 array.items
Returns the number of non-nil elements in self. May be zero.

47 array.pack(aTemplateString)
Packs the contents of the array into a binary sequence according
to the directives in a TemplateString. Directives A, a, and Z may
be followed by a count, which gives the width of the resulting
field. The remaining directives also may take a count, indicating
the number of array elements to convert. If the count is an
asterisk (*), all remaining array elements will be converted. Any
of the directives is still may be followed by an underscore (_) to
use the underlying platform’s native size for the specified type;
otherwise, they use a platform-independent size. Spaces are
ignored in the template string.

48 array.pop
Removes the last element from an array and returns it, or nil if
array is empty.

49 array.push(obj, ...)
Pushes (appends) the given obj onto the end of this array. This
expression returns the array itself, so several appends may be
chained together.

50 array.rassoc(key)
Searches through the array whose elements are also arrays.
Compares key with the second element of each contained array
using ==. Returns the first contained array that matches.

51 array.reject { |item| block }
Returns a new array containing the items array for which the
block is not true.

52 array.reject! { |item| block }
Deletes elements from array for which the block evaluates to
true, but returns nil if no changes were made. Equivalent to
Array#delete_if.

53 array.replace(other_array)
Replaces the contents of array with the contents of other_array,
truncating or expanding if necessary.

TABLE 3.3 (Continued) The Public Array Methods

(Continued)

148 ◾ Mastering Ruby on Rails

54 array.reverse
Returns a new array containing array’s elements in reverse order.

55 array.reverse!
Reverses array in place.

56 array.reverse_each {|item| block }
Same as Array#each, but traverses array in reverse order.

57 array.rindex(obj)
Returns the index of the last object in array == to obj. Returns nil
if no match is found.

58 array.select {|item| block }
Invokes the block passing in successive elements from an array,
returning an array containing those elements for which the
block returns a true value.

59 array.shift
Returns the first element of self and removes it (shifting all other
elements down by one). Returns nil if the array is empty.

60 array.size
Returns the length of array (number of elements).

61 array.slice(index) [or] array.slice(start, length) [or]
array.slice(range) [or] array[index] [or]
array[start, length] [or] array[range]
Returns the element at index, or returns a subarray starting at
start and continuing for length elements, or returns a subarray
specified by range. Negative indices count backward from the
end of the array (-1 is the last element). Returns nil if the index
(or starting index) are out of range.

62 array.slice!(index) [or] array.slice!(start, length) [or]
array.slice!(range)
Deletes the element(s) given by an index (optionally with a
length) or by a range. Returns the deleted object, subarray, or nil
if the index is out of range.

63 array.sort [or] array.sort { | a,b | block }
Returns a new array created by sorting self.

64 array.sort! [or] array.sort! { | a,b | block }
Sorts self.

(Continued)

TABLE 3.3 (Continued) The Public Array Methods

Ruby Data Types ◾ 149

Hashes

A Hash is a set of key-value pairs like this: “job” = > “assign-
ment.” It is similar to an Array, but the indexing it uses is done
via arbitrary keys of any object type, not an integer index.

The order in which you employ a hash by either key or
value may seem arbitrary and will generally not be in the
insertion feature. If you try to access a hash with a key that
is not verified, the method will return nil.

65 array.to_a
Returns self. If called on a subclass of Array, converts the receiver
to an Array object.

66 array.to_ary
Returns self.

67 array.to_s
Returns self.join.

68 array.transpose
Assumes that self is an array of arrays and transposes the rows
and columns.

69 array.uniq
Returns a new array by removing duplicate values in the array.

70 array.uniq!
Removes duplicate elements from self. Returns nil if no changes
are made (that is, no duplicates are found).

71 array.unshift(obj, ...)
Prepends objects to the front of the array, other elements up one.

72 array.values_at(selector,...)
Returns an array containing the elements in self corresponding
to the given selector (one or more). The selectors may be either
integer indices or ranges.

73 array.zip(arg, ...) [or]
array.zip(arg, ...){ | arr | block }
Converts any arguments to arrays, then merges elements of the
array with corresponding elements from each argument.

TABLE 3.3 (Continued) The Public Array Methods

150 ◾ Mastering Ruby on Rails

As with arrays, there are many ways to create hashes.
You can create an empty hash with the new class method:

months = Hash.new

Or you can use new to create a hash with a default value,
which is otherwise just nil:

months = Hash.new("month")
or
months = Hash.new "month"

When you access any key in a hash that has a default value,
if the key or value has not been identified, accessing the
hash will return the default value:

#!/usr/bin/ruby
months = Hash.new("month")
puts "#{months[0]}"
puts "#{months[72]}"

This will return the following output:

month
month

Hash Built-in Methods
It is essential to have an instance of Hash object to call a
Hash method. As we have illustrated before, the following
is the way to create an instance of Hash object:

Hash[[key =>|, value]*] or
Hash.new [or] Hash.new(obj) [or]
Hash.new { |hash, key| block }

Ruby Data Types ◾ 151

This will return a new hash populated with the given
objects. Now using the created object, you can call any
available instance methods. To demonstrate with an
example:

#!/usr/bin/ruby
$, = ", "
months = Hash.new("month")
months = {"1" => "January", "2" =>
"February"}
keys = months.keys

This will produce the following value:

["1", "2"]

Moreover, there are multiple public hash methods you may
apply in your work9 (Table 3.4).

9 https://www.tutorialspoint.com/ruby/ruby_hashes.htm, Tutorialspoint

TABLE 3.4 The Public Hash Methods
1 hash == other_hash

Tests whether two hashes are equal, based on whether they have
the same number of key-value pairs, and whether the key-value
pairs match the corresponding pair in each hash.

2 hash.[key]
Using a key, references a value from hash. If the key is not found,
returns a default value.

3 hash.[key] = value
Associates the value given by value with the key given by key.

4 hash.clear
Removes all key-value pairs from hash.

(Continued)

https://www.tutorialspoint.com

152 ◾ Mastering Ruby on Rails

5 hash.default(key = nil)
Returns the default value for hash, nil if not set by default=. ([]
returns a default value if the key does not exist in hash.)

6 hash.default = obj
Sets a default value for hash.

7 hash.default_proc
Returns a block if hash was created by a block.

8 hash.delete(key) [or]
array.delete(key) { |key| block }
Deletes a key-value pair from hash by key. If block is used,
returns the result of a block if pair is not found.

9 hash.delete_if { |key,value| block }
Deletes a key-value pair from hash for every pair the block
evaluates to true.

10 hash.each { |key,value| block }
Iterates over hash, calling the block once for each key, passing the
key-value as a two-element array.

11 hash.each_key { |key| block }
Iterates over hash, calling the block once for each key, passing
key as a parameter.

12 hash.each_key { |key_value_array| block }
Iterates over hash, calling the block once for each key, passing the
key and value as parameters.

13 hash.each_key { |value| block }
Iterates over hash, calling the block once for each key, passing
value as a parameter.

14 hash.empty?
Tests whether hash is empty (contains no key-value pairs),
returning true or false.

15 hash.fetch(key [, default]) [or]
hash.fetch(key) { | key | block }
Returns a value from hash for the given key. If the key can’t be
found, and there are no other arguments, it raises an IndexError
exception; if default is given, it is returned; if the optional block
is specified, its result is returned.

TABLE 3.4 (Continued) The Public Hash Methods

(Continued)

Ruby Data Types ◾ 153

16 hash.has_key?(key) [or] hash.include?(key) [or]
hash.key?(key) [or] hash.member?(key)
Tests whether a given key is present in hash, returning true or false.

17 hash.has_value?(value)
Tests whether hash contains the given value.

18 hash.index(value)
Returns the key for the given value in hash, nil if no matching
value is found.

19 hash.indexes(keys)
Returns a new array consisting of values for the given key(s).
Will insert the default value for keys that are not found.

20 hash.indices(keys)
Returns a new array consisting of values for the given key(s).
Will insert the default value for keys that are not found.

21 hash.inspect
Returns a pretty print string version of hash.

22 hash.invert
Creates a new hash, inverting keys and values from hash; that is,
in the new hash, the keys from hash become values and values
become keys.

23 hash.keys
Creates a new array with keys from hash.

24 hash.length
Returns the size or length of hash as an integer.

25 hash.merge(other_hash) [or]
hash.merge(other_hash) { |key, oldval, newval| block }
Returns a new hash containing the contents of hash and
other_hash, overwriting pairs in hash with duplicate keys with
those from other_hash.

26 hash.merge!(other_hash) [or]
hash.merge!(other_hash) { |key, oldval, newval| block }
Same as merge, but changes are done in place.

27 hash.rehash
Rebuilds hash based on the current values for each key. If values
have changed since they were inserted, this method reindexes hash.

TABLE 3.4 (Continued) The Public Hash Methods

(Continued)

154 ◾ Mastering Ruby on Rails

28 hash.reject { |key, value| block }
Creates a new hash for every pair the block evaluates to true

29 hash.reject! { |key, value| block }
Same as reject, but changes are made in place.

30 hash.replace(other_hash)
Replaces the contents of hash with the contents of other_hash.

31 hash.select { |key, value| block }
Returns a new array consisting of key-value pairs from hash for
which the block returns true.

32 hash.shift
Removes a key-value pair from hash, returning it as a two-
element array.

33 hash.size
Returns the size or length of hash as an integer.

34 hash.sort
Converts hash to a two-dimensional array containing arrays of
key-value pairs, then sorts it as an array.

35 hash.store(key, value)
Stores a key-value pair in hash.

36 hash.to_a
Creates a two-dimensional array from hash. Each key/value pair
is converted to an array, and all these arrays are stored in a
containing array.

37 hash.to_hash
Returns hash (self).

38 hash.to_s
Converts hash to an array, then converts that array to a string.

39 hash.update(other_hash) [or]
hash.update(other_hash) {|key, oldval, newval| block}
Returns a new hash containing the contents of hash and
other_hash, overwriting pairs in hash with duplicate keys with
those from other_hash.

40 hash.value?(value)
Tests whether hash contains the given value.

TABLE 3.4 (Continued) The Public Hash Methods

(Continued)

Ruby Data Types ◾ 155

SYMBOLS
Symbols are an interesting concept, and we need to intro-
duce them because they are used so often and widely that
you will very likely find them used in Ruby code as well. A
symbol is written like this: :symbol. Meaning that there is a
word that is preceded by a colon. This means that normally
symbols do not contain spaces. Instead, if you have symbols
that consist of multiple words you would have to concate-
nate them with underscores, like so: :another_key_symbol

You might also wonder, when to use strings, and when to
use symbols? Unfortunately, there is actually no perfectly
clear line or simple definition. One simple rule to follow
would be that if the text at hand is handled as “data,” then
use a string. If it is code, then use a symbol, especially when
applied as keys in hashes.

Another way of looking at symbols is that they are not
really text, even though they are quite readable. Instead,
they are unique identifiers, like numbers, or bar codes.
While strings represent data that can change, symbols rep-
resent unique values, which are fixed.

To be more specific, if you use strings that hold the same
text in your code multiple times, then a new string object
will be created every time. For instance, if you put “Hello!”
10 times, then 10 actual string objects will be created (and

41 hash.values
Returns a new array containing all the values of hash.

42 hash.values_at(obj, ...)
Returns a new array containing the values from hash that is
associated with the given key or keys.

TABLE 3.4 (Continued) The Public Hash Methods

156 ◾ Mastering Ruby on Rails

later discarded, because they are not being used any lon-
ger). On the other hand, if you would apply a symbol for
this and put :hello 10 times, then only one single object will
be created and re-used.

A Symbol must be viewed as one of the most basic Ruby
objects you can create that has a name and an internal ID.
Symbols are useful because a given symbol name refers to
the same object throughout a Ruby program. At the same
time, Symbols are more efficient than strings. Two strings
with the same contents are perceived as two different
objects, but for any given name, there is only one Symbol
object. This can save both time and memory, referring to
the following example: p039symbol.rb:10

p039symbol.rb
use the object_id method of class Object
it returns an integer identifier for an
object
puts "string".object_id
puts "string".object_id
puts :symbol.object_id
puts :symbol.object_id

The output once you run the program would then be:

>ruby p039symbol.rb
21066960
21066930
132178
132178
>Exit code: 0

10 https://zetcode.com/lang/rubytutorial/datatypes/, Zetcode

https://zetcode.com

Ruby Data Types ◾ 157

To sum up, when do we use a string versus a symbol
matter: in case the contents (the sequence of characters) of
the object are important, use a string. If the identity of the
object is more important, use a symbol.

Ruby uses symbols and has a whole Symbol Table to orga-
nize them. Symbols may as well be treated as names of instance
variables, names of methods, names of classes. So if there is a
method called control_movie, there is an automatically pro-
duced symbol: control_movie. Ruby is interpreted, so it keeps
its Symbol Table handy at all times. You can see what is actu-
ally on it at any given moment by calling Symbol.all_symbols.

The symbol object may be unique for each different name
but will not refer to a particular instance of the name, for
the duration of a program’s execution. Additionally, a Ruby
symbol cannot be modified at runtime. They are often used
as hash keys because we do not need the full capabilities of
string objects for a key. In the following example, we can
observe some basic operations with Ruby symbols11:

symbols.rb
#!/usr/bin/ruby

p :name
p :name.class
p :name.methods.size
p "Jane".methods.size

p :name.object_id
p :name.object_id
p "name".object_id
p "name".object_id

11 https://zetcode.com/lang/rubytutorial/datatypes/, Zetcode

https://zetcode.com

158 ◾ Mastering Ruby on Rails

The following is used to print a symbol and its class to the
console. The class of the symbol would consequentially be
Symbol:

p :name
p :name.class

If you compare the number of methods associated with
instances of symbols and strings, a string has more than
twice as many methods than a symbol:

p :name.methods.size
p "Jane".methods.size

Same symbols have the same id. Yet same strings have dif-
ferent ids:

p :name.object_id
p :name.object_id
p "name".object_id
p "name".object_id

This would be the sample result:

$./symbols.rb
:name
Symbol
86
183
71068
71068
60
80

Symbols may also be used as flags. Let us demonstrate this
feature with the following situation. In the below example,

Ruby Data Types ◾ 159

light is either on or off, and those both states we are going
to define using symbols:12

symbols2.rb
#!/usr/bin/ruby
light = :on

if light == :on
 puts "The light is on"
else
 puts "The light is off"
end

light = :off

if light == :on
 puts "The light is on"
else
 puts "The light is off"
end

The logic of the program depends on the state of the light
variable.light = :on. The light is on.

if light == :on
 puts "The light is on"
else
 puts "The light is off"
end

Since Symbols are more efficient than strings, it is also pos-
sible to use them as keys in hash containers. For instance,

12 https://zetcode.com/lang/rubytutorial/datatypes/, Zetcode

https://zetcode.com

160 ◾ Mastering Ruby on Rails

in the following script, we have a domains hash and the
keys in the hash are symbols:

symbols3.rb
#!/usr/bin/ruby
domains = {:sk => "Slovakia", :no =>
"Norway", :hu => "Hungary"}

puts domains[:sk]
puts domains[:no]
puts domains[:hu]

Here, keys are used to access values of a hash, and you are
expected to print the following three values of a hash:

puts domains[:sk]
puts domains[:no]
puts domains[:hu]

The output of the example would then become:

$./symbols3.rb
Slovakia
Norway
Hungary

As mentioned before, Ruby comes with lots of things already
included in and provides you with tons of tools to use and
start running your own application. We have looked at
some of the most common data types in Ruby mainly used
to represent data, such as numbers, strings, and other val-
ues. These are basically the building blocks that you, as a
newbie-Ruby programmer will work with, when handling
actual data. Now, it is time to unpack the language’s control
structures, variables, and real-time operators.

161DOI: 10.1201/9781003229605-4

C h a p t e r 4

Basics of Language

IN THIS CHAPTER

 ➢ Reviewing language variables and operator conventions

 ➢ Analyzing how to apply blocks and iterators correctly

 ➢ Examining comments and available control structures

In Chapters 2 and 3, we learned the Ruby on Rails installation
and configuration process, reviewed data types, and worked
with generated files. In this chapter, we will go through the
basics of the language and interact with its main features.

It is normal that every developer looks for ways that help
in reducing the amount of effort and resources they put into
building a new web application, something that can auto-
mate the repetitive tasks that are involved in the process of
creating a website. Ruby on Rails is just the software for that.

At its most basic—Rails is one of many web frameworks
in the world of app programming and web development

https://doi.org/10.1201/9781003229605-4

162 ◾ Mastering Ruby on Rails

that provides developers with a time-saving method for
scripting code. This framework acts as a collection of code
libraries that give app and web developers readymade solu-
tions for time-consuming tasks such as building menus,
tables, or forms on a website. In other words, not only does
the Rails web framework reduces the time spend on re-
coding repetitive tasks, but—by using Rails code—Rails
developers can keep their overall work cleaner, less prone
to ineffective code, and easier to troubleshoot when errors
do occur. At the same time, Rails subscribes to an overall
method of best practices for Rails developers that remove
the need to leave behind instructions and strategy for your
coding decisions through configuration files in the code
you write—instead, Rails developers work from the shared
common ground of Rails conventions.

Nevertheless, in order to talk about Rails and its relevance
for beginners, it is important to take a step back and under-
stand that it is not just the Rails framework that is begin-
ner-friendly, but the Ruby language it is founded on as well.
Basically, Rails IS Ruby, or at least it exists on top of Ruby.
This means that understanding Rails will involve learning
at least some parts of the Ruby programming language—
though nothing beyond basic syntax and configurations.

The Ruby language itself—and not just the Rails web
framework—is a great choice as a beginning coding lan-
guage—it is easy to read and does a lot of the work for you.
Other languages, like C, require a lot more code to com-
plete something you can wrap in a few lines with Ruby. At
the same time, this is not without some drawbacks—more
complicated programming languages ultimately offer
more options and control—it works out well for someone

Basics of Language ◾ 163

just getting started with web development. Ruby is more
than capable of carrying you through to an intermediate
level of programming. And since Rails is like an exten-
sion of Ruby, you can start to learn Ruby on Rails once you
have learned Ruby basics. This chapter will start with Ruby
variables, blocks, and comments; and later see how you can
apply available Ruby control structures to your advantage.

VARIABLES
Ruby variables are memory locations that hold data to be
used in the programs. Naturally, Ruby is a part of the fam-
ily of dynamic languages. Unlike strongly typed languages
like Java, C, or Pascal, dynamic languages do not declare
a variable to be of a certain data type. Instead of that, the
interpreter decides the data type at the moment of the
assignment. Variables in Ruby can hold different values as
well as different types of values over time.

Moreover, each variable has a different name. These vari-
able names are based on some naming conventions. Yet unlike
other programming languages, there is no need to declare a
variable in Ruby. Just a prefix is needed to indicate it.

The term variable comes from the fact that variables, in
contrast to constants, can take different values over time.
In the following example, there is a variable called i. First,
it is assigned a value 5, later a different value 7:

simple_variable.rb
#!/usr/bin/ruby
i = 5
puts i
i = 7
puts i

164 ◾ Mastering Ruby on Rails

Ruby Variable Naming Conventions

As already stated, Ruby has some naming conventions for
variable identifiers. At the same time, it is a case-sensitive
language, meaning that age and Age are two different vari-
able names. But most languages are case sensitive, with the
exception of BASIC, which is a case insensitive language.
And while it is possible to create different names by chang-
ing the case of the characters, this practice is not recom-
mended. The following code example defines two variables:
I and I that have different values:

case.rb
#!/usr/bin/ruby
i = 5
p i
I = 7
p I

The output of the code would then be:

$./case.rb
5
7

Keep in mind that variable names should be meaning-
ful. Thus it is considered a good programming practice to
choose descriptive names for variables, making the pro-
grams more readable then.

Variable names in Ruby can be constructed from alpha-
numeric characters and the underscore _ character. But a
variable cannot begin with a number. This makes it easier
for the interpreter to distinguish a literal number from a

Basics of Language ◾ 165

variable. Also, variable names cannot begin with a capital
letter. If an identifier begins with a capital letter, it is con-
sidered to be a constant in Ruby. In the script below, we
demonstrate a few valid variable names:

valid_variables.rb
#!/usr/bin/ruby

name = "John"
placeOfBirth = "USA"
placeOfBirth = "NY"
favorite_season = "summer"

n1 = 2
n2 = 4
n3 = 7

p name, placeOfBirth, favorite_season
p n1, n2, n3

There are five main types of variables supported by
Ruby. You already have gone through a brief preview
of these variables in the previous chapter and examples
as well:

 Global variables

 Local variables

 Class variables

 Instance variables

 Ruby pseudo-variables

1.

2.

3.

4.

5.

166 ◾ Mastering Ruby on Rails

Variable identifiers normally start with special charac-
ters called sigils. A sigil is a symbol attached to an identi-
fier. Variable sigils in Ruby denote variable scope. This is
in contrast to Perl, where sigils denote data type. Typical
Ruby variable sigils are $ and @.

Not taking Rubyy pseudo-variable into account, we
have four variables with different scopes. A scope stands
for the range in which a variable can be referenced. You are
expected to use special built-in methods to determine the
scope of the following variables:

sigils.rb
#!/usr/bin/ruby

tree_name = "pine"
$car_name = "Toyota"
@sea_name = "Caspian sea"

class Animal
 @@species = "Dog"
end

p local_variables
p global_variables.include? :$car_name
p self.instance_variables
p Animal.class_variables

In this code, a variable without a sigil would be a local vari-
able. A local variable is valid only locally: inside a method,
block, or a module:

tree_name = "pine"

Basics of Language ◾ 167

Global variables would be the one starting with $character.
They are valid everywhere but the use of global variables
should be limited in programs:

$car_name = "Toyota"

A variable name starting with a @ sigil is an instance vari-
able. This variable is valid inside an object:

@sea_name = "Caspian sea"

Additionally, we have a class variable. This variable is valid
for all instances of a specific class:

class Animal
 @@species = "Dog"
end

The local_variables gives an array of all local vari-
ables defined in a specific context. Our context is Ruby
toplevel:

p local_variables

Similarly, the global_variables produce an array of globals.
There is no need to print all globals to the terminal because
there are too many of them. Each Ruby script starts with
a bunch of predefined variables. Instead of that, you can
call the include? method of the array to see if your global is
defined in the array:

p global_variables.include? :$car_name

168 ◾ Mastering Ruby on Rails

The pseudo-variable points to the receiver of the instance_
variables method. The receiver in our case is the main, the
Ruby top-level execution area:

p self.instance_variables

At last, we have an array of class variables with the main
instance of the Animal class:

p Animal.class_variables

You can also observe various symbolic names of the variables:

$./sigils.rb
[:tree_name]
true
[:@sea_name]
[:@@species]

Ruby Global Variables

As already mentioned, global variables begin with $.
Uninitialized global variables have the value nil and pro-
duce warnings with the -w option.

Overall assignment to global variables alters the global
status. Yet, it is not advised to use too many global variables
as it may make your program cryptic. Here is an example
showing the usage of global variable:1

#!/usr/bin/ruby
$global_variable = 10

1 https://www.tutorialspoint.com/ruby/ruby_variables.htm, Tutorialspoint

https://www.tutorialspoint.com

Basics of Language ◾ 169

class Class1
 def print_global
 puts "Global variable in Class1 is
#$global_variable"
 end
end
class Class2
 def print_global
 puts "Global variable in Class2 is
#$global_variable"
 end
end

class1obj = Class1.new
class1obj.print_global
class2obj = Class2.new
class2obj.print_global

Here $global_variable is a global variable. This will pro-
duce the following result:

Global variable in Class1 is 10
Global variable in Class2 is 10

Please note that it is also possible to access the value of any
variable or constant by putting a hash (#) character just
before that variable or constant.

Ruby Instance Variables

Instance variables begin with @ and uninitialized instance
variables have the value nil and produce warnings with

170 ◾ Mastering Ruby on Rails

the -w option. We shall illustrate the usage of Instance
Variables with the following example:

#!/usr/bin/ruby
class Customer
 def initialize(id, name, addr)
 @cust_id = id
 @cust_name = name
 @cust_addr = addr
 end
 def display_details()
 puts "Customer id #@cust_id"
 puts "Customer name #@cust_name"
 puts "Customer address #@cust_addr"
 end
end

Create Objects
cust1 = Customer.new("1", "Mary", "Times
Apartments, Manhattan")
cust2 = Customer.new("2", "Jane", "New
Empire building, Brooklyn")

Call Methods
cust1.display_details()
cust2.display_details()

Here, @cust_id, @cust_name and @cust_addr are instance
variables. This will result in the following output:

Customer id 1
Customer name Mary
Customer address Times Apartments,
Manhattan

Basics of Language ◾ 171

Customer id 2
Customer name Jane
Customer address New Empire building,
Brooklyn

Ruby Class Variables

Class variables begin with @@ and must be initialized
before they can be used in method definitions. Class vari-
ables could be shared among descendants of the class or
module in which the class variables are defined.

It is important to remember that referencing an unini-
tialized class variable causes an error; while overriding
class variables produce warnings with the -w option. Here
is a code sample showing the usage of class variable:

#!/usr/bin/ruby
class Customer
 @@no_of_customers = 0
 def initialize(id, name, addr)
 @cust_id = id
 @cust_name = name
 @cust_addr = addr
 end
 def display_details()
 puts "Customer id #@cust_id"
 puts "Customer name #@cust_name"
 puts "Customer address #@cust_addr"
 end
 def total_no_of_customers()
 @@no_of_customers += 1
 puts "Total number of customers: #@@
no_of_customers"
 end
end

172 ◾ Mastering Ruby on Rails

Create Objects
cust1 = Customer.new("1", ", "Mary", "Times
Apartments, Manhattan")
cust2 = Customer.new("2", "Jane", "New
Empire building, Brooklyn")

Call Methods
cust1.total_no_of_customers()
cust2.total_no_of_customers()

Here @@no_of_customers is a class variable. With it, the
code produces the following result:

Total number of customers: 1
Total number of customers: 2

Ruby Local Variables

Local variables start with a lowercase letter or _. The scope
of a local variable ranges from class, module, or def. It is
only accessible or has its scope within the block of its ini-
tialization. Once the code block completes, the variable
has no scope. Assignment to uninitialized local variables
also serves as variable declaration. The variables start to
exist until the end of the current scope is reached. The life-
time of local variables is determined when Ruby parses the
program.

When an uninitialized local variable is referenced, it is
interpreted as a call to a method that has no arguments.
In the above example, local variables are id, name, and
addr.

Basics of Language ◾ 173

Ruby Constants

Constants start with an uppercase letter. Constants deter-
mined within a class or module can be accessed from
within that class or module, and those defined outside a
class or module can be accessed globally.

Additionally, constants may not be defined within
methods, and referencing uninitialized constant typically
results in an error. Making an assignment to a constant
that is already initialized results in a warning. Let us see
the constants example:

#!/usr/bin/ruby
class Example
 VAR1 = 100
 VAR2 = 200
 def show
 puts "Value of first Constant is
#{VAR1}"
 puts "Value of second Constant is
#{VAR2}"
 end
end

Create Objects
object = Example.new()
object.show

In this code, VAR1 and VAR2 are constants. The overall
result would then be:

Value of first Constant is 100
Value of second Constant is 200

174 ◾ Mastering Ruby on Rails

Ruby Pseudo-Variables

On the other hand, there are special variables that have the
appearance of local variables but act like constants. It is not
possible to assign any value to these variables:

• self: The receiver object of the current method.

• true: Value representing true.

• false: Value representing false.

• nil: Value representing undefined.

• __FILE__: The name of the current source file.

• __LINE__: The current line number in the source
file.

OPERATORS
Ruby has a built-in modern set of operators. Where opera-
tors stand for a symbol that is used to complete different
operations. For instance, +, –, /, *.

As you would expect from a modern language, Ruby
supports a rich set of operators. For each operator (+ –
*/% ** & | ^ << >> && ||), there is a corresponding form of
abbreviated assignment operator (+= –= etc.). The follow-
ing are the main types of operators that we shall through
one by one:

• Arithmetic operator

• Bitwise operator

• Logical operator

Basics of Language ◾ 175

• Ternary operator

• Assignment operator

• Comparison operator

• Range operator

Ruby Arithmetic Operators
Let us assume variable a holds 10 and variable b holds
20, then the following operators mentioned in Table 4.1
would give:

2 https://www.tutorialspoint.com/ruby/ruby_operators.htm, Tutorialspoint

TABLE 4.1 Ruby Arithmetic Operators2

Operator Description Example

+ Addition − Adds values on
either side of the operator.

a + b will give 30

− Subtraction − Subtracts right
hand operand from left hand
operand.

a – b will give -10

* Multiplication − Multiplies
values on either side of the
operator.

a * b will give 200

/ Division − Divides left hand
operand by right hand
operand.

b / a will give 2

% Modulus − Divides left hand
operand by right hand
operand and returns
remainder.

b % a will give 0

** Exponent − Performs
exponential (power)
calculation on operators.

a**b will give 10 to the
power 20

https://www.tutorialspoint.com

176 ◾ Mastering Ruby on Rails

Ruby Comparison Operators

3 https://www.w3resource.com/ruby/ruby-comparison-operators.php,
W3resource

Let us assume variable a holds the same 10 and variable b
holds 20, then the following operators mentioned in
Table 4.2 would give:

TABLE 4.2 Ruby Comparison Operators3

Operator Description Example

== Checks if the value of two operands
are equal or not, if yes, then
condition becomes true.

(a == b) is not true.

!= Checks if the value of two operands
are equal or not, if values are not
equal, then condition becomes true.

(a != b) is true.

> Checks if the value of left operand is
greater than the value of right
operand, if yes, then condition
becomes true.

(a > b) is not true.

< Checks if the value of left operand is
less than the value of right operand,
if yes, then condition becomes true.

(a < b) is true.

>= Checks if the value of left operand is
greater than or equal to the value of
right operand, if yes then condition
becomes true.

(a >= b) is not true.

<= Checks if the value of left operand is
less than or equal to the value of
right operand, if yes then condition
becomes true.

(a <= b) is true.

<=> Combined comparison operator.
Returns 0 if first operand equals
second, 1 if first operand is greater
than the second and –1 if first
operand is less than the second.

(a <=> b) returns
–1.

(Continued)

https://www.w3resource.com

Basics of Language ◾ 177

=== Used to test equality within a when
clause of a case statement.

(1...10) === 5
returns true.

.eql? True if the receiver and argument
have both the same type and equal
values.

1 == 1.0 returns
true, but
1.eql?(1.0) is false.

equal? True if the receiver and argument
have the same object id.

if aObj is duplicate
of bObj then aObj
== bObj is true,
a.equal?bObj is
false but
a.equal?aObj is
true.

TABLE 4.2 (Continued) Ruby Comparison Operators

Operator Description Example

4 https://www.rubyguides.com/2018/07/ruby-operators/, Ruby guides

Ruby Assignment Operators

Assume variable a holds 10 and variable b holds 20, then
the following operators mentioned in Table 4.3 would give:

TABLE 4.3 Ruby Assignment Operators4

Operator Description Example

= Simple assignment operator, assigns
values from right side operands to
left side operand.

c = a + b will assign
the value of a + b
into c

+= Add AND assignment operator, adds
right operand to the left operand
and assign the result to left
operand.

c += a is equivalent
to c = c + a

–= Subtract AND assignment operator,
subtracts right operand from the
left operand and assign the result to
left operand.

c –= a is equivalent
to c = c – a

(Continued)

https://www.rubyguides.com

178 ◾ Mastering Ruby on Rails

Ruby Parallel Assignment

Ruby also supports the parallel assignment of variables.
This function allows multiple variables to be initialized
with a single line of Ruby code. To demonstrate:

• a = 10

• b = 20

• c = 30

This may be easier declared using the following parallel
assignment:

• a, b, c = 10, 20, 30

*= Multiply AND assignment operator,
multiplies right operand with the
left operand and assign the result to
left operand.

c *= a is equivalent
to c = c * a

/= Divide AND assignment operator,
divides left operand with the right
operand and assign the result to left
operand.

c /= a is equivalent
to c = c / a

%= Modulus AND assignment operator
takes modulus using two operands
and assign the result to left
operand.

c %= a is
equivalent to c = c
% a

**= Exponent AND assignment operator
performs exponential (power)
calculation on operators and assign
value to the left operand.

c **= a is
equivalent to c = c
** a

TABLE 4.3 (Continued) Ruby Assignment Operators

Operator Description Example

Basics of Language ◾ 179

Moreover, Parallel assignment could be helpful for swap-
ping the values held in two variables:

• a, b = b, c

Ruby Bitwise Operators

Bitwise operators operate in regards to bits and perform bit-by-
bit operation. To comprehend, assume a = 60; and b = 13; now
in the binary format they will be turned into the following:

• a = 0011 1100

• b = 0000 1101

• a&b = 0000 1100

• a|b = 0011 1101

• a^b = 0011 0001

• ~a = 1100 0011

TABLE 4.4 Ruby Bitwise Operators5

Operator Description Example

& Binary AND Operator copies a bit to
the result if it exists in both operands.

(a & b) will give 12,
which is 0000 1100

| Binary OR Operator copies a bit if it
exists in either operand.

(a | b) will give 61,
which is 0011 1101

(Continued)

5 https://www.tutorialspoint.com/ruby/ruby_operators.htm, Tutorialspoint

The following is a list of Bitwise operators listed in
Table 4.4 are supported by Ruby language.

https://www.tutorialspoint.com

180 ◾ Mastering Ruby on Rails

^ Binary XOR Operator copies the bit
if it is set in one operand but not
both.

(a ^ b) will give 49,
which is 0011 0001

˜ Binary Ones Complement Operator
has the effect of “flipping” bits.

(˜a) will give –61,
which is 1100
0011 in 2’s
complement form
due to a signed
binary number.

<< Binary Left Shift Operator. The left
operands value is moved left by the
number of bits specified by the
right operand.

a << 2 will give
240, which is 1111
0000

>> Binary Right Shift Operator. The left
operands value is moved right by
the number of bits specified by the
right operand.

a >> 2 will give 15,
which is 0000
1111

TABLE 4.4 (Continued) Ruby Bitwise Operators

Operator Description Example

6 https://www.rubyguides.com/2018/07/ruby-operators/, Ruby guides

Ruby Logical Operators

The following logical operators mentioned in Table 4.5 are
supported by Ruby language (assume variable a holds 10
and variable b holds 20):

TABLE 4.5 Ruby Logical Operators6

Operator Description Example

And Called Logical AND operator. If both
the operands are true, then the
condition becomes true.

(a and b) is true.

Or Called Logical OR Operator. If any of
the two operands are non-zero, then
the condition becomes true.

(a or b) is true.

(Continued)

https://www.rubyguides.com

Basics of Language ◾ 181

Ruby Ternary Operator

There is another operator called Ternary Operator. It is
applied to evaluate an expression for a true or false value
and then implement one of the two given statements
depending upon the result of the evaluation. The condi-
tional operator has the following syntax:

? : - which stands for a standard conditional expression.
Thus, if the condition is true ? then choose value X : other-
wise, you go with value Y.

Ruby Range Operators

Sequence ranges in Ruby are utilized to create a range of
successive values—consisting of a start value, an end value,

TABLE 4.5 (Continued) Ruby Logical Operators

Operator Description Example

&& Called Logical AND operator. If both
the operands are non-zero, then the
condition becomes true.

(a && b) is true.

|| Called Logical OR Operator. If any of
the two operands are non-zero, then
the condition becomes true.

(a || b) is true.

! Called Logical NOT Operator. Use to
reverses the logical state of its
operand. If a condition is true, then
the Logical NOT operator will make
false.

!(a && b) is false.

Not Called Logical NOT Operator. Use to
reverses the logical state of its
operand. If a condition is true, then
the Logical NOT operator will make
false.

not(a && b) is
false.

and a range of values in between as mentioned in Table 4.6.

182 ◾ Mastering Ruby on Rails

In Ruby, these sequences are built using the “..” and
“…” range operators. The two-dot form creates an inclu-
sive range, while the three-dot form activates a range that
excludes the specified high value.

Ruby defined? Operators

defined? is an additional operator that takes the form of a
method call to set whether or not the passed expression is
defined. It returns a description string of the expression or
nil in case the expression is not defined. There is multiple
usage of defined? operator7:

• Usage 1: defined? variable # True if variable is
initialized

For Example:

foo = 33
defined? foo # => "local-variable"
defined? $_ # => "global-variable"
defined? bar # => nil (undefined)

TABLE 4.6 Ruby Range Operators

Operator Description Example

.. Creates a range from start point to
end point inclusive.

1..10 Creates a range
from 1 to 10
inclusive.

... Creates a range from start point to
endpoint exclusive.

1...10 Creates a range
from 1 to 9.

7 https://www.tutorialspoint.com/ruby/ruby_operators.htm, Tutorialspoint

https://www.tutorialspoint.com

Basics of Language ◾ 183

• Usage 2: defined? method_call # True if a method is
defined

For Example:

defined? puts # => "method"
defined? puts(bar) # => nil (bar is
not defined here)
defined? unpack # => nil (not
defined here)

• Usage 3: # True if a method exists that can be called
with super user

-defined? super
For Example:

defined? super # => "super" (if it
can be called)
defined? super # => nil (if it
cannot be)

• Usage 4: defined? yield # True if a code block has
been passed

For Example:

defined? yield # => "yield" (if
there is a block passed)
defined? yield # => nil (if there
is no block)

Double Colon “::” Operator

The :: is a unary operator that allows: constants, instance
methods and class methods set within a class or module,
to be accessed from anywhere outside the class or module.

184 ◾ Mastering Ruby on Rails

In Ruby, classes and methods may be used as constants
too. You just need to prefix the :: Const_name with an
expression that returns the appropriate class or module
object. If no prefix expression is applied, the main Object
class is used by default. To illustrate with an example:

MR_COUNT = 0 # constant defined on
main Object class
module Foo
 MR_COUNT = 0
 ::MR_COUNT = 1 # set global count to 1
 MR_COUNT = 2 # set local count to 2
end
puts MR_COUNT # this is the global
constant
puts Foo::MR_COUNT # this is the local
"Foo" constant

Ruby Operators Precedence

presents all operators from highest precedence to lowest
(keep in mind that operators with a Yes in the method col-
umn are actually methods, and therefore may be overridden):

TABLE 4.7 Ruby Operators Precedence

Method Operator Description

Yes :: Constant resolution operator
Yes [] []= Element reference, element set
Yes ** Exponentiation (raise to the power)
Yes ! ~ + - Not, complement, unary plus and

minus (method names for the last
two are +@ and -@)

Yes * / % Multiply, divide, and modulo

(Continued)

To sum up, it is recommended to review Table 4.7, which

Basics of Language ◾ 185

BLOCKS AND ITERATORS
If you want to master Ruby on Rails be prepared to dive into
the logic behind the things we apply every day to under-
stand how they work. In this section, we shall explore the
differences between blocks, procs, and lambdas.

In programming languages with first-class functions,
functions can be stored in variables and forwarded as
arguments to other functions. Or functions can even use
other functions as their return values.

Another key feature is closure. Closure stands for a first-
class function with an environment. The environment here
describes a mapping to the variables that existed when the

Yes + - Addition and subtraction
Yes >> << Right and left bitwise shift
Yes & Bitwise “AND”
Yes ^ | Bitwise exclusive “OR” and regular “OR”
Yes <= < > >= Comparison operators
Yes <=> == === != =~

!~
Equality and pattern match operators
(!= and !~ may not be defined as
methods)

 && Logical “AND”
 || Logical “OR”
 Range (inclusive and exclusive)
 ? : Ternary if-then-else
 = %= { /= -= += |=

&= >>= <<= *=
&&= ||= **=

Assignment

 defined? Check if specified symbol defined
 Not Logical negation
 or and Logical composition

TABLE 4.7 (Continued) Ruby Operators Precedence

Method Operator Description

186 ◾ Mastering Ruby on Rails

closure was produced. The closure will then keep its access
to these variables, even if they are set in another scope.

Although Rails does not have first-class functions, it still has
closures in the form of blocks, procs, and lambdas. Blocks are
mostly applied for activating blocks of code to methods, and
procs and lambdas permit storing blocks of code in variables.

We have seen previously how Rails defines methods
where you can insert a number of statements and then
call that method. Similarly, it uses the concept of Block. A
block holds chunks of code that you later assign a name to.
That code in the block is always enclosed within braces ({}).

Ruby code blocks could also be named closures in other
programming languages. A block is always called from a
function with the same name as that of the block. Meaning
that if you have a block with the name test, then you use the
function test to activate this block.

You can also invoke a block by inserting the yield state-
ment consisting of a group of codes that are always enclosed
with braces or written between do..end. At the same time,
the braces syntax always has the higher precedence over
the do..end syntax.

You can script a block in two common ways: multi-line
between do and end or inline between braces {}. Both have
the same functionality. AS already mentioned, in order to
invoke a block, you need to have a function with the same
name as the block following the standard syntax:

block_name {
 statement1
 statement2

}

Basics of Language ◾ 187

Now let us see how to call a block by using a simple yield
statement. Let us look at an example of the yield statement:8

#!/usr/bin/ruby
def test
 puts "You are in the method"
 yield
 puts "You are again back to the method"
 yield
end
test {puts "You are in the block"}

This will produce the following output:

• You are in the method

• You are in the block

• You are again back to the method

• You are in the block

Additionally, it is also possible to pass parameters with the
yield statement. To illustrate with an example:

#!/usr/bin/ruby
def test
 yield 7
 puts "You are in the method test"
 yield 50
end
test {|i| puts "You are in the block #{i}"}

8 https://www.tutorialspoint.com/ruby/ruby_blocks.htm, Tutorialspoint

https://www.tutorialspoint.com

188 ◾ Mastering Ruby on Rails

This will result in the following data:

• You are in the block 7

• You are in the method test

• You are in the block 50

As you can observe from the above code, the yield statement
is written followed by parameters. In the block, you typically
place a variable between two vertical lines (||) to accept the
parameters. So that in the preceding code, the yield 7 state-
ment passes the value 7 as a parameter to the text block.

Now, to examine the following statement:

test {|i| puts "You are in the block #{i}"}

Here, the value 7 is received in the variable i. Now, observe
the following puts statement:

puts "You are in the block #{i}"

The output of this puts statement would be:

You are in the block 7

In case you want to pass more than one parameter, then
the yield statement shall turn to become:

yield a, b

With the block looking like:

test {|a, b| statement}

Basics of Language ◾ 189

Blocks and Methods

Now that you have seen how a block and a method can be
associated with each other, you can learn how to invoke a
block by using the yield statement from a method that has
the same name as that of the block. Thus, you script:

#!/usr/bin/ruby
def test
 yield
end
test{ puts "Hello world"}

This example is the easiest way to execute a block. The test
block you can call by using the yield statement.

However, in case the last argument of a method is pre-
ceded by &, then you can pass a block to this method and
this block will be assigned to the last parameter. In case
both * and & are present in the argument list, then &
should come later:

#!/usr/bin/ruby
def test(&block)
 block.call
end
test { puts "Hello World!"}

This will produce the following output:

Hello World!

BEGIN and END Blocks

Every Ruby source file can declare blocks of code to be
operated as the file that is being loaded (the BEGIN blocks)

190 ◾ Mastering Ruby on Rails

or the one after the program has finished running (the
END blocks). To demonstrate with an example:

#!/usr/bin/ruby
BEGIN {
 # BEGIN block code
 puts "BEGIN code block"
}

END {
 # END block code
 puts "END code block"
}
 # MAIN block code
puts "MAIN code block"

It is important to note that a program may include mul-
tiple BEGIN and END blocks. BEGIN blocks are activated
in the order they are encountered while END blocks are
implemented in reverse order. When executed, the above
program shall present the following information:

• BEGIN code block

• MAIN code block

• END code block

Iterators

Iterator is a term only used in object-oriented language.
Iteration means doing one thing multiple times like a loop.
Thus, Iterators could be defined as methods supported by

Basics of Language ◾ 191

collections, where collection stands for random objects that
store sets of data members. In Ruby, arrays and hashes can
be categorized as collections.

The simplest iterator is the loop method. It is pro-
grammed to return all the elements from a collection, one
by one. Here we shall briefly discuss two main iterators—
each and collect.

Ruby Each Iterator
The each iterator is used to return all the components of
an array or a hash through the following standard syntax:

collection.each do |variable|
 code
end

Here, the code variable executes each element in the col-
lection that could be an array or a ruby hash. To illustrate
with an example:

#!/usr/bin/ruby
ary = [1,2,3,4,5]
ary.each do |i|
 puts i
end

The result of the above code would be the following:

1
2
3
4
5

192 ◾ Mastering Ruby on Rails

It is normal to always associate each iterator with a block as
it returns each value of the array, one by one, to the block.
The value would then be stored in the variable i and later
displayed on the screen.

Ruby Collect Iterator
The collect iterator is used to return all the items of a col-
lection through the following syntax:

collection = collection.collect

The collect method is not necessarily always associated
with a block. Therefore, the collect method returns the
entire collection, regardless of whether it is an array or a
hash. Take a look at the following example:

#!/usr/bin/ruby
a = [1,2,3,4,5]
b = Array.new
b = a.collect
puts b

The output of such formula would then be:

1
2
3
4
5

At the same time, the collect method is not the proper way
to handle copying between arrays. There is another method
called a clone, which should be applied to copy one array

Basics of Language ◾ 193

into another array. You generally use the collect method
when you need to do something with each of the values to
get the new array. For instance, this code produces an array
b containing five times each value in a:

#!/usr/bin/ruby
a = [1,2,3,4,5]
b = a.collect{|x| 5*x}
puts b

This will generate the following output:

5
10
15
20
25

Procs

A proc is simply an instance of the Proc class, which con-
sists of a code block to be executed, and can be put in a
variable. In order to create a proc, you should call Proc.new
and pass it a block in the following manner:

proc = Proc.new { |n| puts "#{n}!" }

Since a proc can be placed in a variable, it can also be
passed to a method just like any other standard argument.
In that case, there is no need to use the ampersand (&), as
the proc is passed explicitly:

def run_proc_with_random_number(proc)
 proc.call(random)

194 ◾ Mastering Ruby on Rails

end
proc = Proc.new { |n| puts "#{n}!" }
run_proc_with_random_number(proc)

If you do not want to create a proc and pass that to the
method, you can use Ruby’s ampersand parameter syntax
that was mentioned earlier and use a block instead:

def run_proc_with_random_number(&proc)
 proc.call(random)
end
run_proc_with_random_number { |n| puts
"#{n}!" }

Here, keep in mind that the & is added to the argument
in the method. With that, it will convert a passed block
to a Proc object and store it in a variable in the method
scope. Even though it could be useful to have the proc in
the method in some instances, the conversion of a block to
a proc might result in a performance hit. Thus, whenever
possible, try to use implicit blocks instead.

In addition, symbols, hashes and methods can also be
converted to procs using their #to_proc methods. A fre-
quently seen application of this is passing a proc created
from a symbol to a method in the following manner:

[1,2,3].map(&:to_s)
[1,2,3].map {|i| i.to_s }
[1,2,3].map {|i| i.send(:to_s) }

This example presents three equivalent ways of calling #to_s
on each element of the array. In the first one, a symbol,
prefixed with an ampersand, is passed, which automatically

Basics of Language ◾ 195

converts it to a proc by calling its #to_proc method. The last
two show what that proc might potentially look like.

class Symbol
 def to_proc
 Proc.new { |i| i.send(self) }
 end
end

This simplified example was brought to show the detailed
implementation of Symbol#to_proc: the first method
returns a proc which takes one argument and sends the
self-variable to it. Since self is the symbol in this context, it
activates the Integer#to_s method.

Lambdas

To put it simply, lambdas are basically procs with some
distinguishing characteristics. At the same time, they are
similar to methods in two ways: they can enable a great
number of arguments passed when they are activated, and
they use standard returns.

When calling a lambda without having an argument, or
passing an argument to a lambda that does not expect it,
Ruby throws an ArgumentError:

irb> lambda (a) {a }.call
ArgumentError: wrong number of arguments
(given 0, expected 1)
 from (irb):8:in 'block in irb_binding'
 from (irb):8
 from /Users/jeff/.asdf/installs/
ruby/2.3.0/bin/irb:11:in '<main>'

196 ◾ Mastering Ruby on Rails

Additionally, a lambda treats the return keyword the same
way a method would do: if calling a proc, the program
yields control to the code block in the proc. So, if the proc
returns, the current scope returns. If a proc is called inside
a function and calls return, the function immediately
returns as well:

def return_from_proc
 a = Proc.new { return 5 }.call
 puts "This will never be printed."
End

The next function will yield control to the proc, so when it
returns, the function returns. Calling the function in this
example will never print the output and return 5:

def return_from_lambda
 a = lambda { return 5}.call
 puts "The lambda returned #{a}, and this
will be printed."
End

If you are using a lambda, it will be printed. Calling return
in the lambda might feel like calling return in a method, so
the a variable is populated with 5 and the line is printed to
the console.

Now that you have reviewed some basics about blocks,
procs, and lambdas, we may look back and try to summa-
rize the comparison.

Blocks are utilized extensively in Ruby for passing bits of
code to functions. By inserting the yield keyword, a block
can be simply passed without having to convert it to a proc.

Basics of Language ◾ 197

Yet when using parameters prefixed with ampersands or
passing a block to a method results in a proc in the meth-
od’s context. To put it simply, procs act like blocks, but they
can be stored in a variable. Lambdas are the same as procs
but act like methods, meaning they enable arity and return
as methods instead of in their parent scope.

COMMENTS
Ruby comments are non-operable lines in a program. A
programmer scripts them to describe their code so that
others who look at the code will comprehend it in a better
way. The interpreter naturally omits these lines; therefore,
they are not implemented during the program execution.

It is considered good practice to insert comments before
classes and methods as well any segment of code that may
be difficult or confusing. Comments should be added to
provide background information or to interpret difficult
code. Other notes that simply state what the next line of
straightforward code does are not only obvious but simply
add clutter to the file. Therefore, it is important to take care
and not to use too many comments and to be sure the com-
ments made in the file are useful and suggestive to other
programmers.

There are two types of Ruby comments: Single line com-
ment multi-line comment

A single-line comment starts with # character and they
extend from # to the end of the line as follows:

#!/usr/bin/ruby -w
This is a single line comment.
puts "Hello, Ruby!"

198 ◾ Mastering Ruby on Rails

When operated, the above program produces the following
result:

Hello, Ruby!

When it comes to multiple lines comment, you can use
=begin and =end syntax in the following manner:

#!/usr/bin/ruby -w
puts "Hello, Ruby!"
=begin

This is a part of the multiline comment, and it is possible to
add as many lines as you like. But =begin and =end should
come in the first line only.

=end

When implemented, the above program produces the fol-
lowing output:

Hello, Ruby!

It is also essential to check and make sure trailing com-
ments are far enough from the code and that they are easily
set apart. If more than one trailing comment is in a block,
you are expected to align them in the following way:

• @counter: # keeps track times page has been accessed

• @siteCounter: # keeps track of times all pages have
been accessed

Basics of Language ◾ 199

The Shebang

Hopefully, you will be able to pay attention and notice that
all Ruby programs start with a comment that begins with #!.
This is called a shebang and is mostly used on Linux, Unix,
and OS X systems. When you run a Ruby script, the shell
(such as bash on Linux or OS X) will look for a shebang at
the first line of the file. The shell will then use the shebang
to search for the Ruby interpreter and execute the script.

The preferred Ruby shebang is #!/usr/bin/env ruby,
though you may also see #!/usr/bin/ruby or #!/usr/local/
bin/ruby.

CONTROL STRUCTURES
Ruby programming language provides certain statements
in addition to loops, conditionals, and iterators, which are
useful to edit and modify the flow of control in a program.

To be precise, these statements are a segment of code
that runs one after another until the condition is true and
when the condition becomes false, then code gets sim-
ply terminated. The following are the statements that can
change the control flow in a Ruby program:

• break statement

• next statement

• redo statement

• retry statement

• return statement

• throw/catch statement

200 ◾ Mastering Ruby on Rails

break Statement

In Ruby, break statement is used to end a loop when the
condition is true. Break statement is also used in while
loop because in while loop the output is displayed until
the condition is true, in case the condition is false the
loop terminated.

The break statements are mainly executed by break key-
word and could be added to for, while, and case-control
statements.

The original syntax is: break
For example:9

Ruby program to demonstrate break
statement
#!/usr/bin/ruby
i = 1
 # using while loop
while true
 if i * 6 >= 30
using break statement
 break

 # ending of if statement
 end
 puts i * 6
 i += 1
 # ending of while loop
end

9 https://www.javatpoint.com/ruby-break-and-next-statement#:~:text=Ruby%20
Break%20Statement,called%20from%20inside%20the%20loop., javatpoint

https://www.javatpoint.com
https://www.javatpoint.com

Basics of Language ◾ 201

The output would be the following:

6
12
18
24

In the above example, the break statement is mainly applied
to end the execution of the while loop when the condition
if i * 6 >= 30 becomes true. If that is not done, the loop goes
up to infinite.

next Statement

In Ruby, the next statement is mostly applied to move to the
next iterator of a given loop. The next statement is similar
to the continue statement in C and Java language. When the
next statement is added no other iteration will be conducted.
Typically, the next statement is inserted to for and while loop.

The basic next Syntax is: next
To explain with an example:

Ruby program to show next statement
#!/usr/bin/ruby
 # using for loop
for t in 0...10
 # using if statement
 if t == 5 then
 # using next statement
 next
 # ending of if
 end
 # displaying values
 puts t
 # end of for loop
end

202 ◾ Mastering Ruby on Rails

The final result would then be displayed:

0
1
2
3
4
6
7
8
9

Keep in mind that in the above program, 5 will not be
printed in the output because of the next statement. Since
here at 5 next statement will force to skip it and continue
from next statement in program.

redo Statement

The redo statement is utilized to start over the current iter-
ation of a loop or the iterator. It might seem that the redo
and next statement are similar, but next statement always
transfers the control to the end of the loop where the state-
ment after the loop can start to operate, but redo statement
transfer the control back to the top of block or loop so that
iteration can start all over.

The standard syntax is: redo
To illustrate with the following example:

Ruby program to show the redo statement
 # defining a variable
val = 0

Basics of Language ◾ 203

using while loop which should give
output as 0,1,2,3 but here it will
output as 0,1,2,3,4
while(val < 4)

Control returns here when
redo will execute
puts val
val += 1

using redo statement
redo if val == 4
 # ending of while loop
end

The logical output of the above code would then be:

0
1
2
3
4

In the above program, the redo statement will transfer the
control to puts val, which is the first expression of the while
loop. It is not wired to retest the loop condition, nor it is set
to fetch the next element from the iterator. Thus, here while
loop will print 0,1,2,3,4 instead of 0,1,2,3.

retry Statement

retry statement is used to restart an iterator depending on
a certain condition or any method invocation. In other

204 ◾ Mastering Ruby on Rails

words, the retry statement transfers the control at the
beginning. However, you are most likely not going to use
this statement often its only works until Ruby version 1.8. It
has been removed from Ruby version 1.9 onwards because
it is considered an outdated feature. So it will hardly be
used in an online IDE’s because it mostly uses versions
above 1.8.

Standard syntax is: retry
To understand the retry usage, take a look at the follow-

ing example:

Ruby program to demonstrate the retry
statement
variable
var = 7

Iterate 7 times from 0 to 7-1
var.times do |val|

display iteration number
puts val

If we've reached 6
if val == 6

Decrement val and user won't
reach 6 next time
var = var - 1

Restart the iteration
using retry statement
retry

Basics of Language ◾ 205

end of if
end
end of do..end
end

As a result, the output would be:

0
1
2
3
4
5
6
0
1
2
3
4
5

As you might have noticed, when the control goes to
retry statement, it transfers that control to var.times do
|val|. With that, the value of the var variable is updated at
5. Meaning the user will not reach 6 next time and retry
statement will not have to run again.

return statement

return statement is applied to exit from a method, with or
without a value. It returns a value to its caller at all times.
It is a very flexible option—if there is no expression used
with the return statement, then it always returns the value
of the method as nil. A list of expressions after the return
statement has to be separated by the comma(,). In this case,

206 ◾ Mastering Ruby on Rails

the value of the method will converse to an array contain-
ing the values of those specified expressions. A very simple
example of the statement would be:

Ruby program to show the return statement
#!/usr/bin/ruby
defining a method 'geeks'
def geeks

 # variables of method
 val1 = 20
 val2 = 35
returning multiple values
return val1, val2

this statement will not execute
puts "Hello Geeks"

end of the method
end

variable outside the method to
store the return value of the method
value = geeks

displaying the returned values
puts value

The output would then be:

35
20

In this example, method geeks has a return statement
which return val1 and val2 to its caller. Here value comes
as the variable which holds the returned values. The key

Basics of Language ◾ 207

point is that the statement puts “Hello Geeks” after the
return statement does not implement it since statements
after the return statement cannot run inside a method.

throw/catch Statement

throw and catch are used to describe a multilevel, complex
control structure. throw is applied to break the running loop
and shift the control outside of the catch block. The useful
thing about throw is that it can break out of the current loop
or methods or we can say it can cross any number of features.
And catch mainly determines a specific segment of code which
causes to exit by the throw block. To illustrate with an example:

Ruby program to show the throw/catch
statement
for altering the control flow

defining a method
def lessNumber(num)

 # using throw statement
 # here 'numberError' is its label
 throw :numberError if num < 100

 # displaying result
 puts "Number is Greater than 100!"
end

catch block
catch :numberError do

 # calling method
 lessNumber(110)
 lessNumber(180)

208 ◾ Mastering Ruby on Rails

 # exits catch block here
 lessNumber(77)
 lessNumber(34)
end
 puts "Outside Catch Block"

Output:

Number is Greater than 100!
Number is Greater than 100!
Outside Catch Block

In the above code, 110 is forwarded to method lessNumber
to check whether it is greater than 110 or not. 110 is greater
than 100 so statement will eventually print out on display
and the next statement of catch block will run. After that,
180 is offered to the method call, which is checked and
greater than 100, so the statement will print out on screen.
However, as soon as 77 is proposed which is less than 100
throw: numberError forces the catch block to exit and all
the statements skip out, and the last statement “Outside
Catch Block” will be displayed. Therefore, as soon as the
condition becomes false throw makes the catch block exit
the catch block from overall implementation.

To summarize, in this chapter, we have discussed the
Ruby on Rails basics and learned how to work with its main
components. In particular, we have demonstrated how you
can manage variables, blocks, and iterators, as well as com-
ments and control structures. In the next chapter, we shall
focus on running the database through object-relational
mapping and active record basics.

209DOI: 10.1201/9781003229605-5

C h a p t e r 5

Working with
Database

IN THIS CHAPTER

 ➢ Discovering Object-Relational mapping on Ruby on
Rails

 ➢ Outlining the role of SQL in programming

 ➢ Learning about Active Record Basics

When you are creating an app with Ruby on Rails develop-
ment, chances are, you will have to manage the massive
amount of data. And in a project as such, you cannot simply
store data in the notepad—without solid structure, it will
quickly become an uncontrollable clutter. Especially if you
are building a backend in Ruby on Rails, creating a database

https://doi.org/10.1201/9781003229605-5

210 ◾ Mastering Ruby on Rails

that will take care of data-based processes and keep the
app’s information structured is essential. Therefore, in this
chapter, we shall talk about the most popular databases in
Ruby on Rails web development, introduce you to the pro-
cess of consolidating them, and outline the best practices.

Ruby on Rails is a Web application framework made for
developing Web applications. And in your application, if
you expect or need a user to enter information through a
Web form, you require a database to store all that informa-
tion. In Rails framework, the database table has a plural
name (ending with “s”), and the primary key in the data-
base is known as id and auto-incremented. To retrieve
stored information from the database, Rails utilizes a
component named ActiveRecord that operates as a bridge
between the database and Ruby code. ActiveRecord is an

Working with Database ◾ 211

Object-Relational Mapping layer that comes with Rails. It
follows standard layer rules such as:

• Columns map to hold object attributes

• Rows map to contain objects

• Tables map to enclose classes

Each ActiveRecord object has Create, Read, Update, and
Delete methods for database access. This capacity allows
Ruby on Rails applications to perform straightforward
mappings between applications objects and database tables.
Moreover, ActiveRecord does not always need to use SQL
in most cases even if it is perfectly compatible with differ-
ent databases such as MySQL, SQLite, and PostgreSQL. Yet
regardless of the database you are using, the ActiveRecord
method format remains the same.

If you find yourself in charge of a Rails app for the first
time, there are a couple of areas where you really do not
want to have any issues:

• Data Integrity: Is all the data in your database
reliable?

• Database Performance: Do your queries return in
an appropriate amount of time?

As far as these points are concerned, database transactions
(and their ActiveRecord counterparts) are great tools for
avoiding these problems. Transactions are typically used
when you need to ensure data integrity, even if your web
app crashes in the middle of a request. Properly applied,

212 ◾ Mastering Ruby on Rails

they can speed queries and guarantee data safety. Another
noteworthy thing about transactions is that they are actu-
ally executed by the database. You can use them anywhere
you use PostgreSQL/MySQL.

To be specific, transactions are protective blocks where
SQL statements are only fixed if they can all succeed as
one atomic action. The simplest example of such action
could be a transfer between two accounts where you can
only have a deposit if the withdrawal succeeded and vice
versa. Transactions preserve the integrity of the database
and guard the data against program errors or database col-
lapse. Basically, you should make use of transaction blocks
whenever you have a number of statements that should be
implemented together, or not at all.

Transactions have a well-structured life cycle. At any
given time, your transaction should be in a certain state:

• Active: Your data operations are being executed.

• Partially Committed: Your data operations have
been completed successfully, but modifications have
not been committed to the database, and cannot be
accessed outside of the transaction.

• Committed: Your data operations have been completed
successfully and locked any changes in the database.

• Failed: Some error has occurred, which caused the
database to stop the transaction. The database has not
been reloaded at this point.

• Aborted: Your database has been reloaded after a
failure, and the transaction is complete.

Working with Database ◾ 213

Now, let us take the previous example of the bank trans-
action between two accounts and convert it into a code:

ActiveRecord::Base.transaction do
 sender.debit_account(amount) if sender.
sufficient_balance(amount)
 credit_amount = convert_currency(amount,
recipient)
 perform_transfer(recipient, credit_
amount, sender)
 transfer.update_status
end

Here, you are expected to call the transaction method on
the ActiveRecord::Base class and pass it a block. Every data-
base operation that takes place within that block will be
forwarded to the database as a transaction. If any kind of
sudden error happens inside the block, the transaction will
be aborted, and no changes will be made to the database.

ActiveRecord::Base#transaction

In the above code segment, you are calling the transaction
method on the ActiveRecord::Base class. You might find it
useful when dealing with controller or service code. Also
keep in mind that in general, every ActiveRecord model
has to have a transaction method. Imagine that you have a
Transfer class that inherits from ActiveRecord. The follow-
ing would be the case:

Transfer.transaction do
 ...
end
my_model_instance#transaction

214 ◾ Mastering Ruby on Rails

Similarly, every instance of your ActiveRecord models also
has its own transaction method:

transfer = Transfer.new(…)
transfer.transaction do
 …
end

And, because the transaction method is an ordinary
Ruby method, you can reference it in the standard model
definitions:

class Transfer < ApplicationRecord
 def perform(...)
 self.transaction do
 ...
 end
 end
end

In case you would be looking to manually abort a trans-
action and prevent any of its modifications from being
written to the database, it is possible to activate the
ActiveRecord::Rollback method:

ActiveRecord::Base.transaction do
 @new_user = User.create!(user_params)
 @referrer = User.
find(params[:referrer_id])
 raise ActiveRecord::Rollback if @
referrer.nil?
 @referrer.
update!(params[:reference_record])
end

Working with Database ◾ 215

Meanwhile, any unhandled exception that occurs dur-
ing the transaction will also cause it to be aborted. There
are two common ways to raise these exceptions: by using
ActiveRecord methods ending with an exclamation mark:
save!, update!, destroy! Or by manually raising an excep-
tion in ActiveRecord, when a method name ends with an
exclamation mark, raising an exception on failure. Let us
imagine we have a transaction that involves creating a new
user account, while also updating the record of another
user (the referrer):

ActiveRecord::Base.transaction do
 @new_user = User.create!(user_params)
 @referrer.
update!(params[:reference_record])
end

Here, the inserted create! and update! methods will raise
an exception if something goes wrong.

Also, in case you were to use the create and update meth-
ods (without the exclamation mark), they would indicate a
failure via their return value, and the transaction would
keep running. It is also possible that if you wanted to, you
could always check the return value yourself and “manu-
ally” raise an exception if necessary:

ActiveRecord::Base.transaction do
 @new_user = User.create(user_params)
 raise ActiveRecord::RecordInvalid unless
@new_user.persisted?
end

216 ◾ Mastering Ruby on Rails

Typically, it does not really matter what kind of exception
you raise. Any exception class can be used to abort the
transaction. But it is still important to remember to rescue
the exception in the following manner:

def create_referrer_account
 ActiveRecord::Base.transaction do
 raise ActiveRecord::RecordInvalid if
@referrer.nil?
 rescue ActiveRecord::RecordInvalid =>
exception # handle error here...
 end
end

The transactions we have reviewed so far only let you work
with a single database. And since most Rails apps only use
one database that works out perfectly. However, if you want
to ensure data integrity across multiple databases, you can
do so by nesting ActiveRecord transactions. In the exam-
ple below, it has been scripted that the User and Referrer
models point to different databases:

User.transaction do
 @new_user = User.create!(user_params)
 Referrer.transaction do
 @referrer.
update!(params[:reference_record])
 end
end

In case any parts of the inner transaction fail, it will cause
the outer transaction to be aborted. Yet since nested trans-
actions can be difficult to get right for beginners, it is rec-
ommended to try your best to avoid them.

Working with Database ◾ 217

In programming, just like in our lives, very few things
come free of consequences. Transactions give us a great way to
ensure data integrity, but they have a few potential drawbacks:

• Performance: Using a transaction generally con-
sumes more resources on the database server than
the raw queries.

• Complexity: When overused, transactions can make
your code more complex and therefore harder to
comprehend.

For instance, when you use a transaction in Rails, it ties up
one of your database connections until all the code in your
transaction block finishes running. If the block holds some-
thing heavy, such as an API call, you would be tying up your
database connection for an unreasonable amount of time:

ActiveRecord::Base.transaction do
 User.create!(user_params)
 SomeAPI.do_something(u)
end

Overall, the key principle of using transactions well could
be to use them only when you really need them. Even
though transactions give developers the ability to write
SQL statements in the right way, it also has a great respon-
sibility attached to it—one that should not be abused by
initiating transactions everywhere.

In addition to what we have learned, it would also be useful
to ask yourself whether there is a need to handle more than
one SQL statement at all. And if the answer is yes, make sure
you are raising and rescuing the errors as was shown above.

218 ◾ Mastering Ruby on Rails

OBJECT-RELATIONAL MAPPING
ON RUBY ON RAILS
Object-relational mapping in computer science is a pro-
gramming technique for transmitting data between
incompatible type systems with the use of object-oriented
programming languages. The result of this, in effect, is the
creation of a “virtual object database” that can be accessed
from within the programming language.

The Object part is the one you use with your program-
ming language (Ruby object in our case). The Relational
component is a Relational Database Manager System (sim-
ply a database). And finally, the Mapping part is where you
do a bridge linking your objects with your tables. There is
a variety of free and commercial packages available that
offer object-relational mapping, although some program-
mers choose to construct their own mapping tools.

In object-relational Rails data mapping, data-management
tasks act on objects that stand as non-scalar values. For
instance, consider an address book entry that has a single
person along with zero or more phone numbers and zero or
more addresses. This could be easily converted in an object-
oriented application by a “Person object” with an attribute/
field to contain each data item that the entry comprises
involves: the person’s name, a list of phone numbers, and a
list of addresses. The generated list of phone numbers would
itself contain “PhoneNumber objects” and others. Each
such address-book entry would be treated as a single object
by the programming language (it is typically referenced by
a single variable holding a pointer to the object). Multiple
methods can be linked with the object, such as methods to
return the preferred phone number, or the home address.

Working with Database ◾ 219

To compare, many widely-used database products such
as SQL database management systems are not object-rela-
tional and can only hold and manipulate scalar values such
as integers and strings placed within tables. The program-
mer is expected then to either convert the object values into
groups of simpler values for storage in the database and
convert them back upon retrieval, or only use simple sca-
lar values within the program. However, both approaches
typically have a problem of translating the logical repre-
sentation of the objects into a standard form that is capable
of being stored in the database while preserving the char-
acteristics of the objects and their relationships so that
they can be reloaded as objects when needed. Thus, only if
you implement such storage and retrieval procedures, the
objects would then be persistent.

Using object-relational mapping, the properties and
relationships of the objects in an application can be eas-
ily stored and retrieved from a database without writing
SQL statements directly and with less database access code.
This data management style acts as a completely ordinary
library scripted in your language that encapsulates the code
necessary to manipulate the data, so you do not have to use
SQL anymore, but directly use an object of your language.

Active Record

It is not possible to discuss object-relational mapping with-
out mentioning the Active Record pattern. To put it simply,
Active Record is a specific approach to accessing data in a
database. Let us explain it this way: an ordinary database
table or view is wrapped into a class, and an object instance
is tied to a single row in the table. After the creation of

220 ◾ Mastering Ruby on Rails

an object, a new row is added to the table upon save. Any
object loaded gets its data from the database. When an
object is updated, the corresponding row in the table is
also updated. The wrapper class then executes accessor
methods or properties for each column in the table or view.

So if you need to get an array containing a listing of all
the users, instead of scripting code to initiate a connec-
tion to the database, then going through SELECT * FROM
users query, and converting those results into an array,
you can just type User.all and Active Record shall give you
that array filled with User objects that you can apply as
you like.

Moreover, it does not actually matter which type of data-
base you are using (as long as you have set up the config/
database.yml file), Active Record will even out all the dif-
ferences between those databases for you so there is noth-
ing to worry about. You just have to focus on writing code
for your application, and Active Record can handle the
details of connecting you to your database. It also means
that if you move from one database to another, you do not
actually need to modify any major application code, just a
few configuration files.

The overall relationship between Rails and a database
is pretty straightforward—you need to store information
about your projects, so you create a database table called
project 1,2,3, etc. You want to be able to access that data
from your application, so you produce a model called
Project, which is really just a Ruby file that inherits from
Active Record and thus gets to use all the conventional
methods like all and find or create. One table has to corre-
spond with one model which inherits from Active Record.

Working with Database ◾ 221

Let us demonstrate it with the following example: you have
College class and one way to structure it would be to imple-
ment Active Record to Class object in the following way:

class College < ActiveRecord::Base
 has_many :students
end
class Student < ActiveRecord::Base
 belongs_to :college
end

Now, in your migration it is possible to add a foreign key
for referencing another table:

class CreateColleges <
ActiveRecord::Migration
 def change
 create_table :colleges do |t|
 t.string :name
 t.timestamps
 end
 end
end
class CreateStudents <
ActiveRecord::Migration
 def change
 create_table :students do |t|
 t.string :name
 t.integer :college_id
 t.timestamps
 end
 end
end

222 ◾ Mastering Ruby on Rails

As a result of the above code, Student and College would
stand as classes with corresponding tables in the database.
Objects of the class Student and College would correspond
to rows in the table and essential attributes of Student
and College such as name associate with columns from
the row:

2.2.2 :003 > college = College.find(17)
 College Load (0.5ms) SELECT
"colleges".* FROM "colleges" WHERE
"colleges"."id" = $1 LIMIT 1 [["id", 17]]
 => #
2.2.2 :004 > college.students
 Student Load (0.7ms) SELECT "students".*
FROM "students" WHERE "students"."college_
id" = $1 [["college_id", 17]]
 => #
2.2.2 :005 >

Here, make sure to notice that college.students were con-
verted into SQL queries, to get all students having college_
id as “17”.

Student Load (0.7ms) SELECT “students”.* FROM
 “students” WHERE “students”.”college_id” = $1 [[“college_
id”, 17]]

The above segment could be introduced if you are plan-
ning to use ActiveRecord with its has_many, belongs_to,
has_one methods for which corresponding SQL queries
are fired.

This framework wraps around a relational database
and should be viewed as a great programming technique
for converting data between incompatible systems in

Working with Database ◾ 223

object-oriented programming languages. It also ensures
that you do not have to call a database yourself. Meaning
that with the object-relational mapping, there is no need to
set the SQL format data, as such:

UPDATE table_name
SET column1 = value1, column2 = value2, …
WHERE condition;
or
CREATE TABLE table_name (
column1 datatype,
column2 datatype,
column3 datatype,

Instead, all you really need to do is inherit ActiveRecord::Base
and use has_many, has_one relationships.

Advantages
There are many advantages to object-relational mapping
dealing with databases. In Ruby on Rails, the technique is
known to be:

• Database Independent: There is no need to write
code in a particular database.

• Reduces Code: The framework provides the concept
of abstraction, which means there is no need to repeat
the same code again.

• Rich Query Interface: It allows the developer to clear
out the complex semantics of SQL.

224 ◾ Mastering Ruby on Rails

As for ActiveRecords, it is a powerful framework of object-
relational mapping in Ruby on Rails. Using the functional-
ity provided by this module, you can:

• Establish a connection to a database

• Produce database tables

• Specify associations between tables that correspond
to associations between the Ruby classes

• Initiate an association between Ruby classes/objects/
attributes and the tables/rows/columns in the under-
lying database

• Perform complex operations on Ruby ActiveRecord
objects

Disadvantages
The model is helpful in Ruby code completion and in run-
ning frameworks to reduce workload. However, there are
certain drawbacks in some areas, such as:

• Overhead Issues: The framework consumes more
memory than other relational databases and increases
central processing unit usage.

• Performance Issues: Particular actions, such as
inserting a large data, updating it, or deleting it are
slower if executing through object-relational map-
ping. Native SQL queries could be used to handle
these actions more efficiently.

Working with Database ◾ 225

WHAT ABOUT SQL?
Let us rewind to some fundamental points at first. A data-
base is a file that collects organized information. A key prin-
ciple of a database is to maintain order within its system and
databases group objects according to set values, character-
istics, and hierarchy. Normally, databases use formal struc-
ture and models to demonstrate relationships between data.

Databases come as SQL and NoSQL. SQL stands for
Structured Query Language, and it uses tables to store data
and preserve relations between them. Each table is asso-
ciated with at least one other table, and all information,
therefore, becomes a part of a defined structure. Because of
this emphasis on relations, SQL databases are often called
relational.

On the other hand, NoSQL databases do not use
Structured Query Language. Unlike relational databases
that apply the same language, no matter which manage-
ment system you operate in, NoSQL are very dependent on
tools. For instance, if you ever build with Mongo-DB, one
of the most popular non-relational databases, you will have
to learn its logic and terminology. And later when switch-
ing to another non-SQL tool, you would be expected to
relearn most aspects from scratch.

Typically, deciding between SQL and NoSQL databases
is the first step for many. Both have certain advantages
worth noting:

• SQL databases: have a precise order. If a file is not
described well or has errors, the database will imme-
diately send a notification. Additionally, all relations
follow the same logic that is easy to scale and manage.

226 ◾ Mastering Ruby on Rails

• NoSQL databases: are more flexible, which is why
they are most preferred for managing qualitative
data. If information cannot be easily broken down
into tables, setting up a non-relational database might
be the solution. NoSQL databases are easier to set up,
but at the same time, they require constant mainte-
nance—you need to avoid duplication, file errors, and
establish relations all by yourself.

At this point of your learning curve, it is recommended to
opt for relational databases because they are more scalable.
In the long run, it would be easier to recruit developers,
add new data, and operate data flow.

Nevertheless, the choice of a database does not depend
that heavily on the framework. Let us review the most
common options:

• PostgreSQL: it is one of the most cost-efficient, flex-
ible, and versatile SQL databases out there. One of its
main advantages is the ability to hold large amounts
of data and complex operations. It has a reputation
for being a strict database since it does not let devel-
opers input non-sense data and always follows strict
data quality constraints. However, that is what makes
data quality management easy in the long run, espe-
cially in complex projects.

• SQLite: it is supported by Ruby on Rails by default
as a highly efficient database. It is also known as an
internal database, used mainly to cover the needs of
production and testing. It is a common one for local
projects and internal builds. Additionally, it is often
used to set up the basic data structure and then get
replaced for a more powerful alternative.

Working with Database ◾ 227

• MySQL: it could possibly be the most popular SQL
database right now. Its requirements are less stringent
than those of PostgreSQL and because of that, it is
easier to set up and manage.

In this section, we shall talk about all three of them, start-
ing with PostgreSQL, since as a beginner, you should learn
how to add elaborate functionality and make changes to
various data structures.

How to Make a PostgreSQL Database in Ruby
To start, you need to set up a Cloud Server on Linux and
install and open PostgreSQL. With that, you need a basic
background of Ruby on Rails and a proper understand-
ing of Ruby’s syntax. The database commands here will be
given from a user perspective– so to be sure you could use
the same account that you used for the installation of Ruby
on Rails.

• Step 1: Creating a PostgreSQL user
You need to create a user account on PostgreSQL.
This profile will then be synchronized with the Ruby
on Rails page and used to issue back-and-forth com-
mands. Here is the necessary command:

sudo -u postgres createuser -s
[username]

• Step 2: Create a password for your user
To define access and protect database security, you
would be asked to assign a password to your user. It
does not necessarily have to be the same as for the

228 ◾ Mastering Ruby on Rails

application’s compatibility Ruby on Rails account. You
can open PostgreSQL prompt with sudo -u postgres psql

And then enter a command to set a password: \
password [username]

After that you should enter the command again to
confirm the password: \password [username]

• Step 3: Setting PostgreSQL database with Ruby on Rails
Next, it is necessary to build a bridge between your
database management system and Rails application.
For that, create a Ruby on Rails application rails new
[application name] -d postgresql. The -d flag indi-
cates to Rails that you will be running PostgreSQL to
work with the application. Now both tools have the
permission to interact.

Once that is done, access the directory with Rails
application and create a new database there. To open
a directory, enter cd application-name. To create a
database, enter nano config/database.yml. After that,
you should be getting the following message:

• # The specified database role being used to con-
nect to postgres.

• # To create additional roles in postgres, see “$cre-
ateuser --help.”

• # When left blank, postgres will use the default
role. This is

• # the same name as the operating system user that
initialized the database.

• #username: application-name2

Working with Database ◾ 229

Here, do not forget to update your user name.
In the last row, edit the username to match the one
that corresponds to your Rails and PostgreSQL user
and add a password to your account. This way, it will
be stored in the system and you will not lose access
credentials.

• Step 4: Creating a database
In order to create a new database table in Ruby on
Rails, you need to use rake comments applied spe-
cifically to create, migrate, and manage databases. To
create a database, enter the following:

rake db:create.

• Step 5: Testing a database inside the application
To check if the integration was successful, open the
application with your browser and go to the applica-
tion directory to enter the following command:

bin/rails s --binding=0.0.0.0

If the integration was successful, you should see the
following message:

[user@localhost my-app]$ bin/rails
server
=> Booting Puma
=> Rails 5.0.0.1 application starting
in development on http://localhost:3000
=> Run "rails server -h" for more
startup options
Puma starting in single mode...

http://localhost:3000

230 ◾ Mastering Ruby on Rails

* Version 3.6.0 (ruby 2.3.1-p112),
codename: Sleepy Sunday Serenity
* Min threads: 5, max threads: 5
* Environment: development
* Listening on tcp://localhost:3000

This basically means that the application is running
with no errors. If you want to double-check still, you
can go to http://your-IP:3000/ (instead of your-IP enter
the numbers that correspond to your address). And if
you established the Ruby connect to PostgreSQL data-
base, you should see the Rails welcome message.

How to Integrate MySQL With Ruby on Rails
To start with, you need to prepare installed MySQL,
open the root password from MySQL, and run Ruby
on Rails. After that you may process with the following
guideline:

• Step 1: Adding MySQL gem to your RoR code
In order to connect MySQL to Ruby on Rails, enter
these commands:

sudo apt-get update
sudo apt-get install MySQL-client
libmysqlclient-dev

With that you will be connected to the MySQL client
files, now you need to download a gem that will be
used by Ruby on Rails to interact with a database. To
do that, enter:

gem install mysql2

http://your-IP:3000

Working with Database ◾ 231

• Step 2: Preparing the Ruby on Rails application
Now you have to write comments in your app with
Ruby to connect to the database. For that, enter the
d-flag to allow MySQL’s access to the app:

rails new [application name] -d MySQL

You could better define and secure database access by
rooting a password which the application will attach
a password to your username. Simply enter MySQL
-u root –p and this command will give you the right
to input a password.

• Step 3: Editing App’s Config File
Now, we can proceed to creating a new Ruby on Rails
application and connecting it to your MySQL database.

To start with, open the directory with the applica-
tion by entering cd my-app. Next, open the database
configuration file in the same directory with the fol-
lowing command:

nano config/database.yml

In this file, you should look to set and confirm the
password to your application and database: password:
[MySQLpassword]. But instead of MySQL password,
try to enter your own combination (for instance
AFOR230893).

After that you can create MySQL database on Ruby
on Rails, using the same rake database command we
mentioned earlier:

rake db:create

232 ◾ Mastering Ruby on Rails

• Step 4: Check the application
It is possible to verify the compatibility of an applica-
tion with a database by closing the app config file and
opening the application in your browser. To proceed
with that, in the app’s directory, enter the following:

bin/rails s --binding=0.0.0.0

If verified, you should see the following message:

[user@localhost my-app]$ bin/rails server
=> Booting Puma
=> Rails 5.0.0.1 application starting
in development on http://localhost:3000
=> Run "rails server -h" for more
startup options
Puma starting in single mode...
* Version 3.6.0 (ruby 2.3.1-p112),
codename: Sleepy Sunday Serenity
* Min threads: 5, max threads: 5
* Environment: development
* Listening on tcp://localhost:3000
Use Ctrl-C to stop

For additional verification, you could visit http://
IP-address:3000. Here, remove ‘IP-address’ and enter
the numbers that correspond to your IP instead. If
the integration was successful, the link will redirect
you to Ruby’s welcome page.

How to Integrate SQLite With Ruby on Rails?
As previously stated, SQLite is a default Ruby database,
in other words, it comes in the package with Ruby itself.

http://localhost:3000
http://IP-address:3000
http://IP-address:3000

Working with Database ◾ 233

Therefore, its integration takes only several commands.
Specifically, the Linux package of Ruby comes with SQLite,
so you can use commands to regulate it. On Windows,
you need to install DevKit first. After that, you can call the
database with a command:

gem install sqlite3

At the same time, the Linux distribution does not require
install commands—you can start entering the rake com-
mands for Ruby database immediately.

For Fedora, you should enter:

dnf install rubygem-sqlite3
rubygem-sqlite3-doc

For Ubuntu, insert the following:

apt install ruby-sqlite3

Best Practices of Ruby Database Development
In case you are not just getting started with Ruby on Rails
database development but already have it set, you might be
interested in practices that could alter your efficiency. The
following points apply to most databases and cover general
principles rather than database-specific technicalities:

• Integrate databases as early as possible: The main
idea of a database is to maintain data. They have
various features for organizing, sorting information,
searching for errors, and removing entire structures.
Sometimes, independent developers choose to handle
small data-related tasks with Ruby or Ruby on Rails

234 ◾ Mastering Ruby on Rails

alone. So, the first recommendation would be, if you
want to carry out some data-based process on Ruby,
consider that it definitely can be accomplished better
in a database.

• Reduce the number of calls to a database: Ruby
on Rails and Active Record offer simpler shortcuts
for developers to work with databases. You could be
tempted at times to create many small datasets because
they are easier to set up and organize. Yet then, they
are forced to send multiple data queries to run each of
these sets. However, once the application is activated,
the amount of data would only be growing. And in
case your page sends multiple calls to a Ruby on Rails
database, it will become really slow. When an applica-
tion hosts thousands of users simultaneously, servers
might not be able to process that many requests.

The best practice here is to not forget to insert
includes and joins to request multiple data in one
query. Nevertheless, if you just request for data with-
out using proper syntax, you might be stuck in a loop
and block the entire operation.

• Use indexes to quickly find data: This one is pretty
straightforward: in order to avoid going through
more data than necessary, it is recommended to add
reference indexes into your columns.

• Adopt consistent datatypes early on: In case you
want to write code that will be easy to maintain, the
best way to do it is to build and maintain a strong
adherence to data types within your team. It is recom-
mended to form and follow consistent rules for naming

Working with Database ◾ 235

and hierarchy, and your codebase will become much
more approachable. In particular, it is better to take
time exploring the lesser-known data types that will
help you to structure your data in many frameworks.

Typical Mistakes of Ruby on Rails Database
Development
When you work with large amounts of data, you have to
consider the best development practices carefully. One
additional move, misplaced or missing command can
result in unexpected delays. Manageable at first, these
problems will pile up and wreck your performance quality.

Even if you do not have that much Ruby on Rails devel-
opment experience, it might help to look through this sec-
tion paying attention to the given technical terms. Even
without a profound understanding, it will provide you
with key principles of what issues developers typically deal
with while integrating Ruby on Rails databases.

• Getting multiple data with one query: Often, spe-
cialists prefer incorporating a lot of data in a single
query to speed up the development face and script
shorter code. To achieve that, they end up creating a
loop, and instead of processing data once, the appli-
cation goes through the same process multiple times.

To gain more control over performance and avoid
over-fetching, it is always better to split data requests
into different queries. Also, it is important to con-
stantly look out for unwanted loops. You could let
the application know that all data should be fetched
with a minimal number of queries by including the
“includes” command.

236 ◾ Mastering Ruby on Rails

• Differentiating between LENGTH, COUNT, and
SIZE: One of the basic operations in the database
is calculating how many records it holds in total.
Essentially, there are three ways of tackling this task
but not many know how to properly differentiate
between the following options:

• LENGTH: Used to load all the records from the
Ruby on Rails database first and determine their size.

• COUNT: Applied to define the number of records
by running an SQL query.

• SIZE: Works only for loaded records and calls for
the LENGTH method to check the queries’ size.

To put it simply, COUNT is the fastest one between
them, but it gives you less information. The choice
between LENGTH and SIZE depends on whether the
files have been downloaded or not. If you are not sure,
use Size.

To illustrate COUNT with the following example:

users = User.where(hotel_id: 10)
users_count = users.size
users.each do |user|
 puts "#{user.full_name}"
end
SELECT COUNT(count_column) FROM (SELECT
1 AS count_column FROM "users"
WHERE "users"."hotel_id" = 10)
subquery_for_count
SELECT "users".* FROM "users" WHERE

"users"."hotel_id" = 10

Working with Database ◾ 237

• Calculating on Ruby’s side: Determining where to
take and process data-related calculations (such as
calculating the size of all records) has a huge impact
on performance. Unfortunately, the difference
between the two is often unsaid—which results in
serious processing delays.

The general standard is to perform calculations on
SQL size instead of Ruby. Even if the code gets more
extensive, but the performance speed improves by
5–10 times. To demonstrate with an example:1

#1 – Processing on Ruby’s side
companies = Company.includes(:users).
limit(100)
companies.each do |company|
 puts company.users.map(&:hotel_id).
uniq.count
end

The return of a benchmark: 1.771338 seconds

#2 – Processing on SQL’s side
companies = Company.limit(100)
. select('companies.*, companies_
hotels.hotels_count as hotels_count')
. joins('
 INNER JOIN (
 SELECT companies_users.
company_id,
 COUNT(DISTINCT users.hotel_id)
as hotels_count

1 https://syndicode.com/blog/getting-started-with-ruby-on-rails-database-
development/, Syndicode

https://syndicode.com
https://syndicode.com

238 ◾ Mastering Ruby on Rails

 FROM users
 INNER JOIN "companies_users" ON
"users"."id" =
"companies_users"."user_id"
 GROUP BY companies_users.
company_id
) as companies_hotels ON companies_
hotels.company_id = companies."id"
 ')
companies.each do |company|
 puts company[:hotels_count]
end

The return of a benchmark: 0.127908

In bigger projects, these differences accumulate and
become an impact factor in deciding final performance
speed and over user experience.

In this section of Ruby on Rails database development,
we summarized the best practices and resources for get-
ting started with database integration and management.
To sum up, integrating databases is one of the most signifi-
cant decisions for any backend—because the database will
end up managing most of your data-based process.

ACTIVE RECORD BASICS
Active Record is the M in the MVC or Model-View-
Controller model—which is the layer of the system respon-
sible for handling business data and logic. Active Record
facilitates the creation and use of business objects whose
data requires persistent storage in a database. It is an imple-
mentation of the Active Record pattern, which itself is a
key component of an Object-Relational Mapping system.

Working with Database ◾ 239

In Active Record, objects have both persistent data and
behavior which comes with that data. Active Record follows
the principle that ensuring data access logic as part of the
object will encourage users to learn how to write to and read
from the database. Using Object-relational Model, the proper-
ties and features of the objects in an application can be easily
stored and retrieved from a database without inserting SQL
statements directly and with less overall database access code.

Possessing basic knowledge of relational database man-
agement systems and structured query language is useful
in order to fully master Active Record. Active Record can
offer several handy mechanisms, the most important being
the ability to:

• Represent models and their data.

• Create associations between these models.

• Save and show inheritance hierarchies through related
models.

• Validate models before they get to the database.

• Complete database operations in an object-oriented
manner.

When scripting applications using other programming
languages or frameworks, it may be necessary to include
a lot of configuration code. This is particularly true for
Object-Relational Model frameworks but, if you follow
the conventions adopted by Rails, you will be expected
to write very little configuration (in some cases no con-
figuration at all) when building Active Record models.
The idea is that if you modify your applications in the
very same way most of the time, then this becomes the

240 ◾ Mastering Ruby on Rails

default way. As a result, the explicit configuration would
be needed only in those cases where you cannot follow
the standard convention.

Naming Conventions

By default, Active Record produces certain naming con-
ventions to find out how the mapping between models and
database tables should be created. Rails automatically plu-
ralize your class names to search for the respective data-
base table. So, for a class Image, you should have a database
table called Images. The Rails pluralization mechanisms
are very fundamental, being capable of pluralizing (or sin-
gularizing) both regular and irregular words.

When using class names composed of two or more words,
the model class name should follow the Ruby conventions,
using the CamelCase form, while the table name must con-
tain the words separated by underscores. For instance:

1. Model Class: Singular with the first letter of each
word capitalized (BreakfastClub).

2. Database Table: Plural with underscores separating
words (breakfast_clubs).

To illustrate with the following examples:2

Model/Class Table/Schema
1. Article articles
2. LineItem line_items
3. Deer deers
4. Mouse mice
5. Person people

2 https://guides.rubyonrails.org/active_record_basics.html, Ruby on Rails

https://guides.rubyonrails.org

Working with Database ◾ 241

Active Record also uses naming conventions for the columns
in database tables, depending on the purpose of these columns:

• Foreign keys: These fields should be named following
the pattern singularized_table_name_id (item_id,
order_id). These are the fields that Active Record will
search for when you create associations between your
models.

• Primary keys: Active Record will use an integer col-
umn named id as the table’s primary key (bigint for
PostgreSQL and MySQL, integer for SQLite). When
using Active Record Migrations to create your tables,
this column will be automatically created.

In addition, there are also some optional column names
that provide additional characteristics to Active Record
instances:3

• created_at: Automatically gets set to the current date
and time when the record is first created.

• updated_at: Automatically gets set to the current date
and time whenever the record is created or updated.

• lock_version: Adds optimistic locking to a model.

• type: Specifies that the model uses Single Table
Inheritance.

• (association_name)_type: Stores the type for poly-
morphic associations.

3 https://guides.rubyonrails.org/active_record_basics.html, Ruby on Rails

https://guides.rubyonrails.org

242 ◾ Mastering Ruby on Rails

• (table_name)_count: Applied to cache the number
of belonging objects on associations. For instance, a
comments_count column in an Article class that has
many instances of Comment will cache the number
of existent comments for each article.

Even if these column names are optional, they are in
fact reserved by Active Record. You are free to use these
reserved keywords if you want some extra functionality.

Creating Active Record Models

In order to create Active Record models, you just need
to subclass the ApplicationRecord class in the following
way:

class Product < ApplicationRecord
end

This will produce a Product model, mapped to a products
table at the database. By running this, you will also gain
the ability to map the columns of each row in that table
with the attributes of the instances of your model. Suppose
that the products table was created using an SQL (or one of
its extensions) statement like this:4

CREATE TABLE products (
 id int(11) NOT NULL auto_increment,
 name varchar(255),
 PRIMARY KEY (id)
);

4 https://guides.rubyonrails.org/active_record_basics.html, Ruby on Rails

https://guides.rubyonrails.org

Working with Database ◾ 243

The script above creates a table with two columns: id and
name. Each row of this table creates a certain product with
these two parameters. Therefore, you would be able to
script code like the following:

p = Product.new
p.name = "Some Book"
puts p.name # "Some Book"

At the same time, what if you need to establish a different
naming convention or need to use your Rails application
with a legacy database. In that case, it is possible to over-
ride the default conventions.

ApplicationRecord inherits from ActiveRecord::Base,
which determines the number of helpful methods. You can
use the ActiveRecord::Base.table_name= method to pick
out the table name that should be used:

class Product < ApplicationRecord
 self.table_name = "my_products"
end

Once you do so, you will have to define manually the
class name that is containing the fixtures (my_products.
yml) using the set_fixture_class method in your test
definition:

class ProductTest < ActiveSupport::TestCase
 set_fixture_class my_products: Product
 fixtures :my_products
 end

244 ◾ Mastering Ruby on Rails

It is also possible to override the column that should be used
as the table’s primary key using the ActiveRecord::Base.
primary_key= method:

class Product < ApplicationRecord
 self.primary_key = "product_id"
end

Here, keep in mind that Active Record does not support
using non-primary key columns named id.

CRUD: Reading and Writing Data

CRUD is a term that stands for the four verbs we use to
operate on data: Create, Read, Update and Delete. Active
Record automatically creates methods to let an application
read and manipulate data stored within its tables.

Active Record objects can be made from a hash, a block,
or have their attributes manually issued after creation.
The new method will return a new object while create will
return the object and save it in the database. For instance,
let us take a model User with attributes of name and occu-
pation, the create method call will create and save a new
record into the database:

user = User.create(name: "Mary",
occupation: "Modern Artist")

By adding the new method, an object can be instantiated
without being saved:

user = User.new
user.name = " Mary "
user.occupation = " Modern Artist "

Working with Database ◾ 245

A call to user.save will commit the record to the database.
At last, if a block is provided, both create and new will give
away the new object to that block for initialization:

user = User.new do |u|
 u.name = " Mary "
 u.occupation = " Modern Artist "
end

Additionally, Active Record has a rich API for accessing
data within a database. Below are a few examples of various
data access methods provided by Active Record:5

return a collection with all users
users = User.all

return the first user
user = User.first

return the first user named Mary
david = User.find_by(name: ' Mary ')

find all users named Mary who are Modern
Artists and sort by created_at in reverse
chronological order
users = User.where(name: ' Mary ',
occupation: ' Modern Artist').
order(created_at: :desc)

5 https://guides.rubyonrails.org/active_record_basics.html, Ruby on Rails

https://guides.rubyonrails.org

246 ◾ Mastering Ruby on Rails

When Active Record object has been retrieved, its key fea-
tures can be modified and it can be saved in the database
using the following code:

user = User.find_by(name: ' Mary ')
user.name = ' Mary '
user.save

An alternative for the above code would be to use a hash
mapping attribute names to the desired value, like this:

user = User.find_by(name: ' Mary ')
user.update(name: 'M')

This could possibly be the most useful when updating
several attributes out there. Yet, on the other hand, if you
would like to update several records in a set, you may find
the update_all class method quite helpful:

User.update_all "max_login_attempts = 3,
must_change_password = 'true'"

In addition, once retrieved an Active Record object can be sent
to destroy, which automatically removes it from the database:

user = User.find_by(name: ' Mary ')
user.destroy

In case you would like to delete several records in a code com-
bination, you could use destroy_by or destroy_all method:

find and delete all users named Mary
User.destroy_by(name: ' Mary ')

delete all users
User.destroy_all

Working with Database ◾ 247

Validations

Active Record lets you validate the state of a model before
it gets scripted into the database. There are a few methods
that you can try to check your models and validate that
an attribute value is not empty, is indeed unique and not
already in the database, and has a specific format.

Validation is a very significant matter to consider when
submitting to the database, so the methods save and
update take it into account when running: they return
false when validation fails and they do not actually
complete any operations on the database. All of these
have a suitable counterpart (that is, save! and update!),
which are more fixed in that they raise the exception
ActiveRecord::RecordInvalid if validation fails. A quick
example to demonstrate:

class User < ApplicationRecord
 validates :name, presence: true
end

irb> user = User.new
irb> user.save
=> false
irb> user.save!
ActiveRecord::RecordInvalid: Validation
failed: Name can't be blank

Migrations

Migrations stand for a convenient way to update your
database schema over time in a sustainable manner. You
could think of any given migration segment as being a new
“version” of the database. A schema starts off with nothing
in it, and each migration edits it to add or get rid of tables,

248 ◾ Mastering Ruby on Rails

columns, or entries. Active Record knows how to alter your
schema along its own timeline, bringing it from any ran-
dom point it is in the history to the latest version. Active
Record will also update your db/schema.rb file to match
the up-to-date structure of your database. Let us take a
look at the following example of a migration:6

class CreateProducts <
ActiveRecord::Migration[6.0]
 def change
 create_table :products do |t|
 t.string :name
 t.text :description

 t.timestamps
 end
 end
end

This particular migration adds a table called products with
a string column called name and a text column called
description. A primary key column called id will also be
added implicitly, as it is the default primary key for all
Active Record records. Additionally, the timestamps macro
adds two columns, created_at and updated_at that are spe-
cial columns automatically managed by Active Record.

It is important to remember that you have to define the
change that you want to happen moving forward in time.
Before this migration is run, there will be notable. After, the
table will exist. Active Record will then reverse this migration,
and when you roll this migration back, it will remove the table.

6 https://guides.rubyonrails.org/active_record_migrations.html, Ruby on Rails

https://guides.rubyonrails.org

Working with Database ◾ 249

On databases that enable transactions with statements
that modify the schema, migrations are included in a
transaction. If the database does not support this feature,
then once a migration fails, the parts of it that succeeded
will not be rolled back. You will then be forced to roll back
the changes that were made manually.

However, there are certain queries that cannot run inside
a transaction. If your adapter supports Data Definition
Language transactions, then you can use disable_ddl_
transaction! to disable them for a single migration. But if
you wish for migration to complete something that Active
Record does not know how to reverse, you can activate the
following reversible:

class ChangeProductsPrice <
ActiveRecord::Migration[6.0]
 def change
 reversible do |dir|
 change_table :products do |t|
 dir.up { t.change :price, :string }
 dir.down { t.change :price,
:integer }
 end
 end
 end
end

As an alternative, you can apply up and down definitions
instead of change:

class ChangeProductsPrice <
ActiveRecord::Migration[6.0]
 def up

250 ◾ Mastering Ruby on Rails

 change_table :products do |t|
 t.change :price, :string
 end
 end

 def down
 change_table :products do |t|
 t.change :price, :integer
 end
 end
end

Migrations are typically saved as files in the db/migrate
directory, one for each migration class. The name of the
file is of the form YYYYMMDDHHMMSS_create_prod-
ucts.rb, that is to state that a UTC timestamp identifies
the migration followed by an underscore, followed by the
name of the migration.

The name of the migration class (CamelCased version) is
supposed to match the latter part of the file name. For exam-
ple, 20080906120000_create_products.rb should stand for
class CreateProducts while 20080906120001_add_details_
to_products.rb should determine AddDetailsToProducts.
Rails applies this timestamp to indicate which migration
should be run and in what order, so if you are dragging
a migration from another application or generating a file
yourself, you could see its position in a particular order.

Naturally, calculating timestamps might seem like a
tedious task, so Active Record provides a generator to han-
dle making it for you:

$bin/rails generate migration
AddPartNumberToProducts

Working with Database ◾ 251

The above code will then produce an appropriately named
empty migration:

class AddPartNumberToProducts <
ActiveRecord::Migration[6.0]
 def change
 end
end

At the same time, this generator can accomplish much more
than append a timestamp to the file name. Based on naming
conventions and additional arguments, it can also signifi-
cantly support the migration. If the migration name is of the
form “AddColumnToTable” or “RemoveColumnFromTable”
and is followed by a list of column names and types, then
the generator shall create statements containing the appro-
priate add_column and remove_column.

Writing a Migration

Once you have created your migration using the genera-
tor, you could now work on its content. Creating a table
seems like the first thing you might need. The create_table
method is one of the most useful, but most of the time, it
will already be generated for you by using a model or scaf-
fold generator. A general syntax would be:

create_table :products do |t|
 t.string :name
end

which results in a products table with a column called
name. By default, create_table will also create a primary
key called id. You can modify the name of the primary

252 ◾ Mastering Ruby on Rails

key with the :primary_key option or, if you do not want
a primary key at all, you can use the option id: false. In
another case, if you need to pass database-specific options,
you can insert an SQL fragment in the :options option. For
instance:

create_table :products, options:
"ENGINE=BLACKHOLE" do |t|
 t.string :name, null: false
end

To note, the above will later append ENGINE=BLACKHOLE
to the SQL statement applied to create the table.

Also, you can use the :comment option with any
description for the table that will be forwarded to the data-
base itself and can be accessed with database administra-
tion tools, such as MySQL Workbench or PgAdmin III. Yet
with that, it is highly recommended to specify comments
in migrations for applications with large databases as it
would help other developers to understand the data model
and review full documentation.

Creating a Join Table
The migration method create_join_table generates an
HABTM (has and belongs to many) join table. A typical
code would be:

create_join_table :products, :categories

which results in the creation of a categories_products table
with two columns called category_id and product_id.
These columns have the option :null set to false by default.

Working with Database ◾ 253

However, it could easily be overridden by modifying the
:column_options option in the following manner:

create_join_table :products, :categories,
column_options: {null: true}

Typically, the name of the join table comes from the union
of the first two arguments provided to create_join_table,
in alphabetical order. And in case you need to customize
the name of the table, you could do that by providing a
:table_name option:

create_join_table :products, :categories,
table_name: :categorization
as a result of this, you shall have a
categorization table.

create_join_table also supports a block, which you can
apply to use indices (which are not provided by default) or
any other additional columns:

create_join_table :products, :categories
do |t|
 t.index :product_id
 t.index :category_id
end

Changing Columns
Like the remove_column and add_column Rails also offers
the change_column migration method:

change_column :products, :part_number,
:text

254 ◾ Mastering Ruby on Rails

This changes the column part_number on products table
to be a :text field. Here, remember that change_column
command is irreversible.

Besides change_column, the change_column_null, and
change_column_default methods are used specifically to
modify a not-null constraint and default values of a col-
umn like that:

change_column_null :products, :name, false
change_column_default :products, :approved,
from: true, to: false

The above code sets :name field on products to a NOT NULL
column and the default value of the :approved field from
true to false. It is also possible to write the above change_
column_default migration as change_column_default
:products, :approved, false, but unlike the previous example,
this would turn your migration to an irreversible one.

Column Modifiers
The following built-in column modifiers can be applied when
creating or changing a column in the following instances:7

• limit: to set the maximum size of the string/text/
binary/integer fields.

• Precision: to define the precision for the decimal fields,
representing the total number of digits in the number.

• scale: to set the scale for the decimal fields, represent-
ing the number of digits after the decimal point.

7 https://guides.rubyonrails.org/active_record_migrations.html, Ruby on Rails

https://guides.rubyonrails.org

Working with Database ◾ 255

• polymorphic: to add a type column for belongs_to
associations.

• null: allows or disallows NULL values in the column.

• default: allows setting a default value on the column.
In case you are using a dynamic value (such as a date),
the default will only be calculated the first time (on
the date the migration is applied).

• comment: to add a comment for the column.

Using the Change Method
The change method is the original way of writing migra-
tions that works for the majority of cases, where Active
Record knows how to reverse the migration automatically.
As of now, the change method supports only the following
list of migration definitions:8

• add_column

• add_foreign_key

• add_index

• add_reference

• add_timestamps

• change_column_default (must supply a :from and :to
option)

• change_column_null

8 https://guides.rubyonrails.org/active_record_migrations.html, Ruby on Rails

https://guides.rubyonrails.org

256 ◾ Mastering Ruby on Rails

• create_join_table

• create_table

• disable_extension

• drop_join_table

• drop_table (must supply a block)

• enable_extension

• remove_column (must supply a type)

• remove_foreign_key (must supply a second table)

• remove_index

• remove_reference

• remove_timestamps

• rename_column

• rename_index

• rename_table

• change_table is also reversible, as long as the block
does not call change, change_default or remove.

• remove_column is reversible if you supply the col-
umn type as the third argument. Provide the original
column options too, otherwise Rails can’t recreate
the column exactly when rolling back:

• remove_column :posts, :slug, :string, null: false,
default:

• remove_column :posts, :slug, :string, null: false,
default:

Working with Database ◾ 257

Please note that if you are going to need to use any other
methods, you should apply reversible or write the up and
down methods instead of using the change method.

Active Record and Referential Integrity
The Active Record way states that intelligence is kept in
your models, not in the database. As such, components
such as triggers or constraints, which push some of that
intelligence back into the database, are not heavily applied.

Validations such as validates :foreign_key, uniqueness:
true are one way in which models can enable data integrity.
The :dependent option on associations lets models to auto-
matically remove child objects if the parent is destroyed.
Like anything that runs on the application level, these
cannot guarantee referential integrity, and so some people
alter them with foreign key constraints in the database.

Even though Active Record does not provide all the
tools for operating directly with such features, the execute
method can be applied to implement arbitrary SQL. The
key purpose of Rails’ migration feature is to give away com-
mands that modify the schema using a sustainable process.
Migrations can also be used to add or modify data that is
useful in an existing database that cannot be destroyed or
recreated, such as the following production database:

class AddInitialProducts <
ActiveRecord::Migration[6.0]
 def up
 5.times do |i|
 Product.create(name: "Product ##{i}",
description: "A product.")
 end
 end

258 ◾ Mastering Ruby on Rails

 def down
 Product.delete_all
 end
end

In order to add initial data after a database is created, Rails
offers a built-in “seeds” feature that is used to speed up the
process. This is especially helpful when reloading the data-
base frequently in development and test environments. To
activate this feature, fill up db/seeds.rb with some Ruby
code, and run bin/rails db:seed:

5.times do |i|
 Product.create(name: "Product ##{i}",
description: "A product.")
end

This is considered to be the most suitable and clean way to
set up the database of a blank application.

Old Migrations
The above-mentioned db/schema.rb or db/structure.sql are
used to get the overall capture of the current state of your
database and is the authoritative source for modifying that
database. This same solution makes it possible to get rid of
old migration files.

Once you delete migration files in the db/migrate/direc-
tory, any environment where bin/rails db:migrate was run
when those files still existed will contain a reference to
the migration timestamp specific to them inside an inter-
nal Rails database table named schema_migrations. This
table will be useful for keeping track of whether migrations

Working with Database ◾ 259

have been implemented in a specific environment. And if
you run the bin/rails db:migrate:status command, which
presents the status (up or down) of each migration, you
should see ********** NO FILE ********** displayed next to
any deleted migration file which was once executed on a
specific environment but is no longer available in the db/
migrate/directory.

To summarize this chapter, we have discussed the most
popular databases in Ruby on Rails web development,
introduced you to the process of consolidating them, and
offered some of the best practices on how to handle Rails
object-relational mapping. In the last chapter, we shall
examine Rails in association with modern IDE as well as
see what editors, both paid and free can handle Rails code.

https://taylorandfrancis.com

261DOI: 10.1201/9781003229605-6

C h a p t e r 6

Ruby on Rails IDEs

IN THIS CHAPTER

 ➢ Learning about the concept of IDE

 ➢ Creating a list of commercial and free IDEs for Ruby
on Rails

 ➢ Installing and working with Middleman generator

An integrated development environment (IDE) is software
for creating applications that integrates basic developer
tools into a single graphical user interface. A typical IDE
usually consists of the following key items:

• Source code editor: A text editor that assists you in
scripting software code with functions such as syntax
highlighting with visual notes, providing language-
specific auto-completion features, and scanning for
bugs as code is built.

https://doi.org/10.1201/9781003229605-6

262 ◾ Mastering Ruby on Rails

• Local build automation: Function that automates
simple, repeated tasks as part of creating a local soft-
ware for use by the developer, such as compiling com-
puter source code into binary code, setting binary
code, or completing automated tests.

• Debugger: A program for checking other programs
that can graphically point at the location of a bug in
the original code.

An IDE is great since it lets developers start program-
ming new applications quickly as multiple features do not
need to be repeatedly and manually edited and integrated
as part of the creation process. There is also no need to
spend hours learning how to apply and modify different
tools when every utility is represented in the same work-
bench. This can be especially helpful for onboarding new
staff who can rely on an IDE to match the teams’ speed
of working on standard tools and workflows. As a matter
of fact, most features of IDEs are meant to save time, like
intelligent code completion and automated code genera-
tion, which removes the necessity to script full character
lines over and over again.

Other useful IDE features are meant to assist you to
structure the overall workflow and solve any issues that
might occur along the way. IDEs parse code as it is writ-
ten, so bugs caused by technical errors are picked out in
real-time. And since such utilities are represented by a
single user interface, developers can activate actions with-
out switching between applications. Syntax highlighting
is also common in most IDEs, which uses visual notes to
maintain correct grammar in the text editor. Some IDEs

Ruby on Rails IDEs ◾ 263

also like to include class and object browsers, as well as
class hierarchy layouts for certain languages.

At the same time, it is totally possible to develop appli-
cations without an IDE, or for each developer to try and
build their own IDE by manually merge various utilities
with a lightweight text editor like Vim or Emacs. The
main benefit of this approach is the ultra-customization
and authority it provides. In an enterprise setting, though,
the time saved, environment standardization, and auto-
mation characteristics of modern IDEs usually outweigh
other reasoning.

Nowadays, most enterprise development teams go for a
pre-configured IDE that suits their specific case require-
ments, so the question here is not whether to adopt an IDE,
but rather which IDE to choose. There are various techni-
cal and business applications for IDEs, which only means
there are many commercial and open-source IDE options
on the market. Normally, the most important differentiat-
ing features between IDEs are the following:

• The number of supported languages: Some IDEs are
focused only on one language and are a perfect match
for a specific programming case. To take IntelliJ, for
instance, that is known primarily as a Java IDE. Other
IDEs have a wider array of supported languages all in
one, like the Eclipse IDE which supports Java, XML,
and Python.

• Supported operating systems: A developer’s oper-
ating system might pose a serious limitation when
deciding which IDEs are viable and if the application
being developed is intended for an end-user with a

264 ◾ Mastering Ruby on Rails

certain operating system like Android or iOS, this
may be an additional constraint.

• Automation features: Even though most IDEs include
the three essential features of a text editor, build auto-
mation, and debugger, many also have support for
additional features like refactoring, code search, con-
tinuous integration, and real-time deployment tools.

• Impact on system performance: An IDE’s memory
imprint should be important when considering if you
want to run any memory-intensive applications.

• Plugins and extensions: Some IDEs include the option
to customize workflows to match your tech require-
ments and preferences.

MOBILE DEVELOPMENT IDEs
Most likely, every industry has been impacted in one way
or another by the rising popularity of apps made for smart-
phones and tablets, forcing many companies to develop
mobile apps in addition to standard web apps. One of the
key points in mobile application development is platform
choice. Therefore, if a new application is designed for use
on iOS, Android, and a web page, it may be advised to start
with an IDE that offers cross-platform support for various
operating systems.

CLOUD IDEs
IDEs that are provided as a cloud-based Software-as-a-
Service can offer you a great number of unique benefits com-
pared to the local development setting. To start with, as with
any SaaS offering, there is no need to download software and

Ruby on Rails IDEs ◾ 265

modify local environments and dependencies, meaning that
developers can start contributing to projects quicker. This
also ensures a certain level of standardization across team
members’ environments, which can prevent any common
workflow problems. In addition, because the development
environment is centrally managed, no code resides on an
individual developer’s computer, which can secure intellec-
tual property and foresee any security concerns.

The effect of processes on local machines is also quite
different from what cloud services can offer. Processes like
running code and testing projects are typically compute-
intensive, which means developers are probably unable to
continue using workstations while the process is active.
Cloud IDE can dispatch long-running processes without
taking over all of the compute resources of a local machine.
Cloud IDEs are also typically platform agnostic, enabling
connection to different cloud providers.

Depending on the programming language for which it
works, the application of IDE might differ. Yet, there are
still some basic rules of it that have been explained below:

• It is possible for the programmer to navigate through
a type without having to think about the project with
an IDE.

• When the user is typing and some error shows up, it
will give away warnings.

• The Ruby on Rails developer can use the hyperlinks
and easily navigate through all the tasks using an IDE.

• Based on the previous codes, it lets programmers
generate codes automatically.

266 ◾ Mastering Ruby on Rails

• An IDE can help to add some appropriate imports as
well as organize those imports.

• As the codes run from the same window, IDE makes
the running of unit tests quite easy.

It is also worth mentioning that the program gets to
directly run time exception from the error details or navi-
gate directly to compile-time error using IDE. Now that we
have seen what an IDE means and checked out some of its
basic uses, we can see some of the best IDEs which can be
used for Ruby on Rails development for your project.

PAID IDE OPTIONS
Ruby on Rails usage statistics proves that it is indeed a great
and popular backend framework for web development
companies since scripting code in Ruby is easier compared
to the rest of the programming languages. As a matter of
fact, Ruby gained its popularity only after the Ruby on
Rails framework became prevalent. And now developers
across the globe use Rails for rapid web development of
user-focused, high traffic websites, and applications. The
process of programming in Rails is faster than the rest of
the languages and frameworks, partly due to the object-
oriented foundation of Ruby and the extensive collection of
open-source code accessible within the community.

The most dedicated Rails community provides Ruby
Gems for almost all sorts of assignments. These collec-
tions are open-source and have absolutely no licensing
costs, therefore making it so dissimilar to other commer-
cial development frameworks. Apart from cost-saving, the
framework is also known to be highly productive, readable,

Ruby on Rails IDEs ◾ 267

and self-documenting. These characteristics enhance pro-
ductivity, as there is less requirement to write out specific
documentation. Plus, the self-documentation makes it
easier for developers to pick up random, ongoing projects.
Additionally, the Rails conventions make it possible for
developers to switch between diverse Rails projects.

It is a fact that every project is standardized and set
to abide by the same coding practices and flow. Rails is
mostly preferred for rapid application development, as this
framework offers almost effortless accommodation of any
alterations. Rails also has built a particular emphasis on
testing and has a sufficient testing framework. Owing to
these attributes, the framework is mainly applied by start-
ups and businesses who prioritize quick and secure results.

Basically, Ruby on Rails IDE is all you require to start your
programming mission with the Ruby on Rails web framework.
There are several IDEs that are available in today’s market, both
paid and free, and choosing one might be time-consuming. To
help you with that, in this section we shall provide you with a
list of the best commercial IDE for Rails development:

1. RubyMine: RubyMine is an IDE that upgrades your
productivity level in every aspect of Rails projects
development – from drafting and debugging code to
testing and deploying a completed application. Let
us go through a brief overview of some of the most
important features available in RubyMine:

• Smart editor: This editor allows you to write error-
free code faster with type-aware code completion,
smart code inspections, live templates, and inten-
tion actions.

268 ◾ Mastering Ruby on Rails

• Code completion: You can code faster with auto-
completion. It runs as you type, suggesting a list of
matching variables, methods, and keywords. This
completion works for Ruby and Rails, JavaScript,
CoffeeScript, CSS, and Sass.

• Refactoring: Refactoring your code typically
means fast and safe renaming and delete refac-
toring. You can complete all kinds of refactorings
with RubyMine: extract variables, parameters,
methods, or superclasses, introduce constants,
and many more. All the refactorings are Ruby on
Rails aware, and renaming a controller will also
rename the related helper, views, and tests.

• Code styling and formatting: With this feature,
you can configure and use a consistent code style
for any language. After you set the formatting for
indents, spaces, and aligning rules, you can share
it with your teammates. RubyMine automatically
applies the configured code style as you script. It
can also reformat whole files all at once.

• Documenting code: With this feature, it is pos-
sible to view documentation in a popup, create
missing tags using intention actions, and check
their validity. RubyMine utilizes YARD annota-
tions for better code review, allowing it to suggest
relevant results in code completion and param-
eter settings for methods.

• Live templates: Live templates let you type less
when you use the most common pattern outlines

Ruby on Rails IDEs ◾ 269

in your code. The same feature enables you to cus-
tomize the existing templates or create your own
if needed.

• Code inspections and quick-fixes: You will
always be the first to see if there are any errors and
system breakdowns, such as unreachable code,
incorrect call argument count, unused variables,
and others. You could then resolve these problems
automatically by applying quick fixes suggested
by the IDE. Just like that RubyMine upgrades
your productivity with Rails and natively sup-
ports all major web development practices.

• Rails-aware code maintenance: RubyMine sup-
ports Rails concepts and enhances code insight
features. For example, Autocompletion works for
DB fields, associations, and methods determined
by names and resource routes.

Similarly, Rails-aware rename refactoring
takes into account names of controllers, views,
tests, and helpers. RubyMine then offers support
for editing these views, with braces, folding, syn-
tax highlighting, and code completion. In case
you are using HAML or Slim views, you can find
syntax highlighting for the injected Ruby code as
well as coding assistance for HTML code inside
the IDE.

• MVC-based navigation: You can easily navigate
between Rails controllers, actions, views, models,
database schemas, and tests simply by using the
Navigate Related Symbol command.

270 ◾ Mastering Ruby on Rails

• Rails generators: It is permitted to add new Rails
entities, such as models, controllers, and migra-
tions, to your project with an interface that pro-
vides quick and context-sensitive access to Rails
generators.

• Rails internationalization support: You can cre-
ate or edit local properties using intention actions
right in the editor, to be able to run an inspection
to search for missing keys, preview localized val-
ues, and others.

• Model dependency diagram: Using a model
dependency diagram, you can take a bird’s-eye
view of your project models with their compo-
nents to analyze the project structure and navi-
gate to the code you need.

• Ruby tools: RubyMine offers great and sustain-
able integration with all the popular Ruby tools,
including Rubocop, Bundler, and Rake.

• Bundler integration: You can manage various
gem dependencies for your application right inside
the IDE using the Bundler integration and run
Bundler commands right from the Run Anything
popup.

• Version managers and gem sets support: These
tools enable you to quickly switch between the
different Ruby versions installed using version
managers, such as RVM, rbenv, asdf, and chruby.
Additionally, you can also work with RVM and
rbenv gemsets in the IDE.

Ruby on Rails IDEs ◾ 271

• Rake support: You can run any Rake task in your
project using the Run Anything popup (double
Ctrl). Or it is also possible to complete tasks right
from the editor using gutter icons.

• Rubocop integration: With Rubocop integration
feature, you can dix Rubocop offenses right inside
the IDE and check the entire project and display
all RuboCop warnings in a single report.

• Built-in IRB and Rails consoles: Using the IRB and
Rails consoles, it is possible to interact with your
application without ever having to leave the IDE.

• Testing: With RubyMine, you can generate, run,
and manage your tests with ease.

• User interface-based test runner: It is allowed
to run and debug RSpec, Minitest, Shoulda, and
Cucumber tests right from this IDE. The runner
will illustrate the whole progress using a tree view
for all running tests, including basic data about
the status and duration of a particular test.

You normally generate tests from predefined
customizable templates or you can create your
own test navigating to it from a class, and repli-
cating the directory structure based on the path
to the test subject.

• Navigate between tests and test subjects: In
addition to the previous point, in RubyMine, you
can easily navigate between a test and the test
subject. If you are using FactoryBot, you can even
navigate from models to factories and vice-versa.

272 ◾ Mastering Ruby on Rails

• View code coverage: It is allowed to measure how
much of your code is covered with tests using
integration with SimpleCov. You can also review
the percentage of covered files and lines in a sepa-
rate tool window and editor, as well as generate
HTML reports if necessary.

Since RubyMine is a commercial IDE, the price per user is
US $199.00.

Home page: https://www.jetbrains.com/ruby/

2. Sublime Text: Sublime Text is the code editor that is
customizable, user-friendly, and high-performing. It
is one of the most popular editors due to its conve-
nient user interface and the capability to add plugins,
which can turn it into a fully-featured IDE. Other key
features of the editor include the following:

• Graphics Processing Unit Rendering: Sublime
Text can utilize your graphics processing unit
on Linux, Mac, and Windows when rendering

https://www.jetbrains.com

Ruby on Rails IDEs ◾ 273

the interface. This results in an interactive, vivid
user interface all the way up to 8K resolutions, all
while taking less power than before.

• Tab Multi-Select: File tabs have been upgraded to
make split views effortless, with support through-
out the whole interface and built-in methods. The
sidebar, tab bar, Go to Anything, Go to Definition,
auto-complete, and more have all been advanced
to make code navigation easier and more intuitive.

• Context-aware autocomplete: The auto-complete
engine has been modified to provide smart comple-
tions based on the existing code library in a proj-
ect. Suggestions are also reinforced with data about
their kind, and additional links to definitions.

• Enhanced user interface: The Default and Adaptive
themes have been enhanced with new tab styles
and inactive pane dimming. Themes and Color
Schemes support auto dark-mode switching. The
Adaptive theme on Windows and Linux was made
to feature custom title bars.

• Superpowered syntax definitions: The syn-
tax highlighting engine has been significantly
upgraded with new components like handling
non-deterministic grammars, multi-line constructs,
lazy embeds, and syntax inheritance. In addition,
memory usage has been reduced, making load time
faster than ever. You can start using the editor at the
price of $99 USD.

Home page: https://www.sublimetext.com/

https://www.sublimetext.com

274 ◾ Mastering Ruby on Rails

3. Cloud9: Cloud9 IDE is an online IDE that supports
multiple programming languages, including C, C++,
PHP, Ruby, Perl, Python, JavaScript with Node.js,
and Go. IDE is scripted almost entirely in JavaScript,
using Node.js on the back-end with the Ace editor
component.

In 2016 Cloud9 was acquired by Amazon and
became a part of Amazon Web Services (AWS).
Meaning that as a new user you may only use the
Cloud9 service through an AWS account. This IDE
presents the development environment for nearly
all programming languages comprising Ruby. That
is making it very popular amongst medium to big
enterprises and companies like Soundcloud and
Mozilla, just to name a few already using Cloud9.

You can get the hosted development setting of Ruby on
Rails in Cloud9 and retrieve commands just like you
would do on your regular workstation. With Cloud9 you

Ruby on Rails IDEs ◾ 275

get practically all the characteristics that you require
for Ruby on Rails development including a text edi-
tor, file manager, Unix shell, preview, and chatting for
team collaboration. Other essential features include the
following:

• It supplies a browser-based editor that enables simple
scripting, running, and debugging of your projects.
The themes for the editor you can choose yourself.

• It encompasses the integrated panel debugger that
assists in breakpoint, check variables state and the
whole code.

• It enables you to activate commands, such as compil-
ing your code, forward code changes to git, and dis-
play command output from servers.

• Tools, namely Serverless Application Model (SAM),
use templates in Cloud9 to deliver a streamlined
way of describing resources for any serverless
applications.

• Moreover, as an online IDE, Cloud9 allows simulta-
neous editing from multiple users by offering a vari-
ety of different cursors and can support the creation
of private and public projects. Users can also drag-
and-drop files into projects and use tabs to organize
multiple files.

• Cloud9 has a built-in terminal, with npm and basic
Unix commands.

276 ◾ Mastering Ruby on Rails

• Built-in Image Editor.

• It is also popular for its support for deployment to
Heroku, Joyent, Microsoft Azure, Google App Engine,
and SFTP/FTP.

Even though it is technically a commercial tool, it still has
certain free tier offers that do not expire and are available
to all AWS customers:

• 12 months free: Meaning that you can enjoy Cloud9
for 12-months following your initial sign-up date to
AWS.

• Pay-as-you-go: This option allows you to adapt to
changing business needs without overcommitting
budgets and reducing the risk of overprovisioning or
missing capacity.

• Save when you commit: This saving plan offers usage
and payment On-Demand in exchange for a commit-
ment to use a specific amount (measured in $/hour)
of an AWS service or a category of services, for a one-
or three-year period.

• Payless by using more: Here, you can get volume-
based discounts and realize important savings as
your usage increases. For services such as Cloud9,
pricing is tiered, meaning the more you use, the less
you pay.

Home page: https://aws.amazon.com/?nc2=h_lg

https://aws.amazon.com

Ruby on Rails IDEs ◾ 277

FREE IDE OPTIONS
Nowadays most modern IDE offer intelligent code comple-
tion. The IDE design support programmer by advancing
the productivity with tight-knit components that have a
somewhat similar user interface that allow them to easily
use them. Some IDEs have either a compiler or an inter-
preter such as SharpDevelop and Lazarus. While some
other IDE such as NetBeans and Eclipse have both the com-
piler and interpreter for the execution of code. Some IDEs
are mainly designed for a specific programming language.
However, there are many multiple-language IDE that let
users complete programming for multiple languages using
just one open-source IDE. We shall go through such in this
section.

1. Aptana: Aptana Studio is one of the most popu-
lar open-source IDEs out there that help to make
dynamic programming web applications. Aptana
Studio provides integrated support with Rails and is
therefore considered the best IDE for Ruby on Rails

278 ◾ Mastering Ruby on Rails

owing to its usage of the external plugin RadRails,
which includes a lot of high-tech features to sim-
plify the development of database-driven web apps.
Additionally, this tool has upgrading novel features
to advance productivity and enable customization.
Some other key features are:

• HTML, CSS, and JavaScript Code Assist:
Aptana is great at helping to authorize HTML,
CSS, JavaScript, and PHP. It supports the latest
HTML specifications and includes data about the
level of support for each element in major web
browsers.

• Deployment Wizard: This IDE offers support
for one-shot as well as keep-synchronized setup
using multiple protocols including FTP, SFTP,
FTPS, and Capistrano. It also has a great ability
to automatically present your Rails applications
to hosting services such as Heroku or Engine
Yard.

• Integrated Debugger: With the Integrated
Debugger feature, you can set breakpoints, inspect
variables, and control the whole implementation.
The integrated Rails and JavaScript debuggers can
also help you to get rid of any bugs.

• Git Integration: With Aptana, you can easily
put your projects under git source code control
and collaborate with team members through the
merge, pull and push options to access remote
repositories such as those located in Github.

Ruby on Rails IDEs ◾ 279

• Built-in Terminal: It is possible to quickly access
a command line terminal for the implementation
of operating system commands and language
utilities such as gem or rake.

• IDE Customization: You can set up your devel-
opment environment precisely the way you want
it by extending the core capabilities by adding cer-
tain custom commands. Aptana has hundreds of
commands that could be easily accessed depend-
ing on the type of file you are editing.

Home page: http://www.aptana.com/

2. NetBeans: NetBeans IDE is one of the most used IDE
for various programming languages. It is a smarter
way to code for programmers as it allows users to
quickly and easily create desktop, mobile, and web
apps not only with Rails but also with Java, HTML 5,
PHP, and C/C++. Just like previous IDEs, it is avail-
able for free with a big community of users and
developers.

http://www.aptana.com

280 ◾ Mastering Ruby on Rails

NetBeans is applied for diverse programming languages as
a prevalent IDE for development. It is considered a faster
way for developers to code as it offers end-to-end app
development traits, continuously improving Java Editor,
maintaining frequent speed, and performance enhance-
ments. With that, it is safe to say that NetBeans IDE sets
the benchmark for application development.

Naturally, NetBeans arises from Oracle and relishes
the support of a huge community of users and developers.
Some of its key features include:

• It is the first IDE to support the newest versions of the
Java EE, JDK, and JavaFX.

• It is cross-platform and runs on Windows, Linux,
macOS, and Solaris.

• It provides smart outlines to help you comprehend
and manage your applications, containing great sup-
port for popular modern technologies.

Home page: https://netbeans.apache.org/

https://netbeans.apache.org

Ruby on Rails IDEs ◾ 281

3. Vim: Vim is another open-source, free-to-use text
editor for Ruby on Rails that is considered to be rich
in features. It is keyboard-based, which can make
moving from file to file quickly. It is also accessible as
the best Ruby IDE for Linux with plugins that present
a choice to convert this text editor into an influential
Ruby development environment. Essential V plugins
include:

• NERDTree: used to navigate the file tree.

• FZF: let you complete search through the files in
the project

• jiangmiao/auto-pairs: used to insert quotes and
parenthesis in pairs as you script

• tpope/vim-commentary: applied to comment
out a line or a selection in visual mode.

As well as that, outstanding Vim features include the
following:

• Syntax highlighting: It offers decent syntax high-
lighting for Ruby files out of the box. You may
also use a custom highlighter for certain template
formats, for instance, SLIM.

• Linting: One of the main things your text editor
should do for you is linting: spotting your syntax
errors, and helping you fix them. Let us see briefly
how you can get yourself an optimal linting expe-
rience in Vim.

282 ◾ Mastering Ruby on Rails

For linting in Vim, it is recommended to use a plugin called
ALE. Basically, it runs an external linter for you asynchro-
nously so it does not block the user interface. ALE is a great
plugin and supports plenty of languages and linters. So if you
have it installed in the system it will run the current file for
you, so you do not have to set up anything. Although if you
need to specify which linters you want to run, you can do this
in the settings file by providing the following variable:1

let g:ale_linters = {
 \ 'ruby': ['standardrb',
'rubocop'],
 \ 'python': ['flake8', 'pylint'],
 \ 'javascript': ['eslint'],
 \}

In order to review the full list of available linters for the
current file, you can run :ALEInfo<Enter> in the com-
mand line. Some of those linters can also fix your code.
For instance, testdouble/standard can both fix the errors
and format the file. In order to set it up for your file there is
another variable you need to insert:

let g:ale_fixers = {
 \ 'ruby': ['standardrb'],
 \}
let g:ale_fix_on_save = 1

The last line of the code above is a great time saver – it will
automatically fix and thus format your file on save.

1 https://www.vimfromscratch.com/articles/vim-for-ruby-and-rails-in-2019/,
Vimfromscratch

https://www.vimfromscratch.com

Ruby on Rails IDEs ◾ 283

There is another convenient configuration option that
illustrates the total number of warnings and errors in the
status line:2

function! LinterStatus() abort
 let l:counts =
ale#statusline#Count(bufnr(''))
 let l:all_errors = l:counts.error +
l:counts.style_error
 let l:all_non_errors = l:counts.total
- l:all_errors

 return l:counts.total == 0? ' all good
' : printf(

 \ ' %dW %dE',
 \ all_non_errors,
 \ all_errors
 \)
endfunction

set statusline=
set statusline+=%m
set statusline+=\ %f
set statusline+=%=
set statusline+=\ %{LinterStatus()}

In case you decide that ALE is not your cup of tea, here are
a couple of alternatives to look at:

• vim-syntastic/syntastic: very popular one but syn-
chronous which can cause significant delays in the
user interface.

2 https://www.vimfromscratch.com/articles/vim-for-ruby-and-rails-in-2019/,
Vimfromscratch

https://www.vimfromscratch.com

284 ◾ Mastering Ruby on Rails

• neomake/neomake: asynchronous linting that is
used to build a framework for Neovim code editor.

• Navigation between files: It often happens that you
would want to quickly jump from one file to another
(for instance, from a model to controller, or from the
controller to test). This is what Vim Rails lets you do.
It offers plugins that enhance your Rails code and
enable you to do complete things like:

• Use Emodel, :Eview, :Econtroller to easily jump
to corresponding model, view and any controller
files.

• Offers :Rails runner execution

• Use :Rails without arguments to activate the test,
specification, or feature

• Autocompletion

Autocompletion in dynamic languages like Ruby could
be challenging at times. But Vim can definitely help
with that by indexing and analyzing large chunks of
data files. Now, how to set and modify the autocomplete
function exactly? First and foremost, it is recommended
to install the deoplete plugin which acts like an asyn-
chronous completion framework that suggests comple-
tion options for you as you type. To enable it, insert the
following:

let g:deoplete#enable_at_startup = 1

Ruby on Rails IDEs ◾ 285

Or you can also get it through this Tab code:

inoremap <silent><expr> <TAB>
 \ pumvisible()? "\<C-n>" :
 \ <SID>check_back_space()? "\<TAB>" :
 \
deoplete#mappings#manual_complete()
function! s:check_back_space() abort "{{{
 let col = col('.') - 1
 return !col || getline('.')[col - 1] =˜ '\s'
endfunction"}}}

Additionally, there is another concept called “Language
Servers” first introduced by Microsoft with TypeScript
which denotes a separate process running in the back-
ground and analyzing your code as you type. Editors and
IDEs can communicate with this process and ask for some
specific information like syntax errors or autocomplete
suggestions. You can unlock such feature on Rails as well
by using the following gem:

gem install solargraph
solargraph socket

Then you will also need a Language Server plugin for Vim.
In order for it to work you need to tell it where it should
find the language server for a particular language. For that,
insert the following into your vim settings:

let g:LanguageClient_serverCommands = {
 \ 'ruby': ['˜/.rbenv/shims/solargraph',
'stdio'],
 \ }

286 ◾ Mastering Ruby on Rails

With that, restart Vim and see if you can use it. Additionally,
for better Rails support you might also want to run:

solargraph bundle

This will manage multiple operational tasks in the background
for you as well as enable you to autocomplete things like
belongs_to, before_action, and other Rails-specific methods.

In case the original deoplete plugin would seem on the
harder side for you, it is possible to check the following
alternatives:

• YouCompleteMe: an older code-completion engine
with a great rating on GitHub.

• SuperTab: another Vim plugin that you can use for
many insert completion needs.

• Expanding: By Expanding we mean expanding a snip-
pet with the Neosnippet Vim plugin. Snippet stands
for the capacity to script something short then have it
expanded into a full method where you can insert the
method name right away and then move to the code
body. As usual, there are several engines that can do
the trick for you, but a slight challenge here is how to
actually make it compatible with other plugins you
already have, like auto-completion plugins.

In case you are using the previously mentioned deoplete
plugin for completion, then it is recommended to try the
Neosnippet Vim plugin for expanding:

if has('nvim')
 Plug 'Shougo/deoplete.nvim', { 'do':
':UpdateRemotePlugins' }

Ruby on Rails IDEs ◾ 287

else
 Plug 'Shougo/deoplete.nvim'
 Plug 'roxma/nvim-yarp'
 Plug 'roxma/vim-hug-neovim-rpc'
endif

Plug 'Shougo/neosnippet.vim'
Plug 'Shougo/neosnippet-snippets'

Certain mappings might be helpful as well:
imap <C-k> <Plug>(neosnippet_expand_
or_jump)
smap <C-k> <Plug>(neosnippet_expand_or_
jump)
xmap <C-k> <Plug>(neosnippet_expand_
target)

With all the above code you can activate a snippet through
the familiar deoplete interface, and then press <C-k> mul-
tiple times to expand the snippet and move the cursor to
the next editable part.

Home page: https://www.vim.org/

https://www.vim.org

288 ◾ Mastering Ruby on Rails

4. Atom: Atom editor is an open-source IDE from
Github, now a subsidiary of Microsoft, that is known
for its extremely customizable traits that simplify
code development.

Atom is also great for increasing productivity
without moving the configuration file each time.
Typically, it does not operate on its own since it gets
support from the Github seamless practice. With
Atom you can create new branches, set and com-
mit, push and pull, resolve merge conflicts, view pull
requests, and more – all from within your editor. And
since the GitHub package is already bundled with
Atom, it supports numerous programming languages
that include Ruby. Some other features of Atom for
Rails development are:

• Cross-platform editing: Atom works across oper-
ating systems and you can use it on OS X, Windows,
or Linux.

• Built-in package manager: You can search for
and install new packages or create your own right
from Atom.

• Smart autocompletion: Atom lets you write code
faster with a smart and fast autocomplete feature.

• File system browser: With a File system browser
you can easily browse and open a single file, a
whole project, or multiple projects in one window.

• Multiple panes: This particular feature allows
you to split your Atom interface into multiple
panes to compare and edit code across files.

Ruby on Rails IDEs ◾ 289

• Find and replace: With Atom you can find, pre-
view, and replace any text as you type in a file or
across all your projects.

• Themes: Atom comes pre-installed with four user
interface options and eight syntax themes in both
dark and light colors. And if you still cannot find
what would suit you perfectly, then it is possible
to install themes created by experts of the Atom
community or even create your own.

• Customization: It is very easy to customize and
style Atom. You can change or completely reset the
look and feel of your interface with CSS/Less, and
add major features with HTML and JavaScript.

• Under the hood: Atom was initially built with
HTML, JavaScript, CSS, and Node.js integration.
And it runs on Electron, a framework for creating
cross-platform applications using web technologies.

Home page: https://atom.io/

https://atom.io

290 ◾ Mastering Ruby on Rails

5. Emacs: Emacs is preferred by many multifunctional
editors for Ruby and Ruby on Rails-based web pro-
gramming. It is free to use and can be modified and
customized as per your many requirements. Emacs
is heavily utilized by Rails community developers,
and for that reason, there are a devoted Rails plugins
like ruby-tools, rubocop-emacs, rake, rvm, chruby,
bundler, and rbenv.named that enhance Ruby mode
for supporting Rails programming. Other important
Emacs features include:

• Content-aware editing modes, including syntax
coloring for many file types.

• Complete built-in documentation, including a
tutorial for new users.

• Full Unicode support for nearly all code scripts.

• Highly customizable Emacs Lisp code and a
graphical user interface.

• A wide range of functionality including a project
planner, mail and newsreader, debugger interface,
calendar, and Internet Relay Chat client.

• Default packaging system for downloading and
installing extensions.

Additionally, the Emacs Project also has a very interesting
philosophy that they manifest to it user community that is
based on the concept of freedom software. Free software
means that the software’s users have freedom. Professionals
developed the Emacs tool so that users can have freedom in
their computing.

Ruby on Rails IDEs ◾ 291

To be precise, the statement also explains that3

free software means users have the four essential
freedoms: (0) to run the program, (1) to study
and change the program in source code form, (2)
to redistribute exact copies, and (3) to distribute
modified versions. Software differs from material
objects – such as chairs, sandwiches, and gaso-
line – in that it can be copied and changed much
more easily. These facilities are why software is
useful; we believe a program’s users should be free
to take advantage of them, not solely its developer.

As a beginner, you are certainly going to devote much of
your time to opt for the required EDI for your web devel-
opment project. Therefore, it is crucial to have a tool that
you are comfortable and most productive with. Most of
the IDEs mentioned above for Rails development are either
free or give a free trial version. It is always helpful to try out
a few of them before you decide which one to stick with.
Here are certain things that you should consider before
selecting the best text editor for Ruby:

First, look at inbuilt characteristics that promise to
enhance your productivity like auto-complete, code snip-
pets, and clean design that does not get in your way. See
whether the selected Ruby on Rails IDE is open-source or
not. Also, make sure to double-check what Ruby-related
plugins are accessible to create things easier and increase
your productivity in building applications.

Home page: https://www.gnu.org/software/emacs/

3 https://www.gnu.org/savannah-checkouts/gnu/emacs/emacs.html#features,
Gnu

https://www.gnu.org
https://www.gnu.org

292 ◾ Mastering Ruby on Rails

MIDDLEMAN GENERATOR
Middleman is a static site generator that uses all the short-
cuts and tools of modern web development. It shares many
conventions with Ruby on Rails making it familiar and
feasible to migrate to Rails if that need ever arises.

In the last few years we have seen an explosion in the
amount and variety of tools developers can utilize to cre-
ate web applications. Ruby on Rails selects a handful of
these tools such:

• Sass for DRY stylesheets

• CoffeeScript for safe and fluid Javascript

• Multiple asset management solutions, including
Sprockets

• ERb & Haml for dynamic pages and simplified HTML
syntax

Additionally, many websites are built with an API in mind.
Instead of packaging the frontend and the backend together,

Ruby on Rails IDEs ◾ 293

both can be built and deployed independently using the
public API to pull data from the backend and show it on
the frontend. Static websites are incredibly fast and require
very little memory space. A front-end built to stand-alone
can be deployed directly to the cloud or a Content Delivery
Network. Many developers choose to simply deliver static
HTML/JS/CSS to their clients.

Middleman is distributed using the RubyGems pack-
age manager. This means you will require both the Ruby
language runtime installed and RubyGems to start using
Middleman. macOS comes prepackaged with both Ruby
and RubyGems, yet some of the Middleman’s dependen-
cies have to be compiled during installation and on macOS
that requires Xcode Command Line Tools. Xcode can be
installed from the terminal:

$ xcode-select --install

Once you have Ruby and RubyGems up and running,
implement the following from the command line:

$ gem install middleman

This feature installs Middleman, its dependencies, and the
command-line tools for using Middleman. This installa-
tion process also adds the following three useful features:

$ middleman init
$ middleman server
$ middleman build

Once you are done with the installation, you need to get
started and create a project folder for Middleman to work

294 ◾ Mastering Ruby on Rails

out of. You can complete this using an existing folder or
have Middleman create one for you using the middleman
init command:

• $ middleman init: builds a Middleman skeleton
project in your current folder.

• $ middleman init my_new_project: creates a sub-
folder my_new_project with the Middleman skeleton
project.

The Skeleton

Every new project you start provides a basic web develop-
ment skeleton for you. This automates the building of a
standard hierarchy of folders and files that you can apply
in all of your projects. A brand-new project must typi-
cally have a source folder and a config.rb file. The source
folder is where you will build your website. Additionally,
the skeleton project has JavaScript, CSS, and images fold-
ers, but you can change these to serve your own personal
preferences.

Gemfile

Middleman uses a Bundler Gemfile for identifying and
controlling your gem dependencies. When working on
a new project, Middleman will generate a Gemfile for
you which uses the same version of Middleman you are
working with, locking Middleman to this specific release
series. All plugins and extra libraries you use in your
project should be listed in your Gemfile, and Middleman
will automatically request all of them when it starts
running.

Ruby on Rails IDEs ◾ 295

config.ru

A config.ru file is used to define how the site would be
loaded by a Rack-enabled web server. If you would like to
host your Middleman site in development mode on a Rack-
based host such as Heroku, you can add a config.ru file at
the root of your project with the following code:

require 'middleman/rack'
run Middleman.server

At the same time, keep in mind that Middleman is built to
generate static sites and this scenario is not a primary use-case.

At last, when you are ready to deliver static code or host
a static blog, you will need to build the site. Using the com-
mand-line, from the project folder, you are expected to run
middleman build:

$ cd my_project
$ bundle exec middleman build

This will create a static file for each file located in your source
folder. Afterward, template files will be compiled, static files will
be copied and any enabled build-time features (such as compres-
sion) will be implemented. Middleman will as well automati-
cally remove all the unnecessary files from the build directory
for you so they do not get involved with the production.

In order to speed up the build time, you can expose the
variable NO_CONTRACTS=true like that:

$ cd my_project
$ NO_CONTRACTS=true bundle exec middleman
build

296 ◾ Mastering Ruby on Rails

Contracts like the above one, are normally used to add type
signatures to certain methods, and Middleman utilizes
them internally to override and remove the gems’ classes,
so no type checking is necessary.

After building the site you are supposed to have every-
thing you need within the build directory. There are mul-
tiple ways to deploy a static build. So we only present one
solution for this, but you should feel free to search the web
or look at the extension directory for more alternatives to
deploy Middleman. If you are an author of a deployment
tool suitable to deploy Middleman, you may open a pull
request to the directory. A very convenient tool to deploy a
build is middleman-deploy. It can deploy a site via Rsync,
FTP, SFTP, or Git:

$ middleman build [--clean]
$ middleman deploy [--build-before]

Production Asset Hashing

A standard setup for production is to hash your assets and
serve them through a Content Delivery Network. You can
accomplish this easily with Middleman:4

configure :build do
 activate :minify_css
 activate :minify_javascript

 # Append a hash to asset urls (make sure
to use the url helpers)
 activate :asset_hash

4 https://middlemanapp.com/basics/build-and-deploy/, Middleman

https://middlemanapp.com

Ruby on Rails IDEs ◾ 297

 activate :asset_host, :host => '//
YOURDOMAIN.cloudfront.net'
end

Templates

Middleman provides access to many templating languages
to ease your HTML development. The languages range
from simply letting you use Ruby variables and loops in
your pages, to providing a completely different format to
script your pages in which compiles to HTML. Moreover,
Middleman has built-in support for the Haml, Sass, SCSS,
and CoffeeScript engines (more engines can be enabled by
including their Tilt-enabled gems).

However, the default templating language for Middleman
is ERB. ERB looks similar to the HTML, except it lets you
insert variables, call methods, and use loops and if state-
ments. Generally, all of the template files in Middleman
include the extension of the ERB in their filename. A sim-
ple index page written in ERB would be named index.html.
erb which includes the full filename, index.html, and the
ERB extension.

File Size Optimization

Middleman can as well handle CSS minification and
JavaScript compression so you do not have to worry about
it. Most libraries provide minified and compressed ver-
sions of their files for users to deploy, but these files could
be unreadable or editable. Middleman allows you to keep
the original, commented files in the project so you can eas-
ily read them and modify if needed. Then, when you build
the project, Middleman will manage all the optimization
for you.

298 ◾ Mastering Ruby on Rails

To start with, in your config.rb, you are expected to acti-
vate the minify_css and minify_javascript features during
the build of your site:

configure :build do
 activate :minify_css
 activate :minify_javascript
end

In case you are already using a compressed file that
includes .min in its filename, Middleman will not feature
it. This could be a great option for libraries like jQuery
which are carefully compressed by their authors ahead
of time.

It is also possible to customize how the JavaScript com-
pressor operates by setting the :compressor option for
the :minify_javascript extension in config.rb to a custom
instance of Uglifier. To illustrate with an example, you
could enable unsafe optimizations and mangle top-level
variable names like this:

require "uglifier"
activate :minify_javascript,
 compressor: proc {
 ::Uglifier.new(:mangle => {:toplevel
=> true}, :compress => {:unsafe => true})
 }

In case you have asset_hash activated, make sure that you
keep mangling variables disabled at the same time. If man-
gling is enabled, Uglifier will create different compressed

Ruby on Rails IDEs ◾ 299

versions of the JavaScript on each machine, resulting in
different hashes in the filename and different references in
each version of the HTML. For instance:

require "uglifier"
activate :minify_javascript, compressor:
-> { Uglifier.new(:mangle => false) }

However, in case you need to exclude any files from
being minified, pass the :ignore option when activating
these extensions, and give it one or more globs, regexes,
or procs that mark the files to ignore. Likewise, you can
pass an :exts option to show which file extensions are
renamed.

If you want to speed up your JavaScript minification
(and CoffeeScript builds), you can do it by including these
gems in your Gemfile:

gem 'therubyracer' # faster JS compiles
gem 'oj' # faster JSON parser and object
serializer
gzip text files

It is also recommended to serve compressed files to user
agents that can manage them. Many web servers have the
ability to gzip files on the go, but that requires Central
Processing Unit work every time the file is served, and
as a result, most servers cannot complete the maximum
compression. Middleman can produce gzipped versions of
your HTML, CSS, and JavaScript alongside your regular
files, and you can instruct your webserver to serve those

300 ◾ Mastering Ruby on Rails

pre-gzipped files directly. For that, you need to enable the
:gzip extension first:

activate :gzip

Then if you want to compress images on build, you can
try middleman-imageoptim. Middleman also provides an
official extension for minifying its HTML output. Simply
add middleman-minify-HTML to your Gemfile:

gem "middleman-minify-HTML"

After that run bundle installs, open your config.rb and insert:

activate :minify_html

As a result, you should see view-source:’ing that your
HTML is now being minified.

Custom Extensions

Middleman extensions are Ruby classes that can connect to
various points of the Middleman system, add new features
and modify content. The following sections will explain some
of what is available, but it is also advised to additionally access
the Middleman source and the source of plugins like middle-
man-blog to browse all the hooks and extension options.

In order to establish a new extension, you can use the stan-
dard extension command. This will create all needed files:5

middleman extension middleman-my_extension
create middleman-my_extension/.gitignore
create middleman-my_extension/Rakefile

5 https://middlemanapp.com/advanced/custom-extensions/, Middleman

https://middlemanapp.com

Ruby on Rails IDEs ◾ 301

create middleman-my_extension/
middleman-my_extension.gemspec
create middleman-my_extension/Gemfile
create middleman-my_extension/lib/
middleman-my_extension/extension.rb
create middleman-my_extension/lib/
middleman-my_extension.rb
create middleman-my_extension/features/
support/env.rb
create middleman-my_extension/fixtures

Basic Extension

At the same time, the most basic extension looks like:

class MyFeature < Middleman::Extension
 def initialize(app, options_hash={}, &block)
 super
 end
 alias :included :registered
end
::Middleman::Extensions.register(:my_
feature, MyFeature)

The above module should be kept accessible to your config.
rb file. So you should either define it directly in that file
or define it in another Ruby file and require it in config.rb
Finally, once your module is included, you must activate it
in config.rb using the following feature:

activate :my_feature

The register method lets you choose the name your exten-
sion is activated with. It can also take a block if you want to
require files only when your extension is activated.

302 ◾ Mastering Ruby on Rails

In the MyFeature extension, the initialize method will
be called as soon as the activate command is run. The
app variable is an instance of Middleman::Application
class.

activate can also take an options hash (which are
passed to register) or a block that can be used to config-
ure your extension. You define options with the options
class method and then access them with the following
variable:6

class MyFeature < Middleman::Extension
 option :foo, false, 'Controls whether
we foo'
 def initialize(app, options_hash={},
&block)
 super
 puts options.foo
 end
end

Adding Methods to config.rb

Methods within your extension can be made available to
config.rb through the following expose_to_config method:

class MyFeature < Middleman::Extension
 expose_to_config :say_hello
 def say_hello
 puts "Hello"
 end
end

6 https://middlemanapp.com/advanced/custom-extensions/, Middleman

https://middlemanapp.com

Ruby on Rails IDEs ◾ 303

Similar to config, methods can be added to any Middleman
template context:

class MyFeature < Middleman::Extension
 expose_to_template :say_hello
 def say_hello
 "Hello Template"
 end
end

Adding Helpers

Another way to add methods to templates is by using help-
ers. Unlike exposed methods from before, helpers do not
have access to the whole extension. They are mostly pre-
ferred for bigger sets of methods combined into a module.
In other cases, the above-exposed methods are preferred.
You can activate helpers with the following code:

class MyFeature < Middleman::Extension
 def initialize(app, options_hash={},
&block)
 super
 end

 helpers do
 def make_a_link(url, text)
 "#{text}"
 end
 end
end

Now, with helpers inside your templates, you will have
access to a make_a_link method.

304 ◾ Mastering Ruby on Rails

Sitemap Manipulators

It is also possible to modify or add pages in the sitemap
by creating a Sitemap extension. The directory_indexes
extension uses this feature to reroute standard pages to
their directory-index version, and the blog extension
uses several plugins to create a tag and calendar pages.
As an example of sitemap manipulators we shall illustrate
the manipulate_resource_list that is required to return
the full set of resources to be passed to the next step of the
pipeline:

class MyFeature < Middleman::Extension
 def manipulate_resource_list(resources)
 resources.each do |resource|
 resource.destination_path.
gsub!("original", "new")
 end

 resources
 end
end

Callbacks

At the same time, there are many parts of the Middleman
life-cycle that can be accessed by various extensions. For
example, at times when you want to wait until the con-
fig .rb has been executed to run code and for that, you
rely on the :css_dir variable, waiting until it has been set.
To unlock and manipulate this process, you can use this
callback:7

7 https://middlemanapp.com/advanced/custom-extensions/, Middleman

https://middlemanapp.com

Ruby on Rails IDEs ◾ 305

after_configuration

class MyFeature < Middleman::Extension
 def after_configuration
 puts app.config[:css_dir]
 end
end

after_build
This callback is applied to implement code after the build
process has been completed. The middleman-smusher
extension uses this feature to compress all the image files
in the build folder after it has been created. It is also pos-
sible to integrate a deployment script after build:

class MyFeature < Middleman::Extension
 def after_build(builder)
 builder.thor.run './my_deploy_script.sh'
 end
end

There are also additionally available callbacks such as the
following:8

• initialized: called before config is parsed, and before
extensions are registered

• configure: called to run any configure blocks for the
current environment or the current mode

• before_extensions: called before the ExtensionManager
is activated

8 https://middlemanapp.com/advanced/custom-extensions/, Middleman

https://middlemanapp.com

306 ◾ Mastering Ruby on Rails

• before_instance_block: called before any blocks are
passed to the configuration context

• before_sitemap: called before the SiteMap::Store is
activated, which initializes the sitemap

• before_configuration: called before configuration is
parsed, mostly used for extensions

• after_configuration_eval: called after the configura-
tion is parsed, before the pre-extension callback

• ready: called when everything is stable

• before_build: called before the site build process
runs

• before_shutdown: called in the shutdown! method
used to notify users that the application is shutting
down

• before: called before Rack requests

• before_server: called before the PreviewServer is
produced

• reload: called before the new application is initialized
on a reload event

To conclude, Middleman is a rich and ever-evolving tool
that definitely deserves to be studied and applied on any
project basis. All of the updates and system changes can
be tracked through social media, you just need to search
and follow @middlemanapp tag in whatever platform you
are on.

307DOI: 10.1201/9781003229605-7

Appraisal

Ruby on Rails is an open-source software used to create
web applications. Rails stands for a framework based on
the general-purpose programming language Ruby that
ranks amongst the top programming languages predomi-
nantly because of Rails popularity.

It is normal for a developer to look for ways that help
in reducing the amount of effort and time put into build-
ing a web application, something that can automate the
tedious tasks that are involved in the process of creating
a website. Ruby on Rails is just the software for that. It
is manageable, user-friendly, and designed on the Model-
View-Controller (MVC) architecture that offers numer-
ous benefits.

Whether you have been programming for years and
want to give web development in Ruby a try, or you are
a complete coding newbie wanting to see if program-
ming is for you, Rails is a great tool to learn. Most of
the resources in this book assume no programming
knowledge – more advanced readers may choose to skim
the introductory sections of each to learn the particulars
of Ruby and Rails.

https://doi.org/10.1201/9781003229605-7

308 ◾ Appraisal

As already mentioned, Rails is designed on the basic
MVC software design pattern for developing web applica-
tions. It is made up of three parts:

1. Modal: It is the lowest level of the pattern that is
responsible for maintaining data.

2. View: It is accountable for displaying a portion of or
all data to the viewer.

3. Controller: It is the software code that administers
interactions between Modal and View.

MVC detaches the application logic from the user interface
layer and assists the severance of concerns. The controller
is the center that receives the requests for the application
and then performs with Modal to generate the required
results which are then in turn displayed by View. Due to
these Ruby on Rails’ building features, it is usually applied
for creating Software as a service (Saas) solutions. It is also
beneficial to use Ruby on Rails to create Social Networking
sites or any other non-standard complex projects.

From the business perspective, Ruby on Rails has many
different advantages:

• Easy to manage changes: Ruby on Rails makes it
easy to optimize the existing code or add new fea-
tures to the site. After site launch, future editions to
your site (like making any remarkable changes to the
data model) are simple and fast to complete. This is
particularly most convenient for long-term projects
due to its stability and precision.

Appraisal ◾ 309

• Secure: Some security measures are included in the
framework and activated by default. Using Ruby on
Rails, you would follow the secure development life-
cycle, which might be a complicated security assur-
ance approach. But Rails community constantly
works to spot and fix new vulnerabilities and the
framework is well documented by its dedicated users.

For applications with lots of functions and data
handling, Rails could slow the application down. If
this is often happening in your application, you could
always opt for code optimization, which greatly
improves performance outcomes.

• Flexibility: Web applications use the frontend and
backend capabilities of Rails because these are sim-
pler and easier to create. Yet the application needs
to communicate with the server to load the webpage
and can lack the immediate responsiveness to a user’s
taps and selections.

Single page web applications can be more compli-
cated to create but may allow for more involved user
interfaces and provide instant responses to user’s
actions by only loading some parts of the website as
needed. A single-page web application would usually
use something like Angular or React for the frontend.
However, it would still use Rails as a backend, allow-
ing your application to rely on some of Rails best
features.

• Productivity: Ruby is a concise language, and when
combined with third-party libraries, it lets you
develop features especially fast. It is one of the most

310 ◾ Appraisal

productive programming languages around. Nearly
all of these libraries are released in the form of a
gem, a packaged library, or an application that can be
installed with a specific Ruby plugin.

• A large repository of free plugins: The abundance of
free plugins is another great Rails advantage. In operat-
ing with Rails, you can customize your website for any
organizational need – for instance, create your own
exclusive social network or launch advanced e-com-
merce services with a high level of user data protection.

On the other hand, there are certain Rails disadvantages
that one should be aware of:

• Runtime Speed: One of the areas of concern is slow
runtime speed. It is true that other top environments
and frameworks (like Node.js or Django) are some-
what faster than Rails. Twitter, for instance, decided
to boost Rails performance that decreased after the
social network became highly popular, by replacing
certain internal communication components and
server daemons with Scala solutions.

• Boot Speed: Boot speed can also affect the developer’s
time. Depending on the number of plugin dependen-
cies and files, it can take a significant amount of time
to start. At the same time, one should take not solely
development and design into consideration. Some
maintenance, debugging, and adding new functions
should take a longer time. Be prepared for that and
you might avoid plenty of issues in the future.

Appraisal ◾ 311

With the current variety of programming languages,
frameworks, platforms, and development environments
that we have nowadays, one cannot go without comparing
one to the other. Rails is often correlated to other frame-
works and environments due to its multi-capacity and
flexibility. It tends to completely cross the line that distin-
guishes conventional categories like languages and frame-
works, providing a handful of tools to complete scalable
and high-quality work.

• Ruby on Rails vs Python: Python is a general-pur-
pose programming language. Some perceive Python
as an all-purpose language that is able to meet any
requirements of the coder without having to look for
any external tools. In contrast to Python, Ruby on
Rails is not a language, it stands out as a framework
built upon the Ruby language and explicitly used for
web development.

• Ruby on Rails vs PHP: PHP is a language with an
object-oriented programming (OOP) structure used
for coding. It is mostly applied in software develop-
ment, while Rails is the framework sought for web
development. Same as with Python, this comparison
with PHP would not be entirely correct since Ruby
on Rails is not a language. However, you most likely
going to experience many situations where Ruby on
Rails and PHP would be applied within the same
project.

• Ruby on Rails vs Java: Java is one of the oldest and
widely popular languages. It is specifically known as a

312 ◾ Appraisal

language to create applications for a variety of operat-
ing systems. This technology is especially well-known
as being a top language for developing Android apps.
In contrast to Java, Rails is mostly applied for web
development purposes.

• Ruby on Rails vs JavaScript: Although they are
similarly named, Java and Javascript are completely
different scripting languages that were made for dif-
ferent purposes. Java’s goal is to enable developers to
apply the same code on different operating systems
without having to optimize it much. Yet nowadays,
Java applets are getting less popular, with most users
preferring Java support disabled in their browsers.
On the other hand, Javascript is more popular than
ever as it runs perfectly well with modern web brows-
ers, especially on mobile.

Moreover, JavaScript is one of the most widely-used front-
end programming languages, particularly focused on
creating versatile user interfaces for web applications for
different devices. Rails and Java share a few basic similari-
ties, but for the most part, they should be perceived as com-
pletely different languages. They are both strongly-typed
and OOP languages, but Rails is an interpreted scripting
language while Java is a compiled coding language.

JavaScript and Ruby on Rails are both in high demand
right now, and both are viewed as lucrative web develop-
ment programming languages that have apparent advan-
tages. At the same time, they go hand in hand really well.
That is why, if presented with a choice whether to learn
Ruby or Javascript, you should consider taking the third

Appraisal ◾ 313

option and learn both of these computer programming
languages.

• Ruby on Rails vs Node.js: Node.js is an open-source
platform for implementing JavaScript code server-
side, as it was primarily built on the JavaScript run-
time. Fundamentally, you should not be comparing
Node.JS to Rails at all since unlike Rails, Node is
not a framework but an application runtime envi-
ronment that enables scripting on the server-side
application using Javascript, while Ruby on Rails is a
full-featured framework.

Nevertheless, in order to discuss Rails and its relevance for
beginners, it is important to take a step back and under-
stand that it is not just the Rails framework that is begin-
ner-friendly, but the Ruby language it is founded on as well.
Basically, Rails IS Ruby, or at least it exists on top of Ruby.
This means that learning Rails will involve reviewing at
least some parts of the Ruby programming language –
though nothing beyond simple syntax.

The Ruby language itself – and not just the Rails web
framework – is a great choice as a beginning coding
language – it is easy to read and does a lot of the work for
you. Other languages, like C, require a lot more code to
complete something you can achieve in a few lines with
Ruby. And since Rails is like an extension of Ruby, you can
truly master Ruby on Rails once you have learned Ruby
variables, blocks, comments, and key control structures.

When you are creating an app with Ruby on Rails
development, chances are, you will have to manage the

314 ◾ Appraisal

massive amount of data. And in a project as such, without
a solid data structure, it will quickly become a mad clutter.
Especially if you are building a backend in Ruby on Rails,
creating a database that will take care of data-based pro-
cesses and keep the app’s information structured is essen-
tial. Therefore, this book also includes a chapter about the
most popular databases in Ruby on Rails web development,
introducing you to the process of consolidating them and
outlining the best practices.

Simply put, Ruby on Rails is a Web application frame-
work made for developing Web applications. And in your
application, if you expect or need a user to enter informa-
tion through a Web form, you require a database to store
all that information. In Rails framework, the database table
has a plural name (ending with “s”), and the primary key
in the database is known as id and auto-incremented. To
retrieve stored information from the database, Rails uti-
lizes a component named ActiveRecord that operates as a
bridge between the database and Ruby code.

If you find yourself in charge of a Rails app for the first
time, there are a couple of areas where you really do not
want to have any issues:

• Data Integrity: Is all the data in your database
reliable?

• Database Performance: Do your queries return in an
appropriate amount of time?

As far as these points are concerned, database transactions
(and their ActiveRecord counterparts) are great tools for
avoiding these problems. Transactions are typically used

Appraisal ◾ 315

when you need to ensure data integrity, even if your web
app crashes in the middle of a request. Properly applied,
they can speed queries and guarantee data safety.

It is a fact that every project is standardized and set
to abide by the same coding practices and flow. Rails is
mostly preferred for rapid application development, as this
framework offers almost effortless accommodation of any
alterations. Rails also has built a particular emphasis on
testing and has a sufficient testing framework. Owing to
these attributes, the framework is mainly applied by start-
ups and businesses who prioritize quick and secure results.

There are many pieces to understand when building
web applications, and chances are it might get a bit blurry
the first time founding concepts are introduced. This
Rails Mastering also makes sure to focus on some addi-
tional topics, and if they overlap, hearing the same thing
explained two different ways will only make it clearer. This
book should be viewed as your primary guide and initial
encounter with Ruby in Rails. You now hold all the infor-
mation necessary to begin with your creations.

https://taylorandfrancis.com

317

Index

A

ActionController, 59
Active Record, 45, 72, 210–211,

238
creation, 242–244
CRUD, 244–246
migration method, 247–251

Active Record and
referential integrity,
257–258

change method, using,
255–257

column modifiers,
254–255

columns, changing,
253–254

join table, creating,
252–253

old migrations,
258–259

naming conventions,
240–242

validations, 247
ActiveRecord::Rollback

method, 214
AddDetailsToProducts,

250, 251

Advantages of Ruby on Rails, 19,
308–310

After_build, 305–306
After_configuration, 305
Ajax, 21
ALE, 282
Allow_blank option, 92
Allow_nil option, 92
Amazon Web Services (AWS),

274
API, see Application

programming interface
Apple, 14
Application programming

interface (API), 22
ApplicationRecord class, 242
Aptana Studio, 277–279
Arithmetic operators, 175
Array

built-in methods, 141–149
public Array methods,

142–149
ArticlesController, 42
Assignment operators, 177–178
Atom editor, 288–289
Autocompletion, 284
AWS, see Amazon Web Services

318 ◾ Index

B

BEGIN and END blocks,
189–190

BigDecimal, 134, 135, 136
Bitwise operators, 179–180
Blocks

expressive capacity of, 5–6
and methods, 189

Boot Speed, 20, 310
Break statement, 200–201
Bundler Gemfile, 294

C

Calculations, data-related, 237
Callbacks, 304–305
CamelCase form, 240, 250
Change method, using,

255–257
Change_column migration

method, 253
Character encoding, 116
Checkboxes, 64
“Class” keyword, 57

controller (ActionController),
59–61

model (ActiveRecord), 59
view (ActionView), 59

Class variables, 171–172
Client-side validations, 71
Cloud9 IDE, 274
Cloud IDEs, 264–266
Code completion, 268
Code inspections and quick-

fixes, 269
Code styling and

formatting, 268
CoffeeScript, 27

Column modifiers, 254–255
Columns, changing,

253–254
Comments, 197

shebang, 199
Comparison operators,

176–177
Conditional validation, 97

combining validation
conditions, 99–101

grouping, 98
using a Proc with :if and

:unless, 98
Config.rb file, 302–303
Config.ru file, 295–296
Cons of Ruby on Rails, 34–35
Console, 48
Constants, 173
ContactDetail model, 70
Content Delivery Network, 296
Controller (ActionController),

59–61
Controller-level validations,

71–72
Control structures, 199

break statement, 200–201
next statement, 201–202
redo statement, 202–203
retry statement, 203–205
return statement, 205–207
throw/catch statement,

207–208
“Convention-over-configuration”

philosophy, 25
COUNT, 236
CreateProducts, 250
Create_join_table, 252–253
CRUD, 244–246
Custom extensions, 300–301

Index ◾ 319

D

Database, working with, 209
Active Record, 238

creating Active Record
models, 242–244

CRUD, 244–246
migration, writing,

251–259
migrations, 247–251
naming conventions,

240–242
validations, 247

object-relational mapping on
Ruby on Rails, 218

Active Record, 219–223
advantages, 223–224
disadvantages, 224

SQL database management
systems, 225

best practices of Ruby
database development,
233–235

MySQL integration with
Ruby on Rails, 230–232

PostgreSQL database in
Ruby, 227–230

SQLite integration with
Ruby on Rails, 232–233

typical mistakes of Ruby
on Rails database
development, 235–238

Database migrations, 46–51
Data-related calculations, 237
Data types, 54–55, 111

Array
built-in methods, 141–149
public Array methods,

142–149

Hashes, 149
built-in methods,

150–151
public Hash methods,

151–155
numbers, 125

floating-point numbers,
130–136

integers, 126–130
nil value, 137–138
rational numbers,

136–137
public Array methods,

142–149
String, 113

built-in methods,
116–117

character encoding, 116
escape characters, 115
expression substitution,

114
general delimited strings,

114–115
public String methods, list

of, 117–125
symbols, 155–160

Debugger, 262
Decimal numbers, 128
defined? operators, 182–183
“Def” keyword, 56–57
Disadvantages of Ruby on Rails,

20, 310
Documenting code, 268
Domain-Specific Language

(DSL), 42
Double colon “::” operator,

183–184
DSL, see Domain-Specific

Language

320 ◾ Index

E

Easy to manage changes, 308
Emacs, 290–291
Embedded Ruby (ERB), 12
ERB, see Embedded Ruby
Escape characters, 115
Expanding, 286

F

FactoryBot, 271
Features of Ruby on Rails, 17–28
Fields, adding, 61

fields_for helper, 69–70
generic search form, 62–63
helpers for generating field

and form elements, 63
checkboxes, 64
radio buttons, 64–65

model objects, dealing with,
68–69

Fields_for helper, 69–70
File size optimization, 297–300
Flexibility, 309
Floating-point numbers, 130–136
Foreign keys, 241
Free IDE options, 277–291

G

Gemfile, 294
Generated files, 101–110
Github, 278
Global variables, 168–169

H

Hansson, David
Heinemeier, 14

Hashes, 149
built-in methods, 150–151
public Hash methods,

151–155
Helpers, 77

absence, 87
acceptance, 78–79
adding, 303
confirmation, 79–81
exclusion, 81
format, 81–82
inclusion, 82
length, 82–83
numericality, 84–85
presence, 85–86
uniqueness, 87–89
validates_associated, 79
validates_each, 91–92
validates_with, 89–91

Heroku, 295
Hexadecimal numbers, 128
HTML document, 25

I

id, 251
IDE, see Integrated development

environment
Images, 240
Input and output, 56
Installation and configuration of

Ruby on Rails, 35
model–view–controller

(MVC) framework,
45–46

sample blog application,
creating, 38–42

saying “Hello” in Rails,
42–45

Index ◾ 321

Instance variables, 169–171
Integers, 126–130
Integrated Debugger feature, 278
Integrated development

environment (IDE),
261

Cloud IDEs, 264–266
free IDE options, 277–291
Middleman generator, 292

adding helpers, 303
adding methods to config.

rb, 302–303
after_build, 305–306
after_configuration, 305
basic extension, 301–302
callbacks, 304–305
config.ru file, 295–296
custom extensions,

300–301
file size optimization,

297–300
Gemfile, 294
production asset hashing,

296–297
sitemap manipulators, 304
skeleton, 294
templates, 297

mobile development IDEs,
264

paid IDE options, 266–276
IRB, 271
Iterators, 190

Ruby collect iterator, 192–193
Ruby each iterator, 191–192

J

Java, Ruby on Rails vs, 29,
311–312

Java IDE, 263
JavaScript, Ruby on Rails vs,

29–30, 312
Join table, creating, 252–253
jQuery, 27, 298

L

Lambdas, 195–197
Language

BEGIN and END blocks,
189–190

blocks and methods, 189
comments, 197

shebang, 199
control structures, 199

break statement, 200–201
next statement, 201–202
redo statement, 202–203
retry statement, 203–205
return statement,

205–207
throw/catch statement,

207–208
iterators, 190

Ruby collect iterator,
192–193

Ruby each iterator,
191–192

lambdas, 195–197
operators, 174

arithmetic operators, 175
assignment operators,

177–178
Bitwise operators, 179–180
comparison operators,

176–177
defined? operators,

182–183

322 ◾ Index

double colon “::” operator,
183–184

logical operators, 180–181
operators precedence,

184–185
parallel assignment,

178–179
range operators, 181–182
Ternary Operator, 181

procs, 193–195
variables, 163

class variables, 171–172
constants, 173
global variables, 168–169
instance variables,

169–171
local variables, 172
pseudo-variables, 174
variable naming

conventions,
164–168

Language Servers, 285
LENGTH, 236
Length constraint options, 83
Live templates, 268–269
Local variables, 172
Logical operators, 180–181

M

Matsumoto, Yukihiro, 2–3
Merb, 15
:message option, 93–94
Methods, 56–57
Middleman generator, 292

after_build, 305–306
after_configuration, 305
basic extension, 301–302
callbacks, 304–305

config.rb, adding methods to,
302–303

config.ru file, 295–296
custom extensions, 300–301
file size optimization,

297–300
Gemfile, 294
helpers, adding, 303
production asset hashing,

296–297
sitemap manipulators, 304
skeleton, 294
templates, 297

Migrations, 247–251
writing, 251

Active Record and
referential integrity,
257–258

change method, using,
255–257

column modifiers,
254–255

columns, changing,
253–254

join table, creating,
252–253

old migrations, 258–259
Mobile development IDEs, 264
Model (ActiveRecord), 59
Model dependency diagram, 270
Model objects, dealing with,

68–69
Model-View-Controller (MVC)

model, 1, 45–46, 59,
238, 307–308

MVC-based navigation, 269
Multiple programming pattern,

33
Multithreading, 20

Index ◾ 323

MVC model, see Model-View-
Controller model

MyFeature extension, 302
MySQL database, 227, 230–232

N

Naming convention, 55
Neosnippet Vim plugin, 286
NetBeans IDE, 279–280
Next statement, 201–202
NilClass, 138
Node.js, Ruby on Rails vs, 30, 313
NoSQL databases, 225, 226
Numbers, 125

floating-point numbers,
130–136

integers, 126–130
Ruby nil value, 137–138
Ruby rational numbers,

136–137

O

Object-Relational Mapping
system, 218, 238

Active Record, 219–223
advantages, 223–224
disadvantages, 224

:on option, 77, 94–96
Operators, 174

double colon “::” operator,
183–184

Ruby arithmetic operators,
175

Ruby assignment operators,
177–178

Ruby Bitwise operators,
179–180

Ruby comparison operators,
176–177

Ruby defined? operators,
182–183

Ruby logical operators,
180–181

Ruby operators precedence,
184–185

Ruby parallel assignment,
178–179

Ruby range operators,
181–182

Ruby Ternary Operator, 181
Operators precedence, 184–185

P

Paid IDE options, 266–276
Parallel assignment, 178–179
Parametric polymorphism, 4
Person model, 69
PHP, Ruby on Rails vs, 29, 311
Pluralization mechanisms, 240
POLA, see Principle of least

astonishment
Polymorphism, 4
PostgreSQL, 226, 227–230
Primary keys, 241
Principle of least astonishment

(POLA), 3
Procs, 193–195
Production asset hashing,

296–297
Productivity, 309–310
Pros of Ruby on Rails, 33–34
Pseudo-variables, 174
Public Array methods, 142–149
Public Hash methods,

151–155

324 ◾ Index

Public String methods, list of,
117–125

Puma, 41
Python, Ruby on Rails vs, 28–29,

311

Q

Quick-fixes, 269

R

Radio buttons, 64–65
Rails, saying “Hello” in, 42–45
Rails 6, 25
Rails-aware code maintenance,

269
Rails philosophy, 16
Rake task, 271
Range operators, 181–182
Redo statement, 202–203
Refactoring, 268
Relational Database Manager

System, 218
RemoveColumnFromTable, 251
Retry statement, 203–205
Return statement, 205–207
Rubocop integration, 271
Ruby, 32

block, 5–6
as case sensitive language, 11
cons, 32–33
dynamic typing and duck

typing, 7
flexibility, 4–5
keywords, 8–11
method names, 8
missing method, 8
naming conventions, 7

pros, 32
Ruby on Rails vs, 2–17,

30–32
singleton methods, 8
statement delimiters, 8
variable constants, 7
visual appearance, 6–7

RubyMine, 267, 270–272
Runtime Speed, 310

S

SAM, see Serverless Application
Model

Sample blog application,
creating, 38–42

Security measures, 309
Serverless Application Model

(SAM), 275
Shebang, 199
Sitemap manipulators, 304
SIZE, 236
Skeleton project, 294
Smart editor, 267
Software as a service (Saas)

solutions, 264, 308
Source code editor, 261
Sprintf method, 132
SQL database management

systems, 225
best practices of Ruby

database development,
233–235

MySQL integration with Ruby
on Rails, 230–232

PostgreSQL database in Ruby,
227–230

SQLite integration with Ruby
on Rails, 232–233

Index ◾ 325

typical mistakes of Ruby
on Rails database
development,
235–238

SQLite, 226, 232–233
Strict validations, 96–97
String, 113

built-in methods,
116–117

character encoding, 116
escape characters, 115
expression substitution, 114
general delimited Strings,

114–115
public String methods,

list of, 117–125
Sublime Text, 272
SuperTab, 286
Symbols, 155–160
Syntax, 54

“class” keyword, 57
controller

(ActionController),
59–61

model (ActiveRecord), 59
view (ActionView), 59

data type, 54–55
input and output, 56
methods, 56–57
naming convention, 55

Syntax complication, 33

T

Templates, 268–269, 297
Ternary Operator, 181
Throw/catch statement,

207–208

V

Validations, 70
allow_blank option, 92
allow_nil option, 92
conditional validation, 97

combining validation
conditions, 99–101

grouping conditional
validations, 98

using a Proc with :if and
:unless, 98

helpers, 77
absence, 87
acceptance, 78–79
confirmation, 79–81
exclusion, 81
format, 81–82
inclusion, 82
length, 82–83
numericality, 84–85
presence, 85–86
uniqueness, 87–89
validates_associated, 79
validates_each, 91–92
validates_with, 89–91

:message option, 93–94
:on option, 77, 94–96
skipping, 74–77
strict validations, 96–97

Variables, 163
naming conventions, 164–168
Ruby class variables, 171–172
Ruby constants, 173
Ruby global variables,

168–169
Ruby instance variables,

169–171
Ruby local variables, 172

326 ◾ Index

Ruby pseudo-variables, 174
Ruby variable naming

conventions, 164–168
View (ActionView), 59
Vim, 281–287

W

Webpack, 24
WEBrick, 27

X

Xcode Command Line Tools, 293

Y

YouCompleteMe, 286

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Contents
	About the Editor
	CHAPTER 1: Introduction to Ruby on Rails
	WHAT IS RUBY AND RUBY ON RAILS?
	MAJOR FEATURES
	RAILS VS OTHER FRAMEWORKS
	Ruby on Rails Vs Python
	Ruby on Rails Vs PHP
	Ruby on Rails Vs Java
	Ruby on Rails vs JavaScript
	Ruby on Rails Vs Node.js
	Ruby on Rails Vs Ruby
	Pros and Cons: Ruby
	Pros
	Cons

	Pros and Cons: Ruby on Rails
	Pros
	Cons

	INSTALLATION AND CONFIGURATION OF RUBY ON RAILS
	Creating a Sample Blog Application
	Saying “Hello” in Rails
	MVC

	DATABASE MIGRATIONS

	CHAPTER 2: Getting Started with Ruby on Rails
	BASIC RUBY ON RAILS SYNTAX
	Data Type
	Naming Convention
	Input and Output
	Methods
	Class
	Model (ActiveRecord)
	View (ActionView)
	Controller (ActionController)

	ADDING FIELDS
	Generic Search Form
	Helpers for Generating Field and Form Elements
	Checkboxes
	Radio Buttons
	Other Helpers of Interest

	Dealing with Model Objects
	The fields_for Helper

	ADDING VALIDATIONS
	Skipping Validations
	Validation Helpers
	acceptance
	validates_associated
	confirmation
	exclusion
	format
	inclusion
	length
	numericality
	presence
	absence
	uniqueness
	validates_with
	validates_each

	Common Validation Options
	allow_nil
	allow_blank
	message
	on

	Strict Validations
	Conditional Validation
	Using a Proc with :if and :unless
	Grouping Conditional Validations
	Combining Validation Conditions

	GENERATED FILES

	CHAPTER 3: Ruby Data Types
	STRING
	Expression Substitution
	General Delimited Strings
	Escape Characters
	Character Encoding
	String Built-in Methods

	NUMBERS
	Integers
	Floating-Point Numbers
	Ruby Rational Numbers
	Ruby Nil Value

	ARRAYS AND HASHES
	Array Built-in Methods
	Hashes
	Hash Built-in Methods

	SYMBOLS

	CHAPTER 4: Basics of Language
	VARIABLES
	Ruby Variable Naming Conventions
	Ruby Global Variables
	Ruby Instance Variables
	Ruby Class Variables
	Ruby Local Variables
	Ruby Constants
	Ruby Pseudo-Variables

	OPERATORS
	Ruby Arithmetic Operators
	Ruby Comparison Operators
	Ruby Assignment Operators
	Ruby Parallel Assignment
	Ruby Bitwise Operators
	Ruby Logical Operators
	Ruby Ternary Operator
	Ruby Range Operators
	Ruby defined? Operators
	Double Colon “::” Operator
	Ruby Operators Precedence

	BLOCKS AND ITERATORS
	Blocks and Methods
	BEGIN and END Blocks
	Iterators
	Ruby Each Iterator
	Ruby Collect Iterator

	Procs
	Lambdas

	COMMENTS
	The Shebang

	CONTROL STRUCTURES
	break Statement
	next Statement
	redo Statement
	retry Statement
	return statement
	throw/catch Statement

	CHAPTER 5: Working with Database
	OBJECT-RELATIONAL MAPPING ON RUBY ON RAILS
	Active Record
	Advantages
	Disadvantages

	WHAT ABOUT SQL?
	How to Make a PostgreSQL Database in Ruby
	How to Integrate MySQL With Ruby on Rails
	How to Integrate SQLite With Ruby on Rails?
	Best Practices of Ruby Database Development
	Typical Mistakes of Ruby on Rails Database Development

	ACTIVE RECORD BASICS
	Naming Conventions
	Creating Active Record Models
	CRUD: Reading and Writing Data
	Validations
	Migrations
	Writing a Migration
	Creating a Join Table
	Changing Columns
	Column Modifiers
	Using the Change Method
	Active Record and Referential Integrity
	Old Migrations

	CHAPTER 6: Ruby on Rails IDEs
	MOBILE DEVELOPMENT IDEs
	CLOUD IDEs
	PAID IDE OPTIONS
	FREE IDE OPTIONS
	MIDDLEMAN GENERATOR
	The Skeleton
	Gemfile
	config.ru
	Production Asset Hashing
	Templates
	File Size Optimization
	Custom Extensions
	Basic Extension
	Adding Methods to config.rb
	Adding Helpers
	Sitemap Manipulators
	Callbacks
	after_configuration
	after_build

	APPRAISAL
	INDEX

