

Kickstart to Arduino Nano
Get Cracking with the Arduino Nano V3, Nano Every, and Nano 33 IoT

●

Ashwin Pajankar

● 4

● This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.
PO Box 11, NL-6114-ZG Susteren, The Netherlands
Phone: +31 46 4389444

● All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this
publication, without the written permission of the copyright holder except in accordance with the provisions of the
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to
reproduce any part of the publication should be addressed to the publishers.

● Declaration
The Author and Publisher have used their best efforts in ensuring the correctness of the information contained in
this book. They do not assume, and hereby disclaim, any liability to any party for any loss or damage caused by
errors or omissions in this book, whether such errors or omissions result from negligence, accident, or any other
cause.
All the programs given in the book are Copyright of the Author and Elektor International Media. These programs
may only be used for educational purposes. Written permission from the Author or Elektor must be obtained before
any of these programs can be used for commercial purposes.

● British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

● ISBN 978-3-89576-509-4 Print
ISBN 978-3-89576-510-0 eBook

● © Copyright 2022: Elektor International Media B.V.
Editor: Jan Buiting
Prepress Production: D-Vision, Julian van den Berg

Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro

engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops

and delivers high-quality content - via a variety of media channels (including magazines, video, digital media, and social

media) in several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

http://www.elektormagazine.com

Contents

● 5

Contents

Acknowledgements .9

Dedication .9

Preface .10

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano11

The Microcontroller . 11

Popular MCU Families . 11

Arduino . 12

The Arduino "Classic" Family . 12

The Arduino "MKR" Family . 12

The Arduino "Nano" Family. 13

The Arduino "Pro" Family . 13

Arduino is for Everyone . 13

The Arduino Ecosystem . 13

Arduino Software . 14

Official Arduino Boards. 14

Arduino Clones and Derivatives. 14

Arduino Counterfeits . 14

The Arduino Nano and Arduino Nano Every . 14

Arduino Nano and Arduino Nano Every Pinouts . 16

Powering the Nano and Nano Every MCU boards . 19

The Arduino IDE . 20

Installing the stable version of Arduino IDE . 26

Installation of Arduino IDE on Raspberry Pi OS . 30

Working with the Boards Manager . 32

Working with the Arduino Nano Every . 35

Working with the Arduino Nano. 39

Summary. 41

Chapter 2 • Playing with Electronics .42

Basics of Programming with Arduino IDE . 42

Blink in the built-in LED . 43

Contents

Kickstart to Arduino Nano

● 6

Working with the basic electronic components . 45

Breadboards and power supplies. 46

Jumper cables . 50

Light Emitting Diodes . 51

Resistors . 52

Pushbuttons . 53

Improving the LED blink sketch with Functions . 54

Building your first circuit on a breadboard . 56

Circuits using Nano . 58

Working with multiple LEDs . 59

Adding a pushbutton to the circuit. 63

Working with RGB LEDs . 65

Using Arduino Nano boards with expansion shields . 67

Summary. 70

Chapter 3 • Assorted Buses and the Analog Input .71

Parallel and Serial Data Transfer . 71

Arduino Serial. 73

SPI and I2C . 75

Analog Input . 75

Plotting multiple variables . 80

Summary. 81

Chapter 4 • Pulse Width Modulation and Driving Unipolar Stepper Motors with
Digital I/O. .82

The Concept of Pulse Width Modulation . 82

PWM with Arduino Nano. 84

Working with a Servo Motor . 89

Working with the 28BYJ-48 Unipolar Stepper Motor and the ULN2003A Motor Driver . . . 92

Using a Custom Library for Stepper Motors . 98

Working with Multiple Stepper Motors . 101

Summary. 102

Chapter 5 • Plotting Geometric Art on an External Display103

The Ilitek 9225 Driver IC and the Display. 103

Contents

● 7

Programming the Display . 104

Summary. 143

Chapter 6 • Working with a Buzzer and a Sensor .144

Working with a Buzzer . 144

Working with a Joystick . 149

Working with DS18B20 Temperature Sensor. 151

Summary. 153

Chapter 7 • Working with the Arduino Nano 33 IoT .154

Introduction to the Nano 33 IoT board. 154

Getting Started. 157

Working with WiFiNINA library . 159

A Telnet-based Group Chat Server . 172

Pinging a Remote Server . 174

A simple Web Client. 176

Working with a Real-Time Clock . 177

Using the DS18B20 Temperature Sensor Jointly with the RTC. 179

Visualizing the Temperature graph with ThingSpeak . 185

Programming the Built-in IMU. 190

Summary. 191

Conclusion . 191

Index .192

Kickstart to Arduino Nano

● 8

Acknowledgements

● 9

Acknowledgements

I wish to thank my friend Anuradha for encouraging me to author this book. I also want
to express my heartfelt gratitude towards Ferdinand TeWalvaart, Jan Buiting, Alina Neacsu,
and Shenja Panik from the Elektor team for guiding me through each phase of the publi-
cation process. This is my second book with Elektor International; Media and it is a great
experience to perform with their publishing team. Finally, I want to show appreciation to
everyone directly and indirectly associated with this project.

Dedication

This book is dedicated to the memory of Prof. Govindarajulu Regeti (July 9, 1945 — March
18, 2021)

Popularly known to everyone as RGR, Professor
Govindarajulu obtained his B. Tech in Electrical
and Electronic Engineering from JNTU Kakinada.
He also earned his M. Tech and Ph. D. from IIT
Kanpur. Prof. Govindarajulu was an early faculty
member of IIIT Hyderabad and played a signifi-
cant role in making IIIT Hyderabad the top-class
institution it is today. He was by far the most
loved and cheered for faculty member of the in-
stitute. He was full of energy to teach and full of
old-fashioned charm. There is no doubt he was
concerned with every student as an individu-
al, taking care to know about as well as guide
them. He has taught, guided, and mentored
many batches of students at IIIT Hyderabad, in-
cluding the author of this book.

Kickstart to Arduino Nano

● 10

Preface

I have been working with the Arduino since 2016 and I believe it to be an excellent platform
not only to learn electronics but also to deploy real-life production systems. Using Arduino
boards, I have produced and deployed many real-world applications such as IoT enabled
electrical infrastructures at home and workplaces, web-enabled weather monitoring sys-
tems, and a robot for welcoming guests in the reception area of my former employer.

I always wished to write a step-by-step and detailed book on one of the most prominent
family of microcontroller boards by Arduino, the "Nano". In this book, I have covered three
members of this family: Arduino Nano V3, Arduino Nano Every, and Arduino Nano 33 IoT,
in happy unison with the Arduino IDE 1.x and Arduino IDE 2 RC5 for the purpose of demon-
strating the C and C++ code. I have written the book in a step-by-step and detailed way
to explain concepts, build required circuits, and finally write the code. The book covers mor
than 60 examples to address a variety of major concepts related to the world of electronics
and the Arduino Ecosystem in particular.

This book required me to find and digest loads of documentation, attend online tutorials,
write code, and post on online forums when I was stuck with some problem. This result ac-
counts for hundreds of manhours of work I spent to finish the project. I have referred many
online sources for code and images. I also mentioned those sources with all the licenses
whenever and wherever I borrowed and modified the source codes and images.

I finished writing the draft of the book when India (my current resident country) and the
world is gradually recovering from the COVID-19 pandemic. This project and the guidance
provided by the Elektor team gave me a great sense of purpose and motivation to continue
exploring the world of knowledge on Arduino. I hope all the readers will like and enjoy this
book as much as I enjoyed writing it. Happy learning and exploring!

Reader Notice. An archive file (.zip) comprising the software examples and Fritzing-
style circuit diagrams discussed in the book may be downloaded free of charge from
the book's product and resources page on www.elektor.com (search for: book title and
author).

http://www.elektor.com

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 11

Chapter 1 • Introduction to the Arduino Platform and
the Arduino Nano

Welcome to the very first chapter. In case you have not read the Table of Contents and the
Preface, I strongly recommend that you do so before commencing with this chapter. Let's
begin the journey to the amazing world of the Arduino Platform and its Ecosystem. This is
an introductory chapter, so you will be learning a lot of concepts needed to build sufficient
background to begin with Arduino. This chapter addresses the following topics:

• the microcontroller
• Arduino
• Arduino is for Everyone
• the Arduino Ecosystem
• the Arduino Nano and Arduino Nano Every
• powering Nano and Nano Every microcontroller boards
• the Arduino IDE
• working with the Boards Manager
• working with the Arduino Nano Every
• working with the Arduino Nano

After reading this chapter, you are all set to explore the Arduino Platform and Ecosystem.

The Microcontroller
A microcontroller is usually a tiny, complete computer system on a single integrated cir-
cuit (abbreviated as IC). An MCU (MicroController Unit) can have one or more processors,
memory, and programmable Input/Output (IO) within a single IC package. In most cases,
there are two types of memory included on the chip. The first one is Programmable mem-
ory, usually EEPROM (Electrically Erasable Programmable Read-Only Memory), OTP (One
Time Programmable) ROM, ferroelectric RAM, or NOR flash. Also, MCUs also have a small
amount of RAM (Random Access Memory) where programs are loaded and executed. In
short, an MCU is a microprocessor with Program Memory, RAM, and Programmable IO on
a single chip. The main difference between microprocessors and MCUs is in their appli-
cations. Microprocessors are general-purpose processors used in desktop computing and
general-purpose computing. MCUs are usually used in embedded systems and tasked to
performing some sort of physical action. For example, MCUs can be employed in printers,
vehicle dashboards, or engine controls in cars and aircraft.

Popular MCU Families
Based on their architectures, MCUs can be divided into various families. Here's a list of
some of the most common families:

• PIC (Peripheral Interface Controller)
• ARM (Advanced RISC Machines)
• AVR (Alf and Vegard's RISC Processor)
• MSP (Mixed Signal Processor)
• Intel 8051 and derivatives

Kickstart to Arduino Nano

● 12

Arduino
Arduino (https://www.arduino.cc) is an open-source MCU platform, meaning it has open-
source and free software and open-source hardware. It usually combines an MCU on a sin-
gle PCB with other features. Arduino is a popular family of MCU based MCU-based boards.
Earlier, the Arduino group had also produced a series of Linux-based computers. However,
by now they seem to have discontinued them and are solely focusing on MCUs. The Arduino
family has a lot of members, and they can be categorized into three subfamilies as follows:

The Arduino "Classic" Family
This family has the most popular, the oldest, and the most successful boards, including
(April 2022):

• Arduino UNO Rev3
• Arduino Mega2560 Rev3
• Arduino Leonardo
• Arduino UNO Mini Limited Edition
• Arduino Due
• Arduino Micro
• Arduino Zero
• Arduino UNO Wi-Fi Rev2

You can find them at the URL:

 https://www.arduino.cc/en/hardware#classic-family

The Arduino "MKR" Family
MKR is a family of Arduino MCU boards that combine an MCU with advanced communi-
cations such as Wi-Fi, LoRa, Bluetooth, and Sigfox. They are based on the MCUs that are
members of Microchip's SAM D21 Family. These are the members of MKR family:

• Arduino Nano 33 IoT
• Arduino Nano RP2040 Connect
• Arduino Nano BLE Sense
• Arduino Nano 33 BLE
• Arduino Nano Every
• Arduino Nano

You can read more about the MKR family at

 https://www.arduino.cc/en/hardware#mkr-family

You can also read more about the SAM D21 family at

 https://content.arduino.cc/assets/mkr-microchip_samd21_family_full_datasheet-
ds40001882d.pdf

https://www.arduino.cc
https://content.arduino.cc/assets/mkr-microchip_samd21_family_full_datasheet-ds40001882d.pdf
https://content.arduino.cc/assets/mkr-microchip_samd21_family_full_datasheet-ds40001882d.pdf

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 13

The Arduino "Nano" Family
The "Nano" family has a very small physical footprint, and its members range from the
basic Arduino Nano Every to advanced boards such as Nano RP2040 Connect.

• Arduino Nano 33 IoT
• Arduino Nano RP2040 Connect
• Arduino Nano BLE Sense
• Arduino Nano 33 BLE
• Arduino Nano Every
• Arduino Nano

We will discuss the Arduino Nano and Arduino Nano Every boards in detail throughout
this book.

You can read more about the Nano family at the URL:

 https://www.arduino.cc/en/hardware#mkr-family

The Arduino "Pro" Family
This family provides a complete IoT platform and industry-ready solutions. The members
include (but are not limited to):

• Portenta H7
• Portenta X8
• Portenta Machine Control

You can read more about the Pro family at the URL

 https://www.arduino.cc/pro/hardware

Arduino is for Everyone
Anyone can use an Arduino thanks to the following features:

• inexpensive
• cross-platform
• simple, clear programming environment
• open-source and extendable software
• open-source and extendable hardware

You will explore these features in detail in this book in the upcoming chapters.

The Arduino Ecosystem
As I have mentioned in the earlier section, "Arduino" is actually a family of open-source and
free software and open-source hardware. Consequently, both software and hardware are
open-source and can be extended. There is a mature community of makers and profession-
als using these tools, as well as many open-source libraries available for various third-party

https://www.arduino.cc/pro/hardware

Kickstart to Arduino Nano

● 14

hardware components that can be interfaced with Arduino. Even you can develop your own
library once you are comfortable with the coding of the Arduino platform. Let's dive deeper
into the ecosystem of Arduino and explore all the components.

Arduino Software
The Arduino organization has published a free and open-source software and IDE known
as the Arduino IDE, a desktop application for Linux, Windows, and macOS. It comes with
many libraries and example programs for learning the programming "on" the Arduino plat-
form. It supports C and C++ syntax tailor-made for the Arduino platform. All the members
of Arduino family can be programmed with this IDE. It is freely available for download and
use. Also, it is open-source. Many people have created their own libraries and made them
available for everyone.

Official Arduino Boards
All the boards produced, marketed, and sold under the brand Arduino are official boards.
They have all the Arduino markings. You can procure them from the Arduino eStore locat-
ed at https://store.arduino.cc. You can find the list of the appointed global distributors at
https://store-usa.arduino.cc/pages/distributors.

Arduino Clones and Derivatives
Since the hardware is open-source, all the schematics for creating the PCBs (Printed Cir-
cuit Boards) are available online for free at the Arduino pages for the respective board.
Consequently, you can create your own boards and sell them. The boards that emulate
the functionality of the original and official Arduino boards are known as Clones. They
are not marketed under the Arduino brand, their makers promoting them under their own
brand(s). Similarly, the Arduino design-based boards that have additional functionality and
are promoted under brand names other than Arduino are known as Derivatives. The line
that distinguishes the clones from derivatives is vague at best.

Arduino Counterfeits
These are based on the official boards and bear the Arduino logo, except they are not
manufactured, marketed, or sold by Arduino. These products are known as fakes or coun-
terfeits. You can guesstimate their status from the quality of components and build. Do not
buy and encourage counterfeits. They are illegal and unethical products.

The Arduino Nano and Arduino Nano Every
As I have mentioned in an earlier section, Arduino Nano is a family of boards within the
larger ecosystem. The Nano members are marked by a tiny physical footprint. This book
explores the two members of this family, the Arduino Nano and the Arduino Nano
Every, in detail. So, let's get started.

The Arduino Nano is the elementary and oldest member of the Arduino Nano family. The
current revision is Arduino Nano 3.x. The Arduino Nano Every is a pin-to-pin compatible
upgrade for Arduino Nano with a faster processor and more memory. You can use both
indiscriminately in your projects. Let's compare the specifications of both boards.

https://store.arduino.cc
https://store-usa.arduino.cc/pages/distributors

● 15

Arduino Nano Arduino Nano Every

Microcontroller ATmega328 ATMega4809

USB connector Mini-B USB Micro USB

Pins Built-in LED pins 13 13

Digital I/O pins 14 14

Analog input pins 8 8

PWM pins 6 5

Serial
Communications

UART RX/TX RX/TX

I2C A4 (SDA), A5 (SCL) A4 (SDA), A5 (SCL)

SPI D11 (COPI), D12
(CIPO), D13 (SCK). Use
any GPIO for Chip Select
(CS).

D11 (COPI), D12
(CIPO), D13 (SCK).
Use any GPIO for Chip
Select (CS).

Power I/O Voltage 5 V 5 V

Input Voltage 7 V to 12 V 7 V to 18 V

DC Current per I/O Pin 20 mA 15 mA

Clock Speed 16 Megahertz 16 Megahertz

Memory SRAM 2 KB 6 KB

Flash 32 KB 48 KB

EEPROM 1 KB 256 bytes

Physical Dimensions Weight 5 grams 5 grams

Width 18 mm 18 mm

Length 45 mm 45 mm

You can check the official pages at arduino.cc for more information on Nano, see

 https://store-usa.arduino.cc/products/arduino-nano
 https://docs.arduino.cc/hardware/nano

You can download ATmega328 Datasheet from the following URL:

 http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-
168A-PA-328-P-DS-DS40002061A.pdf

You can check the official pages at arduino.cc for more information on the Nano Every,
here:

 https://store-usa.arduino.cc/products/arduino-nano-every
 https://docs.arduino.cc/hardware/nano-every

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

http://arduino.cc
https://store-usa.arduino.cc/products/arduino-nano
https://docs.arduino.cc/hardware/nano
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://arduino.cc
https://store-usa.arduino.cc/products/arduino-nano-every
https://docs.arduino.cc/hardware/nano-every

Kickstart to Arduino Nano

● 16

You can download the ATmega4809 Datasheet from the following URL:

 https://content.arduino.cc/assets/Nano-Every_processor-48-pin-Data-Sheet-
megaAVR-0-series-DS40002016B.pdf

After checking the above URLs, you must have realized that the Arduino Nano Every is bet-
ter than the Arduino Nano. It is even cheaper, so, for all your projects I would recommend
using an Arduino Nano Every.

Arduino Nano and Arduino Nano Every Pinouts
Let's study the pinouts of Arduino Nano and Arduino Nano Every. The diagrams shown in
Figures 1-1, 1-2, and 1-3 are reproduced from

 https://content.arduino.cc/assets/Pinout-NANO_latest.pdf

and

 https://content.arduino.cc/assets/Pinout-NANOevery_latest.pdf.

They are shared under creative commons license which can be found at https://creative-
commons.org/licenses/by-sa/4.0/deed.en. I have modified them for using here in this
chapter.

Figure 1-1: Pinouts of Arduino Nano Every (left) and Arduino Nano (right).

In Figure 1-1, at the bottom, the legend explains the meaning of the colors. You need to
focus on Digital Pins, Analog Pins, Ground, Power, and LED pins in this diagram.

https://content.arduino.cc/assets/Nano-Every_processor-48-pin-Data-Sheet-megaAVR-0-series-DS40002016B.pdf?_gl=1*on9q6g*_ga*MTMzNDkzMzk1LjE2NDk4MjI2NTg.*_ga_NEXN8H46L5*MTY0OTk5MTQ3Ni40LjEuMTY1MDAwMjY0Mi4w
https://content.arduino.cc/assets/Nano-Every_processor-48-pin-Data-Sheet-megaAVR-0-series-DS40002016B.pdf?_gl=1*on9q6g*_ga*MTMzNDkzMzk1LjE2NDk4MjI2NTg.*_ga_NEXN8H46L5*MTY0OTk5MTQ3Ni40LjEuMTY1MDAwMjY0Mi4w
https://content.arduino.cc/assets/Pinout-NANO_latest.pdf
https://content.arduino.cc/assets/Pinout-NANOevery_latest.pdf
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 17

In Figure 1-2, please focus on the Serial Communications pins allocated to I2C (SDA and
SCL), SPI (SS, MOSI/COPI, MISO/CIPO, SCK), and UART (RX and TX),

Figure 1-2: Serial communications and interrupt pin description.

In Figure 1-2, the top section shows the Nano Every pin functions, and the middle section,
those of the Arduino Nano.

You can study the meaning of additional pins from Figure 1-3.,

Kickstart to Arduino Nano

● 18

Figure 1-3: Bottom views of the Arduino Nano Every and Arduino Nano boards.

Let's fathom the meanings of the pins shown and described in the diagrams. The pin de-
scriptions of the Nano and Nano Every are almost identical with a few exceptions. Let's see
that in detail.

Digital Pins – The pins from D0 through D13 are 14 digital input output pins in all. They
operate at 5 volts logic swing Each pin can provide or receive a maximum current of 40
mA. Each pin also has an internal pull-up resistor with a value of 20-50 k-ohms which is
disconnected by default.

A few digital pins have additional functions as follows:

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 19

UART – These are D0 (RX) and D1 (TX)., used to receive (RX) and transmit (TX) TTL serial
data. These pins are connected to the pins of an onboard FTDI USB-to-TTL Serial converter
chip.

PWM – In the Nano, pins D3, D5, D6, D9, D10, and D11 provide an 8-bit PWM output. In
the Nano Every, there are only five pins allocated to PWM: D3, D5, D6, D9, and D10.

SPI – SPI communication is provided by D10 (SS), D11 (MOSI/COPI), D12 (MISO/CIPO),
and D13 (SCK) on both boards.

On both boards, the on-board LED is connected to D13.

The Nano and Nano Every each have 8 analog inputs (A0 through A7). Each pin provides 10
bits of resolution that enables 108 = 1024 different values for input. The default range for
the operational voltage for these pins is 0 V to 5 V. You can change the upper range from
5 V to your desired value by programming.

In the Nano, pins A0 to A5 can also be configured as digital pins D14 through D19.

In the Nano Every, pins A0 to A7 can also be configured as digital pins D14 through D21.

I2C – This functionality is provided by the pins labelled A4/D18 (SDA) and A5/D19 (SCL).
They support I2C using the Two Wire Interface (TWI) and use the Wire library.

These are all the important pins on both MCU boards. There are more pins and more mean-
ings to the pins. However, I will not be covering most of those concepts, as they are really
out of the scope of this book.

Powering the Nano and Nano Every MCU boards
You can power a Nano with built-in USB with a Mini B type cable and a Nano Every with a
USB Micro B type cable as shown in Figure 1-4.

Kickstart to Arduino Nano

● 20

Figure 1-4: USB Micro B and USB Mini B cables. Image provided by Andrej A. Antonov
under the license https://creativecommons.org/licenses/by-sa/3.0/deed.en

You can power these boards by plugging one end of the USB cable to the MCU board and
the other end to a 5-V battery pack, power supply, or the USB port of a computer. You can
also power the boards through their VIN pins, but I do not recommend it yet to the be-
ginning readers. Powering through the USB is the best and hassle-free way to power your
Arduino.

The Arduino IDE
Arduino IDE is an open-source and free Integrated Development Environment for de-
veloping the code for Arduino and other MCU boards. You can download the latest version
from https://www.arduino.cc/en/software. At the time of authoring this book, the latest
version is 1.8.19. However, I am going to try the Release Candidate for version 2.0. This is
going to be the new major release of the IDE with a lot of improvements. You can download
it by clicking the MSI Installer option for Windows as shown in Figure 1-5.

https://eimworld-my.sharepoint.com/personal/jan_buiting_elektor_com/Documents/Home%20Drive/_Books%20stuff/Arduino%20Nano%20--%20Ashwin%20Panjabar/Edits%20from%20Alina/Edited%20by%20Alina/Andrej%20A.%20Antonov
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://www.arduino.cc/en/software

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 21

Figure 1-5: Arduino IDE 2.0 Release Candidate (RC).

Options for macOS and Linux distributions are also available. Once you click an appropriate
option, the appropriate installation package for your platform will be downloaded. I have a
64-bit Windows computer and consequently downloaded the file arduino-ide_2.0.0-rc5_
Windows_64bit.msi. rc5 i.e., Release Candidate 5. You can see the file at the bottom
bar of your Chrome browser, as well as under the Downloads option in the browser. You
can find the physical file in the Downloads directory of your user in the OS. Launch (run)
the file and it will show a window like in Figure 1-6.

Figure 1-6: Installation window.

Kickstart to Arduino Nano

● 22

Click on the button Run. It will configure the IDE and show a progress bar as shown in the
Figure 1-7.

Figure 1-7: Installation progress bar.

Wait for the installation to finish. Once done, this progress bar disappears, and you can
check for the IDE using the Windows Search feature. Enter the word Arduino and it will
show the option for it. Click on it. It will show the Arduino IDE splash screen. When you run
the IDE for the very first time, the Windows Firewall shows you options as in Figure 1-8.

Figure 1-8: Windows security alert.

Check both the boxes in both windows and click on the button Allow access. The splash
screen for the IDE is as shown in Figure 1-9.,

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 23

Figure 1-9: Arduino IDE splash screen.

After some time, the splash screen disappears and the IDE is launched. The default window
is shown in Figure 1-10.

Figure 1-10: Arduino IDE Window.

Before continuing, let's change the preferences. Go to the File menu in the menu bar at
the top and choose the option Preferences. It opens a window (Figure 1-11).

Kickstart to Arduino Nano

● 24

Figure 1-11: Arduino IDE default preferences.

Tick all the checkboxes here and change the path under the textbox labeled Sketchbook
location. You can use the button Browse to choose the location instead of typing it.

The next set of changes are my personal preferences for reducing eye strain. I increased
the size of the font used and changed the theme to Dark mode. The preferences window
looks like the one shown in Figure 1-12 after the changes.

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 25

Figure 1-12: Arduino IDE preferences – changed.

This is how you can change preferences for the IDE. After changing the preferences to
those shown in Figure 1-12, the IDE window looks as shown in Figure 1-13.

Figure 1-13: Arduino IDE window after changing the preferences.

Kickstart to Arduino Nano

● 26

By default, the file is named with a naming convention which combines current date and a
character in alphabetical order. For example, the current file has been assigned a name by
default and it is sketch_apr15a. If you create a new file using the option under the File
menu, then the new file is assigned the name sketch_apr15b (Figure 1-14).

Figure 1-14: Arduino default filenames.

Note that the name assigned to this sketch is just temporary and not yet saved to your
disk. You can save it by pressing CTRL + S on the keyboard or from the Save option under
the File menu. You can give it another name if you wish. The option Save and Save As,
when clicked, opens the location which you entered in the preferences by default. You can
also save at any other valid location by browsing the filesystem.

Installing the stable version of Arduino IDE
You can also install the stable version of the IDE, currently v. 1.8.19. Download it from the
software portal (https://www.arduino.cc/en/software). Figure 1-15 shows a screenshot of
the download options.

Figure 1-15: Arduino IDE Stable version.

https://www.arduino.cc/en/software

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 27

Again, be sure to download the correct version based on your computer's architecture.
In my case, it is arduino-1.8.19-windows.exe. Launch it and it shows a window like in
Figure 1-16.

Figure 1-16: Arduino IDE Stable version installation options.

Click on the button I Agree. It will show options (Figure 1-17). Check all the checkboxes.

Figure 1-17: Arduino IDE installation options.

Click on the Next button. It shows the window where you can select a directory for instal-
lation (Figure 1-18).

Kickstart to Arduino Nano

● 28

Figure 1-18: Arduino IDE installation directory.

Finally, click on the button Install and your PC starts copying the files to the disk. Figure
1-19 is a screenshot of the installation in progress.

Figure 1-19: Arduino IDE installation underway.

The process creates an icon on the desktop. Also, in the Windows Menu, you can see two
options now, Arduino (stable version) and Arduino IDE (corresponding to 2.0 Release can-
didate), as shown in Figure 1-20.

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 29

Figure 1-20: Arduino IDEs under Windows Menu.

The current stable version you just installed does not have the "dark" theme that you
selected in the Release Candidate version (2.0 RC5). Open the stable version you just in-
stalled, and it shows the splash screen Figure 1-21.

Figure 1-21: Arduino IDE 1.8.19 splash screen.

Kickstart to Arduino Nano

● 30

After that, it shows the following window (Figure 1-22).,

Figure 1-22: Arduino IDE 1.8.19 editor window.

I will be mostly using Arduino IDE 2.0 RC5 to explain all the code demonstrations. However,
if you are planning to use IDE version 1.8.19 and if there is anything specific to it, then I
will explain it in detail with screenshots. Go ahead and change the preferences to your liking
for IDE 1.8.19.

NOTE: After the book is published, both versions of the Arduino IDE are subject to updating
after some time. However, the instructions mentioned in the book cover both versions and
will also apply to the future updates of both versions unless there is some major change in
the user interface (which is very unlikely).

Installation of Arduino IDE on Raspberry Pi OS
You can install the IDE on the Raspberry Pi OS with the following command,

 sudo apt install arduino -y

After installation, you can launch the IDE from the Raspberry Pi OS Menu and under the
Programming section as shown in Figure 1-23.

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 31

Figure 1-23: Arduino IDE in Raspberry Pi OS.

The entire interface is the same as in version 1.8.19 running on a Windows OS.

Figure 1-24, provided by Cedar101 under Public Domain Creative Commons License at
https://creativecommons.org/publicdomain/zero/1.0/deed.en), is a screenshot of an in-
stance of Arduino IDE 1.8.5 running on a macOS.

https://creativecommons.org/publicdomain/zero/1.0/deed.en

Kickstart to Arduino Nano

● 32

Figure 1-24: Arduino IDE running on a macOS.

Working with the Boards Manager
Arduino IDE comes with a program to add a particular board to the IDE. The Arduino Nano
board comes pre-installed and you do not have to install anything for it. However, you have
to install the Arduino Nano Every Board. You can open the Boards Manager in IDE 2.0 RC5
from the shortcut vertical menu bar located at the left-hand side of the Code Editor as
shown in Figure 1-15.

Figure 1-25: Boards Manager in the shortcut menu bar within IDE 2.0 RC5.

Clicking it will open the Boards Manager to the right of this shortcut menu bar as shown in
the Figure 1-26.

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 33

Figure 1-26: Boards Manager alongside the vertical shortcut menu bar within IDE 2.0 RC5.

You can also open it from the main menu bar under the menu Tools -> Board -> Boards
Manager as shown in Figure 1-27.

Kickstart to Arduino Nano

● 34

Figure 1-27: Boards Manager option in the menu.

In IDE version 1.8.19, the interface window for the Boards Manager is a bit different as you
can see from Figure 1-28.

Figure 1-28: Boards Manager running in IDE version 1.8.19.

In both interfaces (Figures 1-26 and 1-28), you can see the option for searching a board.
In the search bar, type megaAVR and press the Enter key (Figure 1-29).

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 35

Figure 1-29: Installing the megaAVR on IDE version 1.8.19 and IDE 2.0 RC5.

Doing so will show all the options for installation. Install Arduino megaAVR Boards. The
system will prompt you to install drivers as shown in the Figure 1-30.

Figure 1-30: Installing drivers.

Working with the Arduino Nano Every
Once installation is done, connect the Arduino Nano Every board to the computer with a
cable. In the IDE (both versions), go to Tools in the main menu and select the board from
the menu as shown in Figure 1-31.

Kickstart to Arduino Nano

● 36

Figure 1-31: Selecting the Arduino Nano Every Board.

When you connect any Arduino-supported board to a computer, it appears as a device on
one of the COM ports. Again, from the Tools menu, choose the COM port where the Arduino
Nano Every is to be connected as shown in Figure 1-32.

Figure 1-32: Choosing the correct COM port

In case you have difficulty identifying the COM port, check the Device Manager applica-
tion on Windows. Figure 1-33 shows a screenshot just before an Arduino Nano board got
attached.

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 37

Figure 1-33: Finding the correct COM port.

Within the Raspberry Pi OS, the port appears as in Figure 1-33.,

Figure 1-34: Port finding in the Raspberry Pi OS.

In IDE version 1.8.19, you also have to choose an additional option as shown in Figure
1-35.

Kickstart to Arduino Nano

● 38

Figure 1-35: Registers emulation selected as "None (ATMEGA4809)".

Now, save the default program (also known as "sketch") to the location of your choice.
Name it as you like. The system creates a folder with the given name automatically and
saves the program file with the same name as the folder (user-given name). The program
file has the .ino extension by default.

You can even check the board information by selection that option from the Tools menu as
shown in the Figure 1-36.

Figure 1-36: Board information.

Now, let's compile/verify and upload the code. Do not worry about the contents of the
sketch/program. We will study them in detail in the next chapter. Check the following (Fig-
ure 1-36) image to see the shortcuts in both the version of IDEs,

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 39

Figure 1-36: Shortcuts in IDEs.

The first row corresponds to the options in IDE 2.0 RC5, and the second row to IDE ver-
sion 1.8.19. The check mark is the button for Compile/Verify. The right pointing arrow is
the button for Upload. The page symbol is the button for New Sketch. The Up arrow is
the button for Open and the down arrow for Save. The Debug button is disabled for the
Nano and Nano Every so you will not be using it. Click the check mark to compile/verify the
sketch. Once verified, it shows the following message in the output window:

Sketch uses 802 bytes (1%) of program storage space. Maximum is
49152 bytes.

Global variables use 22 bytes (0%) of dynamic memory, leaving 6122
bytes for local variables. Maximum is 6144 bytes.

Now, click the Upload button. Once the sketch is uploaded, it shows the following message
in the end,

avrdude: 1 byte of fuse8 written
avrdude: verifying fuse8 memory against 0x00:
avrdude: load data fuse8 data from input file 0x00:
avrdude: input file 0x00 contains 1 byte
avrdude: reading on-chip fuse8 data:

Reading | ###
######### | 100% 0.00s

avrdude: verifying ...
avrdude: 1 byte of fuse8 verified

avrdude done. Thank you.

Working with the Arduino Nano
In the previous section, you learned how to verify a program and upload it to Nano Every.
In this section, you will learn how to upload a program to the Arduino Nano. Many peo-
ple use Arduino Nano clones and derivatives that use the "CH340" chip for USB-to-Serial
communication. The Original Nano will be detected without hassle. However, if your Nano
clone is not detected by your computer, you will have to download and install drivers for
the CH340 to your PC, Linux, or Mac. You can do it from https://sparks.gogo.co.nz/ch340.
html. Keep your Arduino Nano board connected while installing the drivers, run the setup
file and then click the button Install. See Figure 1-37.

https://sparks.gogo.co.nz/ch340.html
https://sparks.gogo.co.nz/ch340.html

Kickstart to Arduino Nano

● 40

Figure 1-37: CH340 Driver installation.

Once done, it shows a window with the message: Success. If your computer is still not
able to detect the Nano board, disconnect and connect it again. At this point, the computer
should be able to detect the board without any issue. The process of verification and up-
loading the sketch/program is identical for the Arduino Nano. However, you have to choose
the board within IDE 2.0 RC5 as shown in Figure 1-38.

Figure 1-38: Choosing the Arduino Nano board within IDE 2.0 RC5.

The process of selecting the board within IDE version 1.8.19 is exactly the same. However,
additional options are offered. You have to select the bootloader for your board as shown
in Figure 1-39.

Chapter 1 • Introduction to the Arduino Platform and the Arduino Nano

● 41

Figure 1-39: Choosing the bootloader within version 1.8.19.

You have to try the bootloaders from the list in order to find the one that matches your
board. The rest of the process of compiling and uploading a sketch to a board is the same
as you have learned for the Nano Every.

Summary
In this chapter, you got yourself acquainted with the Arduino ecosystem, the Arduino Nano
board, and the Arduino Nano Every board. Moreover, you learned the basics of working
with stable and upcoming versions of Arduino IDE. You learned how to install a new board.
You learned how to verify/compile a sketch and upload it to a board.

As an exercise, explore the various options in the menu within both versions of the IDE.
Check for the keyboard shortcuts for Verify and Upload.

In the next chapter, you will learn to play with simple electronic components and write
programs for them. It will be a detailed and hands-on chapter on electronics and program-
ming.

Kickstart to Arduino Nano

● 42

Chapter 2 • Playing with Electronics

In the previous chapter, you learned the basics of the Arduino Ecosystem, a couple of
boards in the Nano Family, and the basics of the current stable as well as next Release
Candidate versions of the Arduino IDE. In this chapter, you will learn the basics of writing
programs/sketches with Arduino IDE and working with electronics. Here's a list of topics
you will learn about in this chapter:

• basics of programming with Arduino IDE
• working with the basic electronic components
• improving the "LED blink" sketch with functions
• building your first circuit on a breadboard
• working with RGB LEDs
• using Arduino Nano boards with expansion shields

After absorbing this chapter, you should be comfortable with the basics of Arduino pro-
gramming and a few electronic components.

Basics of Programming with Arduino IDE
In the previous chapter, you uploaded the default basic program to an Arduino board. In
this section, you will learn to understand the meaning of the code. If you recall, you saved
the program before uploading. Even if you did not save the program (or sketch, you can use
these words indiscriminately, which I will be doing throughout the book), you can always
create a new sketch and by default it will have the basic code. The basic code looks like this:

prog00.ino
void setup() {
 // put your setup code here, to run once:

}

void loop() {
 // put your main code here, to run repeatedly:

}

I have copied and pasted the code as it is, without any modifications. The is the bare
minimum code required to compile (or verify, again, these two words can be used inter-
changeably) the sketch. As you can see, there are two blocks of code, setup() and loop().
To define your basic program, both blocks are a must for a sketch. Now, try to remove the
setup() block and compile the sketch, and you will find the following error message in the
Output section,

undefined reference to 'setup'

Chapter 2 • Playing with Electronics

● 43

Similarly, if you remove the loop() section and try to compile, the compilation will be un-
successful again with the following message,

undefined reference to 'loop'

This is the bare minimum of code required for any compilation —it will always be there in
any sketch anyone writes for Arduino.

When any sketch is uploaded to a board, it is stored to the board's Flash memory. Even
after disconnecting the board from the computer (or any other power source), the code will
be retained by the Flash memory, and it won't be erased until you upload a new sketch.
Every time the board is powered on, the setup() section is executed once. After that, the
loop() section continues to run as long as the board is powered. If the board is disconnected
powered off, it stops running the code (obviously!). When you connect the board to a power
source again, the entire process is repeated.

Blink in the built-in LED
All the Arduino boards come with a built-in LED. On the board, it can be identified as the
component labelled as "L". Let's write some code to blink it. It is considered the Hello
World! of the world of electronics programming. Also, I will be using the Arduino Nano
Every board running IDE 2.0 R5. However, you can use the Arduino Nano and any version
of the IDE for writing the sketch. Let's write a simple sketch (refer: prog00.ino) to turn on
the on-board LED.

prog00.ino
/*
This Program is written by Ashwin Pajankar
for Elektor on 20-APR-2022
*/

// the setup function runs once
void setup()
{
 pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs forever
void loop()
{
 digitalWrite(LED_BUILTIN, HIGH);
}

Let's examine it line by line. The code that begins with /* and ends with */ represents a
multi-line comment. Programmers usually use comments to provide additional information
about the code. Similarly, the lines that begin with // are single-line comments. I have
mentioned in the previous chapter that most of the Arduino boards have an on-board LED.

Kickstart to Arduino Nano

● 44

It is connected to digital pin 13 in the Arduino Nano family. The function pinMode() initial-
izes a digital pin as an INPUT or OUTPUT. In this chapter, you will learn their usage. You
have to write the pin number and INPUT or OUTPUT as arguments. The built-in constant
LED_BUILTIN refers to the on-board LED. So, you do not have to change the code when you
upload it to the different boards. LED_BUILTIN will always point to the on-board LED. The
function digitalWrite() sends either HIGH or LOW to the specified digital pin which means
1 or 0, respectively.

Note: You can check the details of built-in constants at this url:
https://www.arduino.cc/en/reference/constants.

Now, select the board and port from the Tools menu, then upload the code. You will see a
small LED near the micro-USB port lighting up. It is orange-colored which distinguishes it
from the power indicator LED which lights up green.

As you have learned, the loop() part runs forever, and thus as long as the board receives
power, this on-board LED (along with the power indicator LED) will always light unless you
upload some other program to the board.

Now, disconnect the Arduino board from the computer and power it with a power bank as
shown in Figure 2-1 (Image by Santeri Viinamäki under the https://creativecommons.org/
licenses/by-sa/4.0/deed.en license).

Figure 2-1: A power bank is a good power source for your Arduino experiments.

Once you power the board again, the LED will light again. This is because the system is
running the same program you uploaded earlier. It was uploaded to its flash memory and
will not be erased if you turn the power off — it will be rewritten only when you upload new
code to it.

https://www.arduino.cc/en/reference/constants
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Chapter 2 • Playing with Electronics

● 45

Congrats, you just wrote and uploaded your own first custom sketch to the board. Let's
create a new file and name it prog01.ino. This should be the contents of the file:

prog01.ino
int blink_duration = 1000;

void setup()
{
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop()
{
 digitalWrite(LED_BUILTIN, HIGH);
 delay(blink_duration);
 digitalWrite(LED_BUILTIN, LOW);
 delay(blink_duration);
}

From here on, I will use comments in the code as I am explaining the relevant functions. It
is considered good practice to add comments to the code (along with separate and detailed
documentation) to aid readers and fellow programmers in understanding what your code is
supposed to do. You will also benefit from your own comments after a few months as you
revisit your projects. You certainly do not wish to stare at an alien piece of code!

The function delay() pauses the execution of the sketch for the given amount of time stated
in milliseconds. You have also defined an integer variable in the beginning. This variable can
be accessed in any block of code in the same sketch, as it is a global variable. However,
the variables defined in the loop() and the setup() sections can only be accessed within the
respective sections. They are known as local variables. Now, upload the code and you will
see the LED connected to the digital pin 13 blinking.

Note: You can read more about the function delay() at this url:

 https://www.arduino.cc/reference/en/language/functions/time/delay/

and about the function digitalWrite() at this url:

 https://www.arduino.cc/en/Reference.digitalWrite

Working with the basic electronic components
Let's start working with electronic components such as breadboards, LEDs, resistors, and
jumper cables.

https://www.arduino.cc/reference/en/language/functions/time/delay/
https://www.arduino.cc/en/Reference.digitalWrite

Kickstart to Arduino Nano

● 46

Breadboards and power supplies
Figure 2-2 (Giacomo Alessandroni, https://creativecommons.org/licenses/by-sa/4.0/deed.en
license) is an image of a breadboard.

Figure 2-2: A breadboard, also called prototyping board or plugboard.

Shown here is a type MB 102 830-points breadboard. All the holes in the breadboard
provide electrical contact. You can see four rows of horizontal lines, two marked in blue
and two in red. Every "point" in those lines is connected to all the points in the same line.
So, if you connect an electrical component to the point on the far left in a line, you get the
same electrical signal at the far-right end of the same line. These lines are known as pow-
er-supply lines or the power bus lines. They will be used to distribute the supply voltage or
"power" across the board. The red line will have the positive supply voltage, and the blue
one carries the Ground or 0-V potential.

The middle part is divided into two sections. Each section is comprised of rows and col-
umns. Now, unlike the power bus lines, the points in a single row are not connected. Here,
they are connected column-wise. Two sections are separate, and they do not have any
electrical contact. In both sections, there are columns comprising of five contact points in
each column. If you look carefully, the rows and columns are marked with letters (A, B,
C, D, E, F, G, H, I, and J) and numbers (1 through 63), respectively. This means that the
points in column 1 are divided into two groups. The first group is A1, B1, C1, D1, and E1.
The second group is F1, G1, H1, I1, and J1. All the points in a column group are electrically
connected to each other.

Figure 2-3, image by Cz-David under https://creativecommons.org/licenses/by-sa/3.0/
deed.en license) shows a Dual in Package (DIP) Integrated Circuit (IC) mounted on a
breadboard.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Chapter 2 • Playing with Electronics

● 47

Figure 2-3: A breadboard with a lone DIP integrated circuit plugged in.

This image makes the purpose of the gap between two sections obvious. You will also
mount your Arduino Nano boards on the breadboard in similar fashion. You can see how the
points are internally connected in a mini breadboard pictured in Figure 2-4.

Figure 2-4: A half breadboard and its internal connections at the back side.

Kickstart to Arduino Nano

● 48

There is another type of similar-looking breadboard which is known as the type "GL 12"
breadboard having 840 points. I will be demonstrating almost everything with a type B
102 830-point breadboard and smaller breadboards — an example is shown in Figure 2-5.

Figure 2-5: Assorted small breadboards.

You can safely use an MB 102-style power supply with an MB 102 830-point or a mini bread-
board shown in Figure 2-4. Figure 2-6 shows a power supply mounted on a breadboard.

Chapter 2 • Playing with Electronics

● 49

Figure 2-6: Breadboard with power supply installed at the edge.

The supply module fits perfectly on the compatible breadboard. It also has a jumper plug
to choose between 3.3 V (also represented by 3V3) and 5 V. These are the most frequently
used voltage levels. The power supply proper can be powered with a barrel jack with 2.1
mm center-pin positive plug adapter as shown in Figure 2-7.

Figure 2-7: AC to DC power adapter with 2.1 mm barrel jack connector.

Kickstart to Arduino Nano

● 50

You can also connect a 9 V block battery to a connector and connect it to a male 2.1 mm
barrel jack as shown in Figure 2-8.

Figure 2-8: Portable power supply.

This arrangement can be used as a field or portable power supply for your Arduino projects.

Jumper cables
In order to connect the contact points of breadboard with each other and various electronic
components, you can use jumper cables. Figure 2-9 pictures a collection of male-to-male
jumper cables (image by oomlout under https://creativecommons.org/licenses/by-sa/2.0/
deed.en license).

Figure 2-9: Male-to-male jumper cables for use on breadboards.

https://creativecommons.org/licenses/by-sa/2.0/deed.en
https://creativecommons.org/licenses/by-sa/2.0/deed.en

Chapter 2 • Playing with Electronics

● 51

Figure 2-9 shows a female-to-female jumper cable (image by oomlout under https://crea-
tivecommons.org/licenses/by-sa/2.0/deed.en license),

Figure 2-10: Female-to-female jumper cable for use on breadboards.

The third type is the male-to-female jumper cable. You will be using all of these types of
jumper cable throughout the demonstrations in this book.

Light Emitting Diodes
Diodes are electrical components that allow current to flow only in one direction. They
have "anode" and "cathode" wire ends. If you connect the anode to a positive voltage and
the cathode to negative or Ground, current will flow thorough the diode. However, if you
connect the ends the other way round, the diode will block the current. Diodes emitting
light due to current flow are known as Light Emitting Diodes (LEDs). Figure 2-11 (image
by Gussisaurio under https://creativecommons.org/licenses/by-sa/3.0/deed.en license)
shows blue LEDs in action.

https://creativecommons.org/licenses/by-sa/2.0/deed.en
https://creativecommons.org/licenses/by-sa/2.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Kickstart to Arduino Nano

● 52

Figure 2-11: Blue LEDs.

The inventors of the blue LED won the Nobel Prize (https://www.nobelprize.org/prizes/
physics/2014/press-release/). LEDs come in different configurations and with different
colors.

Resistors
Resistors are passive electrical elements with two wire or solder ends, and they offer elec-
trical resistance. They are used to divide voltages and limit the current in the circuits. Figure
2-12 (image by Afrank99 under https://creativecommons.org/licenses/by-sa/2.5/deed.en
license) shows a few resistors.

Figure 2-12: Resistors.

https://www.nobelprize.org/prizes/physics/2014/press-release/
https://www.nobelprize.org/prizes/physics/2014/press-release/
https://creativecommons.org/licenses/by-sa/2.5/deed.en

Chapter 2 • Playing with Electronics

● 53

You can calculate the value of the resistance offered by the resistor by reading the marked
color codes. This page:

 https://www.digikey.in/en/resources/conversion-calculators/conversion-
calculator-resistor-color-code

offers a ready-made tool for this task. in the project descriptions, I will always mention the
values of the resistors used in construction of the relevant circuit.

Pushbuttons
Pushbuttons are momentary switches. Applying pressure with your finger closes the con-
tacts enabling current to flow. The switches used in our projects are usually rectangular
in shape. Two opposite sides have two contact points each. When you apply pressure, the
internal switch lever is pushed downwards and all the contact points on the same side are
connected to each other. These pushbuttons are manufactured in such a way that they can
easily be used on breadboards. Figure 2-13 shows the collection of pushbuttons I have in
my drawer.

Figure 2-13: Assorted pushbuttons.

Figure 2-14 shows an assortment of pushbuttons mounted on a breadboard.

https://www.digikey.in/en/resources/conversion-calculators/conversion-calculator-resistor-color-code
https://www.digikey.in/en/resources/conversion-calculators/conversion-calculator-resistor-color-code

Kickstart to Arduino Nano

● 54

Figure 2-14: Pushbuttons mounted on a breadbaord.

You will be working with a lot of electrical components and you will learn about them when-
ever appropriate throughout this book. Everything presented so far should be enough to
get started with the basics of building a circuit.

Improving the LED blink sketch with Functions
You have written a program to flash the on-board LED. You can use the same example for
learning a more complex concept. You can modify the program with the help of user-de-
fined Functions. A function is a block of code that can be named, reused, and cladded from
any other block of code. Almost all the high-level programming languages have facilities
for creating functions. Depending on the programming language, they are called by various
names such as routines and subroutines.

Arduino comes with a large set of functions. They are known as built-in functions. Many
third-party developers create collections of user-defined custom functions for various pur-
poses such as interfacing with hardware. These code chunks are known as libraries.

You can also define your own custom function. Let's modify the previous code example
(prog01.ino) and create a user-defined function for the blink functionality (prog02.ino):

prog02.ino
int blink_duration = 1000;

void blink(int pin, int duration)
{
 digitalWrite(pin, HIGH);

Chapter 2 • Playing with Electronics

● 55

 delay(duration);
 digitalWrite(pin, LOW);
 delay(duration);
}

void setup()
{
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop()
{
 blink(LED_BUILTIN, blink_duration);
}

In prog02.ino, you have defined a separate function to implement the blinking of an LED.
You have to state the number of the digital pin to which an LED is connected to (here, a
built-in constant is stated), and the duration of the blink as an argument. You can also add
default arguments to this function definition. If you do not state any arguments while call-
ing the function, the system will assume the default arguments. Refer to sketch prog03.
ino:

prog03.ino
int blink_duration = 1000;

void blink(int pin=LED_BUILTIN, int duration=1000)
{
 digitalWrite(pin, HIGH);
 delay(duration);
 digitalWrite(pin, LOW);
 delay(duration);
}

void setup()
{
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop()
{
 blink();
}

You will continue using the skeleton of this sketch and employ similar coding standards
throughout this book.

Kickstart to Arduino Nano

● 56

Building your first circuit on a breadboard
Let's create a simple circuit with an LED. Let me describe in words how to create a circuit
for this one:

1. Mount the power supply on the breadboard and power it with a power adapter.
2. Connect the smaller leg (cathode) of an LED to the GND (Ground) pin and the

longer leg (anode) to an end of a resistor with a value of 470 ohms. Connect the
other end of the resistor to the positive voltage. You can use any of the available
voltage levels (3V3 or 5 V).

3. Switch on the power supply and the LED will light up.

Congrats! You have built your first digital circuit; it's shown in Figure 2-15.

Figure 2-15: Simple LED circuit built on a breadboard
with a plug-on power supply module installed.

Now, after reading the description and observing the image, you must have understood
that it is difficult to show circuits using only words and photographs. That's why I am go-
ing to use a tool known as Fritzing (read more at https://fritzing.org/) to show the circuit
diagrams. If you wish, you can also purchase this tool costing 8 euros. However, it is worth
every single cent you pay for it. In the code bundle released for this book, I have included
the Fritzing circuit files for your reference if you wish to work with them. Figure 2-16 is the
Fritzing-style "circuit diagram".

https://fritzing.org/

Chapter 2 • Playing with Electronics

● 57

Figure 2-16: Simple LED on a breadboard.

You can find the Fritzing parts for the breadboard and Arduino Nano Every board at the
following URLs:

1. http://omnigatherum.ca/wp/?p=262
2. https://docs.arduino.cc/hardware/nano-every

From here on, I will mostly use Fritzing images to represent circuits. I will also add the URLs
of the Fritzing files for the parts that do not come with Fritzing.

Let's make this circuit a little bit more sophisticated. Let's add a pushbutton. Figure 2-17
shows a (Fritzing) circuit with a pushbutton

http://omnigatherum.ca/wp/?p=262
https://docs.arduino.cc/hardware/nano-every

Kickstart to Arduino Nano

● 58

Figure 2-17: Circuit of a simple LED with a switch.

Circuits using Nano
Let's proceed by building a circuit using the Arduino Nano. Refer to Figure 2-18.

Chapter 2 • Playing with Electronics

● 59

Figure 2-18: External LED hooked up to digital pin 13.

Let's connect an external LED to the digital pin 13. Connect the anode of the LED to digital
pin 13 and then connect the cathode of the LED to the GND pin through a 470 ohm resistor.
After this, upload the sketch prog03.ino to the Nano board. The LED will start blinking.

NOTE: I am using the Arduino Nano Every for most of the demonstrations in this book.
Feel free to use the Arduino Nano instead. Just remember to select the correct board from
the Tools menu.

Working with multiple LEDs
Let's connect multiple LEDs to the Nano board. Use pins D2 to D9 to connect eight LEDs as
shown in Figure 2-19.

Kickstart to Arduino Nano

● 60

Figure 2-19: Multiple external LEDs connected to pins D2 through D9.

All the resistors are 470 ohm types You can turn on all the LEDs under software control
with the aid of prog04.ino:

prog04.ino
void setup()
{
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);
 pinMode(7, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(9, OUTPUT);
}

void loop()
{
 digitalWrite(2, HIGH);
 digitalWrite(3, HIGH);
 digitalWrite(4, HIGH);
 digitalWrite(5, HIGH);
 digitalWrite(6, HIGH);
 digitalWrite(7, HIGH);
 digitalWrite(8, HIGH);
 digitalWrite(9, HIGH);
}

Chapter 2 • Playing with Electronics

● 61

Alternatively, you can make them blink (flash) with the following code:

prog05.ino
void setup()
{
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);
 pinMode(7, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(9, OUTPUT);
}

void loop()
{
 digitalWrite(2, HIGH);
 digitalWrite(3, HIGH);
 digitalWrite(4, HIGH);
 digitalWrite(5, HIGH);
 digitalWrite(6, HIGH);
 digitalWrite(7, HIGH);
 digitalWrite(8, HIGH);
 digitalWrite(9, HIGH);
 delay(1000);
 digitalWrite(2, LOW);
 digitalWrite(3, LOW);
 digitalWrite(4, LOW);
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 digitalWrite(7, LOW);
 digitalWrite(8, LOW);
 digitalWrite(9, LOW);
 delay(1000);
}

Isn't this program too long? You can reduce the length of the program by using arrays and
loops as follows:

prog06.ino
int pins[8] = {2, 3, 4, 5, 6, 7, 8, 9};

void setup()
{
 for (int i=0; i<=7; i++)

Kickstart to Arduino Nano

● 62

 pinMode(pins[i], OUTPUT);
}

void loop()
{

 for (int i=0; i<=7; i++)
 digitalWrite(pins[i], HIGH);
 delay(1000);

 for (int i=0; i<=7; i++)
 digitalWrite(pins[i], LOW);
 delay(1000);
}

This is a very compact way of writing programs. You are storing all the pin numbers in an
array and then accessing them with loops to get the desired results.

You can modify the earlier sketch to make the LEDs blink in succession. This is known as
the LED chaser effect. The sketch is as follows.

prog07.ino
int blink_duration = 50;

void blink(int pin=LED_BUILTIN, int duration=1000)
{
 digitalWrite(pin, HIGH);
 delay(duration);
 digitalWrite(pin, LOW);
 delay(duration);
}

int pins[8] = {2, 3, 4, 5, 6, 7, 8, 9};

void setup()
{
 for (int i=0; i<=7; i++)
 pinMode(pins[i], OUTPUT);
}

void loop()
{
 for (int i=0; i<=7; i++)
 blink(pins[i], blink_duration);
}

Chapter 2 • Playing with Electronics

● 63

Upload the sketch to see the compelling chaser effect.

You can also implement a 4-bit binary counter by using only the first four LEDs connected
to pins D2, D3, D4, and D5:

prog08.py
int pins[8] = {2, 3, 4, 5};
int i = 0;
void setup()
{
 for (int i=0; i<=3; i++)
 pinMode(pins[i], OUTPUT);
}
void loop()
{
digitalWrite(pins[3], LOW);
digitalWrite(pins[2], LOW);
digitalWrite(pins[1], LOW);
digitalWrite(pins[0], LOW);
i++;

if((i % 2) > 0) { digitalWrite(pins[0], HIGH); } else { digitalWrite(pins[0],
LOW); }
if((i % 4) > 1) { digitalWrite(pins[1], HIGH); } else { digitalWrite(pins[1],
LOW); }
if((i % 8) > 3) { digitalWrite(pins[2], HIGH); } else { digitalWrite(pins[2],
LOW); }
if((i % 16) > 7) { digitalWrite(pins[3], HIGH); } else { digitalWrite(pins[3],
LOW); }
delay(1000);
}

Adding a pushbutton to the circuit
Let's modify the single external LED circuit (where the LED is connected to digital pin 13)
and add a pushbutton to that. See Figure 2-20.

http://prog08.py

Kickstart to Arduino Nano

● 64

Figure 2-20: Adding a pushbutton.

Till now, you have learned how to use the digital pins as outputs. It is possible to use a
digital pin as an input, though. You have to connect a pushbutton to it, as shown in Figure
2-10, where one end of the pushbutton is connected to D10, and another is connected to
the GND pin. Have a look at the following sketch.

prog09.ino
void setup()
{
 pinMode(10, INPUT_PULLUP);
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop()
{
 int sensorVal = digitalRead(10);
 if (sensorVal == HIGH)
 digitalWrite(LED_BUILTIN, LOW);
 else
 digitalWrite(LED_BUILTIN, HIGH);
}

Chapter 2 • Playing with Electronics

● 65

Every digital pin of the Arduino has a built-in pull-up resistor. When you initialize a digital
pin with the mode INPUT_PULLUP, it produces a LOW signal when pressed. When the
button is in the normal state, it is HIGH. The function digitalRead() reads the value of the
digital pin passed as the argument. This sketch makes the LED light when the pushbutton
is pressed.

Working with RGB LEDs
So far, you worked with LEDs of a single color. Now, you will learn the basics of RGB LEDs.
These are essentially three different LEDs in a single package. An RGB LED has four pins.
One pin is a common anode (to be connected to a positive supply level) or a common cath-
ode (to be connected to Ground). The rest of the pins are for red, green, and blue LEDs,
and they can be connected to a digital output pin. In the case of the common-cathode
RGB LED, you need to send a HIGH signal to a LED pin for the LED to come on. With the
common-anode RGB LED, you need to send a LOW signal to a LED pin for the LED to
light. Figure 2-21 shows the circuit for common-cathode LED. All resistors have a value of
470 ohms.

Figure 2-21: Common-cathode RGB LED control circuit.

The sketch (prog10.ino) uses a binary counter to show all the combinations of colors
possible by means of digital output. It shows 7 colors and an Off state (i.e., 8 combinations
using three digital output pins).

Kickstart to Arduino Nano

● 66

prog10.ino
int duration = 200;

void setup()
{
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
}

void loop()
{
digitalWrite(2, HIGH); digitalWrite(3, HIGH); digitalWrite(4, HIGH);
delay(duration);
digitalWrite(2, HIGH); digitalWrite(3, HIGH); digitalWrite(4, LOW);
delay(duration);
digitalWrite(2, HIGH); digitalWrite(3, LOW); digitalWrite(4, HIGH);
delay(duration);
digitalWrite(2, HIGH); digitalWrite(3, LOW); digitalWrite(4, LOW);
delay(duration);
digitalWrite(2, LOW); digitalWrite(3, HIGH); digitalWrite(4, HIGH);
delay(duration);
digitalWrite(2, LOW); digitalWrite(3, HIGH); digitalWrite(4, LOW);
delay(duration);
digitalWrite(2, LOW); digitalWrite(3, LOW); digitalWrite(4, HIGH);
delay(duration);
digitalWrite(2, LOW); digitalWrite(3, LOW); digitalWrite(4, LOW);
delay(duration);
}

If necessary, you can replace the common-cathode RGB LED with a common-anode RGB
LED. For that you have to adapt the circuit as shown in Figure 2-22.

Chapter 2 • Playing with Electronics

● 67

Figure 2-22: Common-anode RGB LED circuit.

The sketch though will not need any modification to suit the common-anode RGB LED.

Using Arduino Nano boards with expansion shields
It may be difficult to work with an Arduino Nano in combination with a breadboard. You may
have experienced the difficulty in working with pins spaced so close together after so many
demonstrations. That is why many third-party manufacturers produce various bases and
I/O expansion boards. Figure 2-13 shows a simple example of such a board.

Kickstart to Arduino Nano

● 68

Figure 2-23: Nano I/O shield.

If you are planning to use Nano boards for industrial applications, then this is a good option.
It has the bare minimum requirements such as marked headers and provision to attach
wires for your control application.

In case you are looking for a more complex application with a dedicated power supply, then
the shield shown in Figure 2-24 is a good choice. It has separate sections of pins for Analog,
Digital, I2C, UART, and SPI. In addition, it has a dedicated power supply system.

Chapter 2 • Playing with Electronics

● 69

Figure 2-24: Nano I/O expansion shield.

As you can see, it has a similar form factor as the Arduino Uno. Analog and digital pins have
dedicated groups for GND, VCC, and Signal. You can mount a Nano board on it as shown
in Figure 2-25.

Kickstart to Arduino Nano

● 70

Figure 2-25: Nano I/O expansion shield with a mounted Nano Every board.

Summary
In this chapter, you explored the digital input and output aspects of the Arduino Nano in
detail. You worked with various electronic components, built your first circuit, and wrote
your first Arduino sketch.

In the next chapter, you will learn how to deal with various types of Arduino-supported
buses. You will also learn how to work with analog input using the Arduino's analog pins.

Chapter 3 • Assorted Buses and the Analog Input

● 71

Chapter 3 • Assorted Buses and the Analog Input

In the previous chapter, you learned the basics of electronic circuits and programming with
Arduino. Now, you are reasonably comfortable with building basic circuits and beginner's
level programming.

You will continue the exciting journey of Arduino programming. In this chapter, you will
learn the following topics:

• parallel and serial data transfer
• Arduino serial
• SPI and I2C
• analog input
• plotting multiple variables

After finishing this chapter, you will be at ease with various types of bus systems and the
concept of analog input.

Parallel and Serial Data Transfer
In the world of computing, there are two ways to transfer electronic signals (HIGH, LOW,
and analog), Parallel and Serial. A bus is a communication system for data transfer. In
Parallel data transfer (also known as parallel bus), the signals are transferred by multiple
bus lines as shown in Figure 3-1.

Figure 3-1: Parallel data transfer.

As you can see, there is a separate bus line for every bit. This method is very fast as more
data can be carried in less time. However, this method is not particularly efficient as it re-
quires a lot of hardware, and, consequently, is expensive to implement. Most of the internal
buses in a microprocessor, such as the data bus, address bus, and control bus are parallel
buses.

A more efficient data transfer technique is Serial communication (or serial bus). Figure
3-2 represents a serial bus.

Kickstart to Arduino Nano

● 72

Figure 3-2: Serial data transfer.

In serial communication systems, data bits are transferred in series, i.e., sequentially,
over a single channel. Usually, a serial communication system has a transmitter (TX) and
receiver (RX) pair for bidirectional communication. The serial data transfer is slower but
more efficient in terms of hardware and cost. There are two types of serial communication:
asynchronous and synchronous. In asynchronous serial communication, the TX and RX are
not synchronized by any clock but by the data bits. The best and the most commonly used
example of asynchronous serial communication is RS-232. Figure 3-2 shows "schematics"
of male and female connectors for a pair of RS-232 communication devices.

Figure 3-3: RS-232 male and female connectors (image by Cody.hyman under the
https://creativecommons.org/licenses/by-sa/3.0/deed.en license,

modified for publication)

Another example of asynchronous serial is the UART (universal asynchronous receiv-
er-transmitter). You will learn this in detail in this chapter.

The other type of serial data transfer is synchronous data transfer. Here, the endpoints
and data transfer are synchronized by clock pulses. There are many ways this can be im-
plemented. Prominent examples are the USART (universal synchronous and asynchronous
receiver-transmitter), Serial Peripheral Interface (SPI), and Inter-Integrated Circuit (I2C or
simply I2C). This chapter explores them in depth.

https://creativecommons.org/licenses/by-sa/3.0/deed.en

Chapter 3 • Assorted Buses and the Analog Input

● 73

Arduino Serial
All Arduino boards have at least one set of serial pins that are used for UART and USART.
The Arduino Nano and Arduino Nano have one set of serial pins. Digital Pins D0 and D1
serve a dual purpose: they are used for digital I/O while also configurable for Serial data
transfer. Since Arduino Nano boards have only one set of them, from here on, we will leave
pins D0 and D1 free for serial data transfer and will use other digital pins for the digital I/O.
D0 serves as RX and D1 serves as TX on both boards. We can monitor the data transfer on
these boards by using the built-in tool known as the Serial Monitor. It can be found under
the menu Tools as shown in Figure 3-4 .

Figure 3-4: Serial Monitor found.

The window that opens looks like in Figure 3-5.

Figure 3-5: Serial Monitor opened under Tools.

Kickstart to Arduino Nano

● 74

Make sure that you check all the checkboxes at the bottom left. At the bottom right, select
Newline from the first dropdown and 9600 baud from the second dropdown as shown
in Figure 3-5. Let's play with this. Keep your eyes fixed on the Arduino board and type in
something in the textbox at the top. Then click the Send button or press the Enter key on
the keyboard. This will send the data as input to the RX pin. The LED associated with RX
will light briefly. If you send a very large string with, say, 200 characters, you will find that
the LED lights for a longer time.

Let's transmit some data over TX. All the data transmitted over TX is printed on the serial
console. Recall prog03.ino from the last chapter and modify it and save it with a new
filename under a new directory for this demo (I recommend organizing your code in chap-
ter-named directories as I am doing). Here is the modified code:

prog00.ino
void blink(int pin=LED_BUILTIN, int duration=1000)
{
 digitalWrite(pin, HIGH);
 Serial.println("LED On...");
 delay(duration);
 digitalWrite(pin, LOW);
 Serial.println("LED Off..");
 delay(duration);
}

void setup()
{
 pinMode(LED_BUILTIN, OUTPUT);
 Serial.begin(9600);
}

void loop()
{
 blink();
}

The on-board LED connected to D13 (and any external one, if connected), will start blink-
ing. Also, the LED associated with the TX pin will blink momentarily every time the D13 LED
blinks. This is because you are sending data over "Serial". In the serial monitor tool, you
will see output like in Figure 3-6.

Chapter 3 • Assorted Buses and the Analog Input

● 75

Figure 3-6: Serial Monitor output.

You may have missed the printf() statement in C programming normally used to debug
programs. Well, Serial.println() offers the similar functionality.

SPI and I2C
SPI means Serial Peripheral Interface and is a synchronous serial communication stand-
ard. On the Nano board, you can find D10 (CS – Chip Select), D11 (COPI – Controller Out
Peripheral In), D12 (CIPO – Controller In Peripheral Out), and D13 (SCK – Serial Clock) pins
to support SPI Communication.

I2C means Inter-Integrated Circuit and is also a synchronous serial communication
standard. Nano boards support it with the pins A4 (SDA – Serial Data) and A5 (SCL – Serial
Clock). It is supported with Two Wire Interface using the built-in Wire library.

You will learn to connect various devices to Arduino Nano boards that use these special
buses throughout this book.

Analog Input
In the previous chapter, you learned to work with the digital pins and pushbuttons. In this
section, you will learn to use the analog input pins of Nano boards. Nano boards have 8
different analog input pins (A0 through A7) and their resolution is 10 bits. Therefore, the
input can have 210 = 1024 different values. Those values range from 0 through 1023. Let's
build a circuit that reads input analog value of a potentiometer or a variable resistor. Figure
3-7 shows that device.

Kickstart to Arduino Nano

● 76

Figure 3-7: Potentiometer. (image by oomlout under

https://creativecommons.org/licenses/by-sa/2.0/deed.en license)

Potentiometers are usually operated with a knob fixed on a rotating axis. You can also use
a trimpot shown in Figure 3-8 as a variable resistor that is a bit more breadboard-friendly.

Figure 3-8: A trimpot-style variable resistor (image by oomlout under
https://creativecommons.org/licenses/by-sa/2.0/deed.en license)

Let's use a trimpot variable-resistor with a range 0-1000 ohms for the analog input. Nearly
all trimpots acting as a variable resistance (including potentiometers) have three pins. The
middle pin (called wiper) outputs the signal. It should be connected to an analog input pin
of an Arduino board. Of the two remaining pins, one pin can be connected to the reference
voltage, and the remaining one can be connected to Ground. Note that the order is not
strict, which is why I do not mention exactly which pin in the earlier statement. Just make
sure that one pin on the extreme end is connected to 5 V, the middle pin is connected to
A0, and the last one is connected to the GND, as shown in Figure 3-9.

https://creativecommons.org/licenses/by-sa/2.0/deed.en
https://creativecommons.org/licenses/by-sa/2.0/deed.en

Chapter 3 • Assorted Buses and the Analog Input

● 77

Figure 3-9: A 1 k-ohm (1000 ohm) trimpot used as a variable
resistor connected to the Arduino Nano Every.

Now, create and upload the following sketch.

prog01.ino
int resistor;
void setup()
{
 Serial.begin(9600);
}

void loop()
{
resistor = analogRead(0);
Serial.println(resistor);
delay(100);
}

After uploading the sketch, open the serial monitor, and you will see something like in
Figure 3-10.

Kickstart to Arduino Nano

● 78

Figure 3-10: Analog input in active service.

You can also see everything graphically with the serial plotter. Figure 3-11 shows how to
open the serial plotter.

Figure 3-11: Tracking the analog input values with the Serial Plotter utility.

The graphical output will look something like Figure 3-12.

Chapter 3 • Assorted Buses and the Analog Input

● 79

Figure 3-12: Using the Serial Plotter provides a graphical view of data values.

The trimpot resistor or potentiometer is essentially working as a variable voltage divider
allowing you to change the level of the reference voltage. We can map the range of analog
input (0 – 1024) to the corresponding voltage range (0 – 5 volts) as follows.

prog02.ino
int resistor;
float voltage;
void setup()
{
 Serial.begin(9600);
}
void loop()
{
resistor = analogRead(0);
voltage = resistor * (5.0 / 1023.0);
Serial.println(voltage);
delay(100);
}

The Arduino library has a built-in function map() that accepts a variable, a pair of input
ranges, and a pair of custom output ranges and then maps the input to the output fitting
the custom range. For example, you may want to convert the analog input from range 0 to
1023 to 0 to 255. It is done as follows.

Kickstart to Arduino Nano

● 80

prog03.ino
int resistor;
float mapped_range;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
resistor = analogRead(0);
mapped_range = map (resistor, 0, 1023, 0, 255) ;
Serial.println(mapped_range);
delay(100);
}

Plotting multiple variables
You can plot multiple variables on the serial plotter as follows:

prog04.ino
float x, y1, y2, y3;
void setup()
{
 Serial.begin(9600);
}
void loop()
{
 for(x = 0; x < 360; x = x + 5)
 {
 y1 = x * x;
 y2 = -x * x;
 y3 = 100000 * cos(x * (3.1417 / 180));
 Serial.print(y1);
 Serial.print(" ");
 Serial.print(y2);
 Serial.print(" ");
 Serial.println(y3);
 delay(1);
 }
}

This causes all the variables to be plotted in different colors. You can see the output in
Figure 3-13.

Chapter 3 • Assorted Buses and the Analog Input

● 81

Figure 3-13: Plotting multiple variables.

Summary
In this chapter, you learned the basics of Arduino Serial and other buses. In addition, you
have learned to use the analog inputs and serial plotter.

In the next chapter, you will learn to use various displays in combination with Arduino Nano
boards.

Kickstart to Arduino Nano

● 82

Chapter 4 • Pulse Width Modulation and Driving
Unipolar Stepper Motors with Digital I/O

In the previous chapter, you studied and practiced the Arduino serial, serial plotting, and
analog inputs. You also learned the basics of various buses and pins associated with them.

In this chapter, you will explore the amazing world of Pulse Width Modulation (abbre-
viated as PWM; alternative spelling: pulsewidth modulation). Here are the topics you will
study and demonstrate in this chapter:

• the concept of pulse width modulation
• PWM with the Arduino Nano
• working with a servo motor
• working with the 28BYJ-48 unipolar stepper motor and the ULN2003A motor

driver
• using a custom library for stepper motors

Once you finish the chapter, you will be relaxed with the concept of PWM and its applica-
tions.

The Concept of Pulse Width Modulation
You know that a normal digital signal has one of two states for every period: either HIGH
(5 V/3V3 or digital 1) or LOW (0 V or digital 0). The length of time the waveform takes to
repeat itself is known as period. Figure 4-1 is an example of a digital signal,

Figure 4-1: A digital signal carrying information. (adapted from the image provided by
El Pak under the https://creativecommons.org/licenses/by-sa/3.0/deed.en license)

So, withing the entire period, the signal is either HIGH or LOW. It is possible to modify the
digital signal in such a way that a part of the signal is HIGH and the remaining part is LOW
within a single period (or a single pulse). This is known as modulation of the width of the
pulse (PWM). Figure 4-2 shows a modulated digital signal.

Figure 4-2: A modulated digital signal. (adapted from the image by Cyril BUTTAY
under the https://creativecommons.org/licenses/by-sa/3.0/deed.en license)

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Chapter 4 • Pulse Width Modulation and Driving Unipolar Stepper Motors with Digital I/O

● 83

Notice that in a single period pulse, you can see both signal levels, HIGH and LOW. Essen-
tially, you are manipulating the width of the HIGH signal. Figure 4-3 shows the anatomy of
a width-modulated digital pulse.

Figure 4-3: Anatomy of a width-modulated digital pulse.

In a single pulse, the time for which the pulse is LOW is known as TOFF or TOFF and the time
for which it is HIGH is known as TON or TON. The following is the formula that shows the
relationship between the period, TON, and TOFF.

 period of a signal = TON + TOFF

The duty cycle (also known as the power cycle) is the fraction of period for which the pulse
is active. It is determined in percentage with the following formula,

 duty cycle = (TON / period) x 100

Figure 4-4 shows various duty cycles.

Figure 4-4: Duty cycle (adapted from the image by Thewrightstuff under the
https://creativecommons.org/licenses/by-sa/4.0/deed.en license)

Thus, you can cleverly use Arduino PWM for delivering the desired amount of power to an
LED or any other device of your choice.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

Kickstart to Arduino Nano

● 84

PWM with Arduino Nano
You can use the digital pins D3, D5, D6, D9, and D10 for PWM on both the Nano and Nano
Every boards. The digital pin D11 on the Nano can be used for PWM. The same does not
apply for the Nano Every board. Since I wish the sketch to work with both boards, I will
not use the digital pin D11 for PWM in any of the sketches. Let's connect the anode of an
LED to the digital pin 6 and the cathode to Ground through a 470 ohm resistor as shown
in Figure 4-5.

Figure 4-5: LED connected to digital pin D3.

You will have to use the function analogWrite() that accepts the PWM pin number and the
intensity of the PWM applied as arguments. Intensity ranges from 0 to 255. If the intensity
is 0, 63, 127, 255 it means 0%, 25%, 75%, 100% duty cycle, respectively. In addition, you
can have an intermediate percentage of values with the following formula,

 duty cycle percentage = (intensity / 255) x 100

Let's write and upload the sketch for the demonstration of the function analogWrite():

prog00.ino
int pwm_pin_d3 = 3;
int signal_duration = 2;
void setup()
{
 pinMode(pwm_pin_d3, OUTPUT);
}
void loop()
{
 for(int i=0; i<=255; i++)

Chapter 4 • Pulse Width Modulation and Driving Unipolar Stepper Motors with Digital I/O

● 85

 {
 analogWrite(pwm_pin_d3, i);
 delay(signal_duration);
 }
 for(int i=255; i>=0; i--)
 {
 analogWrite(pwm_pin_d3, i);
 delay(signal_duration);
 }
}

This sketch supplies the intensity value, increasing first and then decreasing. This causes
the LED to light bright first and then fade. The change in the intensity of the LED is pre-pro-
grammed here. You can manipulate it with an analog input. You have to connect a trimpot
of any value to analog pin A0 to the same circuit, as shown in Figure 4-6.

Figure 4-6: Manipulating LED intensity through an analog input.

You have to read the analog input from the analog pin A0 (which is in the range of 0 – 1023,
if you remember it from the last chapter) and then map it to the range of 0 – 255. Then
pass this new value to the function analogWrite() as the second argument, as follows:

prog01.ino
int pwm_pin_d3 = 3;
int input_signal, intensity;
void setup()
{

Kickstart to Arduino Nano

● 86

 Serial.begin(9600);
 pinMode(pwm_pin_d3, OUTPUT);
}
void loop()
{
 input_signal = analogRead(0);
 intensity = map(input_signal, 0, 1023, 0, 255);
 Serial.println(intensity);
 analogWrite(pwm_pin_d3, intensity);
}

Now, after uploading the sketch to the board, you can control the intensity using the trim-
pot. The variable resistor can be of any value, as the analog input will always convert it to
10-bit resolution (range of 0 through 1023). It is exactly this range that you are mapping
to the output intensity value.

You can even connect an RGB LED. Figure 4-7 shows the connections for a common-cath-
ode RGB LED.

Figure 4-7: Common-cathode RGB LED connected to PWM pins D3, D5, and D6.

Chapter 4 • Pulse Width Modulation and Driving Unipolar Stepper Motors with Digital I/O

● 87

The following example cycles through a few combinations of colors:

prog02.ino
int blue_pin_d3 = 3;
int green_pin_d5 = 5;
int red_pin_d6 = 6;
void setup()
{
 Serial.begin(9600);
 pinMode(blue_pin_d3, OUTPUT);
 pinMode(green_pin_d5, OUTPUT);
 pinMode(red_pin_d6, OUTPUT);
}
void loop()
{
for (int i = 0 ; i <= 255; i = i + 32)
 for (int j = 0 ; j <= 255; j = j + 32)
 for (int k = 0 ; k <= 255; k = k + 32)
 {
 analogWrite(blue_pin_d3, i);
 analogWrite(green_pin_d5, j);
 analogWrite(red_pin_d6, k);
 Serial.println(i);
 Serial.println(' ');
 Serial.println(j);
 Serial.println(' ');
 Serial.println(k);
 }
}

Let's modify the RGB LED circuit and connect three trimpots to the analog pins A0, A1, and
A2 as given by the schematic in Figure 4-8.

Kickstart to Arduino Nano

● 88

Figure 4-8: Common-cathode RGB controlled by analog inputs.

The code is very simple. You just need to map the input analog values to the range of the
output as shown in the following sketch:

prog03.ino
int blue_pin_d3 = 3;
int green_pin_d5 = 5;
int red_pin_d6 = 6;
void setup()
{
 Serial.begin(9600);
 pinMode(blue_pin_d3, OUTPUT);
 pinMode(green_pin_d5, OUTPUT);
 pinMode(red_pin_d6, OUTPUT);
}
void loop()
{
 analogWrite(blue_pin_d3, map(analogRead(0), 0, 1023, 0, 255));
 analogWrite(green_pin_d5, map(analogRead(1), 0, 1023, 0, 255));
 analogWrite(red_pin_d6, map(analogRead(2), 0, 1023, 0, 255));
}

Chapter 4 • Pulse Width Modulation and Driving Unipolar Stepper Motors with Digital I/O

● 89

Upload the sketch and feel free to play with the colors.

You can even use a common anode RGB LED. You just need to make a few minor changes
to the circuit as shown in Figure 4-9.

Figure 4-9: Common-anode RGB LED controlled by three analog inputs.

Working with a Servo Motor
You can attach a simple servo motor. For this demonstration, you will attach an SG90 servo
motor which is commonly used in robotics-related projects. The motor has 3 pins: VCC
(red), GND (black), and Signal (yellow). Attach the VCC to +5V, GND to the ground, and
Signal to the PWM pin D3, as shown in Figure 4-10.

Kickstart to Arduino Nano

● 90

Figure 4-10: Servo motor connected to the PWM pin D3.

There is a built-in library for handling servomotors. Let's create the sketch for this servo
using the necessary library:

prog04.ino
#include <Servo.h>
Servo servo1;
int servo1_pin = 3, pos = 0;
void setup()
{
servo1.attach(servo1_pin);
}
void loop()
{
 for (pos = 0; pos <= 180; pos = pos + 6)
 {
 servo1.write(pos);
 delay(1000);
 }
 delay(5000);
}

Chapter 4 • Pulse Width Modulation and Driving Unipolar Stepper Motors with Digital I/O

● 91

This is a very simple program. You are importing something for the very first time. The first
statement imports the required library file to the sketch. It is an integral library and you
do not have to install anything. Then you are creating an object for the servo motor. The
function attach() in the setup() associated the PWM pin mentioned in the argument to
the object and initializes it. You can send the position angle for the servo using the function
write(). The argument ranges from 0 to 180. This function sets the angle of the servo to
the specified angle. This program successively increases the angle. Upload the sketch to the
Arduino Nano to see it in action.

You can improve the project by attaching a trimpot to read the values and set the angle of
the servo. Let's try that. The schematic in Figure 4-11 adds a trimpot to the analog input
pin A0.

Figure 4-11: Servomotor connected to analog pin A0.

The code for the sketch is very simple. You just have to map the analog input range (0
through 1023) to the range of angle of rotation (0 through 180 degrees).

Kickstart to Arduino Nano

● 92

prog05.ino
#include <Servo.h>
Servo servo1;
int servo1_pin = 3;
void setup()
{
servo1.attach(servo1_pin);
}
void loop()
{
 servo1.write(map(analogRead(0), 0, 1023, 0, 180));
 delay(100);
}

As you rotate the dial of the trimpot, you can see the angle of rotation of the servo change
in real time.

Working with the 28BYJ-48 Unipolar Stepper Motor and the ULN2003A
Motor Driver
This section is really a part of the digital I/O chapter since you will use the digital pin to
drive the Unipolar stepper motor. Nevertheless, the topic is pretty advanced for beginners.
That is why I decided to include it here, after the discussion on servo motors.

Let's learn the basics of the components we will be using in this section. The very first
component is a stepper motor. A stepper motor is also known as a step motor or a stepping
motor. It is a brushless electric motor that needs DC current to work. In other words, it uses
magnetic fields to move the motor.

In a stepper motor, a complete rotation of 360 degrees is divided into equal number of
steps. Stepper motors use four electromagnets and a cogged wheel for operation. In a
unipolar stepper motor, there is one winding per phase. You can turn on each section of a
winding to generate a magnetic field in that section. This requires a transistor, or rather an
array of transistors, for operations. A unipolar stepper motor usually has five pins. These
pins must be connected to a stepper motor controller that can activate the transistors. You
will use the 28BYJ-48 unipolar stepper motor for this demonstration. The stepper motor has
a Gear Reduction Ratio of 63.68395:1, resulting in approximately 4076 steps per complete
revolution in half-step mode.

This prompts a discussion related to the stepper motor controller. You will use a stepper
motor controller that uses an IC type ULN2003A, an array of seven NPN Darlington transis-
tors that uses common cathode diodes for implementation. You can read the data sheet of
the IC at the following URLs:

 https://www.ti.com/lit/ds/symlink/uln2003a.pdf
 https://www.ti.com/product/ULN2003A

https://www.ti.com/lit/ds/symlink/uln2003a.pdf
https://www.ti.com/product/ULN2003A

Chapter 4 • Pulse Width Modulation and Driving Unipolar Stepper Motors with Digital I/O

● 93

You will not directly use the IC as you will have to build a circuit around it. So, you will use
a ready-made stepper motor driver board containing a type ULN2003A IC. This chip sends
a series of pulses to the motor. The spinning direction of the motor is decided by the se-
quence of the pulses. The speed of the motor is determined by the frequency of the pulses.

Figure 4-12 shows one such ready-made stepper motor driver.

Figure 4-12: A ULN2003A-based stepper motor controller board.
(adapted from the image by Kushagra Keshari under the

https://creativecommons.org/licenses/by-sa/4.0/deed.en license)

You can connect the board to a 28BYJ-48 motor as shown in Figure 4-13.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

Kickstart to Arduino Nano

● 94

Figure 4-13: A ULN2003A-based stepper motor controller board connected

to a 28BYJ-48 motor. (adapted from the image by Kushagra Keshari under the
https://creativecommons.org/licenses/by-sa/4.0/deed.en license)

The pins of the motor come with a male-type adapter that fits perfectly on the female port
of the stepper motor controller board. You cannot get it wrong; these devices are truly
manufactured for each other. Let's connect this to an Arduino Nano board as shown in
Figure 4-14.

Figure 4-14: A ULN2003A and 28BYJ-48 connected to a
Nano board (for anticlockwise rotations).

https://creativecommons.org/licenses/by-sa/4.0/deed.en

Chapter 4 • Pulse Width Modulation and Driving Unipolar Stepper Motors with Digital I/O

● 95

Note: You can download the Fritzing parts for the motor and the driver board from the
following URLs:

 https://github.com/e-radionicacom/e-radionica.com-Fritzing-Library-parts-/blob/
master/28BYJ-48%20Stepper%20Motor.fzpz

 https://github.com/e-radionicacom/e-radionica.com-Fritzing-Library-parts-/blob/
master/ULN2003A%20breakout%20board.fzpz

The connection between the stepper motor and the driver board is straightforward as the
motor has a male plug, and the board has a female port. Let's discuss the connections be-
tween the motor driver board and Nano board. Power the motor driver board separately as
it may generate noise and damage the Nano board if connected to it. The best option is to
use an MB 102-style breadboard power supply with it.

Near the ULN2003A IC, you will see seven pins (IN1 through IN7). The last three (IN5, IN6,
IN7) are disabled in most of the motor driver boards as the stepper motor you are using
only needs the first four pins IN1, IN2, IN3, and IN4. For counterclockwise (anticlockwise)
rotation of the motor shaft (corresponding to Figure 4-14), the following table applies.

Arduino Pin Motor Driver Board Pin

D2 IN1

D3 IN2

D4 IN3

D5 IN4

For clockwise rotation, the connections are as pictured in Figure 4-15.

Figure 4-15: A ULN2003A and 28BYJ-48 connected to a

Nano board (for clockwise rotations).

https://github.com/e-radionicacom/e-radionica.com-Fritzing-Library-parts-/blob/master/28BYJ-48%20Stepper%20Motor.fzpz
https://github.com/e-radionicacom/e-radionica.com-Fritzing-Library-parts-/blob/master/28BYJ-48%20Stepper%20Motor.fzpz
https://github.com/e-radionicacom/e-radionica.com-Fritzing-Library-parts-/blob/master/ULN2003A%20breakout%20board.fzpz
https://github.com/e-radionicacom/e-radionica.com-Fritzing-Library-parts-/blob/master/ULN2003A%20breakout%20board.fzpz

Kickstart to Arduino Nano

● 96

The table for the connections appliable to Figure 4-15 is as follows:

Arduino Pin Motor Driver Board Pin

D2 IN4

D3 IN3

D4 IN2

D5 IN1

Now, let's write a program for this circuit.

prog06.ino
int A=2, B=3, C=4, D=5;
int steps_per_rotation=512;
int duration=5;
int sequence[8][4]={{1,0,0,0},
 {1,1,0,0},
 {0,1,0,0},
 {0,1,1,0},
 {0,0,1,0},
 {0,0,1,1},
 {0,0,0,1},
 {1,0,0,1}};
void setup()
{
 pinMode(A, OUTPUT);
 pinMode(B, OUTPUT);
 pinMode(C, OUTPUT);
 pinMode(D, OUTPUT);
}

void send_sequence(int a, int b,
 int c, int d)
{
 digitalWrite(A, a);
 digitalWrite(B, b);
 digitalWrite(C, c);
 digitalWrite(D, d);
}

void single_step(){
 for(int i=0; i<8; i++)
 {
 send_sequence(sequence[i][0],
 sequence[i][1],
 sequence[i][2],

Chapter 4 • Pulse Width Modulation and Driving Unipolar Stepper Motors with Digital I/O

● 97

 sequence[i][3]);
 delay(duration);
 }
}

void loop()
{
 int i=0;
 while(i<steps_per_rotation)
 {
 single_step();
 i++;
 }
}

This is a relatively large program. Let's understand it block by block. In the first line, you
are defining the digital pins of the Nano board to be used. By reversing this line, you can
change the direction of the motor. Next, you are defining steps per full rotation (revolution)
and the delay between the microsteps. There are four coils in the motor. You are supply-
ing the positive voltage (1 or HIGH) to one or two coils in sequence from A to D. This will
make the motor shaft revolve in a particular direction (depending on your wiring). So, you
created a 2D array (or matrix) of the sequences to be applied to each coil. In the setup(),
you are initializing the pre-defined pins as the digital output pins. The customs function
send_sequence() sends the transferred values to the respective pins. You can reverse the
sequence to change the direction of rotation here too. The custom function single_step()
sends the values in the sequence matrix row-wise to the motor driver. This calls send_se-
quence() once per row in the sequence matrix. You are calling this function for every step
in the rotation in the loop() section. You can also change the direction of the rotation by
mirroring the signal sequence matrix along with the Y-axis (mirroring column-wise). This
is known as microstepping technique.

You can make the motor rotate faster by changing the sequence matrix as follows:

int sequence[4][4]={{1,1,0,0},
 {0,1,1,0},
 {0,0,1,1},
 {1,0,0,1}};

And the function single_step() needs to be modified as follows:

void single_step(){
 for(int i=0; i<4; i++)
 {
 send_sequence(sequence[i][0],
 sequence[i][1],
 sequence[i][2],

Kickstart to Arduino Nano

● 98

 sequence[i][3]);
 delay(duration);
 }
}

This will increase the speed of the motor. I have added the modified program to the code
bundle in the book. You can find it in the relevant directory for this chapter. The file is
named prog07.ino.

Using a Custom Library for Stepper Motors
You wrote the code manually to drive the motor with the controller. Now, you will use a
custom library to drive the motor. The connections will remain the same as in the earlier ex-
ample (Figures 4-14 and 4-15). The library is called AccelStepper, and you can download
it from the Library Manager from the Sketch Menu as shown in Figure 4-16.

Figure 4-16: Library Manager under the Sketch menu.

Afterwards, search the AccelStepper library and install it (Figure 4-17).

Figure 4-17: Installing a custom library (AccelStepper) for the stepper motor.

Chapter 4 • Pulse Width Modulation and Driving Unipolar Stepper Motors with Digital I/O

● 99

Once installed, upload the following sketch to it:

prog08.ino
#include<AccelStepper.h>
const int FULLSTEP=4;
AccelStepper stepper1(FULLSTEP, 2, 4, 3, 5);
void setup()
{
 stepper1.setMaxSpeed(1000.0);
 stepper1.moveTo(2038);
}
void loop()
{
 stepper1.setSpeed(500);
 stepper1.runSpeed();
}

Let's understand the meaning of the sketch. In the very first line, you are importing the
installed third-party library. In the second line, you are deciding what step to use. There are
three types of step. The first one is the microstep, which you have already implemented by
manually sending the signal matrix row-by-row in the earlier example. The other two are
full step and half step modes. You are going to use full-step mode in this example. Then
you created the object by passing the stepping mode and the pin numbers. Please pass
the pin numbers to the constructor exactly the same way it is printed in the sketch (it is
not a typo or printing error, but the legitimate sequence of pin numbers). In the setup(),
you are setting the maximum number of steps per second (maximum speed) and moving
the stepper motor to the starting position. Finally, in the loop(), you are stating the speed
(steps per second) and then stepping the motor at the end. Upload the sketch and see the
motor in action.

You can modify the program to make the motor rotate in the other direction with half step
by modifying the following two lines.

const int HALFSTEP=8;
AccelStepper stepper1(HALFSTEP, 5, 3, 4, 2);

I have included this code in a separate file in the code bundle, under this chapter's directo-
ry. The file is called prog09.ino.

You can rotate the motor in both directions as follows:

prog10.ino
#include<AccelStepper.h>
const int HALFSTEP=8;
AccelStepper stepper1(HALFSTEP, 5, 3, 4, 2);
void setup()

Kickstart to Arduino Nano

● 100

{
 stepper1.setMaxSpeed(1000.0);
 stepper1.moveTo(2038);
}
void loop()
{
 stepper1.setCurrentPosition(0);
 while (stepper1.currentPosition() != 2048)
 {
 stepper1.setSpeed(1000);
 stepper1.runSpeed();
 }
 delay(1000);
 stepper1.setCurrentPosition(0);
 while (stepper1.currentPosition() != -2048)
 {
 stepper1.setSpeed(-1000);
 stepper1.runSpeed();
 }
 delay(1000);
}

There are a couple of new functions in this example. Function setCurrentPosition() sets
the position of the shaft. Function currentPosition() returns the current position of the
shaft. This example makes the shaft rotate in both directions alternatingly because you are
changing the direction of the motor by passing a positive and a negative speed to function
setSpeed().

You can rewrite the entire code with a few new functions too:

prog11.ino
#include<AccelStepper.h>
const int HALFSTEP=8;
AccelStepper stepper1(HALFSTEP, 5, 3, 4, 2);
void setup()
{
 stepper1.setMaxSpeed(1000.0);
 stepper1.setSpeed(100);
 stepper1.setAcceleration(75.0);
 stepper1.setCurrentPosition(0);
 stepper1.moveTo(2038);
}
void loop()
{
 if (stepper1.distanceToGo() == 0)
 stepper1.moveTo(-stepper1.currentPosition());

Chapter 4 • Pulse Width Modulation and Driving Unipolar Stepper Motors with Digital I/O

● 101

 stepper1.run();
}

You are using a few new functions in this example. Function setAcceleration() sets the
acceleration (change in speed over time). You can witness that the speed of the motor is
changing by observing the LEDs on the motor driver board. The rate at which they blink
will change once the speed changes. The function distanceToGo() computes the distance
from the target position.

Working with Multiple Stepper Motors
You can attach multiple motors as shown in Figure 4-18.

Figure 4-18: Attaching multiple motors.

Here, you need to use two different sets of the digital I/O pins for both stepper motor con-
trollers. Here is the code:

prog12.ino
#include<AccelStepper.h>
const int HALFSTEP=8, FULLSTEP=4;
AccelStepper stepper1(HALFSTEP, 5, 3, 4, 2);
AccelStepper stepper2(FULLSTEP, 8, 10, 9, 11);
void setup()
{
 stepper1.setMaxSpeed(1000.0);
 stepper1.setSpeed(100);
 stepper1.setAcceleration(75.0);

Kickstart to Arduino Nano

● 102

 stepper1.setCurrentPosition(0);
 stepper1.moveTo(2038);

 stepper2.setMaxSpeed(1000.0);
 stepper2.setSpeed(150);
 stepper2.setAcceleration(50.0);
 stepper2.setCurrentPosition(0);
 stepper2.moveTo(-2038);
}
void loop()
{
 if (stepper1.distanceToGo() == 0)
 stepper1.moveTo(-stepper1.currentPosition());
 if (stepper2.distanceToGo() == 0)
 stepper2.moveTo(-stepper2.currentPosition());
 stepper1.run();
 stepper2.run();
}

Since you are already familiar with all the functions, I won't explain this example. Just up-
load the code to the Nano board and see it in action.

Summary
In this chapter, you learned the fundamentals of PWM (Pulse Width Modulation). You used
it with LEDs, RGB LEDs, and SG90 servo motors. You also worked with a unipolar stepper
motor and an associated motor controller.

In the next chapter, you will explore in detail how to use various types of ready-made dis-
plays with the Arduino.

Chapter 5 • Plotting Geometric Art on an External Display

● 103

Chapter 5 • Plotting Geometric Art on an
External Display

In the previous chapter, you learned to labor with PWM (Pulse Width Modulation). You used
PWM to fade a normal and an RGB LED. Furthermore, you used it to control an SG90 servo
motor. At this point, you should be reasonably comfortable with the concept and applica-
tions of PWM.

In this chapter, you will be introduced to an external display module based on Ilitek 9225
driver IC. You will also learn to create art — or "artwork" — with the external display.

The Ilitek 9225 Driver IC and the Display
The device designated "ILI9225" is a display driver IC created by Ilitek Taiwan. You can
connect it to any TFT LCD board with a maximum resolution of 176 × 220 (pixels). It sup-
ports 16 bits per pixel RGB colors, i.e., 262144 different colors. The chip has 87120 bytes
of RAM for graphics data and is ready for communication through the Nano's SPI interface.

You can purchase a 2.2-inch 166x220 TFT LCD with on-board 9225 driver as a single
package. Many times, the device comes with an embedded microSD card reader which has
separate pins. You can check online marketplaces or hobby electronics stores for this dis-
play. The datasheet for the driver IC can be found at:

 https://www.displayfuture.com/Display/datasheet/controller/ILI9225.pdf

Let's see how to connect this interesting unit with the Nano board. The following table ex-
plains the display module pins mapped with the Nano board pins.

Display Module Pin Arduino Board Pin

VCC +5 V

GND GND

GND No connection

NC No connection

NC No connection

NC No connection

SCK A0

SDA A1

RS A2

RST A3

CS A4

You will have to install a library for this module to make it work with your Arduino. Open the
Library Manager from the Sketch Menu and search for: 9225. Figure 5-1 is the screen-
shot of the menu opened up.

https://www.displayfuture.com/Display/datasheet/controller/ILI9225.pdf

Kickstart to Arduino Nano

● 104

Figure 5-1: TFT_22_ILI9225 library installation.

Install the TFT_22_ILI9225 library by Nkawu. You can read the documentation of the
library at:

 https://github.com/Nkawu/TFT_22_ILI9225

and on the Wikipage at:

 https://github.com/Nkawu/TFT_22_ILI9225/wiki.

Programming the Display
The 2.2-inch TFT LCD 9225 display is one of the most versatile displays available to display
static graphics and show simple animations. Let's find out how to program it with our Nano.
You will learn to write the code block by block, and I will explain each line. Create a new
directory (folder) for the sketches in this chapter and start writing the following code into a
new sketch named as prog00.ino.

You are going to use the SPI (Serial Peripheral Interface) protocol to work with the dis-
play. You will also need to use the recently installed ILI9225 library. So, let's import both
libraries:

#include "SPI.h"
#include "TFT_22_ILI9225.h"

Let's use preprocessor directives to define a few macros for pin assignments, as follows:

https://github.com/Nkawu/TFT_22_ILI9225
https://github.com/Nkawu/TFT_22_ILI9225/wiki

Chapter 5 • Plotting Geometric Art on an External Display

● 105

#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200

Note that, across the manufacturers, the pins may have different names. Let's create an
object corresponding to the TFT display:

TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);

Then, define the setup section:

void setup()
{

Let's initialize the TFT display:

 tft.begin();

and turn on the backlight and display:

 tft.setBacklight(true);
 tft.setDisplay(true);

Why not set the background color…

 tft.setBackgroundColor(COLOR_BLACK);

.. and the orientation ….

 tft.setOrientation(0);

.. and then initialize the serial comms:

 Serial.begin(9600);

The following code block is used to detect the orientation (we already set it):

 Serial.print("Orientation: ");
 switch (tft.getOrientation())
 {
 case 0:
 Serial.print("Portrait");

Kickstart to Arduino Nano

● 106

 break;
 case 1:
 Serial.print("Right Rotated Landscape");
 break;
 case 2:
 Serial.print("Reverse Portrait");
 break;
 case 3:
 Serial.print("Left Rotated Landscape");
 break;
 default:
 Serial.print("Invalid Orientation...");
 }

Let's retrieve the number of rows and the number of columns:

 Serial.print("\nNumber of rows: ");
 Serial.println(tft.maxX());
 Serial.print("Number of columns: ");
 Serial.println(tft.maxY());
}

and then define the loop() section:

void loop()
{

You can clear the display with the following statement:

 tft.clear();

Note that this is very computationally "heavy" and it takes a few seconds to clear the dis-
play. So, if you are planning a simple animation, you cannot afford to call this every time
to clear the display as it won't be fast enough.

Let's set the font:

 tft.setFont(Terminal6x8);

You can draw text by providing the coordinates, the text, and the color, like so:

 tft.drawText(10, 10, "Gradient Demo", COLOR_WHITE);
 delay(1000);

Chapter 5 • Plotting Geometric Art on an External Display

● 107

You can also draw lines by providing the coordinates of the endpoints. Also, the routine
setcolor() accepts three 8-bit unsigned integer arguments R, G, and B (ranging from 0 to
255) and converts them into a single 16-bit number corresponding to an RGB color:

 for(int i = 0; i < tft.maxY(); i++)
 {
 tft.drawLine(0, i, tft.maxX()/3, i, tft.setColor(i, 0, 0));
 tft.drawLine((tft.maxX()/3)+1, i, (2* (tft.maxX()/3)), i, tft.setColor(0, i, 0));
 tft.drawLine((2* (tft.maxX()/3))+1, i, tft.maxX(), i, tft.setColor(0, 0, i));
 }
 delay(1000);

Here, we are creating a gradient image of red, green, and blue colors. Now, consider draw-
ing a hollow rectangle and a solid rectangle by providing the opposite vertices and the color
as arguments, like this:

 tft.clear();
 tft.drawText(10, 10, "Rectangle");
 tft.drawRectangle(20, 20, 100, 100, COLOR_BLUE);
 delay(1000);
 tft.drawText(10, 10, "Rectangle (Solid)");
 tft.fillRectangle(20, 20, 100, 100, COLOR_RED);
 delay(1000);

Now, draw a hollow circle and a solid circle by providing the coordinates of the center, ra-
dius, and color:

 tft.clear();
 tft.drawText(10, 10, "Circle");
 tft.drawCircle(tft.maxX()/2, tft.maxY()/2, 50, COLOR_YELLOW);
 delay(1000);
 tft.drawText(10, 10, "Circle (Solid)");
 tft.fillCircle(tft.maxX()/2, tft.maxY()/2, 50, COLOR_GREEN);
 delay(1000);
}

The routines that commence with the string draw are for drawing hollow figures, and those
commencing with the string fill are for solid figures. Putting it all together, we obtain the
following sketch:

prog00.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2

Kickstart to Arduino Nano

● 108

#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
 Serial.print("Orientation: ");
 switch (tft.getOrientation())
 {
 case 0:
 Serial.print("Portrait");
 break;

 case 1:
 Serial.print("Right Rotated Landscape");
 break;
 case 2:
 Serial.print("Reverse Portrait");
 break;
 case 3:
 Serial.print("Left Rotated Landscape");
 break;
 default:
 Serial.print("Invalid Orientation...");
 }
 Serial.print("\nNumber of rows: ");
 Serial.println(tft.maxX());
 Serial.print("Number of columns: ");
 Serial.println(tft.maxY());
}
void loop()
{
 tft.clear();
 tft.setFont(Terminal6x8);
 tft.drawText(10, 10, "Gradient Demo", COLOR_WHITE);
 delay(1000);
 for(int i = 0; i < tft.maxY(); i++)
 {
 tft.drawLine(0, i, tft.maxX()/3, i, tft.setColor(i, 0, 0));

Chapter 5 • Plotting Geometric Art on an External Display

● 109

 tft.drawLine((tft.maxX()/3)+1, i, (2* (tft.maxX()/3)), i, tft.setColor(0, i,
0));
 tft.drawLine((2* (tft.maxX()/3))+1, i, tft.maxX(), i, tft.setColor(0, 0, i));
 }
 delay(10000);
 tft.clear();
 tft.drawText(10, 10, "Rectangle");
 tft.drawRectangle(20, 20, 100, 100, COLOR_BLUE);
 delay(10000);
 tft.drawText(10, 10, "Rectangle (Solid)");
 tft.fillRectangle(20, 20, 100, 100, COLOR_RED);
 delay(10000);
 tft.clear();
 tft.drawText(10, 10, "Circle");
 tft.drawCircle(tft.maxX()/2, tft.maxY()/2, 50, COLOR_YELLOW);
 delay(10000);
 tft.drawText(10, 10, "Circle (Solid)");
 tft.fillCircle(tft.maxX()/2, tft.maxY()/2, 50, COLOR_GREEN);
 delay(10000);
}

I have adjusted the delay in the above program and all the subsequent programs. It allows
me to capture photographs of the output on the TFT LCD using my digital camera. Let's
see the output screens step by step. The string "Gradient Demo" colored white against the
black background is printed first as in Figure 5-1.

Figure 5-2: Printing a string.

Kickstart to Arduino Nano

● 110

I have used a Lumix GH5 in manual photography mode to capture the output. Since I am
not a great photographer, the photographs may not be of the best quality. Moreover, a
consumer-grade digital camera cannot truthfully capture the output produced on a digital
display. Fortunately, its output looks much better in reality.

After the text, the system displays a gradient image created using individual lines, like in
Figure 5-3.

Figure 5-3: Color gradient.

It shows a hollow rectangle, as in Figure 5-3.

Chapter 5 • Plotting Geometric Art on an External Display

● 111

Figure 5-4: Hollow rectangle.

Then, it displays a solid/filled rectangle (Figure 5-5).

Figure 5-5: Solid (filled) rectangle.

Next up is a hollow circle; Figure 5-6.

Kickstart to Arduino Nano

● 112

Figure 5-6: Hollow circle.

And the final image in the sequence is a solid (filled) circle or ball; see Figure 5-7.

Figure 5-7: Solid (filled) circle.

Pay close attention to how the circle is filled with the assigned color. Since you have writ-
ten this sequence inside the loop() section, it keeps on repeating as long as the Arduino
board is powered on. We are following the similar pattern for most of the examples in the
remainder of the chapter.

.

Chapter 5 • Plotting Geometric Art on an External Display

● 113

Let's check out another example. You will create circles of gradients of the colors red,
green, and blue, respectively. It will be followed by dots of random color at random posi-
tions. Here is the sketch.

prog01.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
}
void loop()
{
 tft.clear();
 tft.setFont(Terminal6x8);
 tft.drawText(10, 10, "Animation Demo!");
 delay(1000);
 for (int i=0; i<(tft.maxX()/2); i++)
 {
 tft.drawCircle(tft.maxX()/2, tft.maxY()/2, i, random(0xffff));
 delay(10);
 }
 tft.clear();
 for (int i=0; i<(tft.maxX()/2); i++)
 {
 tft.drawCircle(tft.maxX()/2, tft.maxY()/2, i, tft.setColor(i, 0, 0));
 delay(10);
 }
 tft.clear();
 for (int i=0; i<(tft.maxX()/2); i++)
 {
 tft.drawCircle(tft.maxX()/2, tft.maxY()/2, i, tft.setColor(0, i, 0));
 delay(10);

Kickstart to Arduino Nano

● 114

 }
 tft.clear();
 for (int i=0; i<(tft.maxX()/2); i++)
 {
 tft.drawCircle(tft.maxX()/2, tft.maxY()/2, i, tft.setColor(0, 0, i));
 delay(10);
 }
 tft.clear();
 tft.drawText(10, 10, "Random Demo!");
 for (int i = 0; i < 6000; i++)
 {
 tft.drawPixel(random(tft.maxX()), random(tft.maxY()), random(0xffff));
 delay(1);
 }
 delay(1000);
}

Figure 5-8 is a photograph of the gradient circle of the green color.

Figure 5-8: Gradient circle.

Note that you are using a routine called drawPixel() in this sketch. It accepts the coordi-
nates and the color values for a pixel and draws it on the display. The pixels of random color
and random position appear as in Figure 5-9

Chapter 5 • Plotting Geometric Art on an External Display

● 115

Figure 5-9: Random pixels.

We know that the resolution of the screen is 176 × 220. Both numbers are divisible by 11
and 22. So, let's divide the display into a grid where individual square is of size 22 × 22 and
use it to show repetitive patterns. As a matter of fact, I got this idea of printing repetitive
geometric patterns from the floor and wall tiles of my home. Here comes the complete
sketch.

prog02.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);

Kickstart to Arduino Nano

● 116

 Serial.begin(9600);
}
void loop()
{
 tft.clear();
 for (int i = 0; i < 176; i = i+22)
 {
 for (int j = 0; j < 220; j = j+22)
 {
 tft.fillTriangle(i, j+21, i+21, j+21, i+21, j, random(0xffff));
 Serial.println(i);
 }
 }
 delay(5000);
}

You are using the routine fillTriangle() to draw a solid triangle. It accepts the coordinates
of the three vertices of the triangle and the color as arguments. The output should look like
Figure 5-10.

Figure 5-10: Repetitive triangle pattern.

You can also write the sketch in such a way that the triangles are oriented in a random
fashion in the cell. The sketch is as follows.

Chapter 5 • Plotting Geometric Art on an External Display

● 117

prog03.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
}
void loop()
{
 tft.clear();
 for (uint8_t i = 0; i < 176; i = i+22)
 {
 for (uint8_t j = 0; j < 220; j = j+22)
 {
 uint8_t x1 = i, y1 = j;
 uint8_t x2 = i+21, y2 = j;
 uint8_t x3 = i, y3 = j+21;
 uint8_t x4 = i+21, y4 = j+21;
 uint8_t choice = random(4);
 if (choice == 0)
 tft.drawTriangle(x1, y1, x2, y2, x3, y3, COLOR_WHITE);
 if (choice == 1)
 tft.drawTriangle(x1, y1, x2, y2, x4, y4, COLOR_WHITE);
 if (choice == 2)
 tft.drawTriangle(x1, y1, x4, y4, x3, y3, COLOR_WHITE);
 if (choice == 3)
 tft.drawTriangle(x4, y4, x2, y2, x3, y3, COLOR_WHITE);
 }
 }
 delay(5000);
}

The output from the sketch is pictured in Figure 5-11.

Kickstart to Arduino Nano

● 118

Figure 5-11: Random triangle pattern.

Since the pattern is random, there can be many combinations. It will produce a different
output every time the sketch is executed.

You can even divide the display in cells of size 11 × 11 and draw triangles. This time let's
randomize the colors as well. Use this sketch:

prog04.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);

Chapter 5 • Plotting Geometric Art on an External Display

● 119

 Serial.begin(9600);
}
void loop()
{
 tft.clear();
 for (uint8_t I = 0; i < 176; i = i+11)
 {
 for (uint8_t j = 0; j < 220; j = j+11)
 {
 uint8_t x1 = i, y1 = j;
 uint8_t x2 = i+10, y2 = j;
 uint8_t x3 = i, y3 = j+10;
 uint8_t x4 = i+10, y4 = j+10;
 uint8_t choice = random(4);
 if (choice == 0)
 tft.drawTriangle(x1, y1, x2, y2, x3, y3, random(0xffff));
 if (choice == 1)
 tft.drawTriangle(x1, y1, x2, y2, x4, y4, random(0xffff));
 if (choice == 2)
 tft.drawTriangle(x1, y1, x4, y4, x3, y3, random(0xffff));
 if (choice == 3)
 tft.drawTriangle(x4, y4, x2, y2, x3, y3, random(0xffff));
 }
 }
 delay(5000);
}

The output from the sketch should appear as in Figure 5-12.

Kickstart to Arduino Nano

● 120

Figure 5-12: Random triangle pattern with equally random colors.

You can also draw random-colored squares as follows:

prog05.ino
#include""SPI.""
#include""TFT_22_ILI9225.""
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
}
void loop()
{

Chapter 5 • Plotting Geometric Art on an External Display

● 121

 tft.clear();
 for (uint8_t i = 0; i < 176; i = i+11)
 {
 for (uint8_t j = 0; j < 220; j = j+11)
 {
 uint8_t x1 = i, y1 = j;
 uint8_t x2 = i+10, y2 = j;
 uint8_t x3 = i, y3 = j+10;
 uint8_t x4 = i+10, y4 = j+10;
 tft.drawRectangle(x1, y1, x4, y4, random(0xffff));
 }
 }
 delay(5000);
}

You should be able to see the output as in Figure 5-13.

Figure 5-13: Random-colored squares pattern.

You can use fillRectangle() to draw random solid squares. You can find that in prog06.
ino of the code bundle of this chapter (5). That sketch produces output as shown in Figure
5-14:

Kickstart to Arduino Nano

● 122

Figure 5-14: Random solid rectangle pattern.

You can even draw a pair of random-colored lines joining the opposite vertices of every cell
to create a nice pattern. Check the following sketch:

prog07.ino
#include""SPI.""
#include""TFT_22_ILI9225.""
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
}
void loop()

Chapter 5 • Plotting Geometric Art on an External Display

● 123

{
 tft.clear();
 for (uint8_t i = 0; i < 176; i = i+11)
 {
 for (uint8_t j = 0; j < 220; j = j+11)
 {
 uint8_t x1 = i, y1 = j;
 uint8_t x2 = i+10, y2 = j;
 uint8_t x3 = i, y3 = j+10;
 uint8_t x4 = i+10, y4 = j+10;
 tft.drawLine(x1, y1, x4, y4, random(0xffff));
 tft.drawLine(x2, y2, x3, y3, random(0xffff));
 }
 }
 delay(5000);
}

The output is as follows (Figure 5-15):

Figure 5-15: Random-colored lines creating rectangles.

You can also connect all the vertices of a cell and create pattern, as shown in the following
sketch:

Kickstart to Arduino Nano

● 124

prog08.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
}
void loop()
{
 tft.clear();
 for (uint8_t i = 0; i < 176; i = i+11)
 {
 for (uint8_t j = 0; j < 220; j = j+11)
 {
 uint8_t x1 = i, y1 = j;
 uint8_t x2 = i+10, y2 = j;
 uint8_t x3 = i, y3 = j+10;
 uint8_t x4 = i+10, y4 = j+10;
 tft.drawLine(x1, y1, x2, y2, random(0xffff));
 tft.drawLine(x1, y1, x3, y3, random(0xffff));
 tft.drawLine(x1, y1, x4, y4, random(0xffff));
 tft.drawLine(x2, y2, x3, y3, random(0xffff));
 tft.drawLine(x2, y2, x4, y4, random(0xffff));
 tft.drawLine(x3, y3, x4, y4, random(0xffff));
 }
 }
 delay(5000);
}

Which produces an output like in Figure 5-16.

Chapter 5 • Plotting Geometric Art on an External Display

● 125

Figure 5-16: Random-colored lines creating rectangles and triangles.

Alternatively, draw circles of random colors as follows:

prog09.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
}
void loop()
{

Kickstart to Arduino Nano

● 126

 tft.clear();
 for (uint8_t i = 0; i < 176; i = i+11)
 {
 for (uint8_t j = 0; j < 220; j = j+11)
 {
 uint8_t x1 = i, y1 = j;
 uint8_t x2 = i+10, y2 = j;
 uint8_t x3 = i, y3 = j+10;
 uint8_t x4 = i+10, y4 = j+10;
 tft.drawCircle(i+5, j+5, 5, random(0xffff));
 }
 }
 delay(5000);
}

The output is like in Figure 5-17.

Figure 5-17: Random-colored circles.

Proceed by using the routine fillCircle() to draw solid-colored circles. You can find the code
in the sketch called prog10.ino in the code bundle. The output is as follows (Figure 5-18):

Chapter 5 • Plotting Geometric Art on an External Display

● 127

Figure 5-18: Random-filled circles.

Calling a routine within itself is known as recursion and you can use it to draw various ge-
ometric figures. There are two types of recursion: direct recursion and indirect. In direct
recursion, the routine calls itself. In indirect recursion, there are multiple routines calling
each other and thus creating a chain of function calls. You will use direct recursion to create
a couple of geometric patterns.

In any recursive program, the function calls itself with slightly altered arguments. The re-
cursive function has two parts: termination condition and recursive call. The termination
condition decides when the recursive call should be made. In the absence of this, the re-
cursion will run forever. The recursive call is part of the recursive function that calls itself
with altered arguments.

If you are curious, you can read more about the Sierpinski triangle. Given the vertices of
any triangle, you can divide that triangle in four triangles by connecting the midpoints of
the sides. Go ahead and write a routine for it and pass the coordinates of the endpoints
of the sides of the smaller triangles in each pass. This will create an interesting geometric
pattern. The sketch is as follows:

prog11.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2

Kickstart to Arduino Nano

● 128

#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
}
void drawFractal(uint8_t x1, uint8_t y1, uint8_t x2, uint8_t y2, uint8_t x3,
uint8_t y3, uint8_t i)
{
 if (i != 0)
 {
 drawFractal(x1, y1, (x1 + x2)/2 , (y1 + y2)/2 , (x1 + x3)/2 , (y1 + y3)/2,
i-1);
 drawFractal(x2, y2, (x1 + x2)/2 , (y1 + y2)/2 , (x2 + x3)/2 , (y2 + y3)/2,
i-1);
 drawFractal(x3, y3, (x3 + x2)/2 , (y3 + y2)/2 , (x1 + x3)/2 , (y1 + y3)/2,
i-1);
 tft.drawLine(x1, y1, x2, y2, random(0xffff));
 tft.drawLine(x1, y1, x3, y3, random(0xffff));
 tft.drawLine(x3, y3, x2, y2, random(0xffff));
 }
}
void loop()
{
 tft.clear();
 drawFractal(0, 0, 0, tft.maxY(), tft.maxX(), tft.maxY()/2, 8);
 delay(5000);
}

You are defining the routine drawFractal() that accepts the coordinates of the endpoints
of the sides of triangles and the depth of the recursion. At every level, we are reducing the
depth. The line with the if condition has the termination criteria. You are calling the function
in the loop section. The image in Figure 5-19 shows the output.

Chapter 5 • Plotting Geometric Art on an External Display

● 129

Figure 5-19: Sierpinski triangle.

You can even draw a square shape using this technique. Here is the relevant sketch:

prog12.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
}
void drawFractal(uint8_t x1, uint8_t y1, uint8_t x2, uint8_t y2, uint8_t i)
{

Kickstart to Arduino Nano

● 130

 if (i != 0)
 {
 drawFractal(x1, y1, (x1 + x2)/2-1, (y1 + y2)/2-1, i-1);
 drawFractal(x2, y2, (x1 + x2)/2, (y1 + y2)/2, i-1);
 drawFractal(x1, y2, (x1 + x2)/2-1, (y1 + y2)/2, i-1);
 drawFractal(x2, y1, (x1 + x2)/2, (y1 + y2)/2-1, i-1);
 if (i == 1)
 {
 uint8_t color = random(200, 256);
 switch(random(0, 7))
 {
 case 0:
 tft.drawRectangle(x1, y1, (x1 + x2)/2-1, (y1 + y2)/2-1, tft.setColor(0,
0, color));
 tft.drawRectangle(x2, y2, (x1 + x2)/2, (y1 + y2)/2, tft.setColor(0, 0,
color-30));
 tft.drawRectangle(x1, y2, (x1 + x2)/2-1, (y1 + y2)/2, tft.setColor(0, 0,
color-60));
 tft.drawRectangle(x2, y1, (x1 + x2)/2, (y1 + y2)/2-1, tft.setColor(0, 0,
color-90));
 break;
 case 1:
 tft.drawRectangle(x1, y1, (x1 + x2)/2-1, (y1 + y2)/2-1, tft.setColor(0,
color, 0));
 tft.drawRectangle(x2, y2, (x1 + x2)/2, (y1 + y2)/2, tft.setColor(0,
color-30, 0));
 tft.drawRectangle(x1, y2, (x1 + x2)/2-1, (y1 + y2)/2, tft.setColor(0,
color-60, 0));
 tft.drawRectangle(x2, y1, (x1 + x2)/2, (y1 + y2)/2-1, tft.setColor(0,
color-90, 0));
 break;
 case 2:
 tft.drawRectangle(x1, y1, (x1 + x2)/2-1, (y1 + y2)/2-1, tft.
setColor(color, 0, 0));
 tft.drawRectangle(x2, y2, (x1 + x2)/2, (y1 + y2)/2, tft.setColor(color-30,
0, 0));
 tft.drawRectangle(x1, y2, (x1 + x2)/2-1, (y1 + y2)/2, tft.
setColor(color-60, 0, 0));
 tft.drawRectangle(x2, y1, (x1 + x2)/2, (y1 + y2)/2-1, tft.
setColor(color-90, 0, 0));
 break;
 case 3:
 tft.drawRectangle(x1, y1, (x1 + x2)/2-1, (y1 + y2)/2-1, tft.
setColor(color, color, 0));
 tft.drawRectangle(x2, y2, (x1 + x2)/2, (y1 + y2)/2, tft.setColor(color-30,
color-30, 0));

Chapter 5 • Plotting Geometric Art on an External Display

● 131

 tft.drawRectangle(x1, y2, (x1 + x2)/2-1, (y1 + y2)/2, tft.
setColor(color-60, color-60, 0));
 tft.drawRectangle(x2, y1, (x1 + x2)/2, (y1 + y2)/2-1, tft.
setColor(color-90, color-90, 0));
 break;
 case 4:
 tft.drawRectangle(x1, y1, (x1 + x2)/2-1, (y1 + y2)/2-1, tft.
setColor(color, color, color));
 tft.drawRectangle(x2, y2, (x1 + x2)/2, (y1 + y2)/2, tft.setColor(color-30,
color-30, color-30));
 tft.drawRectangle(x1, y2, (x1 + x2)/2-1, (y1 + y2)/2, tft.
setColor(color-60, color-60, color-60));
 tft.drawRectangle(x2, y1, (x1 + x2)/2, (y1 + y2)/2-1, tft.
setColor(color-90, color-90, color-90));
 break;
 case 5:
 tft.drawRectangle(x1, y1, (x1 + x2)/2-1, (y1 + y2)/2-1, tft.
setColor(color, 0, color));
 tft.drawRectangle(x2, y2, (x1 + x2)/2, (y1 + y2)/2, tft.setColor(color-30,
0, color-30));
 tft.drawRectangle(x1, y2, (x1 + x2)/2-1, (y1 + y2)/2, tft.
setColor(color-60, 0, color-60));
 tft.drawRectangle(x2, y1, (x1 + x2)/2, (y1 + y2)/2-1, tft.
setColor(color-90, 0, color-90));
 break;
 case 6:
 tft.drawRectangle(x1, y1, (x1 + x2)/2-1, (y1 + y2)/2-1, tft.setColor(0,
color, color));
 tft.drawRectangle(x2, y2, (x1 + x2)/2, (y1 + y2)/2, tft.setColor(0,
color-30, color-30));
 tft.drawRectangle(x1, y2, (x1 + x2)/2-1, (y1 + y2)/2, tft.setColor(0,
color-60, color-60));
 tft.drawRectangle(x2, y1, (x1 + x2)/2, (y1 + y2)/2-1, tft.setColor(0,
color-90, color-90));
 break;
 }
 }
 }
}
void loop()
{
 tft.clear();
 drawFractal(0, 0, tft.maxX(), tft.maxY(), 6);
 delay(5000);
}

Kickstart to Arduino Nano

● 132

The output of this sketch is shown in Figure 5-20.

Figure 5-20: Fractal square.

The geometric shapes created using recursion sometimes fall under the category of frac-
tal. Both examples you programmed are fractals. You can even apply geometric transfor-
mations on shapes. Let's see how to create the rotation effect on a triangle. I have referred
the examples posted at:

 https://create.arduino.cc/projecthub/Arnov_Sharma_makes/getting-started-
with-ili9255-tft-lcd-378331

after making a few changes to simplify it.

Let's study that code block by block. First, we initialize the display:

#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);

https://create.arduino.cc/projecthub/Arnov_Sharma_makes/getting-started-with-ili9255-tft-lcd-378331
https://create.arduino.cc/projecthub/Arnov_Sharma_makes/getting-started-with-ili9255-tft-lcd-378331

Chapter 5 • Plotting Geometric Art on an External Display

● 133

Let's define the angle of rotation,
#define ROTATE_ANGLE 15

Let's define a custom structure for points:

struct Point
{
 uint8_t x;
 uint8_t y;
};

And then create the corresponding variables:

Point c1, c2, c3, cc;

These are the vertices and the centroid of the triangle. Let's define a routine to rotate a
point P with respect to another point C with a given angle as follows:

Point rotatePoint(Point c, float angle, Point p)
{
 Point r;
 r.x = cos(angle) * (p.x - c.x) - sin(angle) * (p.y - c.y) + c.x;
 r.y = sin(angle) * (p.x - c.x) + cos(angle) * (p.y - c.y) + c.y;
 return r;
}

Let's write a custom routine for computing the centroid of a triangle,

Point getCoordCentroid(Point a, Point b, Point c)
{
 Point o;
 o.x = (int16_t)((a.x + b.x + c.x) / 3);
 o.y = (int16_t)((a.y + b.y + c.y) / 3);
 return o;
}

Carry on by writing a custom routine to rotate all the three points of a triangle:

void rotateTriangle(Point &a, Point &b, Point &c, Point r, int16_t deg)
{
 float angle = (float)deg * 1000 / 57296;
 a = rotatePoint(r, angle, a);
 b = rotatePoint(r, angle, b);
 c = rotatePoint(r, angle, c);
}

Kickstart to Arduino Nano

● 134

Let's define a triangle and compute the centroid,

void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);

 c1.x = 30; c1.y = 30;
 c2.x = 120; c2.y = 80;
 c3.x = 80; c3.y = 130;
 cc = getCoordCentroid(c1, c2, c3);

 Serial.begin(9600);
}

Finally, we are computing the number of steps in the rotation and running the loop to rotate
the triangle:

void loop()
{
 tft.clear();
 int16_t steps = (int16_t)(360 / ROTATE_ANGLE);
 for (int8_t i = 0; i < steps; i++)
 {
 tft.drawTriangle(c1.x, c1.y, c2.x, c2.y, c3.x, c3.y, COLOR_RED);
 rotateTriangle(c1, c2, c3, cc, ROTATE_ANGLE);
 delay(50);
 }
 delay(3000);
}

The glorious output is as in Figure 5-21.

Chapter 5 • Plotting Geometric Art on an External Display

● 135

Figure 5-21: Triangle after full rotation.

This is the output after the triangle completes a full cycle of rotation. Be creative and create
a zigzag pattern as follows:

prog13.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
}

Kickstart to Arduino Nano

● 136

void loop()
{
 tft.clear();
 for (uint8_t i = 0; i < 176; i = i+11)
 {
 for (uint8_t j = 0; j < 220; j = j+11)
 {
 uint8_t x1 = i, y1 = j;
 uint8_t x2 = i+10, y2 = j;
 uint8_t x3 = i, y3 = j+10;
 uint8_t x4 = i+10, y4 = j+10;
 if (j%2)
 tft.drawLine(x1, y1, x4, y4, random(0xffff));
 else
 tft.drawLine(x2, y2, x3, y3, random(0xffff));
 delay(5);
 }
 }
 delay(5000);
}

The output is as in Figure 5-22.

Figure 5-22: Zigzag pattern.

Chapter 5 • Plotting Geometric Art on an External Display

● 137

We can change the axis of the pattern by changing the condition to if (i%2). You can
find the program as prog14_1.ino in the code bundle for this chapter. The output is as in
Figure 5-23.

Figure 5-23: Zigzag pattern.

Moreover, you can change the condition to if(random(2)). You can find the code in
prog14_2.ino. The output will look like Figure 5-24.

Kickstart to Arduino Nano

● 138

Figure 5-24: Zigzag maze pattern.

Consider creating a more intricate maze structure with the following sketch:

prog15.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
}
void loop()
{

Chapter 5 • Plotting Geometric Art on an External Display

● 139

 tft.clear();
 for (uint8_t i = 0; i < 176; i = i+11)
 {
 for (uint8_t j = 0; j < 220; j = j+11)
 {
 uint8_t x1 = i, y1 = j;
 uint8_t x2 = i+10, y2 = j;
 uint8_t x3 = i, y3 = j+10;
 uint8_t x4 = i+10, y4 = j+10;
 if(random(2))
 tft.drawLine(x1, y1, x4, y4, random(0xffff));
 else
 tft.drawLine(x2, y2, x3, y3, random(0xffff));
 if(random(2))
 tft.drawLine(x1, y1, x4, y4, random(0xffff));
 else
 tft.drawLine(x2, y2, x3, y3, random(0xffff));
 delay(5);
 }
 }
 delay(5000);
}

The output is as photographed for Figure 5-25.

Figure 5-25: A more intricate zigzag maze pattern.

Kickstart to Arduino Nano

● 140

Yet another way to create a pattern using straight lines is as follows:

prog16.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2
#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
}
void loop()
{
 tft.clear();
 for (uint8_t i = 0; i < 176; i = i+11)
 {
 for (uint8_t j = 0; j < 220; j = j+11)
 {
 uint8_t x1 = i, y1 = j;
 uint8_t x2 = i+10, y2 = j;
 uint8_t x3 = i, y3 = j+10;
 uint8_t x4 = i+10, y4 = j+10;
 switch(random(6))
 {
 case 0:
 tft.drawLine(x1, y1, x4, y4, random(0xffff));
 break;
 case 1:
 tft.drawLine(x2, y2, x3, y3, random(0xffff));
 break;
 case 2:
 tft.drawLine(x1, y1, x2, y2, random(0xffff));
 break;
 case 3:
 tft.drawLine(x3, y3, x4, y4, random(0xffff));

Chapter 5 • Plotting Geometric Art on an External Display

● 141

 break;
 case 4:
 tft.drawLine(x1, y1, x3, y3, random(0xffff));
 break;
 case 5:
 tft.drawLine(x2, y2, x4, y4, random(0xffff));
 break;
 }
 delay(5);
 }
 }
 delay(5000);
}

Which produces an image like in Figure 5-26.

Figure 5-26: Alternative-method zigzag maze pattern.

Let's create random more patterns with random squares, circles, and lines, as follows:

prog17.ino
#include "SPI.h"
#include "TFT_22_ILI9225.h"
#define TFT_CS A4
#define TFT_RST A3
#define TFT_RS A2

Kickstart to Arduino Nano

● 142

#define TFT_SDI A1
#define TFT_CLK A0
#define TFT_BRIGHTNESS 200
TFT_22_ILI9225 tft = TFT_22_ILI9225(TFT_RST, TFT_RS, TFT_CS, TFT_SDI, TFT_CLK,
TFT_BRIGHTNESS);
void setup()
{
 tft.begin();
 tft.setBacklight(true);
 tft.setDisplay(true);
 tft.setBackgroundColor(COLOR_BLACK);
 tft.setOrientation(0);
 Serial.begin(9600);
}
void loop()
{
 tft.clear();
 for (uint8_t i = 0; i < 176; i = i+11)
 {
 for (uint8_t j = 0; j < 220; j = j+11)
 {
 uint8_t x1 = i, y1 = j;
 uint8_t x2 = i+10, y2 = j;
 uint8_t x3 = i, y3 = j+10;
 uint8_t x4 = i+10, y4 = j+10;
 switch(random(7))
 {
 case 0:
 tft.drawLine(x1, y1, x4, y4, random(0xffff));
 break;
 case 1:
 tft.drawLine(x2, y2, x3, y3, random(0xffff));
 break;
 case 2:
 tft.drawRectangle(x1, y1, x4, y4, random(0xffff));
 break;
 case 3:
 tft.drawRectangle(x1, y1, (x1+x4)/2, (y1+y4)/2, random(0xffff));
 tft.drawRectangle(x4, y4, (x1+x4)/2+1, (y1+y4)/2+1, random(0xffff));
 break;
 case 4:
 tft.drawCircle((x1+x4)/2, (y1+y4)/2, 5, random(0xffff));
 break;
 case 5:
 tft.drawRectangle(x1, y1, x4, y4, random(0xffff));
 tft.drawRectangle(x1+3, y1+3, x4-3, y4-3, random(0xffff));

Chapter 5 • Plotting Geometric Art on an External Display

● 143

 break;
 case 6:
 word color = random(0xffff);
 tft.drawCircle((x1+x4)/2, (y1+y4)/2, 5, color);
 tft.drawCircle((x1+x4)/2, (y1+y4)/2, 4, color);
 tft.drawCircle((x1+x4)/2, (y1+y4)/2, 3, color);
 break;
 }
 delay(5);
 }
 }
 delay(5000);
}

The rather nice looking output is pictured in Figure 5-27.

Figure 5-27: Random pattern.

This closes off our discussion on creating patterns with the ILI9225 library. At this point,
you can start writing a program for a simple game of Snake using this display and a few
buttons.

Summary
In this chapter, you learned how to work with ILI9225 display and create animations. In the
next chapter, you will learn how to work with various sensors and output devices including
a temperature sensor, a piezo buzzer, and a joystick.

Kickstart to Arduino Nano

● 144

Chapter 6 • Working with a Buzzer and a Sensor

In the previous chapter, you learned how to work with various displays with Arduino Nano
family boards. You are now comfy using various types of displays with Arduino.

In this short chapter, you will learn how to work with a few sensors and buzzer. These are
the topics you will learn in this chapter:

• Working with a buzzer
• Working with a joystick
• Working with a temperature sensor

After absorbing this chapter, you will be comfortable with interfacing your Arduino Nano
with peripheral devices like a buzzer, a temperature sensor, and a joystick.

Working with a Buzzer
You can use a piezo buzzer to produce a single tone of a specific frequency at a time. A
buzzer has two pins, one positive and one negative. Connect the positive pin to a digital
output pin of the Nano board and the negative pin to GND. Let's create a circuit as shown
in Figure 6-1.

Figure 6-1: A piezo buzzer connected to an Arduino Nano.

Chapter 6 • Working with a Buzzer and a Sensor

● 145

The buzzer's positive pin (red wire) is connected to the digital I/O pin on the Nano, and the
negative pin (black wire) is connected to GND. You will use this circuit for the next couple
of sketches. For this, we will use a built-in routine tone(). It generates a square wave of a
specified frequency with 50% duty cycle. You can generate only one tone at a time on a pin
and board. In other words, if you are using a specific pin to emit a tone, when you call this
function again with some other pin, it will not work. If you are already emitting a tone on a
pin and you call this routine again with the changed frequency, it will change the frequency
of the tone. The routine has three arguments. The first and the second ones are mandatory,
and they are defined as the output pin and the frequency. The third argument is optional:
it is the duration in milliseconds for which the tone is played on the buzzer. If the third
argument is not mentioned, the buzzer keeps emitting the specified tone unless another
routine noTone() is called. The following sketch shows the usage of the routine tone().

prog00.ino
const int piezzo_pin = 2;
void setup()
{
 Serial.begin(9600);
 pinMode(piezzo_pin, OUTPUT);
}
void loop()
{
 for (long i = 0; i <= 65535; i=i+500)
 {
 tone(piezzo_pin, i, 2000);
 Serial.println(i);
 }
}

On the Arduino Nano family of boards, you can generate a square wave of frequency rang-
ing from 31 Hz up to 65535 Hz. Since the data type int cannot handle this range, you have
to use long type for storing the frequencies. We can write the similar code using the routine
noTone() as follows:

prog01.ino
const int piezzo_pin = 2;

void setup()
{
 Serial.begin(9600);
 pinMode(piezzo_pin, OUTPUT);
}

void loop()
{
 for (long i = 31; i <= 20000; i=i+500)

Kickstart to Arduino Nano

● 146

 {
 tone(piezzo_pin, i);
 Serial.println(i);
 delay(2000);
 noTone(piezzo_pin);
 delay(500);
 }
}

Upload and run both sketches. You can read more about the tone() in the Arduino Refer-
ence docs at: https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/

and at: https://www.arduino.cc/en/reference/tone.

You can also use this for more complex projects. Attach an analog input device like a trim-
pot to pin A0, as shown in Figure 6-2.

Figure 6-2: A piezo buzzer and a trimpot connected to a Nano.

I am a great fan of Star Wars. Using this circuit, you can emit the Darth Vader theme. The
speed of the theme play can be adjusted with the trimpot knob. I borrowed the code from
an online GitHub project (https://gist.github.com/nicksort) and made appropriate changes
to the code and circuit. This is the code:

https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/
https://www.arduino.cc/en/reference/tone
https://gist.github.com/nicksort

Chapter 6 • Working with a Buzzer and a Sensor

● 147

prog02.ino
const int c = 261;
const int d = 294;
const int e = 329;
const int f = 349;
const int g = 391;
const int gS = 415;
const int a = 440;
const int aS = 455;
const int b = 466;
const int cH = 523;
const int cSH = 554;
const int dH = 587;
const int dSH = 622;
const int eH = 659;
const int fH = 698;
const int fSH = 740;
const int gH = 784;
const int gSH = 830;
const int aH = 880;

const int buzzerPin = 2;
int delay_time = 50;

void beep(int note, int duration)
{
 tone(buzzerPin, note);
 delay(duration);
 noTone(buzzerPin);
 delay_time = map(analogRead(0), 0, 1023, 10, 90);
 Serial.println(delay_time);
 delay(delay_time);
}

void firstSection()
{
 beep(a, 500);
 beep(a, 500);
 beep(a, 500);
 beep(f, 350);
 beep(cH, 150);
 beep(a, 500);
 beep(f, 350);
 beep(cH, 150);
 beep(a, 650);

Kickstart to Arduino Nano

● 148

 delay(500);

 beep(eH, 500);
 beep(eH, 500);
 beep(eH, 500);
 beep(fH, 350);
 beep(cH, 150);
 beep(gS, 500);
 beep(f, 350);
 beep(cH, 150);
 beep(a, 650);

 delay(500);
}

void secondSection()
{
 beep(aH, 500);
 beep(a, 300);
 beep(a, 150);
 beep(aH, 500);
 beep(gSH, 325);
 beep(gH, 175);
 beep(fSH, 125);
 beep(fH, 125);
 beep(fSH, 250);

 delay(325);

 beep(aS, 250);
 beep(dSH, 500);
 beep(dH, 325);
 beep(cSH, 175);
 beep(cH, 125);
 beep(b, 125);
 beep(cH, 250);

 delay(350);
}

void setup()
{
 Serial.begin(9600);
 pinMode(buzzerPin, OUTPUT);
}

Chapter 6 • Working with a Buzzer and a Sensor

● 149

void loop()
{
 firstSection();
 secondSection();

 beep(f, 250);
 beep(gS, 500);
 beep(f, 350);
 beep(a, 125);
 beep(cH, 500);
 beep(a, 375);
 beep(cH, 125);
 beep(eH, 650);

 delay(500);

 secondSection();

 beep(f, 250);
 beep(gS, 500);
 beep(f, 375);
 beep(cH, 125);
 beep(a, 500);
 beep(f, 375);
 beep(cH, 125);
 beep(a, 650);
 delay(650);
}

Since I have already explained the functions used in this code earlier, I will discuss only the
logic. First, you are defining the frequencies of the tone used for creating the music. Sec-
ond, you are defining a custom routine beep() that emits a tone of a particular frequency
for a specified time. The delay between the individual tones is detected by the position of
the trimpot. Since a few tone sequences are repetitive, there is a need for the routines
firstSection() and secondSection(). In the loop() section, you are calling them, along
with other tones, to create the Darth Vader theme music. Upload the sketch and enjoy the
music.

Working with a Joystick
The joystick is a combination of two potentiometers and a momentary switch. The potenti-
ometers are used for choosing the X and Y positions. Let's create a simple circuit with the
joystick and a Nano board, as shown in Figure 6-3.

Kickstart to Arduino Nano

● 150

Figure 6-3: Joystick connections.

Each manufacturer will have its own naming scheme for the pins. However, the most com-
mon joysticks have 5 pins. Connect the X position pin to A1, the Y position pin to A0, and
connect the pin for the switch to digital I/O pin 2. In addition, you have to connect the VCC
and GND terminals to the +5 V and GND pins of the board, respectively. Now, it is time to
write the code. The code is pretty simple and I have already covered all functions used.

prog03.ino
int hor = A1;
int ver = A0;
int button = 2;
int x = 0;
int y = 0;
int button_state = 0;
const int range = 64;
void setup() {
 Serial.begin(9600);
 pinMode(hor, INPUT);
 pinMode(ver, INPUT);
 pinMode(button, INPUT_PULLUP);
}
void loop() {
 x = analogRead(hor);
 y = analogRead(ver);
 button_state = digitalRead(button);

Chapter 6 • Working with a Buzzer and a Sensor

● 151

 Serial.print("X: ");
 Serial.print(map(x, 0, 1023, -range, range-1));
 Serial.print(" | Y: ");
 Serial.print(map(y, 0, 1023, -range, range-1));
 Serial.print(" | Button: ");
 Serial.println(button_state);
 delay(100);
}

We are mapping the X and Y positions to a custom range (–64 to 63) and displaying the
status of all the inputs using a serial monitor. Figure 6-4 shows the joystick in action.

Figure 6-4: Joystick in action.

This is how you can work with a joystick. In the previous chapter, I suggested you create a
snake game with Nokia 5110 display. You can add this joystick to control the snake.

Working with DS18B20 Temperature Sensor
Now, Let's connect a DS18B20 sensor to the Nano board. Connect the middle pin of the
sensor to the digital pin 2. Then connect + and – pins to the +5 V and GND pins of the Nano
board, respectively, as shown in Figure 6-5.

Kickstart to Arduino Nano

● 152

Figure 6-5: DS18B20 sensor connections.

This sensor requires OneWire protocol and a special library. Open the library manager and
search for the term "DS18B20". It will show multiple libraries in the result. Install the Dal-
lasTemperature library. While installing, it will prompt you for installing another library,
OneWire. Install that library too. Once done, upload the following sketch:

prog04.ino
#include <OneWire.h>
#include <DallasTemperature.h>
const int sensor_pin = 2;
OneWire oneWire(sensor_pin);
DallasTemperature sensors(&oneWire);
void setup()
{
 Serial.begin(9600);
 sensors.begin();
}
void loop()
{
 sensors.requestTemperatures();

Chapter 6 • Working with a Buzzer and a Sensor

● 153

 Serial.print("\nThe current temperature is: ");
 Serial.print(sensors.getTempCByIndex(0));
 delay(1000);
}

The code uses all the library functions of OneWire and DallasTemperature library. The out-
put is as shown in Figure 6-6.

Figure 6-6: DS18B20 temperature sensor in action.

Summary
In this chapter, you learned how to work with diverse input and output devices such as a
buzzer, a joystick, and a temperature sensor.

In the next chapter, you will learn how to create IoT projects.

Kickstart to Arduino Nano

● 154

Chapter 7 • Working with the Arduino Nano 33 IoT

In the last chapter, you studied how to connect the temperature sensor, piezo buzzer, and
joystick to Arduino Nano. In this chapter, you will learn to use another member of the Ar-
duino Nano family, Arduino Nano 33 IoT. This is the list of topics you will learn about and
demonstrate in this chapter:

• Introduction to the Nano 33 IoT board
• Getting started
• Working with the WiFiNINA library
• A Telnet-based group chat server
• Pinging a remote server
• A simple web client
• Working with a real-time clock
• Using DS18B20 temperature sensors jointly with an RTC
• Visualizing a temperature graph with ThingSpeak
• Programming the built-in IMU

After completing this chapter, you will be more than comfortable with the Arduino Nano 33
IoT board.

Introduction to the Nano 33 IoT board
Let's get acquainted with the Arduino Nano 33 IoT. This board is pin-to-pin compatible
with all the other microcontroller boards in the Arduino Nano family. IoT stands for Inter-
net of Things. You can use the Nano 33 IoT for running IoT projects that have small foot-
prints in terms of hardware and functionality. This chapter covers a few small web-based
IoT projects, such as controlling LEDs from the web and displaying the temperature over
the web. Also, you can just replace any other board from the Arduino Nano family with a
Nano 33 IoT.

Let's discuss the hardware specifications of the Nano 33 IoT. The Nano 33 IoT comes in
two versions: with and without pinheaders. Due to the shortage of semiconductors and
electronic components, I found it difficult to procure them in my region while authoring
this book (May 2022). I hope you can procure it without problems once the semiconductor
shortage is resolved. I am using the version of this board with pinheaders. However, in case
you are only able to procure the one without headers, soldering the headers is an easy job.

The Arduino Nano 33 IoT comes with a Microchip SAMD21 Cortex®-M0+ 32bit low
power ARM MCU as the main chip and its datasheet is at:

 https://content.arduino.cc/assets/mkr-microchip_samd21_family_full_datasheet-
ds40001882d.pdf.

The Wi-Fi and Bluetooth connectivity are provided by u-blox NINA-W102 module, whose
datasheet is at:

https://content.arduino.cc/assets/mkr-microchip_samd21_family_full_datasheet-ds40001882d.pdf
https://content.arduino.cc/assets/mkr-microchip_samd21_family_full_datasheet-ds40001882d.pdf

Chapter 7 • Working with the Arduino Nano 33 IoT

● 155

 https://content.arduino.cc/assets/Arduino_NINA-W10_
DataSheet_%28UBX-17065507%29.pdf.

The Nano 33 IoT also has a Microchip ATECC608A chip for secure communication. You
can check the datasheet at:

 https://content.arduino.cc/assets/microchip_atecc608a_cryptoauthentication_
device_summary_datasheet-DS40001977B.pdf.

Furthermore, there is also an Inertial Measurement Unit chip type IMU LSM6DS3 and you
can check its datasheet at:

 https://content.arduino.cc/assets/st_imu_lsm6ds3_datasheet.pdf.

The following table summarizes other salient features of the board.

Operating voltage 3.3V

Input voltage (limit) 21V

DC current per I/O pin 7 mA

Clock speed 48 MHz

CPU flash memory 256 KB

SRAM 32 KB

EEPROM none

Digital input / output pins 14

PWM pins 11 (2, 3, 5, 6, 9, 10, 11, 12, 16, 17, 19)

UART 1

SPI 1

I2C 1

Analog input pins 8 (ADC 8/10/12 bit)

Analog output pins 1 (DAC 10 bit)

LEDs, on-board 13

Length 45 mm

Width 18 mm

Weight 5 gr (with headers)

You can download the Fritzing part from:

 https://content.arduino.cc/assets/Arduino%20Nano%2033%20IOT.fzpz.

https://content.arduino.cc/assets/Arduino_NINA-W10_DataSheet_%28UBX-17065507%29.pdf
https://content.arduino.cc/assets/Arduino_NINA-W10_DataSheet_%28UBX-17065507%29.pdf
https://content.arduino.cc/assets/microchip_atecc608a_cryptoauthentication_device_summary_datasheet-DS40001977B.pdf
https://content.arduino.cc/assets/microchip_atecc608a_cryptoauthentication_device_summary_datasheet-DS40001977B.pdf
https://content.arduino.cc/assets/st_imu_lsm6ds3_datasheet.pdf
https://content.arduino.cc/assets/Arduino%20Nano%2033%20IOT.fzpz

Kickstart to Arduino Nano

● 156

Figures 7-1, 7-2, and 7-3 refer to the document https://content.arduino.cc/assets/Pinout-
NANO33IoT_latest.pdf which is published under the https://creativecommons.org/licenses/
by/4.0/ license. I have modified the images for the purpose of this publication.

The board's pinout can be seen in Figure 7-1.

Figure 7-1: Arduino Nano 33 IoT analog and digital pins.

Next, Figure 7-2 shows the communication and interrupt pins.

https://content.arduino.cc/assets/Pinout-NANO33IoT_latest.pdf
https://content.arduino.cc/assets/Pinout-NANO33IoT_latest.pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Chapter 7 • Working with the Arduino Nano 33 IoT

● 157

Figure 7-2: Arduino Nano 33 IoT communication and Interrupt.

Lastly, Figure 7-3 shows the bottom of the pins.

Figure 7-3: Arduino Nano 33 IoT bottom view pinout.

Getting Started
By default, the Arduino IDE does not support the Arduino Nano 33 IoT board, so you have
to install the support for this board. Open the Boards Manager from the Tools in the
menu and type in the search bar the string: samd. It will return the search results depicted
in Figure 7-4.

Kickstart to Arduino Nano

● 158

Figure 7-4: Installing, the support for SAMD board.

Install the option that reads Arduino SAMD Boards (32-bits ARM Cortex-M0+). It will
take some time as it is a big package. Once the installation is done, you can choose the
board by navigating as shown in Figure 7-5.

Figure 7-5: Choosing the board.

Chapter 7 • Working with the Arduino Nano 33 IoT

● 159

Connect the board to the computer and then choose the port as pictured in Figure 7-6.

Figure 7-6: Choosing the right communication port on your PC.

Now try to upload a simple program to blink the built-in LED and to check if everything is
working fine. In principle, you can achieve all the functionality of the Arduino Nano and the
Arduino Nano Every with the Nano 33 IoT.

Working with WiFiNINA library
We will now install WiFiNINA library. Open the Library Manager and search for the string
WiFiNINA as shown in Figure 7-7.

Figure 7-7: Installing the WiFiNINA library.

Before proceeding any further, I recommend updating the firmware for Wi-Fi with the built-
in tool. Open the firmware updater tool as shown in Figure 7-8.

Kickstart to Arduino Nano

● 160

Figure 7-8: Opening the WiFiNINA Firmware Updater utility.

For Arduino IDE 1.8, this pops up a window like in Figure 7-9.

Figure 7-9: WiFiNINA Firmware Updater in Arduino IDE 1.8.

Select the port and the firmware version and then click on the button Update Firmware.
In IDE 2.0 RC5, you will find the utility window like in Figure 7-10.

Chapter 7 • Working with the Arduino Nano 33 IoT

● 161

Figure 7-10: WiFiNINA Firmware Updater in Arduino IDE 2.0 RC5.

Click on the button Check Updates. The window will expand as shown in Figure 7-11.

Figure 7-11: Expanded WiFiNINA Firmware Updater running in Arduino IDE 2.0 RC5.

Select the firmware version and click the button Install. This will update the firmware.

Note: For many sketches, I am referring to the examples provided on the library's home-
page at https://github.com/arduino-libraries/WiFiNINA/ with modifications.

After all this installation stuff, now let's write a simple program to check all the available
connections. Let's import the libraries first:

#include <SPI.h>
#include <WiFiNINA.h>

Lets' check if the Wi-Fi module is working properly in the setup() section as follows:

void setup()
{
 Serial.begin(9600);
 if (WiFi.status() == WL_NO_MODULE)
 {

https://github.com/arduino-libraries/WiFiNINA/

Kickstart to Arduino Nano

● 162

 Serial.println("Communication with WiFi module failed!");
 while (true);
 }
}

In the loop() section, let's scan for the available Wi-Fi networks, like so:

void loop()
{
 Serial.println("\nScanning for available Networks....");
 int num = WiFi.scanNetworks();

If no network is found, it returns –1, else it returns the number of networks. Let's handle
both possibilities:

 if (num == -1)
 {
 Serial.println("Couldn't find a WiFi network");
 while (true);
 }
 Serial.print("Number of available networks: ");
 Serial.println(num);
Finally, let's print the details of the available networks,
 for (int i = 0; i < num; i++)
 {
 Serial.print(i);
 Serial.print(") WiFi Network Name: ");
 Serial.print(WiFi.SSID(i));
 Serial.print("\nSignal Strength: ");
 Serial.print(WiFi.RSSI(i));
 Serial.print(" dBm");
 Serial.print("\nMethod of Encryption: ");
 switch (WiFi.encryptionType(i))
 {
 case ENC_TYPE_WEP:
 Serial.println("WEP");
 break;
 case ENC_TYPE_TKIP:
 Serial.println("WPA");
 break;
 case ENC_TYPE_CCMP:
 Serial.println("WPA2");
 break;
 case ENC_TYPE_NONE:
 Serial.println("None");
 break;

Chapter 7 • Working with the Arduino Nano 33 IoT

● 163

 case ENC_TYPE_AUTO:
 Serial.println("Auto");
 break;
 case ENC_TYPE_UNKNOWN:
 default:
 Serial.println("Unknown");
 break;
 }
 }
 delay(10000);
}

Putting all these snippets together, we have the following sketch:

prog00.ino
#include <SPI.h>
#include <WiFiNINA.h>
void setup()
{
 Serial.begin(9600);
 if (WiFi.status() == WL_NO_MODULE)
 {
 Serial.println("Communication with WiFi module failed!");
 while (true);
 }
}
void loop()
{
 Serial.println("\nScanning for available Networks....");
 int num = WiFi.scanNetworks();
 if (num == -1)
 {
 Serial.println("Couldn't find a WiFi network");
 while (true);
 }
 Serial.print("Number of available networks: ");
 Serial.println(num);
 for (int i = 0; i < num; i++)
 {
 Serial.print(i);
 Serial.print(") WiFi Network Name: ");
 Serial.print(WiFi.SSID(i));
 Serial.print("\nSignal Strength: ");
 Serial.print(WiFi.RSSI(i));
 Serial.print(" dBm");
 Serial.print("\nMethod of Encryption: ");

Kickstart to Arduino Nano

● 164

 switch (WiFi.encryptionType(i))
 {
 case ENC_TYPE_WEP:
 Serial.println("WEP");
 break;
 case ENC_TYPE_TKIP:
 Serial.println("WPA");
 break;
 case ENC_TYPE_CCMP:
 Serial.println("WPA2");
 break;
 case ENC_TYPE_NONE:
 Serial.println("None");
 break;
 case ENC_TYPE_AUTO:
 Serial.println("Auto");
 break;
 case ENC_TYPE_UNKNOWN:
 default:
 Serial.println("Unknown");
 break;
 }
 }
 delay(10000);
}

The sample output is as follows:

Scanning for available Networks....Number of available networks: 2

0) Wi-Fi Network Name: TP-Link_710E

Signal Strength: -57 dBm

Method of Encryption: WPA2

1) Wi-Fi Network Name: PanditHome

Signal Strength: -93 dBm

Method of Encryption: WPA2

Let's write another program to create a simple web server on the Nano 33 IoT step-by-step.
First, import the libraries:

Chapter 7 • Working with the Arduino Nano 33 IoT

● 165

#include <SPI.h>
#include <WiFiNINA.h>

Store the SSID and the password in two variables:

char ssid[] = "TP-Link_710E";
char pass[] = "internet1";

Change the value of these variables with the credentials of your own Wi-Fi network. Let's
define variables for status, server, and client.

int status = WL_IDLE_STATUS;
WiFiServer server(80);
WiFiClient client;

In the setup() section, initialize the serial and built-in LED pin to the output mode,

void setup()
{
 Serial.begin(9600);
 pinMode(LED_BUILTIN, OUTPUT);

Check for the Wi-Fi module:

 if (WiFi.status() == WL_NO_MODULE)
 {
 Serial.println("Communication with WiFi module failed!");
 while (true);
 }

Let's write a polling loop to connect with the Wi-Fi:

 while (status != WL_CONNECTED)
 {
 Serial.print("Attempting to connect to Network named: ");
 Serial.println(ssid);
 status = WiFi.begin(ssid, pass);
 delay(10000);
 }

Now, initialize the server and print the details of the connection:

 server.begin();
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());
 IPAddress ip = WiFi.localIP();

Kickstart to Arduino Nano

● 166

 Serial.println("Started the web server on port 80.");
 Serial.print("IP Address: ");
 Serial.println(ip);
 long rssi = WiFi.RSSI();
 Serial.print("Signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
 Serial.print("Open this address in a browser http://");
 Serial.println(ip);
}

Proceed by writing the loop() section. Here you need to check if a client is connected to
the server. The following code creates a simple webpage with two clickable links, which,
when clicked, send either H or L to the server. Based on these values, you are turning the
on-board LED off or on.

void loop()
{
 client = server.available();
 delay(1000);
 if (client)
 {
 Serial.println("A new client has connected to the server...");
 String currentLine = "";
 while (client.connected())
 {
 if (client.available())
 {
 char c = client.read();
 Serial.write(c);
 if (c == '\n')
 {
 if (currentLine.length() == 0)
 {
 client.println("HTTP/1.1 200 OK");
 client.println("Content-type:text/html");
 client.println();
 client.print("Click here turn the Built-in LED on
pin 13 on
");
 client.print("Click here turn the Built-in LED on
pin 13 off
");
 client.println();
 break;
 }
 else
 {

Chapter 7 • Working with the Arduino Nano 33 IoT

● 167

 currentLine = "";
 }
 }
 else if (c != '\r')
 {
 currentLine += c;
 }
 if (currentLine.endsWith("GET /H")) {
 digitalWrite(LED_BUILTIN, HIGH);
 }
 if (currentLine.endsWith("GET /L")) {
 digitalWrite(LED_BUILTIN, LOW);
 }
 }
 }
 client.stop();
 Serial.println("The client disconnected...");
 }
}

Now, put all these sections together and save that file as prog01.ino. You will find this file
in the code bundle released for this publication. Upload the sketch and the Console shows
the following output:

SSID: TP-Link_710E

Started the web server on port 80.

IP Address: 192.168.0.105

Signal strength (RSSI): -48 dBm

Open this address in a browser http://192.168.0.105

As you can see, the Wi-Fi network automatically and dynamically assigns an IP address
to the Nano using the DHCP protocol. You can check for this IP address in the active client
table of your Wi-Fi router or using the nmap command (https://nmap.org/). Figure 7-12
shows the output in the Zenmap utility.

http://192.168.0.105
https://nmap.org/

Kickstart to Arduino Nano

● 168

Figure 7-12: Output resulting from the NMAP command.

Open a browser window and use the given IP address. You should see the webpage data
as in Figure 7-13.

Figure 7-13: Webpage data gleaned with the aid of a browser.

Once you connect using a browser, the Serial Console of Arduino shows the following details
of the connections:

Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWeb-
Kit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36

DNT: 1

Accept: image/avif,image/webp,image/apng,image/
svg+xml,image/*,*/*;q=0.8

Referer: http://192.168.0.105/

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.9

http://192.168.0.105/

Chapter 7 • Working with the Arduino Nano 33 IoT

● 169

If you click on the hyperlinks, you can send appropriate data to the web server and change
the state of the on-board LED. It takes a few seconds for the changes to take effect. In
case you are closely observing, you can spot the changed URL in the browser's address bar.

You can connect a relay to Digital I/O pin 13 in order to control a fluorescent tube or a fan.
Be careful while working with AC powerline voltages — an electric shock is fatal in most
cases.

You can extend this application with a common-cathode RGB LED. Have a look at the circuit
depicted in Figure 7-14.

Figure 7-14: Common-cathode RGB LED driving.

You can enable its operation over the local network with the following program:

prog02.ino
#include <SPI.h>
#include <WiFiNINA.h>
char ssid[] = "TP-Link_710E";
char pass[] = "internet1";
int status = WL_IDLE_STATUS;
WiFiServer server(80);
WiFiClient client;

const int RED = 2;
const int GREEN = 3;

Kickstart to Arduino Nano

● 170

const int BLUE = 4;
void setup()
{
 Serial.begin(9600);
 pinMode(RED, OUTPUT);
 pinMode(GREEN, OUTPUT);
 pinMode(BLUE, OUTPUT);
 if (WiFi.status() == WL_NO_MODULE)
 {
 Serial.println("Communication with WiFi module failed!");
 while (true);
 }
 while (status != WL_CONNECTED)
 {
 Serial.print("Attempting to connect to Network named: ");
 Serial.println(ssid);
 status = WiFi.begin(ssid, pass);
 delay(10000);
 }
 server.begin();
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());
 IPAddress ip = WiFi.localIP();
 Serial.println("Started the web server on port 80.");
 Serial.print("IP Address: ");
 Serial.println(ip);
 long rssi = WiFi.RSSI();
 Serial.print("Signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
 Serial.print("Open this address in a browser http://");
 Serial.println(ip);
}
void loop()
{
 client = server.available();
 delay(1000);
 if (client) {
 Serial.println("A new client has connected to the server...");
 String currentLine = "";
 while (client.connected())
 {
 if (client.available())
 {
 char c = client.read();
 Serial.write(c);

Chapter 7 • Working with the Arduino Nano 33 IoT

● 171

 if (c == '\n') {
 if (currentLine.length() == 0)
 {
 client.println("HTTP/1.1 200 OK");
 client.println("Content-type:text/html");
 client.println();
 client.print("Click here turn the Red LED on pin
2 on
");
 client.print("Click here turn the Red LED on pin
2 off
");
 client.print("Click here turn the Green LED on
pin 3 on
");
 client.print("Click here turn the Green LED on
pin 3 off
");
 client.print("Click here turn the Blue LED on pin
4 on
");
 client.print("Click here turn the Blue LED on pin
4 off
");
 client.println();
 break;
 }
 else
 {
 currentLine = "";
 }
 } else if (c != '\r') {
 currentLine += c;
 }
 if (currentLine.endsWith("GET /HR"))
 {
 digitalWrite(RED, HIGH);
 }
 if (currentLine.endsWith("GET /LR"))
 {
 digitalWrite(RED, LOW);
 }
 if (currentLine.endsWith("GET /HG"))
 {
 digitalWrite(GREEN, HIGH);
 }
 if (currentLine.endsWith("GET /LG"))
 {
 digitalWrite(GREEN, LOW);
 }
 if (currentLine.endsWith("GET /HB"))
 {

Kickstart to Arduino Nano

● 172

 digitalWrite(BLUE, HIGH);
 }
 if (currentLine.endsWith("GET /LB"))
 {
 digitalWrite(BLUE, LOW);
 }
 }
 }
 client.stop();
 Serial.println("The client disconnected...");
 }
}

Run the program and control the RGB LED using a browser. Now, you can extend this by
connecting a relay board with multiple relays and control your home appliances over the
web.

A Telnet-based Group Chat Server
You can use Telnet protocol to create a simple text-based group chat server. Simply modify
the earlier example to use port 23 (which is the default port for the Telnet application).

prog03.ino
#include <SPI.h>
#include <WiFiNINA.h>
char ssid[] = "TP-Link_710E";
char pass[] = "internet1";
int status = WL_IDLE_STATUS;
WiFiServer server(23);
boolean alreadyConnected = false;
WiFiClient client;
void setup()
{
 Serial.begin(9600);
 if (WiFi.status() == WL_NO_MODULE)
 {
 Serial.println("Communication with WiFi module failed!");
 while (true);
 }
 while (status != WL_CONNECTED)
 {
 Serial.print("Attempting to connect to Network named: ");
 Serial.println(ssid);
 status = WiFi.begin(ssid, pass);
 delay(10000);
 }
 server.begin();

Chapter 7 • Working with the Arduino Nano 33 IoT

● 173

 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);
 long rssi = WiFi.RSSI();
 Serial.print("Signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
 Serial.print("Open this address in a browser http://");
 Serial.println(ip);
}
void loop()
{
 client = server.available();
 if (client)
 {
 if (!alreadyConnected)
 {
 client.flush();
 Serial.println("We have a new client");
 client.println("Hello, client!");
 alreadyConnected = true;
 }
 if (client.available() > 0)
 {
 char thisChar = client.read();
 server.write(thisChar);
 Serial.write(thisChar);
 }
 }
}

Upload this sketch. This program listens for incoming connections and broadcasts mes-
sages to all clients. Once the sketch is uploaded, you can see the IP address of the Nano
in your Serial Console. From the command prompt of Linux and macOS, run the following
command:

 telnet 192.168.0.105 23

This will show the following message in the Console:

Trying 192.168.0.105...

Connected to 192.168.0.105.

Kickstart to Arduino Nano

● 174

Escape character is '^]'.

You can type in text and it will be broadcasted everywhere,

test

Hello, client!

test

test1

abc

You can exit with the following command:

 Ctrl +]

You have to enable Telnet in Windows. Here's a good guide for that:

 https://www.lifewire.com/what-is-telnet-2626026

Pinging a Remote Server
It's interesting and fun to ping a remote server as follows:

prog04.ino
#include <SPI.h>
#include <WiFiNINA.h>
char ssid[] = "TP-Link_710E";
char pass[] = "internet1";
int status = WL_IDLE_STATUS;
const String hostName = "www.google.com";
int pingResult;
void setup()
{
 Serial.begin(9600);
 if (WiFi.status() == WL_NO_MODULE)
 {
 Serial.println("Communication with WiFi module failed!");
 while (true);
 }
 while (status != WL_CONNECTED)
 {
 Serial.print("Attempting to connect to Network named: ");
 Serial.println(ssid);
 status = WiFi.begin(ssid, pass);

https://www.lifewire.com/what-is-telnet-2626026
http://www.google.com

Chapter 7 • Working with the Arduino Nano 33 IoT

● 175

 delay(10000);
 }
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);
 long rssi = WiFi.RSSI();
 Serial.print("Signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
 Serial.println(ip);
}
void loop()
{
 Serial.print("Pinging ");
 Serial.print(hostName);
 Serial.print(": ");
 pingResult = WiFi.ping(hostName);
 if (pingResult >= 0)
 {
 Serial.print("SUCCESS! RTT = ");
 Serial.print(pingResult);
 Serial.println(" ms");
 }
 else
 {
 Serial.print("FAILED! Error code: ");
 Serial.println(pingResult);
 }
 delay(5000);
}

Upload this sketch. This is a typical output:

IP Address: 192.168.0.105

Signal strength (RSSI): -51 dBm

192.168.0.105

Pinging www.google.com: SUCCESS! RTT = 10 ms

Pinging www.google.com: SUCCESS! RTT = 10 ms

http://www.google
http://www.google

Kickstart to Arduino Nano

● 176

A simple Web Client
In addition to pinging, you can write a sketch for a simple web-based client to retrieve in-
formation from a host. In the following sketch, you are retrieving the search results for the
term elektor from the search engine www.google.com.

prog05.ino
#include <SPI.h>
#include <WiFiNINA.h>
char ssid[] = "TP-Link_710E";
char pass[] = "internet1";
int status = WL_IDLE_STATUS;
char server[] = "www.google.com";
WiFiClient client;
void setup()
{
 Serial.begin(9600);
 if (WiFi.status() == WL_NO_MODULE)
 {
 Serial.println("Communication with WiFi module failed!");
 while (true);
 }
 while (status != WL_CONNECTED)
 {
 Serial.print("Attempting to connect to Network named: ");
 Serial.println(ssid);
 status = WiFi.begin(ssid, pass);
 delay(10000);
 }
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);
 long rssi = WiFi.RSSI();
 Serial.print("Signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
 Serial.println(ip);
 Serial.println("\nStarting connection to server...");
 if (client.connect(server, 80))
 {
 Serial.println("connected to server");
 client.println("GET /search?q=elektor HTTP/1.1");
 client.println("Host: www.google.com");
 client.println("Connection: close");
 client.println();

http://www.google.com
http://www.google.com
http://www.google.com

Chapter 7 • Working with the Arduino Nano 33 IoT

● 177

 }
}
void loop()
{
 while (client.available())
 {
 char c = client.read();
 Serial.write(c);
 }
 if (!client.connected())
 {
 Serial.println();
 Serial.println("Disconnecting from server.");
 client.stop();
 while (true);
 }
}

Using the Serial Console, all the results returned by the remote server will get printed.

Working with a Real-Time Clock
The Arduino Nano 33 IoT has a built-in real-time clock (RTC) that can be synchronized over
the Internet. Let's see how to use that clock. You have to synchronize the on-board clock
by using the NTP (Network Time Protocol). For that, install the RTCZero library from the
Library Manager tool.

Let's start by importing libraries:

#include "SPI.h"
#include <WiFiNINA.h>
#include <WiFiUdp.h>
#include <RTCZero.h>

Let's declare the variables for Wi-Fi:

char ssid[] = "TP-Link_710E";
char pass[] = "internet1";
int status = WL_IDLE_STATUS;
Let's declare the variables for the Real-time clock,
RTCZero rtc;
unsigned long epoch;
uint8_t attempts = 0;
const uint8_t maxAttempts = 7;
Let's initialize the WiFi,
void setup()
{

Kickstart to Arduino Nano

● 178

 Serial.begin(9600);
 if (WiFi.status() == WL_NO_MODULE)
 {
 Serial.println("Communication with WiFi module failed!");
 while (true);
 }
 while (status != WL_CONNECTED)
 {
 Serial.print("Attempting to connect to Network named: ");
 Serial.println(ssid);
 status = WiFi.begin(ssid, pass);
 delay(10000);
 }
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);
 long rssi = WiFi.RSSI();
 Serial.print("Signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
 Serial.println(ip);
Let's initialize the real-time clock,
 rtc.begin();

Let's fetch the epoch (i.e., the time since 1 January 1970) from an NTP server:

 do
 {
 epoch = WiFi.getTime();
 attempts = attempts + 1;
 }
 while ((epoch == 0) && (attempts < maxAttempts));

If the NTP Server cannot be connected, you get an error. Else, set the current time:

 if (attempts == maxAttempts)
 {
 Serial.print("NTP is unreachable!");
 while (1);
 }
 else
 {
 Serial.print("Epoch received: ");
 Serial.println(epoch);

Chapter 7 • Working with the Arduino Nano 33 IoT

● 179

 rtc.setEpoch(epoch);
 Serial.println();
 }
}

Finally, in the loop() section, you are displaying the current date and time every second.

void loop()
{
 Serial.print(rtc.getDay());
 Serial.print("/");
 Serial.print(rtc.getMonth());
 Serial.print("/");
 Serial.print(rtc.getYear());
 Serial.print(" ");
 Serial.print(rtc.getHours());
 Serial.print(":");
 Serial.print(rtc.getMinutes());
 Serial.print(":");
 Serial.print(rtc.getSeconds());
 Serial.println();
 delay(1000);
}

Upload the sketch and observe the output on the Serial Console.

Using the DS18B20 Temperature Sensor Jointly with the RTC
In the previous chapter, we learned to connect the DS18B20 temperature sensor to a Nano
board. You can use the same connections for the Nano 33 IoT, as shown in Figure 7-15.

Kickstart to Arduino Nano

● 180

Figure 7-15: DS18B20 temperature sensor connected to the Arduino Nano 33 IoT.

You can mix the code of the RTC with the code of the temperature sensor to get a temper-
ature reading with a timestamp, as follows:

prog07.ino
#include "SPI.h"
#include <WiFiNINA.h>
#include <WiFiUdp.h>
#include <RTCZero.h>
#include <OneWire.h>
#include <DallasTemperature.h>
const int sensor_pin = 2;
OneWire oneWire(sensor_pin);
DallasTemperature sensors(&oneWire);
char ssid[] = "TP-Link_710E";
char pass[] = "internet1";
int status = WL_IDLE_STATUS;
char msg[100];
RTCZero rtc;
unsigned long epoch;

Chapter 7 • Working with the Arduino Nano 33 IoT

● 181

uint8_t attempts = 0;
const uint8_t maxAttempts = 7;
void setup()
{
 Serial.begin(9600);
 sensors.begin();
 if (WiFi.status() == WL_NO_MODULE)
 {
 Serial.println("Communication with WiFi module failed!");
 while (true);
 }
 while (status != WL_CONNECTED)
 {
 Serial.print("Attempting to connect to Network named: ");
 Serial.println(ssid);
 status = WiFi.begin(ssid, pass);
 delay(10000);
 }
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);
 long rssi = WiFi.RSSI();
 Serial.print("Signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
 Serial.println(ip);
 rtc.begin();
 do
 {
 epoch = WiFi.getTime();
 attempts = attempts + 1;
 }
 while ((epoch == 0) && (attempts < maxAttempts));
 if (attempts == maxAttempts)
 {
 Serial.print("NTP is unreachable!");
 while (1);
 }
 else
 {
 Serial.print("Epoch received: ");
 Serial.println(epoch);
 rtc.setEpoch(epoch);
 Serial.println();

Kickstart to Arduino Nano

● 182

 }
}

void loop()
{
 sensors.requestTemperatures();
 float temp = sensors.getTempCByIndex(0);
 sprintf(msg, "%d/%d/%d %d:%d:%d ",
 rtc.getDay(), rtc.getMonth(),
 rtc.getYear(), rtc.getHours(),
 rtc.getMinutes(), rtc.getSeconds());
 Serial.print(msg);
 Serial.print(temp);
 Serial.println();
 delay(1000);
}

This will print the temperature with the current timestamp in the Serial Console at seconds
intervals. You can even display the results on a webpage. Check the following sketch:

prog08.ino
#include "SPI.h"
#include <WiFiNINA.h>
#include <WiFiUdp.h>
#include <RTCZero.h>
#include <OneWire.h>
#include <DallasTemperature.h>
const int sensor_pin = 2;
OneWire oneWire(sensor_pin);
DallasTemperature sensors(&oneWire);
char ssid[] = "TP-Link_710E";
char pass[] = "internet1";
int status = WL_IDLE_STATUS;
char msg[100];
RTCZero rtc;
unsigned long epoch;
uint8_t attempts = 0;
const uint8_t maxAttempts = 7;
WiFiServer server(80);
WiFiClient client;
void setup()
{
 Serial.begin(9600);
 sensors.begin();
 if (WiFi.status() == WL_NO_MODULE)
 {

Chapter 7 • Working with the Arduino Nano 33 IoT

● 183

 Serial.println("Communication with WiFi module failed!");
 while (true);
 }
 while (status != WL_CONNECTED)
 {
 Serial.print("Attempting to connect to Network named: ");
 Serial.println(ssid);
 status = WiFi.begin(ssid, pass);
 delay(10000);
 }
 server.begin();
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);
 long rssi = WiFi.RSSI();
 Serial.print("Signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
 Serial.println(ip);
 rtc.begin();
 do
 {
 epoch = WiFi.getTime();
 attempts = attempts + 1;
 }
 while ((epoch == 0) && (attempts < maxAttempts));
 if (attempts == maxAttempts)
 {
 Serial.print("NTP is unreachable!");
 while (1);
 }
 else
 {
 Serial.print("Epoch received: ");
 Serial.println(epoch);
 rtc.setEpoch(epoch);
 Serial.println();
 }
}
void loop()
{
 sensors.requestTemperatures();
 float temp = sensors.getTempCByIndex(0);
 sprintf(msg, "%d/%d/%d %d:%d:%d %s",

Kickstart to Arduino Nano

● 184

 rtc.getDay(), rtc.getMonth(),
 rtc.getYear(), rtc.getHours(),
 rtc.getMinutes(), rtc.getSeconds(),
 String(temp, 3).c_str());
 client = server.available();
 delay(1000);
 if (client)
 {
 Serial.println("A new client has connected to the server...");
 String currentLine = "";
 while (client.connected())
 {
 if (client.available())
 {
 char c = client.read();
 Serial.write(c);
 if (c == '\n') {
 if (currentLine.length() == 0)
 {
 client.println("HTTP/1.1 200 OK");
 client.println("Content-type:text/html");
 client.println("Connection: close");
 client.println();
 client.println("<!DOCTYPE html>");
 client.println("<html>");
 client.println("<head>");
 client.println("<title>Arduino Webserver</title>");
 client.println("<meta http-equiv=\"refresh\" content=\"1\">");
 client.println("</head>");
 client.println("<body>");
 client.println(msg);
 client.println("</body>");
 client.println("</html>");
 client.println();
 break;
 }
 else
 {
 currentLine = "";
 }
 } else if (c != '\r') {
 currentLine += c;
 }
 }
 }
 // close the connection:

Chapter 7 • Working with the Arduino Nano 33 IoT

● 185

 client.stop();
 Serial.println("The client disconnected...");
 }
 delay(1000);
}

Just copy the IP address from the Serial Console and paste it into the browser to see the
temperature.

Visualizing the Temperature graph with ThingSpeak
ThingSpeak is an online platform for data visualization by MathWorks. Let's visualize
the temperature data using ThingSpeak. First, you need to create an account at https://
thingspeak.com/. Then log into the account and from the menu bar on the webpage,
navigate to the option My Channels from the Menu, as shown in Figure 7-16.

Figure 7-16: Navigation to My Channels in ThingSpeak.

Once you click this option, you will be taken to a new page. There, click on the green button
New Channel — check Figure 7-17.

Figure 7-17: My Channels page.

Once you click the button, a form will open as pictured in Figure 7-18.

https://thingspeak.com/
https://thingspeak.com/

Kickstart to Arduino Nano

● 186

Figure 7-18: Creating a New Channel.

Assign a suitable name to your channel. Since you just need to show the graph for temper-
ature, check only one field and assign a suitable name to it. Complete the description and
metadata fields. Finally, click on the Save Channel button at the bottom of the page. Once
done, your channels list will appear like the one shown in Figure 7-19.

Figure 7-19: List of channels.

Chapter 7 • Working with the Arduino Nano 33 IoT

● 187

Now, you have to change the settings. Go to the Sharing section and share the channel
with everyone, as shown in Figure 7-20.

Figure 7-20: Share the channel with everyone!

Afterward, navigate to the tab API Keys, and note down the Write API Key for your
channel.

Kickstart to Arduino Nano

● 188

Figure 7-21: Writing the API Key.

Now, install the ThingSpeak library from the Library Manager. Upload the following
sketch to the Nano 33 IoT:

prog09.ino
#include "SPI.h"
#include <WiFiNINA.h>
#include <OneWire.h>
#include <DallasTemperature.h>
#include "ThingSpeak.h"
unsigned long mychannelnumber = 1111111;
const char * myAPIkey = "A1A1A1A1A1A1A1A1";
const int sensor_pin = 2;
OneWire oneWire(sensor_pin);
DallasTemperature sensors(&oneWire);
char ssid[] = "TP-Link_710E";
char pass[] = "internet1";
int status = WL_IDLE_STATUS;
WiFiClient client;
void setup()
{

Chapter 7 • Working with the Arduino Nano 33 IoT

● 189

 Serial.begin(9600);
 ThingSpeak.begin(client);
 sensors.begin();
 if (WiFi.status() == WL_NO_MODULE)
 {
 Serial.println("Communication with WiFi module failed!");
 while (true);
 }
 while (status != WL_CONNECTED)
 {
 Serial.print("Attempting to connect to Network named: ");
 Serial.println(ssid);
 status = WiFi.begin(ssid, pass);
 delay(10000);
 }
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);
 long rssi = WiFi.RSSI();
 Serial.print("Signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
 Serial.println(ip);
}
void loop()
{
 sensors.requestTemperatures();
 float temp = sensors.getTempCByIndex(0);
 ThingSpeak.writeField(mychannelnumber, 1, temp, myAPIkey);
 delay(16000);
}

You are already familiar with most of the code. Let's understand the new lines of code. The
new file included is as follows,

#include "ThingSpeak.h"

You need to get the channel number and API Write Key from your ThingSpeak account. I
have entered dummy data to mask the details of my own account,

unsigned long mychannelnumber = 1111111;
const char * myAPIkey = "A1A1A1A1A1A1A1A1";
You have to initialize the ThingSpeak as follows,
 ThingSpeak.begin(client);

Kickstart to Arduino Nano

● 190

You can write the data to the first field as follows:

 ThingSpeak.writeField(mychannelnumber, 1, temp, myAPIkey);

The argument 1 refers to the field numbers, and temp is the variable for numerical value
to be visualized. Upload the sketch and go to your channel using a browser. If the number
of your channel is 11111111, then the URL of your channel is https://thingspeak.com/
channels/11111111. Everything working properly so far, you can see the graph of all tem-
perature data.

Programming the Built-in IMU
The Arduino Nano 33 IoT comes with a built-in Inertial Measurement Unit (IMU) type LS-
M6DS3. You can program its accelerometer and gyroscope easily. But first, you need to
install the library for the LSM6DS3 by opening the Library Manager and installing the
library named Arduino_LSM6DS3. Next, create a sketch and save it as prog10.ino. Let's
add code to it in a step-by-step manner. Be sure to include the required library first:

#include <Arduino_LSM6DS3.h>

In the setup() section, you are initializing the IMU and printing the sample rates for the
accelerometer and the gyroscope in Hz in the Serial Console.

void setup()
{
 Serial.begin(9600);
 if (!IMU.begin())
 {
 Serial.println("Failed to initialize IMU!");
 while (1);
 }
 Serial.print("Accelerometer sample rate = ");
 Serial.print(IMU.accelerationSampleRate());
 Serial.println(" Hz");
 Serial.println();
 Serial.print("Gyroscope sample rate = ");
 Serial.print(IMU.gyroscopeSampleRate());
 Serial.println(" Hz");
 Serial.println();
}

In the loop() section, we are printing the acceleration and orientation values on all three
axes, one after another, every second.

https://thingspeak.com/channels/11111111
https://thingspeak.com/channels/11111111

Chapter 7 • Working with the Arduino Nano 33 IoT

● 191

void loop()
{
 float x, y, z;
 if (IMU.accelerationAvailable())
 {
 Serial.println("Acceleration X, Y, Z");
 IMU.readAcceleration(x, y, z);
 Serial.print(x);
 Serial.print(", ");
 Serial.print(y);
 Serial.print(", ");
 Serial.print(z);
 Serial.print(", \n");
 }
 if (IMU.gyroscopeAvailable())
 {
 Serial.println("Gyroscope X, Y, Z");
 IMU.readGyroscope(x, y, z);
 Serial.print(x);
 Serial.print(", ");
 Serial.print(y);
 Serial.print(", ");
 Serial.print(z);
 Serial.print(", \n");
 }
 delay(1000);
}

You can exploit this interesting feature of the Nano 33 IoT board creatively for interactive
projects.

Summary
In this chapter, you learned to work with the Wi-Fi module aiming to create simple IoT
applications. You have also learned to work with the IMU included on the board. You can
extend this knowledge to build more creative and interactive projects in the future.

Conclusion
The journey that you started to explore the Arduino Ecosystem is far from over. There are
plenty more Arduino boards, sensors, I/O devices, and projects to explore. You can start
exploring the documentation section at https://www.arduino.cc/ and the project hub at
https://create.arduino.cc/projecthub. Happy exploring!

https://www.arduino.cc/
https://create.arduino.cc/projecthub

Kickstart to Arduino Nano

● 192

Index

28BYJ-48 82, 92
9225 103
9600 baud 74

A
AccelStepper 98
analog input 71
Analog Input 75
analogWrite() 84
API Write Key 189
Arduino 11
Arduino Clones 14
Arduino Ecosystem 11
Arduino IDE 14
Arduino Nano 11
Arduino Nano 33 IoT 154
Arduino Nano Every 11
Arduino Platform 11
Arduino Serial 73
ATmega328 15
ATmega4809 16
ATMega4809 15
attach() 91

B
binary counter 63
Boards Manager 32
breadboard 56
Breadboards 46
built-in constants 44
Buzzer 144

C
CH340 39
CIPO 19, 75
common-anode 65
common-cathode 65
COPI 19, 75
Counterfeits 14

D
Derivatives 14
Device Manager 36
Digital I/O 82

Digital Pins 18
digitalRead() 65
DIP 46
DS18B20 154, 179
DS18B20 Temperature Sensor 151
Dual in Package 46

E
Ecosystem 13
expansion shields 67

F
Fritzing 57
full step 99

G
Geometric Art 103
global variable 45
Group Chat Server 172

H
half step 99

I
I2C 19, 71, 75
Ilitek 9225 103
IMU 190
IMU LSM6DS3 155
INPUT_PULLUP 65
Inter-Integrated Circuit 75
I/O expansion shield 69

J
Joystick 149
Jumper cables 50

L
LED 43
LED blink 42
LEDs 51
Light Emitting Diodes 51
local variables 45
loop() 42
LSM6DS3 190

Contents

● 193

M
map() 79
MB 102 46
Microchip ATECC608A 155
microcontroller 11
MISO 19
MOSI 19
motor driver 82
multiple LEDs 59

N
Nano Family 13
Newline 74
nmap 167

O
OneWire 152

P
parallel 71
Ping 174
port 37
portable power supply 50
potentiometer 75
power supplies 46
Pulse Width Modulation 82
pushbutton 63
Pushbuttons 53
PWM 19, 82

R
Raspberry Pi OS 30
Real-Time Clock 177
Remote Server 174
Resistors 52
RGB 65
RGB LEDs 42
RTCZero 177

S
samd 157
SAMD 158
Send 74
Sensor 144
serial 71
Serial Monitor 73

Serial Peripheral Interface 75
serial plotter 78
Serial.println() 75
Servo Motor 89
setup() 42
SG90 servo motor 89
shield 68
SPI 19, 71, 75
Star Wars 146

T
Telnet 154, 172
temperature sensor 144
TFT LCD 103
ThingSpeak 185
TOFF 83
TON 83
Tools 73
trimpot 76
Two Wire Interface 75

U
UART 19
ULN2003A 82, 92
Unipolar Stepper Motors 82
Update Firmware 160
Upload 39

V
Visualizing 185

W
web client 154
Web Client 176
WiFiNINA 154, 159
Wire 75

	Contents
	Acknowledgements
	Dedication
	Preface
	Chapter 1 • �Introduction to the Arduino Platform and the Arduino Nano
	The Microcontroller
	Popular MCU Families
	Arduino
	The Arduino "Classic" Family
	The Arduino "MKR" Family
	The Arduino "Nano" Family
	The Arduino "Pro" Family
	Arduino is for Everyone
	The Arduino Ecosystem
	Arduino Software
	Official Arduino Boards
	Arduino Clones and Derivatives
	Arduino Counterfeits
	The Arduino Nano and Arduino Nano Every
	Arduino Nano and Arduino Nano Every Pinouts
	Powering the Nano and Nano Every MCU boards
	The Arduino IDE
	Installing the stable version of Arduino IDE
	Installation of Arduino IDE on Raspberry Pi OS
	Working with the Boards Manager
	Working with the Arduino Nano Every
	Working with the Arduino Nano
	Summary

	Chapter 2 • Playing with Electronics
	Basics of Programming with Arduino IDE
	Blink in the built-in LED
	Working with the basic electronic components
	Breadboards and power supplies
	Jumper cables
	Light Emitting Diodes
	Resistors
	Pushbuttons
	Improving the LED blink sketch with Functions
	Building your first circuit on a breadboard
	Circuits using Nano
	Working with multiple LEDs
	Adding a pushbutton to the circuit
	Working with RGB LEDs
	Using Arduino Nano boards with expansion shields
	Summary

	Chapter 3 • Assorted Buses and the Analog Input
	Parallel and Serial Data Transfer
	Arduino Serial
	SPI and I2C
	Analog Input
	Plotting multiple variables
	Summary

	Chapter 4 • �Pulse Width Modulation and Driving Unipolar Stepper Motors with Digital I/O
	The Concept of Pulse Width Modulation
	PWM with Arduino Nano
	Working with a Servo Motor
	Working with the 28BYJ-48 Unipolar Stepper Motor and the ULN2003A Motor Driver
	Using a Custom Library for Stepper Motors
	Working with Multiple Stepper Motors
	Summary

	Chapter 5 • �Plotting Geometric Art on an
External Display
	The Ilitek 9225 Driver IC and the Display
	Programming the Display
	Summary

	Chapter 6 • Working with a Buzzer and a Sensor
	Working with a Buzzer
	Working with a Joystick
	Working with DS18B20 Temperature Sensor
	Summary

	Chapter 7 • Working with the Arduino Nano 33 IoT
	Introduction to the Nano 33 IoT board
	Getting Started
	Working with WiFiNINA library
	A Telnet-based Group Chat Server
	Pinging a Remote Server
	A simple Web Client
	Working with a Real-Time Clock
	Using the DS18B20 Temperature Sensor Jointly with the RTC
	Visualizing the Temperature graph with ThingSpeak
	Programming the Built-in IMU
	Summary
	Conclusion

	Index

