

inside front cover

The Creative Programmer

Wouter Groeneveld

Foreword by Felienne Hermans

To comment go to liveBook

Manning

Shelter Island

https://livebook.manning.com/#!/book/the-creative-programmer/discussion

For more information on this and other Manning titles go to

www.manning.com

https://www.manning.com/

Copyright

For online information and ordering of these and other

Manning books, please visit www.manning.com. The

publisher offers discounts on these books when ordered in

quantity.

For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2023 by Manning Publications Co. All rights

reserved.

No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by means

electronic, mechanical, photocopying, or otherwise, without

prior written permission of the publisher.

Many of the designations used by manufacturers and sellers

to distinguish their products are claimed as trademarks.

Where those designations appear in the book, and Manning

https://www.manning.com/
mailto:orders@manning.com

Publications was aware of a trademark claim, the

designations have been printed in initial caps or all caps.

♾ Recognizing the importance of preserving what has been

written, it is Manning’s policy to have the books we publish

printed on acid-free paper, and we exert our best efforts to

that end. Recognizing also our responsibility to conserve the

resources of our planet, Manning books are printed on paper

that is at least 15 percent recycled and processed without

the use of elemental chlorine.

Manning Publications Co.

20 Baldwin Road Technical

PO Box 761

Shelter Island, NY 11964

Development editor: Connor O’Brien

Review editor: Adriana Sabo

Production editor: Kathleen Rossland

Copy editor: Kathy Savadel

Proofreader: Katie Tennant

Typesetter: Gordan Salinović

Cover designer: Marija Tudor

ISBN: 9781633439054

contents

front matter

foreword

preface

acknowledgments

about this book

about the author

about the cover illustration

1 The creative road ahead

1.1 What exactly is creativity?

1.2 Why creativity?

1.3 Different levels of creativity

1.4 A road map to becoming more creative

The seven Creative Programmer themes

The Creative Programming Problem Solving Test

1.5 The structure of the following chapters

2 Technical knowledge

2.1 No input, no creative output

2.2 Gathering knowledge

Diversify what goes in

Moderate what goes in

2.3 Internalizing knowledge

Knowledge management

2.4 Acting on knowledge

From notebook to memex to genex

From note to action

A note on note maintenance

From interruption to action

2.5 A workflow example

A five-step workflow

The workflow in practice: Coding

The workflow in practice: Learning new programming languages

The workflow in practice: Writing

3 Communication

3.1 Collaborative teamwork

What makes a Camerata tick

Dream teams

3.2 Collective geography

Liquid networks

Creativity is contagious

Moving to stimulating environments

Genius clusters

3.3 Creative work in time

The adoption curve

3.4 When creative flow is impeded

Social debt

From technical to social debt

Community smells

Getting out of social debt

4 Constraints

4.1 Constraint-based thinking

Greenfield or brownfield?

A taxonomy of constraints

4.2 Intrinsic constraints

Intrinsic hardware constraints

Intrinsic software constraints

4.3 Imposed constraints

4.4 Self-imposed constraints

Passionate pixel artists

Let limitations guide you to creative solutions

Game Boying into constraints

Limited (fantasy) consoles

Limited programming languages

Crack intros and the demoscene

4.5 Hitting that sweet spot

Facilitating abstraction with the right amount of constraints

Sweetness or bitterness?

4.6 Working with constraints in practice

Divergent thinking

Naivety and constraints

A naive but legendary poet

A naive James Bond

Naive algorithm implementations

5 Critical thinking

5.1 Creative critical thinking

5.2 The creative process

Verifying critically

Focused thinking

Diffuse thinking

Combining diffuse and focused thinking

5.3 Creativity is the means, not the goal

5.4 Common critical thinking fallacies

Cross-language clashes

The superior flash of insight

Ignorance and Deliberate Discovery

I am the greatest

I am the fanciest

First-Google-hit coding

A long list of novice programming misconceptions

Converting prejudice into insight

5.5 Too much self-criticism

5.6 Why others’ critical thinking matters

6 Curiosity

6.1 Curiosity jump-starts creativity

6.2 Growing wonder and wanderlust

Fixed and growth mindsets

Believing is doing

Growing out of your comfort zone

Growth mindsets and creativity

6.3 Staying on the curious course

Persistence and grit

Willpower is a depletable resource

6.4 From curiosity to motivation

Intrinsic motivation

Extrinsic motivation

Combining intrinsic and extrinsic motivation

6.5 Multipotentiality

Multiple true callings

How to approach multiple interests

Does specialism kill creativity?

Generalism vs. specialism in tech

6.6 Serendipitous discoveries

How to stumble upon things

Openness to experience

6.7 About having fun

Fooling around

Just for fun: A bad guy bonus challenge

7 Creative state of mind

7.1 Getting in the right creative mood

7.2 The flow of deep work

The optimal experience

Deep work

Deep work and flow on the move

Walking support or the lack thereof

7.3 Interrupt!

Increasing your awareness of interruptions

Preparing for interruptions

Knowing which interruptions to look out for

Mindfulness increases focus

7.4 Triggering creative insights

Alone or together?

Sleep and insight

A note on stimulants

7.5 A corporate creative state of mind

Environmental creativity

Workplaces as creative workshops

Workplaces as a safe haven

8 Creative techniques

8.1 On filling a creative toolbox

8.2 A selection: The artist’s toolbox

Art-Based Learning

Steal like an artist

The power of time off

8.3 A selection: The writer’s toolbox

Vladimir Nabokov’s toolbox

Geoff Dyer’s toolbox

Anne Lamott’s toolbox

8.4 A selection: The programmer’s toolbox

Anna Bobkowska’s toolbox

The Pragmatic Programmer’s toolbox

Emily Morehouse’s toolbox

9 Final thoughts on creativity

9.1 Remember, everyone can be creative

9.2 On the evolving perspective of creativity

From technical individualism to a creative team player

Revisiting the CPPST

9.3 When not to be creative

9.4 Further reading

index

front matter

foreword

When I heard that Wouter was going to write a book for

Manning, I was very excited! Wouter is researching the skills

programmers need to be productive and creative, and his

work so far had gained attention only in academic circles.

How wonderful, I thought, that a larger audience will now be

able to read about ways in which we can get more creative

in our work!

Creativity, though, is a weird thing. We all agree

programming is a creative endeavor, but what is creativity,

and how can we get better at it? Isn’t being creative simply

a matter of knowing a lot of things so you can apply the one

that is most relevant? Wouter argues that yes, technical

knowledge is a necessary condition, though not a sufficient

one. He goes on to fill his book with a fantastic mix of

engaging historical anecdotes, concrete practical exercises,

and extensive references to papers, books, and essays for

deeper reading both in and outside of programming.

I very much appreciate Wouter’s honest reflections on his

own strategies. It is easy to simply encourage the reader to

do a certain thing (“always take notes” or “work well as a

team by communicating more”). Wouter openly addresses

how hard it is to do these things, talks about his own failures

at doing so, and always ends with concrete advice that feels

both actionable and doable—a rare combination.

I love the fact that the book is filled with exercises and

encouragement to try out techniques because if anything is

hard to do in theory, it would be creativity! My own edition

has now been filled with pages of scribbles and notes on

which I could immediately apply Wouter’s lessons on

organizing and following up, a sign that his exercises are

truly engaging and encouraging!

The book is deep in its different aspects of creativity, from

note taking and brainstorming to creative teamwork and

creative techniques to apply. In addition to the practical tips,

the book is grounded in solid scientific work and introduces

relevant theoretical constructs related to creativity. I learned

about organizing knowledge, common pitfalls in critical

thinking, and how to use constraints to boost your creativity.

I don’t doubt that The Creative Programmer will be useful to

any programmer, from high schoolers taking their first steps

in Python to seasoned C++ developers with decades of

experience. I can’t wait to see what creative projects

readers will come up with!

—Prof. Dr. Felienne Hermans

Professor of Computer Science Education

Vrije Universiteit Amsterdam

preface

As much as technicality and program architectures

bedazzled me in a good way during my 11 years as a

software engineer, it was really the mysticism of

nontechnical coding skills that kept calling my name. When I

got involved in coaching and onboarding, I noticed a few

odd things. Why was it that new recruits mostly caught up

with our frameworks and best practices but sometimes

failed to grasp what really matters: integrating into the

team and solving problems? What does it mean to be a truly

great programmer, besides the obvious technical mastery?

This question kept me up at night and eventually lured me

back to academia. More than four study-intensive years

later, and having published multiple scientific papers on the

subject, I can finally say I better understand what makes a

truly great programmer: a Creative Programmer. The

problem is that segregated academic publications—besides

their excellent legibility—lack context and barely make it

beyond university borders. I was also set on giving

something back to the programming community. Thanks to

the interest and help of Manning, the idea soon evolved into

easily digestible chapters and an early-access release,

kicking the feedback-rewrite cycle into overdrive.

The result of our collaboration is a blend of theory and

practice—a practical approach backed by scientific evidence

that should help you with complex programming problems

as a coder in the field. I’ve done my best to make this book

as accessible (and as funny) as possible, both for the junior

programmer and for the experienced guru. By the end of

the book, all the tools you need to become a Creative

Programmer should be in your hands. In total, we’ll cover

seven distinct but intertwined themes: technical knowledge,

communication, constraints, critical thinking, curiosity, a

creative state of mind, and creative techniques.

I hope the concepts explained in this book will jump-start

your creative thinking and continue to be a useful guide for

years to come. If there is anything you’d like to discuss or

share, please feel free to reach out. I’m always happy to

help, and feedback is more than welcome. As you’ll see

later in the book, there’s no such thing as a Creative

Programmer without a creative community.

Thanks again for buying the book, and enjoy!

acknowledgments

While the first draft of this book was written in solitude,

many ideas that helped shape it were, of course, based on

the superb work of others. Of those, I owe a special thanks

to Andy Hunt. If not for discovering his Pragmatic Thinking &

Learning guide in 2009, I would probably never have shown

any interest in cognition and the psychology of

programming.

I thank all the wonderful people I’ve ever had the pleasure

of working with and previous employers who allowed me to

put together experimental courses on various aspects linked

to the concepts of this book. A big thanks goes to my PhD

supervisors, Joost Vennekens and Kris Aerts at KU Leuven,

who let me choose my own path instead of forcing me to

limit my topic to their research domain. I also thank all the

participants in industry and academia who were interviewed

as part of my research.

I probably will never want to admit it, but the first draft of

the book, while containing a lot of good ideas, was still in

pretty rough shape. I owe a great deal to my editor, Connor

O’Brien, for critically reviewing the chapters and forcing me

to kill my darlings when needed. It has been a rocky ride,

and the need for a careful balance between theory and

practice may have caused a stir or two, but in the end,

Connor always put me on the right track.

Also, I thank associate publisher Michael Stephens for

recognizing this book’s potential when we first met. A big

thanks goes to all the other folks at Manning who helped put

this out there.

I thank the people who put in the effort to provide early

feedback on the manuscript during various stages of its

development: Abdul W. Yousufzai, Alessandro Campeis,

Andres Sacco, Chuck Coon, Diego Casella, Đorđe Vukelić,

Edin Kapić, Edmund Cape, George Onofrei, Germano Rizzo,

Haim Raman, Jaume López, Jedidiah River Clemons-Johnson,

Jeremy Chen, Joseph Perenia, Karl van Heijster, Malisa

Middlebrooks, Manuel Rubio, Matteo Battista, Max Sadrieh,

Muhammad Zohaib, Nghia To, Nouran Mahmoud, Oliver

Forral, Or Golan, Orlando Alejo Méndez Morales, Pradeep

Chellappan, Prajwal Khanal, Rich Yonts, Samuel Bosch,

Sebastian Felling, Swapneelkumar Deshpande, and Vidhya

Vinay.

Other people also deserve special acknowledgment:

Yannick Lemmens, who laid eyes on one of the

earliest versions of the manuscript. His

enthusiasm certainly helped push this project

forward.

Linus De Meyere, for always supporting my

projects, however silly they may seem at first.

Peter Bridger, as my retro computing liaison and

good friend, for sharing stories, happy and sad,

and providing distractions when needed.

Felienne Hermans, for paving the way with her

book The Programmer’s Brain, also published by

Manning, showing coders (and publishers) there is

a clear need for nontechnical technical books.

Daniel Graziotin, for helping to point me toward

creativity research in the context of software

development, even though he ended up pursuing

another related topic himself.

Lastly, the person I probably owe the most to: I thank my

wife, Kristien Thoelen, for putting up with my grumbling and

whining when hitting yet another (writing) roadblock. I have

the feeling this won’t be my last book; sorry, honey!

about this book

As the title implies, The Creative Programmer is primarily a

book for programmers of all levels who are keen on

improving their problem-solving skills with the help of

creativity. By purchasing this book, you’ve already unlocked

the first and most important part of your creative potential:

the curiosity to learn something new! I hope the coming

chapters contain enough information to keep that curiosity

going.

Unlike many Manning books, this one does not require any

prior knowledge of certain programming languages or

technologies. Instead, we’ll venture deep into the world of

cognitive psychology to discover what it means to be a

Creative Programmer. It does help if you’ve programmed

before, but it’s not a strict requirement. The few code

examples present are devoid of language-specific syntax

and serve as a use case for specific creative concepts: no

extensive programming language or design pattern

knowledge is required.

Even though these approaches to creativity, conventional

and unconventional, will always be translated back into the

world of the programmer, they might also appeal to

noncoders who are involved in tech. Technical analysts will

certainly also benefit from the revealed concepts, while

engineering managers will learn how to better support their

team creatively. With a bit of effort, most techniques can be

translated into other domains. We’ll see examples of this as

we make our way through the book.

How this book is organized

Since creativity can be a confusing term, we first discuss the

origin of the word, what it means to be creative, and how to

measure it in chapter 1, which also serves as a guide to the

creative road ahead.

In each of chapters 2-8, a central theme related to creativity

is revealed and explored in depth. These themes can also be

found in the core concept graphic on the inside of the front

cover. They are technical knowledge, communication,

constraints, critical thinking, curiosity, a creative state of

mind, and creative techniques. As you’ll soon discover,

these themes are highly interconnected. While the book was

written with the intention of reading the chapters in order,

feel free to flip through them and follow your curiosity,

cherry-picking topics here and there. Just make sure you

don’t skip the important context.

Chapter 9 closes with some final thoughts on creativity in

the context of coding and offers a few moments of reflection

to help you integrate what you’ve learned into your daily

practice as a programmer. In case you’re still hungry for

more after finishing this book, this chapter also contains a

list of recommended readings, grouped by the main themes.

Each section in chapters 2-8 contains an exercise to make

you stop and think. Some of these are easily actionable

while others may require more thought or a good night of

sleep and a reread. I did my best to design these in such a

way that they potentially ignite change, but I do expect you,

the reader, to give them a fair chance. If you encounter any

difficulties or don’t know how to apply something in your

specific situation, feel free to reach out. I’m always happy to

help where I can!

liveBook discussion forum

Purchase of The Creative Programmer includes free access

to liveBook, Manning’s online reading platform. Using

liveBook’s exclusive discussion features, you can attach

comments to the book globally or to specific sections or

paragraphs. It’s a snap to make notes for yourself, ask and

answer technical questions, and receive help from the

author and other users. To access the forum, go to

https://livebook.manning.com/book/the-creative-

programmer/discussion. You can also learn more about

Manning’s forums and the rules of conduct at

https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue

where a meaningful dialogue between individual readers

and between readers and the author can take place. It is not

a commitment to any specific amount of participation on the

part of the author, whose contribution to the forum remains

voluntary (and unpaid). We suggest you try asking him

some challenging questions lest his interest stray! The

forum and the archives of previous discussions will be

accessible from the publisher’s website as long as the book

is in print.

https://livebook.manning.com/book/the-creative-programmer/discussion
https://livebook.manning.com/discussion

about the author

Wouter Groeneveld is a software engineer, computer

science education researcher, and professional bread baker.

Wouter was an enterprise software engineer for 11 years

with a passion for inspiring and teaching others. After a few

years of experience, he became involved in teaching,

coaching, and onboarding. Witnessing the failure of many

software projects led him to ask the following question:

What makes a good software engineer? That question

ultimately caused him to quit his job in the industry in 2018

and rejoin academia. Since then, Wouter has been

conducting research on nontechnical skills in the software

engineering world. He has written extensively about the

topic. A list of his academic publications can be found at

https://brainbaking.com/works/papers/ (all papers are open

access). He also runs a blog at https://brainbaking.com/.

about the cover illustration

https://brainbaking.com/works/papers/
https://brainbaking.com/

The figure on the cover of The Creative Programmer is

“Homme Ostjak à la Chasse d’Hermine,” or “Ostyak man

hunting ermine,” taken from a collection by Jacques Grasset

de Saint-Sauveur, published in 1788. Each illustration is

finely drawn and colored by hand.

In those days, it was easy to identify where people lived and

what their trade or station in life was just by their dress.

Manning celebrates the inventiveness and initiative of the

computer business with book covers based on the rich

diversity of regional culture centuries ago, brought back to

life by pictures from collections such as this one.

1 The creative road ahead

This chapter covers

Definitions and the origin of the term “creativity”

Reasons for being creative

An overview of the seven Creative Programmer themes

The Creative Programming Problem-Solving Test

We humans love to create. Homo faber—creating to control

our fate and environment—is a manifestation of man’s

innate being in nature, according to philosopher and novelist

Umberto Eco.1 By buying this book, you’ve made your first

step toward your innate being as a creative programmer.

Congrats, and welcome!

Chances are that you’ve decided to read this book to

become a better programmer. You’ve come to the right

place. Only, don’t expect the unfolding of the latest technical

marvels, such as a just-in-time compiler of some virtual

machine, or to learn more about programming language x or

y. This is far from your average programming book.

Instead, we’ll be working on a different level. You’ll learn how

highly creative individuals (and groups) approach problems,

what their habits and thought processes are like, and how

they arrive at both more productive and more creative

solutions. Once you’re a certified Creative ProgrammerTM,

you’ll unravel any technical marvel with ease and learn

multiple programming languages at once—well, at least

according to the theory. Whether you just picked up

programming as a new discipline or you’re an experienced

developer, my hope is that you will acquire at least a few

new creative tricks to have up your sleeve.

More experience in a technical trade such as programming

does not necessarily equal more creative output. I’ve been in

the software development industry for more than a decade

and have witnessed few highs and a lot of lows. Software

seems to be doomed to fail. Pragmatic programmer and

cocreator of the “Manifesto for Agile Software Development”

Andy Hunt started his book Pragmatic Thinking & Learning

on a similar troubling note:2

Whether you’re a programmer or frustrated user, you may have already

suspected that software development must be the most difficult endeavor

ever envisioned and practiced by humans. Its complexity strains our best

abilities daily, and failures can often be spectacular—and newsworthy.

Although Andy’s approach is to teach you how to think and

learn, my approach is to teach you how to approach

problems more creatively. After witnessing so many software

failures (and [un]consciously helping conceive them), I’ve

become convinced that the deficit may be one of

nontechnical skills, not of technical ability. This obsession

even led me back to academia, where I have spent the past

four years researching creativity in software engineering.

The fruit of my hybrid industry-academia work lies in your

hands—provided you’re an old-school book person. But

before we can get cracking, we first need to get a few

questions out of the way.

1.1 What exactly is creativity?

Psychology scholars have been squabbling over this question

for decades. The result is the existence of about 100

different definitions of creativity. When you ask your 10-year-

old daughter what creativity is, she might insist on sharing

her paintbrush to find out together. Your stingy neighbor, on

the other hand, thinks that tax evasion is creative. After

carefully inspecting the internals of a computer, you yourself

might conclude that they are all wrong: it’s the engineers

who come up with this that are creative! Who’s right?

One possible solution would be to boil down the essence of

all different opinions into a single definition. Creativity

researchers Kaufman and Sternberg3 say an idea is creative

if it meets these descriptions:

It is considered novel and original.

It is of high quality.

It is relevant to the task at hand.

Throwing a NoSQL database at a problem might be a

qualitative solution, as has been proven in the past, but I

doubt it is an original idea. If your problem is not data

related, then it might not even be relevant. Still, if you or

your team has never worked with NoSQL databases before, it

might be considered novel.

This essentialists’ take on creativity comes with many

drawbacks; for example, it completely ignores context.

Creativity research is making a gradual shift toward a more

systemic approach that takes into account contextual

parameters. This sounds complicated, and I can almost hear

you bracing yourself for yet another dry academic definition.

Fortunately, quite the opposite is true.

EXERCISE When do you think something is considered

creative? Ponder that question for a few minutes. When was

the last time that something you came up with was

considered very creative?

Done? Right. I’ll lift the curtain for you: something is creative

when someone else says it is. There, isn’t that easy?

Creativity is a social verdict.4 Your peers decide whether or

not your programming efforts led to something creative. You

cannot possibly declare that yourself. It is a sociocultural

phenomenon.

Art experts who proclaim a particular painting to be a stroke

of genius dictate our opinion as laypersons (figure 1.1). In

response, we dutifully sigh in awe. If that painting was

considered plain and uninteresting by critics, we wouldn’t

bother to look. It would probably never make it to a museum

wall. Because we don’t have the necessary technical

knowledge about painting, we have to rely on the experts in

the field.

Figure 1.1 What is art? According to Marchel

Duchamp, a signed urinal can be art. A New York

gallery rejected it. Duchamp’s Fontaine did manage to

shake things up quite a bit in the domain of 20th-

century art. It is now considered highly creative.

Source: public domain.

The same is true for programming—or any other domain. If

your teammates pat you on the back saying, “Nice code! A

creative way to circumvent the problem!” then you’re

suddenly promoted to a creative programmer, on the

condition that your teammates as experts in programming

are not just fooling around. Yet, that very same solution

could be considered boring by another team or in another

company: been there, done that.

Thinking about creativity in a systematic way also explains

the sad prevalence of unsung geniuses. It goes without

saying that if none of Vincent van Gogh’s paintings had been

found, we would not consider him a creative genius. And if

none of the art experts in the field had accepted van Gogh’s

paintings as evocative and groundbreaking, we would not

consider him a creative genius. In fact, that is exactly what

happened during his lifetime. His paintings were consistently

rejected by the Paris Salon curators, who were responsible

for the official art exhibition of the Académie des Beaux-Arts

between 1748 and 1890. Their conservatism didn’t last long.

The critical mass grew and dethroned the classicists in favor

of Impressionism, as the Impressionists started holding their

own independent exhibitions. Time and place are equally

important contributors to creativity, as we will see in later

chapters. Many of van Gogh’s works are now among the

most expensive paintings ever sold.

The origins of the creative

The way in which we perceive creativity has changed many times

throughout the history of humankind. Nowadays, we immediately think of

art when we hear the term. In ancient Greece, art (technê in Greek, later

adapted to technology) involved strict adherence to rules. Painters and

sculpturers imitated; they did not create—only poets were allowed “freedom

of action.” Artists discovered; they did not invent.

In later Christian-dominated Europe, creativity was reserved for God’s act of

creation from nothing (creatio ex nihilo). We humble humans merely made

(facere) stuff; we couldn’t—and weren’t allowed to—create.

Only during the Renaissance period did philosophers and artists begin to

see themselves as inventors, shaping new objects according to their own

ideas, gradually freeing art from craft and moving toward creativity. It would

take two more centuries before the term was actually applied—and it was

met with heavy Christian resistance.

Creativity would not gain traction in scientific research until the 1950s. It is,

just like programming, a relatively new concept!

I might come up with a clever variant of ext4, the most

popular journaling file system for Linux. I might perhaps call

it WouterFS. That does ooze with creativity (and decadence).

If I never introduce it to someone else, there’s a slim chance

it would get picked up after my death. Luckily, I’m a realist.

Technology changes too rapidly, and by then, they’ll

probably be about to roll out ext65, which most likely will

make WouterFS redundant. Maybe one day I will find the

courage to show my implementation to a few of the ext

maintainers. If it is seen as mundane and dismissed—and

the chances of that are high—I’ll have to accept my defeat.

But if my code is seen as creative, they might even patch a

few features into ext4. In other words, all I can do is my best,

but it is not up to me to declare my work as creative.

1.2 Why creativity?

That does sound rather depressing, doesn’t it? Why would

you bother reading a book about becoming a creative

programmer if it’s up to someone else’s whims? Because

many habits and personality traits explained in the coming

chapters greatly increase your potential to be a creative

programmer.

Still, that does not answer the why question. Why bother

becoming a creative programmer when you’re already a

competent programmer? The answer is—again—

multidimensional. Let’s examine the major reasons to lead a

creative developer’s life.

The first reason, simply put, is that employers ask for it. For

years, nearly every software development job advertisement

contains the word “creative.”5 Everyone knows that job ads

are bulging with meaningless words made up by the Human

Resources department to attract as many candidates as

possible. Soft skills are all the rage these days. Instead of

scanning ads, my colleagues and I conducted our own

research by simply asking software development experts:

“Which non-technical skills do you think are needed to excel

as a developer?”6 Guess which word popped up? If you want

to sell yourself, you’ll have to be creative.

EXERCISE When do you consider your own programming

work to be creative? When is it anything but creative? When

do you consider others’ code creative? Is there a difference?

You might be reluctant to answer such mundane questions

because the answers might yield (un)pleasant surprises.

As for the reason why creativity is such a sought-after skill,

the answer lies in problem solving. When conventional

methods fail, bringing in a splash of creativity might be the

way to go. Knowing how the creative process works is half

the solution. For example, if your web application is

struggling with handling thousands of requests per second, it

might be a good idea to look at message queuing, load

balancing, caching, or coroutines. If nobody on the team

suggests any of these, you’ll likely go in circles. A creative

programmer breaks those circles.

Sometimes, though, problem solving is not enough.

Sometimes, the problem hasn’t yet been found—let alone

defined. In cases like that, your typical problem-solving skills

won’t be very effective: you will need to rely on your creative

senses to see the problem.

When Charles Darwin left Plymouth on the Beagle in 1831, a

voyage that would last five years, he had no intention of

linking natural selection with the origin of species: the

problem domain didn’t even exist yet. The British Royal Navy

researchers were tasked only with charting the coastline of

South America. The exotic vegetation and animals Darwin

encountered and meticulously kept notes of planted the

seeds for his theory that would be conceived only years after

the voyage itself.

Darwin wasn’t a problem solver; he was a problem finder.

What can we as programmers learn from Darwin’s way of

thinking? We’re usually swamped with small and well-defined

(sub)problems, tasks in a swim lane that somehow have to

make it to the “done” column. But perhaps, somewhere

along the journey, enough dots are collected and later

connected to form an entirely new question. Perhaps we

discover a problem our clients didn’t even know they had. A

creative programmer is both a problem finder and a problem

solver. We will revisit Darwin’s voyage around the world in

chapter 6.

The second reason to care about the creative judgments of

others is because the opinion of your peers should matter. In

case you haven’t noticed yet, software development is a

team-based activity. Creativity is meaningless in isolation

(more about that in chapter 3) exactly because it is a social

construct. The psychological safety that emerges from

mutual respect makes everyone feel more at ease, thereby

increasing the jelling of the team. This opens up the

possibility for you to learn and grow and to help others learn

and grow as well.

Creative product vs. process

Note that, when admiring creative work, we almost always admire the

product: the end result, after the flow of ample blood, sweat, and tears. The

end result could be a clever algorithm or a newly invented design pattern.

Those would attract admiration primarily from software developers. The end

result could also be the whole application, which, ideally, your end users

also would call creative.

Instead of the end product, the process that leads up to the work can also

be creative. However, the process is mostly invisible and hence impossibly

difficult to evaluate. Creative processes might yield creative products. The

emphasis is on might here: the result could also be a train wreck. The

opposite also is true: a creative product can be the result of a conventional

process.

Inviting experts to judge the creativity of a product is called the Consensual

Assessment Technique, a popular term coined by Teresa Amabile in 1988.

Next time you’re watching America’s Got Talent, remember that it’s

adhering to sound academic methods!

A third reason to be creative is because creativity equals fun.

Many experts we interviewed mentioned the sole reason for

being a programmer is the possibility of being creative.

Creative programmers deeply enjoy their work. They love

taking a deep dive, getting out of their comfort zone,

connecting unusual ideas, discussing different approaches

with others, and being in the flow. In short, creative

programmers give in to their creative urge. They become

Umberto Eco’s homo faber.

Many creators hope to achieve immortality through their

creative work that might outlive their feeble body. The lucky

few who realize their dream of leaving a permanent mark on

the world are hailed as true geniuses. We, as programmers,

working with highly volatile technology, might be better off

taming our immortal aspirations. I bet by the time this book

is published, dozens of existing technical books on

programming can be safely moved to the “vintage”

bookshelf. And we all know what that means.

1.3 Different levels of creativity

You might have noticed I’ve casually used the word genius in

the context of creativity. Of course, it doesn’t take a genius

to be creative. Researchers tried to classify different levels of

creativity and came up with the following taxonomy:7

little-c, or everyday creativity—This is personal

creativity: doing something original you haven’t

done before, for instance, cross-compiling your

C++11 game of life implementation to the Game

Boy Advance.

Big-C, or eminent creativity—Doing something

original nobody has done before, for instance,

porting Ruby 3 to run on your 486 machine under

DOS 6.22. Hey, there’s an idea . . .

Linus Torvalds is a Big-C creator. He completely changed the

domain of operating systems (and version control).

According to some scholars, “geniuses” are responsible for

important creative products that alter the whole domain. On

the other hand, coming up with a creative solution for your

web app’s request throughput problem won’t likely shake

things up.

Of course, as with all things in this world, the taxonomy had

to be criticized. little-c is sometimes portrayed as too

mundane and bland. The greatness of Big-C might have

creators succumb to the pressure. Creativity researcher Mark

Runco completely dismisses the distinction between little

and big, proclaiming that reality is not categorical.8 Others

develop their own version in response: there are H-creativity

(historic: does the invention affect the history books?) and P-

creativity (personal creativity), and there are more hidden

layers between little-c and Big-C called mini-c and Pro-c.

Some researchers, such as Mihaly Csikszentmihalyi,

interview creative geniuses to extract practices for everyday

creators, whereas others claim this gives a distorted picture.

In short, academic creativity research is a bit of a mess. Still,

thinking about creativity in terms of different “levels,” as

clarified in figure 1.2, can be helpful.

Figure 1.2 An example of different inner circles in

which a programmer works. A piece of code deemed

creative by close colleagues might bubble up and be

lauded as creative by the team. However, another

team might have done the same: at the company

level, your fame comes to an abrupt end. Because

creativity is socioculturally dependent, switching

teams also changes the interpretation of creativity.

Being mindful of these inner circles can be very

useful. Helping the team and company be creative

means spreading the word, but starting with yourself.

1.4 A road map to becoming

more creative

This book is not about how to become a genius, which has

little to do with “creative genes”: you will soon discover,

there is no such thing. Instead, it is about the process of

problem-solving. By applying different creative methods and

insights into creativity, neatly wrapped in seven distinct but

heavily intertwined themes, it is my hope that you will be

able to become a better programmer. In case you are not a

programmer, don’t worry: you will see that many of these

methods can be easily transferred to other domains.

Andy Hunt’s Pragmatic Thinking & Learning starts with a

beautiful hand-drawn mind map that doubles as a road map.

Because his book also leans to the softer side of

programming, I’ve let myself be inspired by his drawing and

used it to brighten up a research9—which was considered

very creative and promptly accepted. The mind map, as

visible in figure 1.3 and at the beginning of this book, also

serves as a guide for this book. Each “tentacle” in the map

represents a chapter with a distinct theme related to

creativity.

Figure 1.3 The Creative Programmer mind map that

ties together all seven chapters of this book.

NOTE All illustrated figures in this book are hand drawn by

me to better fit the creativity theme.

1.4.1 The seven Creative Programmer

themes

The following adventures await us.

Technical knowledge

Anyone who produces something creative must have a firm

grasp of the state of affairs in their domain. This might sound

so obvious that it almost seems excessive to waste a whole

chapter on. A programmer can’t be a creative programmer if

they are not a programmer in the first place. Even though

learning before doing is quite self-evident, pausing and

thinking about various ways to consume information,

continuously learn, be aware of cognitive biases, and

manage knowledge still pay off.

Creative programmers understand how to convert a steady

stream of knowledge into new ideas.

Collaboration/communication

Creativity never happens in isolation: refinement of ideas is a

social process. Without any kind of feedback, it will be

impossible to upgrade your slightly original idea into an

excellent one. Your peers can act as catalysts for change. In

chapter 3, we’ll explore the concept of genius clusters, how

to build dream teams, and techniques to enhance the

creativity of teams. In a paper my colleagues and I

published,10 this theme is called communication, so we stuck

with that term, but in hindsight, collaboration might be a

more fitting name.

Creative programmers are always aware of the subtle

interplay between ideas, individuals, and teams.

Constraints

Tackling any kind of problem involves taking constraints into

account, whether they are self-imposed or external. Contrary

to popular belief, constraints actually spark creativity instead

of diminishing it. We will explore multiple cases of creative

outbursts that are the result of converting what might look

like annoying limitations into sudden advantages.

Creative programmers know how to take advantage of

imposed constraints instead of only complaining about them

in retrospect.

Critical thinking

Coming up with a lot of ideas is only half the work: the other

half, which is arguably more difficult, involves vigorous

scrapping until the best idea is left standing. Then and only

then, it might be time for action. In chapter 5, we’ll try to

engage in a symbiotic relationship between critical thinking

and our everlasting fountain of crazy ideas. We’ll discover

that creativity is not only about generating ideas but also

about decision making and execution.

Creative programmers are able to fluently switch between

sprawling ideation and critical evaluation.

Curiosity

Why did you pick up this book? Were you curious about its

contents? Are you eager to learn? Are you determined to

read this book cover to cover? If the answer is yes, we’re off

to a great start here! According to creativity researcher

Mihaly Csikszentmihalyi, curiosity and perseverance are the

two most defining personality traits for creativity.11 We’ll

regularly revisit Csikszentmihalyi’s excellent work on this

subject in the coming chapters.

Curiosity leads to an implicit motivation to learn new things

(technical knowledge). Curiosity leads to asking “why”

questions (critical thinking). We’ll discuss why having a

sense of wonder is advantageous, not only for the absent-

minded professor but also for the creative programmer.

Creative state of mind

We all know that frequent interruptions are detrimental to

the programming flow. Getting into the right state of mind

will greatly improve your creative work. We’ll inspect how

flow and insight work, what insight priming can bring to the

table, and how to increase those ever-so-important but fickle

“aha” moments.

Working on your individual state of mind is one thing.

Enhancing the collective state of mind of your team or

company is another—and both are equally important to a

creative programmer.

Creative techniques

Last, we will discuss several practical, creative techniques

that can positively affect the concepts explained in all of the

preceding chapters. Just like creativity’s systemic definition,

these techniques are intertwined with all dimensions of

creative problem solving. They do not necessarily fit neatly

into one distinct theme. We’ll take a critical look at classic

brainstorming sessions and more unconventional techniques,

such as giving your ideas some legs.

1.4.2 The Creative Programming

Problem Solving Test

What if you wanted to follow along in this book and gauge

your growing creative programming potential related to a

specific assignment or project? A lot of creativity assessment

tools exist that measure specific bits and pieces, as we’ll

soon discover in the coming chapters. Some determine your

divergent thinking skills, and others are mostly focused on

evaluating the end product. Unfortunately, none of the

existing tools are composed from within the computing

domain and apply a systems view.

To do exactly that, my colleagues and I have designed a self-

assessment survey for creative problem-solving based on

the seven themes discussed in this book.12 The survey has

been validated for first- and last-year software engineering

students and was verified by several industry experts. It is

by no means a catchall solution to measure creativity, but

it’s the closest thing we have nowadays for programmers to

identify the level of engagement for each of the seven

themes.

The questions will make more sense as soon as you’ve

finished reading each particular chapter. Some questions will

leave you wondering whether or not they neatly fit into a

single theme. Don’t worry; many don’t: as we’ll soon

discover, creativity doesn’t easily let itself be pushed into a

single category.

Perhaps it’s a good idea to fill in the questionnaire now,

before moving on to the first chapter, to get a general idea

of your current state as a creative programmer. Remember,

it’s a self-assessment test, so try to be honest—lying will

only trick you into thinking there’s little room for

improvement! When filling in the test, try to relate the

questions to a recent specific assignment. The answers will

likely vary from project to project.

Each question should yield a number: 1 (completely

disagree), 2 (disagree), 3 (neither agree nor disagree), 4

(agree), or 5 (completely agree). Feel free to take out a

pencil and insert “X”s in the rubric where appropriate.

Table 1.1 The full set of 56 questions from the

Creative Programming Problem Solving Test rubric

1. Technical knowledge 1 2 3 4 5

I have gained a lot of knowledge during

the project.

I learned and applied new practical

programming techniques.

I have gained insight into the problem

domain.

The technical aspect of programming

appealed to me.

I thought about my learning process and

how to improve it.

I felt comfortable with this project

because many aspects were unknown.

I tried to relate the new knowledge to

something I know.

Thanks to the project I also gained

knowledge of other things outside of

coding.

2. Communication 1 2 3 4 5

I regularly asked for feedback from my

fellow colleagues.

I visualized the problem on a whiteboard

or on paper.

I regularly asked feedback from my

clients and/or end users.

I helped my teammates with their own

tasks.

My own tasks were completed on time so

that teammates did not run into deadline

troubles.

I supported the ideas and efforts of my

teammates.

I was so proud of our result that I showed

it to everyone.

I thoroughly thought through suggestions

made by others.

3. Constraints 1 2 3 4 5

I regularly thought about the correctness

of my solution.

I did not perform less well due to time

pressure.

I tried to make my code as elegant as

possible.

I tried to identify the constraints of the

assignment.

I had the program tested by friends

and/or family (if possible).

I could make good decisions even though

there was a lot of creative freedom.

Coding on short notice accelerated my

learning process.

I regularly tested the program myself

and paid attention to its ease of use.

4. Critical thinking 1 2 3 4 5

In discussions about problems, I often

suggested alternatives.

I regularly carefully weighed up the

various options we had.

I dared to completely rewrite my code

when it didn’t go well.

I used multiple sources to find out

information myself.

I think it was important to ask

teammates how they implemented

something.

I always check the credibility of the

source when I look something up.

It was important that I 100% understood

why something works the way it did.

Looking at other projects made me

reflect on my own.

5. Curiosity 1 2 3 4 5

During the project, I got very much out

of my comfort zone.

Many parts of the project piqued my

curiosity.

I enjoyed getting involved in many

aspects of the project.

I enjoyed really immersing myself in

some aspects.

I was stimulated by the complexity of the

project.

I felt the urge to implement extras.

I had a lot of fun while developing the

project.

I didn’t have to commit and push myself

to finish the project.

6. Creative state of mind 1 2 3 4 5

I remained focused for a long time on

one part of the project.

I used productivity tools to focus more on

the essence of the problem.

I found the experience to be very

rewarding.

Time seemed to fly while working.

I found that I knew enough to meet the

high demands of the project.

Programming went almost automatically.

I knew exactly what I wanted to achieve.

I was not concerned with what outsiders

thought of my code.

7. Creative techniques 1 2 3 4 5

I used many different methods to solve a

single problem.

I employed knowledge from another

domain to solve something.

I combined different ideas to tackle a

problem.

I deliberately took occasional breaks to

let things sink in.

I brainstormed with others to come up

with new ideas.

I took a step back now and then to see

things as a whole.

In case of problems I let myself be

inspired by other projects.

I never felt completely stuck.

If you calculate an average for each theme, you can sketch

out the results in the form of a spider diagram, such as the

one in figure 1.4. In contrast with other assessment tools

we’ll encounter in later chapters, it is impossible to further

reduce the outcome to a single digit. That would completely

negate contextual links of creative problem solving that we

have so carefully tried to preserve.

Figure 1.4 A spider graph of a possible Creative

Programming Problem Solving Test (CPPST) result. If

you’re too lazy to draw something like this, try out

the online survey at https://brainbaking.com/cppst/.

Filling in the questionnaire can yield interesting and different

results depending on the project you’re working on: it’s

purposely very much context bound. Perhaps you’re bored

https://brainbaking.com/cppst/

with one project, resulting in a low curiosity score. Or you’re

going all out at a technical level with another project,

resulting in a high technical knowledge score. Again, don’t

worry too much about that score—the CPPST tool primarily

serves as a way to gain some insight in your current personal

creative process. As you work your way through the book,

consider going back to the questions now and then to see

whether you’re improving in practice.

1.5 The structure of the

following chapters

Each chapter after this one starts with a background story to

set the scene and provide examples of creative thinking

inside and outside the world of technology. You might also

notice my tendency to use video game references as

contextual assistants, next to conventional examples. This

isn’t just because I happen to like games. Dozens of studies

—including those of my colleagues and I—have proven that

visual examples better capture interest, and game use

triggers playful learning. Because this is a book about

creative programming, it would be a shame not to dig up

stories about game development. After all, aren’t they also

considered pieces of art?

Chapters are also generously sprinkled with exercises

marked with a distinct border. This isn’t a technical

programming book, so the exercises aren’t as hands-on as

you might be used to. However, they are still valuable as

thinking exercises and can serve well as subjects of

retrospectives. Of course, I can’t force you to suddenly be

creative—all I can do is point in the right direction.

Converting those pointers into action is up to you.

Sometimes, as an aside, I’ll digress from the topic to provide

additional amusing and insightful background stories. You

will recognize these off-topic sections as gray blocks in

between the regular text. If you’re in a hurry, they can be

skipped, although you’ll likely miss out on creative triggers if

you decide to do so.

Each chapter ends with a checklist that summarizes the new

concepts covered in that particular chapter. These can serve

as a reminder, but please take their context into account:

just scanning the summaries isn’t going to get you closer to

creative coding mastery; neither do they serve as a

complete overview of best practices.

You are now ready for your creative adventure. Let’s dive in.

1.
Umberto Eco. The open work (Anna Cancogni, trans.). Cambridge: Harvard

University Press, 1989.

2.
Andy Hunt. Pragmatic thinking & learning: Refactor your Wetware. Pragmatic

Bookshelf, 2008.

3.
James C Kaufman and Robert J Sternberg. Creativity. Change: The Magazine of

Higher Learning, 2007.

4.
Vlad Petre Glăveanu, Michael Hanchett Hanson, John Baer, et al. Advancing

creativity theory and research: A socio-cultural manifesto. The Journal of

Creative Behavior, 2020.

5.
Judy L. Wynekoop and Diane B Walz. Investigating traits of top performing

software developers. Information Technology & People, 2000.

6.
Wouter Groeneveld, Hans Jacobs, Joost Vennekens, and Kris Aerts. Non-

cognitive abilities of exceptional software engineers: A Delphi study.

Proceedings of the 51st ACM Technical Symposium on Computer Science

Education, 2020.

7.
Peter Merrotsy. A note on big-C creativity and little-C creativity. Creativity

Research Journal, 2013.

8.
Mark A Runco. “Big C, little c” creativity as a false dichotomy: Reality is not

categorical. Creativity Research Journal, 2014.

9.
Wouter Groeneveld, Laurens Luyten, Joost Vennekens, and Kris Aerts. Exploring

the role of creativity in software engineering. 2021 IEEE/ACM 43rd International

Conference on Software Engineering: Software Engineering in Society.

10.
Wouter Groeneveld, Hans Jacobs, Joost Vennekens, and Kris Aerts. Non-

cognitive abilities of exceptional software engineers: A Delphi study.

Proceedings of the 51st ACM Technical Symposium on Computer Science

Education, 2020.

11.
Mihaly Csikszentmihalyi. Creativity: Flow and the psychology of discovery and

invention. Harper Perennial, reprint edition, 2013.

12.
Wouter Groeneveld, Lynn Van den Broeck, Joost Vennekens, and Kris Aerts.

Self-assessing creative problem solving for aspiring software developers: A pilot

study. Proceedings of the 2022 ACM Conference on Innovations and Technology

in Computer Science Education, 2022.

2 Technical knowledge

This chapter covers

How to gather, internalize, and act on knowledge

The Zettelkasten knowledge management technique

A workflow for keeping smart notes

A lonely crow disturbs the otherwise peaceful silence of an

ancient Corsican night. A Spanish-born Roman citizen passes

the evening with his two best friends: pen and ink. After

being exiled from Rome by the dictator Claudius, Seneca the

Younger spent eight highly productive years on the island of

Corsica, publishing various consolations on anger and death.

Writing, as Seneca proclaimed, is how one should exercise

oneself. Not a single night would pass without him writing in

his journal. As he explained to a friend, “I scan the whole of

my day and retrace all my deeds and words. I conceal

nothing from myself, I omit nothing. For why should I shrink

from any of my mistakes, when I may commune thus with

myself?” The sleep that would follow his self-examination felt

particularly satisfying.

Seneca’s daily note-taking habits gained traction during his

extended stay in Alexandria. His struggle with tuberculosis

forced him to take an extended leave from Rome. For almost

10 years, in convalescence, he did what any Stoic

philosopher would do: study and write, building both mental

and physical strength. Seneca looked into combining

Stoicism with Pythagoreanism. He read and debated the

works of Epicurus, who ended up being the most cited writer

in Seneca’s works. Seneca said we should read like spies in

the enemy’s camp, always looking to learn from our

intellectual and philosophical opponents. Sadly, all works

from Seneca’s Alexandrian period are lost. According to

recent estimations, about half of his tragedies and

philosophical essays are gone.

Seneca’s journaling served three main purposes: (1) self-

examination, (2) gaining and connecting knowledge, and (3)

retaining knowledge. He would argue that to lead by

example, you first have to analyze your own actions—and

those of others. Unlike other journalers of that time, Seneca

wrote with the intention to publish. He wanted his writings to

be discovered and read, to influence others and conserve

ideas.

Nineteen centuries later, a German academic rummages

through paperwork in a set of small drawers of a heavy

apothecary cabinet. He holds a small piece of paper in his

hand, speedily scanning the contents of certain drawers,

until a mumbled “aha!” announces his arrival at the right

drawer. The paper disappears into the cabinet, and the

academic sinks back into his office chair, returning his

attention to that huge stack of papers in dire need of grading

(figure 2.1).

Figure 2.1 Niklas Luhmann in his home office,

consulting his notes. Photo © Michael Wiegert-

Wegener / University Archives Bielefeld.

That person is Niklas Luhmann, one of the most productive

and renowned social scientists of the 20th century. During

his academic career, he published 50 books and more than

600 articles. When asked how he managed such a feat, his

answer was humble: he said his productivity stems from a

“conversation” with his notes. His famous systems theory—

an integrated take on communication, societal, and evolution

theory—was the product of conversations with his

Zettelkasten (“slip box”).

Thanks to his ingenious knowledge storage and generation

system, Luhmann managed to connect seemingly unrelated

domains and produce novel insights. These new insights

would in turn be stored in the Zettelkasten, steadily growing

his external body of knowledge. Although Luhmann wasn’t

the first to use an interlinked index card system to organize

intellectual work—16th-century polymath Conrad Gessner

had already mentioned writing down ideas on slips of paper

to arrange into larger clusters—his (now fully digitized)

Zettelkasten archive provided more insight into the prolific

brilliance of it, inspiring many contemporary note takers and

digital note-taking apps.

Another century passed. In 2010, Russian software engineer

Andrey Breslav and the JetBrains R&D team discussed

development and production problems in large-scale back-

end codebases. Whiteboard sketches would later become the

groundwork for a new programming language known as

Kotlin; however, Breslav and his language design team had

little intention of creating yet another shiny new toy for

fashion-conscious developers to play around with. Kotlin was

designed to be “pragmatic, concise, safe, and

interoperable,” according to the Kotlin website.

Those four cornerstones caused the team to thoroughly

inspect existing programming languages and steal ideas that

work but, more importantly, leave out the fancy fluff. As

Breslav said in his GeekOUT 2018 talk “Languages Kotlin

Learned From,”1 being wary of using existing ideas is

counterproductive. Instead, they turned toward Java (classes,

autoboxing, runtime safety guarantees, etc.), Scala (primary

constructors, the val keyword, etc.), C# (some ideas of

get/set properties and extensions, internal visibility, easy

string interpolation, etc.), and Groovy (the it shorthand,

passing lambdas without parentheses, etc.), and

implemented what worked. “Thanks a lot, authors of Groovy;

it’s been a pleasure borrowing features from you,” concluded

Breslav.

Their design philosophy clearly paid off. Next to Java, Kotlin

is now the most popular language on the Java Virtual

Machine (18%, according to Snyk’s 2020 JVM Ecosystem

report2), and yearly Stack Overflow Insights3 report a steady

increase in overall popularity, surpassing Ruby and closely

following Go.

2.1 No input, no creative output

What is the greatest common divisor of Seneca’s

knowledgeable and still-popular Stoic writings, Niklas

Luhmann’s Zettelkasten apothecary cabinet that is fed index

cards, and the birth of the Kotlin programming language? All

three examples showcase that creativity begets creativity.

Every intention is based on a previous one. Seneca closely

followed rival schools and internalized that knowledge to

produce something new. Luhmann conversed with his notes,

which told him to connect information he otherwise would

have forgotten. Breslav first turned to other programming

languages, inspecting what worked there, to avoid creating

something original but ultimately unsuitable.

All creative work starts with input. If there is no input, there

can be no output. In an effort to better understand the role

of creativity in software engineering, my colleagues and I

asked many developers to identify the requirements for

creativity.4 Technical knowledge was consistently mentioned

first. I’m sure this won’t come as a big surprise—that’s the

reason this is the first major Creative Programmer theme.

Creativity can be approached from different perspectives,

such as inspirationalist (free association, playfulness, lateral

thinking, etc.), situationalist (depending on social context,

embedded in the community), and structuralist (studying

and analyzing techniques and methods). Let’s get the

structuralist approach to creativity out of the way before

moving on to the situationalist approach in chapter 3 and the

inspirationalist in chapters 4, 5, and 6.

A musician with little knowledge of instruments, existing play

styles, and perhaps various vocal techniques cannot be

expected to deliver a truly creative record. A painter can’t

produce creative work without extensive knowledge of

drawing techniques. Although we might get fooled by the

simplicity contemporary art pieces seem to embody, art

usually requires technical knowledge and years of

experience to deconstruct colors and compositions to their

essence. Of course, there are always exceptions to the rule.

The same is true for us programmers: we can’t be creative

with Java code without extensive knowledge of the Java

Virtual Machine (JVM) and its ecosystem. In his GeekOUT

talk, Breslav admitted to having overlooked Swift as a

potential influence. At that time, it was also very new, and

nobody on the team knew about it. Without Groovy’s

influence, the keywords with and it would not exist in the

Kotlin world.5

But what exactly is extensive knowledge? What is the best

way to gain, retain, and create new knowledge? And when it

comes to creativity, are we really only talking about

technical knowledge here? Welcome to the wonderful world

of cognitive psychology.

Many forward-thinking technology firms take continuous

learning seriously. They offer learning days, hackathons,

innumerable books and courses to plow through, and even

Google-inspired “20% time,” where one day a week you can

toy with a pet project that ideally grows into Gmail-like

greatness. (Google gradually dialed back on this creative

free time. We’ll get back to this in chapter 8.) Whether it’s

called continuous learning, lifelong learning, or self-

improvement, the premise remains the same: we’re here to

learn.

One of our interviewees managed to beautifully set the

scene for this chapter by stating the following:

The bottom line is that creativity is the brew of different inputs—and

usually, I actively look up those inputs . . . , or something forms in my mind

by structuring those inputs, or when I ask for feedback to take into account;

that’s something I often do.

But where does that input come from? Some developers

might answer with their preferred tech news site (e.g.,

dzone.com, slashdot.org, lobste.rs) or the blog of their

favorite coding idol. These would all be valid yet very

https://dzone.com/
https://slashdot.org/
https://lobste.rs/

narrow-minded sources of information. Let us start by

considering the big picture.

2.2 Gathering knowledge

Curiosity will inevitably lead to the accumulation of new

knowledge—we’ll learn more about that in chapter 6. Before

continuing, I’d like you to think about the way you typically

gather information.

EXERCISE What are your regular sources of new input?

When was the last time you actively pondered the contents

of those sources instead of zipping through them? When was

the last time you took notes? Finally, when was the last time

you effectively used something you’ve picked up from those

sources?

I hope you didn’t struggle to remember the last time you

applied something from those sources. If so, it might be

worth reconsidering what goes in. As they say, garbage in,

garbage out. I wouldn’t put it that bluntly, but if you stick to

scrolling through Facebook—which can be a valuable source

of input—you won’t make much progress in helping to solve

that programming problem your team is having difficulties

with.

The knowledge-gathering problem is much more severe

today than it was in the nineties. The days of a simple

bookmark in Netscape Navigator, the only door to the

internet, are long gone. How should we keep track of the

stuff we’re interested in?

2.2.1 Diversify what goes in

Diversifying means two things. First, don’t put all your eggs

in one basket. As a Java developer, read about threading

models on the JVM as well as on Goroutines in Go and

concurrent actors implemented in Ruby. Having an idea of

how concurrency works in other languages will allow you to

better reflect on what works and what doesn’t in the

language you’re currently working with. If you love the ease

of use of Goroutines but you’re stuck with the JVM, you might

come up with a few cleverly written wrappers to take away

the rough edges.

As a developer, read books on compilers and programming

languages as well as on philosophy and psychology. It is only

natural to go deep into the technical side of things: after all,

that is probably one of the reasons why you’re a programmer

in the first place. However, do not neglect other domains! I

felt the need to add an exclamation mark here because

investing in a variety of technical topics seems to be

universally accepted, while the nontechnical topics are left

Alone in the Dark. Creative programmers excel at making

connections across domains, not merely within their comfy

programming domain. Learning about psychology will help

you better understand the various moral implications of

technology. Learning about history is a great way to situate

and help evaluate the rapidly evolving technologies. Many

workplaces increasingly expect programmers to be experts

in one or two topics. That view is very narrow minded and

anything but creative. We’ll delve into the specialist versus

generalist debate in detail in chapter 6.

Second, diversify in the medium. Pick up a book or two. (I’ll

admit that writing “Read more books!” in a book is not the

best way to convey the message. If this all sounds a bit too

obvious, it’s probably because it is.) Attend a conference or a

class. Subscribe to a newsletter. Become a regular blog

reader—or, even better, a writer. Talk to others about the

things that puzzle you. Ask for feedback. Join a reading

group. And so forth.

Domain general vs. domain specific

Is creativity domain general or domain specific? This is another question

that academics like to answer with knives out.
6
 On the one hand, you’ll

need to invest a good amount of time and effort to get to know Ruby before

being able to express yourself fluently in that language: perhaps the

magical 10,000 hours, as suggested by famous Canadian journalist and

author Malcolm Gladwell in his book Outliers? The Dreyfus model of skill

acquisition also claims that you’ll likely need 10 years of deliberate practice

to fully master something. According to the model, to change a domain, one

must first fully master it. The question is whether the domain is Ruby

programming or programming in general.

On the other hand, many creative techniques explained in this book can be

seen as domain general. A curious attitude, smart management of

knowledge, the incubation of ideas: they can all be transferred from the

programming world to the garden landscaping world. Furthermore, some

domain-specific knowledge from one domain is even advantageous in

another, given that cross-pollination is what really gets creativity going. The

Dreyfus model seems to omit this. The conclusion? It does not matter.

Creativity is domain specific and domain general!

2.2.2 Moderate what goes in

My wife loves reading books but regularly panics after yet

another buying spree. She’ll state something like, “So many

books to read, yet so little time!” And she’s right. In a good

year, my Goodreads account tells me I manage to squeeze in

24 books. At the time of this writing, I’m at 36. Let’s say I

can keep up this trend until, at age 80, my eyes are about to

pop. That’s still 44 great years and thus 1,056 books ahead

of me. The average bookstore probably sells about five times

that many books every year. As a writer, it almost seems

futile to publish yet another book that takes up one of those

precious slots.

Moderating your knowledge calorie intake like a dieter

counting food calories is the only solution. You will have to

decide for yourself—or let others guide you on—what is

worth reading and what can be safely ignored. This analogy

extends to the web, where we probably spend way too much

time poking around. Instead of wasting your time and

eyesight on ads, redundant news items, and predictions of

possible pregnancies of the royal family, it might be a better

idea to rely on something as simple as an RSS reader, which

gives you full control over the information stream.

Although feed aggregators like RSS readers can be combined

with read-it-later bookmark systems, the danger of

information overload reemerges when carelessly subscribing

to and saving everything you come across. Treating these

systems like yet another inbox to Get Things Done,7 as time

management guru David Allen taught us, might do the trick.

Just remember that sorting through items to decide what is

still relevant and what is not will come at the cost of extra

cognitive load—or, in programmer’s terms, extra RAM and

CPU usage.

Does too much knowledge impede

creativity?

An omniscient programmer is not necessarily a creative programmer.

Sometimes, what we do know blinds us and effectively reduces our

openness to potentially creative ideas. We’re quick to reject silly proposals

because we “simply know” it’s not possible: “Trust me, I’m an expert on

this; this ain’t gonna work.” Perhaps if we naively tried anyway, it would

work out.

Researchers call this knowledge priming. A brainstorming experiment

showed that participants primed with knowledge produced more ideas but,

compared with an unprimed control group, the ideas were less original.
8

In chapter 4, we’ll explore the effect of naivety on constraints, while chapter

5 introduces critical thinking as a tool to evaluate what we (don’t) know.

2.3 Internalizing knowledge

Great, so you’ve inhaled a bunch of new and exciting things.

Now what? The next step is to internalize that knowledge by

translating it to your own personal context.

Do you remember painstakingly hand-writing summaries of

physics and math during high school? You might have hated

it then, but it is one of the more effective ways to internalize

knowledge. First, writing information by hand increases the

chance that it will be stored in long-term memory. Pam

Mueller and Daniel Oppenheimer published a study with the

catchy slogan The pen is mightier than the keyboard, in

which they suggested that laptop note-taking is less

effective than longhand note-taking for learning.9 Second,

the same study suggested that reframing information might

be key:

We show that whereas taking more notes can be beneficial, laptop note

takers’ tendency to transcribe lectures verbatim rather than processing

information and reframing it in their own words is detrimental to learning.

Medieval monks copied manuscripts with pen and ink. Did

they learn better because of it? Perhaps: some studies have

indicated that copying notes and texts with a pen might

enhance learning because the slower pace of hand-writing

compared with typing on a keyboard increases focus; also,

the tactile feedback involved in any form of hand-writing

activates multiple areas of the brain simultaneously, notably,

the same areas as working memory.10

Still, the most important part of internalizing knowledge is

reframing information so you can transfer it from the source

context to your own, which can of course also be achieved

by typing on a laptop. Mueller and Oppenheimer’s subjects

were students in academia: during lectures, it is often faster

to literally copy what is being said. Internalizing (one hopes)

happens afterward, when rummaging through the notes.

I’ve had colleagues who use a wiki system—a web-based,

interlinked set of pages that acts as their knowledge base—

for this. Some have published wikis on the internet for other

team members to access or even modify. Snippets of

intricate regular expressions, Bash scripts, command-line-

based search commands to quickly go through the

production log, code patterns used in previous projects, you

name it: it was all there. At one point, my colleagues and I

banded together and created a shared team-based wiki

knowledge base.

Shared knowledge bases have become rather common in

software engineering. However, I’m sad to see a decline in

what could be considered a knowledge base. Slack and

Discord are excellent in facilitating fleeting communication,

not in building a permanent shared knowledge base. These

tools do not replace forums or wikis, where information is

permanent and searchable!

Your team does have a way to share knowledge, right? No,

email does not suffice. If not, stop reading, remove all Post-

Its™ from the scrum board, and put “sharing knowledge” on

it as a call to arms!

Rather technical code snippets or tutorials on how to create

a new service inside the existing system arguably don’t need

a lot of reframing. Some wiki maintainers don’t stop there

and add personal notes on books they’ve read, mechanics of

noncoding hobbies, recipes and cooking techniques, and so

on.

Wikis are far from the only way to gather and internalize

knowledge. The following is a subset of the digital

possibilities:

Some kind of simple fat-file structure to keep track

of notes

A plethora of note-taking apps, such as Microsoft

OneNote, DEVONthink, and Evernote, that include

features like OCR searching, scanning documents,

and cloud saves

Note-taking apps such as Obsidian and Zettlr that

emphasize hyperlinking

Mind map software or sketching systems

Static site generators powered by Markdown files

Avoiding vendor lock-in

As you choose a digital tool to support your note-taking habits, be mindful

of the data format it uses. Your external knowledge base will always outlive

the software used to create it, so export capabilities into human-readable

formats are important.

Be prepared to write custom scripts to convert your database if needed—

which was what I had to do when switching from Evernote to DEVONthink,

because Evernote unfortunately uses a proprietary XML-like format instead

of simple text-based files.

Similarly, think about where you want your notes to be stored. For example,

Evernote uses a cloud-based solution on top of the Google Cloud Platform.

That means it’s easy to sync between your laptop and smartphone, but it

also means your notes are not your notes. I know several former Evernote

users who effectively lost crucial notes because of “server inconsistencies.”

Whoops.

2.3.1 Knowledge management

Leadership expert and public speaker John C. Maxwell was

right when he wrote in his million-copy-selling book

Developing the Leader Within You, “You gotta have a

system.”11 This system is not just to develop the leader

within you but also to keep track of knowledge and generate

new ideas: a consistent system to collect and process

information in, also known as (personal) knowledge

management.

The idea of knowledge management is far from new, as are

the tools used to do so. Cicero wrote letters to his friends on

all things politics and philosophy to both organize his own

thoughts and humor others. Leonardo da Vinci meticulously

categorized his thoughts and ideas in multiple volumes of

notebooks, accompanied by equally detailed sketches. He

used mirror writing to keep out prying eyes—or simply to

avoid making ink stains because he was left-handed. Marcus

Aurelius kept notes. Charles Darwin kept notes. Michel de

Montaigne kept notes. Arthur Conan Doyle kept notes.

Computer pioneer Alan Turing kept notes. Eric Evans, the

software expert who coined the term Domain-Driven Design,

has notebooks full of scribbles.12 Can you spot the pattern?

Somehow, in the past few millennia, journaling lost its

appeal. Of course, until the invention of typewriters and

computers, taking notes with pen and paper was the only

possible way of storing knowledge. Still, the great minority of

people I know keep track of their own thoughts—whether on

paper or digitally. Yet, when creativity researcher Mihaly

Csikszentmihalyi interviewed creative geniuses, all indicated

that analog note-taking acted as the catalyst for their

creative success.13

In 1685, English philosopher John Locke wrote an essay on

how to make what he called commonplace books: works that

contain quotes, ideas, and parts of speeches to ponder on.

The idea was to keep a scrapbook of sayings, idioms,

maxims, poems, letters, and recipes that, from time to time,

one could flip through, reread, and gain new insights. After

copying a quote from another author, personal remarks were

added: the knowledge was internalized. During the 16th and

17th centuries, commonplace books were the most popular

way to record knowledge (figure 2.2).

Figure 2.2 The commonplace book of British voyager

and entrepreneur Henry Tiffin (1760). These pages

were used to contemplate sailing methods. If you, like

me, love peeking into both ancient and modern

notebooks, Great Diaries: The World’s Most

Remarkable Diaries, Journals, Notebooks, and Letters,

published by DK, makes for a beautiful addition to the

bookshelf. Photo courtesy of the Phillips Library,

Peabody Essex Museum.

Locke’s idea was far from new. During Aristotle’s rhetoric

lessons in his Lyceum, commonplace was used to refer to

wise sayings of well-known historians, poets, philosophers,

and politicians. Later, Seneca hinted at collecting

commonplace quotes to learn from and “turn the words into

your own.”

Nowadays, keeping a journal—or even using a pen—is

regarded as excessively old-fashioned, especially among us

technology geeks. Whether it’s an analog journal or a digital

wiki, you gotta have a system. For me, analog writing tops

digital keypads any day. I can easily add drawings, use

different pens and colors, stick a newspaper clipping or a

photo in there, draw arrows, write upside down, squish

blueberries and dry tea leaves in there (works wonders!),

and so on.

Most of my ideas come to me at unexpected moments—

moments when I’m not usually in front of my computer

screen. I’m not great at handling an Android keyboard, and

the battery of my smartphone is likely to be dead anyway.

The simplest solution is to keep a notebook (figure 2.3) or a

stack of Post-Its™ in the car and on the bedside table.

Figure 2.3 A gloriously messy excerpt from one of my

notebooks. It contains quotes I picked up while

reading or listening to podcasts (left), and my own

synthesis of Sönke Ahrens’ How To Take Smart Notes,

intertwined with links to other pages and concepts

I’m working on.

The biggest drawback of digital note-taking is exactly the

fact that it’s digital: you’ll have to stick to ASCII or use

awkward drawing software that doesn’t have the proper

export capabilities. I’ve seen others use their iPad to great

success. Do whatever works for you, but remember: you

gotta have a system. Try not to get hung up on the setup of

the system itself: use the Pragmatic Programmer’s KISS—

Keep It Simple, Stupid—solution here!

EXERCISE Next time you enter the office, take a look

around. Which desk contains a notepad with scribblings?

(Doodles do not count, sorry.) Next time you’re in a meeting,

who whips out a notebook? Try to find out if these people are

copying items verbatim or internalizing what is being

discussed. Can you guess whether the notebooks are strictly

used during working hours? These questions might be a

good conversation starter!

Diaries vs. journals vs. notebooks

What’s the difference between a journal and a notebook? And where should

you write “Dear diary, today I’ve read The Creative Programmer, and it

sucks?”

Ancient intellectuals did not make that distinction, so why should you? I

keep just one notebook with me at all times to simply record anything that

comes to mind, including private tales of dreaded family dinners. It has

served me exceptionally well so far—a strict separation of concerns would

not have enabled the making of novel connections across domains.

The point here is to let go of the idea that programming thoughts should be

written in a programming notebook and that cooking experiments belong in

a booklet reserved for kitchen adventures. Diaries that are merely used to

record mundane day-to-day activities might not spark many ideas. The

opposite is also true. Notebooks that are merely used to summarize how

lexical parsing during compiling works might never touch on lexical parsing

of natural languages.

2.4 Acting on knowledge

After deciding how to consume new information and buying a

notebook, or experimenting with a digital note-taking system

to put that information into context, you are ready for the

third and most important part: actually doing something with

that ever-growing pile of knowledge. The sole purpose of

collecting and translating information is to produce both

novel and actionable insights. Novelty is the product of the

unusual combination of knowledge, whereas action

transforms that into a tangible outcome, such as piece of

code or a publication. Don’t fall for what avid note takers call

The Collector’s Fallacy: hoarding loads of seemingly

interesting pieces without ever looking at them again.

Especially in our line of work as programmers, technical

knowledge becomes obsolete pretty fast. Better do

something useful with it, then!

Creative Programmers combine previous knowledge and

experiences in new ways to solve the current problem

they’re facing. Therefore, they’ll need a way to keep track of

what worked and what didn’t. Don’t be fooled into thinking

your memory will suffice, because it won’t. Do you

remember the contents of most of the books you’ve read in

the past year? Do you remember why some sections

appealed to you back then? That context is likely to be

completely gone, unless you’ve taken notes, although even

that won’t suffice: I sometimes forget where I noted what.

That’s an indication that your system is not working

properly! My solution was to make notes searchable by

digitizing them.

Countless studies on knowledge retention all end on the

same note (pun intended): if you don’t want to forget, jot

stuff down. Discovering links between supposedly unrelated

bits and pieces is the real reason why the overhead of

gathering and internalizing is worth it. Edward O. Wilson

invented the concept of sociobiology. When he was

interviewed about his creative process, his response was

simple: his ideas come from synthesizing extensive notes

from both social and biological sciences.

Niklas Luhmann attributed his productivity to conversations

with his notes. Without extensive note-taking and acting on

those notes, this book would have taken form as a vague—

and, above all, fleeting—idea.

You may be wondering what this has to do with

programming. Not everyone is looking to invent a new

scientific field or publish hundreds of articles. Interviews with

developers, and my own experience, indicate that there is

little difference between publishing text and publishing code.

Both require knowledge, fluency, and a good idea. Both

dictate thinking, contemplation, and rumination. Both will be

read by others.

2.4.1 From notebook to memex to

genex

Preserving knowledge has been done since ancient times

with the help of codexes, manuscripts, or commonplace

books. Vannevar Bush’s thought experiment of a “memory

expander” took the concept of a codex one step further. In

1945, he explained in his article “As We May Think” how he

sees the future:14

A memex is a device in which an individual stores all his books, records,

and communications, and which is mechanized so that it may be consulted

with exceeding speed and flexibility. It is an enlarged intimate supplement

to his memory.

This memory expansion pack—I wonder whether it’s DDR

(otherwise, I’ll need to upgrade my now-old motherboard)—

would be used not only to store knowledge but also to

facilitate idea generation, by semiautomatically bringing

related ideas together to promote insights and, thus,

creativity. Data could be stored in the form of associative

links, not unlike hyperlinks on the web, which was heavily

inspired by Bush’s experiment.

“As We May Think” might not have turned into reality just

yet, but we’re getting quite close. Personal interconnected

thought databases took on the form of blogging in the early

2000s, perfectly mimicking what the memex machine was

supposed to do. Self-improver John Naughton even called his

blog Memex 1.1,15 and blogger and author Cory Doctorow

named his Outboard Brain.16 Articles published on these

weblogs are all littered with links to related internal and

external blog posts.

Hyperlinking in blogging is still a task reserved for the writer.

Technology can help us in discovering these links. Digital

tools such as Obsidian and Zettlr make it easy to create a

personal memex. A repository of notes, called a vault,

contains Markdown files that can link to other files using the

special [[link]] syntax. Obsidian also detects unlinked but

related notes by scanning the content for words that might

appear as an explicit link somewhere else. These are the

most interesting links because they are probably the ones

you didn’t think of.

Another novel feature of Obsidian is its use of backlinks:

instead of reading a note and seeing where it links to,

Obsidian gathers links from other notes pointing to the

current one. For instance, I might consult a note named

“creativity,” as shown in figure 2.4. The “linked mentions”

pane shows I’ve also written about creativity in notes

“diffuse thinking” and “Big Five personalities.” Exploring

backlinks might lead me to new insights.

Figure 2.4 Obsidian’s graph view, which looks like a

big constellation map. The view should facilitate

visual discovery of related themes and notes,

although large vaults end up displaying a big mess.

The highlighted note “Creativity” (Creativiteit) links

to my other notes related to the topic.

NOTE In case you prefer wikis or blogs, countless plugins

exist for displaying backlinks on your HTML-powered memex.

Ben Shneiderman took the memex concept another step

further by introducing the term genex, generators of

excellence:17

A genex would be an integrated family of direct manipulation tools that

supports users in creating innovations in art, science, engineering, etc. A

genex would help users initiate hopes, fabricate plans, and implement

dreams in a highly social framework. It would facilitate dialog with peers

and mentors, and then dissemination to potential beneficiaries.

Shneiderman envisioned memexes as going beyond a digital

interconnected library: they should become tools to support

creativity. Genex is memex 2.0.

2.4.2 From note to action

Note-taking is one thing; actually doing something with

notes is another. Ideally, your workflow incorporates

moments of reflection where you go through all the relevant

notes again. Just stowing notes in a system is useless if you

don’t reread and rework them. Even if you merely use notes

to manage TODO items, not a lot of boxes will get ticked

without regularly going over them.

David Allen’s popular Getting Things Done system works like

that. He wrote about wearing two hats: thinking (taking

notes) and doing (box-ticking).18 Programmers will feel right

at home because we’re used to switching back and forth

from refactoring to writing hats.

I particularly like Allen’s “Mind Like Water” attitude, inspired

by Buddhist sayings. While doing, your mind should not be

troubled with other chores that need to be done. Instead,

take note and forget. Of course, failing to revisit notes still

causes chores to pile up.

Let’s investigate how Niklas Luhmann managed to publish so

many books on a wide variety of topics. According to him,

the biggest indicator of his success was a peculiar note-

taking system he called a Zettelkasten, or a “slip box” in

English. A Zettel is an index card or a note that Luhmann

stored in a big drawer—the Kasten (figure 2.5).

Figure 2.5 A portion of Niklas Luhmann’s note-taking

system: a big filing cabinet filled to the brim with

handwritten index cards. Photo courtesy of Bielefeld

University.

To quickly find related notes, Luhmann came up with a

simple but effective method to connect them. By adding a

number, optionally followed by a letter on the top left, the

cards supported both a linear continuation of previous notes

and the possibility of branching out (figure 2.6). For example,

a note with number 32 could be continued with 33, even if

its contents weren’t related. At the same time, additional

information could be added to Note 32 by creating Note 32a.

Weird IDs such as 45/7a/21b were not uncommon.

Figure 2.6 An example of the linking capabilities of

Luhmann’s method. Zettel 1,5A2b, as seen in

https://niklas-luhmann-

archiv.de/bestand/zettelkasten/zettel/ZK_1_NB_1-

5A2b_V.

A set of keyword index cards that point to bigger themes

further optimized the navigation of Luhmann’s cabinets.

After a certain note was pulled out, re-creating a certain idea

was only a matter of following the trail to related notes.

Digital note-taking systems such as Obsidian and Zettlr are

heavily inspired by Luhmann’s Zettelkasten method. We no

longer need a big office space to accommodate clunky filing

cabinets. Notes no longer need to carry a numbered ID: a

unique file name to reference suffices. The powerful fuzzy

search engine that autocompletes your half-baked attempt

to retrieve an existing note does the rest.

Luhmann’s Zettels were groundbreaking in many ways. Each

card only contained one idea or thought. Think of it as the

software design principle separation of concerns applied to

note-taking. While consuming new information, you might be

tempted to create a note called The Creative Programmer

and jam everything that sparks your attention in there.

These notes might be related, but to get the most out of

your system, they should be treated as separate entities.

Another interesting fact is the style of the notes, as visible in

figure 2.7: they’re scribbled in full sentences. Luhmann wrote

Zettels in his own words—thereby translating them into his

personal context. He never copied passages, as

https://niklas-luhmann-archiv.de/bestand/zettelkasten/zettel/ZK_1_NB_1-5A2b_V

commonplace writers used to do. Even the backs of the

notes were sometimes decorated. Because he went through

a lot of paper, he was always reaching for something to write

on; some notes were written on the back of his children’s

drawings.

Figure 2.7 A few numbered Zettels from Niklas

Luhmann’s note-taking system. In case you’d like to

test your German, all notes have been digitized as

part of the Niklas Luhmann Archive project and are

available at https://niklas-luhmann-archiv.de/

bestand/zettelkasten/suche/. Photo courtesy of

Bielefeld University.

https://niklas-luhmann-archiv.de/bestand/zettelkasten/suche/

Obviously, setting up a Zettelkasten system and injecting

daily notes requires a hefty time investment. Luhmann

famously said that the Zettelkasten method costs more time

than actually writing a book. As the notes grow in size and

more links are made, it becomes easier to extract and

publish something worthwhile. Zettelkasten was Luhmann’s

genex—his personal generator of excellence.

Writer and educational researcher Sönke Ahrens19 described

in great detail how Luhmann’s system works and why it can

be a powerful tool, rightfully calling it “smart note-taking.” In

his book How to Take Smart Notes, Ahrens elaborated on

how learning by writing works:

We learn something not only when we connect it to prior knowledge and try

to understand its broader implications (elaboration), but also when we try

to retrieve it at different times (spacing) in different contexts (variation),

ideally with the help of chance (contextual interference) and with a

deliberate effort (retrieval) Manipulations such as variation, spacing,

introducing contextual interference, and using tests, rather than

presentations, as learning events, all share the property that they appear

during the learning process to impede learning, but they then often

enhance learning as measured by post-training tests of retention and

transfer.

During the course of the coming chapters, we will revisit and

expand on these learning themes (elaboration, spacing,

variation, etc.). If you are interested in setting up a similar

system, I recommend you check out Ahrens’ book or visit

https://zettelkasten.de/ to get a sense of how to get started.

2.4.3 A note on note maintenance

Some note takers lovingly call their system a digital garden.

Just like Steve Freeman and Nat Pryce—early adopters of

https://zettelkasten.de/

eXtreme Programming, and Test Driven Development

advocates—called programming growing software, note-

taking can be called growing ideas.20

The analogy doesn’t stop there. When growing software, one

needs to tend to the garden now and then. Instead of

reaching for the garden shears, we’ll start restructuring code

without modifying its functionality: refactoring. When note-

taking, the same rules apply: some notes can be rehashed

by appending and linking new notes to them, and others

might have withered and can be safely pruned.

Don’t be afraid to throw away or completely rework notes.

Remember to place everything in its context—context that is

bound to change depending on your technical knowledge

and the environment you’re in, two factors that will likely

change over time. Although he was not the first to say it,

novelist William Faulkner put it more bluntly: “Kill your

darlings.” To write is to delete, both in code and in notes.

Pruning dead branches is one thing; completely eradicating

all notes is another. I know of analog note takers who love to

tear up paper as soon as either the task is done or

everything is digitized. As much as I recognize that

destroying analog notes as soon as they are processed can

be a real space saver, I just can’t bring myself to do it. My

notebooks are more than just notes: they are embedded

within a certain stage of life and period. Physically flipping

through them not only reminds me of past ideas: it also

brings me joy. I’ll admit, I’m a sucker for nostalgia.

Digital gardening—or note-taking, for that matter—is a skill

and therefore subject to the Dreyfus model, as shown in

figure 2.8. At first, you’ll need clear rules on how to structure

and refactor your notes. As your skill level increases from

novice all the way to expert, you’ll rely less on rules and

more on context and that important gut feeling.

Figure 2.8 The Dreyfus model of skill acquisition—

from complete novice in dire need of strict rules as

guidance to experts who transcend reliance on those

rules

Think of it this way. My wife hates cooking and doesn’t

bother learning it because I’m the chef at home. When she

makes spaghetti, she strictly follows the guidelines as

printed on the packaging: cooking for 12 minutes means

setting a timer and cooking exactly 12 minutes. The problem

is, most of the guidelines are wrong. Sometimes the

spaghetti is overcooked. Sometimes it’s undercooked. As you

cook more and more, you’ll develop a knack for getting the

spaghetti out of the boiling water at the right time—without

having to set a timer.

Public vs. private gardens

Public gardens are meticulously maintained. People generally don’t like

nettles blocking pathways; they like neatly trimmed hedges perfectly

shielding a bed of luscious roses. Private gardens are more likely to be an

ever-evolving work in progress, for your eyes only. The same is true for

digital gardens. Your thoughts are exactly that: your thoughts.

Yet, some note takers prefer to keep their notebook open to the public. It

forces them to write their notes in a particular way, providing more context

for visitors to understand their premises. Writing for an audience can help

convert incoherent thoughts into a chain of concrete ideas. If your team

maintains a wiki to store development information on, you’ll have to make

sure your teammates easily understand information posted on the site.

Misunderstanding can easily lead to yet another software bug.

2.4.4 From interruption to action

Sometimes, a note can serve as a simple but powerful cue to

jump-start action. In that case, it doesn’t necessarily need to

be interconnected and contextualized: it functions only to

get you back on track after a brief period of interruption. In

2010, behavioral computing scientists Chris Parnin and

Robert DeLine inquired into developers’ strategies for

resuming interrupted tasks. They discovered that the vast

majority of the interviewees heavily relied on note-taking

across several types of media.21

These kinds of notes are not permanent notes: they are

disposable, one-shot scribbles that serve no function after

the work has been picked up. Most programmers reading this

—or, more generally, most knowledge workers who are

frequently interrupted and blocked in their tasks—will

probably be familiar with these kinds of TODO notes. We will

cover interruptions and recovering from them in chapter 7.

The scribbling works only in the short run, as a participant

from the above study observed:

I take notes on random scraps of paper. Sometimes I refer to them again,

but often they migrate to odd corners of my office where they are never

looked at again, except right before I throw them away the next time we

change offices When I don’t throw the notes away I invariably leave

them at home and then I don’t have them at the office the next day.

Luhmann’s Zettelkasten is overflowing with notes that

helped him learn—not that helped him get back or stay on

track. To get something out of note-taking, your note skills

should evolve from temporary notes on random scraps of

paper, like the participant quoted here, to permanent notes

that help you learn, like Luhmann.

Both note types have their merits, and both note types

ultimately lead to action. Just be sure not to underestimate

the differences.

EXERCISE What do you do with your notes once they’re

jotted down? Are all TODO items consistently revisited and

checked off? What about more permanent notes—can you

find a way to link these to previously made notes to generate

original insights?

2.5 A workflow example

Personal knowledge-management guru Harold Jarche

summarized his workflow as Seek > Sense > Share,22 three

essential ingredients of a personal knowledge-management

framework with an emphasis on knowledge representation

by continuously sharing knowledge. This is the framework, in

a nutshell:

Seeking—Finding things and keeping ourselves up

to date by building a network of colleagues,

allowing us not only to pull information from

classical sources but also to have it pushed to us

by trusted sources (e.g., through RSS). Jarche

called good curators, who filter data for you,

valued members of knowledge networks.

Sensing—How we personalize and internalize

information. This includes reflection and putting

things in perspective, next to previously gained

knowledge, and can involve experimentation.

Sharing—Exchanging resources, ideas, and

experiences with others. Suddenly, you’ve become

the curator for someone else’s sensing input!

Jarche’s emphasis on knowledge sharing does not only

benefit others: it forces us to rethink how we understood

something, just like Luhmann’s notes written in his own

words. As physicist Richard Feynman said, the best way to

learn is to teach (and thus share).

Something that really surprised me while rummaging

through Jarche’s extensive notes was the following excerpt:

Today, content capture and creation tools let people tell their own stories

and weave these together to share in their networks. It’s called narrating

your work and has been done by coders and programmers for decades as

they learn out loud. What started as forums and wikis quickly evolved into

more robust networks and communities. Programmers who share their work

process and solutions in public are building a resource for other

programmers looking to do the same type of work. This makes the whole

programming environment smarter. Organizations can do the same.

Let’s contemplate that for a moment. When it comes to

knowledge sharing, we tech nerds are recognized as

pioneers! Don’t sit on your laurels for too long, though.

Pretty much every coder I know consumes public knowledge,

but only a small percentage actively contribute to it. We’re

all lurkers. It’s time to level up and become a contributor—as

long as you remember not to feed the trolls.

A simplified version of my own workflow is outlined in figure

2.9, which might or might not work for you. It is just one of

the hundreds of possibilities to implement a system to

gather, internalize, and act on knowledge. Feel free to swap

out parts or build your own from scratch.

Figure 2.9 A simplified version of my information-

processing workflow with filters in between each

step, from available info to published work.

As your programming brain might have already told you:

yes, this is an incremental process! I regularly threw out

things that didn’t work until I had a stable workflow that was

right for me.

2.5.1 A five-step workflow

1. Available information

Available information comprises the collective works of

everything and everyone: a big pile of knowledge, impossible

to tame without the use of a system.

2. Curated interests

Curated interests are a selection of things that spark my

interest, served via RSS, email, browsing Wikipedia,

conversations, museum or library visits, magazines, and so

forth. Some things are pulled as I reach out for specific

information for my research, and others are pushed by peers

I trust and subscribe to, like Jarche’s seeking element.

3. Synthesized thoughts

Synthesized thoughts are the curated interests,

contextualized and solidified in notebooks with pen and ink:

sensing. In practice, this step also acts as a filter: not every

bit of knowledge and information consumed turns out to be

valuable for the things I’m working on.

Remember to use a loose hand here. Make a mess. Draw

diagrams, symbols, arrows. Cross out parts. Spatial cueing

and emphasis on relationships strengthen insights. Mind map

or note-taking software might be clean and hyperlinked, but

at this stage they are rarely useful in facilitating learning.

Andy Hunt explained the details of how this works in his book

Pragmatic Thinking and Learning.

4. Digitized and cross-linked notes

Once a month or so, I digitize my notes by scanning and

tagging them. Then they end up as linked notes in Obsidian.

This sounds tedious (and it is), but I’ve found it to be a

necessary evil to comfortably cross-reference notebooks of

previous years. This also makes it much easier to quickly

locate anything I’ve ever written down—unless I make a

mistake with tagging, of course. Unfortunately, OCR

technology is still very unreliable.

I do scan everything since it’s easy to do with mobile apps

like Genius Scan, but I do not tag every single page. Diary-

like stories do not need to be cross-linked. Some digital-only

systems combine steps 3 and 4 into a single step. I urge you

not to do this, as you’ll lose the learning benefits gained by

capturing thoughts with a pen; it will also blur the lines

between different filters and complicate your decisions about

what to keep and what to throw out. In short, you’re violating

separations of concerns.

5. Published work

Finally, by pulling up all linked notes in a digital repository,

all I have to do is arrange them in a certain order and start

summarizing. At step 5, most of the writing and thinking

work should have been done. Like Luhmann said, this makes

publishing trivial. Watch out with that false sense of

productivity, though: most of the work is offloaded in

previous steps. The work still needs to be done. Most of the

notes never make it into publication, and that’s okay. Some

notes take multiple years to bubble up, and that’s okay, too.

Creative writer, photographer, and avid journaler Susannah

Conway calls this composting.23 I’ve heard software

development managers calling it Nemawashi, referring to the

lean Toyota production system whereby the groundwork is

laid to build the foundations for major future changes by

gathering and sharing information. Like aged wine or cheese,

good ideas need to ripen.

As a professional baker myself, I like to resort to the process

of fermentation when explaining how ideas make it into

production. Decent bread can be pulled out of the oven after

4 hours of starting from scratch. Excellent bread takes 36

hours and requires planning ahead—although most of the

time, you just let the dough do its thing: develop flavor.

Sometimes, the sourdough starter overreacts and ferments

too quickly, taking the baker by surprise, like the jar depicted

in figure 2.10. Working out ideas too soon without taking the

time to mull them over achieves the same result: blandness.

Figure 2.10 A sourdough starter, perhaps too happily

fermenting away. Next to flour, water, and salt, time is

the most important ingredient for a great loaf of

bread.

Sometimes, the acidity from a (too) long fermentation ruins

the bread. Stale ideas usually do not make it to step 5.

Of course, to let an idea ferment, you first have to “catch” it,

which is, in essence, what step 3 does. American journalist

and author Elizabeth Gilbert lamented the possibility of

losing an idea to someone else in her creative self-help book

Big Magic.24 According to her, if you fail to capture a thought

in time, it will fly away to another open mind better capable

of catching it. Big ideas “bounce” from entrepreneur to

entrepreneur until someone is willing to take big action.

Although it is hard to digest that fairy tale, the message here

is clear: get your net out and be ready to catch fleeting

ideas.

2.5.2 The workflow in practice: Coding

A couple of years ago, through my filter of curated interests,

I read about other programmers’ experiences on writing end-

to-end tests for their web applications and their struggles

with it. At work, my colleagues and I were getting frustrated

with our own approach, because these automated tests

proved to be unstable at best and involved a lot of

maintenance, to the point that we considered dropping them

all together.

A blog post I read triggered a discussion of our current

approach in which we laid out a first rough revision to better

tackle the myriad asynchronous client-side requests. My

personal knowledge-management system contained more

cross-linked notes about end-to-end testing from previous

projects that could also be factored in, including the

reasoning behind the choices made.

Without (re)reading any prior stored (self-)knowledge on how

to write end-to-end tests, our test strategy would have been

altered for the worse. I can’t count the number of times my

system has saved me from reinventing the wheel or

implementing the inferior solution. Other examples include

reaching for that complex search routine you once put

together, a drawing of sort algorithms to pick from, saved

URLs of longer articles on the internals of the Linux kernel

that might come in handy, rereading what went wrong last

time you tried integrating OAuth in a legacy codebase, and

so on.

This isn’t limited to coding or software architecture: I also

like “stealing” other’s search bars; web accessibility style

guides; various UI considerations, such as button and label

placements; and so forth. I provide more information about

stealing ideas from others in chapter 8.

2.5.3 The workflow in practice:

Learning new programming

languages

This year, I’ve learned to program in Go. I was keen to

convert a Node-based project from JS to Go. Several little and

big problems were successfully tackled along the way,

thanks to my notes. Not sure how to structure REST requests

without resorting to reflection or copying and pasting, I

consulted my database. It told me I had watched a couple of

GopherCon videos just over a month ago where best

practices on Go web services were presented—videos I again

completely forgot about.

If, instead, I had resorted to good ol’ Google or Stack

Overflow, I would have missed the context of my notes on

these videos, which linked to related practices I’ve

accumulated over the years. Sometimes, that’s good

enough. It makes no sense to cram an entire API

documentation into your note system.

2.5.4 The workflow in practice:

Writing

It goes without saying that the workflow is also perfectly

applicable to writing—in fact, without it, this book wouldn’t

exist. But you’re a programmer, not a writer, so why should

you care? Because programmers have to communicate

ideas, not only through clean code but also through

requirement documents, project proposals, API

documentation, performance reviews, remote chat

messages, technical demonstrations, blog posts, and more.

Many software engineering leaders are also prolific technical

writers. Writing is becoming so important that companies like

Amazon start their engineering manager screening process

with a writing exercise.25 As Sönke Ahrens mentioned,

learning is done through writing—even if it’s just for yourself.

Writing is a whole lot easier if you have something to fall

back on: your system, containing outlined notes and ideas.

Then, you can start puzzling. Create a new note, give it an

appropriate name, and start linking concepts from previously

collected insights. These will turn out to be the building

blocks for your text.

The system tells us we should reread notes we’ve written

years ago and completely forgotten about. It suggests

possible connections between refactoring, domain-driven

design, and creative problem solving. In short, it helps us

become a better coder and writer.

EXERCISE Note-taking can be daunting to newcomers. The

best way to start is to just start. For the next two weeks, try

to simply gather the things you’ve learned on (digital) paper

on a daily basis. Be as quick or as thorough as you want—

don’t be encumbered by the process. Visual thinking expert

and creative director Dan Roam illustrated that this can even

be an ugly sketch on “The Back of the Napkin.”26

After 14 days, reread your notes. Does anything stand out? Is

there a connection between seemingly disparate records?

Cross-link if you feel like it. Can you do something with that

new knowledge in the near future?

If you did not enjoy the exercise, simply retry with a different

approach. Eventually, you’ll end up with your own version of

figure 2.9—a workflow that filters available info, curated

interests, synthesized and digitized thoughts, into something

that is worth publishing.

Summary

No Python knowledge equals no Python creativity.

Without any input and a baseline of technical

knowledge, creative problem solving will prove to

be next to impossible.

Creativity begets creativity. Every intention to

create is based on a previous one. Thus, it’s

important to keep your knowledge base up to date.

Gather new knowledge and refactor your existing

knowledge. Think about your regular sources of

information. Is it perhaps time to diversify or

moderate your intake?

Gathering knowledge is one thing; internalizing

that knowledge is another. Do not just summarize

what you’ve read: rewrite it in your own words to

add your own context.

What’s the purpose of internalizing all that

information if you never intend to do anything with

it? Remember that the point is to produce both

novel and actionable insights.

A well-oiled personal knowledge management

system greatly simplifies the gather-internalize-act

loop. Try to develop a system that works for you

based on the examples that are provided in this

chapter. This system, if used correctly, can act as

your “external memory.”

The most interesting novel insights arise from the

connection or combination of information that at

first sight seems unrelated. This is yet another

reason why the personal knowledge management

system—where everything is centralized—is

important.

Notes do not have to be static; they can be

revisited, reworked, scrapped, and more. Note

maintenance is just as important as note creation.

New ideas will certainly arise from regularly

rereading previous notes.

1.
See https://youtu.be/Ljr66Bg—1M.

2.
See https://snyk.io/blog/jvm-ecosystem-report-2020/.

3.
See https://insights.stackoverflow.com/survey/ for the years 2020 and 2021.

4.
Wouter Groeneveld, Laurens Luyten, Joost Vennekens, and Kris Aerts. Exploring

the role of creativity in software engineering. 2021 IEEE/ACM 43rd International

Conference on Software Engineering: Software Engineering in Society (ICSE-

SEIS).

5.
The “it” and “me” keywords are in fact much older than Groovy. Breslav’s team

probably zoomed in on those via Groovy because that language also sits on top

of the JVM.

6.
Jonathan A. Plucker and Ronald A. Beghetto. Why creativity is domain general,

why it looks domain specific, and why the distinction does not matter. American

Psychological Association, 2004.

7.
David Allen. Getting things done: The art of stress-free productivity. Penguin,

2001.

8.
Eric F Rietzschel, Bernard A Nijstad, and Wolfgang Stroebe. Relative

accessibility of domain knowledge and creativity: The effects of knowledge

activation on the quantity and originality of generated ideas. Journal of

Experimental Social Psychology, 2007.

9.
Pam A Mueller and Daniel M Oppenheimer. The pen is mightier than the

keyboard: Advantages of longhand over laptop note taking. Psychological

Science, 2014.

10.
Richard Tindle and Mitchell G Longstaff. Working memory and handwriting and

share a common resource: An investigation of shared attention. Current

Psychology, 2021.

11.
John C Maxwell. Developing the leader within you. Harper Collins Leadership,

2019.

12.
Evans lets people take a peek within during a 2017 Domain-Driven Design

conference; see https://youtu.be/ Zm95cYAtAa8.

13.
Mihaly Csikszentmihalyi. Creativity: Flow and the psychology of discovery and

invention. HarperPerennial, reprint edition, 2013.

14.
Vannevar Bush et al. As we may think. The Atlantic Monthly, 1945.

15.
See https://memex.naughtons.org/.

16.
See https://pluralistic.net/.

17.
Ben Shneiderman. Codex, memex, genex: The pursuit of transformational

technologies. International Journal of Human-Computer Interaction, 1998.

Published online 2010: https://www.tandfonline.com/doi/

abs/10.1207/s15327590ijhc1002_1.

https://youtu.be/Ljr66Bg--1M
https://snyk.io/blog/jvm-ecosystem-report-2020/
https://insights.stackoverflow.com/survey/
https://youtu.be/Zm95cYAtAa8
https://memex.naughtons.org/
https://pluralistic.net/
https://www.tandfonline.com/doi/abs/10.1207/s15327590ijhc1002_1

18.
David Allen. Getting things done: The art of stress-free productivity. Penguin,

2015.

19.
Sönke Ahrens. How to take smart notes: One simple technique to boost

writing, learning and thinking-for students, academics and nonfiction book

writers. Sönke Ahrens, 2017.

20.
Steve Freeman and Nat Pryce. Growing object-oriented software, guided by

tests. Pearson Education, 2009.

21.
Chris Parnin and Robert DeLine. Evaluating cues for resuming interrupted

programming tasks. In Proceedings of the SIGCHI conference on human factors

in computing systems, 2010.

22.
Harold Jarche. The seek-sense-share framework, 2014. http://jarche.com/pkm/.

23.
See https://www.susannahconway.com/.

24.
Elizabeth Gilbert. Big Magic: Creative Living Beyond Fear. Penguin Publishing

Group, reprint edition, 2016.

25.
See https://blog.pragmaticengineer.com/becoming-a-better-writer-in-tech/.

26.
Dan Roam, The back of the napkin: Solving problems and selling ideas with

pictures. Portfolio, 2008.

http://jarche.com/pkm/
https://www.susannahconway.com/
https://blog.pragmaticengineer.com/becoming-a-better-writer-in-tech/

3 Communication

This chapter covers

Cameratas, symmathesies, and what makes them tick

Liquid networks and genius clusters

The technology adoption curve

Social debt and community smells

Mysterious voices echo from a colonnade just outside of

Athen’s city wall. The Peripatetics—scholars and disciples

interested in Aristotle’s teachings—are gathered in a series

of open buildings called the Lyceum. The predominant voice

that bounces off the peripatoi, or walkways, belongs to

Aristotle himself, who is giving a lecture on how the squid

reproduces. Among the regular listeners are Demetrius of

Phalerum, one of the first Peripatetics; Alexander the Great,

who would later build one of the largest empires in history;

and Theophrastus, who initially studied in Plato’s Academy

but would later succeed Aristotle as the head of the Lyceum.

Aristotle was first and foremost interested in the why.

Starting from facts, his scientific approach to philosophy

ultimately formed the baseline of inductive and deductive

reasoning. Reasoning wasn’t a one-way street: ample

discussions between fellow Peripatetics were held on matters

of politics, metaphysics, ethics, and logic—preferably while

walking around. The Lyceum wasn’t a private affair like

Plato’s Academy: many lectures and discussions were held

free of charge. Its open approach would ultimately improve

Aristotle’s works, which are nowadays seen as the

foundation of modern science.

Centuries later, at the end of the 16th century, similar

patterns emerged in Florence. A group of humanists,

musicians, poets, politicians, and philosophers gathered

under the roof of Count Giovanni de’ Bardi—yet another

wealthy Italian with perhaps too much time on his hands—to

discuss, and successfully change, the trends in arts, music,

and drama (figure 3.1). The gathering was known for its

famous Florentine guests and would later be known as The

Florentine Camerata.1

Figure 3.1 Anton Domenico Gabbiani’s “The Musicians

of Prince Ferdinando de’ Medici.” The painting was

linked to de’ Bardi’s Camerata at work, although that

has been disputed recently. The Camerata’s efforts

played a major role in the forming of later symphonies

and operas, proving that collective creativity trumps

individual ideas. Source: public domain.

The premise of The Camerata was simple. Music had become

boring and corrupt, according to the members. They

intended the art form to be restored to the way the ancient

Greeks had styled it. An open view of the composition and

the flow of music was the greatest legacy of The Camerata.

Although only indirect influence was attributed to them,

without the Florentine Camerata, Bach and Mozart would

probably never have composed world-class musical pieces

that tell a story.

Again centuries later, we turn our attention to Paris and its

bustling cafés, at the very end of the 19th century. Tired of

the persistent clinging to classicism, a small group of

sculptors, art dealers, and painters decided to challenge the

Paris Salon art curators by giving birth to an endless slew of

new art -isms: impressionism, pointillism, cubism,

modernism, Dadaism. Lively discussions about art and its

future were consistently held in cafés, dutifully accompanied

by a selection of wine as well as cigar smoke.

The Parisian avant-garde art movement attracted young

talent from within France (Paul Cézanne, Georges Braque,

Claude Monet, Edgar Degas) and far beyond it (Pablo

Picasso, Vincent van Gogh, Piet Mondrian, Wassily

Kandinsky). Foreigners like the Dutchman Mondrian and the

Russian Kandinsky would eventually bring back ideas to their

homeland to unleash artistic revolutions there, establishing

De Stijl and Bauhaus.

Fast forward another century, to the early to mid-2000s. This

time, we are in London, specifically, inside its plethora of

business hubs. These centers took turns hosting The

Extreme Tuesday Club.2 The Club acted as a platform for

software developers at the early beginnings of the agile and

extreme programming movements, where ideas were

proposed and critically evaluated on a weekly basis. Several

well-respected software developers would make a guest

entry in The Club: Jez Humble, Dan North, Chris Read, and

Chris Matts. It even proved to be an effective way to recruit

competent programmers into ThoughtWorks—another well-

known consulting firm.

The Extreme Tuesday Club was a unique and fertile test bed

that managed to successfully breed Continuous Integration,

Continuous Delivery, DevOps, Kanban, and Technical Debt

concepts, microservices, mocking techniques—the list is,

again, endless. Other like-minded people mirrored The Club

elsewhere, resulting in The Silicon Valley Patterns Group, The

Portland Patterns Group, The Salt Lake City Round Table, and

so forth. The spirit of The Club lives on in innumerable

software craftsmanship and testing meetups around the

globe.

3.1 Collaborative teamwork

What is the greatest common divisor between The

Peripatetics, The Camerata, The Extreme Tuesday Club, and

countless other examples the history books can show us?

These gatherings somehow managed to completely change

the field they worked in, which, according to

Csikszentmihalyi, qualifies as genuine creativity. I’d like to

take this a step further and call it collective creativity:

without a collective, the creativity of each genius partaking

in these meetings would never have reached that far.

Teamwork is a word that, in our 21st century, is all too

eagerly used. Teamwork is required to bring big and

dangerous software projects to a happy end. Teamwork is

required to motivate each other to keep on trucking, day in,

day out. Teamwork is required to learn as an individual, as a

team, and across teams. Teamwork can be found in job ads,

books on how to succeed, books on how not to succeed, in

videotelephony software, in company announcements, in

remote-work guidelines, in curriculum outcomes, in

conference slides, on the back of a menu card in restaurants,

in popular hashtags on social media, in TV ads, in every

sport, during joyful team building days—teamwork,

teamwork, teamwork!

Research indicates that teamwork is the most commonly

taught nontechnical skill, appearing in the learning outcomes

of 34% of European university computing courses.

Written/oral communication and presentation skills are

similar academic all-stars. The term creativity, on the other

hand, is encountered in less than 5% of university course

descriptions!3

Was an ancient gathering in the Lyceum one of the very first

team-based efforts to advance the field of philosophy? Is

there any difference between de’ Bardi’s Camerata and our

contemporary programming teams? Let’s dig a little deeper

to see what exactly caused those collectives to be successful

—besides the obvious use of communicative skills.

3.1.1 What makes a Camerata tick

Thanks to Jessica Kerr’s 2018 blog post, which manages to

connect the Renaissance’s music collective and Gregory

Bateson’s cybernetics ideas with programming,4 the term

Camerata has become quite popular among programmers.

According to Kerr, we should learn from The Camerata’s

methods to successfully launch software engineering into the

future.

First, what were the members of The Camerata trying to do?

They were fed up with classic Renaissance music and

partially wanted to return to the greatness of ancient Greece;

that is, there was a problem to solve: a shared problem.

Every member of The Camerata was equally invested in the

problem at hand. Nobody was forced to join. In fact, you

weren’t particularly welcome if you weren’t intrinsically

motivated to join the common cause.

Second, not only the problem was shared, but also the

knowledge of every single individual. They taught each

other. The Camerata resembles a kind of invisible college,

which is the key to creativity in science, according to Kerr:

this “invisible college” is an association of people who share

ideas, who build a new reality together, then spread it to

advance the wider culture.

This sounds mundane but is key to the success of a group. A

stream of knowledge acting as a one-way street will not get

you far. Furthermore, The Camerata consisted of people with

vastly different backgrounds, which facilitated the cross-

pollination of ideas.

Third, The Camerata system was a living system. Remember

our premise that creativity is systemic, as explained in the

introduction? The same is true for a creative collective such

as The Camerata: each part is interconnected, to both each

other and the environment. Since a living system is a

learning system, it constantly evolves. The environment

changes, and so do we as we adapt to it. We learn from our

comrades; they learn from us. The system gets shuffled

around a bit; new links appear, and old ones disappear. Think

of it as a never-ending feedback loop:

func changeSelf() {

 changeEnvironment()

}

func changeEnvironment() {

 changeSelf()

}

Cybernetics pioneer Gregory Bateson was a systems thinker.

Instead of looking at the individual parts, or a few

relationships in between those parts, he liked to think in

terms of the whole. He once said that evolution is in the

context—not in the subject, or, as our modern self loves to

think, the individual. Nora Bateson, his daughter, further

refined her father’s ideas. She thought it was peculiar that

we don’t have a word for mutual learning in living contexts.

Her introduction of the term symmathesy fixed this problem.5

Nora combined the Greek prefix sym (“together”) with

mathesi (“to learn”). Her working definition of the concept is

as follows:

Symmathesy (noun): an entity composed of contextual mutual learning

through interaction. This process of interaction and mutual learning takes

place in living entities at larger or smaller scales of symmathesy.

Symmathesy (verb): to interact within multiple variables to produce a

mutual learning context.

The Camerata was a symmathesy: a living, learning system

(figure 3.2).

Figure 3.2 A symmathesy: a living, interconnected

system in which every part mutually learns from each

other, including the environment it’s in. Actually

drawing such a system betrays what it stands for,

since it is now frozen in time. The environment

pictured encompasses anything that interacts with

the group: your clients, other teams, the company,

and so on.

Fourth, the collective not only provided feedback; they

provided critical feedback. This prevented the gatherings

from becoming an echo chamber where no idea truly

managed to break free. I discuss critical thinking and its role

in creative programming further in chapter 5.

Limiting the exposure to diverse perspectives and a

formation of groups of like-minded people framing and

enforcing a shared narrative is called the echo chamber

effect in sociology.6 Such a segregation is prevalent not only

on social media platforms but also in a lot of discussion

groups, where the living system is more or less on life

support.

EXERCISE When was the last time you attended a coding-

related meetup where ideas were openly discussed instead

of simply presented and accepted? Can you remember how

prevalent the echo chamber effect was? Perhaps next time it

might be good to start the discussion with that.

During the creativity research of my colleagues and I, the

developers we interviewed also emphasized the importance

of context, just like Bateson’s focus on contextual learning:

We assumed a bit that, eventually, we work in teams, so if you put

someone, perhaps less creative, in the right context and surround that

person with the right people, you’ll still arrive at a creative solution, within

its limitations.

Great teams make great people

Serious software development is the practice of symmathesy. According to

Jessica Kerr, great teams make great people, not the other way around.

Sure, you can’t simply hire a bunch of great developers, usher them into a

room, and call it a day—don’t forget to throw in a couple of bananas. But

does this mean you can’t engineer great teams?

My own view of this is more nuanced. I’ve had the privilege to be “dropped”

into a great team (thank you, consultancy work), which undoubtedly made

me a better programmer. For a couple of years, I, too, tugged the

symmathesy ropes and was part of the system.

But I’ve also cocreated teams with other competent developers where the

team was yet to be formed: the symbiotic relationship was still very

unstable. As we got to know the problem domain (and each other), some

teams flourished. Other teams withered pretty quickly. The chicken or the

egg? A little bit of both, thank you.

Cameratas, living or coevolving systems, symmathesies,

systemic teams, symbioses—whatever the term, its methods

always consist of four principles: having a shared problem,

learning from each other, being interconnected, and

providing critical feedback.

Ben Shneiderman’s genex system, which we explored in

chapter 2, can take you only so far. He concluded that

refinement of the genex system is a social process. Only

your peers’ constructive feedback can take your creative

work to the next level.

3.1.2 Dream teams

A heterogeneous group of well-communicating individuals

has a better chance of solving problems creatively than

fiddling on your own. I’m sure you’ve experienced this

yourself at some point when working in well-oiled teams,

compared to trying to crack a tough problem by yourself.

Collectives such as The Camerata not only identify and solve

bigger problems faster, they also increase emotional

engagement. This effect is clearly visible in interviews with

creators who fondly reflect on their time “back in the day,”

often referring to their past collective as a “dream team.”

The team is a dream, not only when you get along well with

your peers, but also when it consistently churns out highly

creative products.

Take LucasArts, for example. During the early nineties, the

Games Division of Lucasfilm was rebranded as LucasArts

thanks to a few successes in the games industry, most

notably Maniac Mansion and its SCUMM (Script Creation

Utility for Maniac Mansion) engine, which came with it. Since

then, LucasArts consistently released one hit after the

another: Monkey Island 1 and 2, Loom, Indiana Jones and the

Fate of Atlantis, Day of the Tentacle, Sam & Max: Hit the

Road, Full Throttle, The Dig.

Some sources claim that after George Lucas lost interest in

games; after the rebranding, the company gradually went

downhill; although, judging from the results, the software

development division was still successful for at least five

consecutive years.

Retro Gamer interviewed a part of the original crew to

rediscover the legacy LucasArts left behind.7 The former

members mused about the “correct alignment of the stars”

and admitted they never quite reached the same height ever

again (figure 3.3). When asked why not, the interviewees

provided two reasons: the perfect composition of the team,

which sadly broke down and scattered after the release of

Monkey Island 2 for various reasons, and it wasn’t the right

time for that kind of adventure game.

Figure 3.3 Members of the LucasArts crew pose for

“Ron Gilbert Day,” one of the many gags that kept

them entertained. Everyone is wearing Ron’s style of

clothing (a striped top). Photo courtesy of The

International House of Mojo.

The productive combination of different skill sets, where

everyone influences each other, clearly surfaces when

reading the interview. Dave Grossman, codesigner and

writer, relished the daily brainstorm meetings led by director

Ron Gilbert, where artist Steve Purcell would often draw

funny illustrations. Dave Grossman recalls:

I wrote a poem once about ideas being like lint and dust—they’re just kind

of floating around everywhere and the trick is to make something

interesting out of them.

Tim Schafer chimes in, commemorating Ron’s effort to lead

the team and fondly remembering his time at LucasArts:8

Those were really special times, especially working at the Lucas Ranch in

this incredible environment that was set up just to make creative people

relaxed and comfortable. It was a fun environment and all these people

were so fun to work with. Getting that job right out of college was a lucky

break for me, and I’m glad I was ready for exactly that job description.

Ron Gilbert and his crew’s latest point-and-click game,

Thimbleweed Park, was highly inspired by Monkey Island’s

early success, not only because they wanted to recreate a

pixelated 2D adventure but also because they tried to

emulate what made those nineties adventure games so

special. Ron replays Monkey Island 1 and 2 every time he

starts a new game, to recapture the atmosphere. He

admitted he never really figured it out. The original crew has

since set sail. Retro Gamer concludes that the secret of The

Secret of Monkey Island might very well be group dynamism.

An ample number of other veterans within the software

development industry provide more evidence for the

significance of group dynamism. Adam Barr (Microsoft),

David Heinemeier Hansson (Ruby on Rails, Basecamp),

Gergely Orosz (Uber, Skype): in any success story interview,

former core members implicitly or explicitly call their team a

dream team.

Nostalgia goggles aside, I think it is safe to assume there is

some truth behind this—backed up by yet another pile of

academic publications on team jelling, methods,

composition, affects, and so forth. Dream work makes the

team work. Or is it the other way around?

EXERCISE Does your current development team resemble a

symmathesy? If not, what do you think needs to be changed

to become one? For example, how is critical feedback

handled between team members, what is the atmosphere

like, is everyone open to mutual learning, is there a constant

flow of shared ideas that moves the team forward, are the

actions by the team supported by the company? What could

be the first small and achievable step toward such a dream

team?

3.2 Collective geography

In his book on the psychology of flow and creativity, Mihaly

Csikszentmihalyi takes off with a rather sobering message:

the creative power of the individual is negligible. And yet,

our ideal image of the lone creative genius who single-

handedly manages to change an entire domain of expertise

somehow stubbornly persists.

Einstein might have submitted a paper on the theory of

relativity that indeed completely altered how we think about

physics, but even Einstein had his group of friends, called the

Akademie Olympia, who discussed philosophy and physics.

The first few but important seeds of his theory were likely

planted during those discussions. As Csikszentmihalyi said:

creativity is systemic.

What, then, can we as individuals do to increase our chances

of creative success? The previous discussion on dream

teams reveals that being part of or creating a great team

might be the answer. Surround ourselves with high achievers

who can improve our own performance. Seek out experts.

But where to look for like-minded people? Indeed, where—

the physical location of Cameratas has proven to be

significant in history.

3.2.1 Liquid networks

Has your attempt to sell an idea to your family or friends

only managed to evoke a lukewarm reception? Perhaps

you’re approaching the wrong target audience. Did your

presentation of the idea get lost in the enormous sea of ever-

evolving—and possibly better—ideas from others? Perhaps

that environment was literally too volatile.

Innovation expert and science communicator Steven Johnson

managed to capture this phenomenon in a neat symbolic

representation in his story “Where Good Ideas Come From.”9

He explains that the birth, success, and death of ideas can

be summarized in a liquid network.

In chemistry, matter is in a state of either solid, liquid, or

gas, as shown in figure 3.4. Molecules are less mobile in

blocks of ice than in their liquid form: water. Heating water

results in another state change during evaporation, in which

molecules are extremely mobile. For brevity, we omit

plasma, which is even more unstable than gas.

Figure 3.4 Left: solid matter, ideas set in stone due to

the definite shape and volume. Middle: liquid matter,

allowing the creation of new connections. Right: gas

matter, too volatile to make ideas really stick.

Johnson compares early hunters and gatherers to gas

matter: highly mobile, nomads traveled from place to place,

never really exchanging ideas with other small groups of

humans until they started settling and forming cities.

Condensation forms, and more liquid-like networks of people

emerge. It was then that many inventions were conceived

that boosted early civilizations. Settling down made it

possible for ideas to “spill over” from human to human, as

Johnson likes to call it.

However, for ideas to spread, the network has to stay liquid

and not solidify, as otherwise, innovation stagnates and, in

the worst case, evolution becomes devolution. Johnson also

argues that this is the reason why innovation is sometimes

geographically clustered in big and boisterous cities.

Embracing foreign ideas—but not too much—increases the

likelihood of creative achievements. Psychology and history

researcher Dean Simonton concluded the same10 when

studying the effects of cultural influx on one of the world’s

most closed societies: medieval Japan. For many fields, such

as medicine, philosophy, writing, poetry, and especially the

arts, achievement was positively associated with national

openness to alien influences.

We can use the concept of liquid networks to describe how,

both within the mind of a single human and within clusters of

humans, the process of making novel connections is

amplified. Business venture specialist Seth Godin chimes in

by emphasizing happy accidents of ideas: “Ideas occur when

dissimilar worlds collide.”11

Think back to your personal knowledge system from chapter

2. If most notes just rehash the same ideas again and again,

your knowledge stream might have solidified. On the other

hand, if only a few but highly original ideas are noted, they

do not get the chance to bounce into others to evolve into a

vastly superior idea. Your knowledge system ideally floats in

between those two extremes: it’s a liquid network.

The same is true for group dynamics. Too many wild ideas

blurted out with nobody taking the time to sit down and

summarize or combine them will likely end in diffusion. On

the other hand, not enough ideas, or too many of the same

ones, won’t exactly end in creativity either. The group

composition of collective creators floats in between those

two extremes: they’re a liquid network.

According to Steven Johnson, the places people visit, work,

and live in are also solid or liquid networks; that is,

geography becomes a determinant of creative success. If

you grew up in a rural area, your chances of creative success

were slim unless you moved to one of these places where “it

is happening.”

Of course, in our age of globalism, a fiber network and Zoom

radically altered that, although not entirely. Eminent

companies and research universities still attract many young

and promising people across the globe, convincing them to

move thousands of miles, lured by the promise of working

with the best of the best, hoping it will spark that much-

needed creativity. And it probably will.

EXERCISE Initiatives such as Meetup, Skillshare, Eventbrite,

and Airbnb Experiences are a great way to get a taste of

other cultures’ ideas. For this exercise, take part in one of

the many unique virtual communities. Try to push your

boundaries beyond all things coding. For instance, engage in

a philosophical discussion, draw together with hundreds of

other like-minded people, or learn the basics of bookbinding.

Have a look at the various possibilities; then pick one and

click Register. Numerous experts across the globe are willing

to share their knowledge. They are waiting for you to join

them!

3.2.2 Creativity is contagious

Johnson’s clever analogy borrowed from the chemistry world

also teaches us that, as chemical components bump into

each other, they influence each other’s state. In other words,

as Albert Einstein said, creativity is contagious. Studies

confirm that we are more creative when surrounded by

creative coworkers.12 Just by having them in the vicinity, our

own urge to be creative rises. We’ve seen the same effect

when organizing interdisciplinary hackathons across

universities. Student pairs operating in the same large room

reported that their inspiration rose precisely because they

were surrounded by other groups—even if they interpreted

the assignment completely differently. By walking around

and engaging with other groups, students gathered others’

ideas to bend and apply to their own solution.

This may not be so surprising. We are social animals, and our

brains are prewired to copy behavior—any behavior. If we

surround ourselves with creative programmers, our chances

of becoming “one of them” increase. This sounds a lot like

the broken window theory, brought into the world of

programming by the pragmatic programmers Andy Hunt and

Dave Thomas.13 Leave a lot of junk behind, and people will

throw more onto the pile. Be consistent in tidying up the

code, and coworkers will automatically behave a bit more

like responsible coding citizens.

3.2.3 Moving to stimulating

environments

In 1952, when he was 27, Swiss sculptor Jean Tinguely

moved to France with his wife to pursue a career in art. He

grew up in Basel, which, with its almost 180,000 inhabitants,

is far from a small city. Basel has been a commercially and

culturally important hub since the Renaissance. And yet

Tinguely hated it there, feeling asphyxiated, almost

creatively burned out. The moment he arrived in Paris, he

felt rejuvenated: “Switzerland is not a stimulating

environment. Paris is. I felt like a fish in water.”

In Paris, as part of the New Realist avant-garde, he found his

liquid network, which in Basel was too solid for his taste. The

fruits of his move are showcased in museums all over the

world—at least, a part of it. Tinguely’s most famous works

are self-destructing machines he liked to let detonate in front

of a gasping audience. No worries, the Las Vegas desert

didn’t feel anything.

During my own training as a professional baker, I was on the

lookout for a bakery with internship possibilities. Since I was

mainly interested in sourdough bread and wanted to learn

from the very best, I ended up at De Superette in Ghent.

Why? Because the then-head baker was Sarah Lemke, an

American expert who had learned the craft together with

Chad Robertson from Richard Bourdon.

For the uninitiated in all things sourdough, Chad’s Tartine

Bakery in San Francisco is one of the most well-respected

and famous bakeries in the world. Chad is one of my many

bread-related idols. Of course, as a famous baker, Chad also

published a slew of bread-baking books, one of which,

Tartine Bread (Chronicle Books, 2010), has become a

timeless classic. Feel free to switch books if baking bread

gets you more excited than typing a bunch of brackets and

semicolons.

Since I live in Belgium, working at De Superette proved to be

the next best thing—wild ideas like this require a stamp of

approval by my significant other. In hindsight, dropping

everything to head to San Francisco and face the heat of an

oven at 5:30 a.m. might have pushed things a bit too far.

If you’re from Belgium and are genuinely committed to

baking great bread, sooner or later you’ll end up at De

Superette. During my internship, I’ve encountered several

like-minded people, visiting the bakery to chat with Sarah to

share ideas and be inspired by her methodology and usage

of very wet dough. De Superette is also a restaurant, where

distinguished chefs from all over Europe work together to

produce original and tasty dishes.

Of course, there are ample bakeries closer to home, and I’m

sure I would have scored an internship in my own

neighborhood. But I wanted to work in the midst of the

baking idea highway interchange. I was looking for a liquid

network. I can’t say it ever became a Camerata, because my

time there was very short, and as an intern, my

responsibilities were limited to shutting up and doing as I’m

told—which worked out quite well, to be honest.

The appeal of a stimulating environment is what makes

developers flock to high-tech campuses such as Google’s

and Yahoo’s, where they “push the boundaries of the

workplace,” according to a Google spokesman in an

interview with the New York Times.14 Carefully engineered

casual collisions between employees drive both creativity

and production.

3.2.4 Genius clusters

Why did Western philosophy originate in and around Greece,

where so many other culturally important concepts come

from? Why was Florence the center of innovation during the

Renaissance, influencing the future not only of music but

also that of art, architecture, economy, and politics? Why did

so many artistic talents gather in Paris in the 19th century? A

century later, the epicenter of art was somehow moved from

Europe to New York. Why is working in Silicon Valley a dream

for so many technologists nowadays?

Foreign correspondent and reporter Eric Weiner traveled

around the world to explore these questions in his work, The

Geography of Genius.15 Weiner is fascinated by creativity and

wanted to find some answers that might help him better

raise his daughter. “It’s already too late for me, so I’ll content

myself with writing about creativity instead,” he concludes.

This might disappoint, but most of the time there is no single

answer to the big geographical creativity question. These

clusters of inventiveness, which Weiner calls genius clusters,

appear and dissolve as power is concentrated and lost in

certain geographic areas.

For example, Alexander the Great’s unquenchable thirst for

conquest eventually helped distribute Greek literature well

into ancient Persia. Alexandria was founded during his brief

stay in Egypt, which would evolve into one of the most

influential cities of the world with the help of Ptolemy and his

successors.

Alexander, who always carried a copy of Homer’s Iliad, was

fascinated by Greek literature. Ptolemy, a then-faithful

companion of Alexander, recognized this and started seizing

and copying every single piece of written papyrus paper that

arrived in Alexandria. It wouldn’t take long before the Great

Library of Alexandria was bursting with books—of which a

great deal sadly got lost in flames thanks to Roman

carelessness and the later Muslim invasion.

The Great Library attracted a lot of intellectuals. In a way,

Alexandria became one of the first international academic

research centers. It is said that Archimedes invented his

Archimedes’ Screw while studying at the Library. Irene

Vallejo, an academic history researcher fascinated by all

things classical antiquity, shares her excitement for the

ancient library in her exposition on the history of books:16

The electrifying atmosphere around those fully written rolls and their

accumulation had to be something like the current eruption of creativity

brought about by [the] internet and Silicon Valley.

Knowledge wasn’t the only reason to fear or respect

Alexandria. The papyrus plant thrived across the Nile Delta,

making it an ideal export product, next to grain. Ancient

Egypt acted as the granary of the Mediterranean world:

when the grain flow stopped, famine and war erupted across

the region. Grain was then what oil is now: an ideal way to

apply pressure.

Other genius clusters also originated organically—and

gradually. Weiner notes that in Florence, the Church’s

invention of purgatory and the subsequent selling of

“indulgences” to cleanse the sinful spirit introduced a big

flood of money that would be spent to commission the

impressive monuments we still admire today. The gold rush

naturally attracted the geniuses of that era. Weiner

concludes that, not the individual, but the organization and

city that commissions (creative) work is the real genius.

Most creators Weiner studied did not become geniuses in

their place of birth: they flourished only when becoming

immigrants. Geniuses are not born; they are made. If the

conditions are right, geniuses are attracted to certain places,

like Jean Tinguely was to Paris.

What, exactly, those conditions are remains unclear,

although it hasn’t stopped us from trying to replicate genius

clusters in fancy business parks—or campuses, as the trends

dictate, like the one in figure 3.5—that should spark

creativity. While these commendable efforts undoubtedly

increase cross-business conversations and perhaps

partnerships, synthetically creating true genius clusters

might prove to be impossible.

Figure 3.5 The Corda campus close to my home in

Hasselt, Belgium, is an example of a modern

technology site that focuses on what business

conglomerates and owners call “business

communities”: where people and companies, both

large and small, come together to grow ideas. In

short, it is one of the many business parks engineered

as a genius cluster skeleton. Photo © Karel

Hemerijckx.

Game designer Tim Shafer did mention the Lucas Ranch,

which presumably was designed to accelerate creative flow,

as a special place to work. We’ll cover the physical work

environment as a creative stimulant or blocker in chapter 7.

Urban planners and architects love to cite the following

quote from urban studies theorist Richard Florida’s book The

Rise of the Creative Class,17 which is echoed by Weiner’s

conclusion, mentioned earlier: “It is not companies but

places that provide a pool of talent.” And yet we continue to

put the companies instead of the places on a pedestal. If

that quote is in the vicinity of terms like entrepreneurship,

policy review, and strategic, it might be time to play a round

of buzzword bingo.

Cluster sizes and creativity

Should teams/Cameratas/genius clusters be big and bold or modest in size

to facilitate creative outcome? That’s a tough question to answer that,

again, depends on many variables.

Creativity researchers You-Na Lee and colleagues discovered that, on the

one hand, team size has an inverted-U relation with novelty but, on the

other hand, a continually increasing relation with effect.
18

 Thus, in general,

teams that are too tiny or too large equal not much creative work, but large

teams equal more reach. There are, as always, exceptions.

Note that Lee et al.’s investigation took place in scientific teams in

academia, not software developers in industry. Other papers hint at an

increased amount of conflict within groups that are too large, leading to a

lot of squabbling and little productive outcome.

What is the ideal team size? Scrum rules dictate around seven, but scrum

never mentions creativity—it’s just a way to get the job done. In general,

smaller means more agility, and bigger means more communication

overhead. Take the worrying trend of nearshoring or offshoring in

technology companies, for example. I expect anyone who has had the

(dis)pleasure of working in and syncing with multiple (remote) teams to nod

while reading this.

EXERCISE Does your current work environment resemble a

liquid network where you, like Tinguely said, feel like a fish in

water, or does it feel like a solid network, where hardly

anything is stimulating and too few ideas flow? If so, what

action could be taken to facilitate the happy collision of

dissimilar worlds?

3.3 Creative work in time

Time is, next to geography, another major factor that

facilitates or impedes creativity. Remember that your

creation is accepted as a creative outburst only when

experts conceive it as such. Sometimes, the world simply

isn’t ready yet for your invention. Municipal workers might

shake their heads in disbelief as you pave the streets with

marshmallows, while the effort certainly would be approved

by Roald Dahl’s Willy Wonka. Sometimes, an idea as sticky as

that one is considered a bit too progressive.

Sociologist and creativity researcher Pieter J. van Strien

acknowledges the importance of creating at the right

moment. In his book Het Creatieve Genie (The Creative

Genius),19 he laments the many misguided geniuses that

never made it into the history books. If only they had waited

a few more years to show their work.

The world is full of technological inventions that appeared

ahead of their time. Take the 1999 video game Outcast, for

example. Despite critical acclaim, the game sold poorly,

which ultimately forced the developer, Appeal, to cancel its

sequel and file for bankruptcy. In 2006, seven years after its

release—which is a very long time in the highly volatile

environment of gaming—several journalists praised Outcast

as revolutionary thanks to its free-to-explore 3D open world,

which was unheard of at the time. In 2001, Grand Theft Auto

III took that concept and ran with it. Why? In 1999, the world

wasn’t ready yet.

Do you think cloud-powered services like Microsoft 365 or

Xbox Cloud Gaming are novel inventions? As early as 1994,

the Sega Channel service took a first stab at bringing an

online content delivery system to the market, through a

coaxial cable television interface. It was praised for being

innovative, but its launch was poorly timed, making the

product disappear into obscurity almost as fast as it

appeared. Or how about the mid-1990s set-top box WebTV

systems that marked the first television-based use of the

internet? Or what about Apple’s 1987 HyperCard software,

which uses hypermedia to link a stack of virtual “cards”?

Again, the web (and the wiki and JavaScript) took those

concepts and ran with it.

Multiple former LucasArts members mused about “the right

time” to create The Secret of Monkey Island. They were

competing with Sierra On-Line’s King Quest series, which

was outselling Maniac Mansion, possibly because of the

medieval setting. With their SCUMM engine in place, more

time could be spent on the story, puzzles, and graphics.

History proved that it was high time for a pirate game.

If the first Monkey Island appeared a year or so later, Sierra

On-Line might have churned out something that would have

dwarfed it. If the idea popped into Ron Gilbert’s mind a few

years earlier, Monkey Island might have been Monkey Village

because of hardware limitations. The window of opportunity

is always small.

In the introduction to this book, we encountered Vincent van

Gogh’s bad luck while trying to make a living as a painter.

This is typical for art: first, new techniques or ideas are seen

as ridiculous and promptly rejected. Georges Braque and

Pablo Picasso iterated on cubism for many years before it

became a proper art movement. It usually takes at least a

decade of persistence to convince the critics—unfortunately,

a decade too late for van Gogh.

Sometimes, though, it takes more than a century. Gustave

Courbet’s L’Origine du monde (The Origin of the World), a

close-up view of the genitals of a naked woman, painted in

1866, needed 122 years before a forward-thinking curator

deemed it ready for the general public, in 1988 in New York.

And even then it shocked everybody. It is said that the

person who commissioned the painting bought another one

of the same size depicting a conventional landscape to place

in front of L’Origine when receiving guests. Better to hide it

than to cause a big outrage. I didn’t have the guts to include

a photo of the artwork; I’m sure you’ll know where to look.

Italian contemporary artist Lucio Fontana managed to baffle

me while visiting the City Museum of Amsterdam. Instead of

gazing at paint strokes neatly brought together on a canvas,

I found myself looking at a hole. Fontana called it Concetto

Spaziale: a white canvas with a curving cut made by a sharp

knife. It renounces the idea that a painting is a flat surface

that can create the illusion of depth by painting on it.

I tried imagining the artist, standing in front of a stretched

canvas. Concentrating, taking a deep breath. Perhaps

standing there for an hour. Then, suddenly, whipping out a

knife and taking a jab at the canvas, revealing a portion of

the darkness behind it. I gave up. I wasn’t ready for that

artwork yet.

3.3.1 The adoption curve

New ideas, products, and practices take time to diffuse. This

idea was made popular by agricultural researchers Ryan and

Gross, who published a classic study on the diffusion of

hybrid corn as early as 1943.20 The authors plotted a curve

that categorizes farmers willing or unwilling to adopt the new

corn species (figure 3.6). The study revealed two things:

The adoption process began with a small

percentage of farmers who were willing to try out

something new. From there, the innovation

cascaded to other farmers.

The most influential factors were the neighboring

farmers. When they saw and talked to farmers who

had adopted hybrid corn, they adopted it, too.

Figure 3.6 An innovation curve, still widely used in

business and marketing to explain how new products

are gradually adopted. In theory, the innovators and

early adopters should help you win the early and late

majority market. In theory.

Other researchers began taking interest and drew their own

innovation curve, describing different stages of the process:

awareness, information, evaluation, trail, adoption.

Programmers following ThoughtWorks’ well-known

Technology Radar21 will certainly recognize these terms.

In essence, trying to conquer the whole market from left to

right takes time. Sometimes, it’s a good idea to try to

influence the innovators who will carry on to spread the word

on your behalf. Sometimes, it’s not, as the group is too small.

Over the past 70 years, Ryan and Gross’s adoption curve has

been met with a fair amount of criticism. Innovation spread

through word of mouth is never homogeneous, and farmers

never neatly stay in one category.

Despite its flaws, the adoption curve remains popular and

insightful when trying to break into a new market. The

nineties video game Outcast never made it past the tech

enthusiasts. Van Gogh’s paintings did, but it took too long.

Who knows where this book will land on the curve.

EXERCISE Does your team take the adoption curve into

account when deciding which new technology to use on a

certain project? Did your team, as an early adopter or a

laggard, ever regret that choice afterward? How about

positioning your clients on the curve—do they always

upgrade to your latest software, or are they more skeptical?

3.4 When creative flow is

impeded

So far, we know that it’s important to lean on others to fuel

our own imagination—to stand on the shoulders of giants.

We also know that these giants like to cluster together in

certain places. Last, we need to meet the giants at the right

moment. Too soon, and they won’t be there to embrace our

ideas. Too late, and someone else will have stolen our plans.

During our interviews to investigate the role of creativity in

software engineering, many programmers recognized the

need to communicate, remembering several disastrous

projects where the number one thing that went wrong was . .

. the coordination within the team (or between teams).

3.4.1 Social debt

Behavioral software engineering researcher Damian Tamburri

has a special word for communication gone awry in software

development teams: social debt. The first thing that must

have sprung to mind while reading this was probably

technical debt. At least, that was my first thought when I

read about social debt in an academic article titled “The

Architect’s Role in Community Shepherding.”22

We as software developers are more than aware of technical

debt when working with outdated or legacy code and the

many code problems that come with it. When in luck, a small

portion of the smells eventually get translated into technical

user stories and picked up in a sprint. When less lucky, these

smells breed more smells, and before you know it, things will

have grown completely out of control.

We software developers talk about code smells all the time.

We organize working groups and ensemble programming

sessions to identify and get rid of them, we read books such

as the aforementioned Refactoring and Robert Martin’s Clean

Code,23 and we might even complain to our partner at home

about yet another shortcut that had to be made today

because of time constraints, introducing a smell instead of

cleaning one up. But the software development problems do

not end there—technical debt is only the most obvious

problem.

Code smells and technical debt

Just to be clear, let us rehash a few definitions. What, exactly, is technical

debt? It is the cost that comes with doing things “the easy way,” when a

better technical approach should have been taken instead. If it is not fixed

in time, it accumulates “interest,” meaning certain improvements will

become harder over time.

An example is a few design patterns that are repeatedly abused but

tolerated until it is too late to refactor the code without breaking a bunch of

things. Abusing static variables is also a well-known characteristic in code

indicating a bigger underlying problem, also called a code smell, a term

coined by Kent Beck but really popularized by Martin Fowler’s Refactoring

book.
24

 Of course, some technical debt, just like regular debt, can be

justified: it is not always a lazy choice.

3.4.2 From technical to social debt

Technical debt might be annotated with @TechnicalDebt

in code—I’ve seen it inserted and then happily ignored—but

what about social problems in development teams? We all

know it severely affects team performance—perhaps orders

of magnitude more than a few “simple” code smells you

have to work around (or, ideally, fix). We also all implicitly

know a couple of community smells: just like code smells,

they’re anti-patterns that emerge time and time again in

(development) communities and negatively affect the

creative efforts of the team.

I really like the terms social debt and community smells,

because they perfectly accompany their better known

counterparts technical debt and code smells. I encountered

these terms in Damian Tamburri’s papers, in which he talks

about the “shepherding” role of the software architect (or

team/DevLead, for that matter), who is a negotiator who

should try to minimize the effects of both kinds of smells.

3.4.3 Community smells

The following is a selection of community smells identified by

Damian Tamburri’s team, from interviewing many

practitioners:

Time Warp—An organizational change that leads

team members to wrongly assume that

communication will take less time and that

coordination isn’t needed, leading to unresolved

problems, code smells, and thus low software

quality

Cognitive Distance—Perceived distance between

peers on physical/technical/ social levels that

causes distrust, misinterpretations, and wasted

time

Newbie Free-Riding—Newcomers being left to

themselves, which causes irritation and high work

pressure

Power Distance—The distance that team members

with less responsibility perceive, accept, or expect

with power holders that impedes knowledge

sharing

Disengagement—Thinking the product is mature

enough to ship when it’s not, due to unchecked

assumptions and a lack of engagement

Priggish Members—Extremely demanding and

pointlessly precise people who cause unneeded

delays and frustrations within the team

Cookbook Development—Programmers who are

stuck in their ways and refuse to adapt to new

technology and new ideas

Institutional Isomorphism—Imposed sameness of

processes and frameworks between different

teams that reduce flexibility, morale, and

collaboration

Hyper-Community—A too-volatile thinking

environment where everything constantly changes,

which results in buggy software

DevOps Clash—A strict separation of development

and operations teams, perhaps even

geographically, that causes culture clashes and a

lack of trust

Informality Excess—Excessive informality due to a

total lack of protocol, causing low accountability

Unlearning—New technologies that become

unfeasible to adapt because older employees

refuse to do so, causing a loss of new knowledge

and practices

Lone Wolf—“That guy” who commits without

taking others’ opinions into consideration

Black Cloud—Information overload without a clear

way to manage it within teams and between

teams, resulting in a loss of potentially great ideas

I love these analogies because it suddenly makes it much

easier to actually talk about the problem. It is important to

note that the names of the smells emerged simply from

analyzing and grouping together what programmers said

during interviews. Some might resonate very much with you,

and others not so much. You can easily come up with

variations or completely new smells to take your team’s

unique context into account.

You might be wondering what this has to do with creativity.

Well, everything! Easy access to information and resources is

crucial to expressing creativity. Got a Black Cloud or stuck

with Unlearning problems? Tough luck. The dangerous

combination of Cognitive Distance and Time Warp with a

DevOps Clash thrown in for good measure can have

devastating consequences for the team morale.

Psychology academics devoted a whole research subdomain

to team creativity, next to individual and organizational

creativity,25 where team processes, composition, dynamics,

and methods are investigated in relation to creative output.

Their conclusion? An excess of conflicts is bad. Who would

have thought?

Jumping from code smell to community smell isn’t a big

stretch, and everyone knows communities don’t build

themselves. As mentioned in section 3.1, Jessica Kerr went

as far as saying great development teams are

symmathesized.

My own personal experience isn’t far off: work with people,

not technology. That means, when programming in teams,

the community smells just listed should receive more

attention than “mere” code smells. Thorough readers will

have noticed that many community smells are responsible

for code smells.

Nowadays, most software-centered conferences include a

social problems track. There certainly is some attention for

social and psychological aspects of software engineering, but

not nearly enough. That is the most important reason why I

chose to rejoin academia and ultimately write this book.

Damian asserts that it is primarily the role of the architect to

act as a shepherd to take care of the flock: “We’ve always

claimed that architects are much more than just a ‘technical

lead,’ but now they must also be an active community

shepherd.” While I think it is dangerous to explicitly give that

responsibility to a single person on a team, I do agree that

making implicit problems explicit is the beginning of a

solution. However, the jelling of the team isn’t the work of

one architect. Rather, it’s the accumulated effort of every

single person who interacts with the system, and the system

that interacts with every single person, which is all the more

reason for everyone on the team—including nontechnical

people—to familiarize themselves with the concepts of social

debt and community smells.

The work of Damian’s academic colleague, Gemma Catalino,

builds on Damian’s. In 2021, she published a paper on her

team’s understanding of the variability of community

smells.26 The paper isn’t as powerful as the introduction of

the concept itself, although it contained one sentence that

really resonated with me: “Communication is the key factor

to reduce social debt.”

Let us bring the concepts of social debt and community

smells outside of the academic software engineering circles

and inside the development teams in industry, where it

belongs and is critically needed. Or perhaps simply scribble

@SocialDebt on a sticky note and smack it on the back of

one of your peers to call it a day.

3.4.4 Getting out of social debt

There are countless books, articles, best practices, methods,

models, insights, experiments, and theories out there to help

identify and minimize team-based problems. It would not

make much sense to attempt to summarize every work here.

A few things stand out, though. The programmers my

colleagues and I interviewed mentioned accountability, for

example—not simply holding others responsible for actions

gone wrong, but instead sharing responsibility as a group.

Behavioral expert and former management consultant

Christopher Avery expanded this idea into a Responsibility

Process 27 specifically focused on teamwork. Avery teaches

us to stop reveling in deny, justify, or blame states we can’t

seem to get out of and instead take (shared) responsibility to

face the problem and do something about it.

A shared responsibility should minimize Cognitive Distance,

DevOps Clashes, and Disengagement community smells. I’ve

read questionable practices that require developers to even

check in their cellphone number together with code changes

in case things break. Companies that enforce such dubious

methods seem to have forgotten the essence of

responsibility—that it is shared.

Another way to mitigate social debt is the effective use of

pair programming. Pair programming effectively negates

Lone Wolf, Unlearning, Cookbook Development, and Newbie

Free-Riding smells—that is, as long as the team takes the

shared responsibility to regularly switch pairs.

Pair programming not only helps in battling social debt; its

long-term effects include facilitating insight (the “aha!”

moment—more about that in chapter 7) through collective

learning, higher quality code thanks to two pairs of watchful

eyes, and even more happiness and confidence in the work—

both for experienced coders in industry and software

engineering students.28

If pair programming leads to happy programmers, what,

then, is the result of that increased happiness? More

creativity. There is plenty of evidence for that in both

academic and popular literature. Companies are starting to

become well aware of the fact that happy employees are

better-performing employees. HR managers are suddenly

promoted to “Chief Happiness Officer,” to dedicate their

efforts to increasing well-being at work.

Don’t be fooled, though: the only reason employers are

interested in your well-being is your work performance—

including your creative skills to solve their complex

problems. The happiness-creativity relationship functions as

a reinforced feedback loop: more creativity also leads to

more happiness. Mihaly Csikszentmihalyi summarizes it as

follows29:

For many people, happiness comes from creating new things and making

discoveries. Enhancing one’s creativity may therefore also enhance well-

being.

EXERCISE Which of the above community smells cause

alarm bells to ring in context of your current development

team? If none do, congrats, you’re part of a dream team! Or

perhaps the hidden social debt present in your team doesn’t

neatly match any of the above. If that is the case, feel free to

make up your own smells.

Summary

A collective creativity significantly improves our

individual creative efforts. Engage in a community

with like-minded but diverse people to discuss and

improve your and others’ work.

That same collective has the tendency to

organically cluster in creative regions, or genius

clusters. Synthetically engineering genius clusters

has proven to be quite difficult.

Time is, next to geography, another major factor

that potentially facilitates or impedes creativity.

The innovation curve teaches us that ideas take

time to diffuse.

Engaging in mutual learning is, as the word

implies, beneficial for both the trainee and the

trainer. Mutual learning is much more effective

than either transmitting or receiving knowledge.

Seek to cross-pollinate ideas across multiple

domains and groups. Do not limit your interest to

the things you know. Seek out experts. Broaden

your horizon.

Creativity is systemic: it is a complex (living)

system that is more than the sum of its pieces and

wholes.

Provide—and welcome—genuine critical feedback

instead of mirroring others’ opinions, to avoid the

echo chamber effect.

Be mindful of the kind of network you find yourself

in when working or attending gatherings. Are ideas

stagnating (solid), following each other at a

dazzling pace (gas), or effectively spreading

(liquid)?

The creative flow of software development teams

can be easily impeded by social debt.

Communication is the key factor to reduce social

debt. Identifying and naming community smells

might be a good place to start.

1.
Ruth Katz. Collective problem-solving in the history of music: The case of the

Camerata. Journal of the History of Ideas, 1984.

2.
See Chris Matts’s report on his blog at

https://theitriskmanager.com/2019/05/25/the-london-agile-software-camerata/.

3.
Wouter Groeneveld, Brett A Becker, and Joost Vennekens. Soft skills: what do

computing program syllabi reveal about non-technical expectations of

undergraduate students? Proceedings of the 2020 ACM Conference on

Innovation and Technology in Computer Science Education.

4.
See https://jessitron.com/2018/04/15/the-origins-of-opera-and-the-future-of-

programming/.

5.
Nora Bateson. Small arcs of larger circle: Framing through other patterns.

Triarchy Press, 2016.

6.
Matteo Cinelli, Gianmarco De Francisci Morales, Alessandro Galeazzi, Walter

Quattrociocchi, and Michele Starnini. The echo chamber effect on social media.

Proceedings of the National Academy of Sciences, 2021.

7.
The legacy of Monkey Island. Retro Gamer, no. 212, p. 18.

8.
The Retro Gamer guide to Tim Schafer & Double Fine. Retro Gamer, no. 216, p.

46.

9.
Steven Johnson. Where good ideas come from: The natural history of

innovation. Penguin Publishing Group, 2011.

10.
Dean Keith Simonton. Foreign influence and national achievement: the impact

of open milieus on Japanese civilization. Journal of Personality and Social

Psychology, 1997.

11.
Seth Godin. Linchpin: are you indispensable? How to drive your career and

create a remarkable future. Piatkus Books, Hachette UK, 2010.

12.
Randall G Holcombe. Cultivating creativity: market creation of agglomeration

economies. Handbook of creative cities. Edward Elgar Publishing, 2011.

13.
Andy Hunt and Dave Thomas. The Pragmatic Programmer: from journeyman to

master. Addison-Wesley Professional, 1999.

14.
James B. Stewart. Looking for a lesson in Google’s perks. New York Times,

March 15, 2013. https://www.nytimes.com/2013/03/16/business/at-google-a-

https://theitriskmanager.com/2019/05/25/the-london-agile-software-camerata/
https://jessitron.com/2018/04/15/the-origins-of-opera-and-the-future-of-programming/
https://www.nytimes.com/2013/03/16/business/at-google-a-place-to-work-and-play.xhtml

place-to-work-and-play.xhtml.

15.
Eric Weiner. The geography of genius: a search for the world’s most creative

places from ancient Athens to Silicon Valley. Simon & Schuster, 2016.

16.
Irene Vallejo. Papyrus: een geschiedenis van de wereld in boeken. Meulenhoff,

2021.

17.
Richard Florida. The rise of the creative class, volume 9. Basic Books, 2002.

18.
You-Na Lee, John P. Walsh, and Jian Wang. Creativity in scientific teams:

Unpacking novelty and impact. Research Policy, 44(3), 2015.

19.
Pieter J van Strien. Het creatieve genie: het geheim van de geniale mens.

Amsterdam University Press, 2016.

20.
Bryce Ryan and Neal C Gross. The diffusion of hybrid seed corn in two Iowa

communities. Rural Sociology, 8(1): 15, 1943.

21.
See https://www.thoughtworks.com/radar.

22.
Damian A Tamburri, Rick Kazman, and Hamed Fahimi. The architect’s role in

community shepherding. IEEE Software, 2016.

23.
 Robert C. Martin. Clean code: A handbook of agile software craftsmanship.

Pearson, 2008.

24.
Martin Fowler. Refactoring: Improving the design of existing code, 2nd ed.

Addison-Wesley, 2019.

25.
Ming-Huei Chen. Understanding the benefits and detriments of conflict on

team creativity process. Creativity and Innovation Management, 2006.

26.
Gemma Catalino, Fabio Palomba, Damian Andrew Tamburri, and Alexander

Serebrenik. Understanding community smells variability: A statistical approach.

IEEE/ACM 43rd International Conference on Software Engineering: Software

Engineering in Society, 2021.

27.
 Christopher M Avery, Meri A Walker, and Erin O Murphy. Teamwork is an

individual skill: getting your work done when sharing responsibility. Berrett-

Koehler, 2001.

28.
Max O Smith, Andrew Giugliano, and Andrew DeOrio. Long term effects of pair

programming. IEEE Transactions on Education, 2017.

29.
Mihaly Csikszentmihalyi. Happiness and creativity. The Futurist, 1997.

https://www.nytimes.com/2013/03/16/business/at-google-a-place-to-work-and-play.xhtml
https://www.thoughtworks.com/radar

4 Constraints

This chapter covers

A taxonomy of beneficial constraints

How to deal with intrinsic and imposed constraints

Leveraging self-imposed constraints to reach the creative

sweet spot

The effects of naivety on creativity

The whispering whizz of mowing scythes startled sleepy

birds nesting near the ancient Nile Delta. Workers harvested

the papyrus plant quickly and efficiently, before the

unbearable heat of the Egyptian sun turned the labor into an

even bigger nightmare. The fibers of these plants were to be

converted into a valuable writing material similar to paper by

expert papyrus makers.

In the 2nd century bc, King Ptolemy V promptly ordered

craftsmen to stop exporting one of their treasured national

products. The reason was as simple and mundane as

jealousy. A rival library in Pergamon, in Mysia (now western

Turkey), had gained enough traction to greatly annoy the

king, who wanted to protect the fame and power of his Great

Library of Alexandria at all costs.

The sudden papyrus shortages did not stop the Hellenistic

King Eumenes II from expanding the library in Pergamon. His

hunger for literature was much, much bigger than the

literary ambition of his predecessors. The papyrus plant does

not grow well outside of the Nile delta, and resorting to clay

tablets greatly decreases the capacity of a single book.

Instead of accepting defeat, Eumenes’s experts perfected

the Eastern art of writing on animal skin, a method that until

then was only used locally and not highly regarded.

Ptolemy’s masterstroke turned out to be a painful mistake. It

was called parchment—pergameno in Latin—as a memory to

the city where this technique was perfected, and it was

parchment that made sure Ptolemy’s already crumbling

Alexandria lost even more political power: texts could

suddenly be relatively cheaply copied without the need of

papyrus.

Twenty-one centuries later, the rhythmic scratches of swift

and wet brushstrokes rubbing against a canvas entranced a

lone painter in a big mansion near Aix-en-Provence in the

south of France. Paul Cézanne’s daily exercise of drawing a

basket of apples, again and again, gradually shifted his ideas

of painting a subject from a single viewpoint to a

combination of multiple angles.

Cézanne attempted the impossible: to paint different

compositions using only one canvas. Yet, the end result

achieved in 1893 was a surprisingly balanced but disjointed

perspective, precisely because of the unbalanced parts,

which were all drawn using a slightly different vantage point.

Cézanne’s Le Panier de Pommes challenged the idea of

linear perspective. Painters had been using a single vantage

point for centuries to create the illusion of space and depth.

Everyone just assumed it was impossible without resorting to

another canvas. This achievement earned Cézanne the title

“The Father of Modern Art,” because his paintings paved the

way for Fauvism and especially Pablo Picasso’s and Georges

Braque’s art movement, Cubism.

At the end of the next century, the busy sound of mechanical

keystrokes filled The Black Cube, an office space in Mesquite,

Texas. A small team of designers, programmers, and artists

were working on their next video game that would take the

world by storm: John Romero, Tom Hall, Sandy Petersen, John

Carmack, Dave Taylor, Adrian Carmack, and Kevin Cloud—

the team of developers at id Software—were developing

DOOM in 1992.

The keystrokes did not come from classic, beige-looking

keyboards attached to 80386 IBM PCs. They came from sleek

black keyboards connected to NeXTstation computers

running the NeXTSTEP operating system, the UNIX-based

precursor to macOS. Carmack and his team found that cross-

compiling on NeXT hardware dramatically increased their

productivity. The workstations shipped with 17-inch monitors

that could handle more colors and larger resolutions,1

helping DOOM’s map designers get the job done much

faster.

Carmack admitted to spending more than $100,000 on NeXT

computers during the entire course of the development of

DOOM and Quake.2 For many developers and designers,

even the “cheaper” NeXTstations were well beyond their

budgets. Still, their high price tag turned out to work well for

id Software. By rejecting conventional IBM PCs as

workstations, they were able to churn out the bloody space

marine shooter in just over a year, making millions within the

first year of release.

Figure 4.1 The DoomEd map editor running on the

NeXT OS, which was made possible thanks to the

release of the DOOM source code in 2015. Without the

raw power of the NeXT machines, simply creating the

DoomEd software (which also took 20,000 lines of

code) would have taken at least twice as long.

Screenshot courtesy of Fabien Sanglard.

4.1 Constraint-based thinking

What is the greatest common divisor between Eumenes’

reaction to being cut off from Ptolemy’s papyrus supplies,

Paul Cézanne’s stubbornness in clinging onto a single canvas

to paint multiple viewpoints, and id Software’s decision to

move a majority of the development process onto NeXT

computers? All three examples showcase a challenge to

overcome, and all three resulted in radical, forward-thinking

inventions.

These challenges can be seen as constraints. Pergamon

suddenly lost access to papyrus. How could he supply paper

to scholars to keep on feeding the library and expand

cultural and political influence? Cézanne stubbornly insisted

on painting two vantage points on one canvas. How could he

fill one blank space to represent two similar but dissimilar

views? Carmack and his team refused to work with lower-

resolution and slower hardware. How could they exploit

technology to (partially) diminish hardware limitations?

Constraints prove to be of paramount importance when it

comes to creativity. These can be self-imposed, such as in

the case of Cézanne, who stubbornly kept painting on a

single canvas. Later artists do this often: adhere to a muted

color palette, draw only rectangles, don’t use paint at all,

and so forth. Musicians and photographers often use the

same self-imposed constraint technique to create truly

unique pieces of art. On the other hand, constraints can be

forced on you: in that case, you’ll have to either work with

what is given to you or find a way around it.

The end result of a process influenced by constraints can be

very progressive. No constraints, no creativity. Just like

collective creativity from chapter 3, it is one of the many

important factors to take into account when trying to solve

problems creatively. As 19th-century novelist and scientist

Johann Wolfgang von Goethe keenly observed: “He who’d do

great things must display restraint; The master shows

himself first in confinement, And law alone can grant us

liberation.” Remember that the next time you’re forced to

work with legacy code and a cruddy existing database

system.

4.1.1 Greenfield or brownfield?

Constraints drastically improve creativity. This might come

across as counterintuitive because constraints are widely

regarded as bad. Too little time or money. Too much

pressure, too limited hardware to realize that ambitious

software project. Too old software architectures to build a

new layer on, too outdated Java Development Kits to

comfortably program in. Too many requests in one second to

handle flawlessly, too unstable network connections, or too

little bandwidth. Too much whining about constraints in the

team.

Working on what is called a greenfield project certainly can

be a lot of fun—and creative: you get to choose a fancy new

technology, there are virtually no limits when it comes to

development and deployment pipelines, and most important,

there’s no annoying, existing, decaying but still-important

piece of software you have to build around. Great!

On the other hand, a brownfield project, where you cannot

simply start with a clean slate, is likely to trigger more

creative behavior, precisely because of the limitations you’re

forced to deal with. I’m not claiming it’s a lot of fun; I’m

simply trying to convince you that constraints can be a good

thing. Guess which of the two types of software projects

you’ll encounter most often in the wild?

This also shines through in our developer interviews. A few

participants stated that working on a problem without any

form of constraints ultimately results in boredom. There’s no

frustrating but exciting deadline to meet or manager to

convince, no annoying but valuable feedback from clients to

take into account. You can do whatever you want, whenever

you want. Sounds fun, right? It is—for the first few weeks—

until the boredom sets in.

Learning software development:

Greenfield or brownfield?

In higher education, software engineering students are usually served

neatly preprocessed and carefully defined programming problems to solve—

in other words, small greenfield projects. If the aim is to train the syntax,

this works.

However, if the aim is to learn how to apply design patterns in the real

world, how to cope with large software projects, and above all, how to

cleverly work with existing constraints to arrive at a creative solution, this

doesn’t work. Adam Barr, a Microsoft veteran who analyzed 50 years of

software engineering history, advocates for the use of real-world open

source projects in academia precisely because of that. And yet computing

education research turns a blind eye and keeps on dutifully studying and

applying greenfield approaches. I admit I’m guilty of this, too: greenfield lab

exercises are easier to come up with, maintain, and grade.

This story can serve as an interesting thought experiment. How do you train

your junior programmers or interns? Are they handed a separate, nicely self-

contained playground where nothing can go wrong, and when it comes to

constraints, little will be learned? Or can they code along with a more

experienced colleague to learn how to properly and creatively deal with

constraints?

If constraints are universally bad, then why do so many

innovators and artists willingly choose to adopt them? They

use constraints to break through, to “think outside the

box”—you knew that was coming. Let’s investigate a few

archetypes of constraints to better understand the

relationship with creativity.

4.1.2 A taxonomy of constraints

The structure of the following sections has been adapted

from Norwegian social and political theorist Jon Elster, who

specializes in rationality and constraints. His beneficial

taxonomy of constraints, as shown in figure 4.2, allows

creativity scholars—and us—to gain more insight into which

constraints are of paramount importance when it comes to

radical decision making.

Figure 4.2 A taxonomy of beneficial constraints

adapted from Elster’s work Ulysses Unbound3

Not all constraints are beneficial to the task at hand, but for

the purpose of creative problem solving in software

development, we’re interested only in those that are. Elster

calls constraints that evoke some kind of benefit to the

constraint agent—but are not chosen by him—incidental. On

the other hand, constraints that are self-imposed for the sake

of some creative benefit are called essential. A third typology

is the distinction between hard (material, technical, financial)

and soft (conventions) constraints. The most important

personal freedom is found in self-imposed constraints. But

first, let us take a closer look at the two categories of

incidental constraints.

EXERCISE As a software developer, do you consistently

identify every constraint of the current task? Do you

approach incidental constraints with a different creative

mindset compared to essential constraints? If so, why do you

think that is the case?

4.2 Intrinsic constraints

Perhaps the most obvious ones, intrinsic constraints are

inherent to the properties of the problem to which the

specific task belongs. If you’re an artist and produce

paintings on canvas, the physical material of the canvas and

the paint (whatever the type) are intrinsic constraints. If

you’re a programmer, you’ll have to work with code—

whether it’s JavaScript or an Assembly dialect, the principle

stays the same. Squirting acrylic tubes onto a canvas won’t

help you deliver that software to clients, unless you come up

with a paint code image recognizer, converting your

contemporary art back into code. Intrinsic constraints are

considered incidental: they’re simply there, and we have to

work with them (or around them).

4.2.1 Intrinsic hardware constraints

By investing in expensive NeXT hardware, the DOOM team

rejected intrinsic constraints bound to typical IBM PC

hardware at the time. Of course, they were still bound to

some form of intrinsic constraints: a quad core CPU wasn’t

invented yet, and NeXT motherboards didn’t exactly come

slotted with gigabytes of DDR RAM. In the wonderful world of

computing, these constraints constantly evolve, but they

hardly ever completely disappear.

Other game studios chose to embrace the shortcomings of

the current generation hardware. LucasArts’4 Monkey Island,

for example, first encountered in chapter 3, has a distinct,

pixelated art style. This isn’t because the team decided to

work with a muted color palette, but rather because of

hardware limitations.

In 1984, the Enhanced Graphics Adapter (EGA) superseded

the then-standardized CGA graphics display system present

in IBM PCs. The 8-bit ISA EGA cards had usually up to 64 KB

of working memory. Take that, gigabytes! Even though

daughter boards could expand the RAM, allowing for higher

resolutions (640 × 350), EGA produced a display of only 16

colors, of which the palette was fixed.

Sixteen colors. Sixteen. I’ll let that sink in for a while. Yet,

The Secret of Monkey Island is an extremely charismatic

game precisely because of its artful and dark background

renderings. Mark Ferrari, one of then-LucasArts’ artists,

found a way around the intrinsic EGA constraints by using

the dithering technique: drawing pixels of alternating colors

in checkerboard patterns to create the illusion of a broader

color range that is more appealing to the eye. The clunky

early-nineties monitors further magnified the dithering effect

thanks to CRT’s natural tendency to blend pixels.

Loom was the first game to receive the full dithering

treatment, allowing Mark to further perfect the technique

while taking on Monkey Island’s scenery. The team found a

way to compress the dithering graphics, allowing for even

bigger scenes and character art. At the time of release in

October 1990, VGA graphics would have superseded EGA,

although the new hardware was still very expensive. Many

people playing the adventure game on their old EGA-

powered IBM PC thought their computer had somehow been

upgraded overnight. It looked like VGA thanks to creative use

of hardware despite its limitations, thereby overcoming

constraints. A VGA version of Monkey Island would

eventually be released that implemented 256-color support,

allowing for even more advanced background and character

art (see figure 4.3).

Figure 4.3 One of the first scenes in The Secret of

Monkey Island, pictured in EGA (top) and VGA

(bottom). If you look closely around the curb, on the

house behind Guybrush, and in the sky, you should

notice slight differences and the checkerboard

pattern. The abundant night scenes helped further

reduce the need for a larger color palette since EGA’s

blue tints were the most flexible to work with. Its

successor, Monkey Island 2: LeChuck’s Revenge, fully

embracing VGA’s 256 colors, is much brighter.

Mark calls Monkey Island his “PhD thesis in dithered EGA

artwork,”5 thanking constraints for the team’s creative

results:

All those extreme limitations made it an extremely creative environment to

work in, because you had to take any idea you had as far as you could

figure out how to take it, to get anywhere.

Painstakingly drawing these impressive scenes pixel by pixel

in DPaint not only shows dedication but also proves that

sudden outbursts of creativity are propagated by intrinsic

constraints. Mark’s mastery over the DPaint tool sprouted

even more creative tricks present in Monkey Island, such as

smart color cycling to animate burning campfires and let the

reflected firelight dance on the nearby rocks in the

background.

Crashing the color cycle with Mark

Ferrari

If you’re inclined to learn more about EGA, DPaint, or Mark’s professional

career—which he summarizes as “falling backward into things”—be sure to

watch the Retro Tea Break interview at https://youtu.be/e-aJ8YNSYGs (also

available as a chapter in the Selected Interviews Vol. 1 by Neil Thomas). The

interview also touches on serendipitous creativity and chapter 3’s genius

cluster concept.

4.2.2 Intrinsic software constraints

https://youtu.be/e-aJ8YNSYGs

When working with a certain medium to express yourself,

intrinsic constraints help to shape the artistic outcome,

whether you want them to or not. For instance, different

types of paint have not only their own distinct look but also

their own painting practices, longevity based on moisture

level and lightfastness, consistency, and so on. Acrylic paint

dries quickly and is opaque, meaning you can paint from

dark to light colors, while in watercolor, it’s the other way

around.

The same principle applies to software. If you want to write

software, you’ll have to work within the intrinsic bounds of a

software development ecosystem: inputting symbols using a

peripheral such as a keyboard, issuing commands for

compiling (or interpreting), etc. You can’t paint code on a

canvas and expect it to magically compile and run.

To tell a computer how to work, you need a set of

instructions: this is intrinsic to software development. The

programming language choice may be up to you (a self-

imposed constraint) or not (an imposed constraint), but on a

higher level, it needs to adhere to the nature of software

development. Let’s first see what happens when someone

else tells you to use a certain programming language.

EXERCISE In your daily practice as a programmer, which

constraints are just there, intrinsically connected to the job?

Instead of fighting these, can you figure out a way to

creatively work around them? For example, in some

embedded operating systems, there’s no native threading

support. Coroutine-like green threads (e.g., in Go, Lua, PHP,

Perl) that run in user space instead of kernel space emulate

threads and “fix” this shortcoming—just like Mark Ferrari

“fixed” EGA’s limited color palette.

4.3 Imposed constraints

While intrinsic constraints are inherent to the material you

choose to work with, imposed constraints are limitations that

emerge from the stakeholders. In essence, these constraints

are the same, except this time you don’t get to choose the

material: someone else does. Your client wants the problem

solved before next Tuesday, and it should be done in PHP

since their maintenance team has to take over afterward.

Most classic, project-based constraints you have been

struggling with fall within this category: budget, time,

efficiency, relevance, and so forth.

The difference between intrinsic and imposed constraints

sounds marginal: either way, they’re still imposed and not

chosen freely. However, the psychological consequences

have a big effect on the team. For one, with intrinsic

constraints, (almost) nobody complains. If you were an

eighties PC developer, you worked with very limited

hardware capabilities, such as a few hundred kilobytes of

RAM and EGA. There was nothing else out there. If you’re a

skilled programmer and are keen to do things the 2022 way,

you might be looking into modern programming languages,

CQRS, domain-driven design, and so forth. Being forced to

extend an existing, horizontally sliced PHP system and

having to work your way around a decaying SQL database

suddenly doesn’t sound very creative or motivating.

That doesn’t mean it’s impossible to bring modern best

practices to older projects. For example, in one project, I

found myself plodding through incomprehensible domain

logic tightly locked into an endless set of Oracle SQL stored

procedures. The C++ layer, “the program,” was in fact an

empty box that endlessly transformed data until it was

pushed to the “domain layer”: the stored procedures.

Completely discouraged and unable to apply my beating

stick, test-driven development, I tried to tag along, feeling

more and more depressed, until I discovered SQL

Developer’s capabilities to unit test PL/SQL statements. The

command-line ututil tool even made it possible to

integrate it into the build system!

My joy didn’t last long. I was the only one on the team who

saw the benefit of relying on unit tests, and my feeble

attempts to convince others didn’t work out. Six months

later, frustrated with any lack of advancement on their part, I

moved on. Creativity requires willingness from everyone

involved.

In another project, we were gradually migrating customers

from a fat client software system built using Visual Basic 6 to

a modern web browser-based solution powered by C#. Since

both software systems had to be well maintained, we were

occasionally required to make changes in the legacy system

to adhere to various new laws, as the software was a

complicated payroll engine. There were only a few

employees left who knew what was going on in the VB6

codebase. It felt like a game of Jenga: pull out the wrong

piece and the whole thing falls apart.

SimplyVBUnit to the rescue! After a bit of fiddling, we

managed to come up with a working system that, although it

never got fully integrated, increased our confidence up to a

point that we dared to check the code changes into Visual

SourceSafe (figure 4.4). The unit test code is quite readable,

too, thanks to NUnit’s influence:

Public Sub MyTestMethod_WithSomeArg_ShouldReturn45

 Dim isType As Boolean

 isType = MyTestMethod(arg1)

 Assert.That isType, Iz.EqualTo(45)

End Sub

Figure 4.4 A portion of our VB6 unit tests running in

SimplyVBUnit. See

http://simplyvbunit.sourceforge.net.

A few years ago, an ex-colleague told me he was fed up with

those typical DTO (Data Transfer Object) practices and

managing their life cycle. “It felt like all we did is converting

from one layer into the next,” he said. The last stop before

persisting to disk is probably yet another data layer

portrayed by yet another acronym: ORM (Object-Relational

Mapping). He continued:

We were fed up with Hibernate’s whining and the endless lazy-loaded one-

to-many annotations gone wrong. Why do we always mindlessly import

these dependencies? So we decided, let’s just persist the first layer straight

into the database. And that’s exactly what we did. Simple serialization. And

that worked surprisingly well!

When you can’t work with a NoSQL system, just pretend the

SQL instance is a document store. Don’t forget to take data

migration problems into account. Instead of adopting a

negative view toward imposed constraints—resources are

limited, ideas easily rejected, and thus creativity is stifled—

try to adopt a more positive viewpoint. Limited resources can

still be worked with, ideas require perhaps more thought,

and thus creativity is pushed past the obvious. A constraint

isn’t necessarily a restraint!

EXERCISE Which imposed constraints do you have to work

with currently? Why do you think these are imposed rather

than intrinsic? Do some constraints make you want to tear

your hair out? How do you and your team cope with these?

4.4 Self-imposed constraints

http://simplyvbunit.sourceforge.net/

However useful constraint-based thinking is to spark

creativity, intrinsic and imposed constraints are still viewed

by creativity and design researchers as incidental.6 Self-

imposed constraints, on the other hand, can be seen as

essential, according to Michael Mose Biskjaer, a researcher

who specializes in constraints of creative processes and who

picked up where Jon Elster’s beneficial constraint taxonomy

left off. These types of constraints are deliberately and

voluntarily imposed for the sake of some expected benefit:

to boost creativity and invent original works. In his

dissertation on self-imposed creativity constraints, Michael

clarifies the idea:7

By abandoning the notion of divine inspiration and genius, a number of

classic and current avant-garde movements from around the 1920s and

onwards have conceptualised, devised and applied several highly

innovative and efficient creative intervention techniques all based on self-

imposed constraints. By intentionally setting up obstructions, “tripwires,”

imperatives, random input stimuli etc. for themselves, many of these artists

have soon come to discover that such strategies help ignite and stimulate

their creative processes considerably.

Who would want to voluntarily impose a time or budget

constraint on a project? We universally resent the dangerous

predicament we’re in when managers say it had to be done

yesterday with half the money that’s already been spent.

There’s a big difference between a tight but reasonable

constraint and an impossibly ridiculous one. The “tripwires”

Michael is talking about are in the former category.

According to Biskjaer, acts of self-binding fall into one of two

main categories: (1) boosting productivity and (2) affecting

and transforming the creative process itself as a means to

open up new opportunities for creative action, ultimately

(one would hope) resulting in a more original outcome. Strict

daily routines to block distractions and promote productivity

when it comes to coding fall into the first category.

Productivity tools, such as banning internet access or

reducing your workspace to a clean white screen,

intentionally block out distractions, allowing you to get stuff

done. Software like Serene for macOS is designed to block

distracting apps and social media, thereby increasing your

focus.

The dangers of always-on

messaging

The Serene promo video at https://sereneapp.com/ classifies Slack and

Skype as distracting applications, and rightly so. The always-on mentality is

extremely destructive to creativity, as indicated in countless publications.

Yet we somehow choose to ignore what the research says and carry on

messaging away.

It’s funny to see both Serene and Slack appear in many “Top 10 best

productivity apps” lists on various tech websites. Be very mindful when your

employer asks for your presence in various enterprise-like communication

apps. Your productivity and creativity are also in their best interest.

The second category, transforming the creative process,

should open the possibility of arriving at more original

outcomes. Artists are much more aware of the benefits of

self-imposed creativity than we programmers are. Famous

Russian composer Igor Stravinsky talked about imposing

limits to free oneself: “Human activity must impose limits

https://sereneapp.com/

upon itself. The more art is controlled, limited, worked over,

the more it is free.”8

But how can more limits equal more freedom? Because

creative freedom and creative self-binding by means of self-

imposed constraints are intimately entwined. Such a

constraint is both limiting and freeing. As we’ll see in the

later examples, limiting yourself to writing code of only 64

KB to produce a visualization means you’ll have to be much

more inventive and, thus, creative.

The evolution of imposing self-binding is clearly visible when

comparing early and late works from famous painters

exploring modernism, such as Pablo Picasso, Piet Mondrian,

and Wassily Kandinsky. Some even went as far as removing

everything there was to remove. In 1960, Jan Schoonhoven

cofounded the Dutch Nul-beweging (Zero-movement),

creating art while banning everything that smells and looks

“painterly.” Paint and emotion were replaced by cardboard

and geometrical repetition.

Laugh all you want: Schoonhoven’s unusual works are now

part of prominent art centers such as the Dutch Kröller-

Müller Museum and the French Centre Pompidou. A few years

ago, one of his white-textured reliefs fetched £780,450 at

Sotheby’s in London. Schoonhoven was a postman and did

all this in his spare time. Thank you, self-imposed

constraints. The following sections demonstrate how

deliberately transforming the creative software development

process using self-imposed constraints can remove the

shackles of the mundane.

4.4.1 Passionate pixel artists

Many self-imposed constraints originated as imposed

constraints. Let’s take a look at Mark Ferrari’s 2017 swan

song, Thimbleweed Park, cocreated by point-and-click

veterans Ron Gilbert and Gary Winnick. Released 27 years

after The Secret of Monkey Island, Thimbleweed Park was

designed to look like an unopened 1987 classic Lucasfilm

adventure game, patiently accumulating dust until someone

rediscovers the big box. Only, the world has moved on since

the 8-bit era of EGA, DOS, and DPaint, which is fortunate,

because nobody on the team really wanted to go back to

using crude tools of the eighties. Mark calls Thimbleweed’s

art “8-bitish”: all the background art is created in Photoshop

with a reduced resolution, harsh interpolation, and anti-

aliasing turned off. Some new features, like transparency

layers and parallax scrolling, managed to sneak into the

game without breaking the nostalgic atmosphere.

Ron, Gary, and Mark deliberately made Thimbleweed Park

look like an 8-bit game, not only because they were craving

big pixels, but also because their audience was 15,623

Kickstarter backers who had raised $626,250, almost twice

the initial goal.

According to Mark, pixel art has evolved from a crappy

technique inherent to the hardware to a full-blown art

movement that surpasses the gaming medium:

These days, you have pixel artists who are passionate about pixel art

because of the pixels. Back then, it looked horrible and was a huge step

down from drawing with colored pencils. But now, it has become an art

movement that perhaps even transcends gaming itself.

The recent resurgence of retro-inspired games proves that

Thimbleweed Park wasn’t a one-off. Some game designers

choose to fully embrace old technologies on new systems,

such as Ion Fury, a 2019 first-person shooter made in Duke

Nukem 3D’s Build engine, initially released in 1995. Ion Fury

runs on a highly optimized revision of the open source

EDuke32, but still. Others (DUSK, inspired by Quake; Project

Warlock, inspired by Wolfenstein 3D) opt to mimic the style

and atmosphere of their ancestors but prefer the comfort

and flexibility of the modern Unity engine.

Vblank Entertainment’s Brian Provinciano belongs to a small

and perhaps crazy subset of programmers wanting to

downgrade their PlayStation 4 software until it runs

comfortably on the 40-year-old MS-DOS platform. Retro City

Rampage, first released in 2012 on modern platforms, was

later ported to much more limited environments, as “a

programming exercise.”

Figure 4.5 The opening scene in Thimbleweed Park,

where again extensive use of dithering techniques

was applied. This time though, it was a deliberate

artistic choice, not a way to work around hardware

limitations. Can you again spot Mark Ferrari’s

signature checkerboard pattern in the sky?

The game was originally created as an 8-bit homebrew

homage to Grand Theft Auto on the Nintendo Entertainment

System. Provinciano somehow even managed to build his

own NES development kit to help overcome the limitations of

the old console. This guy clearly knows how to work with

constraints. Provinciano managed to squeeze his game onto

a single 1.44-MB floppy disk, running smoothly on my

486DX2-66 retro PC. A Game Boy Advance port is on the way

—another challenging passion project. Curious programmers

wanting to learn more about bit shifting and floating-point

optimizations can watch Provinciano’s GDC 2016 talk at

https://youtu.be/kSKeWH4TY9Y.

Does this mean that creativity is

reserved for game art?

Of course not. While this chapter indeed contains ample examples from the

video gaming world, there’s a specific reason for doing so. Game

development showcases many interdisciplinary factors that each has to

overcome very clear intrinsic, imposed, and self-imposed constraints,

making these examples the perfect fit to explain the concepts behind

creative software constrainedness.

I don’t want you to think that creativity is exclusively reserved for pixel

artists like Mark Ferrari just because there are colors involved or the term

https://youtu.be/kSKeWH4TY9Y

“art” happens to be used. As I hope you’re aware of by now, any

programmer can be a creative programmer: creativity isn’t limited to the

arts. We’ll delve more into the psychological mindset of creativity and its

creative experts in chapter 7.

4.4.2 Let limitations guide you to

creative solutions

The software-as-a-service company Basecamp is well aware

of the beneficial effects of constraints, so much so that it

actively imposes what seems to be an impossible six-week

budget for most major product work. Instead of writing more

and outperforming their competitors, the team at Basecamp

decided to write less software and add fewer features and

settings. Its self-imposed budget and business constraints

paid off well: although its market share isn’t big by any

means, Basecamp is now a high-revenue company and is

famous for its unconventional approaches to software

development that should perhaps become the convention.

Build half a product. Underperform your competitors. Say no

to meetings. Go to sleep. Grow slowly or not at all.

Basecamp’s collective business philosophy was written down

in Getting Real: The Smarter, Faster, Easier Way to Build a

Web Application,9 and has constraint-based thinking placed

front and center:

Constraints also force you to get your idea out in the wild sooner rather

than later—another good thing. A month or two out of the gates you should

have a pretty good idea of whether you’re onto something or not. If you

are, you’ll be self-sustainable shortly and won’t need external cash. If your

idea’s a lemon, it’s time to go back to the drawing board. At least you know

now as opposed to months (or years) down the road. And at least you can

back out easily. Exit plans get a lot trickier once investors are involved.

Basecamp proved that being mindful of the beneficial effects

of constraints can put your product out there much sooner,

even with a limited budget and a relatively small

development team. It calls this strategy “shipping software

on a budget” rather than “on a deadline.” “Constraints will

occasionally hurt—that’s when you know it’s working,” says

David Heinemeier Hansson, cofounder of Basecamp.

4.4.3 Game Boying into constraints

The Game Boy, first released in 1989, was one of the last

dedicated 8-bit gaming devices and undoubtedly the

weakest performing of its generation. This was far from a

design flaw. The decision to use cheap and well-established

technology in new ways fit right into Nintendo’s philosophy.

Gunpei Yokoi—the creator of the Game & Watch devices, the

Game Boy, the D-pad, and the Metroid series—called it

“Lateral Thinking With Withered Technology”: fun and

gameplay before cutting-edge technology, something that

still stands when looking at Nintendo’s later consoles such as

the Wii and the recent Switch.

Relying on “withered” technology came with more

advantages besides reduced production costs: robustness

and a huge battery life span, lasting up to 30 hours. That

proved to be too tough to beat, although SEGA did try to put

up a fight.

Figure 4.6 The “living” proof of the Gray Brick’s

robustness: the GB of U.S. police officer Stephan

Scoggins, destroyed during a bombing in Operation

Desert Storm, still plays Tetris! Photo courtesy of

Evan Amos.

The as-advertised “more powerful” SEGA Game Gear was

just as weak in reality, but it wasn’t a case of lateral thinking:

SEGA’s rushed effort to quickly counterattack the Game Boy

led to the recycling of older Master System hardware. As a

result, the Game Gear, released one year after the Game

Boy, also housed a variant of the Zilog Z80 8-bit CPU clocked

at a meager 3.5 MHz. Strangely enough, it also has 8 KB

work RAM, and even the screen has the same resolution as

the Game Boy. The thing swallowed six AA batteries—two

more than the Game Boy—that didn’t even last five hours.

Nintendo’s self-imposed design constraints may have led to

many frustrating inherent constraints for game developers.

There wasn’t much to work with, the unlit screen struggled

with ghosting problems, and “coding” was a matter of bit-

shifting registers in Assembly.

NOTE Inventive hardware accessory companies made clever

use of the GB’s crappy screen to create the GB Light, the GB

Magnifier, the “all in one accessory” Joyplus Handy Boy that

came with two heavily amplified external speakers and an

illuminated magnifier, the GBA Worm Light, the Hyperboy,

the BoosterBoy, and more.

Super Mario Land, a 1989 launch game, clearly suffers from

the multitude of limitations inherent to the GB. Barely any

sprites are displayed on screen, everything has almost the

same 8 × 8 sprite size, there are only four short worlds, and

there’s no way to save the game. For being an iconic Mario

game, Super Mario Land is technically pretty unremarkable

and hard to go back to these days.

Its successors, Super Mario Land 2: Six Golden Coins (1992),

Wario Land: Super Mario Land 3 (1994), and Wario Land II

(1998) pulled out all the stops, as if the programmers were

using other hardware. This effect is typical for a console: as it

ages, developers get more familiar and creative with its

limitations.

Figure 4.7 Nine years of Super Mario/Wario Land

evolution, all released on the same platform

Wario Land games are filled to the brim with such creative

tricks: coins that aren’t sprites but part of the background to

circumvent the arbitrary maximum number of sprites the GB

can handle; huge multi-sprite bosses to sidestep sprite

dimension limits; multi-sprite coins that allow coins to be

drawn with four colors instead of the usual three because of

the transparency system; smart palette swapping to create

variations of enemies or when Wario is hit to avoid cluttering

VRAM with yet another sprite; exploiting the GB render loop

timing to create visually appealing warp effects; background

layers scrolling at different speeds to create the illusion of

floating water; and more.

Recent GB ROM disassembly projects, such as Pokémon and

Links Awakening DX,10 provide insight into how these tricks

were implemented. I can imagine developers were over the

moon when the 2001 32-bit Game Boy Advance (GBA) finally

allowed them some wiggle room and, more important, to

program in C.

The Game Boy systems are fondly looked back on. Recent

open source cross-compilers such as GBDK and devkitPro

make programming on older hardware a little more pleasant,

with a C compiler for the GB and a C++11 compiler for the

GBA. The GB and GBA even occasionally see new

commercial game releases, such as Deadus, The

Shapeshifter, and Goodboy Galaxy. If you’re inclined to

sharpen your Assembly skills, dip a toe into the source code

of µCity, a Sim City clone for the Game Boy Color, available

at https://github.com/AntonioND/ucity.

NOTE For more information on Game Boy programming, see

https://github.com/gbdk-2020/gbdk-2020 and

https://devkitpro.org/wiki/Getting_Started. If you’re scared of

CLI and Makefiles (you call yourself a programmer?), GB

Studio (https://www.gbstudio.dev/) is a great integrated

alternative that enables visual game building without

requiring any programming knowledge.

https://github.com/AntonioND/ucity
https://github.com/gbdk-2020/gbdk-2020
https://devkitpro.org/wiki/Getting_Started
https://www.gbstudio.dev/

Teaching hardware/software co-

design

At our local faculty of engineering technology, the GB(A) devices are used

as welcome pedagogical tools to teach students low-level programming

(pointers to memory-mapped IO in C), high-level programming (OO in C++),

and hardware architecture (CPU implementations).

Using a game device in class obviously piques motivation, but the most

interesting part about a 30-year-old 8-bit device is that everything can be

explained and understood. This is simply impossible to do with modern

hardware as technology nowadays dictates too much specialism.

It’s always entertaining to see students struggle with the tight hardware

constraints. “Why can’t I display this photo onscreen?” Perhaps because you

unconsciously overflowed the GBA’s 96 KB VRAM? “How big is your photo?”

I then ask. “Oh, this one is really small, like 2 megs!” We’re spoiled brats

who, as hardware evolved, got very lazy.

4.4.4 Limited (fantasy) consoles

It would be naive to deny the influence of nostalgia on the

recent GB game releases. Childhood memories are not the

only reason why game developers are still attracted to

Nintendo’s retro consoles: self-imposing hardware

constraints facilitate the creation of unusual and original

games. Any limited environment would do.

Lexaloffle Games understood the creative appeal of self-

imposed limits well. In 2015, it created a Lua virtual machine

that can run in the browser and includes an 8-bit sprite and

map editor, calling it the PICO-8, Lexaloffle Games’ 1980s

“fantasy video game console.” Its specs immediately remind

me of console hardware of yore: a resolution of 128 × 128

pixels with 16 colors, 32 KB cartridge size, and maximum

256 8 × 8 sprites. Lexaloffle Games’ philosophy states:

The harsh limitations of PICO-8 are carefully chosen to be fun to work with,

to encourage small but expressive designs, and to give cartridges made

with PICO-8 their own particular look and feel.

“Cartridges” are easily shared thanks to the cart browser

called SPLORE, available at https://www.lexaloffle.com/pico-

8.php. The convenience of an integrated toolkit combined

with the creative environment makes the PICO-8 an often-

picked development platform in game jams and on

https://itch.io/. The original version of Celeste, the critically

acclaimed and very challenging 2018 2D platform game, was

made in just four days in PICO-8 during a game jam.

EXERCISE See if you can figure out what to do with the

following code:

switch(timeToSpareInDays) {

 case > 5: downloadDevKitProAndCrossCompileForGBAYourself()

 case > 2: downloadGBStudioToDesignA2DJRPGAdventure()

 case > 1: downloadPICO8AndCreateA2DPlatformer()

 default : throw “Drop this book and get back to work,

 this ain’t gonna work”

}

You’ll be surprised how much can be done—and how much

fun it is—in just a few hours of fiddling with the PICO-8.

Although it is not free ($14.99 at the time of this writing), its

official manual and unofficial game development guide are

much better maintained than the docs page of its free

counterpart, the TIC-80.

https://www.lexaloffle.com/pico-8.php
https://itch.io/

To squeeze even more fun out of this exercise, enlist a few

friends or colleagues. This also makes for a great hackathon

where results can be shared afterward—even if you have

zero aspirations to become a game developer. It’s a master

class in working with constraints (especially if you add a tight

deadline like in game jams or hackathon sessions), not

necessarily in game design.

Fantasy consoles like the PICO-8 are virtual machines, but

new and tangible hardware inspired by old technology also

exists. The ZX Spectrum Next, an 8-bit computer released in

2017, is such a device (figure 4.8). It’s compatible with all

software and hardware for the original 1982 ZX Spectrum,

Britain’s best-selling home microcomputer from the eighties

developed by Sinclair Research.

Figure 4.8 A rendering of the ZX Spectrum Next,

which inherited the sleek design of Sinclair’s original

but gained a lot of contemporary trinkets, such as an

HDMI port and an SD card slot

The original Speccy is similar in power to the Game Boy, also

housing a variant of the Z80 CPU running at 3.5 MHz.

Compared with its ancestor, the ZX Spectrum Next is a

powerhouse: it uses the FPGA technology to faithfully

reimplement variations of the 8-bit CPU. This means it can

dynamically change its clock speed up to 28 MHz, thus

maintaining compatibility with later Spectrum revisions.

Next to appealing to retrocomputing fans like me, the goal of

Speccy’s new old hardware is to “encourage a new

generation of creative bedroom coders,” according to

veteran game programmer and ZX Next co-designer Jim

Bagley.11 The NextZXOS-powered machine ships with an

extensive NextBASIC programming manual that encourages

aspiring programmers to pick it up and play/code. It’s up to

you to decide how much constraint to impose: whether or

not to stick with the Spectrum’s distinct blueish 4-bit RGBI

look and whether or not to tap into the Next’s Wi-Fi

capabilities to produce small multiplayer games, British retro

vibes included.

The ZX Spectrum Next produced a slew of creative “new old

games” that benefit from the Next’s modern hardware

trinkets while staying true to the ideas and limitations of the

original Spectrum. And yes, some games developed on the

Next were released on cassette tapes that can even be

played on your 40-year-old Speccy!

Fans of its competitors at that time—the Commodore 64, the

BBC Micro, and the Amstrad CPC—aren’t left in the cold: the

creative retrocomputing community constantly reinvents

classic hardware using FPGAs, opening up these superb

pieces of hardware for a new audience to enjoy. Be warned

though: its 8-bit limitations take some getting used to.

4.4.5 Limited programming languages

Technological self-imposed constraints don’t have to be

restricted to hardware requirements: they can just as easily

be baked into programming languages. A prime example is

Go, the statically typed, C-like compiled language with the

added benefits of memory safety, garbage collection, and

structural typing. Go was designed to keep the language

specification footprint small enough to “hold everything into

a programmer’s head,” according to Rob Pike, one of Go’s

co-designers. Rob and the Go team share many insights from

a language designing perspective at https://go.dev/blog/.

What does that mean, to hold it into your head? It primarily

means an absence of concepts you might be used to in other

languages. For instance, there is no functional map(),

filter(), or reduce() utilities; you’ll have to make do

with a simple for {} loop—which happens to be the only

way to construct a loop: no while {}, no do {}.

Delightfully boring and liberating at the same time! There

aren’t even any exceptions built into the language, and

there’s a very good reason for that: to enforce explicit error

handling at the function level, not at the system level.

https://go.dev/blog/

I love programming in Go precisely because it’s that simple.

Sure, the ANSI C specification chart also fits comfortably on

two A4 pages, but C’s age and thus lack of first-class

functions and any composition pattern combined with

endless malloc (sizeof(x)) and free() statements

make it a bit of a drag.

Don’t take my word for it. Go started appearing in many “Top

10 Most Popular Programming Languages” lists—it’s even

the fifth-most-loved language of 2020, according to Stack

Overflow, beaten by Kotlin, Python, TypeScript, and Rust.12 C

takes fifth place on the “Most Dreaded” list. I doubt it’ll ever

dethrone VBA.

Go is slowly but surely gaining traction in the enterprise

software development world. Code formatting and test-

driven development tools are built into the language,

parallelism is cheap and easy to do, and Go enthusiasts

(better known as Gophers) proved that “simple” languages

such as Go excel at readability, drastically reducing

communication mismatches, code review disagreements,

and, ultimately, project costs. Because of its limitations, Go

can be seen as boring, but boring is the new exciting.

Furthermore, Go’s (self-)imposed limitations also spark

creativity. Simply take a look at recent Go projects—and their

source code—that are lauded for their high efficiency and

original feature set: PhotoPrism, an AI-powered app for

browsing, sharing, and organizing your photo collection;

Navidrome, a personal music streaming server; Gitea, a

“painless” self-hosted git service; Drone, a continuous

integration platform; Hugo, a blazing fast and flexible static

website generator; Listmonk, an easy self-hosted newsletter

solution; Commento, a privacy-aware comments widget; and

so on.

4.4.6 Crack intros and the demoscene

A long time ago, I messed around with keygens. Don’t worry;

I’m clean now, although I couldn’t quite shake the catchy 8-

bit chiptune music. A keygen program, or a cracked

executable that removes the copyright protection, usually

came with custom intro sequences to inform the defaulter

which cracking crew they were dealing with.

Since a crack involves intricate hacking in assembly

(imposed constraints), the intros, too, started involving

creative and often-undocumented tricks with the equipped

CPU and GPU (self-imposed constraints). Sometimes, the

crack intro was even more complex than the cracked

software. Crackers sure found a clever way to show off their

hacking skills!

Eventually, cracking evolved into what Eurogamer calls an

“interactive art experience,”13 thankfully leaving the illegal

part behind. The demoscene subculture comes with many

implicit rules, such as emphasizing originality (what they

label creativity) over ripping works or assets of others.

Typical coding competitions mandate intro binaries of only

64 KB—or sometimes even 4 KB. It takes plenty of creative

effort to pull together such a feat. The demoscene is a

masterclass in constraint-based programming. Search on

YouTube for “64k intro” and judge for yourself. If that gets

you in a hacking mood, indie game website Itch.io also

frequently hosts 4 KB game competitions.

In 2020, Finland accepted the demoscene on its national

UNESCO list of intangible cultural heritages of humanity,

followed by Germany in 2021. It is the first digital subculture

to make it to a cultural heritage list. Without rigorous

adherence to self-created bounds, these small intros

wouldn’t be considered digital art. In the demoscene,

rigorous self-imposed constraints pave the way for original

visualizations and chiptune music that would never see the

light without creating and adhering to your own roadblocks.

EXERCISE Next time you’re in a creative rut, try self-

imposing more constraints instead of wrapping your head

around the existing ones. For example, what if you were to

write that piece without using loops? Or without that client-

server round trip? Or without querying the database? The

imaginary application of invented constraints is sure to spark

an idea or two for the actual problem—it doesn’t even have

to be implemented.

4.5 Hitting that sweet spot

Constraints are the fertile ground for creativity. But what

happens when you add too much fertilizer to your vegetable

garden? Tomato plant roots get burned. Add too little, and

your precious Cœur de bœuf will more likely resemble a sour

https://itch.io/

cherry tomato. Add too much, and the plant dies. The same

is true for constraints: Michael Mose Biskjaer talks about the

sweet spot.14 Time for another inverted U-curve, as shown in

figure 4.9.

Figure 4.9 The constrainedness sweet spot,

representing perceived potential for creativity.

The sweet spot sits comfortably between

underconstrainedness and overconstrainedness, not unlike

Mihaly Csikszentmihalyi’s concept of flow. Too little flow

equals repeating boring tasks over and over again. Too much

of it and the task at hand is perceived as too difficult,

impeding the learning process.

The y-axis denotes the level of inspiration, also varying

between too little (there won’t be any idea to work with) and

too much (chaos and no time to Catch ’Em All, even though

you Gotta). Note that Biskjaer writes about sources of

inspiration, hinting at our personal knowledge management

system—or the inspiration engine—unveiled in chapter 2.

To deliberately reach the sweet spot and increase the x

factor, induce self-imposed constraints. To alleviate

constraint pressure and decrease x, reduce constraints, for

example, by temporarily removing or ignoring them. It’s all

about striking a balance.

In practice, the sweet spot concept as a theoretical model

never completely resembles its paper definition. Novices and

creative experts will more than likely handle constraints

differently. Bear in mind that, as with all things creative,

constraint limits are personal and inherent to constant

change.

A team-based sweet spot value might not even begin to

approach your individual golden mean—or might exceed

your personal limit. Being well attuned to the project

constraints and figuring out a shared sweet spot again puts

emphasis on the communication concepts introduced in

chapter 3.

4.5.1 Facilitating abstraction with the

right amount of constraints

What if just the right amount of constrainedness could

improve your ability to abstract when problem solving?

Abstraction plays a key role in both efficient and creative

problem solving. Australian computer scientist Cruz Izu

developed a classification for abstraction by studying how

students tackle programming problems.15 She presented

students with a simple case that can be approached from

different angles: the “Egg Cartons” problem (see sidebar).

The Egg Cartons problem

There are two possible egg carton sizes: one contains 6 eggs and another 8.

You want to buy exactly N eggs. What is the minimum number of cartons to

buy? If it’s impossible to buy exactly N eggs, return -1. In other words,

implement minCartons(N int) int.

For example, minCartons(20) returns 3: we buy two cartons of 6 eggs and

one of 8. minCartons(7) returns -1 since we can’t buy an odd number of

eggs. See if you can figure this out for yourself before reading on!

Suppose we’re not worried about constraints for a minute.

What would be the easiest way to approach such a problem?

Right, a brute force approach: all potential solutions are

tested for feasibility. Izu calls this “Level Zero”: you haven’t

discovered interesting properties of the problem yet that

could simplify the approach.

What if I told you to first look for specific cases and handle

those differently? Enter constraint number 1 and abstraction

level 1: the problem space is somewhat adjusted to the

assignment using special cases. For our Egg Cartons

problem, are there any upper or lower bounds to take into

account? Yes! Since we want to buy exactly N eggs, anything

lower than 6 won’t generate a feasible solution. There’s

another special case, but before spoiling it, I’ll let you think

about that for a while.16

Okay, you’ve got your basic brute force loop and a few

special cases set, but we can do better. Here’s constraint

number 2: solve a few examples by hand with pen and

paper. Can you spot a pattern that way? All right, we reached

abstraction level 2! Take a look at the following sequences:

12 {6, 6} -> 14 {8, 6} -> 16 {8, 8} -> 18 {6, 6, 6}

20 {8, 6, 6} -> 22 {8, 8, 6} -> 24 {8, 8, 8} -> 26 {8, 6, 6, 6}

Do you notice anything unusual? The pattern can be

summarized in two steps:

1. If there is a 6-egg carton, replace it with an 8-egg

one.

2. If not, replace two 8-egg cartons with three 6-egg

ones.

These two steps can then be easily translated into code. All

that remains is to check if our discovered pattern works for

all numbers, for example, by testing the logic with a large

multiple of 8.

We’re not done yet. The Egg Cartons problem can be solved

without a single loop—there’s constraint number 3. Can you

figure out how? Perhaps the introduction of the third

constraint pushes you beyond your personal sweet spot, and

if that’s the case, that’s totally okay! Abstraction level 3 is

called mathematical abstraction—if a discovered pattern is

regular, it can usually be described mathematically in a

model instead of generating values step by step. Whether or

not this leads to easily maintainable code is another

question.

For the Egg Cartons problem, the remainder of n/8 can be

used to determine the amount of 6-egg cartons to use. This

is possible because minCartons(22) and

minCartons(24) both return 3: after all, we’re only

interested in the total number of cartons.

A possible solution using portions of levels 1 and 3 could be

as follows:

func minCartons(n int) int {

 switch {

 case n < 6 || n == 10: return -1

 case n % 8 == 0: return n / 8

 default: return n / 8 + 1

 }

}

I would never have discovered this solution without explicitly

having to come up with an implementation that does not

involve looping (constraint number 3).

Another technique that you’re perhaps inclined to reach for

is writing unit tests first that cover every possible scenario.

This can also be considered a (self-imposed) constraint that

pushes you toward the sweet spot. By considering test

cases, you almost automatically uncover patterns that can

be put to good use in the production code.

4.5.2 Sweetness or bitterness?

As sweet as the victory of overcoming limitations can be,

that sweetness might leave a bitter aftertaste. The

constrainedness sweet spot may not necessarily be sweet.

Creativity may be severely painful and a formidable struggle.

History books burst with tales of suffering artists and authors

who went through processes of artistic creation heavily

intertwined with periods of misery. Vincent van Gogh’s

schizophrenia and bipolar disorder that caused him to cut off

his own ear; Virginia Woolf’s declining mental health that

ultimately led to her suicide; and August Strindberg’s

constant struggle with mental illness are a few.

The constraint sweet spot is highly desirable, rewarding the

right amount of creative freedom. It doesn’t mean it’s an

awesomely good deal. Some artists go as far as cultivating

both curiosity and misery to optimize their creative process.

Hervé Guibert, a French writer and photographer and a close

friend of philosopher Michel Foucault, neatly summarized it

as follows: “Must the artist not have left a foot in his

childhood, and projected the other one into his grave?”17

Guibert succumbed to AIDS just before turning 36. Is

romanticizing death a way to induce a constraint that can

facilitate creativity? At the danger of becoming too macabre:

perhaps. Artists have shown that thinking about the

inevitable end benefited their work. The symbolic saying

Memento mori (“Remember that you die”), typically depicted

in paintings as a flower, a skull, and an hourglass—life,

death, and time—serves as such a reminder.

Medieval artists perhaps took this concept a bit too far by

creating vanitas paintings, showing the worthlessness of life

and the futility of pleasure. It also provided a moral

justification to paint skulls, books, and withering flowers

instead of typical Christian scenes.

The morbid connection between creativity and mortality

motivated researchers to dig up the scary-sounding “terror

management theory,” supporting the notion that creativity

plays an important role in the management of existential

concerns. Having one foot in the grave boosts creativity, and

creativity boosts our resistance to existential anxiety.18

Creating something that outlasts our feeble bodies can be

seen as an attempt to aim for immortality.

Creative people are sometimes obsessed with their work,

which can have detrimental effects on mental health,

including the mental health of those close to them. Please

remember that work is only work: there’s more to life than

the constant dopamine rush of the creative flow.

EXERCISE Some problems are more easily solved when one

explicitly ignores certain constraints by taking the problem

outside of its hardware and software context. For example,

consider programming the tile-based dominoes game. Its

rules (matching pairs) still count as constraints, but thinking

about how to solve a game without a computer won’t

encumber you with recursion, backtracking, and stack

overflow memory problems. Once the concept of a solver

has taken form, only then translate it into code to face

additional challenges. Congrats, you’ve hit that sweet spot!

4.6 Working with constraints in

practice

How do you transcend the many intrinsic, imposed, and self-

imposed constraints that come with a software development

project? The constrainedness sweet spot suggests imposing

or reducing constraints if inspiration is running a bit low.

There are a few practical ways to do this, of which we’ll

explore divergent thinking and naivety in the following

sections. More examples will be interwoven in the coming

chapters.

4.6.1 Divergent thinking

In the seventies, when academic creativity research was a

brand-new field, researchers thought that the only way to

overcome constraints was by thinking outside of the box. At

that time, researcher Paul Torrance developed the Torrance

Test of Creative Thinking or TTCT.19 Academics are always

looking to measure and quantify things, including creativity.

A high score on the TTCT was assumed to be an excellent

indicator of high creative potential, while in fact all it

measures is your divergent thinking skills—a small subset of

what psychologists nowadays consider as defining creativity.

Unfortunately, the vast majority of computing education

researchers and educators still cling to outdated concepts

such as the TTCT, as it’s one of the most commonly cited and

readily available creativity measurement tools.20 Remember

that there’s more to creativity than a dull brainstorming

session.

Divergent thinking is in fact (imposed) constraint-based

thinking. It’s improvising and coming up with a lot of original

uses based on tight constraints. For example, in the TTCT

that shape you’re given a basic starting shape, such as a

circle, and asked to use or combine that shape with a

picture. If you see a circle and draw a smiley or the world,

like thousands did before you, that’s not very creative. On

the other hand, if you decide to draw a coconut tree out of

circles, like I did in figure 4.10, that could be considered

more creative.

Figure 4.10 A TTCT test in action. I hope I did well!

You can assess multiple factors here: how many

unique drawings can you come up with, and how

many of these deviate from the average drawing?

The question here is, are we really testing creativity here, as

a systemic and sociocultural concept? I highly doubt it. Yet

when we asked developers how they assess creativity—for

example, in job interviews—they unanimously answer with a

divergent-thinking technique. Of course, seeing how

somebody performs at improvisation exercises is much more

tangible than how well the person is connected within their

liquid network(s).

Many tech interviews include behavioral questions that

gauge creative potential by asking how you handle imposed

constraints. GitHub is sprawling with curated lists of

interview questions that might be worth looking into if you’re

curious.

During our interviews, one developer mentioned the card

game Black Stories by Holger Bösch, which has you thinking

outside the box to resolve dark and morbid riddles. Each

card tells the story of a tragic murder you’ll have to solve

using just the title and one sentence to set the scene. Then,

it’s up to the group to come up with an original and fitting

cause of death. The back of the card describes the solution,

which can sometimes be a bit far-fetched.

Black Stories has been published by more than 18

companies and, the last time I counted on

BoardGameGeek.com, has 21 different versions. Perhaps this

https://boardgamegeek.com/

isn’t that shocking: people are drawn to mysteries, the game

is very easy to play, there are virtually no rules, and

everybody loves blurting out extreme death scenarios. It’s

even easy to adapt to the world of programming! How about

this:

Title: The Blog.21

Wouter pushed his latest blog post to his Git repository,

expecting it to be picked up by the build system to be

published. Five minutes later, Wouter’s blog was offline.

EXERCISE Can you come up with other possible, less

exceptional and perhaps more plausible causes of the

sudden outage? Think of at least five different things that

technically could be the culprit. How about another five

causes?

I might go ahead and produce 50 of those, calling it Crash

Stories. Don’t you dare try to beat me to it!

4.6.2 Naivety and constraints

A dangerous overabundance of constraints can cause

creatives to reject ideas that are otherwise worth exploring

further. Have you ever attended a brainstorming session

where ideas were crossed out as soon as they were posed

because “It’s just not possible” or “The server is not up to

it”? In that case, a certain amount of naivety helps. Instead

of immediately thinking of the existing system and its

constraints, pretend you know nothing and simply generate

ideas. Decide which ideas to implement after they have been

gathered.

Researchers rarely recognize naivety as an important

ingredient of creativity. Psychology researchers John Gero

and Mary Lou Maher state that creativity is seldom the result

of naivety, but rather it results from the ability of a highly

intelligent person to put different ideas together and

recognize their value.22 Luckily, that outdated early-nineties

definition of creativity is recently starting to be refuted by

academics who do see the potential of naivety.

Figure 4.11 A Black Stories card. Left, the story:

“Because the moon was at full strength, Heidi did not

find out who the murderer was.” Right, the solution:

“Heidi was lying on the beach reading a detective

story when she fell asleep. She was still sleeping

when the tide came in and swept the book away

forever.” Black Stories card, © Holger Bösch,

published by Moses and others.

Academic philosopher and creativity critic Caterina Moruzzi

mentions naivety next to problem solving and evaluation as

an important feature of creativity.23 She relates naivety to

various aspects that in the literature have a place among the

core traits of creativity: spontaneity, unconscious thought

processing, challenging domain norms, and independence

from rigid structures of thought.

Naivety can be a childlike, playful trait of creativity. It can

also denote a lack of previous exposure to the properties of

the situation at hand, leaning into ignorance. Sometimes,

ignorance is bliss! We’ll briefly explore two cases of naivety

where constraints were overcome thanks to these

interpretations.

4.6.3 A naive but legendary poet

Hilde Domin, a renowned German poet interviewed by Mihaly

Csikszentmihalyi, talks about her difficulties in getting

accepted in the manly world of poetry. She thinks she

persisted because she wasn’t fully aware of the hidden

literary power struggle that took place near her:24

I was very naive. I don’t know why, but that’s how I was. I did not believe in

literary intrigues and that sort of stuff, a literary mafia. To me, work was

work, and it still is.

It took six years before one of her poems was published. It

was very difficult as a woman to make a successful living in

the literary world of the fifties, especially since Domin was

patronized by her jealous husband who at first couldn’t

accept the possibility of her being more successful. The then-

young Domin was very susceptible to the vulnerability of

women in the art world.

The romanticized scenario where the genius always breaks

through, regardless of the setbacks the artist has to face,

was and still is more fiction than reality. But instead of giving

up because of the setbacks (or constraints), Domin naively

persisted, and eventually she became one of the most

important German-language poets of her time. She

continues: “Mallarmé says that a poem is like a rocket: it just

lifts off. Maybe he’s right. But it of course can be sabotaged.

By jealousy. I think that’s the right word.”25

4.6.4 A naive James Bond

Naivety can sometimes yield groundbreaking results.

Another superb example in the software world is the 007-

themed Nintendo 64 game GoldenEye. Rare’s 1997 first-

person shooter (FPS) pioneered body-specific hit reactions

through motion capture, sniper rifles and dual-wielding guns,

environmental reflection mapping, and split-screen death

matches—all features that would become standards in the

shooter genre. The game shifted a staggering eight million

copies, breaking into the Top 3 Nintendo 64 games, next to

behemoths Mario 64 and Mario Kart 64—even beating

Nintendo’s iconic The Legend of Zelda: Ocarina of Time!

As the majority of Rare’s 007 team then had no prior

development experience whatsoever, they were completely

unaware of the notions of what was and wasn’t possible in

game design or on the Nintendo 64’s hardware. If they

thought of a good idea, they just tried implementing it.

In a Retro Gamer interview, producer and director Martin

Hollis admits that a bit of naivety and inexperience might

have helped shape GoldenEye’s future. When asked if there

was an advantage to GoldenEye being their first game, that

the team didn’t know what they could and couldn’t do, Hollis

replied:26

Oh certainly. I didn’t know what we couldn’t do either. It was supposed to be

a three person project and take nine months or something. No one told me

it would take three years and about ten people because no one knew.

Figure 4.12 A hectic GoldenEye death match in four-

player split-screen action. Imagine lots of swearing

and couch jumping—possibly even controller throwing

and ducking. That is the unintended but real legacy of

GoldenEye!

Multiplayer madness

The multiplayer addition to GoldenEye that many gamers so fondly

remember was an afterthought that almost didn’t make it into the game: it

was worked in just six months before the release date. Lunchtimes at Rare

were spent playing Bomberman and early prototypes of Mario 64, sparking

the idea of frantic split-screen shooter action. The team didn’t know

whether it would work until they started developing it, almost immediately

hitting frame-rate constraints—only partially solving the problem by mostly

limiting the multiplayer maps to small low-poly areas. More seasoned game

developers would probably not even have tried. If Rare hadn’t, I doubt

GoldenEye would have been fondly remembered.

GoldenEye evolved the FPS genre that DOOM popularized:

from collecting colored key cards in puzzle-like maps and

shooting monsters to more Bond-like gadgetry approaches

and story-driven objectives. Without the team’s naive

approach to implementing ideas that might have been

dismissed otherwise, there would be no memorable Half-Life

and other big FPS hits.

Naivety can get you further than you think. Even if you are

aware of the constraining factors of a given project, it might

pay to adopt a naive mindset to discover what is possible in

the unexplored areas of the constrained design space.

4.6.5 Naive algorithm

implementations

Over the years, many implemented algorithms start out too

complicated because we, as programming experts, are

immediately thinking about possible consequences that, in

practice, (almost) never occur. Our previous failures still

haunt us, so this time it better be resilient! By not adopting a

naive mindset, solutions are quickly overengineered: two

layers of caching are introduced “just in case,” a piece of

code suddenly becomes yet another dependency instead of

a copy because “it might be reused,” servers are load-

balanced without testing the load because “you never

know.” Sound familiar?

Algorithms usually come in different shapes and forms, of

which the naive approach is usually the simplest and most

readable. Of course, sometimes the implementation doesn’t

pass the stress test. As a simple example, consider the

Fibonacci sequence. Each number is calculated by adding

the two preceding numbers, and the sequence starts with 0

and 1. 0 + 1 = 1, 1 + 1 = 2, and so forth. A naive but still

highly useful recursive implementation would be as follows:

func Fibonacci(n int) int {

 if n <= 1 return n

 return Fibonacci(n - 1) + Fibonacci(n - 2)

}

Simple and readable: exactly like we want our functions to

be. Except that if we put in a big number, like 50, the result

(1,258,626,9025) will take a minute because the stack

exploded in size since we constantly recalculate already

known Fibonacci numbers. Possible solutions would be to

optimize the function with a technique called memoization or

tail recursion:

func fibonacciTail(n, a, b int) int {

 if n <= 1 return b

 return fibonacciTail(n - 1, b, a + b)

}

func Fibonacci(n int) int {

 return fibonacciTail(n, 0, 1)

}

This is arguably still readable but a lot less simple, even

though we dramatically improved the performance of our

Fibonacci function: it now only increases the stack n times.

The danger of starting with those optimizations—because of

pressure from various constraints or nightmares from the

past—is resulting in needlessly complicated solutions or,

worse, no solution at all, because we’re stuck in a certain

way of thinking. The takeaway here is this: to get the

creative flow going, always start with a naive approach. Only

then take a step back and consider improving things.

EXERCISE What if you could bring a bit of healthy naivety

into your daily programming practice by not immediately

following your expert judgment? Next time when facing a

problem, pretend you don’t know the constraints and let

your imagination run wild. This might yield more interesting

approaches to tackling the problem.

Summary

A taxonomy of beneficial constraints that aids our

creative problem-solving skills consists of intrinsic

and imposed constraints (incidental) and self-

imposed constraints (essential).

The harsh intrinsic hardware constraints that seem

to work against you can actually be put to your

creative advantage when working with them

instead of against them.

Even when stumbling about in old Visual Basic

brownfield projects, adhering to modern software

development best practices and ideals is possible.

You just have to find a way to massage the

imposed constraints.

Keeping quiet about identified constraints is never

a good idea. It might affect your team, your

software, and ultimately your clients.

In the same vein, never shoot down an idea too

soon because “it can’t be done” before figuring out

if it can’t be done.

There is a sweet spot for constrainedness.

Drowning in constraints will prevent you from

reaching your creative potential. Be mindful when

self-imposing constraints that might race well past

that sweet spot.

Self-imposing constraints not only gets you closer

to a creative solution; it also battles boredom and

mediocrity.

The naive excitement of your inner child should not

always be oppressed. That voice might help you

tackle that particularly difficult constraint.

Divergent thinking can also help when working

with constraints. Just be sure not to pay too much

attention to various divergent-thinking tests.

Creativity is much more than just lateral thinking.

1.
1,120 × 832 pixels with a density of 92 DPI, compared with standard 14-in.

monitors delivering a resolution of 640 × 480 pixels, which already was

considered high end on PCs. Read more about this awesome technology and

how id Software used it in Fabien Sanglard’s Game Engine Black Book.

https://fabiensanglard.net, 2018.

2.
Fabien Sanglard. Game Engine Black Book: DOOM v1.1.

https://fabiensanglard.net, 2018.

3.
Jon Elster. Ulysses Unbound: Studies in rationality, precommitment, and

constraints. Cambridge University Press, 2000.

4.
During the development of Monkey Island, LucasArts was still Lucasfilm Games.

5.
See The legacy of Monkey Island. Retro Gamer, no. 212, p. 24.

6.
Michael Mose Biskjaer and Kim Halskov. Decisive constraints as a creative

resource in interaction design. Digital Creativity, 2014.

7.
Michael Mose Biskjaer. Self-imposed creativity constraints. PhD thesis,

Department of Aesthetics and Communication, Faculty of Arts, Aarhus

University, 2013.

8.
Igor Stravinsky. Poetics of music in the form of six lessons (The Charles Eliot

Norton Lectures). Rev. ed. Harvard University Press, 1970.

9.
The book is available for free at https://basecamp.com/gettingreal/.

10.
See https://github.com/zladx/LADX-Disassembly.

11.
See the interview in MagPi magazine at

https://magpi.raspberrypi.com/articles/zx-spectrum-next-raspberry-pi-project-

showcase.

12.
See https://insights.stackoverflow.com/survey/2020.

13.
Dan Whitehead. Linger in shadows: Scene but not heard. Eurogamer, 2008.

https://www.eurogamer.net/articles/linge r-in-shadows-hands-on.

14.
Michael Mose Biskjaer, Bo T Christensen, Morten Friis-Olivarius, Sille JJ

Abildgaard, Caroline Lundqvist, and Kim Halskov. How task constraints affect

inspiration search strategies. International Journal of Technology and Design

Education, 2020.

15.
Cruz Izu. Modelling the use of abstraction in algorithmic problem solving.

Proceedings of the 27th ACM Conference on Innovation and Technology in

https://fabiensanglard.net/
https://fabiensanglard.net/
https://basecamp.com/gettingreal/
https://github.com/zladx/LADX-Disassembly
https://magpi.raspberrypi.com/articles/zx-spectrum-next-raspberry-pi-project-showcase
https://insights.stackoverflow.com/survey/2020
https://www.eurogamer.net/linger-in-shadows-hands-on

Computer Science Education, 2022. The Egg Carton example is taken from the

paper.

16.
We know odd numbers are problematic, but is there an even number without a

solution as well? (Hint: 10)

17.
Hervé Guibert. The mausoleum of lovers: Journals 1976-1991. Nightboat

Books, 2014.

18.
Rotem Perach and Arnaud Wisman. Can creativity beat death? A review and

evidence on the existential anxiety buffering functions of creative achievement.

The Journal of Creative Behavior, 2019.

19.
E. Paul Torrance. Predictive validity of the Torrance Tests of Creative Thinking.

The Journal of Creative Behavior, 1972.

20.
Wouter Groeneveld, Brett A Becker, and Joost Vennekens. How creatively are

we teaching and assessing creativity in computing education?: A systematic

literature review. Proceedings of the 2022 ACM Conference on Innovation and

Technology in Computer Science Education, 2022.

21.
The solution: the data center where Wouter rents a virtual private server was

on fire. Yes, this actually happened. And no, I did not have backups of

everything. Lesson learned!

22.
John S. Gero and Mary Lou Maher. Modeling creativity and knowledge-based

creative design. Psychology Press, 2013.

23.
Caterina Moruzzi. Measuring creativity: an account of natural and artificial

creativity. European Journal for Philosophy of Science, 2021.

24.
Mihaly Csikszentmihalyi. Creativity: Flow and the psychology of discovery and

invention. HarperPerennial, 1997.

25.
Ibid.

26.
See Retro Gamer’s 100 Games To Play Before You Die: Nintendo Consoles

Edition, p. 144.

5 Critical thinking

This chapter covers

The five steps of a typical creative process

Focused and diffuse thinking modes

Using creativity as the means or the goal, depending on

the intentions

Common critical thinking fallacies

The chaotic mixture of loud voices and fragrant spices marks

yet another busy day at the agora, the hub of the ancient

Athenian empire. Shopkeepers are engaged in a fierce

bidding war to get rid of their dried fish, olives, sandals, dirt

on local politicians, amphorae, goat milk, lawsuits, givers of

evidence, figs, and bread. You want something; they’ve got

it. In the midst of the yelling and cursing, a stocky and aging

man—barefooted and flat nosed, almost unkempt—felt right

at home. Socrates peppered every single being he

encountered with annoying questions during his daily strolls

in the vicinity of the agora. His motto was “Know what you

don’t know.”

On the other side of Athens, sophist teachers specializing in

subjects such as mathematics, music, philosophy, or—the

gods forbid—a craft were busy teaching virtues to the few

wealthy Greeks who could afford it. Sophists, traveling

experts and skilled talkers, had one thing in common:

whatever they did not know, they pretended to know to

impress or persuade their audience. A few sophists even

claimed to have the answers to all questions.

Whom should one turn to when in dire need of knowledge: a

weird old man pretending to know nothing, posing question

after question, or a deceitful wordsmith assuring you he’s

got all the answers? Socrates’ “Know what you don’t know”

was, during his lifetime, mostly met with disdain. Athenians

were easily seduced by the many (and almost exclusively

manly) rhetorical speeches of the sophists. Even Socrates at

one point admitted to being less skillful than some genuine

sophists, sending one of his pupils off to learn from them.

Plato would later depict the sophists as stingy instructors

who taught nothing but deceit.

Twenty centuries later, the hollow clunks of empty bottles

carelessly pushed against each other fill an otherwise-silent

laboratory in Paris, France. Louis Pasteur, preoccupied and

bent over a small cup of souring wine, would need just a few

more weeks before summarizing his thoughts on alcoholic

fermentation, or the lack thereof, in sterilized and sealed

flasks. Instead of agreeing with fellow chemist Justus von

Liebig, who thought fermentation was simply the result of

“organic decomposition,” Pasteur proved it was the naturally

present yeast that produced alcohol from sugar.

During the 1850s, the existence of microorganisms such as

yeasts and lactic acid bacteria was up for heavy debate. How

can something we cannot see nor smell be part of

fermentation, an ancient and important phenomenon once

attributed to the gods? Louis Pasteur and his sterilized

bottles shook up the 19th century’s surprisingly sophistic

and narrow-minded way of thinking by demonstrating the

process, ultimately winning countless awards and financial

support, enabling him to expand his laboratory into the

Pasteur Institute it is now. Pasteur’s demonstrations

succeeded in convincing people, where others, many years

before him, had not.

People unwilling to believe in microorganisms weren’t the

only ones to partake in (self-)deceit. The now-legendary

genius Louis Pasteur also had dirty secrets to hide, trusted

only to his laboratory notebook, which was kept private for

another century, until Gerald L. Geison published The Private

Science of Louis Pasteur.1 This work revealed several

misleading and deceitful tricks Pasteur used to keep ahead

of his adversaries, including stealing ideas and discoveries.

This resulted in a lifelong plagiarism battle with Antoine

Béchamp, a chemistry professor in Montpellier, who (of

course) regarded himself as the first discoverer of the role of

microorganisms in fermentation.

Let’s fast forward another century. The almost-hypnotizing

hum of several heavy-duty computer fans slowly but steadily

fill a nondescript office with heat. The computers and

employees of Grove Street Games, stationed in Gainesville,

Florida, are working overtime to meet the very tight deadline

of their upcoming game Grand Theft Auto: The Trilogy—The

Definitive Edition, in association with Rockstar Games.

Textures are increased, meshes are cleaned up, lightning is

improved, and superior weather effects are introduced.

However, the efforts, mainly automated by AI upscalers,2

produced uglier textures, too many meshes to run fluidly,

harsh contrasts that break the game’s atmosphere, and rain

effects that look like God spilled a few jugs of milk. The

remastering of classic Grand Theft Auto (GTA) games (GTA

III, GTA Vice City, and GTA San Andreas; see figure 5.1) by

porting assets from RenderWare into Unreal Engine 4 was

initially met with high expectations. Messing with nostalgia

can have devastating consequences—as can neglecting to

critically review the 100,000 AI-powered upscaled assets.

Figure 5.1 See that bolt (“nut”) to the right of the

donut in the original GTA San Andreas screenshot? It

somehow became a tire, killing the “Tuff Nut” joke in

the process. Whether this is the result of the AI

upscaler or a distracted designer who simply saw

rough edges in dire need of rounding remains

unknown. Screenshots courtesy of RockmanBN,

ResetEra.

The game was reportedly in development for more than two

years before it got slammed with negative responses, both

from gaming critics and from gamers themselves. The

Definitive Edition turned out to be far from definitive. Worse

yet, Rockstar Games decided to pull the original GTA games

from online stores, leaving gamers with fond memories of

cruising cars on the beach while listening to the eighties-

inspired Flash FM with no choice but to scour the

secondhand market. Tuff Nut indeed.

5.1 Creative critical thinking

What is the greatest common divisor between Socrates’

overabundant (self-)questioning and the sophists’ lack

thereof; the critical but wrong reception of microorganisms

after their discovery; and Grove Street Games’ failure to

critically review the generated assets of their video game,

resulting in a total bust? All three examples showcase

various degrees of critical thinking—or a total lack thereof.

New inventions or ways of doing things are usually first met

with skepticism. Athenians found Socrates’ endless

questioning method weird. It took a long time before the

arrogant attitudes and accumulated wealth of the sophists

led to resentment of their practices. Louis Pasteur wasn’t the

first to discover living microorganisms, and yet once again

denial was the easier option. Once his genius was finally

acknowledged, it turned out that he was more of a con man,

stealing creative ideas from others.

Grove Street Games’ reliance on imperfect AI tech, probably

combined with hefty deadline pressure from Rockstar,

caused them to release an unfinished game that was

universally destroyed by critics. A lot of creative effort by the

development team showed potential that was never fully

realized thanks to the uncritical insistence on the release

date. Another month of intensive play-testing might have

given GTA Trilogy the polish it very much needed. One day

after its release, gamers posted videos of silly bugs, ruined

jokes like the one depicted in figure 5.1, and random

crashes, proving these problems weren’t that hard to find.

Creative thinking alone is not enough: both creative and

critical thinking are requirements to reap the fruits of

creative labor. Creative thinking is needed to generate

original ideas, to validate or reject ideas, to make timely

adjustments to the creative process, to ask for and correctly

interpret feedback, and to overcome the many cognitive

biases formed in our heads. To better understand the

relationship between creativity and critical thinking, let’s

take a more in-depth look at the typical creative process.

EXERCISE Is there a Socrates on your software development

team who frequently questions the actions and roads taken?

If not, shouldn’t there be one? If so, is that person perceived

as annoying because your team is afraid of the answers or

because the modern Socrates incarnation exaggerates in

their role as a coding critic?

5.2 The creative process

Both Pieter J. van Strien and Mihaly Csikszentmihalyi, well-

respected creativity researchers who were introduced in the

previous chapters, agree with the five stages of a creative

process first identified by Graham Wallas in 1921 (figure

5.2):3

1. Participate—No creative product is the result of a

sudden flash of insight: it’s more likely the result of

90% transpiration through lengthy preparatory

work and 10% illumination.

2. Incubate—A variable period where the creator

takes distance (from the participation) and

interrupts the process, speeding up insight

unconsciously.

3. Illuminate—This will never happen without the

sweat and tears from step 1.

4. Verify—Recognizing the fruit of the encounter:

does it work? Is it worth it? If not, bin it, and

restart.

5. Present/Accept—Only after the creation has been

presented to and accepted by peers can it be

called genuinely creative (see the sociocultural

definition of creativity in the introduction).

Figure 5.2 The five steps of the creative process. An

overabundance of arrows emphasizes the

interrelatedness among the steps. Participation is

usually step 1, but a sudden idea might just as well

put the process in motion. Rejection is not necessarily

the end, provided enough energy remains to rework

the concept.

Although a numbered enumeration usually hints at a

sequential process, the creative process is anything but that:

it is recursive. At any given time, a creator might jump back

and forth between steps 1 to 4. Got a great idea (step 3)?

Get back to it (step 1) to try it out. Stuck in a rut? Have a

break (step 2), move on to something else, walk the dog, go

for a run. But take Post-Its™ with you in case a lightbulb is

turned on (step 3). Time to compile and execute the unit

tests (step 4)! Didn’t work? Back to square 1. The last step is

obviously applicable only after verification.

Many people think that creativity is a matter of developing a

single huge insight. Instead, it is about the subtle but

constant interaction between all of the steps just described,

as indicated by the arrows in figure 5.2. One measly

“Eureka!”—or, aptly called by German psychologist Karl

Bühler, an “Aha-Erlebnis”—won’t get you very far. It probably

wouldn’t even drag me through the writing of the

introduction of this book.

In a way, Wallas’s nonlinear creative process is reminiscent

of the test-driven development cycle: red (steps 1-3), green

(step 4), refactor (steps 1-3). Nobody executes the git

push command (step 5) with failing tests—or worse, with

none at all. I imagine all readers dutifully nodding in

agreement. Please don’t let me down.

The first part of the process, participation, includes

preparation by gathering data (chapter 2). Without the

needed wonder and curiosity (chapter 6) to look into things,

the process would prematurely end here. Knowledge of

constraints (chapter 4) helps in building solutions relevant to

the task at hand.

Having the right creative state of mind can facilitate the

incubation and illumination process (chapter 7). Others also

play a large part in this, opening up your mind and world,

increasing the chances of cross-pollination of ideas (chapter

3).

5.2.1 Verifying critically

Where does critical thinking fit in the creative process?

Csikszentmihalyi suggests that verifying the insight equals

taking a step back to take a critical look at the creation so

far:

When the insight has presented itself, you have to check whether the

connections made are indeed correct. The painter takes a few steps back to

view from a distance whether or not the composition is good, the poet re-

reads his verses with a critical mindset and the scientist makes calculations

or executes experiments. The most beautiful insights become ugly as soon

as the shortcomings become clear under the cold light of reason.

He didn’t interview programmers, but if he had, he probably

would have written something along the lines of “The

programmer presses F10 to execute their unit tests, cursing

in agony if they fail.” Our own interviews with software

developers confirmed that the verification step plays an

important role in the lives of creative programmers.

I can still vividly remember a pair programming session with

an ex-colleague, lecturing me on my decision-making

process, which he thought was too quick. “Why didn’t you

persist with this collection?” he’d ask. “Oh, that’s simple; this

is the aggregated root, right, so saving this object auto-

cascades this second parameter here,” I’d respond. Then the

head-shaking began. “Don’t just assume things! Did you

inspect the code? Where are your integration tests? Does it

do what you think it does?” A period of silence on my part

usually indicated denial. “Don’t ASS-ume! You’ll make an ASS

out of U and ME.”

The “ass” part stuck with me for a long time: fun ways of

teaching to verify your assumptions are always remembered

as more lively. We became good friends afterward, and I owe

him a lot. But seriously, don’t assume. Place a few

breakpoints and inspect memory regions to verify their

contents. Step through unclear code to break up the fog.

Write unit tests to cement those verifications for your

colleagues and your future self. Grab an oscilloscope and

inspect voltage waves, if you must. Just be sure to check,

check, and triple-check. And if it doesn’t check out, no

worries; the creative process is recursive. Perhaps you need

more caffeine or a good jog to walk it off and incubate some

more.

Cameratas facilitate verification

As mentioned in chapter 3, mutual learning happens within a social group of

like-minded people trying to achieve a shared goal. Various cognitive biases

(see section 5.4) sometimes complicate the verification of our own ideas.

In cases like that, the critical feedback of your peers can be of great value,

provided you’re willing to accept and process the criticism. Treat

constructive criticism from others—under close scrutiny—as important

pieces of the puzzle when verifying your wild ideas.

5.2.2 Focused thinking

Programming requires focused attention on lines, methods,

members, arguments, brackets, gutters of IDEs,

constructors, types, exceptions, and so forth. Knee-Deep in

the Code instead of in the Dead, as the first shareware

episode of DOOM is called.

This self-explanatory thinking phase is called analytic

problem-solving or focused thinking : the eyes on the prize,

the mind set on a solution. It involves an incremental and

largely conscious process that, according to psychology

researchers, is an integral part of creativity.4 Without focused

action, not a single painting will be painted, verse written, or

line of code programmed.

Focused thinking is great for tackling low-level problems, but

it can sometimes lead to taking a few shortcuts here and

there (e.g., let’s just use static here; it won’t affect the

entire system that much), thereby losing the overview (how

does this method relate to our client’s problem again?), and

making wrong decisions, even with ample critical thinking.

Therefore, we’ll occasionally need to resort to other thinking

modes, such as diffuse thinking.

5.2.3 Diffuse thinking

Critical thinking isn’t always warmly welcomed: it’s usually

met with heavy resistance. Sometimes, it should be met with

heavy resistance. For instance, when ideating—coming up

with many crazy and unusual ideas—there’s little point in

immediately shooting down proposals. Barbara Oakley, an

engineering professor at Oakland University and McMaster

University, calls the ideation phase diffuse-mode thinking.

She created a Coursera training entitled “Learning How to

Learn” in which both focused and diffuse modes are

introduced as powerful mental tools to help you master

tough subjects (figure 5.3).5

Figure 5.3 Focused and diffuse thinking, represented

by Barbara Oakley as a pinball racing through our

neurons. The focused pinball machine has a higher

chance of hitting perfectly sorted and related

bumpers, while a ball in a diffuse machine bounces in

all directions, hitting seemingly unrelated ideas.

While focused thinking is about zooming in and analyzing the

problem at hand, diffuse thinking is about zooming out and

looking at the bigger picture, temporarily letting go of the

problem and approaching different aspects of it on a higher

level. Diffuse thinking, which is more freely associated with

spontaneity, when ideas “suddenly” spring to mind, might

lead to more, and relevant, insightful moments that in turn

can be integrated into the solution using more focused

thinking. In practice, you’re constantly switching between

thinking modes, not unlike Daniel Kahneman’s fast and slow

thinking modes.6 Kahneman, a researcher interested in the

psychology of judgment and decision making, identified a

duality between two modes of thought: “System 1,” which is

fast, instinctive, and emotional, and “System 2,” which is

slow, deliberate, and logical. Kahneman suggests that we

have too much confidence in our own judgment, which we

usually do unconsciously by using the wrong thinking mode.

Learning researcher Jonathan Schooler and his colleagues

refer to diffuse thinking as mind-wandering.7 Mind-wandering

doesn’t involve anything special. In fact, it involves nothing:

it is an everyday experience in which attention becomes

disengaged from the immediate external environment.

A distracted colleague, staring out the window, fooling us

into thinking they’re inspecting the construction site across

the street, is probably mind-wandering. Their peers are

probably annoyed. While Schooler’s team admits that mind-

wandering comes with a social and cognitive cost (to regain

focus—more about that in chapter 7), they also measure

significant improvements in creative performance—provided

you’re still hovering around the incubation phase.

Too much mind-wandering can be detrimental to your mental

health: recently, reports have been popping up that claim to

prove a correlation between mind-wandering and a negative

mood, which has a lasting effect on one’s general happiness

level. Too-frequent construction site inspections from afar

might be a sign of your job dissatisfaction, not just a way to

facilitate diffuse thinking.

5.2.4 Combining diffuse and focused

thinking

Schooler’s research team advocates for an Aristotelian

Middle Way between mindfulness (which increases focus)

and mind-wandering (which facilitates diffuse thinking),

hinting at the combination of the two thinking modes.

American bio-chemist and prolific8 academic publisher Linus

Pauling was once asked by a student how to come up with so

many good ideas. Pauling answered: “Well, that’s easy. You

come up with a lot of ideas, and you throw out the bad

ones.” To do that, you need both diffuse thinking (coming up

with many ideas) and focused/critical thinking (throwing out

the bad ones).

Pauling’s contemporary Jonas Salk developed the first

effective polio vaccine (figure 5.4) by smartly combining

diffuse and focused thinking. Salk’s ideas earned him many

Nobel Prize nominations, although, unlike Pauling, he was

never actually awarded one. He chose not to patent his polio

vaccine, making it an affordable treatment for everyone—

and missing out on more than $7 billion. In coding

terminology, he released it as open source. “Our greatest

responsibility is to be good ancestors,” said Salk. Sadly,

Louis Pasteur’s private laboratory notes reveal that creative

geniuses aren’t immune to greed.

Figure 5.4 Jonas Salk in 1952 at the University of

Pittsburgh, proudly showcasing the first polio

vaccine. Source: public domain, Wikimedia Commons.

The concept of generating ideas (the incubate/illuminate

stages of the creative process) and picking the best ones

(the verify/accept stages) is reflected in many cognitive

psychology theories. The duality is also present in cognitive

psychology researcher Robert Sternberg’s definition of

creativity: “Creativity is the decision to buy low and sell high

in the world of ideas.”9

That indicates some form of critical thinking: what to buy

and what to sell—and, more important, when. To Sternberg,

creativity is, in large part, a (risky) decision. Creative

thinking without critical judgment tends toward the fanciful

(buying high instead of low), the impractical (buying the

wrong thing), and the ridiculous (selling the wrong thing).

Overselling code

Buying low and selling high reminds me of a specific code smell: speculative

generality—that is, overengineering to impress yourself and your colleagues

just to be able to call your coding efforts creative. These two date utility

methods are bound to be reused; let’s release them as a separate utility

package to further complicate all our projects’ dependency trees! Why

aren’t you using a mutex lock on this static singleton instance here? Let’s

refactor it into a thread-safe parallel complex system, because you never

know! Lots of selling high; only the market isn’t that interested in your

Gordian knot.

Sternberg’s commercialization of creativity suggests the

presence of a gambling factor. Eric Weiner calls risk taking

and creative genius inseparable, mentioning Marie Curie as

an example, as she was well aware of the life-threatening

radiation levels but stubbornly continued working with the

toxic materials until they led to her death.

Certain amounts of diffuse and focused thinking are called

for depending on the situation. Too much diffuse thinking

leads to lots of unusual but weird ideas that never get

implemented. Too much focused thinking leads to tunnel

vision and speculative generality. Remember that the

problem space is systemic: everything is interconnected.

Frequently switching thinking modes might therefore be the

most advisable approach. As we learn from Schooler’s

research, neatly summarized by Farnam Street (figure 5.5):10

Figure 5.5 Mental oscillation: alternating between

focused and diffuse thinking—and resting, of course

Mental oscillation is important. If we stay in a focused mode too long,

diminishing returns set in and our thinking stagnates. We stop getting new

ideas and can experience cognitive tunneling.

EXERCISE In your daily practice, are you primarily a focused

or a diffuse thinker? Does this differ on the basis of the task

at hand and, if so, why? Can you identify opportunities to

lean more on the thinking process you are less familiar with,

or perhaps a timely combination of both?

5.3 Creativity is the means, not

the goal

It is important to note that creativity does not always have a

positive connotation. It is possible to come up with extremely

“creative” but completely unusable solutions. How about

using the Java Native Interface to call a custom Ruby

interpreter written in C instead of simply evaluating the

script using JRuby—or, even better, migrating the script to

plain old Java? I doubt it’ll be accepted as a viable solution—

although we’ve all witnessed weird things being hacked

together that miraculously work.

While my colleagues and I were discussing the uses of

creativity in software development with our interviewees, an

interesting thesis surfaced. Someone said, “Creativity is the

means, not the goal.” Interviewees emphasized the right

combination between idea generation and critical thinking,

taking into account the context and constraints of the

problem. Creativity is more than ideation: it also involves

critical reflection. Both concepts are required to solve

problems that seem unsolvable using conventional best

practices (or to identify and isolate the problem in the first

place).

Creativity for the sake of being creative is where we enter

the danger zone. Blinded by aesthetics, we suddenly feel the

urge to make everything “beautiful,” unconsciously

introducing even more speculative generality. Is a

programmer a craftsman? Many of us love to emphasize our

pretty coding skills. Not working software, but well-crafted

software is one of the values present in the “Manifesto for

Software Craftsmanship,”11 signed by more than 32,000 self-

proclaimed craftsmen at the time of writing.

The problem with software craftsmanship is the unbalanced

emphasis on aesthetics instead of function. I’ve “paired”

with programmers who’ve fallen in love with their own

coding ways, frantically recrafting every line of code they

encounter to “beautify” things, completely ignoring their

pairs, deadlines, and team-based code style decisions. These

craftsmen seem to forget that end users don’t care about the

aesthetics of the code: they care whether it works as

intended and is delivered on time. If you are interested in the

heated debate on software craftsmanship, Dan North’s

article “Programming Is Not a Craft” at

https://dannorth.net/2011/01/11/programming-is-not-a-craft/

is a good place to start.

A healthy splash of critical thinking might bring craftsmen to

their senses. Of course, clean code is of paramount

importance; I wouldn’t dare to deny that. Code is read 10

times more often than it is (re)written. Simple, readable, and

clean code is a delight to maintain. Ugly spaghetti code is

not. However, differentiating yourself from mediocre copy-

and-paste programmers by wielding creativity as a beating

stick ends up being just as damaging to the codebase, to

your self-esteem, and to your peers. Creativity is the means,

not the goal, although it can be the goal. The case of

creative coding, where creativity in coding is used

exclusively to express oneself, is such an example. There is

https://dannorth.net/2011/01/11/programming-is-not-a-craft/

no software problem you’re trying to solve on behalf of a

paying customer: there’s only a blank canvas you’re trying to

fill for the sake of being creative. Creative coding is often

used in higher education to promote creative self-expression

and spark interest in computing.

Students are introduced to creative coding with the help of

Processing (figure 5.6), a flexible software sketchbook and a

language for learning how to code within the context of the

visual arts.12 Processing traditionally runs on the JVM,

although recently, versions in JavaScript (p5.js) and Python

(Processing.py) have emerged.

Figure 5.6 The online p5.js editor running a simple

example of colliding spheres following the trajectory

of sine waves. Once logged in, projects are easy to

share: simply copy the URL. p5.js requires little

knowledge of JavaScript since you’ll be relying on the

well-documented Processing-specific functions, such

as sphere.

As fun as filling a canvas with visually impressive scenes is,

creative self-expression teaches little about the bigger

picture of systemic creative problem solving. Environments

such as the p5.js editor are, next to the PICO-8 system from

chapter 4, excellent vehicles for teaching constraint-based

creative thinking. Unfortunately, most related academic

papers I encountered during my literature review limit their

use to an introduction to computing and a motivational tool

to further spark interest in programming.

Creative coding feels like an unlucky choice of words,

because in academia it is mostly associated with self-

expression. A creative programmer is not a creative coder,

but a creative coder can be a creative programmer. Wait,

what? Proofreading that sentence sent my head spinning.

EXERCISE When do you think using creativity makes sense

beyond the domain of problem solving in the context of

programming? Is this done too often or too infrequently by

your current development team?

We will continue to discuss creative exploration in chapter 6,

where curiosity becomes the main driver of creativity.

5.4 Common critical thinking

fallacies

“Je pense, donc je suis” (“I think, therefore I am”). Those

famous words written by René Descartes laid the foundation

for 17th-century rationalism and epistemology, later

expanded upon by Spinoza and Leibniz. Philosophy quotes

are popular one-liners that seem to promote rational

thinking. “Sapere aude” (“Dare to know”)!

While Descartes’ dream theory did prove his existence (je

suis), other wild ideas by the French philosopher are now

met with skepticism. In an attempt to solve the problem of

mind-body dualism, he attributed the connection between

rational thinking and the immortality of the soul to the pineal

gland in the brain. A devout Catholic, Descartes’ extreme

rationalism had to marry the divine somewhere, leaving the

door open for the existence of God.

It is strange to read about such obvious thinking fallacies in

the works of one of the most critical thinkers of our

civilization. Animal spirits that move through the pineal

gland based on God’s will, telling us to want and like things?

It sure is a creative explanation, I’ll give him that. Descartes

isn’t the only respected philosopher with strange ideas: other

examples are Plato’s Republic doctrines and Aristotle’s

controversial views on sexism.

These now-refuted views on the world should be approached

while taking into account their unique Zeitgeist. Still, I

somehow find thinking fallacies of the great philosophers

reassuring: it proves they were just humans and perhaps

gives us humble beings an excuse to be plain wrong from

time to time.

Critical thinking—or rationality,13 as cognitive psychologist

Steven Pinker likes to call it—is never flawless. Cognitive

biases, influenced by our social environment, constantly

warp our thinking patterns.

For example, consider the following simple test,

administered to undergraduate students at Yale University. A

Nintendo 3DS and a 3DS case together cost €110. The 3DS

costs €100 more than the case. How much does that case

cost? The overwhelming majority of the students answered

€10 instead of the correct amount, €5. If the answer was

€10, the 3DS would cost €110—€100 more than the case.

But the sum of those amounts is €120 and not €110!

Verifying the amount that swiftly popped into your mind

might have prevented embarrassment. Pinker accredits this

behavior to Daniel Kahneman’s thinking mode duality:

instead of thoroughly analyzing and thinking about the task

at hand (System 2), we quickly blurt out a number, confident

that the exercise is too trivial to waste energy-consuming

thoughts on (System 1). While System 1 is indispensable for

making quick decisions in life-threatening situations, it’s

hardly competent at critical thinking. According to Pinker,

most thinking fallacies befall us when we misuse

Kahneman’s System 1.

In the next section, I’d like to highlight a subset of cognitive

biases we as programmers often fall victim to. This is

nowhere near a complete enumeration: Wikipedia lists

hundreds of biases, all backed up by scientific research.14

If you are interested in more examples related to

programming, agile manifesto cocreator Andy Hunt devoted

an entire chapter to cognitive (programming) biases in his

Pragmatic Thinking & Learning, and, more recently, software

engineering education researcher Felienne Hermans

published a book on the programmer’s brain,15 featuring

common thinking mistakes that occur while coding and

debugging.

5.4.1 Cross-language clashes

Why is it difficult for developers to learn another

programming language? That question was raised by

software engineering researcher Nischal Shrestha and

colleagues after it was pointed out that most research

focuses on beginners (more specifically, students) learning

languages, even though expert programmers might also

struggle with learning another language.

Shrestha’s team found that both cross-language interference

and facilitation occur.16 A simple example of facilitation,

taken from their paper, is asking a Java developer who is

learning Kotlin how to simplify the following expression:

val boundsBuilder: LatLngBounds.Builder =

 LatLngBounds.Builder()

Sure enough, the developer suspects this declaration is more

verbose than it should be, figures out the type, knows about

local variable type inference in Java, and comes up with this:

val boundsBuilder = LatLngBounds.Builder()

There are no big surprises here: Kotlin is built on top of the

JVM, so obviously your previous Java knowledge will matter.

This is more generally known as transfer during learning.

Unfortunately, the trick doesn’t always work. I know many

Java developers who really struggle with JavaScript, unable

to wrap their heads around prototypal inheritance and async

functional programming, even though modern Java code

finally got rid of interface implementations through

anonymous inner classes by resorting to function references.

Cross-language interference can also be a hindrance when

learning a new spoken language. Words in one language that

resemble words in another might not necessarily mean the

same thing. For example, the Spanish word embarazada

looks like embarrassed, but in reality means “pregnant.” Too

confidently saying embarazada will surely lead to

embarrassment!

EXERCISE This exercise is adapted from Felienne Hermans’

book The Programmer’s Brain. Think of a new programming

language you learned recently. What concepts that you

already knew helped you learn the new language? Now think

of a situation where you made incorrect assumptions about a

programming language that is new to you. Was it because of

cross-language interference?

Cross-language interference is not always worth mentioning.

Syntactic differences are enough to make anyone trip, but

seasoned programmers are usually quick to recover. A

difference in fundamental concepts, such as immutability in

Scala or Elixir, is much more challenging to overcome.

Other problems that surfaced when interviewing experienced

developers about how they learn new languages are “old

habits die hard” and “mindshifts are required when switching

paradigms.” Does the good outweigh the bad? Having

experience with facilitation and as a polyglot programming

advocate, I’d dare to say yes, although small case studies

suggest that regularly switching could affect human

productivity in practice.17 More on the (dis)advantages of

polyglotism in chapter 6. How do we overcome cross-

language interference? Verify, verify, verify.

Context-switching in class

Regularly switching languages involves context-switching that can

sometimes short-circuit the brain—at least, my brain. I teach C/C++, Java,

Kotlin, and Python, and I write JavaScript and Go code in my spare time,

doing my best to forget my VB6 and PHP past along the way. Clashes are

bound to occur. I’m regularly stumped in class, of course at the worst

possible time, halfway through a simple demonstration of a for loop,

suddenly completely forgetting the syntax. Iterator? Foreach? No wait, this

is C, dereference the pointer and then ... then what?

Or how about trying to showcase the correct use of collections, typing

.add() instead of .push_back(), blanking at the compile error. Confusing

zero-based indexing with R’s one-based arrays, falsely relying on the

garbage collector when working with pointers (C++ is not Go), ... My

students must think I really suck at programming.

A healthy dose of postcritical analysis instructs me to push aside my

overconfidence and properly prepare the demos. Next time, I promise!

5.4.2 The superior flash of insight

The illumination step of the creative process might yield

insights worthy enough to develop, but remember to first

critically verify your “sudden” flash of insight. Insight also

comes equipped with bias: ideas gained by unexpected

burning lightbulbs are seen as more truthful than ideas

gained through a logical step-by-step balance. Behold the

divine power of the “Aha-Erlebnis!” Treat these ideas as any

other idea: verify, verify, verify.

5.4.3 Ignorance and Deliberate

Discovery

In 2010, renowned enterprise software developer Dan North

introduced a concept called Deliberate Discovery to

challenge assumptions around software planning and

estimation.18 Programmers constantly make assumptions

while creating software. “This static variable won’t affect

things that much”; “I’m sure this breakpoint won’t get hit

while debugging”; “Duplicating this service is faster than

creating another one from scratch”; “This button is

redundant; our clients don’t use it”; and so on. Sound

familiar?

The problem with making assumptions is that most of the

time they’re completely wrong. Most of our assumptions are

somehow biased in favor of our prior beliefs and values. This

is called confirmation bias: ignoring counterarguments and

interpreting situations to support our own cause instead of

critically investigating the facts. Confirmation bias is

rampant among programmers, even though logical

reasoning comes with the job.19 Ouch, that’s sobering!

Only when something unexpected occurs do we start to truly

learn. If all goes according to plan, we’ll simply produce the

code we’ve been producing before. You might be fooled into

thinking you’re learning by doing so, but you’re merely

getting better at performing an already familiar sequence of

actions.

Unexpected behavior causes us to stop and think—and, one

hopes, debug. North called this accidental discovery. We do

not intend for these learning moments to happen: that pesky

NullPointerException should not have happened in the

first place.

Yet we rarely try to turn these accidental learning moments

into deliberate learning moments. Is that button really

redundant? We don’t know—why don’t we simply ask our

clients? What do the access logs tell us? During the lifetime

of a project, your ignorance will likely decrease thanks to

unexpected exceptions and other accidental moments of

learning.

However, ignorance is multidimensional: you can be ignorant

of the technology in use, ignorant of other possible

technologies out there that might be a better fit, ignorant of

colleagues’ technical knowledge that might help, ignorant of

the wishes of your client, ignorant of the ways your company

communicates with clients, and so on.

Although we have touched upon deliberate ignorance, or

naivety—as a temporary measure to alleviate

overconstrainedness—in chapter 4, we’re mostly ignorant of

our ignorance, and that, in turn, acts as another invisible

constraint. According to North, ignorance isn’t a constraint to

get things moving. It is a constraint to get things moving in

the right direction. Instead of relying on (un)happy accidents

to reduce your ignorance and learn, it might be a better idea

to deliberately identify how ignorance is hampering you,

your colleagues, and the project.

Socratic “thoroughly conscious ignorance,” as Scottish

physicist James Clerk Maxwell liked to call it, is the prelude to

every real advance in science—the prelude to creative

breakthroughs. We used to have fun calling out fake

assumptions while pair programming, jokingly throwing the

ass-u-me joke around as a catchphrase. However, Deliberate

Discovery goes beyond the occasional critical inspection

when things go wrong. The catchphrase was still mostly used

as a result of accidental discovery.

Creative programmers are mindful of their own ignorance. In

true Socratic fashion, they know what they don’t know, and

they actively remediate that if it helps them as they move

forward.

EXERCISE This is an adaptation of a typical critical thinking

test handed out during interviews. Brain Baking, Inc.,

released My Little Baker five years ago, and it became its

best-selling video game. The sequel, My Little Chocolatier,

became one of the top-five best-selling games. Industrial

Bakes, Inc., acquired Brain Baking a few years later because

they believed a second sequel, My Bolder Bakery, would

bring great profits. Is My Little Baker Brain Baking’s best-

selling video game?

The answer is, we simply don’t know. My Little Chocolatier

could have outsold My Little Baker a few years later, even if

it had been only the fifth entry on the best-selling chart at

that time. The acquisition is useless information to throw you

off guard. Socrates would have answered the question

correctly. Know what you don’t know!

5.4.4 I am the greatest

Attributing the success of a project to yourself is called self-

serving bias. Congrats, you! I did it! Wait, isn’t the

expression “We did it”? Keep in mind that because chapter 3

explained creativity as systemic, your creative genius is part

of a greater ecology. The system influenced you as much as

you influenced the system.

Of course, if the project was a big failure, we’re usually the

first ones to scream “I didn’t do it!” Psychologists have

identified this behavior as a largely unconscious self-

protection mechanism. A possible good way to get out of this

bias is by becoming aware of it through the different phases

of Christopher Avery’s shared responsibility model,

introduced in chapter 3.

5.4.5 I am the fanciest

We love to add as many modern frameworks, libraries, and

programming languages as possible to our curricula vitae—

and our job ads. Our burning desire to work with the latest

and greatest results in huge refactoring attempts and

technical debt stories that ultimately do little for the end

user. But at least we managed to squeeze in React, Redux,

and GraphQL!

I was reluctant to drop a few framework names here: by the

time this book is published, it’ll probably be replaced by

something “even better.” My yearly attempts to try to keep

up to date with https://stateofjs.com always end in

depression.

Why are we seduced by the sparkle of the shiny and the

new? Why do we keep on rebuilding the same software again

and again, only with different technology stacks?20 I’ve been

involved in many web-based enterprise software products

that would have been better off as a fat-client application

(blasphemy!), yet most engineers I know continue to—

perhaps uncritically—worship complicated cloud-based

solutions.

In the West, creativity is associated with radical

inventiveness. Yet, in the East, creativity is more often seen

as cyclical, rooted in decades of tradition. Design researchers

ConRong Wang and Qiduan Chen describe Western creativity

as the empowerment of human imagination envisioning

eternally original artifacts, while Eastern creativity is

enmeshed in the nature-in-the-human or spiritual power of

Qi inherent in nature.21 Perhaps our Western culture

https://stateofjs.com/

indoctrinated a belief bias that everything has to be shiny

and new in order to be innovative.

5.4.6 First-Google-hit coding

From time to time, we’re all guilty of Google-coding: quickly

looking up how to work with an unfamiliar API, heavily

relying on the first search result we hit, and accepting its

contents without asking further questions. The problem is

that sometimes hasty search terms equal incorrect search

results. Stack Overflow might have alleviated the problem a

little bit by up-voting or down-voting technical answers,

although I’ve seen plenty of “accepted” answers elaborating

on something completely irrelevant.

What if your search results yield only two matches? Are you

more or less inclined to verify their contents? Relying heavily

on only one piece of information instead of cross-checking

when making decisions is called anchoring bias.

Programmer Brian Provinciano, the creator of the video game

Retro City Rampage (figure 5.7), whom we initially met in

chapter 4, also struggled with this problem. As he was

looking into porting his game to the now-ancient DOS

environment, he noticed that most of the technical

information had been lost. For starters, in 1990 the internet

wasn’t around like the way we know it now. Special DOS VGA

instruction manuals have gone missing. Many current-

generation programmers don’t even know what a floppy disk

looks like. Only a few obscure retro programming forums

provide hints here and there that, as Provinciano attempted

to implement them, proved to be dead wrong.

Figure 5.7 The DOS port of Retro City Rampage, made

possible by cleverly working around constraints and

cross-verification of programming forums and

manuals. Note the absence of a logo on the gray

bricks of the left store: it was cut to fit in one 3.5-inch

floppy disk. The now open source and fully

documented Open Watcom C/C++ toolkit used to

compile the game was also used by DOOM, Duke

Nukem 3D, and Full Throttle.

Here is an incorrect example of how to detect the presence

of a co-processor, posted as a correct solution:

finit

mov cx,3

.wait:

loop .wait

mov word [test_word],0000h

fnstcw word [test_word]

cmp word [test_word],03FFh

jne .no_fpu

The poster assures us that the 8087 FPU co-processor

initializes test_word to 03FFh. It’s easy to see why most

programmers would just copy and paste this snippet: cryptic

and old assembly code renders correct interpretation of

these statements almost impossible. According to

Provinciano, the cmp statement turned out to be failing to

successfully detect the presence of a co-processor in some

cases.

A generational technology gap

A few years ago, I restored my father-in-law’s 80486 IBM PC to its former

glory. I even upgraded the 30-year-old machine by adding an authentic ISA

SoundBlaster card (these things cost at least €80 nowadays!) and socketing

in an AMD 486DX2-66 CPU. Proud of my creation, I hauled it to our faculty to

showcase it to a close hardware engineering colleague, who is a few years

older than me.

The mechanical keystrokes and beeps and bloops from the OPL3 chip

attracted the attention of some PhD students a few aisles away. I opened up

the case to let them inspect the motherboard. “What is that?” they asked,

pointing at an 8-bit ISA slot. “What is that?” they asked, pointing at the VLB

controller card. When the blue BIOS screen tested the extended memory

region of 7424 K, their jaws dropped. “Whooww!” They were lucky I didn’t

bring a Tandy 1000 SX.

The Internet Archive Digital Library is a blessing for people

like Provinciano who are on the lookout for digitized versions

of classic Borland International books. The C++

Programmer’s Guide: Borland C++: Version 5.0 book22 even

contains Part II: Borland C++ DOS Programmer’s Guide on

page 291! BIOS interrupt 13h, here I come! How to

overcome anchoring biases? Cross-check using multiple

information sources, and then verify, verify, verify. Typing

this is getting repetitive.

5.4.7 A long list of novice

programming misconceptions

Of course that string gets converted to an int when

concatenating these variables! The boxing effect in this loop

with big numbers is causing us performance troubles; there’s

no need to measure—I just know. We need to change that

parameter name; it’s the same as our field, and that does

not compile. That while loop will stop as soon as the

condition is false, so I need to repeat my logic below it.

All these misconceptions are part of Teemu Sirkiä and Juha

Sorva’s research. They identified more than 100 common

programming misconceptions in undergraduate students

learning their first few programming languages.23

Some misconceptions are deeply rooted in students’ beliefs

and are very difficult to rectify. Some stay suspicious even

after you have proven them wrong. In that case, a mind

switch is needed to gain a new understanding of the

concept. Sometimes, unlearning takes as much time as

learning.

Preventing students from learning the wrong thing is difficult

if they attend class preprogrammed with beliefs and

misconceptions based on prior experience with mathematics,

statistics, or basic (but wrong) programming skills. Instead of

teaching students endless methods within the JDK API,

thereby falsely convincing ourselves they’re competent Java

devs once awarded a grade, it might be better to teach them

how to interrogate their assumptions. Oh yes, we teachers

are also burdened with a bunch of misconceptions!

5.4.8 Converting prejudice into

insight

What do you do when someone flat-out says, “In our tech,

this can’t be done”? Do you accept their expertise, or do you

rebelliously reject it and show them how it’s done? Perhaps

the smarter alternative is to first try to understand why this

person says it can’t be done. Was it effectively tried before in

the same context, or is this an academic statement? Is the

conclusion originating from a dislike of the current

technology stack, or was it uttered because others said it

couldn’t be done?

This predicament is not merely a case where critical thinking

can be applied: it’s first and foremost a delicate

communication problem. Proving a person wrong won’t

convert their prejudice to insight, but it most definitely will

portray you as arrogant, further complicating future conflicts.

It might be better to clear up any misconceptions before

letting your creative urge run wild.

Our brain’s fight-or-flight system is very good at dishing out

quick but often wrong judgments. Helping others to convert

their prejudice into insight is best done by stepping into their

shoes and, in the case of software development, pair

programming.

EXERCISE Make a list of common critical-thinking fallacies

you’ve spotted in your team while writing code. Which

pitfalls are commonplace, and which happen less often?

What action will you take to prevent future mistakes? Keep

the list updated to track progress. Remember not to point

the finger but to use this as a way to move forward!

5.5 Too much self-criticism

Sometimes, a creative rut is the result of too much critical

thinking when it comes to our own work. Artist and teacher

Julia Cameron describes in her worldwide bestseller The

Artist’s Way how to scramble out of the valley and conquer

our inner creative critic.24 According to Cameron, freeing the

inner artist is simply a matter of dealing with our own

criticism:

Many artists have an inner critic, me too. I call mine Nigel—a stern British

interior designer. When I’m creating an artwork, Nigel immediately yells:

“It’s too boring, too childish, too crappy!” I then say “Nigel, thank you for

sharing,” and keep on working.

Nigel feeds on consistent negative remarks we have to

endure, either by ourselves or by a bad teacher. “Give up

already; you’ll never get it!” or “Try another hobby;

programming just isn’t for you”—sound familiar? Cameron

teaches us to learn to be self-nourishing: “We must become

alert enough to consciously replenish our creative resources,

as we draw on them,” she writes. Nigel’s constant nagging

can be mentally draining, slowly depleting our creative

energy until all we can do is comply and throw out our work.

According to Cameron, the most important instruments for

creative recovery are writing daily morning pages (unfiltered

brain dumps as soon as you’re awake) and artistic dates with

yourself (treating yourself to a trip of a few hours to get

inspired). These techniques saved Cameron’s creative life

and keep on saving the lives of millions of Artist’s Way

readers.

Feel free to replace Cameron’s classic suggestions

(expositions, galleries, concerts, watching a sunset, etc.)

with things that spark your coding imagination (talks,

browsing through cool GitHub repositories, reverse

engineering Yamaha OPL sound chips, playing games,

tearing up C++ books, disassembling Game Boy cartridges,

etc.).

The Artist’s Way, generously filled with spiritual vagueness,

does not particularly attract logical-thinking programmers

like you and me. Still, its message is a powerful one:

sometimes, we’re too hard on ourselves. Creativity

researchers Darya Zabelina and Michael Robinson discovered

similar results: self-judgmental individuals display lower

levels of creative originality.25 Although their study was

limited to the assessment of 86 undergraduates’ creativity

by the Torrance Test of Creative Thinking (see chapter 4), a

growing body of academic literature seems to agree: do less

listening to your inner Nigel and more creating.

How many times have you blindly resorted to a Stack

Overflow code snippet because “it was probably too

complicated for you to understand anyway”? How many

times have you accepted implementation proposals by your

peers without thinking it through because “they’re smarter

than you”? I bet many of you even skipped the PICO-8

constraint exercise from chapter 4 because “you’re no good

at creating pixels” or “you don’t know how to program in

Lua.” Don’t let your inner Nigel beat you to it. In other words,

take a critical look at your own work and at Nigel’s remarks.

EXERCISE The morning pages exercise is a powerful and

unfiltered way to get out ideas floating in your subconscious.

Try out the technique for an entire week. Each morning, even

before breakfast, write down anything that comes to mind,

including “I don’t want to do this,” “I have nothing to say,” or

“I don’t want to get up.” After a few minutes of writing, you’ll

manage past the initial heavy resistance. Write for at least

15 minutes without stopping. Only after the exercise is Nigel

allowed to critically assess the words to separate the wheat

from the chaff.

5.6 Why others’ critical thinking

matters

This chapter has mostly revolved around (self-)criticism to

sharpen your own or collective thoughts and creative ideas. I

also briefly mentioned the advantages of sharing ideas with

others, revealing an important link between critical thinking

and communication.

Feedback from others to iterate on your creative idea isn’t

the only reason why the critical thinking of others matters.

Philosopher and creativity critic Caterina Moruzzi writes

about the relevance of the understanding of creativity

besides the development of creative abilities.26 She

exclusively talks not only about the person developing the

idea but also about the people around that person.

Remember that creativity is a sociocultural verdict: without

someone recognizing your work as creative, it won’t be

perceived as such. That also means the critical evaluation

and verification of others are relevant to the acceptance of

our own work—well past the idea-development phase. This

isn’t an invitation to apply pressure and extort people;

instead, look at it this way: if nobody understands your code,

perhaps you should consider simplifying things. Feel free to

insert you’re doing it wrong memes here.

When it comes to creativity, there’s a thin line between

conventions and nonconformity. It’s up to you to decide how

far you’re willing to take it—in either direction. Just be

prepared for the critical responses: creativity does not exist

in a void.

EXERCISE Revisit the first exercise in this chapter. Has your

opinion changed about having the need for a modern

Socrates (and not a Nigel) on your team who, at unexpected

moments, asks the right critical questions?

Summary

A typical creative process contains the following

interrelated steps: participate, incubate, illuminate,

verify, and present/accept. Thus, critical thinking

by verifying ideas and implementations is a vital

component of the Creative Programmer.

The creative process requires different modes of

thinking at different stages of the process: diffuse

and focused thinking, and, perhaps ideally, a good

mixture of both. If you ever find yourself out of

ideas, try switching modes.

In the context of software problem solving,

creativity is usually used as the means, not the

goal. However, creativity can be the goal: to self-

express, to beautify, to explore and play with new

technologies. Be well aware of the boundary

between creativity as the means and creativity as

the goal. Do not craft beautiful code just because

of the code instead of the product.

Knowing the existence of many critical-thinking

fallacies will certainly help you overcome even the

most stubborn ones. As Socrates would have said:

know what you don’t know.

Critical thinking can lead to being too hard on

others or on yourself, ultimately diminishing the

creative flow. Remember that creativity is systemic

and that you’re part of a mutual learning ecology.

Do not limit critical thinking to your own work:

others’ creative work is in need of feedback, too. It

might be a good idea to first consider how the

feedback will be received. Consequently, adopt an

open mindset when receiving critical feedback

from others.

1.
Gerald L. Geison, The private science of Louis Pasteur. Princeton University

Press, 2014.

2.
See The Gamer interview with Rockstar producer Rich Rosado at

https://www.thegamer.com/gta-remastered-trilogy-rockstar-interview/.

3.
Graham Wallas. Creative process. New American Library, 1921.

4.
Claire M. Zedelius and Jonathan W. Schooler. The richness of inner experience:

Relating styles of daydreaming to creative processes. Frontiers in Psychology,

2016.

5.
See https://www.coursera.org/learn/learning-how-to-learn.

https://www.thegamer.com/gta-remastered-trilogy-rockstar-interview/
https://www.coursera.org/learn/learning-how-to-learn

6.
Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.

7.
Jonathan W. Schooler, Michael D. Mrazek, Michael S. Franklin, et al. The middle

way: Finding the balance between mindfulness and mind-wandering.

Psychology of Learning and Motivation, 2014.

8.
He published 1,200 papers and books combined—that’s even more than Niklas

Luhmann!

9.
Robert Sternberg. Investment theory of creativity.

http://www.robertjsternberg.com/investment-theory-of-creativity/, 2001.

10.
See https://fs.blog/focused-diffuse-thinking/.

11.
See http://manifesto.softwarecraftsmanship.org/.

12.
Ira Greenberg. Processing: Creative coding and computational art. Apress,

2007.

13.
Steven Pinker. Rationality: What it is, why it seems scare, why it matters. Allen

Lane, 2021.

14.
See https://en.wikipedia.org/wiki/List_of_cognitive_biases.

15.
Felienne Hermans. The programmer’s brain: What every programmer needs to

know about cognition. Manning, 2021.

16.
Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. Here we go again:

Why is it difficult for developers to learn another programming language? In

2020 IEEE/ACM 42nd International Conference on Software Engineering, 2020.

17.
Phillip Merlin Uesbeck and Andreas Stefik. A randomized controlled trial on the

impact of polyglot programming in a database context. Open Access Series in

Informatics, 2019.

18.
See https://dannorth.net/2010/08/30/introducing-deliberate-discovery/.

19.
Gul Calikli and Ayse Bener. Empirical analysis of factors affecting confirmation

bias levels of software engineers. Software Quality Journal, 2015.

20.
At least these research questions are not new! Technology acceptance and the

influences of technology attractiveness have been extensively studied, but I

have failed to find a satisfying answer related to software development.

21.
ConRong Wang and Qiduan Chen. Eastern and Western creativity of tradition.

Asian Philosophy, 2021.

22.
See https://archive.org/details/cprogrammersguid00borl/page/n9/mode/2up.

23.
Teemu Sirkiä and Juha Sorva. Exploring programming misconceptions: an

analysis of student mistakes in visual program simulation exercises. In

Proceedings of the 12th Koli Calling International Conference on Computing

Education Research, 2012.

24.
Julia Cameron. The artist’s way: a spiritual path to higher creativity. 30th

Anniversary Edition. TarcherPerigee, 2016.

http://www.robertjsternberg.com/investment-theory-of-creativity/
https://fs.blog/focused-diffuse-thinking/
http://manifesto.softwarecraftsmanship.org/
https://en.wikipedia.org/wiki/List_of_cognitive_biases
https://dannorth.net/2010/08/30/introducing-deliberate-discovery/
https://archive.org/details/cprogrammersguid00borl/page/n9/mode/2up

25.
Darya L. Zabelina and Michael D. Robinson. Don’t be so hard on yourself: Self-

compassion facilitates creative originality among self-judgmental individuals.

Creativity Research Journal, 2010.

26.
Caterina Moruzzi. On the relevance of understanding for creativity. Philosophy

after AI, 2021.

6 Curiosity

This chapter covers

Fixed and growth mindsets and their influence on

creativity

Different types of motivation to stay curious

The concept of multipotentiality

A discussion of generalism versus specialism

The never-ending murmur of the scouring sand that spans

the ancient Egyptian desert has little effect on the traveler’s

mood. Equipped with nothing but a walking stick and a light

backpack, the stranger defies turbulent seas, sandy deserts,

and dusty roads, only to arrive at yet another half-deserted

village. He calmly rests his walking stick against a palm tree,

shakes the sand from his clothing, and, without hesitating,

strikes up a conversation with a local. After a long chat and a

shared but meager meal, he unrolls a partially finished

manuscript and starts writing, beginning with the iconic

words: “I was told that”

That man was Herodotus, and he was on a mission: to record

the history of the world. His work Histories is now regarded

as one of the first meticulously detailed investigations of

cultural, geographical, and historical events, in particular,

the Greco-Persian wars. Herodotus is the world’s first true

fearless historian, willing to travel long and far, whatever the

risks. Histories records the worldview not just from the

viewpoint of his beloved Greece but also from the Persian

Empire, where he was born.

Herodotus’ curiosity about what was happening to the

ordinary inhabitants of his era, combined with his wit and

keen senses, sprouted literature that was considered

essential reading material—and nowadays still should be.

Three hundred years later, the systematic investigation of

anthropological excavations thoroughly impressed Cicero,

who called Herodotus the “Father of History.”

Twenty centuries later, the chaotic but everyday maelstrom

of masts creaking, sailors yelling, and waves sloshing

indicates a ship is about to set sail. The Beagle, under the

command of Royal Navy officer and scientist Robert FitzRoy,

was tasked with charting the coastline of South America. A

22-year-old Brit managed to persuade FitzRoy to join the

crew as a naturalist. That young man was Charles Darwin.

The captain sent Darwin ashore to investigate the local

geology while the Beagle itself continued surveying and

charting the coasts. Darwin’s curiosity wasn’t limited to

geology; it was the perfect excuse for him to explore and

collect samples of local fauna and flora, making extensive

notes while back on the ship—not only on what he saw but

also on theoretical speculations.

Darwin wasn’t an expert in biology: he knew only a little bit

about geology and had the odd beetle collection back home.

He was a novice in all other areas, but his curiosity wasn’t

diminished because of it: precisely the opposite happened.

Despite suffering from prolonged periods of seasickness, he

still managed to write down anything that piqued his

interest, which was almost everything—at least, until he ran

out of paper.

In 1836, the Beagle finally returned to Plymouth after a

journey of five years. Six months after the grand adventure,

Darwin slowly but surely started connecting the dots. The

result of his endless curiosity—a huge body of evidence

collected in notes—reworked into papers and his journals,

gradually revealed that “one species does change into

another.” His seminal work, On the Origin of Species,

eventually published in 1859, would still be a long way off

(23 years!), first requiring several more essays;

conversations with befriended scientists; more revisions; and

very long, thoughtful walks.

One hundred sixty years later, the sizzling of molten tin,

accompanied by small circles of smoke, fills a small office

space in Colindale, London. The floor is littered with DIY-

printed circuit boards and unscrewed Tetris Game Boy

cartridges. A couple of software and electronics engineers

are hacking together a Game Boy development kit by

reverse-engineering Tetris.

Jez San, the founder of British video game developer

Argonaut Games, crossed paths with Nintendo’s Game Boy

during an electronics fair in 1989. He immediately decided to

redirect programming efforts from the Spectrum and Amiga

to the peculiar new handheld device. However, Nintendo was

very stingy about handing out official development kits,

especially outside of Japan. The seeming impossibility of

developing for the Game Boy could have driven San to give

up on the idea. However, his curiosity fueled his drive to

push forward and overcome the severe constraints by

hacking together a development kit from scratch, connecting

wires from a cartridge to chips on a homemade circuit board.

New programming recruit Dylan Cuthbert was tasked with

the development of Argonaut’s first Game Boy game, which

would become X, or Ekkusu (figure 6.1). Jez San thought it

would be cool to develop a 3D space simulator for the Game

Boy—something that had already been achieved on other

platforms with the Starglider series. However, the limited

Game Boy technology housed a variant of the meager Z80

CPU, running at 3.5 MHz. Even worse, it could display only

four shades of gray. Luckily, Cuthbert proved to be up to the

task. The fully 3D-rendered meshes in the game even

impressed Nintendo, who invited the team to Japan.

Figure 6.1 X on the Game Boy, released in 1992. Note

all those cool-looking UI borders, which cleverly

further reduce the resolution to land at an acceptable

frame rate.

X would be the beginning of a shared history between

Argonaut Games and Nintendo. Nintendo’s interest in British

boldness got Argonaut and Cuthbert heavily involved in the

development of the Super FX RISC coprocessor, powering

Yoshi’s Island (2D sprite scaling), the DOOM Super Nintendo

port (Binary Space Partitioning), and, of course, Star Fox

(true 3D polygons), also developed by Argonaut. Cuthbert’s

3D hardware experience landed him a job at Sony, helping

developers unlock the power of the first two PlayStation

generations. He eventually started his own company, Q-

Games, based in Japan, a development studio well known for

the PixelJunk series.

6.1 Curiosity jump-starts

creativity

What is the greatest common divisor between Herodotus’

herculean effort to meet people and write down their stories,

Charles Darwin’s extensive notes on geology and biology,

and Argonaut Games’ soldering hack to peek inside a Tetris

cartridge? All three examples showcase a lot of curiosity:

about the tales of others and the history of empires, about

the evolution of nature and the origin of species, and about

the inner workings of a piece of hardware.

If it weren’t for the curiosity and persistence of these people,

we would have lost even more ancient Greek and Persian

knowledge, we would still have no idea how nature evolved

when sea life crawled upon land, and a Super FX chip might

never have been released on time to prolong the life of the

Super Nintendo (figure 6.2). Perhaps SEGA might have won

the 16-bit console war!

Figure 6.2 The PCB of the PAL version of Yoshi’s

Island, with the beefed-up SuperFX (GSU-2) chip in

the middle, flanked by the 2 MB ROM on the left and

the 256 kB frame buffer and save game SRAM on the

upper right

In Mihaly Csikszentmihalyi’s many interviews with creative

geniuses, curiosity and perseverance are identified as the

two most important personality traits for creative success.

Without curiosity, there is little motivation to learn or build

something. Without perseverance, there is little chance of

effectively finishing the work. Creativity is not creativity

without the initial curiosity that gets everything started.

Although we may never know whether curiosity stems from

genes or from stimulating experiences in our youth, it is

important to acknowledge its existence and cherish it, giving

it the opportunity to grow into a creative life.

Csikszentmihalyi’s emphasis on creativity and perseverance

lead me to believe that curiosity is where the creativeness of

the programmer begins.

6.2 Growing wonder and

wanderlust

As Charles Darwin proved, the best kind of curiosity is an all-

encompassing curiosity. Wondering how something works

evolves into genuine curiosity, which, in turn, is the primary

driver of motivation. How does one get started as a Creative

Programmer? First and foremost, you must cultivate

interests. Otherwise, the participate step in the creative

process explained in chapter 5 will yield few intriguing new

experiences and information. To generate novel ideas by

connecting the dots, you first need to collect them—and

persist them to your system from chapter 2.

Sometimes, we’re in a rut, and our mood prevents us from

discovering new and exciting things. Sometimes, our anxiety

imprisons our wanderlust. Sometimes, our tunnel vision

fixates our interests. Fortunately, there’s a way out: it’s

called cultivating a growth mindset.

6.2.1 Fixed and growth mindsets

After decades of research on achievement and success, the

renowned psychologist and sociologist Carol Dweck

concluded that the power of unlocking our full potential lies

in the mind. Her studies on the mindset of top performers

revealed that our mindset can be roughly categorized into

two camps as shown in figure 6.3: the fixed mindset and the

growth mindset.1

Figure 6.3 Fixed and growth mindsets. Would you

rather buy a padlock to protect (limiting) or get

fertilizer to grow (freedom)?

A fixed mindset is the belief that your talent and abilities are

set in stone. Either you’re creative, or you’re not. Fixed

mindset people usually either envy others because they see

a quality they lack and will never master, or they are

arrogant and disdainful toward others whom they think lack

a quality and will never master it. A fixed mindset equals

fixed traits. Their motto is “Smart people succeed.”

A growth mindset is the belief that your talent and abilities

can be cultivated and grown over time through effort.

Growth mindset people recognize they are not yet creative;

they just need a little bit more practice. A growth mindset

equals malleable traits. Their motto is “People can get

smarter.”

In practice, these two opposite ends of the spectrum are

purely indicative. Between the black and white, there are

hundreds—no, wait, 50—shades of gray. You might think you

can still develop your cooking skills to become a competent

chef but also be convinced that you’ll never be more than a

shabby coder. According to Dweck’s research, whatever

mindset you have in a particular field will guide you in that

area. Are you convinced that you’ll never be good at coding?

Then you never will be.

Embracing criticism as valuable feedback is one of the key

traits of a growth mindset. Eric Weiner’s travels around the

world to chase the odd geographical clusters of dead

geniuses revealed that these people thrived on negative

feedback: it only added more fuel to their creative burn.

Criticism is indeed never fun to receive, but it is up to you to

decide how to deal with it. Are you really going to throw in

the proverbial towel just because some fixed mindset told

you that you suck at this?

The stimulating or damaging

influence of teachers

It is remarkable that many creative geniuses have either no recollection

whatsoever of a special bond with a teacher in school or a very intimate

one. I’ve read about the damaging effects of teachers carelessly criticizing

children for their bad performance, and I’ve read about teachers being

fondly remembered as genuine curiosity promoters. Even some Nobel Prize

winners rate their high school teachers negatively across the board.

I honestly can’t blame them. When I was in high school, I eventually

switched to a trade school where only the truly excellent students move on

to a local college. I was the only one to enroll in a computer science degree

at a university—against the advice of all my teachers. “You’ll never make it

there,” they warned. Four years later, I graduated. As I type this, I’m

finishing my PhD. Perhaps I should send them my copy of Carol Dweck’s

Mindset.

6.2.2 Believing is doing

Dweck calls a growth mindset “a passport to new

adventures.” I’d like to alter the expression to “a free pass to

creativity,” a pass handed out by ourselves, to ourselves, to

remind us to lead a creative life—provided we believe in it.

Dweck teaches us that how we view our lives drastically

affects how we lead them: “For twenty years, my research

has shown that the view you adopt of yourself profoundly

affects the way you lead your life.”

Anyone can lead the life of the Creative Programmer. There

are no high-IQ requirements, and there is no need for friends

in high places. Sure, the ability to rapidly process information

helps, as does surrounding yourself with inspiring people, as

we saw in chapter 3. But Dweck tells us that the most

important thing is to believe in ourselves. This simple yet

incredibly powerful message takes a lot of guts to realize.

That belief influences how we cope with setbacks and often

marks the difference between excellence and mediocrity.

Even Leonardo da Vinci instinctively knew this when he

wrote (The Notebooks of Leonardo da Vinci, Richter, 1888),

“Obstacles cannot crush me. Every obstacle yields to stern

resolve. He who is fixed to a star does not change his mind.”

6.2.3 Growing out of your comfort

zone

Sometimes, we’re simply afraid to learn new things—to jump

down the hole. I might as well stay in the Java world where I

know most of the gotchas. People might think I’m a fraud. I’d

rather not get involved in this new JavaScript stuff. I’m not a

philosopher; I’d rather read some fiction. My colleagues

respect me for my domain knowledge; there’s no way I’m

switching to a new project. I studied computer science, so

there’s no point in reading up on psychology (guess what

you’re doing right now?).

All these statements reek of a very fixed mindset. Cultivating

a growth mindset involves facing and defeating our fears of

the unknown. The research of my colleagues and myself

indicates that creative software engineering students get out

of their comfort zone more often than noncreative students.2

In an open programming assignment, the creativity of the

end product was evaluated by a group of expert judges using

Amabile’s Consensual Assessment Technique (CAT), as

explained in chapter 1. A survey that collected contextual

information revealed that significantly higher-performing

students didn’t limit their implementation to what we taught

them. Instead, their curiosity pushed them out of their

comfort zone, initially fumbling and failing but carrying on

and eventually submitting a more original and creative

design. Interestingly, the more creative a project was

deemed by the judges, the more clean code problems a

static code analysis tool revealed. Perhaps not unexpectedly,

exploring unknown code territory with a tight deadline

seemed to cause students to skimp on the code quality.

In another ongoing study, our software engineering students

had to work together with students from the design faculty

of another university to code a visually appealing digital

piece of art. Many students mentioned in postproject

interviews that their partner had made them explore more

than usual and get out of their comfort zone. One student

testified to this:

I had the feeling that my partner made me start exploring more

[implementation options]. Usually I’d stay comfortably within [the

knowledge of] my group. The interaction [with] my partner made me really

get out of my comfort zone.

This positive feedback loop ties in nicely with the findings

discussed in chapter 3, where the influence of

communication on creativity was explored. Other students

noted that getting over the initial discomfort of getting to

know another person came at the cost of precious project

time. They didn’t manage to finish what they intended, but

the core concept they aimed for certainly was more

grandiose compared with a conventional programming

project limited to the engineering faculty. In this study, the

self-reported creativity of the engineering student who was

paired with the design student again was rated higher

compared with that of the control group, in which

engineering students were paired with other engineering

students.

A conclusion could be that getting out of the comfort zone

can be refreshing for the creativity of the programmer. The

problem with yelling “Get out of your comfort zone!” is the

vagueness of that zone (figure 6.4)—what, exactly, does it

entail? For one person, it might mean carefully exploring the

possibility of switching to another development team to

learn more about the frontend instead of the backend of the

system. For another person, it might mean giving a

presentation and sharing knowledge.

Figure 6.4 Good job at getting out of your comfort

zone! But wait—did we just swap fishbowls?

Many programmers tout having thwarted their inner fears by

making the switch from Java to C#. The internet is littered

with mediocre articles that clickbait people in with fancy

titles such as “Programmers, Don’t Stay in Your Comfort

Zone,” “The Power of Stepping Out of Your Comfort Zone

When Coding,” or the very daring “Lessons Learned by

Stepping Outside [the] WordPress Comfort Zone.”

I’ll be blunt here: switching languages, teams, technologies,

and sharing knowledge are everything but getting out of the

programming comfort zone. Both research and practice

indicate that those attributes are becoming the minimum

requirements for calling yourself a competent programmer.

By limiting the interpretation of a comfort zone to technical

programming knowledge, we risk turning a blind eye toward

a much more fertile pool of cross-pollinating ideas. Creative

Programmers do a lot better than that.

6.2.4 Growth mindsets and creativity

Why is developing a growth mindset relevant to creativity?

Because a growth mindset embraces challenges rather than

avoids them, persists in case of setbacks rather than giving

up, sees effort as a way towards mastery rather than a waste

of energy, learns from criticism rather than ignores it, and

finds inspiration in the success of others rather than being

threatened by it. All these feedback loops are an integral

part of the creative process.

Robert Sternberg polled 143 creativity researchers and

concluded that there was wide agreement on the number-

one ingredient of creative achievement.3 Although Sternberg

used the term persistence, it was, as Carol Dweck noted in

her work, “exactly the kind of perseverance and resilience

produced by the growth mindset.”

Dweck’s publications are among the most cited in

psychological research. More recently, countless studies

investigating creativity seamlessly integrated the growth

mindset concept. Behavioral psychologists Jean Pretz and

Danielle Nelson identified mindset as one of the key factors

that can positively or negatively affect creativity.4 In another

example, the motivation to be creative was related to having

a growth mindset by undergraduate students who had

declared an education major. Their perceptions of a creative

other were positively related to their growth mindset of

creativity.5 The most promising part of their study is the

following conclusion:

These findings point to promising creativity motivation strategies, including

the cultivation of a malleable view of creativity and of creative role models,

that may, in turn, promote creative achievement by encouraging students

to do, learn, and accomplish new things.

If you show students—or, in our case, programmers—that

creativity is a skill that can be learned and thus is not fixed,

their creativity blossoms. I’d be more than happy if this book

somehow managed to cultivate that malleable view in the

minds of its readers. If not, feel free to send criticism my

way!

Responsibility and the growth

mindset

Fixed mindset people constantly feel the need to prove their worth. When

things go wrong, admitting mistakes isn’t part of the plan. “I didn’t do it!” or

“It’s their fault!” responses are typical fixed mindset behavior. Denying or

laying blame also stand in the way of sharing responsibilities, as shown in

chapter 3.

Intellectual abilities can be developed, and so can creativity,

yet we need to be open to the idea of the development of

creativity just as with any other skill. In a recent study of the

relationship between mindset in higher education computing

students and their study performance,6 researchers Mikko-

Ville Apiola and Erkki Sutinen discovered that mindset on

computing was growth oriented but that mindset on

creativity was the most fixed of all scales. This means that

computing students either think they are creative or think

they are not, but they are not open to the idea of nurturing

creativity. As the authors concluded,

This is interesting and alarming at the same time. As computer science is

inherently a creative domain, and building technologies requires creativity,

one could presume that a fixed mindset on creativity might have negative

consequences in building future technologies.

The question remains whether we can extrapolate these

results to more experienced programmers. Research on

mindsets in computing is still in its infancy. A few pilot

studies have reported successes while deploying growth

mindset interventions in an effort to increase programming

performance in first-year computing students.7 One

intervention comprised three parts: lectures to promote the

fundamentals of developing a growth mindset and

testimonials, case studies drawn from Dweck’s work, and

frequent feedback loops.

However, the average mindset did not change significantly.

An intervention of a single semester might (slightly) increase

grades, but a mindset is not so easily changed. This again

shows the importance of continuously rerouting the fixed

mindset into an open mindset, not only in the context of

intelligence but also, and especially, when it comes to

creativity.

EXERCISE When was the last time you were forced to get

out of your comfort zone related to your programming work?

What was it, exactly, that made you dip a toe into the

unknown? What was the creative result like—for yourself, for

the project, and for possible future ventures into the

unknown?

6.3 Staying on the curious

course

Perseverance is, along with curiosity, identified as a major

creative characteristic. Without curiosity, Charles Darwin

would not have collected as much compelling information in

his notebooks. But without the perseverance to keep on

connecting, digging, reworking, and reviewing his collected

notes, he would never have written On the Origin of Species

23 years after his journey aboard the Beagle.

6.3.1 Persistence and grit

Carol Dweck’s mindsets are perspectives that alter the way

you perceive your learning abilities (and those of others). A

growth mindset focuses on both cultivating curiosity and

persevering in the face of adversity. The research of

psychologist Angela Duckworth picked up where Dweck left

off. She coined the term grit, a special blend of passion and

persistence that she calls the secret to success.8 Just like the

growth mindset, grit is backed by scientific evidence telling

us that it can grow. Forget talent—just keep on bashing your

head against the wall: eventually, you’ll break through.

The link between grit and academic success has been

established by numerous studies. The same is true for

programming courses, which are notorious for their high

failure rates: researchers James Wolf and Ronnie Jia found

that grittier students earn higher grades compared with less

gritty students.9

Of course, grit can take you only so far. Innate factors,

described as IQ or talent, still matter as measures of

potential. I don’t want to linger on this for too long because it

is an unresolved and heated debate in the field of

psychology.

Grit and the growth mindset both show clear signs of

curiosity and perseverance. Passion can evolve from

curiosity, and nobody keeps on bashing their head against

code problems without a tiny bit of passion. By the 23,954th

bash, passion might have evaporated and turned into a

severe headache.

When Angela Duckworth was interviewed by Farnam Street,

she also emphasized the importance of asking for and

correctly processing feedback:10 “Feedback is a gift, but most

of us don’t know how to unwrap it. And don’t want to receive

it.” Grit can be seen as a part of the broader growth mindset

in the form of a trait defined by a set of characteristics:

courage, conscientiousness, resilience, and endurance. What

stands out is that both Dweck and Duckworth urge us not to

always look for a new challenge when the going gets tough.

Like Albert Einstein said, “It’s not that I’m so smart, it’s just

that I stay with problems longer.”

Most of us struggle with direction versus determination. We

take another direction as soon as things go awry, hastily

covering up our mistakes. Instead, grit teaches us to learn

from them and continue pressing on. Darwin suffered from

severe seasickness. Why would any sane person deliberately

cope with seasickness on and off for five years? I know I

wouldn’t—the thought alone makes my stomach churn.

Darwin must have scored very high on Duckworth’s Grit

Scale.

Bill Gates on grit

There are countless success stories of perseverance in the programming

world, of which perhaps Bill Gates’ is the most famous. As a young boy, he

began to show interest in computer programming. Back then, programming

was done on terminals that interface with a central machine: computer time

was expensive and thus limited and shared. When his time was up but his

curiosity wasn’t satisfied yet, he exploited a glitch to obtain more computer

time. When his rights were eventually revoked, he kept on hacking into his

school’s scheduling program just to learn how the internals worked.

In the 1970s, before founding Microsoft, Gates and his partner Paul Allen

created software for traffic counting. The project, Traf-O-Data, was

considered a failure, yet instead of giving up the business and going to

study something serious, he dropped out of Harvard and eventually made

billions.

In an interview with Angela Duckworth, Bill Gates revealed that when he

used to screen applicants for Microsoft, he selected the most gritty

candidates. In tough programming assignments, he preferred candidates to

keep on trying rather than give up in frustration.

6.3.2 Willpower is a depletable

resource

In theory, developing growth mindsets and increasing your

grit sound easy enough. In practice, it requires a lot of

willpower to swallow our pride when dealing with negative

feedback—especially if that same day our mood has already

plummeted because of an unlucky combination of a flat

bicycle tire and a sudden downpour. “It’s just one of those

days,” you think later that night after indulging in too much

chocolate.

It’s not just one of those days: it’s called willpower, and

social psychologist Roy F. Baumeister discovered that it is a

finite resource.11 Most decisions we make secretly consume a

little bit of willpower. Big and scary decisions or events, like

coping with a sudden downpour and negative feedback,

gobble up a lot of it. At the end of the day, there won’t be

anything left to keep you from snacking.

Creative geniuses instinctively knew this. Sigmund Freud and

Immanuel Kant both adhered to a strict daily schedule.

Einstein and da Vinci wore the same clothes day in and day

out. Even the president of the United States does not choose

which clothes to wear; his staff does: one fewer decision to

make equals a little bit more willpower for creative or

important life-threatening decisions. This sounds ridiculous,

but all the little bits do add up. What Baumeister calls ego

depletion can make you lose control (performance control)

and give in to cravings (impulse control).

Self-control, at the cost of willpower, is indispensable when it

comes to perseverance and switching from a fixed to a

growth mindset. A mindset change is not about picking up a

few pointers here and there; it’s about continually investing

in seeing things in a new way. Nobody ever said it was going

to be easy! Thankfully, Baumeister shows that willpower is

like a muscle: given enough training, it can gradually do

more heavy lifting. He concludes his book Willpower, written

with John Marion Tierney, with a few tips on how to increase

willpower and how to avoid wasting it, such as creating

habits, finding a beacon to hold onto, and challenging

yourself by setting goals.

EXERCISE Take the Grit Scale by filling in responses to 10

questions at https://angeladuckworth.com/grit-scale/. The

result is a grit score on a scale between 0.0 and 5.0. How do

https://angeladuckworth.com/grit-scale/

you feel about that score—does that reflect the current you?

Which questions evoked a bit of resistance? That might be

interesting to work on in the near future. Note that the result

is not set in stone!

6.4 From curiosity to motivation

Wonder is the source of all learning. Wonder can evolve into

motivation to keep on learning. But how about that classic

intrinsic-versus-extrinsic motivation debate, and where does

creativity fit in? Let’s take a closer look.

6.4.1 Intrinsic motivation

Becoming motivated to do something (such as being

creative) by yourself, without an external source that pushes

you to do it, is called an intrinsic motivation. As first

mentioned in chapter 1, feeding Umberto Eco’s creative

urge, which lives within us, is most likely an intrinsic

decision. We’re creative because we want to be. Vincent van

Gogh painted because he wanted to paint, not because he

was driven by the promise of wealth. If that was the case, he

would have followed in his father’s footsteps, who was a

minister of the Dutch Reformed Church. In fact, van Gogh’s

initial desire was to become a pastor.

Studies by cognitive psychologist Teresa Amabile have

shown that intrinsically motivated students produce more

creativity. One group of students was told that their work

would be evaluated by artists, while the other group was told

to just have fun. The results were astonishing: the “just have

fun” group scored significantly higher on CAT tests compared

with the control group. Amabile calls it the intrinsic theory of

motivation: “People will be more creative when they feel

motivated primarily by interest, enjoyment, satisfaction, and

the challenge of the work itself—not by external

pressures.”12

So far, so good. I don’t think the outcome of that study

surprises anyone. This intrinsic theory, however, doesn’t

always bode well in the real world.

6.4.2 Extrinsic motivation

External sources telling you to do something are called

extrinsic motivation. This can be an assignment tasked by

your employer or the promise of money or power. That call

from your bank pushing you to start investing your money

could have been made because the caller was on

commission.

Amabile’s experiments are limited to undergraduate

students. In other words, she picked out novice creators with

little experience. Would the inclusion of experienced creators

have mattered? Other studies say yes.13 All we need to do to

prove it is to take a look at the highly competitive world of

renowned scientists. Remember the jealousy of Louis Pasteur

from chapter 5? He did everything he could to keep his

adversaries from earning more fame and money in the form

of grants. Nobel Prize winners James Watson and Francis

Crick said they were motivated by the Nobel Prize itself.

Extrinsic competition clearly motivates skilled scientists.

Even without the influence of the “publish or perish” system,

the allure of a reward seems to positively affect creative

work.

By now, you should be familiar with systems thinking. We

can’t talk about motivation without also considering its

environment. Furthermore, extrinsic pushes come in many

flavors: constant, external, performance monitoring

obviously impedes creativity. More about the environment in

the following chapters.

6.4.3 Combining intrinsic and

extrinsic motivation

But wait a minute—ample software systems and artworks

have also been produced on commission. Is the decisive

factor intrinsic or extrinsic motivation? The answer is, of

course, a little bit of both.

For example, Mozart was both extrinsically and intrinsically

motivated. He performed miracles only when someone

demanded it. It was only after the contractor kicked his butt

into action and the creative process bootstrapped, that the

exceptional musical compositions flowed. Mozart is well

known for his greed and loved to take part in commercial

politics. The Renaissance contains similar examples.

Countless marvelous creative artworks and buildings were

commissioned by the Church and the de Medici family.

Filippo Brunelleschi’s eye-catching cathedral dome in Firenze

was built because of gold, not because of intrinsic

motivations.

Sometimes, the project starts as a boring coding job that

gradually fuels motivation and ends up becoming a big-

passion project. I know a programming consultant who offers

his services a few days a week to a company that, according

to him, “makes really boring .NET stuff.” Yet, when I ask him

why he’s still doing that, the answer is twofold: “It pays well

and the company allows for a lot of creative freedom where I

can go wild, even though the software itself isn’t exciting. It’s

like I’m being paid to experiment!” Another ex-colleague

explicitly requested to be transferred to the C++

maintenance team that everybody dreaded, just to learn the

ropes of C++ and smart pointer usage. That’s what I call

dedication.

Sometimes, it’s the other way around. Two ex-colleagues of

mine were bored with enterprise Java development and

started dabbling in the Play Framework to learn Scala and

Akka. To have something tangible to build after working

hours, they created a seating reservation system for the

local choir. A good year later, they quit their jobs, launched it

as a start-up with the help of a sales specialist, and have

been evolving their own cloud-based product ever since.

Software entrepreneurs Jason Fried and David Heinemeier

Hansson like to call this phenomenon “scratching your own

itch.”14 Basecamp, originally designed as a way to internally

manage client work, is such an itch that was thoroughly

scratched. First, build for yourself (intrinsic), and then

expand it to others (extrinsic). The “scratch your own itch”

mantra can be very powerful in boosting your creative

curiosity as you’re initially making something cool for

yourself.

It is interesting to note that although some software systems

start out as intrinsic passion projects, as time goes on, that

motivation can gradually wane, and hence the added boost

of extrinsic motivation won’t hurt. After all, how many of us

would still be cracking programming problems without

getting paid? How many of us would still be enthusiastically

coding away while getting severely underpaid? Prestige,

competition, and money apparently motivate experienced

creators but inhibit inexperienced ones. There, this is your

free pass to ask for a raise.

EXERCISE When it comes to programming, do you have a

creative urge? For instance, do you maintain a lot of pet

projects? Which of those could evolve into something

production ready that can be deployed and effectively used?

Or are you more easily enticed by extrinsic means? If so, can

you identify intrinsic means at your current job that help you

deal with the mundane?

6.5 Multipotentiality

Truly creative people rarely limit their curiosity to only one

discipline. Does this sound counterintuitive? Maybe you’re

thinking about the lifelong dedication of people like Sigmund

Freud, founder of the field of psychoanalysis. Don’t these

people heavily specialize—in this case, in psychology? The

Dreyfus model and the magical 10,000-hour rule might

certainly apply to Freud, but we mustn’t forget that he was

also an amateur archaeologist. Freud loved collecting unique

and ancient pieces to decorate his office. It was his love of

archeology that gave him the idea for “excavating the

mind”—an idea that was crossbred into psychology.

Freud was diversifying experiences, which is proven to

enhance cognitive flexibility.15 Systems thinker Nora Bateson

(see chapter 3) compares limiting curiosity to only one

domain with agricultural monocultures: endless fields of

wheat, soy, or almond trees, that have devastating long-

term consequences for biodiversity. Mental monocropping

(figure 6.5) has the same toxic effect on one’s cognitive

health.

Figure 6.5 Imagine this as a photo of your brain

instead of a huge wheat field. Reap what you sow:

wheat, wheat, and more wheat. Great for baking

bread, disastrous for cultivating ideas. Photo courtesy

of Bence Balla-Schottner, Unsplash

6.5.1 Multiple true callings

The textbook example of a creative individual is Leonardo da

Vinci. His Mona Lisa attracts millions of tourists to the

Louvre. He wasn’t merely a skilled painter and drawer: he

studied anatomy, physiology, engineering, and biology; he

designed contraptions; he theorized about flying UFOs; and

he applied scientific rigor to every single idea he had. Da

Vinci was the archetype of the polymath or Renaissance

man: someone whose knowledge spans multiple domains

that can be brought together to solve complex problems or

come up with novel connections.

Living up to the expectations of the true Uomo Universale

might be stretching it a bit too far. That is why creative

generalist Emilie Wapnick came up with her own word for a

person with multiple interests: a multipotentialite.16 After

studying law, building websites, and trying to get into arts,

she got bored and moved on to yet another interest.

Frustrated with never being able to answer the “What do you

do?” question posed at every cocktail party, she discovered

that she was a multipo—a generalist.

Wapnick discovered something more troubling: our current

society does not easily accept multipotentiality. It puts

specialism on a pedestal and shoves aside people with

multiple interests. Even worse, people like Wapnick are left

wondering what is wrong with them after blurting out

“baker” and “programmer” and “philosopher” to answer

“What do you want to be when you grow up?” Our culture

expects a single silver bullet, not a scattershot.

Multipos have several advantages over specialists. The

following is a summary from Wapnick’s work:

Idea synthesis—Creativity happens in between

domains, not safely within one.

Rapid learning—Generalists are used to being

beginners and excel at learning new things.

Adaptability—Different situations call for different

approaches, which are best tackled by adapting to

them.

Big picture thinking—Specialists tend to develop

tunnel vision while generalists keep a wider view.

Relating and translating—Because of their

familiarity with many domains, it is easier for

generalists to relate to other areas of expertise

they know.

Emilie Wapnick is not an academic, but her ideas are echoed

in many papers I’ve encountered during my research.

Wapnick isn’t the only nonacademic writer who subscribes to

the idea of generalism, as journalist David Epstein proves

with his recent book, Range: Why Generalists Triumph in a

Specialized World.

Restarting from scratch can be quite daunting. Why would

one leave a comfortable position as an expert in

photography to become a total newbie in a professional

kitchen? The following quote from Shunryu Suzuki, a

Buddhist monk who founded the first American Zen

monastery, might help: “In the beginner’s mind, there are

many possibilities. In the expert’s mind, there are few.”

Remember GoldenEye, the naively programmed James Bond

video game from chapter 4? Rare’s game-developer newbies

saw possibilities that experts assumed were impossible to

implement. This suggests that multipotentialites might also

be better at working with constraints.

Nathan Myhrvold, the former CTO at Microsoft who

completed a PhD in mathematics, applied his engineering

experience, scientific rigor, and love of food photography to

create the ultimate bread-baking bible, Modernist Bread (The

Cooking Lab, 2017). In this enormous encyclopedic work, he

meticulously deconstructs everything we know about bread

baking: the microbiological process in the dough, the

chemical process in the oven, and the psychological process

in our brain when we munch on a delicious slice of bread.

Myhrvold ticks a lot of Wapnick’s boxes.

I know a few other engineers who have reinvented

themselves as bakers and took advantage of their

experience to fine-tune the baking process. Consider Justin

Liam, for example, who built a fermentation-monitoring

system for his sourdough starter using computer vision on a

Raspberry Pi.17 Or how about the software and hardware duo

Fred Benenson and Sarah Pavis, who invented Breadwinner,18

a smart sourdough tracker with a companion mobile app and

intricate web-accessible dashboard? Without their

adaptability, idea synthesis, and relating and translating

multipotentialite traits, that product would never have

existed.

In case you don’t plan on quitting your coding job any time

soon to become a baker, adopting a more generalist view

might open up more creative and commercial doors within

the programming domain. This is exactly what Adam Tornhill

set out to do. Adam is a programmer who managed to

squeeze out everything from his combined degrees in

engineering and psychology. He is the creator of CodeScene,

a code analysis tool that, unlike many other static code

analyzers, such as PMD, does not simply return potential

code smells. Instead, based on Adam’s psychological

experience and collaborations with criminologists, it detects

hidden social patterns in code. CodeScene—Code as a Crime

Scene—is a behavioral code analysis tool that would not

have existed if it weren’t for Adam’s combined interests.

6.5.2 How to approach multiple

interests

Not every multipotentialite directs curiosity the same way.

For some, sequential deep diving works wonders. Wapnick

calls this the Phoenix Approach: serial specialists who stick

with an interest longer than others to dig deeper but do

move on after a while to broaden their horizons.

Other possibilities include these:

The Slash Approach—The parallel processing of

interests. I’m a baker/programmer/

teacher/researcher/writer; Adam Tornhill is a

psychologist/programmer.

The Group Hug Approach—Having one

multifaceted job that hugs together various

disciplines. A software developer in academia

might be involved in multiple scientific domains,

teaching didactics, coding to analyze data, writing

to help publish the results, and so on.

The Einstein Approach—Combining a stable but

boring day job with creative discovery at night.

This provides financial stability while at the same

time enabling the freedom to scratch your own itch

without the compromises required in most day

jobs.

And as always, hybrid solutions that draw from several of

these approaches might work best for you.

The dark side of creativity

Original thinkers can be more dishonest, concluded social psychology

researchers Francesca Gino and Dan Ariely.
19

 They discovered that a

creative mindset can promote individuals’ ability to justify their behavior,

which, in turn, can lead to unethical behavior. Students who rated higher on

a creative personality scale were also more likely to cheat during an

experiment. Furthermore, students who were primed to think creatively

were more likely to behave dishonestly than those in a control condition.

Your creative programming skills should never trump your responsibility

toward coworkers, clients, and other stakeholders. Be wary of the path to

the Dark Side, my young Padawan!

6.5.3 Does specialism kill creativity?

In his book The Geography of Genius, Eric Weiner laments

the increasing pressure to specialize, which, according to

him, stifles creativity rather than propels it to new heights.

Every field has become so complex that it is now nearly

impossible for a single mind to grasp all aspects. I have no

problem explaining all the 0s and 1s inside the 1989 Game

Boy, but don’t ask me to explain how the 2020 M1 chip in my

MacBook works (figure 6.6). I could invest a lot of time in

trying to figure it out and still fail to truly grasp every tiny

detail. The same is true for programming: on the Game Boy,

each assembly line is simply an instruction that the CPU

literally interprets. But what actually happens when we

execute Collections.sort(myClientList,

Collections.reverseOrder()) inside the Java Virtual

Machine? Convenience has indeed abstracted away

complexity, but when things go wrong, debugging and

pinpointing the problem can prove to be real challenges.

Figure 6.6 Apple’s M1 System on a Chip (SoC): 16

billion transistors, up to 8-core GPU and CPU coupled

with fast cache and DRAM via a unified memory

architecture (UMA). Reading that makes me feel like

Manuel from Fawlty Towers: “¿Qué?” Compare that

with the 8-bit Game Boy’s Z80 CPU variant, which

houses roughly 10,000 transistors. Wow. At the same

time, it’s impossible to deny its creative genius, but

the point is that conceiving this requires hundreds of

highly specialized hardware and software engineers

(and tons of money).

The rise of specialism isn’t visible only in computing.

Consider a job in the baking world, for example. Usually, a

job ad titled “baker wanted” would suffice. That person

would end up baking bread, leavening pastry treats and

tarts, cooking pudding, inventing new praline flavors, and so

forth. But that’s not how it works. Even small bakeries

employ dedicated bread bakers and pastry chefs: a strict

separation of concerns that allows for fancy specialties but

leaves little wiggle room to combine both.

There is nothing wrong with taking pride in specializing as a

sourdough bread baker or chocolatier. The problem is that

specialization does not stop there. Most job ads in large-

scale baking industries call for either engineering experts as

operations managers or ask for “mixers.” Don’t confuse a

mixer with mixing equipment, though: a mixer is a person

dedicated to mixing dough. That’s it. It is a highly specialized

and completely mind-numbing job in an assembly line. That

is where the road to specialism is taking us.

British political activist Ken Robinson left little to the

imagination with his books and TED talk “Education Kills

Creativity.”20 Robinson argued that by educating people out

of creative capabilities, we also rob them of the ability to

cope with the uncertainty of the future. In high school, you’re

served carefully wrapped packages of math, history, biology,

Latin, and informatics. Teachers do everything they can to

safely stay within the bounds of the subject at hand while

learning (and interest) occurs in between these packages.

Promoting specialization in higher education makes it even

worse. University programs tout “interdisciplinary studying,”

which unfortunately rarely happens. It is a lot more

challenging to study biology, anthropology, and history—like

Gregory Bateson did in his cybernetics and systems thinking

work from chapter 3—than to specialize in a single field,

where the pathway to scientific mastery is much more

straightforward. If there is no clear path, the curious and the

gritty, and those with multiple interests, will thrive where

others might fail.

In 2008, Belgian universities added a fifth year to the

master’s degree program in computer science to encompass

more specialist courses to teach expertise demanded by the

industry. Discussions to do the same for all engineering

degrees are ongoing. Meanwhile, the retirement age keeps

on climbing, and the years wasted in school do not count as

work experience.

The number of doctoral students—the prototype of

specialists—has quadrupled in the past century. When it

comes to creativity, owning a PhD won’t get you far: it

apparently even statistically decreases your chance of a

creative breakthrough! This was cited in Weiner’s work, but I

was unable to locate the source. Some dissertations surely

can be creative products, but unfortunately they rarely draw

from different fields.

6.5.4 Generalism vs. specialism in

tech

Every programmer knows the tech world is highly

specialized. Almost 90% of Pragmatic Bookshelf or Manning

books help programmers specialize instead of generalize.

Specialization in tech is a risky business because that world

is also very volatile, forcing programmers to continually

reinvent themselves. Specialism combined with volatility is a

sure way to waste a lot of painfully gained skills and

knowledge unless we find ways to transfer them to other

domains. However, the cross-language clashes explained in

chapter 5 teach us that knowledge transfer isn’t exactly a

cakewalk.

The best creative programmers are multipotentialites, yet

technology companies keep on flooding the market with

demoralizing job ads such as “Java Specialist,” “BI Expert,”

or “Oracle Database Manager.” Specializing in the database

syntax of Oracle is certainly a legitimate way to earn a good

living, provided after five years the company doesn’t switch

to MS SQL.

According to the Stack Overflow Annual Developer Survey,21

technology experts are even paid better compared with full

stack developers. It’s a gamble at best. The graphs in figure

6.7 illustrate that while the expert can easily outperform the

generalist at very specific opportunities, they are useless at

other jobs, making them not the best job fit.

Figure 6.7 Overqualification can happen to specialists.

You can’t get paid for the value you can’t add. This

figure is based on the IT skills discussion by Ivan

Pepelnjak at https://blog.ipspace.net/2015/05/on-i-

shaped-and-t-shaped-skills.xhtml.

Companies might be looking for specialists, but in reality, the

best job fit is a combination between specialization and

generality. All it takes is a mind switch for a Java expert to

become a C# expert—the differences are surprisingly small.

And yet, I’ve had colleagues who swear by one technology

and make fun of the other. It is not only our pride and fears

that stand in the way of discovery; (company) culture is also

often to blame.

https://blog.ipspace.net/2015/05/on-i-shaped-and-t-shaped-skills.xhtml

Does the advent of the full stack developer save us from

specialism hell? Not really. What’s the first thing you think of

when you encounter the term full stack? “What kind of

stack?” An Angular JS frontend and a Spring Boot backend?

Or something entirely different, the Phoenix framework with

a few RESTful Elixir endpoints? Of course, there are different

levels of generalism and specialism. Mastering fundamentals

—in this case, HTTP, JS, HTML, and REST—will make sure

you’ll more quickly pick up specialized frameworks, in this

case, Angular or Phoenix. The problem is not stepping back

to generalize one’s Angular/Phoenix knowledge, making the

transition between stacks more difficult.

The best way to stay on top of the game is to pay close

attention to the trends in the industry with the help of a

Technology Radar as encountered in chapter 3. Be open to

new experiences and try not to get yourself stuck in a highly

specialized job.

If all else fails, it is never too late to chase other interests—or

to combine them to arrive at novel products, such as the

Breadwinner. When Mark Ferrari’s (see chapter 4) 2D pixel

art career was put to a grinding halt by the advent of 3D

modeling, he moved on to write fantasy novels instead. His

colored pencil work now proudly decorates his books.

The dangers of certification

In an effort to educate their employees, companies organize workshops and

send people to expensive specialization courses. Even worse, many

consultancy companies oblige their programmers to get certified. I’m a

Zend Certified PHP Architect, a Sun Certified Java Developer, and a Certified

Scrum Master. Great! Now my employer can charge more for my services

while I’m stuck in the PHP/Java lane.

Specialization by certification does little to launch your career except filling

the pockets of others and padding your CV with a lot of terms. I got that PHP

certificate to prove to my boss that my interests are broader than enterprise

Java development. It didn’t work: I was never handed a PHP project. In

Belgium, in the Brussels area, Java consultants have much higher daily

wages (of which, of course, I saw little).

Certificates, just like degrees, can have their value. Just try to diversify and

be mindful of what the ultimate goal of that certification is—a personal or a

company benefit.

EXERCISE Does your company culture support generalism

or prefer specialism? Think about competency matrices, your

job title, team compositions. Do they promote specialism

(senior Java engineer working in the backend team) or

generalism (senior programmer working in the product-

something team)? How about the preference of your

colleagues and yourself?

6.6 Serendipitous discoveries

Have you ever found something interesting in a book or

record store without looking for something specific? Then

you’ll know what serendipity means: finding things you were

not necessarily looking for. I love these happy accidents.

We’re in luck: engineering serendipity is (partially) possible.

By fine-tuning our system (see chapter 2) to actively listen

for these moments, we can increase the number of joyful

discoveries.

Sudden innovation at chance encounters of people being at

the right place, time, and moment is shrouded in mysticism.

Newton’s accidental apple did not make him discover the

laws of gravity. Archimedes’ accidental “Eureka!” was not

only due to his bath. Nonetheless, research has shown that

the myth is at least somewhat true. Casual water cooler

chats are more often thought provoking than forcing people

into a meeting room. This is what Steven Johnson meant with

his liquid network that we encountered in chapter 3.

6.6.1 How to stumble upon things

According to law professor Cass Sunstein, serendipitous

discoveries are what newspapers should produce.22 The

headline of a story is designed to draw you in, hoping to

capture your focus and draw you into a story you didn’t know

you were interested in but that gives you information that

changes your worldview. Unfortunately, the modern news

industry is more interested in clicks and your data than in

providing genuinely interesting information. This is where

your RSS filter from chapter 2 comes in!

Wikipedia has a “Random Article” link. Obsidian has an

“Open Random Note” button. I can’t believe there isn’t a

JetBrains IDE plugin to open a random source file. Imagine

starting with that at the beginning of your coding session!

DEVONThink suggests related but unlinked documents in the

See Also pane. Discuvver, an alternative to the once-popular

StumbleUpon, sends random useful sites to your inbox

weekly. The IndieWeb Discovery page

(https://indieweb.org/discovery) mentions “serendipitous

methods” for finding content, websites, communities, or

people. Remember webrings from the nineties, before Yahoo

acquired GeoCities, when search and social media

algorithms didn’t rule the world? Without invisible algorithms

dictating what appears in your timeline, some of the more

obscure but equally interesting content still has a chance of

being discovered, whereas now, you’re just being fed more

of the same—or, even worse, only the most popular or paid

content.

Heterogeneity facilitates serendipity. Replacing traditional

news sites with user-generated news aggregators like Reddit

might lead to interesting stories, but they’re hardly

surprising, serendipitous discoveries. The Reddit user base is

still overwhelmingly male, employed in tech, and from the

United States.23 This means that certain stories are more

likely to be upvoted than others. We won’t delve into the

details of homophily here, but the message is clear: don’t

put all your serendipitous eggs in similar baskets. Read this

book, The Creative Programmer, as well as Art as Therapy,

The Go Programming Language, and Sophie’s World. Follow

the blogs The Pragmatic Engineer, The Marginalian,

Programming Digressions, and Farnam Street.

6.6.2 Openness to experience

Applying for a programming job at big companies can

involve taking some kind of personality trait test, likely the

https://indieweb.org/discovery

Big Five test that was popularized as a job performance

assessment by psychologist Sebastiaan Rothmann and his

colleagues.24 The Big Five personality traits are

conscientiousness, extroversion, agreeableness, neuroticism,

and openness to experience.

Although the Big Five model has been criticized for its limited

scope and wonky theoretical and methodological basis, it

remains widely used in industry and in creativity research.

Multiple studies investigating possible correlations between

creativity and one of the five traits indicate “a medium to

small positive relationship between openness to experience

and ratings of creativity associated with participants’

[work].”25 Here, the creativity was again rated using

Amabile’s CAT system.

In the context of our quest to define the Creative

Programmer, studies like the aforementioned are suggestive

at best. They either adhere to Kaufman and Sternberg’s

obsolete definition of creativity from chapter 1; use a

measurement metric, like the Torrance Test of Creative

Thinking, which predicts only divergent thinking; or limit

their test subjects to undergraduate students because

they’re easy to come by. Remember the difference in

intrinsic and extrinsic motivation based on the level of

experience of the person? Undergraduates are novices.

Results from such studies can be indicative but cannot be

easily generalized to the entire programming population.

That is why we turned to the industry to explore the role of

creativity in software engineering by conducting surveys,

focus groups, and interviews. The result is a stack of

academic papers and a more practical guide: this book.

Still, it makes sense that a combination of certain personality

traits facilitates creative work. Being an unreasonable jerk

won’t help to get you into a Camerata. The same is true for

openness to experience: lack of appreciation for others’

experiences doesn’t exactly scream curiosity.

EXERCISE Next time someone talks about their hobby, show

genuine interest—especially if it’s not your thing. Even if

you’re not an avid reader, at the next opportunity, pop into a

bookstore. Run your fingers over the spines of some of the

books. Let yourself be influenced by color, typography, and

title. Perhaps you’ll walk home an experience richer and $40

poorer.

Serendipity demands a certain amount of openness to

experience. Try to appreciate the randomness of encounters.

Browsing the Amazon web store does not count: clever

algorithms that suggest related articles are handy but have

little to do with serendipity.

6.7 About having fun

When we asked programmers how to assess whether their

colleagues are being creative, some answers were very

surprising: “I’d just look at body language.” “Are they happy,

and making a lot of jokes?” “Are they in the zone ?” The last

statement was rejected by other participants as they claimed

one can also be very much in the zone by simply sticking

stamps. I guess I must have interviewed a philately

enthusiast. After some discussion, the conclusion was as

follows: do programmers pause now and then, perhaps

thinking? If the pause is too long, they are stuck. If there is

no pause, it is likely to be assembly work and not creative

work. Measuring productivity (something clearly visible) is

something other than measuring creativity.

That second statement is much more intriguing. Why would

cracking jokes be an indicator of creativity? Participants

weren’t sure, but they were onto something. Fun

counterbalances repetition and boredom, uplifts the spirit,

and increases motivation.

In 1976, behavioral psychologist Avner Ziv asked a group of

adolescents to listen to a record of Israel’s most popular

comedians. Afterward, they had to complete the Torrance

Test of Creative Thinking. The group that didn’t listen to the

record performed significantly worse.26 Teenagers with the

loudest laughs produced the best creative results. We’ve

seen in chapter 4 that the Torrance test isn’t all

encompassing, but more recent studies have successfully

replicated the effect: a laughter response to humorous

stimuli increases creative thinking. Even if its effects are

limited, the contagious effect of humor is a great way to

increase group cohesiveness—which, in turn, plays an

important part in creativity.

Cognitive and creativity researcher Beth Nam even

discovered that jokes can be used as an unconscious trigger

to prime insight.27 Humor comprehension has been shown to

provoke greater activation in language and semantic-related

brain regions as well as the temporal and prefrontal regions

in both hemispheres: the same brain regions used to develop

insight.

So, two bytes walk into a bar. Byte 11111111 asks byte

11101111 “You don’t look so well; are you ill?” to which the

other byte responds, “No, man; I’m just feeling a bit off.” A

bit—get it? No? Avner Ziv also wrote something about the

quality of jokes that matters; perhaps that’s the problem.

Truly funny jokes (I’ll leave that to the professional

comedians) are funny because they convey an unexpected

but logical element, which is related to serendipity and

creative insight.

6.7.1 Fooling around

Creativity for the sake of creativity (as we saw in chapter 5),

is a great way to learn: simply having fun by fooling around.

Insight is welcome, but not the goal. I love how a Mastodon28

user on the weirder.earth instance expressed

enthusiasm for “just doing it”:

I think one of the best ideas to hold in mind is “Go down the rabbit hole”;

when you get interested in doing something just go down the rabbit hole.

That’s how you end up making your own fantasy emulators, toy languages,

cool graphics stuff and just having fun with the computer instead of

helplessly trying to “stay productive.”

Following the White Rabbit just to chase the rabbit with no

real purpose other than having fun can be a great way to

stumble onto new things that cascade into even more

curious discoveries. That is how I got into bread baking,

Game Boy development, philosophy, creativity research,

fountain pens, and blogging. Come to think of it, that is also

when I felt the most whole and alive.

Creative tinkering is an excellent vehicle for discovering

interests that, in turn, feed the creative urge. There is only

one problem: taking the leap requires guts—which brings us

right back to Carol Dweck’s growth mindset.

Rabbit chasing is not yak shaving

Chasing down a rabbit sounds an awful lot like yak shaving: the refactoring

of seemingly random code, deemed necessary to solve a problem which

solves a problem, which, after several levels of recursion later, solves the

real problem you’re working on.

Rabbit chasing inevitably results in chasing down other ideas and getting

distracted; only this time that is exactly the purpose, and there is no real

goal except to learn and have fun. Shaving a yak is bad only if you’re trying

to solve a problem.

6.7.2 Just for fun: A bad guy bonus

challenge

Ready to go down the rabbit hole? Here’s an interesting

brain teaser. Figure 6.8 contains two examples of nine

people, of which some are “good guys” and some are “bad

guys.” We’re interested in identifying the bad ones.

Figure 6.8 Who are the two bad guys? These are two

separate puzzles. This idea is based on puzzles by

LEVEL 5 Interactive.

If a good guy has one or more bad guys next to him, the

good guy will point to one of the bad guys; otherwise, he’ll

cross his arms. A bad guy always points to someone,

whether good or bad. Find the two bad guys!

That was fun, wasn’t it? Okay, now for the real work: let’s

convert that into code and program a solver. We could

translate the picture into a 3 × 3 matrix where the pointing

is modeled with an arrow. The two situations in figure 6.8 can

be described as follows:

1->5,2->3,3->5

4->2,5->3,6->2

7->5,8->5,9->5

1->2,2->3,3->5

4->2,5->2,6->2

7,8,9

The expected output would produce two numbers for each

situation, identifying the bad guys. Don’t forget to enjoy

enjoying—we’re just fooling around. Does your solver work

with the above input from figure 6.8? Great, but that’s hardly

a challenge since you could have hardcoded the results. How

about writing a puzzle input generator for it? If you limit the

matrix size to 3 × 3, it won’t be too difficult.

You know what else could be fun? Reimplement it in another

programming language. Perhaps a performance analysis (by

timing how long it takes to solve 100 puzzles) will reveal

opportunities for optimizations. If you’re still into it after that,

a web interface or app to challenge friends won’t hurt.

Looking for more puzzle challenges? Try playing the

Professor Layton series on the Nintendo (3)DS and Switch,

on which this puzzle is based. It’s always fun to try to

implement a solver in code, you know, because!

If puzzles aren’t your thing, there’s always a cool random

maze to code. Programmer Jamis Buck dedicated a whole

book to generating mazes because “it’s fun—remember

when programming used to be fun?”29 While working for

Basecamp, Buck wrestled with burnout, and after taking a

year off, he never thought he’d write code again—until he

rediscovered his motivation by just coding silly things, such

as a maze. As Buck wrote, it is “the best medicine for

programmer’s block, burnout, and the grayest of days.”

Coding just for fun is a great way to take the edge off,

discover interesting approaches to algorithmic problems, and

ultimately feed those ideas back into your daily

programming routine.

Summary

Safely sticking to what you know will be of little

help when you are trying to come up with a

creative solution to a challenging programming

problem.

The same is true for giving up after trying to wrap

your head around something without much

success. Remember that a combination of curiosity

and perseverance will get you much further.

Make time to wander and wonder instead of always

rushing through and moving on to the next

problem. Do you know why that solution works the

way it does?

The concepts introduced in this book can, of

course, also be applied outside of the field of

programming. Follow your curiosity. Pursue new

interests. Just make sure to stop now and then and

think about how that new interest could be cross-

pollinated into a potential programming solution.

Creativity as a skill can be grown, just like

knowledge. Remember that next time you say,

“I’m not that creative”—you might not yet be. The

moment you realize it can be developed, you’re

shifting from a fixed mindset to a growth mindset.

Embrace criticism as a way to further increase

your skill set. It is never fun to deal with, but it is

up to you to learn something from it and, again, to

grow as a creative programmer.

Don’t wait until you’re forced outside of your

comfort zone. Acknowledge that, by doing so, you

might encounter new people and techniques that

could end up in your toolkit. This could be as

simple as switching programming languages or

pursuing a new hobby.

Some people thrive as generalists, or what Emilie

Wapnick calls multipotentialites. Those who do are

usually better at, among others, rapid learning,

idea synthesis, and adapting. Perhaps you can use

an approach such as Phoenix, Slash, Group Hug, or

Einstein to embrace multiple interests.

You can excel at multiple things. Try not to limit

your programming experience to just one

language: the more, the better. Heavy

specialization can narrow your field of view.

The best way to keep the motivation flowing is a

combination method that incorporates both

intrinsic and extrinsic means. Being aware of what

currently motivates you (or what doesn’t) might

help better focus your creative efforts.

Don’t always take things too seriously.

Programming should also be fun! Coding for fun is

a great way to discover interesting approaches

that might even help you conquer tough problems

in your daily programming job.

1.
Carol S. Dweck. Mindset: Changing the way you think to fulfill your potential.

Revised edition. Robinson, 2017.

2.
Wouter Groeneveld, Dries Martin, Tibo Poncelet, and Kris Aerts. Are

undergraduate creative coders clean coders? A correlation study. Proceedings of

the 53rd ACM Technical Symposium on Computer Science Education, 2022.

3.
Robert J. Sternberg. Handbook of creativity. Cambridge University Press, 1999.

4.
Jean E. Pretz and Danielle Nelson. Creativity is influenced by domain, creative

self-efficacy, mindset, self-efficacy, and self-esteem. The Creative Self. Elsevier,

2017.

5.
Pin Li, Zhitian Skylor Zhang, Yanna Zhang, Jia Zhang, Miguelina Nunez, and

Jiannong Shi. From implicit theories to creative achievements: The mediating

role of creativity motivation in the relationship between stereotypes, growth

mindset, and creative achievement. The Journal of Creative Behavior, 2021.

6.
Mikko-Ville Apiola and Erkki Sutinen. Mindset and study performance: New

scales and research directions. Proceedings of the 20th Koli Calling International

Conference on Computing Education Research, 2020.

7.
Keith Quille, Susan Bergin. Promoting a growth mindset in CS1: Does one size fit

all? A pilot study. Proceedings of the 2020 ACM Conference on Innovations and

Technology in Computer Science Education, 2020.

8.
Angela L. Duckworth, Christopher Peterson, Michael D. Matthews, and Dennis R.

Kelly. Grit: Perseverance and passion for long-term goals. Journal of Personality

and Social Psychology, 2007.

9.
James R. Wolf and Ronnie Jia. The role of grit in predicting student performance

in introductory programming courses: An exploratory study. Proceedings of the

Southern Association for Information Systems Conference, 2015.

10.
Listen to the interview at https://fs.blog/knowledge-podcast/angela-

duckworth/.

11.
Roy F. Baumeister and John Marion Tierney. Willpower: Rediscovering the

greatest human strength. Penguin, 2012.

12.
Teresa M. Amabile. Motivational synergy: Toward new conceptualizations of

intrinsic and extrinsic motivation in the workplace. Human Resource

Management Review, 1993.

13.
Barry Gerhart and Meiyu Fang. Pay, intrinsic motivation, extrinsic motivation,

performance, and creativity in the workplace: Revisiting long-held beliefs.

Annual Reviews, 2015.

14.
See The Rework Podcast from 37signals. Scratch your own itch.

https://www.rework.fm/scratch-your-own-itch/.

15.
Simone M. Ritter, Rodica Ioana Damian, Dean Keith Simonton, Rick B. van

Baaren, Madelijn Strick, Jeroen Derks, and Ap Dijksterhuis. Diversifying

experiences enhance cognitive flexibility. Journal of Experimental Social

Psychology, 2012.

16.
Emilie Wapnick. How to be everything: A guide for those who (still) don’t know

what they want to be when they grow up. HarperOne, 2017.

17.
See https://www.justinmklam.com/posts/2018/06/sourdough-starter-monitor/.

18.
See https://breadwinner.life/.

19.
Francesca Gino, Dan Ariely. The dark side of creativity: Original thinkers can be

more dishonest. Journal of Personality and Social Psychology, 2012.

20.
Ken Robinson and Lou Aronica. Creative schools: Revolutionizing education

from the ground up. Penguin Books Limited, 2015.

21.
See https://insights.stackoverflow.com/survey/.

22.
Listen to a dialogue about the architecture of serendipity at

https://bloggingheads.tv/videos/1615.

23.
Distribution of Reddit users worldwide as of January 2022, by gender. Statista.

https://www.statista.com/statistics/1255182/distribution-of-users-on-reddit-

worldwide-gender/.

24.
Sebastiaan Rothmann and Elize P Coetzer. The Big Five personality dimensions

and job performance. SA Journal of Industrial Psychology, 2003.

https://fs.blog/knowledge-podcast/angela-duckworth/
https://www.rework.fm/scratch-your-own-itch/
https://www.justinmklam.com/posts/2018/06/sourdough-starter-monitor/
https://breadwinner.life/
https://insights.stackoverflow.com/survey/
https://bloggingheads.tv/videos/1615
https://www.statista.com/statistics/1255182/distribution-of-users-on-reddit-worldwide-gender/

25.
Jason Hornberg and Roni Reiter-Palmon. Creativity and the Big Five personality

traits: Is the relationship dependent on the creativity measure? In The

Cambridge Handbook of Creativity and Personality Research. Cambridge

University Press, 2017.

26.
Avner Ziv. Facilitating effects of humor on creativity. Journal of Educational

Psychology, 1976.

27.
Beth Nam. Hacking the creative mind: An insight priming tool to facilitate

creative problem-solving. Creativity and Cognition, 2021.

28.
Mastodon is a decentralized alternative to Twitter that puts privacy and control

first. See https://joinmastodon.org/.

29.
Jamis Buck. Mazes for programmers: Code your own twisty little passages.

Pragmatic Bookshelf, 2015.

https://joinmastodon.org/

7 Creative state of mind

This chapter covers

Flow, or how to get in a creative mood

Deep work versus shallow work

Dealing with interruptions

How to trigger creative insights

“Eureka, eureka; I’ve found it!” cried Archimedes, while

running around naked in the streets of Syracuse. The ancient

Sicilians didn’t mind; they were used to turning a blind eye to

naked lunatics. Archimedes rushed back home, grabbed

something to write with, and got to work—or, rather,

continued working. According to the Roman author Vitruvius,

Archimedes was tasked by King Hiero II to find out whether

his newly made crown was truly crafted of solid gold, without

damaging the crown itself. Every time Archimedes pondered

a difficult problem, he took a bath, and this time he noticed

that the level of water in the tub rose as he got in. Could the

submerged crown displace an amount of water equal to its

volume? Eureka!

The “Eureka!” story reached its legendary status in modern

retellings. Strangely enough, there is no mention of a golden

crown in Archimedes’ treatise On Floating Bodies. We’ll never

know whether it is true. What is true, however, is that the

same king, Hiero II, commissioned Archimedes (figure 7.1) to

build a gigantic ship, a ship capable of carrying more than

600 people, a gymnasium, and multiple temples. It truly was

the Titanic of the ancient Greeks.

Figure 7.1 Domenico Fetti’s Archimedes or Portrait of

a Scholar (1620) Source: public domain.

“Mon Dieu, c’est ça!” (that’s it!) thought Henri Poincaré 20

centuries later, while boarding a public bus in the

neighborhood of Coutances in Normandy. Poincaré’s efforts

to solve a difficult mathematical problem had been fruitless

for weeks. Frustrated by the lack of progress, he called for a

break and joined a geological excursion near his then-

hometown, Caen. The expedition bus unexpectedly inspired

the proof for his equation, but Poincaré was a man steeped

in logic: he did not turn to the divine when searching for an

explanation for the sudden illumination. In true scientific

fashion, he was determined to uncover a pattern, so he

formed his own theory on the creative state of mind,

concluding that the act of creation involves a period of

conscious work followed by a period of unconscious work.

After that, more conscious work is required, as what the

unconscious mind produces isn’t a complete solution but

rather a hint in the right direction. Some of those hints might

seem elegant and alluring but fall flat during thorough

analysis.

After developing his theory on creativity, Poincaré was

regularly found walking around the bluffs in Normandy or

around the campus of the Sorbonne, where he later taught.

He was preoccupied, like any other professor—except that

Poincaré’s distraction was a deliberate attempt to bootstrap

the unconscious processing of his conscious work. It was in

those thinking-nonthinking states that he conceived intricate

proofs, ideas, and theses on arithmetic transformations of

geometry.

“Wow, time sure flies!” Philip noted after hearing his twin

brother Andrew’s stomach growl. Before they knew it, the

Oliver twins were working late yet again, completely

absorbed by the flow of programming their next video game,

Fantasy World Dizzy. The third Dizzy game (figure 7.2) was

released by Codemasters in October 1989, just six weeks

after the twins wrote their first line of code.

Figure 7.2 Dizzy III: Fantasy World Dizzy on the ZX

Spectrum

The iconic British egg-headed character was initially drawn

as a distraction in between creating various animations for

another game, Ghost Hunters. Philip tried to get the most

facial expressions out of a restricted sprite set of 24 × 32

pixels. There wasn’t enough room for arms and legs, so

crude-looking red boxing gloves had to do. Satisfied with the

result, Philip stashed the character away and resumed

developing Ghost Hunters.

A few months later, the Oliver twins invented Dizzy, a unique

blend of arcade and adventure games and an instant

bestseller for the Amstrad CPC and ZX Spectrum. Philip and

Andrew would eventually release 25 Amstrad, 17 Spectrum,

and 11 NES games in a five-year period—enough for

Guinness World Records to award them the “Most Prolific 8-

Bit Videogame Developers” title. When they were in front of

a computer, they were fully engrossed in code, and time

seemed to lose its meaning.

Still, the brothers regularly encountered roadblocks on the

way to success. When out of ideas, they deliberately took

breaks by watching television shows, playing other games,

experimenting in their sprite editor, and reading classic

fables and tales. Count Duckula, Zork, Philosopher’s Quest,

Jack and the Beanstalk, and Gauntlet all influenced various

Dizzy games.

7.1 Getting in the right creative

mood

What is the greatest common divisor between Archimedes’

relaxing bath-time moments that helped him think, Henri

Poincaré’s illuminations on random bus rides and long walks,

and the productivity of the Oliver twins? All three examples

showcase a certain creative state of mind: alternating

pondering with relaxing, letting the unconscious mind work

after the conscious one, and taking breaks that inspire when

in a rut.

Henri Poincaré (1854-1912) was a polymath and excelled in

the fields of mathematics, physics, engineering, and

philosophy. By putting his “subliminal self” to work, he was

also a master of staging the creative state of mind:1

The subliminal self is in no way inferior to the conscious self; it is not purely

automatic; it is capable of discernment; it has tact, delicacy; it knows how

to choose, to divine. What do I say? It knows better how to divine than the

conscious self, since it succeeds where that has failed.

By locking themselves up in their bedroom-turned-office

space, the Oliver twins got a lot done in little time.2 Once

they started concentrating on the code, time seemed to

speed up. And if things got too rough, a bit of fooling around

was all it took to get back on track and keep the flow of ideas

going.

Creativity cannot happen without getting into the right state

of mind. Running around naked, crying “Eureka!” requires

conscious effort: that “aha!” moment will not pop up without

previous intentional work and preparing your mind to be

receptive to it.

In this chapter, we’ll revisit many previously encountered

concepts and combine them into a description of what I like

to call a creative state of mind. The software developers my

colleagues and I have interviewed made a clear distinction

between an individual state of mind (being in a creative flow,

using productivity tools, having “aha!” moments, shower

thoughts) and a collective one (the influence of the

environment should facilitate freedom and flexibility). Let’s

start by examining what it takes to lose control over time

while you are happily coding away.

7.2 The flow of deep work

Have you ever been (un)pleasantly surprised by the speed at

which the working day flies by? The unbearable slowness of

the day where seconds crawl by according to the tenth

glimpse at your watch? Or the amazing flash that was the

day when hours felt like minutes? We’ve all been in both

situations, and when it comes to work, nothing is more

terrible than the illusion of a time stop.

7.2.1 The optimal experience

Psychologist Mihaly Csikszentmihalyi calls this phenomenon

the optimal experience or, in other words, flow.3 In his

interviews with hundreds of successful people in sports,

science, business, engineering, and art, he noticed that

these people weren’t simply good at something. They

excelled—and somehow deeply enjoyed it. After transcribing,

analyzing, and applying the necessary statistics,

Csikszentmihalyi distilled the following nine principles of

flow:

One has a clear goal in mind.

Every activity is immediately followed by feedback.

There is a balance between challenge and skill.

Action and awareness are one.

Distractions are banished from consciousness.

One is not afraid to fail.

There is little to no self-awareness.

The sense of time is confused.

The activity becomes autotelic (internally driven:

programming for the sake of programming).

Csikszentmihalyi’s famous work on flow preceded his interest

in creativity, and according to numerous studies, his hunch

was correct: both concepts are heavily intertwined. We’ve

seen traces of the nine principles in previous chapters:

embrace feedback from others, challenge yourself, don’t be

discouraged by failure, use focused thinking to ban

distractions, give your curiosity free reign. We can now add

“be in the zone” to that list!

Flow seems to trigger deep enjoyment, creativity, and a total

involvement with life. Csikszentmihalyi goes as far as calling

flow one of the ways to add meaning to life. But how does

one achieve it? Experiencing flow requires three things:

realistic goals, skills that match the opportunities for action,

and a complete focus on the activity. When your skill level is

too high for the challenge offered by the task, you’ll become

distracted and bored. When the activity is too difficult, you’ll

become anxious or frustrated and give up.

Csikszentmihalyi’s flow model, which depicts different

mental states surrounding flow, is illustrated in figure 7.3.

Figure 7.3 High skill levels and high challenges lead

to the mental state of flow. Easier challenges lead to

less satisfaction, and lower skill levels can cause

anxiety. The depicted mental states were brought

together in this flow model by Mihaly

Csikszentmihalyi.

Would you be inclined to call on your creative programming

skills for a trivial challenge? Of course not—that problem has

been solved 10 times before. It’s just a matter of repeating

the implementation and requires little creativity. On the

other hand, a real challenge does call for a creative

approach, provided your creative skills are up to snuff,

which, by now, they should be!

People love sinking their teeth into difficult problems at work.

Csikszentmihalyi mentions that 54% of the participants

experienced flow at work, while only 18% did so during their

leisure time. This perhaps isn’t surprising given that leisure

time usually equals downtime. People at work who feel

skillful and challenged also feel happier, stronger, more

creative, and more satisfied.

Csikszentmihalyi teaches us two important things: flow can

be controlled, and flow is not the exclusive domain of

masters or spiritual leaders. If you don’t feel skillful, you can

simply start learning more. But what if you don’t feel

challenged? Perhaps then it’s time to change the job itself.

More flow equals more creativity. When we asked

programmers what they needed to be creative, one of the

respondents answered thus:

I am creative if really everything feels right. That means the atmosphere,

you know, the feeling that you’re really in the flow, that, so to speak, you no

longer have to think to get something done, to do something.

When encouraged to elaborate, the respondent continued:

For me personally, it is when I can put focus on something, alone or with

several people, but in a very relaxed atmosphere, without the pressure of a

deadline, and not having the feeling that the deadline is there.

Too much pressure turns flow into worry and anxiety.

Recent studies have discussed “joyous exploration,”

concluding that flow links each of the dimensions of curiosity

with creativity.4 Perhaps joyous exploration is what Darwin

felt when he encountered new species in the Galápagos

Islands. Next time you look at your watch and wonder where

the last three hours went, pat yourself on the back: congrats;

you’ve experienced flow!

EXERCISE When was the last time you experienced flow

while programming? What exactly was it that made you

enjoy the task? This question can also be reversed: when

was the last time you weren’t in the zone at all? Is there a

way to increase the occurrence of flow in your life based on

your reflections?

7.2.2 Deep work

While Csikszentmihalyi calls losing yourself in the moment

flow, Cal Newport calls a state of deep and focused

concentration deep work.5 Deep work is crucial if one is to

make a difference. Newport, a computer science theorist and

productivity critic, places our work activities into two groups:

shallow work (noncognitively demanding, logistical-style

tasks) and deep work (cognitively demanding activities that

push us to our limits). Deep work generates value, while

shallow work just ties up loose ends.

The problem almost all information workers, including

programmers, face is distraction. Distractions and

interruptions cause us to tackle cognitively demanding tasks

the same way we tackle shallow work. As you can imagine—

and have probably experienced yourself—this has

devastating consequences on both productivity and

creativity. Both shallow and deep work keep us busy, but

don’t confuse activity with productivity—or productivity with

creativity!

Deep work vs. flow

What’s the difference between deep work and flow? Aren’t people in flow

also engaged in a cognitively demanding task (yes; see figure 7.3) without

distraction (yes; see the nine principles of flow)?

According to Newport, deep work is an activity well suited to generate a

flow state. In other words, deep work does not guarantee a flow state, but

being in the zone also means working “deeply.” Flow is about the fulfilling

experience, while deep work is the part that enables long periods of focus.

In essence, Cal Newport’s Deep Work book is a mix of

cultural criticism with actionable advice on how to minimize

environmental noise and interruptions. We all know that

more meetings aren’t going to solve that difficult problem,

and we’re all well aware of the destructive nature of push

notifications, open mailboxes, and the strategic placement of

smartphones on office desks. But we do absolutely nothing

about it. If anything, as technology advances, we seem to be

making it worse. And yet, academia yells, “Publish or

perish!” and industry yells, “Not producing is not thriving!”

Newport tries to shed light on this work culture paradox:

The ability to perform deep work is becoming increasingly rare at exactly

the same time it is becoming increasingly valuable in our economy. As a

consequence, the few who cultivate this skill, and then make it the core of

their working life, will thrive.

Focused thinking, from chapter 5, is deep work—provided

you manage to banish all distractions.

What is the best way to get started with deep work, besides

turning off message notifications? Newport recommends

transforming good practices that increase focus into a simple

habit. Observant readers will hardly be surprised. We’ve

already discovered in chapter 6 that willpower is a finite

resource. Roy Baumeister’s willpower research has proven

that good habits will ultimately sink into our

unconsciousness, consuming less willpower and leaving

more energy to ban annoying distractions.

Do a little bit of deep work each day, embed it into a habit,

and try to gradually increase the amount of time spent in

that concentrated state. Before you know it, you’re writing a

book!

As cheesy as the saying “What gets your attention is what

grows” is, it is true, and there’s even scientific evidence for

it, neatly summarized by introspective writer Winifred

Gallagher in her work, Rapt.6 Our brains construct our

worldview on the basis of what we pay attention to.

Gallagher concludes: “The skillful management of attention

is the sine qua non of the good life and the key to improving

virtually every aspect of your experience.”

The management of attention includes creativity. Would

Archimedes still be regarded as one of the leading scientists

and engineers in classical antiquity if his thinking bath times

were constantly interrupted? Would Henri Poincaré have

found proof for his theorems if his university didn’t allow him

to spend time walking in deep-thinking mode? Would the

Oliver twins have booked much success if the time they

spent on Dizzy development was carefully monitored by

managers? Would Thomas Edison have persisted in trying to

come up with a good way to bring electric light to the

masses if he got distracted by loads of pointless

administrative and newsletter mail? Would Linus Torvalds

have had the time to design and fine-tune the Linux

operating system if the comp.os.minix newsgroups from the

early nineties had been replaced by our modern, intrusive,

instant messaging systems? I don’t think so.

7.2.3 Deep work and flow on the move

Does the environment matter when engaging in flow? Our

software engineering respondents said, “Yes, of course.” In

one interview, a respondent said he solved all difficult

problems in his car: “What that often is is that my thinking

was already done in the car and when I arrive at work, all

that is left to do is type for an hour or so.”

Other participants murmured their agreement, suggesting

that the thinking part is the creative part and the typing

work is just “getting it out there.” Next, they proceeded to

talk about other activities that are likely to foster a creative

state of mind: walking, taking a shower, sporting in the local

indoor swimming pool. One group jokingly discovered a way

to spot creative individuals when driving: “Maybe if the car

behind always has to honk when the light turns green.”

It seems that Poincaré’s subconscious theory of creativity

wasn’t far off! Csikszentmihalyi’s interviews with creative

geniuses suggest the same, claiming that “their car is a

‘thinking machine,’ because only when driving do they feel

relaxed enough to reflect on their problems and to place

them in perspective.”7 He continued:

One person we interviewed said that about once a month, when worries

become too pressing, he gets into his car after work and drives for half the

night from Chicago to the Mississippi. He parks and looks at the river for

about half an hour, then drives back and reaches Chicago as the dawn

lights up the lake. The long drive acts as therapy, helping him sort out

emotional problems.

The subjectivity of a workspace

Where to best do your creative thinking work is highly subjective. This

sounds obvious, but it needs to be repeated. A few employers ago, it was

“recommended” that I extend my daily commute to a round trip of three

hours. “Hey, that’s a great opportunity to do some real work on the train!”

my manager enthused. My protests fell on deaf ears, and in the end, I

dutifully obliged.

I never produced anything worthwhile on a train except a crazy story for

National Novel Writing Month. I’m susceptible to motion sickness, and I

don’t like working while being crammed in a small train seat. Even worse,

the Belgian railway system is never punctual. Playing kids on the rails,

frozen cables, roadsides on fire, suicides, or just plain ol’ malfunctioning:

I’ve heard it all.

Creative work on a train is my personal nightmare. If it works for you, great!

But never try to convince me to do long commutes by calling it

“productive.”

Cal Newport and Seth Godin romanticize long flights as ideal

opportunities to do some really deep work. However, getting

productive and creative should not be done at the expense

of Mother Earth. Poincaré wasn’t the only one to promote

zero-carbon-footprint thought walks. Ancient Greek

philosophers loved discussing, thinking, and walking at the

same time. In fact, these philosophers loved thinking and

walking so much they named a whole school after it: the

Peripatetics, as also encountered in the introduction to

chapter 3. Famous Enlightenment thinker Immanuel Kant

gained much insight into the outside world while walking

around his hometown of Königsberg, Germany—and never

once leaving it. Kant was so famous for the regularity of his

daily walks that he was nicknamed “the Königsberg clock.”

Perhaps the most interesting walking state of mind is that of

philsopher Friedrich Nietzsche. He’d walk 8 to 10 hours a

day,8 wading through the thick German Black Forest,

composing thoughts that he would later jot down on paper.

His timeless works are steeped in a philosophy of walking:9

We do not belong to those who have ideas only among books, when

stimulated by books. It is our habit to think outdoors—walking, leaping,

climbing, dancing, preferably on lonely mountains or near the sea where

even the trails become thoughtful.

Walking became the centerpiece of his philosophy. “Sitting

still is a real sin against the Holy Ghost,” concluded

Nietzsche. French contemporary philosopher Frédéric Gros

writes in A Philosophy of Walking that “a long walk allows us

to commune with the sublime.”10 The striking similarity to

Poincaré’s conversations with his subliminal self is no

coincidence!

Recent studies have confirmed that walking boosts creative

ideation, both during a hike and shortly after. Marily Oppezzo

and Daniel L. Schwartz suggest that “walking opens up the

free flow of ideas” and is a great way to increase both

creativity and physical activity.11 That said . . .

EXERCISE Get up and take a walking break in solitude. Bring

along a pen and a piece of paper. Think about what you’ve

read so far and how it could be applied to your daily work

routine as a programmer. Go on, I’ll wait.

7.2.4 Walking support or the lack

thereof

If you didn’t dare to perform the walking exercise at work, no

worries: you’re probably not alone. Employers love seeing

productive employees: they get a kick out of programmers

clutching their dual-screen setup, jamming away at that

deafening mechanical keyboard. “Wow, they sure must be

hard working! Good job, everyone!” What they hate to see is

an employee in creative thinking mode, just wandering

around in the hallways or, even worse, team members who

suddenly disappear into the wild for a few hours.

It is very sad to see that thought walks are generally met

with suspicion. Even at my university, I see little evidence of

modern incarnations of Kant or Poincaré: academics are

instead swamped in busywork, also known as administrative

“bullshit jobs,” as the late anthropologist and anarchist

David Graeber liked to put it.12

A few years ago, a colleague and I were racing to get an

urgent hotfix released. Indeed, it was the kind that requires

certain “creative workarounds.” We worked nonstop,

skipping our breaks, and finally managed to come to a

workable solution. After patting ourselves on the back, we

decided to take a short break by playing cards in the

cafeteria. Five minutes in, our boss walked by. He was furious

—it was 3:00 p.m., and we had the nerve to play cards?! We

conceded and quietly returned to our desks. Our late lunch

break made us look like slackers while, in fact, we had

worked harder—and more creatively—than usual. It just did

not comply with the conventional working rules.

Pretending to be productive

In Bullshit Jobs, David Graeber included both entertaining and unsettling

stories of employees pretending to be productive to please their bosses. For

example, someone installed Lynx, the command-line browser. This made

him look like an expert scripting away at a terminal when, in fact, he was

editing Wikipedia articles all day long.

Too many managers at tech companies still think

programming is a desk job that requires little creative

freedom, even though they claim to totally support it. If the

Oliver twins got stuck, they watched television shows and

played other video games. That was both inspiring and

relaxing. What do you think would happen if they’d had to

work in cubicles and were quickly ushered back to “work”?

That’s why independent makers are usually the most

creative ones. Although they still work with deadlines and

publishers, nobody is around to tell them what can and

cannot be done. Independence has long been recognized as

a developmental contributor to creative skills. In the

seventies, psychologist Joy Guilford mentioned

independence next to curiosity and reflection as a

characteristic of creativity.13 Two decades later, creativity

researcher Mark Runco noted a positive correlation between

independence and divergent thinking in students gifted with

a high IQ.14 Every recent paper on the same subject seems to

either mention “freedom,” “autonomy,” or “independence.”

In the world of software development, most of the complex

problems are not solved while one is behind a computer or

inside a meeting room: they’re solved in gyms and in cars

and while walking. Of course, implementing the solution still

requires a keyboard.

How can you increase support for creative freedom? Invite

your boss to join The Creative Programmer reading group!

We will delve deeper into the influence of company culture in

section 7.5.

7.3 Interrupt!

In computer architectures, an interrupt serves as a request

for the processor to halt running instructions so that an

event can be processed instead of having to wait for the

current program to finish. For example, Serial Link Interrupt

0x0058 halts the Sharp LR35902 CPU to announce incoming

network data—provided the interrupt flag is turned on. If

there’s an interrupt handler defined, the CPU temporarily

evaluates that function, after which it resumes executing the

instructions of the interrupted program.

A creative state of mind works similarly. Sometimes, our

current work is unexpectedly interrupted, either by internal

ideas that suddenly take form in our own minds or by a

multitude of external queries. Elizabeth Gilbert from chapter

2 would say to catch it while you can, before our brains

decide to resume our previous task and the idea that

interrupted our work is permanently lost, as illustrated in

figure 7.4.

Figure 7.4 A crashing stream of thought illustrating

the potential loss of ideas

Just like a CPU, we have to recognize that an interrupt is

pending, identify the type and source of the interrupt, decide

what to do with it, context switch efficiently, and eventually

resume our interrupted work. What was I doing again?

Sudden interrupts can break our train of thought—to the

extent that the train might derail. Think of it this way:

interrupted nontransactional relational database write

operations have a chance of losing data. What could be

possibly worse in knowledge work than losing a creative

idea?

A wreck doesn’t just crash your train of thought, scattering

its cargo (precious ideas); it also requires a thorough

cleanup. The train tracks are covered in debris. If you’d like

to receive more ideas, that debris needs to be cleaned up,

fast. This is exactly what happens when we’re context-

switching from task to task: a cooldown period of about 20

minutes is needed to get us back on track.

In a study that investigated software developers’ perceptions

of productivity, almost all of the 379 interviewees said they

found their days to be productive when tasks were

completed without significant interruptions or context

switches.15 Yet, according to the second part of the study,

which involved observational work, an awful lot of

interruptions and context switches occur daily. The context-

switching effect is even worse when creative work is

involved. Also, switching away from a creative task for which

more focus is required is more expensive than switching

from a routine task.

Every developer knows that programming “depends on

being able to juggle a lot of little details in short-term

memory all at once,” as Joel Spolsky, cocreator of Stack

Overflow, once wrote on his tech blog.16 When it comes to

interruptions, we’re in danger of hurting not only our

productivity but also our creativity! Most books on

programming mention the negative effects of interruptions

on productivity but remain silent on creativity, where

interruptions can truly wreak havoc. The question then

becomes, how can we better prepare ourselves for the

inevitable train wrecks?

7.3.1 Increasing your awareness of

interruptions

The aforementioned study by André Meyer and colleagues

concludes with a discussion of opportunities to better

manage and improve developers’ work, thereby achieving

higher productivity levels. The researchers identified three

opportunities.

The first opportunity is tools for retrospective analysis.

Monitoring programming activities might reveal interruption

patterns that can be anticipated. Awareness is always the

first step. Simple and popular tools such as Pomodoro apps,

time-tracking software, and Fitbit activity-tracking devices

are worth trying out.

Kitchen timers that increase coding

productivity

With the Pomodoro technique, you use a classic kitchen timer—preferably

one in the shape of a pomodoro, or tomato—to split your work into intervals

of around 25 minutes in length, separated by breaks of 5 to 10 minutes.

After four so-called pomodoros, a longer break follows. The technique helps

reduce the negative side effects of interruptions of flow and even comes

with its own ways of dealing with internal and external interrupts.

It was first introduced as a time management method in the late eighties

but more recently has amassed a popular following among programmers.
17

Of course, there are also plenty of tomato-shaped apps available to help

you focus on coding work, some of which even disable distractions and your

internet connection.

The second opportunity is reducing context switches.

According to the interviewees, quick context switches, such

as reading an email while waiting for a build, did not affect

productivity, while context switches that require a change in

thinking are much more costly. I’m a bit reluctant to believe

that, since the email is likely to cover a topic other than the

thing you’re building, and hence a change in thinking might

be required to answer it. Of course, keeping your email inbox

closed circumvents the problem entirely. Or having faster

build times. Or no builds at all?

The third opportunity is setting goals. Goal-setting combined

with self-monitoring has been shown before to be effective in

motivating behavioral change. However, some participants

rightfully mentioned that (corporate) goals usually come with

more (strict) monitoring and thus more overhead instead of

less.

7.3.2 Preparing for interruptions

The simplest solution to the interruption problem—besides

avoiding them entirely—was, strangely enough, not

mentioned in the study: write stuff down! If you see a train

coming in, full speed ahead, try to catch a glimpse of its

contents, quickly get that down, and then let it crash.

Try not to become a disaster tourist, though. Regular train

crashes will destabilize the train tracks. Research has shown

that long-term frequent interruptions can be detrimental to

working memory and even to mental health.

Research and my own work experience also suggest that

vital information in your working memory is lost when you

are interrupted. Therefore, resuming work can be hard: what

was I doing again? Which test did I intend to write? What

idea was forming in my head? As mentioned before, this

warmup and cooldown period can take up to 20 minutes!

In her book The Programmer’s Brain (see chapter 5),

Felienne Hermans devoted a chapter to interruptions and

how to handle them. Her advice is simple and effective: write

stuff down. Store your mental model before allowing anyone

else to interrupt you. Leave breadcrumbs for yourself:

quickly dump your brain on a screen or on paper. Type out

everything you were thinking about and were planning on

doing, even if that does not compile. Don’t bother with

syntax or spaces. This will get you back on track much

faster.

The problem with hastily written sticky notes is the lack of

context. Remember from chapter 2 that ideas in your

personal knowledge management system should be self-

contained. Rereading those TODO items a few days later is a

sure way to lose their meaning despite the attempt to retain

them. I’ve made this mistake time and time again by jotting

down a few keywords too quickly, going back to something

else, and not being able to decipher the note later.

Be sure either to immediately continue working on the item

after the interruption has been dealt with or to add enough

context. Advice from famous novel writers teaches us the

same: never end your day with a clean slate. If a chapter is

done, write a few sentences on the next. This persistent

mental state will give you a head start the next day. More

practical advice from coders and writers will be discussed in

chapter 8.

7.3.3 Knowing which interruptions to

look out for

Not all interruptions are equally damaging to our creative

flow. An instant message on Slack or WhatsApp can be put

off for awhile. Your boss yelling at you to promptly fix an

urgent matter, probably not. We mostly view interruptions as

external troublemakers, although that is only part of the

story.

In 2018, an interuniversity longitudinal study was published

that investigated what makes some interruptions during

software development more disruptive than others.18 In

addition to obvious task-specific factors, such as priority,

contextual factors, such as interruption type and time of day,

are found to be potentially more damaging! Even though

respondents believed that external interruptions were the

most disruptive to their flow state, the analysis revealed that

voluntary task-switching is more destructive.

In another behavioral experiment, researchers measured the

extra time it takes to self-interrupt by closely inspecting pupil

dilation. Each self-interruption costs approximately one

second.19 A puny second sounds negligible, but consider this:

the researchers measured, on average, five interruptions just

for opening and partially reading an email. Imagine how

many potentially creative minutes are lost each workday.

EXERCISE During the next hour-long programming session,

keep track of the number of interruptions you experience by

tallying the score on a piece of paper. Mark internal and

external interruptions separately. Try to be honest in

reporting self-interruptions. Repeat the exercise a few times

—for example, in the morning and afternoon on a Monday

and a Tuesday. What do the results say? Are you surprised?

When did you get the most creative work done?

Reducing the number of self-interruptions involves relying on

willpower, as explained in chapter 6. Of course, when the

mind wanders, it is perhaps time for a break, unless you

already did so two minutes ago—in that case, seeking new

horizons might perhaps do wonders.

Not all interruptions should be counted as wasteful. When

prolific sociologist Niklas Luhmann, whom we met in chapter

2, got stuck, he switched contexts to something else he was

working on. Luhmann always had several irons in the fire;

this strategy even increased the chances of ideas cross-

breeding between different domains.

Deliberately interrupting a coworker to exchange ideas could

also be seen as a way to increase productivity, as one of the

participants in the 2018 longitudinal behavioral study stated:

If someone is working on the same project as I am and we can exchange

ideas, that can be a productive task-switching. It’s also productive for more

fire drill-type situations, like fast bug triage.

It sounds a bit silly to describe pair programming in terms of

interruptions. Perhaps more interesting is the influence of the

time of day on the detrimental effect of interruptions. Some

developers have a tougher time recovering in the afternoon,

while others struggle in the morning.

Do Not Disturb Christmas lights

While working together, it’s always a challenge to take these time-of-day

preferences into account when deciding to interrupt someone with your

questions. At a previous employer, we tried introducing personal “busy

lights”: if the light is on, it’s Do Not Disturb time.

Sadly, the consistent ignoring of the Do Not Disturb lights by management

and suspicions of misuse quickly returned the cheerfully lit office landscape

to a depressing gray drab.

7.3.4 Mindfulness increases focus

Combating self-interruptions with sheer willpower sounds like

a feat only Superman could pull off. Fear not. While

investigating mind-wandering, as first seen in chapter 5,

Jonathan Schooler discovered that focus is just like willpower:

it’s a muscle that can be trained. The easiest way to do so is

through a very old and deceptively simple trick called

mindfulness:

Our results suggest that training to enhance attentional focus may be . . .

key to enhancing cognitive skills that were until recently viewed as

immutable. Thus, there are good reasons to be optimistic about mind-

wandering: it indeed appears that many of its documented costs for

perception, cognition, and action can be remedied by applying an age-old

antidote known as mindfulness.

Did we just link mindfulness to creativity? Increasing focus

via mindfulness was already mentioned in 2008 by Andy

Hunt in Pragmatic Thinking and Learning. The ambivalent

relationship between creativity and mindfulness spiked

recent academic interest. A meta-analysis of 89 published

correlations found a statistically significant but weak

correlation between the two concepts.20

What does that mean? The effect seemed to depend on the

measurement of creativity (insight vs. divergent thinking)

and the type of mindfulness (observation vs. acting with

awareness). Other studies are cautiously optimistic:

mindfulness practices improve skills or habits of the mind

that can indeed support creativity.21 Note the added

emphasis on can. Becoming a mindfulness guru is not a

guarantee of creative success. It merely increases our

attention span. Generating creative insights still involves a

lot of hard work.

7.4 Triggering creative insights

My wife is obsessed with crime series. She enjoys any show

that involves a good murder. The best part of each episode

is, of course, the big reveal at the end, when the detective—

of course!—portrays a sudden flash of insight. Leaving their

still-puzzled coworkers behind, they rush off to apprehend

the bad guy and unfold the vile plan in front of all involved.

This scenario is another classic case of romanticizing insight.

We especially recommend the British-French Death in

Paradise television series, which comes with a twist of humor

and nice Caribbean scenery. The show is known for its

sudden moments of realization and the gathering of suspects

to talk through the evidence.

By now, you should be well acquainted with every stage of

the creative process from chapter 5: participate, incubate,

illuminate, verify, present/accept. Archimedes, Poincaré, and

the Oliver twins underscored the importance of the

incubation stage before any illumination is triggered.

Poincaré’s subconscious theory of creativity insists on the

importance of conscious work (participation) before

subconscious insight: 90% perspiration, 10% illumination.

Observant crime show watchers closely follow the inspector

as he slowly but surely collects and connects different clues

(perspiration). Some clues make little sense until they fit into

the bigger picture. After alternating periods of

preoccupation, it is time for the finale (illumination).

Managers obsessed with time efficiency might easily believe

the fairy tale of sudden insight coming out of nowhere, but

creative programmers aren’t that easily fooled. Perhaps the

word progressive is more appropriate here. As American

novelist Jack London said: “You can’t wait for inspiration. You

have to go after it with a club.”

In the following section, we’ll encounter a few more

considerations to take into account when on the hunt for the

Golden Bird called insight.

7.4.1 Alone or together?

The thought walks of prominent scholars such as Nietzsche,

Kant, and Poincaré seemed to take place in solitude. Were

these intentional decisions? I doubt that many

contemporaries of Nietzsche were willing to hike alongside

an antisocial narcissist. With the insights into communication

of chapter 3 in mind, we can piece together the many

advantages of thought walking. Since modern software

development is a collective endeavor, it would make no

sense to ponder difficult problems on your own. Even

Aristotle and his followers loved strolling around Athens while

discussing various philosophical topics, as mentioned in the

introduction to chapter 3. Which of the two options will

ultimately yield more insight, thought walks by yourself or in

good company?

As with all questions in this book, the answer isn’t black and

white. I hope all the ambiguity isn’t getting on your nerves.

Let’s try to visualize what I mean.

Figure 7.5 illustrates five different ways to represent

thoughts. In the first case, data, all we have are loose bits

and pieces. Sorting through the rubbish evolves data into

information: some pieces are x, while others are y. Great,

we’re onto something! Now how about connecting separate

pieces through experience and practice? All relational

databases express knowledge using foreign key constraints.

Figure 7.5 The evolution of seemingly loose data to

insight and wisdom. Based on ideas of the Gapingvoid

Culture Design Group.

However, the relations so far are obvious ones: parent-of,

child-of. When insight occurs, we make a novel connection

between seemingly disconnected pieces of information.

Finally, when a certain path between different insight nodes

makes sense, we’ve generated genuine wisdom.

I first encountered a variation of this wonderful illustration on

the website of the Gapingvoid Culture Design Group,22 a

group dedicated to helping other organizations transform

their company cultures. Gapingvoid uses the drawing to

study and explain the signs and processes of company

cultures, and we can do the same to explain personal insight.

Admittedly, the drawing is only partially complete—external

influences, starting from (almost) nothing, backfeeding could

all be added. Think back to the symmathesy concept of

chapter 3. Combining both ideas with my limited drawing

skills would certainly have resulted in a mess.

Still, the core of the message of figure 7.5 remains intact. To

get to a novel insight, we need to do two things:

1. Collect the dots.

2. Connect the dots.

Collecting the dots requires input—including from others.

Lively discussions certainly help with that. Connecting the

dots, on the other hand, is a more personal process. Not

everyone’s thinking train is designed the same way, travels

at the same speed, or uses the same tracks. This is a basis

for a lot of frustrating pair programming sessions. Putting

together expert and novice isn’t always the best bet to

transfer knowledge. The expert is usually 10 steps ahead

and reluctant to explain all the little details they know by

heart, while the novice struggles to keep their train up to

speed—losing precious cargo in the process.

Collect dots together with others. Connect the dots alone. At

least provide enough breathing room for others to think and

process new information at their own frequency. I’ve worked

in companies that enforce pair programming all day long.

That was both enriching and exhausting. I have never

learned so much in so little time. But true insight? That

mainly happened before or after working hours. There was

simply no time to ponder things through! I had to keep up

the pace or risk derailing.

Companies I worked for later applied pair programming only

sporadically, leaving enough breathing room to process new

knowledge at your own pace. This also comes with its

downside: less sense of true camaraderie, slower distribution

of best practices, and so forth. A 100% pair programming job

is also devastating for introverts. I’m a big pair programming

advocate, but when it comes to the Creative Programmer,

the occasional break from each other will definitely be

beneficial—for both individuals.

Since becoming an academic researcher, I’m usually left to

my own devices, which is a double-edged sword. On the one

hand, getting paid to connect the dots feels liberating. On

the other hand, regularly overlooking dots that my pair

programming partner might otherwise notice makes me feel

very lonely.

Remember the interviewee who mentioned flow and focus as

two of the traits of being creative, free of the terror of

looming deadlines? He was actually quite pessimistic about

true creativity on the job:

I think that being truly, really creative, that is really limited in our job. . . .

For me, it’s more about the feeling of getting inside your head, really being

in your own world, at that moment.

What he actually wanted to say is this: creativity involves

connecting dots, which requires me-time (or even

downtime). Further into the discussion, he mentioned the

aha-erlebnis as the ultimate proof of creativity—which,

according to most participants, does not usually happen

while behind a desk.

Every programmer I have talked to puts the 10% illumination

on a pedestal. Strangely enough, nobody mentioned the 90%

perspiration needed to get there: rooting in the codebase,

digging through untested methods, wading through misused

pattern after pattern, deciphering bug reports, discussing the

same functionality for the sixth time just to make sure, and

so on. No dots collecting? No dots connecting.

7.4.2 Sleep and insight

Quite a few prominent creators attribute insight to a good

night’s sleep. Ample empirical support indeed confirms that

(good) sleep promotes creativity. When we’re asleep, our

hippocampus, an area in the brain responsible for the

continuity of the self over time and spatial navigation, gets

free reign to play with and connect the impressions of the

day. Neuroscientist Matt Wilson makes it sound like a

deliberate action:23

During sleep you try to make sense of things you already learned. . . . You

go into a vast database of experience and try to figure out new connections

and then build a model to explain new experiences. Wisdom is the rules,

based on experience, that allow us to make good decisions in novel

situations in the future.

We don’t have to passively wait for our sleep to do its thing.

Behavioral scientist Simone Ritter and her research team

discovered that secretly dispensing odors facilitates

creativity.24 In the evening, prior to sleep, participants were

presented with a problem that required a creative solution. A

hidden diffuser spread a scent while the problem was

presented. During sleep, one group of participants was

conditioned with the same scent, and one group, with

another scent; a third group was not conditioned with a

scent. The next morning, when presenting their solution

immediately after waking up, the first group was found to be

much more creative.

Ritter calls this “task reactivation during sleep.” Although the

number of participants was very limited and an outdated

creativity assessment method from the sixties was used, the

message here is clear: our sleep can connect previously

unassociated information, and it can be actively triggered to

some extent. In case you were wondering, orange-vanilla

was the winning scent.

Perhaps Dexter was right when he proclaimed, “Hey, who

needs to study? With my genius, I can learn while I sleep!” in

an episode of the animated television series Dexter’s

Laboratory. While enjoying his sleep, the “Subconscious

Discographic Hypnotator” would induce the needed French

vocabulary (http://mng.bz/D4oV). Just make sure the record

doesn’t get stuck on Omelette du Fromage.

7.4.3 A note on stimulants

Programmers love their coffee—a conclusion we came to

after conducting several focus groups. The effect of coffee on

creativity seems to be twofold. First, and perhaps foremost,

http://mng.bz/D4oV

the act of getting up to take a stroll to the coffee machine or

water dispenser can often be enough to trigger a connection,

as one participant explained:

. . . coffee, in a sense of, you’re doing something and you’re stuck, and you

get up to go drink some coffee and on the way back something comes to

mind that might solve the issue.

Another participant jokingly said drinking lots of coffee also

increases the number of toilet visits, which, in turn, might

trigger something (besides the act of relieving oneself).

Drinking coffee—or any other beverage—is to modern

programmers what taking a bath was to Archimedes.

But coffee has another well-known effect: the caffeine

“makes your brain work faster,” as one programmer

mentioned. It indeed increases our focused attention span.

What is less known, however, is that too much coffee can

lock you out of the diffuse-thinking mode (see chapter 5), an

indispensable tool that can help us come up with original

ideas.

In a literature review on the links between psychostimulants

and creativity in the arts, Iain Smith concludes, “The ability

of psychostimulants to boost convergent thinking is the main

mechanism at work but this is at a cost as divergent thinking

is diminished.”25 Ancient Greeks drank diluted wine to tear

down cognitive walls during philosophical discussions.

Nicotine and caffeine are often used by writers to put words

on paper and to evaluate their creative work. However, when

it comes to ideation and pondering, your best bet is a clear

head.

The study of stimulants and their influence on the brain is a

whole field of research in itself. Summarizing recent findings

is well beyond the scope of this book. If you are still

interested in delving deeper, I recommend Michael Pollan’s

How to Change Your Mind, a personal journey through the

science of psychedelics.26

7.5 A corporate creative state of

mind

If we are to believe architects, the exterior and interior

designs of company buildings matter. If we are to believe our

interviewed programmers, working in a stimulating

environment—literally—can enhance your creativity. In

chapter 3, we encountered modern technology sites that

attempt to replicate genius clusters by carefully planning

urban and industrial communities. Our workplace

environment influences us more than we’d like to admit.

Would you prefer to be surrounded by a jungle of lush

greenery alternated with strategically placed office desks

and pool tables, or would you rather face a gray brick wall

every single day?

Designing a perfect office for everyone is impossible. Some

programmers prefer the bustle of activity, while others like

the privacy of a closed door. Some don’t even like playing

pool. Let’s examine what an ideal corporate creative state of

mind should look like.

7.5.1 Environmental creativity

The first thing that probably springs to mind when thinking

about creative environmental design is the clash between,

on the one hand, open spaces that (in theory) promote

serendipitous creativity and, on the other hand, closed office

spaces that promote deep work. Open spaces should disrupt

structures and boundaries, allowing for unexpected collisions

that generate better ideas.

Numerous studies—including those of mine and my

colleagues—have confirmed that, in practice, the noise of

open offices actually undermines creativity!27 On the other

end of the spectrum, isolating people in tiny cubicles is

depressing. If both open and closed spaces work against

creativity, then how should architects design the workspace?

The only solution is to compromise.

In Deep Work, Cal Newport suggests combining long

hallways with clusters of closed subenvironments. This way,

bumping into people to exchange ideas happens while

walking to the coffee machine, without disturbing the flow of

coworkers who are wrestling with implementation details.

Coworking spaces can be further subdivided into

compartments as teams see fit.

Newport mentions MIT’s Building 20 as an example of

mismatched departments that shared a building alongside

more esoteric tenants, such as a machine shop and a piano

repair facility. The space could be rearranged as needed and

allowed for both interdisciplinary discussions and solitary

moments of concentration.

Building 20 was initially created as a temporary overflow

space. Since then, other, more systematically planned

buildings have showcased the same design philosophy.

Newport quotes Jon Gertner’s notes on the design of Bell

Labs:

Traveling the hall’s length without encountering a number of

acquaintances, problems, diversions and ideas was almost impossible. A

physicist on his way to lunch in the cafeteria was like a magnet rolling past

iron filings.

As one programmer we interviewed summarized, office

spaces should “have incentives without being disruptive, but

must appeal to the imagination.” Freud loved to surround

himself with archeological marvels that inspired him. Perhaps

without these shiny trinkets, his work would not shine as

much.

A hybrid coworking space is exactly what Jonas Salk from

chapter 5 envisioned when commissioning the Salk Institute

for Biological Studies. Architect Louis Kahn opted for a bold

light-altering exterior and free-flowing labs that were meant

to allow for cross-pollination of ideas without constant

interruptions of others’ work. The result is a stunning piece

of modern art, as you can see in figure 7.6.

Figure 7.6 The Salk Institute courtyard showcasing a

mirrored structure containing strategically placed

laboratories, utilities, office spaces overlooking the

Pacific Ocean, and study areas. Photo courtesy of

Adam Bignell, Unsplash.

What, exactly, are the characteristics and configurations of a

(hybrid) creative space? Behavioral engineering researchers

Katja Thoring and her colleagues tried to answer that by

turning to the literature. Most unconventional work

environments, like the aforementioned Salk Institute, provide

separate spaces for different needs. The following list is a

selection of the identified space types:28

Personal/focus space

Collaboration space

Making/experimentation space

Exhibition space

Presentation/sharing space

Disengaged/intermission/relaxation space

Unusual/playful space

Virtual space

Incubation and reflection space

Big tech companies love to show off their “playful” spaces in

the hope of attracting new talent. I remember a job interview

in which the employer proudly mentioned the Xbox

tournaments during lunch. I later heard the lunch break is

strictly monitored. I kindly turned down the offer. Now, if

there was mention of a Super Nintendo. . . .

Some companies go as far as requiring their programmers to

not only work but also live on campus. It is interesting to see

an incubation space listed as a separate entity in Thoring’s

paper. Archimedes would have demanded a luxurious

bathroom.

Creative environments have lots of boxes to tick: they need

to be social, stimulating, engaging, comfortable, healthy,

safe, surprising, flexible, accessible, playful, spacious,

remote, cozy, nourishing, and informative. On top of that,

they should promote chance encounters, reflect the identity

of the company, contain ample greenery, evoke wonder with

their architecture, contain lots of cafés, and facilitate the

exhibition of project work.

No wonder most workplaces fail to live up to these

expectations. Eric Weiner puts it bluntly: “Creativity is a

response to our environment.” (See chapter 3.) The global

COVID-19 pandemic abruptly changed that environment by

initially mandating remote work. Whether the change has

had a positive influence on creativity remains to be seen.

Although our influence on the design of the workspace is

perhaps limited, it is not impossible to add a few inspiring

objects here and there, just like Freud did. I’ve seen

companies recruit “Chief Happiness Officers” who are co-

responsible for the layout and decoration of the workspace. If

your company has roles like these, great, get involved, and

point them to creativity research or lend them your copy of

this book! If your company lacks dedicated people concerned

with interior design or the well-being of the workforce,

there’s an opportunity lurking: step up and help increase

awareness of the influence of environments on creative

performance.

EXERCISE Take a look around at your desk, whether it’s at

home or at the office. Does it scream boring!? How about

adding a few inspirational books, posters, or plants? Spray-

paint an old motherboard or deconstruct an unused iPod to

mount on the wall. Craft a mood board full of things that

define and inspire you. As always, turn to the internet for

more creative examples.

Donning the monk’s habit

Sometimes it pays off to temporarily work in another environment. I know of

a colleague who retreated to an abbey to finish his dissertation. The

constant presence of yelling children at home breaking his creative flow

might have had something to do with it.

Mihaly Csikszentmihalyi wrote a large chunk of his Creativity book in a

secluded cell that looked out over the eastern branch of Lake Como in

northern Italy. Each year, The Rockefeller Foundation sends out academics

to beautiful but remote areas in the hope that the panoramic views and the

historical weight of the nearby ruins produce great outbursts of creativity.

They usually do.

7.5.2 Workplaces as creative

workshops

In the eyes of the uninitiated, workshops of artists are

nothing but bright and messy spaces littered with junk. The

most important aspect of the workshop—its context—is

invisible. As with all things systemic, the workshop itself is

part of the system that determines and alters the creative

product. At the 2021 workshop conference “1 + 1 = 3,”29

Contemporary Flemish visual artists Jonas Vansteenkiste and

Joke Raes talked about how their work developed and formed

in relationship with the physical workspace. The logic-defying

“1 + 1 = 3” formula refers to what Nora Bateson from

chapter 3 calls a symmathesy—the sum is greater than its

individual parts.

Each workshop has a major effect on the end result. For

instance, a shop comes equipped with specific technical

options, such as a wood lathe or ceramic materials. The

guidance of professional woodworkers or sculptors present at

the workshop will also further influence the result.

Joke Raes’ art arises from material she happens to stumble

upon in and outside her atelier,30 such as discarded industrial

remnants or objects of natural origin (figure 7.7). Her art

changes as she changes her environment. She also

emphasizes the importance of serendipity. Her work evolves

organically, sometimes boosted by sheer coincidence,

although she deliberately chooses when to stray from the

premeditated path. According to her, there is no single

recipe for creative work.

Figure 7.7 A peek inside Joke Raes’ atelier. The walls

are decorated with her sculptures. Ample

sketchbooks, manuals, and various materials are

within reach, yet enough light and space remain to

breathe, think, and work. Photo courtesy of Joke

Raes.

Programming and hardware tinkering are also dependent on

physical materials and happen within a physical context. If a

few engineers at Argonaut Games from the introduction to

chapter 6 weren’t into circuit board printing, they might

never have managed to reverse-engineer the Game Boy

internals. Suppose their curiosity and persistence eventually

failed them, and by ordering parts instead of making them,

they still managed to produce the Game Boy game X. The

end result would have looked completely different.

The programming workplace influences the creative end

product. A romantic image of tinkering garages where

Google and Apple products were conceived might have

popped into your mind. History researcher Katherine Erica

McFadden devoted an entire doctoral dissertation to the

subject of what she calls garagecraft .31 These garages acted

very much like creative workshops:

[The garage] has provided a place to play, experiment, [and] commercialize

technology, while also providing a space to create new identities and

communal standards. What we make and how we make it is, in the end,

more about crafting ourselves than crafting objects.

While Silicon Valley garage tinkering can sometimes sound

like a fairy tale, it is indeed hard to deny the influence of the

garage/workshop and its contents on the imagination of the

tinkerer. Why don’t we as programmers build our own private

workshop or atelier to which we can occasionally retreat in

search of inspiration?

7.5.3 Workplaces as a safe haven

That same workplace should also allow for creative

experiments. An interviewee from our focus group study

explained:

I think that’s like motivation. You create the framework in which you can be

creative and that means you’re allowed to make mistakes and can try out

things, that you’re supported by that and feel comfortable in that

environment. . . . For example, flexible working hours, I think that’s

important, that you don’t have to worry about getting there on time;

instead I can calmly think in the car about a problem.

Workplaces that facilitate creativity are the ones that boost

your confidence to try out things, fumble, fail, and try again,

without being put on a clock (too much). Again, freedom

emerges as an important determinant of creativity. Of

course, it also helps if a whiteboard is in the vicinity—or,

even better, if the walls can be drawn on, thanks to IdeaPaint

or chalkboard paint. The question that remains unanswered

is this: what is the ideal equilibrium between constraints and

freedom? Perhaps that’s a good thinking exercise to end this

chapter with.

Summary

If coding problems while behind the desk aren’t

directly solvable, perhaps it’s a good idea to get

away from that desk for awhile.

Offload your brain now and then, for instance, by

playing a game—even while you’re in the middle of

something that absolutely has to be solved. You’ll

be pleasantly surprised by what a refreshed mind

does to your creative problem-solving skills. Never

ignore the signals from your subconscious.

Agree on a way to respect everyone’s flow of

optimal programming work experience, both within

your team and between different teams.

In the same vein, see whether you can get your

most concentration-intensive work done outside of

a typical office landscape. Try to identify tasks as

either deep work or shallow work and choose your

workspace accordingly.

A flexible, creative state of mind is easier to

maintain with corporate assistance. Lobby your

employer for creative support (environmental,

flexibility related).

Continuous, repetitive, unskilled work leads to

boredom, completely killing creativity, while

frequently taking on work that is too challenging

piques your stress levels, also decreasing creative

output. This is self-evident, but in the heat of a

sprint-planning meeting, everyone tends to forget

this.

Never go for a walk without a way to take notes.

Instant messages and emails are typical creativity

killers. When choosing a communication system for

your team, try to keep in mind which messages

absolutely have to reach developers at all times

and which don’t. This system should allow for the

checking of email only a few times a day at

predetermined moments.

Being aware of frequent interruptions—either from

yourself or due to unexpected questions from

colleagues—will help you to better direct your

creative attention. If interruptions are

commonplace, try to dump your current train of

thought before reacting.

Show interest in the work of others that could

improve your own, even if it has nothing to do with

programming.

Brighten up your desk environment instead of

leaving it bare and uninspired. Sometimes, it really

is the little things that matter.

If the pair programming tempo is too high for you

to connect the dots, try to process new knowledge

at your own pace. Your pair will surely understand

if you explain how your personal creative state of

mind works.

A Creative Programmer is a well-rested

programmer. Do not ignore the importance of a

good night’s sleep!

1.
Henri Poincaré. The foundations of science: Science and hypothesis, the value

of science, science and method. Reissue edition. Cambridge University Press,

2014.

2.
The story is based on interviews with Retro Gamer, Retro Gamer Reviews, and

Voletic.

3.
Mihaly Csikszentmihalyi. Flow: The psychology of optimal experience. Harper

Perennial Modern Classics, 2008.

4.
Nicola S. Schutte and John M. Malouff. Connections between curiosity, flow and

creativity. Personality and Individual Differences, 2020.

5.
Cal Newport. Deep work: Rules for focused success in a distracted world. Grand

Central Publishing, 2016.

6.
Winifred Gallagher. Rapt: Attention and the focused life. Penguin, 2009.

7.
Mihaly Csikszentmihalyi. Creativity: Flow and the psychology of discovery and

invention. Reprint edition. Harper Perennial, 2003.

8.
Nietzsche’s progressive dementia that caused insanity might have something to

do with his growing obsession with lonely walks.

9.
Friedrich Nietzsche. The gay science: With a prelude in rhymes and an appendix

of songs. Vintage, 1974.

10.
Frédéric Gros. A philosophy of walking. Verso Trade, 2014.

11.
Marily Oppezzo and Daniel L. Schwartz. Give your ideas some legs: The

positive effect of walking on creative thinking. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 2014.

12.
David Graeber. Bullshit jobs: A theory. Simon & Schuster, 2018.

13.
Joy P. Guilford. Characteristics of creativity. Illinois State Office of the

Superintendent of Public Instruction, 1973.

14.
Mark A. Runco. A longitudinal study of exceptional giftedness and creativity.

Creativity Research Journal, 1999.

15.
André N. Meyer, Thomas Fritz, Gail C. Murphy, and Thomas Zimmermann.

Software developers’ perceptions of productivity. In Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software

Engineering, 2014.

16.
See https://www.joelonsoftware.com/2000/04/19/where-do-these-people-get-

their-unoriginal-ideas/.

17.
Staffan Nöteberg, Pomodoro technique illustrated: The easy way to do more in

less time. The Pragmatic Bookshelf, 2009.

18.
Zahra Shakeri, Hossein Abad, Oliver Karras, Kurt Schneider, Ken Barker, and

Mike Bauer. Task interruption. In Software development projects: What makes

some interruptions more disruptive than others? Proceedings of the 22nd

International Conference on Evaluation and Assessment in Software

Engineering, 2018.

19.
Ioanna Katidioti, Jelmer P. Borst, Marieke K. Van Vugt, and Niels A. Taatgen.

Interrupt me: External interruptions are less disruptive than self-interruptions.

Computers in Human Behavior, 2016.

20.
Izabela Lebuda, Darya L. Zabelina, and Maciej Karwowski. Mind full of ideas: A

meta-analysis of the mindfulness-creativity link. Personality and Individual

Differences, 2016.

21.
Danah Henriksen, Carmen Richardson, and Kyle Shack. Mindfulness and

creativity: Implications for thinking and learning. Thinking Skills and Creativity,

2020.

22.
See https://www.gapingvoid.com/.

23.
M. R. O’Connor. Wayfinding: The science and mystery of how humans navigate

the world. St. Martin’s Press, 2019.

24.
Simone M. Ritter, Madelijn Strick, Maarten W. Bos, Rick B. Van Baaren, and A. P.

Dijksterhuis. Good morning creativity: Task reactivation during sleep enhances

beneficial effect of sleep on creative performance. Journal of Sleep Research,

2012.

25.
Iain Smith. Psychostimulants and artistic, musical, and literary creativity.

International Review of Neurobiology, 2015.

https://www.joelonsoftware.com/2000/04/19/where-do-these-people-get-their-unoriginal-ideas/
https://www.gapingvoid.com/

26.
Michael Pollan. How to change your mind: What the new science of

psychedelics teaches us about consciousness, dying, addiction, depression, and

transcendence. Penguin Books, 2019.

27.
Torkild Thanem, Sara Varlander, and Stephen Cummings. Open space = open

minds? The ambiguities of pro-creative office design. International Journal of

Work Organisation and Emotion, 2011.

28.
Katja Thoring, Pieter Desmet, and Petra Badke-Schaub. Creative space: A

systematic review of the literature. In Proceedings of the Design Society:

International Conference on Engineering, 2019.

29.
See https://www.platformwerkplaatsen.nl/nl/werkconferentie-1-1-3.

30.
Artists and designers seem to prefer the term atelier over workshop. In the

context of this section, its meaning remains the same.

31.
Katherine Erica McFadden. Garagecraft: Tinkering in the American garage. PhD

dissertation, College of Arts and Sciences, University of South Carolina, 2018.

https://www.platformwerkplaatsen.nl/nl/werkconferentie-1-1-3

8 Creative techniques

This chapter covers

The concept of Art-Based Learning

Borrowing ideas: good theft versus bad theft

Writing techniques that boost creativity

An inspection of a Creative Programmer’s toolbox

The shadow of death looms over the streets of collapsing

Rome. The Antonine Plague, the first-known pandemic in

history, hit the Roman Empire in 170 ad and eradicated 15%

of the population within two decades. A widespread state of

panic caused most survivors to either ransack or flee the

city. Yet its emperor at that time, Marcus Aurelius, chose to

stay and brave the crisis, reassuring the people that his life

wasn’t worth more than anyone else’s, in stark contrast to so

many of his predecessors. When faced with a life-threatening

problem such as the plague, Aurelius’ Stoic training taught

him to look at the whole instead of zooming in on his own

situation.

During and after the ravages of the plague, more bad news

kept pouring in. The Roman borders were constantly under

attack by Germanic tribes, slowly but surely exhausting both

its soldiers and its finances. Instead of taking a narrow-

minded approach to solving the gaping hole in the treasury—

for example, by raising taxes and plundering neighbors—

Aurelius did the opposite. He zoomed out and looked at all

aspects of the problem. It occurred to him that his

predecessors had amassed a lot of shiny trinkets that did

nothing but gather dust. Thus, Aurelius made a bold

decision: he simply sold all the imperial treasures in the

Forum. He later returned the gold to those who brought back

the ornaments, without forcing anyone unwilling to do so. His

motto was simple, humbling even: “Do the right thing. The

rest doesn’t matter. Waste no more time talking about what

a good man is like. Be one.” This statement came from a

man who had lost 9 out of 14 children, faced constant war,

and because of recurring health problems, presumably

succumbed to the plague himself (figure 8.1), thereby

ending the 200-year-long Roman Golden Age.

Figure 8.1 The Antonine Plague called for creative

action from a devoted Stoic to keep the finances

flowing. You could say that Aurelius threw a very

unusual yard sale during a very unusual time.

Engraving by Étienne Picart, based on “Plague of

Ashdod” by Poussin. Source: public domain.

Eighteen centuries later, the scratching of a pen fills an

otherwise peacefully silent hotel room somewhere in the

western United States. A middle-aged, balding man scribbles

notes on a small piece of paper. Many hotel visits later, the

ever-growing stack of paper would form the basis of the

20th-century classic novel Lolita that the Russian-American

author Vladimir Nabokov wrote during his butterfly-collection

travels as a lepidopterist.

Nabokov didn’t approach writing like many others do.

Instead, after forming a picture in his mind, he gradually

mapped out the entire structure of a novel on index cards.

This allowed him to overcome the infamous fear of the blank

page, or writer’s block. New cards got filled as he felt

inspiration bubbling up, sometimes even during his butterfly

hunts. “I do not begin my novel at the beginning. I do not

reach chapter three before I reach chapter four, I do not go

dutifully from one page to the next, in consecutive order; no,

I pick out a bit here and a bit there, till I have filled all the

gaps on paper,” he says in an interview.1

When Nabokov got stuck, or when a part of the story

somehow didn’t appeal to him, he simply placed the related

index cards on the floor2 to rearrange, add, or remove bits

and pieces. After many rearrangements (and reiterations),

Nabokov would join the cards by numbering them and then

dictate everything to his wife, who acted as a typist,

proofreader, and sometimes savior of discarded index cards.

Nabokov’s jigsaw puzzle-like approach to novel writing

earned him a lot of flexibility and efficiency.

The Original of Laura, Nabokov’s final novel, was never

completed. Thirty-two years later, in 2009, Penguin

published it as “a novel in fragments.” The 138 index cards,

which were faithfully reproduced, complete with smudges

and crossed-out words, can be cut out and organized—and

reorganized—as the reader sees fit, in true Nabokov style. It

sheds light on how Nabokov structured his work and how he

selected the best words to describe characters.

At the beginning of the 21st century, a “Manifesto for Agile

Software Development” was developed by a team of

dedicated, human-oriented software professionals. It states:

“At regular intervals, the team reflects on how to become

more effective, then tunes and adjusts its behavior

accordingly.”3 The manifesto was authored by some of the

most influential software engineers of our time: Robert C.

Martin, Jeff Sutherland, Alistair Cockburn, Martin Fowler,

Andy Hunt, Kent Beck, Ken Schwaber, and others.

Two years later, Ken Schwaber and Jeff Sutherland

compressed their ideas about an “advanced product

development method” into a single word: Scrum. Regular

reflections were also baked into the core of Scrum: “After the

Sprint Review and prior to the next Sprint Planning meeting,

the Scrum Master holds a Sprint Retrospective meeting with

the Team.”4 The Sprint Retrospective was born.

How do you conduct a Sprint Retrospective? According to the

Scrum Guide,5 it should be both an enjoyable and effective

way to look back at the work done and inspect what could be

improved with regard to people, relationships, processes,

and tools—depending on the team’s Definition of “Done.”

Over the years, several inventive techniques have surfaced

to set the stage, gather data, generate insights, decide what

to do, and close the reflection. The Check-In, Mad Sad Glad,

Five Whys, Circle of Questions, Temperature Reading, and

many other methods provide helpful guidelines to conduct

an enjoyable and efficient retro.

8.1 On filling a creative toolbox

What is the greatest common divisor between Marcus

Aurelius’ bird’s-eye-view approach to ruling an empire during

troubled times; Vladimir Nabokov’s flexible index card

system, which allowed him to easily change the entire

structure of a novel; and various agile retrospective

techniques? All three examples showcase the use of creative

techniques to overcome roadblocks and generate novel

insights.

Without a firm background in Stoicism, Marcus Aurelius

might not be considered today the last of the Five Good

Roman Emperors. He could have ruled as ruthlessly as Nero

and Julius Caesar, but he chose not to: he had been given

the tools to deny malice and hypocrisy. “Take care not to be

Caesarified, or dyed in purple, it happens. Keep yourself

simple, good, pure, serious, unpretentious, a friend of justice,

god-fearing, kind, full of affection, strong for your proper

work. Strive hard to remain the same man that philosophy

wished to make you,” he wrote in his Meditations when he

was older.

Without index cards, Vladimir Nabokov might never have

recovered from writer’s block. Just like Niklas Luhmann’s

Zettelkasten system, Nabokov’s cards boosted both

creativity and productivity. Just like Luhmann, Nabokov was

another great polymath, or multipotentialite, as a novelist,

poet, translator, professor of literature, and lepidopterist.

Without the creative tools to facilitate an agile retrospective,

the fortnightly meeting ends up like any other meeting: a

boring and useless waste of time. Knowing one or more of

the aforementioned methods will keep things enjoyable and

effective, something all professional gatherings should aim

for.

In that sense, the premise of this chapter is similar to that of

chapter 2: a baseline of technical knowledge—not of

programming but of these tools—is required to overcome

creative roadblocks. By connecting this chapter back with

the second, we have come full circle!

You might be wondering why the topic deserves its own

chapter instead of being integrated into the previous ones.

After all, aren’t personal knowledge management workflows,

diffuse thinking, and self-imposed constraints creative

techniques? Of course, they are. However, in our focus group

studies, the concept emerged as an intertwined but separate

theme. Programmers seem to love talking about their

creative toolbox. And that’s exactly what we’re going to do

here.

Coding has remarkable similarities to both art and writing—

with art, because we’re creating something out of nothing,

within a given set of constraints. Depending on the amount

of freedom, this can be different from pushing papers or

assembly-line labor, where external practices dictate the

work. The artist, just like the coder, doesn’t have to comply

with the universal laws of physics: a quick glance at M. C.

Escher’s seemingly infinite constructions will tell you that.

Note that I wrote “coding has similarities to art” not “coding

(or the result of it) is art.” That’s still up for debate. Again,

what is art? Self-expression? Imagination? Creation?

Freedom? What do you think?

Coding has similarities to writing because coding involves

writing—in a structured manner to make sure the compiler

understands what we’re trying to say while also making sure

our coder colleagues and end users understand what we’re

trying to say. The compiler doesn’t care about the name of

the function buyNewBook; it cares about the () { that

comes after it. But we care: readability is much more

important than parsability, or even performance.

Every imaginable discipline, including programming, comes

with its own set of techniques. Many of these are

interdisciplinary. It pays to take a look beyond the

boundaries of software. However, the pool is simply too

large. In the following sections, we’ll limit our investigation of

creative tools to a subset of the artist’s, the writer’s, and, of

course, the programmer’s. This is by no means a complete

list, but it will, I hope, be sufficient to get the conversation

started.

Problem-solving techniques vs.

creative techniques

When is a problem-solving technique considered a creative technique? Is

something as simple as asking “Why?” five times really that creative? A

quick glance at chapter 1 can help answer this. Creativity techniques are

techniques and methods that encourage creative actions. Remember that

something is creative if deemed as such by you and your peers.

That is why I hesitate to reduce this chapter—and the entire book—to a

cookbook of practical techniques. Some will strike a chord. Some will sound

too far-fetched. And some will induce a “Been there, done that” mumble.

Instead, let this selection of creative techniques inspire you to come up with

adaptations of your own.

We will focus on problem solving, although many creativity

techniques can also be used in therapy or artistic expression.

8.2 A selection: The artist’s

toolbox

When I encounter the words creative techniques without

context, I envision vigorous mixing of pigments with secret

ingredients, Jackson Pollock’s drip technique of splashing

more paint on the floor next to the canvas than onto the

canvas itself, and purposely bleeding watercolors into one

another with the wet-on-wet technique.

As intriguing as these art-based techniques are, none of

them are particularly helpful for the Creative Programmer. Or

are they? We shouldn’t dismiss the artist’s toolbox entirely.

With a bit of effort, some more high-level practices,

techniques, and habits can prove to be valuable tools for the

programmer. Let’s take a closer look.

8.2.1 Art-Based Learning

In an attempt to re-create a progressive variant of

continuous learning, without pursuing the often all-too-

present economic goal, cultural history researcher Jeroen

Lutters introduced the concept of Art-Based Learning.6 This

technique allows the viewer to engage in a dialogue with

works of art. The purpose of Art-Based Learning is to help

answer life’s pressing questions. The object at hand can

guide us through an inner adventure, eventually, we hope,

arriving at the answer to our question. Associative free

thinking is central to this approach. Lutters compares the

method with artistic self-expression: “[Art-Based Learning] is

not unlike artistic mimesis—inimitable new personal creation

as a result of inner research.”

Does that sound a bit vague to you? That’s because it is a

very scholarly way to emphasize the personal intimacy of the

method. How does Art-Based Learning work? It can be

summarized as a four-step process, as visible in figure 8.2.

First, you ask (yourself) a relevant question. In his

dissertation, Lutters provides some examples: “Why am I

afraid to die?” or “How can I better enjoy living in the

moment?” After you’ve settled on a question, a work of art

must be chosen—or perhaps it chooses you. This can be a

simple book, poster, or painting you’re attracted to at that

moment, an intriguing machine, or even attending a concert.

According to Lutters, choosing an object mostly happens

subconsciously during daydreaming: “We are not free to only

use objects in this manner; sometimes, they choose us.”

Choosing therefore requires not only the ability to

appropriate something but also, and above all, the ability to

allow it to be appropriated.

Next, you let the artwork do the talking. The viewer becomes

the listener. This can be done only by “close reading”:

observing attentively and being open to the possibility of

inspiration. It’s almost a form of meditation. Do not actively

search for an answer; instead, admit, register, and become

transformed.

In the third step, the viewer becomes detached from the

current world and sees all other possibilities thanks to the

expression of the artwork. It’s about seeing and internally

discussing the possibilities. At this point, the artwork stops

being a simple work of art. I hope you’re still with me; we’re

almost there!

The fourth and last step is a reflective one where

understanding and meaning are transformed into a personal

story. Art-Based Learning should result in a new story, new

knowledge, and a tentative answer to the initial question.

Clearly, Art-Based Learning is intended to help cope with the

bigger philosophical questions in life, not with the pragmatic

ones we’re trying to answer, such as “Why doesn’t my

breakpoint get hit?” or “How can I make this asynchronous?”

How can we as programmers integrate Art-Based Learning in

our creative problem-solving activities?

Figure 8.2 The four steps of Art-Based Learning: (1)

ask your question and choose an artwork, (2) let the

art talk, (3) see possibilities, and (4) transform them

into an answer.

The technique has remarkable similarities with Henri

Poincaré’s subconscious theory of creativity: ponder a

question, let the subconscious mind do its thing (with the

help of a piece of art), and emerge victorious. Perhaps use

one of the many inspirational television shows, fables, and

tales that the Oliver twins devoured during the development

of their games or the inspirational objects that Freud liked to

surround himself with.

Art has a therapeutic effect. Our appreciation of it might

inspire and thus help clear out personal roadblocks. Some

programmers my colleagues and I interviewed for our

creativity studies showed appreciation for modern highway

bridges, like the one pictured in figure 8.3, as creative

engineering marvels:

Person 1: I think when I admire creativity somewhere, it’s primarily how

something fits together. The simplicity and, you know, the complexity made

simple in an existing solution to a problem. Apart from software and IT, for

instance, a traffic interchange done right. Like, that’s really well made!

Person 2: Now that you mention it, that new highway bridge at that time, I

thought it was solved nicely; there are no more traffic jams.

Person 1: Indeed!

Person 2: And that was a drastic change they did there.

Figure 8.3 The highway interchange in Lummen,

Belgium, redesigned between 2008 and 2012. Twelve

new bridges, some weighing 8,000 tons, were built

and moved around. This elegant engineering solution

inspired our interviewees and can be beautiful, just

like a work of art. Photo courtesy of Davy Govaert.

In their controversial book Art as Therapy, renowned

philosopher Alain de Botton and art historian John Armstrong

propose a new way of looking at art, suggesting that it can

be useful, relevant, and therapeutic. “Great works offer clues

in managing tensions and confusion in everyday life,” de

Botton argues.7 That sounds an awful lot like Art-Based

Learning! While Vermeer’s Melkmeisje (Milkmaid) or the new

highway interchange will probably not hold the answer to

that caching problem you’re struggling with, a thorough look

can help us better understand both art and ourselves,

thereby providing the clues needed to successfully invalidate

the cache.

8.2.2 Steal like an artist

“Steal Like an Artist”—the title of Austin Kleon’s provocative

manifesto for creativity in the digital age—manages to grab

our attention. In it, Kleon summarizes 10 things he wished

he’d heard when he was starting out as an artist:8

Steal like an artist.

Don’t wait until you know who you are to get

started.

Write the book you want to read [check!].

Use your hands.

Side projects and hobbies are important.

The secret: do good work and share it with people.

Geography is no longer our master.

Be nice. (The world is a small town.)

Be boring. (It’s the only way to get work done.)

Creativity is subtraction.

This list formed the basis of a talk at a community college in

New York, which quickly went viral online. Can you find the

similarities to the seven creative problem-solving domains in

this book? “Subtraction” is constraint work. “Being boring” is

being persistent, in the flow, and showing grit. One of the

illustrations in the book states, “You will need: curiosity,

kindness, stamina, a willingness to look stupid.” Sharing

work is a central theme of chapter 4.

Even the first entry, stealing “like an artist,” occurs in the

introduction of chapter 2, where we saw that the Kotlin

programming language was purposely built on top of the

shoulders of existing giants and where Seneca often peeked

at and learned from the writings of Epicurus, his

philosophical competitor. In a sense, this book came to life in

the same way.

According to Kleon, there are good theft and bad theft. Good

theft involves honoring, studying, stealing from many,

crediting, transforming, and remixing. Bad theft involves

degrading, skimming, stealing from one, plagiarizing,

imitating, and ripping off.

Sadly, in the software development world, bad theft is

commonplace. For example, Microsoft’s recent GitHub

Copilot project, “Your AI pair programmer,” at first sounds

like a really clever idea—and it probably is. However, the

machine learning-powered copilot that suggests code and

entire functions in real time is trained by billions of lines of

code directly lifted from hosted GitHub projects, without ever

taking licensing considerations into account. No

accreditation of any sort was put forward. Copilot, as a

closed for-profit product, is made possible by unethically

leaning on thousands of coding hours from open source

developers and blatantly ignoring their licenses, of which

most, in fact, require proper attribution. Eventually, the

Software Freedom Conservancy put out the message “Give

Up GitHub!”9 Many open source software maintainers are

migrating to other solutions, such as Codeberg, Source Hut,

or a self-hosted Gitea instance. Yet another big tech

company that ends up taking advantage of “free” data.

This happens all too often. I’ve worked at multiple companies

where project dependencies are happily yarn add-ed

without ever taking a closer look at the LICENSING.md file.

At one employer, an observant developer was simply

laughed at for remarking that we’re using GPL software and

selling the product as closed source. Bad theft, Austin Kleon

says. “Who cares?” the company replies.

“Stealing” and remixing the best parts are often

requirements to push a domain forward. These practices are

clearly visible not only in art but also in the automotive,

software development, and hardware-engineering industries.

Sometimes, remixing results in bland and forgettable

imitations of the original. Sometimes, remixing previously

unthinkable combinations somehow works, even though the

parts sound like impossible matches.

What do you get when you cross-breed the pinball genre

with the run-and-gun shoot-’em-up genre? Nitro Ball, a 1992

arcade oddity from Data East that, against all odds, sold

quite well. What about mixing the 2D exploration

metroidvania genre with flying pinballs? The result is Yoku’s

Island Express (figure 8.4), a 2018 “platforming pinball

adventure” by Villa Gorilla, where you play as a dung beetle?

Figure 8.4 Villa Gorilla somehow managed to fuse the

best mechanics of the metroidvania and pinball

genres into the cheerful adventure that is Yoku’s

Island Express.

EXERCISE When was the last time you “stole like an artist”?

Did you commit a bad theft or a good theft? Did you study,

or did you skim, like my students love to do? (I admit, I’ve

been there!) Perhaps now is the time to quickly scan your

project’s dependencies and correctly accredit them. Many

programming ecosystems have plug-ins to access this

information, such as in Node.js (license-checker), Go (go-

licenses), Gradle (gradle-license-plugin), and Elixir (licensir).

Remember that not all licenses are compatible with each

other.

8.2.3 The power of time off

Every seven years, graphic designer Stefan Stagmeister

leaves his studio behind to take a year-long sabbatical.

During his prolonged time off, Stagmeister absorbs

everything he encounters like a sponge. Remarkable

cultures, humbling forests, sprawling cities: all impressions

form the basis of his future creative work. Some places he

has visited “spontaneously evoked wonderful inspirations.”10

I must admit, I’m quite jealous. Taking a whole year off to

chase nothing but inspiration requires both financial stability

and a lot of guts. In his TED talk on the power of time off,

Stagmeister makes the distinction between a job (a nine-to-

five one done for the money), a career (climbing up the

ladder), and a calling (intrinsically fulfilling). He argues that

we often lose sight of what we really want and that, by

regularly taking time off to rethink our working strategy and

getting inspired, we’re more likely to see what we do as a

calling instead of a job.

One year off every seven years equals 12.5% time devoted

to chasing whatever you want. Is it really that much?

Compared to Google’s former 20% time or 3M’s 15% rule,

it’s actually less! Of course, those times “off” are never really

off, and they are always taken with an eye on business

profits. Since 2011, as Google exponentially grew in size, it

began cutting back this “free time” presumably to focus

more on the operational side of the business and to adopt a

“more wood behind fewer arrows” strategy.

Taking a sabbatical doesn’t mean not working—it means

working on whatever you’d like. It almost always is a trigger

for inspiration for your main job. Many authors, like

psychologist Daniel Gilbert, write books while on sabbatical.

Gilbert is lucky enough to be a tenured professor, which

obviously makes the sabbatical much more doable.

Stagmeister still designed and sold artwork during that

period. I know of psychologists who close their practice for

four months to think, write, organize retreats, and get

inspired. Slowing down to let the inspiration unfold is one of

the key advantages of a long-term leave. It can even be

enough to fuel creations for years to come, as Stagmeister

witnessed: “Everything we designed in the seven years

following the first sabbatical had originated in that year.”

Taking a sabbatical also doesn’t mean not planning anything.

Stagmeister explains that his first sabbatical year was a

disaster. Instead of generating ideas, he just fiddled about

and reacted to anything that was sent his way. A better

approach would be to convert a list of interesting things into

an actionable plan that can serve as a starting point.

But perhaps the most important benefit of Stagmeister’s

sabbatical was falling in love with his job again. The job he

resented became a true calling. Our feelings have more

influence on our creativity than we’d like to admit. If you

can’t stand the thought of getting up in the morning because

of your work, the chances of achieving that much-needed

creative breakthrough are next to zero. It might even be a

clear sign of a looming burnout.

Psychology research has claimed for decades that emotions

and moods deeply influence our cognitive abilities, including

creativity and analytical problem solving. This claim wasn’t

verified in software engineering research until recently, when

Daniel Graziotin and his research team discovered that,

indeed, happy software developers solve problems better

and more creatively.11

The study’s participants were limited to 42 computer science

students, who could arguably not serve as true software

developers. In a follow-up study, Graziotin’s team

interviewed 317 experienced programmers about the

consequences of (un)happiness for productivity and software

quality.12 Happy programmers reported positive outcomes on

both external processes and their own well-being:

The most significant consequences, in terms of frequency, of happiness for

the developer’s own being are: high cognitive performance, high

motivation, perceived positive atmosphere, higher self-accomplishment,

high work engagement and perseverance, higher creativity and higher self-

confidence.

The other way around is also true: reduced creativity is

reported as a consequence of unhappiness.

What can we as programmers learn from this—should we

collectively rush to our boss to ask for a sabbatical? I will

leave that up to you. The essence of taking time off is to

lighten the mood and get inspired (without corporate

pressure), to feel that childlike curiosity again—perhaps even

being happy, as we explored in chapter 6. Other drastic and

less drastic ways to experience this include a prolonged

vacation, becoming self-employed, switching teams, part-

time work, working in different sectors and becoming a

multipotentialite, setting up a blog or writing a book, and so

forth.

It doesn’t have to be a “sabbatical,” which perhaps sounds a

bit invasive (or sometimes downright impossible). Even

taking limited time off—for example, an extended weekend

to just noodle around and completely detach from work—has

proven to recharge creative effectiveness at work.13

Organizational psychologists discovered that emotional and

physical detachment from work positively affects employees’

health and even creativity. Taking time off—however short—

to discover new things and meet new people is certainly

beneficial to both our creativity and our health.

Yet at the same time, the previous study also reports that

complete cognitive detachment from work can have

negative effects on learning and creativity, since you leave

the job resources behind that might help support creative

thinking (your immediate colleagues, available work

resources, etc.).

The authors conclude that employees need to take time off

from work to balance health and creative problem-solving

abilities. We will further explore the relationship between

well-being and creativity in chapter 9.

8.3 A selection: The writer’s

toolbox

Taking a peek at the tools of the trade of writers, next to

artists, could also prove to be instructive. After all, a writer’s

toolbox is full of effective techniques for jumping past

roadblocks, pushing past the much-dreaded blank page, and

making novel connections between ideas. Slight

modifications allow these tools to be competent techniques

in the hands of the Creative Programmer.

A quick internet search for “creative writing techniques” nets

more than two billion results, ranging from metaphors,

rhetorical questions, alliterations, personification, free-form

writing, dictating and transcribing, act structuring to plot

development, and even serious data mining techniques to

extract specific language usages from different user groups.

These endless lists of writing techniques are less compelling

than the writing advice formulated by great authors. The

sections that follow offer a selection of the latter that might

help improve the creative writing of our code. You’ll

recognize many tools of the trade from previous chapters.

8.3.1 Vladimir Nabokov’s toolbox

Nabokov himself was always ready to dish out advice in

various interviews and lectures. In the book Conversations

With Vladimir Nabokov, edited by Robert Golla, these

interviews come together to form an overview of the life and

work of the Russian-American literary master.14 The following

paragraphs provide a selection of the advice I found to be

fitting in the context of programming.

Study other artists. Said Nabokov: “A creative writer must

study carefully the works of his rivals, including the Almighty.

He must possess the inborn capacity not only of recombining

but of re-creating the given world. In order to do this

adequately, avoiding duplication of labor, the artist should

know the given world.” Steal like an artist and like a writer!

Be inspired by the world around you. “The art of writing is a

very futile business if it does not imply first of all the art of

seeing the world as the potentiality of fiction.” Of course,

there’s a big difference between fiction writing and

implementing business requirements in software, but that

doesn’t mean we can’t be inspired by the things we see in

the world outside of IT. For example, the postal system that

delivers our mail can be seen as an asynchronous message

broker like the popular software RabbitMQ or the distributed

event streaming platform Apache Kafka.

Every writer is a great deceiver (and enchanter). Nabokov

compared the writing of fiction with nature’s deceptive

simplicity. This comparison translates itself well to

programming: write deceptively simple code that, in

Nabokov’s words, is a prodigiously sophisticated illusion, yet

clearly able to convey intent. Style and structure are more

important than implementing great ideas—a concept that

has gained a clear following lately with Go programmers.

Caress the details! Nabokov’s index cards allowed him to

work, rework, and rework again, as clearly visible by the

many pencil smudges in figure 8.5. “Every card is rewritten

many times,” he said—not a single word is left unedited.

When programming, once the unit tests cover the initial

requirements, we should code, recode, and recode again.

Every line of code—including the tests—can be rewritten

many times, until the tests signal the required functionality

is implemented and the code is easily readable by others to

facilitate maintainability and possible later reworks. Red,

Green, Refactor. Again. “Kill your darlings,” as writers like to

say.

Figure 8.5 An index card with a piece of a plot

modeled after Nabokov’s sometimes quite messy

novel-writing method. Depending on the order of

these cards, the story will change. His final book,

published posthumously, The Original of Laura (Dying

Is Fun), is subtitled A Novel in Fragments. In it, the

reader is encouraged to alter the story by cutting out

the present scans of Nabokov’s index cards!

Style needs to be developed. “Style is not a tool, it is not a

method, it is not a choice of words alone. Being much more

than all this, style constitutes an intrinsic component or

characteristic of the author’s personality. Thus, when we

speak of style we mean an individual artist’s peculiar nature

and the way it expresses itself in his artistic output.” He

continues: “It is not unusual that in the course of his literary

career a writer’s style becomes ever more precise and

impressive.” Programming is more of a collaborative activity

than writing, but precisely because of that, I think Nabokov is

onto something here. Our (collective) coding style is just as

important as the choice of algorithms or frameworks.

Don’t necessarily start at the beginning. The flexible index

card system allowed Nabokov to write a few sentences here

and there, perhaps not starting with chapter 1 and dutifully

continuing to chapter 2. We can heed that advice when

implementing a complex piece of code. By breaking down

the big piece into separate “index cards” with the help of

unit tests, we can tackle the problem without having to start

at the beginning.

8.3.2 Geoff Dyer’s toolbox

English author Geoff Dyer writes both novels and nonfiction

and has won many awards for his work. His writing advice,

shared in multiple articles in The Guardian, is noticeably

more pragmatic compared with the more erudite Nabokov.

Don’t write in public places. “It should be done in private,

like any other lavatorial activity.” This is a nod toward Cal

Newport’s Deep Work: write (or code!) with closed doors;

rework with open doors. Coding requires concentration. The

idealized picture of working in a coffee shop doesn’t facilitate

concentration. If we are to believe Dyer, it actively impedes

it.

Constantly refine and expand your autocorrect settings.

Finally, a writer who openly advocates the use of productivity

tools to help make space for more creative thoughts. Build

up muscle memory for those IDE shortcut keys. Fine-tune the

autosuggestions. Your code editor is your best friend.

Keep a diary. Other writers, like Brazilian Paulo Coelho, deny

its advantages: “Forget taking notes. What is important

remains, what is not goes away.” When it comes to

contemporary programming, that is a very dangerous point

of view because the many details we are told to pay

attention to also tend to slip away. Stick with Dyer’s advice

or reread chapter 2.

If something is proving too difficult, give up and do

something else. “Writing is all about perseverance,” Dyer

explains. “You’ve got to stick with it.” As we saw in chapter

7, subconsciously processing the roadblock is an added

benefit of temporarily doing something else.

Make a habit. Write every day. Remember, it’s about

perseverance. “Gradually, this will become instinct.” Some

authors’ writing schedules are really impressive. Stephen

King, for instance, writes 10,000 words every single day. No

wonder he’s one of the most prolific American fiction writers

of our age. Other writers are content with a few heavily

reworked sentences. It’s not about quantity, but daily habits

do make the road to creative success easier.

8.3.3 Anne Lamott’s toolbox

Anne Lamott’s Bird by Bird15 is a classic work when it comes

to uncovering the pain, grace, love, and fear of the writer.

Compared with Nabokov’s and Dyer’s advice, Lamott’s is

more personal and emotionally laden but far from less

important. The next few paragraphs provide a selection of

her advice that stood out to me as especially provocative.

Write your own unique story. “You own everything that

happened to you. Tell your stories,” Lamott writes. Don’t be

afraid to unleash your Pythonic skills as a former Python

programmer currently plodding in the Java universe. This

isn’t about syntax—for instance, camelCasing versus

snake_casing—but about inventive ways to apply personal

past experiences to present coding problems. Only you can

pull it off.

Just sit down. Echoing Dyer’s advice on making a habit,

Lamott writes, “You try to sit down at approximately the

same time every day. This is how you train your unconscious

to kick in for you creatively.” It can take a while for

inspiration to come. Don’t stress—be patient: “You look at

the ceiling, and over at the clock, yawn, and stare at the

paper again. Then, with your fingers poised on the keyboard,

you squint at an image that is forming in your mind—a

scene, a locale, a character, whatever—and you try to quiet

your mind so you can hear what that landscape or character

has to say above the other voices in your mind.” During our

creativity surveys, some programmers mentioned they “just

sit down and start to write.” They won’t even bother with

syntax and usually type out global ideas in pseudocode, just

to “get it out there.” Then, they’ll call in help from others and

gradually reshape it into a workable solution.

Don’t fake it. Your end users will immediately notice it: “You

must assume that we, your readers, are bright and attentive,

even if we have lost the tiniest bit of ground in the last few

years. So we are going to catch you if you try to fake it.”

Lamott mentions that your readers are bright and attentive.

For programming, this isn’t limited to end users! Your current

and future colleagues, who will probably read your code

many more times than you did, should also not be fooled

with needless fluff. Creative programmers take the end user

into account, whether the software is a video game, an

administrative web application, or a mobile parking app. If

possible, meet with them, get to know them and their world,

and carefully analyze their business needs. Be critical of half-

baked customer profiles and business logic. Only then write

code tailored to their needs.

Ask people around you for help. Lamott gives the example of

a passionate gardener who could help you include an

accurate description of a garden in your writing. Build on the

expertise of others to “make the words come alive.” If you

have to implement a music-streaming web server, it might

pay off to talk to musicians to learn about pitches and typical

waveforms to better understand how to encode data

efficiently.

Write step by step or “bird by bird.” Sometimes, it’s okay to

not know where you’re heading. Stubbornly focusing on the

destination means closing your eyes to everything that

passes along the way. Lamott quotes novelist and professor

E. L. Doctorow: “Writing a novel is like driving a car at night.

You can see only as far as your headlights, but you can make

the whole trip that way.” Just seeing a little bit ahead of you

is enough.

Stop trying to perfect things. According to Lamott,

“Perfectionism is the voice of the oppressor, the enemy of

the people. It will keep you cramped and insane your whole

life, and it is the main obstacle between you and a shitty first

draft.” She continues:

I think perfectionism is based on the obsessive belief that if you run

carefully enough, hitting each stepping-stone just right, you won’t have to

die. The truth is that you will die anyway and that a lot of people who aren’t

even looking at their feet are going to do a whole lot better than you, and

have a lot more fun while they’re doing it.

EXERCISE Imagine a new colleague asks you for code-

writing advice. What do you say? Do you point the colleague

to the team’s coding style guideline? Do you sit down and

tell a personal success story? Do you hand over your copy of

Robert C. Martin’s Clean Code? Or do you postpone the

answer and instead propose to pair up this week?

Sometimes, our dogmatic self will keep on reworking and

refactoring a piece of code, well beyond the point of futility.

Be mindful of your pragmatic self: don’t let it cut corners too

rashly. But also be mindful of your dogmatic self: don’t let

perfectionism take over. Remember the mantra of critical

thinking in chapter 5: creativity is the means, not the goal.

8.4 A selection: The

programmer’s toolbox

Creativity research has produced more than 100 different

creative, problem-solving techniques: for analyzing the

environment, recognizing and identifying problems, making

assumptions, generating alternatives, and so forth. The

question then becomes whether any of those techniques are

applicable to the field of programming.

Software developers know more creative techniques than

they like to admit. Every two weeks, I’ve seen these

consistently applied in retrospectives, based on the excellent

Agile Retrospectives by Esther Derby and Diana Larsen16 or

websites like https://funretrospectives.com. Yet I wonder,

why don’t we reach for these techniques when outside of the

meeting room? What’s wrong with variations of invigorating

retrospectives—for example, Triple Nickels—during

development? During the Triple Nickel activity, small groups

first brainstorm and write down ideas on paper individually.

After five minutes, each person passes their paper to the

person on their right, who gets another five minutes to build

on that idea, until the paper returns to the original writer.

This is a great way to quickly discover the limitations of your

idea and to strengthen it, without running the risk of

immediately dismissing less conventional ideas. These small

but fun exercises can be organized ad hoc when hitting a

wall during coding sessions. Obstacles should be overcome

during a sprint, not in between them.

https://funretrospectives.com/

In the following sections, we’ll let experts highlight an

assortment of creative techniques that are underappreciated

or commonly misunderstood. Let’s remove the rust from

those programmer’s tools and make them shine. I promise

no vinegar soaking is required.

8.4.1 Anna Bobkowska’s toolbox

In 2019, software engineering researcher Anna E. Bobkowska

explored the potential of creative techniques in software

engineering using a specific training-application-feedback

cycle.17 Participants left the experiment with an increased

appreciation of creativity techniques, claiming that a mix of

these techniques is likely to be useful in practice. Bobkowska

zoomed in on the following seven techniques:

Asking naive questions to discover hidden

assumptions and implicit knowledge (“Imagine

we’d only need one input form for this webpage!”).

Wondering “What if . . .” or searching for hidden

sequences of consequences (“What if I pressed the

submit button twenty times?”).

Completing the sentence “I could be more creative

if . . . ” to understand personal obstacles (“I could

be more creative if thought walks weren’t frowned

upon.”).

Using the Lunette technique: look at the problem

at different levels of abstraction (switching

between generalization and specialization;

zooming in on code and zooming back out by

applying a bird’s-eye perspective).

Using reverse brainstorming: first express criticism

and then motivate to improve (“What don’t you

like about the database structure?”).

Using what Bobkowska calls the Chinese dictionary,

as derived from the presentation of old animal

taxonomies, a technique to create atypical

classifications (create unusual taxonomies of

concerns related to the project).

Using the “Let’s invite them” technique: use

creativity patterns of (imaginary) experts in

creativity (“Suppose we invite Linus Torvalds; what

would he have to say on this?”).

Some of these techniques will probably be very familiar to

you. In the interviews my colleagues and I conducted on

exploring creativity techniques for programmers, letting the

imagination run wild was frequently mentioned as a great

technique for uncovering unknown constraints and

assumptions:

Person 1: . . . or also a little bit of out-of-the-box thinking; one thing that we

applied in a retro recently was a technique that asks in what different ways

can we break the system, to find all different ways things can go wrong,

from another angle so to speak.

Person 2: Yeah, I do that a lot implicitly when modeling. Like, if this is a

solution, then what happens when this, and what happens—does it break,

and if it breaks, is that okay? If not, on to the next solution that does handle

this.

Peeling the onion by repeatedly asking “Why?” was also a

common theme—either in dialogue or as a monologue.

Thinking out loud, what scientists call self-directed speech, is

proven to help the brain perform better during visual

processing.18 By explaining a problem to someone—or

something—else, whether it’s debugging with the help of a

rubber duck,19 a convenient piece of art on the wall (as in

Art-Based Learning), your cat, or a colleague, the solution

often magically presents itself. Explaining, or even teaching,

forces us to slow down and approach the problem from

different directions, which is usually followed by a deeper

understanding.

While most techniques are helpful tools to identify and clear

implementation-related roadblocks, some, like reverse

brainstorming and creating atypical classifications, can be

used earlier, during ideation. Bobkowska groups techniques

into four themes: interpersonal skills (create team spirit,

remove personal obstacles), creativity skills (associative

thinking and ideation), motivational skills (which help to

discover negative aspects), and overcoming obstacles.

Brainstorming: The bad parts

What is more stereotypical than a brainstorming session recommended by

creativity consultants? It is the most frequently mentioned method, in both

our studies and the ones I encountered while digging through the literature.

Still, a few things have to be cleared up here. A multitude of studies has

demonstrated that brainstorming, as we know it, does not work. First,

people produce twice as many ideas alone as they do in a meeting room in

front of a whiteboard. Second, connecting the dots—the one “big” idea

we’re all waiting for—is also better practiced in solitude. Third, as Eric

Weiner noted, many brainstorming sessions come with a hidden agenda

that puts pressure on the kettle, suppressing truly great ideas. Fourth,

haphazardly blurting out ideas influences the thinking process of others. We

all know that irritating colleague, shaking his head while interrupting us by

saying, “That’s never gonna work.” Fifth, as mentioned in chapter 3, the

genius cluster can work only if the minds are sufficiently heterogeneous.

Does that mean we have to give up on brainstorming? Respectful collective

gatherings are still great ways to gather ideas—in the coffeehouse, not the

corporate meeting room.

8.4.2 The Pragmatic Programmer’s

toolbox

The Pragmatic Programmer bible20 recommends learning a

new programming language each year. Each new language

comes with its own guidelines, style, devoted followers, and

a unique approach to problem solving. The more languages

you have under your belt, the more likely it is that you’ll be

able to creatively combine and convert practices from one

language into another, although, as explained in chapter 4,

we need to stay mindful of cross-language clashes.

Bruce Tate didn’t like the recommendation of Andy Hunt and

Dave Thomas. Just one language each year? Why not seven

in seven weeks? In Seven Languages in Seven Weeks, Tate

provides practical tips on how to quickly learn any new

programming language21 based on the journey of learning

seven languages in two months. Its success led to the

inevitable follow-up four years later, Seven More Languages

in Seven Weeks. Tate’s books cover the technicalities of a

language and give the reader a taste of how other

programmers across broadly different communities solve

complex problems.

Thinking in terms of multiple languages is an effective way

to approach difficult problems in code. Imagine you’re stuck

on a problem and you have no idea how to move forward

using the current technology. But what if you could write in

JavaScript? Or Elixir? Or Kotlin? Would it be easily solved if

you could rely on C’s pointers? Or on Ruby’s reflective

extensibility? What if you could express it in a functional

language? Would that make things easier or harder? How

about pipelining filter() and map()? What about nullable

types from other languages? Should the business logic be

expressed in Prolog? Can you benefit from the advantages of

a scripting language, such as Squirrel? How about a custom

domain-specific language to express the logic?

If it can’t be done in the current language, try out another

one. And another one. Just one more. Is this your seventh

yet? Perhaps back-porting the idea is good enough. Perhaps

your virtual machine is able to interpret the language: Ruby

and Python run on the JVM and CLR, Clojure is a Lisp dialect

on the JVM, and pretty much anything runs JS code

nowadays.

Many programmers are stuck in their daily routine and way

of thinking. That tunnel vision actively prevents you from

discovering other, sometimes better, possibilities.

Interestingly, none of our focus group participants mentioned

switching languages or thinking about patterns in other

languages as a creative activity. Instead, someone in our

interviews posed struggling with syntax as distinctively not

creative:

What’s not creative, if you’re like in this mode of syntax errors, that’s the

extreme, you’ve typed out everything and then you have to let it run

(laughter) and you have to fix a misplaced comma three or four times,

depending on your language, that’s going to take longer. And the

mechanical errors in your unit tests. And what I also wrote down is new

technology, if you’re reading documentation of something new, how it

works, how does that protocol work . . .

The last remark hints at the baseline of technical knowledge

needed to be creative as explained in the first chapter.

In addition to the recommendation to learn a new language

each year, The Pragmatic Programmer introduced the

concept of martial arts “katas” to the world of software

development. A code kata exercise is usually a small snippet

of code that is repeatedly rewritten to build muscle memory

and practice the craft, just like a martial arts choreography.

The most popular code kata exercise I know of is probably

the bowling game. After everyone reacquaints themselves

with the scoring rules of bowling, coders try to implement it

using a test-first approach. Where do you start? Create a

Game class? Or a Player, or a ScoreCalulator? Should

you use inheritance to reuse scoring logic for spares and

strikes? Such a seemingly simple assignment can quickly get

pretty messy in code. At that point, it’s time to toss

everything and retry.

The katas I’ve been involved in always comprised small

isolated exercises that had nothing to do with the codebase

we were working on. Online code kata training platforms,

such as Codewars, focus mostly on improving knowledge of

syntax and algorithms. Instead of fixating on the bowling

rules, the concept of a code kata can also be an effective

tool to quickly ideate possible solutions in your production

codebase.

EXERCISE Pair up and try to implement a feature or a small

subset of it. Now let your pair revert the changes—that

hurts, doesn’t it? When working alone, revert it yourself and

pretend it was code written by a colleague. Can you do

better than that person? But not everything is lost, as

possibilities were explored and options were considered. New

routines of thinking were examined. The next iteration is

sure to be superior.

8.4.3 Emily Morehouse’s toolbox

In 2015, Emily Morehouse attended her first PyCon

conference, in Montreal, Canada. There, Guido van Rossum—

the creator of the Python language—announced the search

for female Python Core Developers, as none were enlisted at

that time. It took another year for Emily to jump at the

opportunity, only she had no idea where to start or what a

Core Developer actually does. Luckily, Guido was there to

mentor her.22

As figure 8.6 illustrates, the CPython source code is

enormous: it contains more than 550,000 lines of C code and

629,000 lines of Python code. Where does one start

contributing to such a huge and long-running project? Fixing

small bugs reported on GitHub would be pointless: the easy

ones are, of course, already tackled. Instead, with the

guidance of a mentor, Emily started studying the source

code. This allowed her to understand how other Core

Developers work, which patterns are repeatedly applied, how

decisions are made, and perhaps even where improvements

are in order.

Figure 8.6 A historical plot of CPython’s codebase

evolution broken down in cohorts by year. This gives

an impression of how the code evolved and grew over

more than 28 years. Based on data collected by Pablo

Galindo Salgado and generated by Eric

Bernhardsson’s git-of-theseus tool (available at

GitHub).

By studying the source code of others, we can extract

valuable lessons to use in our own work, just like Austin

Kleon’s “Steal Like an Artist” manifesto. Ask any novelist for

advice, and the first thing they will say is “Read more.” To

become a good writer, first read.

It baffles me how little we as programmers deliberately read

and learn from others’ code, in particular outside of our

comfortable daily project codebase. Our past reading groups

covered books about programming, but never free and open

source software (FOSS) code. To become a good

programmer, first read. And perhaps write as well, as famous

hacker and open source software advocate Eric S. Raymond

suggests in his article “How to Become a Hacker”23—text, not

code, that is (see chapter 1 for a workflow example on

writing).

Social coding platforms such as GitHub and GitLab help

tremendously in reading and understanding FOSS code.

Many of these big projects are actively looking for

contributors. Although it can be daunting to try to wade

through the never-ending stream of problems and lines of

code, contributing to FOSS is a great way to sharpen your

own creative programming toolkit.

If you want to take contributing seriously, like Emily

Morehouse’s ambition to become a Python Core Developer,

having a mentor to check in on how you’re doing is not a

luxury. Emily admitted that, without guidance, she would

have bailed out. The mentor can re-create much-needed

context that otherwise remains invisible. Some code parts

become relics nobody dares to touch anymore. Why were

certain weird C functions grouped in this file? Why didn’t

they use x or y instead? Without proper documentation, that

collective knowledge rapidly becomes lost in time.

In addition to reading code and having a mentor, Morehouse

also emphasized the importance of gaining the trust of the

development community. This is a very time-consuming

process. Building empathy is conveniently never mentioned

in any CONTRIBUTING.md guide. After successfully blending

in, it is your job to support new contributors and deal with

anonymous annoying people over the internet.

It turns out that a Python Core Developer, like any other

developer, does much more than simply write code.

Summary

When approaching a complex problem, remember

to switch tools now and then. Do not stay zoomed

in—try to zoom out to look at the problem from

another perspective.

Take good care of the tools in your creative

toolbox. Critically evaluate and resharpen them

now and then. Perhaps it’s time to throw out the

blunt ones?

Appreciating masterpieces outside of tech might

help spark an idea and inspire you to mirror its

concept in code. Let the masterpieces do the

talking; when it comes to creativity, do not listen

only to yourself.

Avoid degrading, skimming, and ripping off ideas.

Instead, honor, study, and remix ideas. Steal like

an artist, not like a con man.

Scratch your own itch. Exploring side roads are

effective ways to improve your creative problem

solving and potentially create new products.

When writing code, remember that there is a

backspace attached to your keyboard. Sometimes,

subtractions create more clarity than additions.

Build downtime into your career and take time off

now and then to recharge your creative-thinking

batteries. Exploring new techniques and meeting

new people beyond your day job are guaranteed to

inspire and enhance your work.

Remember that your current mood and emotions

also positively and negatively influence your

cognitive abilities—and, thus, your capacity for

creative problem solving. Not every day needs to

be a creative day.

When it comes to code, style and structure are just

as important as contents and functional

correctness. Exaggerating creative programming

might result in reduced maintainability.

If the beginning proves to be difficult, start at the

middle, or perhaps even at the end. If syntax

proves to be difficult, just write, and ignore syntax

errors. Getting down the basics of the idea first will

make implementing it in your target programming

language easier.

As a programmer, one of the most important tools

in your creative toolbox is probably your code

editor. Get to know it well. Spend time fiddling with

shortcuts and various settings. This will pay off

greatly once you’ve mastered the basics.

When faced with a roadblock, it’s okay to

temporarily just give up and do something else.

Perhaps an hour or a day later, the solution will

present itself.

Put your personal history with certain

programming languages to good use. If you know

Ruby’s message-passing syntax well, you’ll have

little trouble with Elixir’s methods. As an extension

of this, flex your linguistic muscles and take on the

challenge of learning two new languages by next

month!

Try out some of your favorite agile retrospective

brainstorming tools outside of the classic meeting

room.

Discuss coding problems with your parents, your

children, your friends who aren’t programmers,

and your clients. Their nontechnical view might

point to a simple solution that you, as the expert,

overlooked.

When organizing code katas, see whether you can

isolate pieces of code from your current project

source repository. Perhaps those pieces are better

candidates to train you and your fellow colleagues

compared with traditionally more isolated

examples.

If you don’t have one yet, start looking for a

mentor who’ll help you forge your own creative

tools.

1.
Robert Golla. Conversations with Vladimir Nabokov. University Press of

Mississippi, 2017.

2.
Rearranging also frequently happened in a box in the back of the car en route

to his beloved butterfly-hunting locations.

3.
See http://agilemanifesto.org/.

4.
Ken Schwaber. Agile project management with Scrum. Microsoft Press, 2004.

5.
See https://scrumguides.org/.

6.
Jeroen H. R. Lutters. In de schaduw van het kunstwerk: Art-Based Learning in de

praktijk. PhD thesis, Faculty of Humanities, Amsterdam School for Cultural

Analysis, 2012.

7.
Alain de Botton and John Armstrong. Art as therapy. Phaidon Press, 2013.

8.
Austin Kleon. Steal like an artist: 10 things nobody told you about being

creative. Workman, 2012.

9.
See https://sfconservancy.org/GiveUpGitHub/.

10.
See Stagmeister’s TED talk, “The Power of Time Off,” at

https://www.ted.com/talks/stefan_stagmeister_the_ power_of_time_off.

11.
Daniel Graziotin, Xiaofeng Wang, and Pekka Abrahamsson. Happy software

developers solve problems better: Psychological measurements in empirical

software engineering. PeerJ, 2014.

12.
Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abrahamsson.

What happens when software developers are (un)happy. Journal of Systems and

Software, 2018.

13.
Jan de Jonge, Ellen Spoor, Sabine Sonnentag, Christian Dormann, and Marieke

van den Tooren. “Take a break?!” Off-job recovery, job demands, and job

http://agilemanifesto.org/
https://scrumguides.org/
https://sfconservancy.org/GiveUpGitHub/
https://www.ted.com/talks/stefan_stagmeister_the_power_of_time_off

resources as predictors of health, active learning, and creativity. European

Journal of Work and Organizational Psychology, 2012.

14.
Robert Golla, Conversations with Vladimir Nabokov. University Press of

Mississippi, 2017.

15.
Anne Lamott. Bird by bird: Some instructions on writing and life. Anchor Books,

1995.

16.
Esther Derby and Diana Larsen. Agile retrospectives: Making good teams

great. Pragmatic Bookshelf, 2006.

17.
Anna E Bobkowska. Exploration of creativity techniques in software

engineering in training-application-feedback cycle. In Workshop on Enterprise

and Organizational Modeling and Simulation, Springer, 2019.

18.
Gary Lupyan and Daniel Swingley. Self-directed speech affects visual search

performance. Quarterly Journal of Experimental Psychology, 2012.

19.
In software engineering, rubber duck debugging is a method of debugging

code by articulating a problem in spoken or written natural language. It was

first introduced in The Pragmatic Programmer. For more information, see

https://rubberduckdebugging.com/.

20.
Andy Hunt and Dave Thomas. The Pragmatic Programmer: From journeyman to

master. Addison-Wesley Professional, 1999.

21.
Bruce A. Tate. Seven languages in seven weeks: A pragmatic guide to learning

programming languages. Pragmatic Bookshelf, 2010.

22.
Watch Emily Morehouse’s keynote talk for PyCon Colombia 2020 on how she

became a Core Developer, at https://youtu.be/TSphDJdco8M.

23.
See http://www.catb.org/esr/faqs/hacker-howto.xhtml.

https://rubberduckdebugging.com/
https://youtu.be/TSphDJdco8M
http://www.catb.org/esr/faqs/hacker-howto.xhtml

9 Final thoughts on creativity

This chapter covers

Creativity as an attainable skill, not a preset one

Different perceptions of creativity based on experience

When not to be creative

Further reading suggestions

We started out this creative adventure with the premise of

awakening your inner homo faber. By investing in technical

knowledge, communication, constraints, critical thinking,

curiosity, a creative state of mind, and creative techniques, I

guarantee that you will gradually progress toward becoming

a Creative Programmer. Yet one of the hardest quests is yet

to come: putting theory into practice. That is something

you’ll have to undertake by yourself. Roadblocks will appear

to test your curiosity and persistence. I hope I’ve inspired

you to press on and continue down the path.

And with that, I’d like to thank you for staying with me on

this mission of exploration. It has been a wild ride, but as

they say, “The best is yet to come.” My job as a writer

offering insights into creative problem solving in software

engineering is now done, while your job as a graduate

Creative Programmer is only beginning.

Good luck on the journey ahead! Remember that if the going

gets tough, this book will be there to act as a guide. Flip

through the chapters now and then to remind yourself that

creativity isn’t rocket science: everyone can be creative.

9.1 Remember, everyone can be

creative

Charles Darwin suffered from severe anxiety and had to lie in

bed for hours almost every day, yet he still made a huge

contribution to the world. Many Nobel Prize winners

interviewed by cognitive psychologist Mihaly

Csikszentmihalyi were humble when asked about their

creative process. Some even admitted that anyone could

have done it; they just happened to be at the right place at

the right time.

These stories are very encouraging: anyone can become a

creative genius—it’s not (only) attributed to genes, IQ, or

aptitude. Again, like Albert Einstein said, “It’s not that I’m so

smart; it’s just that I stay with problems longer.” Most

geniuses weren’t especially intelligent or sociable. They were

just like you and me: committed, hard-working, curious.

Psychologist Carol Dweck proved that a fixed mindset can be

turned into a growth mindset. The same is true for creativity,

as we explored in chapter 6:

If you show students—or, in our case, programmers—that creativity is a skill

that can be learned and thus is not fixed, their creativity blossoms.

If there is one thing I want you to take away from this book,

it is a malleable view of creativity as a skill that can be

learned and mastered, just like programming in Elixir or

Scala, just like fluency in Unix command-line usage, and just

like knowledge of enterprise software design patterns.

Everyone can be creative. Creativity isn’t something you are

born with or need to have special talent for. Creativity isn’t

magic exclusively reserved for the Rembrandts, Kandinskys,

van Goghs, Madonnas, Michael Jacksons, Linus Torvaldses, or

Steve Jobses of the world.

Instead, creativity is a relatively modern sociocultural

verdict. The potential to be creative isn’t limited to just one

major contributor, such as your lateral thinking ability. It

indeed isn’t complicated rocket science, but it is complex:

creativity concepts are highly interconnected and based on

relationships—in other words, it is systemic.

If creativity is, just like programming, an attainable skill, then

it, too, can be trained and grown, like a muscle. There is

plenty of scientific evidence, which I have touched on

throughout this book, that supports this statement. That’s

exactly like a reinforcement learning loop: by being a more

creative programmer, you’re learning to become more

creative!

Creativity “best practices” can be

dangerous

I’m always a bit reluctant to hand out advice to others to do this or that to

increase their creativity: that is not how it works. Consider the mindfulness

example from chapter 7. Simply exercising mindfulness will have little

effect, yet it is being massively prescribed as a cure for work-related

problems by managers who think only in the short term and are too focused

on the data.

It is very dangerous to reduce creativity—or mindfulness, for that matter—

to a set of best practices, even though each chapter ends with a bullet-point

summary. A book has to be structured in a certain kind of way. I know that

programmers are pragmatic folk who can be impatient and love to skim

over walls of text to extract the essence, so please do not make that

mistake here. Remember: systems-thinking, not parts-thinking!

9.2 On the evolving perspective

of creativity

As decades fly by and we grow older, it becomes more

challenging to be open to new perspectives, while at the

same time, our increased wisdom makes it easier to think

critically. In his book, Successful Aging: A Neuroscientist

Explores the Power and Potential of Our Lives, researcher

Daniel J. Levitin explains that our personality can (and will)

change multiple times throughout our lifetime. If you’ve ever

taken the popular Big Five personality test, which maps your

personality across five domains (openness to experience,

conscientiousness, extraversion, agreeableness, and

neuroticism), don’t be surprised if the results radically differ

as you grow older and retake the test. You are not cursed to

spend the rest of your days being too disagreeable or too

extroverted: these traits are nothing more than snapshots in

time.

The concept of age-related personalities can have big

ramifications when it comes to creativity. Less openness to

experience means it becomes more of a challenge to stay

curious to keep up with the latest and greatest, which, as I

hope you know by now, is a major part of creativity (chapter

6). At the same time, Daniel Levitin also mentions that young

people are less inclined to work together—another important

aspect of creativity (chapter 3).

In another study of the interplay between job resources, age,

and what psychologists call idea creativity, or the ideation

part of creativity, researchers have found a positive

relationship between age and idea creativity, provided the

right corporate support for creativity is given.1 In other

words, as we grow older, more experience from previous

projects greatly boosts our capability for ideation, resulting

in more creative breakthroughs.

9.2.1 From technical individualism to

a creative team player

The research of my colleagues and myself indeed confirms

that graduate students and junior software developers

interpret creativity differently from more seasoned

programmers: they tend to focus on the technical challenge

and the creative freedom of bootstrapping a greenfield

project and emphasize the creative freedom one experiences

when working alone.

Of course, most graduate students and junior devs simply

lack experience. They’ve never properly worked in

collaboration with others on a bigger coding project, except

for the neatly bounded assignments that also happen to be

easy to assess. Adam Barr, a former technology consultant

at Microsoft, partially blames university computer science

curricula. In his recent talk, “Lessons From the Fifty-Year

Quest to Turn Programmers Into Software Engineers,”2 he

explains that individual and small exercises in higher

education focus too much on the single programmer, while

industry requires an engineer who knows how to handle

living code (and work together). See figure 9.1.

Figure 9.1 The academia-industry gap as illustrated

by Adam Barr. University focuses on small

programming problems, mostly at the individual level,

while industry expects collaboration on big projects.

I can’t disagree with Adam. My colleagues and I have noticed

the same thing when studying the creative behavior of

students. For example, when we ask graduate students in CS

when they’re creative, the first thing they answer is usually

very technical:

When I have this particular problem where there is not really a right

solution yet. For sorting algorithms, there’s a lot already known, and it’s

easily found [on the internet], what the right thing is, but for other stuff

where there isn’t information available, you have to come up with

something yourself.

Answers to the question “When are you creative while

coding?” were very consistent. At the same time, when we

asked programmers with at least seven years of experience

exactly the same question, their answer is usually along the

lines of the following:

When it’s time to be creative, when I can or have to think along [with

others] about the end-to-end solution and we discuss alternative roads

instead of staying on the beaten track.

In those answers, collaboration (thinking along with others)

and critical thinking (exploring and evaluating alternative

paths) are usually placed front and center while the pure

technical challenge is put in the backseat—but still

considered important and relevant.

We found these differences to be very striking. Our survey

results seem to confirm the suggestion made by

neuroscientists that major personality traits—which can be

correlated with our domains of creativity—differ from age

group to age group.

These findings can help when working in teams with diverse

age groups. Perhaps we shouldn’t expect the same level of

creativity from a graduate student compared with a

seasoned developer: after all, they can’t yet draw from the

same vast pool of previously stored knowledge to tie

together information into a novel idea. Still, that doesn’t

mean that we as educators can’t put more emphasis on the

parts of creative problem solving that a student is less likely

to explore.

Creativity can help battle cognitive

decline

Several people we interviewed hinted at the idea that general psychic and

physical well-being is a prerequisite for creative success. They were right:

consecutive nights of bad sleep will interfere with our focused and diffuse

thinking modes, potentially blocking our ability to generate and recognize

insights. It gets worse: as we age, parts of our brain (e.g., the prefrontal

cortex) literally shrink, and we more easily experience trouble with

cognitively demanding tasks such as programming.

Fortunately, if you’ve kept yourself busy during your lifetime with creative

problem solving and brainstorming, you’ve constantly trained and pushed

your brain in many interesting ways. Neuroscientists like Daniel Levitin have

proven that “keeping the brain busy in interesting ways” triggers the

neuroplasticity of our brain, thereby keeping it young, and helps keep

cognitive disorders like dementia at bay. Keep on challenging yourself!

9.2.2 Revisiting the CPPST

Since you’ve reached the conclusion of the book, now is

probably a good time to revisit the Creative Programming

Problem Solving Test (CPPST) introduced in chapter 1.

Perhaps the newly yielded insights on the topic at hand will

net a higher average score for each domain. Remember not

to reduce the test to a numbers comparison game with

others or between different projects.

There’s something I intentionally left out about the CPPST

when I first presented it at the beginning of our adventure.

The nearly 300 students who took the test comprised

roughly an equal amount of first-year and last-year computer

science students. When inspecting the statistical analyses of

both groups separately, we noticed slightly different

correlations.

For example, overall, last-year students scored lower on

communication-related questions. Surprisingly, they agreed

with the statement “I regularly ask for feedback from fellow

students and peers” much less often than first-year students

did. Perhaps graduates feel too confident and think they

don’t need feedback. Perhaps the individualism Adam Barr

talked about was, by the time they were about to graduate,

fully baked into their brains. What is more likely, however, is

that feedback is perceived not as something that can

enhance your own creative ideas but as something

obligatory related to grading. First-year students are more

used to asking for feedback (both from peers and

instructors) because they simply know less.

The analysis also revealed that the seven domains of

creativity we explored can be regrouped into three

overarching constructs: ability, mindset, and interaction.

Note that this categorization is relevant only to students,

since most of the questions that turned out to be relevant

again focused on (technical) ability. In other words, students’

incorrect perception of creative problem solving skewed the

results in favor of the “individual programmer” problem. Is

this yet more evidence of age-related creative differences?

EXERCISE Think back and reflect on your professional

programming career. When it comes to the seven main

themes of creativity introduced in this book, did your

preference or proficiency change as your career evolved? Are

you sure it wasn’t the project but a subtle change in your

own personality that caused this?

9.3 When not to be creative

In The Creative Habit: Learn It and Use It For Life, dancer and

choreographer Twyla Tharp shares practical tips to stay on

top of your creative game and grow a lifelong creative habit.

While that sounds exactly like what we’re trying to do for

programming, Tharp seems to identify creativity with almost

divine dedication. Sentences such as “Your work is your life”

and “Don’t expect anything less than perfection” make me

want to run away from creativity instead of embrace it!3

I do admire people like Tharp and Jiro Ono, a famous 97-year-

old Japanese chef who dedicates his life to one humble thing:

sushi. In a search for the perfect sushi, Jiro Ono still gets up

at 5:00 a.m. and still goes to the fish market himself to

select only the best of the best pieces. Research confirms

that giving up work (the thing we call retirement) increases

the chances of social isolation and cognitive—and thus

creative—decline, so it is certainly admirable to see these

people continuing their dedication to a craft.

However, the way creativity is portrayed in The Creative

Habit makes it virtually impossible to achieve without putting

in the required 10,000 hours or more. I’m not a big fan of

this view, although I recognize that deliberate practice is

certainly an efficient way to evolve from journeyman to

master. Technical knowledge brews creativity—it’s even a

requirement to be creative (chapter 2)—and, of course,

practice makes perfect, but demanding nothing less than

perfection cuts us off from 90% of that which we’d like to be

more of: creative.

The problem with putting creative perfection on a pedestal is

quite worrisome. First, perfectionism easily leads to burnout

and depression, two societal problems that already receive

too little attention and that are mostly approached from an

economic perspective.

Second, the harsh and pretentious interpretation of “Big-C”

creativity—such as huge scientific breakthroughs or the

invention of a new AI algorithm, which most of us will

probably never achieve—as the only worthwhile type of

creativity tends to dismiss smaller victories that are easily

reachable for everyone.

Third, the holiness of a craft leads to ignoring the reason why

you’re doing what you’re doing. Programmers who see

coding as a craft tend to overachieve on the clean code

principles and underachieve on delivering a product that the

customer wants.

As mentioned in chapter 5, creativity is the means, not the

end. A creative mind knows when not to be creative.

Creativity can be very demanding, or, put another way, you

and your peers might demand too much from your own

creativity. Be wary of your mental oscillation: staying in

overdrive for too long can impart lasting damage.

Sometimes, it’s a requirement (and a big relief) not to be a

Creative Programmer and just execute a few less demanding

tasks while also recharging your batteries.

9.4 Further reading

What if your thirst for creative knowledge isn’t yet

quenched? No worries; there’s plenty of interesting material

left to delve into. This section provides a selection of

recommended readings grouped by each of the seven

creativity themes. Some of these books have already been

touched on throughout the previous chapters but are more

than worth reading on their own. I’ve intentionally left out

academic material, which can be a bit hard to get into (and

get your hands on, thanks to ridiculous paywalls):

Technical knowledge

Pragmatic Thinking & Learning, by Andy Hunt

—A pragmatic approach to learning and

behavioral theory, sprinkled with a few

cognitive and neuroscience toppings. Simply a

required read that fits seamlessly with The

Creative Programmer.

How to Take Smart Notes: One Simple

Technique to Boost Writing, Learning and

Thinking—for Students, Academics and

Nonfiction Book Writers, by Sönke Ahrens—The

reference booklet to getting to know Niklas

Luhmann’s Zettelkasten note-taking

methodology as introduced in chapter 2.

Communication

The Geography of Genius, by Eric Weiner—

Travel around the world and discover the social

dimension of creativity with the help of

history’s greatest creative thinkers and

Weiner’s witty remarks that connect the

findings back to our modern age.

Where Good Ideas Come From: The Natural

History of Innovation, by Steven Johnson—

Learn how cities originated and evolved as

ideas and creativity flowed between them, just

like the liquid networks discussed in chapter 3.

Constraints

Creativity: Flow and the Psychology of

Discovery and Invention, by Mihaly

Csikszentmihalyi—A seminal work full of

interviews with creative geniuses of our age,

reassuring us that, with the right amount of

dedication and curiosity, everyone can be

creative. This book also neatly summarizes a

lot of academic research on creativity.

Creativity From Constraints: The Psychology of

Breakthrough, by Patricia D. Stokes—Draw

along with Patricia to trace the steps of early

cubists to find out how artists use self-imposed

constraints to create superior artworks.

Critical thinking

Thinking, Fast and Slow, by Daniel Kahneman—

A groundbreaking tour of the mind that

explains the two systems that drive the way

we think and live: a fast, intuitive, and

emotional system and a slow, deliberate, and

logical system. Daniel also explores countless

critical thinking fallacies.

The Programmer’s Brain: What Every

Programmer Needs to Know About Cognition,

by Felienne Hermans—Aimed at programmers,

this book explores how our brain works and

how to hack it to improve our thinking when it

comes to coding. If Thinking, Fast and Slow

explains the academic theory, then The

Programmer’s Brain highlights the engineering

practice.

Curiosity

Mindset: Changing the Way You Think to Fulfill

Your Potential, by Carol S. Dweck—This is one

of the best-selling psychology research books

ever, and with good reason. If you are looking

for more information about the psychology of

the growth mindset from chapter 6, this is the

book for you.

How to Be Everything: A Guide for Those Who

(Still) Don’t Know What They Want to Be When

They Grow Up, by Emilie Wapnick—Required

reading if you like the idea of generalism but

don’t know how to apply it to your coding job.

Creative state of mind

Deep Work: Rules for Focused Success in a

Distracted World, by Cal Newport—A critical

view of our modern interruption-invaded world

and a possible solution to it: close the door—

but not always—mute the notifications—but

not always—and get more deep work done.

Flow: The Psychology of Optimal Experience,

by Mihalyi Csikszentmihalyi—Another classic

work by Csikszentmihalyi that contains tales of

flow in sport, music, art, writing, education,

and more. While most examples are outside of

the world of engineering, they can be

effortlessly translated into our coding

environment.

Creative techniques

Steal Like an Artist: 10 Things Nobody Told You

About Being Creative, by Austin Kleon—A witty,

practical, visual, short, and, above all,

humorous approach to giving creative advice

that fits remarkably well for programmers.

Seven Languages in Seven Weeks: A Pragmatic

Guide to Learning Programming Languages, by

Bruce A. Tate—If you’re familiar with the book

The Pragmatic Programmer: From Journeyman

to Master, Seven Languages in Seven Weeks

will shift your programming language

knowledge into higher gears and highlight

techniques to master future and ever-shifting

trends.

1.
Carmen Binnewies, Sandra Ohly, and Cornelia Niessen. Age and creativity at

work: The interplay between job resources, age and idea creativity. Journal of

Managerial Psychology, 2008.

2.
See ACM Tech Talks at https://learning.acm.org/techtalks.

3.
Twyla Tharp. The creative habit: Learn it and use it for life. Reprint edition.

Simon & Schuster, 2006.

https://learning.acm.org/techtalks

index

A

abstraction, facilitating 86 – 87

academia-industry gap 199 – 201

accidental discovery 111

acting on knowledge 27 – 34

digital gardening 32 – 33

memex machine 28

permanent vs. temporary notes 34

taking action on notes 29 – 32

adoption curve 57 – 58

agile retrospective techniques 176 – 177

Agile Retrospectives (Derby and Larsen) 189

Ahrens, Sönke 26, 32, 39

Akademie Olympia 49

Alexander the Great 41, 53

Allen, David 21, 30

Allen, Paul 130

always-on messaging 75

Amabile, Teresa 6, 125, 131, 142

analytic problem-solving. See focused thinking

Antonine Plague 174 – 175

Apiola, Mikko-Ville 127 – 128

Appeal 56

Archimedes 53, 140, 147 – 148, 154, 163

Archimedes or Portrait of a Scholar (Fetti) 148

Argonaut Games 120 – 122, 170

Aristotle 24, 41 – 42, 108

Armstrong, John 180

Art as Therapy (de Botton and Armstrong) 180

artist’s toolbox 178 – 185

Art-Based Learning 178 – 181

Steal Like an Artist 181 – 182

time off 183 – 185

Artist’s Way, The (Cameron) 115 – 116

artistic dates 116

Aurelius, Marcus 24, 174 – 175, 177

Avery, Christopher 62, 111

B

bad guy challenge 144 – 145

Bagley, Jim 82

Bardi, Giovanni de’ 42

Barr, Adam 48, 68, 200, 202

Basecamp 78, 133

Bateson, Gregory 45, 138

Bateson, Nora 45 – 46, 170

Baumeister, Roy F. 130, 154

Beagle 120, 128

Bell Labs 168

Benenson, Fred 135

Big Five model 141, 199

Big Magic 37

Big-C 7, 203

Biskjaer, Michael Mose 74 – 75, 85

Black Cloud community smell 60

Black Stories (card game) 90 – 91

Bobkowska, Anna 190 – 191

brainstorming 191

Braque, Georges 56, 65

Breadwinner 135

Breslav, Andrey 17 – 19

brownfield projects

creativity and 67 – 68

learning software development 68

Buck, Jamis 145

Bühler, Karl 100

Bullshit Jobs (Graeber) 157

Bush, Vannevar 28

business parks and campuses 54 – 55

C

caffeine 166 – 167

Cameron, Julia 115 – 116

Carmack, Adrian 65, 67

Carmack, John 65

CAT (Consensual Assessment Technique) 6, 125 – 131, 142

Celeste (game) 81

certification, dangers of 140

Cézanne, Paul 65 – 67

Charles Darwin 24

Cicero 24

Clean Code (Martin) 59

Cloud, Kevin 65

cluster size, creativity and 55

code kata exercises 193

code smells 59, 136

CodeScene 136

coffee 166 – 167

cognitive biases 101

Cognitive Distance community smell 60, 62

collective geography 49 – 55

contagiousness of creativity 51 – 52

genius clusters 53 – 55

liquid networks 49 – 51

stimulating environments 52 – 53

Collector’s Fallacy 27

comfort zone 126

Commento 83

commonplace books 24 – 25

communication and collaboration 41 – 63

collective geography 49 – 55

contagiousness of creativity 51 – 52

genius clusters 53 – 55

liquid networks 49 – 51

stimulating environments 52 – 53

communication obstacles to creative flow 58 – 62

community smells 60 – 61

social debt 58 – 59, 62

technical debt 59

constructive criticism 101

CPPST 12

importance of 10

teamwork 43 – 49

dream teams 47 – 49

successful 44 – 47

time and creativity 55 – 58

adoption curve 57 – 58

written resources on 203

community smells 60 – 61

company culture 167

creative environments 167 – 170

support for creative freedom 156 – 158

workplaces as creative workshops 170 – 171

workplaces as safe havens 172

composting 37

Concetto Spaziale (Fontana) 57

confirmation bias 110

Consensual Assessment Technique (CAT) 6, 125 – 131, 142

constraints 64 – 95

CPPST 13

creativity and 66 – 67

greenfield vs. brownfield projects 67 – 68

imposed constraints 72 – 74

in practice 88 – 94

divergent thinking 89 – 90

naivety 90 – 94

intrinsic constraints 69 – 72

intrinsic hardware constraints 69 – 70

intrinsic software constraints 72

self-imposed constraints 74 – 84

Basecamp 78

crack intros and demoscene subculture 84

fantasy consoles 81 – 83

Game Boy 78 – 80

pixel artists and retro-inspired games 76 – 77

programming languages 83 – 84

sweet spot concept 84 – 88

facilitating abstraction 86 – 87

sweet victory and bitter aftertaste 87 – 88

taking into account 10

taxonomy of 68 – 69

context switching, reducing 159 – 160

Conversations With Vladimir Nabokov (Golla) 186 – 187

Conway, Susannah 37

Cookbook Development community smell 60, 62

Copilot project 181 – 182

Courbet, Gustave 56 – 57

CPPST (Creative Programming Problem Solving Test) 11, 14 – 15, 201 – 202

CPython 193 – 194

crack intros 84

creative coding 106

Creative Habit, The (Tharp) 202

creative process steps 99 – 163

creative programmers 1 – 15

becoming

reasons for 5 – 7

road map to 8 – 15

creativity

defined 2 – 5

levels of 7

difficulties of software development 2

structure of book 15

creative state of mind 147 – 173

company culture 167

creative environments 167 – 169

workplaces as creative workshops 170 – 171

workplaces as safe havens 172

CPPST 13 – 14

flow 151 – 158

deep work 153 – 155

movement 155 – 156

optimal experience 151 – 153

support for creative freedom 156 – 158

getting in right creative mood 150 – 151

insight 162 – 167

alone vs. together 163 – 165

sleep and 165 – 166

stimulants 166 – 167

interruptions 158 – 162

increasing awareness of 159 – 160

knowing which to look out for 160 – 161

mindfulness 162

preparing for 160

overview of 11

creative techniques 174 – 196, 205

artist’s toolbox 178 – 185

Art-Based Learning 178 – 181

Steal Like an Artist 181 – 182

time off 183 – 185

creative toolbox 177 – 178

overview of 11

problem-solving techniques vs. 178

programmer’s toolbox 189 – 195

Bobkowska 190 – 191

Morehouse 193 – 195

Pragmatic Programmer 192 – 193

writer’s toolbox 185 – 189

Dyer 187 – 188

Lamott 188 – 189

Nabokov 186 – 187

creativity 122 – 128, 136 – 138, 197 – 205

best practices for 198 – 199

cluster size and 55

communication obstacles to creative flow 58 – 62

contagiousness of 51 – 52

CPPST 201 – 202

defined 2 – 5

changing views of creativity 4

essentialist definition 2 – 3

systemic approach to creativity as social verdict 3 – 4, 198

demanding perfection 203

dishonesty and 136

domain general vs. domain specific 21

evolving perspective of 199 – 200

fun and 7

independence and 157

knowledge priming 22

levels of 7 – 8

Big-C 7

H-creativity 7

little-c 7

mini-C 7

P-creativity 7

Pro-c 7

process vs. product 6

structuralist approach to 19

time and 55 – 58

written resources on 205

Creativity (Csikszentmihalyi) 170, 204

Creativity From Constraints (Stokes) 204

Crick, Francis 132

critical feedback 44, 124

critical thinking 118

common fallacies 107 – 115

converting prejudice into insight 115

critically verifying insight 110

cross-language interference and facilitation 108 – 110

Google-coding 113 – 114

ignorance and Deliberate Discovery concept 110 – 111

novice programming misconceptions 114 – 115

seduction by the shiny and new 112

self-serving bias 112

CPPST 13

creative process

diffuse thinking 102 – 105

focused thinking 101 – 105

steps in 99 – 100

verifying critically 100 – 101

creative thinking and 98 – 99

creativity as means vs. as goal 105 – 106

importance of others’ critical thinking 117

overview of 10 – 11

too much 115 – 116

cross-language interference and facilitation 108 – 110

Csikszentmihalyi, Mihaly 7, 11, 24, 43, 49, 62, 85, 91, 100 – 101, 122, 151 – 155,

170, 198, 204

Curie, Marie 105

curiosity 119, 121, 143 – 146

CPPST 13

fun 142

bad guy challenge 144 – 145

motivation

combining 132 – 133

extrinsic motivation 131 – 132

intrinsic motivation 131

multipotentiality 133 – 140

approaching multiple interests 136

multiple true callings 134 – 136

specialism 137 – 140

overview of 11

perseverance 122, 130

persistence and grit 128 – 129

willpower as depletable resource 130

serendipitous discoveries 140 – 142

openness to experience 141 – 142

stumbling upon things 141

wonder as driver of 123 – 128

fixed vs. growth mindsets 123 – 124

growing out of comfort zone 125 – 126

growth mindsets and creativity 126 – 128

self-belief 124 – 125

Cuthbert, Dylan 120 – 121

D

da Vinci, Leonardo 24, 130, 134

Darwin, Charles 6, 120 – 122, 128, 153, 198

Data East 182

de Botton, Alain 180

Death in Paradise (TV series) 163

deep work 153 – 155

distractions 153 – 155

flow vs. 153 – 154

Deep Work(Newport) 154, 204

Deliberate Discovery concept 110 – 111

DeLine, Robert 34

Demetrius of Phalerum 41

demoscene subculture 84

Derby, Esther 189

Descartes, René 107

Developing the Leader Within You (Maxwell) 24

DEVONThink 141

DevOps Clash community smell 60, 62

Dexter’s Laboratory (TV series) 166

diaries 16 – 17, 25 – 27, 188

diffuse thinking 102

combining with focused thinking 103 – 105

overview of 102 – 103

digital gardening 32 – 33

Discuvver 141

Disengagement community smell 60, 62

dishonesty 136

dithering 70 – 71

divergent thinking 89 – 90

diversifying experiences 133

Dizzy (game series) 149 – 150

Do Not Disturb lights 162

Doctorow, Cory 28

Domin, Hilde 92

DOOM (game) 65 – 66

Doyle, Arthur Conan 24

DPaint 70 – 71

dream teams 47 – 49

Dreyfus model of skill acquisition 21, 33, 133

Drone 83

Duchamp, Marchel 4

Duckworth, Angela 128 – 130

Dweck, Carol 124 – 125, 128 – 129, 198, 204

Dyer, Geoff 187 – 188

E

echo chamber effect 45

Eco, Umberto 1, 7, 131

Edison, Thomas 154

EGA (Enhanced Graphics Adapter) 70 – 71

Egg Cartons problem 86 – 87

ego depletion 130

Einstein Approach 136

Einstein, Albert 49, 51, 130, 198

Elster, Jon 68

eminent creativity 7

Epicurus 17

Epstein, David 135

Escher, M. C. 177

essential constraints

defined 68

self-imposed constraints 74 – 84

Basecamp 78

crack intros and demoscene subculture 84

fantasy consoles 81 – 83

Game Boy 78 – 80

pixel artists and retro-inspired games 76 – 77

programming languages 83 – 84

Eumenes II 64, 67

Evans, Eric 24

ext4 5

extensive knowledge 19

Extreme Tuesday Club 43

extrinsic motivation

combining with intrinsic motivation 132 – 133

overview of 131 – 132

F

fantasy consoles 81 – 83

Farnam Street 105, 129

fermentation 37 – 38

Ferrari, Mark 70 – 76, 78

Fetti, Domenico 148

Feynman, Richard 35

Fibonacci sequence 94

FitzRoy, Robert 120

fixed mindset 123 – 124, 198

Florentine Camerata 42, 44 – 47

flow 151 – 158

deep work 153 – 155

distractions 153 – 155

environment and movement 155 – 156

joyous exploration 153

optimal experience 151 – 153

principles of 151

support for creative freedom 156 – 158

Flow (Csikszentmihalyi) 204

focused thinking 102

combining with diffuse thinking 103 – 105

overview of 101 – 102

Fontaine (Duchamp) 4

Fontana, Lucio 57

Fowler, Martin 59

free and open-source software (FOSS) code 194 – 195

Freeman, Steve 32

Freud, Sigmund 130, 133, 168 – 169

Fried, Jason 133

fun 142 – 145

bad guy challenge 144 – 145

fooling around 143 – 144

G

Gabbiani, Anton Domenico 42

Gallagher, Winifred 154

Gapingvoid Culture Design Group 164

garagecraft 171

Gates, Bill 129 – 130

gathering knowledge 20 – 22

diversifying input 20 – 21

moderating input 21 – 22

GB (Game Boy) 78 – 81, 121, 137, 170

GBA (Game Boy Advance) 80 – 81

Geison, Gerald L. 97

genex 29

genius clusters 53 – 55

Geography of Genius, The (Weiner) 53

Gero, John 90

Gertner, Jon 168

Getting Things Done system 30

Ghost Hunters (game) 150

Gilbert, Daniel 184

Gilbert, Elizabeth 37

Gilbert, Ron 48, 76

Gitea 83

GitHub 181 – 182

Gladwell, Malcolm 21

goal-setting 160

Godin, Seth 156

Goethe, Johann Wolfgang von 67

GoldenEye (game) 92 – 93, 135

Google 183

Google-coding 113 – 114

Graeber, David 157

Grand Theft Auto (game series) 56, 97 – 99

Graziotin, Daniel 184

Great Library of Alexandria 53 – 54

greenfield projects

creativity and 67 – 68

learning software development 68

grit 128 – 130

Gros, Frédéric 156

Gross, Neal C. 57

Grossman, Dave 47 – 48

Group Hug Approach 136

Grove Street Games 97 – 99

growth mindset 124 – 127

creativity and 126 – 128

embracing criticism 124

growing out of comfort zone 125 – 126

overview of 123

Guibert, Hervé 87 – 88

H

H-creativity (historic creativity) 7

Hall, Tom 65

Hansson, David Heinemeier 48, 133

Hermans, Felienne 108, 160, 204

Herodotus 120 – 122

Het Creatieve Genie (The Creative Genius) (Strien) 56

Hiero II 147

highway interchanges 180

Hollis, Martin 92

How to Be Everything (Wapnick) 204

How to Take Smart Notes (Ahrens) 26, 32

Hugo website generator 83

Hunt, Andy 2, 36, 51, 108, 162

Hyper-Community community smell 60

HyperCard 56

I

id Software 66

idea creativity 199

ignorance 110 – 111

illuminate step 99 – 100, 104, 163

incidental constraints

defined 68

imposed constraints 72 – 74

intrinsic constraints 69 – 72

intrinsic hardware constraints 69 – 70

intrinsic software constraints 72

incubate step 99 – 100, 103 – 104, 163, 169

independence, creativity and 157

IndieWeb Discovery page 141

Informality Excess community smell 60

insight 162 – 167

alone vs. together 163 – 165

collecting and connecting the dots 164 – 165

converting prejudice into 115

evolution from data to 163 – 164

sleep and insight 165 – 166

stimulants 166 – 167

verifying critically 110

inspirationalist approach to creativity. See constraints; critical thinking; curiosity

Institutional Isomorphism community smell 60

interdisciplinary studying 138

internalizing knowledge 22 – 25

interruptions 158 – 162

crashing train of thought 158

increasing awareness of 159 – 160

knowing which to look out for 160 – 161

mindfulness 162

preparing for 160

self-interruptions 161

intrinsic constraints 69 – 72

intrinsic hardware constraints 69 – 70

intrinsic software constraints 72

intrinsic motivation

combining with extrinsic motivation 132 – 133

overview of 131

invisible college concept 44

Ion Fury (game) 76

J

Jarche, Harold 34 – 35

JetBrains 17 – 18

Johnson, Steven 49 – 50, 140

journals 16 – 17, 25 – 27, 187 – 188

joyous exploration 153

K

Kahn, Louis 168

Kahneman, Daniel 103, 108, 204

Kandinsky, Wassily 43

Kant, Immanuel 130, 156

Kaufman, James C. 2 – 3, 142

Kerr, Jessica 44, 61

Kleon, Austin 181 – 182, 194, 204

knowledge management workflow 34 – 40

in practice

coding 38

learning new programming languages 38 – 39

writing 39 – 40

steps for 36 – 38

available information 36

curated interests 36

digitized and cross-linked notes 37

published work 37 – 38

synthesized thoughts 36

knowledge priming 22

Kotlin 17 – 19, 181

L

L’Origine du Monde (Courbet) 56 – 57

Lamott, Anne 188 – 189

Larsen, Diana 189

Le Panier de Pommes (Cézanne) 65

Lee, You-Na 55

Leibniz, Gottfried Wilhelm 107

Lemke, Sarah 52

Levitin, Daniel J. 199

Lexaloffle Games 81 – 82

Liam, Justin 135

Liebig, Justus von 97

liquid networks 49 – 51, 140

Listmonk 83

little-c (everyday creativity) 7

living systems 44 – 45

London, Jack 163

Lone Wolf community smell 60, 62

Lucas Ranch 55

Lucas, George 47

LucasArts 47 – 48, 56, 69 – 70

Luhmann, Niklas 17 – 18, 27, 30 – 32, 34, 161

Lutters, Jeroen 179

M

M1 chip 137

Maher, Mary Lou 90

Manifesto for Agile Software Development 176

Manifesto for Software Craftsmanship 106

Martin, Robert C. 59

Maxwell, James Clerk 111

Maxwell, John C. 24

McFadden, Katherine Erica 171

Melkmeisje (Vermeer) 180

memex machine 28

memoization 94

mental monocropping 134

mental oscillation 105

mentoring 195

Meyer, André 159

mind-wandering 103

Mindset (Dweck) 204

mini-c 7

MIT Building 20 167 – 168

Modernist Bread (Myhrvold) 135

Mondrian, Piet 43

Montaigne, Michel de 24

Morehouse, Emily 193 – 195

morning pages 116

Moruzzi, Caterina 91, 117

motivation 131, 133

combining intrinsic and extrinsic motivation 132 – 133

intrinsic motivation 131

Mozart, Wolfgang Amadeus 132

Mueller, Pam 22 – 23

multipotentiality 133, 137 – 140

approaches for 136

multiple true callings 134 – 136

Myhrvold, Nathan 135

N

Nabokov, Vladimir 175 – 177, 186 – 187

naivety

algorithm implementations 94

constraints and 90 – 91

Domin, Hilde 92

GoldenEye (game) 92 – 93

Nam, Beth 143

Naughton, John 28

Navidrom 83

Nelson, Danielle 127

Nemawashi 37

Newbie Free-Riding community smell 60, 62

Newport, Cal 153 – 154, 156, 167, 204

NeXT computers and OS 66

Nietzsche, Friedrich 156

Nintendo 120 – 121

Nitro Ball (game) 182

North, Dan 111

note-taking

avoiding vendor lock-in 23 – 24

digital gardening 32 – 33

genex 29

journals, diaries, and notebooks 16 – 17, 25 – 27

knowledge management 24 – 25

longhand vs. keyboarding 22 – 23

Luhmann’s Zettelkasten 17 – 18, 30 – 32

memex machine 28

permanent vs. temporary notes 34

preparing for interruptions 160

taking action on notes 29 – 32

tools for 23

wikis 23, 25

notebooks 16 – 17, 25 – 27, 188

novice programming misconceptions 114 – 115

Nul-beweging (Zero-movement) 75 – 76

O

Oakley, Barbara 102

Obsidian 28 – 30, 37

Oliver, Andrew 149 – 150, 154, 157, 163

Oliver, Philip 149 – 150, 154, 157, 163

On Floating Bodies (Archimedes) 147

On the Origin of Species (Darwin) 120, 128

Ono, Jiro 202

Oppenheimer, Daniel 22 – 23

optimal experience 151 – 153

Original of Laura, The (Nabokov) 176, 187

Orosz, Gergely 48

Outcast (game) 56, 58

Outliers (Gladwell) 21

overqualification 139

P

P-creativity (personal creativity) 7

p5.js editor 106 – 107

pair programming 62, 101, 111 – 165

parchment 64 – 65

Parisian avant-garde art movement 43

Parnin, Chris 34

participate step 99 – 100, 123, 163

Pasteur, Louis 97 – 98, 132

Pauling, Linus 103

Pavis, Sarah 135

Peripatetics 41 – 42, 156

perseverance 122, 130

grit 128 – 129

willpower as depletable resource 130

Petersen, Sandy 65

Philosophy of Walking, A (Gros) 156

Phoenix Approach 136

PhotoPrism 83

Picasso, Pablo 56, 65

PICO-8 81 – 82

Pike, Rob 83

Pinker, Steven 108

Plato 108

Poincaré, Henri 149 – 150, 154, 156, 163, 180

Pomodoro technique 159

Power Distance community smell 60

Pragmatic Programmer, The (Hunt and Thomas) 192 – 193

Pragmatic Thinking & Learning (Hunt) 2, 36, 108, 162

present/accept step 99, 104

Pretz, Jean 127

Priggish Members community smell 60

Private Science of Louis Pasteur, The (Geison) 97

Pro-c 7

problem-finding 6

problem-solving 5

Processing 106

Professor Layton (game series) 145

Programmer’s Brain, The (Hermans) 160, 204

programmer’s toolbox 189 – 195

Bobkowska 190 – 191

code kata exercises 193

FOSS code 194 – 195

learning new programming languages 192 – 193

mentoring 195

Morehouse 193 – 195

Pragmatic Programmer 192 – 193

self-directed speech 191

studying source code 193 – 194

technique themes 191

training-application-feedback cycle 190

programming languages

cross-language interference and facilitation 108 – 110

learning new languages 192 – 193

self-imposed constraints 83 – 84

Provinciano, Brian 76 – 77, 113 – 114

Pryce, Nat 32

Ptolemy V 53, 64 – 65, 67

Purcell, Steve 48

R

rabbit chasing 143 – 144

radical inventiveness 112

Raes, Joke 170 – 171

Range (Epstein) 135

Rapt (Gallagher) 154

Rare 92 – 93, 135

Reddit 141

Refactoring (Fowler) 59

Republic (Plato) 108

Responsibility Process 62

Retro City Rampage (game) 76 – 77, 113 – 114

retrospective analysis, tools for 159

Ritter, Simone 165 – 166

road map to creativity 8 – 15

CPPST 11 – 15

themes 10 – 11

communication and collaboration 10, 41 – 63

constraints 10, 64 – 95

creative state of mind 11, 147 – 173

creative techniques 11, 174 – 196

critical thinking 10 – 118

curiosity 11, 119 – 146

regrouping into ability, mindset, and interaction 202

technical knowledge 10, 16 – 40

Robertson, Chad 52

Robinson, Ken 138

Rockefeller Foundation 170

Romero, John 65

Rothmann, Sebastiaan 141

Runco, Mark 7

Ryan, Bryce 57

S

sabbaticals 183 – 185

Salk Institute for Biological Studies 168

Salk, Jonas 103 – 104, 168

San, Jez 120

Schafer, Tim 48

Schooler, Jonathan 162

Schoonhoven, Jan 75 – 76

Schwaber, Ken 176

seating reservation system 132

Secret of Monkey Island, The (game) 56, 69 – 70

seduction by the shiny and new 112

Seek > Sense > Share 34 – 35

Sega Channel 56

SEGA Game Gear 79

self-belief 124 – 125

self-imposed constraints 74 – 84

Basecamp 78

boosting productivity 75

crack intros and demoscene subculture 84

fantasy consoles 81 – 83

Game Boy 78 – 80

pixel artists and retro-inspired games 76 – 77

programming languages 83 – 84

transforming creative process 75

self-interruptions 161

self-serving bias 112

Seneca 16 – 18, 25

serendipitous discoveries 140 – 142

openness to experience 141 – 142

stumbling upon things 141

Serene 75

Seven Languages in Seven Weeks (Tate) 192

Shafer, Tim 55

shared responsibility model 62

Shrestha, Nischal 108 – 109

Sierra On-Line 56

Simonton, Dean 50 – 51

SimplyVBUnit 73 – 74

Sirkiä, Teemu 115

situational approach to creativity. See communication and collaboration

Skype 75

Slack 75

Slash Approach 136

sleep, insight and 165 – 166

Smith, Iain 166

social debt

getting out of 62

overview of 58 – 59

social verdict, creativity as 3 – 4, 198

Socrates 96 – 98

soft skills 5

Software Freedom Conservancy 182

sophists 96 – 97

Sorva, Juha 115

specialism 138

certification 140

effect on creativity 137 – 138

overqualification 139

Speculative Generality code smell 104 – 105

Spinoza, Benedict de 107

split-screen gaming 93

Spolsky, Joel 159

Sprint Retrospective 176

Stack Overflow Annual Developer Survey 139

Stagmeister, Stefan 183 – 184

Steal Like an Artist (Kleon) 181 – 182, 194, 204

Sternberg, Robert J. 2 – 105, 127, 142

stimulants 166 – 167

stimulating environments 52 – 53

Stokes, Patricia D. 204

Stravinsky, Igor 75

Strien, Pieter J. van 56

Strindberg, August 87

subliminal self 150

Successful Aging (Levitin) 199

Super FX RISC co-processor 121 – 122

Super Mario Land (game series) 79

Sutherland, Jeff 176

Sutinen, Erkki 127 – 128

sweet spot concept 84 – 88

facilitating abstraction 86 – 87

sweet victory and bitter aftertaste 87 – 88

symmathesies 45 – 47, 61, 170

T

tail recursion 94

Tamburri, Damian 58 – 59, 61

Tate, Bruce A. 192

Taylor, Dave 65

teachers, stimulating/damaging influence of 124

teamwork 43 – 49

cluster size 55

dream teams 47 – 49

successful 44 – 47

critical feedback 44

invisible college 44

living system 44 – 45

shared problem 44

symmathesies 45

team creativity 61

technical debt 58 – 59

technical knowledge 16 – 40

acting on knowledge 27 – 34

digital gardening 32 – 33

genex 29

memex machine 28

permanent vs. temporary notes 34

taking action on notes 29 – 32

CPPST 12

gathering knowledge 20 – 22

diversifying input 20 – 21

moderating input 21 – 22

internalizing knowledge 22 – 25

knowledge management 24 – 25

no creative output without input 18 – 19

overview of 10

workflow 34 – 40

in practice 38 – 40

steps for 36 – 38

written resources on 203

Technology Radar 58, 140

test-driven development cycle 100

Tharp, Twyla 202

Theophrastus 41

Thimbleweed Park (game) 76

Thinking, Fast and Slow (Kahneman) 204

Thomas, Dave 51

Thoring, Katja 168

thought walks 149, 154 – 163

ThoughtWorks 58

Tiffin, Henry 25

time

adoption curve 57 – 58

creativity and 55 – 58

time off, power of 183 – 185

Time Warp community smell 60

Tinguely, Jean 52

Tornhill, Adam 136

Torvalds, Linus 155

Traf-O-Data 130

transfer during learning 109

Triple Nickels 190

TTCT (Torrance Test of Creative Thinking) 89, 142 – 143

Turing, Alan 24

U

unit testing 73

Unlearning community smell 60, 62

V

Vallejo, Irene 53

van Gogh, Vincent 3 – 4, 56, 58, 87, 131

vanitas paintings 88

verify step 99 – 101, 104

Vermeer, Johannes 180

Villa Gorilla 183

Visual Basic 6 73 – 74

Vitruvius 147

W

Wallas, Graham 99

Wapnick, Emilie 134, 136, 204

Wario Land (game series) 79 – 80

Watson, James 132

WebTV 56

Weiner, Eric 53 – 54, 105, 138

well-crafted software 106, 203

wikis 23, 25

willpower, as depletable resource 130

Wilson, Matt 165

Winnick, Gary 76

wonder, as driver of curiosity 123, 125 – 128

fixed vs. growth mindsets 123 – 124

self-belief 124 – 125

Woolf, Virginia 87

WouterFS 5

writer’s toolbox 185 – 189

asking for help 189

caressing details 186

diaries 187 – 188

Dyer 187 – 188

giving up when too difficult 188

Lamott 188 – 189

making writing a habit 188

Nabokov 186 – 187

not faking it 188 – 189

not starting at the beginning 187

not trying to perfect things 189

refining autocorrect settings 187

studying other artists 186

style development 186

taking inspiration from surroundings 186

writers as great deceivers and enchanters 186

writing in private 187

writing step by step 189

writing your unique story 188

X

X (Ekkusu) (game) 120 – 121

Y

yak shaving 144

Yokoi, Gunpei 78

Yoku’s Island Express (game) 183

Yoshi’s Island (game) 121 – 122

Z

Zero-movement (Nul-beweging) 75 – 76

Zettelkasten 17 – 18, 30 – 32, 34

Ziv, Avner 143

ZX Spectrum Next 82 – 83

	inside front cover
	The Creative Programmer
	Copyright
	contents
	front matter
	foreword
	preface
	acknowledgments
	about this book
	How this book is organized
	liveBook discussion forum

	about the author
	about the cover illustration

	1 The creative road ahead
	1.1 What exactly is creativity?
	1.2 Why creativity?
	1.3 Different levels of creativity
	1.4 A road map to becoming more creative
	1.4.1 The seven Creative Programmer themes
	1.4.2 The Creative Programming Problem Solving Test

	1.5 The structure of the following chapters

	2 Technical knowledge
	2.1 No input, no creative output
	2.2 Gathering knowledge
	2.2.1 Diversify what goes in
	2.2.2 Moderate what goes in

	2.3 Internalizing knowledge
	2.3.1 Knowledge management

	2.4 Acting on knowledge
	2.4.1 From notebook to memex to genex
	2.4.2 From note to action
	2.4.3 A note on note maintenance
	2.4.4 From interruption to action

	2.5 A workflow example
	2.5.1 A five-step workflow
	2.5.2 The workflow in practice: Coding
	2.5.3 The workflow in practice: Learning new programming languages
	2.5.4 The workflow in practice: Writing

	Summary

	3 Communication
	3.1 Collaborative teamwork
	3.1.1 What makes a Camerata tick
	3.1.2 Dream teams

	3.2 Collective geography
	3.2.1 Liquid networks
	3.2.2 Creativity is contagious
	3.2.3 Moving to stimulating environments
	3.2.4 Genius clusters

	3.3 Creative work in time
	3.3.1 The adoption curve

	3.4 When creative flow is impeded
	3.4.1 Social debt
	3.4.2 From technical to social debt
	3.4.3 Community smells
	3.4.4 Getting out of social debt

	Summary

	4 Constraints
	4.1 Constraint-based thinking
	4.1.1 Greenfield or brownfield?
	4.1.2 A taxonomy of constraints

	4.2 Intrinsic constraints
	4.2.1 Intrinsic hardware constraints
	4.2.2 Intrinsic software constraints

	4.3 Imposed constraints
	4.4 Self-imposed constraints
	4.4.1 Passionate pixel artists
	4.4.2 Let limitations guide you to creative solutions
	4.4.3 Game Boying into constraints
	4.4.4 Limited (fantasy) consoles
	4.4.5 Limited programming languages
	4.4.6 Crack intros and the demoscene

	4.5 Hitting that sweet spot
	4.5.1 Facilitating abstraction with the right amount of constraints
	4.5.2 Sweetness or bitterness?

	4.6 Working with constraints in practice
	4.6.1 Divergent thinking
	4.6.2 Naivety and constraints
	4.6.3 A naive but legendary poet
	4.6.4 A naive James Bond
	4.6.5 Naive algorithm implementations

	Summary

	5 Critical thinking
	5.1 Creative critical thinking
	5.2 The creative process
	5.2.1 Verifying critically
	5.2.2 Focused thinking
	5.2.3 Diffuse thinking
	5.2.4 Combining diffuse and focused thinking

	5.3 Creativity is the means, not the goal
	5.4 Common critical thinking fallacies
	5.4.1 Cross-language clashes
	5.4.2 The superior flash of insight
	5.4.3 Ignorance and Deliberate Discovery
	5.4.4 I am the greatest
	5.4.5 I am the fanciest
	5.4.6 First-Google-hit coding
	5.4.7 A long list of novice programming misconceptions
	5.4.8 Converting prejudice into insight

	5.5 Too much self-criticism
	5.6 Why others’ critical thinking matters
	Summary

	6 Curiosity
	6.1 Curiosity jump-starts creativity
	6.2 Growing wonder and wanderlust
	6.2.1 Fixed and growth mindsets
	6.2.2 Believing is doing
	6.2.3 Growing out of your comfort zone
	6.2.4 Growth mindsets and creativity

	6.3 Staying on the curious course
	6.3.1 Persistence and grit
	6.3.2 Willpower is a depletable resource

	6.4 From curiosity to motivation
	6.4.1 Intrinsic motivation
	6.4.2 Extrinsic motivation
	6.4.3 Combining intrinsic and extrinsic motivation

	6.5 Multipotentiality
	6.5.1 Multiple true callings
	6.5.2 How to approach multiple interests
	6.5.3 Does specialism kill creativity?
	6.5.4 Generalism vs. specialism in tech

	6.6 Serendipitous discoveries
	6.6.1 How to stumble upon things
	6.6.2 Openness to experience

	6.7 About having fun
	6.7.1 Fooling around
	6.7.2 Just for fun: A bad guy bonus challenge

	Summary

	7 Creative state of mind
	7.1 Getting in the right creative mood
	7.2 The flow of deep work
	7.2.1 The optimal experience
	7.2.2 Deep work
	7.2.3 Deep work and flow on the move
	7.2.4 Walking support or the lack thereof

	7.3 Interrupt!
	7.3.1 Increasing your awareness of interruptions
	7.3.2 Preparing for interruptions
	7.3.3 Knowing which interruptions to look out for
	7.3.4 Mindfulness increases focus

	7.4 Triggering creative insights
	7.4.1 Alone or together?
	7.4.2 Sleep and insight
	7.4.3 A note on stimulants

	7.5 A corporate creative state of mind
	7.5.1 Environmental creativity
	7.5.2 Workplaces as creative workshops
	7.5.3 Workplaces as a safe haven

	Summary

	8 Creative techniques
	8.1 On filling a creative toolbox
	8.2 A selection: The artist’s toolbox
	8.2.1 Art-Based Learning
	8.2.2 Steal like an artist
	8.2.3 The power of time off

	8.3 A selection: The writer’s toolbox
	8.3.1 Vladimir Nabokov’s toolbox
	8.3.2 Geoff Dyer’s toolbox
	8.3.3 Anne Lamott’s toolbox

	8.4 A selection: The programmer’s toolbox
	8.4.1 Anna Bobkowska’s toolbox
	8.4.2 The Pragmatic Programmer’s toolbox
	8.4.3 Emily Morehouse’s toolbox

	Summary

	9 Final thoughts on creativity
	9.1 Remember, everyone can be creative
	9.2 On the evolving perspective of creativity
	9.2.1 From technical individualism to a creative team player
	9.2.2 Revisiting the CPPST

	9.3 When not to be creative
	9.4 Further reading

	index

