
RASPBERRY PI ASSEMBLER

Roger Ferrer Iban~ez
Cambridge, Cambridgeshire, U.K.

William J. Pervin
Dallas, Texas, U.S.A.

December 18, 2018

i

Contents

1 Raspberry Pi Assembler 1
1.1 Writing Assembler ... 1
1.2 Our rst program ... 2
1.3 First program results .. 3

2 ARM Registers 7
2.1 Basic arithmetic .. 7

3 Memory 9
3.1 Memory .. 9
3.2 Addresses .. 9
3.3 Data .. 10
3.4 Sections .. 11
3.5 Load .. 11
3.6 Store .. 14
3.7 Programming style ... 15

4 Debugging 19
4.1 gdb ... 19

5 Branching 25
5.1 A special register ... 25
5.2 Unconditional branches ... 26
5.3 Conditional branches .. 26

6 Control structures 31
6.1 If, then, else ... 31
6.2 Loops ... 32
6.3 1 + 2 + 3 + 4 + + 22 .. 32
6.4 3n + 1 ... 35

7 Addressing modes 39
7.1 Indexing modes .. 39
7.2 Shifted operand .. 40

ii

Contents

8 Arrays and structures 43
8.1 Arrays and structures .. 43
8.2 Dening arrays and structs .. 44
8.3 Naive approach without indexing modes ... 44
8.4 Indexing modes .. 45

8.4.1 Non-updating indexing modes ... 45
8.4.2 Updating indexing modes .. 46
8.4.3 Post-indexing modes .. 47
8.4.4 Pre-indexing modes ... 48

8.5 Back to structures ... 49
8.6 Strings ... 49

9 Functions 51
9.1 Do's and don'ts of a function ... 51

9.1.1 New specially named registers ... 51
9.1.2 Passing parameters ... 52
9.1.3 Well behaved functions .. 52
9.1.4 Calling a function .. 52
9.1.5 Leaving a function ... 52
9.1.6 Returning data from functions ... 53

9.2 Hello world ... 53
9.3 Real interaction! ... 55
9.4 Our rst function ... 56
9.5 Unied Assembler Language .. 59

10 Searching and Sorting 61
10.1 Binary Search .. 61
10.2 Insertion Sort .. 64
10.3 Random Numbers .. 67
10.4 More Debugging ... 69

11 Recursion and the Stack 71
11.1 Dynamic activation .. 71
11.2 The stack ... 72
11.3 Factorial .. 74
11.4 Load and Store Multiple .. 77
11.5 Factorial again ... 78
11.6 Tail-recursion .. 80
11.7 Dynamic Programming ... 82

12 Conditional Execution 87
12.1 Predication .. 87
12.2 The pipe line of instructions ... 88
12.3 Predication in ARM ... 90

iii

Contents

12.4 Collatz conjecture revisited ... 90
12.5 Adding predication .. 92
12.6 Does it make any dierence in performance? ... 92
12.7 The s sux .. 93

13 Floating-point Numbers 97
13.1 IEEE-754 Standard .. 97
13.2 Examples ... 99
13.3 Extremes ... 100
13.4 Exceptions ... 101
13.5 Accuracy .. 101
13.6 *Fixed-point Numbers ... 103

14 Real Computations 105
14.1 VFPv2 Registers .. 105
14.2 Arithmetic operations ... 106
14.3 Load and Store ... 108
14.4 Movements between registers ... 109
14.5 Conversions .. 110
14.6 Modifying the fpscr .. 111
14.7 Function call convention and oating-point registers 111
14.8 Printing Floating-point Numbers ... 112

15 Pointers 113
15.1 Passing data to functions .. 113
15.2 What is a pointer? .. 113
15.3 Passing large amounts of data .. 116
15.4 Passing a big array by value ... 117
15.5 Passing a big array by reference ... 121
15.6 Modifying data through pointers ... 123
15.7 Returning more than one piece of data ... 126

16 System Calls 127
16.1 File I/O .. 128
16.2 lseek ... 131

17 Local data 133
17.1 The frame pointer ... 133
17.2 Dynamic link of the activation record ... 134
17.3 What about parameters passed in the stack? ... 137
17.4 Indexing through the frame pointer .. 137

18 Inline Assembler in C Code 143
18.1 The asm Statement 143
18.2 Simple Example 144

iv

Contents

19 Thumb 147
19.1 The Thumb instruction set ... 147
19.2 Support of Thumb in Raspbian ... 147
19.3 Instructions .. 147
19.4 From ARM to Thumb ... 148
19.5 Calling functions in Thumb ... 149
19.6 From Thumb to ARM .. 151
19.7 To know more .. 152

20 Additional Topics 153
20.1 ARM Instruction Set ... 153
20.2 Interrupt Handling .. 154
20.3 To know more .. 155

A ASCII Standard Character Set 157

B Integers 159
B.1 Unsigned Integers .. 159
B.2 Signed-Magnitude Integers .. 159
B.3 One's Complement ... 160
B.4 Two's Complement ... 161
B.5 Arithmetic and Overow ... 162
B.6 Bitwise Operations ... 163

C Matrix Multiplication (R.F.I.) 165
C.1 Matrix multiply ... 165
C.2 Accessing a matrix ... 167
C.3 Naive matrix multiply of 44 single-precision .. 168
C.4 Vectorial approach .. 172
C.5 Fill the registers ... 174
C.6 Reorder the accesses ... 177
C.7 Comparing versions ... 182

D Subword Data 185
D.1 Loading ... 185
D.2 Storing .. 188
D.3 Alignment restrictions .. 188

E GPIO 193
E.1 Onboard led .. 193
E.2 wiringPi ... 195
E.3 GPIO pins ... 195
E.4 Light an LED ... 196

v

Preface

This text is based on the rst author's tutorial:

http : //thinkingeek.com/arm — assembler — raspberry — pi/

and the second author's MIPS assembler book:

A P rogrammer0s Guide to Assembler

(McGraw-Hill Custom Publishing).

This work is licenced under the Creative Commons Attribution-NonCommercial-Share-
Alike 4.0 International Licence. To view a copy of that licence, visit

http : //creativecommons.org/licences/by — nc — sa/4.0/

or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Note to reader: Be sure to look at all the Projects, even if you do not try them out.
They may contain new information that is used in later chapters.

Caveat: There is a new Raspberry Pi 3 with a 64-bit architecture and other great
features for the same price! In this work we will continue to give the Raspberry Pi
2 information and, fortunately, the 3 seems to be backward compatible; that is, our
programs run on it as well. In particular, the GNU assembler as works as described.
Unfortunately, it does not support the additional registers or other improvements in
the architecture. This book will be completely rewritten as soon as better software is
available.

Emulator: There is a very nice free emulator for the Raspberry Pi available through
the web called QEMU. It's easy to use and comes in handy when you do not have your
actual Pi with you and want to try something out.

Disclaimer: Don't use any of our code for commercial purposes and expect it to work.
The authors, ARM Ltd., and the Raspberry Pi Foundation take no responsibility for
physical or mental damage caused by using this text.

vii

file:////thinkingeek.com/arm
file:////creativecommons.org/licences/by

1 Raspberry Pi Assembler

You will see that our explanations do not aim at being very thorough when describing
the architecture. We will try to be pragmatic.

ARM is a 32-bit architecture that has a simple goal in mind: exibility. While this is
great for integrators (as they have a lot of freedom when designing their hardware), it
is not so good for system developers who have to cope with the dierences in the ARM
hardware. So in this text we will assume that everything is done on a Raspberry
Pi 2 Model B running Raspbian (the one with at least 2 USB ports and 512 MB of
RAM).

Some parts will be ARM-generic but others will be Raspberry Pi specic. We will not
make a distinction. The ARM website (http://infocenter.arm.com/) has a lot of
documentation. Use it!

1.1 Writing Assembler

An assembler language is just a thin syntactic layer on top of its binary code. Un
fortunately, while somewhat similar in concept, they dier greatly between dierent
architectures. Learning one will certainly help in learning others, but it will still require
lots of work.

Binary code is what a computer can run. Each architecture requires dierent binary
code which is why the assembler languages also dier. The code we generate will not run
on an Intelc processor, for example. It is composed of instructions that are encoded
in a binary representation (such encodings are documented in the ARM manuals). You
could write binary coded instructions but that would be painstaking (besides some other
technicalities related to Linux itself that we can happily ignore now).

So we will write assembler { ARM assembler. Since the computer cannot run assembler
code, we have to get binary code from it. We use a tool called, well, an assembler to
assemble the assembler code into binary code that we can run.

The program to do this is called as and we will use it to assemble our programs. In
particular it is the GNU Assembler, which is the program from the GNU project and
sometimes it is also known as gas for this reason.

1

http://infocenter.arm.com/

1. Raspberry Pi Assembler

To prepare an assembler language program for the assembler, just open an editor like
vim, nano, or emacs in Raspbian. Our assembler language les (called source les)
will have a sux .s. That is the usual convention for the ARM (some architectures
may use .asm or some other convention).

1.2 Our rst program

We have to start with something, so we will start with a ridiculously simple program
which does nothing but return an error code.

1 /* -- first.s */
2 /* This is a comment */
3 .global main /* entry point must be global */
4 .func main /* 'main' is a function */
5
6 main: /* This is main */
7 mov r0, #2 /* Put a 2 into register r0 */
8 bx lr /* Return from main */

The numbers in the left column are just line numbers so that we can refer to them in
this text. They are not part of the program. Create a le called first.s and enter the
contents (without line numbers) exactly as shown above. Save it.

To assemble the le enter the following command (write exactly what comes after the
$ prompt), ignoring the line numbers as usual.

1 $ as -g -mfpu=vfpv2 -o first.o first.s

This will create a le named first.o. Now link this le to get an executable le in
binary. (This actually uses the GNU C compiler!)

2 $ gcc -o first first.o

If everything goes as expected, you will get an executable binary le called first. This
is your program. Run it.

3 $./first

[Note: The prex ./ tells the system to look in the current directory for the executable
le.] It should seem to do nothing. Yes, it is a bit disappointing, but it actually does

something. Get its error code this time.

4 $./first ; echo $?
52

2

1.3. First program results

Great! That error code of 2 is not by chance, it is due to that #2 in line 7 of the
assembler source code.

Since running the assembler and the linker soon becomes boring, it is recommended
that you use the following Makefile le or the Windows batch le instead.

1 # Makefile
2 all: first
3 first: first.o
4 gcc -o $@ $+
5 first.o : first.s
6 as -g -mfpu=vfpv2 -o $@ $<
7 clean:
8 rm -vf first *.o

1 #!/bin/bash
2 as -g -mfpu=vfpv2 -o $1.o $1.s
3 gcc -o $1 $1.o
4 rm $1.o
5 ./$1 ; echo $?

1.3 First program results

We cheated a bit just to make things a bit easier. We wrote a C main function in
assembler which only does return 2; . This way our assembler program was easier
to write since the C runtime system would handle initialization and termination of the
program for us. We will use this approach almost all the time since the Raspberry Pi
system comes with a C compiler and we might as well use it.

Let's review every line of our minimal assembler le.

1 /* -- first.s */
2 /* This is a comment */

These are comments. Comments are enclosed in /* and */. Use them to document your
assembler code as they are ignored. As usual, do not nest /* and */ inside /* because
it does not work. Assembler code is very hard to read so helpful comments are quite
necessary.

3 .global main /* entry point and must be global */

This is a directive for the GNU Assembler. Directives tell the GNU Assembler to do
something special other than emit binary code. They start with a period (.) followed
by the name of the directive and possibly some arguments. In this case we are saying
that main is a global name; i.e., recognizable outside our program. This is needed
because the C linker will call main at runtime. If it is not global, it will not be callable
and the linking phase will fail.

4 .func main /* 'main' is a function */

3

1. Raspberry Pi Assembler

Here we have another GNU assembler directive and it states that main is a function.
This is important because an assembler program usually contains instructions (i.e.,
code) but may also contain data. We need to explicitly state that main actually refers
to a function, because it is code.

6 main: /* This is main */

Every line in the GNU Assembler language that is not a directive will be of the form

label: instruction parameters comments

We can omit any part or all four elds (since blank lines are ignored). A line with only
label: applies that label to the next line (you can have more than one label referring
to the same thing that way). The instruction part is the ARM assembler language
itself. Of course if there is no instruction there would be no parameters. In this case
we are just dening main since there is no instruction to be emitted by the assembler.

7 mov r0, #2 /* Put a 2 inside the register r0 */

Whitespace (spaces or tabs) is ignored at the beginning of the line, but the indentation
suggests visually that this instruction belongs to the main function. Since assembler
code is very hard to read, such regular indentation is strongly recommended. Line 7
is the mov instruction which means move. We move the integer 2 into the register r0.
In the next chapter we will see more about registers, do not worry now. The syntax
may seem awkward because the destination is actually at the left. In ARM syntax it
is almost always at the left (just as in an assignment statement like: r0 = 2;) so we
are saying something like move to register r0 the immediate value 2. We will see what
immediate value means in ARM in the next chapter but obviously the # mark is being
used to indicate an actual number.

In summary, this instruction puts the number 2 inside the register r0 (this eectively
overwrites whatever register r0 may have had at that point).

8 bx lr /* Return from main */

This instruction bx means Branch and eXchange. We do not really care at this point
about the exchange part. Branching means that we will change the ow of the instruc
tion execution. An ARM processor runs instructions sequentially, one after the other.
Thus after the mov above, this bx instruction will be run (this sequential execution is not
specic to ARM, but what happens in almost all architectures). A branch instruction
is used to change this implicit sequential execution. In this case we branch to whatever
address the lr register contains. We do not care now what lr contains. It is enough to
understand that this instruction just leaves the main function, thus eectively ending
our program.

And the error code? Well, the result of main is the error code of the program and when
leaving the function such result must be stored in the register r0, so the mov instruction
performed by our main is actually setting the error code to 2.

4

1.3. First program results

Projects

1. Experiment with returning other numbers than just 2.

2. How large a return code gives the correct answer?

3. How large an integer can you use in line 7 and have it accepted by the assembler?

4. Since comments explaining each line are often recommended, there is another form
of comment. In as and the QEMU emulator, the symbol used is the \at" sign
(@) to indicate that the rest of the line is a comment and is to be ignored by
the assembler. Test your assembler and see what character is used { and then
use it! Real assembler programmers almost always only use the /* . . . */
construct for multi-line or special comments.

5. Although it will be very useful to go through the GNU C Compiler gcc when
we start studying input and output, at this stage we may just use the linker or
LoaDer (ld) that comes with the system.

In addition, to avoid the C compiler completely, we may use a complicated call
on the operating system (Raspbian) to exit. The input to the assembler as would
be the following program.s:

1 /* -- program.s */
2 .global _start
3 _start:
4 mov r0, #2
5 mov r7, #1
6 svc 0 @ or SWI 0 -- both work

Note that we are not writing a main program for the C compiler. We will treat
this much later. The call on the assembler followed by the loader appears in the
following.

1 # Makefile
2 all: first
3 first: first.o
4 ld -o $@ $+
5 first.o : first.s
6 as -g -mfpu=vfpv2 -o $@ $<
7 clean:
8 rm -vf first *.o

1 #!/bin/bash
2 as -g -mfpu=vfpv2 -o $1.o $1.s
3 ld -o $1 $1.o
4 rm $1.o
5 ./$1 ; echo $?

Note: The -g parameter to as will be important when we study debugging in
Chapter 4. The -mfpu=vfpv2 parameter will be necessary starting in Chapter 14.

5

1. Raspberry Pi Assembler

6. In order to avoid putting the prex ./ in front of all our programs, we may
change the path of our operating system with the command:

export PATH=$PATH:/home/pi/code ,

assuming that we have put all our code in the subdirectory \code". Try it, but
remember that commands like this one can really mess up your system!

6

2 ARM Registers

At its core, the processor in a computer is nothing but a powerful calculator. Calcula
tions can only be carried out using values stored in very tiny memories called registers.
The ARM processor in a Raspberry Pi 2 has, in addition to some specialized registers
to be discussed later, 16 integer registers and 32 oating point registers. The processor
uses these registers to perform integer computations and oating point computations,
respectively. We will put oating registers aside for now and eventually we will get back
to them in a future chapter. Let's focus on the integer registers.

Those 16 integer registers in our ARM processor have names from r0 to r15. They can
hold 32 bits each. Of course these 32 bits can encode whatever you want. That said, it
is convenient to represent integers in two's complement form (see Appendix B) as there
are instructions which perform computations assuming this encoding. So from now on,
except as noted, we will assume our registers contain integer values encoded in two's
complement form.

Not all the registers from r0 to r15 can be used in exactly the same way { some are
reserved for special purposes { but we will not care about that for now. Just assume
what we do is correct.

2.1 Basic arithmetic

Almost every processor can do some basic arithmetic computations using the integer
registers. The same is true for ARM processors. You can ADD two registers. Let's
modify our example from the previous chapter.

1 /* -- sum01.s */
2 .global main
3 .func main
4
5 main:
6 mov r1, #3 /* r1 <- 3 */
7 mov r2, #4 /* r2 <- 4 */
8 add r0, r1, r2 /* r0 <- r1 + r2 */
9 bx lr

7

2. ARM Registers

If we assemble, compile, and run this program, the error code returned is, as expected,
7 { the sum of the 3 in register r1 and the 4 in register r2.

$./sum01 ; echo $?
7

We note immediately that the add instruction takes three registers as parameters. We
will treat this and other instructions in more detail soon but it is clear that the rst
parameter must be where the result of the addition is placed while the other two pa
rameters are the registers whose contents are to be added.

Nothing prevents us from using r0 in a more clever and ecient way.

1 /* -- sum02.s */
2 .global main
3 .func main
4
5 main:
6 mov r0, #3 /* r0 <- 3 */
7 mov r1, #4 /* r1 <- 4 */
8 add r0, r0, r1 /* r0 <- r0 + r1 */
9 bx lr

Which behaves as expected but uses only two registers instead of three which may be
an important consideration later.

$./sum02 ; echo $?
7

Projects

1. Try adding other values than just 3 and 4.

2. Can you do subtraction by adding a negative number?

3. Is a negative return code possible?

4. The term \immediate" prexed to \value" comes from the fact that small numbers
may, in some computers and assemblers, be placed within the machine instruction
and thus save a reference to memory (as described later). The \pound" or \hash"
sign (#) is used to indicate that the following actually a number. Test to see
what happens if it is omitted.

5. Rewrite sum02.s so that it does not require the C compiler.

8

3 Memory

We saw in Chapters 1 and 2 that we can move values to registers (using the mov in
struction) and add two registers (using the add instruction). If our processor were only
able to work on registers it would be rather limited.

3.1 Memory

A computer has a memory where code (.text in the assembler) and data are stored so
there must be some way to access it from the processor. A bit of digression here: In
386 and x86-64 architectures, instructions can access registers or memory, so we could
add two numbers, one of which is in memory. You cannot do this in an ARM processor
where all operands must be in registers. We can work around this problem (not really
a problem but a deliberate design decision that goes beyond the scope of this text {
but see the Project) by loading data to a register from memory and storing data from
a register to memory.

These two special operations, loading and storing, that are instructions on their own
are usually called load and store. There are several ways to load and store data from/to
memory but in this chapter we will focus on the simplest ones: LoaD to Register (ldr)
from memory and STore from Register (str) to memory.

Loading data from memory is a bit complicated because we need to talk about addresses.

3.2 Addresses

To access data in memory we need to give it a name. Otherwise we could not refer to
what piece of data we want. Fortunately, a computer does have a name for every byte
of memory. It is the address. An address is a number { in our Raspberry Pi 2 a 32-bit
number { that identies every byte (that is 8 bits) of the memory. (See Figure 3.1)

When loading or storing data from/to memory we need to compute an address. This
address can be computed in many ways. Each of this ways is called an addressing mode.
The ARM processor in a Raspberry Pi 2 has several of these addressing modes and it

9

3. Memory

will take a while to explain them all later, so here we will consider just one: addressing
through a register.

It is not by chance that the processor has integer registers of 32 bits and the addresses
of the memory are 32 bit numbers. That means that we can keep an address inside a
register. Once we have an address inside a register, we can use that register to nd the
address in memory in which to load or store some piece of data.

Figure 3.1

3.3 Data

When running a program, memory contains not only the code emitted by the assembler
(called text), but also the data to be used by the program. We were deliberately loose
when describing labels of the assembler. Now we can unveil their deep meaning: labels
in the assembler are just symbolic names for addresses in your program. These addresses
may refer either to data or code. So far we have used only one label (main) to designate
the address of our main function. A label only denotes an address, never its contents.
Bear that in mind.

We said that an assembler is a thin layer on top of the binary code. Well, that thin
layer may now look to you a bit thicker since the assembler tool (as) is left responsible
for assigning values to the addresses of the labels. This way we can use these labels and
the assembler will do some magic to make it work.

Thus, we can dene some datum and attach a label to its address. It is up to us,
as assembler programmers, to ensure that the storage referenced by the label has the
appropriate size and value.

Let's dene a 4 byte variable and initialize it to 3. We will give it the label myvar1.

10

3.4. Sections

.balign 4
myvar1:

.word 3

There are two new assembler directives in the example above: .balign and .word.
When the assembler as encounters a .balign directive with parameter 4, it ensures that
the next address will start on a 4-byte boundary. That is, the address of the next datum
emitted (either an instruction or data) will be a multiple of 4 bytes. This is important
because the ARM processor imposes some restrictions on the addresses of the data with
which you may work. This directive does nothing if the address was already aligned to
4. Otherwise the assembler will emit some padding bytes, which are not used at all by
the program, so the alignment requested is fullled. It is possible that we could omit
this directive if all the entities emitted by the assembler were 4 bytes wide (4 bytes is
32 bits), but as soon as we want to use multiple sized data this directive will become
mandatory.

Now we dene the address of myvar1. Thanks to the previous .balign directive, we
know its address will be aligned on a 4 byte boundary.

The .word directive states that the assembler should emit the value of the argument of
the directive as a 4 byte integer. In this case it will emit 4 bytes containing the value
3. Note that we rely on the fact that .word emits 4 bytes because that is dened to be
the size of a word in the ARM architecture.

3.4 Sections

Data resides in memory like code but, due to some practical technicalities that we do
not care about very much now, it is usually kept together in what is called the data
section. The .data directive tells the assembler to emit the entities in the data section.
The .text directive makes a similar thing happen for code (The .func directive made
that unnecessary in the preceding code.) So we will put data after a .data directive
and code after a .text directive.

3.5 Load

Now we shall retrieve our example from Chapter 2 and enhance it with some accesses
to memory. We rst dene two 4 byte variables myvar1 and myvar2, initialized to 3
and 4 respectively. We will load their values using ldr, and perform an addition. The
resulting error code should be 7, just as in Chapter 2.

1 /* -- load01.s */
2
3 /* -- Data section */
4 .data

11

3. Memory

5
6 /* Ensure variable is 4-byte aligned */
7 .balign 4
8 /* Define storage for myvar1 */
9 myvar1:

10 /* Contents of myvar1 is 4 bytes containing the value 3 */
11 .word 3
12
13 /* Ensure variable is 4-byte aligned */
14 .balign 4
15 /* Define storage for myvar2 */
16 myvar2:
17 /* Contents of myvar2 is 4 bytes containing the value 4 */
18 .word 4
19
20 /* -- Code section */
21 .text
22
23 /* Ensure code is 4 byte aligned */
24 .balign 4
25 .global main
26 main:
27 ldr r1, addr_of_myvar1 /* r1 <- &myvar1 */
28 ldr r1, [r1] /* r1 <- *r1 */
29 ldr r2, addr_of_myvar2 /* r2 <- &myvar2 */
30 ldr r2, [r2] /* r2 <- *r2 */
31 add r0, r1, r2 /* r0 <- r1 + r2 */
32 bx lr
33
34 /* Labels needed to access data */
35 addr_of_myvar1: .word myvar1
36 addr_of_myvar2: .word myvar2

We have a complication in the example ab ove because of limitations of the assembler
(see the Projects for a simple solution available in our assembler). As you can see there
are four ldr instructions. We will try to explain their meaning. First, though, we have
to discuss the following two labels.

34 /* Labels needed to access data */
35 addr_of_myvar1: .word myvar1
36 addr_of_myvar2: .word myvar2

These two labels are addresses of memory locations that contain the addresses of myvar1
and myvar2. You may be wondering why we need them if we already have the addresses
of our data in labels myvar1 and myvar2. A detailed explanation is a bit long, but

12

3.5. Load

what happens here is that myvar1 and myvar2 are in a dierent section { in the .data
section. That section exists so that the program can modify it. That is why variables
are kept there. On the other hand, code is not usually modied by the program (for
eciency and for security reasons). That is one reason to have two dierent sections
with dierent properties attached to them. But, we cannot directly access a symbol in
one section from another one. Thus, we need some locations in the .code section that
contain the addresses of entities in the .data section. The assembler as helps us.

When the assembler emits the binary code, .word myvar1 will not actually be the
address of myvar1 but instead it will be a relocation. A relocation is the way the
assembler emits an address, the exact value of which is unknown but will known when
the program is linked (i.e., when generating the nal executable). It is like saying \I
have no idea where this variable will actually be, let the linker patch this value for me
later". So this addr_of_myvar1 will be used instead. The address of addr_of_myvar1
is in the same .text section. That value will be patched by the linker during the
linking phase (when the nal executable is created and it knows where all the entities
of our program will denitely be laid out in memory). This is why the linker (invoked
internally by the C compiler gcc) is called ld . It stands for Link eDitor.

27 ldr r1, addr_of_myvar1 /* r1 <- &myvar1 */
28 ldr r1, [r1] /* r1 <- *r1 */

Again, there are two loads. The rst one in line 27 actually loads the relocation value
of the address of myvar1. That is, there is some data in memory, the address of which
is addr_of _myvar1, with a size of 4 bytes containing the real address of myvarl. After
the rst ldr, in r1 we have the real address of myvar1. But we do not want the address
at all, but the contents of the memory at that address, thus we do a second ldr.

Figure 3.2

13

3. Memory

The two loads obviously have dierent syntaxes. The rst ldr uses the symbolic address
of addr_of_myvar1 label. The second Idr uses the value stored in the register as the
addressing mode. So, in the second case we are using the value inside r1 as the address
as indicated by the square brackets. In the rst case, we do not actually know what the
assembler uses as the addressing mode, so we will ignore it for now.

The program nally loads the two 32 bit values from myvar1 and myvar2, that had
initial values 3 and 4, adds them, and sets the result of the addition as the error code
of the program in the r0 register just before leaving main.

$./load01 ; echo $?
7

3.6 Store

We now take the previous example but instead of setting the initial values of myvar1
and myvar2 to 3 and 4 respectively, we will set both to 0. We will then reuse the existing
code but prepend some assembler code to store the 3 and 4 in the variables.

1 /* -- store01.s */
2
3 /* -- Data section */
4 .data
5
6 /* Ensure variable is 4-byte aligned */
7 .align 4
8 /* Define storage for myvar1 */
9 myvar1:

10 /* Contents of myvar1 is just '0' */
11 .word 0
12
13 /* Ensure variable is 4-byte aligned */
14 .align 4
15 /* Define storage for myvar2 */
16 myvar2:
17 /* Contents of myvar2 is just '0' */
18 .word 0
19
20 /* -- Code section */
21 .text
22
23 /* Ensure code section starts 4 byte aligned */

14

3.7. Programming style

24 .balign 4
25 .global main
26 main:
27 ldr r1, addr_of_myvar1 /* r1 <- &myvar1 */
28 mov r3, #3 /* r3 <- 3 */
29 str r3, [r1] /* *r1 < r3 */
30 ldr r2, addr_of_myvar2 /* r2 <- &myvar2 */
31 mov r3, #4 /* r3 <- 4 */
32 str r3, [r2] /* *r2 < r3 */
33
34 /* Same instructions as above */
35 ldr r1, addr_of_myvar1 /* r1 <- &myvar1 */
36 ldr r1, [r1] /* r1 <- *r1 */
37 ldr r2, addr_of_myvar2 /* r2 <- &myvar2 */
38 ldr r2, [r2] /* r2 <- *r2 */
39 add r0, r1, r2
40 bx lr
41
42 /* Labels needed to access data */
43 addr_of_myvar1: .word myvar1
44 addr_of_myvar2: .word myvar2

Note an important oddity in the str instructions in lines 29 and 32 of this code. The
destination operand of the instruction is not the rst operand. Instead the rst operand
is the source register and the second operand is the destination register.

$./store01; echo $?
7

3.7 Programming style

While the code emitted by the assembler will probably remain the same, the style with
which one programs can have an eect. First of all, most programming is done in
an environment in which many programmers work together and so have to read other
people's code. Assembler is notoriously hard to read so many comments are appropriate.
In order to encourage having a comment on almost every line of assembler code, the
as assembler (and most others) makes available another form of comment. Everything
following the \at" symbol (@) is ignored by the assembler. This is the preferred
method of making comments, leaving the /* . . . */ construct for multiline or
special comments.

Another simplication is made available to the programmer by the as assembler. Just
as compilers usually do more than just compile code, assemblers often do much more
than just translate mnemonics into code. For example, the need to obtain the address of

15

3. Memory

data in the .data section happens so often that a special symbol is used for that rather
than the cumbersome method outlined above. If one refers to =myvar in, say, a load
(ldr) operation, all that relocation and other duties are taken care of by the assembler
and there is no need for the extra labels as we used in lines 43 and 44.

There are other assumptions one can usually make about what the assembler does. For
example, we would expect that both the .data and the .text sections are started on
4-byte boundaries, at least. In addition, if we know that the datum for which space is
being reserved takes exactly four bytes, we don't have to bother telling the assembler
the redundant directive .balign again and again.

Here is a version of the same program that we will use in the next chapter.

1 /* -- store02.s */
2 .data
3 myvar1: .word 0
4 myvar2: .word 0
5 .text
6 .global main
7 main:
8 ldr r1, =myvar1 @ r1 <- &myvar1
9 mov r3, #3 @ r3 <- 3

10 str r3, [r1] @ *r1 <- r3
11 ldr r2, =myvar2 @ r2 <- &myvar2
12 mov r3, #4 @ r3 <- 4
13 str r3, [r2] @ *r2 <- r3
14 ldr r1, =myvar1 @ r1 <- &myvar1
15 ldr r1, [r1] @ r1 <- *r1
16 ldr r2, =myvar2 @ r2 <- &myvar2
17 ldr r2, [r2] @ r2 <- *r2
18 add r0, r1, r2
19 bx lr

Even more simplication is possible. If we are careful, we might notice times in which
the contents of a register are not changed between two commands and so reloading the
register is not necessary. We will not go that far yet (but see the Projects).

Note: If the company for which you work has standards, follow them carefully. Other
employees (and your boss) will expect your code to meet those standards.

Note: Try to avoid using any \tricks" in your code. If you feel you must, at least
document them very explicitly. Even if you think no one else will ever see your code,
you will forget what you did by tomorrow.

Note: Be careful about using any special knowledge you have about the hardware,
operating system, or compiler (or assembler) on your system. When a new and im

16

3.7. Programming style

proved version of the operating system is installed, any \undocumented" features may
disappear. The same is true about all software. If your company changes hardware -
what will happen to your code?

Projects

1. Test to see if the .balign directive is really needed at the beginning of either the
.data or the .text sections in store01.s.

2. Between lines 5 and 6 in store01.s, add the line

S: .asciz "string"
and see what happens. Is it dierent if "string" is replaced by "string!"? [Note:
The directive .asciz actually means emit the string of characters in its parameter
using the ASCII encoding and terminating it with zero (null) character as used in
the C language.]

3. Look up the denition and history of the Reduced Instruction Set Computer
(RISC). In addition, consider the design decision made by the inventors to limit
access to memory to the load and store operations. Investigate the relative speeds
of programs that highly access memory to those that do not.

4. Explain why the instructions in lines 35 and 37 of store01.s are not necessary
(try it out). Can lines 14 and 16 be eliminated in store02.s?

17

4 Debugging

As we learn the foundations of ARM assembler language programming, our examples
will become longer and longer. Since it is easy to make mistakes, it is worth learning how
to use the GNU Debugger gdb to debug your assembler code. If you have developed
C/C++ programs in Linux and have never used gdb, shame on you. If you know gdb
this small chapter will explain to you how to debug assembler directly.

4.1 gdb

We will use the example store02 from Chapter 3. Start gdb specifying the program
you are going to debug. We will show the results from one run on our system. Similar
responses will be had by your program using the Raspberry Pi or the QEMU emulator
but some of the numbers may change slightly.

$ gdb --args ./store02
GNU gdb (GDB) 7.4.1-debian
Copyright (C) 2012 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later

<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "arm-linux-gnueabihf".
For bug reporting instructions, please see:
<htp://www.gnu.org/software/gdb/bugs/> ...
Reading symbols from /home/RPiA/Chapter03/store02 ... done.
(gdb)

We are in the interactive mode of gdb. In this mode you communicate with gdb using
commands. There is a builtin help command called help. Or you can check the GNU
Debugger Documentation

http://sourceware.org/gdb/current/onlinedocs/gdb/ .

The rst command to learn is

19

http://gnu.org/licenses/gpl.html
htp://www.gnu.org/software/gdb/bugs/
http://sourceware.org/gdb/current/onlinedocs/gdb/

4. Debugging

(gdb) quit

Ok, now start gdb again. The program is not running yet. In fact gdb will not be able
to tell you many things about it since it does not have any debugging information. But
that is ne, we are debugging assembler, so we do not need much debugging information.
As a rst step let's start the program.

(gdb) start
Temporary breakpoint 1 at 0x8394 : file store02.s, line 14.
Starting program: /home/RPiA/Chapter03/store02

Temporary breakpoint 1, main () at store02.s : 9
9 mov r3, #3 @ r3 <- 3

This tells us that, gdb ran our program up to and including the rst instruction main
(note that some systems may not execute the rst instruction). This is great because
we have skipped all the initialization steps of the C library and have only run the rst
instruction of our main function. Let's see what's there. We will use the disassemble
command to translate the binary code back into assembler code.

(gdb) disassemble
Dump of assembler code for function main:

0x00008390 <+0>: ldr r1, [pc, #40] ; 0x83c0 <main+48>
=> 0x00008394 <+4>: mov r3, #3

0x00008398 <+8>: str r3, [r1]
0x0000839c <+12>: ldr r2, [pc, #32] ; 0x83c4 <main+52>
0x000083a0 <+16>: mov r3, #4
0x000083a4 <+20>: str r3, [r2]
0x000083a8 <+24>: ldr r1, [pc, #16] ; 0x83c0 <main+48>
0x000083ac <+28>: ldr r1, [r1]
0x000083b0 <+32>: ldr r2, [pc, #12] ; 0x83c4 <main+52>
0x000083b4 <+36>: ldr r2, [r2]
0x000083b8 <+40>: add r0, r1, r2
0x000083bc <+44>: bx lr
0x000083c0 <+48>: andeq r0,r1,r4,ror #10
0x000083C4 <+52>: andeq r0,r1,r8,ror #10

End of assembler dump.

This is very complicated but gives us a great deal of information. First, we see that
our program main has been placed in memory at location 0x00008390. Next, the rst
instruction in our code was ldr r1, =myvar1 but that has been linked to the actual
address of myvar1 at 0x83c0 which is 48 bytes from where main begins. Down there
we see a strange instruction (andeq r0,r1,r4,ror #10) right after the last of our code
instructions (bx lr). Had we continued with store01.s instead, we would remember
that there were two more things in the .code section: places to keep the real addresses
of myvar1 and myvar2. The assembler has actually done that for us but the debugger -

20

4.1. gdb

that can't know everything - has just translated those addresses into presumed assembler
code for some instructions.

Later we will also consider those addresses of the form [pc, #40] that are \pc-relative"
addressing.

There is an arrow => pointing to the instruction we are going to run (it has not been
run yet). Before running it, let's inspect some registers. The commands should be
self-explanatory (but the results may dier slightly on other systems).

(gdb) info registers r0 r1 r2 r3
r0 0x1 1
r1 0x10564 66916
r2 0xbefff86c 3204445692
r3 0x8390 33680

We see that the contents of the registers are given to us both in hex and decimal. We
can modify registers using p which means print but also evaluates side eects. For
instance, the following sets the value of register r0 to 2 and prints the result.

(gdb) p $r0 = 2
$1 = 2

gdb has printed $1, this is the counter it uses for the printed result and we can use it
when needed, so we can skip some typing. The numbering system is not very useful
now but it may be when we print a complicated expression.

Now we can again look at the registers (one could up-arrow twice).

(gdb) info registers r0 r1 r2 r3
r0 0x2 2
r1 0x10564 66916
r2 0xbefff86c 3204445692
r3 0x8390 33680

(gdb) p $1
$2 = 2

Now we could also use $2 to denote the second printed result, and so on. Now it is time
to run the second instruction and halt again.

(gdb) stepi
10 str r3, [r1] @ *r1 <- r3

In order to see what happened, let's use disassemble, again.

21

4. Debugging

(gdb) disassemble
Dump of assembler code for function main:

0x00008390 <+0>:
0x00008394 <+4>:

ldr r1,
mov r3,

[pc,
#3

#40] ; 0x83c0 <main+48>

=> 0x00008398 <+8>: str r3, [r1]
0x0000839c <+12>: ldr r2, [pc, #32] ; 0x83c4 <main+52>
0x000083a0 <+16>: mov r3, #4
0x000083a4 <+20>: str r3, [r2]
0x000083a8 <+24>: ldr r1, [pc, #16] ; 0x83c0 <main+48>
0x000083ac <+28>: ldr r1, [r1]
0x000083b0 <+32>: ldr r2, [pc, #12] ; 0x83c4 <main+52>
0x000083b4 <+36>: ldr r2, [r2]
0x000083b8 <+40>: add r0, r1, r2
0x000083bc <+44>: bx lr
0x000083c0 <+48>: andeq r0,r1,r4,ror #10
0x000083c4 <+52>: andeq r0,r1,r8,ror #10

End of assembler dump.

Again, let's see what happened in the registers.

(gdb) info registers r0 r1 r2 r3
r0 0x2 2
r1 0x10564 66916
r2 0xbefff86c 3204445692
r3 0x3 3

That is exactly what we expected from the instruction mov r3, #3. Register r3 now
contains the number 3. Now let's perform the next instruction.

(gdb) stepi
11 ldr r2, =myvar2 @ r2 <- &myvar2

Let's see what happened in register r1.

(gdb) info register r1
r1 0x10564 66919

Great, it has changed. In fact this is the address of myvar1. Let's check that using its
symbolic name and C syntax.

(gdb) p &myvar1
$3 = (<data variable, no debug info> *) 0x10564

That again agrees with our expectations! In addition we can see what is in that variable:

(gdb) p myvar1
$4 = 3

22

4.1. gdb

Perfect. This was as expected since in this example we set zero as the initial value of
myvar1 and then stored the number 3 there in this last instruction.

Now let us run until the end.

(gdb) continue
Continuing.
[Inferior 1 (process 2899) exited with code 07]

Which is, of course, the return code we wanted.

Projects

1. Step through more instructions of our program.

2. Download some manuals or quick reference cards from the web for future use.
Look up other commands for gdb.

3. Look at memory locations in the .data section.

4. The ability to set breakpoints in gdb is very helpful. Note that when we give the
disassemble command we see on the left the addresses of the commands. In later
work we will call on C functions for such things as reading and writing and we
will not want to stepi through the code for those functions when debugging our
code. By setting breakpoints we can have the debugger stop right after performing
the action and see what's in the registers or memory. Try setting and removing
breakpoints from your code.

23

5 Branching

Until now our small assembler programs execute one instruction after the other. If our
ARM processor were only able to run this way it would be of limited use. It could not
react to existing conditions which may require dierent sequences of instructions. That
is the purpose of the branch instructions.

5.1 A special register

In Chapter 2 we learned that our Raspberry Pi 2 ARM processor has 16 integer general
purpose registers and we also said that some of them play special roles in our program.
We deliberately ignored which registers were special as it was not relevant at that time.

But now it is relevant, at least for register r15. This register is very special, so special it
also has another name: pc. It is unlikely that you see it termed r15 since it is confusing
(although correct from the point of view of the ARM architecture). From now on we
will only use pc to name it.

pc stands for Program Counter. In general, the pc register (sometimes called the
instruction pointer in other architectures like the 386 or x86_64) contains the address
of the next instruction expected to be executed.

When the ARM processor executes an instruction, two things may happen during its
execution. If the instruction does not modify the pc (and most instructions do not),
the pc is just incremented by 4 (as if we did add pc, pc, #4). Why 4? Because in
the ARM architecture, instructions are 32 bits or 4 bytes wide, and so there are 4 bytes
between every two instruction addresses. If the instruction modies the pc then the
new value for the pc is used to address the next instruction instead.

Once the processor has fully executed an instruction, it uses the value in the pc as
the address for the next instruction to execute. This way, an instruction that does not
modify the pc will be followed by the next contiguous instruction in memory (since it has
been automatically increased by 4). This is called implicit sequencing of instructions:
after one has run, usually the next one in memory runs. But if an instruction does
modify the pc; for instance to a value other than pc + 4, then we can be running a
dierent instruction of the program. This process of changing the value of pc is called

25

5. Branching

branching. In our processor this done using branch instructions.

5.2 Unconditional branches

You can tell the processor to branch unconditionally by using the instruction b (for
Branch) and a label. Consider the following program.

/* -- branch01.s */
.text
.global main
main:

mov r0, #2 @ r0 <- 2
b end @ branch to 'end'
mov r0, #3 @ r0 <- 3

end:
bx lr

If you execute this program you will see that it returns an error code of 2.

$./branch01 ; echo $?
2

What happened is that instruction b end branched (modifying the pc register) to the
instruction at the label end, which is bx lr, the instruction we execute at the end of
our program. This way the instruction mov r0, #3 was not actually executed at all
(the processor jumped over that instruction).

At this point the unconditional branch instruction b may look a bit useless but that is
not the case. In fact this instruction is essential in some contexts; in particular, when
linked with conditional branching. But before we can talk about conditional branching
we need to talk about conditions.

5.3 Conditional branches

If our processor were only able to branch when we put the unconditional branch b in
our program, it would not be very useful. It is much more useful to branch when some
condition is met. So a processor should be able to evaluate some sort of conditions.

Before continuing, we need to unveil another register called the cpsr (for Current Pro
gram Status Register). This register is a bit special and directly modifying it is out of
the scope of this chapter. That said, it keeps some values that can be read and updated
when executing an instruction. The contents of that register include four condition code
bits, called ags, named N (Negative), Z (Zero), C (Carry) and V (oVerow). These

26

5.3. Conditional branches

four condition code ags are usually read by branch instructions. Arithmetic instruc
tions and special testing and comparison instructions can update these condition codes
too if requested.

The semantics of these four condition codes in instructions updating the cpsr are
roughly the following:

N Will be enabled (N == 1) if the result of the instruction yields a negative number
and will be disabled (N == 0) otherwise.

Z Will be enabled (Z == 1) if the result of the instruction yields a zero value and will
be disabled (Z == 0) if nonzero.

C Will be enabled if the result of the instruction is a value that requires a 33rd bit to
be fully represented. For instance an addition that overows the 32 bit range of
integers. There is a special case for C and subtractions where a non-borrowing
subtraction enables it, and it is disabled otherwise: subtracting a larger number
from a smaller one enables C, but it will be disabled if the subtraction is done in
the other order.

V Will be enabled if the result of the instruction yields a value that cannot be repre
sented in 32 bit two's complement form and will be disabled otherwise.

So we have all the pieces needed to perform branches conditionally. But rst, let's
start comparing two values. We use the instruction cmp, standing for CoMPare, for this
purpose.

cmp r1, r2 /* updates the cpsr by doing "r1 - r2",
but r1 and r2 are not modified */

This instruction subtracts the value in the second register from the value in the rst
register setting the ags as appropriate. Consider the following examples of what could
happen in the comparison instruction above?

If r2 had a value (strictly) greater than r1 then N would be enabled because r1-r2
would yield a negative result.

If r1 and r2 had the same value, then Z would be enabled because r1-r2 would be
zero.

If r1 was 1 and r2 was 0 then r1-r2 would not borrow, so in this case C would
be enabled. If the values were swapped (r1 was 0 and r2 was 1) then C would be
disabled because the subtraction does borrow.

27

5. Branching

If r1 was 2147483648 (the largest positive integer in 32 bit two's complement) and
r1 was -1 then r1-r2 would be 2147483649 but such a number cannot be represented
in 32 bit two's complement, so V would be enabled to signal this.

The following mnemonics are available to help us use the condition codes in the cpsr:

EQ (equal) When Z is enabled (Z is 1)

NE (not equal) When Z is disabled (Z is 0)

GE (greater than or equal in two's complement) When both V and N are enabled or disabled
(V is N)

LT (lower than in two's complement) This is the opposite of GE, so when V and N are not
both enabled or disabled (V is not N)

GT (greater than in two's complement) When Z is disabled and N and V are both enabled
or disabled (Z is 0, N is V)

LE (less than or equal in two's complement) When Z is enabled or if not that, N and V are
both enabled or disabled (Z is 1. If Z is not 1 then N is V)

MI (minus/negative) When N is enabled (N is 1)

PL (plus/positive or zero) When N is disabled (N is 0)

VS (overow set) When V is enabled (V is 1)

VC (overow clear) When V is disabled (V is 0)

HI (higher) When C is enabled and Z is disabled (C is 1 and Z is 0)

LS (lower or same) When C is disabled or Z is enabled (C is 0 or Z is 1)

CS/HS (carry set/higher or same) When C is enabled (C is 1)

CC/LO (carry clear/lower) When C is disabled (C is 0)

These conditions can be appended to our b instruction to generate new instructions.
Thus, beq will branch only if Z is 1 (enabled); bne will branch only if Z is 0 (disabled);
etc. If the condition of a conditional branch is not met, then the branch is ignored and
the next instruction will be run. It is the programmer's task to make sure that the
condition codes are properly set prior to a conditional branch.

1 /* -- compare01.s */
2 .text
3 .global main
4 main:
5 mov r1, #2
6 mov r2, #2
7 cmp r1, r2

@ r1 <- 2
@ r2 <- 2
@ update cpsr condition codes with r1-r2

28

5.3. Conditional branches

8 beq case_equal @ branch to case_equal only if Z = 1
9 case_different:

10 mov r0, #2 @ r0 <- 2
11 b end @ branch to end
12 case_equal:
13 mov r0, #1 @ r0 <- 1
14 end:
15 bx lr

If you run this program it will return an error code of 1 because both r1 and r2 have the
same value. Now change mov r1, #2 in line 5 to be mov r1, #3 and the returned error
code should be 2. Note that after case_different we do not want to run the case_equal
instructions, thus we have to branch to end (otherwise the error code would always be
1).

Projects

1. Try out every one of the above mnemonics in the compare01 program with dierent
values for the immediate values!

2. Consider what you have to do if you want to change your code from using GE to
LT.

3. There is a bal instruction which stands for Branch ALways. Compare it with b
and try to give a reason for its existence.

4. In addition to the cmp instruction, the ARM has other compare-like instructions.
One example is cmn which is CoMpare Negative. Investigate the use of this and
other test-like instructions.

29

6 Control structures

In the previous chapter we learned about branch instructions. They are really powerful
tools because they allow us to express control structures. Structured programming
is an important milestone in better computing engineering so being able to map all
the usual structured programming constructs in assembler, in our processor, is a Good
ThingTM.

6.1 If, then, else

This is one of the most basic control structures. In fact, we already used this structure
in the previous chapter. Consider the following structure, where E is an expression and
S1 and S2 are statements (they may be compound statements like f SA; SB; SC; g)

if (E) then
S1

else
S2

A possible way to express this in ARM assembler could be the following

if_eval:
/* Assembler that evaluates E and updates the cpsr accordingly */

bXX else_part /* Here XX is the appropriate condition */
then_part:

/* assembler code for S1, the "then" part */
b end_of_if

else_part:
/* assembler code for S2, the "else" part */

end_of_if:

If there is no else_part statement, we can replace bXX else_part with bYY end_of_if
and omit the b end_of_if and the next two lines.

31

6. Control structures

6.2 Loops

This is another basic control structure in structured programming. While there are
several types of loops, actually all can be reduced to the following structure.

while (E)
S

Supposedly S executes some instructions so than E eventually becomes false and the
loop is left. Otherwise we would stay in the loop forever (sometimes this is what you
want but not in our examples). A way to implement these loops is as follows.

while_condition:
/* assembler code to evaluate E and update cpsr */
bXX end_of_loop /* If E is false, leave the loop right now */
/* assembler code for the statement S */
b while_condition /* Unconditional branch to the beginning */

end_of_loop:

A common loop involves iterating over a single range of integers, as in

for (i = L; i < N; i += K)
S

But this is nothing but

i = L;
while (i < N)
{

S;
i += K;

}

So we do not have to learn a new way to implement the loop itself.

6.3 1 + 2 + 3 + 4 + + 22

As a rst example let's sum all the numbers from 1 to 22 (it will be explained shortly
why we chose 22). The result of the sum is 253 (check it with a calculator). Of course it
makes little sense to compute something the result of which we know already, but this
is just an example.

01 /* -- loop01.s */
02 .text
03 .global main

32

6.3. 1 + 2 + 3 + 4 + + 22

22
22 to end

04 main:
05 mov r1, #0 @ r1 <- 0
06 mov r2, #1 @ r2 <- 1
07 loop:
08 cmp r2, #22 @ compare r2 and
09 bgt end @ branch if r2 >
10 add r1, r1, r2 @ r1 <- r1 + r2
11 add r2, r2, #1 @ r2 <- r2 + 1
12 b loop
13
14
15

end:
mov
bx

r0, r1
lr

r0 <- r1

Here
see in line 6 we initialize it to 1. The sum will be accumulated in register r1 and at the
end of the program we move the contents of r1 into r0 to return the result of the sum
as the error code of the program (we could have used r0 in all the code and avoided
this nal mov but we think it might be clearer this way).

we are counting from 1 to 22. We will use register r2 as the counter. As you can

@

In line 8 we compare r2 (remember, that is the counter that will go from 1 to 22) to
22. This will update the cpsr so that we can check in line 9 if the comparison was such
that r2 was greater than 22. If this is the case, we end the loop by branching to end.
Otherwise we add the current value of r2 to the current value of r1 (remember, in r1
we accumulate the sum from 1 to 22).

Line 11 is an important one. We increase the value of r2, because we are counting from
1 to 22 and we already added the current counter value in r2 to the result of the sum
in r1. Then at line 12 we branch back at the beginning of the loop. Note that if line
11 was not there we would hang as the comparison in line 8 would always be false and
we would never leave the loop in line 9!

$./loop01; echo $?
253

Now you could change the value in line 8 and try the program with, say, #100. The
result should be 5050.

$./loop01; echo $?
186

What happened? Well, it happens that in Raspbian the error code of a program is a
number from 0 to 255 (8 bits). If the result is 5050, only the lower 8 bits of the number
are used. 5050 in binary is 1001110111010, its lower 8 bits are 10111010 which is exactly
186. How can we check that the computed r1 is 5050 before ending the program? Let's
use gdb and display the rst 9 instructions with disassemble.

33

6. Control structures

$ gdb loop01
...
(gdb) start
Temporary breakpoint 1 at 0x8390
Starting program: /home/RPiA/chapter07/loop01

Temporary breakpoint 1, 0x00008390 in main ()
(gdb) disas main,+(9*4)
Dump of assembler code from 0x8390 to 0x83b4:

0x00008390 <main+0>: mov r1, #0
0x00008394 <main+4>: mov r2, #1
0x00008398 <loop+0>: cmp r2, #100 ; 0x64
0x0000839c <loop+4>: bgt 0x83ac <end>
0x000083a0 <loop+8>: add r1, r1, r2
0x000083a4 <loop+12>: add r2, r2, #1
0x000083a8 <loop+16>: b 0x8398 <loop>
0x000083ac <end+0>: mov r0, r1
0x000083b0 <end+4>: bx lr

End of assembler dump.

Now that we know exactly where the instruction mov r0, r1 is, we may tell gdb to stop
at 0x000083ac, right before executing that instruction. Here's how to do it:

(gdb) break *0x000083ac
(gdb) cont
Continuing.

Breakpoint 2, 0x000083ac in end ()
(gdb) disas
Dump of assembler code for function end:
=> 0x000083ac <+0>: mov r0, r1

0x000083b0 <+4>: bx lr
End of assembler dump.
(gdb) info register r1
r1 0x13ba 5050

Great, this is what we expected. r1 actually contains 5050 but we could not see it due
to the limit in the size of the error code.

Maybe you have noticed that something odd happens with our labels being identied
as functions. We will address this issue in a future chapter, but it is mostly harmless
here.

34

6.4. 3n + 1

6.4 3n + 1

Let's consider a bit more complicated example. This will be the famous 3n + 1 problem
(also known as the Collatz conjecture). Given a number n we will divide it by 2 if it
is even and multiply it by 3 and add one if it is odd.

if (n % 2 == 0)
n = n / 2;

else
n = 3*n + 1;

Before continuing, we should note that our ARM processor is able to multiply two
numbers together but we would have to learn about a somewhat complicated new in
struction (mul) which would detour us a bit. Instead we will use the following identity
3n = 2n+n. We learned how to multiply or divide by two in Appendix B (using shifts).

The Collatz conjecture states that, for any number n, repeatedly applying this procedure
will eventually give us the number 1. Theoretically it could happen that this is not the
case: that there is a number for which the procedure never reaches 1. So far, no such
number has been found, but it has not been proven that one does not exist. If we want
to apply the previous procedure repeatedly, our program is to do something like this.

n= ...;
while (n != 1)
{

if (n % 2 == 0) n = n / 2;
else n = 3*n + 1;

}

If the Collatz conjecture were false, there would exist some n for which the code above
would hang, never reaching 1. But as we said, no such number has been found.

1 /* -- collatz.s */
2 .text
3 .global main
4 main:
5 mov r1, #123 @ r1 <- 123 a trial number
6 mov r2, #0 @ r2 <- 0 the # of steps
7 loop:
8 cmp r1, #1 @ compare r1 and 1
9 beq end @ branch to end if r1 == 1

10
11 and r3, r1, #1 @ r3 <- r1 & 1 [mask]
12 cmp r3, #0 @ compare r3 and 0
13 bne odd @ branch to odd if r3 != 0

35

6. Control structures

14 even:
15 mov r1, r1, ASR #1 @ r1 <- (r1 >> 1) [divided by 2]
16 b end_loop
17 odd:
18 add r1, r1, r1, LSL #1 @ r1 <- r1 + (r1 << 1) [3n]
19 add r1, r1, #1 @ r1 <- r1 + 1 [3n+1]
20
21 end_loop:
22 add r2, r2, #1 @ r2 <- r2 + 1
23 b loop @ branch to loop
24
25 end:
26 mov r0, r2 @ number of steps
27 bx lr

In r1 we will keep the current value of the number n. In this case we will start with
the number 123. 123 reaches 1 in 46 steps: [123, 370, 185, 556, 278, 139, 418, 209, 628,
314, 157, 472, 236, 118, 59, 178, 89, 268, 134, 67, 202, 101, 304, 152, 76, 38, 19, 58, 29,
88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]. We will count the number
of steps in register r2. So we initialize r1 with 123 and r2 with 0 (no step has been
performed yet).

At the beginning of the loop, in lines 8 and 9, we check if r1 is 1. We compare it to 1
and if they are equal we leave the loop by branching to end.

Now that we know that r1 is not 1, we proceed to check if it is even or odd. To do this
we use a new instruction which performs a bitwise and operation. An even number will
have its least signicant bit (LSB) equal to 0, while an odd number will have the LSB
equal to 1. So a bitwise and using the mask #1 will return 0 or 1 indicating even or
odd numbers, respectively. In line 11 we keep the result of the bitwise and in register
r3 and then, in line 12, we compare it to 0. If it is not zero we branch to the label odd,
otherwise we continue on to the even case.

Now some magic happens in line 15. This is a combined operation that ARM allows us
to do. This is a mov but we do not move the value of r1 directly to r1 (which would
be doing nothing) but rst we apply the operation Arithmetic Shift Right (ASR) to the
value of r1 (to the value, not changing the register itself). Then this shifted value is
moved to the register r1. As described in Appendix B, an arithmetic shift right shifts
all the bits of a register to the right: the rightmost bit is eectively discarded and the
leftmost is set to the same value as the leftmost bit prior the shift. Shifting a number
right one bit is the same as dividing that number by 2. So this mov r1, r1, ASR #1 is
actually doing the integer operation r1 <- r1 / 2; .

Some similar magic happens for the even case in line 18. In this case we are doing an
add. The rst and second operands must be registers (destination operand and the rst

36

6.4. 3n + 1

source operand). The third operand (the second source operand) is combined with a
Logical Shift Left (LSL). The value of the operand is shifted left 1 bit: the leftmost bit
is discarded and the rightmost bit is set to 0. This is eectively multiplying the value
by 2. So we are adding r1 (which holds the value of n) to 2*r1. This is 3*r1, so 3 n.
We keep this value in r1 again. In line 19 we add 1 to that value, so r1 ends up having
the value 3n + 1 that we wanted.

In the next chapter we will treat the shift operators LSL and ASR in more detail.

Finally, at the end of the loop, in line 22 we update r2 (remember it keeps the counter
of our steps) and then we branch back to the beginning of the loop. Before ending the
program we move the counter to r0 so we return the number of steps we used to reach
1.

$./collatz; echo $?
46

Projects

1. Look up the original denition of the IF statement in FORTRAN. Since it had no
else clause, show how the unconditional branch (b) was necessary. Comment on
how that translates into the goto statement whose existance was highly criticized
in software engineering circles. Note that Java, while it does not have a goto
statement, reserves the word so that it cannot be used as an identier but is kept
just in case there is such a statement added to the language someday.

2. Rewrite the if eval: code in our first example so that the else clause precedes
the if clause.

3. Note that both the while and the for statements test the condition before per
forming the loop body. Compare that to the until statement that always tries
to perform the loop body at least once. Note that the original construct in FOR
TRAN always performed the body at least once, even if the condition failed.
Rewrite a general until statement using a while statement instead.

4. Try out the Collatz conjecture with some larger numbers. Do you think you can
start with any number?

5. Can you think of any reason not to use r0 to hold the count in code collatz.s?
If not, rewrite the code and test it.

Postscript

Kevin Millikin rightly pointed that usually a loop is not implemented in the way shown
above. He recommends a better way to do the loop of loop01.s as follows.

37

6. Control structures

1 /* -- loop02.s */
2 .text
3 .global main
4 main:
5 mov r1, #0
6 mov r2, #1
7 b check_loop
8 loop:
9 add r1, r1, r2

10 add r2, r2, #1
11 check_loop:
12 cmp r2, #22
13 ble loop
14 end:
15 mov r0, r1
16 bx lr

@ r1 <- 0
@ r2 <- 1
@ unconditionally jump to end of loop

@ r1 <- r1 + r2
@ r2 <- r2 + 1

@ compare r2 and 22
@ if r2 <= 22 goto beginning of loop

@ r0 <- r1

If you count the number of instruction in the two codes, there are 9 instructions in
both. But if you look carefully at Kevin's proposal you will see that by unconditionally
branching to the end of the loop, and reversing the condition check, we can skip one
branch thus reducing the number of instructions of the loop itself from 5 to 4. One of
the recommendations for good programming practices in any language has always been
to have as few instructions within a loop as possible.

There is another advantage of this second version, though: there is only one branch in
the loop itself as we resort to implicit sequencing to reach again the two instructions
performing the check. For reasons beyond the scope of this chapter, the execution of a
branch instruction may negatively aect the performance of our programs. Processors
have mechanisms to mitigate the performance loss due to branches (and in fact the
processor in the Raspberry Pi does have them). However, avoiding a branch instruction
entirely avoids the potential performance penalization of executing a branch instruction.

While we do not care very much now about the performance of the code our assembler
emits, we will return to this question when we look at pipelining. However, it is worth
starting to think about that problem.

38

7 Addressing modes

The ARM architecture has been targeted for embedded systems. Embedded systems
usually end up being used in massively manufactured products (dishwashers, mobile
phones, TV sets, etc.). In this context margins are very tight so a designer will always
try to use as few components as possible (a cent saved in hundreds of thousands or even
millions of appliances may pay o). One relatively expensive component is memory
although every day memory is less and less expensive. Anyway, in constrained memory
environments being able to save memory is good and the ARM instruction set was
designed with this goal in mind. It will take us several chapters to learn all of these
techniques. In this chapter we will start with one feature usually named shifted operand.

7.1 Indexing modes

We have seen that, except for load (ldr), store (str) and branches (b and bXX), ARM
instructions take as operands either registers or immediate values. We have also seen
that the rst operand is usually the destination register (where str is a notable exception
as there it plays the role of source because the destination is now the memory). The
instruction mov has another operand, a register or an immediate value. Arithmetic
instructions like add and logical instructions like and (and many others) have two source
registers, the rst of which is always a register and the second can be a register or an
immediate value.

These sets of allowed operands in instructions are collectively called indexing modes.
This concept will look a bit unusual since we will not index anything. The name indexing
makes sense in memory operands but ARM instructions, except load and store, do not
have memory operands. This is the nomenclature you will nd in ARM documentation
so it seems sensible to use theirs.

We can summarize the syntax of most of the ARM instructions in the following pattern

instruction Rdest, Rsource1, source2

There are some exceptions, mainly move (mov), branches, loads and stores. In fact move
is not so dierent actually.

mov Rdest, source2

39

7. Addressing modes

Both Rdest and Rsource must be Registers. In the next section we will talk about
source2.

We will discuss the indexing modes of load and store instructions in the next chapter.
Branches, on the other hand, are surprisingly simple and their single operand is just a
label in our program, so there is little to discuss on indexing modes for branches.

7.2 Shifted operand

What is this mysterious source2 in the instruction patterns above? As you recall, in
the previous chapters we have used registers or immediate values. So at least source2
can be one of these: a register or an immediate value. You can use an immediate or a
register where a source2 is expected. Some examples follow, but we have already used
them in the examples of previous chapters.

mov r0, #1
mov r1, r2
add r3, r4, r5
add r6, r7, #4

But source2 can be much more than just a simple register or an immediate. In fact,
when it is a register we can combine it with a shift operation. We already saw one of
these shift operations in Chapter 6 in the Collatz program. Now it is time to unveil all
of them.

LSL #n Logical Shift Left. Shifts bits n times left. The n leftmost bits are lost and
the n rightmost are set to zero.

LSL Rsource3 Like the previous one but instead of an immediate value the lower byte
of the register species the amount of shifting.

LSR #n Logical Shift Right. Shifts bits n times right. The n rightmost bits are lost
and the n leftmost bits are set to zero,

LSR Rsource3 Like the previous one but instead of an immediate value the lower byte
of the register species the amount of shifting.

ASR #n Arithmetic Shift Right. Like LSR but the leftmost bit before shifting is used
instead of zero in the n leftmost ones.

ASR Rsource3 Like the previous one but instead of an immediate value the lower
byte of the register species the amount of shifting.

ROR #n ROtate Right. Like LSR but the n rightmost bits are not lost but pushed
onto the n leftmost bits

40

7.2. Shifted operand

ROR Rsource3 Like the previous one but instead of an immediate value the lower
byte of the register species the amount of shifting.

In the listing above, n is an immediate integer between 1 and 31. These extra operations
may be applied to the value in the second source register (to the value, not to the register
itself) so we can perform some more operations in a single instruction. For instance,
ARM does not have any shift right or left instructions. You just use the mov instruction.

mov r1, r1, LSL #1 @ Shifts r1 left 1 bit

You may be wondering why one would want to shift left or right the value in a register.
If you recall Appendix B we saw that shifting left (LSL) a value gives a value that
the same as multiplying it by 2. Conversely, shifting it right (ASR if we use two's
complement, LSR otherwise) is the same as dividing by 2. A shift of n is the same as
doing n shifts of 1, and so actually multiplies or divides a value by 2n .

mov r1, r2, LSL #1
mov r1, r2, LSL #2
mov r1, r3, ASR #3
mov r3, #4
mov r1, r2, LSL r3

@ r1 <- (r2*2)
@ r1 <- (r2*4)
@ r1 <- (r3/8)

@ r1 <- (r2*16)

We can combine these operations with add to get some useful cases.

add r1, r2, r2, LSL #1 @ r1 <- r2 + (r2*2) equivalent to r1 <- r1*3
add r1, r2, r2, LSL #2 @ r1 <- r2 + (r2*4) equivalent to r1 <- r1*5

You can do something similar with sub (obviously SUBtract).

sub r1, r2, r2, LSL #3 /* r1 <- r2 - (r2*8)
equivalent to r1 <- r2*(-7) */

ARM comes with a handy rsb (Reverse SuBstract) instruction which let us avoid moving
values around in the registers by computing Rdest <- source2 - Rsource1 (compare
it to sub which computes Rdest <- Rsource1 - source2).

rsb r1, r2, r2, LSL #3 /* r1 <- (r2*8) - r2
equivalent to r1 <- r2*7 */

Here is another example, a bit more contrived:

/* Complicated way to multiply the initial
value of r1 by 42 = 7*3*2 */

rsb r1, r1, r1, LSL #3 @ r1 <- (r1*8) - r1 equivalent to r1 <- 7*r1
add r1, r1, r1, LSL #1 @ r1 <- r1 + (2*r1) equivalent to r1 <- 3*r1
add r1, r1, r1 @ r1 <- r1 + r1 equivalent to r1 <- 2*r1

41

7. Addressing modes

You are probably wondering why would we want to use shifts to perform multiplications.
Well, the generic multiplication instruction always works but it is usually much harder
to compute by our ARM processor so it may take more time. There are times when
there is no other option but for many small constant values a few simple instructions
using shifts may be more ecient.

Rotations are less useful than shifts in everyday use. They are usually used in cryptog
raphy, to reorder bits and \scramble" them. ARM does not provide a way to rotate left
but we can do n rotates left by doing 32 — n rotates right.

/* Assume r1 is 0x12345678 */
mov r1, r1, ROR #4 @ r1 <- r1 ror 4. This is r1 <- 0x81234567
mov r1, r1, ROR #28 @ r1 <- r1 ror 28. This is r1 <- 0x23456781

Projects

1. Look up the ARM documentation concerning a Logical Shift Left (lsl) opera
tion. Try using that instruction in your code. Using gdb, nd out what machine
instruction is actually emitted by the assembler. Compare lsl r0, #1 with mov
r0, r0, lsl #1.

2. What happens if you give a number greater than 31 as the immediate value in a
shift or rotate?

3. Using immediates between n = 1 and n = 8, what values can you obtain with the
instruction add r1, r1, r1, LSL n?

4. What values in addition to 42 can you obtain by repeated adds or subtracts with
shifts limited to n = 1 to n = 7?

42

8 Arrays and structures

In the previous chapter we saw that the second source operand of most arithmetic
instructions can use a shift operator which allows us to shift and rotate bits. In this
chapter we will learn about additional indexing modes available to ARM instructions.
This time we will focus on load and store instructions.

8.1 Arrays and structures

So far we have been able to move 32 bits from memory to registers (load) and back to
memory (store). But working on single items of 32 bits (usually called scalars) is a bit
limiting. Soon we would nd ourselves working on arrays and structures, even if we did
not know their names.

An array is a sequence of items of the same kind in memory. Arrays are a fundamental
data structure in almost every low level language. Every array has a base address,
usually denoted by the name of the array. Each of its items has associated with it an
index, usually ranging from 0 to N — 1 when the array contains N items. Using the base
address and the index we can access an item of the array. We mentioned in Chapter 3
that memory could be viewed as an array of bytes. An array in memory is the same,
except an item may take more than one single byte.

A structure (or record or tuple) is a sequence of items of possibly dierent kinds. Each
item of a structure is usually called a eld. Fields do not have an associated index
but an oset with respect to the beginning of the structure. Structures are laid out in
memory in an array that ensures that the proper alignment is used in every eld. The
base address of a structure is the address of its rst eld. If the base address is aligned,
the structure should be laid out in a way that all the eld are properly aligned as well.

What do arrays and structure have to do with indexing modes of load and store? Well,
these indexing modes are designed to make accessing arrays and structures easier.

43

8. Arrays and structures

8.2 Dening arrays and structs

To illustrate how to work with arrays and structures we will use the following C decla
rations and implement them in assembler.

int a[100];
struct my_struct
{

char f0;
int f1;

} b;

Let's rst dene in our assembler the array \a". It is just 100 integers. An integer in
ARM is 32-bits wide so in our assembler code we must make room for exactly 400 bytes
(4 * 100).

1 /* -- array01.s */
2 .data
3 a: .skip 400

In line 3 we dene the symbol \a" and then we make room for 400 bytes. The directive
.skip tells the assembler to advance the given number of bytes before emitting the next
datum. Again, we are skipping 400 bytes because our array of integers takes 400 bytes
(4 bytes per each of the 100 integers). Declaring a structure is not much dierent.

4 b: .skip 8

Right now you should wonder why we skipped 8 bytes when the structure itself takes
just 5 bytes. Well, it does need only 5 bytes to store useful information. The rst eld
f0 is a char. A character takes one byte of storage. The next eld f1 is an int. An
integer takes 4 bytes but it must be aligned at a 4 byte boundary as well, so we have
to leave 3 unused bytes between the eld f0 and the eld f1. This unused storage is
inserted just to have the correct alignment is called padding. The bytes within padding
should never be used by your program.

8.3 Naive approach without indexing modes

Now let's write some code to initialize every item of the array a[i]. We will do some
thing equivalent to the following C code.

for (i = 0; i < 100; i++) a[i] = i;

5 .text
6 .global main
7 main:
8 ldr r1, =a @ r1 <- &a

44

8.4. Indexing modes

9 mov r2, #0 @ r2 <- 0
10
Loop:
11 cmp r2, #100 @ Have we reached 100 yet?
12 beq end @ If so, leave the loop
13 add r3, r1, r2, LSL #2 @ r3 <- r1 + (r2*4)
14 str r2, [r3] @ *r3 <- r2
15 add r2, r2, #1 @ r2 <- r2 + 1
16 b Loop @ Goto beginning of the Loop
17 end
18

:
bx lr

We are using many things we learned in earlier chapters. In line 8 we load the base
address of the array into r1. The address of the array will not change so we load it
once. In register r2 we will keep the index that will range from 0 to 99. In line 11 we
compare it to 100 to see if we have reached the end of the loop.

Line 13 is the interesting one. Here we compute the address of the item. We have in r1
the base address and we know each item is 4 bytes wide. We know also that r2 keeps
the index of the loop which we will use to access the array element. Given an item
with index i its address must be &a + 4*i, since there are 4 bytes between every two
elements of this array. Thus, we are storing the address of the current element into r3
at this step of the loop. In line 14 we store r2, which is i, into the memory pointed to
by r3, that is the i-th array item: a[i]. We then proceed to increment r2 and branch
back for the next step of the loop.

As you can see, accessing an array involves calculating the address of the accessed item.
The ARM instruction set provide a more compact way to do this. In fact, it provides
several indexing modes to automate this frequently used process.

8.4 Indexing modes

In the previous chapter the concept of indexing mode was unnatural because we were
not indexing anything. Now it makes much more sense since we are indexing an array
item. ARM provides nine of these indexing modes. We will distinguish two types of
indexing modes: non-updating and updating depending on whether the side-eect of
updating the index takes place.

8.4.1 Non-updating indexing modes

1. [Resource1, #immediate]

It just adds (or subtracts) the immediate value to form the address. This is very
useful for array items the index of which is a constant in the code or elds of
a structure, since their oset is always constant. In Rsource1 we put the base

45

8. Arrays and structures

address and in immediate the oset we want in bytes. The immediate cannot be
larger than 12 bits (0..4095). When the immediate is #0 it is just like the usual
addressing we have been using: [Rsource1].

For example, we can set a[3] to 3 this way (we assume that r1 already contains
the base address of a). Note that the oset is in bytes so we need an oset of 12
(4 bytes * 3 items skipped). Important! r1 is not changed!

mov r2, #3 @ r2 <- 3
str r2, [r1, #+12] @ *(r1 + 12) <- r2

2. [Rsource1, Rsource2]

This is like the previous one, but the added (or subtracted) oset is the value in a
register. This is useful when the oset is too big for the immediate. Note that for
the +Rsource2 case, the two registers can be swapped (as this would not aect
the address computed).

Example: The same as above but using a register this time.

mov r2, #3 @ r2 <- 3
mov r3, #12 @ r3 <-12
str r2, [r1, +r3] @ *(r1 + r3) <- r2

3. [Rsourcel, ±Rsource2, shift_operation #±immediate]

This one is similar to the usual shift operation we can do with other instructions.
A shift operation (remember: LSL, LSR, ASR or ROR) is applied to Rsource2,
Rsource1 is then added (or subtracted) to the result of the shift operation applied
to Rsource2. This is useful when we need to multiply the address by some xed
amount. When accessing the items of the integer array a we had to multiply the
result by 4 to get a meaningful address.

For this example, let's rst recall how we computed above the address in the array
of the item in position r2.

13 add r3, r1, r2, LSL #2 @ r3 <- r1 + r2*4
14 str r2, [r3] @ *r3 <- r2
We can express this in a much more compact way (without the need of the register
r3). Note that register r2 is not changed.

str r2, [r1, +r2, LSL #2] @ *(r1 + r2*4) <- r2

8.4.2 Updating indexing modes

In these indexing modes the Rsource2 register is updated with the address synthesized
by the load or store instruction. You may be wondering why one would want to do this.
A bit of detour rst. Recheck the code where we load the array. Why do we have to
keep around the base address of the array if we are always eectively moving 4 bytes
away from it? Would not it make much more sense to keep the address of the current
entity? So instead of

46

8.4. Indexing modes

13 add r3, r1, r2, LSL #2 @ r3 <- r1 + r2*4
14 str r2, [r3] @ *r3 <- r2

we might want to do something like (r1 contains the current address):

str r2, [r1] @ *r1 <- r2
add r1, r1, #4 @ r1 <- r1 + 4

because there is no need to compute every time from the beginning the address of the
next item as we are accessing them sequentially. Even if this looks slightly better, it
still can be improved a bit more. What if our instruction were able to update r1 for
us? Something like this (obviously the exact syntax is not as shown)

/* Illegal syntax but potentially one instruction */
str r2, [r1] "and then" add r1, r1, #4

Such indexing modes exist. There are two kinds of updating indexing modes depending
on at which time Rsource1 is updated. If Rsource1 is updated after the load or store
itself (meaning that the address to load or store is the initial Rsource1 value) this is a
post-indexing accessing mode. If Rsource1 is updated before the actual load or store
(meaning that the address to load or store is the nal value of Rsource1) this is a
pre-indexing accessing mode. In all cases, at the end of the instruction Rsource1 will
have the value of the computation of the indexing mode. Now this may sound a bit
convoluted, but just look in the example above: we rst load using r1 and then we do
the instruction r1 <- r1 + 4. This was post-indexing: we rst use the value of r1 as
the address where we store the value of r2. Then r1 is updated with r1 + 4. Now
consider another hypothetical syntax.

/* Illegal syntax but potentially one instruction */
add r1, r1, #4 "and then" str r2, [r1]

This was pre-indexing: we rst compute r1 + 4, store it in r1, and then use it as the
address where we store the value of r2. At the end of the instruction r1 has eectively
been updated as before, but the updated value has already been used as the address of
the load or store.

8.4.3 Post-indexing modes

1. [Rsource1], #immediate

The value of Rsource1 is used as the address for the load or store. Then Rsource1
is updated with the value of immediate after adding (or subtracting) it to (or from)
Rsource1. Using this indexing mode we can rewrite the loop of our rst example
as follows:

16 loop:
17 cmp r2, #100 @ Have we reached 100 yet?

47

8. Arrays and structures

18
19
20
21

beq end
str r2, [r1], #+4
add r2, r2, #1
b loop

@ If so: leave loop; not: continue
@ *r1 <- r2 then r1 <- r1 + 4
@ r2 <- r2 + 1
@ Go to the beginning of the loop

end:

2. [Rsource1], Rsource2

Like the previous one but instead of an immediate, the value of Rsource2 is used.
As usual this can be used as a workaround when the oset is too big for the
immediate value (it must be less than 4096).

3. [Rsourcel], ±Rsource2, shift_operation #±immediate

The value of Rsource1 is used as the address for the load or store. Then a shift
operation (LSL, LSR, ASR or ROL) is applied to Rsource2. The resulting value
of that shift is added (or subtracted) to (or from) Rsource1. Rsource1 is nally
updated with this last value.

8.4.4 Pre-indexing modes

Pre-indexing modes may look a bit weird at rst but they are useful when the computed
address is going to be reused soon. Instead of recomputing it we can reuse the updated
Rsource1. Mind the ! symbol in these indexing modes which distinguishes them from
the non-updating indexing modes.

1. [Rsource1, #immediate]!

This mode behaves like the similar non-updating indexing mode but Rsource1
gets updated with the computed address before being used. Imagine we want
to compute a[3] = a[3] + a[3]. We could do that as follows (we assume that r1
already has the base address of the array):

ldr r2, [r1, #+12]! @ r1 <- r1 + 12 then r2 <- *r1
add r2, r2, r2 @ r2 <- r2 + r2
str r2, [r1] @ *r1 <- r2 : r1 now = address of a[3]

2. [Rsource1, Rsource2]!
Similar to the previous one but using a register Rsource2 instead of an immediate.

3. [Rsourcel, ±Rsource2, shift_operator #±immediate]!

Like the non-indexing equivalent but Rsource2 will rst be updated with the
address used for the load or store instruction.

48

8.5. Back to structures

8.5 Back to structures

All the examples in this chapter have used an array. Structures are a bit simpler: the
oset to the elds is always constant: once we have the base address of the structure
(the address of the rst eld) accessing a eld is just an indexing mode with an oset
(usually an immediate). Our current structure features, on purpose, a char as its rst
eld f0. Currently we cannot work on scalars in memory of dierent size than 4 bytes.

So we will postpone working on that rst eld until a later chapter.

Now imagine that we wanted to increment the eld f1 like this (in C):

b.f1 = b.f1 + 7;

If r1 contains the base address of our structure, accessing the eld f1 is pretty easy
now that we have all the indexing modes available.

1 ldr r2, [r1, #+4]! @ r1 <- r1 + 4 and then r2 <- *r1
2 add r2, r2, #7 @ r2 <- r2 + 7
3 str r2, [r1] @ *r1 <- r2 where r1 has the correct address

Note that we use a pre-indexing mode to keep in r1 the address of the eld f1. That
way the second store does not need to compute that address again.

8.6 Strings

We have assumed that it was obvious that the declaration char f0; in our C code
meant that an ASCII character was intended. We must also mention that the ARM
implementation of the equivalent assembler code f0: skip #1 leaves room for a single
byte and is intended to hold a single character that can be referenced by f0.

A string is an array of characters. Each character takes one byte of memory and so
has a unique address. The string, as an array, is addressed in memory by the address
of its rst character.

Some of the functions we use from the C library take the address of a string (the rst
character or byte) in r0. For example, if we declare the string S by

S: .asciz "This is a string"

we have reserved 17 bytes of memory and initialized them to the string T his is a string
followed by a zero or null byte (0x00) that terminates the string for C functions. If we
load the address of the string in r0 by

ldr r0, =S

then the call

bl puts

49

8. Arrays and structures

on the C function puts will print out the string on our terminal. We will start to use
strings in the next chapter.

Projects

1. Try out all the possible indexing modes.

2. Dene

struct mystruct2
{

int f1;
char f0;

} b;
similar - but signicantly dierent from mystruct in Section 8.2. How many bytes
are necessary to store b? (b: .skip ?)

50

9 Functions

In previous chapters we learned the foundations of ARM assembler: registers, some
arithmetic operations, loads and stores and branches. Now it is time to put everything
together and add another level of abstraction to our assembler skills: functions. Why
functions? Functions are a way to reuse code. If we have some code that will be needed
more than once, being able to reuse it is a Good Thingc . That way, we only have to
ensure once that the code being reused is correct. If we tried to repeat the code in many
programs we should verify it is correct at every point. That clearly would not scale.
Functions can also get parameters. That way not only do we reuse code but we can use
it in several ways, by passing dierent parameters. All this magic, though, comes at
some price. A function must be a well-behaved citizen.

9.1 Do's and don'ts of a function

Programming in assembler gives us a lot of power. But with a lot of power also comes a
lot of responsibility. We can break lots of things in assembler, because we are at a very
low level. Errors and nasty things may happen. In order to make all functions behave
in the same way, there are conventions in every environment that dictate how a function
must behave. Since we are using a Raspberry Pi running the Raspbian operating system,
we will use the AAPCS (ARM Architecture Procedure Call Standard) but chances are
that other ARM operating systems like RISCOS or Windows RT follow it. You may

nd documentation in the ARM website but we will try to summarize it in this chapter.

9.1.1 New specially named registers

When discussing branches we learned that r15 was also called pc and we never called
it r15 anymore. Let's rename r14 as lr and r13 as sp from now on. lr stands for Link
Register and it is the address of the instruction following the instruction that called us
(we will see later how this is used). sp stands for Stack Pointer. The stack is an area
of memory owned only by the current function, the sp register stores the top address of
that stack. The reader should be familiar with stacks from experience with high-level
languages such as C/C++/Java. However, for now, let's put the stack aside. We will
get it back in the next chapter.

51

9. Functions

9.1.2 Passing parameters

Functions can receive parameters. The rst 4 parameters must, if it is to follow conven
tion, be stored sequentially in the registers r0, r1, r2 and r3. You may be wondering
how to pass more than 4 parameters. We can, of course, but we need to use the stack,
but we will discuss it in Chapter 11. Until then, we will only pass up to 4 parameters.

9.1.3 Well behaved functions

A function must adhere, at least, to the following rules if we want it to be AAPCS
compliant.

A function should not make any assumption about the contents of the cpsr. So,
when we enter a function the condition codes N, Z, C and V are unknown.

A function can freely modify registers r0, r1, r2 and r3.

A function cannot assume anything about the contents of r0, r1, r2 and r3
unless they are playing the role of a parameter.

A function can freely modify lr but the value upon entering the function will
be needed when leaving the function (so such value must be kept somewhere if
changed within the function).

A function can modify all the remaining general purpose registers as long as their
values are restored before leaving the function. This includes sp and registers r4
to r11. That means that, after calling a function, we have to assume that (only)
registers r0, r1, r2, r3, lr and pc may have been overwritten and changed.

9.1.4 Calling a function

There are two ways to call a function. If the function is statically known (meaning we
know exactly which function is being called) we will use the bl label command. bl
stands for Branch and Link. That label must be a label dened in the .text section.
This is called a direct (or immediate) call. We may do indirect calls by rst storing the
address of the function into a register and then using the blx Rsource1 command.

In both cases the behavior is as follows: The address of the instruction following the bl or
blx instruction is copied into the lr register. The address of the function (immediately
encoded in the bl or using the value of the register in blx) is stored in the pc which
means we branch to that function's code.

9.1.5 Leaving a function

A well behaved function, as stated above, will have to keep the initial value of lr
somewhere if it is changed during processing of the function - for example, if it calls on

52

9.2. Hello world

another (or the same) function. When leaving the function, we will retrieve that value
and put it in some register RXX (it can be lr again but that is not mandatory). Then
we will give the command bx RXX (we could use blx as well but the latter would update
blr which is useless here). Of course we would have ensured that all the registers that
must be preserved have their correct values before returning.

9.1.6 Returning data from functions

Functions should use r0 for a datum that ts in 32 bits (or less). Those are C types
such as: char, short, int, long (and float though we have not seen oating point
yet) and they will be returned in r0. For basic types of 64 bits, such as C types long
long and double, they will be returned in r1 and r0. Any other data are returned
through the stack unless they are 32 bits or less, in which case they will be returned in
r0. This now makes sense. C's main returns an int, which is used as the value of the
error code of our program.

9.2 Hello world

Usually this is the rst program you write in any high level programming language. In
our case we had to learn lots of things rst. Anyway, here it is. A \Hello world" in
ARM assembler.

(Note to experts: since we will not discuss the stack until the next chapter, this code
may look very dumb to you)

1 /* -- hello01.s */
2 .data
3
4 greeting:
5 .asciz "Hello world"
6
7 .balign 4
8 return: .word 0
9

10 .text
11
12 .global main
13 main:
14 ldr r1, =return @ r1 <- &return
15 str lr, [r1] @ *r1 <- lr
16
17 ldr r0, =greeting @ r0 <- &greeting
18 @ First parameter of puts
19

53

9. Functions

20 bl puts @ Call to puts
21 @ lr <- address of next instruction
22
23 ldr r1, =return @ r1 <- &return
24 ldr lr, [r1] @ lr <- *r1
25 bx lr @ return from main
26
27 /* External */
28 .global puts @ The C function puts

We are going to call the puts function. That function is dened in the C library and has
the following prototype: int puts(const char*). From that we see that it receives,
as its rst (and only) parameter, the address of a C-string (that is, an array of ASCII
characters, terminated by the zero [0x00] byte). When executed it outputs that string
to stdout (so it should appear by default on our terminal). Finally it returns (in r0 of
course) an integer containing the number of bytes written.

We start by dening in the .data section the label greeting in lines 4 and 5. That
label will contain the address of our greeting message. GNU as provides a convenient
.asciz directive for that purpose. That directive emits ASCII characters of as many
bytes as are needed to represent the string plus a nal zero or null byte. We could have
used another directive, .ascii, as long as we explicitly added the nal zero byte.

After the bytes of the greeting message, we make sure the next label will be 4 bytes
aligned and we dene a label return in line 8. This is place where we nally really need
to be careful about alignment. In that label we will keep the value of lr that we have
received from main. As stated above, this is a requirement for a well behaved function:
to be able to retrieve the original value of lr that it had upon entering. Since we will
change lr when we call on puts, we must save it somewhere. Therefore, we reserve
some room for it.

The rst two instructions, lines 14 and 15, of our main function keep the value of lr in
that return variable dened above. Then in line 17 we prepare the arguments for the
call to puts. We load the address of the greeting message into the r0 register. That
register will hold the rst (and only) parameter of puts. Then in line 20 we call the
function. Recall that bl will put in lr the address of the instruction following it (that
is the instruction in line 23). That is the reason why we copied the value of lr into a
variable at the beginning of the main function, because it was going to be overwritten
by this bl.

When puts runs, the message is printed on the stdout (our terminal). Next we must
get the initial value of lr so we can return successfully from main. Finally, we return.

Is our main function well behaved? Yes, it keeps and restores lr before leaving. It only
modies registers r0 and r1. We can assume that puts is behaved as well, so everything
should work ne. In addition, we have the bonus of seeing how many bytes have been

54

9.3. Real interaction!

written to the output.

$./hello01
Hello world
$ echo $?
12

Note that \Hello world" is just 11 bytes (the nal zero is not counted as it just plays
the role of a terminating byte) but the program returns 12. This is because puts always
adds a newline byte, which accounts for that extra byte.

9.3 Real interaction!

Now that we have the power to call functions, we can glue them together. Let's use
the C functions scanf and printf to read a number and then print it back to the
standard output using the C compiler to achieve our purpose. The scanf has pro
totype int scanf(const char *format, ...); while the printf has prototype int
printf(const char *format , ...) so in each case the rst parameter is the ad
dress of the format string.

1 /* -- printf01.s */
2 .data
3
4 /* First message */
5 .balign 4
6 message1: .asciz "Hey, type a number: "
7
8 /* Second message */
9 .balign 4

10 message2: .asciz "I read the number %d\n"
11
12 /* Format pattern for scanf */
13 .balign 4
14 scan_pattern : .asciz "%d"
15
16 /* Where scanf will store the number read */
17 .balign 4
18 number_read: .word 0
19
20 .balign 4
21 return: .word 0
22
23 .text
24

55

9. Functions

48
49 /* External */
50 .global printf
51 .global scanf

25 .global main
26 main:
27 ldr r1, =return @ r1 <- &return
28 str lr, [r1] @ *r1 <- lr ; save return address
29
30 ldr r0, =message1 @ r0 <- &message1
31 bl printf @ call to printf
32
33 ldr r0, =scan_pattern @ r0 <- &scan_pattern
34 ldr r1, =number_read @ r1 <- &number_read
35 bl scanf @ call to scanf
36
37 ldr r0, =message2 @ r0 <- &message2
38 ldr r1, =number_read @ r1 <- &number_read
39 ldr r1, [r1] @ r1 <- *r1
40 bl printf @ call to printf
41
42 ldr r0, =number_read @ r0 <- &number_read
43 ldr r0, [r0] @ r0 <- *r0
44
45 ldr lr, =return @ lr <- &return
46 ldr lr, [lr] @ lr <- *lr
47 bx lr @ return from main using lr

In this example we will ask the user to type a number and then we will print it back.
We also return the number in the error code, so we can check twice if everything goes as
expected. For the error code check, make sure your number is lower than 255 (otherwise
the error code will show only its lower 8 bits).

$./printf01 ; echo $?
Hey, type a number: 124<CR>
I read the number 124
124

9.4 Our rst function

Let's dene our rst function. We will extend the previous example by multiplying the
number by 5.

14 .balign 4

56

9.4. Our rst function

15 return2: .word 0
16

18
17 .text

19 /* mult_by_
20 mult_by_5:

5 function */

21 ldr r1, =return2
22 str lr, [r1]
23
24 add r0, r0, r0, LSL #2
25
26 ldr lr, =return2
27 ldr lr, [lr]
28 bx lr

@ r1 <- &return2
@ *r1 <- lr

@ r0 <- r0 + 4*r0

@ lr <- &return2
@ lr <- *lr
@ return to main using lr

This function will need another \return" variable like the one main uses. But this is
only for the sake of the example. Actually this function does not call another function.
When that happens it does not need to keep lr as no bl or blx instruction is going
to modify it. If the function wanted to use lr as the general purpose register r14, the
process of keeping the value would then be mandatory.

As you can see, once the function has computed the value, it is enough to keep it in r0.
In this case it was pretty easy and a single instruction was enough.

The whole example follows.

1 /* -- printf02.s */
2 .data
3
4 .balign 4 @ First message
5 message1: .asciz "Hey, type a number: "
6 .balign 4 @ Second message
7 message2: .asciz "%d times 5 is %d\n"
8 .balign 4 @ Format pattern for scanf
9 scan_pattern: .asciz "%d"

10 .balign 4 @ Where scanf will store the number read
11 number_read: .word 0
12 .balign 4
13 return: .word 0
14 .balign 4
15 return2: .word 0
16
17 .text
18
19 /* mult_by_5 function */

57

9. Functions

20 mult_by_5:
21 ldr r1, =return2 @ r1 <- &return2
22 str lr, [r1] @ *r1 <- lr
23
24 add r0, r0, r0, LSL #2 @ r0 <- r0 + 4*r0
25
26 ldr lr, =return2 @ lr <- &return2
27 ldr lr, [lr] @ lr <- *lr
28 bx lr @ return to main using lr
29
30 .global main
31 main:
32 ldr r1, =return @ r1 <- &return
33 str lr, [r1] @ *r1 <- lr
34
35 ldr r0, =message1 @ r0 <- &message1
36 bl printf @ call to printf
37
38 ldr r0, =scan_pattern @ r0 <- &scan_pattern
39 ldr r1, =number_read @ r1 <- &number_read
40 bl scanf @ call to scanf
41
42 ldr r0, =number_read @ r0 <- &number_read
43 ldr r0, [r0] @ r0 <- *r0
44 bl mult_by_5
45
46 mov r2, r0 @ r2 <- r0
47 ldr r1, =number_read @ r1 <- &number_read
48 ldr r1, [r1] @ r1 <- *r1
49 ldr r0, =message2 @ r0 <- &message2
50 bl printf @ call to printf
51
52 ldr lr, =return @ lr <- &return
53 ldr lr, [lr] @ lr <- *lr
54 bx lr @ return from main using lr
55
56 /* External */
57 .global printf
58 .global scanf

Notice lines 46 to 49. There we prepare the call to printf which receives three pa
rameters: the format and the two integers referenced in the format. We want the rst
integer be the number entered by the user. The second one will be that same number
multiplied by 5. After the call to mult_by_5, r0 contains the number entered by the

58

9.5. Unied Assembler Language

user multiplied by 5. We want it to be the third parameter so we move it to r2. Then
we load the value of the number entered by the user into r1. Finally we load in r0 the
address to the format message of printf. Note that here the order of preparing the
arguments of a call is not relevant as long as the values are correct at the point of the
call. We use the fact that we will have to overwrite r0, so for convenience we rst copy
r0 to r2.

$./printf02
Hey, type a number: 1234<CR>
1234 times 5 is 6170

9.5 Unied Assembler Language

As we write functions in the future, we will nd that an ecient programming technique
is to divide up the processes we wish to encode into individual functions that perform, if
possible, just one of the needed operations. We can then test each part of the program
separately and when we are done have many useful, already tested, functions to use in
other programs. This technique is called Functional Programming.

One problem arises when we combine many well-tested functions into one larger pro
gram: repeated use of the same label. Looking ahead we see programs with loops and
often the label loop:. Other common labels are exit:, error:, and next:. If we use
the same label in dierent functions, we will get an assembler error.

A modern syntax called Unied Assembler Language (UAL) allows for numerical labels
that may be repeated throughout a program.

The syntax is to add the directive .syntax unified as in the following trivial example:

/* -- numericalLabels.s */
.global main /* entry point must be global */
.syntax unified /* modern syntax (UAL=Unified Assembler Language) */
.text

main: /* This is main */
push {r4, lr}
ldr r0, =message1
bl puts
b 1f /* Goto the first label 1 forward */
b 2f /* Goto the first label 2 forward */

1:
ldr r0, =message2
bl puts

1:
mov r0, 43 /* The # is optional in UAL */

59

9. Functions

pop {r4, pc} /* Return from main */

2:
ldr r0, =errmessage
bl puts
b 1b /* Goto the first label 1 backward */

.data

message1: .asciz "Numerical Label Test\n"
message2: .asciz "Success\n"
errmessage: .asciz "Failure!\n"

.global puts

Projects

1. Simplify the rest of the comments in the above example.

2. Write some other simple functions and test them. In particular, include some
functions that operate on strings (Section 8.6).

3. Interchange lines 5 and 8 in hello01.s and show that there is no need for extra
alignment. Does this give a general rule for more ecient coding? Can you think
of any disadvantages of doing that?

4. Look up details of the prototypes for such functions as printf and scanf. Justify
what is placed in the registers r0 and r1.

5. There are many other C functions we may use in the same way as printf and
scanf. Look up their prototypes and write simple programs using them.

6. The .data sections in both printf01.s and printf02.s have many unnecessary
.align statements. Rewrite them without any such statements. [Hint: .word
before .asciz.]

7. Try out the UAL syntax and look up more information about it.

60

10 Searching and Sorting

We now have enough background to program some more complicated functions in as
sembler. One very important need is to be able to search through a le of information
to nd a particular item. In general, we look for a key which is a unique identier
such as a social security number. If a le has N elements in it, on average it will take
N=2 accesses to nd the key if the le is randomly arranged. We will rst consider the
Binary Search that nds a key in a sorted list in about log2 (N) accesses which is a
great improvement for large les. Having seen that improvement, we will then consider
methods of sorting les so that the Binary Search can be performed.

10.1 Binary Search

Having the list sorted allows us to use the Binary Search method to nd the key. At
each stage we cut in half the number of places at which the key could appear. Since
that can only happen about log2 N times, even in the case where the key does not
appear, this method is far superior to a sequential search (particularly for large values
of N). Should the list contain 220 = 1; 048; 576 elements, at worst 21 accesses would be
necessary rather than an average of 524,288 when it appears in the unsorted list and
1,048,576 when it does not appear in the list.

Our code follows directly from some C/C++/Java code such as

int binary_search(int[] array, int size, int key)
{ int low = 0, high = size - 1;

while(low <= high)
{int mid = (low + high) / 2;

if(array[mid] < key)
low = mid + 1;

elseif(key < array[mid])
high = mid -1;

else
return mid;

}
return NOT_FOUND;

}

61

10. Searching and Sorting

Since the input of the values is not signicant in this example, we will \hard-wire" into
our code the list of integers using the .word directive. The line

array: .word 2,5,11,23,47,95,191,383,767,998

both reserves 10 words in memory labeled by the name \array", but also initializes those
words to the given values.

1 @ BinarySearch.s
2@
3 @ Demonstrates binary search on a fixed list of integers
4 .data @ Data declaration section
5 return: .word 0
6 array: .word 2,5,11,23,47,95,191,383,767,998
7 num_read: .word 0
8 prompt: .asciz "\nInsert integer key (key < 0 to quit): "
9 scanFMT: .asciz "%d" @ Format pattern for scanf

10 echo: .asciz "\nYou entered: %d\n"
11 ymsg: .asciz "\nKey was found at position %d\n"
12 nmsg: .asciz "\nKey not found! a near index is: %d\n"
13
14 .text @ Start of code section
15 .global main
16 main:
17 ldr r1, =return @ r1 <- &return
18 str lr, [r1] @ *r1 <- lr save return address
19
20 input:
21 ldr r0, =prompt @ r0 <- &prompt
22 bl puts @ Print prompt
23
24 ldr r0, =scanFMT @ r0 <- &scanFMT
25 ldr r1, =num_read @ r1 <- &num_read
26 bl scanf @ Call to scanf; puts value in num_read
27 @echo
28 ldr r0, =echo
29 ldr r1, =num_read
30 ldr r1, [r1]
31 bl printf @ echo the key
32
33 @check sentinal
34 ldr r1, =num_read @ r1 <- &num_read
35 ldr r1, [r1] @ r1 <- *r1
36 cmp r1, #0 @ Look for sentinal (negative)
37 blt exit @ quit if num_read is negative

62

10.1. Binary Search

38
39
40

mov r6, r1
r7, =array

@ Put key in r6
@ Address of array in r7ldr

41
42 mov r0, #0 @ r0 = low = 0 (index)
43 mov r1, #9 @ r1 = high = 10 - 1
44
45
46

Loop:
cmp r1, r0 @ test high - low

47 blt fail @ while(low <= high)
48
49

@get middle
add r3, r0, r1 @ r3 <- low + high

50 mov r3, r3, ASR #1 @ r3 <- r3 / 2 = mid
51 mov r8, r3 @ save index for printing
52 add r5, r7, r3, LSL #2 @ r5 <- &array[4*mid]
53 ldr r5, [r5] @ r5 <- array[4*mid]
54 cmp r5, r6 @ test array[4*mid] - key
55 blt RH @ if (array[4*mid] < key)
56 bgt LH @ if (array[4*mid] > key)
57 b found
58 RH: add r0, r3, #1 @ low = mid + 1 (index)
59 b Loop
60 LH: sub r1, r3, #1 @ high = mid - 1 (index)
61 b Loop
62
63
64

@ found
found:

add r1, r8, #1 @ get index in normal count
65 ldr r0, =ymsg
66 bl printf @ Print yes message
67
68 b input @ begin again
69
70
71
72

@ not found
fail:

add r1, r8 , #1 @ get index in normal count
73 ldr r0, =nmsg
74 bl printf @ Print not found message
75
76 b input @ try again!
77
78
79

@ exit
exit:

ldr r1, =return @ r1 <- &return
80 ldr lr, [r1] @ lr <- *r1 saved return address
81 bx lr

63

10. Searching and Sorting

82
83 /* External */
84 .global puts
85 .global printf
86 .global scanf

As often happens in moving from C/C++/Java to assembler, we must take special
pains to distinguish between indexes in the high level language and memory addresses
(4 bytes to each word). In particular, in line 52 we shift left two places in order to
multiply by four thus counting in words instead of bytes. In addition, we have to watch
for alignment problems.

10.2 Insertion Sort

There are many algorithms for sorting arrays. Details can be found in any Data Struc
tures text. The \best" ones run in asymptotic time proportional to N log2 N , where
N is the size of the array. That is, as N gets large, the time to sort the data grows
as a constant times the factor N log2 N . The criteria for being \best", however, dier
widely. One can consider the worst case or the average case or other situations. In
fact the entire idea of \best" is rather meaningless when the answer is given in terms of
asymptotic time since real data sets, while large, are not innite.

A particular example of a sorting algorithm that works well for small data sets is the
insertion sort. While its worst case behavior grows as N2 (as does its average case
behavior), for sets which are small its simplicity makes it better than complicated al
gorithms that require extensive machinery to work and the corresponding extra time
needs to be amortized over large data sets to achieve their purported N log2 N behavior.
In fact, insertion sort will achieve a performance proportional to N if the data happens
to be almost sorted already (which is often the case).

Here is a complete program that takes input from the keyboard for a change, sorts it
using the insertion sort algorithm, and then prints out the sorted array:

/* -- isort.s **********************
* Demonstrates insertion sort *

.text

.global main
main:
@@@@@@@@@@@@@@@@@ INITIALIZE

ldr r7, =return @ get ready to save
str lr, [r7] @ link register for return
mov r6, #0 @ keep count in r6
ldr r4, =array @ keep constant &array in r4

64

10.2. Insertion Sort

@@@@@@@@@@@@@@@@@ INPUT
input:

ldr
bl

r0, =prompt
puts

ldr r0, =scanFMT @ r0 <- &scan format
ldr r1, =number @ r1 <- &number
bl

ldr
ldr

scanf @ call

r1, =number
r1, [r1]

to scanf

cmp r1, #0 @ look for sentinel (negative)
blt isort @ goto isort function

add r0, r4, r6, LSL #2 @ r0 <- &array[4*count]
str r1, [r0] @ array [4*count] <- number
add r6, r6, #1 @ count

b input
@@@@@@@@@@@@@@@@@ ISORT
/*
@@ sort the integers
@ C/C++/Java Code:

= count + 1

@ null insertion(int[] a, int n)
@{
@
@

for (int i = 1; i < n;
{ temp = a[i];

j = i-1;

i++)

@
@
@
@
@
@
@}
@@
*/
isort:

@

while (j >= 0 && temp < a[j])
{ a[j+1] = a[j];

j = j-1;
}
a[j+1] = temp;

}

mov r0, r4 @ r0 <- &array (a)
mov r1, r6 @ r1 <- count = length (n)

mov r2, #1 @ i = 1
iloop: @ for-loop as while

cmp r2, r1
bge iloopend

loop
@i-n
@ i >= n => loopend

65

10. Searching and Sorting

add
ldr
sub

r10, r0, r2, LSL #2 @ temp = &array[4*i]
r10, [r10] @ temp = array[4*i]

@j=i-1r3, r2, #1
jloop: @ while-loop

cmp r3, #0 @ j >= 0 ?
blt jloopend
add r9, r0, r3, LSL #2 @ r9 <- &array[4*j]
ldr r9, [r9] @ r9 <- array[4*j]
cmp r10, r9 @ temp < array[4*j] ?
bge jloopend
add r8, r0, r3, LSL #2
add r8, r8, #4 @ r8 <- &array[4*(j+1)]
str r9, [r8] @ a[j+1] <- a[j]
sub r3, r3, #1 @ j <- j - 1
b jloop

@ end jloop
jloopend:

add r3, r3, #1 @ j <- j+1
add r8, r0, r3, LSL #2 @ r8 <- &array[4*(j+1)]
str r10, [r8] @ a[j+1] <- temp
add r2, r2, #1 @ i++
b iloop

@ end iloop
iloopend:

@ end isort
@@@@@@@@@@@@@@@@ OUTPUT
output:

ldr r0, =result
bl puts
mov r5, #0 @ r5 counter

ploop: cmp r6, r5 @ n - counter
ble exit @ done printing
add r3, r4, r5, LSL #2 @ r3 <- &array[4*counter]
ldr r1, [r3] @ r1 <- array[4*counter]
ldr r0, =printFMT @ r0 <- &print format
bl printf
add r5, r5, #1 @ n++
b ploop

@@@@@@@@@@@@@@@@ EXIT
exit:

mov r0, r6 @ r0 = r6 return code = n
ldr r1, =return @ r1 <- &return
ldr lr, [r1] @ lr <- *r1 saved return address
bx lr

66

10.3. Random Numbers

.data
@@@@@@@@@@@@@@@@@

number: .word 0 @ place to hold input number
array: .space 100 @ room for 25 integers = 100 bytes
return: .word 0 @ place for return address of main
prompt: .asciz "Input a positive integer (negative to quit)
result: .asciz "Sorted, those integers are: \n"
scanFMT: .asciz "%d"
printFMT: .asciz " %d\n"

@@@@@@@@@@@@@@@@@
/* External */
.global printf
.global scanf
.global puts

The actual assembler code follows the C/C++/Java code rather closely. Again, the
most frequent error in this type of program is to confuse indices with addresses. In
particular, when using integer data from an array, one must carefully watch for places
where an increment or decrement must be 4 (bytes) rather than 1 (word) as in i + +; ,
i+ = 1; , or i = i + 1; .

Notice how the inclusion of shifts in ARM instructions allows for a easy change from
index to address (multiple of four).

10.3 Random Numbers

Simulations are an important part of system design. Before building a million dollar
piece of equipment, such as a switching network, it is customary to write a computer
program that would simulate the operation of the device to see if it has a chance of
satisfying the constraints imposed on it. For the example of a switching network that
would mean simulate the arrival of millions of calls at various times and see if the system
seems to handle the load. For this purpose, large numbers of \random" numbers must
be generated to simulate the \random" arrival of calls.

Let us generate an array of \random" numbers that might be used as test data for some
other program. For more information about \random" numbers, see Knuth, Chapter 3
(Volume 2) and the Projects. Here is some code:

/* -- rand.s
rand.s gives us an array of 100 pseudo-random numbers

in the range 0 <= n < 100 based on Knuth's advice.
X[n+1] <- (aX[n] + c) mod m

67

10. Searching and Sorting

using m = 2~16 = 65536 which works on a 16-bit machine well
using a = 32445 so that a mod 8 = 5 and 99m/100 > a > m/100
using c = 1
using X0 = 31416 in r0 as seed (could be input)

*/
.text
.global main
main:

ldr r1, =return @ save return address
str lr, [r1]

/* ldr r0, #31416 @ X0 - initialized (could be input) */
mov r0, #0x7a
mov r0, r0, LSL #8
add r0, r0, #0x68 @ X0 = r0 = 0x7a68 = 31416

/* ldr r4, #32445 @ a- initialized */
mov r4, #0x7e
mov r4, r4, LSL #8
add r4, r4, #0xbd @ a = r4 = 0x7ebd = 32445

/* ldr r5, #0x0000FFFF @ mask to do modulo (m-1) - initialized */
mov r5, #0xFF
mov r5, r5, LSL #8
add r5, r5, #0xFF

ldr r6, #396
ldr r7, #100

Loop: @ while counter
cmp r6, #0
blt Exit
mul r0, r0, r4
add r0, #1
and r0, r0, r5
mov r8, r0
lsr a0, a0, 8
cmp a0, r7
bge Loop
@Print

ldr r0, =format
mov r1, r8
bl printf

@Store
mov r0, r8
ldr r1, =list
str r0, r1, [r6

@End_of_Loop

@ mask = m-1 = 0x0000FFFF
@ counter - initialized 4*100-4 for 100 ints
@ limit - initialized so values 0-99

< 100
@ check counter
@ Stop when counter passes zero
@ X = aX (mul works like this)
@ now X = aX+c
@ now X = (aX+c) mod m
@ save X in r8 temporarily
@ divide by 256 (use upper 8 bits)
@ check size
@ only want those < 100

@ prepare to print

@ put X back
@ prepare to store

-#4] @ store and then decrement counter

68

10.4. More Debugging

b Loop
Exit:

@
/* External */
.global printf

ldr lr, =return
lrd lr, [lr] @ standard return to OS
bx lr

@
.data
list: .space 400 @ room for 100 integers
return: .word 0 @ save return address
format: .asciz " %d "

When we run this code we nd 100 integers stored in array in the reverse order to which
they were printed (for no obvious reason). While they may look somewhat \random",
they obviously cannot be truly random numbers since we will get exactly the same
results every time we run this code! Again it is suggested that a careful reading of
Knuth's material would be helpful and will justify a recommendation that any random
number generator a programmer uses (including those in expensive packages) should be
tested as much as possible.

Note that the loads during the initialization of main are carried out in three steps rather
than the commented out one instruction. If one tries to assemble the obvious instruction
ldr r0, #31416, one gets an error message of some kind. On the Raspberry Pi it not
only gives the error message but also explains what number (in hex) it was unable to put
in the part of the ldr - immediate machine instruction that stores the number. With
the three instructions shown, we can obtain the desired result. You will investigate
immediate operands in a project.

10.4 More Debugging

Now that our programs are much more complicated, it is harder and harder to debug
them. There are a few additional helpful things gdb can do to assist us.

For example, the gdb command x/Nuf expression, where x stands for eXamine, will
display the contents of N units (u) of memory (where units could be b for byte or w
for word - four bytes) and f gives the format (which could be x for hexadecimal, c for
character, u for unsigned decimal, and some others) at the location described by the
expression.

Another important help is the ability to set breakpoints that are locations at which
execution will stop and wait for the user to do whatever will give them information
about the registers and memory at that point of the program. They are set by the

69

10. Searching and Sorting

command break line or break function (and other methods) where the line is a
line number from the original program and function is a label.

We now see why, in Chapter 1, we called on the assembler as with the parameter -g.
That asked the assembler to keep all the debugging information available for gdb to be
able to work with the original source code.

Projects

1. The isort.s code has been written in a form where it is obvious that the actual
sorting code could have been separated out as a function taking the address of the
array and its length as parameters (in r0 and r1). Rewrite the code in that way.

2. Looking at the ASCII table in Appendix A, notice the values of the dierent
characters. Modify the isort.s code to act on the characters in a string.

3. There are many obvious ineciencies in the programs given as examples in this
chapter. Improve some of the obvious ones.

4. Rewrite rand.s so that it takes input from the user as the rst \seed". Run many
tests of the rand program with dierent seeds.

5. Expand the usefulness of rand by allowing the user to pick the range of values
returned by the program and also how many values it returns.

6. Save the results from rand by calling the program using ./rand > data.dat and
work on the le data.dat that is created.

7. Make the data le data.dat the input to the isort program by calling it with
./isort < data.dat > sorted.dat and check the results in the le sorted.dat .
Note that you must append a negative number to the end of data.dat to signal
the end of input to isort.

8. Practice using gdb to watch what is an array as the program runs. Set some
breakpoints to get snapshots of what is in the various registers as the program
progresses. Note that labels are treated a function names by the debugger.

9. Try other three instruction loads similar to those used in rand.s. Using gdb,
watch the behavior of the memory locations.

10. Investigate how i mmediate operands are formed by looking at detailed documen
tation.

70

11 Recursion and the Stack

In Chapter 9 we were introduced to functions and we saw that they have to follow
a number of conventions in order to articulate with other functions. We also briey
mentioned the stack as an area of memory owned solely by the function. In this chapter
we will consider the stack in more depth and indicate why it is important for functions.

11.1 Dynamic activation

One of the benets of functions is being able to call them more than once. But that
more than once hides a small trap. We are not restricting who will be able to call the
function, so it might happen that it is the same function that calls itself. When this
happens we call it recursion.

The idea of a recursive function, one that may call on itself, is paradoxical for many
reasons. Many programmers consider recursion a dicult concept but actually it is often
so simple that it should be used for rapid prototyping (quickly writing some possibly
poor code which can be used to demonstrate a system). Some of the most basic methods
of software engineering are based on recursion.

A typical example of recursion is calculating the factorial of a number n, usually written
as n! . It is dened on the non-negative integers by the mathematical formula

0! = 1 and
n! = n * (n-1)! for n > 0

Recursive code for the function factorial can immediately be written in C as follows:

int factorial(int n)
{

if (n == 0) return 1;
return n * factorial(n-1);

}

This example is characteristic of recursive function translation from mathematical def
inition to high-level language. If a function is given in recursive form the translation is
almost automatic. Of course one should be careful to check that the original denition

71

11. Recursion and the Stack

is correct and should note restrictions on the type and range of input variables. In our
factorial example the function is only correctly dened for non-negative integers.

A recursive denition of a function always includes some base cases which, for some
reason, are so trivial that their values are known or can be calculated without further
recursion. The recursive cases, on the other hand, must make some progress toward the
base cases. This means that the arguments for the recursive call are usually smaller in
some sense (possibly smaller sets rather than always smaller integers). All our examples
will be such that they are independent of the language we use.

Note that there is only one function factorial, but it may be called several times. For
instance: factorial(3) ! factorial(2) ! factorial(1) ! factorial(0), where
! means \calls". A function, thus, is dynamically activated each time it is called. The
span of a dynamic activation goes from the point where the function is called until it
returns. At a given time, more than one function can be dynamically activated. The
whole dynamic activation set of functions includes the current function and the dynamic
activation set of the function that called it (the current function).

We now have a function that calls itself. That would not be a problem if it weren't for
the rules that a function must observe. Let's quickly recall them.

Only r0, r1, r2 and r3 can be freely modied.

The lr value at the entry of the function must be kept somewhere because we will
need it to leave the function (to return to the caller).

All other registers r4 to r11 and sp may be modied but they must be restored
to their original values upon leaving the function.

In Chapter 9 we used a global variable to save lr. But if we attempted to use a global
variable in our f actorial(3) example, it would be overwritten at the next dynamic acti
vation of factorial. We would only be able to return from f actorial(0) to f actorial(1).
After that we would be stuck in f actorial(1), as lr would always have the same value.

So it looks like we need some way to keep at least the value of lr for each dynamic
activation. And not only lr; if we wanted to use registers from r4 to r11 we would
also need to keep them somehow for each dynamic activation. Clearly, global variables
would not be enough either. This is where the stack comes into play.

11.2 The stack

In computing, a stack is a data structure (a way to organize data that provides some
interesting properties). A stack typically has two basic operations: push information
onto the top of the stack and pop information from the top of the stack. Depending
on the context (for example, if you are not managing the stack yourself), you can only

72

11.2. The stack

access the top of the stack. In our case we will easily be able to access more elements
than just the top. That's because we are programming in assembler.

But, what is the stack? We already said in Chapter 9 that the stack is a region of
memory owned solely by the function. We can now reword this a bit better: the stack
is a region of memory owned solely by the current dynamic activation. And how do
we control the stack? Well, in Chapter 9 we said that the register sp stands for Stack
Pointer. This register will contain the address of (point to) the top of the stack. The
region of memory owned by the dynamic activation is the extent of bytes contained
between the current value of sp and the initial value that sp had when the function
was called. We will call that region the local memory of a function (more precisely, of
a dynamic activation of it). We will put there whatever has to be saved at entry into
a function and restored before leaving. We will also keep there the local variables of a
function (dynamic activation) which also must be removed upon exit from the function.

Our function also has to adhere to some rules when handling the stack.

The stack pointer (sp) must always be 4 byte aligned. This is absolutely mandatory.
However, due to the Procedure Call Standard for the ARM architecture (AAPCS), the
stack pointer will have to be 8 byte aligned, otherwise funny things may happen when
we call what the AAPCS terms public interfaces (that is, code written by other people).
The value of sp when leaving the function should be the same value it had upon entering
the function. The rst rule is consistent with the alignment constraints of ARM, where
most times addresses must be 4 byte aligned. Due to AAPCS we will stick to the extra
8 byte alignment constraint. The second rule states that, no matter how large our
local memory is, it will always disappear when we return from the function. This is
important, because local variables of a dynamic activation must not have any storage
assigned after that dynamic activation ends. Otherwise, repeated function calls would

ll up the stack and cause the program to fail.

It is a convention how the stack, and thus the local memory, has its size dened. The
stack can grow upwards or downwards. If it grows upwards it means that we have to
increase the value of the sp register in order to enlarge the local memory. If it grows
downwards we have to do the opposite, the value of the sp register must be decreased by
as many bytes as the size of the local storage. In our Raspberry Pi under Raspbian, the
stack grows downwards, towards zero (although it never should reach zero). Addresses
of local variables have very large values in the 32 bit range. They are usually close to
232.

Another convention when using the stack concerns whether the sp register contains
the address of the top of the stack or some bytes above. In Raspian, the sp register
directly points to the top of the stack: in the memory addressed by sp there is useful
information.

We will now assume that the stack grows downwards and the address of top of the

73

11. Recursion and the Stack

stack must always be in sp. Clearly, to enlarge the local memory it should be enough
to decrease sp. The local memory is then dened by the range of memory from the
current sp value to the original value that sp had at the beginning of the function.

One register we almost always have to keep is lr. Let's see how we can save it in the
stack.

sub sp, sp, #8 @ sp <- sp - 8. This enlarges the stack by 8 bytes
str lr, [sp] @ *sp <- lr
... << Code of the function >> ...
ldr lr, [sp] @ lr <- *sp
add sp, sp, #8 @ sp <- sp + 8. This reduces the stack by 8

@ bytes, restoring the stack
@ pointer to its original value

bx lr @ return

A well behaved function may modify sp but must ensure that at the end it has the
same value it had when we entered the function. That is what we did here. We rst
subtracted 8 bytes from sp and at the end we added back the 8 bytes.

This sequence of instructions would do adequately. But maybe you remember Chapter
8 and the indexing modes that you could use in load and store. Note that the rst two
instructions behave exactly like a preindexing. We rst update sp and then we use sp
as the address where we store lr. This is exactly a preindex mode! Likewise for the last
two instructions. We rst load lr using the current address of sp and then we decrease
sp. This is exactly a postindex mode! The usual way to accomplish our objective is the
following:

str lr, [sp, #-8]! @ preindex: sp <- sp - 8; *sp <- lr
... << Code of the function >> ...
ldr lr, [sp], #+8 @ postindex; lr <- *sp; sp <- sp + 8
bx lr

Yes, those addressing modes were invented to support these sorts of things. Using a
single instruction is better in terms of code size. This may not seem relevant, but it
is when we realize that the stack bookkeeping is required in almost every function we
write!

11.3 Factorial

Let's implement the factorial function above. First we have to learn a new instruction
to multiply two numbers:

mul Rdest, Rsource1, Rsource2

74

11.3. Factorial

Note that multiplying two 32 bit values may require up to 64 bits for the result. This
instruction only computes the lower 32 bits. Because we are not going to use 64 bit
values in this example, the maximum factorial we will be able to compute is 12! (13! is
bigger than 232). We will not check that the entered number is lower than 13 to keep the
example simple (you are encouraged to add this check to the example, though). [Note:
In versions of the ARM architecture prior to ARMv6 this instruction could not have
Rdest the same as Rsource1. The GNU assembler may print a warning if you don't
use the parameter —march = armv6.]

/* -- factorial01.s */
.data

message1: .asciz "Type a number: "

factorial of %d is %d\n"
format: .asciz "%d"
message2: .asciz "The

.text

factorial: @ Assume the input n is in r0
str lr, [sp,#-4]! @ Push lr onto the top of the stack
str r0, [sp,#-4]! @

@
Push r0 = n onto the top of the stack
Note that after that, sp is 8 byte aligned

cmp r0, #0 @ Compare r0 and 0
bne is_nonzero @ if r0 != 0 then branch
mov r0, #1
b end

@ r0 <- 1. This returns the base case

is_nonzero: @ Prepare the call to factorial(n-1)
sub r0, r0, #1 @ r0 <- r0 - 1
bl factorial @ After the call r0 contains factorial(n-1)

/* Load n (that we kept in the stack) into r1 */
ldr r1, [sp] @ r1 <- *sp
mul r0, r0, r1

end:
add sp, sp, #+4
ldr lr, [sp], #+4
bx lr

.globl main
main:

str lr, [sp,#-4]!
sub sp, sp, #4

@ r0 <- r0 * r1 [See Project]

@ Discard the r0 we kept in the stack
@ Pop the top of the stack and put it in lr
@ Leave factorial

@ Push lr onto the top of the stack
@ Make room for one 4 byte integer on the stack
@ We will keep the user's number entered there

75

11. Recursion and the Stack

ldr r0, =message1
@ Note: after that the stack is 8-byte aligned
@ Set &message1 as the first parameter of printf
@ Call printfbl printf

ldr r0, =format @ Set &format as the first parameter of scanf
mov r1, sp @ Set the top of the stack as the second

@ parameter of scanf
bl scanf @ Call scanf

ldr r0, [sp] @ Load the integer read by scanf into r0
@ So we set it as the 1st parameter of factorial

bl factorial @ Call factorial

mov r2, r0 @ Get the result of factorial and move it to r2
@ So we set it as the third parameter of printf

ldr r1, [sp] @ Load the integer read by scanf into r1
@ So we set it as the second parameter of printf

ldr r0, =message2 @ Set &message2 as the first parameter of printf
bl printf @ Call printf

add sp, sp, #+4 @ Discard the integer read by scanf
ldr lr, [sp], #+4 @ Pop the top of the stack and put it in lr
bx lr @ Leave main

Most of the code is pretty straightforward. In both functions, main and factorial, we
allocate 4 extra bytes on the top of the stack. In factorial, to keep the value of r0,
because it will be overwritten during the recursive call (twice, as a rst parameter and
as the result of the recursive function call). In main, to keep the value entered by the
user (if you recall Chapter 9 we used a global variable here).

It is important to bear in mind that in a stack, like a real stack, the last element stacked
(pushed onto the top) will be the rst one to be taken out from the stack (popped from
the top). We store lr and make room for a 4 byte integer. Since this is a stack, the
opposite order must be used to return the stack to its original state. We rst discard
the integer and then we restore the lr. Note that this happens as well when we reserve
the stack storage for the integer using a sub and then we discard such storage doing the
opposite operation add.

Almost every recursive program will start with pushing onto the stack all the registers
that must be saved including, in particular, the return address. We must save lr since
this function may call on some other (or the same) function and write over that register.
Then we check to see if we have reached one of the base cases. If so, we do whatever
is necessary to return the base case value. Otherwise we prepare the arguments for the
recursive call. Upon return from the recursive call we just assume that the function has
performed properly. Of course it is the programmer's duty to ensure that fact. Finally,

76

11.4. Load and Store Multiple

we restore all the registers that were stored on the stack and return to the original
return address.

11.4 Load and Store Multiple

Note that the number of instructions that we need to push and pop data to and from the
stack grows linearly with respect to the number of data items. Since the ARM processor
was designed for embedded systems, ARM designers devised a way to reduce the number
of instructions we need for the \bookkeeping" of the stack. These instructions are load
multiple, ldm, and store multiple, stm.

These two instructions are rather powerful and allow a single instruction to perform
a lot of things. Their syntax is shown as follows. Elements enclosed in curly braces
\f" and \g" (that do not appear in the actual code) may be omitted from the syntax
(however, the eect of the instruction will change).

ldm addressing-mode Rbase{!}, register-set
stm addressing-mode Rbase{!}, register-set

We will consider addressing-mode later. Rbase is the base address used to load to or store
from the register-set which is a list of registers in curly braces. All 16 ARM registers
may be specied in register-set (except pc in stm). A set of addresses is generated
when executing these instructions { one address per register in the register-set. Then,
each register, in ascending order, is paired with one of these addresses, also in ascending
order. This way the lowest-numbered register gets the lowest memory address, and
the highest-numbered register gets the highest memory address. Each pair (register
and address) is then used to perform the memory operation: load or store. Specifying !
means that Rbase will be updated. The updated value depends on the addressing-mode.

Note that if the registers are paired with addresses depending on their register number,
then they will always be loaded and stored in the same way. For instance a register
set containing r4, r5 and r6 will always store r4 in the lowest address generated by
the instruction and r6 in the highest one. We can, though, specify what is considered
the lowest address or the highest address. So, is Rbase actually the highest address or
the lowest address of the multiple load/store? This is one of the two aspects that is
controlled by addressing-mode. The second aspect relates to when the address of the
memory operation changes between each memory operation.

If the value in Rbase is to be considered the highest address it means that it will rst de
crease Rbase as many bytes as required by the number of registers in the register-set
(that is 4 times the number of registers) to form the lowest address. Then it will load or
store each register consecutively, starting from that lowest address, always in ascending
order of the register number. This addressing mode is called Decreasing and is specied
using the letter d. Conversely, if Rbase is to be considered the lowest address, then
this is a bit easier as it can use its value as the lowest address already. We proceed as

77

11. Recursion and the Stack

usual, loading or storing each register in ascending order of their register number. This
addressing mode is called Increasing and is specied using the letter i.

At each load or store, the address generated for the memory operation may be updated
After or Before the memory operation itself. We can specify this using the letters a or
b, respectively.

If we specify !, after the instruction Rbase will have the highest address generated in
the increasing mode and the lowest address generated in the decreasing mode. The

nal value of Rbase will include the nal addition or subtraction if we use a mode that
updates After (an a mode).

So we have four addressing modes, namely: ia, ib, da and db. These addressing
modes are specied as suxes of the stm and ldm instructions. So the full set of
names is stmia, stmib, stmda, stmdb, ldmia, ldmib, ldmda, ldmdb. Now you
may think that this is overly complicated, but we need not use all the eight modes.
Only two of them are of interest to us now.

When we push something onto the stack we actually decrease the stack pointer (because
in Raspian the stack grows downwards). More precisely, we rst decrease the stack
pointer as many bytes as needed before doing the actual store on that just computed
stack pointer. So the appropriate addressing-mode when pushing onto the stack is
stmdb. Conversely when popping from the stack we will use ldmia: we increment the
stack pointer after we have performed the load.

11.5 Factorial again

Before illustrating these two instructions, we will rst slightly rewrite our factorial
function.

If you go back to the code of our factorial function, there is a moment, when computing
n * factorial(n — 1), where the initial value of r0 is required. The value of n was in r0
at the beginning of the function, but r0 can be freely modied by called functions. We
chose, in the example above, to keep a copy of r0 in the stack. Later, we loaded it from
the stack into r1, just before computing the multiplication.

In our second version of factorial, we will keep a copy of the initial value of r0 in r4.
But r4 is a register the value of which must be restored upon leaving a function. So we
will keep the value of r4 at the entry of the function in the stack. At the end we will
restore it back from the stack. That way we can use r4 without breaking the rules of
well-behaved functions.

factorial:
str lr,
str r4,

[sp,#-4]! @ Push lr onto the top of the stack
[sp,#-4]! @ Push r4 onto the top of the stack

78

11.5. Factorial again

mov r4, r0
@ The stack is now 8 byte aligned
@ Keep a copy of the initial value of r0 in r4

cmp r0, #0 @ compare r0 and 0
bne is_nonzero @ if r0 != 0 then branch
mov r0, #1 @ r0 <- 1. This is the base case; return
b end

is_nonzero:
sub r0, r0, #1

@ Prepare the call to factorial(n-1)
@ r0 <- r0 - 1

@ After the call r0 contains factorial(n-1)
bl

mov
mul

factorial

r1,
r0,

r4
r0, r1

@
@
@

Load initial value of r0 (kept in r4) into r1
r1 <- r4
r0 <- r0 * r1 [See Project]

end:
ldr r4, [sp], #+4 @ Pop the top of the stack and put it in r4
ldr lr, [sp], #+4 @ Pop the top of the stack and put it in lr
bx lr @ Leave factorial

Note that the remainder of the program does not have to change. That is the cool thing
about functions.

Now pay attention to these two sequences in our new factorial version above.

str lr, [sp,#-4]! /* Push lr onto the top of the stack */
str r4, [sp,#-4]! /* Push r4 onto the top of the stack */

ldr r4, [sp], #+4 /* Pop the top of the stack and put it in r4 */
ldr lr, [sp], #+4 /* Pop the top of the stack and put it in lr */

Now, let's replace them with stmdb and ldmia as explained in the previous section.

stmdb sp!, {r4, lr} /* Push r4 and lr onto the stack */

ldmia sp!, {r4, lr} /* Pop lr and r4 from the stack */

Note that the order of the registers in the set of registers is not relevant, but the processor
will handle them in ascending order, so we should write them in ascending order. The
GNU assembler will emit a warning otherwise. In addition, it is good programming
practice to have them look exactly alike. Since lr is actually r14 it must go after r4.
This means that our code is 100% equivalent to the previous one since r4 will end in
a lower address than lr: remember our stack grows toward lower addresses, thus r4
which is in the top of the stack in factorial has the lowest address.

79

11. Recursion and the Stack

Remembering stmdb sp! and ldmia sp! may be a bit dicult. Also, given that these
two instructions will be relatively common when entering and leaving functions, the
GNU assembler provides two mnemonics: push and pop for stmdb sp! and ldmia sp!,
respectively. Note that these are not ARM instructions actually, just convenient names
that are easier to remember (actually \macros" in the terminology of other languages).

push {r4, lr}
pop {r4, lr}

11.6 Tail-recursion

Once we have written, tested, and demonstrated some quick prototype code using recur
sion, we must turn to optimizing the code that we will actually deliver for production.
The example above for calculating factorials will show us one type of optimization that
is possible.

Let us consider what return addresses are pushed onto the stack as we run a test
program using our code. The test program will call on factorial once passing n as its
argument and we store the address of the next instruction of the test program away on
the stack. After that there will be many recursive calls on factorial with decreasing
arguments from n — 1 down to 0 but in every case the return address will be the same:
the instruction mov r1, r4 which follows the bl factorial within factorial. In a
way the repeated return addresses on the stack are little more than counters telling us
how many times the function has been called.

Each time we return from the factorial function we must then multiply the result by
the corresponding argument n. In particular, we have something else to do.

If the recursive call is the very last thing we need to do, we call the function tail-
recursive. In such a case we can directly turn our recursive calls into simple jumps and
so have a loop (which is faster since we would not be using the stack at all). Even when
a function is not itself tail-recursive, with the aid of an auxiliary function we can often
obtain the same benet. Again, this technique may be used with high-level languages
just as well. Here is our improved factorial function in C/C++/Java.

public int factorial(int n)
{

return facAux(n,1);
}
int facAux(int n, int ans)
{

if (n == 0) return ans;
facAux(n-1, n*ans);

}

80

11.6. Tail-recursion

If we follow the behavior of this code when we test our program with a small number like
5 as input, we see that there would be one call on facAux(5,1) by the main factorial
function. Then there would be the succession of recursive calls facAux(4,5), facAux(3,20),
facAux(2,60), facAux(1,120), facAux(0,120). Finally, the base case test of n ==
0 would return true and we would immediately return the answer of 120 to factorial.

A smart compiler (and we) may realize that we do not need to keep all the return
information since each call on the auxiliary function need not do any additional work
or return its value to the preceding caller. When we reach the base case, we may return
the value directly to the actual function. We may code this so that it is a loop rather
than a function call!

@ factorial.s
@ tail-recursive loop implementation
@@@@@@ INPUT: @@@@@@@@@@
@
@@ non-negative integer n in r0
@@ (no check - infinite loop if negative)
@
@@@@@@ OUTPUT: @@@@@@@@@@
@
@@ value of n! in r0
@@ (changes r0 and r1)
@
@@@@@@@@@@@@@@@@@@@@@@@@@@
factorial:

mov r1, #1
@ <= entry point
@ start with ans = 1

Aux: @ r0 = n, r1 = ans
cmp r0, #0 @ n == 0 ?
beq return @ if base case, return
mul r1, r0, r1 @ n*ans
sub r0, r0, #1 @ new n value
b Aux @ just a loop! Don't change lr!

return:
mov r0, r1 @ put final answer in r0
b lr @ return to original caller

The important thing about this example is not that we can program factorial as a loop;
we would probably have done that anyway. The point is that we can see how a tail-
recursive program can so easily be changed to a loop program. For this reason it is
even more likely that originally using recursion would not be a waste of eort. It is an
easy exercise to change this code so that r0 and r1 are restored to their original values
without losing the speed of a loop.

81

11. Recursion and the Stack

11.7 Dynamic Programming

Another form of optimization is possible in the cases above where we used double recur
sion. For example, let us analyze the work done in calculating a Fiboncci number using
the straightforward recursive code asked for in Project 7. Unlike the factorial example
which is somewhat unnatural because a simple loop program is faster and easier, we
will consider one of the most famous naturally recursive functions. Introduced around
1202 by Fibonacci, they arose rst in calculating how many rabbits there would be in
succeeding generations under a simple rule of birth. These same numbers appear in
many applications. Their mathematical denition (in one simple form) is:

Fib(0) = 0
Fib(1) = 1
Fib(n) = Fib(n-1) + Fib(n-2) for n >=2

In C this is immediately:

int Fib(int n)
{

if (n == 0 || n == 1) return n;
return Fib(n-1) + Fib(n-2);

}

Following the mathematical description, F ib(10) = F ib(9)+F ib(8) = (F ib(8)+F ib(7))+
(F ib(7)+F ib(6)) = ::: for n = 10. We see that some values will be calculated repeatedly.
In fact, the Fibonacci numbers grow in size exponentially with n and so does the number
of recursive calls.

A very simple solution to this problem is to keep a table of those values that have
already been calculated and so evaluate each Fibonacci number only once. The table
lookup method is called Dynamic Programming and proceeds from small cases to
larger.

Let us apply this technique to the Fibonacci numbers. We will use an array that can
hold 50 integers since for larger n the corresponding number will overow anyhow.
Since the ARM initializes space to the value zero, we will not put in any code to do
that initialization but it might be necessary in other systems or languages. Another
concession will be to use zero as an indication that the value has not been calculated
yet. That forces us to note that F ib(2) = 1 and use that in addition to the usual base
cases since F ib(0) = 0 would not look like a previously calculated value.

@ Fib.s
@
@ Dynamic Programming implementation
@@@@@@@ INPUT: @@@@@@@@
@

82

11.7. Dynamic Programming

@@ non-negative integer n in r0
@@ (no test: negative values address locations outside array)
@
@@@@@@@ OUTPUT: @@@@@@@@@@@
@
@@ nth Fibonacci number in r0
@
@@@@@@@ TO USE: @@@@@@@@@@@
@
@@ mov r0, n
@@ bl Fib

@ Put the n in r0
@ Returns with answer in r0

@
Fib: @ <= entry point
@ save registers

push {r4, r5, r6, lr} @ 8 byte aligned
@ check for zero

cmp r0, #0
beq return @ Fib(0) = 0

@ check FibArray for answer
mov r4, r0
mov r1, r0, LSL #2
ldr r0, =FibArray
add r0, r1, r0
mov r6, r0
ldr r0, [r0]
cmp r0, #0
bne return

@ save n in r4
@ take r0 = n and get r1 = 4*n
@ get array address
@ actual location address
@ save that location address in r6
@ what's there
@ has it been calculated yet?
@ if not zero, found it already

@ otherwise we have to actually do the calculation
@ adjust input parameter

sub r0, r4, #1 @ n-1 new argument
bl Fib @ first recursive call
mov r5, r0 @ save result in r5
sub r0, r4, #2 @ now use n-2 as argument
bl Fib @ second recursive call
add r0, r5, r0 @ new result
str r0, [r6] @ save it in FibArray at correct location

@ restore registers
return:

pop {r4, r5, r6, lr}
bx lr

.data
FibArray:
.word 0 @ Fib(0) = 0
.word 1 @ Fib(1) = 1

83

11. Recursion and the Stack

.word 1 @ Fib(2) = 1

.space 188 @ room for 47 more

Even on a fairly fast processor we can nally do so large a calculation that the time
lag will be quite noticeable. The straight recursive Fib function will take a signicant
amount of time to run when given, for example, an n value of 40. With most of the
recursive calls removed by Dynamic Programming, it should be instantaneous.

Projects

1. When using the mul instruction, we wrote mul r0, r0, r1. Compare that to mul
r0, r1, r0.

2. It is frequently needed to nd out what is the information at the top of the stack.
Write a simple function top that returns that value but does not (permanently)
change the stack, using only push and pop. This shows that a built-in function
top is not necessary but it might be available.

3. Modify the factorial function code to check for input greater than 12. What
happens with larger values? Why?

4. Write and test a program to reverse an input list of numbers using recursion.

5. Write and test a tail-recursive function to calculate the product of two integers
product(n; m) = n m using only addition and subtraction as if there were no
multiply hardware and it must be done in software.

6. Write and test a tail-recursive function to calculate the sum of two integers
sum(n; m) = n+m using only increment (adding 1) and decrement (subtracting
1) as if there were no adding hardware and it must be done in software using only
increment and decrement hardware.

7. (Fibonacci Numbers) Write a recursive (but not tail-recursive) assembler language
program to calculate the Fibonacci number of a non-negative input integer by
direct translation of the C code. How large an integer can your program handle?
How slow is it?

8. (Binomial Coecients) The number of combinations of n identical objects taken k
at a time, denoted by C(n; k), can be calculated using the recursive formula given
in C/C++/Java code by

public int C(int n, int k)
{
if (n == 0 || k == 0 || k == n) return 1;
return C(n-1,k) + C(n-1,k-1); // 0 < k < n
}

84

11.7. Dynamic Programming

In our study of Discrete Mathematics we will see that C(n; k) is the kth coecient
in the expansion of the expression (x + y)n. These numbers are called the binomial
coecients. Again it is easy to translate this directly into ARM assembly code.
Write a program that prompts for n and k and returns C(n; k). Add checks for
incorrect input in your code for C(n; k); return — 1 if 0 < k < n fails in any way.

9. Using the function C(n; k) as a model, write assembler code to calculate the
recursive function J dened by J(0) = 0; J(1) = 1, and

J (n) = 2nJ (n — 1) — J (n — 2)

for n 2. Assume, as usual, that r0 contains n and the answer is returned in r0.
Write a driver program to print out the values of J(n) for n = 0 to n = 25. (Also,
assume the values are small integers.)

10. Fix the tail-recursive version of factorial so that registers r0 and r1 are not
changed.

11. Write a \driver" program to call on our tail-recursive Fib.s program and print
out values.

12. Look up the simple closed-form equation for the nth Fibonacci number.

85

12 Conditional Execution

Several times, in earlier chapters, we stated that the ARM architecture was designed
with the embedded world in mind. Although the cost of the memory becomes lower
everyday, it still may account for an important part of the budget of an embedded
system. The ARM instruction set has several features meant to reduce the impact of
code size and, as we shall see, branching. One of those features is predication.

12.1 Predication

We saw in earlier chapters how to use branches in our program in order to modify the
execution ow of instructions and implement useful control structures. Branches can
be unconditional, for instance when calling a function, or conditional when we want to
jump to some part of the code only when a previously tested condition is met.

Predication is related to conditional branches. What if, instead of branching to some
part of our code meant to be executed only when a condition C holds, we were able to
turn o some instructions when the C condition does not hold? Consider some case
like this:

if (C)
T();

else
F();

Using predication (and with some invented syntax to express it) we could write the
above if-else statement as follows:

P = C; @ get the predicate
[P] T(); @ if P is true, do T(), otherwise, do nothing
[!P] F(); @ if P is false, do F(), otherwise, do nothing

This way we avoid branches. But, why would be want to avoid branches? Well, exe
cuting a conditional branch involves a bit of uncertainty as to what will happen in the
future. This deserves a bit of explanation.

87

12. Conditional Execution

12.2 The pipe line of instructions

Imagine an assembly line. In that assembly line there are 5 workers, each one fully
specialized to a single task. That assembly line executes instructions. Every instruction
enters the assembly line from the left and leaves it at the right. Each worker does some
task on the instruction and passes it to the next worker to the right. Also, imagine
all workers are more or less synchronized, each one ends its task in exactly 6 seconds.
This means that at every 6 seconds there is an instruction leaving the assembly line, an
instruction being fully executed. It also means that at any given time there may be up
to 5 instructions being processed (although not fully executed, we only have one fully
executed instruction at every 6 seconds).

The assembly line of instructions

Figure 12.1

The rst worker fetches instructions and puts them in the assembly line. It fetches
the instruction at the address specied by the register pc. By default, unless told, this
worker next fetches the instruction physically following the one previously fetched (this
is implicit sequencing again).

In this assembly line, suppose the worker that checks the condition of a conditional
branch is not the rst one but the third one. Now consider what happens when the rst
worker fetches a conditional branch and puts it in the assembly line. The second worker
will process it and pass it to the third one. The third one will process it by checking the
condition of the conditional branch. If it does not hold, nothing happens, the branch
has no eect. But if the condition holds, the third worker must notify the rst one
that the next instruction fetched should have been the instruction at the address of the
branch.

But now there are two instructions in the assembly line that should not be fully executed
(the ones that were physically after the conditional branch). There are several options
here. The third worker may pick up two stickers labeled as do nothing, and stick them
on the two next instructions. Another approach would be for the third worker to tell the
rst and second workers: \Hey guys, stick a do nothing on your current instruction".

Later workers, when they see these do nothing stickers will do, naturally, nothing.
This way each do nothing instruction will never be fully executed.

But by doing this, that nice property of our assembly line is gone: now we do not have
a fully executed instruction every 6 seconds. In fact, after the conditional branch there

88

12.2. The pipe line of instructions

are two do nothing instructions. A program that is constantly doing branches may
well reduce the performance of our assembly line from one (useful) instruction each 6
seconds to one instruction each 18 seconds. This is three times slower!

The third worker realizes that a branch is taken. Next two instructions
will get a do nothing sticker

Figure 12.2

The truth is that modern processors, including the one in the Raspberry Pi, have branch
predictors which are able to mitigate these problems: they try to predict whether the
condition will hold, so the branch is to be taken or not. Branch predictors, though,
predict the future like stock brokers and weather forecasters, using the past and, when
there is no past information, using some sensible assumptions. So branch predictors
may work very well with relatively predictable codes but may work not so well if the
code has unpredictable behavior.

Back to the assembly line example, it would be the rst worker who attempts to predict
whether the branch will be taken or not. It is the third worker who veries if the rst
worker did the right prediction. If the rst worker mispredicted the branch, then we
have to apply two stickers again and notify the rst worker what is the right address of
the next instruction. If the rst worker predicted the branch right, nothing special has
to be done, which is great.

If we avoid branches, we avoid the uncertainty of whether the branch is taken or not.
So it looks like that predication is the way to go. It is not a perfect answer, however.
Processing a bunch of instructions that are actually turned o is not an ecient usage
of a processor.

89

12. Conditional Execution

Back to our assembly line, the third worker will check the predicate. If it does not hold,
the current instruction will get a do nothing sticker but in contrast to a branch, it
does not have to notify the rst worker.

So it ends, as usual, that no approach is perfect on its own. Of course we use the
assembly line analogy because that is what actually happens in computer processors.
Dierent processors have dierent numbers of stages in their \pipelines", but all do
divide up the work that appears as a single instruction into stages in order to increase
performance.

12.3 Predication in ARM

In ARM, predication is very simple to use: almost all instructions can be predicated.
The predicate is specied as a sux to the instruction name. The sux is exactly the
same as those used in branches in Chapter 6: eq, ne, le, lt, ge and gt. Instructions
that are not predicated are assumed to have a sux al standing for ALways. That
predicate always holds and we do not write it for the sake of economy (it is valid
though). You can understand conditional branches as predicated branches if you feel
like it.

12.4 Collatz conjecture revisited

In Section 7.4 we implemented an algorithm that computed the length of the Collatz (or
Hailstone) sequence of a given number. Though not proved yet, no number has been
found that has an innite Collatz sequence. Given our knowledge of functions from
Chapter 10, we have encapsulated the code that computes the length of the Collatz
sequence in a function.

1 /* -- collatz02.s */
2 .data
3
4 message: .asciz "Type a number: "
5 scan_format: .asciz "%d"
6 message2: .asciz "Length of the Collatz sequence for %d is %d\n"
7
8 .text
9

10 collatz:
11 @ r0 contains the first argument
12 @ Only r0, r1 and r2 are modified, so
12 @ we do not need to keep anything in the stack
13 @ Since we do not do any calls, we do not have to keep lr either
14 mov r1, r0 @ r1 <- r0

90

12.4. Collatz conjecture revisited

15 mov r0, #0 @ r0 <- 0
16 collatz_loop:
17 cmp r1, #1 @ compare r1 and 1
18 beq collatz_end @ if r1 == 1 branch to collatz_end
19 and r2, r1, #1 @ r2 <- r1 & 1 (even or odd)
20 cmp r2, #0 @ compare r2 and 0
21 bne collatz_odd @ if r2 != 0 (odd) branch to collatz_odd
22 collatz_even:
23 mov r1, r1, ASR #1 @ r1 <- r1 >> 1. [r1 <- r1/2]
24 b collatz_end_loop @ branch to collatz_end_loop
25 collatz_odd:
26 add r1, r1, r1, LSL #1 @ r1 <- r1 + (r1 << 1). [r1 <- 3*r1]
27 add r1, r1, #1 @ r1 <- r1 + 1.
28 collatz_end_loop:
29 add r0, r0, #1 @ r0 <- r0 + 1
30 b collatz_loop @ branch back to collatz_loop
31 collatz_end:
32 bx lr
33
34 .global main
35 main:
36 push {lr} @ keep lr
37 sub sp, sp, #4 @ make room for 4 bytes in the stack
38 @ The stack is now 8 byte aligned
39
40 ldr r0, =message @ 1st parameter of printf: &message
41 bl printf @ call printf
42
43 ldr r0, =scan_format @ 1st parameter of scanf: &scan_format
44 mov r1, sp @ 2nd parameter of scanf:
45 address of the top of the stack
46 bl scanf @ call scanf
47
48 ldr r0, [sp] @ 1st parameter of collatz:
49 @ the value stored (by scanf) in
50 @ the top of the stack
51 bl collatz @ call collatz
52
53 mov r2, r0 @ 3rd parameter of printf:
54 @ the result of collatz
55 ldr r1, [sp] @ 2nd parameter of printf:
56 @ the value stored (by scanf) in
57 @ the top of the stack
58 ldr r0, =message2 @ 1st parameter of printf: &message2

91

12. Conditional Execution

59 bl printf
60
61 add sp, sp, #4 @ return space from stack
62 pop {lr} @ prepare to return and fix stack
63 bx lr

12.5 Adding predication

Now, let's add some predication. There is an if-then-else construct in lines 22 to 31.
There we check if the number is even or odd. If even we divide it by 2, if odd we multiply
it by 3 and add 1.

19 and r2, r1, #1
20 cmp r2, #0
21 bne collatz_odd
22 collatz_even:
23 mov r1, r1, ASR #1
24 b collatz_end_loop
25 collatz_odd:
26 add r1, r1, r1, LSL #1
27 add r1, r1, #1
28 collatz_end_loop:

@ r2 <- r1 & 1 (even or odd)
@ compare r2 and 0
@ if r2 != 0 (odd) branch to collatz_odd

@ r1 <- r1 >> 1. [r1 <- r1/2]
@ branch to collatz_end_loop

@ r1 <- r1 + (r1 << 1). [r1 <- 3*r1]
@ r1 <- r1 + 1

Note in line 21 that there is a bne (Branch if Not Equal) instruction. We can use this
condition (and its opposite beq) to predicate this if-then-else construct. Instructions in
the then part will be predicated using eq, instructions in the else part will be predicated
using ne. The resulting code is shown below.

cmp r2, #0 @ Compare r2 and 0
moveq r1, r1, ASR #1 @ if r2 == 0, r1 <- r1 >> 1. [r1 <- r1/2]
addne r1, r1, r1, LSL #1 @ if r2 != 0, r1<-r1+(r1<<1). [r1 <- 3*r1]
addne r1, r1, #1 @ if r2 != 0, r1 <- r1 + 1

As you can see, there are no labels in the predicated version. We do not branch now
so they are not needed anymore. Note also that we actually removed two branches:
the one that branches from the condition test code to the else part and the one that
branches from the end of the then part to the instruction after the whole if-then-else.
This leads to a more compact code and the \pipeline" will not be stalled by possible
branches.

12.6 Does it make any dierence in performance?

Taken as it is, this program is too small to be able to accurately consider the time it
takes to run, so we modied it to run the same calculation inside the Collatz function

92

12.7. The s sux

4,194,304 (that is 222) times. That number was chosen after some tests, so the execution
did not take so much time as to be tedious. We used the number 123 as n expecting 46
steps as the answer.

It is very dicult to actually time the execution, even trying to use tools that are
available. However, after much tribulation we obtained:

The version with branches gives the following results:

3359.953200 cpu-clock (+- 0.01

3.365263737 seconds time elapsed (+- 0.01

The version with predication gives the following results:

2318.217200 cpu-clock (+- 0.01

2.322732232 seconds time elapsed (+- 0.01

So the answer is, \yes". In this case it does make a dierence. The predicated version
runs 1.44 times faster than the version using branches. It would be bold, though, to
assume that in general predication outperforms branches. Always measure your time.

12.7 The s sux

So far, when checking the condition of an if or while, we have evaluated the condition
and then used the cmp intruction to update the cpsr. The update of the cpsr is
mandatory for our conditional codes, no matter if we use branching or predication. But
cmp (and other such instructions) is not the only way to update the cpsr. In fact many
instructions can update it.

By default an instruction does not update the cpsr unless we append the sux s.
So instead of the instruction add or sub we write adds or subs. The result of the
instruction (what is being stored in the destination register) is used to update the cpsr.
Note that if we also use predication, the s follows it.

How can we use this? Well, consider this simple loop counting backwards.

/* for (int i = 100 ; i >= 0; i--) */
mov r1, #100
loop:

/* do something */
sub r1, r1, #1 @ r1 <- r1 - 1
cmp r1, #0 @ update cpsr with r1 - 0
bge loop @ branch if r1 >= 0

If we replace sub by subs then the cpsr will be updated with the result of the subtrac

93

12. Conditional Execution

tion. That means that the ags N, Z, C and V will be updated, so we can use a branch
right after the subs. In our case we want to jump back to loop only if i 0, that is,
when the result is non-negative. We can use bpl to achieve this.

/* for (int i = 100 ; i >= 0; i--) */
mov r1, #100
loop:

/* do something */
subs r1, r1, #1 @ r1 <- r1 - 1, update cpsr with the final r1
bpl loop @ branch if the previous sub computed a positive

@ number (N flag in cpsr is 0)

It is a bit tricky to get these things right (this is why we use compilers). For instance
this similar, but not identical, loop would use bne instead of bpl. Here the condition is
ne (not equal). It would be nice to have an alias like nz (not zero) but, unfortunately,
that does not exist in ARM.

/* for (int i = 100 ; i > 0; i--)
Note here i > 0, not i >= 0 as in the example above

*/
mov r1, #100
loop:

/* do something */
subs r1, r1, #1 @ r1 <- r1 - 1, update cpsr with the final r1
bne loop @ branch if the previous sub computed a number

@ that is not zero (Z flag in cpsr is 0)

A rule of thumb as to where we may want to apply the use of the s sux is in codes of
the following form.

s = ...
if (s ?? 0)

where ?? means any comparison with respect to 0 (equals, dierent, lower, etc.).

Projects

1. Consider modifying lines 54-61 in the BinarySearch.s code in Section 10.1.

2. Consider modifying factorial.s from Section 11.3 where the instruction cmp
r0, #0 occurs followed by three instructions.

3. Look up the behavior of the other comparison operators cmn, tst and teq . Just
as cmp is basically subs but does not store the result, what are the equivalent
operations for these other test-type operators?

94

12.7. The s sux

4. Check whether the s sux works on your system.

5. In addition to the operations add, sub, rsb, adc, sbc, rsc (what are they
all?), note that the mov instruction also can take an s sux. Test out all these
ARM operators. Try ldrs and see if it works.

95

13 Floating-point Numbers

So far we have only treated numbers that are integers. As we saw, their size (assuming
a 32-bit 2's-complement representation) is limited to the range of -2,147,483,648 to
+2,147,483,647. For scientic purposes, even larger numbers are necessary. At the
other end of the scale, very small numbers (anything less than one in absolute value!)
play an equally important role. While there are many possible ways to obtain a wider
range and ner accuracy than considering only the nearest integer, we will concentrate
on the representation standardized by the IEEE in 1985 and rather universally used.

13.1 IEEE-754 Standard

We should be used to what is called \scientic notation" from courses in chemistry
and physics. For example, Avogadro's number is about 6:023 1023 atoms/mole and
Planck's constant is near 6:62 x 10 -27 erg-seconds. The general rule in decimal notation
is to pick a power of 10 for which there is exactly one non-zero digit to the left of the
decimal point. Such numbers are called normalized. Thus, from the choice of

;6023 x 1020; 602:3 x 1021; 60:23 x 1022; 6:023 x 1023; 0:6023 x 1024; 0:06023 x 1025;

we will pick the representation used above.

The same rule will be applied to binary numbers. Each non-zero number will be written
as a 1 to the left of the binary point, a binary fraction to its right, all multiplied by
a power of two. For example, 25:75DEC would be 11001:11BIN or 1:100111BIN x 24 in
normalized form. Conversions between base 10 and base 2 are quite straightforward.

The next question is how to represent these numbers in a computer. Much careful
analysis was made about that problem and in 1985 a standard was agreed to under the
direction of the IEEE. Assuming a 32-bit word, the decision must be made as to what
the various bits stand for. As with integers, one bit must be used to indicate the sign
of the number and, again, bit 31 will be used for that purpose. Now the other 31 bits
must be assigned.

Clearly, the choice must be how many are to be assigned to the exponent of 2 and
how many (the remainder) to the binary fraction part of the number, often called the
mantissa. The more we allow in the exponent, the larger and smaller the numbers can

97

13. Floating-point Numbers

be. The more we allow in the mantissa, the more accurate our approximations will be.
Obviously, we must trade o between range and accuracy.

The choice made by the numerical analysts was to use 8 bits for the exponent part and
the remaining 23 bits for the fractional part. Just to show how important each bit is,
it was noted that every non-zero number had a single 1 to the left of the binary point.
Since it must be there, it need not actually appear in the word. Thus, bits 22 down
to 0 are the binary fractional part of the number with \1." understood before it. Thus
there is the equivalent of 24 bits of accuracy rather than just 23 bits!

The choice just made aects the other 8 exponent bits from 30 down to 23, however.
There are just 256 dierent bit patterns for those bits and again we must decide on
their meanings. Both positive and negative exponents are needed and two's complement
representation would have worked, but that wasn't the decision for various reasons. As
unsigned integers, those 8 bits would be representations of numbers from 0 to 255. In
order to allow negative exponents, a bias of -127 is applied to these numbers. That is,
127 is subtracted from the unsigned value giving a range of exponents of the base 2 from
-127 to +128.

In summary, the form of a non-zero oating-point number will be

(—1)S X 2E“127 X (1:M)

where S is the sign bit (31), E is the exponent eld (30-23) as an unsigned integer, and
M is the mantissa (22-0).

The number zero does not have a 1 before the binary bit and so could not be expressed
in this way. Another detail was added to the rules. The unbiased exponents of 0 and
255 were reserved for special cases. For example, a zero exponent is associated with the
oating-point number 0.0 and some \unnormalized" numbers smaller than those that

can be expressed in normalized form. They have the general form

(—1)S x 20“127 x (0:M)

The exponent 11111111BIN is associated with such special values as \innity" and
\NotANumber" (0/0, for example). We will not go into these special values in any detail
since the regular numbers are interesting enough. They are the \oats" of C/C++/Java.

In case the 24-bit accuracy is not sucient, double precision numbers were also dened.
They use two consecutive words (64 bits) in a similar way. The high order bit of the
rst word is the sign bit as before. The next 11 bits of the rst word are the exponent of

2 biased by -1023. Finally, the remaining 52 bits consisting of the last 20 bits of the rst
word and all the 32 bits of the second word are the fractional part with an understood
\1." in front as before. The unbiased exponents of 0 and 2047 are reserved for special
cases as with single precision numbers. The general form of these numbers is

(—1)S x 2E-1023 x (1:MW2)

98

13.2. Examples

where S is the sign bit (31) from the rst word, E is the exponent eld (30-20) from
the rst word as an unsigned integer, M is the mantissa eld (19-0) of the rst word
which is concatenated with W2 , the entire second word. These are the \doubles" of
C/C++/Java.

13.2 Examples

The number 25:75DEC = 1:100111BIN 24 described above has an exponent of 4 =
131 — 127 and a fractional part of :100111BIN. Since 131DEC = 10000011BIN and the
number is positive, the full representation of that oating-point number would be

25:75DEC = 01000001110011100000000000000000BIN = 0x41CE0000

Starting with the oating-point representation of a number such as

10111110001011000000000000000000BIN = 0xBE2C0000

we see that the sign bit is on and so the number is negative. The exponent bits form
the unsigned integer 124 and so, after subtracting 127, the exponent of 2 is -3. Putting
the understood 1: in front of the fractional part we get 1:01011BIN , which means 1 +
1=4 + 1=16 + 1=32 = 43=32. Multiplying by 2-3 = 1=8, we get the fraction 43=256 or
the decimal number — 0J6796875DEC as our final answer. Our assembler can do these
calculations for us so we will not practice many of them by hand.

An important example we should consider immediately is the decimal value 1=10 =
0:1DEC. A simple method for converting base ten fractions to base two is to repeatedly
double the fractional part of the value and take the integer part (0 or 1, obviously) as
the next bit. Thus, we obtain (0).2, (0).4, (0).8, (1).6, (1).2, (0).4, (0).8, (1).6, (1).2,
(0).4, (0).8, (1).6, etc. The binary fraction, then, is

0:000110011001 : : .BIN = 2^ X 1^0^01 : : .BIN

which is obviously a repeating fraction. When we try to represent this number we must
truncate it to as many bits as are available. In normalized IEEE-754 form we would
have

+2123-127(1 + :10011001:: .BIN) = 0011110111001100110011001100110?BIN

where the last place is in question since there must be round-o error when truncating
a repeating fraction of this type. The bit in the question mark place is a zero but the
next bit would be a one. That means that the remainder would be more than one-half
and so we should round the value to a one in the last place. Our final answer would be

0:1DEC 00111101110011001100110011001101BIN = 0x3DCCCCCD

This number is slightly more than 1/10 but 0x3DCCCCCC is slightly less than 1/10.
We cannot express the simple fraction 1/10 exactly in our binary system! We have,
however, exactly expressed the fraction 13421773/134217728 (check this!).

99

13. Floating-point Numbers

In many computers there are additional bits carried along with the stated 32 to improve
the accuracy of computations. That is a subject of more advanced study. For us the
important thing is that no matter how many bits are used, there will be errors in
our values since not all numbers can be exactly represented. Indeed, only at most 232

dierent numbers could possibly be represented with only 32 bits. Doing everything in
double precision may be more accurate (and slower), but is not the entire answer since,
again, not all values can be represented.

13.3 Extremes

Since one of the reasons for using oating-point numbers rather than just integers was to
extend the range of values which could be described, we will now consider exactly what
the largest and smallest values available are. Using the 32-bit IEEE-754 standard, we
must remember that the unbiased exponents of 0 and 255 are reserved so the smallest
we may use is 1 and the largest 254.

The smallest (positive) number would have an unbiased exponent eld of 00000001BIN
and a mantissa of all zeros. The true exponent of 2 would be 1-127 = -126 while
the fractional part would be just the virtual 1. we assume present. In other words, the
decimal value of the smallest positive number would be 2~126 (1.0) ~ 1.175494351x 10-38.

It is interesting to also consider what would be the very next larger positive number
that can be represented. The unbiased exponent would still be 1 but the fraction would
have a 1 in the last place, corresponding to a term of 2_23. The result, then, is

2-126(1 + 2-23) = 2-126 + 2-149 ~ 1.175494211 x 10 38.

the numbers differing by about 1.401298464 x 10-45. Notice that the smallest and the
next larger number agree in their rst seven digits (1175494). We would say that they
are the same to seven \signicant gures."

At the other end of the range of values, the largest positive number would have an
unbiased exponent of 254 so the true exponent would be 254-127=127. The fractional
part would have all ones and the number would look like

01111111011111111111111111111111BIN = 0x7F7FFFFF

Recognizing the positions in the fraction stand for negative powers of two, we see that
if we add one in the last or least significant position (2_23) to the number, we would get
a sum of 2 (since there is already a virtual \1." in front of the fraction). Putting these
facts together we have the value

2127 x (2 - 2"23) = 2128 - 2104 « 3.402823669 x 1038 - 2.028240960 x 1031

and that is approximately 3.402823466 x 1038. Now let us find the very next (smaller)
number in this representation. It would look like 0x7F7FFFFE, differing by having a

100

13.4. Exceptions

zero in the last place. The calculation we just did tells us that the change will be the
value of 2104 found above or about 2 1031, which is a very large number. The fact that
any number in the entire range of over 1031 reals from one number to the next must be
rounded-o to one of these numbers diering by so much is surprising. On the other
hand, we note that we still have the same seven signicant gures as we had before!

While there can be no exact representation of all the integers between the largest and
the next largest number, it is interesting to note that every integer less than 16,777,216
has an exact IEEE-754 representation. It is an exercise to show why that is true.

13.4 Exceptions

Although we now can express numbers over a very large range, it is still possible to have
the same overow problem we had with integers. If the result of a calculation (or any
of its intermediate steps) is larger in size than the 3:402823466 1038 we found above,
the system must take some special action. As with integers, the behavior of a system
depends on the hardware and software involved. In some cases an exception is raised
(as in Java's try-catch statements) and can be handled by special code written by the
programmer. In other cases the hardware may automatically transfer control to code in
the operating system that may or may not allow the program to continue.

With oating-point numbers there is another problem that can arise. The result of a
calculation (or, again, any of its intermediate steps) may be smaller in size than the
1:175494351 x 10-38 we calculated above. If that happens, we say that underflow has
occurred. Again the behavior of the system depends on both the hardware and the
software involved.

A very frustrating situation can occur when one's program contains a loop in which bet
ter and better approximations to the correct answer are being calculated. The error term
is getting smaller and smaller. On some systems the language/compiler/OS/hardware
combination is such that if the approximation gets too good, the error term causes
underow and the program is aborted without any way for the user to retrieve that
excellent approximation. (See Chapter 16 for more on exceptions.)

13.5 Accuracy

Unlike integers in which their arithmetic is exact, the operations of addition, subtraction,
multiplication, and division will usually yield only approximations to the correct answer.
As we saw above, we cannot represent 0:1DEC exactly and so adding it to itself 10 times
will probably not yield 1:0DEC exactly. Consider the simple for-loops in C/C++/Java
pseudo-code:

for (float x = 0.0; x < 1.0; x += 0.1) {do something involving x}

101

13. Floating-point Numbers

versus

for (int i = 0; i < 10; i++) {do something involving x=i/10.0}

While the second will denitely loop ten times, the rst might not! In fact, an even
more dangerous idea is to test two oat numbers for equality. While we could replace
i < 10 by i != 10, the expression x != 1:0 would probably always be true and give us
an innite loop! As a general rule in C/C++/Java, never test oats for equality!

As mentioned before, we will not spend time now on hand calculations that involve
oating-point numbers since the GNU assembler actually supports them and allows us

to use them quite easily. However, even before writing programs which use oating-
point numbers in the next chapter, we can consider another major problem that can
occur with them.

Suppose we are doing decimal calculations involving = 3:141592654::: and also a very
accurate fractional approximation 355=113 = 3:14159292 ::: . [Note: That's a lot better
than 22/7.] If we actually have, as calculated above, just 7 signicant digits, these two
values would be stored as 3.141593 and 3.141593 | exactly the same! Indeed, if we
were able to store them to 8 signicant gures, they would be 3.1415927 and 3.1415929.
Their dierence would be 0.0000002 a gure with just 1 signicant digit in it!

This behavior is called catastrophic cancellation. When we take the dierence between
two numbers of approximately the same size, we lose signicant digits in the answer.
The ill-conditioned Hilbert matrices are an excellent example of this problem. The nth

Hilbert matrix is dened to be

1 1=2 1=3 1=n
1=2 1=3 1=4 1=(n + 1)
1=3

.
1=4

.
1=5
..

1=(n + 2)
...

1=n
..

1=(n + 1)
..

1=(n + 2)
...

•• 1/(2n - 1)

Expanding the determinant of such a matrix we nd it has n! terms, half positive and
half negative, and all about the same size. Trying to calculate the determinant of even
small cases of the Hilbert matrix is dicult.

A common behavior is using 22=7 = 3:142857143 ::: and keeping all those gures past
the third when approximating . The problem is that a computer will print out the
same large number of digits, even if most of them are meaningless. That leads people
to believe in their accuracy quite unjustiably.

Let us look at the simple act of adding two oating-point numbers together. If their
sizes are nearly the same, we saw above that subtracting can cause loss of precision.
Now suppose that the two numbers are quite dierent in size and we wish to add them.
Since they are assumed to be dierent in size, their exponents will be very dierent. In
order to add them we must rst shift the smaller one (with the smaller exponent) to

102

13.6. *Fixed-point Numbers

the right, thus \un-normalizing" it, until it has the same exponent as the larger. Only
then can we add the fractional parts. That result may need renormalization but that is
easy to do. The problem is that when we shifted the smaller number right we may have
lost some of the important information those lower bits contained. Obviously, if the
numbers dier by more than the seven signicant decimal digits we have, the smaller
will look just like zero!

13.6 *Fixed-point Numbers

While the oating-point numbers have the advantage in range, the integers we considered
earlier had the advantage of allowing for exact calculations. Our integers in two's
complement form are just one example of another general way in which we may represent
numbers in a computer. Fixed-point numbers are used in many Digital Signal Processing
(DSP) systems [but NOT the ARM processor we are studying].

Since they are not really part of our use of ARM as an example for the study of assembler
and computer architecture, we will introduce them as they would appear on a 16-bit
machine just to emphasize this point. A general notation for a xed-point format is m.n
(mQ.n and Qn are also used in the literature) where m is the number of bits (including
a sign bit) assumed to the left of the binary point and n is the number of bits to the
right. Thus, m+n always equals the total number of bits available (we will use 16 here).

For negative numbers we will still use the two's complement method of representation.
Thus, the 16-bit integers may be considered xed-point numbers with format 16.0; all
sixteen bits appear before the virtual binary point. Were we to need to consider exact
calculations concerning dollars and cents, we might use the equivalent of a 14.2 format
in a decimal computer, carrying two digits after the decimal point.

In many cases, we know that our data is of absolute value less than one (sine or cosine,
maybe). An interesting format for such numbers would be 1.15 (also called Q15); one
sign bit and 15 fractional bits. Let us consider the details of such numbers.

The largest 16-bit positive xed-point number expressible in 1.15 format would be
0111111111111111BIN. That is, the sign bit of zero followed by a binary point and
the fractional part consisting of all ones. The value of this number would be 12 15 «
:9999694824DEC, very close to 1. On the other hand, the smallest positive number would
be 0000000000000001bin whose value is 2“15 « :00003051757812dec.

These numbers act like integers in that each successive number diers by exactly that
2-15 we found above and their arithmetic is exact. For many purposes, particularly
in DSP calculations, xed-point numbers t the problem very well and the hardware
should be made available to support such numbers and their calculations. All that we
have discussed concerning 16-bit numbers applies to our usual 32-bit numbers. A point
to notice is that there are just 65536 dierent 16-bit patterns and it is up to us to decide
how to interpret them.

103

13. Floating-point Numbers

Projects

1. Justify the doubling method described for converting decimal fractions to binary.

2. Express 1:0DEC in IEEE-754 form. What is the next larger number expressible in
that representation?

3. What integers can be exactly expressed in IEEE-754 form?

4. What is the decimal value of the oating-point number 0xD52C0000?

5. What are the values of the two approximations to 0:1DEC found above?

6. What are the largest and smallest positive numbers in double precision?

7. In C/C++/Java, add up the terms of the innite series 1 + 1/2 + 1/3 + 1/4 + . . .
until the partial sums no longer change. At what point did that happen? What
value for the partial sum did you get? What is the correct sum of this innite
series? Try starting at the place you found above and adding them together in
reverse order. Is the answer the same?

8. What are the largest and smallest 32-bit xed-point numbers in 1.31(or Q31)
format?

9. Calculate the determinant of some of the small cases of the Hilbert matrices.

10. Look up the new enhancements to the IEEE754-2008 requirements as used by the
ARM 3.

104

14 Real Computations

In the early days of computers, there was no hardware support for oating-point com
putations. If they were needed, software routines had to be written to perform any
operations desired. The 8087 chip which was added later and served as a coprocessor
to the 8088 processor in the original PC was extremely powerful and demonstrated the
advantages of having oating-point numbers fully supported in hardware. Neverthe
less, many DSP chips today, although fantastically powerful, only support xed-point
numbers.

The ARM processor has a oating-point coprocessor with it and so does an excellent
job of supporting such computations. As we stated several times in earlier chapters,
the ARM was designed to be very exible. We can see this in the fact that the ARM
architecture provides a generic coprocessor interface. Manufacturers of a \system-on-a-
chip" may bundle additional coprocessors. Each coprocessor is identied by a number
and provides specic instructions. For instance the Raspberry Pi SoC is a BCM2835
which provides a multimedia coprocessor (which we will not discuss here).

That said, there are two standard coprocessors in the ARMv6 architecture: 10 and 11.
These two coprocessors provide oating point support for single and double precision,
respectively. Although the oating point instructions have their own specic names,
they are actually mapped to generic coprocessor instructions targeting coprocessors 10
and 11.

The ARMv6 denes a oating point subarchitecture called the Vector Floating-Point v2
(VFPv2). Version 2 because earlier ARM architectures supported a simpler form called
now v1. As stated above, the VFP is implemented on top of two standardized coproces
sors 10 and 11. The ARMv6 does not require VFPv2 be implemented in hardware (one
can always resort to a slower software implementation). Fortunately, the Raspberry Pi
2 does provide a hardware implementation of VFPv2.

14.1 VFPv2 Registers

We already know that the ARM architecture provides 16 general purpose registers r0
to r15, where some of them play special roles: r13, r14 and r15. Despite their name,
these general purpose registers do not allow operating on oating point numbers in them,

105

14. Real Computations

so VFPv2 provides us with some specic registers for that purpose. These registers are
named s0 to s31, for single-precision, and d0 to d15 for double precision. These are
not 48 dierent registers. Instead every double precision register d(n) is mapped to two
consecutive single precision registers s(2n) and s(2n+1), where n is less than or equal
to 15.

These registers are structured into 4 banks:

s00-s07 (d00-d03)
s08-s15 (d04-d07)
s16-s23 (d08-d11)
s24-s31 (d12-d15)

We will call the rst bank (bank 0: s0-s7 = d0-d3) the scalar bank, while the remaining
three are vectorial banks (below we will see why).

Figure 14.1

The VFPv2 provides three control registers but we will only be interested in one called
fpscr. This register is similar to the cpsr as it keeps the usual comparison ags N,
Z, C and V. It also stores two elds that are very useful, len and stride. These
two elds control how oating point instructions behave. We will not care very much
about the remaining information in this register: status information of the oating point
exceptions, the current rounding mode and whether denormal numbers are ushed to
zero.

14.2 Arithmetic operations

Most VFPv2 instructions are of the form fname Rdest, Rsource1, Rsource2 or fname
Rdest, Rsource1. They have three modes of operation.

Scalar: This mode is used when the destination register Rdest is in bank 0:
(s0-s7 or d0-d3). In this case, the instruction operates only with Rsource1 and
Rsource2. No other registers are involved.

106

14.2. Arithmetic operations

Vectorial: This mode is used when the destination register Rdest and Rsource2
(or Rsource1 for instructions with only one source register) are not in bank 0.
In this case the instruction will operate on as many registers (starting from the
given register in the instruction and wrapping around the bank of the register)
as dened in eld len of the fpscr (at least 1). The next register operated on is
dened by the stride eld of the fpscr (at least 1). If wrap-around happens, no
register can be operated on twice.

Scalar expanded (also called mixed vector/scalar): This mode is used if Rsource2
(or Rsource1 if the instruction only has one source register) is in bank 0, but the
destination is not. In this case Rsource2 (or Rsource1 for instructions with only
one source) is left xed as the source. The remaining registers are operated on as
in the vectorial case (that is, using len and stride from the fpscr).

This looks rather complicated, so let's see some examples. Most instructions have a
sux of .f32 if they operate on single-precision and .f64 if they operate on double
precision numbers. We can add two single-precision numbers using

vadd.f32 Rdest, Rsource1, Rsource2

and two double-precision numbers using

vadd.f64 Rdest, Rsource1, Rsource2

Note also that we can use predication in these instructions (but be aware that, as usual,
predication uses the ags in cpsr not in fpscr). Predication would be specied before
the sux as in vaddne.f32.

/* In the following examples, assume that len = 4, stride = 2 */
vadd.f32 s1, s2, s3 /* s1 <- s2 + s3. Scalar operation because

Rdest = s1 is in bank 0 */
vadd.f32 s1, s8, s15 /*
vadd.f32 s8, s16, s24 /*

s1 <- s8 + s15. Same as previous */
s8 <- s16 + s24
s10 <- s18 + s26
s12 <- s20 + s28
s14 <- s22 + s30
or more compactly {s8,s10,s12,s14} <-

{s16,s18,s20,s22} + {s24,s26,s28,s30}
Vectorial, since Rdest and Rsource2

are not in bank 0
*/

vadd.f32 s10, s16, s24 /* {s10,s12,s14,s8} <-
{s16,s18,s20,s22} + {s24,s26,s28,s30}

Vectorial, but note the wraparound
inside the bank after s14.

*/

107

14. Real Computations

vadd.f32 s8, s16, s3 /* {s8,s10,s12,s14} <-
{s16,s18,s20,s22} + {s3,s3,s3,s3}

Scalar expanded since Rsource2 is in bank 0
*/

14.3 Load and Store

Once we have a rough idea of how we can operate oating points in VFPv2, a question
remains: how do we load/store oating point values from/to memory? VFPv2 provides
several specic load/store instructions.

We load/store one single-precision oating point using vldr/vstr. The address of the
datum must already be in a general purpose register, although we can apply an oset
in bytes which must be a multiple of 4 (this applies to double-precision as well).

vldr s1, [r3] @ s1 <- *r3
vldr s2, [r3, #4] @ s2 <- *(r3 + 4)
vldr s3, [r3, #8] @ s3 <- *(r3 + 8)
vldr s4, [r3, #12] @ s3 <- *(r3 + 12)

vstr s10, [r4] @ *r4 <- s10
vstr s11, [r4, #4] @ *(r4 + 4) <- s11
vstr s12, [r4, #8] @ *(r4 + 8) <- s12
vstr s13, [r4, #12] @ *(r4 + 12) <- s13

We can load/store several registers with a single instruction. In contrast to general
load/store, we cannot load an arbitrary set of registers but instead they must be a
sequential set of registers.

/*
Here precision can be s or d for single-precision or double-precision.
The floating-point-register-set is {sFirst-sLast} for

single-precision and {dFirst-dLast} for double-precision.
*/

vldm indexing-mode precision Rbase{!}, floating-point-register-set
vstm indexing-mode precision Rbase{!}, floating-point-register-set

The behavior is similar to the indexing modes we saw in Chapter 8. There is an Rbase
register used as the base address of several load/store to/from oating point registers.
There are only two indexing modes: increment after and decrement before. When
using increment after, the address used to load/store the oating point value register is
increased by 4 after the load/store has happened. When using decrement before, the
base address is rst decremented by as many bytes as oating point values are going to
be loaded/stored. Rbase is always updated by decrementing before but it is optional to
update it by incrementing after.

108

14.4. Movements between registers

*/

vldmias r4, {s3-s8} /* s3 <- *r4

*/

s4 <- *(r4 + 4)
s5 <- *(r4 + 8)
s6 <- *(r4 + 12)
s7 <- *(r4 + 16)
s8 <- *(r4 + 20)

vldmias r4!, {s3-s8} /*

*/

Like the previous
but at the end r4

instruction
<- r4 + 24

vstmdbs r5!, {s12-s13} /* *(r5 - 4 * 2) <-
*(r5 - 4 * 1) <-
r5 <- r5 - 4*2

s12
s13

For the usual stack operations when we push onto the stack several oating point reg
isters we will use vstmdb with sp! as the base register. To pop from the stack we will
use vldmia again with sp! as the base register. Given that these instructions names
are very hard to remember we can use the mnemonics vpush and vpop, respectively.

vpush {s0-s5} /* Equivalent to vstmdb sp!, {s0-s5} */
vpop {s0-s5} /* Equivalent to vldmia sp!, {s0-s5} */

14.4 Movements between registers

Another operation that may be required is moving data between registers. Similar to
the mov instruction for general purpose registers, there is the vmov instruction. Several
movements are possible.

We can move oating point values between two oating point registers of the same
precision:

vmov s2, s3 /* s2 <- s3 */
vmov d3, d4 /* d3 <- d4 */

We can also move data between one general purpose register and one single-precision
register as follows. Note, however, that the data is not converted. Only bits are copied,
so be careful not to mix oating point values with integer instructions or the other way
around.

vmov s2, r3 /* s2 <- r3 */
vmov r4, s5 /* r4 <- s5 */

Similar to the previous case but between two general purpose registers and two consec
utive single-precision registers we have:

109

14. Real Computations

vmov s2, s3, r4, r10 /* s2 <- r4
s3 <- r10 */

Finally, consider moving between two general purpose registers and one double-precision
register. Again, note that the data are not converted.

vmov d3, r4, r6 /* Lower32BitsOf(d3) <- r4; Higher32BitsOf(d3) <- r6 */
vmov r5, r7, d4 /* r5 <- Lower32BitsOf(d4); r7 <- Higher32BitsOf(d4) */

14.5 Conversions

Sometimes we need to convert from an integer to a oating-point and the reverse. Note
that some conversions may potentially lose precision, in particular when a oating point
is converted to an integer. There is a single instruction vcvt with a sux .T.S where
T (target) and S (source) can be u32, s32, f32 or f64 (S must be dierent from T).
Both registers must be oating point registers, so in order to convert an integer to a

oating point or a oating point to an integer value an extra vmov instruction will be
required from or to an integer register before or after the conversion. Because of this, for
a moment (between the two instructions) a oating point register will contain a value
which is not an IEEE 754 value; bear this in mind. Here are some examples:

vcvt.f64.f32 d0, s0 /* Converts a single-precision value in s0 to a
double-precision value and stores it in d0 */

vcvt.f32.f64 s0, d0 /* Converts a double-precision value in d0 to a
single-precision value and stores it in s0 */

vmov s0, r0 /* Bit copy from integer register r0 to s0 */
vcvt.f32.s32 s0, s0 /* Converts a signed integer value in s0 to a

single-precision value and stores it in s0 */

vmov s0, r0
vcvt.f32.u32 s0, s0

vmov s0, r0
vcvt.f64.s32 d0, s0

vmov s0, r0
vcvt.f64.u32 d0, s0

/* Bit copy from integer register r0 to s0 */
/* Converts an unsigned integer value in s0 to a

single-precision value and stores in s0 */

/* Bit copy from integer register r0 to s0 */
/* Converts a signed integer value in r0 to a

double-precision value and stores in d0 */

/* Bit copy from integer register r0 to s0 */
/* Converts an unsigned integer value in s0 to a

double-precision value and stores in d0 */

110

14.6. Modifying the fpscr

14.6 Modifying the fpscr

The special register fpscr, where len and stride are set, cannot be modied directly.
Instead we have to load fpscr into a general purpose register using the vmrs instruction.
Then we operate on the register and move it back to the fpscr, this time using the
vmsr instruction.

The value of len is indirectly stored in bits 16 to 18 of the fpscr. The value of len is
not directly stored in those bits. Instead, we have to subtract 1 before setting the bits.
This is because len cannot be 0 (it does not make sense to operate 0 oating points).
This way the value 000 in these bits means len = 1, 001 means len = 2, :::, 111 means
len = 8. The following is an example of code that sets len to 8.

/* Set the len field of fpscr to be 8 (bits: 111) */
mov r5, #7 @ r5 <- 7. 7 is 111 in binary
mov r5, r5, LSL #16 @ r5 <- r5 << 16
vmrs r4, fpscr @ r4 <- fpscr
orr r4, r4, r5 @ r4 <- r4 | r5. Bitwise OR
vmsr fpscr, r4 @ fpscr <- r4

The value of stride is indirectly stored in bits 20 to 21 of fpscr in a manner similar
to len: a value of 00 in these bits means stride = 1, 01 means stride = 2, 10 means
stride = 3 and 11 means stride = 4.

14.7 Function call convention and oating-point registers

Since we have introduced new registers we should state how to use them when calling
functions. The following rules apply for VFPv2 registers.

Fields len and stride of fpscr are zero at the entry of a function and must be
zero when leaving it.

We can pass oating point parameters using registers s0-s15 and d0-d7. Note
that passing a double-precision after a single-precision may involve discarding an
odd-numbered single-precision register (for instance we can use s0, and d1 but
note that s1 will be unused).

All other oating point registers (s16-s31 and d8-d15) must have their values
preserved upon leaving the function. Instructions vpush and vpop can be used for
that.

If a function returns a oating-point value, the return register will be s0 or d0.

Finally a note about functions like printf that can take a variable number of arguments:
you cannot pass a single-precision oating point to one of such functions. Only doubles

111

14. Real Computations

can be passed. So you will need to convert the single-precision values into double
precision values. Note also that usual integer registers are used (r0-r3), so you will
only be able to pass up to 2 double-precision values in registers, the remaining must be
passed on the stack. In particular for printf, since r0 contains the address of the string
format, you will only be able to pass a single double-precision number in fr2,r3g and
any others on the stack.

14.8 Printing Floating-point Numbers

We will continue to use the C function printf to print values but its behavior for
oating-point numbers is a bit dierent as described above. First of all, it only prints

double-precision numbers. Since r0 contains, as before, the address of the ASCII string
giving the format information, we will have to store the rst value to be printed in
fr2,r3g. Additional values to be printed must be placed on the stack as usual. The
code for one value would be

ldr r0, =format
vmov r2, r3, Dx @ x is the number of the register holding the value
bl printf

Assembler Note

Make sure you pass the ag -mfpu=vfpv2 to the assembler as, otherwise it will not
recognize the VFPv2 instructions.

Projects

1. Try out various combinations of conversions.

2. Modify earlier programs that worked for integers so that they can handle oating-
point numbers. In particular, functions in such programs as factorial and
Fibonacci were limited by the size of integers. How much larger values will
work if we are using oating-point numbers?

3. See Appendix C for a very long but valuable example of Matrix Multiplication for
oating-point numbers.

4. Try out various combinations of len and stride and test the results.

112

15 Pointers

In Chapter 9 we saw the basics of how to call a function. In this chapter we will cover
more topics related to functions.

15.1 Passing data to functions

We already know how to call a function and pass it parameters. We also know how
to return data from a function. Nevertheless, there are some issues which we have not
fully solved yet.

Passing large amounts of data

Returning more than one piece of data

There are several ways to tackle these problems, but most of them involve pointers.
Pointers are dreaded by many people who do not fully understand them, but they are a
crucial part of the way computers work. That said, most of the troubles with pointers
are actually related to using dynamic memory rather than the pointers themselves. We
will not consider dynamic memory here.

15.2 What is a pointer?

A pointer is some location in memory the contents of which are simply the address of
(\points to") some location in memory.

This denition may be confusing, but we have already been using pointers in previous
chapters. It is just that we usually did not name them that way. We usually talked
about addresses and/or labels in the assembler. Consider this very simple program:

/* first_pointer.s */

.data
Number1: .word 3

.text

113

15. Pointers

.globl main
main:

ldr r0, pointerToNumber1 @
ldr r0, [r0] @

r0 <- &Number1
r0 <- *r0. So r0 <- Number1 */

bx lr

pointerToNumber1: word Number1 @ The address of Number1

As you can see, we deliberately used the name pointerToNumber1 to express the fact
that this location in memory is actually a pointer. It is a pointer to Number1 because
it holds the address of Number1.

Imagine we add another number, let's call it Number2 and want pointerToNumber1 to
be able to point to Number2, that is, contain the address of Number2 as well. Let's make
a rst attempt.

.data

Number1 : .word 3
Number2 : .word 4

.text

.globl main

main:
ldr r1, addressOfNumber2 @ r1 <- &Number2
str r1, pointerToNumber1 @ pointerToNumber <- r1,

@ this is pointerToNumber_1 <- &Number2
bx lr

pointerToNumber_1: .word Number1
addressOfNumber_2: .word Number2

But if you run this you will get a rude Segmentation fault. We cannot actually modify
pointerToNumber1 because, even if it is a memory location that contains an address
(and it would contain another address after the store) it is not in the data section, but
in the text section. So this is a statically dened pointer, whose value (i.e., the address
it contains) cannot change. So, how can we have a pointer that can change? Well, we
will have to put it in the data section, where we usually put all the data of our program.

.data
number_1: .word 3
number_2: .word 4
pointer_to_number: .word 0

114

15.2. What is a pointer?

.text

.globl main

main:
ldr r0, addr_of_pointer_to_number @ r0 <- &pointer_to_number
ldr r1, addr_of_number_2 @ r1 <- &number_2

str r1, [r0] @ *r0 <- r1.
/* This is actually pointer_to_number <- &number_2 */

ldr r1, [r0] @ r1 <- *r0.
/* This is actually r1 <- pointer_to_number

Since pointer_to_number has the value &number_2
then this is like r1 <- &number_2 */

ldr r0, [r1] @ r0 <- *r1
/* Since r1 had as value &number_2 then this is

like r0 <- number_2 */

bx lr

addr_of_number_1: .word number_1
addr_of_number_2: .word number_2
addr_of_pointer_to_number: .word pointer_to_number

From this last example several things should be clear. We have static pointers to
number.1, number _2 and pointer_to_number (called, respectively, addr.of .number _1,
addr.of.number_2 and addr.of.pointer_to_number). Note that the rather complicated
addr.of.pointer_to_number is actually a pointer to a pointer! Why are these pointers
statically dened? Well, we can name memory locations (i.e., addresses) using labels
(this way we do not have to really know the exact address and at the same time we
can use a descriptive name). These memory locations, named through labels, will
never change during the execution of the program so they are somehow predened
before the program starts. That is why the addresses of number.1, number_2 and
_pointer_to_number are statically defined and stored in a part of the program that
cannot change (the .text section cannot be modied when the program runs).

This means that accessing pointer_to_number using addr.of.pointer _to_number in
volves using a pointer to a pointer. Nothing fancy here, a pointer to a pointer is just a
memory location that contains the address of another memory location that we know
contains a pointer too.

The program simply loads the value 4, stored in number_2 using pointer_to_number. We
first load the address of the pointer (this is, the pointer to the pointer, but the address of

115

15. Pointers

the pointer may be clearer) into r0. Then we do the same with the address of number_2,
storing it in r1. Then in we update the value pointer_to_number (remember, the value
of a pointer will always be an address) with the address of number_2. Finally, we actually
get the value of pointer_to_number loading it into r1. It is important to understand:
the value of pointer_to_number is an address, so now r1 contains an address. That is
the reason why we can then load into r0 the value in the location described in r1.

See Section 3.7 for the fact that as will handle the pointers for us in a simpler way than
what we have been using.

15.3 Passing large amounts of data

When we pass data to functions we follow the conventions dened in the AAPCS. We
try to ll the rst 4 registers r0 to r3. If more data is expected we must use the stack.
That means that if we were to pass a large amount of data to a function we may end up
spending more time just preparing the call (setting registers r0 to r3 and then pushing
all the data on top of the stack; and remember, in reverse order!) rather than running
the code of the function itself.

There are several cases when this situation arises. In a language like C, all parameters
are passed by value. That means that the function receives a copy of the value. This
way the function may freely modify this value and the caller will not see any changes
in it. This may seem inecient but from a productivity point of view, a function that
does not cause any side eect to its inputs may be regarded as easier to understand
than one that does.

struct A
{

@ big structure
};

/* This
when

function returns a value of type 'some_type'
passed an object of type 'struct'. */

some_type compute_something(struct A);

void my_code(void)
{

struct A a;
some_type something;

a= ...;
something = compute_something(a)
/* a is unchanged here! */

}

116

15.4. Passing a big array by value

Note that in C, array types are not passed by value but this is by design: there are no
array values in C although there are array types (you may need to repeat to yourself
this last sentence several times before fully understanding it).

If our function is going to modify the parameter and we do not want to see the changes
after the call, there is little that we can do. We have to invest some time in the parameter
passing.

But what if our function does not actually modify the data? Or, what if we are interested
in the changes the function did? Or even better, what if the parameter being modied
is actually another output of the function?

Well, all these scenarios involve pointers.

15.4 Passing a big array by value

Consider an array of 32-bit integers and we want to sum all the elements. Our array
will be in memory, it is just a contiguous sequence of 32-bit integers. We want to pass,
somehow, the array to the function (together with the length of the array if the length
may not be constant), sum all the integers and return the sum. Note that in this case
the function does not modify the array, it just reads it.

Let's define a function sum_array.value that must have the array of integers passed
by value. The rst parameter, in r0 will be the number of items of the integer array.
Registers r1 to r3 may (or may not) have a value depending on the number of items
in the array. So the first three elements must be handled dierently. Then, if there are
still items left, they must be loaded from the stack.

sum_array_value: /* We have passed all the data by value */
push {r4, r5, r6, lr}

/* r4 will hold the sum so far */
mov r4, #0 @ r4 <- 0

/* In r0 we have the number of items of the array */
cmp r0, #1 @ r0 - #1 and update cpsr

blt End_of_sum_array @ if r0 < 1 branch to End_of_sum_array
add r4, r4, r1 @ add the first item

cmp r0, #2 @ r0 - #2 and update cpsr
blt End_of_sum_array @ if r0 < 2 branch to End_of_sum_array
add r4, r4, r2 @ add the second item

cmp r0, #3 @ r0 - #3 and update cpsr

117

15. Pointers

(lower addresses)

blt End_of_sum_array
add r4, r4, r3

@ if r0 < 3 branch to End_of_sum_array
@ add the third item

/*
The stack at this point looks like this

|
| |

| (higher addresses)
|

| big_array[255]
|

|
|...

| big_array[4] |
| big_array[3] | <- this is sp + 16 (we want r5 to point here)
| r4 | <- this is sp + 12
| r5 | <- this is sp + 8
| r6 | <- this is sp + 4
| lr | <- sp points here

keep in r5 the address where the stack-passed
portion of the array starts

*/

add r5, sp, #16 @ r5 <- sp + 16

/* in register r3 we will count how many items we have read
from the stack.

*/

mov r3, #0

/* in the stack there will always be up to 3 less items because
the first 3 are already passed in registers
(recall that r0 had how many items were in the array)

*/

sub r0, r0, #3

b Check_loop_sum_array @ while loop with check first

Loop_sum_array:
ldr r6, [r5, r3, LSL #2] @ r6 <- *(r5 + r3 * 4)

/* load the array item r3 from the stack */
add r4, r4, r6 @ r4 <- r4 + r6

118

15.4. Passing a big array by value

/* accumulate in r4 */
add r3, r3, #1 @ r3 <- r3 + 1

/* move to the next item */
Check_loop_sum_array:

cmp r3, r0 @ r0 - r3 and update cpsr */
blt Loop_sum_array @ if r3 < r0 branch to Loop_sum_array */

End_of_sum_array:
mov r0, r4 @ r0 <- r4, to return the value of the sum */
pop {r4, r5, r6, lr}

bx lr

The function is not particularly complex except for the special handling of the rst 3
items (stored in r1 to r3) and that we have to be careful when locating elements of
the array inside the stack. Upon entering the function the items of the array passed
through the stack are laid out consecutively starting from sp. The push instruction at
the beginning pushes onto the stack four registers (r4, r5, r6 and lr) so our array
is now in sp + 16 (see the diagram) and is eight byte aligned. Beside these details, we
just loop through the items of the array and accumulate the sum in register r4. Finally,
we move r4 into r0 for the return value of the function.

In order to call this function we have to put an array into the stack. Consider the
following program.

.data

big_array:
.word 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
.word 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35
.word 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52
.word 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
.word 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
.word 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102
.word 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115
.word 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127

message: .asciz "The sum of 0 to 127 is %d\n"

.text

.globl main

sum_array_value :
/* code shown above */

119

15. Pointers

main:
push {r4, r5, r6, r7, r8, lr}
/* we will not use r8 but we need to

keep the function 8-byte aligned */

ldr r4, =big_array

/* Prepare call */

mov r0, #128 @ r0 <- 128
/* Load in the 1st parameter the number of items */

ldr r1, [r4] @ load in the 2nd parameter the 1st array item
ldr r2, [r4, #4] @ load in the 3rd parameter the 2nd array item
ldr r3, [r4, #8] @ load in the 4th parameter the 3rd array item

/* before pushing anything in the stack keep its position */
mov r7, sp

/* We cannot use more registers, now we have to push them
onto the stack (in reverse order) */

mov r5, #127 @ r5 <- 127
/* This is the last item position

(note that the first would be in position 0) */

b Check_pass_parameter_loop @ while loop testing first

Pass_parameter_loop:
ldr r6, [r4, r5, LSL #2] @ r6 <- *(r4 + r5 * 4).

/* loads the item in position r5 into r6.
Note that we have to multiply by 4 because that is
the size of each item in the array */

push {r6} @ push the loaded value to the stack */
sub r5, r5, #1

/* we are done with the current item,
go to the previous index of the array */

Check_pass_parameter_loop:
cmp r5, #2 @ compute r5 - #2 and update cpsr
bne Pass_parameter_loop @ if r5 != #2 => Pass_parameter_loop

/* We are done, we have passed all the values of the array,
now call the function */

bl sum_array_value @ Finally we call the function

120

15.5. Passing a big array by reference

/* restore the stack position */
mov sp, r7

mov
ldr

/* prepare the call to printf */
mov r1, r0 /* second parameter, the sum itself */
ldr r0, =message /* first parameter, the message */
bl printf

pop {r4, r5, r6, r7, r8, lr}
bx lr

We start by preparing the call to sum_array .value. The first parameter, passed in
register r0, is the number of items of this array (in the example hardcoded to 128
items). Then we pass the first three items of the array (if there are that many) in
registers r1 to r3. Any remaining items must be passed on the stack. Remember that
in a stack the last item pushed will be the first popped, so if we want our array be laid
in the same order we have to push it in backwards. So we start from the last item, the
mov r5, #127, and then we load every item and push it onto the stack. Once all the
elements have been pushed onto the stack we can finally call sum_array .value.

A very important caveat when manipulating the stack in this way is that it is critical to
restore it and leave it in the same state as it was before preparing the call. This is the
reason we keep sp in r7 before pushing anything onto the stack and we restore it right
after the call to sum_array.values. Forgetting to do this will make further operations
on the stack push data onto the wrong place or pop the wrong data from the stack.
Keeping the stack synchronized is essential when calling functions.

15.5 Passing a big array by reference

Now you are probably thinking that passing a big array through the stack (along with
all the boilerplate that this requires) to a function that does not modify it, is, to say
the least, wasteful.

Note that, when the amount of data is small, registers r0 to r3 are usually enough, so
pass by value is aordable. Passing some data in the stack is fine too, but passing big
structures on the stack may harm the performance (especially if our function is being
called lots of times).

Can we do better? Yes. Instead of passing copies of the values of the array, would it be
possible to pass the address of the array? The answer is, again, yes. This is the concept
of pass by reference. When we pass by value, the value of the data passed is somehow
copied (either in a register or a stack). Here we will pass a reference (i.e., an address)

121

15. Pointers

to the data. So now all we need do is just pass the number of items and then the address
of the array, and let the function use this address to perform its computation.

Consider the following program, which also sums an array of integers but now passing
the array by reference.

.data

big_array:
/* Same as above */

message: .asciz "The sum of 0 to 255 is %d\n"

/* We have passed all the data by reference */

.text

.globl main

sum_array_ref:
/* Parameters:

r0 = Number of items
r1 = Address of the array

*/
push {r4, r5, r6, lr}

mov r4, #0 @ r4 <- 0
mov r5, #0 @ r5 <- 0

b Check_loop_array_sum
Loop_array_sum:

ldr r6, [r1, r5, LSL #2]
add r4, r4, r6
add r5, r5, #1

Check_loop_array_sum:
cmp r5, r0
bne Loop_array_sum

mov r0, r4 @ r0
pop {r4, r5, r6, lr}

bx lr

@ the sum so far
@ number of items processed

@ while loop, check first

@ r6 <- *(r1 + r5 * 4)
@ r4 <- r4 + r6
@ r5 <- r5 + 1

@ r5 - r0 and update cpsr
@ if r5 != r0 go to Loop_array_sum

<- r4, to return the value of the sum

main:
push {r4, lr}
/* we will not use r4 but we need

122

15.6. Modifying data through pointers

to keep the stack 8-byte aligned */

mov r0, #128
ldr r1, =big_array

bl sum_array_ref

/* prepare the call to printf */
mov r1, r0 @ second parameter, the sum itself
ldr r0, =message @ first parameter, the message
bl printf

pop {r4, lr}
bx lr

Now the code is much simpler (and faster) as we avoid copying the values of the array
in the stack. We simply pass the address of the array as the second parameter of the
function and then we use it to access the array and compute the sum.

15.6 Modifying data through pointers

We saw at the beginning of this chapter that we could modify data through pointers.
If we pass a pointer to a function we can let the function modify it as well. Imagine
a function that takes an integer and increments it. We could do this by returning the
value, for instance.

increment:
add r0, r0, #1 @ r0 <- r0 + 1

This takes the rst parameter (in r0) increments it and returns it (recall that we return
integers in r0).

An alternative approach, could be receiving a pointer to some data and let the function
increment the data at the position dened by the pointer.

increment_ptr:
ldr r1, [r0]
add r1, r1, #1
str r1, [r0]

@ r1 <- *r0
@ r1 <- r1 + 1
@ *r0 <- r1

For a more elaborate example, let's revisit the array code above but this time instead
of computing the sum of all the values, we will multiply each item by two and keep it
in the same array. To prove that we have modied it, we will also print each item.

/* double_array.s */

123

15. Pointers

.data

big_array:
/* Same as above */

message: .asciz "Item at position %d has value %d\n"

.text

double_array:
/* Parameters:

r0 Number of items
r1 Address of the array

*/
push {r4, r5, r6, lr}

mov r4, #0 @ r4 <- 0

b Check_loop_array_double
Loop_array_double:

ldr r5, [r1, r4, LSL #2] @ r5 <- *(r1 + r4 * 4)
mov r5, r5, LSL #1 @ r5 <- r5 * 2 @ double
str r5, [r1, r4, LSL #2] @ *(r1 + r4 * 4) <- r5
add r4, r4, #1 @ r4

Check_loop_array_double:
cmp r4, r0 @ r4
bne Loop_array_double @ if

pop {r4, r5, r6, lr}

bx lr

<- r4 + 1

- r0 and update cpsr
r4 != r0 go to Loop_array_double

print_each_item:
push {r4, r5, r6, r7, r8, lr} /* r8 is unused */

mov r4, #0
mov r6, r0
mov r7, r1

@ r4 <- 0
@ r6 <- r0. Keep r0 because we will overwrite it
@ r7 <- r1. Keep r1 because we will overwrite it

b Check_loop_print_items
Loop_print_items:

ldr r5, [r7, r4, LSL #2] @ r5 <- *(r7 + r4 * 4)

124

15.6. Modifying data through pointers

/* Prepare the call to printf */
ldr r0, =message
mov r1, r4
mov r2, r5

@ 1st parameter of the call to printf
@ 2nd parameter: item position
@ 3rd parameter: item value
@ call printfbl printf

add r4, r4, #1 @ r4 <- r4 + 1
Check _loop_print_items:

cmp r4, r6 @ r4 - r6 and update cpsr
bne Loop_print_items @ if r4 != r6 goto Loop_print_items

pop {r4, r5, r6, r7, r8, lr}
bx lr

.globl main
main:

push {r4, lr}
/* we will not use r4 but we need

to keep the stack 8-byte aligned */

/* first call print_each_item */
mov r0, #128 @ 1st parameter: number of items
ldr r1, =big_array @ 2nd parameter: address of the array
bl print_each_item @ call to print_each_item

/* call to double_array */
mov r0, #128 @ 1st parameter: number of items
ldr r1, =big_array @ 2nd parameter: address of the array
bl double_array @ call to double_array

/* second call print_each_item */
mov r0, #128 @ 1st parameter: number of items
ldr r1, =big_array @ 2nd parameter: address of the array
bl print_each_item @ call to print_each_item

pop {r4, lr}
bx lr

If you run this program you will see that the items of the array have been eectively
doubled.

Item at position 123 has value 123
Item at position 124 has value 124
Item at position 125 has value 125

125

15. Pointers

Item at position 126 has value 126
Item at position 127 has value 127
Item at position 0 has value 0
Item at position 1 has value 2
Item at position 2 has value 4
Item at position 3 has value 6
Item at position 4 has value 8

15.7 Returning more than one piece of data

Functions, per the AAPCS convention, return their values in register r0 (and r1 if the
returned item is 8 bytes long). We can return more than one thing if we just pass a
pointer to some storage (possibly in the stack) as a parameter to the function. Some
elementary practice with this idea appears in the Projects.

Projects

1. Modify the isort.s program to sort a le inplace passing the address of the le
as a parameter.

2. Write some programs that demonstrate returning more than one piece of data
from a function.

3. Write some programs that demonstrate printing an array of oats.

126

16 System Calls

In Chapter 9 we saw the basics of how to call on Input/Output (I/O) functions available
through the C compiler. We used scanf(), printf(), puts() and, as C program
mers, we know there are many more such functions. They may, and should, be used by
assembler programmers.

In embedded systems, however, we may nd ourselves limited to using the assembler
and loader without the assistance of the C compiler. In the Projects in Chapter 1 we
mentioned how to perform the operations of assembling, linking/loading, and executing
programs directly. Looking back there we note another assembler operator: svc. The
mnemonic stands for SerVice Call. Closely related is the operator swi standing for
SoftWare Interrupt.

Although swi has been generally replaced by the equivalent svc, it still works and
actually makes it easier to explain its function. The idea is that while the processor of
your computer is running your program, it is (and must be) able to handle interruptions
by the hardware. For example, while computing your Fibonacci numbers, it must be
able to react to a keystroke or a message from your printer. The system must carefully
interrupt what it has been doing, handle the interruption (do whatever is necessary to
respond), and then go back to doing your calculations.

We will look at these hardware interrupts later. Now we will consider the obvious other
kind of interrupt, the software interrupt. In that case, your program has in it code
to ask the processor to interrupt its usual ow of instructions and perform some code
written into the Operating System (Raspbian for us).

There is a very long list of such code (functions) that are available and a search of the
web will let you nd out what they all are. For us, only a few are of immediate interest.
For example, the method of exiting a program was described in Chapter 1 and involves
- as in all cases - storing in r7 the number of the service desired (#1 in the case of
exit) and then issuing the instruction svc 0.

In this chapter we will cover a few other services available, particularly those associated
with le I/O functions. We will not use the C compiler in our examples.

127

16. System Calls

16.1 File I/O

Let's look at the basic operations of opening a le, reading and/or writing from/to a le,
and, nally, closing a le. The following program also uses our monitor and keyboard.

01 /* -- create.s -- */
02
03 .text
04 .global _start @ assemble, link/load, execute this code
05_start: @ see Chapter 1 Projects for instructions
06 push {r4, lr}
07
08 /* OPEN (CREATE) FILE */
09 ldr r0, =newfile
10 mov r1, #0x42 @ create R/W
11 mov r2, #384 @ = 600 octal (me)
12 mov r7, #5 @ open (create)
13 svc 0
14
15 cmp r0, #-1 @ file descriptor
16 beq err
17
18 mov r4, r0 @ save file_descriptor
19
20 /* PROMPT (WRITE) */
21 mov r0, #1 @ stdout (monitor)
22 ldr r1, =prompt @ address of prompt
23 mov r2, #(promptend - prompt) @ length of prompt
24 mov r7, #4 @ write
25 svc 0
26
27 /* READ */
28 mov r0, #0 @ stdin (keyboard)
29 ldr r1, =buffer @ address of buffer
30 mov r2, #26 @ maximum length of input
31 mov r7, #3 @ read
32 svc 0
33 mov r5, r0 @ save number of characters
34
35 /* WRITE TO FILE */
36 mov r0, r4 @ file_descriptor
37 ldr r1, =buffer @ address of buffer
38 mov r2, r5 @ length from read
39 mov r7, #4 @ write

128

16.1. File I/O

40 svc 0
41
42 /* CLOSE FILE */
43 mov r7, #6 @ close
44 svc 0
45 mov r0, r4 @ return file_descriptor as error code
46
47 exit: pop {r4, lr}
48 mov r7, #1 @ exit
49 svc 0
50
51 err: mov r4, r0
52 mov r0, #1
53 ldr r1, =errmsg
54 mov r2, #(errmsg - errmsgend)
55 mov r7, #4
56 svc 0
57
58 mov r0, r4
59 b exit
60
61 .data
62
63 errmsg: .asciz "create failed"
64 errmsgend:
65 newfile: .asciz "/home/pi/code/newfile"
66 prompt: .asciz "Input a string: \n"
67 promptend:
68 buffer: .byte 100

Here are descriptions of the operations performed in this sample program.

In lines 9-13 we create a new le. We use the OPEN operation which is service call #5
placed in r7. The parameters for that call are as follows. r0 contains the address of a
string with the fully qualied name of the desired le. r1 contains some ags (bits) to
describe what type of le it is to be. In hex they are concatenated together with 0 =
read-only, 1 = write-only, and 2 = read and write. In addition, 0x40 = create if the le
does not exist. Thus, we use 0x42 for a le which allows both reading and writing and,
in addition, will be created if it does not exist.

Finally, in r2 we put some permission bits. The value we must insert is based on the
Raspbian history of being a LINUX based system. File management in UNIX divided
users up into three categories: owner, group, others. The permissions also included
three classes: Read, Write, and eXecute. The command ls -la gives a listing of les
and shows on the left their permissions in the form of a string such as rwxrwxrwx. It

129

16. System Calls

is preceded by a \d" if it is a directory, while a \-" indicates the permission is lacking.
Looking at that string as a nine bit binary number, we can set permissions for the three
classes going left to right. In our example we used 600OCT to indicate read and write
permissions for the user (me) [note that 700 would have allowed execution also]. We
gave no permissions to the group or others (but could have).

This OPEN operation returns (in r0 of course) a number which is called the le de
scriptor. It is by that number that one refers to the le in the future. If there is an
error while trying to OPEN the le, it returns -1 so the user can handle the problem.

The WRITE operation in lines 21-25 uses the service call #4 in r7. The parameters are:
In r0 is the le descriptor #1 which is always the stdout; i.e., the monitor. In r1 we put
address of the string we want to display. Finally, in r2 we put how many characters we
want to write. In our case we let the assembler calculate how many characters there
are in our prompt (it can do that!) since we might change the prompt later and the
calculation method avoids human error in counting again.

The READ in lines 28-33 uses the service call #3 in r7. The parameters are similar to
the WRITE operation. In r0 we place the le descriptor #0 which is always the stdin;
i.e., the keyboard. In r1 we put the address of where we want to place the input string.
Finally, in r2 we put how many characters (at most) we want to read. Note that in line
68 we made room for 100 bytes (just in case) and then only asked for 26 characters on
line 30 (for no particular reason).

The READ operation returns the number of characters actually read (before the carriage
return) and we saved that number in r5 on line 33. Since we had room in buffer, we
might have allowed it to try to read more characters.

The interesting WRITE TO FILE operation on lines 36-40 shows how easy it is to
perform the task. Since it is a WRITE we again use service call #4. As before r0
contains the le descriptor but this time it is the one returned by the OPEN (CREATE)
and saved in r4. r1 gets the address of the buffer where the string to be written is.
r2 gets the number of characters we want to write that we saved in r5.

When programming in a high-level language such as C or Python, users often expect
and use the fact that when their program terminates all the les they used are carefully
saved by the operating system. For assembler language programmers we might be more
aware of how systems actually operate and be wary of any assumptions. It is possible
that when we think we are writing to a le we are actually only writing the information
into a buer maintained by the operating system so that it can optimize its accesses to
the le by waiting for additional data.

While it's usually not necessary, for good programming practice we should CLOSE
the le when we are done with it, thus telling the system to make sure all data has
been saved. It's very simple. As on lines 43-45, we merely use service call #6 with r0
containing the le descriptor for the le (here we assume it's still there from line 36).

130

16.2. lseek

Obviously we have included some code to handle a case where the OPEN (CREATE)
operation did not succeed.

16.2 lseek

The system calls we have described in detail can be given in C notation as follows:

int open (char* full_path_name , int flags , int permissions);
int write (int file_descriptor , char* buffer , int length);
int read (int file_descriptor , char* buffer , int length);
void close (int file_descriptor);

Another very valuable call useful when reading and writing les is lseek. It allows us to
move to a particular spot in a le. Without it, we might have to start at the beginning
of every le and then read through the le until reaching the data we want and then we
still might not be able to change the data without further complications.

The form of this call in C is

int lseek (int file_descriptor , int offset , int mode);

The file-descriptor is, of course, the one we used before associated with the file. The
values of mode can be 0, 1, or 2. The offset is the number of bytes to move depending
on the mode. If the mode is 0, then the offset is from the beginning of the file. If mode
is 1, then the offset is from the present position in the file. Finally, if mode is 2, the
offset is relative to the end of the file.

The system call associated with this C function is #19. The parameters can be figured
out by looking at the above functions and the C prototype.

Note that this function allows us to go directly to the end of a file and append additional
data when we open the file by concatenating 0x400 to the ags on line 10 of our create.s
code.

Projects

1. Modify the isort.s program to sort a file whose name is input by the user.

2. Write some programs that demonstrate reading and printing an array of oats
that are in a file.

3. There are many other system calls available such as getting the time (#13) or mak
ing a directory (mkdir = #39). Look up such calls and note how the parameters
usually follow those of the associated C code.

131

16. System Calls

4. Try some le manipulations that use lseek that has system call number #19.

5. In the create.s program, test to see what happens if the le already exists. How
many characters are actually written into the le?

132

17 Local data

Most of our examples involving data stored in memory (in contrast to data stored in
registers) have used global variables. Global variables are global names, i.e., addresses
of the memory that we use through labels. These addresses, somehow, pre-exist before
the program runs. This is because we dene them when dening the program itself.

Sometimes, though, we may want data stored in memory the existence of which is not
tied to the program existence but to the dynamic activation of a function. You may
recall from previous chapters, that the stack allows us to store data the lifetime of which
is the same as the dynamic activation of a function. This is where we will store local
variables, which in contrast to global variables, only exist because the function they
belong has been dynamically activated (i.e. called/invoked).

In Chapter 15 we passed a very big array through the stack in order to pass the array
by value. This will lead us to the conclusion that, somehow, parameters act as local
data, in particular when they are passed through the stack.

17.1 The frame pointer

In the ARM processor, we have plenty of general-purpose registers (up to 16, albeit
some of them with very narrow semantics, so actually about 12 are actually usable as
general-purpose) and the AAPCS forces us to use registers for the rst four parameters
(r0 to r3). Note how this is consistent with the fact that these four registers are caller-
saved while all other registers are callee-saved. Other architectures, like the 386, have
a lower number of general purpose registers (about 6) and the usual approach when
passing data to functions always involves the stack. This is so because with such a
small number of registers, passing parameters through registers, would force the caller
to save them, usually in the stack or some other memory, which in turn will usually
require at least another register for indexing! By using the stack a few more registers
are easily available.

Up to this point one might wonder why we don't always pass everything through the
stack and forget about registers r0 to r3. Well, passing through registers is going to be
faster as we do not have to mess with loads and stores from or to the memory which
is much slower than register accesses. In addition, most functions receive just a few

133

17. Local data

parameters, or at least not many more than four, so it makes sense to exploit this
feature.

But then a problem arises, what if we are passing parameters through the stack and at
the same time we have local variables. Both entities will be stored in the stack. How
can we deal with the two sources of data which happen to be stored in the same memory
area?

Here is where the concept of frame pointer appears. A frame pointer is a sort of marker
in the stack that we will use to tell apart local variables from parameters. We must
emphasize the fact that a frame register is almost always unnecessary and one can
always devise ways to avoid it. That said, a frame pointer gives us a consistent solution
to accessing local data and parameters in the stack. Of course, most good things come
with a price, and the frame pointer is not an exception: we need to use a register for
it. Sometimes this restriction may be unacceptable so we can, almost always, get rid of
the frame pointer.

Due to its optional nature, the frame pointer is not specied nor mandated by the
AAPCS. That said, the usual approach is using register r11. As an extension (appar
ently undocumented, as far as we have been able to tell) we can use the name fp which
is far more informative than just r11. Nothing enforces this choice, we can use any
other register as frame pointer. Since we will use fp (i.e., r11) we will have to refrain
from using r11 for any other purpose.

17.2 Dynamic link of the activation record

Activation record is a fancy name to specify the context of a called function. That is,
the local data and parameters (if passed through the stack) of that function. When
a function is written using a frame pointer some bookkeeping is required to correctly
maintain the activation record.

First let's examine the typical structure of a function.

function:
push {r4, lr} /* Keep the callee saved registers */
... /* code of the function */
pop {r4, lr} /* Restore the callee saved registers */
bx lr /* Return from the function */

Now let's modify the function to use a frame pointer (in the code snippet below do not
mind the r5 register that only appears here to keep the stack 8-byte aligned).

function:
push {r4, r5, fp, lr} /* Keep the callee saved registers.

We added r5 to keep the stack 8-byte aligned

134

17.2. Dynamic link of the activation record

but the important thing here is fp */
mov fp, sp /* fp <- sp.

of the function */
Keep dynamic link in fp */

... /* code
mov sp, fp /* sp <- fp. Restore dynamic link in fp */
pop {r4, r5, fp, lr} /* Restore the callee saved registers.

This will restore fp as well */
bx lr /* Return from the function */

Focus on the mov instructions just before and after the function code. We rst keep the
address of the top of the stack in fp. After the function call we restore the value of
the stack using the value kept in fp. Now you should see why we said that the frame
pointer is usually unnecessary: if the sp register does not change between those moves,
having a frame pointer will be pointless, why should we restore a register that didn't
change?

Let's assume for now that the frame pointer is going to be useful. What we did in the
rst mov instruction was setting the dynamic link. The stack and registers will look like

this after we have set it.

Figure 17-1

As you can see, the fp register will point to the top of the stack. But note that in the
stack we have the value of the old fp (the value of the fp in the function that called
us). If we assume that our caller also uses a frame pointer, then the fp we kept in the
stack of the callee points to the top of the stack when our caller was called.

But still this looks useless because both registers fp and sp in the current function point
to the same position in the stack.

Let's proceed with the example and be sure to check the sub command where we enlarge
the stack.

135

17. Local data

function:
/* Keep callee-saved registers */
push {r4, r5, fp, lr} /* Keep the callee saved registers.

We added r5 to keep the stack 8-byte aligned
but the important thing here is fp */

mov fp, sp /* fp <- sp. Keep dynamic link in fp */
sub sp, sp, #8 /* Enlarge the stack by 8 bytes */
... /* code of the function */
mov sp, fp /* sp <- fp. Restore the dynamic link in fp */
pop {r4, r5, fp, lr} /* Restore the callee saved registers.

This will restore fp as well */
bx lr /* Return from the function */

Now, after enlarging the stack, the stack and registers will look like this.

Figure 17-2

Can you see the range of data from sp to fp? This is the local data of our function.
We will keep local variables of a function in this space when using a frame pointer. We
simply have to allocate stack space by decreasing the value of sp (and ensuring it is
8-byte aligned per AAPCS requirements).

Now consider the instruction mov sp, fp near the end of the function. What it does
is leaving the state of the registers just like before we enlarged the stack (before the
sub sp, sp, #8). And voila, we have freed all the area of the stack that our function
was using. A bonus of this approach is that it does not require keeping anywhere the
number of bytes we reserved on the stack. Neat, isn't it?

136

17.3. What about parameters passed in the stack?

17.3 What about parameters passed in the stack?

A player is still missing in our frame pointer approach: parameters passed through the
stack. Let's assume that our function may receive parameters in the stack and we have
enlarged the stack by subtracting from sp. The whole picture looks like this.

Figure 17-3

Notice that we lied a bit in the two rst gures. In them, the old fp pointer kept in
the stack pointed to the top of the stack of the caller. Not exactly, it will point to the
base of the local data of the caller, exactly like what happens with the fp register in
the current function.

17.4 Indexing through the frame pointer

When we are using a frame pointer a nice property (that maybe you have already
deduced from the gures above) holds: local data is always at lower addresses than the
address pointed by fp while parameters passed in the stack (if any) will always be at
higher addresses than the one pointed by fp. It must be possible to access both kinds
of local data through fp.

In the following example we will use a function that receives an integer by reference
(i.e., an address to an integer) and then squares that integer. In C that is:

void sq(int *c)
{

(*c) = (*c) * (*c);
}

137

17. Local data

You may be wondering why the function sq has a reference parameter (should it not be
easier to return a value?), but bear with us for now. We can (should?) implement sq
without using a frame pointer due to its simplicity.

sq:
ldr r2, [r0] @ r2 <- (*r0)
ldr r3, [r0] @ r3 <- (*r0)
mul r1, r2, r3 @ r1 <- r2 * r3
str r1, [r0] @ (*r0) <- r1
bx lr @ Return from the function

Now consider the following function that returns the sum of the squares of its ve
parameters. It uses the function sq dened above.

int sq_sum5(int a, int b, int c, int d, int e)
{

sq(&a);
sq(&b);
sq(&c);
sq(&d);
sq(&e);
return a + b + c + d + e;

}

Parameters a;b;c and d will be passed through registers r0, r1, r2, and r3 respec
tively. The parameter e will be passed through the stack. The function sq, though,
expects a reference, i.e., an address, to an integer and registers do not have an address.
This means we will have to allocate temporary local storage for these registers. At least
one integer will have to be allocated in the stack in order to be able to call sq but for
simplicity we will allocate four of them.

This time we will use a frame pointer to access both the local storage and the parameter
e.

sq_sum5:
push {fp, lr} /* Keep fp and all callee-saved registers. */
mov fp, sp /* Set the dynamic link */

sub sp, sp, #16 /* Allocate space for 4 integers in the stack */

/* Keep parameters in the stack */
str r0, [fp, #-16] @ *(fp - 16) <- r0
str r1, [fp, #-12] @ *(fp - 12) <- r1
str r2, [fp, #-8] @ *(fp - 8) <- r2
str r3, [fp, #-4] @ *(fp - 4) <- r3

138

17.4. Indexing through the frame pointer

/* At this point the stack looks like this
| Value | Address(es)

v

+- ------ +-----------------------
| r0 | [fp, #-16], [sp]
| r1 | [fp, #-12], [sp, #4]
| r2 | [fp, #-8], [sp, #8]
| r3 | [fp, #-4], [sp, #12]
| fp | [fp] , [sp, #16]
| lr | [fp, #4], [sp, #20]
| e | [fp, #8], [sp, #24]

Higher
addresses

*/

sub r0, fp, #16 @ r0 <- fp - 16
bl sq @ call sq(&a);
sub r0, fp, #12 @ r0 <- fp - 12
bl sq @ call sq(&b);
sub r0, fp, #8 @ r0 <- fp - 8
bl sq @ call sq(&c);
sub r0, fp, #4 @ r0 <- fp - 4
bl sq @ call sq(&d)
add r0, fp, #8 @ r0 <- fp + 8
bl sq @ call sq(&e)

ldr r0, [fp, #-16] @ r0 <- *(fp - 16). Loads a into r0
ldr r1, [fp, #-12] @ r1 <- *(fp - 12). Loads b into r1
add r0, r0, r1 @ r0 <- r0 + r1
ldr r1, [fp, #-8] @ r1 <- *(fp - 8). Loads c into r1
add r0, r0, r1 @ r0 <- r0 + r1
ldr r1, [fp, #-4] @ r1 <- *(fp - 4). Loads d into r1
add r0, r0, r1 @ r0 <- r0 + r1
ldr r1, [fp, #8] @ r1 <- *(fp + 8). Loads e into r1
add r0, r0, r1 @ r0 <- r0 + r1

mov sp, fp /* Undo the dynamic link */
pop {fp, lr} /* Restore fp and callee-saved registers */
bx lr /* Return from the function */

As you can see, we rst store all parameters (but e) in the local storage. That means
that we need to enlarge the stack enough, as usual, by subtracting from sp. Once we
have the storage then we can do the actual store by using the fp register. Note the

139

17. Local data

usage of negative osets, because local data will always be in lower addresses than the
address in fp. As mentioned above, the parameter e does not have to be stored because
it is already in the stack, at a positive oset from fp (i.e., at a higher address than the
address in fp).

Note that, in this example, the frame pointer is not indispensable as we could have used
sp to access all the required data (see the representation of the stack).

In order to call sq we have to pass the addresses of the several integers, so we compute
the address by subtracting from fp the proper oset and storing it in r0, which will be
used for passing the rst (and only) parameter of sq. See how, to pass the address of e,
we just compute an address with a positive oset. Finally we add the values by loading
them again in r0 and r1 and using r0 to accumulate the sums.

An example program that calls sq_sum5(1, 2, 3, 4, 5) looks like this.

/* squares.s */
.data

message: .asciz "\n Sum of 1~2 + 2~2 + 3~2 + 4~2 + 5~2 is %d\n"

.text

sq:
<<defined above>>

sq_sum5:
<<defined above>>

.globl main

main:
/* Keep callee-saved registers */push {r4, lr}

/* Prepare the call to sq_sum5 */
mov r0, #1 @ Parameter a <- 1
mov r1, #2 @ Parameter b <- 2
mov r2, #3 @ Parameter c <- 3
mov r3, #4 @ Parameter d <- 4

/* Parameter e goes through the stack,
so it requires enlarging the stack */

mov r4, #5 @ r4 <- 5
sub sp, sp, #8 /* Enlarge the stack 8 bytes, we will use

only the topmost 4 bytes */

140

17.4. Indexing through the frame pointer

str r4, [sp] @ Parameter e <- 5
bl sq_sum5 @ call sq_sum5(1, 2, 3, 4, 5)
add sp, sp, #8 @ Shrink back the stack

/* Prepare the call to printf */
mov r1, r0 @ The result of sq_sum5
ldr r0, =message
bl printf @ Call printf

pop {r4, lr} /* Restore callee-saved registers */
bx lr

$./squares

Sum of 1 2 + 2 2 + 3 2 + I 2 + 5 2 is 55

Projects

1. Rewrite some earlier programs to pass the parameters by reference.

2. Rewrite some earlier programs to reference variables using the frame pointer,
even if it is not necessary.

1I1

18 Inline Assembler in C Code

Although we have concentrated on Assembler programming, we must admit that almost
every microprocessor system comes with an excellent C compiler and it is expected that
programmers will write in C. Sometimes, however, it is necessary to optimize the code
by manually inserting assembler code into the C source code. Based on the GNU
C compiler, most manufacturers allow for inline assembler code. Unfortunately, each
company does it slightly dierently so one must learn the details of each system that
one uses.

18.1 The asm Statement

The format of the new asm statement is as follows:

asm("<list of assembler instructions>"
: <list of write-only parameter formats and names>
: <list of read-only parameter formats and names>
: <list of registers that are changed (clobbered) by the code>
);

The details of using this instruction are many and complicated. Some requirements are
unfortunate but depended on the whim of the compiler writer.

If there are no registers that are modied, the third colon \:" is not necessary. If there
are no write-only parameters but some read-only ones, they must be preceded by two
colons. The following is an example where there are no parameters at all:

int return1(void) {asm("mov r0, #1");}

This trivial function returns the integer value 1 in the usual register r0. No colons are
necessary. It is not necessary to inform the compiler that r0 is being changed.

Another simple example is the following complete C program that initializes two global
variables \i" and \j" and takes no parameters and returns nothing. The output should
be \i = 100 and j = 200" after running the program.

int i, j;

143

18. Inline Assembler in C Code

void Initialization(void)
{
asm("mov r0,#0; add %0,r0,#100; add %1,r0,#200":"+r"(i),"+r" (j));
}

void main(void)
{
Initalization();
printf("\n i = %d and j = %d \n", i , j);
}

Since there is just one colon before the parameter formats and names, they are write-
only. Because of the ordering of the list, variable \i" is referenced by \%0" and variable
\j" by \%1". This count may be continued for additional parameters. [This is an older
method that still works. A more recent way to refer to names is given below.] The
formats are both \+r" (the strings themselves) in this case (the \+r" means it is read
write). The choices include \=r" for a write-only parameter with an integer register
associated with it, and \=f" for a write-only parameter with a oating point register
associated. By the way, they may be either global or local variables in general. We also
note that the number of colons and the prex \=" are redundant but that's how to do
it.

The style of programming we will use here will be to write the I/O portion of the program
in C and do most of the actual processing in called functions written in assembler. This
follows the HIPO (Hierarchical Input Process Output) model nicely.

18.2 Simple Example

We have said that multiplication is much slower than such operations as addition or
shifting. If we wish to multiply a number by three, we might improve our performance
by using the trick shown earlier.

#include <stdio.h>

int triple(int n)
{

asm("add %[value], %[value], %[value], LSL #1" : [value] "+r" (n));
}

int main(void)
{

int n;
printf("\nTriple Program!\n");
printf("\nEnter an integer: ");

144

18.2. Simple Example

scanf(%d, &n);
printf("\nThree times %d is %d", n, triple(n));

}

In this code section we refer to the operands by the percent sign (%) followed by
a symbolic name in square brackets. These names are independent of names used
elsewhere in the program.

Of course a very intelligent C compiler might optimize the code for us but this is
supposed to be a trivial example. The general idea is that in many large programs, only
a very small amount of the code takes up most of the processing time. Optimizing that
part can give big savings.

We will not go into great detail concerning inline code since good C compilers are
available and good references, such as those given in the Projects, are also available.

Projects

1. Rewrite some earlier programs using some inline assembler code.

2. Look up more detailed information concerning inline assembler using the GCC
compiler at locations such as:

a) GCC Inline Assem
bler Cookbook.pdf
https://www.fdi.ucm.es/profesor/mendias/PSyD/docs/ARM

b) .http://www.ethernut.de/en/documents/arm-inline-asm.html

145

https://www.fdi.ucm.es/profesor/mendias/PSyD/docs/ARM
http://www.ethernut.de/en/documents/arm-inline-asm.html

19 Thumb

Several times in previous chapters we have talked about ARM as an architecture that
has several features aimed at embedded systems. In such systems memory is scarce and
expensive, so designs that help reduce the memory footprint are very welcome. Here we
will see another of these features: the Thumb instruction set.

19.1 The Thumb instruction set

In earlier chapters we have been working with the ARMv6 instruction set (the one
implemented in the Raspberry Pi). In this instruction set, all instructions are 32-bits
wide, so every instruction takes 4 bytes. This is a common design since the arrival of
RISC processors. That said, in some scenarios such codication is overkill in terms of
memory consumption: many platforms are very simple and rarely need all the features
provided by the instruction set. If only they could use a subset of the original instruction
set that can be encoded in a smaller number of bits!

So, that is what the Thumb instruction set is all about. It is a reencoded subset of
the ARM instructions that takes only 16 bits per instruction. That means that we will
have to do away with some instructions. As a benet our code density is higher: most
of the time we will be able to encode the code of our programs in half the space.

19.2 Support of Thumb in Raspbian

While the processor of the Raspberry Pi properly supports Thumb, there is still some
software support that unfortunately is not provided by Raspbian. That means that we
will be able to write some snippets in Thumb but in general this is not supported (if
you try to use Thumb for a full C program you will end with a sorry, unimplemented
message by the compiler).

19.3 Instructions

Thumb provides about 45 instructions (of about 115 in ARMv6). The narrower codi
cation of 16 bits means that we will be more limited in what we can do in our code.

147

19. Thumb

Registers are split into two sets: low registers, r0 to r7, and high registers, r7 to r15.
Most instructions can only fully work with low registers and some others have limited
behaviour when working with high registers.

Also, Thumb instructions cannot be predicated. Recall that almost every ARM instruc
tion can be made conditional depending on the ags in the cpsr register. That is not
the case in Thumb where only the branch instruction is conditional.

Mixing ARM and Thumb is only possible at the function level: a function must be
wholly ARM or Thumb, it cannot be a mix of the two instruction sets. Recall that
our Raspbian system does not totally support Thumb so at some point we will have to
jump from ARM code to Thumb code. This is done using the instruction (available in
both instruction sets) blx. This instruction behaves like the bl instruction we use for
function calls but changes the state of the processor from ARM to Thumb (or Thumb
to ARM).

We also have to tell the assembler that some portion of assembler is actually Thumb
while the other is ARM. Since by default the assembler expects ARM, we will have to
change to Thumb at some point.

19.4 From ARM to Thumb

Let's start with a very simple program returning an error code of 2 set in Thumb.

/* thumb-first.s */
.text

.code 16 /* Here we say we will use Thumb */

.align 2 /* Make sure instructions are aligned at 2-byte boundary */

thumb_function:
mov r0, #2 /* r0 <- 2 */
bx lr /* return */

.code 32 /* Here we say we will use ARM */

.align 4 /* Make sure instructions are aligned at 4-byte boundary */

.globl main
main:

push {r4, lr}
blx thumb_function /* From ARM to Thumb we use blx */
pop {r4, lr}
bx lr

Thumb instructions in our thumb-function actually resemble ARM instructions. In fact

148

19.5. Calling functions in Thumb

most of the time there will not be much dierence. As stated above, Thumb instructions
are more limited in features than their ARM counterparts.

If we run the program, it does what we expect.

$./thumb-first; echo $?
2

How can we tell our program actually mixes ARM and Thumb? We can use objdump
-d to dump the instructions of our thumb-first.o le.

$ objdump -d thumb-first.o

thumb-first.o: file format elf32-littlearm

Disassembly of section .text:

00000000 <thumb_function>:
0: 2002 movs r0, #2
2: 4770 bx lr
4: e1a00000 nop ; (mov r0, r0)
8: e1a00000 nop ; (mov r0, r0)
c: e1a00000 nop ; (mov r0, r0)

00000010 <main>:
10 : e92d4010 push {r4, lr}
14 : fafffff9 blx 0 <thumb_function>
18 : e8bd4010 pop {r4, lr}
1c: e12fff1e bx lr

Check thumb_function: its two instructions are encoded in just two bytes (instruction
bx lr is at oset 2 from mov r0, #2). Compare this to the instructions in main: each
one is at oset 4 from its predecessor instruction. Note that some padding was added
by the assembler at the end of the thumb-function in form of nops (that should not be
executed, anyway).

19 .5 Calling functions in Thumb

In Thumb we want to follow the AAPCS convention like we do when in ARM mode, but
then some oddities happen. Consider the following snippet where thumb _function_1
calls thumb_function_2.

.code 16 /* Here we say we will use Thumb */

.align 2 /* Make sure instructions are aligned at 2-byte boundary */
thumb_function_2:

149

19. Thumb

/* Do something here */
bx lr

thumb_function_1:
push {r4, lr}
bl thumb_function_2
pop {r4, lr} /* ERROR: cannot use lr in pop in Thumb mode */
bx lr

Unfortunately, this will be rejected by the assembler. If you recall from Chapter 11, in
ARM push and pop are mnemonics for stmdb sp! and ldmia sp!, respectively. But in
Thumb mode push and pop are instructions on their own and so they are more limited:
push can only use low registers and lr, while pop can only use low registers and pc.
The behaviour of these two instructions are almost the same as the ARM mnemonics.
So, you are now probably wondering why these two special cases for lr and pc. This is
the trick: in Thumb mode pop fpcg is equivalent to pop the value val from the stack
and then do bx val. So the two instruction sequence: pop fr4, lrg followed by bx
lr becomes simply pop fr4, pcg.

So, our code will look like this.

/* thumb-call.s */
.text

.code 16 /* Here we say we will use Thumb */

.align 2 /* Make sure instructions are aligned at 2-byte boundary */

thumb_function_2:
mov r0, #2
bx lr /* A leaf Thumb function (i.e., a function that does

not call any other function so it did not have to
keep lr in the stack) returns using "bx lr" */

thumb_function_1:
push {r4, lr}
bl thumb_function_2 /* From Thumb to Thumb we use bl */
pop {r4, pc} /* How we return from a non-leaf Thumb function */

.code 32 /* Here we say we will use ARM */

.align 4 /* Make sure instructions are aligned at 4-byte boundary */

.globl main
main:

push {r4, lr}

blx thumb_function_1 /* From ARM to Thumb we use blx */

150

19.6. From Thumb to ARM

pop {r4, lr}
bx lr

19 .6 From Thumb to ARM

Finally we may want to call an ARM function from Thumb. As long as we stick to
AAPCS everything should work correctly. The Thumb instruction to call an ARM
function is again blx. Following is an example of a small program that says \Hello
world" four times calling printf, a function in the C library that in Raspbian is of
course implemented using ARM instructions.

/* thumb-first.s */

.data
message: .asciz "Hello world %d\n"

.text

.code 16 /* Here we say we will use Thumb */

.align 2 /* Make sure instructions are aligned at 2-byte boundary */
thumb_function:

push {r4, lr} /* keep r4 and lr in the stack */
mov r4, #0 /* r4 <- 0 */
b check_loop /* unconditional branch to check_loop */
loop:

/* prepare the call to printf */
ldr r0, =message /* r0 <- &message */
mov r1, r4 /* r1 <- r4 */
blx printf /* From Thumb to ARM we use blx.

printf is a function in the C library that is
implemented using ARM instructions */

add r4, r4, #1 /* r4 <- r4 + 1 */
check_loop:

cmp r4, #4 /* compute r4 - 4 and update the cpsr */
blt loop /* if r4 < 4 then branch to loop */

pop {r4, pc} /* restore registers & return from Thumb function */

.code 32 /* Here we say we will use ARM */

.align 4 /* Make sure instructions are aligned at 4-byte boundary */

.globl main
main:

push {r4, lr} /* keep r4 and lr in the stack */

151

19. Thumb

blx thumb_function /* from ARM to Thumb we use blx */
pop {r4, lr} /* restore registers */
bx lr /* return */

19 .7 To know more

You may want to check the Thumb 16-bit Instruction Set Quick Reference Card provided
by ARM:

http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf

When checking that card, be aware that the processor of the Raspberry Pi only imple
ments ARMv6T, not ARMv6T2.

Finally, even more information is available from ARM in its \ARM Architecture Refer
ence Manual" (copies are available at many sites on-line).

Projects

1. Rewrite some earlier programs using Thumb code.

2. Look up more detailed information concerning Thumb code using the GCC com
piler.

152

http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf

20 Additional Topics

If the reader has covered most of the preceding chapters, he or she should be prepared
to practice another important ability: to be able to read and understand the manuals
concerning the hardware and software they wish to use. For our purposes, the \ARM
Architecture Reference Manual" (often called the \ARM ARM") mentioned in the last
chapter is important. It may be down-loaded from the web but, since it is 642 pages,
probably not printed out.

20.1 ARM Instruction Set

In Part A we nd described the CPU Architecture. More information is given for
many of the topics we have already covered. In Chapter A3, however, is detailed material
on the ARM Instruction Set. This subject is very important for engineers interested
in the hardware of a computer.

Data proem nning xnmediate stuff

Kfrsceftanecus mat met ions.
See Excite A 3-4

Data proceaamg register stir® p]

KtaceAanetxjs matuckons.
See Figure ASM

Mj iptes See F>g</e A3-3
Eria bad.stc.'res See Fugue A3-6

Data processng immediate p]

Undefined mstrudicn

Move tn mediate to status recystet

Load.*sfcre ■nmediate offset

Load store regetef offset

Media nstuctKns (4J.
See Figure A3-2

ArUntectueHy uidefned

Load.‘store mut<A»

&an<fi and boncti win tank

Coprocessor toed .‘store and doutie
renter Yansters

CoQocessa ctata processtig

Cot/ocesscj teg'Ster testers

Software mtempt

Unoondtxmai msftudxrrs.
See Figure A3-6

31 10 29 20 27 2129 242322 3120 IS IB IT tfl 111! 13 13 II 10 S 0 T 0 B 4 3 3 t 0

corxl(1] 0 0 0 opcode s Rn Rd rfidl aiiaunt Stlffl 0 Rm

COTld(1] 0 0 0 1 0 x x 0 xxxxxxxxxxxxxxx 0 xxxx

condp] 0 0 0 opcode s Rn Rd Rs 0 sMI 1 Rm

004X1(1] 0 0 0 1 0 x x 0 xxxxxxxxxxxx 0 X X 1 xxxx

corxl|1] 0 0 0 XX XXX xxxxxxxxxxxx 1 X X 1 xxxx

caxl (1] 0 0 1 opcode 5 Rn Rd ratde ■nmeditfe

cand(1] 0 0 1 1 0 X 0 0 xxxxxxxx xxxxxxxxxxxx

004X1(1] 0 0 1 1 0 R 1 0 M33K SBO rotate mimediate

cand(1] 0 10 p u B w L Rn Rd immediate

004X1(1] 0 11 p u 0 w L Rn Rd s rfft amount stiff! O Rm

aond(1] 0 1 1 xxxx xxxxxxxxxxxx xxxx 1 xxxx

004X1(1] 0 11 11111 xxxxxxxxxxxx 1111 xxxx

004X1(1] 10 0 p u S w L R.-I relief fat

004X1 (1] 10 1 L 2Abd diset

004X1 P] 1 1 0 p U N w L Rn CRd cp_num a-b.1 offset

cand (3] 1110 opcode! CRn CRd cp_num OHM 0 CRm

004X1 P] 1110 opcodeY L CRn Rd cp_num opcode2 1 CRm

00411 (1] 1111 swt number

1111 X X X X X xxxxxxxxxx xxxxxxxxx xxxx

ARM Instruction Set

Although some explanations of the letters that appear in the table are needed, this gives

153

20. Additional Topics

us an idea of the complexity of designing the instruction set of a computer. Details
of the actual instruction encoding appears in the rest of that chapter of the “‘ARM
ARM". Since the chapter is 42 pages long, we will let the reader use the manual to gain
information about those details. Note that Chapter A4 gives a total of 290 pages of
details for each of the instructions!

20.2 Interrupt Handling

Another critical topic concerning computer architecture is how the system handles In
terrupts, also called Exceptions. Programmers should be aware that the operating
system is being interrupted constantly by (at least) the system clock. In addition, every
peripheral device must check in with the operating system regularly. Finally, as we saw
previously, the operating system must handle our SerVice Calls (svc) or, equivalently,
SoftWare Interrupts (swi).

We have mentioned the Current Program Status Register (cpsr) before. Its format,
from A2-11 of the \ARM ARM" is:

CPSR

and the meanings of the elds are described there.

The four bits 31-28 are those associated with the condition codes we have used before.
Bits 4-0 give the mode of operation.

above)

-- Mode bits

Processor mode Mode number Description

User usr 0b10000 Normal program execution mode

HQ fiq 0bl0001 Supports a high-speed data transfer or channel process

IRQ irq 0b 10010 Used for general-purpose interrupt handling

Supervisor SVC ebiseii A protected mode for the operating system

Abort abt eb10111 Implements virtual memory and/or memory protection

Undefined und 0b11011 Supports software emulation of hardware coprocessors

System sys 0blllll Runs privileged operating system tasks (ARMv4 and

There are seven modes in which the system may be running as shown above. All the
modes other than User are privileged; that is, they are able to use all the system's
resources. In order to handle exceptions quickly, the processor has more registers than
we have admitted before. In particular, each of the rst ve privileged modes (that is,
not including the System mode) has a separate spsr (Saved Program Status Register)
in which the cpsr of the process that was running when the exception arose is stored.
In addition they also have their own r13 and r14 registers so that they will not corrupt

154

20.3. To know more

those of the user's process while they run. In addition, in order to make the Fast
Interrupt not have to save registers, that mode has its own r8 through r12 registers.
See Figure A2-1 Register organization from the \ARM ARM":

Modes

riiYiaryeu iiujucj ■

* Exception modes •

User System Supervisor Abort Undefined Interrupt Fast interrupt

flfl flfl AO AO RO RO RO

fli R1 fll A1 R1 R1 Al

fl2 fl2 R2 A2 R2 R2 R2

A3 A3 A3 A3 A3 R3 A3

R4 R4 As. As. R4 R4 Ai

A5 ns A5 AS R5 RS Afi

AS fle AS AS AS RS RS

fl? A7 fl7 R7 R7 R7 A?

AS AS Fft AS AS AS \ RS fc.

flfl flfl AO AO AO AO \ 09 -*1

fl 10 mo Ria mo R10 mo \ R10fc1

fl 11 mi fl11 R11 mi mi \ R11_«q

A12 fl12 A12 R12 R12 R12 ■K R12Jq

fl 13 R13 flia *c $. R13 a bl \fll3 und \ R13 uq \ 013-*q

fl 14 R14 K fl14_*t •k Rl4_abi fl14_ind Ria.isq \ R1<iq
PC PC PC PC PC PC PC

|K indicates rraf ma normal register used cy User or System mode has
I—been replaced by an aftetnaOve register qpeafic to the exception mode

CPSA | CRSA CPSR CPSA CPSA CPSA CPSA

k SPSR src K SPSR att SPSR urd k SPSR rq \ SPSR fq

Register Organization

Clearly, the designers of the ARM processor gave great attention to the problem of how
to handle interrupts quickly.

20.3 To know more

Read the entire \ARM ARM"! Of course that's more than one wants to know about
the processor but scanning the manual to see what's available is reasonable.

For advanced information about such topics as pipelining and cache handling, see the
text by Patterson and Hennessy, Computer Organization and Design, (ARM Edition),
Morgan Kaufmann (Elsevier), 2017.

Projects

1. If you have taken an Operating Systems course, consider how the ARM allows for
uninterruptible operations leading to having semaphores.

155

20. Additional Topics

2. Look up more detailed information concerning Java code using the Jazelle state
of the processor.

156

A ASCII Standard Character Set

Char Clrt Dk Hex Cher Dec Hex Char Dec Hm Char Dec Hex

NUL e 00 space 32 20 @ 64 40 96 60
SOH *A i 01 1 33 21 A 65 41 a 97 61
STX 'B 2 02 t* 34 22 B 66 42 6 98 62
ETX 3 03 # 35 23 C 67 43 c 99 63
EOT *D 4 04 $ 36 24 D 68 44 d 100 64
ENQ 5 05 % 37 25 E 69 45 e 101 65
ACK AF 6 06 & 38 26 F 70 46 f 102 66
BEL 7 07 1 39 27 G 7! 47 8 103 67
BS H 8 « (40 28 II 72 48 h 104 68
HT Al 9 09) 41 29 I 73 49 i 105 69
LF AJ 10 0A * 42 2A J 74 4A j 106 6A
VT AK 11 0B + 43 2B K 75 4B k 107 6B
FF AL 12 oc 44 2C L 76 4C 1 IDS 6C
CR AM 13 OD - 45 2D M 77 4D ill 109 6D
SO AN 14 OE 46 2E N 78 4E n IE0 6E
SI ■-■o IS OF i 47 2F O 79 4F o HI 6F
DLE *P 16 10 0 48 30 P 80 50 p 112 70
DCI ■-Q 17 11 1 49 31 Q 81 51 q 113 7!
DC2 18 12 2 50 32 R 82 52 r 114 72
DC3 AS 19 13 3 51 33 S 83 53 s 115 73
DC4 «r 20 14 4 52 34 T 84 54 t 116 74
NAK «u 21 15 5 53 35 u 85 55 11 117 75
SYN ■"V 22 16 6 54 36 V 86 56 V 118 76
ETB 23 17 7 55 37 w 87 57 w 119 77
CAN AX 24 It 8 56 38 X 88 58 X 120 78
EM '■Y 25 19 9 57 39 Y 89 59 y 121 79
SUB V 26 1A 58 3A 2 90 5A z 122 7A
ESC A[27 IB "l 59 3B 1 91 SB I 123 7B
FS 28 iC < 60 3C \ 92 SC 1 124 7C
OS A] 29 ID 61 ID 1 93 5D } 125 7D
RS AA 30 IE > 62 3E A 94 5E 126 7E
US A 31 IF ? 63 3F — 95 5F delete 127 7F

Abbreviations for Control Characters

NULI Backspace Data Link Escape CANcel
Scan Of Heading Hcrcaciilal Tib Device Control 1 End of Medium
Start of TeXt Line Feed Device Control 2 SUBatitute
End of TeXt Venicel Tab Device Control 3 ESCape
End. Of Tiananissian Form Feed Device Centro! 4 File Separator
ENQuin- Canisge Renrro Negative AcKnowledge Group Separator
ACKnaulEdge Shift Out SYNchronons idle Record Separator
BELI ‘ Shift In End TianEmiEEkMi Block Unit Separator

157

B Integers

For scientists and engineers, computers are used to do arithmetic computations. In this
chapter we will discuss the basics of how integer numbers are stored and manipulated.
Later we will see that real numbers are stored quite dierently.

B.1 Unsigned Integers

We may give an interpretation of bit patterns in an eight-bit byte as the integers from
0x00 = 0DEC to 0xFF = 255DEC = 28{1. The ARM processor that we study in Chapter
One has registers in which one can store integers that are 32 bits in size so we will
usually work with these longer groupings. It is easy to see that these four byte (32
bit) congurations may be taken to represent all the unsigned integers from 0DEC =
0x00000000 to 232{1 = 4; 294; 967; 295DEC = 0xFFFFFFFF.

Of course we do not want to be limited to non-negative integers so the interesting
question is how to represent negative numbers using some of the 232 patterns available.
In the next sections we will look at two simple ways that are rarely used and then
the actual standard system (2's complement). Still another system will be treated in
Chapter 13 since it is part of the standard method used for representing real numbers
(IEEE-754).

B.2 Signed-Magnitude Integers

Before considering one of the many ways to represent integers so as to allow for both
positive and negative numbers we will agree on a numbering scheme for the bits. It does
not matter which decision we make in terminology but it may be convenient to use zero
for the least signicant bit. Thus in a 32-bit register we will call the right most or least
signicant \bit 0" and count towards the left up to \bit 31" for the most signicant.
One advantage is that for the unsigned integers described above the nth bit is associated
with the power 2n .

j31j30292827262524232221201918171615141312111009080706050403020100j

159

B. Integers

In order to allow for signed numbers we may choose to use bit 31 to indicate the sign
of the number and the other 31 bits to give its magnitude. This system is called the
signed-magnitude association. It is convenient and traditional to use bit 31 equaling
zero to indicate positive numbers and one to indicate negative numbers. Thus,

0x00000000 = +0DEC;
0x00000001 = +1DEC;

0x7FFFFFFF= 2; 147; 483; 647DEC = +(231{1)

while

0x80000000 = -0DEC;
0x80000001 = -1DEC;

0xFFFFFFFF= -2; 147; 483; 647dec = -(231-1)

Although this interpretation is simple for humans to use, the existence of both a +0
and a -0 makes it somewhat dicult for computer use. Testing whether a number is
equal to zero is probably one of the most frequent operations and it might require two
tests using the signed-magnitude system.

B.3 One's Complement

Another reasonable system is to invert every bit in a number to represent its negative.
This is called the 1's complement of a number. Since bit 31 would change from 0
to 1 we could keep our convention that 0 means positive and 1 means negative. For
example,

11111111111111111111111111110101BIN = 0xFFFFFFF5

would be the 1's complement of

00000000000000000000000000001010BIN = 0x0000000A= 10DEC

and so would represent —10DEC. Taking the 1's complement a second time would return
the original number and so satises a natural requirement for consistency. However,
there would still be the problem of having both a positive zero (0x00000000) and a
negative zero (0xFFFFFFFF).

160

B.4. Two's Complement

B.4 Two's Complement

Finally, we reach a somewhat more complicated (for humans) system which turns out
to be easy to implement in hardware and is used in almost all computers. Again bit
31 is used to indicate the sign of the number and positive numbers are associated with
their magnitude. Negative numbers are obtained by taking the 1's complement and then
adding one to the result (ignoring any carry into the non-existent 33rd bit position).
This denes the 2's complement of a number.

The non-negative integers are then associated as before:

0x00000000 = +0DEC;

0x00000001 = +1DEC;

;

0x7FFFFFFF = +2; 147; 483; 647DEC = +(231{1)

Now consider 0xFFFFFFFF. Its 1's complement is 0x00000000 and so its 2's complement
is 0x00000001. Hence we associate OxFFFFFFFF with — 1DEC. Next, OxFFFFFFFE
has 1's complement of 0x00000001 and so adding one yields 0x00000002 thus associating
it with — 2DEC. We may continue in this way down to 0x80000001 with 1's complement
of 0x7FFFFFFE, 2's complement of 0x7FFFFFFF which is 231 — 1, and so the value
assigned is {(231{1). There is still the pattern 0x80000000 to deal with. Its 1's com
plement is 0x7FFFFFFF and so its 2's complement is itself ! Since it is in the form of
a negative number (bit 31 is one), we will associate it with —231, the next number in
order. In summary,

0x80000000 = -2; 147; 483; 648DEC = -231

0x80000001 = -2; 147; 483; 647DEC = -(231-1)

0xFFFFFFFE = -2DEC

0xFFFFFFFF = —1dec

In this system there is now only one zero: 0x00000000. On the other hand, there is one
negative number with no corresponding positive number. This explains why we are told
in C/C++/Java that an int variable can take on all values between -231 and +(231-1)
and so the range is not symmetric about zero. We should note, however, that the 2's
complement of the 2's complement does return the original number as required.

161

B. Integers

B.5 Arithmetic and Overow

In addition to the law of double negation (- - x == x), we may check that the sum of
a positive and a negative integer in 2's complement form does yield the correct result
(again ignoring any carry into the (non-existent) 32nd bit position). For example, the
sum

0xFFFFFAD3 = 11111111111111111111101011010011BIN = -1325DEC

+0x00001666 = 00000000000000000001011001100110BIN = +5734DEC

= 0x00001139 = 00000000000000000001000100111001BIN = +4409DEC

is correct. Although addition is always correct in this case, it is important to note that
adding two positive or two negative numbers may give an incorrect result.

Let us consider a simple example of the problem. Adding

0x7FFFFFFF = 01111111111111111111111111111111BIN = +(231 - 1)

+0x7FFFFFFF = 01111111111111111111111111111111BIN = +(231 - 1)

= 0xFFFFFFFE = 11111111111111111111111111111110BIN = -2DEC

We see that in general adding two large positive numbers together may give a negative
number (we may check that adding small numbers is correct). The same type problem
can occur when adding two negative numbers together; it might produce a positive
number. The cause in each case is overow; that is, bits are carried into the sign bit
incorrectly when a result should be larger than can be represented in 31 bits.

The overow problem can occur with most high-level languages. In any problem in
which large numbers can appear one should check for this condition. Depending on
the language, compiler, operating system, and supporting hardware, dierent results
may be obtained. In some cases the problem is ignored and it is completely up to
the programmer to watch for errors. We will demonstrate this later. At the other
extreme, in some cases the system will terminate our program, giving us no opportunity
to take corrective action after it happens. An intermediate case is when an exception is
signaled and our program can decide on what action to take (see try-catch statements
in Java).

Another law of arithmetic we want satised by the 2's complement representation is
that X{y = x + (—y) should always be true, where {y is the negative of y. In other
words, we would expect to do subtraction by doing an addition. It is easy to see that
the 1's complement representation would lead to a simple hardware solution since all
that would be needed would be to invert each of the bits in the subtrahend. It turns
out that the 2's complement representation is equally easy to implement.

162

B.6. Bitwise Operations

In a study of arithmetic circuits we see that an integer adder could be made from 32
adders of individual bits. Each of these would give as output both the one bit sum of
the two inputs and the \carry" bit sent to the next adder. This reminds us that each bit
adder actually has three inputs: the two input bits to be added together and the carry
bit from the lower order adder. The 0-bit, however, has no lower order adder attached
so when subtracting rather than adding one can use that input wire to complete the

nal step of adding one to the 1's complement.

B.6 Bitwise Operations

In addition to arithmetic operations, almost all computers include some operations
which act on the individual bits in bytes. The logical functions AND, OR, XOR and
NOT used in C/C++/Java are one type of example. We will use the AND operation
with a predetermined set of bits on (equal to one) to pick out the values of those certain
bits from a byte or group of bytes. Thus, 0x000000FF, when used as one of the two
32-bit operands to AND, will give a result equal to exactly what is in the lowest order
eight bits of the other operand. We call a pattern such as 0x000000FF a mask when
used in this way.

In a similar way, we may use the OR operation to turn on certain bits. For example,
the mask 0x80000000 would turn on the highest order bit of the other 32-bit operand
of OR giving us a negative number no matter what the sign was originally. (Note that
in 2's complement notation it would not be the negative of the original number.)

Another group of bitwise operations consists of the shift operations. Again, almost all
computers have such operations. There are two types of shifts: to the right and to the
left. Let us consider the right shifts rst (as applied to 32-bit operands). The srl (Shift
Right Logical) operation usually takes as one of its operands the count of how far each
bit is shifted to the right while zeros are inserted on the left end. Bits that are shifted o
the end to the right are lost (fall into the \bit bucket" is sometimes said). For example,
a series of one bit right shifts of 0x01010101 would give 0x00808080, then 0x00404040,
then 0x00202020, then 0x00101010, then 0x00080808, etc. It is an exercise to contrast
these right shifts with division by two.

A problem arises if we consider the result of starting with 0x80808080. Then the very
rst right shift would give us 0x40404040. That's ne if we are only considering the

bits but not if we look at the values as two's complement integers! The rst is negative
while the second is positive! This shift is no longer the same as division by two as
mentioned above. Because of this, there is another right shift operation sra (Shift Right
Arithmetic). There is no dierence if the high-order bit is zero (a positive number) but
when the high-order bit is one (a negative number), ones are inserted on the left instead
of zeros. For example, the 0x80808080 would give 0xC0404040, then 0xE0202020, then
0xF0101010, then 0xF8080808, etc. It is an exercise to contrast these arithmetic right
shifts with division by two.

163

B. Integers

For left shifts, there is no choice but to bring in zeros from the right and so there is no
dierence between sll (Shift Left Logical) and sla (Shift Left Arithmetic) and there
may or may not be two dierent mnemonics for this operation. It is an exercise to
contrast this left shift with multiplication by two. Note, however, that there may be
overow just as with actual multiplication by two! Thus 0x40404040 would shift into
0x80808080 and change from positive to negative. In some machines such a change is
noted in some way and can be checked for in software; in others, it is ignored.

Projects

1. Prove that the two's complement of the two's complement is the original number
(Law of Double Negation).

2. Explain why the sum of any positive 2's complement integer and any negative 2's
complement integer gives the correct value (no overow).

3. Justify all the comments regarding shift operations. In particular, compare them
to multiplying or dividing by two.

4. There are also \rotate" operations which shift left or right but, instead of losing
the bits which go o one side, have the bits appear on the other side. They are
ror (ROtate Right) and rol (ROtate Left). Justify a use for such instructions.

164

C Matrix Multiplication (R.F.I.)

In Chapter 14 we saw the basic elements of the VFPv2, the oating point subarchitecture
of the ARMv6. In this Appendix, I (R.F.I.) will implement a oating point matrix
multiply using the VFPv2.

Disclaimer: I advise you against using the code in this Appendix in commercial-grade
projects unless you fully review it for both correctness and precision.

C.1 Matrix multiply

Given two vectors v and w of rank r where

V =< V0; V1; • • • ; Vr _ 1 > and w =< W0; W1; • • • ; Wr _ 1 >;

we dene the dot product of v by w as the scalar

V • w = V0 x W0 + V1 X W1 + • • • + Vr_1 X Wr_1:

We can multiply a matrix A of n rows and m columns (nm) by a matrix B of m rows
and p columns (m X p). The result is a matrix of n rows and p columns (n X p). Matrix
multiplication may seem complicated but actually it is not. Every element in the result
matrix it is just the dot product (dened in the paragraph above) of the corresponding
row of the matrix A by the corresponding column of the matrix B (that is why there
must be as many columns in A as there are rows in B). (See Figure C-1 following.)

A straightforward implementation of the matrix multiplication in C is as follows.

float A[N][M]; // N rows of M columns each row
float B[M][P]; // M rows of P columns each row
// Result
float C[N][P]; // N rows of P columns each row

for (int i = 0; i < N; i++) // for each row of the result
{

for (int j = 0; j < P; j++) // and for each column
{

165

C. Matrix Multiplication (R.F.I.)

C[i][j] = 0; // Initialize to zero
// Now calculate the dot product of the row by the column
for (int k = 0; k < M; k++)

C[i][j] += A[i][k] * B[k][j];
}

}

Figure C-1

In order to simplify the example, we will assume that both matrices A and B are square
matrices of size N N . This simplies the algorithm just a bit.

float A[N][N];
float B[N][N];
// Result
float C[N][N];

for (int i = 0; i < N; i++)
{

for (int j = 0; j < N; j++)
{

C[i][j] = 0;
for (int k = 0; k < N; k++)

C[i][j] += A[i][k] * B[k][j];
}

}

Matrix multiplication is an important operation used in many areas. For instance, in
computer graphics it is usually performed on 3 3 and 4 4 matrices representing 3D
geometry. So we will try to make a reasonably fast version of it (we do not aim at
getting the best one, though).

166

C.2. Accessing a matrix

The rst improvement we want to make in this algorithm is making all the loops perfectly
nested. There are some technical reasons beyond the scope of this Appendix for that.
So we will move the initialization of C[i][j] to 0 outside of the multiple loop.

float A[N][N];
float B[M][N];
// Result
float C[N][N];

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

C[i][j] = 0;

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

for (int k = 0; k < N; k++)
C[i][j] += A[i][k] * B[k][j];

After this change, the interesting part of our algorithm, the last line, is inside a perfect
nest of loops of depth 3.

C.2 Accessing a matrix

It is relatively straightforward to access an element of an array of just one dimension, as
in a[i]. To nd the address of a[i], multiply i by the size in bytes of each element of
the array and then add the address of a (the base address of the array). So, the address
of a[i] is just a + ELEMENTSIZE * i.

Things get a bit more complicated when our array has more than one dimension, like a
square or a cube. Given an access like a[i][j][k] we have to compute which element
is addressed by [i][j][k]. This depends on whether the language is row-major order
or column-major order. We assume row-major order here (as in the C language - but
not FORTRAN). So [i][j][k] must be calculated by k + j * NK + i * NK * NJ,
where NK and NJ are the number of elements in those dimensions. For instance, a three
dimensional array of 345 elements, the element [1][2][3] is 3+25+ 1 54 = 23
(here NK = 5 and NJ = 4. Note that NI = 3 but we do not need it at all). We assume
that our language indexes arrays starting from 0 (like C). If the language allows a lower
bound other than 0, we rst have to subtract the lower bound to get the position.

We can compute the position in a slightly better way if we reorder it. Instead of
calculating k + j * NK + i * NK * NJ, we will do k + NK * (j + NJ * i). That
way all the arithmetic is just a repeated set of steps calculating x + Ni * y as in the
example below.

167

C. Matrix Multiplication (R.F.I.)

/* Calculating the address of C[i][j][k] declared as int C[NI][NJ][NK]
with NI = 3, NJ = 4, NK = 5, as above: &C[i][j][k] is, then,
C + ELEMENTSIZE * (k + NK * (j + NJ * i))
Assume i is in r4, j in r5, k in r6 and the base address of C in r3

*/
mov r8, #4
mul r7, r8, r4
add r7, r5, r7
mov r8, #5
mul r7, r8, r7
add r7, r6, r7
mov r8, #4
mul r7, r8, r7
add r7, r3, r7

@ r8 <- NJ = 4
@ r7 <- NJ * i
@ r7 <- j + NJ * i
@ r8 <- NK = 5
@ r7 <- NK * (j + NJ * i)
@ r7 <- k + NK * (j + NJ + i)
@ r8 <- ELEMENTSIZE (Recall ints are 4 bytes)
@ r7 <- ELEMENTSIZE * (k + NK * (j + NJ * i))
@ r7 <- C + ELEMENTSIZE * (k + NK * (j + NJ * i))

C.3 Naive matrix multiply of 44 single-precision

As a rst step, let's implement a naive matrix multiply that follows the C algorithm
above to the letter.

/* -- matmul.s */
.data
mat _A: .float 0.1, 0.2, 0.0, 0.1

.float 0.2, 0.1, 0.3, 0.0

.float 0.0, 0.3, 0.1, 0.5

.float 0.0, 0.6, 0.4, 0.1
mat _B: .float 4.92, 2.54, -0.63, -1.75

.float 3.02, -1.51, -0.87, 1.35

.float -4.29, 2.14, 0.71, 0.71

.float -0.95, 0.48, 2.38, -0.95
mat _C: .float 0.0, 0.0, 0.0, 0.0

.float 0.0, 0.0, 0.0, 0.0

.float 0.0, 0.0, 0.0, 0.0

.float 0.0, 0.0, 0.0, 0.0

format_result:
.ascii "Matrix result is:\n%5.2f %5.2f %5.2f %5.2f\n%5.2f %5.2f "
.asciz "%5.2f %5.2f\n%5.2f %5.2f %5.2f %5.2f\n%5.2f %5.2f %5.2f %5.2f\n"

.text

naive_matmul_4x4:
/* r0 address of A

r1 address of B

168

C.3. Naive matrix multiply of 44 single-precision

r2 address of C
*/
push {r4, r5, r6, r7, r8, lr} /* Keep integer registers */

/* First zero 16 single floating point */
/* In IEEE 754, all bits cleared means 0 */

mov r4, r2
mov r5, #16
mov r6, #0
b Loop_init_test
Loop_init:

str r6, [r4], +#4 @ *r4 <- r6 then r4 <- r4 + 4
Loop_init_test:

subs r5, r5, #1
bge Loop_init

/* We will use r4 as i ; r5 as j ; r6 as k */
mov r4, #0 @ r4 <- 0
Loop_i: /* loop header of i */

cmp r4, #4 @ if r4 == 4 goto end of the loop i
beq End_loop_i
mov r5, #0 @ r5 <- 0
Loop_j: /* loop header of j */
cmp r5, #4 @ if r5 == 4 goto end of the loop j
beq End_loop_j
/* Compute the address of C[i][j] = C + 4*(4 * i + j) */
mov r7, r5 @ r7 <- r5. This is r7 <- j
adds r7, r7, r4, LSL #2 @ r7 <- r7 + (r4 << 2).

/* This is r7 <- j + i * 4. Multiply i by the row size */
adds r7, r2, r7, LSL #2 @ r7 <- r2 + (r7 << 2).

/* This is r7 <- C + 4*(j + i * 4)
We multiply (j + i * 4) by the size of the element.
A single-precision floating point takes 4 bytes.

*/
vldr s0, [r7] / @ s0 <- *r7 = C[i][j]

mov r6, #0 @ r6 <- 0
Loop_k: /* loop header of k */

cmp r6, #4 @ if r6 == 4 goto end of the loop k
beq End_loop_k

/* Compute the address of a[i][k] = a + 4*(4 * i + k) */
mov r8, r6 @ r8 <- r6. This is r8 <- k
adds r8, r8, r4, LSL #2 @ r8 <- r8 + (r4 << 2) = k + i * 4
adds r8, r0, r8, LSL #2 @ r8 <- r0 + (r8 << 2) = a+4*(k+i*4)

169

C. Matrix Multiplication (R.F.I.)

vldr s1, [r8] @

/* Compute the address of
mov r8, r5 @
adds r8, r8, r6, LSL #2 @
adds r8, r1, r8, LSL #2 @
vldr s2, [r8] @

vmul.f32 s3, s1, s2 @
vadd.f32 s0, s0, s3 @

add r6, r6, #1 @
b Loop_k @

End_loop_k: @
vstr s0, [r7] @
add r5, r5, #1 @
b Loop_j @

End_loop_j: @
add r4, r4, #1 @
b Loop_i @

End_loop_i: @

pop {r4, r5, r6, r7, r8, lr} @
bx lr @

.globl main
main:

push {r4, r5, r6, lr} @
vpush {d0-d1} @

/* Prepare call to naive_matmul
ldr r0, =mat_A @
ldr r1, =mat_B @
ldr r2, =mat_C @
bl naive_matmul_4x4

s1 <- *r8 = a[i][k]

b[k][j] = b + 4*(4 * k + j) */
r8 <- r5. This is r8 <- j
r8 <- r8 + (r6 << 2) = j + k * 4
r8 <- r1 + (r8 << 2) = b+4*(j+k*4)
s2 < *r8 = b + 4*(4 * k + j)

s3 <- s1 * s2
s0 <- s0 + s3

r6 <- r6 + 1
next iteration of loop k
Here ends loop k
Store s0 back to C[i][j]
r5 <- r5 + 1
next iteration of loop j
Here ends loop j
r4 <- r4 + 1
next iteration of loop i
Here ends loop i

Restore integer registers
Leave function

Keep integer registers
Keep floating point registers

4x4 */
r0 <- &a
r1 <- &b
r2 <- &c

/* Now print the result matrix */
ldr r4, =mat_C @ r4 <- &C

vldr s0, [r4] @ s0 <- *r4 = C[0][0]
vcvt.f64.f32 d1, s0 @ Convert it into a double-precision
vmov r2, r3, d1 @ {r2,r3} <- d1

mov r6, sp @ Remember the SP to restore it later

170

C.3. Naive matrix multiply of 44 single-precision

mov r5, #1

add r4, r4, #60
Mloop:

vldr s0, [r4]
vcvt.f64.f32 d1,
sub sp, sp, #8
vstr d1, [sp]
sub r4, r4, #4
add r5, r5, #1
cmp r5, #16
bne Mloop

/* We will iterate from 1 to 15 (because the
0th item has already been handled */

/* Go to last item of C = C[3][3] */

@ s0 <- *r4. Load the current item
s0 @ Convert to a double-precision: d1 <- s0

@ Make room in the stack for it
@ Push it on top of the stack
@ Move to the previous element in the matrix
@ One more item has been handled
@ if r5 != 16 go to next loop iteration

ldr r0, =format_result @ r0 <- &format_result
bl printf
mov sp, r6

@ call printf
@ Restore the stack after the call

mov r0, #0
vpop {d0-d1}
pop {r4, r5, r6, lr}
bx lr

That's a lot of code but it is not complicated. Unfortunately computing the address of
the array takes an large number of instructions. In our naive_matmul_4x4 we have the
three loops i;j and k of the C algorithm. We compute the address of C[i][j] in the j
loop (there is no need to compute it every time in the k loop). The value contained in
C[i][j] is then loaded into s0. In each iteration of the k loop, we load A[i][k] and
B[k][j] in s1 and s2, respectively. After the k loop ends, we can store s0 back to the
array position (kept in r7).

In order to print the result matrix we have to pass 16 oating point numbers to printf.
Unfortunately, as stated in Chapter 14, we have to rst convert them into double
precision before passing them. Note also that the rst single-precision numbers can be
passed using registers r2 and r3.

All the remaining numbers must be passed on the stack and do not forget that the
stack parameters must be passed in opposite order. This is why once the rst element
of the C matrix has been loaded into fr2,r3g we advance 60 bytes by adding 60 to r4.
That is C[3][3], the last element of the matrix C. We load the single-precision value,
convert it into double-precision, push it on the stack and then decrement register r4, so
it points to the previous element in the matrix. Observe that we use r6 as a marker of
the stack, since we need to restore the stack once printf returns. Of course we could
avoid using r6 and instead do add sp, sp, #120 since that is exactly the number of

171

C. Matrix Multiplication (R.F.I.)

bytes we push to the stack (15 values of double-precision, each taking 8 bytes).

I have not chosen the values of the two matrices randomly. The second one is (approxi
mately) the inverse of the rst. This way we will get the identity matrix (a matrix with
all zeros but a diagonal of ones). Due to rounding issues the result matrix will not be
the identity, but it will be pretty close. Let's run the program.

$./matmul
Matrix result is:
1.00 -0.00 0.00 0.00

-0.00 1.00 0.00 -0.00
0.00 0.00 1.00 0.00
0.00 -0.00 0.00 1.00

C.4 Vectorial approach

The algorithm we are trying to implement is ne but it is not optimal. The problem
lies in the way the k loop accesses the elements. When accessing A[i][k] it is eligible
for a multiple load since A[i][k] and A[i][k+1] are contiguous elements in memory.
That way we can entirely avoid the k loop and perform a 4 element load from A[i][0]
to A[i][3]. The access of B[k][j] does not allow that since elements B[k][j] and
B[k+1][j] have a full row between them. That would be a strided access (the stride
here is a full row of 4 elements or 16 bytes). VFPv2 does not allow a strided multiple
load, so we will have to load one by one. Once we have all the elements of the k loop
loaded, we can do a vector multiplication and a sum.

naive_vectorial_matmul_4x4:
/* r0 address of A

r1 address of B
r2 address of C

*/
push {r4, r5, r6, r7, r8, lr} /* Keep integer registers */
vpush {s16-s19} /* Floating point registers starting from */
vpush {s24-s27} /* s16 must be preserved */

/* First zero 16 single floating point */
/* In IEEE 754, all bits cleared means 0 */

mov r4, r2
mov r5, #16
mov r6, #0
b Loop_init_test
Loop_init:

str r6, [r4], +#4 @ *r4 <- r6 then r4 <- r4 + 4
Loop_init_test:

172

C.4. Vectorial approach

subs r5, r5, #1
bge Loop_init

/* Set the LEN field of
mov r5, #0b011
mov r5, r5, LSL #16
fmrx r4, fpscr
orr r4, r4, r5
fmxr fpscr, r4

FPSCR to be 4 (value 3) */
@ r5 <- 3
@ r5 <- r5 << 16
@ r4 <- fpscr
@ r4 <- r4 | r5
@ fpscr <- r4

/* We will use
r4 as i
r5 as j
r6 as k

*/
mov r4, #0 @ r4 <- 0
Loop_i: /* loop header of i */

cmp r4, #4 @ if r4 == 4 goto end of i loop
beq End_loop_i
mov r5, #0 @ r5 <- 0
Loop_j: /* loop header of j */

cmp r5, #4 @ if r5 == 4 goto end of j loop
beq End_loop_j
/* Compute the address of C[i][j] and load it into s0 */
/* Address of C[i][j] is C + 4*(4 * i + j) */
mov r7, r5 @ r7 <- r5 = j
adds r7, r7, r4, LSL #2 @ r7 <- r7 + (r4 << 2) = j + i * 4
adds r7, r2, r7, LSL #2 @ r7 <- r2 + (r7 << 2) = C + 4*(j+i*4)
/* Compute the address of a[i][0] */
mov r8, r4, LSL #2
adds r8, r0, r8, LSL #2
/* Load {s8,s9,s10,s11} <- {a[i][0],a[i][1],a[i][2],a[i][3]} */
vldmia r8, {s8-s11}

/* Compute the address of b[0][j]
mov r8, r5 @
adds r8, r1, r8, LSL #2 @
vldr s16, [r8] @
vldr s17, [r8, #16] @
vldr s18, [r8, #32] @
vldr s19, [r8, #48] @

*/
r8 <- r5 = j
r8 <- r1 + (r8 << 2) = b + 4*(j)
s16 <- *r8 = b[0][j]
s17 <- *(r8 + 16) = b[1][j]
s18 <- *(r8 + 32) = b[2][j]
s19 <- *(r8 + 48) = b[3][j]

/* {s24,s25,s26,s27} <- {s8,s9,s10,s11} * {s16,s17,s18,s19} */
vmul.f32 s24, s8, s16

173

C. Matrix Multiplication (R.F.I.)

vmov.f32 s0, s24
vadd.f32 s0, s0, s25
vadd.f32 s0, s0, s26
vadd.f32 s0, s0, s27

vstr s0, [r7]
add r5, r5, #1
b Loop_j /* next

End_loop_j: /* Here
add r4, r4, #1
b Loop_i /* next

End_loop_i: /* Here

@ s0 <- s24
@ s0 <- s0 + s25
@ s0 <- s0 + s26
@ s0 <- s0 + s27

@ Store s0 back to C[i][j]
@ r5 <- r5 + 1 */

iteration of loop j */
ends loop j */

@ r4 <- r4 + 1 */
iteration of loop i */
ends loop i */

/* Set the LEN field of FPSCR back to 1 (value 0) */
mov r5, #0b011 @ r5 <- 3
mvn r5, r5, LSL #16 @ r5 <- ~(r5 << 16)
fmrx r4, fpscr @ r4 <- fpscr
and r4, r4, r5 @ r4 <- r4 & r5
fmxr fpscr, r4 @ fpscr <- r4

vpop {s24-s27}
vpop {s16-s19}
pop {r4, r5, r6, r7, r8, lr}
bx lr

/* Restore floating registers */

/* Restore integer registers */
/* Leave function */

With this approach we can entirely remove the k loop, as we do 4 operations at once.
Note that we have to modify the fpscr so the eld len is set to 4 (and restore it back
to 1 when leaving the function).

C.5 Fill the registers

In the previous version we were not exploiting all the registers of VFPv2. Each row
takes 4 registers and so does each column, so we end up using only 8 registers plus 4 for
the result and one in the bank 0 for the summation. We got rid the k loop to process
C[i][j] at once. What if we processed C[i][j] and C[i][j+1] at the same time?
That way we can ll all the 8 registers in each bank.

naive_vectorial_matmul_2_4x4:
/* r0 address of A

r1 address of B
r2 address of C

*/
push {r4, r5, r6, r7, r8, lr} /* Keep integer registers */

174

C.5. Fill the registers

vpush {s16-s31} /* Floating point registers starting
from s16 must be preserved */

/* First zero 16 single floating point */
/* In IEEE 754, all bits cleared means 0 */
mov r4, r2
mov r5, #16
mov r6, #0
b Loop_init_test
Loop_init:

str r6, [r4], +#4 /* *r4 <- r6 then r4 <- r4 + 4 */
Loop_init_test:

subs r5, r5, #1
bge Loop_init

/* Set the LEN field of FPSCR to be 4 (value 3)
mov r5, #0b011
mov r5, r5, LSL #16
fmrx r4, fpscr
orr r4, r4, r5
fmxr fpscr, r4

@ r5 <- 3
@ r5 <- r5 << 16
@ r4 <- fpscr
@ r4 <- r4 | r5
@ fpscr <- r4

/* We will use
r4 as i
r5 as j

*/
mov r4, #0
Loop_i:

cmp r4, #4
beq End_loop_i
mov r5, #0
Loop_j:

cmp r5, #4
beq End_loop_j

@ r4 <- 0
/* loop header of i */
/* if r4 == 4 goto end of the loop i */

@ r5 <- 0
/* loop header of j */
/* if r5 == 4 goto end of the loop j */

/* Compute the address of C[i][j] and load it into s0 */
/* Address of C[i][j] is C + 4*(4 * i + j) */
mov r7, r5 @ r7 <- r5 = j
adds r7, r7, r4, LSL #2 @ r7 <- r7 + (r4 << 2) = j + i * 4
adds r7, r2, r7, LSL #2 @ r7 <- r2 + (r7 << 2) = C + 4*(j+i*4)
/* Compute the address of a[i][0] */
mov r8, r4, LSL #2
adds r8, r0, r8, LSL #2

/* Load {s8,s9,s10,s11} <- {a[i][0],a[i][1],a[i][2],a[i][3]} */
vldmia r8, {s8-s11}

175

C. Matrix Multiplication (R.F.I.)

/* Compute the address of b[0][j] */
mov r8, r5 @
adds r8, r1, r8, LSL #2 @
vldr s16, [r8] @
vldr s17, [r8, #16] @
vldr s18, [r8, #32] @
vldr s19, [r8, #48] @

r8 <- r5 = j
r8 <- r1 + (r8 << 2) = b + 4*(j)
s16 <- *r8 = b[0][j]
s17 <- *(r8 + 16) = b[1][j]
s18 <- *(r8 + 32) = b[2][j]
s19 <- *(r8 + 48) = b[3][j]

/* Compute the address of b[0][j+1] */
add r8, r5, #1
adds r8, r1, r8, LSL #2
vldr s20, [r8]
vldr s21, [r8, #16]
vldr s22, [r8, #32]
vldr s23, [r8, #48]

@ r8 <- r5 + 1 = j + 1
@ r8 <- r1 + (r8 << 2) = b + 4*(j + 1)
@ s20 <- *r8 = b[0][j + 1]
@ s21 <- *(r8 + 16) = b[1][j + 1]
@ s22 <- *(r8 + 32) = b[2][j + 1]
@ s23 <- *(r8 + 48) = b[3][j + 1]

/* {s24,s25,s26,s27} <- {s8,s9,s10,s11} * {s16,s17,s18,s19} */
vmul.f32 s24, s8, s16

vmov.f32 s0, s24 @ s0 <- s24
vadd.f32 s0, s0, s25 @ s0 <- s0 + s25
vadd.f32 s0, s0, s26 @ s0 <- s0 + s26
vadd.f32 s0, s0, s27 @ s0 <- s0 + s27

/* {s28,s29,s30,s31} <- {s8,s9,s10,s11} * {s20,s21,s22,s23} */
vmul.f32 s28, s8, s20

vmov.f32 s1, s28
vadd.f32 s1, s1, s29
vadd.f32 s1, s1, s30
vadd.f32 s1, s1, s31

/* {C[i][j], C[i][j+1]}
vstmia r7, {s0-s1}

add r5, r5, #2
b Loop_j /*

End_loop_j: /*
add r4, r4, #1
b Loop_i /*

End_loop_i: /*

@ s1 <- s28
@ s1 <- s1 + s29
@ s1 <- s1 + s30
@ s1 <- s1 + s31

<- {s0, s1} */

@ r5 <- r5 + 2
next iteration of loop j */
Here ends loop j */

@ r4 <- r4 + 1
next iteration of loop i */
Here ends loop i */

/* Set the LEN field of FPSCR back to 1 (value 0) */

176

C.6. Reorder the accesses

mov r5, #0b011
mvn r5, r5, LSL #16
fmrx r4, fpscr
and r4, r4, r5
fmxr fpscr, r4

@ r5 <- 3
@ r5 <- ~(r5 << 16)
@ r4 <- fpscr
@ r4 <- r4 & r5
@ fpscr <- r4

vpop {s16-s31} /* Restore preserved floating registers */
pop {r4, r5, r6, r7, r8, lr} /* Restore integer registers */
bx lr /* Leave function */

Note that because we now process j and j + 1 together, r5 (=j) is now increased by 2
at the end of the loop. This is usually known as loop unrolling and it is always legal to
do. We do more than one iteration of the original loop in the unrolled loop. The number
of iterations of the original loop we do in the unrolled loop is the unroll factor. In this
case since the number of iterations (4) is perfectly divisible by the unrolling factor (2)
we do not need an extra loop for any remainder iterations (the remainder loop has one
less iteration than the value of the unrolling factor).

As you can see, the accesses to b[k][j] and b[k][j+1] are starting to become tedious.
Maybe we should make more changes to the matrix multiply algorithm.

C.6 Reorder the accesses

Is there a way we can mitigate the strided accesses to the matrix B? Yes, there is one,
we only have to permute the ordering of the loop nesting variables i; j; k into the order
k; i; j . Now you may be wondering if this is legal. Well, checking for the legality of
these things is beyond the scope of this book so you will have to trust me here. Such
permutation is ne. What does this mean? Well, it means that our algorithm will now
look like this in C:

float A[N][N];
float B[M][N];
// Result
float C[N][N];

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

C[i][j] = 0;

for (int k = 0; k < N; k++)
for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)
C[i][j] += A[i][k] * B[k][j];

177

C. Matrix Multiplication (R.F.I.)

This may not seem very useful, but note that, since now k is in the outermost loop, it
is easier to use vectorial instructions.

for (int k = 0; k < N; k++)
for (int i = 0; i < N; i++)
{

C[i][0] += A[i][k] * B[k][0];
C[i][1] += A[i][k] * B[k][1];
C[i][2] += A[i][k] * B[k][2];
C[i][3] += A[i][k] * B[k][3];

}

If you remember Chapter 14, VFPv2 instructions have a mixed mode when the Rsource2
register is in bank 0. This case makes a perfect match: we can load C[i][0..3] and
B[k][0..3] with a load multiple and then load A[i][k] into a register in bank 0. Then
we can make multiply A[i][k]*B[k][0..3] and add the result to C[i][0..3]. As a
bonus, the number of instructions is much smaller.

better_vectorial_matmul_4x4:
/* r0 address of A

r1 address of B
r2 address of C

*/
push {r4, r5, r6, r7, r8, lr} /* Keep integer registers */
/* Floating point registers starting from s16 must be preserved */
vpush {s16-s19}
vpush {s24-s27}
/* First zero 16 single floating point */
/* In IEEE 754, all bits cleared means 0 */
mov r4, r2
mov r5, #16
mov r6, #0
b Loop_init_test
Loop_init:

str r6, [r4], +#4 @ *r4 <- r6 then r4 <- r4 + 4
Loop_init_test:

subs r5, r5, #1
bge Loop_init

/* Set the LEN field of FPSCR to be 4 (value 3) */
mov r5, #0b011 @ r5 <- 3
mov r5, r5, LSL #16 @ r5 <- r5 << 16
fmrx r4, fpscr @ r4 <- fpscr
orr r4, r4, r5 @ r4 <- r4 | r5
fmxr fpscr, r4 @ fpscr <- r4

178

C.6. Reorder the accesses

/* We will use
r4 as k
r5 as i

*/
mov r4, #0 @ r4 <- 0
Loop_k: /* loop header of k */

cmp r4, #4 /* if r4 == 4 goto end of the loop k */
beq End_loop_k
mov r5, #0 @ r5 <- 0
Loop_i: /* loop header of i */
cmp r5, #4 /* if r5 == 4 goto end of the loop i */
beq End_loop_i
/* Compute the address of C[i][0] */
/* Address of C[i][0] is C + 4*(4 * i) */
add r7, r2, r5, LSL #4 @ r7 <- r2 + (r5 << 4) = c + 4*4*i

/* Load {s8,s9,s10,s11} <- {c[i][0],c[i][1],c[i][2],c[i][3]} */
vldmia r7, {s8-s11}

/* Compute the address of A[i][k] = A + 4*(4*i + k) */
add r8, r4, r5, LSL #2 @ r8 <- r4 + r5 << 2 = k + 4*i
add r8, r0, r8, LSL #2 @ r8 <- r0 + r8 << 2 = a + 4*(k + 4*i)
vldr s0, [r8] @ Load s0 <- a[i][k]

/* Compute the address of B[k][0] */
/* Address of B[k][0] is B + 4*(4*k) */
add r8, r1, r4, LSL #4 @ r8 <- r1 + r4 << 4 = b + 4*(4*k)

/* Load {s16,s17,s18,s19}<-{b[k][0],b[k][1],b[k][2],b[k][3]} */
vldmia r8, {s16-s19}

/* {s24,s25,s26,s27} <- {s16,s17,s18,s19} * {s0,s0,s0,s0} */
vmul.f32 s24, s16, s0
/* {s8,s9,s10,s11} <- {s8,s9,s10,s11} + {s24,s25,s26,s7} */
vadd.f32 s8, s8, s24
/* Store {c[i][0],c[i][1],c[i][2],c[i][3]} <- {s8,s9,s10,s11} */
vstmia r7, {s8-s11}

add r5, r5, #1
b Loop_i

End_loop_i:
add r4, r4, #1
b Loop_k

@ r5 <- r5 + 1; i.e., i = i + 1
/* next iteration of loop i */
/* Here ends loop i */

@ r4 <- r4 + 1; i.e., k = k + 1
/* next iteration of loop k */

179

C. Matrix Multiplication (R.F.I.)

End_loop_k: /* Here ends loop k */

/* Set the LEN field of FPSCR back to 1 (value 0) */
mov r5, #0b011
mvn r5, r5, LSL #16
fmrx r4, fpscr
and r4, r4, r5
fmxr fpscr, r4

@ r5 <- 3
@ r5 <- ~(r5 << 16)
@ r4 <- fpscr
@ r4 <- r4 & r5
@ fpscr <- r4

vpop {s24-s27}
vpop {s16-s19}
pop {r4, r5, r6, r7,
bx lr

/* Restore preserved floating registers */

r8, lr} /* Restore integer registers */
/* Leave function */

Since adding after a multiplication is a frequent sequence of operations, we can replace
the sequence

vmul.f32 s24, s16, s0
/* {s24,s25,s26,s27} <- {s16,s17,s18,s19} * {s0,s0,s0,s0} */

vadd.f32 s8, s8, s24
/* {s8,s9,s10,s11} <- {s8,s9,s10,s11} + {s24,s25,s26,s27} */

with the single instruction vmla (multiply and add).

vmla.f32 s8, s16, s0
/* {s8,s9,s10,s11}<-{s8,s9,s10,s11}+({s16,s17,s18,s19}*{s0,s0,s0,s0}) */

Now we can also unroll the i loop, again with an unrolling factor of 2. This would give
us our best version.

best_vectorial_matmul_4x4:
/* r0 address of A

r1 address of B
r2 address of C

*/
push {r4, r5, r6, r7, r8, lr} /* Keep integer registers */
vpush {s16-s19} /* Floating point registers starting

from s16 must be preserved */

/* First zero 16 single floating point */
/* In IEEE 754, all bits cleared means 0 */
mov r4, r2
mov r5, #16
mov r6, #0
b Loop_init_test
Loop_init:

180

C.6. Reorder the accesses

str r6, [r4], +#4
Loop_init_test:

subs r5, r5, #1
bge Loop_init

@ *r4 <- r6 then r4 <- r4 + 4 */

/* Set the LEN field of FPSCR to be 4 (value 3)
mov r5, #0b011 @ r5 <- 3
mov r5, r5, LSL #16 @ r5 <- r5 << 16
fmrx r4, fpscr @ r4 <- fpscr
orr r4, r4, r5 @ r4 <- r4 | r5
fmxr fpscr, r4 @ fpscr <- r4

/* We will use
r4 as k
r5 as i

*/
mov r4, #0 @ r4 <- 0
Loop_k: /* loop header of k */

cmp r4, #4 /* if r4 == 4 goto end of k loop */
beq End_loop_k
mov r5, #0 @ r5 <- 0
Loop_i: /* loop header of i */
cmp r5, #4 /* if r5 == 4 goto end of i loop */
beq End_loop_i
/* Compute the address of C[i][0] */
/* Address of C[i][0] is C + 4*(4 * i) */
add r7, r2, r5, LSL #4 @ r7 <- r2 + (r5 << 4) = c + 4*4*i
/* Load {s8,s9,s10,s11,s12,s13,s14,s15}

<- {c[i][0], c[i][1], c[i][2], c[i][3],
c[i+1][0], c[i+1][1], c[i+1][2], c[i+1][3]} */

vldmia r7, {s8-s15}
/* Compute the address of A[i][k] = A + 4*(4*i + k) */
add r8, r4, r5, LSL #2 /* r8 <- r4 + r5 << 2 = k + 4*i */
add r8, r0, r8, LSL #2 /* r8 <- r0 + r8 << 2 = a+4*(k+4*i) */
vldr s0, [r8] /* Load s0 <- a[i][k] */
vldr s1, [r8, #16] /* Load s1 <- a[i+1][k] */

/* Compute the address of B[k][0] */
/* Address of B[k][0] is B + 4*(4*k) */
add r8, r1, r4, LSL #4 /* r8 <- r1 + r4 << 4 = b + 4*(4*k) */

/* Load {s16,s17,s18,s19}<-{b[k][0],b[k][1],b[k][2],b[k][3]} */
vldmia r8, {s16-s19}

181

C. Matrix Multiplication (R.F.I.)

/* {s8,s9,s10,s11} <-
{s8,s9,s10,s11} + ({s16,s17,s18,s19} * {s0,s0,s0,s0}) */

vmla.f32 s8, s16, s0
/* {s12,s13,s14,s15} <-

{s12,s13,s14,s15} + ({s16,s17,s18,s19} * {s1,s1,s1,s1}) */
vmla.f32 s12, s16, s1

/* Store {c[i][0], c[i][1], c[i][2], c[i][3],
c[i+1][0], c[i+1][1], c[i+1][2]}, c[i+1][3] }
<- {s8,s9,s10,s11,s12,s13,s14,s15} */

vstmia r7, {s8-s15}

add r5, r5,
b Loop_i

End_loop_i:
add r4, r4,
b Loop_k

End_loop_k:

#2

#1

/* r5 <- r5 + 2; i.e., i = i + 2 */
/* next iteration of loop i */
/* Here ends loop i */
/* r4 <- r4 + 1; i.e., k = k +
/* next iteration of loop k */

1 */

/* Here ends loop k */

/* Set the LEN
mov r5, #0b011
mvn r5, r5, LSL
fmrx r4, fpscr
and r4, r4, r5
fmxr fpscr, r4

vpop {s16-s19}

field of FPSCR back to 1 (value 0)
@ r5 <- 3

#16 @ r5 <- ~(r5 << 16)
@ r4 <- fpscr
@ r4 <- r4 & r5
@ fpscr <- r4

/* Restore preserved floating registers */
pop {r4, r5, r6
bx lr /* Leave

, r7, r8, lr}
function */

/* Restore integer registers */

C.7 Comparing versions

Out of curiosity I tested the versions, to see which one was faster.

The benchmark consists of repeatedly calling the multiplication matrix function 221
times (actually 221-1 because of a typo, see the code) in order to magnify dierences.
While the input should be randomized as well for a better benchmark, the benchmark
more or less models contexts where a matrix multiplication is performed many times
(for instance in graphics).

This is the skeleton of the benchmark.

main:
push {r4, lr}

182

C.7. Comparing versions

ldr r0, addr_mat_A /* r0 <- a */
ldr r1, addr_mat_B /* r1 <- b */
ldr r2, addr_mat_C /* r2 <- c */
mov r4, #1
mov r4, r4, LSL #21
Main_loop_test:

/* Insert here the matmul you want to test */
bl <<tested-matmul-routine>>
subs r4, r4, #1
bne Main_loop_test /* I should have written 'bge' here, but I

cannot change it without having to run
the benchmarks again :) */

mov r0, #0
pop {r4, lr}
bx lr

Here are the results. The one we named the best turned to actually deserve that name.

Timing Comparisons

Version Time {seconds)

n a ive_ m atm u l_4x4 G.41

n a i ve_vecto r i a l_ m at m u [_4x4 3.51

n a ive_v ecto ri a l_ m at m u l_2_4x4 2.87

b ette r_vec to ri a l_m a tm lj I_4x4 2.59

b est_vecto ria l_ m atm u I_4x4 1.51
Figure C-2

183

D Subword Data

We already know that the ARM processor in our Raspberry Pi 2 has a 32-bit archi
tecture: general purpose registers are 32-bits wide and addresses in memory are 32-bit
numbers. The natural integer size for an architecture is usually called a word and in our
ARM is obviously a 32-bit integer. Sometimes, though, we need to deal with subword
data: integers of size smaller than 32 bits.

In this Appendix subword data will refer either to a byte or to a halfword. A byte is
an integer of 8-bits and a halfword is an integer of 16-bits. Thus, a halfword occupies 2
bytes and a word 4 bytes.

To dene storage for a byte in the data section we have to use .byte. For a halfword
the syntax is .hword.

.align 4
one_byte: .byte 205
/* This number in binary is 11001101 */

.align 4
one_halfword: .hword 42445
/* This number in binary is 1010010111001101 */

Note that, as usual, we are aligning data to 4 bytes. Later on we will see that for
subword data alignment restrictions are slightly more relaxed.

D.1 Loading

Before we start operating on a subword integer we need to get it somewhere. If we are
not going to load/store it from/to memory, we may simply use a register. We may have
to check that we do not overow the range of the subword, but that's all.

But if the data is in memory then it is important to load it properly since we do not
want to read more data than actually needed. Recall that an address actually identies
a single byte of the memory: it is not possible to address anything smaller than a byte.
Depending on the width of the load/store, the address will load/store 1 byte, 2 bytes or
4 bytes. A regular ldr loads a word, so we need some other instruction.

185

D. Subword Data

The ARM processor provides the instructions ldrb and ldrh to load a byte and a
halfword respectively. The destination is a general purpose register, of 32-bits, so this
instruction must extend the value from 8 or 16 bits to 32 bits. Both ldrb and ldrh
perform zero-extension, which means that all the extra bits, not loaded, will be set to
zero.

.text

.globl main
main:

push {r4, lr}

ldr r0, =one_byte @ r0 <- &one_byte
ldrb r0, [r0] @ r0 <- *{byte}r0

ldr r1, =one_halfword @ r1 <- &one_halfword
ldrh r1, [r1] @ r1 <- *{half}r1

pop {r4, lr}
mov r0, #0
bx lr

In the example above note the dierence between the ldr and the subsequent ldrb/ldrh.
The ldr instruction is needed to load an address into the register. Addresses in our
ARM processor are 32-bit integers so a regular ldr must be used here. Then, once we
have the address in the register we use ldrb or ldrh to load the byte or the halfword. As
stated above, the destination register is 32-bits so the loaded integer is zero-extended.
The following table shows what happens with zero-extension.

Effect of subword loads with Idrb and Idrb

Content in memory {bytes} Loaded in register (32-bit)

addr addrH

Idrb 11001101 00000000 00000000 00000000 11001101

Idrh 11001101 10100101 00000000 00000000 10100101 11001101

Figure SubwordData-1

The ARM in the Raspberry Pi has the little endian architecture, that means that bytes
in memory are laid in memory (from lower to higher addresses) starting from the least
signicant byte to the most signicant byte. Load and store instructions preserve this

186

D.1. Loading

ordering. That fact is usually not important unless viewing the memory as a sequence
of bytes. That is the reason why in the table above 11001101 always appears in the rst
column even if the number 42445 is 1010010111001101 in binary.

Now loading using ldrb and ldrh is ne as long as we only use natural numbers.
Integral numbers include negative numbers and are commonly represented using two's
complement. If we zero-extend a negative number, the sign bit (the most signicant
bit of a two's complement) will not be propagated and we will end with an unrelated
positive number. When loading two's complement subword integers we need to perform
sign-extension using instructions ldrsb and ldrsh.

ldr r0, addr_of_one_byte
ldrsb r0, [r0]

ldr r1, addr_of_one_halfword
ldrsh r1, [r1]

@ r0 <- &one_byte
@ r0 <- *{signed byte}r0

@ r1 <- &one_halfword
@ r1 <- *{signed half}r1

Note that sign-extension is the same as zero-extension when the sign bit is zero, as it
happens in the two last rows of the following table that shows the eect of ldrsb and
ldrsh.

Effect of subword loads with Idrsb and Idrsh

Content in memory (bytes) Loaded in register (32-bit)

addr addr+1

Idrsb 11001101 11111111 11111111 11111111 11001101

Idrsh 11001101 10100101 11111111 11111111 10100101 11001101

Idrsb 01001101 00000000 00000000 00000000 01001101

Idrsh 11001101 00100101 00000000 00000000 00100101 11001101

Figure SubwordData-2

It is very important not to mix both instructions when loading subword data. When
loading natural numbers, lrb and lrh are the correct choice. If the number is an integer
that could be negative always use ldrsb and ldrsh. The following table summarizes
what happens when you mix interpretations and the dierent load instructions.

187

D. Subword Data

Patterns of bits interpreted as (natural) binary ortwo:s complement.

Interpretation of bits

Width Bits Binary Two’s complement

8-bit 11001101 205 -51

32-bit after Id rb 00000000000000000000000011001101 205 205

32-bit after Id rsb 11111111111111111111111111001101 4294967245 -51

16-bit 1010010111001101 42445 -23091

32-bit after Id rh 00000000000000001010010111001101 42445 42445

32-bit after Id rsb 11111111111111111010010111001101 4204944205 -23091

Figure SubwordData-3

D.2 Storing

While a load requires us to take care of whether the loaded subword is a binary or
a two's complement encoded number, a store instruction does not require any such
consideration. The reason is that the corresponding strb and strh instructions will
simply take the least signicant 8 or 16 bits of the register and store them in memory.

ldr r1, addr_of_one_byte @ r0 <- &one_byte
ldrsb r0, [r1] @ r0 <- *{signed byte}r1
strb r0, [r1] @ *{byte}r1 <- r0

ldr r0, addr_of_one_halfword @ r0 <- &one_halfword
ldrsh r1, [r0] @ r1 <- *{signed half}r0
strh r1, [r0] @ *{half}r0 <- r1

D.3 Alignment restrictions

When loading or storing a 32-bit integer from/to memory, the address must be 4 byte
aligned. That means that the two least signicant bits of the address must be 0. Such
restriction is relaxed if the memory operation (load or store) is a subword one. For
halfwords the address must be 2 byte aligned. For bytes, no restriction applies. That
way we can reinterpret words and halfwords as either halfwords or bytes if we want.

Consider the following example, where we traverse a single word reinterpreting its bytes
and halfwords (and nally the word itself).

188

D.3. Alignment restrictions

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

.data

.align 4
a_word: .word 0x11223344

.align 4
message_bytes:
message_halfwords:
message_words:

.asciz "byte #%d is 0x%x\n"

.asciz "halfword #%d is 0x%x\n"

.asciz "word #%d is 0x%x\n"

.text

.globl main
main:

push {r4, r5, r6, lr} /* keep callee saved registers */

ldr r4, =a_word /* r4 <- &a_word */

mov r5, #0 /* r5 <- 0 */
b check_loop_bytes /* branch to check_loop_bytes */

loop_bytes:
/* prepare call to printf */
ldr r0, =message_bytes

mov r1, r5

ldrb r2, [r4, r5]

bl printf
add r5, r5, #1

check_loop_bytes:
cmp r5, #4
bne loop_bytes

/* r0 <- &message_bytes
first parameter of printf */

/* r1 <- r5
second parameter of printf */

/* r2 <- *{byte}(r4 + r5)
third parameter of printf */

/* call printf */
/* r5 <- r5 + 1 */

/* compute r5 - 4 and update cpsr */
/* if r5 != 4 branch to loop_bytes */

mov r5, #0 /* r5 <- 0 */
b check_loop_halfwords /* branch to check_loop_halfwords */

loop_halfwords:
/* prepare call to printf */
ldr r0, =message_halfwords

/* r0 <- &message_halfwords
first parameter of printf */

189

D. Subword Data

45 mov r1, r5 /* r1 <- r5
46 second parameter of printf */
47 mov r6, r5, LSL #1 /* r6 <- r5 * 2 */
48 ldrh r2, [r4, r6] /* r2 <- *{half}(r4 + r6)
49 this is r2 <- *{half}(r4 + r5 * 2)
50 third parameter of printf */
51 bl printf /* call printf */
52 add r5, r5, #1 /* r5 <- r5 + 1 */
53 check_loop_halfwords:
54 cmp r5, #2 /* compute r5 - 2 and update cpsr */
55 bne loop_halfwords /* if r5 != 2 branch to loop_halfwords */
56
57 /* prepare call to printf */
58 ldr r0, =message_words /* r0 <- &message_words
59 first parameter of printf */
60 mov r1, #0 /* r1 <- 0
61 second parameter of printf */
62 ldr r2, [r4] /* r1 <- *r4
63 third parameter of printf */
64 bl printf /* call printf */
65
66 pop {r4, r5, r6, lr} /* restore callee saved registers */
67 mov r0, #0 /* set error code */
68 bx lr /* return to system */

Our word is the number 0x11223344 (this is 287454020DEC). We load the address of
the word, line 17, as usual with a ldr and then we perform dierent sized loads. The

rst loop, lines 19 to 35, loads each byte and prints it. Note that the ldrb, line 29,
just adds the current byte (in r5) to the address of the word (in r4). We do not have
to multiply r5 by anything. In fact ldrb and ldrh, unlike ldr, do not allow a shift
operand of the form LSL #x. You can see how to dodge this restriction in the loop
that prints halfwords, lines 37 to 55. In the instruction ldrh, line 48, we use r6 that
is just r4 + r5*2, computed in line 47. Since the original word was 4 byte aligned, we
can read its two halfwords because they will be 2-byte aligned. It would be an error to
attempt to load a halfword using the address of the byte 1; only the halfwords starting
at bytes 0 and 2 can be loaded as a halfword.

190

D.3. Alignment restrictions

This is the output of the program

$./reinterpret
byte #0 is 0x44
byte #1 is 0x33
byte #2 is 0x22
byte #3 is 0x11
halfword #0 is 0x3344
halfword #1 is 0x1122
word #0 is 0x11223344

As we stated above, the ARM processor in the Raspberry Pi has the little endian archi
tecture, so for integers of more than one byte, they are laid out (from lower addresses
to higher addresses) starting from the less signicant bytes. That is why the rst byte
is 0x44 and not 0x11. Similarly for halfwords, the rst halfword will be 0x3344 instead
of 0x1122.

191

E GPIO

The Raspberry Pi has easily accessible General Purpose Input/Output (GPIO) pins
available so engineering students can test out actual hardware using the computer. As
usual, there is plenty of information on the web to help users take advantage of these
pins. We will only discuss a few interesting projects.

E.1 Onboard led

Before getting involved with wires and breadboards, let's put one of the on-board leds
(Light Emitting Diodes) under our control. There are a few on the Raspberry Pi board
but we will only turn on and o the green led beside the red power diode. It indicates
activity in the SD card.

One important safety feature of the Raspberry Pi is that it will not allow anyone except
the superuser to do anything with the leds or the GPIO pins. Thus, in order to
demonstrate making the light blink, we must rst become the superuser. Generally we
become superuser to execute a single command by prexing it by sudo and become the
superuser for the future by the command su. In our case, to become the superuser and,
in fact, become the root user, we give the command

sudo su

Note that the prompt changes from

pi@raspberrypi: ~/code $

to

root@raspberrypi:home/pi/code#

(since we were and still are in the code subdirectory). Now our name is root and we
are the superuser and can access anything.

Anyone can look at the following le that belongs to root:

cat /sys/class/leds/led0/trigger

and, in the long list of information we see, in particular, [mmc0]. Now, as root we
may give the command:

193

E. GPIO

echo none > /sys/class/leds/led0/trigger/

and if we look again, the square brackets are no longer around the mmc0. We can now
change the brightness of that led. The following shell script OnOffACT.sh will turn it
on and o. Note that we have included lots of unnecessary stu in it to indicate ways
in which shell scripts can be used.

echo OnOffACT.sh
echo none > sys/class/leds/led0/trigger
echo "\033[31m"
echo "\033[7m Starting to blink ACT 5 times!"
n=5
for n in 5 4 3 2 1
do

echo $n
echo 1 > /sys/class/leds/led0/brightness
sleep 1
echo 0 > /sys/class/leds/led0/brightness
sleep 1

done
echo "\033[7m Done blinking ACT!"
echo "\033[0m"
echo mmc0 > /sys/class/leds/led0/trigger

Of course the le OnOffACT.sh will not run unless we give it the correct permission so
we change its mode to allow All users to eXecute the le (but actually only root as
superuser can successfully change the values in that le and hence have it work).

chmod a+x OnOffACT.sh

and then root can run it.

Try the following command and watch the green light.

./OnOffACT.sh

Notice that we put the trigger back when done because we want to leave everything the
way we found it. The extra echos are just fooling around showing how one can change
background, foreground, bold face, blinking, colors, and other eects in shell scripts. If
you are interested, look up some tutorials on the web.

By the way, to go back to being your usual self (named pi) instead of root and no
longer being the superuser, you can issue the command

root@raspberrypi:/home/pi/code# su pi
pi@raspberrypi:~/code $

and be back to your usual prompt.

194

E.2. wiringPi

E.2 wiringPi

Gordon Henderson has made a library of GPIO functions available through wiringPi.com.
There can be found instructions on how to download and install it plus additional doc
umentation. It is designed for the BCM2815 processor in our Raspberry Pi.

E.3 GPIO pins

Here is a diagram (taken from the web, of course) of the GPIO pins on the Raspberry
Pi 3

GPIO Pins

195

wiringPi.com

E. GPIO

E.4 Light an LED

There are many tutorials available to show how to light up an led. For example, see

https://www.raspberrypi.org/magpi-issues/MagPi47.pdf

Projects

1. If your Raspberry Pi is Model 2 you can also control the red power led through
software (the Model 3 is wired dierently and cannot be so controlled). If you
look at /sys/class/leds, you will nd both the led0 and a led1 on a Model 2.
Change the code in OnOffACT.sh to a new OnOffPWR.sh and test it (as superuser,
of course). Be sure to add a line to turn the red power led back on in this case.

196

https://www.raspberrypi.org/magpi-issues/MagPi47.pdf

Index

AAPCS, 51, 73
Activation record, 134
Address, 9
Addressing modes, 9, 39
ARM, 1
ARM ARM, 153
ARM Instruction Set, 153
Array, 43
array01.s, 44
as, 1
as parameters, 5

Directives, 3
asciz, 17, 49
balign, 11
data, 11

oat, 168
func, 4
global, 3
skip, 44
text, 11
word, 11

Disassemble, 20

Batch le, 3
Binary search, 61
BinarySearch.s, 62
branch01.s, 26
Breakpoint, 34
Breakpoints, 23
Byte, 185

double_array.s, 123
Dynamic activation, 72
Dynamic programming, 82

Embedded systems, 39
Error code, 2, 4, 33
Exceptions, 154

C compiler, 2
Collatz, 35, 37, 40, 90
Collatz.s, 35
collatz02.s, 90
Comments, 3, 5, 15
Compare, 27
Compare negative, 29
compare01.s, 28
Condition codes, 26, 154

mnemonics, 28
Coprocessor, 105
cpsr, 26, 154
create.s, 128
Current Program Status Register, 26

factorial.s, 81
factorial01.s, 75, 78
Fast interrupt, 155

b.s, 82
rst.s, 2

first_pointer.s, 113
Flags, 26
fp, 134
fpscr, 106

len, 106
stride, 106

Frame pointer, 134
Functional Programming, 59

gdb, 19
Debugging, 19, 69 GNU assembler, 1

197

Index

GNU Debugger, 19
GPIO pins, 193

One's Complement, 160
Signed-Magnitude, 159
Two's Complement, 161

Halfword, 185
hello01.s, 53
Henderson, Gordon, 195
Hilbert matrices, 102

Interrupts, 154
Software, 127

isort.s, 64

Key, 61
IEEE-754 standard, 97
Immediate value, 8
Indentation, 4
Indexing modes, 39, 45

Non-updating, 45
Updating, 46

inline assembler, 143
Insertion sort, 64
Instruction format, 4
Instructions

add, 8
and, 36
b, 26
Bitwise, 163
bl, 52
blx, 52
bx, 4
cmn, 29
cmp, 27
ldm, 77
ldr, 9
mov, 4
mul, 74
stm, 77
str, 9
svc, 5, 127
swi, 5, 127
teq, 94
tst, 94
vcvt, 110
vldr, 108
vmov, 109
vmrs, 111
vmsr, 111
vstr, 108

Integers, 159

Knuth, Donald, 67

Labels, 10
ld, 5
leds, 193
line numbers, 2
Load, 9
load01.s, 11
Local memory, 73
loop01.s, 32
loop02.s, 37
lr, 51

main, 3
Makele, 3
Memory, 9
Millikin, Kevin, 37
Mode, 106, 154

scalar, 106
Scalar expanded, 107
Vectorial, 107

numericalLabels.s, 59

OnOACT.sh, 194
Overow, 162

Padding, 44
PATH, 6
Patterson and Hennessy, 155
pc, 25
Pipeline, 88
Pointers, 113
Post-indexing, 47
Pre-indexing, 47, 48
Predication, 87
printf01.s, 55
printf02.s, 57

198

Index

privileged mode, 154
Program counter, 25
program.s, 5

QEMU, vii, 19

r15, 25
rand.s, 67
Raspbian, 1
Recursion, 71
Reduced Instruction Set Computer, 17
Registers, 7, 106
Relocation, 13, 16
RISC, 17
root, 193
Rotations, 42

Shell scripts, 194
Shift operations, 40
Shifted operand, 40
sp, 51
spsr, 154
squares.s, 140
Stack, 72
Store, 9
store01.s, 14
store02.s, 16, 19
Strings, 49
Structure, 43
Structured programming, 31
Structures, 49
su, 193
Subword data, 185
sudo, 193
Sux s, 93
sum01.s, 7
sum02.s, 8
Superuser, 193

Tail-recursion, 80
Thumb, 147
thumb-rst.s, 148, 151
Two's complement, 7, 161

UAL, 59

wiringPi, 195

199

	RASPBERRY PI ASSEMBLER

	Roger Ferrer Iban~ez

	William J. Pervin

	Contents

	Preface

	1 Raspberry Pi Assembler

	1.1 Writing Assembler

	1.2 Our rst program

	1.3 First program results

	Projects

	2 ARM Registers

	2.1 Basic arithmetic

	Projects

	Memory

	3.1

	Memory

	3.2

	Addresses

	3.3 Data

	3.4 Sections

	3.5 Load

	3.6 Store

	3.7 Programming style

	Projects

	4 Debugging

	4.1 gdb

	Projects

	5 Branching

	5.1	A special register

	5.2	Unconditional branches

	5.3	Conditional branches

	Projects

	6 Control structures

	6.1 If, then, else

	6.2 Loops

	6.3 1 + 2 + 3 + 4 +	+ 22

	6.4 3n + 1

	Projects

	Postscript

	7 Addressing modes

	7.1	Indexing modes

	7.2	Shifted operand

	Projects

	8 Arrays and structures

	8.1 Arrays and structures

	8.2 Dening arrays and structs

	8.3 Naive approach without indexing modes

	8.4	Indexing modes

	8.5	Back to structures

	8.6	Strings

	Projects

	9 Functions

	9.1	Do's and don'ts of a function

	9.2	Hello world

	9.3

	Real interaction!

	9.4 Our rst function

	9.5 Unied Assembler Language

	Projects

	10 Searching and Sorting

	10.1 Binary Search

	10.2 Insertion Sort

	10.3 Random Numbers

	10.4	More Debugging

	Projects

	11 Recursion and the Stack

	11.1	Dynamic activation

	11.2	The stack

	Factorial

	11.4	Load and Store Multiple

	11.5	Factorial again

	11.6	Tail-recursion

	11.7	Dynamic Programming

	Projects

	12 Conditional Execution

	12.1	Predication

	12.2	The pipe line of instructions

	12.3 Predication in ARM

	12.4 Collatz conjecture revisited

	12.5	Adding predication

	12.6	Does it make any dierence in performance?

	12.7	The s sux

	Projects

	13 Floating-point Numbers

	13.1 IEEE-754 Standard

	13.2 Examples

	13.3	Extremes

	13.4	Exceptions

	13.5	Accuracy

	13.6	*Fixed-point Numbers

	Projects

	14 Real Computations

	14.1	VFPv2 Registers

	14.2	Arithmetic operations

	14.3	Load and Store

	14.4	Movements between registers

	14.5	Conversions

	14.6	Modifying the fpscr

	14.7	Function call convention and oating-point registers

	14.8	Printing Floating-point Numbers

	Assembler Note

	Projects

	15

	Pointers

	Passing data to functions

	15.2

	What is a pointer?

	15.3	Passing large amounts of data

	15.4	Passing a big array by value

	15.5	Passing a big array by reference

	15.6	Modifying data through pointers

	15.7	Returning more than one piece of data

	Projects

	16 System Calls

	16.1 File I/O

	16.2 lseek

	Projects

	17 Local data

	17.1	The frame pointer

	17.2	Dynamic link of the activation record

	17.3	What about parameters passed in the stack?

	17.4	Indexing through the frame pointer

	Projects

	18 Inline Assembler in C Code

	18.1 The asm Statement

	18.2 Simple Example

	Projects

	19 Thumb

	19.1	The Thumb instruction set

	19.2	Support of Thumb in Raspbian

	19.3	Instructions

	19.4	From ARM to Thumb

	19	.5 Calling functions in Thumb

	19	.6 From Thumb to ARM

	19	.7 To know more

	Projects

	20 Additional Topics

	20.1	ARM Instruction Set

	20.2	Interrupt Handling

	20.3	To know more

	Projects

	A ASCII Standard Character Set

	Integers

	B.1	Unsigned Integers

	Signed-Magnitude Integers

	B.3	One's Complement

	B.4	Two's Complement

	B.5	Arithmetic and Overow

	B.6	Bitwise Operations

	Projects

	C Matrix Multiplication (R.F.I.)

	C.1 Matrix multiply

	C.2 Accessing a matrix

	C.3 Naive matrix multiply of 44 single-precision

	C.4 Vectorial approach

	Fill the registers

	C.6 Reorder the accesses

	C.7 Comparing versions

	D Subword Data

	D.1 Loading

	D.2 Storing

	D.3 Alignment restrictions

	E GPIO

	E.1 Onboard led

	E.2 wiringPi

	E.3 GPIO pins

	E.4 Light an LED

	Projects

	Index

