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Chapter 1 
Explainable Artificial Intelligence (XAI) 
in Manufacturing 

Abstract This chapter begins by defining explainable artificial intelligence (XAI). 
A procedure for implementing XAI was also established. Then, through literature 
analysis, the application of XAI in various fields such as medicine, service, educa-
tion, finance, medical treatment, manufacturing, food, and military is compared. 
Some representative cases in these fields are also reported. Subsequently, several 
applications of XAI in the field of manufacturing are reviewed, including explaining 
the classification process and results of factory jobs, explaining artificial neural 
network (ANN)-based cycle time prediction methods, comparing the effect of alloy 
composition using Shapely additive explanation value (SHAP) analysis, etc. 

Keywords Artificial intelligence · Explainable artificial intelligence · Artificial 
neural network · Shapely additive explanation value 

1.1 Explainable Artificial Intelligence (XAI) 

Artificial intelligence (AI) are technologies that enable computers to imitate human 
behavior [1]. The computing speed, storage capacity, reliability, and interconnectivity 
of computers combined with human reasoning patterns give AI the ability to solve 
complex and large-scale problems. Explainable artificial intelligence (XAI) is a 
new trend in AI [2]. At present, the development of XAI can be divided into the 
following two directions (see Fig. 1.1):

• XAI is to enhance the practicality of an existing AI technology by explaining its 
reasoning process and/or result [3]. For example, some studies have used heatmaps 
to show the parts of an image that a deep neural network (DNN) emphasizes when 
classifying or recognizing patterns [4, 5]. In addition, decision and regression rules 
have also been adopted to explain the reasoning mechanisms of DNNs [6, 7]. The 
concept of local interpretable model-agnostic explanation (LIME) is to explain 
the classification or regression result using a machine learning model by iden-
tifying critical features/predictors and fitting a simple and locally interpretable 
model [8]. In LIME, a synthetic dataset is generated, because raw data sometimes

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
T.-C.T. Chen, Explainable Artificial Intelligence (XAI) in Manufacturing, 
SpringerBriefs in Applied Sciences and Technology, 
https://doi.org/10.1007/978-3-031-27961-4_1 
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2 1 Explainable Artificial Intelligence (XAI) in Manufacturing

Fig. 1.1 Two development 
directions of XAI Application AI XAI 

Direction 1 

Direction 2 

contain exceptional cases and may not cover the entire sample space, which may 
complicate the explanation model. Furthermore, what kinds of AI technologies 
are explainable is inconclusive. In the view of McNamara [7], ensemble methods, 
random forecasts, decision trees, Bayesian networks, sparse linear models, and 
others are highly explainable, while artificial neural networks (ANNs), deep 
learning, type-n fuzzy logic [9, 10], support vector machines, and others are 
less explainable. Therefore, XAI techniques and tools developed following this 
direction are referred to as white boxes or the twins of AI applications that are 
often considered black boxes [11].

• XAI is to improve the effectiveness of existing AI technologies by incorporating 
easy-to-interpret visual features such as heatmaps [4, 5], decision (or regres-
sion) rules [12], decision trees [13, 14], scatter plots [15], etc., to help diagnose 
its reasoning mechanism. An example is attention-based DNNs that incorpo-
rates DNNs with heatmaps [16]. The linkage between the visual feature and the 
reasoning mechanism needs to be discovered. 

1.2 Implementation Procedure of XAI 

The implementation procedure of XAI is composed of several steps, as illustrated in 
Fig. 1.2. For an AI technology application, the reasoning process and/or result should 
be explainable and interpretable. In addition, the result needs to be validated. After 
these are done, the AI technology application can be said to be explainable, which 
contributes to its trustworthiness, fairness, accountability, and transparency [12, 17]. 
In addition, the explainability of AI technologies fosters improvement ideas based 
on which these AI technologies can be modified to enhance the effectiveness.

1.3 Basic Concepts in XAI 

Some basic concepts in XAI are introduced as follows. A local explanation is to 
explain the rationale behind the result of a single example. A global explanation 
is to explain how the model arrives at its prediction/result and can be in the form 
of a visualization, a mathematical formula, or a diagram of the model. Contrastive
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AI 
Application 

Process explainable 
/interpretable? 

Yes 

No 

Result explainable 
/interpretable? 

Yes 

No 

Result validated? 
Yes 

No 
Explainability 

Trustworthiness 

Improvement idea 

Modifications 

Effectiveness enhanced 

Fairness 

Accountability 

Transparency 

Fig. 1.2 Implementation procedure of XAI

explanations help us understand why a model generates a certain result/output for a 
given input and not another. Probably the most useful explanation technique is what-
if explanation, which helps us understand the relationship between the model result 
and input features, similar to the concept of a parametric analysis. Counterfactual 
explanations tell us how changing assumptions about the inputs or parameters of 
a model can cause the model to arrive at a particular different result, similar to 
the concept of a sensitivity analysis. Example-based explanations are the simplest 
explanations in which the behavior of a model or underlying data distribution is 
simply explained by highlighting specific instances of the data. 

A model-agnostic XAI method is that the computation required to explain an AI 
technology application is not based on the parameters of the AI technology applica-
tion. A post-hoc interpretability method explains the result, while a pre-hoc inter-
pretability method explains the process. Kamath and Liu [17] reviewed statistical 
and data analysis methods and tools suitable for the explanation of AI applications. 
In particular, they divided deep learning explanation methods into three categories: 
intrinsic methods, perturbation methods, and gradient/backpropagation methods. 

Venugopal et al. [18] define the concept of explainability failure as a situation in 
which the output of an AI technology application is correct, but cannot be explained. 

1.4 XAI Applications in Various Domains 

Figure 1.3 provides statistics on the domains where XAI techniques and tools are 
most commonly applied. Most commonly applied domains include medicine, service, 
and education. In contrast, manufacturing is a domain where XAI is rarely applied. 
Therefore, the application of XAI techniques and tools is an urgent task and an 
opportunity for manufacturing.

Some XAI applications in various domains are reviewed as follows. 
Lin and Chen [16] proposed a type-II fuzzy approach with XAI to overcome 

the difficulty for travelers to choose suitable nature-based leisure travel destinations 
during the coronavirus disease 2019 (COVID-19) pandemic. Several measures were 
taken by them to enhance the explainability of the selection process and result: 
color management, common expressions, annotated figures, traceable aggregation, 
and segmented distance diagrams. A segmented distance diagram was designed
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Fig. 1.3 Number of 
references about XAI 
applications in various 
domains from 2010 to 2022. 
Data source Google Scholar
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for explaining the comparison result of alternatives using fuzzy Vise Kriterijumska 
Optimizacija I Kompromisno Resenje (VIKOR). 

Panigutti et al. [13] constructed a decision tree to explain the classification result 
of patients according to their clinical histories. 

Decision making seems to be the most pressing field where AI applications need to 
be properly explained, because in every decision-making task the stakeholders need to 
be explained somehow [19]. For a water quality conservation project, Dujmović and 
Allen III [19] evaluated and compared several alternatives using the logic scoring of 
preference (LSP) method. They identified three explanation issues: (1) explaining the 
composition and aggregation of LSP criteria, (2) explaining the evaluation result of 
each alternative, and (3) explaining the comparison and ranking results of alternatives. 

Aghamohammadi et al. [20] constructed an adaptive neural fuzzy inference system 
(ANFIS) for heart attack prediction, in which three XAI tools and techniques were 
applied to explain the prediction mechanism and result: bar charts, line charts, and 
performance evaluation. 

Chen and Chiu [21] proposed a hybridizing subjective and objective fuzzy 
group decision-making approach with XAI to evaluate the sustainability of smart 
technology applications in health care, in which three XAI techniques and tools 
were applied to enhance the understandability of the fuzzy group decision-
making approach: color management technique, common expression technique, and 
traceable aggregation [15]. 

Liu and Liu used particle swarm optimization (PSO) to predict the permeability 
of tight sandstone reservoirs [22], in which eXtreme gradient boosting (XGBoost), 
also a decision tree method, was applied to explain the prediction process and result, 
so that the effect of each reservoir feature on the permeability could be accessed. 

In sum, in these cases, XAI tools and techniques were applied for explaining 
the classification result, explaining the composition and aggregation of criteria, 
explaining the evaluation results of alternatives, explaining the comparison and 
ranking of alternatives, explaining the prediction mechanism and result, comparing 
the effects of inputs on the output, etc. (see Fig. 1.4).
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Fig. 1.4 Main purposes of 
XAI applications 

XAI 
Applications 

Explain the classification 
result 

Explain the composition of 
criteria 

Explain the aggregation of 
criteria 

Explain the evaluation results 
of alternatives 

Explain the comparison and 
ranking of alternatives 

Explain the prediction 
mechanism and result 

Compare the effects of inputs 
on the output 

1.5 XAI Applications in Manufacturing 

Some XAI applications in manufacturing are reviewed as follows. 
Chen and Wang [23] proposed a two-stage XAI approach to explain a 

classification-based cycle time prediction method. In their methodology, first, jobs 
are divided into several clusters. A scatter radar diagram is then designed to illustrate 
the classification result. Compared with existing XAI techniques, the scatter radar 
diagram meets more requirements for better interpretation. Subsequently, an ANN 
is constructed for each cluster to predict the cycle times of jobs in the cluster. A 
random forest (RF) is then constructed to approximate the prediction mechanism 
of the ANN. In existing practice, a RF generates many decision rules to predict the 
cycle time of a job, which may cause confusion for the user. To solve this problem, 
they established a systematic procedure to re-organize these decision rules. In this 
way, the first few decision rules can provide most of the information, and the user 
does not have to read all the rules. 

Kong et al. [24] constructed an ANN to predict the properties of an alloy based 
on its composition, for which Shapely additive explanation value (SHAP) analysis 
was conducted to compare the effects of components. 

A similar treatment was taken in Akhlaghi et al. [25], in which a DNN was 
constructed to predict the performance of a dew point cooler according to its features. 
SHAP was applied to compare the effects of these features.
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1.6 Difficulties in Applying XAI in Manufacturing 

So far, AI technologies have been widely applied in manufacturing [26, 27]. The 
result of an AI technology application in manufacturing may be directly put into 
practice without human intervention, which eliminates the need to explain it to 
the related people. In contrast, the result of an AI technology application in health 
care often requires human approval or decision making. As a consequence, analysts 
tend to apply AI technologies that are more complex but potentially more effec-
tive. This phenomenon may slow down the development of XAI technologies in the 
manufacturing domain. 

In addition, AI applications in manufacturing typically pursue the optimization 
of the average performance. As a result, the failure in one case can be compensated 
for by the success in another. In contrast, AI applications in other fields may not, as 
they strive for acceptable performance in every case. Therefore, in manufacturing, 
the need to explain the overall (or global) performance will be much stronger than 
that to explain an individual (or local) case, which is different from the application 
of XAI in other fields (e.g., customer service) [13]. 

Further, a large part of AI technology applications in manufacturing is optimiza-
tion [28, 29], while AI applications in other fields are mostly related to pattern 
recognition and classification [30]. For example, DNNs are often used to identify 
defect patterns. However, the inference process and results of such DNNs are difficult 
to understand. To interpret defect pattern recognition results, Chen et al. [30] repre-
sented a portion of an image with prototypes that were projected onto a representation 
of the training data for visualization and interpretation. 

As stated above, statistical and data analysis methods and tools are widely used 
to explain AI applications. However, people in the manufacturing field may not be 
familiar with or interested in these statistical or data analysis methods and tools. In 
addition, concepts and tools familiar to those in the manufacturing field should be 
adopted to develop XAI methods in this domain. Furthermore, while a number of 
approaches have been developed for post-hoc explainability, only a few focus on how 
to use domain knowledge and how it influences the understandability of global expla-
nations from the users’ perspective, which is especially critical for manufacturing 
system. 

1.7 Organization of This Book 

This book is intended to provide technical details on the development and applica-
tion of XAI to manufacturing, including methodologies, tools, system architectures, 
software and hardware, examples, and applications. XAI is currently the hottest 
topic, since the acceptability of overly complex AI techniques is usually questioned. 
Simple XAI techniques and tools for explaining these AI applications are pursued.
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However, simple XAI techniques and tools often struggle to adequately explain an 
AI application. In other words, applying simple XAI techniques and tools to explain 
a complicated AI application is a challenge. 

In manufacturing, employees often lack AI knowledge, so they especially look 
forward to understanding AI technologies. However, as long as an AI technology 
can effectively solve problems, employees are often willing to accept no matter 
how complicated the AI technology is [31]. Because of this, many studies or reports 
inevitably exaggerate the benefits of AI applications to manufacturing, while ignoring 
their understandability and acceptability. 

In addition to introducing XAI tools and techniques applied in manufacturing, this 
book also discusses the management implications of the related applications. After 
all, innovative information, computer and computing technologies are constantly 
being introduced, not just for a single functionality, while how to improve the 
efficiency and even the competitiveness of a factory is still the most fundamental 
issue. 

In specific, the outline of the present book is structured as follows. 
In the current chapter, XAI is first defined. A procedure for implementing XAI is 

also established. Then, through a literature analysis, applications of XAI in various 
domains, such as medicine, service, education, finance, health care, manufacturing, 
food, and military, are compared. Some representative cases in these domains are also 
reported. Subsequently, several applications of XAI in the manufacturing domain 
are reviewed, including explaining the classification process and result of jobs in 
a factory, explaining an ANN-based cycle time prediction method, comparing the 
effects of the components of an alloy using SHAP analysis, etc. 

Chapter 2, Applications of XAI for Forecasting in the Manufacturing Domain, 
focuses on forecasting, an important function of manufacturing systems. Many oper-
ation and production activities, such as cycle time forecasting [32], sales forecasting 
[33], unit cost reduction [34], predictive maintenance [35], yield learning [36], etc., 
are based on forecasting. This chapter takes job cycle time forecasting as an example. 
There are several applications of AI techniques for job cycle time prediction. Among 
these, ANN (or DNN) applications are the most effective, but very difficult for factory 
workers to understand or communicate. To address this issue, existing XAI tech-
niques and tools for explaining the reasoning process and result of ANNs (or DNNs) 
are introduced. We first introduce XAI tools for visualizing operations in ANNs (or 
DNNs), such as ConvNetJS [37], TensorFlow [38], Seq2Seq [39], and MATLAB 
[40], and then mention XAI techniques for evaluating the effect, contribution, or 
importance of each input on the output, including partial derivation, odd ratio [41], 
out-of-bag (OOB) predictor importance [42], recursive feature elimination (RFE) 
[43], and SHAP [24]. Subsequently, XAI techniques for approximating the relation-
ship between the inputs and output of an ANN (or DNN) [44, 45], especially simpler 
machine learning techniques like case-based reasoning (CBR) [11], classification and 
regression tree (CART) [46], RF [22], gradient boosted decision tree [47], eXtreme 
gradient boosting (XGBoost) [48], and RF-based incremental interpretation [22], 
are introduced. The application of each XAI technique is supplemented by simple 
examples and corresponding MATLAB codes, allowing readers to learn quickly.
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Chapter 3, Applications of XAI for Decision Making in the Manufacturing 
Domain, deals with an important topic in factory management, namely improving 
the understandability of AI applications for group multi-criteria decision making in 
manufacturing systems. Decision making may be more critical to the competitiveness 
and sustainability of a manufacturing system than production planning and control 
because of its long-term and cross-functional impact [49–52]. This chapter uses the 
example of choosing suitable smart and automation technologies for factories during 
the COVID-19 pandemic. This topic is of particular importance as many factories 
are forced to close or operate on a smaller scale (using a smaller workforce), thus 
pursuing further automation. AI and Industry 4.0 technologies have many appli-
cations in this field, most of which can also be applied for other decision-making 
purposes in manufacturing systems. In the beginning, a systematic procedure is estab-
lished for guiding the group multi-criteria decision-making process. Applications of 
AI and XAI in identifying targets are first reviewed. Subsequently, the applications 
of AI and XAI in selecting factors and developing criteria are presented. AI technolo-
gies are widely used to derive the priorities of criteria. Therefore, XAI techniques 
and tools for explaining such AI applications are particularly important. Aggregating 
the judgments of multiple decision makers is the next focus, followed by the intro-
duction of AI and XAI applications to evaluate the overall performance of each 
alternative. Taking the fuzzy technique for order preference by similarity to the ideal 
solution (FTOPSIS) [11] as an example, the applications of XAI techniques and 
tools for explaining the comparison result using FTOPSIS are illustrated. Another 
AI technology for the same purpose is fuzzy VIKOR. XAI techniques and tools for 
explaining fuzzy VIKOR are also introduced. Finally, several metrics are proposed 
to evaluate the effectiveness of XAI techniques or tools for decision making in the 
manufacturing domain [53]. 

Chapter 4, Applications of XAI to Job Sequencing and Scheduling in Manu-
facturing, discusses a new field of applications of XAI in manufacturing—job 
sequencing and scheduling. It first breaks down job sequencing and scheduling into 
several steps and then mentions AI technologies applicable to some of these steps. 
It is worth noting that many AI applications are directed at the preparation of inputs 
required for scheduling tasks, rather than the processes of scheduling tasks, which 
is a distinctive feature of this field. Nevertheless, many AI technologies have been 
explained in other domains or fields. These explanations can provide a reference 
for explaining AI applications in job sequencing and scheduling. Therefore, some 
generic XAI techniques and tools for job sequencing and scheduling are reviewed, 
including

• Referring to the taxonomy of job scheduling problems;
• Tailoring dispatching rule;
• Textual description, pseudocode;
• Decision tree, flowchart. 

In addition, job sequencing and scheduling problems are often formulated as 
mathematical programming (optimization) models to be optimized. AI technologies 
can be applied to find the optimal solutions to the models. Applications of GA are
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of particular interest because such applications are most common in job scheduling. 
Moreover, XAI techniques and tools for explaining GA can be easily extended to 
account for other evolutionary AI applications such as artificial bee colony (ABC), ant 
colony optimization (ACO), and PSO in job scheduling. Applicable XAI techniques 
and tools include

• Flowchart, textual description;
• Chromosomal diagram;
• Dynamic line chart, bar chart with baseline. 

Some novel XAI techniques and tools for explaining GA are also introduced:

• Decision tree-based interpretation;
• Dynamic transition and contribution diagram. 
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Chapter 2 
Applications of XAI for Forecasting 
in the Manufacturing Domain 

Abstract This chapter focuses on forecasting, which is an important function of 
manufacturing systems. Many operations and production activities such as cycle 
time forecasting, sales forecasting, unit cost reduction, predictive maintenance, yield 
learning, etc. are based on forecasting. This chapter takes job cycle time forecasting 
as an example. Artificial intelligence (AI) techniques have many applications in job 
cycle time prediction. Of these, artificial neural network (ANN) (or deep neural 
network, DNN) applications are most effective, but are difficult for factory workers 
to understand or communicate. To address this issue, existing explainable AI (XAI) 
techniques and tools for explaining the inference process and results of ANNs (or 
DNNs) are introduced. We first introduce XAI tools for visualizing operations in 
ANNs (or DNNs), such as ConvNetJS, TensorFlow, Seq2Seq, and MATLAB, and 
then mention XAI techniques for evaluating the impact, contribution, or importance 
of each input on the output, including partial derivatives, odd ratio, out-of-bag (OOB) 
predictor importance, recursive feature elimination (RFE), Shapely additive expla-
nation value (SHAP). Subsequently, XAI techniques for approximating the relation-
ship between the inputs and output of an ANN (or DNN), especially simpler machine 
learning techniques such as case-based reasoning (CBR), classification and regres-
sion trees (CART), random forest (RF), gradient boosting decision trees, eXtreme 
gradient boosting (XGBoost), and RF-based incremental interpretation are intro-
duced. The application of each XAI technique is supplemented with simple examples 
and corresponding MATLAB codes, allowing readers to get started quickly. 

Keywords XAI · Forecasting · Job cycle time forecasting · Artificial neural 
network · Deep neural network · Partial derivatives · Odd ratio · OOB predictor 
importance · RFE · SHAP · Machine learning · CBR · CART · RF · Gradient 
boosting decision trees · XGBoost · RF-based incremental interpretation

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
T.-C.T. Chen, Explainable Artificial Intelligence (XAI) in Manufacturing, 
SpringerBriefs in Applied Sciences and Technology, 
https://doi.org/10.1007/978-3-031-27961-4_2 

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27961-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-27961-4_2


14 2 Applications of XAI for Forecasting in the Manufacturing Domain

2.1 Applications of AI for Forecasting 
in the Manufacturing Domain 

Artificial intelligence (AI) technologies have been widely used to support forecasting 
purposes in manufacturing systems, such as job cycle time forecasting [1], sales 
forecasting [2], unit cost reduction [3], predictive maintenance [4], yield learning 
[5], etc. AI technologies applied for different purposes may vary greatly. Therefore, 
in the following, job cycle time forecasting is taken as an example, because there are 
many AI technology applications in this field, and most of these AI technologies can 
also be applied to fulfill other forecasting purposes in a manufacturing system. 

2.1.1 Applications of AI for Job Cycle Time Forecasting 

The cycle time (or manufacturing lead time) of a job is the time it takes for the job 
to pass through a manufacturing system and can be calculated by subtracting the 
release time from the output/completion time [6]. The cycle time is also equal to the 
total processing time plus the waiting time. Predicting the cycle time of each job is 
an important task for manufacturing systems [7, 8]. After this task is fulfilled, the 
forecasted cycle times of jobs can be shortened by eliminating unnecessary waits and 
improving the responsiveness, which enhances the competitiveness of the manufac-
turing system [9]. However, accurately predicting the cycle time of a job is a diffi-
cult task if a manufacturing system has complex job routings, inconsistent human 
intervention, unreliable equipment, or unstable product quality [10]. 

So far, a variety of job cycle time prediction methods have been proposed, such 
as production simulation or digital twins [11, 12], case-based reasoning (CBR) [13], 
regression [14], artificial neural networks (ANNs) or deep neural networks (DNNs) 
[6, 10, 15–17], fuzzy inference systems (FISs) [10, 15, 16], hybrid methods [15, 16, 
18], agent-based systems [19, 20], etc. Most of these methods are based on the appli-
cation of AI technologies. However, advanced AI-based methods, such as ANNs, 
DNNs, FISs, hybrid methods, and agent systems, are not always easy to under-
stand or communicate, especially for factory workers without sufficient background 
knowledge of AI, which limits the acceptability (or practicability) of these methods. 
The concept of explainable AI (XAI) is to cope with this problem [21], which aims 
to improve the interpretability or even effectiveness of an AI application by better 
explaining its reasoning mechanism and/or result [22]. 

Existing XAI techniques and tools for explaining ANN applications in job cycle 
time prediction are introduced as follows.
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2.2 XAI Techniques and Tools for Explaining an ANN 
(DNN) 

Existing XAI techniques for explaining ANNs are usually machine learning or AI 
methods that are simpler (i.e., easier to understand and communicate) than ANNs. 
Furthermore, these XAI techniques are designed to minimize the deviation between 
the approximate output and the network output, not the deviation between the network 
output and actual value. Furthermore, the approximated ANN is used for prediction, 
not for classification or decision making. 

It is common to explain the operations in an ANN (or DNN) using textual descrip-
tions and network configuration (or system architecture) diagrams [23, 24], as shown 
in Fig. 2.1. In addition, animation-based techniques, such as ConvNetJS for convo-
lutional neural networks (CNNs) [25], TensorFlow (for ANNs with multiple hidden 
layers, DNNs) [26], Seq2Seq (for recurrent neural networks) [27], and MATLAB 
[28], have been applied to illustrate/animate the training process of an ANN or DNN 
(see Fig. 2.2). The comparison of these animation-based techniques refers to Table 
2.1. Logarithmic sigmoid (log-sigmoid) function is a commonly used transforma-
tion/activation function in ANNs. Sudheer and Jain [29] developed a river model, 
which is actually a scatterplot with smooth lines by varying the parametric values of 
the log-sigmoid function to explain its behavior. 

Fig. 2.1 Network architecture diagram of a DNN using R language
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(MATLAB) 

(TensorFlow) 

(ConvNetJS) 

ANN/DNN Animation 

… 

Fig. 2.2 Some existing animation-based tools for explaining an ANN/DNN 

Table 2.1 Comparison of animation-based techniques 

R ConvNetJS MATLAB TensorFlow Seq2Seq 

Showing the network architecture Yes Yes Yes Yes Yes 

Showing the values of network 
parameters 

Yes No No Yes No 

Showing the convergence process of 
network parameters 

No Yes No Yes No 

Showing the convergence process of 
results 

No Yes No Yes No
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For an XAI technique to be effective in approximating an ANN, the following 
conditions need to be satisfied: 

• It is easy to understand. 
• It is easy to communicate. 
• It can illustrate the training process. 
• No background knowledge is required. 
• A direct relationship (a rule or a set of rules) between the inputs and output of the 

ANN is provided. 
• The number of rules for explaining the ANN is not many. 
• The contents of these rules are simple, such as including logic, constant, linear, and 

polynomial functions rather than inverse, exponential, logarithmic, trigonometric, 
and other advanced functions. 

• The approximation deviation, measured in terms of mean absolute error (MAE), 
mean absolute percentage error (MAPE), or root mean squared error (RMSE), is 
small: 

MAE =
∑n 

j=1

|
|ô j − o j

|
|

n
; k = 1−K (2.1) 

MAPE =
∑n 

j=1

|
|ô j − o j

|
|

n
; k = 1−K (2.2) 

RMSE =
√

∑n 
j=1

(
ô j − o j

)2 

n
; k = 1−K (2.3) 

where o j is ANN output (i.e., the cycle time forecast of job j); ô j is the approximate 
value. 

2.3 XAI Techniques and Tools for Explaining ANN 
Applications in Job Cycle Time Prediction 

At first, the procedure of forecasting the cycle time of a job using an ANN is 
introduced. 

2.3.1 Forecasting the Cycle Time of a Job Using an ANN 

Taking the simplest feedforward neural network with three layers, the input layer, a 
hidden layer, and the output layer, as an example, is illustrated in Fig. 2.3.

Inputs to the ANN (indicated by x j p; p = 1–P) are the attributes of example j. 
From the input layer to the hidden layer, the following operations are performed:
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Fig. 2.3 Architecture of the 
ANN
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I h j l  = 
P∑

p=1 

(wh 
pl x j p) (2.4) 

nh jl  = I h j l  − θ h l (2.5) 

h jl  = f (nh jl  ) (2.6) 

where wh 
pl indicates the connection weight between the p-th input and the l-th node 

of the hidden layer. θ h l is the threshold on the hidden-layer node, and h jl  is the output 
from the node. f () is the activation/transformation function. Outputs from the hidden 
layer are aggregated at the last layer as 

I o j = 
L∑

l=1 

(wo 
l h jl  ) (2.7) 

and then outputted as 

o j = I o j − θ o (2.8) 

where wo 
l is the connection weight between the l-th node of the hidden layer and 

the output node. θ o indicates the threshold on the output node. o j is to be compared 
with actual value a j . If  f () is the log-sigmoid function, a direct relationship between 
inputs and the output can be derived as 

o j = 
L∑

l=1

(
2wo 

l 

1 + e−2
(∑P 

p=1 (w
h 
pl x j p)−θ h l

) − wo 
l

)

− θ o (2.9)
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Table 2.2 Cycle time-related data of 120 jobs 

j x j1 x j2 x j3 x j4 x j5 x j6 (%) a j (h) 

1 24 1223 158 807 99 84.20 953 

2 23 1225 164 665 142 94.80 1248 

3 25 1232 154 718 373 88.40 1299 

… 

120 22 1319 159 777 326 88.80 1285 

The direct relationship is not easy to understand or communicate. 

Example 2.1 Cycle time-related data have been collected for 120 jobs and are 
presented in Table 2.2 [30], in which the cycle time of job j, a j , is to be predicted 
based on the values of six job attributes, x j1–x j6, using an ANN. The ANN has three 
layers: the input layer, a single hidden layer (with twelve nodes), and an output layer. 
The Levenberg–Marquardt (LM) algorithm [31] is applied to train the ANN using 
MATLAB. The maximum number of epochs is 20,000. The target for RMSE is less 
than 100 h, or mean squared error (MSE) < 10,000 h2: 

RMSE =
√∑n 

j=1 (o j − a j )2 

n 
(2.10) 

Equation (2.10) is slightly different from Eq. (2.3). Data of the first 80 jobs are 
used as the training data, while the remaining data are left for testing. The MATLAB 
code is shown in Fig. 2.4. The forecasting results are summarized in Fig. 2.5.

2.3.2 Partial Derivation, Odd Ratio 

There are several types of XAI techniques for explaining ANN applications in job 
cycle time prediction: 

• XAI techniques for assessing the contribution, influence, effect, importance of 
each input (i.e., job attribute) in predicting the output (i.e., the cycle time); 

• XAI techniques for approximating the relationship between inputs and the output, 
i.e., the trained ANN, with simpler and more understandable rules; 

• XAI techniques to facilitate the understanding of the prediction process (i.e., the 
ANN) and result (i.e. a cycle time forecast). 

First, to analyze the effect of an input on the output, a traditional way is to conduct 
a correlation analysis. For example, if a linear relationship exists between inputs and 
the output, the Pearson correlation coefficient [32] between each input and the output 
can be calculated. The input with the highest correlation coefficient is most influential
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% Colleated data 
training_x=[24 23 …; 1223 1225 …; 158 164 …; 807 665 …; 99 142 …; 0.842 0.948 …]; 
training_y=[953 1248 …]; 
test_x=[24 22 …; 1251 1249 …; 182 184 …; 785 766 …; 127 200 …; 0.852 0.827 …]; 
test_y=[1173 1008 …]; 

% ANN configuration 
net=feedforwardnet([12]);   
net.dividefcn='dividetrain'; 
net.trainParam.lr=0.1; 
net.trainParam.epochs=20000; 
net.trainParam.goal=10000; 

% Training 
net=train(net,training_x,training_y); 

% Forecasting 
training_est_ct=net(training_x); 
test_est_ct=net(test_x); 

% Accuracy evaluation 
rmse1=mean((test_y-test_est_ct).^2)^0.5; 

Fig. 2.4 MATLAB code for implementing the ANN 
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Fig. 2.5 Forecasting results

in determining the output. Otherwise, if the relationship between inputs and the output 
is nonlinear, Spearman’s rank correlation [33] coefficient can be calculated instead. 

To better interpret an ANN, Green et al. [34] evaluated the influence of each 
input/attribute on the output by taking the derivative of the output with respect to the 
input ∂o j /∂x j p, where o j is the output of example j and x j p  is attribute p of example 
j. The input with the highest partial derivative is the most influential attribute.
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Example 2.2 In Example 2.1, the value of each attribute is varied by 1% for all jobs 
in test data to evaluate the average change of cycle time forecasts. The MATLAB 
code is presented in Fig. 2.6. The results are summarized in Fig. 2.7. Obviously, the 
second attribute has the greatest influence on cycle time forecasts. 

To generate a local explanation, Green et al. calculated the odd ratio of each input: 

ORp = 
o j (x j p  + σp) · (1 − o j (x j p)) 
o j (x j p) · (1 − o j (x j p  + σp)) 

(2.11)

pd3=zeros(1,6); 
for p=1:6 

% Increase the value of the attribute by 1% 
test_x2=test_x; 
test_x2(p,:)=test_x2(p,:)*1.01; 

% Re-forecast cycle times 
test_est_ct2=net(test_x2); 

% Evaluate the average (absolute) change 
pd1=mean(abs(test_est_ct2-test_est_ct)); 

% Decrease the value of the attribute by 1% 
test_x3=test_x; 
test_x3(p,:)=test_x3(p,:)*0.99; 

% Re-forecast cycle times 
test_est_ct3=net(test_x3); 

% Evaluate the average (absolute) change 
pd2=mean(abs(test_est_ct3-test_est_ct)); 

% Average the evaluation results 
pd3(1,p)=(pd1+pd2)/2; 

end 

Fig. 2.6 MATLAB code for implementing partial derivation 
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Fig. 2.7 Comparison of the influences of attributes on cycle time forecasts 
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where o j (Ω) means the output of example j when x j p  = Ω. o j (Ω) may need to be 
normalized. The input with the highest odd ratio was the most influential attribute 
for this example. 

Example 2.3 Following Example 2.2, the odd ratios of inputs for each job are calcu-
lated. Cycle time forecasts are divided by the maximum of cycle times, 1810 h, to 
normalize their values. The MATLAB code is presented in Fig. 2.8. Based on the 
results, the most influential attribute for each job can be determined. The results are 
summarized in Table 2.3. As expected, the second attribute is the most influential 
attribute for most jobs. 

test_est_ct2=zeros(6,40); 
test_est_ct3=zeros(6,40); 
for p=1:6 

test_x2=test_x; 
test_x2(p,:)=test_x2(p,:)*1.01; 
test_est_ct2(p,:)=net(test_x2); 
test_x3=test_x; 
test_x3(p,:)=test_x3(p,:)*0.99; 
test_est_ct3(p,:)=net(test_x3); 

end 

or1=zeros(6,40); 
or2=zeros(6,40); 
or3=zeros(6,40); 

for i=1:40 
for p=1:6 
% Calculate OR 

or1(p,i)=(test_est_ct2(p,i)/1810*(1-test_est_ct(1,i)/1810))/((1-test_est_ct2(p,i)/1810)*test_est_ct(1,i)/1 
810); 

or2(p,i)=(test_est_ct3(p,i)/1810*(1-test_est_ct(1,i)/1810))/((1-test_est_ct3(p,i)/1810)*test_est_ct(1,i)/1 
810); 

% Average the results 
or3(p,i)=(or1(p,i)+or2(p,i))/2; 

end 
end 

% Determine the most influential attribute for each job 
c=ones(1,40); 
for i=1:40 

c(1,i)=1; 
max1=-999; 
for p=1:6 

if or3(p,i)>max1 
c(1,i)=p; 
max1=or3(p,i); 

end 
end 

end 

Fig. 2.8 MATLAB code for calculating the odd ratios of inputs for each job
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Table 2.3 Most influential 
attribute for each job 

j Most influential attribute 

81 x j2 

82 x j2 

83 x j2 

… 

118 x j4 

119 x j2 

120 x j2 

2.3.3 Out-of-Bag (OOB) Predictor Importance 

Similar to partial derivation, out-of-bag (OOB) predictor importance also compares 
the effects of varying inputs on the output [35]. OOB data are unlearned data (i.e., test 
data). Partial derivation evaluates the change in the value of the output, while OOB 
predictor importance considers the change in the forecasting error e j = a j − o j : 

Step 1. Consider the first input (attribute). 
Step 2. (For each example in test data) Vary the value of the input by q%, while 
fixing the values of the other inputs. 
Step 3. (For each example in test data) Apply the trained ANN to predict the 
output. 
Step 4. (For each example in test data) Calculate the change in the forecasting 
error ε j p  =

|
|e j (before change input p) − e j (after change input p)

|
|. 

Step 5. The importance of input p can be evaluated as ε·p/sε· p , where ε·p and sε· p 
are the average and standard deviation of ε j p, respectively. 
Step 6. Consider the next input, and return to Step 2. 

Example 2.4 Following Example 2.2, the importance of each feature is evaluated 
using OOB predictor importance instead. The required MATLAB code is provided 
in Fig. 2.9. The results are summarized in Fig. 2.10. Obviously, the second attribute 
is the most important feature.

2.3.4 Recursive Feature Elimination (RFE) 

Recursive feature elimination (RFE), like backward elimination regression analysis 
[36], searches for a subset of features by starting with all features in the training 
dataset and then removing features until the required number of features remains [37]. 
The remaining features are considered more important than the others. In fact, some 
machine learning algorithms may be misled by irrelevant input features, resulting in 
worse predictive performance for unlearned data.
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% Calculate forecasting error before change 
ejb=test_y-test_est_ct; 

importance1=zeros(1,6); 
for p=1:6 

% Increase the value of the attribute by 1% 
test_x2=test_x; 
test_x2(p,:)=test_x2(p,:)*1.01; 

% Re-forecast cycle times 
test_est_ct2=net(test_x2); 

% Calculate forecasting error after change 
eja=test_y-test_est_ct2; 

% Evaluate the OOB predictor importance of the attribute 
ejp=abs(ejb-eja); 
importance1(1,p)=mean(ejp)/std(ejp); 

end 

Fig. 2.9 MATLAB code for evaluating the OOB predictor importance of each attribute 
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Fig. 2.10 OOB predictor importance of each feature

An example is given in Fig. 2.11. Originally, the ANN has five inputs. After 
training, the RMSE for the training data is 354.2. The required number of features 
is four. After removing one feature at a time, the ANN is retrained and the RMSE 
for the training data is reevaluated. Finally, by removing the fourth feature (x j4), the 
RMSE is optimized. In addition, the required number of features is reached. As a 
result, x j1, x j2, x j3, and x j5 are more important than x j4. In addition, the contribution 
of each feature can be evaluated as: 

Contribution of a feature = 1 − 
RMSE (before removing the feature) 

RMSE (after removing the feature) 
· 100% 

(2.12)
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The evaluation results are summarized in Table 2.4. 

ANN 
. Inputs: xj1 ~ xj5 . RMSE (training data) 

= 354.2  

ANN 
. Inputs: xj2, xj3, xj4, xj5 . RMSE (training data) 

= 475.6  

ANN 
. Inputs: xj1, xj3, xj4, xj5 . RMSE (training data) 

= 529.4  

ANN 
. Inputs: xj1, xj2, xj4, xj5 . RMSE (training data) 

= 1018.5 

ANN 
. Inputs: xj1, xj2, xj3, xj5 . RMSE (training data) 

= 369.7  

ANN 
. Inputs: xj1, xj2, xj3, xj4 . RMSE (training data) 

= 483.5  

. . . 

Fig. 2.11 Concept of RFE 

Table 2.4 Contribution of each attribute 

j Contribution (%) 

x j1 26 

x j2 33 

x j3 65 

x j4 4 

x j5 27
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2.3.5 Shapley Additive Explanations (SHAP) 

Shapley additive explanations (SHAP) can be applied to make a local explanation 
[38]. The Shapley value of an input reflects the input’s contribution and is determined 
as follows: 

Step 1. Consider the first input. 
Step 2. Fix the value of the input, and randomize the values of the other inputs to 
generate random data. 
Step 3. Apply the trained ANN to predict the output of each randomly generated 
data. 
Step 4. Calculate the average value of the outputs. 
Step 5. Subtract the average output from the output of the example, and divide the 
result by P, where P is the number of inputs: The result gives the Shapley value 
of the input. 
Step 6. Consider the next input, and return to Step 2. 

Example 2.5 An ANN with three inputs x j1−x j3 is trained to predict the cycle time 
of a job o j . For a job with inputs (16, 342, 0.85), the cycle time is predicted as 687 h. 
To determine the Shapley value of each input for the job, 15 random data (five for 
each input) are generated, as shown in Table 2.5. The trained ANN is applied to 
predict the cycle time of each randomly generated data. Then, the average cycle time 
forecasts of all randomly generated data are calculated as 776 h. The Shapley value 
of each input is determined as.

x j1: (687 − 919)/3 = −77.3 

x j2: (687 − 640)/3 = 15.7 
x j3: (687 − 769)/3 = −27.2 

The results are compared in Fig. 2.12. In this example, x j2 has the highest influ-
ence, while x j1 has the least. In other words, x j2 is the most influential input for 
this job, which is interpreted as “the value of x j2 lengthens the cycle time of the job 
most”. In addition, the sum of all Shapley values explains the deviation between the 
average output and the cycle time forecast: 

−77.3 + 15.7 + (−27.2) = 687 − 776

2.3.6 CBR 

Kenny and Keane [39] established a CBR system to approximate the operations in 
an ANN. The CBR system was composed of cases {({rkp|p = 1−P}, sk)|k = 1−K }
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Table 2.5 Randomly 
generated data 

x j1 x j2 x j3 o j (h) 

16 961 0.91 1107 

16 460 0.93 740 

16 780 0.78 953 

16 620 0.64 761 

16 938 0.69 1034 

Average 919 

x j1 x j2 x j3 o j (h) 

18 342 0.92 715 

12 342 0.78 584 

15 342 0.51 580 

20 342 0.65 637 

13 342 0.82 684 

Average 640 

x j1 x j2 x j3 o j (h) 

20 693 0.85 950 

19 375 0.85 720 

15 219 0.85 610 

16 706 0.85 883 

18 291 0.85 681 

Average 769

Fig. 2.12 Shapley values for 
the job

-100 -80 -60 -40 -20 0 20 40 

xj2=15.7 

xj3=-27.2 

xj1=-77.3 

Actual prediction = 687 
Average prediction = 776 
Difference = -89 

that were used in K rules 

“If x j1 = rk1 and . . .  and x j P  = rkP  then ô j = sk”; k = 1−K (2.13) 

where ô j is the approximated output of example j. After training the ANN, synthetic 
examples were randomly generated and fed into the ANN to predict their outputs
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Fig. 2.13 Generation of 
synthetic data Job Data ANN 

Synthetic 
data 

CBR 

CART 

RF 

. . . 

(see Fig. 2.13). XAI techniques are then applied to fit the input–output relationship 
in synthetic data. 

Then, k-means [40] was applied to extract cases from synthetic examples. To 
approximate the output of example j, the distance between example j and case k was 
measured: 

d jk  = 

┌
|
|
√

P∑

p=1 

(x j p  − rkp)2 (2.14) 

If attributes were of unequal importance, 

d jk  = 

┌
|
|
√

P∑

p=1 

(wp(x j p  − rkp)2) (2.15) 

where wp was the importance/weight of attribute p. Then, the ANN output of this 
example was approximated as 

ô j = 
K∑

k=1 

⎛ 

⎝ 
1 
d jk

∑K 
l=1 

1 
d jl  

· sk 
⎞ 

⎠ (2.16) 

Kenny and Keane [39] compared seven global and local methods to assign weights 
to various attributes: sensitivity (SENS), perturbation (PTB), connection weights 
(CW), local linear model (LLM), contributions oriented local explanations (COLE) 
C-LPR, C-IG, and C-DeepLIFT. Only the inputs and output of the ANN were consid-
ered in the rules. Therefore, the CBR approximation technique can be applied to more 
complicated ANNs such as DNNs (ANNs with multiple hidden layers, recurrent 
neural networks, fuzzy neural networks, pre-classifying or post-classifying ANNs, 
etc.). For example, Kenny and Keane [39] established a CBR system to approximate 
a CNN. However, the content of rules in such a CBR system is often too simplistic 
to provide an accurate approximation.
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Table 2.6 Synthetic data 

J x j1 x j2 x j3 x j4 x j5 x j6 (%) a j (h) 

1 22 1320 165 748 421 85 1298 

2 23 1261 169 734 198 81 1098 

3 22 1187 159 635 287 93 1122 

… 

200 24 1309 175 734 345 81 1276 

Example 2.6 In Example 2.1, the train ANN is applied to generate 200 synthetic 
examples by randomizing the values of inputs and then forecasting the output. The 
results are summarized in Table 2.6. KM is then applied to cluster synthetic data into 
ten clusters. The required MATLAB code is provided in Fig. 2.14. The clustering 
results are summarized in Fig. 2.15. The centers of these clusters are used as cases. 
Based on these cases, the corresponding rules are generated, as summarized in Table 
2.7. After applying all the ten rules, the ANN output is approximated, as summarized 
in Fig. 2.16. The effectiveness of CBR in approximating the ANN is evaluated in 
terms of the approximation accuracy: 

MAE = 118.8 h

synthetic_data=[22 1320 165 748 421 0.84; …; 24 1309 175 734 345 0.81] 

% k-means 
[idx, c, SSD]=kmeans(synthetic_data, 10); 

Fig. 2.14 MATLAB code for implementing KM 
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Fig. 2.15 Clustering results
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Table 2.7 Generated CBR rules 

Rule # Rule content 

1 If xj1 = 22.5 And xj2 = 1216.6 And xj3 = 169.6 And xj4 = 782 And xj5 = 307.5 
And xj6 = 0.87 Then oj = 1067.3 

2 If xj1 = 22.5 And xj2 = 1233 And xj3 = 169.1 And xj4 = 738.6 And xj5 = 97 And 
xj6 = 0.89 Then oj = 1066.2 

3 If xj1 = 22.8 And xj2 = 1357.4 And xj3 = 172.8 And xj4 = 680.5 And xj5 = 391.5 
And xj6 = 0.91 Then oj = 1528.5 

4 If xj1 = 22.4 And xj2 = 1343 And xj3 = 171.5 And xj4 = 782.2 And xj5 = 344.4 
And xj6 = 0.9 Then oj = 1299.4 

5 If xj1 = 22.9 And xj2 = 1305.7 And xj3 = 167.5 And xj4 = 796.1 And xj5 = 436.6 
And xj6 = 0.88 Then oj = 1238.1 

6 If xj1 = 22.4 And xj2 = 1342.2 And xj3 = 172.3 And xj4 = 695.1 And xj5 = 105.4 
And xj6 = 0.91 Then oj = 1323.6 

7 If xj1 = 22.8 And xj2 = 1333.4 And xj3 = 168 And xj4 = 750.1 And xj5 = 229 And 
xj6 = 0.91 Then oj = 1289.4 

8 If xj1 = 22.5 And xj2 = 1215.8 And xj3 = 168.7 And xj4 = 697.5 And xj5 = 428.8 
And xj6 = 0.89 Then oj = 1139.9 

9 If xj1 = 22.2 And xj2 = 1230.6 And xj3 = 169.4 And xj4 = 670.2 And xj5 = 236.3 
And xj6 = 0.89 Then oj = 1229.5 

10 If xj1 = 22.6 And xj2 = 1235 And xj3 = 171.8 And xj4 = 686.2 And xj5 = 340.4 
And xj6 = 0.88 Then oj = 1244.7 
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Fig. 2.16 Comparison of the ANN output and the approximated output using CBR 

MAPE = 10.0%
RMSE = 146.0 h 

It is noteworthy that the approximation accuracy may be enhanced using only the 
rules of clusters close to a job, or assigning unequal weights to different attributes. 

Albawi et al. [41] gave a very detailed explanation of CNNs by
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• Giving text descriptions; 
• Introducing the matrix operations using filters; 
• Providing formulas; 
• Displaying the results of applying filters to an image; 
• Displaying the part of the image where the filter takes effect; 
• Comparing various transformation/activation functions. 

However, as they mentioned, such an explanation assumes that the reader has 
sufficient knowledge of both machine learning and ANNs. 

2.3.7 Classification and Regression Tree (CART) 

CARTs have also been constructed to approximate ANNs with rules like [42] 

“If x j (1) ≥ (or <)rk(1) and . . .  and x j (L) ≥ (or <)rk(L) then ô j = sk”; k = 1−K 
(2.17) 

Not all attributes will appear in such a rule. In addition, the order in which attributes 
appear in different rules may not be the same. The rule content of (2.17) is more  
complicated than that of (2.13). However, there is no aggregation mechanism like 
(2.16). The procedure for constructing a CART is composed of three stages: tree 
growing, stopping, and pruning. A tree is grown using a recursive partitioning tech-
nique that selects a variable and a split point according to the prespecified criterion. 
Common criteria include: Gini, towing, ordered towing, and maximum-deviance 
reduction [43]. 

Let Ωi be the set of synthetic samples that belong to node i that is to be split into 
two branches with sets ΩL 

i and ΩR 
i . For either set, the predicted cycle times of all 

synthetic samples are averaged as the predicted value: 

pL/R 
i =

∑
j∈Ω

L/R 
i 

o j
|
|
|Ω

L/R 
i

|
|
|

(2.18) 

The split that minimizes the sum of squared errors (SSE) is chosen: 

SSE =
∑

i

∑

j∈Ωi 

(o j − pi )2 (2.19) 

Starting from the largest tree, the CART is pruned until the following objective 
function is minimized: 

Min C =
√
SSE 

n 
+ α|S| (2.20)
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where |S| indicates the size of the CART (in terms of the number of nodes or 
branches); α is a positive constant. 

Example 2.7 In Example 2.6, the synthetic data are fitted by a CART instead. The 
required MATLAB code is provided in Fig. 2.17. The construct CART contains 79 
nodes, as illustrated in Fig. 2.18. The number of rules (branches) is 40. The rule 
contents are summarized in Table 2.8. The ANN output and the approximated output 
are compared in Fig. 2.19. The effectiveness of the XAI technique can be evaluated 
in terms of the approximation accuracy: 

MAE = 33.2 h 
MAPE = 2.8% 
RMSE = 45.1 h

y=[1298; 1097; …; 1275]; 

% CART  
ct_tree=fitrtree([22 1320 165 748 421 0.85; …; 24 1309 175 734 345 0.81],y); 

% Show the tree 
view(ct_tree,'Mode','graph') 

% Show the rules 
view(ct_tree) 

% Make prediction 
yj=predict(ct_tree,[22 1320 165 748 421 0.85; …; 24 1309 175 734 345 0.81]); 

Fig. 2.17 MATLAB code for constructing the CART 

Fig. 2.18 CART for the synthetic data
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Table 2.8 CART rules 

Node # Rule content 

1 If xj1 < 22.5 And xj2 < 1230 And xj4 < 715.5 And xj5 < 374.175 And xj6 < 0.842301 
Then oj = 1280 

2 If xj1 < 22.5 And xj2 < 1230 And xj4 < 715.5 And xj5 < 374.175 And 0.842301 <= 
xj6 < 0.944791 Then oj = 1165.625 

… 

40 If xj2 >= 1230 And xj4 >= 709.5 And xj6 >= 0.964154 Then oj = 1410.8 
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Fig. 2.19 Comparison of the ANN output and the approximated output using CART

2.3.8 Random Forest (RF) 

A random forest (RF) is the ensemble of multiple trees that consider different parts 
of data and try various combinations of attributes [44]. For an example, a decision 
rule in each tree can be applied to predict the output of the example. Therefore, 
multiple decision rules can be applied to predict the output of an example. Then, the 
prediction results by all trees are averaged. Therefore, a RF is usually more accurate 
than a single CART, and is expected to approximate an ANN better. Using a RF, the 
ANN output of example j is predicted by a rule in each tree. As a result, multiple 
rules are used to approximate the ANN output for an example: 

“If x j (1)(t) ≥ (or <)rk(1)(t) and . . .  and x j (L)(t) ≥ (or <)rk(L)(t) 
then ô j (t) = sk(t)”; t = 1−T (2.21) 

and 

ô j =
∑T 

t=1 ô j (t) 
T 

(2.22)
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synthetic_x=[22 1320 165 748 421 0.85; …; 24 1309 175 734 345 0.81]; 
synthetic_y=[1298; …; 1275]; 

% Random forest 
RF1=TreeBagger(10,synthetic_x,synthetic_y,Method="regression",OOBPrediction="on"); 

% Show the first tree 
view(RF1.Trees{1},Mode="graph"); 

% Show rules in the first tree 
view(RF1.Trees{1},Mode="text"); 

% Make prediction 
synthetic_est_ct=predict(RF1,synthetic_x); 

Fig. 2.20 MATLAB code for constructing the RF 

where t is the index of a tree. More than one rule applies to a sample, which can be 
confusing for the user. 

Example 2.8 Following Example 2.7, the synthetic data are now fitted by a RF 
instead. The required MATLAB code is provided in Fig. 2.20. The RF, containing 
ten CARTs, is shown in Fig. 2.21. Therefore, for each job, ten decision rules can be 
applied to approximate its cycle time forecasted by the ANN. Then, the results are 
averaged. The rule contents are summarized in Table 2.9. The ANN output and the 
approximated output using RF are compared in Fig. 2.22.

2.3.9 Gradient Boosted Decision Trees, eXtreme Gradient 
Boosting (XGBoost) 

Gradient boosted decision trees [45] consist of multiple sequentially trained decision 
trees. Starting from the first decision tree, each subsequent decision tree improves the 
previous decision tree by predicting the prediction (approximation) error generated 
by the previous decision tree (the concept of boosting). The training of each decision 
tree is the same as described in the previous sections and will not be repeated here. 

An example is given in Table 2.10, in which the ANN output of job j is o j = 2077. 
From the first decision tree, a rule applies to job j and generates an approximation 
of o j as ô j = 2050. The approximation error for this job is e(1) 

j = o j − ô j = 
27, which is to be predicted by the second decision tree. A rule from the second 
decision tree generates a prediction of e(1) 

j as ê(1) 
j = 36. The approximation error is 

e(2) 
j = e(1) 

j − ê(1) 
j = −9, which is to be predicted by the third decision tree, giving 

ê(2) 
j = −10. Finally, the ANN output is approximated by 2050 + 36 – 10 = 2076.
Gradient boosted decision trees can be enhanced by considering different parts of 

samples, especially samples with large prediction errors (the concept of gradient), and
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(CART #1) 

(CART #2) 

… 

(CART #10) 

Fig. 2.21 Construct RF
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Table 2.9 Rule contents 

CART # Rule contents 

1 1 If xj4 < 743 Then node 2 Elseif xj4 >= 743 Then node 3 Else 1211.07 
2 If xj1 < 21.5 Then node 4 Elseif xj1 >= 21.5 Then node 5 Else 1263.2 
3 If xj1 < 21.5 Then node 6 Elseif xj1 >= 21.5 Then node 7 Else 1140.54 
4 If xj4 < 645.5 Then node 8 Elseif xj4 >= 645.5 Then node 9 Else 1204.24 
5 If xj3 < 159.5 Then node 10 Elseif xj3 >= 159.5 Then node 11 Else 1286.93 
6 If xj6 < 0.943789 Then node 12 Elseif xj6 >= 0.943789 Then node 13 Else 1048.8 
7 If xj2 < 1266 Then node 14 Elseif xj2 >= 1266 Then node 15 Else 1178.77 
8 oj  = 1144 
9 If xj4 < 698 Then node 16 Elseif xj4 >= 698 Then node 17 Else 1223.52 
10 If xj4 < 661 Then node 18 Elseif xj4 >= 661 Then node 19 Else 1152.32 
11 If xj2 < 1289 Then node 20 Elseif xj2 >= 1289 Then node 21 Else 1327.52 
12 If xj4 < 792.5 Then node 22 Elseif xj4 >= 792.5 Then node 23 Else 989.222 
13 oj = 1202 
14 If xj6 < 0.929524 Then node 24 Elseif xj6 >= 0.929524 Then node 25 Else 1015.83 
15 If xj5 < 224.638 Then node 26 Elseif xj5 >= 224.638 Then node 27 Else 1280.05 
16 If xj5 < 347.458 Then node 28 Elseif xj5 >= 347.458 Then node 29 Else 1256 
17 oj = 1154.5 
18 oj = 1199.8 
19 If xj6 < 0.898082 Then node 30 Elseif xj6 >= 0.898082 Then node 31 Else 1135.36 
20 If xj4 < 688.5 Then node 32 Elseif xj4 >= 688.5 Then node 33 Else 1227.77 
21 If xj4 < 697.5 Then node 34 Elseif xj4 >= 697.5 Then node 35 Else 1424.16 
22 If xj3 < 163 Then node 36 Elseif xj3 >= 163 Then node 37 Else 957.462 
23 oj = 1071.8 
24 If xj5 < 191.139 Then node 38 Elseif xj5 >= 191.139 Then node 39 Else 1029.88 
25 oj = 983.714 
26 If xj4 < 779.5 Then node 40 Elseif xj4 >= 779.5 Then node 41 Else 1212.38 
27 If xj1 < 22.5 Then node 42 Elseif xj1 >= 22.5 Then node 43 Else 1316.71 
28 If xj2 < 1299.5 Then node 44 Elseif xj2 >= 1299.5 Then node 45 Else 1288.5 
29 oj = 1178 
30 oj = 1146.5 
31 oj = 1120.5 
32 If xj2 < 1239 Then node 46 Elseif xj2 >= 1239 Then node 47 Else 1263.75 
33 If xj6 < 0.880217 Then node 48 Elseif xj6 >= 0.880217 Then node 49 Else 1189.4 
34 If xj4 < 654.5 Then node 50 Elseif xj4 >= 654.5 Then node 51 Else 1485.15 
35 If xj6 < 0.804347 Then node 52 Elseif xj6 >= 0.804347 Then node 53 Else 1322.5 
36 oj = 907.286 
37 oj = 1016 
38 oj = 1013.33 
39 oj = 1039.8 
40 oj = 1223.43 
41 oj = 1199.5 
42 oj = 1274.86 
43 If xj4 < 782.5 then node 54 Elseif xj4 >= 782.5 then node 55 Else 1333.94 
44 oj = 1192.43 
45 oj = 1423 
46 oj = 1200.44 
47 oj = 1345.14 
48 oj = 1223.44 
49 oj = 1138.33

(continued)
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Table 2.9 (continued)

CART # Rule contents

50 If xj3 < 177.5 Then node 56 Elseif xj3 >= 177.5 Then node 57 Else 1440.5 
51 If xj4 < 687 Then node 58 Elseif xj4 >= 687 Then node 59 Else 1529.8 
52 oj = 1244.2 
53 oj = 1378.43 
54 oj = 1423.17 
55 If xj2 < 1336.5 Then node 60 Elseif xj2 >= 1336.5 Then node 61 Else 1285.27 
56 oj = 1460.8 
57 oj = 1420.2 
58 oj = 1498 
59 oj = 1561.6 
60 oj = 1270 
61 oj = 1303.6 

2 1 If xj5 < 154.334 Then node 2 Elseif xj5 >= 154.334 Then node 3 Else 1226.97 
2 If xj4 < 737 Then node 4 Elseif xj4 >= 737 Then node 5 Else 1130.26 
3 If xj4 < 717.5 Then node 6 Elseif xj4 >= 717.5 Then node 7 Else 1252.68 
4 If xj6 < 0.883047 Then node 8 Elseif xj6 >= 0.883047 Then node 9 Else 1229.1 
5 If xj3 < 160.5 Then node 10 Elseif xj3 >= 160.5 Then node 11 Else 1031.43 
6 If xj2 < 1268.5 Then node 12 Elseif xj2 >= 1268.5 Then node 13 Else 1315.58 
7 If xj3 < 157.5 Then node 14 Elseif xj3 >= 157.5 Then node 15 Else 1186.51 
8 oj  = 1295.4 
9 If xj2 < 1238 Then node 16 Elseif xj2 >= 1238 Then node 17 Else 1168.82 
10 oj = 903 
11 If xj6 < 0.959193 Then node 18 Elseif xj6 >= 0.959193 Then node 19 Else 1071.56 
12 If xj2 < 1233 Then node 20 Elseif xj2 >= 1233 Then node 21 Else 1186.51 
13 If xj4 < 664 Then node 22 Elseif xj4 >= 664 Then node 23 Else 1461.63 
14 If xj2 < 1243.5 Then node 24 Elseif xj2 >= 1243.5 Then node 25 Else 1091.64 
15 If xj5 < 333.21 Then node 26 Elseif xj5 >= 333.21 Then node 27 Else 1202.32 
16 oj = 1133 
17 oj = 1198.67 
18 If xj5 < 76.1278 Then node 28 Elseif xj5 >= 76.1278 Then node 29 Else 1038.73 
19 oj = 1143.8 
20 If xj3 < 175.5 Then node 30 Elseif xj3 >= 175.5 Then node 31 Else 1148.03 
21 If xj3 < 171 Then node 32 Elseif xj3 >= 171 Then node 33 Else 1275.31 
22 oj = 1564.3 
23 If xj3 < 181 Then node 34 Elseif xj3 >= 181 Then node 35 Else 1424.96 
24 oj = 1070 
25 oj = 1117.6 
26 If xj2 < 1287 Then node 36 Elseif xj2 >= 1287 Then node 37 Else 1169.7 
27 If xj6 < 0.842297 Then node 38 Elseif xj6 >= 0.842297 Then node 39 Else 1243.93 
28 oj = 1075.33 
29 oj = 994.8 
30 If xj4 < 643.5 Then node 40 Elseif xj4 >= 643.5 Then node 41 Else 1121.82 
31 If xj5 < 374.175 Then node 42 Elseif xj5 >= 374.175 Then node 43 Else 1182.31 
32 oj = 1300.14 
33 oj = 1246.33 
34 If xj3 < 162 Then node 44 Elseif xj3 >= 162 Then node 45 Else 1403.36 
35 oj = 1504.17

(continued)
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Table 2.9 (continued)

CART # Rule contents

36 If xj3 < 173.5 Then node 46 Elseif xj3 >= 173.5 Then node 47 Else 1071.53 
37 If xj5 < 228.479 Then node 48 Elseif xj5 >= 228.479 Then node 49 Else 1273.33 
38 oj = 1083.89 
39 If xj4 < 800 Then node 50 Elseif xj4 >= 800 Then node 51 Else 1315.95 
40 oj = 1038.2 
41 If xj5 < 287.71 Then node 52 Elseif xj5 >= 287.71 Then node 53 Else 1156.67 
42 oj = 1212.62 
43 oj = 1133.8 
44 oj = 1359.17 
45 If xj6 < 0.870273 Then node 54 Elseif xj6 >= 0.870273 Then node 55 Else 1419.94 
46 If xj4 < 751.5 Then node 56 Elseif xj4 >= 751.5 Then node 57 Else 1105.75 
47 oj = 1012.86 
48 oj = 1227.57 
49 If xj3 < 175.5 Then node 58 Elseif xj3 >= 175.5 Then node 59 Else 1302.45 
50 If xj5 < 415.191 Then node 60 Elseif xj5 >= 415.191 Then node 61 Else 1343.77 
51 oj = 1264.29 
52 oj = 1172.17 
53 oj = 1141.17 
54 oj = 1384.14 
55 oj = 1447.78 
56 oj = 1137 
57 oj = 1062 
58 oj = 1317.5 
59 oj = 1284.4 
60 oj = 1375.75 
61 oj = 1292.6 

… 

10 1 If xj2 < 1311 Then node 2 Elseif xj2 >= 1311 Then node 3 Else 1213.8 
2 If xj4 < 739.5 Then node 4 Elseif xj4 >= 739.5 Then node 5 Else 1109.39 
3 If xj3 < 159.5 Then node 6 Elseif xj3 >= 159.5 Then node 7 Else 1395.44 
4 If xj3 < 180.5 Then node 8 Elseif xj3 >= 180.5 Then node 9 Else 1172.05 
5 If xj6 < 0.944212 Then node 10 Elseif xj6 >= 0.944212 Then node 11 Else 1024.69 
6 oj  = 1273.43 
7 If xj4 < 709.5 Then node 12 Elseif xj4 >= 709.5 Then node 13 Else 1408.38 
8 If xj1 < 23.5 Then node 14 Elseif xj1 >= 23.5 Then node 15 Else 1158.9 
9 If xj5 < 276.743 Then node 16 Elseif xj5 >= 276.743 Then node 17 Else 1246.18 
10 If xj5 < 145.207 Then node 18 Elseif xj5 >= 145.207 Then node 19 Else 1002.6 
11 If xj1 < 23.5 Then node 20 Elseif xj1 >= 23.5 Then node 21 Else 1087.79 
12 If xj2 < 1339.5 Then node 22 Elseif xj2 >= 1339.5 Then node 23 Else 1510.24 
13 If xj6 < 0.858135 Then node 24 Elseif xj6 >= 0.858135 Then node 25 Else 1300.16 
14 If xj2 < 1207 Then node 26 Elseif xj2 >= 1207 Then node 27 Else 1139.09 
15 If xj5 < 296.154 Then node 28 Elseif xj5 >= 296.154 Then node 29 Else 1221 
16 oj = 1252.2 
17 oj = 1241.17 
18 If xj1 < 21.5 Then node 30 Elseif xj1 >= 21.5 Then node 31 Else 938.375 
19 If xj2 < 1278.5 Then node 32 Elseif xj2 >= 1278.5 Then node 33 Else 1045.42 
20 oj = 1058.25

(continued)
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Table 2.9 (continued)

CART # Rule contents

21 oj = 1127.17 
22 oj = 1412.25 
23 If xj5 < 218.18 Then node 34 Elseif xj5 >= 218.18 Then node 35 Else 1540.38 
24 oj = 1229.43 
25 If xj2 < 1343.5 Then node 36 Elseif xj2 >= 1343.5 Then node 37 Else 1319.96 
26 If xj4 < 676 Then node 38 Elseif xj4 >= 676 Then node 39 Else 1089.69 
27 If xj4 < 724 Then node 40 Elseif xj4 >= 724 Then node 41 Else 1157.97 
28 oj = 1258.78 
29 oj = 1164.33 
30 oj = 872.333 
31 oj = 1023.29 
32 If xj5 < 421.234 Then node 42 Elseif xj5 >= 421.234 Then node 43 Else 1029.89 
33 oj = 1104.4 
34 oj = 1506.5 
35 If xj2 < 1370.5 Then node 44 Elseif xj2 >= 1370.5 Then node 45 Else 1550.55 
36 If xj6 < 0.929461 Then node 46 Elseif xj6 >= 0.929461 Then node 47 Else 1293.46 
37 If xj1 < 23.5 Then node 48 Elseif xj1 >= 23.5 Then node 49 Else 1348.67 
38 oj = 1143.83 
39 oj = 1043.29 
40 If xj3 < 167.5 Then node 50 Elseif xj3 >= 167.5 Then node 51 Else 1170.36 
41 oj = 1123.56 
42 If xj6 < 0.888512 Then node 52 Elseif xj6 >= 0.888512 Then node 53 Else 1046 
43 oj = 984.8 
44 If xj4 < 684.5 Then node 54 Elseif xj4 >= 684.5 Then node 55 Else 1533.58 
45 oj = 1576 
46 oj = 1312.62 
47 oj = 1262.8 
48 oj = 1376.29 
49 oj = 1310 
50 If xj5 < 265.959 Then node 56 Elseif xj5 >= 265.959 Then node 57 Else 1188.14 
51 If xj6 < 0.889694 Then node 58 Elseif xj6 >= 0.889694 Then node 59 Else 1147.73 
52 oj = 1031.56 
53 oj = 1072 
54 oj = 1553.67 
55 oj = 1513.5 
56 oj = 1138.8 
57 oj = 1215.56 
58 oj = 1170.67 
59 oj = 1120.2

trying various combinations of attributes in subsequent decision trees (the concept 
of RF), which results in the eXtreme gradient boosting (XGBoost) method [46].
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Fig. 2.22 Comparison of the ANN output and the approximated output using RF

Table 2.10 Rules contents Decision tree # Rule contents 

1 If xj3 < 26 And xj2 < 1080 And xj4 < 43.3 
Then oj = 2050 

2 If xj1 < 22.5 And xj2 < 864 And xj4 < 36.7 
Then ej1 = 36 

3 If 19.5 < xj1 And xj3 < 22 Then ej2 = −  10

2.3.10 Random Forest-Based Incremental Interpretation 

As mentioned previously, a RF is composed of a number of trees. From each tree, a 
decision rule can be applied to predict the cycle time of a job. As a result, multiple 
rules are simultaneously applicable, which may cause confusion for the user. To 
address this issue, Chen and Wang [47] proposed a variant of the RF method, RF-
based incremental interpretation, to re-organize the decision rules derived using RF 
as follows:

Step 1. Average the prediction results by decision rules as ô j . 
Step 2. Set q = 1. 
Step 3. Choose the decision rule with the closest prediction result to ô j . 
Step 4. Set the q-th incremental rule to the decision rule. 
Step 5. Set ô j (current) to the prediction result of the decision rule. 
Step 6. Remove the decision rule. 
Step 7. Increase q by 1. 
Step 8. If q > T, go to Step 14; otherwise, go to Step 9. 
Step 9. Find the decision rule with the closest prediction result to ô j . 
Step 10. Subtract ô j (current) from the prediction result of the decision rule, and 
divide the result by T: The result is indicated by Δô j (current). 
Step 11. Set the premise of the q-th incremental rule to that of the decision rule.
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Table 2.11 Rule contents Decision tree # Rule contents 

1 If xj4 ≥ 651.5 Then oj = 1425.2 
2 If xj2 ≥ 1322 Then oj = 1453.0 
3 If xj2 ≥ 1316 Then oj = 1446.2 

Step 12. Set the consequence of the q-th incremental rule to “add Δô j (current) 
to ô j ” or “subtract −Δô j (current) from ô j ”.
Step 13. Return to Step 6. 
Step 14. End. 

Example 2.9 A RF is constructed to approximate the output of the ANN. Taking job 
j as an example. The decision rules applicable to this job are summarized in Table 
2.11 [47]. The aggregation process is detailed in Table 2.12. Finally, the incremental 
rules are established as

“If x j2 ≥ 1316 Then ô j = 1446.2” 
“If x j2 ≥ 1322 Then add 2.3 to ô j ” 
“If x j4 ≥ 651.5 Then subtract 7.0 from ô j ” 

The first incremental rule tells the user that the predicted value is around 1446.2 h. 
This rule is the most important rule. The user can stop reading if he/she doesn’t 
want to continue reading. The user reads the rest of the rules from top to bottom, 
revising the predicted value successively, and finally learns that the predicted value 
is 1441.5 h. 

2.3.11 Polynomial-Based Decision Tree (PBDT) 

Nonlinear polynomial rules can also be applied to explain the operations in an ANN, 
e.g., PBDT. The procedure of the PBDT method includes the following steps: 

Step 1. Use polynomials to approximate the transition/activation function in the 
ANN. 
Step 2. Represent operations in the ANN as polynomial decision rules. 
Step 3. Filter the polynomial-based decision rules. 
Step 4. Propagate the polynomial decision rules through the ANN. 
Step 5. Generate the network output as a polynomial decision rule. 
Step 6. Extend polynomial decision rules if necessary. 
Step 7. Evaluate the approximate accuracy using the PBDT method. 

A flowchart is provided in Fig. 2.23 to illustrate the process.
The hyperbolic tangent sigmoid function is a popular transformation/activation 

function used in newer versions of some optimization packages such as MATLAB 
[48]:
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Table 2.12 Aggregation 
process 

Step # Result 

1 ô j = 1441.5 
2 q = 1 
3 Rule #3 is chosen 

4 Incremental rule #1 is “If x j2 ≥ 1316 Then 
ô j = 1446.2” 

5 ô j (current) = 1446.2 
6 Rule #3 is removed 

7 q = 2 
8 q /> 3; go to Step 9  

9 Rule #2 is chosen 

10 Δô j (current) = 2.3 
11 The premise of incremental rule #2 is “x j2 ≥ 1322” 
12 The consequence of incremental rule #2 is “add 2.3 to 

ô j ” 

13 Return to Step 6 

6 Rule #2 is removed 

7 q = 3 
8 q /> 3; go to Step 9  

9 Rule #1 is chosen 

10 Δô j (current) = −7 

11 The premise of incremental rule #3 is “x j4 ≥ 651.5” 
12 The consequence of incremental rule #3 is “subtract 7 

from ô j ” 

13 Return to Step 5 

6 Rule #1 is removed 

7 q = 4 
8 q > 3; go to Step 14  

14 End

f (x) = 2 

1 + e−2x 
− 1 (2.23) 

as illustrated in Fig. 2.24.
It is difficult to accurately approximate the hyperbolic tangent sigmoid func-

tion with a single polynomial function. Therefore, the hyperbolic tangent sigmoid 
function is divided into four sections I–IV, and each section is approximated by a 
polynomial function [49, 50], as illustrated in Fig. 2.25.
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Fig. 2.23 Procedure of the 
PBDT method

Represent operations as 
polynomial decision rules 

Expand polynomial decision 
rules 

Propagate polynomial decision 
rules through the FNN 

Approximate 
transformation/activation 

functions using polynomials 

Generate the network output 

Evaluate approximation 
accuracy 

Filter polynomial-based 
decision rules 

Fig. 2.24 Hyperbolic 
tangent sigmoid function
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First, −1 ≤ f (x) <  −0.99 when x < −2.64. Therefore, by approximating 

f (x) with f̂ (x) = −1, the absolute deviation
|
|
| f̂ (x) − f (x)

|
|
| is less than 0.01 ∀ 

x < −2.64. Subsequently, for section II, f (x) is fitted with a cubic polynomial 
f̂ (x) = ax3 + bx2 + cx + d, so that the sum of squared error (SSE) is minimized:
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Fig. 2.25 Dividing the 
hyperbolic tangent sigmoid 
function into four sections
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SSE = 
0∑

x=−2.64

(
f̂ (x) − f (x)

)2 

= 
0∑

x=−2.64

(

ax3 + bx2 + cx + d − 2 

1 + e−2x 
− 1

)2 

(2.24) 

Taking the partial derivative of SSE with respect to each coefficient of f̂ (x) and 
setting the result to zero gives 

∂SSE 

∂a 
= 

0∑

x=−2.64 

2

(

ax3 + bx2 + cx + d − 2 

1 + e−2x 
− 1

)

x3 

= 
0∑

x=−2.64

(

2ax6 + 2bx5 + 2cx4 + 2dx3 − 4x3 

1 + e−2x 
− 2x3

)

= 0 (2.25) 

∂SSE 

∂b
= 

0∑

x=−2.64 

2

(

ax3 + bx2 + cx + d − 2 

1 + e−2x 
− 1

)

x2 

= 
0∑

x=−2.64

(

2ax5 + 2bx4 + 2cx3 + 2dx2 − 4x2 

1 + e−2x 
− 2x2

)

= 0 (2.26)
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∂SSE 

∂c 
= 

0∑

x=−2.64 

2

(

ax3 + bx2 + cx + d − 2 

1 + e−2x 
− 1

)

x 

= 
0∑

x=−2.64

(

2ax4 + 2bx3 + 2cx2 + 2dx  − 4x 

1 + e−2x 
− 2x

)

= 0 (2.27) 

∂SSE 

∂d 
= 

0∑

x=−2.64 

2

(

ax3 + bx2 + cx + d − 2 

1 + e−2x 
− 1

)

= 
0∑

x=−2.64

(

2ax3 + 2bx2 + 2cx + 2d − 4 

1 + e−2x 
− 2

)

= 0 (2.28) 

Equations (2.25)–(2.28) are linear equations of variables a, b, c, and d, which can 
be easily solved to get 

f̂ (x) = 0.0663x3 + 0.4788x2 + 1.1823x + 0.0133 ∀ −  2.64 ≤ x < 0 (2.29) 

Similarly, the cubic polynomial for section III can be derived as 

f̂ (x) = 0.0663x3 + 0.4788x2 + 1.1823x + 0.0133 ∀ 0 < x ≤ 2.64 (2.30) 

Finally, f̂ (x) = 1 when x > 2.64. The results are summarized by the following 
theorem. 

Theorem 2.1 

f̂ (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

f̂1(x) = (x) − 1 if  x < −2.64 
f̂2(x) = 0.0663x3 + 0.4788x2 + 1.1823x + 0.0133 if −2.64 ≤ x < 0 
f̂3(x) = 0.0663x3 − 0.4788x2 + 1.1823x − 0.0133 if 0 ≤ x < 2.64 
f̂4(x) = 1 if  x ≥ 2.64 

(2.31) 

The approximation result is illustrated in Fig. 2.26.

Substituting (2.4) and (2.5) into (2.6) gives  

h jl  = f 

⎛ 

⎝ 
P∑

p=1 

(wh∗ 
pl x j p) − θ h∗ 

l 

⎞ 

⎠ (2.32)
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Fig. 2.26 Approximation 
result
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Letting c1 = 0.0663; c2 = 0.4788; c3 = 1.1823; c4 = 0.0133. According to 
Theorem 2.1, 

h jl  = 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

−1 if
∑P 

p=1 (w
h∗ 
pl x j p) − θ h∗ 

l < −2.64 

f̂2
(∑P 

p=1 (w
h∗ 
pl x j p) − θ h∗ 

l

)
if −2.64 ≤ ∑P 

p=1 (w
h∗ 
pl x j p) − θ h∗ 

l < 0 

f̂3
(∑P 

p=1 (w
h∗ 
pl x j p) − θ h∗ 

l

)
if 0 ≤ ∑P 

p=1 (w
h∗ 
pl x j p) − θ h∗ 

l < 2.64 
1 if

∑P 
p=1 (w

h∗ 
pl x j p) − θ h∗ 

l ≥ 2.64 
(2.33) 

Substituting (2.33) into (2.7) gives  

Î o j = 
L∑

l=1 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

−wo∗
l if

∑P 
p=1 (w

h∗
pl x j p) − θ h∗

l < −2.64 

wo∗
l f̂2

(∑P 
p=1 (w

h∗
pl x j p) − θ h∗

l

)
if −2.64 ≤ ∑P 

p=1 (w
h∗
pl x j p) − θ h∗

l < 0 

wo∗
l f̂3

(∑P 
p=1 (w

h∗
pl x j p) − θ h∗

l

)
if 0 ≤ ∑P 

p=1 (w
h∗
pl x j p) − θ h∗

l < 2.64 
wo∗
l if

∑P 
p=1 (w

h∗
pl x j p) − θ h∗

l ≥ 2.64 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

(2.34) 

Finally, the network output can be approximated as 

ô j = 
L∑

l=1 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

−wo∗
l if

∑P 
p=1 (w

h∗
pl x j p) − θ h∗

l < −2.64 

wo∗
l f̂2

(∑P 
p=1 (w

h∗
pl x j p) − θ h∗

l

)
if −2.64 ≤ ∑P 

p=1 (w
h∗
pl x j p) − θ h∗

l < 0 

wo∗
l f̂3

(∑P 
p=1 (w

h∗
pl x j p) − θ h∗

l

)
if 0 ≤ ∑P 

p=1 (w
h∗
pl x j p) − θ h∗

l < 2.64 
wo∗
l if

∑P 
p=1 (w

h∗
pl x j p) − θ h∗

l ≥ 2.64 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

− θ o∗ 

(2.35)
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Theorem 2.2 

ô j = 
L∑

l=1 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

−wo∗ 
l if

∑P 
p=1 (w

h∗
pl x j p  ) − θ h∗

l < −2.64 

c1wo∗
l 

⎛ 

⎝ 
P∑

p=1 
(wh∗

pl x j p  ) 

⎞ 

⎠ 
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(2.36) 

Proof Theorem 2.2 is the expansion of Eq. (2.35). It is noteworthy that Theorem 2.2 
involves only polynomials. 

2.3.12 Comparison of Various XAI Techniques 

Decision tree-based XAI techniques for approximating an ANN are compared in 
Table 2.13. 

Table 2.13 Comparison of various XAI techniques 

CART RF Gradient boosted 
decision trees 

RF-based incremental 
interpretation 

PBDT 

Number of decision 
rules for an example 

1 Many Many Many 1 

Each decision rule 
directly approximates 
the ANN output 

Yes Yes No No Yes 

First decision rule is 
the most accurate 

Yes No No Yes Yes
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Chapter 3 
Applications of XAI for Decision Making 
in the Manufacturing Domain 

Abstract This chapter discusses an important topic in factory management, that of 
improving the understandability of AI applications for group multi-criteria decision 
making in manufacturing systems. Due to its long-term and cross-functional impact, 
decision making may be more critical to the competitiveness and sustainability of 
manufacturing systems than production planning and control. This chapter uses the 
example of choosing the right smart and automation technologies for factories during 
the COVID-19 pandemic. This topic is of particular importance as many factories are 
forced to close or operate on a smaller scale (using a smaller workforce), thus pursuing 
further automation. Artificial intelligence and Industry 4.0 technologies have many 
applications in this area, most of which can also be applied for other decision-making 
purposes in manufacturing systems. First, a systematic procedure was established to 
guide the group multi-criteria decision-making process. Applications of AI and XAI 
to identify targets are first reviewed. Subsequently, the application of AI and XAI 
to selection factors and development of criteria is presented. Artificial intelligence 
techniques are widely used to derive criteria priorities. Therefore, it is particularly 
important to explain XAI techniques and tools for such AI applications. Aggregating 
the judgments of multiple decision makers is the next focus, followed by the intro-
duction of AI and XAI applications to evaluate the overall performance of each 
alternative. Taking fuzzy ranking preference based on similarity to ideal solution 
(FTOPSIS) as an example, the application of XAI techniques and tools in explaining 
comparison results using FTOPSIS is illustrated. Another AI technology used for 
the same purpose is fuzzy VIKOR. XAI techniques and tools for interpreting fuzzy 
VIKOR are also presented. Finally, several metrics are proposed to evaluate the 
effectiveness of XAI techniques or tools for decision making in the manufacturing 
domain. 

Keywords XAI · Group multi-criteria decision making · Smart and automation 
technologies · FTOPSIS · Fuzzy VIKOR
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3.1 Decision Making in the Manufacturing Domain 

There are many decision-making processes in a manufacturing system. For example, 
equipment engineers need to choose the most suitable equipment among multiple 
options [1], production engineers need to determine the next job to be process on a 
machine [2], facilities engineers need to decide whether to perform periodic mainte-
nance in advance to avoid unexpected machine down [3], etc. These decision-making 
processes are based on information that needs to be generated through in-depth anal-
ysis of relevant data and are subject to multiple criteria that may conflict with each 
other [4]. Artificial intelligence (AI) techniques have been widely used to address 
these issues and support decision making in manufacturing [5]. 

This chapter takes the selection of suitable smart and automation technologies for 
a factory during the COVID-19 pandemic as an example. This topic is of particular 
importance as many factories have been forced to close or operate on a small scale 
(using less workforce), hence pursuing further automation [6]. In addition, this is 
also a hot topic in the era of Industry 4.0 [7, 8]. There are many applications of AI 
technologies in this field, most of which can also be applied for other decision-making 
purposes in manufacturing systems. 

3.1.1 Selection of Smart and Automation Technologies 
Within the COVID-19 Pandemic 

Smart technologies are technologies that use electronic devices or systems that can 
be connected to the Internet, used interactively, and are to some extent intelligent [9– 
12], while automation technologies can make production smoother, faster, and more 
cost-effective by replacing or assisting manually operation [13]. In recent years, some 
advanced smart and automation technologies have been proposed in the domain of 
manufacturing, such as automatic inspection [14, 15], autonomous robots [16–18], 
additive manufacturing [19–23], ubiquitous manufacturing (UM) [20, 24, 25], cloud 
manufacturing [26–28], Internet of Things (IoT) [29, 30], cyber-physical systems 
[30, 31], etc., as shown in Fig. 3.1.

As  shown in Table  3.1, some of these advanced smart and automation technologies 
aim to facilitate cooperation among factories by sharing manufacturing resources, 
which is difficult in the COVID-19 pandemic and may not help mitigate the impact, 
as shown in Table 3.1. In contrast, applying smart and automation technologies to 
assist workers is considered feasible [32–35].

For example, using voice commands or gestures to interact with machines could 
avoid spreading COVID-19 through touching machines [36, 37]. The same can be 
achieved by remotely controlling the machine using a smartphone [38]. In addition, 
since body temperature is one of the basic criteria for screening workers for possible 
infection, workers can wear smart bracelets or watches to detect body temperature 
[39]. Wearable sensors can also be used to measure the distance between workers
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Automatic inspection 
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Automation 
Technologies 
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Cyber-physical 
systems 

… 

Fig. 3.1 Advanced smart and automation technologies

Table 3.1 Effects of existing smart and automation technologies on mitigating the impact of the 
COVID-19 pandemic 

Smart and automation technology Effect Mechanism 

Automatic inspection Positive Reducing workforce 

Autonomous robots Positive Reducing workforce 

Additive manufacturing Positive Reducing workforce 

Ubiquitous manufacturing Negative Increasing the risk of cross-factory infection 

Cloud manufacturing Negative Increasing the risk of cross-factory infection 

Internet of Things Positive Reducing human–machine contact 

Cyber-physical systems Positive Reducing human–machine contact

to ensure physical distancing [33]. However, such applications are time-consuming 
and laborious, and the effects are uncertain, which may not be acceptable to workers. 
In order to make full use of limited resources and time, it is necessary to establish 
a systematic procedure to compare various applications of smart and automation 
technologies. 

In this chapter, the selection of suitable smart and automation technologies for a 
factory during the COVID-19 pandemic is modeled as a fuzzy group multi-criteria 
decision-making (MCDM) problem [40]. Multiple AI technologies are applied to 
help solve this problem, and appropriate explainable artificial intelligence (XAI) 
techniques and tools are applied to explain these AI technology applications. 

3.2 Procedure for Selection of Smart and Automation 
Technologies Within the COVID-19 Pandemic 

Selecting suitable smart and automation technologies for a factory during the 
COVID-19 pandemic is modeled as a fuzzy group MCDM problem, which is usually 
solved in seven steps [41] (Fig. 3.2):
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Fig. 3.2 Steps for solving a 
fuzzy group MCDM problem 

Identify goals 

Select factors 
and formulate 

criteria 

Select 
alternatives 
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criteria 

Aggregation 

Make decision 

Evaluate the 
overall 

performance of 
each alternative 

Aggregation 

Evaluate the 
overall 

performance of 
each alternative 

• Identify goals; 
• Select factors and formulate criteria; 
• Select alternatives (options); 
• Determine the priorities of criteria; 
• Evaluate the overall performance of each alternative; 
• Aggregation; 
• Make decision. 

The administrator can aggregate the fuzzy priorities of a criterion derived by all 
decision makers, or the overall performances of an alternative evaluated by them.
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3.3 Identifying Goals 

Selecting suitable smart and automation technologies for factories during the 
COVID-19 pandemic might have the following goals: 

• Response to the shortage of manpower: Lockdowns and quarantines during the 
COVID-19 pandemic have reduced available manpower, and therefore present 
opportunities for factories to increase automation and remote service delivery 
[35]. Among existing advanced automation technologies, automated inspection, 
autonomous robotics, and additive manufacturing can mitigate the impact of the 
COVID-19 pandemic by reducing labor. As a result, more robots and automated 
systems are expected to be used earlier than planned [35, 42]. Canadian Plastics 
[32] describes this trend as “the enduring boom in factory robotics”. 

• Reduction of the risk of infection: Traditional automation focuses on low-level 
tasks. In the COVID pandemic, the targets of automation are shifting to tasks 
that are labor-intensive or difficult to maintain social distance [42]. Automated 
equipment such as computer numerical control (CNC) machine tools, controlled 
by minicomputers with interfaces such as keyboards and touchscreens, can easily 
spread COVID-19. To address this issue, such automated equipment can be oper-
ated by voice commands or gestures, or can be remotely controlled via an app 
on a smartphone [36–38]. The latter is a joint application of automation and 
smart technologies. IoT and cyber-physical systems can help prevent the spread 
of COVID-19 by reducing human–machine contact. Additionally, smart tech-
nologies can also be applied to improve operational efficiency and protect worker 
safety and health during the COVID-19 pandemic. For example, workers can wear 
smart wristbands or watches to check body temperature [39], while supervisors 
can wear smart helmets to monitor workers’ body temperature [43]. In addition, 
wireless sensors can be worn or carried to measure the distance of workers to 
ensure physical distance or record their movements for tracking [33, 44]. If two 
wearable sensors get too close, they emit a warning signal. Contact times are also 
recorded. Indoor location technology can also be applied to screen workers who 
may have come into contact with infected workers [33]. 

• Cost-effectiveness: Cost-effectiveness is undoubtedly a critical performance 
measure to the management and operations of a manufacturing systems. However, 
whether automation technologies that have become popular in recent years, such 
as AI and cloud manufacturing, have brought benefits to factories during the 
COVID-19 pandemic has been questioned [32].
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3.4 AI and XAI Applications in Selecting Factors 
and Formulating Criteria 

After reviewing the relevant literature and practice, the following factors are consid-
ered to be critical for selecting suitable applications of smart and automation 
technologies amidst the COVID-19 pandemic: 

• Low estimated total cost; 
• Effective in preventing the spread of COVID-19; 
• Little interference to existing operations; 
• Ease of adoption; and 
• High acceptance to workers. 

Among the five factors, “effective in preventing the spread of COVID-19”, “ease of 
adoption”, and “high acceptance to workers” are the-higher-the-better performances, 
while others are the-lower-the-better performances. Therefore, the performances in 
optimizing the five aspects are evaluated according to the rules in Table 3.2, which 
can be visualized with an annotated line chart, as illustrated in Fig. 3.3, which is an 
improvement of a traditional line chart by applying three XAI techniques [45]:

• Color management: The color and shape of objects representing different concepts 
should be distinguished for easy comparison. 

• Common expressions: Technical terms and variable names should be replaced 
with common expressions. 

• Annotate figures: The legend for each object should be placed close to the object. 

Similar performance evaluation rules have been proposed in previous studies [46, 
47], and have the following advantages: 

• The performances evaluated using the rules have the same ranges. 
• These rules can be used to evaluate quantitative and qualitative performances. 
• Fuzzy logic is applied to consider subjective and uncertain information, generate 

interval-valued evaluation results, thereby providing flexibility for decision 
making. 

However, other forms of evaluation rules are possible. 

3.5 AI and XAI Applications in Deriving the Priorities 
of Criteria 

At first, each decision maker compares the relative priority of a factor to another 
in linguistic terms such as “as equal as”, “weakly more important than”, “strongly 
more important than”, “very strongly more important than”, and “absolutely more 
important than” [48]. These linguistic terms are usually mapped to triangular fuzzy 
numbers (TFNs) within [1, 9, 49]. For example, compared to factor #1 (baseline),



3.5 AI and XAI Applications in Deriving the Priorities of Criteria 57

Ta
bl
e 
3.
2 

R
ul
es
 f
or
 e
va
lu
at
in
g 
pe
rf
or
m
an
ce
s 

Fa
ct
or

R
ul
e 

L
ow

 e
st
im

at
ed
 to

ta
l c
os
t

p̃ l
1
(x

l )
 =

 ⎧
 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨
 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
 (0

, 0
, 1

)
if
 0

.1
 · m

in
 

r 
x r
 +

 0
.9
 · m

ax
 

r 
x r
 ≤

 x
l 
or
 d
at
a 
no

t a
va
ila

bl
e 

(0
, 1

, 2
)

if
 0

.3
5 

· m
in
 

r 
x r
 +

 0
.6
5 

· m
ax
 

r 
x r
 ≤

 x
l 
<

 0
.1
 · m

in
 

r 
x r
 +

 0
.9
 · m

ax
 

r 
x r
 

(1
.5

, 2
.5

, 3
.5

) 
if
 0

.6
5 

· m
in
 

r 
x r
 +

 0
.3
5 

· m
ax
 

r 
x r
 ≤

 x
l 
<

 0
.3
5 

· m
in
 

r 
x r
 +

 0
.6
5 

· m
ax
 

r 
x r
 

(3
, 4

, 5
)

if
 0

.9
 · m

in
 

r 
x r
 +

 0
.1
 · m

ax
 

r 
x r
 ≤

 x
l 
<

 0
.6
5 

· m
in
 

r 
x r
 +

 0
.3
5 

· m
ax
 

r 
x r
 

(4
, 5

, 5
)

if
 x

l 
<

 0
.9
 · m

in
 

r 
x r
 +

 0
.1
 · m

ax
 

r 
x r
 

w
he
re
 x
l 
is
 th

e 
es
tim

at
ed
 to

ta
l c
os
t o

f 
al
te
rn
at
iv
e 
#l
 

E
ff
ec
tiv

e 
in
 p
re
ve
nt
in
g 
th
e 
sp
re
ad
 o
f 
C
O
V
ID

-1
9

p̃ l
2
(x

l )
 =

 ⎧
 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨
 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
 (0

, 0
, 1

)
if
 x

l 
= 

in
ef
fe
ct
iv
e 

(0
, 1

, 2
)

if
 x

l 
= 

sl
ig
ht
ly
 in
ef
fe
ct
iv
e 

(1
.5

, 2
.5

, 3
.5

) 
if
 x

l 
= 

qu
ite

 e
ff
ec
tiv

e 

(3
, 4

, 5
)

if
 x

l 
= 

hi
gh

ly
 e
ff
ec
tiv

e 

(4
, 5

, 5
)

if
 x

l 
= 

ve
ry
 h
ig
hl
y 
ef
fe
ct
iv
e 

w
he
re
 x
l 
is
 th

e 
ef
fe
ct
iv
en
es
s 
of
 a
lte

rn
at
iv
e 
#l
 i
n 
pr
ev
en
tin

g 
th
e 
sp
re
ad
 o
f 
C
O
V
ID

-1
9

(c
on
tin

ue
d)



58 3 Applications of XAI for Decision Making in the Manufacturing Domain

Ta
bl
e
3.
2

(c
on
tin

ue
d)

Fa
ct
or

R
ul
e

L
itt
le
 in

te
rf
er
en
ce
 to

 e
xi
st
in
g 
op

er
at
io
ns

p̃ l
3
(x

l )
 =

 ⎧
 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨
 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
 (4

, 5
, 5

)
if
 x

l 
= 

ve
ry
 li
ttl
e 

(3
, 4

, 5
)

if
 x

l 
= 

lit
tle

 

(1
.5

, 2
.5

, 3
.5

) 
if
 x

l 
= 

m
od

er
at
e 

(0
, 1

, 2
)

if
 x

l 
= 

m
uc
h 

(0
, 0

, 1
)

if
 x

l 
= 

ve
ry
 m
uc
h 

w
he
re
 x
l 
is
 th

e 
in
te
rf
er
en
ce
 o
f 
al
te
rn
at
iv
e 
#l
 t
o 
ex
is
tin

g 
op

er
at
io
ns
 

E
as
e 
of
 a
do
pt
io
n

p̃ l
4
(x

l )
 =

 ⎧
 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨
 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
 (0

, 0
, 1

)
if
 x

l 
= 

ve
ry
 d
if
fic

ul
t 

(0
, 1

, 2
)

if
 x

l 
= 

di
ffi
cu
lt 

(1
.5

, 2
.5

, 3
.5

) 
if
 x

l 
= 

m
od

er
at
e 

(3
, 4

, 5
)

if
 x

l 
= 

ea
sy
 

(4
, 5

, 5
)

if
 x

l 
= 

ve
ry
 e
as
y 

w
he
re
 x
l 
is
 th

e 
ea
si
ne
ss
 o
f 
ad
op

tio
n 
of
 a
lte

rn
at
iv
e 
#l
 

H
ig
h 
ac
ce
pt
ab
ili
ty
 to

 w
or
ke
rs

p̃ l
5
(x

l )
 =

 ⎧
 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨
 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
 (0

, 0
, 1

)
if
 x

l 
= 

ve
ry
 lo
w
 

(0
, 1

, 2
)

if
 x

l 
= 

lo
w
 

(1
.5

, 2
.5

, 3
.5

) 
if
 x

l 
= 

m
od

er
at
e 

(3
, 4

, 5
)

if
 x

l 
= 

hi
gh
 

(4
, 5

, 5
)

if
 x

l 
= 

ve
ry
 h
ig
h 

w
he
re
 x
l 
is
 w
or
ke
rs
’ 
ac
ce
pt
ab
ili
ty
 o
f 
al
te
rn
at
iv
e 
#l



3.5 AI and XAI Applications in Deriving the Priorities of Criteria 59

Fig. 3.3 Annotated line 
chart for visualizing the 
criteria
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“factor #2 is weakly more important than factor #1” and “factor #1 is weakly more 
important than factor #3” can be visualized with a XAI tool, the gradient bar chart, 
as shown in Fig. 3.4, where the densities of colors reflect the different degrees of 
membership (see Fig. 3.5). 
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Fig. 3.4 Gradient bar chart for visualizing fuzzy pairwise comparison results 

Fig. 3.5 Densities of colors reflect the different degrees of membership
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According to the pairwise comparison results by decision maker #k, the fuzzy 
judgment (or pairwise comparison) matrix Ã(k) = [ãi j  (k)] is constructed; k = 1– 
K. The fuzzy eigenvalue and eigenvector of Ã(k) are denoted by λ̃(k) and x̃(k) 
respectively, satisfying [50] 

det ( ̃A(k)(−)λ̃(k)I) = 0 (3.1) 

and 

( ̃A(k)(−)λ̃(k)I)( × )x̃(k) = 0 (3.2)  

where (−) and (×) denote fuzzy subtraction and multiplication, respectively. The 
fuzzy priorities of criteria can be derived by normalizing x̃(k): 

w̃i (k) = 
x̃i (k)

∑
j x̃ j (k) 

(3.3) 

The consistency between pairwise comparison results can be evaluated by fuzzy 
consistency ratio:

~CR(k) = 
λ̃max(k)−n 

n−1 

RI 
(3.4) 

where λ̃max(k) is the fuzzy maximal eigenvalue; RI is the random consistency index 
[50]. ~CR(k) should be less than 0.1–0.3, depending on the problem size. Subse-
quently, alpha-cut operations (ACO) [51] are applied to derive the values of λ̃(k) and 
x̃(k) as follows below. 

First, the fuzzy parameters and variables in Eqs. (3.1) and (3.2) are replaced by 
their α cuts: 

det( ̃A(α)(k) − λ̃(α)(k)I) = 0 (3.5) 

( ̃A(α)(k) − λ̃(α)(k)I)x̃(α)(k) = 0 (3.6) 

If α takes 11 possible values (0, 0.1, … 1), Eqs. (3.5) and (3.6) must be solved 
11 · 2Cn 

2 times using an eigen analysis to derive the α cuts of the fuzzy maximal 
eigenvalue and fuzzy eigenvector as [52] 

λL (α)(k) = min 
det([a∗

i j  (α)(k)]−λt (α)(k)I )=0 
(λt (α)(k)) (3.7) 

λR (α)(k) = max 
det([a∗ 

i j  (α)(k)]−λt (α)(k)I )=0 
(λt (α)(k)) (3.8)
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xL (α)(k) = min 
([a∗ 

i j  (α)(k)]−λt (α)(k)I)xt (α)(k)=0 
(xt (α)(k)) (3.9) 

xR (α)(k) = max 
([a∗ 

i j  (α)(k)]−λt (α)(k)I)xt (α)(k)=0 
(xt (α)(k)) (3.10) 

where * = L or R. λL 
t (α)(k), λR 

t (α)(k), xL t (α)(k), and xR 
t (α)(k) are the results from 

the t-th combination; t = 1–11 · 2Cn 
2 . 

Example 3.1 Fuzzy judgment matrix of decision maker #k is as follows: 

Ã(k) = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

1 1/(2, 4, 6) (3, 5, 7) (2, 4, 6) (1, 3, 5) 
(2, 4, 6) 1 (3, 5, 7) (3, 5, 7) (2, 4, 6) 
1/(3, 5, 7) 1/(3, 5, 7) 1 1/(2, 4, 6) 1/(1, 2, 4) 
1/(2, 4, 6) 1/(3, 5, 7) (2, 4, 6) 1 1/(1, 3, 5) 
1/(1, 3, 5) 1/(2, 4, 6) (1, 2, 4) (1, 3, 5) 1 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

MATLAB is used to implement ACO to derive the fuzzy maximum eigenvalue 
and fuzzy eigenvector of Ã(k). The required MATLAB code is shown in Fig. 3.6. 
The derived fuzzy maximum eigenvalue and fuzzy priorities are shown in Fig. 3.7 
and Fig. 3.8, respectively.

A gradient bar chart can also be drawn to show the derived fuzzy priorities 
(Fig. 3.9).

3.6 AI and XAI Applications in Aggregation 

There are two ways to aggregate the judgments of decision makers [40]. The first 
approach is to aggregate the pairwise comparison results of decision makers using 
fuzzy geometric mean (FGM): 

ãi j  = K

┌
|
|
√

Kπ

k=1 

ãi j  (k) (3.11) 

The other approach is to use the fuzzy arithmetic mean (FAM) to aggregate the 
fuzzy priorities derived by decision makers: 

w̃i =
∑K 

k=1 w̃i (k) 
K 

(3.12) 

Instead, if there is (overall) consensus among decision makers, fuzzy intersection 
(FI) can be applied to aggregate the priorities derived by them as follows [53].
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stime=now    % start time 
fl=zeros(22,1)    % fuzzy eigenvalue 
fev=zeros(5,22)    % alpha cuts of fuzzy eigenvector; alpha = 0, 0.1, …, 1 

for i0=1:11 
alpha0=i0*0.1-0.1     % alpha 
lmin=9999 
lmax=0 
evmin=[9999 9999 9999 9999 9999] 
evmax=[0 0 0 0 0] 

FA=zeros(5,5,3)    % fuzzy pairwise comparison matrix 
FA(2,1,:)=[2 4 6] 
FA(1,3,:)=[3 5 7] 
. . . 
FA(5,4,:)=[1 3 5] 
FA(:,:,1)=(1-alpha0)*FA(:,:,1)+alpha0*FA(:,:,2)    % calculate alpha cuts 
FA(:,:,3)=(1-alpha0)*FA(:,:,3)+alpha0*FA(:,:,2) 

A=zeros(5,5)    % crisp pairwise comparison matrix 
A(1,1)=1 
A(2,2)=1 
A(3,3)=1 
A(4,4)=1 
A(5,5)=1 

for i1=1:2 
for i2=1:2 

for i3=1:2 
for i4=1:2 

for i5=1:2 
for i6=1:2 

for i7=1:2 
for i8=1:2 

for i9=1:2 
for i10=1:2 

% build crisp pairwise comparison matrix 
if FA(1,2,i1*2-1)==0 

A(1,2)=1/FA(2,1,i1*2-1) 
else 

A(1,2)=FA(1,2,i1*2-1) 
end 
A(2,1)=1/A(1,2) 

if FA(1,3,i2*2-1)==0 
A(1,3)=1/FA(3,1,i2*2-1) 

else 
A(1,3)=FA(1,3,i2*2-1) 

end 
A(3,1)=1/A(1,3) 

. . . 

Fig. 3.6 MATLAB code for implementing ACO
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if FA(4,5,i10*2-1)==0 
A(4,5)=1/FA(5,4,i10*2-1) 

else 
A(4,5)=FA(4,5,i10*2-1) 

end 
A(5,4)=1/A(4,5) 

% derive the eigenvalue and eigenvector 
[E, V] = eig(A) 

% update alpha cuts of fuzzy eigenvalue and eigenvector 
if V(1,1)<lmin 

lmin=V(1,1) 
end 
if V(1,1)>lmax 

lmax=V(1,1) 
end 
ev=E(:,1)/sum(E(:,1)) 

for j=1:5 
if ev(j)<evmin(j) 

evmin(j)=ev(j) 
end 

end 

for j=1:5 
if ev(j)>evmax(j) 

evmax(j)=ev(j) 
end 

end 

end 
end 

end 
end 

end 
end 

end 
end 

end 
end 

% update fuzzy eigenvalue and eigenvector 
fl(i0,1)=lmin 
fl(23-i0,1)=lmax 

for j=1:5 
fev(j,i0)=evmin(j) 
fev(j,23-i0)=evmax(j) 

end 
end 

etime=now    % end time 
(etime-stime)*60*60*24    % elapsed time 

Fig. 3.6 (continued)
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Fig. 3.7 Derived fuzzy 
maximum eigenvalue 
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priorities
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Fig. 3.9 Gradient bar chart 
for showing the derived 
fuzzy priorities
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Definition 3.1. The fuzzy intersection (FI) of the fuzzy priorities evaluated by 
K decision makers on the i-th factor, indicated with w̃i (1)– w̃i (K ), is denoted by
~FI({w̃i (k)|k = 1−K }). 

μ~FI({w̃i (k)})(x) = min 
k 

μ ̃wi (k)(x) (3.13)
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Fig. 3.10 FI of three TFNs 
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where μ~FI({w̃i (k)})(x) and μ ̃wi (k)(x) denote the memberships of x in ~FI({w̃i (k)}) and 
w̃i (k), respectively. 

Figure 3.10 provides an example showing the FI results of three TFNs. 
In the view of Chen et al. [54], FI can generate a more reasonable aggregation 

result than FAM, FGM, and fuzzy weighted average (FWA). 
Another XAI technique, traceable aggregation [45], can be used to illustrate the 

aggregation process using FI, as shown in Fig. 3.11. The original fuzzy priorities to 
be aggregated are shown on the left, connected by lines to the aggregation (FI) result 
on the right.

The FI result of fuzzy priorities can be easily obtained from their α-cuts:

~FI({w̃i (k)}) = {[FIL{w̃i (k)}(α), FIR{w̃i (k)}(α)]|α = 0−1} (3.14) 

where 

FIL{w̃i (k)}(α) = max 
k 

(wL 
i (k)(α)), α = 0−1, (3.15) 

FIR{w̃i (k)}(α) = min 
k 

(wR 
i (k)(α)), α = 0−1 (3.16) 

if FIL{w̃i (k)}(α) ≤ FIR{w̃i (k)}(α). 
When other aggregators such as FGM and FAM are applied, traceable aggregation 

diagrams can also be used to show the aggregation process. 

Example 3.2 The fuzzy priorities of criterion #1 derived by three decision makers are 
shown in Fig.  3.12. Table 3.3 summarizes their left and right α cuts. Equations (3.14)– 
(3.16) are used to derive the FI result. Table 3.4 shows the α cuts of the FI result. 
The FI result is illustrated in Fig. 3.13. The traceable aggregation diagram of this 
example is shown in Fig. 3.14.
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Fig. 3.11 Traceable aggregation for illustrating the aggregation process
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Fig. 3.12 Fuzzy priorities derived by three decision makers
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Table 3.3 α-cuts of fuzzy priorities 

Decision maker α: [wL 
1 (k)(α), wR 

1 (k)(α)] 
#1 0: [0.122, 0.396] 

0.1: [0.134, 0.378] 
0.2: [0.147, 0.362] 
0.3: [0.159, 0.345] 
0.4: [0.172, 0.33] 
0.5: [0.184, 0.315] 
0.6: [0.196, 0.301] 
0.7: [0.209, 0.287] 
0.8: [0.221, 0.273] 
0.9: [0.234, 0.26] 
1: [0.247, 0.247] 

#2 0: [0.108, 0.438] 
0.1: [0.123, 0.415] 
0.2: [0.137, 0.394] 
0.3: [0.151, 0.373] 
0.4: [0.165, 0.354] 
0.5: [0.179, 0.335] 
0.6: [0.194, 0.317] 
0.7: [0.208, 0.3] 
0.8: [0.223, 0.284] 
0.9: [0.238, 0.268] 
1: [0.253, 0.253] 

#3 0: [0.194, 0.53] 
0.1: [0.212, 0.516] 
0.2: [0.229, 0.501] 
0.3: [0.245, 0.485] 
0.4: [0.261, 0.469] 
0.5: [0.277, 0.451] 
0.6: [0.292, 0.433] 
0.7: [0.306, 0.414] 
0.8: [0.32, 0.393] 
0.9: [0.333, 0.371] 
1: [0.347, 0.347] 

Table 3.4 α cuts of the FI result 

α: [FIL (α), FIR (α)] 
0: [0.194, 0.396] 
0.1: [0.212, 0.378] 
0.2: [0.229, 0.362] 
0.3: [0.245, 0.345] 
0.4: [0.261, 0.33] 
0.5: [0.277, 0.315] 
0.6: [0.292, 0.301]
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Fig. 3.13 FI result 

Fig. 3.14 Traceable aggregation diagram of this example
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3.7 AI and XAI Applications in Evaluating the Overall 
Performance of Each Alternative 

There are two popular AI methods for evaluating the overall performance of an 
alternative: fuzzy technique for order preference by similarity to the ideal solution 
(FTOPSIS) [55] and fuzzy Vise Kriterijumska Optimizacija I Kompromisno Resenje 
(fuzzy VIKOR) [56]. 

FTOPSIS is first introduced as follows. XAI tools and techniques applicable to 
FTOPSIS are also mentioned. 

3.7.1 FTOPSIS 

In FTOPSIS, first, the performance of an alternative in optimizing each factor is 
normalized using fuzzy distribution normalization [6] as  

ρ̃li  = p̃li
√
∑M 

m=1 p̃
2 
mi 

= 1 
√

1 + ∑
m /=l

(
p̃mi 

p̃li

)2 
(3.17) 

where p̃li  is the performance of the l-th alternative in optimizing the i-th factor; ρ̃li  

is the normalized performance. 

Example 3.3 Four smart and automation technology applications will be evalu-
ated and compared using FTOPSIS. Table 3.5 [34] summarizes the performances 
of each smart and automation technology application in optimizing the five factors. 
The performance of a smart and automation technology application in optimizing 
each factor is normalized using fuzzy distributive normalization. For example, the 
performance of alternative #2 in optimizing criterion #1 is normalized as 

ρ̃21 = 1 
√

1 +
(

p̃11 
p̃21

)2 +
(

p̃31 
p̃21

)
+
(

p̃41 
p̃21

)2 

= 1 
√

1 +
(

(1.5,2.5,3.5) 
(3.0,4.0,5.0)

)2 +
(

(1.5,2.5,3.5) 
(3.0,4.0,5.0)

)2 +
(

(0.0,1.0,2.0) 
(3.0,4.0,5.0)

)2 

∼= 1 
√
1 + (0.3, 0.63, 1.17)2 + (0.3, 0.63, 1.17)2 + (0, 0.25, 0.67)2 

∼= 1 √
1 + (0.09, 0.40, 1.37) + (0.09, 0.40, 1.37) + (0, 0.06, 0.45)



70 3 Applications of XAI for Decision Making in the Manufacturing Domain

= 1 √
(1.18, 1.86, 4.19) 

∼= 1 

(1.09, 1.36, 2.05) 
∼= (0.49, 0.74, 0.92) 

the α-cuts of which can be easily derived (see Table 3.6). The normalization results 
are summarized in Table 3.7. 

Subsequently, a fuzzy priority score s̃li  is calculated based on the derived fuzzy 
priority:

Table 3.5 Performances of smart and automation technology applications in optimizing the five 
factors 

l Application p̃l1 p̃l2 p̃l3 p̃l4 p̃l5 

1 Machine 
remote 
control 

(1.5, 2.5, 3.5) (4.0, 5.0, 5.0) (0.0, 1.0, 2.0) (0.0, 1.0, 2.0) (3.0, 4.0, 5.0) 

2 Worker’s 
smart 
wristband 

(3.0, 4.0, 5.0) (0.0, 1.0, 2.0) (4.0, 5.0, 5.0) (4.0, 5.0, 5.0) (4.0, 5.0, 5.0) 

3 Worker’s 
smart 
personal 
protection 
equipment 

(1.5, 2.5, 3.5) (3.0, 4.0, 5.0) (3.0, 4.0, 5.0) (3.0, 4.0, 5.0) (1.5, 2.5, 3.5) 

4 Smart 
warehouse 

(0.0, 1.0, 2.0) (4.0, 5.0, 5.0) (0.0, 1.0, 2.0) (1.5, 2.5, 3.5) (3.0, 4.0, 5.0) 

Table 3.6 α-cuts of ρ̃21 

α α-cut 

0 [0.49, 0.92] 

0.1 [0.52, 0.90] 

0.2 [0.54, 0.88] 

0.3 [0.57, 0.87] 

0.4 [0.59, 0.85] 

0.5 [0.62, 0.83] 

0.6 [0.64, 0.81] 

0.7 [0.67, 0.79] 

0.8 [0.69, 0.78] 

0.9 [0.72, 0.76] 

1 [0.74, 0.74]
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Table 3.7 Normalized performances 

l Application ρ̃l1 ρ̃l2 ρ̃l3 ρ̃l4 ρ̃l5 

1 Machine 
remote 
control 

(0.18, 0.46, 
0.72) 

(0.48, 0.61, 
0.71) 

(0, 0.15, 
0.37) 

(0, 0.14, 
0.36) 

(0.36, 0.5, 
0.69) 

2 Worker’s 
smart 
wristband 

(0.49, 0.74, 
0.93) 

(0, 0.12, 0.3) (0.57, 0.76, 
0.86) 

(0.53, 0.72, 
0.83) 

(0.45, 0.63, 
0.74) 

3 Worker’s 
smart 
personal 
protection 
equipment 

(0.23, 0.46, 
0.73) 

(0.38, 0.49, 
0.66) 

(0.46, 0.61, 
0.78) 

(0.42, 0.58, 
0.76) 

(0.17, 0.31, 
0.51) 

4 Smart 
warehouse 

(0, 0.18, 
0.49) 

(0.48, 0.61, 
0.71) 

(0, 0.15, 
0.37) 

(0.2, 0.36, 
0.57) 

(0.36, 0.5, 
0.69)

s̃li  = w̃i (×) ̃ρli (3.18) 

In terms of the α-cuts of these fuzzy parameters, (3.18) can be expressed as 

s̃li  = [sL li  (α), s R li  (α)] 
= [wL 

i (α)ρ L li  (α), wR 
i (α)ρ R li  (α)] ∀α (3.19) 

The fuzzy ideal (zenith) point Ʌ̃
+ 

and fuzzy anti-ideal (nadir) point Ʌ̃
− 

are 
respectively specified as 

Ʌ̃
+ = [  ̃Ʌ+ 

i ] = [max 
l 

s̃li ] (3.20) 

Ʌ̃
− = [  ̃Ʌ− 

i ] = [min 
l 

s̃li ] (3.21) 

or 

Ʌ̃+ 
i = [Ʌ+L 

i (α),Ʌ+R 
i (α)] 

= [max 
l 

s L li  (α), max 
l 

s R li  (α)] (3.22) 

Ʌ̃− 
i = [Ʌ−L 

i (α),Ʌ−R 
i (α)] 

= [min 
l 

s L li  (α), min 
l 

s R li  (α)] (3.23) 

Example 3.4 In the previous example, the fuzzy priority score of alternative #2 for 
optimizing criterion #1 is computed based on the aggregation result of the fuzzy 
priorities obtained by all experts using FI in Example 3.2:
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α = 0 : sL 21(α) = 0.19 × 0.49 = 0.10; s R 21(α) = 0.40 × 0.93 = 0.36 
. . .  
α = 0.6 : sL 21(α) = 0.19; s R 21(α) = 0.25 

In sum, s̃21 = {{0, [0.10, 0.36]}, . . .  {0.6, [0.19, 0.25]}}. 
Example 3.5 In the previous example, Table 3.8 summarizes the fuzzy priority scores 
for all alternatives to optimize each criterion. From this, the fuzzy ideal (zenith) point 
and the fuzzy anti-ideal (nadir) point can be established, as shown in Table 3.9. 

The fuzzy distances from each alternative to the two reference points are measured 
as

Table 3.8 Fuzzy priority scores for all alternatives to optimize each criterion 

l s̃l1 (α: α cut) s̃l2 (α: α cut) s̃l3 (α: α cut) s̃l4 (α: α cut) s̃l5 (α: α cut) 
1 0: [0.04, 0.29] 

0.1: [0.04, 0.26] 
0.2: [0.05, 0.24] 
0.3: [0.07, 0.22] 
0.4: [0.08, 0.2] 
0.5: [0.09, 0.19] 
0.6: [0.1, 0.17] 

0: [0.14, 0.34] 
0.1: [0.16, 0.32] 
0.2: [0.17, 0.31] 
0.3: [0.19, 0.3] 
0.4: [0.2, 0.29] 
0.5: [0.22, 0.28] 

0: [0, 0.04] 
0.1: [0, 0.03] 
0.2: [0, 0.03] 
0.3: [0, 0.02] 
0.4: [0, 0.02] 

0: [0, 0.07] 
0.1: [0, 0.06] 
0.2: [0, 0.05] 
0.3: [0, 0.04] 
0.4: [0, 0.04] 
0.5: [0.01, 0.03] 
0.6: [0.01, 0.03] 
0.7: [0.01, 0.02] 

0: [0.02, 0.09] 
0.1: [0.02, 0.08] 
0.2: [0.03, 0.07] 
0.3: [0.03, 0.07] 
0.4: [0.03, 0.06] 
0.5: [0.04, 0.05] 

2 0: [0.1, 0.37] 
0.1: [0.11, 0.35] 
0.2: [0.12, 0.32] 
0.3: [0.14, 0.3] 
0.4: [0.15, 0.28] 
0.5: [0.17, 0.26] 
0.6: [0.19, 0.24] 

0: [0, 0.14] 
0.1: [0, 0.13] 
0.2: [0.01, 0.12] 
0.3: [0.01, 0.11] 
0.4: [0.02, 0.1] 
0.5: [0.02, 0.09] 

0: [0.04, 0.09] 
0.1: [0.04, 0.08] 
0.2: [0.04, 0.07] 
0.3: [0.04, 0.07] 
0.4: [0.05, 0.06] 

0: [0.03, 0.16] 
0.1: [0.04, 0.15] 
0.2: [0.04, 0.13] 
0.3: [0.05, 0.12] 
0.4: [0.05, 0.11] 
0.5: [0.06, 0.1] 
0.6: [0.06, 0.09] 
0.7: [0.07, 0.08] 

0: [0.03, 0.1] 
0.1: [0.03, 0.09] 
0.2: [0.03, 0.08] 
0.3: [0.04, 0.07] 
0.4: [0.04, 0.07] 
0.5: [0.05, 0.06] 

3 0: [0.04, 0.29] 
0.1: [0.05, 0.27] 
0.2: [0.06, 0.25] 
0.3: [0.07, 0.23] 
0.4: [0.08, 0.21] 
0.5: [0.1, 0.19] 
0.6: [0.11, 0.17] 

0: [0.11, 0.32] 
0.1: [0.12, 0.3] 
0.2: [0.14, 0.29] 
0.3: [0.15, 0.27] 
0.4: [0.16, 0.26] 
0.5: [0.17, 0.24] 

0: [0.03, 0.08] 
0.1: [0.03, 0.07] 
0.2: [0.03, 0.07] 
0.3: [0.04, 0.06] 
0.4: [0.04, 0.05] 

0: [0.03, 0.15] 
0.1: [0.03, 0.13] 
0.2: [0.03, 0.12] 
0.3: [0.04, 0.11] 
0.4: [0.04, 0.1] 
0.5: [0.05, 0.09] 
0.6: [0.05, 0.08] 
0.7: [0.06, 0.07] 

0: [0.01, 0.07] 
0.1: [0.01, 0.06] 
0.2: [0.01, 0.05] 
0.3: [0.02, 0.05] 
0.4: [0.02, 0.04] 
0.5: [0.02, 0.04] 

4 0: [0, 0.19] 
0.1: [0, 0.17] 
0.2: [0.01, 0.15] 
0.3: [0.01, 0.14] 
0.4: [0.02, 0.12] 
0.5: [0.03, 0.11] 
0.6: [0.03, 0.09] 

0: [0.14, 0.34] 
0.1: [0.16, 0.32] 
0.2: [0.17, 0.31] 
0.3: [0.19, 0.3] 
0.4: [0.2, 0.29] 
0.5: [0.22, 0.28] 

0: [0, 0.04] 
0.1: [0, 0.03] 
0.2: [0, 0.03] 
0.3: [0, 0.02] 
0.4: [0, 0.02] 

0: [0.01, 0.11] 
0.1: [0.01, 0.1] 
0.2: [0.02, 0.09] 
0.3: [0.02, 0.08] 
0.4: [0.02, 0.07] 
0.5: [0.03, 0.06] 
0.6: [0.03, 0.05] 
0.7: [0.03, 0.05] 

0: [0.02, 0.09] 
0.1: [0.02, 0.08] 
0.2: [0.03, 0.07] 
0.3: [0.03, 0.07] 
0.4: [0.03, 0.06] 
0.5: [0.04, 0.05]
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Table 3.9 Fuzzy ideal (zenith) point and fuzzy anti-ideal (nadir) point 

l Ʌ̃
+/− 
1 (α: α cut) Ʌ̃

+/− 
2 (α: α cut) Ʌ̃

+/− 
3 (α: α cut) Ʌ̃

+/− 
4 (α: α cut) Ʌ̃

+/− 
5 (α: α cut) 

Ʌ̃
+ 

0: [0.1, 0.37] 
0.1: [0.11, 0.35] 
0.2: [0.12, 0.32] 
0.3: [0.14, 0.3] 
0.4: [0.15, 0.28] 
0.5: [0.17, 0.26] 
0.6: [0.19, 0.24] 

0: [0.14, 0.34] 
0.1: [0.16, 0.32] 
0.2: [0.17, 0.31] 
0.3: [0.19, 0.3] 
0.4: [0.2, 0.29] 
0.5: [0.22, 0.28] 

0: [0.04, 0.09] 
0.1: [0.04, 0.08] 
0.2: [0.04, 0.07] 
0.3: [0.04, 0.07] 
0.4: [0.05, 0.06] 

0: [0.03, 0.16] 
0.1: [0.04, 0.15] 
0.2: [0.04, 0.13] 
0.3: [0.05, 0.12] 
0.4: [0.05, 0.11] 
0.5: [0.06, 0.1] 
0.6: [0.06, 0.09] 
0.7: [0.07, 0.08] 

0: [0.03, 0.1] 
0.1: [0.03, 0.09] 
0.2: [0.03, 0.08] 
0.3: [0.04, 0.07] 
0.4: [0.04, 0.07] 
0.5: [0.05, 0.06] 

Ʌ̃
− 

0: [0, 0.19] 
0.1: [0, 0.17] 
0.2: [0.01, 0.15] 
0.3: [0.01, 0.14] 
0.4: [0.02, 0.12] 
0.5: [0.03, 0.11] 
0.6: [0.03, 0.09] 

0: [0, 0.14] 
0.1: [0, 0.13] 
0.2: [0.01, 0.12] 
0.3: [0.01, 0.11] 
0.4: [0.02, 0.1] 
0.5: [0.02, 0.09] 

0: [0, 0.04] 
0.1: [0, 0.03] 
0.2: [0, 0.03] 
0.3: [0, 0.02] 
0.4: [0, 0.02] 

0: [0, 0.07] 
0.1: [0, 0.06] 
0.2: [0, 0.05] 
0.3: [0, 0.04] 
0.4: [0, 0.04] 
0.5: [0.01, 0.03] 
0.6: [0.01, 0.03] 
0.7: [0.01, 0.02] 

0: [0.01, 0.07] 
0.1: [0.01, 0.06] 
0.2: [0.01, 0.05] 
0.3: [0.02, 0.05] 
0.4: [0.02, 0.04] 
0.5: [0.02, 0.04]

d̃+ 
l = 

┌
|
|
√

n∑

i=1 

( ̃Ʌ+ 
i (−)s̃li  )2 (3.24) 

d̃− 
l = 

┌
|
|
√

n∑

i=1 

( ̃Ʌ− 
i (−)s̃li  )2 (3.25) 

In their α-cuts, 

d̃+ 
l = [d+L 

l (α), d+R 
l (α)] 

= 

⎡ 

⎣ 

┌
|
|
√

n∑

i=1 

max(Ʌ+L 
i (α) − s R li  (α), 0)2, 

┌
|
|
√

n∑

i=1 

(Ʌ+R 
i (α) − sL li  (α))2 

⎤ 

⎦ (3.26) 

d̃− 
l = [d−L 

l (α), d−R 
l (α)] 

= 

⎡ 

⎣ 

┌
|
|
√

n∑

i=1 

max(sL li  (α) − Ʌ−R 
i (α), 0)2, 

┌
|
|
√

n∑

i=1 

(s R li  (α) − Ʌ−L 
i (α))2 

⎤ 

⎦ (3.27) 

Finally, the fuzzy closeness of the alternative is evaluated as 

C̃l = d̃− 
l 

d̃+ 
l (+) ̃d− 

l 

(3.28) 

or
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C̃l = [C L l (α), C R l (α)] 

=
[

d−L 
l (α) 

d+R 
l (α) + d−L 

l (α) 
, 

d−R 
l (α) 

d+L 
l (α) + d−R 

l (α)

]

(3.29) 

If the fuzzy closeness of an alternative is higher, its is more suitable. To obtain an 
absolute ranking, the COG method can be used to defuzzify the fuzzy closenesses 
of alternatives and then compare [57]: 

D( C̃l ) =
∮ 1 
0 α

(
C L l (α)+C R l (α) 

2

)
dα

∮ 1 
0 αdα 

(3.30) 

Example 3.6 Following Example 3.5, each alternative is evaluated by comparing 
the distances to the two reference points, which are summarized in Table 3.10. 
Subsequently, the fuzzy closeness of each alternative is evaluated (see Table 3.11). 

The evaluation mechanism in FTOPSIS is to compare the distances of alternatives 
to two reference points, which may not be very intuitive. Highlighting the difference 
between the two distances enhances the interpretability of FTOPSIS. To this end, this 
study proposes a new XAI tool, the bi-directional scatterplot, as shown in Fig. 3.15. 
In this figure,

Table 3.10 Fuzzy distances to the two reference points 

l 1 2 3 4 

d̃+ 
l (α:α cut) 0: [0, 0.44] 

0.1: [0, 0.39] 
0.2: [0.01, 0.34] 
0.3: [0.02, 0.3] 
0.4: [0.03, 0.25] 

0: [0, 0.46] 
0.1: [0.03, 0.42] 
0.2: [0.05, 0.38] 
0.3: [0.08, 0.34] 
0.4: [0.1, 0.31] 

0: [0, 0.43] 
0.1: [0, 0.38] 
0.2: [0, 0.34] 
0.3: [0, 0.29] 
0.4: [0, 0.25] 

0: [0, 0.46] 
0.1: [0, 0.42] 
0.2: [0.01, 0.37] 
0.3: [0.02, 0.34] 
0.4: [0.04, 0.3] 

d̃− 
l (α:α cut) 0: [0, 0.46] 

0.1: [0.03, 0.42] 
0.2: [0.05, 0.39] 
0.3: [0.08, 0.36] 
0.4: [0.1, 0.33] 

0: [0, 0.45] 
0.1: [0, 0.41] 
0.2: [0.01, 0.37] 
0.3: [0.02, 0.34] 
0.4: [0.04, 0.3] 

0: [0, 0.47] 
0.1: [0, 0.43] 
0.2: [0.02, 0.39] 
0.3: [0.04, 0.35] 
0.4: [0.07, 0.32] 

0: [0, 0.41] 
0.1: [0.03, 0.38] 
0.2: [0.05, 0.35] 
0.3: [0.08, 0.33] 
0.4: [0.1, 0.3] 

Table 3.11 Fuzzy closeness of each alternative 

l 1 2 3 4 

C̃l 0: [0, 1] 
0.1: [0.06, 0.99] 
0.2: [0.13, 0.97] 
0.3: [0.21, 0.95] 
0.4: [0.29, 0.92] 

0: [0, 1] 
0.1: [0.01, 0.94] 
0.2: [0.03, 0.88] 
0.3: [0.05, 0.81] 
0.4: [0.12, 0.74] 

0: [0, 1] 
0.1: [0, 1] 
0.2: [0.05, 1] 
0.3: [0.12, 1] 
0.4: [0.21, 1] 

0: [0, 1] 
0.1: [0.06, 0.99] 
0.2: [0.12, 0.97] 
0.3: [0.19, 0.95] 
0.4: [0.26, 0.88] 
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Fig. 3.15 Bidirectional 
scatterplot for illustrating the 
comparison mechanism in 
FTOPSIS 

Anti-ideal 
Solution 

Smart and 
automation 
technology 

#1 

Smart and 
automation 
technology 

#2 

Smart and 
automation 
technology 

#3 

Ideal 
Solution 

• The ideal solution is on the top, and the anti-ideal solution is on the bottom. 
• The ideal solution is white, and the anti-ideal solution is black. 
• All alternatives can be placed anywhere in the bi-directional scatterplot, as long 

as the following requirement is met. As shown, the distance of each alternative to 
two reference points was measured using the FTOPSIS method. 

• The closer an alternative is to the ideal solution, the whiter (lighter) it will be. 
Conversely, if the alternative gets closer to the anti-ideal solution, it will be darker. 

3.7.2 Fuzzy VIKOR 

Subsequently, XAI tools and techniques for explaining fuzzy VIKOR [58] are intro-
duced. The fuzzy VIKOR method can also be applied to evaluate the overall perfor-
mance of an alternative. Several studies on fuzzy VIKOR applications exist in the 
literature. However, most past studies have been based on fuzzy sets with triangular 
or trapezoidal membership functions. In contrast, the lower and upper membership 
functions of the aggregation result may not belong to the two types.
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The fuzzy VIKOR method comprises the following steps: 

Step 1. Determine the ideal and anti-ideal performance in optimizing each factor: 

p̃∗ 
i = max 

l 
p̃li (3.31) 

p̃− 
i = min 

l 
p̃li (3.32) 

Step 2. Compute the normalized fuzzy distance from the ideal performance [56]: 

d̃li  = 
p̃∗ 
i (−) p̃li  

p∗ 
i3 − p− 

i1 

(3.33) 

Step 3. Derive S̃l and R̃l [56]: 

S̃l = 
n∑

i=1 

( w̃i (all)(×) ̃dli  ) (3.34) 

R̃l = max 
i 

( w̃i (all)(×) ̃dli  ) (3.35) 

The α cut can be derived using ACO as follows: 

S̃l =
U

α

[
SL 
l (α), SR 

l (α)
]

=
U

α

[
n∑

i=1 

(wL 
i (all)(α)dL 

li  (α)), 
n∑

i=1 

(wR 
i (all)(α)d R li  (α))

]

(3.36) 

R̃l =
U

α

[
RL 
l (α), RR 

l (α)
]

=
U

α

[

max 
i 

(wL 
i (all)(α)dL 

li  (α)), max 
i 

(all)(wR 
i (α)d R li  (α))

]

(3.37) 

Step 4. Combine S̃l and R̃l into Q̃l as follows [56]: 

Q̃l = ωN ( ̃Sl )(+)(1 − ω)N ( R̃l ) 

= ω · 
S̃l (−) min 

r 
S̃r 

max
(
max 
r 

S̃r
)

− min
(
min 
r 

S̃r
) (+)(1 − ω) · 

R̃l (−) min 
r 

R̃r 

max
(
max 
r 

R̃r
)

− min
(
min 
r 

R̃r
)

(3.38)
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The α cut of Q̃l can be derived as follows: 

Q̃l =
U

α

[
QL 

l (α), QR 
l (α)

]

=
U

α 

⎡ 

⎣ω · 
SL 
l (α) − min 

r 
SR 
r (α) 

max 
r 

SR 
r (α) − min 

r 
SL 
r (α) 

+ (1 − ω) · 
RL 
l (α) − min 

r 
RR 
r (α) 

max 
r 

RR 
r (α) − min 

r 
RL 
r (α) 

, 

ω · 
SR 
l (α) − min 

r 
SL 
r (α) 

max 
r 

SR 
r (α) − min 

r 
SL 
r (α) 

+ (1 − ω) · 
RR 
l (α) − min 

r 
RL 
r (α) 

max 
r 

RR 
r (α) − min 

r 
RL 
r (α) 

⎤ 

⎦ (3.39) 

Step 5. Defuzzify Q̃l using the center-of-gravity method [59]: 

D( Q̃l ) =
∑

α α
(

QL 
l (α)+QR 

l (α) 
2

)

∑
α α 

(3.40) 

Step 6. Choose the alternative that achieved the highest D( Q̃l ) value. 

Fuzzy VIKOR is less explainable than other more intuitive methods, such as 
fuzzy weighted average. The comparison mechanism in fuzzy VIKOR is based on 
the distance from an alternative to the ideal solution. Therefore, presenting the differ-
ences in the distances of alternatives from the ideal solution enhances the explain-
ability of fuzzy VIKOR, as illustrated in Fig. 3.16, which is called the segmented 
distance diagram. In this figure,

• All possible alternatives surround the ideal solution. 
• The distance between an alternative and the ideal solution is Q̃l , which has two 

segments: the longest distance ((1 − ω)N ( R̃l )) and overall distance (ωN ( ̃Sl )) in  
red and blue lines, respectively. 

For example, in Fig. 3.16, Alternative 2 is the best choice because it is closest to the 
ideal solution. In addition, the advantage of Alternative 2 over the other alternatives 
lies in its overall distance, which is much shorter than the others. 

3.8 Assessing the Effectiveness of XAI Applications 
for Decision Making in the Manufacturing Domain 

For an XAI technique or tool to be effective for decision making in the manufacturing 
domain, the following conditions need to be met:
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Ideal 
Solution 

Alternative 
#1 

Alternative 
#2 

Alternative 
#3 

Alternative 
#4 

Longest distance 

Overall distance 

Fig. 3.16 Segmented distance diagram for illustrating the comparison mechanism in fuzzy VIKOR

• It is easy to understand. 
• It is easy to communicate. 
• It can explain the reasoning process. 
• No background knowledge is required. 
• It can provide an intuitive relationship between the attributes of an alternative and 

the overall performance. 
• It facilitates the visual comparison of factors, alternatives, and/or decision makers. 
• It can derive the fuzzy priorities of factors precisely from pairwise comparison 

results by minimize the sum of squared deviations (SSD):

~SSD = 
n∑

i=1

∑

j /=i

(
w̃i 

w̃ j 
(−) ̃ai j

)2 

(3.41)
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Chapter 4 
Applications of XAI to Job Sequencing 
and Scheduling in Manufacturing 

Abstract This chapter discusses a new application field of XAI in manufacturing— 
job sequencing and scheduling. It first breaks down job sequencing and scheduling 
into several steps and then mentions AI technologies applicable to some of these 
steps. It is worth noting that many AI applications focus on the preparation of inputs 
required for scheduling tasks, rather than the process of scheduling tasks, which is a 
distinctive feature of the field. Nonetheless, many AI techniques have already been 
explained in other fields or domains. These explanations can provide a reference for 
explaining the application of AI in job sequencing and scheduling. Therefore, some 
general XAI techniques and tools for job sequencing and scheduling are reviewed, 
including: referring to the classification of job scheduling problems; customizing 
scheduling rules; text description, pseudocode; decision trees, flowcharts. Further-
more, job sequencing and scheduling problems are often formulated as mathematical 
programming (optimization) models to be optimized. AI technologies can be applied 
to find the best solution for the model. Applications of genetic algorithm (GA) are 
of particular interest because such applications are most common in job scheduling. 
Furthermore, XAI techniques and tools for explaining GA can be easily extended to 
other evolutionary AI applications, such as artificial bee colony (ABC), ant colony 
optimization (ACO), and particle swarm optimization (PSO) in job scheduling. 
Applicable XAI techniques and tools include flowcharts, text description, chromo-
some maps, dynamic line charts, and bar charts with baseline. Some novel XAI 
techniques and tools for interpreting GAs are also introduced: decision tree-based 
interpretation and dynamic transition and contribution diagrams. 

Keywords XAI · Job sequencing and scheduling · GA · Decision tree-based 
interpretation · Dynamic transition and contribution diagrams 

4.1 Job Sequencing and Scheduling in the Manufacturing 
Domain 

No matter how advanced a manufacturing system is, job sequencing and scheduling 
is a basic but critical task of the manufacturing system. In manufacturing, job
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sequencing and scheduling is a topic that has attracted many applications of arti-
ficial intelligence (AI) [1]. AI technologies can be used to build a job scheduling 
system or prepare the inputs required by a job scheduling system [2, 3]. Further-
more, job scheduling is usually formulated as a mathematical programming problem 
[4]. AI technologies are then applied to find the optimal (or near-optimal) solution 
to the problem [5]. In addition, artificial neural network (ANN), genetic algorithm 
(GA), particle swarm optimization (PSO), artificial bee colony (ABC), ant colony 
optimization (ACO), harmony search, and other AI technologies can be applied to 
analyze scheduling results to adjust/optimize scheduling rules [6–8]. 

However, many people related to this task do not have background knowledge of 
AI technologies, which hinders their understanding, communication, and acceptance 
of the application of AI technologies [9]. At the same time, job scheduling methods 
incorporating more sophisticated AI technologies are being proposed. As a result, 
there is a gap between research and practice. The emergence of explainable artificial 
intelligence (XAI) promises to fill this gap [10, 11]. However, 

• The scheduling plan generated by an AI application is easy to verify its advantages 
over current practice, reducing the need to explain the reasoning process of the 
AI application. 

• A scheduling plan involves the operations of many jobs on multiple machines, 
and it is difficult to explain the scheduling result of an operation (or job) locally. 

• There has been little research on this topic in the past. Most existing XAI 
methods focus on pattern recognition, defect analysis [12, 13], and estimation 
and prediction [14, 15]. 

• XAI applications are more prevalent in other domains than in manufacturing: In 
domains such as medicine, services, and banking, the results of AI applications 
affect human–machine interactions, and thus need better explanations [16–19]. 
In contrast, in manufacturing, the results of AI applications are related to jobs or 
machines and can be used directly [20]. 

For these reasons, this chapter aims to discuss the application of XAI to job 
sequencing and scheduling in manufacturing systems. 

4.2 AI Applications in Job Sequencing and Scheduling 

Job sequencing and scheduling in a manufacturing system is an iterative process that 
includes the following steps [21], and AI technologies can be applied to several of 
these steps, as shown in Fig. 4.1:

Step 1. Select performance measures: Common job sequencing performance 
measures include makespan (Cmax), maximum lateness (Lmax), total completion 
time (

∑
C j ), total weighted completion time (

∑
w jC j ), total (weighted) tardi-

ness (
∑

(w j )Tj ), (weighted) number of tardy jobs
∑

(w j )U j , , mean cycle time 
(C), cycle time standard deviation (sC ), etc. [22].
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Collect/Estimate the required 
data 

Implement the optimal 
scheduling plan 

Rebuild the scheduling model 

Select performance measures 

Solve the scheduling problem 
to generate the optimal 

scheduling plan 

Evaluate scheduling 
performance 

AI 
Applications 

AI 
Applications 

AI 
Applications 

Fig. 4.1 Steps of job sequencing and scheduling 

Step 2. Collect (or estimate) the required (input) data (see Table 4.1): Some 
data required for job scheduling can be extracted from the production plan and 
production management information systems (PROMIS) [6]. Other data need to 
be derived, estimated, or predicted, to which AI technologies are applicable [23].
Step 3. Build (or rebuild) the scheduling model: Job scheduling problems are 
usually solved by formulating and optimizing mathematical programming models 
[4] or by applying scheduling rules [6]. 
Step 4. Solve the scheduling problem to generate an optimal scheduling plan: AI 
technologies can be used to find optimal solutions to mathematical programming 
models, prepare inputs for dispatch rules, or optimize scheduling rules [24–27]. 
Step 5. Implement the optimal scheduling plan. 
Step 6. Evaluate scheduling performance. 
Step 7. Return to Step 3.
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Table 4.1 Data required for job scheduling 

Data type Input data 

Collected data • Arrival time 
• Batch/Job size 
• Due date 
• Job no 
• Lateness penalty 
• Priority 
• Processing time 
• Product type 
• Release time 
• etc.  

Derived data • Bottleneck 
• Hourly capacity of the next machine 
• Minimum and maximum of raw/derived data 
• Next bottleneck 
• Number of visits 
• Processing time until the next bottleneck 
• Processing time until the next visit (by product type) 
• Remaining processing time (by product type) 
• Utilization of the next machine 
• WIP level in the queue of the next machine 
• etc.  

Estimated/forecasted data • Cycle time (by product type) 
• Minimum and maximum of estimated/forecasted data 
• Remaining cycle time (by product type) 
• etc.

4.3 Generic XAI Techniques and Tools for Job Sequencing 
and Scheduling 

Many AI technologies have been explained in other domains or fields, as shown in 
Table 4.2. These explanations can provide a reference for explaining the application 
of AI applications in job scheduling. However, XAI applications for image analysis 
and pattern recognition [12, 13, 16, 17] are less useful for job scheduling and are 
therefore not included in this table. In addition,

• There are many types of AI technologies used in job scheduling, and existing 
explanations are limited to a few AI technologies (such as ANN, deep learning or 
deep neural networks (DNN), fuzzy analytic hierarchy process (FAHP), adap-
tive neuro-fuzzy inference systems (ANFIS), fuzzy Vise Kriterijumska Opti-
mizacija I Kompromisno Resenje (VIKOR), k-means, eXtreme gradient boosting 
(XGBoost), recurrent neural network (RNN), etc.) [12–17]. The applications of 
other AI technologies (such as GA, ACO, PSO, ABC, etc.) are rarely explained. 

• Existing explanations do not cover all steps of scheduling.
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Table 4.2 Explained AI applications in other domains or fields and their references for job 
scheduling 

Explained AI 
technology 

References XAI techniques Applications Reference for job 
scheduling 

ANFIS Aghamohammadi 
et al. [28] 

• Textual  
description 

• Bar chart 
• Line  chart  
• Performance 
evaluation 

• Heart attack 
prediction 

• Input forecasting 

ANN Chen and Wang 
[15], Kong et al. 
[29] 

• Textual  
description 

• Shaply additive 
explanation 
value (SHAP) 

• Random forest 
(RF) 

• Cycle time 
prediction 

• Alloy  
component 
effect 
evaluation 

• Input forecasting 
• Job attribute 
prioritization 

DNN Akhlaghi et al. 
[30] 

• Textual  
description 

• SHAP 

• Dew point 
cooler feature 
comparison 

• Input forecasting 
• Job attribute 
prioritization 

FAHP Chen and Wang 
[15], Chen and 
Chiu [19] 

• Textual  
description 

• Gradient bar 
chart 

• Grouped bar 
chart 

• Traceable 
aggregation 

• Factor 
prioritization 

• Travel  
destination 
selection 

• Job attribute 
prioritization 

• Job sequencing 

Fuzzy 
VIKOR 

Chen and Wang 
[15] 

• Textual  
description 

• Segmented  
distance 
diagram 

• Travel  
destination 
selection 

• Job selection 
• Multi-objective 
job scheduling 

k-means Chen and Wang 
[15] 

• Textual  
description 

• Radar chart 
• Radar scatter 
diagram 

• Job  
classification 

• Job classification 
• Job prioritization 

RNN Panigutti et al. 
[31] 

• Textual  
description 

• Decision trees 

• Patient  
classification 

• Job classification 
• Job prioritization 

XGBoost Liu and Liu [26] • Textual  
description 

• SHAP 

• Reservoir 
feature effect 
analysis 

• Input forecasting 
• Job attribute 
prioritization
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In estimation and prediction, complex AI applications are simulated/explained 
using simpler XAI techniques, and the average accuracy of the latter when simulating 
the former can be used to evaluate the effectiveness of XAI techniques [15]. In job 
scheduling, there is only one optimal solution (i.e., the optimal scheduling plan), and 
it is impossible to evaluate the effectiveness of an XAI technique in the same way. 
Alternatively, XAI techniques for interpreting AI applications in job scheduling are 
considered effective if the following requirements [18, 19] are  met:  

• Personnel responsible for job scheduling have the required background knowl-
edge. 

• A XAI technique can process high-dimensional scheduling data. 
• A XAI technique is convenient for comparing the performances of various 

scheduling methods. 
• Explanation formats are consistent in different applications. 
• A XAI technique is easy to communicate. 
• A XAI technique is simple and easy to understand. 
• A XAI technique can visualize/compare feasible solutions. 
• A XAI technique can visualize/track the evolution process. 

4.3.1 Referring to the Taxonomy of Job Scheduling Problems 

Referring a job scheduling problem to the taxonomy of job scheduling problems 
is the first way to help understand why existing scheduling rules perform well (or 
poorly). 

A job scheduling problem can be described by the three-field notation α/β/γ 
where 

• α: machine conditions; 
• β: job characteristics; 
• γ : scheduling performance (usually to be minimized). 

Therefore, when dealing with a job scheduling problem, the job scheduling 
problem should be classified first. Once the type of the job scheduling problem 
is determined (i.e., the values of α, β, and γ are determined): 

• Existing scheduling methods suitable for this type can be applied. 
• The scheduler may further develop a more suitable and effective scheduling 

method based on these basic scheduling methods. 

In other words, when explaining a new scheduling method, it is useful to refer 
to the taxonomy of job scheduling problems and to compare the new scheduling 
method with existing scheduling methods for this type of job scheduling problems.
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4.3.2 Customizing Dispatching Rule 

Dispatching (scheduling) rules are perhaps the most widely applied job sequencing 
and scheduling methods. Table 4.3 summarizes some common dispatching rules. 
Dispatch rules in the form of linear regression, polynomials, or simple inverse 
functions are easily understandable, so basically no more explanation is needed. 

However, some dispatch rules are based on parameters that need to be 
predicted/estimated, such as the value of RCT j in FSVCT. In this case, the explana-
tion focuses on how to predict/estimate these parameters. If ANN or deep learning 
is applied, the XAI techniques introduced in Chap. 2 are applicable. 

Researchers are constantly trying to propose new dispatching rules for different 
scheduling problems because they are easy to understand, communicate, and apply. 
For example, to simultaneously optimize two scheduling performance measures

Table 4.3 Some understandable dispatching rules for job scheduling 

Dispatching rule Abbreviation Job priority evaluation formulaa 

First in first out FIFO r j 

Critical ratio CR 
d j−t 
RPT j 

Cyclic scheduling CYCLIC (1) 1 
n j mod k 

(2) FIFO 

Earliest due date EDD d j 

First in first out plus FIFO+ (1) NQ j + FIFO 
(2) FIFO 

Fluctuation smoothing policy for mean 
cycle time 

FSMCT j/λ − RCT j 

Fluctuation smoothing policy for cycle 
time variation 

FSVCT R j − RCT j 

Longest processing time until the next 
visit 

LTNV (1) 1/PTN j 
(2) FIFO 

Least amount of WIP in the next machine 
queue 

LWNQ NQ j 

Shortest processing time SPT p j 

Shortest remaining processing time SRPT RPT j 

Shortest remaining processing time plus SRPT+ (1) RPT j 
(2) NQ j 

Shortest processing 
time until the next visit 

STNV (1) 1/PTN j 
(2) FIFO 

aPriority is the smaller the higher 
j job no.; d j due date; k cycle length; n j number of visits to the current machine; p j processing 

time; PTN j processing time until the next visit; r j arrival time; R j release time; RCT j remaining 

cycle time; RPT j remaining processing time; t time; NQ j the queue length of the next machine; λ 
release rate 
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(cycle time average and variation), Chen [6] proposes a new scheduling rule that 
combines the FSVCT rule and the FSMCT rule as 

SK j = 

⎛ 

⎝ 
SK j (FSMCT) − min 

l 
SKl (FSMCT) 

max 
l 

SKl (FSMCT) − max 
l 

SKl (FSMCT) 

⎞ 

⎠ 
α 

· 
⎛ 

⎝ 
SK j (FSVCT) − min 

l 
SKl (FSVCT) 

max 
l 

SKl (FSVCT) − max 
l 

SKl (FSVCT) 

⎞ 

⎠ 
1−α 

(4.1) 

where SK j (FSMCT) and SK j (FSVCT) are slack values of job j as defined in Table 
4.3; α ∈ [0, 1]. The design idea of the new dispatching rule is “when one measure is 
stronger, the other measure becomes weaker”. 

Another way to propose new scheduling rules is to use big data analytics 
to customize existing scheduling rules for the target manufacturing system. For 
example, Chen [6] tailored FSVCT rules for specific wafer fabs. He first proposed 
the nonlinear FSVCT rule as 

SK j = N (R j ) 
N (RCT j ) 

= 
(R j − min 

k 
Rk)/(max 

k 
Rk − min 

k 
Rk) 

(RCT j − min 
k 

RCTk)/(max 
k 

RCTk − min 
k 

RCTk) 

= 
b 

a 
· 

R j − min 
k 

Rk 

RCT j − min 
k 

RCTk 

= 
b 

a 
· 
R j − min 

k 
Rk − RCT j + RCT j 

RCT j − min 
k 

RCTk 

= b 

a(RCT j − min 
k 

RCTk) 
· (R j − RCT j + RCT j − min 

k 
Rk) 

=
(b(RCT j − min 

k 
RCTk) 

a

)−1 

· (R j − RCT j + (RCT j − min 
k 

Rk)
1 ) (4.2) 

where N() is the normalization function; a = max 
k 

Rk − min 
k 

Rk ; b = max 
k 

RCTk − 
min 
k 

RCTk . 

The FSVCT rule can be re-written as 

SK j = R j − RCT j 

=
(a(RCT j − min 

k 
RCTk) 

b

)−0 

· (R j − RCT j + (RCT j − min 
k 

Rk)
0 ) (4.3)
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These two formulas can be generalized as. 

(Generalized FSVCT rule) 

SK j =
(a(RCT j − min 

k 
RCTk) 

b

)−ξ 

· (R j − RCT j + (RCT j − min 
k 

Rk)
ζ ) (4.4) 

where ξ and ζ are positive real numbers satisfying the following constraints: 

• ξ = 0 ↔ ζ = 0 
• ξ = 1 ↔ ζ = 1 

There are many possible models for choosing the values of ξ and ζ in Eq. (4.4). 
For example, 

• Linear model: ξ = ζ 
• Nonlinear model: ξ = ζ k , k ≥ 0 
• Logarithmic model: ξ = ln (1 + ζ ) / ln  2.  

The generalized FSVCT rule can be tailored to a specific wafer fab by selecting 
appropriate values of ξ and ζ using big data analytics. 

Example 4.1 The most appropriate generalized FSVCT rule will be found to opti-
mize the job scheduling performance in a fab with respect to cycle time standard devi-
ation (σCT j ). For this purpose, 50 combinations of ξ and ζ were generated according 
to the logarithmic model. Then, production simulation is used to assess the effects 
of these combinations. The results are summarized in Table 4.4 [6]. 

Subsequently, a feed-forward neural network (FNN) is built to make predictions 
based on the values of ξ and ζ . The required MATLAB code is shown in Fig. 4.2. 
The predicted results are shown in Fig. 4.3.

To derive optimal values for both parameters, the range of ζ is divided into 1000 
equal intervals. The value of ξ is derived from the logarithmic model. 1000 combi-
nations are fed into the trained FNN for estimation. The combination that gives the 
smallest value of σCT j is chosen: 

ξ ∗= 0.0128;ζ ∗= 0.0089; σ ∗ 
CT j = 36 h 

Namely, the most appropriate generalized FSVCT rule for the fab is

Table 4.4 Scheduling 
performances using various 
combinations of ξ and ζ 

Combination # ξ ζ Cycle time variation (h) 

1 1.12 1.18 116 

2 2.21 3.63 178 

… 

50 2.74 5.7 353 
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GFSVCT_para=[1.12 2.21 … 2.74; 1.18 3.63 … 5.7]; 
ct_stdev=[116 178 … 353]; 
net=feedforwardnet(6);   
net.dividefcn='dividetrain'; 
net.trainParam.lr=0.1; 
net.trainParam.epochs=50000; 
net.trainParam.goal=1; 
net=train(net, GFSVCT_para, ct_stdev); 
estimated_ct_stdev=net(GFSVCT_para); 

Fig. 4.2 MATLAB code 
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Fig. 4.3 Predicted scheduling performances

SK j =
(a(RCT j − min 

k 
RCTk) 

b

)−0.0128 

· (R j − RCT j + (RCT j − min 
k 

Rk)
0.0089 ) 

(4.5) 

The response surface method is not suitable for analyzing the effects of the two 
parameters on σCT j , because the value of ξ depends on the value of ζ . In contrast, 
the effect of the value of ζ on σCT j is shown in Fig. 4.4. 

Fig. 4.4 Effect of the value 
of ζ on σCT j
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set rmin to a large value 
set jmin to n+1 -> null job 
for i=1 to n 

if ri is smaller than rmin 
update rmin to ri 
update jmin to ji 

end 
end  

Fig. 4.5 Pseudocode of FIFO 

4.3.3 Textual Description, Pseudocode 

All job scheduling studies use the textual description technique [6] to explain the 
ideas behind scheduling methods. Compared with the formulas full of mathemat-
ical symbols in the previous section, textual descriptions are obviously easier to 
understand and communicate. 

The following uses the dynamic bottleneck detection (DBD) method proposed by 
Zhang et al. [32] as an example. In DBD, different heuristics are used to sequence jobs 
before non-bottleneck and bottleneck workstations. First, jobs are divided into four 
categories. Then, jobs in these categories are sequenced using different dispatching 
rules [18]: 

(1) First-priority category: CR is used to sequence jobs in this category first. Then, 
FIFO is applied to break possible ties (i.e., jobs with the same CRs). 

(2) Second-priority category: The shortest processing time until the next bottleneck 
(SPNB) is applied to sequential jobs in this category. CR and FIFO are used in 
turn to break possible ties. 

(3) Third-priority category: This category applies SPT, CR, and FIFO in turn. 
(4) Fourth-priority category: CR and FIFO are used for this category. 

Pseudocode is similar to textual descriptions in which the same ideas are presented 
informally, semi-colloquially, using a programming language. For system devel-
opers, pseudocode facilitates the coding of a scheduling method. However, for other 
stakeholders, pseudocode may not be easy to understand. Figure 4.5 provides a 
pseudocode example of FIFO. 

4.3.4 Decision Tree, Flowchart 

Some dispatching rules are compound because they contain multiple simple 
dispatching rules. For example, STNV consists of two simple rules: One selects the 
job with the shortest processing time until the next visit; the other is first in, first out. 
These simple dispatching rules are applied sequentially subject to different conditions 
being met, which can be better explained using a decision tree (see Fig. 4.6).
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Fig. 4.6 Decision tree for 
explaining STNV 

Machine m is the bottleneck 

Choose the job with 
the shortest PTNj 

Yes No 

Choose the job with 
the smallest rj 

The second example is DBD, which consists of up to three simple dispatching rules 
per job category [33]. A decision tree is also built to explain (clarify) the sequencing 
mechanism of DBD in Fig. 4.7. 

In many scheduling studies, flowcharts are drawn to explain the implementa-
tion/reasoning process of scheduling methods. A decision tree is a special flowchart 
with many conditional judgments. Figure 4.8 is a flowchart for explaining STNV. 

Any first-priority job? 

Choose the job with 
the smallest CRj 

Yes No 

Any second-priority job? 

Ties exists 

Choose the job with 
the earliest rj 

Choose the job with 
the smallest PNBj 

Ties exists 

Choose the job with 
the smallest CRj 
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Choose the job with 
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Any third-priority job? 

Choose the job with 
the shortest pj 
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Choose the job with 
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Ties exists 

Yes 

Choose the job with 
the earliest rj 

Yes No 

Any fourth-priority job? 

No 

Choose the job with 
the smallest CRj 

Ties exists 

Choose the job with 
the earliest rj 

Yes 

Fig. 4.7 Decision tree for explaining DBD 

Fig. 4.8 Flowchart for 
explaining STNV Is machine m 

the bottleneck 

Choose the job 
with 

the shortest PTNj 

Choose the job 
with 

the smallest rj 

Yes No 
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4.4 XAI Techniques and Tools for Genetic Algorithm 
Applications 

Sequencing and scheduling of jobs is not difficult. The scheduler can arbitrarily deter-
mine the order of jobs and then schedule their start and finish times, just as is done in 
many traditional manufacturing systems. However, generating scheduling plans that 
optimize specific criteria is a challenging task. For this reason, job sequencing and 
scheduling problems are often formulated as mathematical programming (optimiza-
tion) models to be optimized. AI technologies can be applied to find the optimal solu-
tions to the models [34–41]. Applications of GA are of particular interest because such 
applications are most common in job scheduling [42]. Moreover, XAI techniques and 
tools for explaining GA can be easily extended to account for other evolutionary AI 
applications such as ACO, PSO, and ABC applications in job scheduling. 

4.4.1 Flowchart, Textual Description 

GA helps explain the process of solving complex job sequencing and scheduling 
problems by describing how to improve the feasible solution [43]. In other words, 
GA describes the evolution of feasible solutions to optimal solutions for mathemat-
ical programming problems of job sequencing and scheduling [44]. GAs have been 
widely used in job scheduling [24, 29, 45–47]. 

Figure 4.9 [6] is a flowchart used to illustrate the process of implementing GA.
Other generic XAI techniques have been applied to explain GA applications in 

job scheduling. For example, a scheduling system (method) including a GA appli-
cation can be illustrated with a system architecture diagram [48]. Furthermore, 
textual descriptions are used to explain the reasoning mechanism of GA [2], which 
is supported by pseudocode [2, 49]. 

4.4.2 Chromosomal Diagram 

Chromosomal diagrams (or graphs) are special XAI tools used to illustrate chromo-
somal encoding (i.e., permutation representation), crossovers, and mutations [2, 49], 
in which solutions to a job sequencing and scheduling problem are represented as 
bit strings called chromosomes (or individuals) and then evolved. Figure 4.10 gives 
an example showing the sequence of processing five jobs to minimize the makespan 
Cmax. In this example, the sequence of processing jobs is job #1 → job #3 → job #5 
→ job #2 → job #4, which is a feasible solution to the scheduling problem.

Different job scheduling problems require different encodings, and some may be 
complex.
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Fig. 4.9 Process of 
implementing GA

Generate the initial 
population 

Selection 

Reproduction 

Crossover 

Terminated 

Calculate fitness 

No 

Satisfactory? 

Mutation 

Yes 

#1 #3 #5 #2 #4 

Fig. 4.10 Sequence of processing jobs as a chromosome (permutation representation)

Example 4.2 The case discussed by Pezzella et al. [50] is used as an example, where 
the operations of three jobs on four machines were scheduled. The manufacturing 
system is a flexible job shop where the numbers of operations for different jobs are 
not equal. Different jobs on the same machine have different processing times too. 
Furthermore, each operation can be performed on different machines with unequal 
processing times. Optimizing the makespan of such manufacturing systems has been
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(1, 1, 3) (1, 2, 1) (2, 1, 3) (2, 2, 4) (3, 1, 3) (1, 3, 2) (3, 2, 1) (2, 3, 4) 

Fig. 4.11 Array string for representing a chromosome 

#1 #3 #5 #2 #4 

#3 #1 #2 #4 #5 

#2 #4 #1 #3 #5 

#2 #5 #1 #4 #3 

Chromosome #1 

Chromosome #s 

. . . 

Fig. 4.12 Initial population (first generation) 

shown to be an NP-hard problem [51]. Theoretically, the number of possible permu-
tations for this problem is at most 43+3+2 · 8! =  2.64 × 109. For this reason, GA is 
applied to help solve the job scheduling problem. 

Each chromosome (i.e., job permutation or feasible solution) is represented as an 
array string, as shown in Fig. 4.11, where the array (a, b, c) indicates that the bth 
operation of job a is performed on machine c. For example, the rightmost array (2, 
3, 4) means that the 3rd operation of job #2 is executed on machine #4. 

In the beginning, an initial population is created consisting of s individuals, called 
the first generation, as shown in Fig. 4.12. The fitness (scheduling performance) of 
each individual is also evaluated. 

Individuals (parents) with better fitness are chosen to generate their offspring. 
Other selection methods include random selection and tournament selection. 

Individuals are crossed over and mutated to create the next generation, as shown 
in Fig. 4.13. The crossover point “X” is chosen randomly. The jobs of the two parents 
following the crossover point are swapped with a given probability. However, this can 
cause the same job to appear twice, which is then resolved by randomly replacing 
the job with a non-occurring one. Furthermore, jobs to be mutated are randomly 
selected, and these jobs have a certain chance of exchanging their positions.
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#1 #3 #5 #4 #2Offspring 1 #1 #3 #2 #4 #5Offspring 1 

#1 #3 #5 #2 #4Parent 1 

#3 #1 #2 #4 #5Parent 2 

#1 #3 #5 #4 #2Offspring 1 

#3 #1 #2 #5 #4Offspring 2 

X 

(Crossover) 

(Mutation) 

Fig. 4.13 Crossover and mutation 

4.4.3 Dynamic Line Chart, Bar Chart with Baseline 

During the evolution, a dynamic line chart can be used to track the convergence 
of the scheduling performance [50] (see Fig.  4.14), where the best and average 
performances of each generation are monitored. After optimization, a bar chart with 
baseline can be plotted to compare the scheduling performance using GA with other 
scheduling methods (see Fig. 4.15) [33, 52, 53]. 

Existing XAI techniques for explaining the application of GA in job scheduling 
face the following problems:

• In the application of GA for job scheduling, the inputs of GA are usually feasible 
solutions rather than job attributes, and the output is the optimal solution [49]. 
However, there is no direct relationship between feasible and optimal solutions, 
i.e., there is no intuitive reasoning from precedent [54], because if the initial 
feasible solutions are different, the optimal solution is still the same. Therefore, 
popular methods for fitting input–output relationships, such as decision trees [31], 
classification and regression trees (CART) [15], RFs [15], fuzzy inference rules

Fig. 4.14 Dynamic line 
chart for tracking the 
convergence of the 
scheduling performance
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Fig. 4.15 Bar chart with 
baseline for comparing the 
scheduling performances of 
various scheduling methods
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(or systems), SHAP [29], local interpretable model-agnostic explanation (LIME) 
[55], etc. are not suitable for explaining the application of GA in job scheduling.

• In addition, most of the popular input–output relationship fitting methods are 
difficult to handle a large number of inputs [56], while GA has many inputs (i.e., 
feasible solutions) [57]. 

• Furthermore, in previous studies, chromosome maps are usually used to analyze 
the evolution of feasible solutions. How these changes lead to the optimal solution 
has not yet been visualized. 

4.5 Other XAI Techniques and Tools for Explaining GA 

4.5.1 Decision Tree-Based Interpretation 

It is interesting to explain the operations in GA by applying other XAI techniques 
such as decision trees. This is a meaningful attempt, since decision trees have been 
used to explain the application of AI to other types of problems such as estimation, 
prediction, and pattern recognition. 

In GA, the selection mechanism can be explained by a decision tree, as shown in 
Fig. 4.16. Cmax,q is the makespan (or fitness) associated with chromosome q; q = 
1–Q. The set of candidate chromosomes is {xs}; the summary of selection results is 
{xp}. i is the index of a gene. Decision trees are a highly interpretable XAI technique 
and thus are applied [9, 10]. Other selection mechanisms can be explained similarly. 

Fig. 4.16 Decision tree for 
explaining the selection 
mechanism

If 

∀i 

Yes 
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The crossover operation shown in Fig. 4.13 can also be interpreted in terms of 
decision trees, as shown in Fig. 4.17: 

• p and p′ are the two parental chromosomes to be crossed over, and o and o′
represent the two offspring chromosomes. 

• xo indicates the oth offspring chromosome. 

In this example, for most genes, only one level of the decision tree is required. 
Decision trees for other genes have more levels. Other crossover mechanisms can be 
explained similarly. 

Subsequently, the mutation operation in Fig. 4.13 is explained using another deci-
sion tree, as shown in Fig. 4.18, where the genes at positions k and l are swapped. 
Other mutational mechanisms can be explained similarly. 

Fig. 4.17 Decision tree for 
explaining the crossover 
mechanism 
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xo2 = xp2 
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Fig. 4.18 Decision tree for 
explaining the mutation 
mechanism
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Fig. 4.19 Decision tree for 
explaining the complete 
process of generating 
offspring chromosomes 
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If 
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Yes 
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If 

Yes 

These two diagrams can be combined to explain the complete process of 
generating offspring chromosomes. Figure 4.19 gives an example. 

4.5.2 Dynamic Transition and Contribution Diagram 

Furthermore, in order to visualize how the change of feasible solutions leads to the 
optimal solution, this section borrows the concept of scatter radar diagrams [15] and 
proposes dynamic transition and contribution diagrams. In a dynamic transition and 
contribution diagram,
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• The data of all feasible solutions (i.e., chromosomes) of each population and the 
optimal solution are presented in the form of radar diagrams. 

• The optimal solution is placed in the center. 
• If a population contains numerous feasible solutions, only the feasible solutions 

that are closer to the optimal solution will be liberated around the optimal solution. 
• Directional arrows link each feasible solution to the optimal solution. 
• The thicker the arrow, the closer the feasible solution is to the optimal solution. 

In other words, the feasible solution contributes more to the optimal solution. 

The dynamic transition and contribution diagram at the end of the evolutionary 
process is shown in Fig. 4.20. According to Fig. 4.20, 

• The optimal solution is job #5 → job #2 → job #7 → job #1 → job #4 → job 
#3 → job #6. 

• The top five chromosomes of each generation are shown.

Optimal solution 

Job # 

Job # 

Job # 

Job # 

Job # 

Job # 

Job # 

Job # 

Job # 
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Job # 

Job # 

Job # 
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Fig. 4.20 A dynamic transition and contribution diagram 
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