
The concept of autonomic computing seeks to reduce the complexity of pervasively ubiquitous 
system management and maintenance by shifting the responsibility for low-level tasks from 
humans to the system while allowing humans to concentrate on high-level tasks. This is 
achieved by building self-managing systems that are generally capable of self-configuring, 
self-healing, self-optimising, and self-protecting.  

Trustworthy autonomic computing technologies are being applied in datacentre and cloud 
management, smart cities and autonomous systems including driverless cars. However, there 
are still significant challenges to achieving trustworthiness. This book covers challenges and 
solutions in autonomic computing trustworthiness from methods and techniques to achieve 
consistent and reliable system self-management. Researchers, developers and users need to 
be confident that an autonomic self-managing system will remain correct in the face of any 
possible contexts and environmental inputs. 

The book is aimed at researchers in autonomic computing, autonomics and trustworthy 
autonomics. This will be a go-to book for foundational knowledge, proof of concepts and novel 
trustworthy autonomic techniques and approaches. It will be useful to lecturers and students 
of autonomic computing, autonomics and multi-agent systems who need an easy-to-use text 
with sample codes, exercises, use-case demonstrations. This is also an ideal tutorial guide for 
independent study with simple and well documented diagrams to explain techniques and 
processes.
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Preface

Computing systems are growing exponentially in terms of increasing heterogeneity, 
scale, and ubiquity, and are becoming exceedingly complex for human management. 
These systems are getting more pervasive, being embedded in everyday objects, and 
are exposed to environments where system working conditions are dynamic, uncer-
tain and sometimes, unpredictable. IBM [1] introduced the Autonomic Computing 
concept in 2001 as a solution for managing such heterogeneously knitted and per-
vasively ubiquitous systems. The autonomic computing concept seeks to reduce the 
complexity of system management and maintenance by shifting the responsibility 
for low-level tasks from humans to the system while allowing humans to concentrate 
on high-level tasks. This is achieved by building self-managing systems that are gen-
erally capable of self-configuring, self-healing, self-optimising, and self-protecting 
(self-CHOP). These self-CHOP capabilities are commonly considered the founda-
tional autonomic functionalities of an autonomic computing system. Autonomic 
computing systems or autonomic systems are also known as self-managing systems

The autonomic computing concept is now well understood. However, there has 
been limited progress towards trustworthy autonomic computing. This book seeks to 
bring focus on the issues of autonomics trustworthiness – trustworthiness is defined 
in this book to mean a quality that enables the user to be confident that an autonomic 
system will remain correct in the face of any possible contexts and environmental 
inputs and sequences of these. In other words, it enables users to be confident that an 
autonomic system will do what it is expected to do over short- and longer-term time 
frames. This book makes the case for autonomic system trustworthiness, exposes the 
issues therein and offers ways (methods and techniques) of achieving trustworthy 
autonomic systems. Case example scenarios are used to demonstrate these methods 
and techniques. I believe that the ultimate goal of autonomic computing should tran-
scend the achievement of self-management to include the achievement of consist-
ency and reliability of results through self-management.

[trustworthiness is defined in this book to mean a quality that enables the user to be 
confident that an autonomic system will remain correct in the face of any possible 
contexts and environmental inputs and sequences of these]

Despite the progress in autonomic computing research, there are still significant 
challenges in the area of trustworthiness. These include the lack of support for 
inbuilt mechanisms for trustworthiness in the design methods used for the technol-
ogy, the limitations regarding the way autonomic systems are validated, and the lack 
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of self-monitoring support that is capable of achieving stability over longer term 
time frames. Without addressing trustworthiness, there is the possibility of overall 
inconsistency in the autonomic system despite autonomic control decisions being 
validated within the internally defined logical boundary. There are also the issues 
of autonomic interoperability of co-existing autonomic elements in multi-element 
systems. Autonomic systems, designed in isolation, should be able to coopera-
tively work together towards a common goal, and efficiently too, in a mutli-system 
environment.

An analysis-by-problem approach, introduced in Chapter 2, has been used to 
show the pattern of how the trustworthy autonomic challenge is being tackled by the 
autonomic computing research community. This shows that only a few studies have 
identified trustworthiness as a challenge and fewer have proposed actual methodolo-
gies relating to validation, trustworthiness and certification – of which the majority 
are application-dependent.

The coverage of this book includes foundations of autonomic computing and 
trustworthy autonomics, speaking autonomics [definition of autonomics terminol-
ogy], level of autonomics, autonomic architecture, trustworthy autonomics, runtime 
self-validation and conformance testing, autonomics enabled techniques, logic and 
functions, and interoperability. The breakdown of the different chapters is as follows:

●● Chapter 1: Trustworthy Autonomics Primer
This chapter gives a low-level overview of the autonomic computing concept 
and leads a general introductory discussion on trustworthy autonomic com-
puting. Focus includes making the case for trustworthy autonomic comput-
ing, the state-of-the-art in research, relevant tools, and terminologies.

●● Chapter 2: Evolution of Autonomic Computing
This chapter takes a holistic view of the entire field of autonomic computing 
research in order to gain a clearer picture of the need for and lack of effort 
towards trustworthy autonomic computing. It also establishes an understand-
ing of the level of work that has already gone into the autonomic computing 
research, how that can be harnessed, and where the work needs to be concen-
trated in order to achieve trustworthiness.

●● Chapter 3: Autonomic Enabling Techniques
Autonomic enabling techniques are tools for designing and delivering desired 
autonomic functionalities. This chapter presents some of these techniques 
and shows examples of how they can be used to achieve relevant autonomic 
computing features.

●● Chapter 4: Trustworthy Autonomic Computing
For complete reliance on autonomic computing systems, the human user will 
need a level of trust and confidence that these systems will satisfy specified 
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requirements and will not fail. This chapter looks at the differences between 
Trustworthy Autonomic Computing and Trusted (or Trustworthy) Computing 
and then presents a framework for a trustworthy autonomic architecture 
which forms the basis for several implementations in this book.

●● Chapter 5: TrAArch Implementations
This chapter provides an implementation and empirical analysis of a new 
trustworthy autonomic architecture (TrAArch) framework. This framework 
has inbuilt mechanisms and instrumentation to support trustworthiness. Two 
experimental demonstrations – an easy-to-understand autonomic marketing 
scenario and a more complex self-adapting datacentre resource request and 
allocation management case scenario are used.

●● Chapter 6: Multi-agent Interoperability
The deployment of autonomic systems has grown over time, both in scale 
and ubiquity, leading to situations where more autonomic managers (agents) 
could be integrated to achieve a common goal. This chapter provides an 
overview of interoperability solutions and makes case for a proposed solu-
tion that is suitable for trustworthy autonomic computing. An implementa-
tion and empirical analysis of the proposed solution is presented.

●● Chapter 7: Level of Autonomicity
Level of autonomicity is one of the pillars of trustworthy autonomic computing 
as it ensures that autonomic systems are defined in a universal language. This 
chapter introduces the concept of measuring the level of autonomicity (LoA) 
for autonomic systems, reviews some of the existing approaches for measuring 
level of autonomicity, and presents a quantitative technique for measuring LoA.

Why the Book

I decided to write this book because it was the type of book I wished I had had when 
I started my research in trustworthy autonomics. One of my early studies [2], dur-
ing my PhD, revealed that the early stage research in autonomic computing focused 
mainly on stating the problem and challenges of an ever-growing system complexity, 
the need for solution and justifying autonomicity as that solution, developing and 
applying autonomic techniques, and identifying and solving specific problems in 
isolation. There were limited published information, especially books, on autonomic 
computing and absolutely no book on trustworthy autonomics when I first started my 
research. Though there are now more books, especially journal compilations, and 
informative websites on self-managing systems and autonomic computing, there is 
still a very limited number of books on trustworthy autonomic computing. I still 
find it difficult to find books aimed at beginners and newcomers in trustworthy auto-
nomic computing. Beginners still struggle with understanding where to start, what 
to read first and where to get the expected prerequisite skills.
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This book does not have abbreviations, making it easy to read and work with. It 
is intended to be an ideal guide for independent study. It includes sample program 
codes for the relevant in-text activities, simulations and use-case/case study dem-
onstrations. These easy-to-understand sample codes will help readers easily walk 
through the examples as well as design their own experiments.

This book uses simple examples and well-documented diagrams and images to 
explain techniques and processes. The examples used in this book are clearly pre-
sented and easy to understand, making them accessible to all. Each chapter begins 
with an introduction and explains how it fits into and supports the beginner’s under-
standing of trustworthy autonomics.

This book has been planned to have a very wide appeal and is targeted at:

–	 Early researchers in autonomic and trustworthy autonomic computing. 
This offers a go-to book for foundational knowledge, proof of concepts and 
novel trustworthy autonomic techniques and approaches.

–	 Teachers and students of autonomic computing and multi-agent systems 
who need an easy-to-use text with sample codes, exercises, use-case 
demonstrations; it is also suitable for self-teaching.

–	 Early programmers who require accessible pseudocode and code examples 
for application demonstrations.

–	 Others studying or researching other areas of computer science and 
engineering requiring a basic grounding in the techniques presented in the 
book.

Another interesting aspect of this book is that some of the techniques explained here 
are generic and can be used in other fields. For example, Chapter 3 presents auto-
nomic enabling techniques most of which are relevant concepts in different fields 
of study. These concepts are presented, with simple examples, in ways that clearly 
show how they work and how they can be implemented. This can help in develop-
ing understanding of these concepts and ideas of how they can be adapted in other 
application domains.

Case studies and simulations are presented in a way that makes them easy to be 
replicated. For simulations and some example demonstrations, enough details are 
provided that will allow users to replicate the experiments and compare results. To 
support this, this book comes with the simulator (TrAArch Simulator) that was used 
for the experiments in this book. The simulator is well-documented and supports 
the creation of a wide range of experimental scenarios. The documentation helps in 
understanding the design of the simulator (in case if someone wants to design theirs) 
and how to use it for different experiments.

This book draws from my PhD research, to build on identified gaps in relevant 
autonomic and trustworthy autonomic computing topic areas and establish grounded 
understanding in these areas.
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Chapter 1

Trustworthy autonomics primer

This chapter will give a low-level overview of the autonomic computing concept 
and lead a general introductory discussion on trustworthy autonomic computing. 
Focus will include making the case for trustworthy autonomic computing, the state-
of-the-art in research, relevant tools and terminologies.

‍ ‍

There are a wide range of views on meaning, architecture, methodology and 
implementations in trustworthy autonomic computing which will be addressed. 
These will be covered under two core areas of introduction to autonomic computing 
and foundations of trustworthy autonomics.
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To help the reader’s appreciation of trustworthy autonomic computing, it is 
important to first understand the meaning of autonomic computing and what makes 
a system autonomic. In this chapter you will learn:

•• The general functionalities of an autonomic system
•• The building blocks and internal structure of autonomic elements
•• Why trustworthy autonomic computing is necessary
•• The meaning of key autonomic terminologies

1.1 � Introduction to autonomic computing

This section gives a general overview of autonomic computing and what it means to 
say that a system is autonomic. To start with, the differences between the keywords 
of automation, autonomy (autonomous) and autonomic (autonomicity) are discussed 
in order to provide relevant working definitions. These definitions establish how 
these terms are used in this book.

1.1.1  �Autonomic computing definitions
Because terms do have a wide range of definitions, it is important to clearly differ-
entiate these to help the understanding of the reader of this book. The terms auto-
mation, autonomy and autonomic all refer to processes that may be completed, to 
various extents, without human intervention. Each of these seeks to remove human 
intervention as much as possible – and this has been achieved in different degrees.

Automation deals with replacing repetitive manual processes with technology. 
This technology, e.g., a software, hardware, systems or a combination of all, fol-
lows a well-defined sequence of steps to complete the same task. In automation, 
the processes are well-known and perfected. Some level of human participation is 
still required. However, automation makes processes faster, efficient and reduces 
the possibility of error. For example, most car factories have replaced the manual 
assembly of car parts by humans with robotic arms. Figure 1.1, a MeArm robot arm 
that I assembled as part of a study, illustrates a robot arm that can be assembled to 
automate a particular task.

Let’s assume that the task here is to grab an object and move it from position A 
to position B, defined by the simple algorithm:

‍ ‍
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Figure 1.1  �  MeArm robot arm. This is an open-source robot arm design that 
could be built from a small number of components. Its movement is 
controlled by four small motors.
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Instead of having a human to regularly monitor and move any object found in 
position A to position B, this task can be automated using a robotic arm configured 
with Algorithm 1.1. As long as there is no obstacle in its path, the robot arm will 
always move any object in position A to position B.

Autonomy goes beyond automation to include some level of independent 
decision-making. It focuses on a particular task and guides itself (self-direction) 
towards achieving that task. It involves independent decision-making based on 
coded logic (e.g., Algorithm 1.1 with some additional tweaks) and real-time events. 
Using the robot arm example, if there is an obstacle in its path, the robot arm auto-
matically decides how best to achieve the task of moving the object from position 
A to position B regardless of the obstacle. The robot arm decides how to navigate 
around the obstacle (e.g., move further left, raise the arm higher, alert human admin-
istrator, remove the obstacle) for the success of the task. Autonomous systems are 
context-aware systems.

Autonomic adds another layer of human independence to autonomous. It 
involves context-aware decision-making processes for the success of a particular 
task and the successful operation of the system. The robot arm in Figure 1.1 is oper-
ated by four different motors. If, e.g., one of the motors stops working or malfunc-
tions, meaning that the robot could not turn left, the robot could still achieve the task 
by turning right (assuming there is 360° turning capability) all the way to the desired 
position  – this is known as fault tolerance. Given a particular goal, whereas the 
system may have the self-governance/self-direction (autonomy) to decide between 
relevant parameters for achieving that goal, autonomic capability ensures that the 
system continues to operate under uncertain conditions and to cope with dynamic 
changes in the environment [3]. Autonomic systems are self-managing systems. The 
measure (or classification) of autonomic systems, according to the degree of auton-
omicity achieved, is covered in Chapter 7.

The idea of autonomic computing is to reduce the complexity of system man-
agement and maintenance by shifting the responsibility for low-level tasks from the 
user to the system while allowing the user to concentrate on high-level tasks. This 
is achieved by building self-managing systems that are capable of self-configuring, 
self-healing, self-optimising and self-protecting  – these are known as the auto-
nomic functionalities and are discussed in section 1.1.2. With such capabilities, self-
managing (autonomic) systems are able to automatically manage mundane tasks in 
the background while still focusing on achieving the goal of the system. Examples of 
such tasks include addressing runtime behavioural, structural or code errors as well 
as unplanned configuration tasks and spontaneous trend shifts. These are dynamic, 
unpredictable events and should be handled in the background. This approach is 
similar to the biological nervous system where, e.g., breathing rate, heartbeat, sweat-
ing, are regulated without the consciousness of the mind [4] so that activities like 
deciding where to go and how to get there can gain more focus.
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The high-level design of the internal structure of an autonomic system is shown 
in Figure  1.2. The sensor represents the source of contextual information (e.g., 
unforeseen events and changes in the system’s environment). These received infor-
mation are analysed by the autonomic controller (AC) and based on the analysis, 
actions are decided that are executed by the actuator. In the end, instead of directly 
controlling the system, the human operator defines general rules and policies, for 
the AC, to guide the self-management process of the system. Autonomics technol-
ogy is suitable for large scale and heterogeneous systems with dynamic processes of 
sometimes unknown and unpredictable outcomes.

Many techniques, e.g., machine learning, policy autonomics, fuzzy logic and 
utility functions have been used to build autonomic systems – some of these are 
covered in Chapter 3. There are also various autonomic architecture designs incor-
porating dynamic adaptation solutions, building on the traditional MAPE (monitor, 
analyse, plan and execute) control loop. The MAPE control (Figure 1.3), originally 
described in Reference [1], gives the basic view of the design and mechanisms of 
autonomic systems. The monitor component receives status updates of the managed 
system, filters and then passes data received to the analyse function. The data are 
analysed and the suggested decision (course of action) is passed to the plan function. 
The plan function maps out how the decision will be implemented and then passes it 
to the execute function for execution.

Autonomic system can also be seen as a multi-agent system, comprising of 
different agents known as autonomic elements, working together to achieve a par-
ticular goal – the intended or original goal of the system. ‘Multi-agent systems’ is a 
generic term referring to systems consisting of different sub-systems (agents) that 
cooperate (interact) with each other in order to achieve a common goal. The idea 
of a system with several components working together towards a common goal has 
been applied to an increasing number of domains including distributed systems, 
autonomic systems, supply chains, networks of networks and so on.

1.1.2 � Autonomic functionalities
Autonomic functionalities are the building blocks of autonomic systems. These 
are the characteristics or functional areas that define the capabilities of auto-
nomic systems. Autonomic functionalities can be emergent, and these vary (or are 

Figure 1.2  �  High-level autonomic system structure. The sensor receives inputs 
(context information) into the system, and the AC analyses these 
inputs and based on the outcome of the analysis decides on an 
adaptation action that is then executed by the actuator.
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defined) according to application instances. Although there is an ongoing debate 
on the composition of autonomic functionalities, and the list is substantially grow-
ing [3, 5], the self-CHOP (self-Configuring, self-Healing, self-Optimising and 
self-Protecting) functionalities remain the original/core and most widely accepted 
four functionalities. There are other more generic, or evolving, functionalities 
(e.g., self-stabilising, self-aware, self-regulating) and these are denoted as self-* 
functionalities.

To provide a working knowledge, we will focus on the self-CHOP functional-
ities in this section. This is because a computing system is said to be autonomic if it 
is capable of demonstrating at least one of these four functionalities/attributes.

1.1.2.1  �Self-configuration
A system is self-configuring when it is able to automate its own installation and 
setup according to high-level goals. This means that the system is capable of car-
rying out automatic configuration of components. For example, when a new com-
ponent is introduced into an autonomic system or a multi-system environment, it 
registers itself so that other components can easily interact with it.

Figure 1.3  �  MAPE autonomic architecture. This is based on the monitor, 
analyse, plan and execute (MAPE) control loop.



Trustworthy autonomics primer  7

Corporate systems, like data centres and networks, are examples of large-scale 
system environments with heterogeneity of devices, services, platforms and vendors 
where new installations and upgrades could lead to complex compatibility issues. 
An autonomic system would rely on high-level policies, representing business-level 
objectives, to configure its components and sub-systems to automatically and seam-
lessly adjust to new environmental conditions.

Examples
Most times, when a new compatible component is attached to a network, it 
gets automatically configured and deployed. The work of the Dynamic Host 
Configuration Protocol (DHCP) is an example of self-configuration. The DHCP 
automatically assigns IP addresses and other network configuration parameters 
to each network device on the network. This prepares these devices and makes 
them able to communicate with other devices on the network, without the help of 
the human user. Another example is the auto configuration capability of operating 
systems. When a new device, say a printer, is attached to a computer, some operat-
ing systems are able to automatically find and install the printer’s driver and get 
it ready for use. Self-configuration is usually behind the general ‘plug and play’ 
concept.

1.1.2.2 � Self-healing
A system is self-healing when it is able to detect errors or symptoms of potential 
errors by monitoring its own platform and automatically initiating remediation. 
Fault tolerance is a typical example of self-healing. It allows the system to continue 
its operation possibly at a reduced level instead of stopping completely as a result of 
a part failure. Fault-tolerant solutions may require a level of redundancy that allows 
the system some options to switch to when necessary.

In the early years of technological innovation, systems were designed to 
display error messages and hang up if problems occur. Modern systems, with 
fault tolerance capabilities, are able to overcome, repair or isolate errors and 
continue.

Examples
Self-healing capabilities have evolved over the centuries – for example, from the 
ancient Romans who used self-healing concrete that allowed crystals to grow 
into cracks to repair them to modern unmanned spacecraft that are capable of 
repairing themselves to continue their mission. Some modern cars have a safety 
feature that allows the car to be driven, at a reduced restricted speed when a major 
component fails, as it may be dangerous for the car to come to a sudden halt, say 
in a motorway. This attribute enables an autonomic system to focus on achieving 
its original goal, set out at the beginning, regardless of unexpected contextual 
problems.



8  Trustworthy autonomic computing

1.1.2.3 � Self-optimisation
A system is self-optimising when it is capable of adapting to meet current require-
ments and also of taking necessary actions to self-adjust (adjustment to preferences) to 
better its performance. Resource management (e.g., load balancing) is a typical exam-
ple of self-optimisation. A component of a system may be overloaded to the point that 
it introduces delay and bottleneck that ultimately affects the goal of the system. A self-
optimising system has the capability of maximising its resources in a way that avoids 
overloading of its components so that it concentrates on achieving its original goal.

Example
A self-optimising autonomic system would self-adjust its behaviour, without affect-
ing its intended goal, in the face of uncertain events – for example, changing work-
loads, components, demands and external conditions. The system does not always 
succeed but the idea here is to attempt to stay on achieving the intended goal, regard-
less of unplanned performance challenges.

1.1.2.4 � Self-protection
A system is self-protecting when it is able to detect and protect itself from attacks by 
automatically configuring and tuning itself to achieve security and data protection 
goals. It may also be capable of proactively preventing a security breach through 
its knowledge based on previous occurrences. While self-healing is reactive, self-
protecting is proactive. Autonomic systems are capable of learning from past events 
and be able to proactively defend themselves against malicious and non-malicious 
attacks/problems unresolved by the self-healing component.

Example
With self-protection, the system is able to detect and stop threats that are capable of 
harming its operations. An intrusion prevention system (IPS) is a typical example. 
The idea here is the ability of the system to continuously monitor its operating envi-
ronment, identify possible threats that may mitigate against its goal, gather informa-
tion about the threats (that will be useful in subsequent similar situations) and stop 
them from preventing the system from achieving its goal.

Note that while self-CHOP and self-* may be used interchangeably in different 
texts, self-CHOP refers to the traditional four autonomic functionalities (the self-
Configuring, self-Healing, self-Optimising and self-Protecting functionalities) and 
self-* refers to generic autonomic functionalities that comprise of both the self-
CHOP functionalities and any other possible or application-dependent functional-
ities (e.g., self-stabilising, self-aware, self-regulating, etc.). For more on the above 
definitions, see References 6−8.

1.1.3 � The autonomic computing system
For a generalised context, it is important to introduce some useful terminologies 
that may be easily misunderstood. Some of these have been used interchangeably in 
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other texts and this can be confusing. Let us follow on from section 1.1.1, referring 
to Figure 1.3, Figure 1.4 gives us a clearer definition of an autonomic system.

An autonomic element (Figure 1.4) will consist of at least one managed system 
and one autonomic manager who controls, manages and represents the managed 
system(s). An autonomic manager (Figure 1.4b) will comprise of relevant resources 
and tools required to autonomically control a non-autonomic system. The managed 
system could be a CPU, a printer, a database, a window blind, a car, a heating sys-
tem, a data centre, a business process, etc. An autonomic system could also be an 
interactive collection of autonomic elements that interact with each other, includ-
ing the environment, via their autonomic managers. This ‘environment’ may also 
include a touch-point through which the system programmer could interact with 
the system. Self-management of the autonomic elements’ internal behaviour and 
relationships with others will be based on the policies established by the human 
(e.g., the user, programmer) or other elements from the internal self-management of 
the individual autonomic elements – just as the social intelligence of an ant colony 
arises largely from the interactions among individual ants. A distributed, service-
oriented infrastructure will support autonomic elements and their interactions.

The autonomic manager is powered by the manager logic. This is a term used 
in this book to describe the actual individual control logic employed by autonomic 
managers in order to achieve stated system performance goals. It explains the inbuilt 
functions and logic of autonomic managers. This is not a formal autonomic termi-
nology but is specifically used in this book to explain the technology and algorithms 
behind the workings of autonomic managers.

1.2 � Foundations of trustworthy autonomics

This section will lead a general introductory discussion on trustworthy autonomic 
computing, why it is important and the state of the art in research. The autonomic 
computing concept has received strong interest amongst the academic and indus-
trial research communities since its introduction in 2001. It is now well-understood 
and established across an ever-widening spectrum of application domains. However, 
there has been limited progress towards trustworthy autonomic computing – a qual-
ity that enables the confidence of the user in the ability of the autonomic system to 
remain correct in the face of any possible contexts and environmental inputs and 
sequences of these.

The main idea put forward in this book is that trustworthiness (and any other 
desired autonomic capability) should be conceived at the design stage. This means 
that the architecture should be flexible (and yet robust) enough to provide instru-
mentations that allow designers to specify processes to achieve desired goals. It then 
follows that we need to rethink the autonomic architecture. This is the basis of the 
trustworthy autonomics solution presented in Chapters 4 and 5. This section dis-
cusses a general review of early research effort towards trustworthy autonomics – that 
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Figure 1.4  �  (a) Autonomic element – comprising the entire system, including the 
managed or monitored target (b) Autonomic manager – excludes the 
managed or monitored target
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includes validation, trustworthiness and certification and then presents the pillars of 
trustworthy autonomic systems.

1.2.1 � Towards trustworthy autonomics
Let us start with a general overview of early research towards trustworthy auto-
nomics, covering validation, trustworthiness (sometimes referred to as reliability or 
dependability in other works) and certification.

Chan et  al. [9] ask the critical question of ‘How can we trust an autonomic 
system to make the best decision?’ and propose a ‘trust’ architecture to win the trust 
of autonomic system users. The proposal is to introduce trust into the system by 
assigning an ‘instantaneous trust index’ (ITI) to each execution of a system’s auto-
nomic manager – where ITI could be computed, e.g., by examining what fraction of 
the actions, suggested by the autonomic manager, the user accepts unchanged, or by 
examining how extensive the changes that the user makes to the suggested actions 
are. The overall trust index, which reflects the system user’s level of trust in the auto-
nomic manager, is computed as the function ‍f

�
ITIi

�
‍ where ‍i‍ = 1, 2, 3, … and ‍ITIi‍ 

are the individual ITIs for each autonomic manager execution. This kind of solution 
is favoured in this book as it considers trust as architecture-based and also defines 
trust in the language of the user – it is the user who needs to be satisfied that the 
autonomic system is making and executing the best (beneficial) decisions. However, 
this method will be overly complex (and may be out of control) in large systems 
with multiple autonomic managers if the user is required to moderate every single 
autonomic manager-suggested action. In such systems, some of the autonomic man-
ager’s decisions are not transparent to the human user.

Another effort that supports the idea that dependability should be architecture-
based, i.e., conceived at design time and not retrofitted to systems, is the work in 
Reference [10]. Hall and Rapanotti [10] in proposing an Assurance-Driven Design 
posit that engineering design should include the detailing of a design for a solution that 
guarantees satisfaction of set requirements and the construction of arguments to assure 
users that the solution will provide the needed functionality and qualities. The key 
point here is that trustworthiness is all about securing the confidence of the user (that 
the system will do what it says) and the way to achieve this is by getting the design 
(architecture) right. This is also the main thrust of this book. Shuaib et al. [11] propose 
a framework that will allow for proper certification of autonomic systems. Central to 
this framework is an alternative autonomic architecture based on Intelligent Machine 
Design (IMD) which draws from the human autonomic nervous system.

Shinji et al. [12] propose a policy verification and validation framework that is 
based on model checking to verify the validity of administrator’s specified policies 
in a policy-based system because a known performing policy may lead to errone-
ous behaviour if the system, in any aspect, is changed slightly. The framework is 
based on checking the consistency of the policy and the system’s defined model or 



12  Trustworthy autonomic computing

characteristics. This is another important aspect of the proposed solution in this book – 
validation is done with reference to the system’s defined goal. A trustworthy auto-
nomic grid computing architecture is presented in Reference 13. This is to be enabled 
through a proposed fifth self-* functionality, self-regulating. Self-regulating capability 
is able to derive policies from high-level policies and requirements at runtime to regu-
late self-managing behaviours. One concern here is that proposing a fifth autonomic 
functionality to regulate the self-Configuring (self-CHOP), Healing, Optimising, and 
Protecting functionalities as a solution to autonomic system trustworthiness assumes 
that trustworthiness can be achieved when all four functionalities perform ‘optimally’.

[One concern here is that proposing a fifth autonomic functionality to 
regulate the self-Configuring (self-CHOP), Healing, Optimising, and 
Protecting functionalities as a solution to autonomic system trustworthi-
ness assumes that trustworthiness can be achieved when all four func-
tionalities perform ‘optimally’]

This assumption is not entirely correct. The self-CHOP functionalities alone do 
not guarantee trustworthiness in autonomic systems. For example, the self-CHOP 
functionalities do not address validation that is a key factor in autonomic system 
trustworthiness.

Another idea is that trustworthiness is achieved when a system is able to provide 
accounts of its behaviour to the extent that the user can understand and trust. But 
these accounts must, amongst other things, satisfy three requirements: provide a rep-
resentation of the policy guiding the accounting, provide some mechanism for vali-
dation and provide accounting for system’s behaviour in response to user demands 
[14]. The system’s actions are transparent to the user and also allow the user, if 
required, the privilege of authorising or not authorising a particular process. This is 
a positive step (at least it provides the user a level of confidence and trust) but also 
important is a mechanism that ensures that any ‘authorised’ process does not lead to 
undependable or misleading results.

[This is a positive step (at least it provides the user a level of confidence 
and trust) but also important is a mechanism that ensures that any 
‘authorised’ process does not lead to undependable or misleading results]

This is one aspect not considered by many research efforts. There are possibilities 
of erratic behaviour, which is not healthy for the system, despite the autonomic man-
ager’s decisions being approved. This aspect is addressed in the solution proposed 
in this book.

Heo and Abdelzaher [15] presented ‘AdaptGuard’, a software designed to guard 
adaptive systems from instability resulting from system disruptions. The software is 
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able to infer and detect instability and then intervenes (to restore the system) without 
actually understanding the root cause of the problem – root-cause-agnostic recovery.

Instability is another aspect addressed in the solution proposed in this book. 
Because autonomic manager control brevity could lead to instability despite process 
correctness, it is important to also consider this scenario. Hawthorne et al. [16] dem-
onstrate Teleo-Reactive (T-R) programming approach to autonomic software systems 
and show how T-R technique can be used to detect validation issues at design time 
and thus reduce the cost of validation issues. T-R programming is similar to Reflective 
Programming as both techniques allow the development of codes that can modify 
themselves, i.e., adaptive programs. However, based on conditions and priorities, the 
code in T-R dynamically adapts without needing to rewrite itself as in Reflection [17]. 
Also, with Reflection it is possible to modify a code directly while it is running while 
with T-R, it is impossible to predict what bit of code is running at any given time.

Validation is central to achieving trustworthy autonomics, and this has to meet 
runtime requirements. A generic self-test approach is presented in Reference [18]. 
The authors of [18] extended the Monitor Analyse Plan and Execute (MAPE) con-
trol loop to include a new function called Test (Figure  1.5). By this, they define 
a new control loop comprising Monitor, Analyse, Decision, Test and Execute  – 
MADTE activities.

Figure 1.5  �  MAPE based autonomic control loop with a self-test component 
[18]. The self-test component ensures that adaptation decisions are 
tested or validated before they are executed.
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The MADTE loop works like the MAPE loop only that the Decision activity 
calls the Test activity to validate a chosen action should it determine to adapt a 
suggested behaviour. The Test activity carries out a test on the action and returns 
its result to the Decision activity that then decides whether to implement, skip or 
choose another action. An adaptation is favoured if the Test indicates that it will lead 
to a component’s better performance in terms of characteristics such as optimisa-
tion, robustness or security. The process is repeated if the latter is the case. When 
an action is decided on, the Decision activity passes it to the Execute activity for 
implementation. This is vital to runtime self-validation and is consistent with the 
solution in this book in terms of designing validation into the system’s architecture.

A feedback-based validation that relies on a kind of secondary (mostly external) 
expertise feedback to validate the output of a system is presented in Reference 19. 
This is reactionary and makes no contribution to the result of the system in the first 
place. Though this may suffice for some specific system’s needs, what is generally 
required for autonomic system validation is runtime validation of decisions (or pro-
cesses) that lead to system outputs.

[It should be noted that autonomic system trustworthiness goes beyond 
secure computing. It is result oriented; not focusing on how a goal is 
achieved but on the dependability of the output achieved]

It should be noted that autonomic system trustworthiness goes beyond secure 
computing. It is result oriented; not focusing on how a goal is achieved but on 
the dependability of the output achieved. All systems, no matter how simple, are 
designed to meet a particular need, but not all systems have security concerns. So, 
trustworthiness is not all about security and validation. On the other hand, it is not 
about showing that a system or process works but also making sure that it does 
exactly what it is meant to do, in a way that ensures a dependable outcome. This 
aspect is addressed in the proposed trustworthy autonomic architecture, in Chapter 
4, by a component that carries out a longer-term assessment of the system’s actions. 
These have been the evolving challenges and where work must be concentrated if 
we are to achieve certifiable autonomic systems.

This section has presented a broad and general background study that analysed 
early research towards trustworthy autonomic computing. More recent studies have 
leveraged existing achievements but do not differ significantly in what has been 
achieved. There is, however, increased awareness of the need and effort towards 
trustworthy autonomics. This is covered in section 2.3.

1.2.2 � Pillars of trustworthy autonomic systems
One significant realisation from the analysis so far is the possibility of an auto-
nomic manager’s adaptive smartness to introduce a kind of noise in terms of, e.g., 
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instability into the system over time. In this case, the system may not have breached 
any adaptation rules but may be pushing out results that ultimately may not be reli-
able or may lead to spikes or instability in the control behaviour. For results to be 
fit-for-purpose, there needs to be a rolling evaluation of the impact of the autonomic 
manager’s actions on the system.

So, the pillars of trustworthiness would ensure, amongst other things:

•	 continuous evaluation of control actions – validation of adaptive decisions and 
behaviour;

•	 fit-for-purpose results – dependable and reliable outcomes;
•	 and support for the definition of systems in a universal language – this needs 

to be at both system design (for understanding of the system and the trust and 
validation requirements) and post system design (for system classification and 
evaluation). See Level of Autonomicity in Chapter 7. For a robust solution then, 
trustworthiness support needs to be conceived during system design and so 
should be integrated into the autonomic architecture.

So, the identified pillars of trustworthy autonomic systems are validation, 
dependability and architecture considerations.

1.2.2.1 � Self-validation
Robust self-management in autonomic computing systems resulting in dynamic 
changes and reconfigurations requires that autonomic systems should be able to con-
tinuously perform self-validation of their own behaviour and configuration, against 
their high-level behavioural goals and be able to reflect on the quality of their own 
adaptation behaviour. It is important to note that there is a significant difference 
between trustworthy autonomic computing and trusted (or secure) computing – this 
is explained in section 4.2. For complete reliance on autonomic systems, the human 
user will need a level of trust and confidence that these systems will satisfy specified 
requirements, will remain correct in the face of any possible environmental dyna-
mism and will not fail.

[It is also not enough that systems are safe, secure and performing within 
the boundaries of specified rules; outputs must also be seen to be reliable, 
not misleading, and hence dependable.]

Trustworthiness is sometimes referred to as reliability and dependability 
in other works. Trustworthiness, or the lack of it, may explain the level of the 
public’s acceptance of autonomic systems. A primary feature of a trustworthy 
autonomic system is self-validation. Figure  1.6 is a revision of the autonomic 
architecture (Figure 1.2) to include self-validation (represented by the VC com-
ponent) capability.
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The autonomic decisions, made by the autonomic controller (AC) for actuation 
based on context information, are passed to the validation controller (VC) for valida-
tion against high-level policies, representing business-level objectives before those 
decisions are executed. The dynamic nature of autonomic systems makes it close 
to impossible to comprehensively predict possible outcomes at design time. So, it 
becomes highly complex to predetermine whether the AC’s decision(s) are in the 
overall interest and good of the system. There is a vital need therefore to dynami-
cally validate the runtime decisions of the system.

So, runtime validation is a continuous and dynamic self-validation of own 
behaviour. That is to say that the autonomic system is able to continuously check its 
own actions to ensure that those actions satisfy the goal of the system. Validation in 
trustworthy autonomic computing will need to meet runtime specifications. Design-
time validation, on the other hand, does not suffice for autonomic system trustwor-
thiness as it depends on (or is limited to) the designer’s knowledge of the system’s 
environment and operations.

1.2.2.2 � Dependability
An autonomic system is dependable to the extent that its results (outputs) are con-
sistent and with minimum fluctuation from the desired goal. A good way of ensuring 
dependability is by dynamically monitoring the impact of the autonomic manager’s 
intervention over time. This may mean looking at the system’s state after a particular 
number of autonomic decision-making cycles and deciding whether to allow the 
autonomic manager to carry on or enforce some retuning. Another aspect of depend-
ability is self-stabilisation [20].

Self-stabilisation mechanisms reduce the reliance of autonomic sys-
tems on external supervision and extend their behavioural scope and 
trustability. It helps a system track its goal in a gradual manner to 
avoid over-compensation when a system is already close to its goal or 
under-compensation that could lead to erratic behaviour or misleading 
results.

Figure 1.6  �  Self-validating autonomic architecture. The sensor receives inputs 
(context information) into the system, the autonomic controller (AC) 
analyses these inputs and based on the outcome of the analysis 
decides an adaptation action, the validation check (VC) validates the 
decided action before it is then executed by the actuator.
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Take an autonomic resource allocation system for example. The system allocates 
resources according to requests. A robust system would be able to track known 
working state and revert to such state in the case of detected disruption. System state 
could be tracked as a one-off (e.g., the initial state or a state at time T) or as several 
over a period of time. Now, reverting to a known working state could bring destabi-
lisation if one of the systems requesting resources is no longer operating at the level 
of the known state. At this point, resetting the system to the initial state or time T 
would destabilise the system rather than help. A solution could be tracking and reset-
ting to the nearest known working state, but the nearest known working state may 
not be a safe state if the lag between disruption and identification of the disruption is 
not considered. To obtain a safe state we can measure the lag (how long it takes the 
system) to identify disruption and then plug that value as a tolerance-range-check.

The tolerance-range-check guides the resetting process outside a crisis state to a 
safe state. For example, if a disruption occurs at time ‍t1‍ and the system identifies it at 
time ‍t2‍, it will only be safe to reset the system to ‍t1‍ or below but not far from ‍t1‍. Between 
‍t1‍ and ‍t2‍ is crisis state and further down from ‍t1‍ to ‍t0‍ may cause destabilisation as ser-
viced systems may not be operating at those levels. For some systems, it may be possi-
ble to calculate average latency (or lag) say ‍tavg‍ (with some safety margins) and always 
reset to (‍t2 � tavg‍). Another solution might be to reset the system to the latest resource 
allocation time. The DYCASS project [21] provides a lead in this methodology.

1.2.2.3 � Architecture
Trustworthiness requires a holistic approach. It requires a long-term focus as against the 
near-term needs that merely address methods for securing (or building trust in) existing 
systems. This means that trustworthiness needs to be designed into systems as inte-
gral properties. In real life when buildings are constructed, required specifications (e.g., 
floor space, pillar strength, anti-vibration measures, drainage) are usually specified and 
catered for in the building design produced by the architect. This enables the builders to 
make provisions for all requirements from foundations up. A building that is structur-
ally adjusted to accommodate some fittings cannot be said to be of the same standing 
as one that catered for those fittings in the first instance from scratch. In the same way, 
it is best to cater for relevant autonomic capability requirements in the design stage of 
autonomic systems. This is why this book advocates for architecture-based solutions. 
So, architecture plays a very significant role in building trustworthy autonomic systems.

The evolution of autonomic architecture is presented in Chapter 2, while a trust-
worthy autonomic architecture, capable of meeting the identified requirements, is 
presented in Chapter 4.

1.3 � Conclusion

This chapter has introduced the autonomic computing concept as a solution to deal-
ing with the problem of increasing cost of ownership and complex management of 
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computing systems, while also making the case for trustworthy autonomic comput-
ing. Definition of relevant autonomic terminologies has also been provided. This is 
important to ensure adequate understanding of the concepts and ideas presented in 
this book. The self-CHOP autonomic functionalities are at the core of autonomic 
computing. These have been introduced, with examples.

A general introductory discussion on trustworthy autonomic computing 
and a review of the research in trustworthy autonomic computing are discussed. 
Trustworthy autonomic computing is built on three pillars, covering validation, 
dependability and architecture considerations. These pillars would ensure, amongst 
other things, fit-for-purpose results, continuous evaluation of control actions and 
will support the definition of systems in universal language at both system design 
and post system design. Trustworthiness support will need to be conceived during 
system design and so should be integrated into the autonomic architecture.



Chapter 2

Evolution of autonomic computing

The major theme in this book deals with identifying and developing techniques to 
make autonomic computing systems trustworthy. To achieve this, it is important to 
first understand the level of work that has already gone into the autonomic comput-
ing research and how that can be harnessed. This chapter starts with an overview of 
the autonomic computing architecture and its life cycle. A broad analysis of auto-
nomics research to show the trends in and direction of the autonomic computing 
research and where the work needs to be concentrated to address open challenges 
and achieve trustworthiness is presented. It is also important to take a holistic view 
of the entire field of research in order to gain a clearer picture of the need for and 
lack of effort towards trustworthy autonomic computing.

‍ ‍
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In this chapter, you will learn the following:

•• the design of autonomic systems
•• the life cycle of autonomic architecture
•• key factors of trustworthy autonomic computing design
•• major trends and direction in the autonomic computing research
•• about key studies and researchers that have shaped the study of autonomic 

computing

2.1 � Importance of understanding the evolution of autonomic 
computing

The evolution of autonomic computing can be tracked based on what it promises to 
achieve (the original intended goal of the concept), the design and the actual imple-
mentations – from conceptual ideas to actual developments and implementations. 
The idea of trustworthiness was not part of the initial thinking in the development of 
the autonomic computing concept. Our earlier study [2] has shown how important 
this has become.

2.2 � Autonomic architecture

Trustworthiness cannot be reliably retrofitted into systems; it must be designed into 
system architectures. The design of an autonomic system is fundamental to its oper-
ations. The autonomic architecture is key to autonomic trustworthiness, and that is 
why it is important to start by discussing the development in the autonomic architec-
ture. This section tracks the autonomic architecture (leading to trustworthiness), pic-
torially and in detail, in a number of progressive stages addressing it in an increasing 
level of detail and sophistication. Figure 2.1 provides a key to the symbols used.

•• Sensor and actuator

These are the touchpoints where the autonomic manager connects with the man-
aged system or monitored environment. The autonomic manager takes in relevant 
context data (from the managed system or monitored environment), processes it for 
a decision and then executes that decision. The sensor represents a source of ambi-
ent/context data for the autonomic manager, while the actuator provides capacity for 
executing the adaptation decision of the autonomic manager.

•• Console
Autonomic systems come in maturity stages – from basic autonomic (requir-

ing a level of human interference and/or control) to complete autonomic 
(requiring no human interference or control) systems. The console represents a 
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touchpoint for human interference and interaction with the autonomic manager. 
This could be one-way or bi-directional, e.g.,

1.	 One-way: This could be a dashboard for the autonomic 
manager to display information intimating the user of its 
actions. It could also be a control panel for the user to in-
terfere with (e.g., configure, reconfigure or override) the 
autonomic manager after observing its actions.

2.	 Bi-directional: This could be a provision for the autonomic 
manager to provide feedback to the user with a possibility 
for the user to override or compliment the decisions and ac-
tions of the autonomic manager. There are several possible 
variations of this.

•• Autonomic controller

The autonomic controller (AC) represents basic autonomic manager control 
logic. It analyses input from the sensor and decides an adaptation action based on 
the chosen autonomic control logic.

•• Dependability check

Figure 2.1    Pictographic key used for the autonomic architecture life cycle
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The dependability check (DC) provides the capability of staying on course to 
achieve the goal of the autonomic manager. It takes a holistic view of adaptation 
decisions and considers the short- and long-term effects of those decisions in order 
to efficiently guide the autonomic manager towards its intended goal.

•• Validation check

The validation check (VC) represents the ability to verify adaptation decisions 
before they are executed. This helps in ensuring that decisions conform to the poli-
cies behind the control logic and that there are no errors in the process. It is impor-
tant to note that the type of validation defined by the VC is runtime-based (i.e., 
runtime validation).

•• Direct control

This arrow indicates the flow of control – the preceding object or component 
passes control to the succeeding object.

•• Feedback

This indicates feedback from one object to another. This can be in any form, 
e.g., control or [re]calibration feedback.

Figure 2.2 illustrates the progression, in sophistication, of autonomic architec-
tures and how close they have come to achieving trustworthiness. Although this may 
not be exhaustive as several variations and hybrids of the combinations may exist, it 
represents a series of discrete progressions in current approaches.

Two distinct stages of sophistication are identified. The first stage represents the 
traditional autonomic architecture (Figure 2.2 levels (i) and (ii)), basically concerned 
with direct self-management of a controlled/monitored system following some basic 
sense-manage-actuate logic defined in the AC component. For the prevailing con-
text, AC is just a container of autonomic control logic, which could be based on 
Monitor-Analyse-Plan-Execute (Figure 1.3) or any other autonomic control logic. 
The original autonomic architecture, proposed with the introduction of autonomic 
computing [7] falls within this level. This achieves basic self-management capa-
bility and has since been adapted in several studies to offer more smartness and 
sophistication. To add a degree of trust and safeguard, an external interface for user 
control input is introduced in Figure 2.2 level (ii). This chronicles such approaches 
that provide a console or touchpoint for external administrative interactions (e.g., 
real-time monitoring, tweaking, feedback, knowledgebase source, trust input) with 
the autonomic process. An example of level (ii) is work in Reference [14] where, 
in addressing the problem of human–computer interactions raised by the auto-
nomic computing vision, the authors proposed a solution where system’s actions 
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are transparent to the user and the user can moderate the behaviour of the system by 
allowing or disallowing system decided actions. The system has a console that offers 
the user the privilege of authorising or not authorising a particular process. Another 
example in this category is unmanned vehicles (UVs). In UVs, there are provisions 
for activating auto piloting and manual piloting. The user can decide when to acti-
vate either of the two or run a hybrid.

The second stage (Figure  2.3) represents efforts towards addressing runtime 
validation. Instrumentations to enable systems to check the conformity of manage-
ment decisions are added. This includes such approaches that are capable of runtime 
self-validation of autonomic management decisions. The self-validation check is 
done by the VC component and this results in either a pass (in which case the vali-
dated decision is actuated) or a fail. Where the check fails, VC sends feedback to 
AC with notification of failure (e.g., policy violation) and a new decision is gener-
ated. An additional layer of sophistication is introduced in level (iv) with external 
touchpoint for higher level of manageability control. This can be in the form of an 
outer control loop monitoring, over a long-time frame, an inner short-time frame 
control loop. The work in Reference [18] (see section 1.2.1, Figure 2.4), which is an 
extension of the Monitor-Analyse-Plan-Execute control to include a ‘Test’ activity 

Figure 2.2  �  Pictorial representation of trustworthy autonomic architecture life 
cycles. This is not exhaustive but represents major themes identified 
in research. Finer-grained sub-stages and design may exist.



24  Trustworthy autonomic computing

corresponds to level (iii). The test activity tests every suggested action (adaptation 
decision made) by the plan activity for conformity before the action is executed – 
leading to a new Monitor-Analyse-Decision-Test-Execute control. If the test fails, 
the action is dropped and a new one is decided again.

The work in Reference [22], which corresponds to level (iv) of Figure 2.3, is an 
extension of the work in Reference [18] to include auxiliary test service components that 
facilitate manual test management and a detailed description of interactions between 
test managers and other components (see Figure 2.4). Here, test managers implement 
closed control loops on autonomic managers (such as autonomic managers implement 
on managed systems/resources) to validate change requests generated by the autonomic 
managers. Notice also that touchpoints are provided as manageability interfaces.

At the level of current sophistication (state-of-the-art), there are techniques 
to provide runtime VC (for behavioural and structural conformity), additional 

Figure 2.4  �  High-level architectural model for an integrated self-testing 
framework for autonomic computing systems [22] (with permission)

Figure 2.3  �  Second stage representation of trustworthy autonomic architecture 
life cycles. The major improvement of this stage is the consideration 
for runtime validation.
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console for higher level (external) control, etc. Emerging and needed capabili-
ties include techniques for managing oscillatory behaviour in autonomic sys-
tems. These are mainly implemented in isolation. What is required is a holistic 
framework that collates all these capabilities into a single autonomic unit. Policy 
autonomics is one of the most used autonomic solutions. Autonomic managers 
follow rules to decide on actions. As long as policies are validated against set 
rules, the autonomic manager adapts its behaviour accordingly. This may mean 
changing between states. And when the change becomes rapid, despite meeting 
validation requirements, it is capable of introducing oscillation, vibration and 
erratic behaviour – all in the form of noise into the system. This is more notice-
able in highly sensitive systems. So, a trustworthy autonomic architecture needs 
to provide a way of addressing these issues. Level (v) of Figure 2.2, shown in 
Figure 2.5, falls within the next stage of sophistication required to address the 
identified issues and ensure dependability.

2.3 � Autonomic computing: trends and direction

This section covers the analysis of research efforts towards achieving the goal of 
autonomic computing in the first two decades of the introduction of the concept. The 
nature of the analysis is geared towards identifying recurring themes, trends, vital 
areas to be covered to achieve the goal of autonomic computing, where the research 
should be heading and the open/emerging challenges.

An analysis-by-problem approach is used to show the pattern, in terms of matu-
rity stages, of how researchers have attempted addressing the autonomic computing 
challenge. This is addressed in two broad periods: the first decade, covering years 
2001–2011 and the second decade, covering studies and developments from years 
2012 to 2019. Note that the autonomic computing concept was introduced by IBM 
in 2001. The analysis in this section is drawn from proceedings of the International 

Figure 2.5  �  Design for a trustworthy autonomic architecture addressing the 
identified issues and ensuring dependability. The sensor (S) receives 
inputs (context information) into the system; the AC analyses 
these inputs and based on the outcome of the analysis decides an 
adaptation action. The VC validates the decided action and returns 
feedback if validation fails, and the DC monitors the behaviour 
of the system over time and compares that with the general goal 
of the system and may inhibit the actuator (A), which executes the 
adaptation decision. The touchpoints allow for user intervention.
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Conference on Autonomic Computing (ICAC) and the International Conference on 
Autonomic and Autonomous Systems (ICAS). These were the early leading inter-
national conferences on the general concept of autonomic computing, and I believe 
that they both give a true representation of the distribution of interest, work done and 
trends in autonomic computing research.

2.3.1 � Background
Computing systems, including hardware, software and communications, started 
growing exponentially in terms of increasing heterogeneity, scale and ubiquity, 
becoming exceedingly complex for human management. Computing devices got 
more pervasive, embedded in everyday objects and exposed to environments where 
system working conditions are dynamic, uncertain and unpredictable. Managing 
such systems, which are heterogeneously knitted together and pervasively ubiqui-
tous, became daunting and utterly complex. With highly limited expertise to address 
this concern, the cost of system ownership and management rose exponentially. To 
deal with such complexity necessitated the introduction of a new concept, namely 
Autonomic Computing, by IBM in 2001 [1],[7],[23].

The autonomic computing concept was introduced to address the complexity of 
managing ever-growing and evolving systems by shifting the responsibility for low-
level tasks from the human to the system. This is achieved by building self-managing 
systems that are capable of self-configuring, self-healing, self-optimising and self-
protecting, for a start. These are widely referred to as the autonomic self-CHOP or 
self-* functionalities. With such capabilities, autonomic systems are able to manage 
themselves and thereby reduce the computing system management complexities for 
humans. This created a new research area with many challenges. Earlier autonomic 
computing researchers like Salehie and Tahvildari [24] proposed a categorisation of 
complexity in computing systems and presented an overview of autonomic comput-
ing research area. The work in Reference [24] captures the fundamental IT complex-
ities and the autonomic capabilities that would address them and then outlines the 
underlying research issues/challenges from a practical and theoretical point of view.

Researchers took on the challenge of developing this new concept. The auto-
nomic computing concept is now well-understood, and a lot has been achieved since 
it was introduced. The efforts of academic and industry researchers have gone a long 
way in addressing the goal of the concept. However, there are still open and emerg-
ing challenges. It is therefore important to continuously assess the extent to which 
the original vision of the concept has been accomplished, understand the trends and 
explore ideas for addressing the open and emerging research challenges. This is one 
of the focus points in this chapter.

The number of dedicated conferences and journals in this research area has con-
tinued to increase. These provide a good source of data for analysing and under-
standing the extent of work done in the autonomic computing research area. ICAC 
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and ICAS are two leading autonomic computing conferences and have together pub-
lished about 1,050 high quality research papers in the first two decades of autonomic 
computing research.

The work in this chapter is based on the review of the 1,050 ICAC and ICAS 
publications. Because of their unique composition, it is believed that these two con-
ferences will give a true representation of the distribution of interest, work done 
and trends in autonomic computing research. ICAS is academia dominated while 
ICAC is industry dominated and both have a good blend of academia–industry 
collaborations.

The analysis of the first decade of autonomic computing study [2] reveals a pro-
gressive result in terms of what was achieved. However, there are gaps that need to 
be addressed. It has been established that towards the end of the first decade, empha-
sis shifted to addressing the bigger picture, dealing with the issues of large-scale 
systems and creating re-usable solutions using already established techniques. This 
led to new challenges, including issues of heterogeneity of services and platforms, 
interoperability of ever-growing coexisting multi-agent systems and trustworthy 
autonomics. The case is made, of particular interest, to address users’ need for assur-
ance that autonomic managers can reliably manage today’s systems of increased 
scale and complexity.

There is a lack of effort in offering a holistic analysis and evaluation of how the 
actual work has progressed in achieving the original vision of the autonomic comput-
ing concept. Jeffrey Kephart, one of the leading autonomic computing researchers 
and a researcher with IBM, in a keynote during ICAC 2011 presented an excellent 
analysis of the extent to which the original autonomic computing vision had been 
realised with some discussions and speculations about the remaining research chal-
lenges [25]. While Kephart concentrated more on the various technological threads, 
their origins and how they have progressed, the focus in this book is mainly on the 
level of maturity in terms of the types of, and scale of, problems targeted at the vari-
ous stages. This enables us to reflect on the overall progress in the field, and to be 
able to identify current and emerging challenges. This work is not just a review but 
also a substantiation of an earlier proposed roadmap (pathway) to achieving the goal 
of autonomic computing [26]. We had posited (and explained how) that the journey 
to the goal of autonomic computing would proceed from defining systems and auto-
nomicity to ultimately achieving certifiable autonomic computing systems. This is 
corroborated in this report.

Although limited, studies evaluating the trends in autonomic computing have 
largely focused on specific applications and autonomic functionalities. Out of the 
1,050 publications reviewed in this study, only 12 (9 in the first decade and 3 in 
the second) are somewhat related to evaluating the trends in autonomic comput-
ing. A significant chunk of these References [27–31] focuses on the comparison of 
approaches and techniques for autonomic computing. Krupitzer et al. [27] define 
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self-improvement as an adaptation of an autonomic system’s adaptation logic and 
present a comparison of approaches for self-improvement in autonomic comput-
ing and self-adaptive systems. Maggio and Hoffmann [28] present a comparison of 
decision-making approaches to self-optimising autonomic systems, while Alhaisoni, 
Liotta and Ghanbari [29] compare two popular Live and Video-on-Demand P2P 
streaming applications. Mohamed, Romdhani and Ghedira [30] evaluate the con-
cepts in Meta-Object Facility and Eclipse Modelling Framework meta-models 
for model transformation. Gjørven, Eliassen and Aagedal [31] examine different 
approaches for self-adaptation. None of these is a comprehensive analysis covering 
the generality of trends and efforts in autonomic computing research as in this book.

Other slightly related studies, within the study window, include surveys that 
categorise existing autonomic computing research efforts as well as highlight open 
challenges [24,32,33,34] and those that focus on specific topics [35,36]. An overview 
of academic- and industry-led autonomic projects and autonomic characteristic-
based comparison of those projects is presented in Reference [24]. Nami and Bertels 
[32] provide a general survey of autonomic computing systems, the underlying fea-
tures, architectures and challenges. It also highlights the challenges of achieving 
autonomicity in systems. An analysis of the requirements of context adaptation in 
autonomic computing, evaluation of approaches for autonomic context adaptation 
and a survey of existing work on context adaption in autonomic computing are pre-
sented in Reference [33]. The survey in Reference [34] presents a review, focusing 
on existing autonomic computing frameworks, architectures and self-management 
techniques. On more whittled focus, Higgins et al. [35] present a survey on security 
challenges for swarm robotics (multiple autonomous agents), while Ding et al. [36] 
evaluate and characterise service level objectives performance goals for autonomic 
cloud applications. While these studies have addressed reviews of various isolated 
and specific areas of autonomic research, this book considers the general key areas 
and presents the review in a way that shows the research stages against a maturity 
timeline.

The analyses in the following sections 2.2.2 and 2.2.3 are based on the review 
of about 1,050 research publications using webometrics and direct analysis tech-
niques. These are analysed in terms of main application domain, emphasis and 
technical approach as well as author distribution (Table 2.1). This classification is 
chosen based on the observed interest of researchers and sponsors. The result is an 
empirical evaluation of the overall impact, trends and state-of-the-art of autonomic 
computing research activity. An analysis-by-problem approach reveals a particular 
pattern (problem definition to issues of scale) in addressing the autonomic comput-
ing vision.

2.3.1.1 � Data and methodology for the trend analysis
In order to be able to recreate this study, it is important to understand the source of 
data and the method employed. This study involves the review of all the proceedings 
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of ICAC and ICAS in the first two decades, covering autonomic computing research 
from 2001 to 2019. These are two leading autonomic computing conferences with 
widespread distribution of academic and industry participation. Publications used in 
this work are sourced from ThinkMind*, IEEE Xplore† and IEEE Computer Society‡ 
digital libraries. A total of 1,050 research publications, including keynotes (626 of 
which are from ICAC and 424 from ICAS), were reviewed using webometrics and 
direct analysis techniques. Figure 2.6 is the distribution of the reviewed papers.

* ThinkMind Digital Library via http://www.thinkmind.org/
† IEEE Xplore Digital Library via https://ieeexplore.ieee.org/Xplore/home.jsp
‡ IEEE Computer Society Digital Library via http://www.computer.org/portal/web/csdl/proceedings

Table 2.1    Classification, in terms of focus area, for the reviewed publications

Authoring Main application domain Others

Academic Data centre Design and architecture
Industry Distributed systems Learning and knowledge
Joint (academic 

and industry)
Networks Performance management

Robotics Policy autonomics
Storage and database management Self-CHOP

Survey
VT(Validation and Trustworthiness)
Actual VT proposal

Figure 2.6  �  Conference distribution of publications. This represents autonomic 
computing research published in both ICAC and ICAS from 
2001 to 2019.
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These are analysed in terms of main application domain, research empha-
sis, technical approach as well as author distribution as shown in Table  2.1 and 
explained in Table 2.2 and Table 2.3. The grouping of these papers is not exhaustive 
but reflects recurring major themes from both conferences (ICAC and ICAS). The 
following result is an empirical analysis of the overall state-of-the-art of autonomic 
computing research activity, covering key themes, in the first two decades.

Every paper is reviewed and allocated to the relevant group and category (e.g., 
Tables 2.4 and 2.5). Some papers, depending on content, are allocated to more than 
one category. The analysis considers the first and second decades of autonomic 
computing research both separately and jointly. An analysis-by-problem approach 
reveals a noticeable pattern (from problem definition to issues of scale) in tackling 
the autonomic computing vision. A number of open and emerging challenges are 
identified – these include runtime validation, trustworthiness, interoperability (coex-
istence of autonomic managers) and certification, requiring solutions specifically 
tailored for runtime self-adaptive systems.

Overall, by the end of the second decade, very impressive progress has been 
made and this has been driven by widespread effort and collaborations from aca-
demic and industry players.

2.3.2 � Autonomic computing in the first decade
The first ten years after the introduction of the autonomic computing concept saw 
an increasing show of interest by researchers to grasp and make the most of the 
concept. It was not as though there was no self-management computing at that time, 

Table 2.2    Grouping of the reviewed papers

Distribution Description

Authoring This considers the affiliation of the authors and is classified according 
to academic (authors from an academic institution), industry (authors 
from the industry) and joint (collaboration between academic and 
industry authors) – regardless of location. If all authors are from 
same category, say Industry, but one is also affiliated to an academic 
institution, the paper is classed as Joint

Emphasis This group consists of studies that prominently focus on specific themes 
– autonomic computing focus areas

Main 
application 
domain

Studies in this category focus on the application of autonomic 
computing in different domains. In most cases, this is about applying 
the autonomic functionalities in specific systems

Technical 
approach

These are technological approaches to autonomic computing. This is 
about mainly using known and established techniques to achieve or 
enable autonomic functionalities
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but the concept opened a new dedicated door for addressing self-management com-
puting. Overall, very impressive progress was made in the first decade, and this was 
driven by the interest of the main sponsors – industry leaders such as IBM, Sun, 
Motorola, Google, Microsoft and Hewlet Packard, amongst others. A detailed work 
in this regard is published in Reference [2].

Figure 2.7 shows the stages (A, B and C) adopted by researchers in addressing 
autonomic computing and the emerging challenges (D and E)  towards achieving 
the overall goal of autonomic computing. This is a high-level view as finer-grained 
sub-stages may exist. The stages are classified against a maturity timeline as shown 
in Figure 2.8. This study is based on the review of 647 proceedings (publications – 
Tables 2.4 and 2.5) from ICAC and ICAS. These were the early major collation of 
generic autonomic computing-based publications.

Table 2.3    Categorisation of the grouping of reviewed papers

Category Description

Authoring
Academic All authors are from the academia
Industry All authors are from the industry, government and non-academic 

organisations
Joint At least one author from academic and one from industry or same 

author from both academic and industry
Emphasis
Storage and database 

management
Using autonomic computing to improve data storage and database 

management
Design and 

architecture
Proposing and demonstrating autonomic architectures and design

Performance 
management

Demonstrating performance management goals, e.g., using 
autonomics to improve quality of service

Self-CHOP Studies in this category also touch on one or more of the self-
Configuring, Healing, Optimisation and Protection autonomic 
functionalities in particular

Survey Surveys and reviews
VT VT-related studies
Actual VT Studies proposing actual validation and/or trustworthiness methods
Main application domain
Data centre Studies using data centres as case studies
Distributed systems Studies using distributed systems as case studies
Networks (+ wireless 

sensor networks)
Studies focusing on networks, including wireless sensor networks

Robotics Studies involving robots
Technical approach
Policy Studies utilising policies and rules to enable autonomicity – rule-

based or policy autonomics
Learning and 

knowledge
Studies utilising learning and knowledge techniques, e.g., artificial 

intelligence, machine learning, cognitive computing, etc.



Table 2.4    ICAC proceedings distribution (first decade) [2]

Distribution icac 04 icac 05 icac 06 icac 07 icac 08 icac 09 icac 10 icac 11 Total %

Authoring
Academic 39 30 20 15 15 18 18 32 187 55.6547619
Industry 17 18 09 06 05 10 04 01 70 20.8333333
Joint 08 16 14 11 06 06 05 13 79 23.5119048
Total 64 64 43 32 26 34 27 46 336
Emphasis
Storage and database management 05 05 04 02 00 00 01 04 21 6.25000000
Design and architecture 07 12 01 02 04 03 03 03 35 10.4166667
Performance management 09 05 05 03 01 06 03 08 40 11.9047619
Self-CHOP 11 09 04 05 07 06 04 02 48 14.2857143
Survey 00 00 00 00 00 00 00 01 01 0.29761905
VT 04 03 03 04 02 03 00 00 19 5.6547619
Actual VT 01 01 01 03 01 01 00 00 08 2.38095238
Main application domain
Data centre 03 11 11 11 09 10 09 12 76 22.6190476
Distributed systems 17 06 05 04 00 01 02 04 39 11.6071429
Networks (+ wireless sensor 

networks)
08 02 00 01 00 00 01 03 15 4.46428571

Robotics 01 00 00 00 00 00 00 02 03 0.89285714
Technical approach
Policy 02 06 03 02 02 00 01 00 16 4.76190476
Learning and knowledge 08 04 03 01 06 03 01 03 29 8.63095238



Table 2.5    ICAS proceedings distribution (first decade) [2]

Distribution icas 05 icas 06 icas 07 icas 08 icas 09 icas 10 icas 11 Total %

Authoring
Academic 20 39 53 34 48 27 23 244 78.4565916
Industry 01 10 13 00 04 01 01 30 9.64630225
Joint 02 09 03 09 05 02 07 37 11.8971061
Total 23 58 69 43 57 30 31 311
Emphasis
Storage and database management 00 04 03 01 03 00 01 12 3.8585209
Design and architecture 03 15 07 02 09 03 07 46 14.7909968
Performance management 01 05 07 03 06 02 00 24 7.7170418
Self-CHOP 00 01 01 01 03 03 01 10 3.21543408
Survey 00 01 02 01 03 00 01 08 2.57234727
VT 01 03 01 00 00 01 03 09 2.89389068
Actual VT 00 00 01 00 00 00 00 01 0.32154341
Main application domain
Data centre 01 06 04 03 03 04 02 23 7.39549839
Distributed system 05 12 07 01 05 01 02 33 10.6109325
Networks (+wireless sensor 

networks)
04 07 06 02 05 03 01 28 9.00321543

Robotics 01 03 01 04 04 01 03 17 5.46623794
Technical approach
Policy 00 02 02 03 03 02 00 12 3.8585209
Learning and knowledge 00 01 04 06 04 00 01 16 5.14469453
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Tables 2.4 and 2.5, adapted from Reference [2], are high level analysis of ICAC 
and ICAS conference proceedings, covering autonomic computing research in the 
first decade. These were analysed in a way of showing research stages against a 
maturity timeline.

At this stage of autonomic computing research, the foremost focus of the 
research community, in terms of application scenario and emphasis, was mostly data 
centre, distributed systems, storage and database management, design and architec-
ture, learning and knowledge, and self-CHOP. Validation and trustworthiness (VT) 
with its methodologies is one critical area that received less attention.

In terms of main application domain, the data centre clearly tops the ranking in 
terms of interest to the community. This is partly because the autonomic computing 

Figure 2.7  �  Observed trend and direction of autonomic computing research in 
the first decade of its inception (2001–2011)

Figure 2.8    Stage classification for all reviewed publications
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vision is industry-borne and has continued to be driven by the industry. This is 
evidenced by the number of papers (including on data centres) that are authored, 
co-authored or sponsored by the industry partners. Data centres are very complex; 
in fact, they have many dimensions of complexity, which arise from their scale, nec-
essary speed of operation and large number of tuning parameters. In addition, they 
have high power costs, including a significant cost component for the cooling sys-
tems. Autonomic computing arose because of the need for automatic management 
of such complexity and successful autonomic techniques in this domain translate 
into significant financial reward for the owners and users of such systems. There is 
now a social responsibility dimension to it – to reduce the carbon footprint of data 
centres as a response to climate change. This high complexity is also attractive to 
academic researchers as it provides a rich domain to evaluate a wide range of tech-
niques, tools and frameworks for autonomic computing.

Investigation [2] reveals that, shortly after the introduction of the autonomic 
computing concept, initial research focus was mainly on stating the problem and 
challenge of the ever-growing system complexity [37,38] and justifying auto-
nomic computing as a reliable [39,40] solution. Most of the work in this area 
was industry sponsored and widely based on dynamic resource allocation, e.g., 
References 41 and 42. Some major industry players then were IBM, HP, Sun, etc. 
Following the early stage, after establishing the case for autonomic computing 
as a promising solution, research efforts shifted to developing and applying tech-
niques which were then established and increasingly used, e.g., policy autonomics 
[43,44], utility functions [45,46], fuzzy logic [47,48], dead-zone logic [20,49], etc. 
These autonomic enabling techniques are discussed in Chapter 3. Progress was 
also made in identifying and solving specific problems in isolation. A significant 
number of studies offered specific solutions to specific problems. Some examples 
of the variety of these include References [50–54]. In Reference [53], authors 
propose a control scheme for dynamic resource provisioning in a virtualised data 
centre environment to address issues of power management without trading per-
formance. Experiments report that the controller, while still maintaining quality of 
service goals, is able to conserve power by 26 per cent. References [52,54] investi-
gate the use of thermal load management to address heating in data centres. While 
Moore et al. [52] concentrated on predicting the effects of workload distribution 
and cooling configurations on temperature (deducing heat profile), Ghanbari et al. 
[54] based their work on workload scaling. Calinescu in Reference 51 implements 
an earlier proposed generic autonomic framework (based on service-oriented 
architecture) and demonstrates the effectiveness of his framework in resource allo-
cation, while Benoit [50] presents an automatic diagnosis framework to dynami-
cally identify bottlenecks in large systems. At this stage, studies largely comprise 
implementations, demonstrations and presentation of experimental results of pro-
posed ideas.

Towards the end of the first decade, emphasis shifted to addressing the big-
ger picture, dealing with the issues of scale [55–57] and creating re-usable solu-
tions using already established techniques. This led to fresh challenges, including 
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issues of heterogeneity of services and platforms [58, 59]. Solutions were then pro-
posed for addressing large-scale systems with varying heterogeneous platforms. The 
increase in scale and size of systems, coupled with heterogeneity of services and 
platforms, leads to further complexity and means that more autonomic managers 
could be integrated to achieve a particular goal. With more autonomic managers 
integrated, working together towards a particular goal comes the need for interoper-
ability between autonomic managers. As in the nature of technology, the addressing 
of one problem always leads to new challenges. As expected, this growth of systems 
in scale and complexity led to reliability (and by extension trustworthiness) concerns 
for large-scale systems [60]. There is no way we can succeed in self-managing large-
scale complex systems without addressing trustworthiness (reliability) concerns. So, 
interoperability and trustworthiness became some of the emerging major challenges 
at the end of the first decade. These needed, and still need, to be addressed if we are 
to attain the full goal of autonomic computing.

[There is no way we can succeed in self-managing large-scale complex 
systems without addressing trustworthiness (reliability) and interoper-
ability concerns.]

Interoperability was somewhat neglected as a challenge in this era. Earlier stud-
ies were fundamentally concerned with getting autonomic computing to work and 
establishing relevant concepts and demonstrating viability. Many mechanisms and 
techniques were explored but focus started shifting, towards the end of the decade, 
to the next level, e.g., how to reliably manage multi-manager scenarios, to govern 
interactions between managers and to arbitrate when conflicts arise. These are the 
kind of solutions needed to address the challenges arising from the increased avail-
ability of large systems with multiple autonomic agents. When more than one auto-
nomic manager is needed to coordinate a system, there may be situations where one 
manager counters the decision of another. Although there were some mentions and 
general discussion around this area, significant progress was not made. For example, 
Anthony et al. [61] evaluate the nature and scope of the interoperability challenges 
for autonomic computing systems, identify a set of requirements for a universal 
solution and propose a service-based approach to interoperability to handle both 
direct and indirect conflicts in a multi-manager scenario.

In another example, Beran et al. [62] examine the web services solution devel-
oped as a part of the Consortium of Universities for the Advancement of Hydrologic 
Science, Inc. (CUAHSI) Hydrologic Information System (HIS) project. CUAHSI 
HIS is a web services solution that standardises access to cross-domain hydro-
logic data repositories (of disparate semantic and syntactic definitions and hosted 
on heterogeneous platforms) to facilitate data discovery and enable cross-domain 
interoperability. The project emphasises the idea of a seamless interface through 
which access can be gained to hydrologic data from multiple heterogeneous data 
sources. An architecture-led interoperability solution, based on the extension of the 
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trustworthy autonomic architecture discussed in Chapter 4, is presented in Chapter 6. 
The idea is that interoperability support should be designed in and integral at the 
architectural level as doing otherwise (retro-fitted solution) may lead to further com-
plexities and unreliability.

[Evidence has shown that while the industry community (and by the way, 
the originator of the autonomic computing research) set the pace for the 
research, the academic community expatiated the research and is playing 
huge collaborative role in achieving the research goal.]

The second decade and beyond would need to start from addressing the issues of 
self-validation, trustworthiness, certification and many more. Questions that need 
addressing include the following:

•• What are the processes to ensure that component upgrades that are tested and 
confirmed in isolation will not cause harm in a multi-system environment?

•• How can certified autonomic systems be achieved?
•• How can users be confident that a system does what it says?
•• How can consistency and reliability be achieved, over longer time frames, 

beyond attaining self-management?

Such challenges and questions are acknowledged and discussed in [Reference 9]. 
Figure 2.9 shows an analysis of the reviewed publications in the first decade, in 
terms of their topic areas. Only about 4.3 per cent of these papers are VT related and 
out of these, only a few, about 1.2 per cent of the papers, are actual VT methodolo-
gies. This number includes mainly those studies that incorporate validation, testing 
and reliability into their architectures, frameworks or implementations and not nec-
essarily as a core or critical feature. This shows an understanding of the challenges 
of VT but yet to be fully grasped. Some of the very few publications that actually 
propose actual VT methodologies are non-generic and tackle application specific 
problems. Figure 2.9 shows the low-level research into trustworthy autonomics in 
the first decade.

Moving forward, it is important to note that making autonomic systems trust-
worthy is not optional – it is an essential prerequisite for the ultimate success of 
autonomic computing.

2.3.3 � Autonomic computing in the second decade
The first decade of autonomic computing summarily shows a progressive result in 
terms of what was achieved. Emerging challenges, e.g., large-scale systems, increas-
ing heterogeneity of services and platforms, interoperability of systems etc., from 
the first decade started receiving attention in the second decade. Tables  2.6 and 
2.7 are high level analysis of ICAC and ICAS conference proceedings, covering 
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autonomic computing research in the second decade. As in the first decade, these are 
analysed to show research stages against a maturity timeline.

In terms of author distribution, the academic community continues to dominate 
the research effort, with the most publications. There is a 5 per cent reduction in 
contribution from the industry category. However, there is a significant increase in 
collaboration between academic and industry researchers. On the average, 26 per 
cent of all publications in the second decade are classed as joint. This represents 
an increase of over 8 per cent from 17.9 per cent in the first decade. This shows a 
growing synergy between the academia and the industry in achieving the autonomic 
computing goal as the challenges are well-understood.

In terms of emphasis, there is significant increase in storage and database 
management (by 10 per cent), performance management (by 22 per cent) and 
self-CHOP (by 18 per cent) related publications. This is expected as it cor-
roborates the trend identified towards the end of the first decade. The signifi-
cant jump in applying autonomic computing to address these areas is a direct 
response to the challenge of large-scale systems identified towards the end of 
the first decade. This shows how the second decade responds to the emerging 
challenges of the first decade. The increase in scale and size of systems (e.g., 

Figure 2.9  �  Reviewed the first decade publications in terms of major focus areas. 
The focus areas, which are not exhaustive, represent recurring major 
themes from both ICAC and ICAS conferences.



Table 2.6    ICAC proceedings distribution (second decade)

Distribution icac 12 icac 13 icac 14 icac 15 icac 16 icac 17 icac 18 icac 19 Total %

Authoring
Academic 18 17 20 19 40 30 18 13 175 60.3448276
Industry 10 3 3 5 3 3 0 1 28 9.65517241
Joint 19 14 6 14 11 10 5 8 87 30
Total 47 34 29 38 54 43 23 22 290
Emphasis
Storage/Database 

management
14 11 8 11 5 5 2 4 60 20.6896552

Design and architecture 10 2 0 8 10 6 3 1 40 13.7931034
Performance 

management
20 21 19 11 17 6 14 8 116 40

Self-CHOP 7 8 5 11 25 17 8 5 86 29.6551724
Survey 0 0 0 0 1 0 0 1 2 0.68965517
VT 2 1 1 1 3 2 0 1 11 3.79310345
Actual VT 2 0 0 1 2 1 0 0 6 2.06896552
Main application domain
Data centre 8 7 10 5 6 3 7 1 47 16.2068966
Distributed system 26 12 11 22 17 8 9 9 114 39.3103448
Networks (+ wireless 

sensor networks)
4 7 2 2 7 8 4 3 37 12.7586207

Robotics 0 0 0 0 0 0 0 0 0 0
Technical approach
Policy 0 1 0 4 2 3 2 3 15 5.17241379
Learning and 

knowledge
1 4 7 5 15 10 8 9 59 20.3448276



Table 2.7    ICAS proceedings distribution (second decade)

Distribution icas 12 icas 13 icas 14 icas 15 icas 16 icas 17 icas 18 icas 19 Total %

Authoring
Academic 14 13 6 17 3 9 9 11 82 72.5663717
Industry 2 1 1 1 1 3 2 2 13 11.5044248
Joint 3 3 1 5 1 5 0 0 18 15.9292035
Total 19 17 8 23 5 17 11 13 113
Emphasis
Storage/Database 

management
1 0 0 0 0 0 0 0 1 0.88495575

Design and architecture 3 2 1 5 0 1 0 3 15 13.2743363
Performance 

management
1 2 2 4 1 2 1 0 13 11.5044248

Self-CHOP 11 8 2 1 0 0 0 0 22 19.4690265
Survey 1 0 0 0 0 0 0 0 1 0.88495575
VT 3 2 0 2 0 1 0 1 9 7.96460177
Actual VT 0 0 0 0 0 0 0 1 1 0.88495575
Main application domain
Data centre 4 2 2 1 0 0 0 0 9 7.96460177
Distributed system 2 7 3 8 1 4 1 1 27 23.8938053
Networks (+wireless 

sensor networks)
0 1 1 0 0 1 6 1 10 8.84955752

Robotics 1 2 1 4 3 2 1 7 21 18.5840708
Technical approach
Policy 3 0 1 1 0 0 0 1 6 5.30973451
Learning and 

knowledge
2 2 3 1 0 4 6 4 22 19.4690265
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cloud computing, online services and big data applications) has led to increased 
demand and management of storage systems [63–66] – these studies also propose 
solutions. Several other studies have proposed autonomic solutions to workload 
scaling [52–54]. Performance management saw the second highest jump (22 per 
cent) of all the categories. Studies in this category are widespread, ranging from 
variety of performance metrics [67–71] to specific considerations, e.g., quality of 
service and service level agreement [72–77] to energy efficient [78–83] related 
performance management. There is no significant change in any of the design 
and architecture, survey, VT and actual VT categories from the first decade. 
These unchanged categories are discussed in detail in the general trend discus-
sion section below.

Findings in the analysis of the second decade largely corroborate those of the 
first decade, (Figure 2.10). In terms of main application domain, the data centre 
continues to dominate in the ranking of interest to the community. However, this 
time we have noticed an increase in the consideration of energy efficiency for 
data centres [78-83], encouraging green computing as a way to manage climate 
change. Network and robotic categories saw a minor increase in consideration 
from the first decade. There is no massive interest in these areas from the analysis. 
Data centre/distributed systems remains the main application domain for auto-
nomic computing. This is an area that is witnessing exponential growth, due to 
increasing reliance on cloud computing, leading to more complexities. As a result, 
there is a significant upsurge in learning and knowledge, reflecting the applica-
tion of modern technologies, like machine learning and artificial intelligence, to 
address those complexities. This also reflects current line of thinking and direc-
tion in technology solutions – ‘artificial intelligence to the rescue of everything 
difficult’. This explains the significant rise, by 13 per cent, in the number of learn-
ing and knowledge–related publications in this decade. Although other autonomic 
enabling techniques like fuzzy logic [47, 48, 84, 85], utility functions [86–89], 
etc., still exist and continue to help in pushing the autonomic boundary, policy 
autonomic remains the dominant technique.

There is reduction in the focus on design and architecture as there is now a 
good hang on the design of autonomic systems. Trustworthy autonomics (VT and 
VT_Actual) remains an area of real concern and importance but still largely unex-
plored. Recurring themes include autonomic power management in ever growing 
data centres and distributed systems. Effort towards reducing data centre’s contribu-
tion to climate change is taking centre stage.

[Trustworthy autonomics (VT and VT_Actual) remains an area of 
real concern and importance but still largely unexplored. Only about 
3 per cent of the over 1,000 reviewed publications are VT related. 
Far fewer than this are actual proposals for trustworthy autonomics 
solution.]
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Figure 2.10  �  Reviewed first and second decade publications in terms of major 
focus areas. The focus areas, which are not exhaustive, represent 
recurring major themes from both ICAC and ICAS conferences. 
Analysis considers actual number of publications (a) and 
percentage of all publications (b).
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It is important to note the insignificant shift in the study of trustworthy auto-
nomics. We are well into the second decade of the study of autonomic computing, 
and the general effort focusing on trustworthy autonomics has barely changed. 
Only about 3 per cent of the over 1,000 reviewed publications are VT related. Far 
fewer than this are actual proposals for trustworthy autonomics solution. There 
is still a wide gap in our appreciation of the need for trustworthy autonomics and 
the availability of the appropriate solutions. This further strengthens the case for 
this book.

2.3.4 � First and second decades of autonomic computing research 
at a glance

A general overview in the first two decades of the study of autonomic computing in 
terms of major focus areas shows that survey and distributed systems are the least 
and most considered areas, respectively (Table 2.8 and Figure 2.11). This shows the 
level of understanding there is, in these considerations, of the extent of work done in 
achieving the goal of autonomic computing. The second least considered category, 
Actual VT, raises a concern. The dynamic nature of autonomic systems means that it 
is close to impossible to comprehensively predict possible outcomes at design time, 
making it difficult to predetermine whether the autonomic manager’s decisions are 
or will be in line with the overall system’s goal. As a result, there is a vital need for 
runtime validation of autonomic decisions which also contributes to trustworthy 
autonomics. This area is still largely unexplored.

Analysis so far shows a progressive result in terms of what has been achieved 
in the autonomic computing research. The academia is clearly leading the effort. 
There is significant and increasing reduction in the number of publications in 
both conferences (Figure 2.12). This can be due to a number of factors, includ-
ing acceptance rate (this usually modulates according to uptake), visibility of 
conferences (publicity outlets), proliferation of conferences, etc. It is suggested 
that this continuous decrease is largely due to the number of other publication 
avenues  – conferences and journals that accept similar topics. These avenues, 
including those dedicated to autonomic computing, have continued to emerge 
following the introduction of the autonomic computing concept. It would be 
interesting to know if this trend will continue or whether these two conferences 
will bounce back in the coming years. However, it is preferable to have dedicated 
topic-specific conferences. This would help in tracking efforts being made in 
those research areas.

As can be seen in Figure  2.11, trustworthy autonomics is still largely unex-
plored. Note that some of these publications only touched on some specific aspects 
of the categories. The analysis results of the second decade largely corroborate those 
of the first decade. These correctly reflect the identified trend and direction towards 
the end of the first decade.



Table 2.8    ICAC and ICAS proceedings distribution in the first two decades of autonomic computing research

Distribution

icac 
icas 
04

icac 
icas
05

icac 
icas 06

icac 
icas 07

icac 
icas 
08

icac 
icas 
09

icac 
icas 
10

icac 
icas 
11

icac 
icas 
12

icac 
icas 
13

icac 
icas 
14

icac 
icas 
15

icac 
icas 
16

icac 
icas 
17

icac 
icas 
18

icac 
icas 
19 Total %

Authoring
Academic 39 50 59 68 49 66 45 55 32 30 26 36 43 39 27 24 688 65.52
Industry 17 19 19 19 5 14 5 2 12 4 4 6 4 6 2 3 141 13.43
Joint 8 18 23 14 15 11 7 20 22 17 7 19 12 15 5 8 221 21.05
Total 64 87 101 101 69 91 57 77 66 51 37 61 59 60 34 35 1050 100
Main application domain
Data centre 3 12 17 15 12 13 13 14 12 9 12 6 6 3 7 1 155 14.76
Distributed 

systems
17 11 17 11 1 6 3 6 28 19 14 30 18 12 10 10 213 20.29

Networks 8 6 7 7 2 5 4 4 4 8 3 2 7 9 10 4 90 8.57
Robotics 1 1 3 1 4 4 1 5 1 2 1 4 3 2 1 7 41 3.90
Storage and 

database 
management

5 5 8 5 1 3 1 5 15 11 8 11 5 5 2 4 94 8.95

Others
Design/

Architecture
7 15 16 9 6 12 6 10 13 4 1 13 10 7 3 4 136 12.95

Learning/
Knowledge

8 4 4 5 12 7 1 4 3 6 10 6 15 14 14 13 126 12

Performance 
management

9 6 10 10 4 12 5 8 21 23 21 15 18 8 15 8 193 18.38

Policy 2 6 5 4 5 3 3 0 3 1 1 5 2 3 2 4 49 4.67
Self-CHOP 11 9 5 6 8 9 7 3 18 16 7 12 25 17 8 5 166 15.81
Survey 0 0 1 2 1 3 0 2 1 0 0 0 1 0 0 1 12 1.14
VT 4 4 6 5 2 3 1 3 5 3 1 3 3 3 0 2 48 4.57
Actual VT 1 1 1 4 1 1 0 0 2 0 0 1 2 1 0 1 16 1.52
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2.4 � Trends, direction and open challenges

In this section, the analysis-by-problem approach (Figure 2.13) is used to show the 
pattern (in terms of maturity stages) that the autonomic computing research commu-
nity follows in tackling the research challenge. This is useful in identifying the direc-
tion of travel and open/remaining research challenges and helps to focus the minds of 
researchers. Figure 2.13 shows the observed stages (A–C) the research community has 
adopted in addressing autonomic computing and a view of the current and open chal-
lenges (D) towards achieving the goal of autonomic computing. Stage D represents 
themes that are considered open challenges based on the direction of research.

The analysis here is kept to a high level; however, finer-grained sub-stages may 
exist. The stages are classified against a maturity timeline, as shown in Table 2.9 
Figure 2.8. Although there are possible overlaps, only major and recurring themes 
are considered for these stages.

Figure 2.11  �  General overview in the first two decades (2004–2019) of the study 
of autonomic computing. This analysis is based on the review of 
about 1,050 conference (ICAC and ICAS) paper publications.
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Figure 2.12    Number of ICAC and ICAS conference publications

Figure 2.13  �  Stages showing observed trend and direction of research after the 
first two decades
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Figure 2.14 shows the classification of proceedings used for determining the 
information in Figure 2.13. Stage A represents research efforts (in this case proceed-
ings of both conferences) from 2004 to 2009. This is the early stage of the research. 
The middle stage, Stage B, represents efforts from 2010 to 2014 – a time covering 
towards the end of the first decade and the early years of the second decade. Stage C 
covers efforts well into the second decade.

2.4.1 � Trends and direction
In the early stage (Figure 2.14), investigation reveals that research focused mainly 
on stating the problem/challenge of evergrowing system complexity [37, 38], the 
need for solution and justifying autonomicity as that solution [40, 90]. Majority of 
work in this area, data centre and distributed systems, e.g., were hinged on dynamic 
resource allocation [41, 42, 91] and were industry (e.g., IBM, HP, Sun) dominant. 
Towards the middle stage, the research community intensified effort in developing 
and applying techniques that have now been established and are increasingly used in 
today’s research, e.g., policy-driven autonomics [43, 44], utility functions [46, 92], 
fuzzy logic [47, 48]. There was also a huge effort in understanding the self-CHOP 
autonomic functionalities. Although there has been debate on the actual composition 
of autonomic functionalities and the list substantially growing [3, 5], it is a choice 
to limit it to the original and generally accepted four self-CHOP functionalities in 
this chapter.

By the middle stage, many of the autonomic enabling techniques, e.g., policy 
autonomics, utility functions, fuzzy logic, etc., were fully developed and widely 
accepted/used. Progress was now made in identifying and solving specific problems 
in isolation and a significant number of papers offered specific solutions to spe-
cific problems. This stage saw an increase in studies specifically devoted to demon-
strating the autonomic functionalities in different application domains – examples 
include self-configuration in distributed systems [93] and for autonomic managers 
[94], self-healing in control theory [95], self-optimisation-based architecture [96] 

Figure 2.14  �  Stage classification for all conference proceedings. This is the 
classification of proceedings used for determining the observed 
trend and direction of research after the first two decades.
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and self-protection in pervasive systems [97]. Other specific areas of focus include 
virtualisation for distributed systems and data centres [98–100], performance man-
agement – especially quality of service [73, 101, 102] and autonomic energy man-
agement [103]. The establishment of the composition of autonomic functionalities 
led to interests, e.g., in how autonomic systems can be described in a universal 
language that allows for a way to measure the extent of autonomicity exhibited by 
a particular system [104]. Studies in this stage largely consist of implementations, 
demonstrations and presentation of experimented results of proposed ideas.

Towards the beginning of the second decade saw the community starting to 
address the bigger picture with concern now more to do with scale [56, 105] and 
generalisation of techniques so as to make re-usable solutions. At this stage issues 
of heterogeneity of services and platforms also began to arise. For example, the 
community was now faced with addressing large-scale data centres with diverse 
heterogeneous platforms. This increase in scale and size of systems (e.g., data 
centres/distributed systems) coupled with heterogeneity of services and platforms 
means that more autonomic managers could be integrated to achieve a particular 
goal. This bringing together of many autonomic managers for a common goal led to 
the need for interoperability between autonomic managers – this became one of the 
new challenges for the second decade. It is still an open challenge.

Interoperability was somewhat neglected as a challenge in the first decade. Earlier 
work, within the research community, was fundamentally concerned with getting 
autonomic computing to work and establishing fundamental concepts and demon-
strating viability. Many mechanisms and techniques were explored. Now, in the sec-
ond decade, that the concept of autonomic computing is well understood and widely 
accepted, the focus can shift to the next level; e.g., interoperability – how to manage 
multi-manager scenarios, to govern interactions between managers and to arbitrate 
when conflicts arise. These are the kind of problems that arose with the increasing 
scale of systems [65, 66]. For example, when more than one autonomic manager is 
needed to coordinate a large-scale system, there may be situations where one manager 
counters the decision of another. There were a few mentions and general discussion 
around this challenge [12, 106, 107] towards the end of the first decade.

The community had not yet made good progress on interoperability though there 
were efforts on the way. For example, Anthony et al. [61] evaluate the nature and 
scope of the interoperability challenges for autonomic computing systems, identify 
a set of requirements for a universal solution and propose a service-based approach 
to interoperability to handle both direct and indirect conflicts in a multi-manager 
scenario. In this approach, an interoperability service interacts with autonomic 
managers through a dedicated interface and is able to detect possible conflicts of 
management interest. In this way, the interoperability service manages all interoper-
ability activities by granting or withholding management rights to different auto-
nomic managers as appropriate. Another example is the work in Reference [62] 
which examines a web services solution that standardises access to cross-domain 
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hydrologic data repositories (of disparate semantic and syntactic definitions and 
hosted on heterogeneous platforms) to facilitate data discovery and enable cross-
domain interoperability. The project emphasises the idea of a seamless interface 
through which access can be gained to hydrologic data from multiple heterogeneous 
data sources.

There has now been an increased focus in the autonomic research community 
on interoperability. Several studies [36, 108, 109, 110, 36, 111] in the later stage 
(Figure 2.14) have addressed the challenge of interoperability in many ways. The 
study in Reference [108] looks at interoperability within autonomous swarms of 
unmanned systems, another study in Reference [109] focuses on autonomic conflict 
management between coexisting applications, while the study in Reference [110] 
addresses interference-aware load balancing. The research in Reference [36] looks 
at interoperability in achieving service level objectives, and Reference [111] is inter-
ested in multi-agent interaction within supply scheduling.

One recurring theme in the later stage is power management. Climate change 
awareness/campaign has become popular in the last decade. This is also reflected 
in the direction of research within the autonomic computing community as increas-
ingly several studies are focused on autonomic power management of data centre. 
Efforts towards reducing the data centre’s contribution to climate change are taking 
centre stage [79–83]. It is important to remember that the current stage is character-
ised by increased scale, new challenges and extended technologies (Figure 2.13). As 
a result, there is a significant jump in learning and knowledge (Figure 2.11), reflect-
ing the application of modern technologies, like machine learning, to address those 
complexities [63][112][113]. This explains the increase in learning and knowledge 
in Figure 2.11. Also noticeable in Figure 2.11 is the decrease in the focus on design 
and architecture as there is now a good hang on the design of autonomic systems 
compared to the first decade.

2.4.2 � Open challenges
On the other hand, beyond current mainstream focus are evolving and open chal-
lenges, including issues of validation, trustworthiness and certification. The follow-
ing set of questions identified earlier [9] are yet to be fully answered:

•• What are the processes to ensure that component upgrades that are tested and 
confirmed in isolation will not cause harm in a multi-system environment?

•• How can certified autonomic systems be achieved?
•• How can users be confident that a system does what it says?
•• How can consistency and reliability be achieved, over longer time frames, 

beyond attaining self-management?

Out of the 1,050 reviewed publications, only 48 are VT related while only 16 
are actual VT methodologies. The number for VT includes mainly those papers that 
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incorporated validation, testing and reliability into their architectures, frameworks 
or implementations and not necessarily as a core or critical feature. For example, in 
the two decades under review, only two ICAS papers [12, 114] propose a method. 
The work in Reference [12] presents a framework (based on model checking) for 
verifying and detecting constraint violation when two or more workflows are exe-
cuted on the same system as a way of ensuring system trustworthiness. Page et al. 
[114] propose a methodology to analyse and test autonomous systems in hazardous 
environments, with the aim of verifying safe decision-making.

The few VT-related papers in ICAC include [9][115][116][117]. Hoi et al. [9] 
ask the critical question of ‘How can we trust an autonomic system to make the best 
decision?’ and proposes a ‘trust’ architecture to win the trust of autonomic com-
puting system users. The proposal is to introduce trust into the system by assign-
ing an ‘instantaneous trust index’ (ITI) to each execution of a system’s autonomic 
manager – where ITI could be computed, e.g., by examining what fraction of auto-
nomic manager suggested actions the user accepts unchanged, or by examining how 
extensive the changes that the user makes to the suggested actions are. The overall 
trust index, which reflects the system administration’s level of trust in the autonomic 
manager, is computed as the function ‍f

�
ITIi

�
‍ where ‍i = 1, 2, 3, : : :‍ and ‍ITIi‍ are the 

individual ITIs for each autonomic manager execution. Kikuchi et al. [115] propose 
a policy verification and validation framework that is based on model checking to 
verify the validity of administrator’s specified policies in a policy-based system. 
Because a known performing policy may lead to erroneous behaviour if the system 
(in any aspect) is changed slightly, the framework is based on checking the con-
sistency of the policy and the system’s defined model or characteristics. In all the 
reviewed first decade papers, this is the only VT method implemented with data cen-
tre case study. Landauer and Bellman [116] present a methodology that facilitates 
the evaluation of design choices at system definition time while Reference [117] 
concentrates on computational trust.

It should be noted that autonomic system trustworthiness goes beyond secure 
computing. It is result oriented, not focusing on how a goal is achieved but the 
dependability of the output. All systems, no matter how simple, are designed to 
meet a need, but not all systems have security concerns. So, trustworthiness is not 
all about security and validation; on the other hand, it is not about showing that a 
system or process works but ensuring that it does exactly what it is meant to do. It is 
also important to note that validation here needs to be runtime.

We have identified the problems of robust design, validation and related issues 
on trustworthiness leading to certification [26]. In Reference [26], we outline the 
challenges in current autonomic system validation methods and propose a strategy 
leading to the achievement of autonomic systems certification. This strategy is a 
roadmap defining the stages or processes in the journey towards full autonomic com-
puting. We posit that there are significant limitations to the way in which autonomic 
systems are validated, with heavy reliance on traditional design-time techniques, 
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despite the highly dynamic behaviour of these systems in dealing with runtime 
configuration changes and environmental and context changes. These limitations 
ultimately undermine the trustability of these systems and are barriers to eventual 
certification. Shuaib et al. [11] propose a framework that will allow for proper certi-
fication of autonomic computing systems. Central to this framework is an alternative 
autonomic architecture based on intelligent machine design which draws from the 
human autonomic nervous system. It is strongly believed that certification is critical 
to achieving the full goal of autonomic computing.

[There are significant limitations to the way in which autonomic systems 
are validated, with heavy reliance on traditional design-time techniques, 
despite the highly dynamic behaviour of these systems in dealing with 
runtime configuration changes and environmental and context changes]

Another open challenge is interoperability, discussed in Chapter 6. Effort here 
will include evaluating the nature and scope of the interoperability challenges 
for autonomic computing systems, identifying a set of requirements for a univer-
sal solution and proposing a service-based approach to interoperability to handle 
both direct and indirect conflicts in a multi-manager scenario. An efficient solution, 
e.g., stigmergic-based interoperability [118], will need to be seamless and consider 
interoperability as an integral part of the system.

These are only a few main open challenges. As technology evolves, leading 
to new complexities and issues, the autonomic computing solutions will need to 
evolve too.

2.5 � Conclusion

This chapter has discussed the evolution of autonomic computing, focusing on the 
autonomic architecture life cycle and the trend and direction of research towards 
addressing the autonomic computing challenge.

For autonomic architecture, at the level of current state of practice, there are 
techniques to provide runtime validation (for behavioural and structural conformity) 
and additional console for higher level (and external) control. What is missing are 
techniques for managing, e.g., in a longer time frame, instability and oscillatory 
behaviour in autonomic systems. A holistic framework that collates all these capa-
bilities into a single autonomic unit is required. These are proposed in this book.

A broad and general analysis of autonomic computing research, in terms of 
identifying trends in the research from 2004 to 2019, has also been presented. This 
gives a thorough review of the state-of-the-art in trustworthy autonomics. Results 
show that trustworthy autonomics, which is essential to the success of autonomic 
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computing, has received very little attention compared to other focus areas. Only 9 
per cent of over 1,000 reviewed research publications identify trustworthiness as a 
challenge while only about 3 per cent propose actual methodologies targeting vali-
dation and trustworthiness although majority of these methodologies are application 
dependent.

A roadmap towards achieving trustworthy autonomic systems, identifying 
stages of layered autonomic solution within which appropriate processes and instru-
mentations are defined, needs to be followed. The stages can also be seen as concrete 
autonomic developmental phases (in terms of maturity timeline) that lead to achiev-
ing certifiable autonomic systems. These stages should include the following:

•• Defining an autonomic system – what makes a system autonomic? This will 
include a description of autonomicity and a means to measure the level of auto-
nomicity required for or attained by the system.

•• Setting out validation requirements, appropriate to the system’s definition, that 
will meet runtime conditions.

•• Defining robust techniques and measures that ensure the system remains 
consistent and reliable under almost all perceivable operating and contextual 
circumstances.

The trend seen in the analysis in this chapter seems to be revealing a kind of 
plan that is consistent with the roadmap towards achieving trustworthy autonomic 
systems.



Chapter 3

Autonomic enabling techniques

Autonomic computing has been powered by a combination of many established and 
new techniques. These include different algorithms, logics, functions, mechanisms, 
routines, tools, etc., which are used to deliver desired autonomic functionalities. 
This chapter presents some of these techniques and shows examples of how they can 
be used to achieve relevant autonomic computing features.

‍ ‍
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In this chapter, you will be able to:

•• Study different autonomic enabling techniques
•• Understand how autonomic enabling techniques can be used to achieve auto-

nomic functionalities
•• Practice with autonomic enabling techniques
•• Understand how autonomic enabling techniques can be combined to achieve 

trustworthy autonomics

3.1 � About autonomic enabling techniques

Autonomic computing leads to the creation of systems that are capable of self-
management – autonomic systems. This has been widely accepted to mean that such 
systems are able to demonstrate some level of autonomic functionalities. So, auto-
nomic systems are defined by the autonomic functionalities they provide. These 
autonomic functionalities, arguably not exhaustive, depending on domain applica-
tion, were originally limited to self-configuration, self-healing, self-optimisation 
and self-protection (self-CHOP).


Each of the autonomic functionalities can be enabled by a single technique or a 

combination of different techniques. For example, self-healing can be achieved by 
implementing any fault-tolerant technique. Self-healing can also be achieved by speci-
fying relevant behaviours as policies (or rules). Building autonomic systems requires 
imbedding these autonomic enabling techniques into the design of the systems.

3.2 � Simple exponential smoothing

Autonomic systems are designed to make decisions and adapt based on contextual 
information. Relevant inputs from the operating environment are fed into the auto-
nomic system, which are processed for the system’s adaptation. Sometimes, these 
inputs are erratic, irregular and could lead to instability in the system’s behaviour. 
Making decisions based on erratic inputs can lead to unreliable outcomes. To enable 
an autonomic system make reliable decisions with highly irregular inputs, the system 
needs to be able to sanitise the inputs first. This sanitisation may involve analysing 
the inputs for trends and removing noise before acting on them. Sometimes, it may 
be necessary to be able to forecast or have an idea of the subsequent data inputs (next 
expected values) and take those into consideration for more efficient adaptation deci-
sions. One way of doing this is to find a way of forecasting future values (data points) 
with reference to the most recent data points. This is especially relevant in situations, 
like autonomic computing, where data values have no form of trend or seasonality.

Simple exponential smoothing (SES) is a technique for extrapolating patterns 
and trends in time-series data. This is used in analysing time-series data to smooth 
the data stream, remove noise and forecast the next data in the sequence. In signal 
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processing, for example, the signal may fluctuate with high-frequency (noise), and 
SES can be used to remove the noise and smooth the data. The SES (‍St‍) of a data 
sequence (‍x‍) at time (‍t‍) is defined by the following:

St =
�
˛ � xt

�
+
��
1 � ˛

�
� St�1

�

where, ‍S0 = x0, t > 0‍ and ‍0 < ˛ < 1‍

The smoothed value ‍St‍ is a forecast for the next data sequence ‍xt+1‍ . The smooth-
ing constant (﻿‍˛‍) controls the closeness of the forecast value to the actual value. The 
sequence begins at ‍t = 0‍, allowing for at least one observation before forecast can 
start. The result is that ‍St‍ smoothens the data sequence, generating new values that 
are stable and close to ‍xt‍ as possible. The idea here is to use a weighted average of 
previous values in a particular series to forecast future values. This idea is very use-
ful in autonomic computing for making reliable decisions with unstable data inputs.

3.2.1 � Implementing an SES using python
SES is one out of three types of exponential smoothing techniques. It is suitable for 
series that are unpredictable, i.e., series with no trend or seasonality. Holt’s expo-
nential smoothing is suitable for series with trend and no seasonality while Winter’s 
exponential smoothing is suitable for series with trend and seasonality. These can be 
implemented in Python using the Statsmodels package:

‍ ‍

The smoothing constant (﻿﻿‍˛‍) can be specified using smoothing_level, but 
if this is not specified or set to None, the model will automatically optimise the 
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value – Statsmodels will automatically find an optimised ﻿﻿‍˛‍ value for the forecast. 
However, since a satisfactory forecast value is application domain dependent, an 
‘optimised’ value may not always be the best value for ﻿﻿‍˛‍. So, it may be necessary 
to specify different ﻿﻿‍˛‍ values and then choose a smoothed forecast option that best 
meets the goal of the system in the case scenario – see the next section 3.2.2. For 
more details about SES, see References 119, 120 and 121.

3.2.2 � Basic implementation of an SES using microsoft excel sheet
Implementing SES in Microsoft Excel is very straightforward. We need to note the 
SES function, which is computed in order to generate the required forecast.

‍St =
�
˛ � xt

�
+
��
1 � ˛

�
� St�1

�
‍

Figure 3.1 is a Microsoft Excel computation of SES for a fictitious sample data 
series (column C). Different ﻿‍˛‍ values (column A: 0.2, 0.3, 0.5, 0.8 and 0.25) are used 
to generate different forecasts. As highlighted, the SES function (=($A$2*$C3)+ 
((1-$A$2)*D2)) that is computed for Cell D3 is replicated for all the other cells in that 
column. The ‘$’ notation is used to keep those values constant when replicating the 

Figure 3.1  �  Microsoft Excel computation of simple exponential smoothingSES 
with different values
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function. For example, the SES function becomes =($A$2*$C12)+((1-$A$2)*D11) 
for Cell D12. However, the column A values are changed for the other columns to 
capture the different values of ﻿‍˛‍. For example, the SES function for Cells E3 and F3 
becomes =($A$3*$C3)+((1-$A$3)*E2) and =($A$4*$C3)+((1-$A$4)*F2), respec-
tively. The chart for the forecast is shown in Figure 3.2.

Figure 3.2 shows the SES of a sample series using different smoothing con-
stants. Ideally, the closer the smoothing constant is to 1, the closer the forecast will 
be to the actual (expected) value. However, a value of ﻿‍˛ = 1‍, which would return the 
exact expected actual value, does not necessarily mean that the forecast is optimised. 
For studies showing how to determine optimal values of exponential smoothing 
constants, see References 122, 123, 124, 125 and 126.

It is important to note that an optimised value of ﻿‍ ˛‍ is relative. In a situation 
where it is useful to generate a more accurate forecast, an optimised value of ﻿‍˛‍, for 
example, generated by default as explained in the Python implementation, would be 
one that produces forecasts that are satisfactorily close to the actual value. In another 
instance, say where the series is highly erratic and unpredictable, it may be preferred 
to choose a smoothing constant that generates forecasts that are more stable as well 
as close to the actual value. In the example of Figure 3.2, a smoothing constant value 
of ‍̨ = 0.5‍ may be preferred as it represents a more fine-tuned outcome. This choice 
may be justified because it smoothens out unwanted cyclical and irregular values. 
It may also be the case that even a more stable outcome is desired, in which case 
a smoothing constant value of ‍̨ = 0.3‍ is preferred. As can be seen in Figure 3.2, a 
value of ‍̨ = 0.3‍ leads to an outcome that is well within the standard deviation of the 
series, i.e., between data values of 3 and 15.

Figure 3.2  �  Sample series showing SES. Different smoothing constants (0.2, 
0.25, 0.3, 0.5 and 0.8) are used
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The smoothing constant value may also depend on the standard deviation of the 
data series, considering the amount of variation of the forecast from the expected. 
The important thing is to choose a smoothing constant value that enables the system 
in which it is applied to achieve its intended goal. For example, in trustworthy auto-
nomic computing, having different values of the smoothing constant is useful for 
dynamic tuning of behaviours. This is the focus of the implementation in this book 
as explained in section 3.2.3. It is important to then note that the choice of a smooth-
ing constant value should be application dependent.

3.2.3 � Implementing SES in autonomic computing
SES is used in this book in Chapter 6 for analysing interoperability in a multi-
autonomic manager datacentre scenario. The model of the datacentre used in the 
experimentation is as follows.

The datacentre model comprises the following:

•• A pool of resources ‍Si‍ (live servers) – a collection of servers available to the 
autonomic manager.

•• A pool of shutdown servers Ši . These are ready to be powered and restored to 
‍Si‍ as needed.

•• A list of applications ‍Aj‍ – a collection of applications supported (as services) 
by the datacentre.

•• A pool of services Ṳ. This is a combination of applications and their provision-
ing servers.

•• Two autonomic managers that optimise the entire system.

As service requests arrive, the autonomic manager dynamically populates Ṳ to 
service the requests. Service (application) requests arrive and are queued. If there 
are enough resources to service a particular request, then it is serviced; otherwise, 
it remains in the queue (or may eventually be dropped). The autonomic manager 
checks for resource availability and deploys server(s) according to the size of the 
request.

[In order to efficiently provision for service requests, the autonomic man-
ager needs a way of having an idea of the level of expected requests so as 
to prepare for them. A trustworthy autonomic manager would require the 
ability to forecast these expected requests.]

The size of application requests and the capacity of servers are defined in million 
instructions per second. When a server is deployed, it is placed in a queue for a 
time defined by a particular time variable. This queue simulates the time (delay) it 
takes to load or configure a server with necessary application before provisioning. 
Any server can be (re)configured for different applications and so servers are not 
pre-configured. Servers are then ‘provisioned’ after spending time in the queue. The 
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provisioning pool is constantly populated as requests arrive. As requests are fully 
serviced (completed), servers are released into the server pool and redeployed as 
may be needed.

A basic system without any form of smartness can barely go far before the 
whole system is clogged due to inefficient and unstructured resource management. 
The level to which any autonomic manager can successfully and efficiently man-
age the process defined above depends on its level of sophistication. This largely 
depends on how each autonomic manager is wired (in terms of architecture and 
not necessarily the scheduling algorithm or actual component logic used) and may 
include, in this case, the ability to optimally forecast requests for efficient adap-
tation. For example, two autonomic managers, differently wired, may employ the 
same scheduling algorithm but achieve different results. Results here may be looked 
at in terms of, say, ‘with such level of available resources how many requests were 
successfully serviced over a period of time?’. These are the kinds of considerations 
for trustworthy autonomic managers.

In this scenario, resource requests are sometimes erratic and the autonomic man-
agers need to be able to forecast requests and be able to plan for what is coming. The 
smoothing constant variable (﻿﻿‍˛‍) for calculating SES is used to forecast the size (capac-
ity) of arriving or expected requests. The autonomic managers with interoperability 
solution use SES in calculating when it is safe to start restoring servers or stop shut-
ting servers down as the case may be. The smoothing average is implemented on the 
capacity (million instructions per second) of arriving requests, which sometimes can 
be highly erratic. Taking decisions based on erratic behaviour can destabilise the entire 
system and so appropriate smoothing constant (﻿﻿‍˛‍) is needed to stabilise the system. An 
experiment with different smoothing constant values is shown in Figure 3.3.

It is important to choose a smoothing constant value that will not result in expo-
nential smoothed average that is very close to the actual data as that will not smoothen 
the system’s behaviour. For the experiments in Chapter 6, exponential results using 
three smoothing constants (0.05, 0.15 and 0.25) are analysed (Figure 3.3). Using any 
of 0.15 or 0.25, as shown, will result in exponential smoothed average very close to 
the actual data with no significant difference and so does not smoothen the system’s 
behaviour. However, the smoothing constant of 0.05 proves best in smoothing the 
system behaviour and using this will enable the autonomic managers to take more 
reliable decisions. The experimental analyses presented in Chapter 6 are based on 
smoothing constant value of 0.05.

3.3 � Dead-zone logic

In system design considerations, there are broadly two types of systems. These 
are systems with predetermined behaviour, leading to predictable outcomes, and 
systems whose behaviour may not be predetermined and whose outcomes are 
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unpredictable. The operating and environmental conditions of predictable or fixed 
systems are well-known. These conditions are adequately captured when configur-
ing the systems so that their behaviour and outcomes are always predictable under 
almost all conceivable conditions.

On the other hand, flexible systems are exposed to environments where system 
working conditions are dynamic, uncertain and most times, unpredictable. For these 
systems, it is impracticable to fully predetermine their operating and environmental 
conditions. These systems are designed to adapt their behaviour dynamically. Such 
systems, for example, autonomic systems, are getting more pervasive and being 
embedded in everyday objects. To adapt their behaviour, these systems are influenced 
by contextual input – environmental condition, direct data input, etc. However, these 
contextual inputs are not always predetermined and cannot be planned for during sys-
tem design time. Also, they are sometimes erratic or sporadic, and this can lead to 
unstable behaviour and unreliable outcomes. Trustworthy autonomic systems should 
be able to handle sporadic inputs and yet remain stable and produce reliable outcomes.

Consider two systems – a basic radiator controller with fixed input and condi-
tions and a driverless car with unpredictable inputs and conditions, for example. 
Heating controllers are connected to a central heating system and are used to control 
the overall ambient temperature of the environment, e.g., the home. They come in 
all forms of shapes and with different features. There are ‘smart controllers’ these 
days, like the Hive Active Heating (Figure  3.4). Regardless of all the smartness 
of new heating controllers, they are based on a simple device called thermostat. 

Figure 3.3  �  Simple exponential smoothed results with three values of α (the 
smoothing constant). It is important to have a justification for the 
choice of α
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A thermostat senses the temperature of an environment and controls the switching 
ON or OFF of a heating system to maintain a desired temperature setpoint. Heating 
controllers like Figure 3.4 are simply called thermostats.

The basic function of a thermostat is to sense ambient temperature and main-
tains it at a setpoint. Once a target temperature is set, the system maintains that tem-
perature. For example, in Figure 3.4, the TARGET temperature is set to 20 degrees 
and the ACTUAL ambient is 18 degrees. As shown, heating is turned ON and will 
remain so until ACTUAL temperature gets up to 20 degrees. As long as this sys-
tem is in use, it will not let the ambient temperature to fall below the TARGET 
temperature without switching heating ON. This is a typical example of a fixed sys-
tem with known environmental conditions and predictable outcomes. The design of 
such system can predetermine all conceivable environmental conditions (ACTUAL 
temperature is either below or above TARGET temperature), making the system 
predictable (heating is turned ON or OFF). Thermostats are reliable candidates for 
home heating controllers because home temperature does not fluctuate frequently, 
meaning that it is okay to have a system with a binary decision line.

In a different system, e.g., a driverless car (Figure 3.5), it is almost impossible to 
predetermine all the driving conditions the car will face. This makes the design of such 
cars very complex because designers cannot completely determine how the car should 
react. Even with experience and research, human knowledge of driving conditions is 
still limited. Machine learning and artificial intelligence may help the driverless car 
make some important decisions; however, as driving conditions also include consid-
erations for human behaviour (e.g., the decision process of other road users – drivers, 
cyclists, pedestrians, bystanders, etc.) which is highly unpredictable, it is difficult to 
predict outcomes. It is also important to note that some of the ambient inputs the driv-
erless car uses for its decision-making are erratic and volatile, and decisions based on 
such inputs can lead to undesirable outcomes not anticipated at design. This is a typical 

Figure 3.4  �  Hive Active Heating 2 control – an example of a fixed system with 
predetermined behaviour
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example of a flexible system, which is exposed to environments where system work-
ing conditions are dynamic, uncertain and most times, unpredictable.

Dead-zone (DZ) logic is a simple mechanism to stabilise an erratic behaviour. It 
was originally introduced by Dr. Richard Anthony [20, 43] and extensively demon-
strated in Reference 49. It prevents unnecessary, inefficient and ineffective control 
brevity when an adaptive system is sufficiently close to its target state. This can be 
used in designing fixed and flexible systems, where input-based decisions change 
quite regularly, in order to calm system behaviour. This is widely relevant for trust-
worthy autonomic systems.

DZ logic is implemented using a tolerance range check object which controls the 
choice of action to be taken, depending on specified or learned rules. These adaptation-
related actions could be as simple as increase value, decrease value or do not change 
value. This logic is used in configuring the dependability check component of trust-
worthy autonomic architecture (TrAArch – see Chapters 4, 5 and 6) to enable the 
autonomic manager achieve stability by mitigating oscillation and unwanted erratic 
behaviours. The DZ width, demarcated by the DZ boundaries, defines an area (or state) 
within which the autonomic manager does not allow a system to change its action.

Figure 3.6 is a representation of a system behaviour on a behaviour space divided 
into two zones (A and B). A particular policy or adaptation action is activated within 
each zone, demarcated by a decision boundary. So, for example, the policy action 
for zone A is activated when the system’s state falls within the boundaries of zone 
A. Within each zone, at decision or state points (represented by x and y), actions are 
changed or maintained and these are persisted until the decision boundary is crossed. 
For the behaviour in Figure 3.6, there seems to be stability in the system as the points 
of behaviour change (state points – x and y) are reasonably far from the decision 
boundary. This shows that the system does not change its behaviour frequently. 

Figure 3.5  �  RAC’s illustration of a driverless car – an example of a flexible system 
whose behaviour may not be predetermined (Image from RAC.co.uk)
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However, this cannot always be guaranteed as some systems are dynamic with fluc-
tuating and erratic behaviour caused by sporadic contextual inputs, for example. 
This is the case with the example in Figure 3.7.

In Figure 3.7, the points of behaviour change are sometimes very close to the 
zone boundary. This shows that the system changes its behaviour quite frequently. 
This kind of performance might not be desirable in situations where each change 
has significant overall implications. Take for instance, a system that helps in making 
stock trading decisions might not be profitable if it frequently changes its decisions 
in a volatile market condition. Such sensitive systems need to be able to tune out 
erratic contextual inputs that could cause oscillation and instability in the process. 
This is where the DZ logic is helpful.

In Figure  3.8, the system’s behaviour space is further divided into different 
zones (A, B, C and D). This introduces DZ boundaries, defining DZ widths within 
which a change of action is not allowed, which reduce the rate of action change 
and thereby increasing stability. In this case, the points of behaviour change (state 
points) indicate which zone action is activated or running – a, b, c and d indicate 

Figure 3.6  �  System behaviour space showing stable outcome. The behaviour of 
the systems, represented by the graph, is not erratic

Figure 3.7  �  System behaviour space showing unstable outcome. The system 
behaviour may be erratic
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actions for zones A, B, C and D, respectively. Ideally, without the DZ boundaries, a 
new action is activated each time the system behaviour crosses the decision bound-
ary. Without the DZ boundaries in Figure  3.8, there would have been 18 action 
changes, which are now reduced to 9 by implementing DZ logic.

However, there are situations where it might be necessary to dynamically adjust 
(tune) the DZ width to allow the system some flexibilities in decision-making based 
on current (unplanned and learned) realities. Consider Figures 3.7–3.8 as good exam-
ples of when it may be necessary to dynamically tune the DZ widths. In Figure 3.9, 
the system’s state points are very close to the edges of the DZ boundaries. At this 
behaviour, it may be necessary to dynamically increase the DZ width – this is known 
as dynamic tuning (e.g., ‍DZWidth + ˛‍). On the other hand, in Figure 3.10, where 
most of the state points are far from the DZ boundaries which means that the system 
rarely adapts, it may be necessary to reduce the DZ width (‍DZWidth � ˛‍) if the 

Figure 3.8  �  Illustration of DZ logic over a system behaviour space divided into 
different zones and expressed in two dimensions of freedom. The system 
behaviour is erratic in some places and a bit stable in other places

Figure 3.9    Dynamic tuning of DZ width to reduce adaptation
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system is desired to adapt more frequently. It is important to note that the dynamic 
tuning of DZ widths is application dependent. See Reference 49 for a detailed pre-
sentation of DZ logic.

3.3.1 � Implementing dead-zone logic in autonomic computing
Consider an experiment in which an autonomic manager is monitoring a system 
behaviour to track a particular goal over time. A random number generator is used to 
generate numbers between and including 15 and 25. An autonomic manager moni-
tors the number generation, tracking the value of 20, and performs one of three 
actions at every number generation cycle – if generated number < 20, perform action 
A, if > 20, perform action B and if = 20, perform no action. This can be an example 
representation of so many smart systems, e.g., a heating controller monitoring the 
fluctuating temperature of an environment, a sensor-powered system monitoring the 
humidity around a preserved item, a sensor monitoring the movement of a fragile 
cargo during transportation, etc. The role of the autonomic manager is to perform 
some actions based on the outcome of the number generator (representing some 
environmental conditions), and this can be implemented using the following code:

‍ ‍

Figure 3.10    Dynamic tuning of DZ width to increase adaptation
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This is a very basic implementation of the system and, depending on the rate 
of the number generation, if the outcome frequently fluctuates around 20, the auto-
nomic manager will change its action frequently as well. That level of decision 
change might be considered instability in some applications. Implementing a DZ 
logic will help the autonomic manager calm the situation as follows:

‍ ‍
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Note: this is an adaptation of a C# script for implementing the experiment 
explained above. To be able to plot the graph shown in Figure  3.11 in 
real time, you would need to use graphics class (e.g., the System.Drawing 
Namespace) that provides for drawing to the display device. You can 
always Google how to plot graphs in C# using System.Drawing or any 
other Namespace.

In this second implementation, the autonomic manager implements DZ logic. By 
implementing DZ logic, it becomes sensitive to the effects of its actions on the sys-
tem. This means that the manager looks at the impact of its actions on the system 
over a long-term time frame and decides whether to retune itself. In this case, for 
example, if the actions of the autonomic manager cause the system to oscillate, e.g., 
frequently changing its action, it creates a tolerance behaviour range within which 
actions are not changed, i.e., actions are persisted. In order to manage erratic behav-
iour, the autonomic manager decides whether to reduce its rate of action change by 
increasing the DZ width and thereby making the decision boundary (20 + DZWidth) 
instead of 20 following some defined policy. The policy ensures that for every 10 
decision cycles, decision change count of 4 or above is considered unstable while 
no decision change is considered inactive. So, the autonomic manager is configured 
to dynamically throttle the size of the DZWidth to only allow minimum of 1 and 
maximum of 3 decision changes in every 10 decision cycles. Figure 3.11 shows the 
result of this experiment.

Figure 3.11 represents the behaviour trend (in terms of action change) of the 
autonomic manager with and without dead zone. The autonomic manager imple-
mented with DZ logic is represented by AutonomicManager_WithDZ while 

Figure 3.11  �  System behaviour analysis of an autonomic manager with and 
without DZ logic. The autonomic manager implemented with DZ 
logic is represented by AutonomicManager_WithDZ while the same 
autonomic manager implemented without DZ logic is represented 
by AutonomicManager_NoDZ
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the same autonomic manager implemented without DZ logic is represented by 
AutonomicManager_NoDZ. The trend, indicated by the graph, shows the state of 
each autonomic manager over a period of time – it alternates between crest and 
trough each time the autonomic manager changes its decision. Results of the experi-
ment show that while AutonomicManager_NoDZ changed its decision a total of 236 
times, AutonomicManager_WithDZ changed its decision 93 times. This represents a 
significant improvement with DZ logic. Imagine, for example, how inefficient it will 
be for a real-life smart system to make 236 decisions whereas it can make only 93 
efficient decisions within the same time frame and conditions by simply implement-
ing DZ logic. It is obvious then that DZ logic can reduce instability and this is useful 
in building trustworthy autonomic systems.

3.4 � Stigmergy

Stigmergy was first introduced in 1959, in reference to termite behaviour, by a 
French biologist Pierre-Paul Grassé who defined it as ‘Stimulation of workers by 
the performance they have achieved’ [127]. This has since inspired a wide range 
of research and application in computer science leading to more accessible defini-
tions, understanding and implementations. Two interesting definitions of stigmergy 
by Wiktionary are as follows:

“A mechanism of spontaneous, indirect coordination between agents or 
actions, where the trace left in the environment by an action stimulates 
the performance of a subsequent action.”

“A mechanism of indirect coordination between agents or actions, in 
which the aftereffects of one action guide a subsequent action.”

Stigmergy is a self-organisation technique that enables coexisting agents (some-
times unaware of the existence of others) to achieve seamless coordination without 
external control, planning or direct communication between agents. This is similar 
to what is observed in ant colony. When an ant finds food, it leaves traces (phero-
mones) on its way back to the ant hill. These traces will guide other ants and itself 
back to the food source. This type of collaboration also helps the ants to find and 
establish shortest paths to food. The idea of stigmergy is simple – in a multi-agent 
environment, the actions of one agent leave signs (traces) in the environment, which 
are sensed by other agents and which influence their subsequent actions.

3.4.1 � Natural stigmergy: wildlife
Ever wondered how school/swarm of fish, birds, ants, termites, etc. (Figure 3.12) 
coordinate their activities? Observing a bird flock, flying very closely and synchro-
nously in their hundreds and even thousands, perform some amazing choreographic 
display can be satisfyingly intriguing. There are three important features to observe 
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here: the size of the individual bird is significantly so small compare to the size of 
the swarm, a bird at the tail of the swarm does not see the one at the front and no 
individual bird is in charge. Similar features are also observed in a school of fish. 
Millions of tiny fish can move with such a ‘coordinated’ precision that when a preda-
tor attacks, without warning and in split-second, the school move in the same direc-
tion and speed. There appears to be a set of ‘natural’ simple rules that individuals 
follow which leads to a collective intelligence.

This kind of behaviour where a synchronised coordination is achieved without 
a dedicated or centralised leadership is possible because of stigmergy. Work done 
by individuals leave guides for others in the environment. This is an example of col-
lective intelligence, which is achieved by a group of individuals working together, 
sometimes unaware of the existence of others in the group, to achieve a common 
goal. This is also known as swarm intelligence. This can result in a group of simple 
devices following simple rules (e.g., policies) to efficiently achieve complex tasks.

3.4.2 � Natural stigmergy: humans
Stigmergy can also be observed in the way humans behave. Countless social experi-
ments have shown how easy it is for humans to be influenced in the way they behave 

Figure 3.12  �  Images showing swarm of birds, locusts, bees and fish. Image 
credit: for birds, John Holmes (rs-online.com); for locusts, 
Reuters; for bees, Deb Conway (GirlzWurk); for fish, Jamie Smith 
(storytrender.com)
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by the environment in which they find themselves. Take a roadside trash pileup for 
example. If a driver pulls up at a roadside and finds a trash nearby, instinctively some-
thing suggests to them that ‘it is okay to drop your trash here’. There is a big chance 
that the driver will drop their trash in that same location. Although not all drivers will 
behave in this way, it is likely that most drivers will, and with time there will be enough 
contribution of trash to form a concentration of litter in that location. Whereas this is 
an unwanted outcome, it shows how information or trace left in the environment can 
influence the behaviour of other users and collectively, without any conscious coordina-
tion, a noticeable outcome that also affects the environment (for all the users) will be 
achieved. This sounds like a perfect example of Pierre-Paul Grassé’s definition of stig-
mergy as the ‘Stimulation of workers [users] by the performance they have achieved’.

Pierre-Paul Grassé’s idea of stigmergy, a process in which termites achieve order 
(building a home) from disorder (mud) through a cooperative process, has been stud-
ied and used to explain how some disordered systems can self-organise into ordered 
systems without a plan or a central control [128, 129]. A special edition of Cognitive 
Systems Research on Human Stigmergy [129] has documented some important stud-
ies and discussions on the theoretical developments and new applications in this area.

Just like stigmergy enables ants to use trails to find the shortest path between 
points, human stigmergy also has the property of finding the shortest paths. While 
‘shortest path’, for ants, might be the shortest path from their home to a food source, 
for humans, it might be finding the most relevant or useful information. Take 
Google Search* for example. Each time we conduct a search we expect the search 
to return the most useful and relevant output following our search term. To achieve 
this, Google Search engine deploys a number of complex algorithms to seek out the 
‘most desired’ output. One of the algorithms that power this is Google PageRank 
(Figure 3.13). This algorithm is based on popularity measure of webpages. Webpages 
contain links (hyperlinks) to one another and thereby providing information about 
which pages are most desired. The number of webpages that reference (contain links 
to) a particular webpage is an indication of how important that particular webpage 
is. As shown in Figure 3.13, the size of each webpage is proportional to the number 
of links pointing to it. Google Search uses this popularity measure information to 
place the most sought-after pages in the search result. The important property to note 
here is that without any form of control, millions of webpages developed and used 
by humans collectively ‘work together’ to improve the user experience of everyone 
on the internet. This is an example of human stigmergy, achieved through uncoordi-
nated collective effort of different web developers.

It is natural to assume that more people using a particular thing is an indica-
tion of how good that thing is. Human behaviour and decision-making are usually 
influenced by the experience of others and their feedback. We love to go where 
others have gone before. In the research community, for example, the quality of a 

* https://www.google.com/search/howsearchworks/
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research publication is measured using some indices and metrics. These indices and 
metrics mostly rely on number of citations. Research papers with more research-
ers and other papers referencing them (i.e., with more citations) are regarded as 
high quality. Figure 3.14 shows the Google Scholar popularity/quality measure of 
a researcher and IEEE Xplore popularity/quality measure of the IEEE Transactions 
on Computers journal.

Stackoverflow†, a website that provides quick answers to computer science-
related questions, is another example of human stigmergy. Users ask questions and 
other users provide answers. Users who find a particular answer useful upvote that 
answer. According to Stackoverflow, ‘Upvoting helps exceptional content to rise 
to the top and bring awareness to useful responses’. The system uses the upvotes 
and date of posts to keep the most relevant contents on top. This way, through the 

† https://stackoverflow.com/

Figure 3.13  �  Example illustration of Google PageRank used in Google 
Search engine. This represents different webpages with links to 
(referencing) other webpages. The more webpages pointing to 
a particular webpage, the more important that webpage is and 
the more likely that it will be returned, in a search, as the most 
sought-after source. In this case, the webpage in the middle (with 
a dartboard) would certainly be returned as the most relevant and 
useful webpage for the search
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uncoordinated actions of users on the environment (in this case Stackoverflow), the 
users help themselves to find best question and answer match.

3.4.3 � Stigmergy in autonomic systems
Stigmergy in computer science involves modelling the behaviour of social animals, 
especially ants, in which individual entities cooperate to solve complex problems. In 
this organic cooperative arrangement, individuals work as if they were alone while 
their collective activities appear to be coordinated [127]. A study in Harvard has dem-
onstrated how collective behaviour in biological systems can be applied to comput-
ing and robotics [130, 131]. In this study, a thousand identical tiny robots were pro-
grammed to mimic the collective behaviour of biological systems in forming different 
patterns (Figure 3.15). Although these robots were given the same rules, they were 
programmed with stigmergic properties to behave differently. With this, they were 
able to achieve collective intelligence in completing tasks like formation of different 
patterns without any central control. Although these formations are not as natural and 
swift as observed in that of swarm of birds, the same idea is demonstrated. It took the 
robots about 12 hours to complete each of the formations shown in Figure 3.15.

Figure 3.14  �  Google Scholar and IEEE Xplore popularity/quality measure of a 
researcher and a journal respectively. h-Index is the largest number 
h such that h publications have at least h citations. i10-index is the 
number of publications with at least 10 citations. Impact factor is 
the average number of times articles from a journal published in 
the past two years have been cited in the Journal Citation Reports 
(JCR) year. Eigenfactor™ Score considers the number of times 
articles from a journal published in the last five years have been 
cited in the Journal Citation Reports year while also considering 
which journals have contributed these citations. Article Influence™ 
Score is also a prestige measure and has all the features of the 
Eigenfactor Score, with an additional normalisation to the number 
of published papers. Explanations taken directly from Google 
Scholar and IEEE Xplore
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This technique can be useful for multi-agent coordination and control. Stigmergy-
based coordination is a rich and wide area of research that can be explored in many 
forms. The potential of utilising stigmergy by software agents to interact with each 
other and to collectively solve a common task is presented in Reference 132. A 
multi-agent stigmergic coordination in manufacturing control system has been dis-
cussed in Reference 133. Coordination amongst the agents in the manufacturing 
control system is a direct reflection of the pheromone-based stigmergy in ant colony.

One of the important observations here is that the robots in Figure 3.15 were 
able to complete these tasks without any chaos. Notwithstanding the small space, a 
thousand tiny robots, without the express knowledge of the presence of each other, 
were able to collectively complete such tasks without counteracting one another. 
This is a good idea and provides a promising solution for managing complex interac-
tions between coexisting autonomic systems in a multi-autonomic system environ-
ment. This is a required feature for trustworthy autonomic systems. In trustworthy 
autonomic computing, there is need for a level of confidence in successful coexis-
tence of autonomic systems whether they are aware of the presence of others or not.

In this book, Chapter 6, stigmergy-based interoperability solution for managing 
complex interactions between autonomic managers in a multi-manager scenario is 
presented. Two autonomic managers are used in this arrangement (Figure 3.16). The 
scenario is a datacentre managed by two autonomic managers: a power manager 
responsible for optimising power usage and a performance manager responsible for 
handling resource allocation. A basic conflict could arise, for example, when the 
power manager tries to take off a server that the performance manager is about to 
deploy. With stigmergy, both autonomic managers could be designed to collectively 

Figure 3.15  �  A thousand self-organising robots forming different patterns 
through the cooperation of all. This is a demonstration of swarm 
intelligence as shown in Reference 130. The robots were able to 
collectively complete different formations without a central control
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compliment rather than conflict each other even without the express knowledge of 
the presence of each other. With the existence of large and complex datacentres, 
managed by multiple autonomic systems, stigmergy can help in achieving reliable 
interoperability. See Chapter 6 for more discussions on multi-agent interoperability 
and experiments.

Autonomic managers are designed by different vendors and may not have been 
wired at design to coexist with other autonomic managers. Although they may per-
form brilliantly in isolation, but when they coexist with others may counter each 
other’s actions. A stigmergic inspired solution, built into the system’s design, will 
enable different autonomic managers to coexist and to achieve seamless coordina-
tion without even direct communication between them.

3.5 � Policy autonomics

Generally, a policy is a system of propositions, sometimes expressed as procedures, 
for achieving desired outcomes. In computing, a policy can be used to express rules 

Figure 3.16  �  An illustration of a datacentre that is managed by two autonomic 
managers. The power manager is responsible for optimising power 
usage while the performance manager is responsible for handling 
resource allocation
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that define a system’s goal. In autonomic computing, these are context-sensitive 
rules that determine runtime behaviour of the autonomic system. An autonomic sys-
tem takes in context data, analyses them and takes decisions for action. This process 
can be captured in a policy as shown, for example, in the policy pseudocode for a 
sensor below:

‍ ‍

3.5.1 � Policy-based networking
In networking, a policy is a formal set of statements, sometimes written in natural 
language, that define how traffic should be routed or how resources should be man-
aged or allocated. For resource allocation, network management systems retrieve 
policy statements stored in a policy repository during operation. A policy statement 
can be as simple as:

‍ ‍

Policy-based routing is a technique used in making routing decisions based on 
pre-decided policies written by network administrators. All network devices, for 
example, routers and network hosts, usually use routing tables to decide how to 
move packets across a network. A routing table contains a set of rules and necessary 
information for determining where and how network packets will be directed. These 
include routes/paths to destinations, metrics associated with those routes, best and/
or default path towards packet destinations, etc. Figure 3.17 is an illustration of a 
network consisting of five Cisco routers (R1, R2, R3, R4 and R5).
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A router receives and forwards data packets to other network destinations. 
When a router receives a packet, it checks the destination address of that packet 
and then looks up on the routing table to decide the best or favoured route to the 
identified network destination. So, the default routing decision here is based on the 
destination address. However, there might be need to base this routing decision on 
other criteria. For example, the network administrator may want to define special 
routing for certain types of traffic based on certain conditions. This is achieved using 
policy-based routing. It enables network administrators to override the default set-
tings of a routing table.

Let us assume that the default arrangement in Figure 3.17 is that a packet from 
router one (R1) to router five (R5) travels from router one (R1) to router two (R2) 
to router three (R3) and then to router five (R5) – R1 → R2 → R3 → R5. Policy-
based routing allows the administrator to override this arrangement. For example, 
the network administrator can tell R2 to check for the source address, as well as 
the destination address, of any packet and use R4 as the next hop if the source 
address is R1. In this case, the packet from R1 to R5 will follow R1 → R2 → 
R4 → R3 → R5 instead of R1 → R2 → R3 → R5. This will ensure that all packets 
from R1 will avoid the R2 ↔ R3 interface. Whereas an interface is avoided in this 
basic example, this may be used to avoid passing certain traffic through certain 
networks.

Achieving policy-based re-routing as explained above will involve creating an 
access control list that will be used to identify the traffic/packet of interest, creating 
a route map using conditional (e.g., IF … THEN … ELSE) statements based on the 
created access control list and then applying the route map using IP policy com-
mands. Below is a basic policy-based routing sample for achieving R1 → R2 → R4 
→ R3 → R5:

Figure 3.17  �  An illustration of policy-based routing. The routers will forward 
data packets to target destinations based on default routing 
information or based on defined routing policy
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‍ ‍

3.5.2 � Policy-based autonomics
Policy-based autonomics is about using policies to achieve required autonomic 
functionalities. This entails automating the process of achieving a task based on 
the known or defined rules governing that task. A policy can be used to express 
the structure and sequence of logical steps to be followed in achieving a specific 
task. Methods for building policies for autonomic functionalities (e.g., self-CHOP) 
have been explored in References 20 and 134. Richard Anthony [20] describes a 
policy expression language which helps in building policies for autonomic systems. 
A framework for building self-CHOP policies and performing policy-based auto-
nomic actions is presented in Reference 134.

The design of autonomic systems has fundamentally been based on the use 
of policies and rules. This is one of the earliest autonomic enabling techniques. 
It has been adapted, over time, with new technologies in the design of autonomic 
systems and it is still very relevant today. One of the easiest ways of delivering 
autonomic behaviours and functionalities is to express the desired goal using poli-
cies or rules and getting the system to adapt its behaviour accordingly. A desired 
feature of a trustworthy autonomic system is proactive adaptation. It enables the 
autonomic system to recognise or forecast adaptation concerns in advance and 
prepares for it. This helps the autonomic system to deal with the peculiar con-
text dynamism in autonomic computing which places unique and complex chal-
lenges on trustworthy autonomic computing systems. Marwin Zufle et al. [135] 
proposed a rule-based forecasting method for autonomic systems. The proposed 
method supports dynamic rule learning which enables the autonomic system to 
adapt its forecasting according to runtime conditions. The authors argue that ‘the 
uncertainty that results from the gap between design time and runtime for adap-
tive systems, as well as the environmental uncertainty at runtime, decreases the 
possibility that a forecasting method chosen at design time can cope with runtime 
demands’ [135].
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[A desired feature of a trustworthy autonomic system is proactive adapta-
tion. It enables the autonomic system to recognise or forecast adaptation 
concerns in advance and prepares for it. This helps the autonomic sys-
tem to deal with the peculiar context dynamism in autonomic computing 
which places unique and complex challenges on trustworthy autonomic 
computing systems.]

Policy autonomics has been well-studied and demonstrated. It has been used 
in the actual design of autonomic systems as well as in different domain-based 
applications. For example, policy autonomics is used in the design of autono-
mous agents in environments with uncertainties and different levels of complex-
ity [136]. One major challenge, with growing complexity, in business computing 
of today is efficient management of cloud computing resources. Many studies 
and implementations have relied on the use of historical data to forecast future 
cloud system states and resource requirements. Whereas this has helped, to some 
extent, in managing resource scheduling, there are still challenges – one exam-
ple is to do with scaling. This is because resource demand, in cloud computing, 
remains heterogeneous and varies over time. Autonomic policy-based autoscal-
ing has been proposed as an efficient autoscaling scheduling solution [137, 138]. 
Policies are set and modified by system designers or admins and the autonomic 
systems execute these policies by adapting their behaviour accordingly in order 
to achieve the set goal.

Policy autonomics has been well-studied and demonstrated. It has been used in 
the actual design of autonomic systems as well as in different domain-based applica-
tions. For example, policy autonomics is used in the design of autonomous agents 
in environments with uncertainties and different levels of complexity [136]. One 
major challenge, with growing complexity, in business computing of today is effi-
cient management of cloud computing resources. Many studies and implementa-
tions have relied on the use of historical data to forecast future cloud system states 
and resource requirements. Whereas this has helped, to some extent, in managing 
resource scheduling, there are still challenges – one example is to do with scaling. 
This is because resource demand, in cloud computing, remains heterogeneous and 
varies over time. Autonomic policy-based autoscaling has been proposed as an effi-
cient autoscaling scheduling solution [137, 138]. Policies are set and modified by 
system designers or admins and the autonomic systems execute these policies by 
adapting their behaviour accordingly in order to achieve the set goal.

One advantage of policy autonomics is that the system behaviour can easily 
be modified. Since the policies determine the way the autonomic system behaves, 
the system’s behaviour can be modified at any time by updating the policies. Note 
that policies can be implemented as modules, which are fed into the system. These 
simply comprise rules and actions. Consider the following basic room temperature 
monitoring example.
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3.5.2.1 � Room temperature monitoring example
Consider how you might implement a very simple room temperature monitoring 
and control system. The rule is that the room temperature should not go below 15 
degrees. The following set of C# pseudocode will perfectly implement this system.

‍ ‍

The rule for achieving the system’s goal, which is ‘room temperature should not 
go below 15 degrees’, is expressed using a set of policy commands that ensures that 
heating is turned ON whenever room temperature goes below 15 degrees. The ran-
dom number generation here represents inputs (room temperature measurements) 
from sensors. Every time this code is called upon (the interval can be implemented 
using a Timer class), the system checks the room temperature and decides whether 
to switch heating ON or OFF.

3.6 � Utility function

In economics, utility is a simple concept for representing worth. The usage of this 
concept has evolved and become very handy in may application domains – for 
defining individual preferences. A utility function (UF) is a relative measure of how 
much, to an individual, an option is preferred over another option. This measure is 
relative because worth is defined by the individual. It provides a means of choosing 
from several options, which are expressed as a series of weighted terms [20]. Terms 
are values representing the options while weights represent worth. Actual utility 
is then defined as the combination of the terms and weights. The higher utility is 
always preferred.

Example
Let Utility = ‍U ‍, Term = ﻿‍T ‍and Weight = ‍W ‍, we can present the utilities of two options, 
‍x‍ and ‍y‍, severally as follows:

•• If ‍Ux = 5‍ and ‍Uy = 10‍, then ‍y‍ is preferred over ‍x‍ (doesn’t mean ‍y‍ is twice better)
•• ‍Ux =

�
Tx1,Wx1, Tx2,Wx2, : : : , Txn,Wxn

�
‍

•• ‍Uy =
�
Ty1,Wy1, Ty2,Wy2, : : : , Tyn,Wyn

�
‍
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•• ‍Ux =
˚�
Tx1 �Wx1

�
,
�
Tx2 �Wx2

�
, : : : ,

�
Txn �Wxn

��
‍

•• ‍Uy =
˚�
Ty1 �Wy1

�
,
�
Ty2 �Wy2

�
, : : : ,

�
Tyn �Wyn

��
‍

•• ‍Ux =
˚�
Tx1 +Wx1

�
,
�
Tx2 +Wx2

�
, : : : ,

�
Txn +Wxn

��
‍

•• ‍Uy =
˚�
Ty1 +Wy1

�
,
�
Ty2 +Wy2

�
, : : : ,

�
Tyn +Wyn

��
‍

The higher utility is always preferred. However, it does not necessarily mean 
that the higher utility is better by the magnitude of the difference. It is possible for an 
option to have more than one term and associated weight. Utility can be expressed in 
many ways, and the products of each term and its associated weight are combined, 
in a certain way, to determine the worth of each option. There are several ways of 
representing preferences and these are the basic ones:

•• ‍Ux > Uy‍        ‍x‍ is strictly preferred to ‍y‍
•• ‍Ux = Uy‍         either ‍x‍ or ‍y‍ can be chosen as both are equally preferred
•• ‍Ux � Uy‍        ‍x‍ is preferred at least as much as ‍y‍
•• ‍Ux � Uy � Uz‍        ‍x‍ is preferred at least as much as ‍y‍ and ﻿‍z‍
•• ‍Ux � Uy = Uz‍        ‍x‍ is preferred at least as much as ‍y‍ or ﻿‍z‍

So, utility is a measure of preferences amongst options while UF is a rule that 
assigns importance to the available options. This explanation, illustrated using 
Figure 3.18, is a very basic and simplistic representation of the concept. However, 
this economic concept can be borrowed and adapted for decision-making process in 
autonomic computing.

Figure 3.18 is an illustration of how we can calculate the utilities of two sys-
tems to decide our preference. Both systems have Terms defined as ‍SysATi‍ ,‍SysBTi‍ 

Figure 3.18    Basic utility calculator, programmed in C#
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and Weights defined as ‍SysAWi‍ and ‍SysBWi‍. The terms can be seen as important or 
required features of a system – if a system exhibits a particular feature (‍i‍), then a 
value of 1 is selected otherwise 0 is selected. The weights represent the degree of 
importance of the terms to the system. So, the utility for both systems is calculated 
as follows:

	﻿‍ SysAUtility =
�
SysAT1 � SysAW1

�
+
�
SysAT2 � SysAW2

�
+
�
SysAT3 � SysAW3

�

+
�
SysAT4 � SysAW4

� ‍�

	﻿‍ SysBUtility =
�
SysBT1 � SysBW1

�
+
�
SysBT2 � SysBW2

�
+
�
SysBT3 � SysBW3

�

+
�
SysBT4 � SysBW4

�
‍�

The utility calculator (Figure 3.18) is developed using C#, and the commented code 
is presented below. This is for the benefit of those who are new to programming, 
showing how a simple concept can be coded.

‍ ‍
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3.6.1 � UF in autonomic systems
Below are some UF implementation considerations for autonomic systems.

3.6.1.1 � Autonomic system with multiple input sources – one or more 
sources can be used

A simple illustration of the adaptation of UF in autonomic computing is shown in 
Figure 3.19. The basic operation of an autonomic system is based on a sensor gener-
ating inputs (context information) into the system and an autonomic controller ana-
lysing these inputs to decide on adaptation actions, which are then executed by an 
actuator (Figure 3.19(a)). Assuming we have a scenario where inputs are generated 
by multiple sensors (Figure 3.19(b)), we are left with deciding which input the auto-
nomic controller should use per time. This may be a situation of having redundancy 
to ensure high-availability, in which case input from any of the sensors can be used. 
However, we can go further to achieve a better result as well as high-availability.

As shown in Figure 3.19(c), we can use UF to combine all input sources, instead 
of using one per time, for a better outcome. It doesn’t matter if a particular source 

Figure 3.19  �  Adaptation of UF in autonomic computing: Panel (a) is a basic 
illustration of an autonomic system. Panel (b) is an autonomic 
system with multiple alternate input sources. Panel (c) combines all 
input sources using UF for a better outcome
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is down – if only one source is available, its input is used, otherwise all available 
inputs are combined so that the best, say two out of three, sources are used. In this 
kind of setting, it is desirable and feasible to use one or more out of all available 
sources. A case example where it is important to use the most reliable source is 
presented below.

3.6.1.2 � Autonomic system with multiple input sources – only most 
reliable source can be used

In autonomic computing, the UF concept can be useful in a scenario where, for 
example, the autonomic manager has several sources of input and needs to decide 
on preferred input before acting on it. In this case, the term values are supplied by 
environment sensors and the weights are set to reflect the application’s interpretation 
of utility, as used in Reference 20. In the example presented in Reference 20, the 
autonomic manager receives two signals from two sensors and needs to determine 
which signal to use. Each signal has two terms (SpikeLevel and NoiseLevel) with 
associated weights (W_spike and W_noise), respectively. A UF is used to determine 
which signal to use.

According to Figure 3.20, the two signals are received and processed to generate 
their individual SpikeLevel and NoiseLevel values. These two values are combined 
with their associated weights in a UF to determine which signal is preferred at that 
time. The utility of the signals (‍Ui‍) is determined by the tuple { ‍Ti1‍ , ‍Wnoise‍ , ‍Ti2‍ 
, ‍Wspike‍ } ﻿‍!‍ {(Ti1 * Wnoise), {(Ti2 * Wspike)} or {(Ti1 + Wnoise), {(Ti2 + Wspike)} . This 
process is repeated each time the autonomic manager requires input from the sen-
sors. The preferred signal is used as input for the actual self-management process. 

Figure 3.20  �  Example of an autonomic manager using UF to choose between 
signals (adapted from Reference 20). Autonomic decision can be 
based on ether Signal-1 or Signal-2 and UF is used to decide on 
the best signal to use
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This kind of setting is useful when it is important to ensure the reliability of the 
input. Having more than one sensor helps in reducing input error – if one sensor is 
unstable, obstructed or generates unreliable input, an alternative is used.

3.6.1.3 � Measuring autonomic systems
Another important application of UF in autonomic computing is in the area of measur-
ing the autonomicity of autonomic systems. Take Figure 3.18, for example, we can use 
this system to measure the level of autonomicity (LoA) of both SysA and SysB – that 
is, the degree to which both systems are autonomic. If we assume that any autonomic 
system is defined by the self-CHOP functionalities (the important features of an auto-
nomic system), we can represent these functionalities as terms. We then assign weights 
to the terms to define their level of importance for the different systems in a particular 
context. Note that in order to effectively compare two systems, you need to define their 
capabilities in the same context or application domain. The utilities of both systems 
can now be calculated to establish their levels of autonomicity.

Measuring the LoA of autonomic systems is an important idea in the study 
of autonomic systems and achievement of trustworthy autonomic computing. LoA 
provides a quantitative approach to classifying autonomic systems according to 
extent of autonomicity. See Chapter 7 for more details on this topic.

3.7 � Fuzzy logic

Traditionally, decision-making is based on binary logic – ‘0 or 1’, ‘yes or no’, ‘true or 
false’, etc., without consideration of any degree of truth – the extent to which a state 
is represented. For example, a cup of tea might be considered to be ‘cold’ or ‘hot’. 
But because the definitions of ‘cold’ and ‘hot’ are relative, we need some ‘degree of 
truth’ to put it in context – the tea could be very cold, cold, warm, hot, very hot, etc. 
This is mostly how things are represented in real life and how the human brain rates 
things. We do not live in a ‘yes or no’ world. There are usually some level of vague-
ness and imprecise information when it comes to decision-making and addressing 
these properly will lead to more reliable decisions and outcomes.

Fuzzy logic is a technique for representing vagueness and imprecise informa-
tion. It allows for modelling of uncertainties in decision-making where conditions 
are not precise and a lot of different factors need to be considered. It takes relevant 
factors in decision-making and presents them as fuzzy sets and fuzzy rules, which 
are combined for a more efficient decision. Fuzzy sets and rules reveal the vagueness 
in those factors and express them in degrees of truth.

3.7.1 � Moving vehicle case example
Consider the example of a moving vehicle that needs to apply the brakes when it 
is close to an object. The decision here is to stop the vehicle to avoid a collision 
while the factors are ‘close’ and ‘brake’. Table 3.1 shows two decision-making logic 
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options for the vehicle stopping example. In the ordinary logic situation, the goal is 
stated and the human driver decides, while considering a lot of imprecise factors, 
when and how hard to apply the brakes. This sort of decision-making is quite rela-
tively straightforward for humans because they possess the natural ability to easily 
deal with vague and imprecise data. In a world of growing automation, we would 
like to replicate such ability in machines. However, this is not as easy or straightfor-
ward. We need to be able to let the machine in on how to deal with imprecise data 
in decision-making. This is where the fuzzy logic option comes in (Table 3.1). It is 
easier for the machine to deal with vague and imprecise data if they are defined as 
sets and rules as shown. Note that sets are ideally expressed as a range of 0 (ele-
ment not belonging at all) to 1 (element fully belonging). However, we have used 
the range of 1–5 in this example for easy explanation. Generally, fuzzy sets require 
minimum value, maximum value and resolution (number of steps between mini-
mum and maximum values).

In this example, decision-making in the ‘ordinary logic’ case is Boolean based – 
it is either the vehicle is close to the object or not and the response is to apply the 
brakes or not. However, this does not entirely represent real-life situations. Ideally, 
we would want to know how close the vehicle is to the object in order to decide how 
fast or hard to apply the brakes. This is where fuzzy logic comes in. Fuzzy logic 
considers how close (the degree of closeness is expressed as a range, in this case) 
the vehicle is to the object as well as the weight of the vehicle (which affects how 
the brakes perform) before deciding how fast or hard to apply the brakes. More rules 
can be defined to take care of more possibilities. Also, more factors like vehicle 
height, vehicle speed, other vehicles approaching behind, etc., may be considered to 
define additional sets. This is closer to how humans make decisions – considering 
‘all possible’ factors. By applying fuzzy rules on fuzzy sets, computers or automated 
systems are able to represent knowledge in a way that allows them mimic human 
decision-making process.

Table 3.1    Ordinary versus fuzzy logic-based decision-making

Ordinary logic Fuzzy logic

IF the vehicle is close to the object THEN 
apply the brakes

Sets
•	 Distance to object (range): D = (1–5)
•	 Weight of the vehicle (range): W = (1–5)
•	 Force on brake pedal (range): F = (1–5)
•	 …
Rules
•	 IF D > 3 THEN F = 2
•	 IF D < 3 THEN F = 4
•	 IF D < 3 AND W >= 4 THEN F = 5
•	 IF D ≥ 2 AND W < 4 THEN F = 3
•	 …
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3.7.2 � Fuzzy logic controller
Figure 3.21 is an example of a fuzzy system, showing a typical fuzzy logic controller 
for the moving vehicle case example. The system, which comprises four different 
modules, processes some input sets to generate actionable output sets. The inputs 
and outputs are crisp sets, i.e., precise values. For example, the weight of the vehicle 
and its distance to an object are precise values. Also, the decision at the other end 
(the output) is a definite action. The system takes in crisp inputs, fuzzifies them by 
representing them in degrees of possibilities, applies some rules to generate fuzzy 
decisions and then defuzzifies the decisions into crisp actions.

The fuzzification module converts the crisp inputs into fuzzy sets. These, in this 
case, are several possible representations of the weight of the vehicle and its distance 
to an object. From the example in Figure 3.21, it shows that the vehicle is significantly 
heavy (W = 0.7) and not too close to the object (D = 0.4). The fuzzification module 
also has defined fuzzy set for force on the break. The rules module defines several pos-
sible fuzzy rules, which are used in making the final decision. The Inference module 
is the brainbox – it takes inputs from the fuzzification module and decides which rule 
that best suits the condition defined by those inputs. The output(s) of the inference 
module, which are still fuzzy values, are defuzzified by the defuzzification module.

3.7.3 � Fuzzy logic in autonomic system
Fuzzy logic, in reflecting human reasoning, attempts to model the human decision-
making and thought process. This is widely used in computing, especially expert 
systems. The idea is to recreate, as close as possible, the human natural instinct in 
terms of reasoning, and use that to build more reliable intelligent systems.

Fuzzy logic is a very important technique for autonomic computing, especially 
trustworthy autonomic computing. It is desirable that autonomic managers are 

Figure 3.21    Fuzzy logic controller for a moving vehicle (Table 3.1)
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able to make reliable decisions. With fuzzy logic, autonomic managers make more 
informed decisions as they are exposed to ‘all the facts’ about the situation. The idea 
is to factor fuzzy logic into the design of autonomic systems. For example, let us 
consider an autonomic stock trading system. The system should be able to consider 
relevant factors and then decide when best to sell/buy, by what margin, and by what 
magnitude. The system needs to track changes (e.g., in trade volumes, price, rates, 
market mood, etc.) in real time in order to make profitable trading decisions.

Figure 3.22 is an example of implementing a fuzzy logic-powered autonomic 
stock trading system. The fuzzy sets and rules can be as many as possible to reflect 
as diverse and many conditions (or realities) and responses as possible. The more 
fine-grained these are, the better the trading decision. This sits well with trustworthy 
autonomic computing.

The fuzzy logic concept is about mapping a set of inputs onto a set of possible 
outputs and combining them in a fuzzy function, which is capable of capturing the 
imprecise, vague and overlapping concepts in an efficient manner [139].

3.8 � Autonomic nervous system

The autonomic nervous system is part of the human nervous system which con-
trols key functions without conscious awareness or involvement of the human. 
It coordinates and organises how the activities of the body’s major organs and 
glands are stimulated or inhibited. Take for example, an athlete running for the 
Olympic 10,000 m Gold does not have a say on their heartbeat rate, rather they 
concentrate on executing their planned technique for achieving the goal at hand. 
The job of regulating the heart rate is done in the background without the athlete’s 
consciousness.

Figure 3.22  �  Fuzzy logic implementation for autonomic stock trading. Efficient 
decisions are reached by processing imprecise information
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The autonomic nervous system is an independent control mechanism within the 
human body that monitors body changes and affects appropriate regulatory response 
to ensure survival amongst other things. To achieve this, the autonomic nervous sys-
tem autonomically regulates a number of parameters within ‘predetermined’ safe or 
operational limits. These parameters have a bearing on survivability and examples 
include blood–glucose concentration, sweat, food digestion, blood pressure, heart 
rate and so on. However, all parameters are not uniformly related to lethality. To 
survive, all essential parameters must be kept within their defined safe limits. Ashby 
[140] has described those parameters that are closely linked to survival and are also 
closely linked to each other such that changes in one lead to changes in others as 
essential parameters. Observing that the human internal mechanisms, by working 
together, continuously maintain the body’s essential parameters within their safe 
limits, Ashby concludes that a system is adaptive only if it maintains its essential 
parameters within the bounds required for ‘survival’.

[This is typically the idea mimicked by the autonomic computing concept – 
setting a boundary (safe limits) within which parameters, sometimes pre-
determined, can be dynamically maintained to achieve a specific goal. This 
is then powered by the self-* autonomic functionalities.]

The autonomic nervous system is a very complex system. The scope of this section 
does not cover its intricate details and so, readers are encouraged to conduct per-
sonal studies on that if required. However, the main idea here is that mundane tasks 
are completed in the background without the human consciously getting involved. 
This allows the human to concentrate on other actions that require consciousness. 
This is the idea that inspired autonomic computing. Autonomic computing is all 
about mimicking the human autonomic nervous system, giving autonomic systems 
the capability to manage some routine tasks by themselves while the user focuses on 
achieving the system’s goal. With such capabilities, self-managing (autonomic) sys-
tems are able to ‘automatically’ (autonomically) manage mundane tasks in the back-
ground so the administrator can focus on the system’s goal – that is why they are 
called self-managing systems. Any system that is capable of mimicking the human 
autonomic nervous system, even in parts, can be considered an autonomic system.

While the runner focuses on the goal, Figure 3.23, a number of other things are 
going on in the body (e.g., elevated heart rate, adrenaline release, sweat release, 
increased breathing, etc.), without the runner’s control. In real life, the goal might 
be a fixed target, as in in this case, the finish line. However, there are situations 
where the goal is a moving target, dynamically changed or influenced by wide-
ranging (e.g., contextual) factors. This concept is very critical for trustworthy auto-
nomic computing. Trustworthy autonomic systems are goal-centric, i.e., the system 
focuses on its goal and does any and everything within its capabilities to ensure that 
the defined goal is achieved. This is why the definition of a goal, for trustworthy 
autonomic systems, needs rethinking in order to cater for dynamic goals.
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3.9 � Combining autonomic techniques

The autonomic enabling techniques can individually be adapted to achieve some 
level of autonomic functionalities. For example, DZ logic can be used to build a 
self-optimising autonomic system. Also, the whole idea of autonomic computing 
is based on adapting the autonomic nervous system. It is also possible to achieve 
greater autonomic functionality by combining techniques. For example, stig-
mergy has been used, in combination with trend analysis and DZ logic, to imple-
ment multi-agent interoperability in autonomic computing – see Chapter 6. The 
proposed stigmergy-based dynamic interoperability solution allows for indirect 
coordination, through the operating environment, between coexisting autonomic 
managers.

Trustworthy autonomic computing is about strengthening the capability of the 
autonomic system to make consistent and reliable decisions. There are many ways 
of combining autonomic enabling techniques.

One example of combining techniques is where utilities are rendered using poli-
cies. A working example of combining UF and policy autonomics, where UFs are 
specified within policy logic, is presented in Reference 20. Figure 3.24 shows how 
UF, fuzzy logic and policy autonomics can be combined. Using the autonomic stock 

Figure 3.23  �  A runner naturally focuses on their goal and strategy while their 
body works on taking them there
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trading example (see section 3.7.3 and Figure 3.22), a UF-based system can be used 
to generate more accurate trading information.

So, Figure 3.24 is a combination of Figures 3.21.–3.22 to demonstrate the com-
bined effect of UF and fuzzy logic in building a more reliable autonomic stock trad-
ing system. The system can take input (trading information – represented as Signal-1 
and Signal-2) from different sources. These inputs are processed to generate relevant 
terms (‍Ti‍ – represented as NoiseLevel and SpikeLevel), which are combined with 
associated weights (‍Wi‍ – represented as W_noise and W_spike) in a UF to return a 
reliable trading information (‍x‍ – which represents the preferred of the two sources 
or aggregated information from both sources). This is then fed into the fuzzy logic 
module. The fuzzy rules can be presented using policies. An autonomic stock trad-
ing system that is based on this kind of combination will more likely lead to reliable 
outcomes.

Another possible combination that is capable of resulting in more reliability 
is shown in Figure 3.25. The combination of SES and DZ logic can lead to greater 
stability in autonomic systems. Recall that DZ logic uses the DZ width to determine 
when and when not to take adaptation action. Dynamically tuning the DZ width, as 
discussed in section 3.3.1, can enable the autonomic system achieve self-stability 
(see Figure 3.11). The value of the DZ width can be dynamically determined using 
SES calculation, and as demonstrated in Chapter 6, the smoothing constant ﻿‍˛‍ can 
influence the dynamical tuning of system behaviour, when combined with a DZ 
logic, in order to achieve greater self-stability.

Figure 3.24  �  A combination of UF, fuzzy logic and policy autonomics. UF is used 
to select the best input from different sources and the selected input 
is processed using fuzzy logic whose rules are expressed using 
policies
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The combination of SES and DZ logic, as explained above, can be crucial 
in dealing with dynamic goals. Sometimes, the goal of an autonomic system is 
a moving target and tracking such a goal requires dynamic decision-making and 
adaptation.

3.10 � Conclusion

There are many autonomic enabling techniques and this chapter has only consid-
ered a few. These techniques are the building blocks that make autonomic sys-
tems what they are. If you consider these as standalone components with connec-
tion and interoperability interfaces, they can be used to define autonomic systems 
of varying functionalities. Deploying one component is capable of achieving at 
least one of the self-* autonomic functionalities and combining more components 
results in even more functionalities. There is probably no limit to how autonomic 
enabling techniques can be combined – examples have been discussed in this 
chapter. The more efficiently these can be combined, the more trustworthy the 
resulting autonomic systems will be. So, trustworthy autonomic computing will 
require some level of leveraging the capabilities of different autonomic enabling 
techniques.

There are other relevant techniques that can be used to achieve some level of 
autonomic capabilities. For example, fault tolerance, which gives a system the abil-
ity to continue operating despite failure in some parts of the system, can be used 

Figure 3.25  �  A combination of SES and DZ logic. The smoothing constant 
influences the size of the DZ width. With this, the DZ width can be 
tracked dynamically
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to achieve self-healing autonomic functionality. Trend analysis helps in deducing 
useful trends and information from a continuous stream of data, and this can help in 
adaptation decision-making process of autonomic systems. The use of trend analysis 
is shown in Chapter 6. Load balancing is another important technique. It enables 
the efficient distribution of tasks across resources and can be used to achieve self-
optimisation autonomic functionality.



Chapter 4

Trustworthy autonomic computing

Trustworthy autonomic computing (TAC) looks beyond the basics of successfully 
achieving an autonomic system to establishing basis for trusting that the autonomic 
system does 'what it says it will do'. This chapter introduces the trustworthy auto-
nomic architecture (TrAArch) and covers the following:

•• The importance of TAC
•• The differences between TAC and Trusted Computing
•• How a TrAArch can be designed
•• Overview of the TrAArch framework

‍ ‍
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4.1 � About trustworthy autonomic computing

As we have seen, in Chapter 2, TAC has not been at the top of the list of priorities 
for autonomic researchers. Efforts have mainly concentrated on design and method-
ology. Trustworthy autonomics entails a rethink – from just thinking ‘how do we 
build autonomic systems’ to ‘how do we build dependable autonomic systems’. 
The perception of users on the reliability of autonomic systems may be reflected in 
the level of the public’s acceptance of autonomic systems. For complete reliance 
on autonomic computing systems, the human user will need a level of trust and 
confidence that these systems will satisfy specified requirements and will not fail. 
It is also not sufficient that systems are safe, secure and perform within requirement 
boundaries; outputs must also be seen to be reliable and dependable. Trustworthy 
autonomics is a non-negotiable priority for researchers, developers and users.

This chapter looks at the differences between TAC and Trusted (or Trustworthy) 
Computing and then presents a framework for a trustworthy autonomic architecture. This 
trustworthy architecture will form the basis for several implementations in this book.

4.2 � Trustworthy autonomic computing vs trusted computing

In 2002, 1 year after the introduction of autonomic computing, Microsoft launched 
the Trusted Computing (TC) paradigm with four pillars (security, privacy, reliability 
and business integrity) for achieving trustworthy systems [141]. The same drive 
for trustworthy systems also led to the formation of the Trusted Computing Group 
(TCG), successor to the Trusted Computing Platform Alliance (TCPA), whose aim 
is to improve the trustworthiness and security of future computer systems.

However, autonomic systems are unique in context when compared to ordinary 
computing systems. For example, when a security-tight system pushes out unstable 
outputs as a result of adaptive-borne oscillations, the system may be secure but has 
not yet achieved trustworthiness. The peculiarity of context dynamism in autonomic 
computing places unique and different challenges on TAC systems from those on 
TC systems. Validation, e.g., which is an essential requirement for trustworthiness, 
can be design-time based for ordinary computing systems but must be runtime based 
for autonomic systems. This shows that achieving TC systems and TAC systems 
take different courses.

[The peculiarity of context dynamism in autonomic computing places 
unique and different challenges on Trustworthy Autonomic Computing 
systems from those on Trusted Computing systems. Validation, for exam-
ple, which is an essential requirement for trustworthiness, can be design-
time based for ordinary computing systems but must be runtime based for 
autonomic systems.]
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Computing has always been defined as the whole idea of a system taking an input, 
processing that input and then outputting a result. This is illustrated using some 
basic flowchart symbols in Figure 4.1. For ordinary computers, Figure 4.1a, valida-
tion would rely on coded rules based on predetermined and expected conditions. 
This means that validation processes, represented by the Preparation symbol, can 
be determined at design time for validating the system’s behaviour based on known 
and expected conditions. For autonomic systems, Figure 4.1b, validation would rely 
on adaptive procedures based on context dynamism. This means that validation pro-
cesses, now represented by the Alternate Process symbol, have to be able to deal 
with unexpected conditions.

The Committee on Information Systems Trustworthiness in a publication defines 
a trustworthy system as one which does what people expect it to do – and nothing 
more – despite any form of disruption [142]. This definition has been the driving 
force for achieving trustworthiness both in autonomic and non-autonomic systems. 
The International Conference on Trust & Trustworthy Computing (TRUST) and the 
IEEE International Conference on Trust, Security and Privacy in Computing and 
Communications (TrustCom) are two major conferences with significant work in 
the TC domain. In this domain, trust is defined in terms of establishing confidence 
in the authentication of the identities of parties at both ends of a communication line 
[143]. Major themes addressed in this domain include access control, privacy, intru-
sion detection, malicious attack detection and prevention, secure communication, 
authentication, etc.

Figure 4.1  �  Validation processes in normal and autonomic computing systems. 
Validation is predetermined in normal systems but not in autonomic 
systems
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[Within the Trusted Computing domain, trust is defined in terms of estab-
lishing confidence in the authentication of the identities of parties at both 
ends of a communication line.]

The TC paradigm focuses mainly on addressing security issues and concerns posed by 
spiralling security attacks and susceptibilities. The prime concern here is developing 
computing systems that would be more rugged in dealing with security issues than the 
current ones. TAC on the other hand focuses on trustworthiness in autonomic environ-
ments – with unique and dynamic variabilities. There is a careful consideration of the 
environmental conditions in which these systems operate. The primary concern here 
is not how a system operates to achieve a result but how dependable is that result from 
the user’s perspective. The question here is how do we show that a system is capable 
of achieving a desired and dependable result under expected range of contexts and 
environmental conditions and beyond? This implies that trustworthiness in autonomic 
computing should be result orientated and not process orientated. This is necessary for 
self-managing systems to mitigate the threat of losing control and confidence.

While TC covers general computing, it does not address the dynamic contextual 
characteristics in which autonomic systems operate. For example, TC seeks trusted 
interactions and interoperability between parties and platforms. But having a trusted 
third party or platform does not entirely suggest trustworthiness at the user’s end. 
While this assures security and privacy, it does not assure reliability of results in 
terms of the degree of assuredness of the system’s dependability in the face of any 
performance tuning. In self-managing systems, decisions are ‘made on the fly’ to 
address runtime changes and TAC will ensure that these decisions do not affect the 
system negatively. TAC will nonetheless benefit from the TC concept. Table 4.1 is a 
summary of some points that distinguish the TC paradigm (as it is) from the required 
TAC solution. This in a way explains what will be needed for a TAC solution.

Trusted Computing Paradigm
Trustworthy Autonomic Computing 
Solution

Trust is defined in terms of establishing 
confidence in the authentication of the 
identities of parties at both ends of a 
communication line

The primary concern here is not how a 
system operates to achieve a result but how 
dependable is that result from the user’s 
perspective

Table 4.1    An overview of TC vs TAC

TC Paradigm TAC Solution

Result Predefined Could be dynamic
Validation Design-time Requires runtime consideration
Orientation Process orientated Result orientated
Main Focus Security focused Dependability focused
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While the introduction of the TC paradigm has led to discussions about trust-
worthy computing, there is as yet no defined and widely accepted trustworthy con-
cept, methodology or architecture specifically targeting autonomic systems. There 
is, therefore, a need for a context based trustworthy autonomic solution.

4.3 � Trustworthy autonomic architecture

The autonomic architecture as originally presented in the autonomic computing 
blueprint has been widely accepted and deployed across an ever-widening spectrum 
of autonomic system designs and implementations. This has predominantly focused 
on the architecture’s basic Monitor-Analyse-Plan-Execute control loop. However, 
several implementation variations of this control loop have been promoted. Despite 
the progress made, the traditional autonomic architecture and its variations are not 
sophisticated enough to produce trustworthy autonomic systems. A new approach 
with inbuilt mechanisms and instrumentation to support trustworthiness was 
required.

At the core of system trustworthiness is validation and this has to satisfy runtime 
requirements. In large systems with very wide behavioural space and many dimen-
sions of freedom, it is close to impossible to comprehensively predict possible out-
comes at the design stage. So, it becomes highly complex to ensure that or determine 
whether the autonomic manager’s decision(s) are in the overall interest and good of 
the system. There is a vital need, then, to dynamically validate the runtime decisions 
of the autonomic manager to avoid the system ‘shooting itself in the foot’ through 
control brevity, i.e., either too loose or too tight control leading to unresponsive 
or unstable systems, respectively. The traditional autonomic architecture does not 
explicitly and integrally support runtime self-validation; a common practice is to 
treat validation and other needed capabilities as add-ons. One of the earlier solu-
tions was an extension of the traditional architecture to accommodate validation by 
including a test activity [18] – see section 4.2.1. The main point of this solution is 
to integrate a self-test activity into the autonomic architecture to provide a runtime 
self-validation of autonomic manager decision-making processes. But the concern 
remains whether validation alone can guarantee trustworthiness.

[The ultimate goal of the new approach is not just to achieve self-
management but also to achieve consistency and reliability of results 
through self-management.]

The need for trustworthiness in the face of the peculiar nature of autonomic systems 
(e.g., context dynamism) comes with unique and complex challenges that valida-
tion alone cannot sufficiently address. Take, for instance, if an autonomic manager 
erratically changes its decision, it ends up introducing noise to the system rather than 
smoothly steering the system. In that instance, a typical validation check will pass each 
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correct decision (following a particular logic or rule) but this could lead to oscillation 
in the system resulting in instability and inconsistent output which could emerge at a 
different logical level or time scale. A typical example could be an autonomic manager 
that follows a set of rules to decide when to move a server to or from a pool of servers. 
As long as the conditions of the rules are met, the autonomic manager will move serv-
ers around not minding the frequency of changes in the conditions. An erratic change 
of decision (high rate of moving servers around) will cause undesirable oscillations 
that ultimately detriment the system. What is required is a kind of intelligence that 
enables the manager to smartly carry out a change only when it is safe and efficient to 
do so – within a particular (defined) safety margin. A higher level of self-monitoring to 
achieve, e.g., stability over longer time frames, is absent in the traditional autonomic 
architectures. This is why autonomic systems need a different approach. The ultimate 
goal of the new approach is not just to achieve self-management but also to achieve 
consistency and reliability of results through self-management. These are the core val-
ues of the proposed architecture in this chapter.

[What is required is a kind of intelligence that enables the manager to 
smartly carry out a change only when it is safe and efficient to do so – 
within a particular (defined) safety margin.]

We have looked at some proposed trustworthy architectures and some isolated pieces 
of work that could contribute to TAC in section 4.2.1. We have also established 
the case for the consideration of trustworthiness as an integral part of the system’s 
architecture. What is missing is the capability of addressing issues beyond system 
validation. As important as validation capability is, also crucial is the capability to 
ensure that any ‘validated’ process does not lead to oscillation and/or instability in 
the system resulting in undesirable results.

This section presents a new architecture for trustworthy autonomic systems. This 
new architecture differs from the traditional autonomic computing architecture and 
includes mechanisms and instrumentation to explicitly support runtime self-validation 
and trustworthiness. The traditional architecture does not lend itself robustly enough to 
support trustworthiness and system dependability. For example, despite validating the 
system’s decisions within a logical boundary set for the system, there is the possibility 
of overall erratic behaviour or inconsistency in the system emerging, e.g., at a different 
logical level or on a different time scale. So, a more thorough and holistic approach, 
with a higher level of checking, is presented here to convincingly address the depend-
ability and trustworthy concerns. In the new approach presented here, validation and 
trustworthiness are designed-in and integral at the architectural level.

First, the new TrAArch is introduced. This would represent the stage of sophis-
tication in the autonomic architecture life-cycle denoted by level (v) in Figure 2.2 
and shown in Figure 4.2. Next, the components of the new architecture are each 
discussed in full details. The components themselves are not hardwired – underlying 
logic are application dependent.
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4.3.1 � TrAArch framework
TrAArch is a new architecture for trustworthy autonomic computing. This sec-
tion presents a general view of the architecture followed by a detailed explana-
tion of its components. Figure 4.3 shows the components of the autonomic frame-
work that embody self-management, self-validation and dependability provisions. 
The architecture builds on the traditional autonomic solution, denoted as the 
AutonomicController (AC) component. Other components include ValidationCheck 
(VC) and DependabilityCheck (DC). The VC component is integrated with the 
decision-making object of the controller to validate all the AC decisions, while the 
DC component guarantees stability and reliability after validation. The DC com-
ponent works at a different time scale, thus overseas the finer-grained sequence of 
decisions made by the AC and VC components.

Figure 4.2  �  Autonomic architecture life-cycle stage denoting trustworthy 
autonomics. The sensor (S) receives inputs (context information) 
into the system, the autonomic controller (AC) analyses these inputs 
and based on the outcome of the analysis decides on an adaptation 
action, the validation check (VC) validates the decided action and 
returns feedback if validation fails, the dependability check (DC) 
monitors the behaviour of the system over time and compares that 
with the general goal of the system and may inhibit the actuator 
(A) that executes the adaptation decision

Figure 4.3    High-level view of the TrAArch
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The AC component (based on, e.g., Monitor-Analyse-Plan-Execute logic, 
Intelligent Machine Design framework [11], etc.) monitors the managed system 
for context information and takes decisions for action based on this information. 
Initially, the system’s goal is defined using policies. The line of action decided 
by the AC component is then validated against the policies/rules defining the 
system’s goal by the VC component before execution. If, e.g., there is a policy 
violation, meaning that the validation fails, the VC reports back to the AC other-
wise the DC is called to ensure that the outcome does not lead to, e.g., instability 
in the system.

The DC component comprises of other sub-components that make it adaptable 
to address different challenges. This feature makes TrAArch generic and suitable 
for addressing evolving autonomic capability requirements. Take, for instance, as in 
Chapter 6, TrAArch can be adapted to address interoperability challenges in com-
plex interactions in multi-agent scenarios. Predictive component is one example of 
the DC sub-components that allows it to predict the outcome of the system based on 
the validated decision. The DC either prevents execution and sends feedback, e.g., 
some calibration parameters, to the AC or calls the actuator to execute the validated 
decision.

4.3.2 � Overview of the TrAArch architecture components
Let us start by representing the TrAArch architecture in progressive stages of 
increasing level of detail. First, the self-management process is defined as a Sense–
Manage–Actuate loop, where Sense and Actuate define touchpoints, and Manage is 
the embodiment of the actual autonomic self-management. The touchpoints are the 
autonomic manager’s interfaces with the managed system. Figure 4.4 is a detailed 
representation of the architectural framework.

Figure 4.4  �  TrAArch framework. The AC analyses inputs from the sensor and 
decides the adaptation action to take. The VC performs runtime 
validation of the adaptation decision. The DC performs a longer-
term validation while the actuator executes the adaptation actions
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Traditionally, the AC senses context information, decides on what action to 
take, following some predefined rules or policies, and then executes the decided 
action. This is the basic routine of any autonomic manager and it is at the core of 
most of the autonomic architectures in use today. At this level, it matters that there 
is an autonomic unit. However, the content of that unit does not matter much – 
that is, it does not matter what autonomic control logic is employed so long as it 
provides the desired autonomic functionalities. This means that the AC component 
can be configured according to any autonomic control logic of choice, making the 
framework generic as it is not tied to any one control logic. However, the choice of 
the autonomic control logic will contribute to the eventual Level of Autonoimicity 
rating of the system – see LoA in Chapter 7.

[The AC component of the TrAArch framework provides designers the 
platform to express rules that govern target goal and policies that drive 
decisions on context information for system adaptation to achieve the 
target goal.]

Basically, the AC component introduces some smartness into the system by intel-
ligently controlling the decision-making of the system. Once an action is decided, 
following a detailed analysis of context information, the decision is passed on for 
execution. This is at the level of sophistication defined by the autonomic architecture 
life-cycle level 1 (Figure 2.2 (i) and (ii) – section 4.1). So, the AC component of the 
TrAArch framework provides designers the platform to express rules that govern 
the target goal and policies that drive decisions on context information for system 
adaptation to achieve the target goal.

There is one significant concern that is unique to autonomic systems: input vari-
ables, also known as context information, are dynamic and most times unpredict-
able. Although rules and policies are carefully and robustly constructed, sensors 
(data sources) sometimes do inject rogue variables that are capable of thwarting 
process and policy deliberations. In addition, the operating environment itself can 
have varying volatility – causing the controller to become unstable in some cir-
cumstances. Thus, a mechanism was needed to mitigate behavioural and structural 
anomalies. Examples of behavioural anomalies include contradiction between two 
policies, goal distortion, etc., while examples of structural anomalies include illegal 
structure not conforming to requirement, division by zero, etc. This is where the VC 
component comes in. It should be noted that AC will always decide on action(s) no 
matter what the input variable is. Once the AC reaches a decision, it passes control 
to the VC, which then validates the decision and passes it on for execution. For 
example, the VC checks to ensure that no system policy is violated as a result of 
any behavioural and/or structural anomalies. If the check fails, VC sends control 
feedback (CF) to AC while retaining previous passed decisions. A CF is more of an 
inhibition command that controls what actions are and are not allowed by the man-
ager. This can be configured according to deployment requirements.
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The overview of the VC is that while it focuses on the goal of the system, it 
deploys self-validation mechanisms to continuously perform self-validation of the 
autonomic manager’s behaviour and configuration against its behavioural goals and 
also reflects on the quality of the manager’s adaptation behaviour. The nature and 
level of test, and how it is configured, are entirely user-defined. So, the VC is a 
higher-level mechanism that oversees the activities of the AC to keep the system’s 
goal in check and on track. The ultimate concern here is to maintain the system goal 
whilst adhering to defined rules and policies, i.e., adding a level of trust by ensur-
ing that the target goal is reached only within the boundaries of specified rules. It 
is then left for designers to define what constitute validation ‘pass’ and validation 
‘fail’. Actual component logics is application specific but some examples in litera-
ture include fuzzy logic [47], reinforcement learning [144], policy autonomics, etc. 
This is at the level of sophistication defined by the autonomic architecture life-cycle 
level 2 (Figure 2.2 (iii) and (iv) – section 4.1).

In real life however, we understand that despite the autonomic manager tak-
ing legitimate decisions within the boundaries of specified rules, it is still pos-
sible to have overall system behavioural inconsistencies, that is, a situation where 
each individual decision could be correct, by logic, and yet the overall behaviour 
is wrong. A situation where the autonomic manager erratically, though legally, 
changes its mind, thereby injecting oscillation into the system, could be a major 
concern especially in large scale and sensitive systems. This is beyond the level of 
consideration in the state-of-the-art shown in Figure 2.2 (i-iv). Therefore, it is nec-
essary to find a way of enabling the autonomic manager to avoid unnecessary and 
inefficient change of decisions that could lead to oscillation. This task is handled 
by the DC component.

The DC allows the autonomic manager to change its decision (i.e., adapt) only 
when it is necessary and safe to do so. Consider a simple example of a room temper-
ature controller, in which it is necessary to track a dynamic goal – a dynamic target 
room temperature, which depends on inter alia weather conditions. The autonomic 
manager is configured to maintain the target temperature by complying with the fol-
lowing logic and automatically switching heating ON or OFF:

IF RoomTemperature < TargetTemperature THEN ON_Heating
ELSE IF RoomTemperature > TargetTemperature THEN OFF_Heating

The VC would allow any decision or action that complies with the above basic 
logic. With the lag in adjusting the temperature, the system may decide to switch 
ON or OFF heating at every slight tick of the gauge below or above the target, 
when room temperature is sufficiently close to the target temperature. This may 
in turn cause oscillation, which can lead to undesirable effects. The effects are 
more pronounced in more sensitive and critical systems, where such changes 
come at some cost. For example, a data centre management system that errati-
cally switches servers between pools at every slight fluctuation in demand load 



Trustworthy autonomic computing  103

is cost ineffective. Actual component and sub-component logic of the DC are 
user-defined.

One powerful logic example for implementing the DC component is the Dead-
Zone (DZ) Logic. A DZ logic is a mechanism to prevent unnecessary, inefficient and 
ineffective control brevity when the system is sufficiently close to its target value. 
In simple terms, the logic helps to manage inconsistent and erratic adaptation. It is 
implemented using an object known as Tolerance-Range-Check (TRC) that encap-
sulates the logic and a three-way decision fork that flags which action (left, null or 
right) to take depending on the rules specified [20]. The DZ can be dynamically 
adjusted to suit changes in environmental volatility. A mechanism to automatically 
monitor the stability of an autonomic component, in terms of the rate the component 
changes its decision, e.g., when close to a threshold tipping point, is presented in 
Reference 43. Dead zone logic allows the system to monitor itself and take action if 
it detects instability at a higher level than the actual decision-making activity – this 
means that a system has to exceed a boundary by a minimum amount before action 
is taken. The DZ Logic is explained in Chapter 3 and implemented in Chapter 5.

The DC component may also implement other sub-components like Prediction, 
Learning, etc. This enables it to predict the outcome of the system and to decide 
whether it is safe to allow a particular decision or not. An example sub-component 
logic is Trend Analysis logic, which identifies patterns within streams of informa-
tion supplied directly from different sources (e.g., sensors). By identifying trends 
and patterns within a particular information, e.g., spikes in signal strength, fluctua-
tion in stock price, rising/falling trends, etc., the logic enables the autonomic man-
ager to make more-informed control decisions. This has the potential of reducing the 
number of control adjustments and can improve overall efficiency and stability. The 
analysis of recent trends enables a more accurate prediction of the future – so with 
Trend Analysis logics, autonomic managers can base decisions on a more complete 
view of system behaviour.

So, after validation phase, the DC is called to check, based on specified rules, for 
dependability. DC avoids unnecessary and inefficient control inputs to maintain stabil-
ity. If the check passes, control is passed to the Actuator otherwise a recalibration feed-
back (RF) is sent to the AC component. An example of a RF is dynamically adjusting 
(or retuning) the dead zone width of the DZ logic as appropriate. The RF enables the 
autonomic manager to adjust its behaviour to maintain the level of required trust.

So, while VC looks at the immediate actions, DC takes a longer-term view of 
the autonomic manager’s behaviour over a certain defined time interval. A particular 
aspect of concern, though, is that for dynamic systems, the boundary definition of 
the DZ may itself be context dependent – that is, in some circumstances it may be 
appropriate to allow some level of changes that under different circumstances may 
be considered destabilising. This concern is taken into consideration when defining 
such boundaries (the DZ width).
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[An autonomic system, no matter the context of deployment, is truly trust-
worthy when its actions are continuously validated (i.e., at run time) to 
satisfy set requirements (system goal) and results produced are depend-
able and not misleading.]

So, the traditional autonomic architecture suffices for short-term adaptation. To 
handle longer-term frame adaptation, e.g., cases where continuous validation 
fails to guarantee stability and reliability, requires a robust autonomic approach. 
This robust autonomic approach is what the proposed TrAArch offers. Consider 
the whole TrAArch as a nested control loop (Figure 4.5) with AC as the core 
control loop while VC and DC are intermediate and outer control loops, respec-
tively. In summary, a system, no matter the context of deployment, is truly trust-
worthy when its actions are continuously validated (i.e., at run time) to satisfy 
set requirements (system goal) and results produced are dependable and not 
misleading.

There are issues that may need further investigation. The three (AC, VC and 
DC) TrAArch components allow the autonomic system designer to specify indi-
vidual controls and processes that will guide the system to reach stated goals – that 
is, the system’s goal state or expectations. However, it is possible for the system to 
struggle to or never be able to reach that goal state. The DC component, in particu-
lar, has the capacity to dynamically and continuously modify the general system 
behaviour until the goal state is reached. But, if the system is not able to ever reach 
the goal state, it will then be appropriate to modify the design of the components 
starting with the DC component as it inhibits the behaviour of VC and AC com-
ponents. There is no element of time in TrAArch solution – there is no specified 
time limit before the system is considered unable to converge to goal state. A time 
element will depend on the goal of the system and could be learnt over time for a 
specific application or could be determined at design.

Figure 4.5    A nested loop representation of TrAArch
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It is also important to note that, as a limitation, the success of the TrAArch is 
largely dependent on the way that the system goals are stated. For example, the 
checks carried out by VC and DC components are in conformity with the system’s 
stated goals. So, the behaviour of these components and, in general, the output of the 
system will be affected if there is a problem in the rules defining the system goals 
or if the goals are ambiguous. Although the DC component can be configured to 
dynamically detect and address some levels of anomalies, this will be to the extent 
of the component logic used.

4.3.3 � Other relevant [early] architectures
Additional area of relevance is the architectures from the Robotics research such as 
Rodney Brooks’ Subsumption Architecture [145] and William Ashby’s Ultrastable 
Systems [146]. Both architectures are selected because of their close relevance to 
the proposed TrAArch. The subsumption architecture is in some way related to 
TrAArch in terms of the control techniques employed – for example, layered and 
multi-loop control techniques. Ultrastable systems relate to TrAArch in the aspect 
of stability and reliability. In a way, TrAArch may be seen as containing a hybrid of 
the Subsumption and Ultrastable architectures.

The subsumption architecture is a reactive behaviour-based robotic architec-
ture. As an alternative to the traditional artificial intelligence behaviour guidance 
through symbolic mental representations of the world, the architecture uses a sense-
decide-action control to guide robotic behaviour. Generally, the architecture uses 
the approach of decomposing a problem into several units, solving the sub-problems 
for each unit and then composing the solutions [145]. In this approach, based on 
the complete desired behaviour for a robot, the architecture decomposes the desired 
behaviour into a hierarchy of layered sub-behaviours with corresponding levels of 
competence. A level of competence is a specification of all the behaviours expected 
of a robot. Each of the layers is responsible for implementing a particular level 
of behaviour competence and higher layers are able to subsume (i.e., suppress or 
inhibit) lower layers. All the layers receive sensor information and then generate 
decisions that are passed on to actuators.

4.3.3.1 � The subsumption architecture and TrAArch
In terms of layered control, the controls in the subsumption architecture are based on 
the desired behaviour and environment for the robot while the controls in TrAArch, 
specified within the AC, VC and DC components, are based on the stated goals of 
the system with additional capacity to handle unexpected environmental conditions. 
In terms of multi-loop control, higher levels of control in both architectures are 
able to inhibit lower levels of control. In subsumption architecture, however, higher 
levels of competence include, as subsets, lower levels of competence. For example, 
if a robot encounters a task requiring a level of behaviour competence at level ‘2’, 
the layer of control at level ‘2’ will inhibit the controls at levels ‘1’ and ‘0’ while the 
controls from level ‘3’ up will not be activated. With this approach, the system gets 
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more complex as the level of competence grows. In TrAArch, on the other hand, a 
higher control inhibits a lower control only when the lower control ‘operates outside 
the system stated goals’. Whereas sensor information is fed into all the layers (both 
active and inactive) in the subsumption architecture at the same time, only the first 
layer, the AC, in TrAArch receives sensor information. For the subsumption archi-
tecture, feeding sensor information to all the layers has memory implications and 
also leads to redundancy, as all layers do not use the information at the same time. 
In TrAArch, the sensor information is fed into the AC component that makes control 
decisions after analysing the sensed information. In actual sense, the output of the 
AC component is passed as input to the VC component and the output of the VC 
component is passed as input to the DC component.

4.3.3.2 � The ultrastable system architecture and TrAArch
The Ashby’s ultrastable system architecture [146] defines adaptive behaviour that is 
aimed at achieving stability in the same way and manner the human autonomic nerv-
ous system aims to achieve survivability. The whole idea of the ultrastable system 
is to maintain the subsystems in a state of stable equilibrium. Parashar and Hariri 
[147] give a detailed description of Ashby’s ultrastable system within the framework 
of the autonomic nervous system (ANS). ANS is an independent control mecha-
nism within the human body that monitors body changes and affects appropriate 
regulatory responses to ensure survival amongst other things. To achieve this, the 
ANS autonomically regulates a number of parameters within ‘predetermined’ safe 
or operational limits. These parameters have a bearing on survivability and exam-
ples include blood-glucose concentration, blood pressure, heartbeat rate, pressure 
of heat on the skin, and so on. However, all parameters are not uniformly related to 
lethality. To survive, all essential parameters must be kept within their defined safe 
limits. Ashby has described those parameters that are closely linked to survival and 
are also closely linked to each other such that changes in one lead to changes in oth-
ers as essential parameters [146]. Observing that the human internal mechanisms, 
by working together, continuously maintain the body’s essential parameters within 
their safe limits, Ashby concludes that a system is adaptive only if it maintains its 
essential parameters within the bounds required for ‘survival’. The term ‘survival’ is 
relative and, in ultrastable systems, means a state of ‘stable equilibrium’.

The ultrastable system architecture builds on two principles: (1) the goal of the 
adaptive behaviour and the survivability of the system are directly linked and (2) 
the system will always work towards returning to its original equilibrium state if 
the environment pushes it out of its state of stable equilibrium [147]. The ultrastable 
system architecture consists of two feedback loops: one that operates frequently and 
makes small corrections to control small disturbances and a second that operates 
infrequently and changes the structure of the system when the essential parameters 
are pushed outside the survival boundary – the later handles longer disturbances. 
The two feedback loops allow the system to continuously interact with the environ-
ment and be able to self-adapt to maintain a stable state of equilibrium.
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Ashby’s ultrastable system is an excellent technique for achieving stability 
within the frameworks of a predefined state of stable equilibrium. This overlaps with 
the stability aspect of TrAArch. Although in TrAArch, the boundary that defines 
state of stability could be dynamic which the system is able to track over time. Also, 
within the frameworks of stability as defined in TrAArch, the rate at which the ultra-
stable system architecture returns a system to stable equilibrium could itself have a 
bearing on instability.

4.4 � Conclusion

In this chapter, I have analysed the differences between TAC and Trusted (or 
Trustworthy) Computing. I note that, although a trustworthy system has been defined 
as one that ‘does what people expect it to do – and nothing more – despite any 
form of disruption’, the peculiarity of context dynamism in autonomic computing 
places unique and different challenges on trustworthiness for autonomic systems. 
So appropriate measures need to be put in place – for example, runtime based self-
validation and self-monitoring capability that guarantees stability over longer-term 
time frames.

I have also analysed the traditional autonomic architecture, with its variations, 
and have found that it is not sophisticated enough to guarantee the level of trustwor-
thiness required for autonomic systems. A new architecture for trustworthy auto-
nomic systems that is different from the traditional architecture and that includes 
instrumentation to explicitly support runtime self-validation and trustworthiness has 
also been presented. The new architecture is termed TrAArch. The definitive goal 
of this new approach is not just to achieve self-management but also to achieve 
consistency and reliability of results through self-management. Other relevant archi-
tectures have also been discussed.

The Monitor-Analyse-Plan-Execute (MAPE) control loop forms the building 
blocks of the traditional autonomic architecture. With wide acceptance, many auto-
nomic studies and implementations are predominantly based on this architecture’s 
control loop. I admit that while successes have been achieved using this architecture, 
it remains vague and limited in offerings as already identified. For example, the 
MAPE-based architecture does not integrally support runtime self-validation that is 
a prerequisite for trustworthiness; a common practice is to treat validation and other 
needed capabilities as add-ons. It is important to note that these capabilities cannot 
be reliably retro-fitted to systems.

[A trustworthy system has been defined as one which does what users 
expect it to do – and nothing more – despite any form of disruption. 
However, the peculiarity of context fluidity in autonomic computing 
places unique challenges on trustworthiness for autonomic systems.]
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It is also important to note that validation alone does not always guarantee trust-
worthiness as each individual decision could be logically correct but overall sys-
tem may be unreliable. Take, for instance, a system that makes decisions based on 
binary conditions will be validated as long as such conditions are met, regardless 
of how close to the margins. But it could be undesirable and distractingly annoy-
ing to human users if the system changes its decision at every slight deviation from 
the margins – in this case, the actions of the controller may be validated but at the 
same time lead to unstable and undesirable conditions. So, it is important to con-
sider situations beyond the level of validation where logical processes/actions could 
sometimes lead to overall system instability. Such a situation, capable of injecting 
oscillation into the system, is a major concern especially in large scale and sensitive 
systems. Consequently, a new approach is required in which validation and support 
for trustworthiness are not treated as add-ons. The TrAArch design guarantees self-
monitoring over shorter and longer time frames. To demonstrate the feasibility and 
practicability of the proposed approach, empirical analysis case example scenarios 
have been presented in this book (see Chapters 5 and 6).



Chapter 5

Trustworthy autonomic architecture 
implementations

The traditional autonomic architecture has been shown in Chapter 2 not to explic-
itly and integrally support runtime self-validation that is a prerequisite for trustwor-
thiness. The practice of treating required capabilities, e.g. for trustworthiness, as 
retrofitted add-ons are unscalable and unsustainable. A new trustworthy autonomic 
architecture (TrAArch) with inbuilt mechanisms and instrumentation to support 
trustworthiness is proposed in Chapter 4. This chapter provides an implementation 
and empirical analysis of the new architecture.

‍ ‍
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In this chapter, you will:

•• learn the workings of TrAArch
•• understand how to adapt, implement and use the new architecture
•• appreciate the attributes of trustworthy autonomics
•• understand the differences between stability and optimality in the context of 

autonomic computing

This chapter provides an implementation and empirical analysis of the new 
architecture. Two experimental demonstrations – an easy-to-understand autonomic 
marketing scenario and a more complex self-adapting datacentre resource request 
and allocation management case scenario – are used. The first case scenario demon-
strates how the new architecture can maximise cost and improve trustability and effi-
cient target marketing in a company-centric autonomic marketing system that has 
many dimensions of freedom and which is sensitive to a number of contextual vola-
tilities. The second case example scenario, which is an implementation of a datacen-
tre resource request and allocation management, is a more complex experimental 
analysis designed to analyse the performance of the proposed TrAArch architecture.

To demonstrate the attributes of the new architecture, this chapter presents an 
implementation and simulation analysis of the TrAArch architecture. Two case 
example scenarios are examined. The first case example is a deployment of the 
architecture to an envisioned autonomic marketing system that has many dimen-
sions of freedom and which is sensitive to a number of contextual volatilities. An 
autonomic marketing system, equipped with autonomic functionalities, monitors the 
market in real time to formulate, using real-time market information, appropriate 
marketing strategies for dynamic, adaptive and effective target marketing. This sce-
nario is chosen because autonomic marketing offers a simple, easy-to-understand 
and yet robust platform for expressing autonomic systems according to discrete 
levels of autonomic capabilities. In the second example, the architecture is demon-
strated in a resource allocation scenario, modelling basic datacentre resource alloca-
tion management. This is a more complex and robust implementation of TrAArch. 
Since datacentres have many dimensions of complexities, arising from their scale, 
large number of tuning parameters, etc., they provide a rich domain in which to 
evaluate a wide range of techniques, tools and frameworks for autonomic comput-
ing. However, the implementation here focuses on resource request and allocation.

In both examples, detailed experiments are designed to analyse the performance 
of three different systems, based on three different autonomic architectures. The 
first system (SysA) is based on the traditional autonomic architecture, represented 
by the basic Monitor–Analyse–Plan–Execute logic. The second system (SysB) is 
an upgraded version of the traditional autonomic architecture that includes a test 
element, represented by Monitor–Analyse–Plan–Validate–Execute logic. The third 
system (SysC) is based on TrAArch, represented by a nested Monitor–Analyse–
Plan–Validate–DependabilityCheck–Execute logic. The DependabilityCheck 
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component incorporates the dead-zone logic (see Chapter 3). Note that SysB does 
everything SysA can do and more and SysC does everything SysB can do plus more 
(see Figure 5.1).

Key for Figure 5.1:

•• S – Sensor for monitoring context information
•• AC – Autonomic Controller, comprising the analyse and plan elements of the 

MAPE loop
•• VC – Validation Check, for testing/validating the decision taken by the AC
•• DC – Dependability check, a longer-term check on the validated decision to 

ensure output is trustworthy
•• A – for actuating/executing the overall/eventual decision

5.1 � Case example scenario 1: autonomic marketing system

The scenario here is that of targeted television advertising during a live sports 
game. A company wishes to run an adaptable marketing campaign on television 
with different adverts (of different products), appealing to audiences (fans) of dif-
ferent demographics. For example, to be aired at different times, in two countries, 
during a live World Cup match between the two nations. There are four adverts 
(Ad1, Ad2, Ad3 and Ad4) to be run and the choice of an ad will be influenced by, 
amongst other things, viewer demographics, time of ad (local time, time in game, 
e.g. half time, TV peak/off-peak time, etc.), length of ad (time constraint), cost of 
ad, who is winning in the match, etc. The ad choice, amongst other things, would 
have to meet business goals and also appeal to viewers. The autonomic manager is 
expected, within the boundaries of the system’s set rules and goal (see excerpt in 
Rule 5.1), to dynamically decide on which ad to run. So, at every decision instance, 

Figure 5.1  �  Representation of systems for the experiment. SysA is based on 
the traditional autonomic architecture, while SysB is an upgraded 
version of the traditional autonomic architecture that includes a test 
element and SysC is based on TrAArch.
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the autonomic marketing system collects context information (e.g. viewer demo-
graphics, ad constraints, who is winning in the game, etc.) and makes decisions 
based on the analysis of the information collected.

‍ ‍

The idea is to dynamically and yet efficiently run localised market campaigns 
that are sensitive to fans’ setting while the match lasts. This is a typical example of a 
system with many dimensions of freedom and very wide behaviour space. For brevity, 
the behaviour space is divided into four different zones (Zones A–D) and expressed 
along two dimensions of freedom (Mood and CostImplication) as shown in Figure 5.2.

The two dimensions of freedom represent a collation of all possible deci-
sion influencers (context information) into two key external variables – Mood and 
CostImplication. Mood is defined by many variables (e.g., MatchScore, i.e., infor-
mation about who is winning, and WeatherInfo), while CostImplication is defined 
by other variables like TimeOfAd and LengthOfAd. An action (in this case, RunAd1 
or RunAd2 or RunAd3 or RunAd4) is defined for each zone. Each action (ad run) is 
thus activated only in its allocated zone, following specified policy (excerpt shown 
in Rule 5.2). The policy analyses the context information fed into the system and 
throws up a decision for an action – which ad to run. If the behaviour of the sys-
tem, for example, falls within the zone defined by low mood and low costimplica-
tion (Zone C), the autonomic manager activates RunAd1 – in this case, Ad1 is run. 
Various design-time specified internal variables, e.g., L_BenchMarkMatchScore 
and U_BenchMarkTimeOfAd, are used to define decision benchmarks, Lower and 
Upper limits, respectively. The fixed logic in the policy (Rule 5.2) enables the man-
ager to make specific decisions based on the dynamic environmental information 
(external variables).
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‍ ‍

Figure 5.2   System behaviour space
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5.1.1 � Experimental environment
The system goal is defined by a set of rules (Rule 5.1) that the autonomic manager 
must adhere to in making decisions. A decision here is whether to change a run-
ning ad to another one or not. Basically, SysA is concerned with making decisions 
within the boundaries of the rules, while in SysB, those decisions are validated for 
conformity with the rules. SysC verifies that the measure of success is achieved. 
SysC also improves reliability by instilling stability in the system. This is done by 
implementing a dead-zone logic that introduces dead-zone boundaries (Figure 5.3) 
to the boundaries of the behaviour zones defined in Figure 5.2.

Within the dead-zone boundaries, no change of action is allowed – in this 
case, a running ad is not changed. So, take, for instance, in Figure 5.3, the action 
for Zone A (RunAd2) is usually activated within the area defined by (x) and when 
the system behaviour falls outside, this area another action is activated. With 
dead-zone logic implemented, this boundary is dynamically extended to the area 
defined by (y). So, in this case, the action for Zone A (RunAd2) is persisted until 
the (y) boundary is breached. As soon as the system behaviour moves beyond the 
area of (y) to the right, the action for Zone B (RunAd3) is activated. This action, 
likewise, is persisted until system behaviour moves beyond the area defined by 
(z). The gap, (i), between the new boundaries (represented by the double-edged 
arrow lines) can be dynamically adjusted. This technique is implemented by the 
DC component of SysC and helps to avoid erratic and unnecessary changes. 
Although the size of the boundaries can be dynamically adjusted to suit real-time 
changes, it is initially design-time specified. See Chapter 3 for full details of the 
dead-zone logic.

Figure 5.3  � System behaviour space with dead zone. Without dead zone, Ad2 
would be activated whenever the system behaviour falls within the 
area defined by ‍x‍, but with dead zone, Ad2 is extended to the area 
defined by ‍y‍.
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The runtime context for this application arises from collecting and analysing sam-
ples of context information. The AC component (available in SysA, SysB and SysC) 
will, at every sample collection, decide (using the policy in Rule 5.2) which ad to run 
and then sends a trap message (notice of change of ad). Since it is wired to make a fresh 
decision at every policy execution, it is bound to send a trap message at every sample 
collection or decision instance. But before that decision is implemented, the VC com-
ponent (available in SysB and SysC) validates it for pass/fail. It is important to define 
what pass/fail means in this context: for example, if the decided action is the same as 
the previous action (current ad), the VC component returns fail (then no trap is sent 
and no change is made) and passes control back to the AC component while retaining 
the previous action. The VC component also returns fail if the policy is violated in 
decision making, i.e., decision must be within the boundaries of specified benchmarks 
(e.g., a ‘Null’ return should not influence action change). Control is passed to the DC 
component each time VC returns a pass. The DC component (available only in SysC) 
is concerned with the measure of success aspect of the rule. In this case, a Tolerance 
Range Check is implemented: DC returns fail if ActionChange is more than one within 
the first five sample collections and subsequently if action changes at every sample 
instance. So, the DC component maintains action change at maximum of one within 
the first five sample collections and subsequently maximum of two in any three sample 
instances. This will help calm any erratic behaviour that could arise. Take, for instance, 
the fact that there could be a 360° change in ‘Mood’ within a short space of time (e.g., 
a team’s status in a game could change from winning→losing→winning within a very 
short space of time), which is capable of adversely affecting the choice of an ad.

‍ ‍

Rules 5.3 (a) and (b) show excerpts of managers of SysB and SysC, respec-
tively. This shows the conditions under which the managers change their actions. 
‘Action’ in this case refers to ‘Ad’ – so ‘CurrentAction’ refers to currently running 
ad or new ad to run, while ‘CurrentActionCounter – 1’ refers to the previous ad. The 
need for a new and different approach is reinforced by the capabilities exhibited in 
SysC. It addresses situations where it is possible for the overall system to fail despite 
process (in terms of structural, legal, syntactical, etc.) correctness.
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The experiments presented here simulate the performances of three autonomic 
systems (SysA, SysB and SysC) for the defined autonomic marketing scenario. Four 
external variables, now referred to as context samples (MatchScore, WeatherInfo, 
TimeOfAd and LengthOfAd), are fed into the autonomic managers of the systems 
(SysA, SysB and SysC) at every sample collection instance. Sample collection 
instances are defined by a set time interval that can be fixed (design-time specific) or 
dynamically tuned. Based on the policies (Rule 5.2), the managers decide how, when 
and which ad to change/run. The simulation was run for a total duration of 50 sample 
collection instances. During this simulation, the managers are analysed for the total 
number of ad changes and the distributions of those changes. For accurate analysis 
and comparison, the same samples at the same time instance and interval are fed into 
the managers concurrently. This is because samples may (most likely) change at every 
time instance and separately feeding these to the managers will lead to unbalanced 
judgment. Table 5.1 shows the main parameters used for the experiments.

It is important to note that the external variables hold values representing 
dynamic context information fed into the system. The computation of these values 
according to the policy in Rule 5.2 results in decision parameters with which the 
manager decides on what action to take. Also, several internal variables are used to 
specify boundaries as decision benchmarks. The metrics for analysis are explained 
as follows:

•• No. of action (ad) change: the number of times actions change in any given 
sample collection interval. The lower value of action change means the better 
performance of the autonomic manager.

•• Rate of action change: the rate at which actions change, measured as the number 
of action changes per sample collection (no. of action change/simulation time). 
This illustrates the level of stability in the system. A lower value means better 
performance.

•• Rate of action run: the rate at which ads were run. This calculates the ratio of ad 
run to number of sample collections. Value of 1 indicates that the manager runs 
a different ad at every sample collection which means the manager is highly 
unstable.

Table 5.1   Main experimental parameters

Parameter Value

Autonomic systems SysA, SysB and SysC
Simulation time 50 sample collections
Metrics No. of action (ad) change, rate of action change, rate of 

action run, no. of action run, action run distribution and 
no. of samples per time

Sample interval Five samples
External variables MatchScore, WeatherInfo, TimeOfAd and LengthOfAd
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•• No. of action runs: the cumulative number of individual action runs. This is the 
summation of the number of runs for each ad. This metric illustrates the sen-
sitivity of the manager to the configuration of the behaviour space. This value 
does not directly, on its own, translate to level of performance. However, it 
validates the action distribution metric.

•• Action run distribution: the distributed number of action runs. This gives the 
breakdown of the total action run. Nature of action run distribution illustrates 
the performance of the manager in terms of cost management.

•• No. of samples per time: a constant (in this case, 50) spread across a defined 
time interval (in this case, five samples).

5.1.2 � Results and evaluation
The results presented are for a simulation of 50 sample collections. All three auto-
nomic managers (for SysA, SysB and SysC) are analysed based on the number of ad 
changes and number of ad distributions. Table 5.2 shows the results of 10 simulation 
runs for each of 50 sample collections.

Table 5.2 is a high-level view of the systems' performances. Figures 5.4 and 5.5 
are a closer inspection and analysis of the system’s performances. There is a clear 
indication of the stability and autonomic efficiency in SysC.

As a benchmark to compare against, it is difficult to say exactly what a perfect 
performance would be as that is context- and application-dependent. However, it 
is quite easy to say what a poor performance would be. For ‘no. of ad change’, 
a very poor performing (non-autonomic) system would have 50 ad changes in 50 
sample collections. ‘No. of ad run’ wouldn’t have a benchmark as the distribution 
of individual ad run is dependent on decision parameters (i.e., the combination of 
real-time context information). Value of ‘1’ for ‘rate of ad change’ indicates that 
the manager is rapidly changing its mind which shows instability and lack of self-
optimisation. So, the higher the ‘rate of ad change’ is, the lower the performance of 
the system. For ‘rate of ad run’, the performance of the system is very poor if value 
is ‘1’ – this indicates that the manager runs a different ad at every sample collection 
and collectively runs all ads almost the same number of times. A quick glance at the 
results (Table 5.2) reveals that there is a significant performance gap between SysC 
and the other two systems. Also, the lower standard deviation in SysC gives more 
confidence in the spread of the results of the 10 simulation runs.

The optimisation of the TrAArch (SysC) in this autonomic marketing scenario 
is in terms of achieving a balance between efficient just-in-time target-marketing 
decision and cost effectiveness (savings maximisation) while maintaining improved 
trustability and dependability in the process. Figure 5.5 shows the behaviour of the 
systems in 50 sample collections in a game duration in which SysC shows signifi-
cant gain in stability, efficiency and cost savings. It is clearly seen, for example, how 
SysC smoothened the high fluctuation rate (high adaptability frequency) experienced 



Table 5.2   Results of 10 simulation runs

Runs No. of ad changes (x) No. of ad runs (y) Rate of ad change (x/50) Rate of ad run (y/50)

SysA SysB SysC SysA SysB SysC SysA SysB SysC SysA SysB SysC

1 12 12 7 7 7 5 0.24 0.24 0.14 0.14 0.14 0.1
2 8 6 3 7 5 3 0.16 0.12 0.06 0.14 0.1 0.06
3 15 11 8 12 8 6 0.3 0.22 0.16 0.24 0.16 0.12
4 10 7 6 7 7 5 0.2 0.14 0.12 0.14 0.14 0.1
5 15 12 9 10 9 7 0.3 0.24 0.18 0.2 0.18 0.14
6 10 9 8 9 9 8 0.2 0.18 0.16 0.18 0.18 0.16
7 13 10 6 12 9 6 0.26 0.2 0.12 0.24 0.18 0.12
8 11 11 7 7 7 5 0.22 0.22 0.14 0.14 0.14 0.1
9 11 9 7 10 9 7 0.22 0.18 0.14 0.2 0.18 0.14

10 11 9 7 9 7 6 0.22 0.18 0.14 0.18 0.14 0.12
Avg 11.6 9.6 6.8 9 7.7 5.8 0.232 0.192 0.136 0.18 0.154 0.116
SD 2.2 2 1.6
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Figure 5.4  � Graphical representation of the results of 10 simulation runs (note 
that the values for rate of ad change/run have been scaled up by 2 to 
improve graph visibility)

Figure 5.5   An instance of systems’ behaviour in a 50-sample collection
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between the 5th and 25th sample collections. In general, the average ad change ratio 
of about one change in three samples (1:3) is reduced to one change in ten samples 
(1:10), representing an overall gain of about 68.75 per cent in terms of stability and 
cost efficiency.

Figure  5.6 shows the distribution of ads across the 50-sample duration. 
‘NullActions’, i.e., ‘run no ad’, are not shown. This also corroborates the significant 
gain made by the SysC manager. For example, the SysC autonomic manager runs 
only one Ad3 and two Ad2, while SysB runs four Ad3 and Ad2 in both cases. This 
directly translates to adaptive cost savings by SysC. Recall from Figure 5.2 that Ad2 
is run when Mood is high and CostImplication is low (best value for money), while 
Ad3 is run when Mood and CostImplication are both high (when it costs more to run 
an Ad). SysC runs more of Ad2 (best value for money).

While it has been shown that the TrAArch (SysC) is capable of maintaining 
reliability by reducing inefficient adaptation (cutting off unnecessary adaptations), 
it should be noted that reduction alone is not the answer. If the rate is very low, 
it will not be right either. For example, if the rate of change is too low, it could 
indicate that the manager is almost inactive (or not making decisions frequently 
enough). For every application, it is necessary to determine which rate is appropri-
ate or cost effective in the long run. The proposed approach in this book provides 
a way for tuning this (e.g., through dynamically adjusting the width of the dead 
zone). There is a cost associated with bad or over-frequent changes and also a cost 
with not making frequent enough changes. Success is measured by striking a bal-
ance between the two.

5.2 � Case example scenario 2: self-adapting resource allocation

In case example scenario 2, a more complex experimental analysis is designed to 
analyse the performance of the proposed TrAArch architecture over existing auto-
nomic architectures. The experimental analysis is an implementation of a datacentre 
resource request and allocation management scenario. Although the demonstration 
of the proposed architecture uses a datacentre scenario, which though offers a way of 
efficiently managing complex datacentres, the application of the architecture can be 
widespread. In other words, although a datacentre is used to demonstrate the func-
tionalities of the proposed architecture, it is not limited to this scenario. The datacen-
tre model represents a very simple datacentre scenario where the simulation focuses 
on the efficiency and dependability of resource request and allocation management 
rather than other vast areas of datacentre, e.g., security, power, cooling, etc. So, the 
purpose of the experiments is to demonstrate the applicability and performance of 
the proposed architecture and not to investigate datacentres themselves. However, 
the datacentre is chosen as the implementation scenario because its many dimen-
sions of complexity and large number of tuning parameters offer a rich domain in 
which to evaluate a wide range of techniques, tools and frameworks.
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Figure 5.6  � A distribution of the ads (Ad1, Ad2 and Ad3). (a) Distribution of Ad1. 
(b) Distribution of Ad2. (c) Distribution of Ad3.
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Several research works, e.g. References 148–150, have proposed scheduling 
algorithms that optimise the performance of datacentres. In a utility function-based 
approach, Das et al. [148] are able to quantify and manage trade-offs between com-
peting goals such as performance and energy consumption. Their approach reduced 
datacentre power consumption by up to 14 per cent. Other works that have resulted 
in improved performance and resource utilisation by proposing new schedul-
ing algorithms include Reference 149, which focuses on the allocation of virtual 
machines in datacentre nodes, and Reference 150, which uses a ‘greedy resource 
allocation algorithm’ that allows distributing a web workload among different serv-
ers assigned to each service. This book, on the other hand, does not propose any 
new scheduling algorithm for efficient utilisation of datacentre resources; instead, it 
uses the basic resource allocation technique to model the performance of datacentre 
autonomic managers in terms of the effectiveness of resource request and allocation 
management.

5.2.1 � TrAArch simulator
Note: It is important to first go through the experiments presented in this book before 
attempting to use this application. This will ensure that the user fully understands 
how the application works so that it can be used properly and efficiently. This will 
also help the user understand the parameters properly.

The TrAArch simulator is an application developed in C# for simulating auto-
nomic managers for datacentres. This is a direct demonstration of the TrAArch 
presented in Chapter 4. The simulator can be used to evaluate the performance of 
three autonomic managers – SysA (represented by AC), SysB (represented by VC) 
and SysC (represented by DC). The application supports two experiments ‘Normal 
Simulation’ and ‘Interoperability’ – example normal simulation is presented here 
while interoperability is presented in Chapter 6. Figure 5.7 shows the front end of 
the simulator.

The simulator is available via Downloadable material. To use the application, 
follow these steps:

•• Select the type of simulation you want – Normal Simulation or Interoperability. 
Selecting Normal Simulation gives the options of simulating the individual auto-
nomic managers (AC, VC or DC) separately or concurrently (AC+VC+DC) for 
performance analysis of the three systems. The Interoperability option allows 
for the analysis and comparison of two autonomic managers – one with interop-
erability capability and the other without.

•• Set the resource parameters. The application supports a maximum of four appli-
cations and 1000 servers. Select these from the drop-down lists. The size of the 
applications can be changed before or during the simulation via the Change App 
Size button.
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•• Set additional parameters – the internal and external variables. Clicking on Set 
Internal Variables button allows the user to see the default values and to change 
any variable of choice. Description of these variables can be accessed via the 
Info button and in section 5.2.2.2. Note that these variables cannot be changed 
once the simulation starts. The rate at which service requests are received can 
be adjusted via the Request Rate control. The dead zone width (DZWidth) is set 
to auto by default and can be changed to manual.

•• Run Simulation will start the simulation.
•• Once the simulation starts, the user can inject burst into the system via +burst, 

change the size of each application and add or remove applications and serv-
ers. The user can also view the servers that are on the queue and the applica-
tions they are prepared to service via Show Queued Servers. The application is 
designed to print selected graphs of the simulation results in real time, and these 
can be viewed via Show Graph and Show Graph (appOffset). The entire simula-
tion result can be exported to Microsoft Excel at the end of the simulation via 
Export Results. Also, the Simulation Speed parameter is used to configure and 
track Request Rate – i.e., the number of requests per time.

The Export Results and Show Graph are two unique features of this application. 
The export results feature allows for the entire simulation result (according to met-
rics) to be exported to Microsoft Excel at the end of the simulation while the show 

Figure 5.7   TrAArch simulator
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graph feature allows for real-time graph plotting of the results. Below are C# code 
implementations of the three features and SysC:

Export Results: This example is for only six metrics – more can be added as 
required.

‍ ‍

Show Graph: This example plots graphs of selected metrics for all three sys-
tems (AC, VC and DC).

‍
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‍

Simulation Speed: The user can adjust the simulation speed by increasing or 
reducing the request rate in real time. The request rate measures the number of 
requests received per time – minimum of one request per second. This feature is 
implemented using a TrackBar. The track bar also shows the request rate in real 
time. Here is the code for the implementation:

‍
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‍

SysC (DC): This is the system represented as DC in the simulator and the auto-
nomic manager is denoted as PeM_DC (Performance Manager DC). Note that three 
systems (autonomic managers – AC, VC and DC) are simulated and whose perfor-
mances can be analysed individually (as [AC], [VC] or [DC]) or collectively (as 
[AC+VC+DC]). Below is the code implementation of SysC also known as PeM_DC:

When the user clicks on ‘Run Simulation’, internal variables (which are set 
or selected before the simulation starts) are fetched (Figure 5.8), the ‘Set Internal 
Variables’ button is disabled to prevent the change of internal variables in real time, 
some validations are carried out, and then the PeM_DC object is called.

‍ ‍

PeM_DC, and all major aspects of the simulator, are implemented as Timer 
objects with different settings. This helps to synchronise and manage the entire sys-
tem and all its parts in real time. The simulator works on the basis of provisioning 
servers to service application requests. Application requests is simulated using a 
random number generator – every instance of the random number generation repre-
sents an application request for app1, app2, app3 or app4.
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app4.‍ ‍
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‍ ‍
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‍ ‍
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‍ ‍
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‍ ‍

Once an application request is generated, the system provisions a server (or 
servers, depending on the size of outstanding application requests) for that par-
ticular application. Over time, the system is able to forecast application requests 
using historic data. So, servers are released/loaded and queued in anticipation of 
the forecast requests. Queued servers are managed by formQS and can be seen by 
clicking on the 'Show Queued Servers’ button.

‍ ‍
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‍ ‍
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‍ ‍
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‍ ‍

Figure 5.8  �  TrAArch simulator: set internal variables. This shows default 
simulation variables and enables the user to change them as desired.
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5.2.2 � Experimental environment
The experiments are designed and implemented using the TrAArch simulator (sec-
tion 5.2.1) developed in C# programming. The scope of the experiments focuses on 
the performance of datacentre autonomic managers in resource request and allo-
cation management activities under varying workloads. Although some workload 
parameters are sourced from experimental results of other research, e.g., References 
151-153, the designed experiments allow for the tailoring of all parameters (internal 
and external variables) according to user preferences. Simulations are designed to 
model several options of real datacentre scenarios. So, depending on what is being 
investigated, the user can design individual scenarios and set workloads according 
to specific requirements.

5.2.2.1 � Scheduling and resource allocation
Let us consider the model of the datacentre used in this experimentation in detail – 
in terms of scheduling and request services. The datacentre model comprises a pool 
of resources ‍Si‍ (live servers), a pool of shutdown servers Ši (ready to be powered 
and restored to ‍Si‍ as need be), a list of applications ‍Aj‍, a pool of services Ṳ (a com-
bination of applications and their provisioning servers) and an autonomic manager 
(performance manager, denoted PeM) that optimises the entire system. ‍Aj‍ and ‍Si‍ 
are, respectively, a collection of applications supported (as services) by the datacen-
tre and a collection of servers available to the manager (PeM) for provisioning (or 
scheduling) available services according to request. As service requests arrive, PeM 
dynamically populates Ṳ to service the requests. Ṳ is defined 
by (5.1)

	﻿‍

Ṳ=
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<̂
ˆ̂̂̂
ˆ̂:

A1W
�
S11, S12, S13, : : : , S1i

�

A2W
�
S21, S22, S23, : : : , S2i

�

: : : : : : : : : : : : : : : : : :

AnW
�
Sn1, Sn2, Sn3, : : : , S

�
‍�

(5.1)

where ‍A1W
�
S11, S12, S13, : : : , S1i

�
‍ means that ‍

�
S11, S12, S13, : : : , S1i

�
‍ servers are cur-

rently allocated to Application ‍A1‍ and ‍An‍ is the number of application entries into Ṳ. 
Equation (5.1) indicates that a server can be (re)deployed for different applications. 
All the servers in ‍Si‍ are up and running (constantly available – or so desired by PeM) 
waiting for (re)deployment. The primary performance goal of PeM is to minimise 
oscillation and maximise stability [including just-in-time service delivery to meet 
service level achievement (SLA) target], while the secondary performance goal is to 
maximise the throughput.

Service (application) requests arrive and are queued. If there are enough 
resources to service a particular request, then it is serviced otherwise it remains 
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in the queue (or may eventually be dropped). The autonomic manager checks for 
resource availability and deploys server(s) according to the size of the request. The 
size of application requests and the capacity of servers are defined in million instruc-
tions per second (MIPS). In this book, ‘size’ and ‘capacity’ are used interchangeably 
and mostly would refer to MIPS, i.e., the extent of its processing requirement. When 
a server is deployed, it is placed in a queue (Figure 5.9) for a time defined by the 
variable ProvisioningTime. This queue simulates the time (delay) it takes to load or 
configure a server with necessary application before provisioning.

Recall from (5.1) that any server can be (re)configured for different applica-
tions, and so servers are not pre-configured. Servers are then ‘Provisioned’ after 
spending ProvisioningTime in the queue (Figure 5.9). The provisioning pool is con-
stantly populated as requests arrive. Now as a result of the lag between provision-
ing time and the rate of request arrival or as a result of some unforeseen process 
disruptions, some servers do overshoot their provisioning time and thereby are left 
redundant in the queue. This can be addressed by the autonomic manager, depend-
ing on configuration, to reduce the impact on the whole system. As requests are fully 
serviced (completed) servers are released into the server pool and redeployed as 
may be needed. Note that SLA is calculated based on accepted requests. Rejected or 
dropped requests are not considered in calculating SLA. The essence of the request 
queue is to allow the autonomic manager to accept requests only when it has enough 
resources to service them. The service contract is entered only when requests are 
accepted. So, the manager could look at its capacity, in terms of available resources, 

Figure 5.9    TrAArch simulator showing queued servers
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compare that with the capacity requested and say ‘sorry I haven’t got enough 
resources’ and reject or drop the request. This whole process goes on and the man-
ager manages the system to the level of its sophistication.

A basic system without any form of smartness can barely go far before the 
whole system is clogged due to inefficient and unstructured resource management. 
The level to which any autonomic manager can successfully and efficiently manage 
the process defined above depends on its level of sophistication. For me, this largely 
depends on how each manager is wired (in terms of architecture) and not necessarily 
the scheduling algorithm or actual component logic used. For example, two auto-
nomic managers, differently wired, may employ the same scheduling algorithm but 
achieve different results. Results here may be looked at in terms of, say, ‘with such 
level of available resources how many requests were successfully serviced over a 
period of time?’. These are the kinds of considerations in the following experiments 
where three differently wired autonomic managers are analysed.

5.2.2.2 � Workload and simulation parameters
The result of every simulation analysis is relative to the set of workload or parameter 
set used that configures the specific application instance. The parameter set used 
for the datacentre model analysis is classified into internal and external variables. 
Internal variables are those variables that do not change during runtime, e.g., the 
capacity of a server. External variables, on the other hand, are those that can change 
in the course of the simulation, e.g., the rate at which requests arrive. External vari-
ables are usually system generated and are always unpredictable. The experimental 
design has the capacity for heterogeneous workload representation. This means that 
even the internal variables can be reset before the simulation begins, thereby offer-
ing the possibility of scaling to high/low load to suit user preferences . The range 
of value options for most of the variables reflects the experimental results of other 
research, especially References 151–153. Note that the following variables are used 
with the C#-based TrAArch simulator.

•• Internal variables

Below is the list of internal variables used in this experiment. Some of the 
variables used are specific to this experiment while some are general datacentre 
variables.

•• SmoothingConstant

This variable is the smoothing constant (α) for calculating simple exponential 
smoothing used to forecast the size (capacity) of expected/arriving requests. This, as 
used in this experiment, enables the autonomic manager to decide safe boundaries at 
which it is no longer safe to allow server shutdown. Alpha (α) is a number between 
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0 and 1. The experiments in this book use experimental results for three values of α 
(0.05, 0.15 and 0.25) to justify the choice of alpha. It is important to choose an α value 
that will not result in exponential smoothed average that is very close to the actual 
data as that will not smoothen the system’s behaviour. See Chapter 3 for more details 
about the exponential smoothing average technology used in experiments in this book.

•• server.sCapacity

This represents the service capacity of each server and for the purposes of the 
experiments here all servers are assumed to be of equal capacity – 40 000 MIPS. 
Server capacity (size) is measured in MIPS.

•• RetrieveRequestParam

The tuning parameter indicating when to start shutting services (this simulates 
service request completion) – at which point some running requests are closed as 
completed. This value is measured as percentage of number of servers in use and 
has been restricted to a value between 0.1 and 0.3. The margin 0.1–0.3 (representing 
10–30 per cent) is used because experiments show that it is the safest margin within 
which accurate results can be guaranteed. The datacentre is not completely settled 
below 10 per cent, and beyond 30 per cent, scenarios with a low number of servers 
will yield inaccurate results. The higher the value of RetrieveRequestParam, the 
earlier the start of request completion.

•• RetrieveRate

This indicates the rate at which requests are completed once simulation for ser-
vice request completion is initiated. Value is relative to the rate of request arrival – 
e.g., if value is 5, then it means service request completion is five times slower than 
the rate of service request.

•• Burtsize

This indicates how long the user wants the burst (injected disturbance) to last. 
This value is measured in milliseconds. Burst is a disturbance introduced by the 
user to cause disruption in the system. This alters the smooth running of the system 
and autonomic managers react to it differently. Often, injecting a burst disorientates 
the system. The nature of this disruption is usually in the form of sudden burst or 
significant shift in the rate of service request.

•• ServerProvisioningTime

This indicates how long it takes to load or configure a server with an applica-
tion. This is relative to the rate of request arrival – it is measured as half the rate of 
request arrival, e.g., the value of 3 will translate to 1.5 of the rate of request arrival.
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•• ServerOnTime

This indicates how long it takes a server to power on. This is relative to the rate 
of request arrival – it is ServerProvisioningTime + 1.

•• RequestRateParam

This constant is used to adjust the possible range of request arrival rate. The user 
of the TrAArch Application can set the request rate according to preference, but this 
preference may not be accommodated within the available rate range. For example, 
if the least available rate is 1 request/second and the user wishes to use 2 requests/
second, the RequestRateParam parameter can be used to extend the available range. 
A higher value increases the range for a lower rate of request arrival.

•• External variables

Below is the list of external variables used in this experiment. Recall that exter-
nal variables, also known as dynamic variables, are those variables that are fed into 
the system during runtime either as system generated (dynamic sensitivity to contex-
tual changes) or human input (through external touch-points). Some of the variables 
used are specific to this experiment while some are general datacentre variables.

•• DZConst

This variable is the tuning parameter that the autonomic manager uses to dynam-
ically adjust dead zone boundaries. Because this variable has a significant effect on 
the system, it is suggested that the initial value be set at 1.5. The autonomic manager 
usually adjusts this value dynamically, and there is also a provision to manually 
adjust the value during run time.

•• AppSize

This variable represents the size or capacity of a service request (request for an 
application). In the experiments that follow, except otherwise changed, all applica-
tions are initially assumed to be of the same size. There are touch-points to dynami-
cally change this value. The application size variable is measured in MIPS.

•• RequestRate

This variable, also referred to as rate of service request or rate of request arrival, 
is the measure of the frequency of service request. This is in terms of the number 
of requests recorded per unit of time. In real systems, this can be calculated as an 
average for all services (applications) or for individual services. In Reference 151, 
for example, RequestRate values are calculated for each service and are presented 
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in requests/day. The experiments in this book take an average of RequestRate for all 
services and represent values as requests/second.

•• BurstInterval

This variable defines the interval at which bursts are injected into the system 
during the simulation. This is specific to the experimental application and is depen-
dent on what the user wants to investigate. Usually, bursts are introduced once at a 
specific time or several at random times.

The experimental workload is flexible in that all variables can be scaled to suit 
user’s workload (high or low) requirements. Every experiment has a detailed work-
load outline used, as shown in the following experiments.

5.2.3 � Simulation
The purpose of this simulation is not to investigate datacentres but to analyse the 
performance of three autonomic manager architectures based on varying datacen-
tre model scenarios to investigate their level of dependability and robustness. The 
three systems here are the same as in section 5.1. The first system (SysA) is based 
on the traditional autonomic architecture, represented by the basic Monitor–
Analyse–Plan–Execute logic. The second system (SysB) is an upgraded version 
of the traditional autonomic architecture that includes a test element, represented 
by Monitor–Analyse–Plan–Validate–Execute logic. The third system (SysC) is 
based on TrAArch, represented by a nested Monitor–Analyse–Plan–Validate–
DependabilityCheck-Execute logic. The DependabilityCheck component incor-
porates the dead-zone logic (see Chapter 3). Note that SysB does everything 
SysA can do and more and SysC does everything SysB can do plus more (see 
Figure 5.1).

The primary goal of the autonomic manager, in this case also referred to 
as the performance manager – PeM, is to ensure that the system remains stable 
under almost all perceivable operating and contextual circumstances and is 
capable of achieving desired and dependable results within such circumstances 
(i.e., over the expected range of contexts and environmental conditions and 
beyond). The secondary goal is to maximise the throughput.

5.2.3.1 � Autonomic manager logic
The autonomic manager logic describes the individual control logic employed by 
each of the autonomic managers in order to achieve the performance goal. This 
explains the logical composition of each autonomic manager.

•• SysA

This autonomic manager implements the basic autonomic control logic. 
Structurally based on Figure  5.10, the manager receives requests and allocates 
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resources accordingly. The basic allocation logic here is to deploy a server whenever 
capacity offset (i.e., excess capacity of running servers – these are used to service 
new requests) is less than the current capacity of a single request. This is known as 
the DecisionBoundary. This is depicted, for example, as:

‍ ‍

SysA has no additional intelligence. For example, decisions are not validated 
and the manager does not consider the rate at which system behaviour crosses the 
DecisionBoundary. As long as boundary conditions are met, the autonomic manager 
executes appropriate decisions.

Figure 5.10 is a representation of the early stages of autonomic architecture life-
cycle presented in section 2.2.

•• SysB

This autonomic manager shows a higher level of intelligence than SysA. One 
aspect of validation here is to check the performance of the manager in terms of cor-
rectness. The manager does not start a job that cannot be completed – i.e., at every 
DecisionBoundary, the manager checks to make sure that it has enough resources 
to service a request. Where this is not the case, meaning the check has failed, the 
manager rejects the request and updates itself. The manager has a limit to which it 
can allow capacity deficit which is expressed as:

‍ ‍

So, in addition to the basic control and resource allocation logic of SysA, SysB 
carries out a validation of every allocation decision. Validation here is in terms of 

Figure 5.10    Structural representation of SysA
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behavioural (e.g., starting a job only when there is enough capacity to complete it) 
and structural (e.g., avoiding initiating provisioning when server pool is empty, i.e., 
listViewServer.Items.Count = 0) correctness.

Figure 5.11 is a representation of the current stages of autonomic architecture 
life-cycle presented in Section 2.2. Beyond the level of validation, SysB exhibits no 
further intelligence.

•• SysC

SysC performs all the activities of the SysA and SysB autonomic managers 
with additional intelligence. The manager looks at the balance of cost over longer 
term and retunes its configuration to ensure a balanced performance. For example, 
the autonomic manager implements dead-zone logic on decision boundaries. First, 
the dead-zone boundaries (upper and lower bounds), for example, are calculated as 
follows:

‍ ‍

Note: DZConst is a tuning parameter used to adjust the dead-zone width. 
The size of dead-zone width depends on the nature of the system and data being 
processed. For example, in fine-grained data instance, where small shifts from 
the target can easily tip decisions, sometimes leading to erratic behaviour, the 
dead-zone width is expected to be small and closely tracked to the target value. 

Figure 5.11    Structural representation of SysB
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However, in other cases as in this experiment, the dead-zone width cannot be as 
closely tracked to the target value. Here the target value (DecisionBoundary) is 
defined by capacity Offset (see later) and this is used by the autonomic manager 
to decide whether or not to deploy a server. Also, because Offset is populated 
in serverCapacity and depleted in appCapacity, any movement across the deci-
sion boundary, either on the positive side or on the negative side, is in excess 
of appCapacity. This means that fluctuations around the decision boundary are 
usually in multiples of appCapacity, and to handle erratic behaviour around 
DecisionBoundary, the manager will need to take appCapacity into consider-
ation when calculating dead-zone boundaries. This explains the boundary size 
calculation of App1.DZUpperBound and App1.DZLowerBound above. Offset is 
positive when there is excess capacity and negative when there is a shortfall. 
Also, sample simulation results show that smaller sizes of dead-zone width have 
no effect on the system behaviour.

Second, the zone areas are defined as follows (two zones are defined with one 
on either side of the DecisionBoundary – see Figure 5.12):

‍ ‍

Then stability is maintained by persisting the behaviour (DecisionBoundary out-
come) of the system across the zones as follows:

Figure 5.12    Dead-zone logic implemented by SysC
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‍ ‍

Thus, the DecisionBoundary in SysA, which would be (app1SysCOffset < app1.
appCapacity) becomes (App1.SystemBehaviour == "IsInDeployZone") in SysC. 
The manager dynamically changes the DZ.DZConst value between three values of 
1, 1.5 and 2. By doing this, the manager is sensitive to its own behaviour and pro-
actively regulates (retunes) its decision pattern to maintain stability and reliability.

In Figure 5.12, the area denoted ‍y‍ (‍y1‍ and ‍y2‍ represents the ‘IsInDeployZone’, 
which means the autonomic manager should deploy a server, while the area 
denoted ‍x‍ (‍x1‍ and ‍x2‍ represents the ‘IsNotInDeployZone’, which means the man-
ager should not deploy a server. Likewise, the dotted shade pattern (‍y1‍) repre-
sents the ‘IsInDeployZone’, while the diagonal shade pattern (‍y2‍) represents the 
‘IsNotInDeployZone’ when dead-zone logic is applied. As shown, if, for example, 
the system behaviour falls within the ‘IsNotInDeployZone’ area, the manager will 
persist the action associated to the ‘IsNotInDeployZone’ area until the system behav-
iour falls below the ‘DZLowerBound’ boundary at which point the action associated 
to the ‘IsInDeployZone’ area is activated. This way the autonomic manager is able 
to maintain reliability and efficiency. The autonomic manager also retunes its behav-
iour (as explained earlier) by adjusting the DZ Width (i.e., dynamically changing the 
size of DZConst as appropriate) if fluctuation is not reduced to an acceptable level. 
Thus, three behaviour regions, in which different actions are activated, are defined:

•• ‘Upper Region’ (IsNotInDeployZone) with ‘DO NOT DEPLOY SERVER’ 
action,

•• ‘Lower Region’ (IsInDeployZone) with ‘DEPLOY SERVER’ action
•• ‘In DZ’ (‍x2‍ and ‍y2‍ – within the DZ Width) with either of the two actions above.

It is important to note, as shown in Figure 5.12, that within the DZ boundary (‍x2‍ 
and ‍y2‍) i.e., the ‘In DZ’ region, either of the actions associated to ‘IsInDeployZone’ 
and ‘IsNotInDeployZone’ areas could be maintained depending on the ‘current 
action’ prior to deviation into the ‘In DZ’ region. So actions activated in the ‘Upper 
Region’ and ‘Lower Region’ are, respectively, persisted in the ‘In DZ’ region. This 
is further explained in Figure 5.13 which shows the resultant effect of the DZ logic 
in terms of what zone action is activated per time.
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Figure 5.13 explains what happens in Figure 5.12. As system behaviour fluc-
tuates around the decision boundary, the autonomic manager dynamically adjusts 
the DZBoundary to mitigate erratic adaptation. As shown, minor deviations 
across the DecisionBoundary do not result in decision (or action) change. In this 
case (Figure  5.13), actions for IsInDeployZone and IsNotInDeployZone are per-
sisted at states ‘‍x‍’ and ‘‍y‍’, respectively, despite system behaviour crossing the 
DecisionBoundary at those state points.

Figure 5.14 is a representation of the next level of sophistication in autonomic 
architecture life cycle required to ensure dependability. This also represents the 
internal structure of TrAArch proposed in this book. See an illustration of the opera-
tion of the dead-zone logic in Chapter 3.

5.2.3.2 � Simulation scenarios
In the following simulations to analyse the performances of the three systems (SysA, 
SysB and SysC), four simulation scenarios are used. The scenarios are presented 
in Table 5.3. The user of the TrAArch application can define further scenarios as 
required – see section 5.2.1 for details.

Scenario 1: In this scenario, all parameters are kept constant except those (e.g., 
DZConst) that may need dynamic tuning by the autonomic manager as the need 

Figure 5.13  � Illustration explaining the actual performance effect of dead-zone logic

Figure 5.14   Structural representation of SysC
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arises. This scenario gives a default view of the behaviour of the autonomic manag-
ers under normal conditions. Under this scenario of normal conditions, it is expected 
that all autonomic managers will behave significantly closely.

Scenario 2: This scenario creates a condition where the managers will have to 
deal with irregular sizes of service request. This leads to contention between appli-
cations – huge applications will demand huge resources thereby starving smaller 
applications. Performance analysis here will include individual application analysis. 
Request rate is kept constant so that the effect of varying application sizes could be 
better analysed.

Scenario 3: This is the most complex scenario, with resource contention and 
several instances of burst injected at chosen SimulationTimes in the simulation. The 
impact of the burst is relative to the size of the burst (BurstSize). This scenario 
creates a tough operating situation for the autonomic manager. Request sizes vary 
leading to resource contention, and request rate is highly erratic. Inconsistent request 
rate can also lead to ‘flooding’ which is also a kind of burst. Flooding is a situation 
where the system is inundated with requests at a disproportionate rate.

5.2.4 � Results and Analysis
This section presents the analysis of the experimental results. Results will be pre-
sented according to simulation scenarios, and in doing this, the metrics listed in 
Table 5.3 will be used. A detailed description of the metrics is presented below, fol-
lowed by the simulation results.

5.2.4.1 � Metrics
All metrics are mathematically defined, giving the reader a clear picture of the defi-
nition criteria should they wish to replicate this experiment.

SLA: SLA is the ratio of provided service to requested service. It measures the 
system’s level of success in meeting request needs. Note that requests and services 

Table 5.3   Self-adapting resource allocation simulation scenarios

Scenario Description Metrics

Scenario 1 Basic case: uniform request rate 
and application size

SLA
Server deployment rate
Optimum provisioning (Offset 
analysis)

Scenario 2 Medium case: uniform request 
rate and varying application sizes

Scenario 3 Complex case: varying 
application sizes with 
inconsistent request rate
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are not time bound, so the time it takes to complete a request does not count in this 
regard. The metric is defined as (5.2):

	﻿‍

SLA=

8
<̂
:̂

ProvisionedCapacity
RequestedCapacity

�
i
�

AvailableCapacity
RunningCapacity

�
ii
�

‍�  

(5.2)

where ProvisionedCapacity is the total deployed server capacity (excluding those in the 
queue and including those already reclaimed back to the pool) and RequestedCapacity 
is the total size of request (including completed requests). AvailableCapacity is 
ProvisionedCapacity minus capacity of reclaimed servers (ReclaimedCapacity), while 
RunningCapacity is the total size of request (excluding completed requests). In (5.2), 
(i) is more of a whole picture consideration – considering the entire capacity activities 
of the system, while (ii) takes a real-time view of the system – tracking to the minute 
details of the system with delay, completed requests and reclaimed server effects all 
considered. The reference value for SLA is 1 indicating 100 per cent. Any value above 
1 indicates over-provisioning while values under 1 indicate shortfall. Optimum provi-
sioning is achieved at close proximity to 1.

Deployment rate: Server deployment or redeployment rate is the ratio of server 
deployment to service request. It measures the frequency at which autonomic man-
agers deploy servers with regard to the nature of requests. This is mathematically 
represented as (5.3):

	﻿‍
DeploymentRate =

DeployedCapacity�
RequestedCapacity � CompletedCapacity

�
‍�  

(5.3)

The lower value of deployment rate means the better performance of the system 
translating to better maximisation of throughput.

Optimum provisioning: This metric is also an offset analysis. It indicates 
whether and when the autonomic manager is over- or under-provisioning. This is 
also known as efficiency calculation. Offset is calculated as shown in (5.4):

	﻿‍ Offset = AvailableCapacity � RunningCapacity‍� (5.4)

In ideal circumstances, average offset is not expected to fall below zero. The system 
is optimally provisioning when offset falls between zero and the average capacity 
of all applications. The closer to zero the offset value is, the better the performance 
of the system is.

Note that, for all metrics, low or high values do not always necessarily translate 
to better performance. It is not usually realistic for the supposed better autonomic 
manager to always outperform the other managers. There are times when the man-
ager underperforms and usually there may be a trade-off of some kind that explains 
the situation.
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5.2.4.2 � Additional metrics
For the simulations in this book, only the metrics identified above will be used. For 
class exercises or if the reader wishes to explore further, additional metrics may be 
defined for more studies. Note that as well as real-time graph printing, the provided 
simulator also outputs raw simulation results to a Spreadsheet for further tailored 
analysis. Two examples of additional metrics are provided below.

Delay cost: Delay cost can be calculated in many different ways as the cost can 
be influenced by many delay contributors. In this instance, delay cost is defined as 
the cost (in capacity) as a result of the delay experienced by the servers. This delay 
affects the completion time of service requests. This is mathematically represented 
as follows:

	﻿‍
DeployCost =

DeployedCapacity � ProvisionedCapacity
DeployedCapacity

=
ProvisioningCapacity
DeployedCapacity ‍�

ProvisioningCapacity is the capacity of servers in the queue, while DeployedCapacity 
is the total capacity of all deployed servers. The lower value of delay cost means the 
better performance of the system.

Scheduling cost: This is the capacity cost of servicing each request, i.e., the 
unnecessary capacity consumed in scheduling resources for individual requests. So, 
it measures the cost in excess of capacity (MIPS) for servicing each request and is 
represented as follows:

	﻿‍
SchedulingCost =

DeployedCapacity � RunningCapacity
RequestedCapacity ‍�

The lower value of scheduling cost means the better performance of the system.

5.2.4.3 � Scenarios and result analysis
Results are presented and analysed according to simulation scenarios. It is important 
to note the workload and parameters used for individual simulations as results will 
largely depend on those.

5.2.4.3.1  Scenario 1: basic case: uniform request rate and application size
Table 5.4 is a collection of the major parameters used in this scenario. For precise 
results, ten different simulations of scenario 1 are performed and the results pre-
sented are based on average of these ten simulations. For each of the ten simulations, 
the same parameter set as in Table 5.4 is used. However, the number of requests 
and the distribution of those requests amongst the four applications will differ as 
they are dynamically generated and unpredictable. This does not distort the results 
as analysis is based on system-wide performance and not on individual application 
performance.

In every simulation, there are 400 servers of 40 000 MIPS capacity each. 
This means there is a total of initial 16 000 000 MIPS available to share between 
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Table 5.4   Scenario 1 simulation parameters

Parameter Value

No. of servers 400
No. of applications 4
Request rate 1 req/s
Application capacity (MIPS) 20 000
Server capacity (MIPS) 40 000
Internal variables RetrieveRate 5x

RequestRateParam 10
RetrieveRequestParam 0.2
ServerProvisioningTime 3 (1.5 sec)

Autonomic Managers
(PeM – Performance Manager)

SysA, SysB & SysC)

DZConst 1.5

requests for four applications (App1, App2, App3 and App4). Reclaimed servers 
are later added to this available capacity. If the total requested capacity is higher 
than the total provisioned capacity, the unused server list will be empty (leaving 
the autonomic manager with a deficit of outstanding requests without resources to 
service them) and the datacentre is overloaded. So the simulation stops whenever 
any autonomic manager runs out of resources – i.e., when the unused server list 
of any manager becomes empty. It is necessary to stop the simulation at this point 
because as soon as the unused server list of a particular manager becomes empty, 
the RequestedCapacity for that manager starts piling up while AvailableCapacity 
remains at zero, which leads to continuously increasing negative Offset. This will 
lead to an inaccurate assessment of the three managers (recall that all three manag-
ers are compared concurrently and it is safer to do this, while all three managers are 
active). Also, usually at this point, other managers may have outstanding resources 
and this will mean better efficiency.

Table 5.5 is a number distribution of requests and services for ten simulation 
runs of scenario 1. The values shown are collected at the end of each simulation, for 
example, it can be seen that the manager of SysA has no servers left in each of the 
simulations, while SysB has a few and SysC even more. Though SysA and SysB 
are able to service almost the same number of requests, SysB has outstanding server 
capacity (‍9.3 � 40 000 = 372 000mips‍) and could service about ‍

372 000
20 000 = 19‍ more 

requests. However, the additional smartness of SysB does not always translate to 
better performance as highlighted in Table 5.5 (this is an example of manager inter-
ference leading to overcompensation). SysC clearly outperformed the others with an 
average of about 46 outstanding servers out of 400 initial plus Reclaimed servers. 
This means that SysC could still service about 92 more requests. Figures 5.15–5.17 
give a breakdown of the performances against the metrics in Table 5.3 for the three 
autonomic managers.



Table 5.5  � High-level performance analysis of managers over ten simulation runs of scenario 1

Sim. Unused server Serviced request Dropped/queued request Deployed server

SysA SysB SysC SysA SysB SysC SysA SysB SysC SysA SysB SysC

1 0 29 30 706 699 687 0 7 19 459 439 405
2 0 8 45 725 719 697 0 6 28 465 467 392
3 0 4 46 735 729 711 0 6 24 470 465 386
4 0 1 35 732 726 701 0 6 31 462 469 394
5 0 13 59 702 695 674 0 7 28 456 447 368
6 0 3 51 708 706 681 0 2 27 460 455 374
7 0 14 48 706 702 684 0 4 22 468 443 369
8 0 12 59 701 694 675 0 7 26 457 453 369
9 0 7 51 710 705 686 0 5 24 462 462 386

10 0 2 31 759 756 733 0 3 26 472 479 400
Avg 0 9.3 45.5 718.4 713.1 692.9 0 5.3 25.5 463.1 457.9 384.3
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Figure 5.15  � Offset = AvailableCapacity – RunningCapacity: provisioning 
analysis for scenario 1

Figure 5.16   Server deployment rate for scenario 1

The difference between requested capacity and provisioned capacity (or in real 
time analysis, running capacity and available capacity) is known as Offset. Where 
offset is close to zero, the difference with respect to running and available MIPS 
is low and the autonomic manager is therefore very efficient. That means that the 
closer to zero the offset value is, the better the performance of the autonomic man-
ager is. When offset is much greater than or much less than zero, the autonomic man-
ager is over-provisioning or under-provisioning respectively and is very inefficient. 
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The autonomic managers are designed to have a window of optimum provisioning 
defined by the interval (‍0 � Offset � AvgAppCapacity‍), which means that the man-
agers are configured to maintain AvailableCapacity of up to average appCapacity 
for just-in-time provisioning. However, manager efficiency is defined by its ability 
to maintain Offset as close as possible to zero. Figure  5.15 shows the efficiency 
analysis of the three autonomic managers in terms of maximising resources. This 
shows the average performances of the three autonomic managers over ten simu-
lation runs. This means that the same scenario was run for ten times and then the 
average result was calculated in order to obtain a clearer and more accurate analysis 
of manager performance.

Figure 5.15 shows that, in terms of efficiency, SysA performed significantly simi-
lar to SysB with offset at about 20 000 MIPS. There are a couple of instances where 
SysA also performed better than SysB. This is as a result of overcompensation intro-
duced by the extra level of smartness in SysB. The validation check of SysB gives it 
an advantage over SysA, but it sometimes leads to overcompensation. For example, 
though SysB checks to ensure resource availability against resource requests, it is not 
adequately sensitive to erratic request fluctuation. High level of erratic request fluc-
tuation disorientates SysB (as can be seen in scenarios 3 where burst is injected), but 
this effect is naturally and dynamically handled by SysC. SysC, with a trustworthiness 
component (DependabilityCheck), takes a longer-term look at the self-management 
effect on the datacentre and retunes its self-management behaviour.

The rate at which the autonomic managers change decision (which can indi-
cate erratic behaviour) is indicated by the gap between the crests and troughs of 
the graph in Figure  5.15. A smaller gap indicates an erratic change of decision, 

Figure 5.17   Service level achievement analysis for scenario 1



Trustworthy autonomic architecture implementations  153

while a bigger gap indicates a more persisted decision. As can be clearly seen, SysC 
has significantly more persisted decisions and this allows it to more adequately 
track resource availability against resource requests, which leads to more efficient 
performance as can be seen. Recall that optimum provisioning is defined by the 
(‍0 � Offset � AvgAppCapacity‍) interval that in this case is between 0 and 20 000 
MIPS. SysC clearly falls within this range, though a bit towards the 20 000 border, 
while SysA and SysB revolve around the upper bound, significantly away from 0. 
This means that while SysA and SysB try to maintain AvailableCapacity of up to 
20 000 MIPS for just-in-time provisioning, SysC efficiently depletes this reserve 
to maximise resources while at the same time maintaining the same level of per-
formance and even better compared to the other two. This is evidently seen in the 
following deployment rate and SLA metrics analyses.

Figure 5.16 shows the rate at which the three autonomic managers deploy servers 
as requests arrive. With the same rate of request arrival, the managers deployed servers 
differently. While SysA deployed the most servers (average of 1.5 servers per service 
request), closely followed by SysB, SysC deployed the least servers (average of 1.2 
servers per service request). Whereas the difference might seem small, this is actually 
significant in this context – it means an increase in scheduling, delay and power costs. 
This explains why SysA easily runs out of servers followed by SysB, while SysC still 
retains a number of unused servers (Table 5.5). Interestingly, this does not negatively 
affect the performance of SysC and when SysC underperforms in one aspect there is 
usually compensation, say trade-off, in another aspect. The lower server deployment 
rate of SysC resulted in a slightly lower SLA value of SysC when compared to SysA 
and SysB – Figure 5.17. But this only keeps the value very close to the optimum value 
of 1, which also indicates high efficiency. It is important to note even though SysC 
does not significantly outperform the others for SLA, it has far more unused servers, 
which means it services more requests under the same condition.

Figure  5.17 depicts the service levels of the three autonomic managers. As 
expected, following the result trend above, SysA and SysB performed quite simi-
larly, with each outperforming the other in some places. SysC on the other hand 
keeps SLA as close as possible to the target goal of 1 – a perfect system would keep 
SLA at 1. SysC has the ability to dynamically scale down unnecessary and inef-
ficient provisioning by proactively throttling oscillation. This capability also leads 
to cost savings. The high level of deployment rate (i.e. deploying more MIPS than 
required) for SysA and SysB (Figure 5.16) leads to high cost (in terms of excess 
MIPS) of servicing individual requests. Also, this means that the rate at which serv-
ers enter the provisioning queue is much higher than the rate they leave the queue. 
This results in an increasing number of redundant servers in the queue, which con-
tributes to delay cost.

The results analyses of scenario 1 indicate that the proposed TrAArch (repre-
sented by SysC) has significant performance improvement over existing architec-
tures. This assertion is further tested in the following scenarios.



154  Trustworthy autonomic computing

5.2.4.3.2  Scenario 2: medium case: uniform request rate and varying appli-
cation sizes
Table 5.6 is a collection of the major parameters used in this scenario. As in scenario 
1, ten different simulations are conducted and the results presented are based on 
average of these ten simulations.

In every simulation of this scenario, there are 400 servers of 40 000 capacity each 
to be shared amongst two applications (App1 and App2). This means there is a total 
of initial 16 000 000 MIPS to share between requests for App1 with 10 000 MIPS and 
App2 with 30 000 MIPS. The capacity gap between the two applications is so wide that 
it may naturally lead to contention with App2 demanding more resources than App1. In 
this kind of situation, where it is easy to underserve one application because of the con-
tention, it is left for the datacentre autonomic managers to decide how best to efficiently 
allocate resources. Results show that while SysA maintained a proportionate resource 
allocation (in terms of applications) for the two applications, SysB and SysC prioritised 
provisioning for App2 with much higher MIPS request. One disadvantage of propor-
tionate provisioning is that it treats requests according to applications (in this case two 
applications) and not according to capacity (in this case 10 000 versus 30 000). When 
this happens, the high capacity application (App2) will be heavily under-provisioned, 
while the low capacity application (App1) will be adequately provisioned (and some-
times over-provisioned) compared to the level of provisioning for App2 as shown in 
Figure 5.18(a) for SysA Offset analysis. Also, this amounts to inefficiency and explains 
why SysA easily exhausts its resources as shown in Table 5.7 – the results of requests 
distribution amongst the three autonomic managers.

The ‘dropped/queued request’ column shows that in prioritising App2, SysB 
and SysC dropped more of App1 requests, while SysA, which does not drop any 
application, struggled to cope with the capacity imbalance. For a clearer picture, 

Table 5.6   Scenario 2 simulation parameters

Parameter Value

No. of servers 400
No. of applications 2
App capacity (MIPS) App1 10 000

App2 30 000
Request rate 1 req/s
Server capacity (MIPS) 40 000
Internal variables RetrieveRate 5x

RequestRateParam 10
RetrieveRequestParam 0.2
ServerProvisioningTime 3 (1.5 s)

Autonomic managers (PeM – performance manager) SysA, SysB and SysC
DZConst 1.5
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Figure 5.18  �  Individual autonomic manager offset analysis for scenario 2. 
(a) SysA Offset analysis for App1 and App2. App1 is about adequately provisioned 
(i.e. Offset ≈ 0), while App2 is heavily under-provisioned. (b) SysB Offset analysis 
for App1 and App2. App1 is about adequately provisioned while App2 is over-
provisioned (well above the optimal provisioning mark which is defined by 0 ≤ Offset 
≤ AvgAppCapacity). (c) SysC Offset analysis for App1 and App2. App1 is about 
adequately provisioned while App2 is slightly over-provisioned (slightly above the 
optimal provisioning mark which is defined by 0 ≤ Offset ≤ AvgAppCapacity).



Table 5.7   High-level performance analysis of managers over ten simulation runs of scenario 2

Sim. Unused server Serviced request Dropped/Queued request Deployed server

SysA SysB SysC SysA SysB SysC SysA SysB SysC SysA SysB SysC

app1 app2 app1 app2

1 0 165 171 559 312 309 0 236 11 236 14 492 287 281
2 0 161 174 572 322 315 0 237 13 239 18 499 285 271
3 0 161 166 579 329 323 0 237 13 234 22 497 289 286
4 0 169 180 574 318 309 0 240 17 242 24 500 285 269
5 0 164 180 566 318 308 0 238 10 242 16 492 291 270
6 0 160 151 559 320 326 0 222 17 215 18 492 281 295
7 0 162 192 612 334 316 0 266 12 272 24 509 297 258
8 0 172 171 550 309 306 0 224 17 223 21 487 275 276
9 0 179 188 583 310 306 0 258 15 256 21 492 271 264

10 0 164 172 575 324 315 0 236 15 240 20 497 293 279
Avg 0 165.7 174.5 572.9 319.6 313.3 0 239.4 14 239.9 19.8 495.7 285.4 274.9
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Figure  5.19 shows how SysB and SysC prioritised App2 over App1. As can be 
seen, there is a consistent trend of high rate of dropped App1 requests. This means 
that more resources were allocated to App2, thereby starving App1. As this conten-
tion continued, it led to more App1 requests being dropped as there were limited 
resources per time to service App2 requests. Also noticeable is the smoothness of 
provisioning for App2 compared to the bumpiness of provisioning for App1 – this is 
further explained in the offset analysis that follows.

SysA on the other hand did not drop any request and trying to evenly joggle 
resources between the highly imbalanced MIPS requests for the two applications 
meant that more resources per time than necessary are used. This explains why SysA 
exhausted its resources quite early in the simulation while the other managers have 
hundreds of servers still unused (Table 5.7). Figure 5.18(a) shows that while App1 
is about adequately provisioned, App2 is heavily under-provisioned. This is because 
SysA evenly provisioned for the two applications, thereby starving App2 that has 
very high MIPS requests. So by accepting all requests despite low resource avail-
ability, SysA under-provisioned for App2 far more than it did for App1 because of 
the large size of App2 requests. There is no check in SysA to ensure resource avail-
ability before requests are accepted.

In Figure  5.18, App1 average offset is maintained at about (−17 000 ≤ 12 
000 MIPS) by SysA, (−10 000 ≤ −4 000 MIPS) by SysB and (−10 000 ≤ −3 000 
MIPS) by SysC. Also, App2 offset ranges between (7 000 and −200 000 MIPS) for 
SysA, (−30 000 and 34 000 MIPS) for SysB and (−30 000 and 24 000 MIPS) for 
SysC. This shows that while SysA treats requests according to applications (i.e., 
by trying to evenly provision for both applications), SysB and SysC are sensitive 

Figure 5.19    Dropped and queued request analysis for scenario 2
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to the individual size of requests. As a result, by taking on all requests and attempt-
ing an even distribution of resources for both applications, SysA heavily under-
provisions for App2 but performed well for App1. SysB and SysC on the other 
hand maintained more balanced resource allocation for both applications in terms 
of request capacity with SysC showing higher efficiency than SysB. Note that a 
positive Offset above the optimal provisioning mark amounts to over-provisioning 
while a negative Offset amounts to under-provisioning. Recall that optimal provi-
sioning mark is defined by the interval (‍0 � Offset � AvgAppCapacity‍) which in 
this case is (‍0 � Offset �

��
10000 + 30000

�
/2
�
‍) – i.e., between 0 and 20 000 MIPS.  

Figure 5.20 shows the average manager efficiency analysis for all three systems.

On average, SysA did not stand up to the complex provisioning condition of sce-
nario 2 as did the other systems. Figure 5.20 shows that SysA could not efficiently 
cope with the level of resource contention experienced between App1 and App2. 
SysB and SysC show almost the same level of autonomic sophistication; however, 
SysC is shown to be more efficient. Although both systems have a similar level 
of under-provisioning, SysB has a higher level of over-provisioning – significantly 
above the optimal provisioning mark. This indicates that SysC is efficiently more 
sophisticated in handling complex resource allocation scenarios that would ordinar-
ily prove difficult for traditional autonomic managers (SysA and SysB) to handle. For 
example, this increased efficiency arises from the fact that the DependabilityCheck 
sub-component of SysC enables it to go beyond dropping requests, if there are insuf-
ficient resources, to deploying resources only when it is necessary and efficient to do 
so. Also, the SLA analysis ( Figure 5.21) corroborates the above results. While SysA 
performed just below the SLA reference point of one ‘1’, SysC performed very close 
to the reference point indicating very high efficiency.

Figure 5.20  Autonomic manager efficiency analysis for scenario 2
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The results analyses of scenario 2 is a further corroboration of the assertion that 
the proposed TrAArch (represented by SysC) has significant performance improve-
ment over the existing architectures. There is one more complex simulation scenario 
to further test this assertion.

5.2.4.3.3  Scenario 3: complex case: varying application sizes with incon-
sistent request rate
This is the most complex scenario with a combined effect of the previous scenarios. 
The complexity presented by this scenario (i.e., a combined effect of resource con-
tention and two injected disruptions) allows us to further test the robustness of these 
systems by stretching their capabilities to extremes. Table 5.8 is a collection of the 
major parameters used in this scenario. As in previous scenarios, the results pre-
sented are based on the average of ten different simulation runs.

In every simulation of this scenario, there are 400 servers of 40 000 MIPS each 
to be shared amongst two applications (App1 and App2). This means there is a total 
of initial 16 000 000 MIPS to share between requests for App1 with 5 000 MIPS and 
App2 with 20 000 MIPS. Table 5.9 shows a distribution of requests and services for 
ten simulation runs of scenario 3.

Results reveal that SysA is not adequately robust in such complex situations 
as in scenario 3. The system is heavily inefficient in handling this type of situation 
[Figure 5.22, Figure 5.22(a)]. Its algorithm, which maintains proportionate provi-
sioning with respect to number of applications as against capacity of requests, was 
disorientated by the level of contention and disruption experienced.

Figure 5.21  SLA analysis for scenario 2
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As shown in Figure 5.22, the first burst was injected at about 120s, while the 
second was injected at 300s. SysA is limited in its ability to handle complex situ-
ations and so cannot be relied upon to operate large-scale and complex datacen-
tres. SysB and SysC both have a wide range of operability in complex situations. 
However, a closer look at SysB and SysC [Figure 5.22(b)] in this scenario reveals a 
unique change in the expected (as observed in scenario 1) trend. Under a more nor-
mal situation, like in scenario 1, SysC is expected to drop significantly (about five 
times) more servers than SysB. Table 5.9 shows that SysC dropped only a few more 
servers than SysB. This was also noticed in scenario 2, which is a bit more complex 
than scenario 1. In this scenario 3 situation, the level of disturbance (as a result of 
resource contention and erratic request disorder) in the datacentre led to instability in 
SysB which caused it to overreact by inefficiently dropping requests. This instability 
reveals a weakness in design because in real-life datacentres, such disturbances (like 
sudden request spikes) do occur and autonomic managers are expected to adequately 
stabilise the entire system under such circumstances. SysC, on the other hand, with 
the capability of a longer-term view of the entire system, was able to take on more 
requests. It can be seen that SysC is slightly more efficient with performance a bit 
closer to the optimal provisioning mark.

(a) Autonomic manager efficiency analysis of all three systems
However, this achievement comes with an associated trade-off in delay cost. 

This shows that SysC is more sensitive to the relationship between the requested 
MIPS and available MIPS. For example, in a situation where SysB dropped a num-
ber of requests following a fixed decision boundary (when there is lack of immediate 
available resources to handle incoming requests), SysC used a dynamic decision 
boundary to accommodate more requests allowing it to efficiently use up its available 

Table 5.8   Scenario 3 simulation parameters

Parameter Value

No. of servers 400
No. of applications 2
App capacity (MIPS) App1 5 000

App2 20 000
Request rate (initial) 1 req/s
Server capacity (MIPS) 40 000
Internal variables RetrieveRate 5x

RequestRateParam 10
RetrieveRequestParam 0.2
BurstSize 1 500 ms
ServerProvisioningTime 3 (1.5 s)

Autonomic managers (PeM – performance manager) SysA, SysB and 
SysC)

DZConst (initial) 1.5



Table 5.9   High level performance analysis of managers over ten simulation runs of Scenario 3

unused server serviced request dropped/queued request deployed server

SysA SysB SysC SysA SysB SysC SysA SysB SysC SysA SysB SysC

1 0 259 271 584 265 257 0 319 327 521 178 168
2 0 250 264 587 276 279 0 311 308 523 189 185
3 0 256 271 572 264 257 0 308 415 511 180 165
4 0 162 155 460 340 349 0 120 111 432 289 276
5 0 262 265 585 264 256 0 321 329 519 182 176
6 0 246 278 575 272 253 0 303 322 512 198 153
7 0 242 247 574 292 284 0 282 290 514 201 197
8 0 246 271 611 287 272 0 324 339 531 204 171
9 0 235 252 578 292 287 0 286 291 516 202 188
10 0 252 272 565 270 261 0 295 304 506 192 159
Avg 0 241 254.6 569.1 282.2 275.5 0 286.9 303.6 508.5 201.5 183.8
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resources. By taking on more requests, SysC trades off scheduling cost by a very 
tiny margin. See section 5.2.4.2 for how to calculate delay and scheduling costs. 
Interestingly, the efficiency level is not affected – Figure 5.22(b) shows that effi-
ciency performance is even slightly better in SysC. So, we have a situation where, 

Figure 5.22 � Autonomic manager efficiency analysis for scenario 3. Bursts were 
introduced at 120 s and 300 s time frames. (a) Autonomic manager 
efficiency analysis of all three systems. (b) Autonomic manager 
efficiency analysis of SysB and SysC.
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on average, SysC utilised significantly fewer resources (servers) to serve slightly 
higher number of requests than SysB and still maintains approximately same level 
of SLA (Figure 5.23), delay cost, scheduling cost and efficiency achievements with 
SysB.

There is consistent corroboration of the fact that SysA is limited in the range of 
its operational scope when it comes to complex situations. Scenario 3 results show 
that it is highly expensive, inefficient and unreliable to operate complex datacentres 
with autonomic managers based on SysA. However, SysA-based managers may suf-
fice for simple and basic datacentres. On the other hand, SysC has shown consistent 
reliability in all tested scenarios. The level of robustness exhibited in this scenario 
by SysC is a clear indication that it is not a hard-wired one-directional self-managing 
system. For example, in this scenario, we have seen that SysC does not only act 
when SysB is taking more actions than necessary but also when it is taking fewer 
actions than necessary. So, it can be said that SysC is capable of reducing inefficient 
adaptation (e.g., when SysB’s decisions are erratic) as well as increasing adapta-
tion when it is necessary and efficient to (e.g., when SysB is not making decisions 
frequently enough). This capability of increased adaptation has been shown in sce-
narios 2 and 3 – SysC is able to maximise resources while achieving the same level 
of performance as SysB.

From the results of the three experimental scenarios presented above, we can 
conclude that SysA has a narrow envelope of operational conditions in which it is 
both self-managing and returns satisfactory behaviour. On the other hand, SysB 
tends towards a wider operational envelope with increased efficiency and satisfac-
tory behaviour, but once the limits of that envelope are reached, the efficiency and 

Figure 5.23  SLA analysis for scenario 3
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reliability of the system drop. In moderate operational complexities, SysB performs 
adequately efficient but fluctuates rapidly and may need human input to override 
some decisions that lead to instability in the case of a highly erratic and complex sit-
uation, which, for example, SysC can deal with autonomically. Results have shown 
that SysC is sufficiently sophisticated to operate efficiently and yield satisfactory 
results under almost all perceivable operating circumstances. So, we can now con-
fidently conclude that the proposed TrAArch (represented by SysC) has significant 
performance improvement over existing architectures and can be relied upon to 
operate (or manage) almost all level of datacentre scale and complexity.

Generally, SysC shows significant performance improvement over SysB. 
However, the extent of this improvement is application and context dependent. 
Results show that there are circumstances in which performance improvement is 
evident from SysC as well as circumstances in which improvement is not evident. 
Complex applications with the possibility of unexpected behaviour patterns, e.g., 
large-scale datacentres with complex algorithms, will usually experience improve-
ment with SysC. Also, applications that are sensitive to fluctuating environmental 
inputs (i.e., depend on volatile environmental information for decision-making), for 
example, auto stock trading systems are expected to see greater benefit from SysC. 
On the other hand, there are applications that are not expected to see any benefit. 
Example includes small-scale datacentres with predefined request rate and request 
capacity.

5.3 � Stability versus optimality

This subsection provides a further discussion on system stability and performance. 
Up to this point in this book, stability has been used as a metric for measuring sys-
tem performance and it may wrongly seem that high stability is always synonymous 
to optimality. While it has been shown, from experimental results so far, that stabil-
ity contributes to optimality and reliability, it is important to note that stability and 
optimality are not necessarily always mutually inclusive. That is, a system is not 
necessarily performing optimally because it is stable. The definition of stability, on 
its own, is dependent on the context and goal of the system. For example, there are 
situations where it may be suitable to allow some level of fluctuation and decision 
changes which under different situations may be considered destabilising. So, for 
every system, it is necessary to pre-define an acceptable level of fluctuation.

Naturally, a system that does not make any decisions or rarely changes its deci-
sions is considered to be very stable. However, this is inefficient and would be a 
wrong generalisation for autonomic systems. A proposed solution in this book is to 
determine a boundary of the appropriate and efficient level of system behaviour fluc-
tuation for each system and then plug this into the design of the system’s autonomic 
manager. For example, as used in this book, limits of acceptable fluctuation or stabil-
ity are defined as benchmarks in the system’s goals and these are used to configure 
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the decision fork of the tolerance range check object used by the dead-zone logic 
– see Chapter 3. In essence, stability is defined in the goals of the system (note that 
systems are designed based on or to meet a set goal) and the system designer imple-
ments this through the component logic of the system. For example, as specified in 
the rule for the experiment in section 3.2.1, for every 10 decision cycles, decision 
change count of 4 or above is considered unstable, while no decision change is con-
sidered inactive. So, the autonomic manager is configured to dynamically throttle 
the size of the DZ Width to only allow a minimum of 1 and maximum of 3 decision 
changes in every 10 decision cycles.

5.4 � Conclusion

This chapter has presented an implementation and empirical investigation of the 
proposed trustworthy architecture. Two case examples have been used to demon-
strate an implementation of the TrAArch. Experiments are based on different scenar-
ios that replicate real-life systems and operating conditions. The experiments inves-
tigate performance differences between the traditional autonomic architecture and 
the proposed TrAArch. Results show that the proposed architecture has significant 
performance improvement over the existing architectures and can be relied upon to 
operate (or manage) almost all levels of autonomic system scale and complexity. The 
traditional architecture has a narrow envelope of operational conditions in which it 
is both self-managing and returns satisfactory behaviour, while TrAArch is suffi-
ciently sophisticated to operate efficiently and yield satisfactory results under almost 
all perceivable operating circumstances. This chapter has also shown the importance 
of trustworthiness, also referred to as dependability, to autonomic computing and 
how this can significantly improve the performance of autonomic systems.

The TrAArch simulator has also been presented in Section 5.2.1 with a detailed 
explanation of how to use it. This is particularly important if the reader wants to 
recreate the experiments presented in this book or design new ones. To help the 
reader further understand or demonstrate the effect of trustworthiness, it is advisable 
to design new simulations of different scenarios and analyse the results following 
the examples presented here. For the self-adapting resource allocation case example, 
only three scenarios are used in this book. The reader can study more scenarios for 
this same case example. This can also help as a guide for studying other case studies 
of choice.
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Chapter 6

Multi-agent interoperability

The concept of autonomic computing was initially envisioned to address the increas-
ing complexity of managing computing systems. Over time, also with improved and 
new technologies, these systems have continued to grow both in scale and ubiquity, 
leading to even more and more management complexities. This increase in scale 
and deployment of multi-agent systems (e.g., datacentres and distributed systems) 
coupled with heterogeneity of services and platforms means that more autonomic 
managers (agents) could be integrated to achieve a particular goal. This bringing 
together of many autonomic managers for a common goal has led to the need for 
interoperability – managing the unique and complex interactions between the coex-
isting autonomic managers. Autonomic computing is an aspect of multi-agent sys-
tem field where autonomic managers act as individual agents.

‍ ‍
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In this chapter you will

•• learn about multi-agent systems coordination
•• learn about trustworthy autonomic interoperability
•• explore experimental demonstrations of trustworthy autonomic interoperability

6.1 � Introduction to multi-agent interoperability

This chapter provides an overview of interoperability solutions and makes case 
for a proposed solution that is suitable for trustworthy autonomic computing. An 
implementation and empirical analysis of the proposed solution are presented. This 
involves an experimental demonstration using a datacentre multi-manager scenario.

Autonomic computing has progressively grown to become a mainstream con-
cept. Many mechanisms and techniques have been successfully explored, and the 
very success of autonomic systems has inevitably led to situations where multiple 
autonomic managers need to coexist and/or interact (directly or indirectly) within 
the same system. This is evident, e.g., in the increasing availability of large-scale 
datacentres with multiple (heterogeneous) managers (agents), which are indepen-
dently designed. This increase in scale and size of datacentres coupled with het-
erogeneity of services and platforms means that more autonomic managers could 
be integrated to achieve a particular goal, e.g., datacentre optimisation. This has 
led to the need for interoperability between autonomic managers. Interoperability 
deals with how to manage multi-manager scenarios, to govern complex interactions 
between managers and to arbitrate when conflicts arise. Although several research-
ers have identified interoperability as a key challenge for future autonomic systems, 
the challenge is already imminent.

Potentially, problems can arise as a result of conflict of interest when these 
autonomic managers (components/agents) coexist. There is a growing concern that 
the lack of support for interoperability will become a break issue for future sys-
tems. This book presents an architecture-based solution to interoperability. The pro-
posed solution is based on the Trustworthy Autonomic Architecture (presented in 
Chapter 4), which includes mechanisms and instrumentation to explicitly support 
interoperability and trustworthiness. Interoperability support should be designed in 
and integral at the architectural level, and not be treated as an add-on as it cannot 
be reliably retro-fitted to systems. This chapter analyses the issue of interoperability 
and presents the proposed approach using a datacentre multi-manager scenario.

6.2 � Multi-agent systems and multi-agent coordination

‘Multi-agent systems’ is a generic term referring to systems consisting of different 
subsystems (agents) that cooperate (interact) with each other in order to achieve 
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a common goal. The idea of a system with several components working together 
towards a common goal has been applied to an increasing number of domains includ-
ing distributed systems, autonomic systems, supply chain, networks of networks, 
etc. Multi-agent coordination deals with the way the subsystems interact with each 
other in the process of working together to achieve the common goal – and many 
techniques have been proposed. A detailed survey of multi-agent systems, e.g., is 
presented in Reference 154. Multi-manager scenario – which is an aspect of multi-
agent systems – as described in this book, is a situation requiring the cooperation of 
different autonomic managers in the same system, and this cooperation is referred to 
as interoperability. Several multi-agent coordination techniques have been proposed 
in the multi-agent systems community, and this chapter also compares some of the 
early techniques.

A multi-agent coordination in multi-robot systems is discussed in Reference 
155. A multi-robot system is a system of heterogeneous cooperative robots work-
ing together to achieve a common goal. The multi-robot coordination discussed in 
Reference 155 is based on genetic programming. To coordinate a cooperative task 
between robots, Liu and Iba [155] proposed an approach called evolutionary sub-
sumption arguing that it is inefficient and intractable to directly use genetic program-
ming to generate a controller for complex behaviours. The proposed evolutionary 
subsumption applies genetic programming to Brooks’ subsumption architecture 
[145]. The subsumption architecture is an early autonomous robotics architecture 
in which the complete behaviour of a robot is decomposed into sub-behaviours pre-
sented as hierarchical layers where higher-level layers can subsume the roles of 
lower levels. Take for instance, a robot could have ‘avoid objects’, ‘move around’ 
and ‘explore the room’ layers which are interdependent – in order to explore the 
room, the robot would need to be able to move around freely and should be able 
to avoid obstacles. These layers are implemented as separate competences which 
generate outputs, and the higher-level layers can subsume the competences of lower 
levels by suppressing their outputs.

In a subsumption architecture, as illustrated in Figure 6.1, all layers take input 
(contextual data) from the sensor and send output (decision, action, etc.) to the actua-
tor. However, higher layers can ‘inhibit’ the outputs of lower layers and cause theirs 
to be actuated instead. This is the central idea of the subsumption architecture and 
can be adapted for multi-agent coordination in which case the layers will represent 
different agents (autonomic managers).

Challenge 6.1
The subsumption architecture gives us an idea that can be very useful 
in autonomic systems interoperability. Try an implementation of two or 
three autonomic managers working together for a specific goal. Design it 
in a way that there will be at least one conflict – it could be a case where 
the output (action) of one manager contradicts the output of another 
manager and thereby affects the overall goal. Adapting the subsumption 
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architecture, let the autonomic managers act as sublayers in which 
conflicts can be resolved by higher autonomic managers inhibiting the 
actions of lower autonomic managers. One of the main issues here would 
be the algorithm for the conflict resolution – how to decide higher/lower 
managers (may need to be defined by policy, learning, etc.), how and 
when to inhibit actions, the direction of communication flow, etc. To keep 
things simple, limit the autonomic functionalities of the managers to any 
or all of the four self-managing functionalities.

Stigmergy is another promising concept for autonomic interoperability. The 
potential of utilising stigmergy by software agents to interact with each other and 
to collectively solve a common task is presented in Reference 132. Stigmergy, 
which is found among social insects (e.g., ant colony), is the indirect commu-
nication among coexisting individuals through their environment. O’Reilly and 
Ehlerspresent a methodology of mimicking stigmergy into a software system 
positing that many software projects are deemed failures due to the inability of 
the software systems to adapt to changing business environments. A multi-agent 
stigmergic coordination in manufacturing control system has been presented in 
References 133 and 156. Coordination among the agents in the manufacturing 
control system is a direct reflection of the pheromone-based stigmergy in ant col-
ony. In this approach, the control system consists of agents (e.g., resource, product 
and order) that distribute pheromones (e.g., agents’ connections, location and gen-
eral info) within the environment (cyber world) in which they reside. Sharing such 
global information on a collective environment (the cyber world) reduces design 
cycle, products’ time to market and order lead times and also facilitates flexibility 
[133]. Stigmergy-based coordination is a rich and wide area of research that can 
be explored in many forms, and this is just one aspect. The principle of stigmergy 
is explained in Chapter 3.

However, in these and many other approaches, the agents are logically (and in 
some approaches, physically) connected together which, in actual sense, indicates 

Figure 6.1   Illustration of the subsumption architecture with three layers
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that the agents are aware of the existence of others. This is not always the case 
in real-life systems. In some real-life environment, multi-agent systems are made 
up of agents by different vendors which are designed to perform in environments 
where they are not necessarily aware of the existence of other agents. In the stig-
mergic approach presented in this chapter, the agents do not need to be aware 
of the existence of other agents. The agents have a sense of operating in ‘isola-
tion’ and simply respond to changes in the environment (in the form of process 
conflicts, unexpected disturbance, etc.) – see the office share example in section 
6.3. Trend analysis (TA) logic enables agents to easily infer the presence of other 
‘agents’ by the kind (or nature) of environmental changes experienced. In this 
approach, an external adjustment of some parameters (by a human user) – which 
by the way may be correctly or erroneously applied – is considered an agent action 
by other agents. One sophistication of the stigmergic interoperability approach is 
that, no matter the conflict or disturbance, agents (in this case autonomic manag-
ers) are designed to react (e.g., by self-retuning) within the boundaries of the sys-
tem’s stated goals. This is because the agents are designed using the trustworthy 
autonomic architecture (TrAArch).

6.3 � A review of autonomic interoperability solutions

The challenge of multi-manager interactions can be understandably enormous. This 
stems from the fact that, e.g., components (and indeed autonomic managers) could 
be multi-vendor supplied, upgrades in one manager could trigger unfamiliar events, 
increasing scale can introduce bottlenecks, one manager may be unaware of the 
existence of another and managers, though tested and perfected in isolation, may 
not have been wired at design to coexist with other managers. Multi-manager coex-
istence leads to potential conflicts. A typical example is illustrated with a multi-
manager datacentre scenario – Figure 6.2.

Consider a figurative datacentre with three independent autonomic managers 
working together (unaware of each other) to optimise the datacentre as in Figure 6.2. 
The autonomic managers have direct control and management of certain aspects 
of the datacentre – they pass control signals (solid arrow) to the datacentre and 
receive feedback (dotted arrow) on the impact of their actions. The performance 
manager optimises resource provisioning to maintain service-level achievement 
(SLA). It does this, e.g., by dynamically (re)allocating resources and maintaining a 
pool of idle servers to ensure high responsiveness to high-priority applications. The 
power manager seeks to optimise power usage (as power is one of the major cost 
overheads of datacentres) by shutting down servers that have been idle for a certain 
length of time. The cooling manager ensures that the temperature of the datacentre is 
maintained within a certain range of degrees. Although each manager performs bril-
liantly in isolation, by coexisting, the success of one manager may defeat the goal of 
another. In this scenario, one can identify two sources of conflict:
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a.	 one manager seeks to shut down a server that another manager seeks to keep 
alive and

b.	 another manager seeks to maintain temperature, within a certain range, using 
power that another manager seeks to preserve.

The (in)activities of one autonomic manager affect the costs of provisioning 
(e.g., delay cost, scheduling cost, competition cost, etc.) for another autonomic man-
ager in one way or the other. One way of mitigating this conflict is to have an exter-
nal agent that can detect and diagnose the conflict. The problem with this is that it 
introduces more complexity (e.g., any additional autonomic manager will require 
rewiring of the other autonomic managers) as system is scaled up. This leads to add-
ing more complexity in the process of solving a complexity problem which is not 
desirable. There are a couple of efforts in this direction. A trustworthy autonomic 
solution suitable for addressing this sort of scenario is demonstrated in section 6.4.

Kephart et al. [107] presented a clear demonstration of the need for interopera-
bility mechanisms. In that work, two independently developed autonomic managers 

Figure 6.2  � Illustration of a simple multi-manager datacentre. The power 
manager is responsible for optimising power usage while the 
performance manager is responsible for handling resource 
allocation, and the cooling manager is responsible for maintaining 
the desired room temperature
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were implemented: the first dealt with application resource management (specifi-
cally central processing unit (CPU) usage optimisation) and the second, a power 
manager, dealt with modulating the operating frequency of the CPU to ensure that 
the power cap was not exceeded. It was shown that without a means to interact, both 
autonomic managers throttled and sped up the CPU without recourse to one another, 
thereby failing to achieve their intended optimisations and potentially destabilising 
the system. There is widespread repetition of this sort of problem requiring appropri-
ate interoperability solution.

Anthony et al. [61] evaluated the nature and scope of the interoperability chal-
lenges for autonomic systems, identified a set of requirements for a universal solu-
tion and proposed a service-based approach to interoperability to handle both direct 
and indirect conflicts in a multi-manager scenario. In this approach, an interopera-
bility service interacts with autonomic managers through a dedicated interface and is 
able to detect possible conflict of management interests. New autonomic managers 
register their capabilities and requirements (in terms of the kind of services they pro-
vide and what aspects of the system they intend to manage) with the interoperability 
service, which then grants management rights only if no other autonomic manager 
in its database is managing the same aspect of the system to which management 
right is requested. In this way, the interoperability service manages all interoperabil-
ity activities by granting or withholding management rights to different autonomic 
managers as appropriate. One problem with this approach is that if a new autonomic 
manager is more capable of managing (e.g., in terms of efficiency) an aspect of the 
system that an existing autonomic manager is already managing, the new autonomic 
manager will be denied management right. Another challenge with the service-based 
approach is the complexity of reconfiguring the interoperability service each time 
a new autonomic manager is added whereas in the architecture-based solution pre-
sented in section 6.4, the autonomic managers seamlessly readjust their behaviour 
each time a new manager is added. Two types of conflicts in a multi-manager sce-
nario are discussed in Reference 61: direct conflicts occur where autonomic manag-
ers attempt to manage the same explicit resource while indirect conflicts arise when 
autonomic managers control different resources, but the management effects of one 
have an undesirable impact on the management function of the other. This latter type 
of conflict is believed to be the most frequent and problematic, as there are such a 
wide variety of unpredictable ways in which such conflicts can occur.

Another form of interoperability that entails the collaboration of multiple man-
agers in the form of information exchange to achieve an overall system objective is 
presented in Reference 157. In this arrangement, server machines are grouped into 
node groups, and a node group manager allocates server processes and requests to 
individual nodes using modelling and optimisation algorithms. The group manager 
also estimates the ability of each group to fulfil its service-level objectives based on 
the number of nodes available to it and then pushes the estimates to a provisioning 
manager which allocates server machines to the groups using the provided esti-
mates. The exchange of information between these managers will require a form 
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of interface for their communication, and this again brings us back to the issue of 
having to reconfigure interfaces each time a new autonomic manager is added. This 
approach only provides ‘static interoperability’ solution and is somewhat scalabil-
ity proof. The new solution proposed in this book is a ‘dynamic interoperability’ 
approach in the sense that autonomic managers do not need recoding each time new 
managers are added. They autonomically retune (modulate) their behaviour as soon 
as they sense process conflicts.

There are also works that deal with homogenous competing autonomic manag-
ers. For example, in order to avoid jobs being starved of resources, Reference 48 
implemented a two-level autonomic data management system. A global manager 
allocates physical resources to virtual servers while local managers manage the vir-
tual servers, using fuzzy logic to infer the expected resource requirements of the 
applications that run on the virtual servers. Other works focus on bespoke interoper-
ability solution [158], direct autonomic managers interactions at the level of auto-
nomic elements to ensure that management obligations are met [159], hierarchical 
relationship to autonomic element interactions [160] and Monitor-Analyse-Plan-
Execute (MAPE) architecture modification [105] where it is suggested to separate 
out the monitoring and analysis stages of the MAPE loop into distinct autonomic 
elements, with designed-in interactions between them.

The interoperability solutions discussed so far are some of the early efforts. 
They are more generic and provide solid foundation for addressing the interoper-
ability issue. The recent solutions are more specific and application dependent. 
Several studies [36, 109, 111] have addressed the challenge of interoperability 
in many ways. Focus areas include interoperability within autonomous swarms 
of unmanned systems [108] and interference-aware load balancing [110]. Hadj 
et al. [109] focus on autonomic conflict management between coexisting appli-
cations while Ding et al. [36] look at interoperability in achieving service-level 
objectives, and Tsarev et al. [111] are interested in multi-agent interaction within 
supply scheduling.

The research community has made valuable progress towards autonomic man-
ager interoperability but this progress has yet to lead to a standardised approach. 
Although the current state of research is a significant step, available solutions do 
not completely tackle the problem of unintended or unexpected interactions that 
can occur when independently developed autonomic managers coexist in a system. 
Furthermore from that, and more realistically, autonomic managers may not neces-
sarily need to know about the existence of other managers – they are designed in 
isolation (probably by different vendors) and operate differently (for different goals) 
without recourse to one another. So, to have close-coupled interoperability (i.e., 
where specific actions in one autonomic manager react to, or complement those of 
another), the source code and detailed functional specifications of each autonomic 
manager must be available to all autonomic managers. This is near impossible and 
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where it is possible, requires a rewiring (or recoding) of each autonomic manager 
whenever a new autonomic manager is added. That is why this book favours a solu-
tion that is tied to the autonomic architecture to provide a dynamic solution – hence, 
the architecture-based approach presented next. To avoid introducing further com-
plexity through solving the interoperability problem, the autonomic architecture 
should envision (and provide for) interoperability support from scratch. That is to 
say, the autonomic architecture should be scalable and dynamic enough to accom-
modate expected and unexpected developments. This is one aspect of trustworthy 
autonomic computing – a trustworthy autonomic system should be designed with 
the capability to address unintended or unexpected complex (conflicting) interac-
tions that can occur when independently developed autonomic managers coexist in 
a system.

6.4 � The architecture-based interoperability

An efficient interoperability solution will need to be seamless and consider inter-
operability as an integral part of the system. This section presents a ‘dynamic 
interoperability’ approach initially proposed in Reference 118. This approach 
uses stigmergy and is based on the TrAArch. The TrAArch (see Chapters 4 and 5), 
through its DependabilityCheck (DC) component can be extended to accommo-
date desired autonomic functionalities. In the proposed interoperability approach, 
a TA logic is implemented in the DC component to enable the autonomic manager 
to automatically detect conflicts, and using dead-zone (DZ) logic the autonomic 
manager is able to regulate its behaviour as appropriate. Datacentre case exam-
ple experimentation is used to demonstrate this approach. The central idea here 
is that interoperability capability should be designed into the system from the 
beginning. This capability is achieved by utilising the stigmergic principle – the 
autonomic managers are designed to learn from the signals available in their 
operating environment and be able to adjust their behaviour to avoid potential 
conflicts.

6.4.1 � Scheduling and resource allocation
Let us consider, in more detail (Figure 6.3), the multi-manager datacentre exam-
ple presented earlier in section 6.3 (Figure 6.2): the datacentre comprises a pool of 
resources ‍Si‍ (live servers), a pool of shutdown servers ‍Ši‍ (ready to be powered and 
restored to ‍Si‍ as need be), a list of applications ‍Aj‍, a pool of services Ṳ (a combina-
tion of applications and their provisioning servers) and two autonomic managers 
A-M1 (performance manager (PeM)) and A-M2 (a PoM) that optimise the entire 
datacentre. ‍Aj‍ and ‍Si‍ are, respectively, a collection of applications supported (as 
services) by the datacentre and a collection of servers available to the PeM for provi-
sioning (or scheduling) available services according to requests. As service requests 
arrive, PeM dynamically populates Ṳ to service the requests (actual scheduling 
algorithm is presented in the experiment). Ṳ is defined by
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‍
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servers are currently allocated to Application ‍A1‍, and ‍An‍ is the number of appli-
cation entries into Ṳ. This setting indicates that a server can be (re)deployed for 
different applications. All the servers in ‍Si‍ are up and running (constantly available 
– or so desired by PeM) waiting for (re)deployment. The primary performance goal 
of PeM is to minimise oscillation and maximise stability (including just-in-time 
service delivery to meet SLA target) while the secondary performance goal is to 
maximise throughput. The goal of the PoM, on the other hand, is to optimise power 
consumption. This task is simply achieved, e.g., by shutting down any server that 
has been idle for time ‍Ts‍.

Figure 6.3  � Architecture-based interoperability solution [118]. The DC component 
of TrAArch provides interoperability management. The two A-Ms are 
designed independently and operate independently as well.
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To manage interoperability between PeM and PoM using TrAArch, Figure 6.3 
shows the communications and control within the components of the TrAArch 
architecture. The autonomic managers take performance decisions, which are 
then validated by their respective ValidationCheck (VC) components (‍VCpom‍ and 
‍VCpem‍) for correctness. A control feedback (CF) is generated if validation fails 
and with this feedback, the autonomic manager adjusts its decisions. The DC 
component takes a longer-term view of the autonomic managers’ behaviour and 
either allows a manager to carry on with its actions (if check passes) or generates 
a recalibration feedback (RF) otherwise. DC contains other subcomponents (﻿﻿‍K ‍),  
e.g., interoperability, stability, etc. The stability subcomponent is usually con-
figured using DZ logic as shown in the experiments of Chapter 5. The interoper-
ability subcomponent, in this case example, is configured using TA logic (which 
identifies patterns within streams of information supplied directly from differ-
ent sources) with a combined effect of exponential smoothing technique (see 
Chapter 3). The details of the logic usage are explained in section 6.5.2. Note that 
the designer of the autonomic manager can define as many DC subcomponents 
as necessary.

Note: It is important to first read Chapter 4, and possibly Chapter 5 as well, in order 
to understand how TrAArch works.

Consider Figure  6.3. The interoperability component is implemented using 
knowledge-based technology. It learns and keeps track of the system’s state follow-
ing the historical decisions of the autonomic manager. If after a number of decision 
instances, the manager senses a conflict with its decisions (based on expected versus 
actual system state), another RF is generated to retune the manager’s decisions. 
Take for instance, if after sometime PoM senses that the same set of servers it has 
shut down have constantly come back live without it powering them, there is only 
one conclusion: another operation (probably a human, another manager, etc.) is not 
‘happy’ with PoM’s decisions. So, PoM’s DC generates an RF with an appropri-
ate tuning parameter value (β) to throttle the size of ‍Ts‍ as follows: (Ts = Ts * β). By 
sensing the effects of its actions and dynamically throttling ‍Ts‍ within an acceptable 
boundary, PoM is able to coexist with any other autonomic manager with conflicting 
actions. On the other hand, PeM can retune its behaviour, e.g., if it senses that the 
set of servers it tries to keep running are constantly switched off. However, there are 
boundaries within which each manager’s cleverness is limited. For example, the size 
of ‍Ts‍ has a maximum limit.

Notice that the two autonomic managers do not need to know any details 
or even the existence of each other. In real life, this is typical of two staff that 
share an office space but work at different times. If each returns on their next 
respective shift and finds the office rearranged, they will each adjust in their 
arrangement of the office until an accepted compromise structure is reached. 
This can be achieved without both getting to meet. The DC component provides 
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extra capacity for an autonomic manager to dynamically throttle its behaviour 
to suit the goal of the system. In actual sense this approach builds on the stig-
mergic phenomenon [161], which is a process of achieving indirect coordination 
between coexisting agents by means of indirect communication via the environ-
ment. That is, using their environment for indirect communication, the agents 
are able to sense and adjust their actions and this way they achieve efficient col-
laboration. So, the stigmergic interoperability solution provides indirect coor-
dination between autonomic managers in a multi-manager scenario without the 
need for planning (or pre-knowledge of the existence of other autonomic manag-
ers), control or direct communications between coexisting autonomic managers. 
This provides efficient collaboration (as against competition) between coexist-
ing autonomic managers.

There are costs associated with the operations of a datacentre. These costs are 
affected in one way or the other by the actions of the autonomic managers. These 
and many other metrics are used to analyse the proposed interoperability solution in 
the following experimentation.

6.5 � Complex interactions in multi-manager scenario

This section presents experimental analysis of the proposed interoperability solu-
tion using a datacentre resource request and allocation management scenario. 
The datacentre scenario used is the same as the one used in Chapter 5 but in this 
case, there is an additional manager (PoM) that optimises the datacentre power 
consumption. The essence of this analysis is not to investigate datacentres but 
to examine the performance effects of the proposed interoperability solution in a 
multi-manager datacentre scenario using easy-to-assess examples. The analysis 
will investigate the performance of the datacentre with and without interoper-
ability solution.

It is important, however, to point out that the proposed interoperability solu-
tion works well in a closed-world model but has some limitations in an open-world 
model and so may not be relied on to reach convergence. Convergence defines a 
point at which system is stable and has reached a steady state. In a closed system, 
there are a definite number of actors (in this case autonomic managers) that influ-
ence the environment and the individual actions of each autonomic manager can be 
tracked as a trend. In this way, it is possible for each manager to detect persistent 
actions that conflict with its actions and be able to readjust behaviour. However, 
in an open system, there are indefinite number of actors that can influence the 
environment. An actor in this model can be a third party that interferes with the 
system, and this interference could be a one-off instance or several instances from 
different actors. For example, the office share scenario discussed earlier in this sec-
tion is a closed-world model but it becomes an open-world model if a third party 
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(say, different office cleaners) randomly contributes to the office (re)arrangement. 
So, the proposed solution can be relied on to reach convergence in a closed-world 
model but may require further readjustments to reach convergence in an open-
world model.

6.5.1 � Simulation design
The experiments here are designed and implemented using the TrAArch Simulator 
(discussed in section 5.2.1), which is a C#-based application specifically developed 
for simulating autonomic datacentre. Figure 6.4 is a pictorial illustration of the data-
centre implementation scenarios used. The two implementations of the datacentre 
(Datacentre 1 and Datacentre 2) both have two autonomic managers as explained 
in section 6.4 – a PeM and a PoM, optimising resource allocation and power man-
agement, respectively. Each autonomic manager is unaware of the existence of the 
other. The scenarios are explained as follows:

•• Datacentre 1 – Both managers coexist without any form of interoperability 
solution. This means that both managers perform their tasks within the bound-
aries of their individual autonomic framework without recourse to one another. 
In this case, PeM and PoM are represented by PeM_NoInt and PoM_NoInt, 
respectively while the datacentre is represented by NoInteroperability in the 
simulation analysis.

•• Datacentre 2 – Both managers coexist with the proposed interoperability solu-
tion. This means that both managers, while performing their tasks within the 
boundaries of their individual autonomic framework, are sensitive to external 
interference. Here, external interference is defined as any action or effect that 
alters the manager’s expected system state. In this case, PeM and PoM are 

Figure 6.4  � Datacentre scenario with and without interoperability solution. 
Datacentre 1 implements no interoperability solution while 
Datacentre 2 does
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represented by PeM_Int and PoM_Int, respectively while the datacentre is rep-
resented by Interoperability in the simulation analysis.

Note that both managers are designed based on TrAArch framework (Figure 6.3), 
and the investigation herein focuses on Datacentre 1 (NoInteroperability) versus 
Datacentre 2 (Interoperability). So, this is performance analysis of a multi-manager 
datacentre with and without interoperability solution.

6.5.2 � Autonomic manager logic
Manager logic describes the actual individual control logic employed by each 
of the autonomic managers in order to achieve the stated performance goal. 
This explains the logical composition of each manager. There are two instances 
of each manager, i.e., when the manager is designed without interoperability 
solution (PeM_NoInt) and when it is designed with interoperability solution 
(PeM_Int).

•• Performance Manager

The PeM is directly responsible for resource request and allocation manage-
ment. The manager receives requests and allocates resources according to the algo-
rithm defined in section 6.4.1. The first instance of this manager (PeM_NoInt) has 
no inbuilt interoperability solution.

- PeM_NoInt

As requests arrive, the manager checks for resource availability and deploys 
server(s) according to the size of the request. When a server is deployed, it is 
queued for a certain amount of time (ProvisioningTime) simulating the time 
(delay) it takes to load or configure a server with necessary application. Servers 
are then ‘provisioned’ after spending ProvisioningTime in the queue. The provi-
sioning pool is constantly populated as requests arrive. Additionally, the man-
ager calculates a smoothing average (see Chapter 3) of the capacity of arriving 
requests:

smoothedAvgCapacityPeM_NoInt = (smoothingConstant * avgAppCapac-
ity) + ((1 − smoothingConstant) * oldMean)

The SmoothingConstant used and the choice justification are presented later in the 
experimental analysis. The calculated smoothing average is a forecast of the next 
expected request MIPS – i.e., it is used to predict requests. (The size of application 
requests and the capacity of servers are defined in million instructions per second 
(MIPS).) With this forecast information, the manager constantly checks to ensure 
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that the difference between the predicted MIPS and the available MIPS (idle server 
capacity ready for deployment) is not less than the equivalent of two servers. And if 
it is, the manager quickly checks and restores servers from the shutdown server pool 
(‍Ši‍). Procedure 6.1 is a basic algorithm explaining the server restoration process by 
the PeM_NoInt manager.

‍ ‍

Note: PeM_NoIntTuningParam is a parameter representing time interval at 
which the PeM_NoInt manager checks to decide whether or not to power and 
restore servers that are down. This parameter is measured in number of service 
requests.

This check ensures that, where possible, the manager maintains at least the 
capacity equivalent of two servers readily available for deployment (i.e., enough 
resources for current request and the next expected request). Checks are carried 
out at an interval defined by a tuning parameter (PeM_NoIntTuningParam). 
This ensures that the manager does not wait until late, the critical point, before 
acting. So, at every interval, the manager checks and restores all servers on the 
‍Ši‍ pool.

- PeM_Int

The PeM_Int manager has an embedded interoperability solution based on 
the proposed interoperability solution (Figure 6.3). In addition to all the func-
tionalities of PeM_NoInt, the PeM_Int manager performs further checks and 
retunes its behaviour. The manager tracks system state as it carries out the 
checks at the specified interval defined by PeM_IntTuningParam. Each check is 
calculated as ‘one observation’ and if on a periodic third observation, the ‍Ši‍ pool 
is not empty (signalling that the pool is being populated as it is being emptied 
by PeM_Int), the manager adjusts its checks interval (by increasing the tuning 
parameter) to reduce the rate at which it empties the ‍Ši‍ pool (i.e., to be sympa-
thetic to the other manager whose presence is implied, rather than to compete  
with it):
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‍ ‍

Note: PeM_IntTuningParam is a parameter representing the initial time inter-
val at which the PeM_Int manager checks to decide whether or not to power and 
restore servers that are down. Unlike PeM_NoIntTuningParam, the size of PeM_
IntTuningParam parameter is dynamically adjusted by the PeM_Int manager. This 
parameter is measured in number of service requests.

A further internal set of observation iterations, as shown above, are carried out. 
The tuning parameter is further adjusted if condition persists (i.e., persisted interfer-
ence) after each fourth observation of the initial third interval of observations. So, 
what happens here is that the manager powers ON all servers (restores servers from 
‍Ši‍) and keeps checking that there are enough reserves for prompt deployment. As, 
in this case, the PoM_Int manager continues to shut servers down, it causes insta-
bility in the system as both managers counter each other’s actions. If the PeM_Int 
manager senses that the restored servers are constantly put out of service, it relaxes 
its rate of repowering the servers – this is because the whole essence is collaboration 
rather than competition. If after a certain time (defined by the new check interval) 
the interference continues, the manager further relaxes the rate of its actions. This 
process is repeated until a stable condition is reached. This is demonstrated in detail 
in section 6.5.4.

•• Power Manager

The PoM is directly responsible for power usage optimisation in the datacen-
tre. The power optimisation method implemented by the manager is in the form of 
power conservation in which idle servers are shut down to conserve power. Other 
researchers have used different forms of power management which optimises power 
consumption, e.g., by adjusting the processor speed of servers [162] and a power 
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manager which is embedded in the firmware of a server and can use feedback con-
trol to precisely control the server’s power consumption [163]. While these are 
processor-level power management, the PoM manager conserves power by shutting 
idle servers and repowering them as need arises. This is basic and sufficient to create 
conflicts with the PeM manager, which seeks to keep as many servers as possible 
running in order to have enough capacity reserve. This form of power management 
technique is also used in Reference 164 in which machines are turned ON/OFF to 
conserve power.

- PoM_NoInt

Here the manager checks and shuts down idle servers at a time interval defined 
by a tuning parameter (PoM_NoIntTuningParam). The idle servers are the same 
servers that PeM_NoInt considers as available resources. So, in essence, when serv-
ers are shut down, AvailableCapacity is depleted which in turn affects the perfor-
mance of PeM_NoInt. So, PoM_NoInt continues to check and shut down servers 
within a certain boundary. Procedure 6.2 is a basic algorithm explaining how the 
PoM_NoInt manager checks and shuts down servers.

‍ ‍

So, what this means is that the PoM_NoInt manager will continue to shut idle 
servers as long as the number of servers in the ‍Si‍ pool (available servers) is greater 
than one-fifth of the total servers. The DC component of PoM_NoInt is configured to 
stop shutting servers at ‍

�
LSi count =

�
server.sNumber / 5

��
‍ because if the manager 

continues shutting servers beyond this point it will drag the entire datacentre to the 
brink of unresponsiveness which ultimately leads to underprovisioning and ineffi-
ciency. This process continues regardless of the actions of the PeM. The PeM_NoInt 
manager may at this point be restoring the servers to increase AvailableCapacity, 
and this ultimately leads to high rate of server movement in the datacentre.

- PoM_Int

On the other hand, the embedded interoperability solution enables the manager 
to sense conflicts and then readjust its behaviour. The same method as in PeM_Int 
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is used here. For example, the manager keeps count of servers in the ‍Ši‍ pool (list-
ViewShutServer.Items.Count) as it shuts and repowers servers and if on a periodic 
tenth check the server count does not match expected count (signifying an unknown 
interference), the manager adjusts the tuning parameter:

‍ ‍

The manager keeps adjusting the tuning parameter (PoM_IntTuningParam) 
until it senses stability in the datacentre. Recall the conflict resolution example of 
the two staff sharing an office space discussed earlier. This is the fundamentals of the 
proposed stigmergic-inspired interoperability solution in this book.

6.5.3 � Simulation scenarios and metrics
This simulation scenario is used to analyse the performance effects of the proposed 
stigmergic-inspired interoperability solution using the datacentre case example. The 
scenario and metrics used in the analysis are presented in Table 6.1. Further analysis 
can be done by downloading and running the TrAArch application (see section 5.2.1 
in Chapter 5).

Scenario 1: In Scenario 1, all parameters are kept constant except those (e.g., 
DZConst) that may need dynamic tuning by the autonomic manager as need arises. 
This scenario gives a default view of the datacentre performance both when the 
two managers implement the proposed interoperability solution and when they do 
not. Under this scenario of normal conditions, all parameters are kept constant, and 
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the two managers work independently without any physical or logical connections 
between them.

Scenario 2: This scenario is an exercise for the reader to complete, using the 
TrAArch Simulator. See full details at the end of the section (Challenge 6.2).

•• Workload and simulation parameters

The result of every simulation analysis is relative to the set of workload or 
parameter set used. The parameter set used for the interoperability analysis is clas-
sified into internal and external variables. Most of these have been presented in 
Chapter 5 (section 5.2.2.2). The workload and simulation parameters specific to the 
interoperability analysis are:

- PowerCoefficient

Power coefficient represents the average server power consumption. That is, the 
average power a server consumes at any point in time for being active (switched on 
and running). This is measured in kilowatt (kw). According to References 151 and 
152, on average, servers consume 3.195 MW/h worth of power. This value is scaled 
and PowerCoefficient is pegged at 0.887 kw/s in the simulations. This is just reflec-
tive and a guide as actual values can significantly vary owing to a lot of factors (e.g., 
cooling, processor, machine type, etc.). Interestingly, the TrAArch Simulator allows 
for the tailoring of all parameters according to user preferences. The usage of this 
variable is limited to investigating the impact of interoperability actions in terms of 
power consumption.

- PeM_IntTuningParam

Tuning parameter representing the initial time interval at which the PeM_Int 
manager checks to decide whether or not to power and restore servers that are down. 

Table 6.1    Interoperability simulation scenarios and metrics

Scenario Description Metrics

Scenario 1 Standard resource allocation 
management with uniform 
request rate and application 
size

Power consumption
Power savings
Instability
SLA

Scenario 2 Varying application size with 
inconsistent request rate
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The manager dynamically adjusts the size of the parameter. This is measured in 
number of requests.

- PeM_NoIntTuningParam

Tuning parameter representing the time interval at which the PeM_NoInt man-
ager checks to decide whether or not to power and restore servers that are down. The 
manager does not dynamically adjust the size of the parameter. This is measured in 
number of requests.

- PoM_NoIntTuningParam

Tuning parameter representing the time interval at which the PoM_NoInt man-
ager checks to decide whether or not to shut down idle servers. Value is not dynami-
cally adjusted and is measured in number of service requests.

- PoM_IntTuningParam

Tuning parameter representing the initial time interval at which the PoM_Int 
manager checks to decide whether or not to shut down idle servers. Value is dynami-
cally adjusted by manager and is measured in number of service requests.

•• Metrics

All metrics are mathematically defined to give the reader a clear picture 
of the definition and usage criteria for the metrics. The metrics are specifically 
chosen to reflect the impact of interoperability solution in a multi-manager 
datacentre.

Service level achievement: This has been discussed and defined in section 
5.2.4.1 as:

‍

SLA =

8ˆ̂̂̂
<̂
ˆ̂̂
ˆ̂:

ProvisionedCapacity
RequestedCapacity

�
i
�

AvailableCapacity
RunningCapacity

�
ii
�

‍

PowerConsumption: This metric represents the aggregated power consumption per 
unit time for all idle servers, i.e., servers that are running but not yet deployed. It is 
important to consider these servers as they can as well be switched OFF and pow-
ered ON only when needed. Although this could have a slight effect on SLA, the 
trade-off in power savings may be worthwhile. So, if we assume that each server, 
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on average, consumes PowerCoefficient kilo watts worth of power per second, then 
PowerConsumption is calculated as:

‍PowerConsumption = PowerCoefficient � #IdleServers‍

PowerConsumption is calculated at every time interval defined by request rate. 
Individual manager power consumption is different from the normal or general 
power consumption. For general power consumption, number of idle servers will 
be the total of server count in ‍Si‍ and ‍Ši‍ pools while for individual manager power 
consumption (with or without interoperability) number of idle servers will be the 
total of server count in ‍Si‍ pool:

‍PowerConsumption = PowerCoefficient �
�
Server.Count + ShutServer.Count

�
‍

	﻿‍ PowerConsumptionInt = PowerCoefficient � Server.Count‍�

	﻿‍ PowerConsumptionNoInt = PowerCoefficient � Server.Count‍�

Note that as a result of individual operations of the managers, ​server.​count for 
Datacentre 1 will usually be different from that of Datacentre 2 (Figure 6.4).

PowerSavings: PowerSavings is calculated as the difference between general power 
consumption and individual power consumption:

‍PowerSavings = GeneralPC � IndividualPC ‍

So, e.g., the PowerSavings for Datacentre 1 will be calculated as

	﻿‍ PowerSavingsNoInt = PowerConsumption � PowerConsumptionNoInt‍�

and the PowerSavings for Datacentre 2 as

	﻿‍ PowerSavingsInt = PowerConsumption � PowerConsumptionInt‍�

As PoM intends to optimise power usage, which also entails saving power, the 
PowerSavings metric will be useful to analyse the impact of the manager’s power 
management capability.

Instability: Instability measures the rate at which servers are moved around the 
datacentre. It is inefficient to move servers around frequently. The cost effect can be 
enormous in terms of cooling, power, scheduling costs, etc.

‍Instability = #ServersMoved⁄Time‍
Instability in terms of irregular and high rate of server movement from one pool 

to another is a costly, unsafe and undesirable occurrence in datacentres. This is a 
potential situation when you have two managers optimising the same datacentre as 
in the case example here.
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6.5.4 � Results analysis
This section presents the analysis of the experimental results. Results are presented 
and analysed according to simulation scenarios and in doing this the metrics listed in 
Table 6.1 will be used. Each simulation will analyse the performances of Datacentre 
1 (NoInteroperability) and Datacentre 2 (Interoperability) under the same condi-
tions. Presented results are based on average of ten simulation runs per scenario. For 
more accurate analysis, consider performances between 201s and 1801s – reflecting 
when the simulation is settled.

Scenario 1: Resource request and allocation management with uniform request 
rate and application size

Table 6.2 is a collection of the major parameters used in this scenario. For pre-
cise results, the average of ten simulation results is presented. For each of the ten 
simulations, the same parameter set as in Table 6.2 is used. However, the number 
of requests and the distribution of those requests among the four applications will 
differ as they are dynamically generated and unpredictable. This does not distort 
the results as analysis is based on system-wide performance and not on individual 
application performance.

With 10 000 servers of 40 000 MIPS each, it means that there is a total of initial 
40 000 000 MIPS available to share between four applications (App1, App2, App3 
and App4). Reclaimed servers are subsequently added to this available capacity. 
Table 6.3 shows a distribution of requests and services for ten simulation runs of 
Scenario 1.

Table 6.2  Scenario 1 simulation parameters

Parameter Value

Number of servers 1 000
Number of applications 4
Request rate 1 req/s
Application capacity (MIPS) 20 000
Server capacity (MIPS) 40 000
Internal variables RetrieveRate 5×

RequestRateParam 10
RetrieveRequestParam 0.2
PowerCoefficient 0.887 kw/s
SmoothingConstant 0.05
ServerProvisioningTime 3 (1.5 s)

Autonomic managers
(PeMs and PoMs)

PeM_NoInt
PeM_Int PoM_NoInt
PoM_Int

DZConst 1.5
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From Table 6.3, there is no substantial performance difference between when 
interoperability solution is implemented (Int) and when it is not (NoInt) in terms of 
requests and services distribution. Although results slightly favour Int, the resource 
per service efficiency of (1007.9/2174.5) is to (1015/2182.8) that is (0.4635:0.4650), 
is negligible. This is shown in the SLA performance of both datacentres (Figure 6.5). 
However, of most importance is the cost of achieving both levels of performance 
which is explored later. Also, the Int scenario has more outstanding (unused) server 
capacity (8.3 * 40 000 = 332 000) and could service about 332 000/20 000 = 17 more 
application requests.

For SLA, Figure 6.5 shows that both datacentres performed optimally in terms 
of efficiently utilising available resources and meeting expected service level. 
This is indicated by the proximity of both SLAs to value 1, which is the mark of 
optimal performance. However, analyses of other results reveal that Datacentre 1 
(NoInteroperability) was quite unstable and would cost more to maintain.

Figure 6.6 is the analysis of behaviour patterns (ActionTrend) in both datacen-
tres. The level 0.5 is irrelevant as it is just used to indicate behaviour patterns (in 
terms of tuning and retuning actions) of autonomic managers in both datacentres in 
the face of conflict. Each line indicates a server move. Datacentre 1 (represented by 
_NoInt) shows no dynamic retuning of behaviour pattern. Because managers were 
designed without any embedded interoperability solution, they maintained their 
behaviour (persisted actions) despite any conflict (interference) or instability in the 
datacentre. On the other hand, there is a level of autonomic retuning of behaviour 
patterns in Datacentre 2 (represented by _Int). At 101s, the autonomic managers 
sense a conflict (resulting in high level of server movement) and readjust their tuning 
parameter (explained in section 6.5.2) which reduced the conflict. Further dynamic 

Table 6.3  � High-level performance analysis over ten simulation runs of Scenario 1

Sim.

Unused server Serviced request
Dropped/Queued 
request Deployed server

Int NoInt Int NoInt Int NoInt Int NoInt

1 6 0 2 166 2 166 118 118 1 012 1 023
2 0 0 2 196 2 196 101 101 1 016 1 013
3 13 0 2 170 2 180 129 119 1 000 1 011
4 18 0 2 139 2 152 110 97 996 1 008
5 0 0 2 208 2 226 116 98 1 014 1 010
6 11 0 2 177 2 182 114 109 1 007 1 022
7 0 0 2 197 2 207 140 130 1 022 1 017
8 29 0 2 155 2 161 121 115 985 1 015
9 6 0 2 150 2 170 117 97 1 008 1 011

10 0 0 2 187 2 188 107 106 1 019 1 020
Avg 8.3 0 2174.5 2182.8 117.3 109 1007.9 1015
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readjustments are performed (e.g., at 201s, 401s) until an acceptable (stable) behav-
iour level is achieved at point 1001s. Both datacentres settle towards the end of the 
simulation.

Figure 6.7 shows how many servers were moved (from one pool to another) per 
time. Datacentre 1 shows high level of instability, and this is as a result of high fre-
quency of server movement. The coexistence of PeM_NoInt and PoM_NoInt man-
agers without any form of interoperability solution meant that more servers were 
frequently moved about. In isolation, both autonomic managers would adequately 
move servers about without causing instability in the datacentre while their coex-
istence led to conflicts which saw servers erratically moved between pools. Recall 
that while the PeM_NoInt seeks to keep servers running as reserves, PoM_NoInt 

Figure 6.5   SLA analysis for both datacentres

Figure 6.6  ActionTrend analysis for both datacentres
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seeks to shut servers that are idle and this leads to conflicts. This is not the case 
with Datacentre 2, which implements a dynamic interoperability solution that seam-
lessly resolves the conflicts experienced by Datacentre 1. This is achieved by both 
managers dynamically retuning their behaviour (section 6.5.2) whenever instability 
is sensed.

The movement of servers around the datacentre has some power cost implica-
tions. In this study, conflicts are specifically as a result of a PeM countering the 
actions of a PoM and to further understand the impact of the interoperability solution 
the analyses will hinge on power performance. The PoM in isolation can achieve 
huge reductions in power consumption. However, this achievement is significantly 
reduced when there are conflicts. Figure 6.8 shows the level of power consumption 
in both datacentres.

In Datacentre 1 (NoInteroperability), there is no noticeable drop in power 
consumption because the servers that are shut down to save power are constantly 
repowered by the PeM. So, the power consumption is almost as expected. There 
is, however, a tiny drop in power consumption in Datacentre 2. This is because the 
embedded interoperability solution allows the autonomic managers to relax their 
actions in the face of conflicts leading to more servers remaining shut down a longer 
time before being repowered. This may not be significant; however, these results 
depend on the scenario and set of parameters used. Figure 6.9 shows the power sav-
ings (i.e., difference between the actual and expected power consumptions) in both 
datacentres.

Figure 6.7    Instability analysis for both datacentres
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The power savings metric gives a clearer view of the datacentres’ performances 
in terms of power optimisation and the impact of the interoperability solution. 
There is a consistent (uniform) power savings of about 1.8 kw/s for Datacentre 1 
in the duration of the simulation. This is because both managers (PeM_NoInt and 
PoM_NoInt) operate within fixed autonomic boundaries – i.e., they persisted their 
actions despite any conflicts as long as such actions fall within their separate legal 
autonomic boundaries. So, we have a situation of almost equal action and reac-
tion (server power down and server power up) on the same system which basically 
leaves the system on the same spot. Although there is occasional savings drop in the 
negative in Datacentre 2, there is significant overall improvement in power savings. 
The occasional drop in savings can be attributed to the time lag between when a 
manager detects a situation that warrants retuning of its behaviour and when it actu-
ally retunes itself to maintain stability. The interoperability solution is dynamically 
sensitive to interferences to manager actions. For more accurate analysis, consider 
performances between 201s and 1801s – reflecting when the simulation is settled.

In the analysed datacentre scenario, there are requirements for performance 
optimisation (in terms of resource request and allocation management) and power 

Figure 6.8  � Power consumption analysis for both datacentres. 
‘NormalPowerConsumption’ is the expected level of power 
consumption in the datacentre without a PoM
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optimisation (in terms of power management), and these optimisations are handled 
by two conflicting managers. Results have shown that while performance optimisa-
tion is not significantly affected (Figure 6.5 and Table 6.3) by the conflict in both 
studied datacentres, power optimisation is significantly affected (Figures  6.8 and 
6.9). In both datacentres, there is almost optimal resource provisioning with high 
level of efficiency and insignificant difference in level of performance. This is partly 
because the actions of the PeM have enormous impact on the PoM whereas the 
PeM has a way of mitigating the effects of the PoM’s actions. Where impacts exist 
on the later the managers rely on the robustness of their underlying architecture 
(TrAArch) to stabilise the system. In Datacentre 1, with no interoperability solution, 
power optimisation is heavily affected because of the conflicts between the manag-
ers. These conflicts are dynamically addressed in Datacentre 2 by the interoperabil-
ity solution. So, we can conclude, based on the presented results, that the proposed 
interoperability solution is capable of adequately handling complex interactions in 
multi-manager system scenarios. This is another step towards trustworthy autonomic 
computing. This assertion can be further tested – consider the following exercise.

Note: The performance analysis results of Scenario 1, between 
Datacentre 1 and Datacentre 2, do not show significant difference apart 
from the Instability metric. This is because simulation Scenario 1 is a 
basic setup. This is somewhat expected as the operating conditions are 
moderate. Significant performance differences have been observed in the 
results of more complex scenarios. For example, the setup in Scenario 2 
(Challenge 6.2) represents a more complex operating condition in which 
significant performance differences are expected.

Figure 6.9   Power savings analysis for both datacentres
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Challenge 6.2
Table 6.4 presents a second simulation scenario, ‘Scenario 2’ – with vary-
ing application size and inconsistent request rate. This is a more complex 
scenario with resource contention and burst injection. This scenario cre-
ates a situation where there is resource contention (as a result of hugely 
varied request sizes) and the possibility of abrupt and inefficient server 
deployment as a result of inconsistent request rate. This condition is per-
fect for testing the robustness of the stigmergy-inspired interoperability 
solution. The effect of resource contention and irregular (sometimes 
erratic) request rate is usually rapid and frequent movement of servers 
around the datacentre. This is made worse when there is conflict between 
the two managers, with one restoring servers and another powering them 
down, which leads to more server movement. The robustness of the inter-
operability solution is tested by its level of sensitivity to this situation.

Conduct a new experiment using the parameters in Table  6.4 for 
Scenario 2. Analyse as many metrics as possible and discuss your findings 
about the stigmergic interoperability solution. You can access the TrAArch 
Simulator from Downloadable material. Once you export the simulation 
result to Microsoft Excel, you can analyse as many metrics as possible. 
Read section 5.2.1 in Chapter 5 for details on how to use the simulator.

6.6 � Conclusion

This chapter has presented an overview of multi-agent systems coordination and 
the challenges of interoperability between autonomic managers in multi-manager 

Table 6.4    Scenario 2 simulation parameters

Parameter Value

Number of servers 400
Number of applications 2
App capacity (MIPS) App1 30 000

App2 15 000
Request rate (initial) 1 req/s
Server capacity (MIPS) 40 000
Internal variables RetrieveRate 5×

RequestRateParam 10
RetrieveRequestParam 0.2
BurstSize 2 500 ms
ServerProvisioningTime 3 (1.5 s)

Managers (for NoInt and Int) PeM and PoM
DZConst (initial) 1.5
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scenarios. The very success of autonomic computing has inevitably led to situa-
tions where multiple autonomic managers need to coexist and/or interact directly 
or indirectly within the same system. Potentially, problems can arise due to conflict 
of interest when these managers (components) coexist. This is partly as a result of 
increasing scale and complexity of newer systems. Interoperability challenges stem 
from the fact that these components could be multi-vendor supplied, upgrades in one 
component could trigger compatibility issues, increasing scale can introduce bottle-
necks, one component may be unaware of the existence of another and components, 
though tested and perfected in isolation, may not have been wired at design to coex-
ist with other components.

An overview of a few interoperability solutions has been presented. These solu-
tions are based on different established mechanisms. An architecture-based interop-
erability solution that addresses complex interactions between coexisting autonomic 
managers has also been presented. The interoperability solution, which is based on 
the TrAArch architecture, builds on the Stigmergy mechanism – this mechanism 
allows for indirect coordination, through the operating environment, between coex-
isting autonomic managers. In this approach, autonomic managers are designed to 
sense their environment and dynamically (re)adjust (retune) their behaviour as soon 
as they notice process conflicts. Experimental analyses have been presented to eval-
uate the performance of the stigmergy-inspired interoperability solution. The impor-
tance of considering interoperability capability as an integral part of the autonomic 
manager design has also been proposed. This is another step towards trustworthy 
autonomic computing.
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Chapter 7

Level of autonomicity

This book has so far covered some grounds on the pillars of trustworthy autonomic 
systems which ensure, amongst other things, fit-for-purpose results (dependability/
reliability, continuous evaluation of control actions) and validation. Another impor-
tant aspect is the support for the definition of autonomic systems in universal lan-
guage. This needs to be at both system design (for understanding the system and 
its requirements) and post system design (for system classification and evaluation).

‍ ‍

In this chapter, the concept of measuring the level of autonomicity (LoA) for 
autonomic systems is introduced. A review of some of the existing approaches 
for measuring level of autonomicity is presented. Finally, a quantitative technique 
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for measuring LoA along several dimensions of autonomic system self-* function-
alities is discussed.

In this chapter you will:

•• Understand the concept and importance of measuring LoA
•• Be able to classify autonomic systems

7.1 � Introduction to level of autonomicity

The rapid advancement in the study of autonomic computing is not without chal-
lenges. One of these challenges is the wide range of views, within the autonomic 
computing community, on meaning, architecture, methodology and implementa-
tions. This proliferation of views is majorly fuelled by the lack of universal stand-
ards for the technology itself and its development. Anyone can design a system 
and call it autonomic – but how does one really come to that conclusion? Chapter 
1 has attempted to address the issue of definitions. However, moving from that, the 
criticality of understanding extent of autonomicity in defining autonomic computing 
systems has necessitated the need for evaluating these systems. Defining the LoA of 
autonomic systems is one of the building blocks of trustworthy autonomic comput-
ing. Also, as identified before in section 1.2, another building block is an appropriate 
testing methodology that seeks to validate the autonomic system decision-making 
process. But to know what validation is appropriate requires knowledge of the sys-
tem in terms of its extent of autonomicity (either required or exhibited).

Understanding how and being able to measure level of autonomicity make it 
possible to compare autonomic systems and also facilitate a proper understanding 
of such systems. The majority of research in this area has been qualitative and 
application domain specific. Existing techniques have mainly qualitatively clas-
sified autonomic systems according to some defined levels with no reference to 
the building blocks (core autonomic functionalities) of the systems. There is lack 
of quantitative approach for assessing autonomic systems. However, there have 
been efforts towards classifying autonomic systems according to extent of auto-
nomicity but these efforts have not successfully met the need for assessing auto-
nomic systems. This chapter reviews some of the early approaches and presents 
a generic technique for measuring LoA along several dimensions of autonomic 
system self-* functionalities. Recall from Chapter 1 that while self-CHOP refers 
to the traditional four autonomic functionalities (the self-configuring, self-healing, 
self-optimising, and self-protecting functionalities) self-* refers to generic auto-
nomic functionalities, which comprises of both the self-CHOP functionalities and 
any other possible or application-dependent functionalities (e.g., self-stabilising, 
self-aware, self-regulating). This is important for the LoA solution presented in 
this chapter.
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Designers of autonomic systems need to answer the ‘How autonomic should a 
system be?’ question. This is important because autonomic specification is a critical 
part of the whole system requirements definition. It helps in determining the level of 
autonomy required for a specific system. For this, a level of autonomy assessment 
tool would be required. To address post system design phase, system designers and 
users need to answer the ‘How autonomic is a system and how is this determined?’ 
question. This question is in two parts. On one hand is the need to define systems 
according to a measure of autonomicity and on the other is the method and nature of 
the measure. Addressing this issue is the main thrust of this chapter. Another signifi-
cant aspect addressed here is the need for a standard way for assessing, comparing 
and evaluating different autonomic systems (with flexibility across many domains) 
and also in terms of their individual functionalities. Not only do we measure auto-
nomicity but also look at how systems can be evaluated and compared in terms of 
their autonomic compositions.

The ‘How autonomic should a system be?’ question has mainly been answered 
with scales that describe and analyse autonomy in systems. These scales provide 
fundamental understanding of system autonomy by categorising autonomy accord-
ing to the level of human-machine involvement in decision-making and execu-
tion. One issue with this approach is that low human involvement does not always 
necessarily translate to high autonomicity and vice versa. Also, these methods do 
not assess autonomic systems based on demonstrated functionalities but on per-
ceived or observed outcomes (performance). Efforts in this area include scale-based 
approaches, which define a number of autonomy scales for ranking system auton-
omy. For example, Proud et al. [165] designed an 8-level autonomy scale to rank 
human-machine involvement in decision-making, Clough [166] proposed a 10-level 
scale for determining unmanned aerial vehicles’ autonomy, and IBM’s white paper 
[23] describes 5 levels of automation for IT and business processes. These scales 
only characterise autonomy levels qualitatively and offer no quantitative means of 
measuring level (extent) of autonomicity. So, they are more suitable for proposing 
an appropriate level of autonomy during the design of a new system.

The ISO/IEC 9126-1 standard decomposes overall software product quality into 
characteristics, sub-characteristics (attributes) and associated measures. This means 
that the quality of a software can be effectively determined by evaluating how it 
meets or demonstrates the expected attributes and sub-attributes for that particular 
software – assuming that there is a standardised (or at least, a generally accepted) set 
of domain-specific attributes. This approach can be adapted in defining a framework 
for measuring LoA based on the autonomic system self-* functionalities. Systems 
are well-defined by their set of functional capabilities and a measure of these capa-
bilities will form a better representation of the systems. These functional capabilities 
may be extended to mean, in other systems, characteristics (or attributes) and sub-
characteristics (or sub-attributes). The technique presented here applies to both spe-
cific scenarios of core autonomic functionalities, the self-CHOP functionalities, and 
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general scenarios of all possible essential functionalities, the self-* functionalities. 
This extends the scope of deployment of the technique thereby making it generic. 
Specific metrics for each of the functionalities are identified and the cumulative 
measure of these metrics defines a LoA. This technique is robust as it is based on 
the functionalities of systems making it possible to be tailored to suit the needs of 
any application domain. Also, it can be used for both autonomic and non-autonomic 
systems – all that is required is to identify system characteristics (autonomic func-
tionalities in the case of autonomic systems) and define metrics for each characteris-
tic or functionality. However, this book focuses on autonomic systems. The novelty 
of the technique is in the fact that it offers a quantitative measure of LoA in terms of 
system’s functionalities-based description and can be flexibly applied across differ-
ent application instances. This approach is originally published in Reference [167].

7.2 � Measuring LoA

This section starts with a brief overview of existing techniques for classifying auto-
nomic systems. This is followed by an introduction to autonomic measuring metrics, 
which are used in the proposed LoA measuring technique presented next.

One major existing proposal for classifying autonomic systems according to 
the extent of autonomicity (or measuring LoA) is the scale-based approach. This 
approach, based on the level of human-machine involvement in decision-making 
and execution, uses a scale of (1 – max) to define a system’s LoA where ‘1’ is the 
lowest autonomic level, usually describing a state of least machine involvement in 
decision-making and ‘max’ is the highest autonomic level describing a state of least 
human involvement (which can be different for different functionalities).

Examples in this category include References [165, 166, 168 and 169. Clough 
[166] proposes a scale of (1–10) for determining unmanned aerial vehicles’ (UAV’s) 
autonomy. Level 1 ‘remotely piloted vehicle’ describes the traditional remotely 
piloted aircraft, while level 10 ‘fully autonomous’ describes the ultimate goal of 
complete autonomy for UAVs. Clough populates the levels between by defining 
metrics for UAVs. Clough’s work, although specific to UAVs, is useful for the tech-
nique presented here as it gives an example of how metrics can be used to define a 
system’s operational characteristics.

Sheridan [168] also proposes a 10-level scale of autonomic degrees. Unlike 
Clough’s scale, Sheridan’s levels 2–4 centre on who makes the decisions (human or 
machine), while levels 5–9 centre on how to execute decisions. Proud et al. [165], in a 
study to determine the level of autonomy of a particular autonomic system decision-
making function, developed an 8-level autonomy assessment tool (Table 7.1). The 
tool ranks each of the OODA (observe, orient, decide and act) loop functions across 
Sheridan’s proposed scale of autonomy [168]. OODA is a decision-making loop 
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architecture for autonomic systems. The scale’s bounds (1 and 8) correspond to 
complete human and complete machine responsibilities, respectively.

The authors of that work [165] first identified the tasks encompassed by each of 
the functions and then tailored each level of the scale to fit appropriate tasks. The 
challenge here is ensuring relative consistency in magnitude of change between 
levels across the functions. The levels are broken into three sections. Levels 1–2 
(human is primary, computer is secondary), levels 3–5 (computer and human 
have similar levels of responsibility) and levels 6–8 (computer is independent of 
human). To determine the level of autonomy needed to design into a spaceflight 
vehicle, Proud et al. [165] needed a way to map particular functions onto the scale 
and determine how autonomous each function should be. They designed a ques-
tionnaire and sent it to system designers, programmers and operators. The question-
naire considered what they call ‘factors for determining level of autonomy’, which 
include level of autonomy trust limit and cost/benefit ratio limit. This implies that 
a particular level of autonomy for a function is favoured when a balance is struck 
between trust and cost/benefit ratio limits. Ultimately, the pertinent question is 
‘How autonomous should future spaceflight vehicles be?.’ This is a brilliant tech-
nique towards answering the first identified question (‘How autonomic should a 
system be?’).

 
IBM’s five levels of automation [23] describes the extent of automation of the IT 

and business processes. However, these levels are too narrowly defined and the dif-
ferentiation between levels is too vague to describe the diversity of self-management 
in autonomic systems.

One major concern with the scale-based approach is that a system is not neces-
sarily less autonomic when a human interferes with its operations and vice versa. 
Another is the complexity of applying the approach across different application 
instances – this is in terms of populating the levels in-between the scales: the differ-
entiation between levels is complex (and subjective and thus can vary significantly 
depending on who is using the approach) to determine appropriate magnitude for 
each level. In general, the autonomy scale approach is qualitative and does not dis-
criminate between behaviour types. A more appropriate approach should comprise 
both qualitative and quantitative (as a way of assigning magnitude or value to the 
description and classification of systems) measures. These concerns are considered 
and addressed in the approach presented in this book.

Huang et al. [169] describe a government’s front for addressing the challenge 
of classifying the pervasive Unmanned Systems (UMS) according to their levels of 
autonomy. They allude that UMS’ autonomy cannot be rightly evaluated quantita-
tively without thorough technical basis and that the development of autonomy levels 
for unmanned systems must consider factors like task complexity, human interac-
tion and environmental difficulty. The product in Reference [169] is autonomy 



Table 7.1  � Level of autonomy assessment scale by Proud et al. [165]. An example of a scale-based autonomy classification 
approach.

Level Observe Orient Decide Act

8 The computer gathers, filters and 
prioritizes data without displaying 
any information to the human.

The computer predicts, interprets 
and integrates data into a result 
which is not displayed to the 
human.

The computer performs 
ranking tasks. The 
computer performs final 
ranking, but does not 
display results to the 
human.

Computer executes 
automatically and does not 
allow any human interaction.

7 The computer gathers, filters and 
prioritizes data without displaying 
any information to the human. 
Though, a program functioning flag is 
displayed.

The computer anlayses, predicts, 
interprets and integrates data 
into a result which is only 
displayed to the human if result 
fits programmed context (context 
dependant summaries).

The computer performs 
ranking tasks. The 
computer performs final 
ranking and displays a 
reduced set of ranked 
options without displaying 
‘why’ decisions were made 
to the human.

Computer executes 
automatically and only informs 
the human if required by 
context. It allows for override 
ability after execution. Human 
is shadow for contingencies.

6 The computer gathers, filters and 
prioritizes information displayed to the 
human.

The computer overlays predictions 
with analysis and interprets the 
data. The human is shown all 
results.

The computer performs 
ranking tasks and displays 
a reduced set of ranked 
options while displaying 
‘why’decisions were made 
to the human.

Computer executes 
automatically, informs the 
human, and allows for override 
ability after execution. Human is 
shadow for contingencies.

(Continues)



Level Observe Orient Decide Act

5 The computer is responsible for 
gathering the information for the 
human, but it only displays non-
prioritised, filtered information.

The computer overlays 
predictions with analysis and 
interprets the data. The human 
shadows the interpretation for 
contingencies.

The computer performs 
ranking tasks. All results, 
including ‘why’decisions 
were made, are displayed 
to the human.

Computer allows the human a 
context-dependant restricted 
time to veto before execution. 
Human is shadow for 
contingencies.

4 The computer is responsible for 
gathering the information for 
the human and for displaying all 
information, but it highlights the non-
prioritised, relevant information for 
the user.

The computer analyses the data 
and makes predictions, though 
the human is responsible for 
interpretation of the data.

Both human and computer 
perform ranking tasks, the 
results from the computer 
are considered prime.

Computer allows the human 
a preprogrammed restricted 
time to veto before execution. 
Human is shadow for 
contingencies.

3 The computer is responsible for 
gathering and displaying unfiltered, 
unprioritised information for the 
human. The human still is the prime 
monitor for all information.

Computer is the prime source of 
analysis and predictions, with 
human shadow for contingencies. 
The human is responsible for 
interpretation of the data.

Both human and computer 
perform ranking tasks, the 
results from the human are 
considered prime.

Computer executes decision 
after human approval. Human 
is shadow for contingencies.

2 Human is the prime source for 
gathering and monitoring all 
data, with computer shadow for 
emergencies.

Human is the prime source 
of analysis and predictions, 
with computer shadow for 
contingencies. The human is 
responsible for interpretation of 
the data.

The human performs all 
ranking tasks, but the 
computer can be used as a 
tool for assistance.

Human is the prime source 
of execution, with computer 
shadow for contingencies.

1 Human is the only source for 
gathering and monitoring (defined 
as filtering, prioritising and 
understanding) all data.

Human is responsible for 
analysing all data, making 
predictions, and interpretation of 
the data.

The computer does not 
assist in or perform 
ranking tasks. Human must 
do it all.

Human alone can execute 
decision.

Table 7.1  Continued
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levels for unmanned systems (ALFUS) framework which, more specifically, pro-
vides the terminology for prescribing and evaluating the level of autonomy that an 
unmanned system can achieve. The framework, in which the levels of autonomy can 
be described, addresses the technical aspects of UMS and includes terms and defi-
nitions (set of standard terms and definitions that support the autonomy level met-
rics), detailed model for autonomy levels, summary model for autonomy levels and 
guidelines, processes and use cases. While it is accepted that autonomicity cannot 
be correctly evaluated without thorough technical basis, the approach in this book 
further considers key functionalities of autonomic systems rather than individual 
breakdown of technical operations and operational conditions – a major difference 
with this work. The work in Reference [169] has been updated in Reference [170] to 
focus more on standardised categorisation of UMS.

In evaluating the autonomy of software agents, Alonso et al. [171] believe that 
a measure of autonomy (or any other agent feature) can be determined as a function 
of well-defined characteristics. First, they identify the agent autonomy attributes 
(as self-control, functional independence and evolution capability) and then define 
a set of measures for each of the identified attributes. By normalising the results 
of the defined measures using a set of functions, the agent’s LoA is defined. This 
method considers autonomicity measure with reference to system’s characteristics 
and attributes. But these ‘characteristics’ are a broad range of attributes that describe 
a system, which also include features outside the system’s core functionalities. This 
approach differs to the approach proposed in this book in terms of the constitution 
of system attributes (or functionalities), but the important aspect to note is the idea 
of defining a system with respect to its attributes and characteristics. This approach 
has been adapted for the solution presented in this book but with reference to [core] 
autonomic self-* functionalities.

7.2.1 � Autonomic measuring metrics
This section introduces the core four autonomic functionalities and suggests how 
to define metrics for each of them. Though metrics are application domain depend-
ent, the ideas presented in this section are generic and serve as examples only. 
Autonomic functionalities are emergent and these vary (or are defined) according 
to application instances. The point is that, for any system (whether autonomic or 
not), there are required functionalities which can be measurable by some identifiable 
metrics. For any system, it is left to the designer and/or user to identify appropriate 
functionalities and define corresponding metrics. This work suggests how to define 
at least one metric for each of the functionalities (using the self-CHOP functionali-
ties as example). This is part of a wide and separate research focus. This section 
only suggests examples of how autonomic metrics can be generated. How metrics 
values can be normalised is presented in section 7.2.2. We will start with a definition 
of each CHOP functionality, as presented in Reference [167]. (For more on these 
definitions see [6, 7].)
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Self-­configuring: A system is self-configuring when it is able to automate its 
own installation and setup according to high-level goals. For example, when a new 
component is introduced into an autonomic system, it registers itself so that other 
components can easily interact with it. The extent of this co-existence is a measure 
of self-configuration, measured as ratio of the actual number of components suc-
cessfully interacting with the new component (after configuration) to the number of 
components expected to interact with the new component. This measures the extent 
to which a system is distorted by an upgrade. A system is self-configuring to the 
extent of its ability to curb this distortion.

Self-­healing: A system is self-healing when it is able to detect errors or symp-
toms of potential errors by monitoring its own platform and automatically initiate 
remediation [8]. Fault tolerance is a typical example of self-healing. It allows the 
system to continue its operation possibly at a reduced level instead of stopping 
completely as a result of a part failure. One critical factor here is latency, i.e., the 
amount of time the system takes to detect a problem and then react to it. Reaction 
time is defined as a metric for self-healing capability. This is crucial to the reliabil-
ity of a system. If a change occurs at time ‍ta‍ and the system is able to detect and 
work out a new configuration and is ready to adapt at time ‍tb‍, then the difference 
between ‍tb‍ and ‍ta‍ defines the reaction time. Where variations of reaction time are 
possible, average may be taken instead. A case scenario is a stock trading system 
where time is of paramount importance. The system needs to track changes (e.g., 
in trade volumes, price, rates) in real time in order to make profitable trading 
decisions.

Self-­optimising: A system is self-optimising when it is capable of adapting 
to meet current requirements and also of taking necessary actions to self-adjust to 
better its performance. Resource management (e.g., load balancing) is a typical 
example of self-optimisation. An autonomic system is then required to be able to 
learn how to adapt its state to meet the new challenges. Also needed is consistent 
updating of the system’s knowledge of how to modify its state. State is defined by 
a set of variables such as current load distribution, CPU utilisation, resource usage, 
etc. The values of these variables are influenced by certain event occurrences like 
new requirements (e.g., process fluctuations or disruptions). By changing the values 
of these variables, the event also changes the state of the system. The status of these 
variables is then updated by a set of executable statements (policies) to meet any 
new requirement. A typical example would be an autonomic job scheduling system. 
At first, the job scheduler could assign equal processing time quanta to all systems 
requiring processing time. The size of the time quantum becomes the current state 
and as events occur (e.g., fluctuations in processing time requirement, disruptions 
of any kind), the scheduler is able to adjust the processing time allocation according 
to priorities specified as policies. In this way the state of the system is updated. But 
this may lead to erratic tuning (as a result of over or under compensation) causing 
instability in the system.
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Stability is defined as a measure of self-optimisation. If an event leads to erratic 
behaviour, incoherent results or system is not able to retrace its working state beyond a 
certain safe margin – a margin within which instability is tolerated, then the system is 
not effectively self-optimising. Note that where metrics are an affirmation of a capabil-
ity, such as in this case, this can be normalised into a value as discussed in section 7.2.2.

Self-­protecting: A system is self-protecting when it is able to detect and protect 
itself from attacks by automatically configuring and tuning itself to achieve security. 
It may also be capable of proactively preventing a security breach through its knowl-
edge based on previous occurrences. While self-healing is reactive, self-protecting 
is proactive. A proactive system, e.g., would maintain a log of trends (or signatures) 
leading to security threats and breaches and a list of solutions to resolve them – a 
list of problems and corresponding solutions only applies to self-healing. One major 
metric here is the ability of the system to prevent security issues based on its experi-
ence of past occurrences. For example, let us assume‍p 2

˚
Pij
�
‍ to be true if ‍ith‍ trend 

leads to ‍jth‍ problem where ‍pij‍ is a log of all identified trends and corresponding 
problems. ‍p‍ is a particular instance of trend-problem combination. A self-protecting 
manager will avoid a situation of same trend leading to the same problem again 
by blocking the problem, addressing it or preventatively shutting down part of the 
system. Ability to detect repeat events ﻿‍E‍ is defined as a self-protecting metric. ﻿‍E‍ is 
a Boolean value (True indicates that the manager is able to stop a repeating problem 
while False indicates otherwise). If we choose two samples of  ‍

˚
Pij
�
‍ at different 

times (‍t1‍ and ‍t2‍), then ‍E = True 8ijif
˚
Pij
�
t1 \

˚
Pij
�
t2 = ¿‍. Different trends may 

lead to the same problem but a repeated trend-problem combination indicates a fail-
ure of the system to prevent a reoccurrence.

7.2.2 � Normalisation and scaling of autonomic metrics dimensions
There is still a point though that needs to be addressed. When computing LoA, we are 
normalising values that are products of aggregated metric values of different units and 
dimensions. Depending on the application domain, metrics could be scalar (of differ-
ent measures) or non-scalar values (e.g., observing a capability, Boolean based deci-
sions). So, despite what measure or form these metrics take, there needs to be a way 
of scaling the metric values of all contributing metrics to a centric unit of autonomic 
metric contribution within a certain normalised range. But, because the range of values 
and metrics can vary significantly, each choice of how these are scaled can influence 
very differently the final LoA. A possible solution is to define scaling factors for all 
contributing metrics within the normalised range of [0, 1] in this case. In this way, the 
metrics’ values, irrespective of units of measure, are normalised into real numbers that 
are summed to give LoA. One challenge here, though, is defining the scaling factors. 
Two simple methods for normalisation are suggested:

1.	 By ranking values according to high, medium, and low. The meaning of this 
ranking is metric-dependent and is based on a defined margin. For example, if 
a maximum expected value is 6, a value of 0–2 will likely be ranked low, while 
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3–4 will be ranked medium and 5−6 high. A medium value would contribute 
50 per cent of the metric’s autonomic value contribution in the range of [0, 1], 
while the two extremes would contribute 0 and 100 per cent — these may differ 
depending on choice of usage. This can be used for scalar metrics like the co-
existence and reaction time metrics discussed in section 7.2.1 earlier.

2.	 By having a Boolean kind of contribution where two values can suggest two 
extremes – either affirming a capability or not. For example, if a ‘True’ outcome 
affirms a capability then it contributes 100 per cent of the autonomic value con-
tribution, while a ‘False’ outcome contributes zero. Another example in this 
category is where an instance of an event either does or does not confirm a capa-
bility (e.g., the stability metric for self-optimising functionality). Other specific 
methods, like the Mahalanobis distance discussed and used in Reference 172, 
have been proposed. In scaling the different dimensions of distance between 
points (measured in different distance measurement units), Huebscher and 
McCann [172] used a simplified form of the Mahalanobis distance, where for 
each dimension, they compute the standard deviation over all available values 
and then express the components of the distances between points as multiples 
of the standard deviation for each component.

For this work, autonomic contributions across functionalities should be nor-
malised within the range (‍0.0 � aij � 1.0‍) so that the total autonomic contribution 
of each functionality is a maximum of the number of metrics for that functional-
ity according to the normalisation rule in section 7.3.2. Scaling and normalisation 
should be used uniformly to enable the evaluation and comparison of different sys-
tems. As noted earlier, autonomics measuring metrics is a new research area and 
also not a main focus of this book. What is provided here, in terms of metrics, nor-
malisation, and scaling, serve as examples and can be improved upon.

7.3 � Methodology for measuring LoA

This section presents a quantitative technique for measuring LoA. This technique 
is based on the self-* functionalities and is presented in two formats – for specific 
and generic considerations. The approach is to define LoA for an autonomic system 
in terms of its extent of achieving the self-* functionalities [8]. Note that ‘self-*’ 
is generic and covers all the self-CHOP functionalities as well as any identified 
functionalities, relevant for a particular autonomic system. So, a system must dem-
onstrate at least a certain level of one of the self-* functionalities in order to be con-
sidered autonomic. It also follows that, for a particular autonomic system, a set of 
autonomic functionalities may be identified as required for that particular system. If 
the system demonstrates all of the required functionalities that system is said to have 
achieved 'full' autonomicity. The methods here are defined mathematically.

Each autonomic functionality is defined by one or more metrics, which are com-
bined together to give a level of autonomic value for that functionality. This means 
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that each autonomic metric contributes a proportion of the autonomic value for 
the relevant autonomic functionality. Metrics and functionalities may be weighted 
to reflect relevance or importance. The cumulative normalisation of the measure 
of all metrics (for all functionalities) defines a LoA. The normalisation of values 
makes it possible and easy to compare different autonomic systems. As there is no 
standardised list of functionalities that defines an autonomic system, the proposed 
approach is generic to accommodate evolving functionalities as may be defined 
by the user. Figure 7.1 illustrates the proposed approach. An autonomic system is 
expressed along the dimensions of its functionalities and corresponding functional-
ity metrics.

Note that the number of autonomic metrics may vary for the same functionality 
across different autonomic systems. For example, self-healing for autonomic system 
1 may have different number of metrics compared to self-healing for autonomic 
system 2. Normalisation is performed to ensure that the resultant LoA values are 
always between 0 and 1 regardless of the number of metrics or the weight of indi-
vidual metrics. Given that any autonomic system is defined by a number of self-* 
autonomic functionalities, say ‍n‍, the following mathematical expression represents 
the possible combinations of the functionalities:

	﻿‍

nP
r=1

nCr
‍�

(7.1)

Figure 7.1  �  Illustration of how LoA is achieved by summing the metric 
autonomic value contributions of all metrics defining all 
functionalities of a particular autonomic system [167]
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The above expression (7.1) indicates the possible functionality compositions of a 
system where ‍n‍ is the number of functionalities (the self-*) and ﻿‍ r‍ is a category 
of the possibilities – a specific implementation combination of the functionalities. 
For example, if ‍n = 4‍ (in the case of the self-CHOP functionalities), then ‍r � 4‍. 
With ﻿‍r = 4‍, the expression computes to 15 which indicates the number of possible 
functionality combinations – (see Figure 7.2). Note that the 16th category is non-
autonomic. The functionalities may not be of equal importance to an application 
domain, so categories indicate which functionality is important to an application 
domain. Also, depending on choice of usage, this may be defined as required func-
tionalities (in which case ‍r = n‍) or demonstrated functionalities (in which case ‍r � n
‍). Required functionalities are those functionalities that are not optional for a par-
ticular system while demonstrated functionalities are a combination of required and 
optional (‘nice to have’) functionalities demonstrated by the autonomic manager. 
For example, self-optimisation is a required functionality in a load balancing system 
while self-protection may be optional. So, if a load balancing autonomic manager 
self-optimises as well as self-protects, then it can be said that in terms of required 

Figure 7.2  �  Combination of autonomic functionalities (for self-CHOP systems 
with n=4 and r=4). This is a representative example as n could 
potentially be more than 4 as in self-* based systems [167].
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functionality ﻿‍r = 1‍ while in terms of demonstrated functionalities ﻿‍r = 2‍. The impor-
tance of each functionality is indicated by the weight assigned to it as discussed later.

We understand that autonomic functionalities may overlap as they are not nec-
essarily orthogonal. The generic case methodology addresses situations where some 
algorithms may influence several autonomic functionalities by applying weighting. 
By implication, if an algorithm influences more than one functionality, the level of 
influence is taken care of by the weights applied. We also understand that systems, 
and by extension, functionalities, are not always linear as all functional adjustments 
may not uniformly affect the achieved LoA. The case of non-linearity can also be 
catered for by weighting and normalisation. Weights are applied to reflect impact. 
For example, the level of one functionality can be indirectly proportional to another 
and this is dependent on importance or relevance which is reflected by the weights. 
In general, dealing with (non-)orthogonality and (non-)linearity are open challenges 
that need further addressing. However, the proposed LoA methodology is flexible 
and can be applied to both cases.

Two LoA methodologies, addressing specific and generic cases, are presented. 
For the specific case, the autonomic functionalities are known and fixed while for the 
generic case, the autonomic functionalities can be any number. Table 7.2 presents a 

Table 7.2   LoA notations [167]

Key Description

‍aij‍
Autonomic value contribution for individual 
metric ‍j‍ of functionality ‍i‍

‍ki‍
Autonomic value contribution for individual 
functionality ‍i‍

‍LoA‍ Total LoA measure for all ‍ni‍ and ‍mij‍
‍Mi‍ Number of metrics for functionality ‍i‍

‍Mc‍ , ‍Mh‍ , ‍Mo‍, and ‍Mp‍
Number of metrics for each of the self-CHOP 
functionalities, respectively

‍j‍ Individual metrics
‍n‍ Number of functionalities
‍i‍ Individual functionalities
‍r‍ Category of functionalities possible combinations

‍Ri‍
Rank of a functionality ‍i‍ in the autonomic 
composition of a system

‍vi‍ Weighting for functionality ‍i‍
‍wij‍ Weighting for metric ‍j‍ of functionality ‍i‍

‍ci‍, ‍hi‍, ‍oi‍ and ‍pi‍
Autonomic metric contributions of the 
functionalities for a CHOP-based system

All indices (i and j) begin at 1
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list of notations used in the mathematical algorithms that define the methodologies. 
To measure the LoA of a system, we require the following:

•• The number of functionalities present or required in a particular system – i.e., a 
specific implementation combination of the functionalities.

•• The number of metrics identified for the respective functionalities.
•• The weighting assigned to functionalities and metrics according to priority or 

importance.

7.3.1 � A specific case method
This method works well in cases where autonomic functionalities are orthogo-
nal and for specific systems of limited (known) number of functionalities. Now, 
following on from the initial expression 7.1) for the possible combination of all 
autonomic functionalities, and taking a specific system in isolation (e.g., a system 
with only four functionalities, say, a self-CHOP-based system), this will give 15 
possible combinations (Figure 7.2). Note that ‍n = 4‍, while ‍r = 1, 2, 3 and 4‍ – 
zero value is a special case so it is excluded and not considered further as it 
means the system demonstrates no autonomic functionality. The self-CHOP func-
tionalities may not be of equal importance to an application domain so catego-
ries indicate what CHOP functionality is important to an application domain. 
Category 2, ﻿‍ r = 2‍, means that only two functionalities are of importance to the 
system’s domain – so e.g., {C, H, Not O, Not P} is a specific category represent-
ing a system indicated by System 4 (CH--) in Figure 7.2 . Note that the numbers 
[1–16] on the right of Figure 7.2 are just labels identifying individual systems 
and not categories.

According to Figure  7.2, an autonomic system, within the boundaries of the 
self-CHOP autonomic functionalities, can be described in one of fifteen ways. Each 
trace of line (1–16) from start to finish represents an autonomic system except line 
16. If we can define autonomic metrics for each of the functionalities, the LoA for 
that particular system is calculated by the sum total of the autonomicity in each 
of the constituent functionalities for that systems (7.1). For example, the LoA of 
autonomic system 6 in Figure 7.2 will be the summation of the autonomic metrics 
defining the self-configuring and self-optimising functionalities.

	﻿‍
LoA =

McP
i=1

�
ci
�
+
MhP
i=1

�
hi
�
+
MoP
i=1

�
oi
�
+

MpP
i=1

�
pi
�
‍�

(7.2)

where, ‍Mc‍, ‍Mh‍, ‍Mo‍ and ‍Mp‍ are the numbers of identified metrics for the respective 
functionalities. ‍ci‍, ‍hi‍, ‍oi‍ and ‍pi‍ are the autonomic metric contributions of the func-
tionalities. These may have values of different measures which can be normalised, 
as explained in section 7.2.2. It is important to note that the specific case method is 
limited to addressing systems of discrete functionalities. There is need to cater for 
systems of indiscrete functionalities as well.
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7.3.2 � A generic case method
This section presents a generic method for calculating LoA for autonomic systems 
of unknown number of functionalities. This LoA approach is suited for application 
across different scenario instances. This is achieved by introducing weighting to 
the specific case approach. This is because autonomic functionalities are not neces-
sarily orthogonal – a single behaviour could enhance the contribution of more than 
one metric and this could be across more than one functionality. This is important 
because the measurement approach has to work in situations where the functionali-
ties either are or are not orthogonal. In cases of non-orthogonality, the weighting is 
applied to tune sensitivity of contributing behaviours. For flexibility, all values are 
normalised within the same interval range (0, 1):

	﻿‍

Normalisation interval=

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

0.0 � LoA � 1.0

0.0 � aij � 1.0

0.0 � wij � 1.0

0.0 � vi � 1.0 ‍�

(7.3)

The need for normalisation is to be able to compare different systems and address 
varying circumstances. The way we measure the system should not on its own 
change the outcome, e.g., higher number of metrics should not result in higher LoA 
value and as well does not translate to being ‘more autonomic’. So, in all cases, and 
for normalisation purposes, the following rules must apply:

	﻿‍

Normalisation rule

8
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂ˆ̂̂ˆ̂̂̂
ˆ̂̂
ˆ̂:

MiP
i=1

wij = 1.0 ! the sum of the weights for all

metrics for a given

functionality must be 1.0
nP
i=1

vi = 1.0 ! the sum of the weights for all

functionalities must be 1.0
MiP
i=1

aij � Mi ! the sum of all metric autonomic

contribution for a giving functionality is

a maximum ofthenumberofmetrics for

that functionality as 0 � aij � 1.0 ‍�

(7.4)

where ‍wij‍ and ‍aij‍ are both with reference to individual functionalities and so are bound 
to the number of metrics for those functionalities (‍Mi‍) while ‍vi‍ is with reference to the 
system itself and so is bound to the total number of functionalities (‍n‍) for the system. 
This enables the total individual autonomic value contribution (‍

P
ki‍) to go up to ‍n‍ 

(i.e., not be limited to the four self-CHOP functionalities) – see (7.5) .
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If we ignore, for now, all indices and have a top-level view of the proposed LoA 
calculation, for a single functionality, then:

	﻿‍

k = (a � w) � 1.0X
k � n ‍�

(7.5)

That is to say, if individual functionality autonomic contribution is bound to maxi-
mum of ‘1’, then the total autonomic contribution of all functionalities will be a 
maximum number of functionalities, ‍n‍. So, the overall achieved LoA will be the 
sum of the product of total autonomic contribution and weighting:

	﻿‍ LoA =
P�

k � v
�
‍�

	﻿‍ !
P��

a � w
�

� v
�

8 a,w, v � 1.0‍� (7.6)

Decomposing (7.5) and (7.6) above, and for total autonomic value contribution of 
all functionalities ‍ni‍:

	﻿‍
ki =

MiP
j=1

�
aij � wij

�
8 i and j

‍�
(7.7)

where, ‍j‍ represents individual metrics and ‍Mi‍ represents the number of metrics. 
Applying the functionality weighting to the individual autonomic value contribution 
(‍ki‍):

	﻿‍
LoAi = vi �

 
MiP
j=1

�
aij � wij

�!
8 i and j

‍�
(7.8)

So, the overall achieved autonomicity level LoA is then given by summing (7.8) for 
all values of ‍i‍ and ‍j‍:

	﻿‍
LoA =

nP
i=1

 
vi �

 
MiP
j=1

�
aij � wij

�!!

‍�
(7.9)

In the case of orthogonality or where weighting is not required, the LoA is given by 
the basic expression:

Table 7.3  Autonomic contributing values for a ‍n = 3‍ system

Functionality
(﻿‍n‍)

Weight
(‍vi‍)

Metric
(‍Mi‍)

Metric weight
(‍wij‍)

Metric contribution
(‍aij‍)

Self-optimisation 0.60 Stability 0.25 30
Trend analysis 0.50 20
Switching 0.25 50

Self-healing 0.30 Sensitivity 0.40 50
Robust 0.60 50

Self-configuration 0.10 Unsupervised 0.25 25
Continuous 0.25 50
Awareness 0.50 25
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	﻿‍
LoA =

nP
i=1

MiP
j=1

�
aij
�
‍�

(7.10)

Equation (7.10) is equivalent to (7.2). Procedure 7.1 is a basic algorithm of the 
implementation of the proposed measure of autonomicity.

‍ ‍

LoA example:
To illustrate this system of measurement, consider a very basic example to 

explain the implementation of the technique. Table 7.3 shows relevant values for 
a particular self-optimising, self-healing and self-configuring (i.e., three functional-
ities) system. The LoA of the system can be calculated as follows:

‍n = 3‍

For ‍n1‍ : ‍M1‍ = 3, ‍v1‍ = 0.60, ‍w11‍ = 0.25, ‍w12‍ = 0.50, ‍w13‍ = 0.25, ‍a11‍ = 0.30,
‍a12‍ = 0.20 and ‍a13‍ = 0.50
For ‍n2‍ : ‍M2‍ = 2, ‍v2‍ = 0.30, ‍w21‍ = 0.40, ‍w22‍ = 0.60, ‍a21‍ = 0.50 and ‍a22‍ = 0.50
For ‍n3‍ : ‍M3‍ = 3, ‍v3‍ = 0.10, ‍w31‍ = 0.25, ‍w32‍ = 0.25, ‍w33‍ = 0.50, ‍a31‍ = 0.25,
‍a32‍ = 0.50 and ‍a33‍ = 0.25
‍k1‍ = (‍a11‍ * ‍w11‍) + (‍a12‍ * ‍w12‍) + (‍a13‍ * ‍w13‍) = (0.30 * 0.25) + (0.20 * 0.50) + 

(0.50 * 0.25)
= (0.075) + (0.10) + (0.125) = 0.30
‍k2‍ = (‍a21‍ * ‍w21‍) + (‍a22‍ * ‍w22‍) = (0.50 * 0.40) + (0.50 * 0.60)
= (0.20) + (0.30) = 0.50
‍k3‍ = (‍a31‍ * ‍w31‍) + (‍a32‍ * ‍w32‍) + (‍a33‍ * ‍w33‍) = (0.25 * 0.25) + (0.50 * 0.25) + 

(0.25 * 0.50)
= (0.063) + (0.125) + (0.125) = 0.313
then,
LoA = ( ‍k1‍ * ‍v1‍) + ( ‍k2‍ * ‍v2‍) + ( ‍k3‍ * ‍v3‍)
= (0.30 * 0.60) + (0.50 * 0.30) + (0.313 * 0.10)
0.18 + 0.15 + 0.0313 = 0.3613
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7.4 � Evaluating autonomic systems

Evaluating autonomic systems using (7.2) or (7.9) gives their separate LoA values. – 
which are aggregated values. This, however, does not give a fine-grained picture of 
the systems’ performances in terms of individual functionalities. Systems are clas-
sified according to categories (﻿‍r‍). This is in terms of what self-* functionalities are 
required or demonstrated in their specific application domains. One thing remains 
to be clarified at this point: ‘How do we rank each functionality in the autonomic 
composition of a system?’ This can be in terms of importance or extent of function-
ality provided. We focus on the later – the extent of functionality provided as against 
what is needed. Take for instance, if two systems are of the same category we may 
wish to know which of them provides a greater degree of say self-healing (or any 
other self-*) functionality in any application domain. To address this, a function that 
measures agent’s decision-making power in a multiagent autonomic system defined 
in Reference [173] is adapted. The rank of a functionality ‍Ri‍ in the autonomic com-
position of a system is defined by the ratio of its autonomic contribution (‍

�
ki � vi

�
‍ 

or ‍aij‍) to the total autonomic contribution of all metrics defining the composite func-
tionalities of that system:

	﻿‍
Ri =

�
ki � vi

�

LoA ‍�
(7.11)

In the case of (7.10) weighting is considered. But in a case where weighting is not 
considered, ‍Ri‍ is given in:

	﻿‍
Ri =

MiP
j=1

aij

LoA ‍�
(7.12)

Table 7.4  � Challenge 7.1 This table is a representation of three systems – SysA, 
SysB and SysC. These are three progressive stages of the same system, 
showing different autonomic capabilities. This means that the systems 
are all in the same domain and are expected to have/demonstrate the 
same autonomic functionalities, ‍n = 4‍ and r = 3. Calculate the LoA of 
all three systems.

Characteristics (metrics) Label Contributing CHOP SysA SysB SysC

Continuous Knt C √ √ √
Unsupervised Uns C √ √ √
Trends examination TE O - √ √
Stability Stb O - √ √
Dynamic (logic switching) DS O - - √
Signal characteristics SC C √ √ √
Signal differentiation SD C √ √ √
Failure sensitivity (sensors) FS H - - -
Robust (fault tolerance) Rbs H - - √
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where (‍ki‍ or ‍aij‍) is the autonomic contribution of the considered functionality which 
could be the summation ‍ci‍, ‍hi‍, ‍oi‍ or ‍pi‍ in (7.2) or the calculation of ‍ki‍ in (7.7) or 
the summation of ‍aij‍ (e.g., the case in (7.10)). With (7.11) , (7.12) any composite 
functionality can be ranked in terms of their autonomic contribution.

7.5 � Conclusion

This chapter has discussed the idea of measuring LoA and has presented a quanti-
tative approach. The methodology presented here is a two-dimensional definition, 
supporting only two levels of description – a system on one hand and its character-
istics (functionalities) on the other hand. To support higher dimensional definition 
– a system, its characteristics and sub-characteristics, a bit of adaptation is required.

Also note that while this approach can be used to quantitatively measure the 
LoA of an autonomic system, there are assumptions to consider when comparing 
LoA achievements of different systems. For example, using the proposed approach, 
the LoA of two autonomic systems can only be directly compared if both systems 
are of the same category (i.e., if the same number and level of autonomic function-
alities are required for both systems). It is also assumed that all autonomic metric 
contributions would be normalised within the range of (0–1).



Chapter 8

Conclusions and future work

This chapter concludes the work and summarises the key points covered in this 
book. It also discusses the direction of future work.

‍ ‍

Autonomic and self-managing systems are now increasingly pervasive across 
an ever-widening spectrum of application domains. The autonomic technology is 
advancing at a high rate, yet there are no universal standards for the technology 



218  Trustworthy autonomic computing

itself, the design methods and the definitions used. On the positive side, this meant 
that researchers had (and still have) a very wide scope for potential ideas (for evalu-
ating a wide range of techniques) and improvements into the technology. On the 
negative side, the lack of universal standards, definitions, design and implementa-
tion fuels the proliferation of views. This is in terms of the research community get-
ting stuck and everyone pursuing their individual approaches as against a coherent 
and consistent standardised and widely accepted approach. In the end, this has led 
to a number of difficult challenges and has not made the autonomic research any 
easier. For example, there have been significant limitations to the way in which 
autonomic systems are validated, with heavy reliance on traditional design-time 
techniques, despite the highly dynamic behaviour of such systems in dealing with 
runtime configuration changes and environmental and context changes. These limi-
tations ultimately undermine the trustability of autonomic systems and are barriers 
to eventual certification. This book has focused on autonomic trustworthiness, set-
ting the groundwork for the introduction of standards for autonomic computing, 
and with a longer-term vision of contributing towards certification of autonomic 
systems, which entails providing behavioural guarantees for these dynamic adaptive 
systems despite exposure to changing environmental and operating contexts.

The background study (Chapter 2) shows that research efforts, in the beginning, 
predominantly concentrated on autonomic design and architecture with bespoke appli-
cation of autonomic techniques to specific problems in isolation. This book has estab-
lished the evolution of the autonomic computing paradigm, identifying what has been 
achieved in the first two decades of the introduction of autonomic computing and the 
remaining open challenges. There is a lack of concrete effort towards trustworthy auto-
nomics, despite its significance to the goal of autonomic computing, and as a result 
attaining autonomic system certification still has a long way to go. It is proposed, in 
this book, that the first vital step in this chain is to introduce robust techniques by which 
the systems can be described in universal language, starting with a description of, and 
means to measure the extent of autonomicity exhibited by a particular system. Referred 
to as the level of autonomicity (LoA), this is covered in Chapter 7 of this book. Also, 
this book posits that trustworthy autonomic computing is essential to attaining auto-
nomic system certification and that a robust solution would need to be thought through 
from design up support for trustworthiness should be designed in and integral at the 
architectural level, and not treated as add-on. The approach to this in this book is trust-
worthy autonomic architecture (TrAArch) and this is covered in Chapter 5.

8.1 � A case for trustworthy autonomics

The importance of trustworthiness in computing, in general, has been echoed in 
the computing research association’s ‘four grand challenges in trustworthy com-
puting’ [174] and Microsoft’s white paper on trustworthy computing [141]. The 
Committee on Information Systems Trustworthiness in Reference [142] defines a 
trustworthy system as one which does what people expect it to do—and nothing 
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more—despite any form of disruption. Although this definition has been the driving 
force for achieving trustworthiness both in autonomic and non-autonomic systems, 
the peculiarity of context dynamism in autonomic computing places unique and dif-
ferent challenges on trustworthiness for autonomic systems. Validation, e.g., which 
is an essential requirement for trustworthiness, can be design-time based for non-
autonomic systems but must be runtime based for autonomic systems. Despite the 
different challenges, it is generally accepted that trustworthiness is a non-negotiable 
priority for computing systems.

For autonomic systems, the primary concern is not how a system operates to 
achieve a result but how dependable that result is from the user’s perspective. For com-
plete reliance on autonomic computing systems, the human user will need a level of 
trust and confidence that these systems will satisfy specified requirements and will not 
fail. It is not sufficient that systems are performing within required boundaries; outputs 
must also be seen to be reliable and dependable. This is necessary for self-managing 
systems in order to mitigate the threat of losing control and confidence [175].

Chapter 1 makes a case for trustworthy autonomic computing and has shown 
the importance of trustworthiness along the progressive stages towards autonomic 
system certification. Trustworthiness is a prerequisite to certification. With the lack 
of standards and generally accepted definitions of terminologies in the autonomic 
computing domain, it is difficult to offer a generic meaning of trustworthiness in 
autonomic computing as it may itself be context dependent. For example, in some 
circumstances it may be appropriate to allow some level of changes, which under 
different circumstances may be considered destabilising, and also validation is 
always goal dependent. However, trustworthiness, in this book, means a quality that 
enables us to be confident that an autonomic system will remain correct in the face 
of any possible contexts and environmental inputs and sequences of these, and this 
is achieved through robust runtime decision self-validation, process conformity, etc.

8.2 � The autonomic computing state of the art

The major theme in this book deals with identifying and developing techniques to 
make autonomic computing systems trustworthy. To achieve this, it is important to 
first understand the level of work that has already gone into the autonomic com-
puting research and how that can be harnessed. A broad analysis of autonomics 
research, to show the trends in and direction of the autonomic computing research 
and where the work needs to be concentrated in order to achieve trustworthiness and 
certification, has been presented. This also includes a holistic view of the entire field 
of research in order to gain a clearer picture of the need for and lack of effort towards 
trustworthy autonomic computing.

Since its introduction, in 2001, the autonomic computing concept has received 
strong interest amongst the academic and industrial research communities. Although 
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efforts in this research area have led to significant successes, there are still open and 
emerging challenges. An analysis-by-problem approach has been used to show the 
pattern, in terms of maturity stages, of how researchers have attempted addressing 
the autonomic computing challenge. This has been addressed in two broad periods 
—the first decade, covering years 2001 to 2011 and the second decade, covering 
studies and developments from the years 2012 to 2019.

A broad and general analysis of the autonomic computing research in terms of 
identifying trends in the research from 2004 to 2019 has also been presented. This 
gives a thorough review of the state-of-the-art in trustworthy autonomics. Results 
show that trustworthy autonomics, which is essential to the success of autonomic 
computing, has received very little attention compared to other focus areas. Only 
9 per cent of over 1 000 reviewed research publications identify trustworthiness 
as a challenge, while only about 3 per cent propose actual methodologies targeting 
validation and trustworthiness, although majority of these methodologies are appli-
cation dependent.

8.3 � Techniques that power autonomic computing

Autonomic computing has been powered by a combination of many established 
and new techniques. These include different algorithms, logics, functions, mecha-
nisms, routines, tools, etc., which are used to deliver desired autonomic functionali-
ties. Each of the autonomic functionalities can be enabled by a single technique or 
a combination of different techniques. For example, self-healing can be achieved 
by implementing any fault-tolerant technique. Self-healing can also be achieved 
by specifying relevant behaviours as policies (or rules). Self-optimisation can be 
achieved by implementing any load balancing technique. Building autonomic sys-
tems requires imbedding these autonomic enabling techniques into the design of the 
systems.

Chapter 3 presents some of these techniques and shows examples of how they 
can be used to achieve relevant autonomic computing features. These autonomic 
enabling techniques can individually be adapted to achieve some level of autonomic 
functionalities and can also be combined to achieve greater autonomic functionality. 
These include:

•• Simple exponential smoothing
•• Dead-zone logic
•• Stigmergy
•• Policy autonomics
•• Utility function
•• Fuzzy logic
•• Autonomic nervous system



Conclusions and future work  221

8.4 � Trustworthy autonomic architecture

The traditional monitor-analyse-plan-execute-(MAPE) based autonomic architec-
ture, as originally presented in the autonomic computing blueprint [23], has been 
widely accepted and autonomic research efforts are predominantly based on this 
architecture’s control loop. We must admit that a good research success has been 
achieved using the traditional autonomic architecture. However, this book supposes, 
like other studies, e.g., [11, 18], that this architecture is vague and thus cannot lead 
to the full goal of autonomic computing. For example, the MAPE-based architecture 
does not explicitly and integrally support runtime self-validation, which is a prereq-
uisite for trustworthiness; a common practice is to treat validation and other needed 
capabilities as add-on and these cannot be reliably retro-fitted to systems. Thus, this 
architecture (and its variations) is not sophisticated enough to produce trustworthy 
autonomic systems. At a glance, the traditional autonomic efforts look like a ‘race 
to the finish line’ to achieve self-management. But the ultimate goal of autonomic 
computing is not just to achieve self-management but will include achieving consist-
ency and reliability of results through self-management.

It is also important to note that validation alone does not always guarantee trust-
worthiness, as each individual decision could be correct (validated), but the overall 
system may be inconsistent or unstable and thus not dependable. For example, a 
window blind controller is validated as long as it automatically opens and closes the 
blind within the boundaries of set policies (which may be a function of the intensity 
of sun rays). But it could be undesirable and distractingly annoying to human users 
if the blind keeps operating every minute because of slight changes in sun intensity. 
In this case, the actions of the controller are validated but at the same time, lead 
to unstable and undesirable conditions. So, it is important to consider situations 
beyond the level of validation where logical processes/actions could sometimes lead 
to overall system instability. A situation where the autonomic manager erratically 
(though legally) changes its mind, thereby injecting oscillation into the system, is 
a major concern, especially in large-scale and sensitive systems. Consequently, a 
new approach is required in which validation and support for trustworthiness are not 
treated as add-on.

A new architecture for trustworthy autonomic systems is presented in Chapter 4. 
Different from the traditional autonomic solutions, this new architecture consists of 
inbuilt mechanisms and instrumentation to support runtime self-validation and trustwor-
thiness. The new TrAArch guarantees self-monitoring over short-time and long-time 
frames. At the core of the architecture are three components: the AutonomicController, 
ValidationCheck and DependabilityCheck, which allow developers to specify controls 
and processes to improve system trustability. To demonstrate the feasibility and practi-
cability of TrAArch, two empirical analysis case example scenarios have been presented 
in Chapter 5. The first case scenario demonstrates how the proposed architecture can 
maximise cost, improve trustability and efficient target-marketing in a company-centric 
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Autonomic Marketing System that has many dimensions of freedom and which is sensi-
tive to a number of contextual volatility. The second case example scenario, which is an 
implementation of a datacentre resource request and allocation management, is a more 
complex experimental analysis designed to analyse the performance of the proposed 
TrAArch architecture over existing autonomic architectures.

8.5 � Interoperability

The very success of autonomic computing has inevitably led to situations where 
multiple autonomic managers need to coexist and/or interact directly or indi-
rectly within the same system. This is evident, e.g., in the increasing availability 
of large datacentres with heterogeneous managers that are independently designed. 
Potentially, problems can arise as a result of conflict of interest when these manag-
ers (components) coexist. Interoperability challenges stem from the following facts:

•• Components (and indeed autonomic managers) could be multi-vendor supplied
•• Upgrades in one autonomic manager could trigger unfamiliar events
•• Increasing scale can introduce bottlenecks
•• One autonomic manager may be unaware of the existence of another
•• Although tested and perfected in isolation, autonomic managers may not have 

been wired at design to coexist with other autonomic managers.

There is a growing concern that the lack of support for interoperability will 
become a break issue for future systems.

Researchers, e.g. [61, 107, 155, 176], have made valuable progress towards 
autonomic manager interoperability but this progress is yet to lead to a standardised 
approach. Although these efforts are significant, they have not successfully tackled 
the problem of unintended or unexpected interactions that can occur when indepen-
dently developed autonomic managers coexist in a system. Further from that, and 
more realistically, autonomic managers may not necessarily need to know about the 
existence of other managers —they are designed in isolation (probably by different 
vendors) and operate differently (for different goals) without recourse to one another. 
Thus, close-coupled interoperability (i.e., where specific actions in one autonomic 
manager react to, or complement those of another) cannot be a reliable solution as it 
will require the source code and detailed functional specifications of each autonomic 
manager to be available to all autonomic managers. This is near impossible and 
where it is possible, requires a rewiring (or recoding) of each autonomic manager 
whenever a new autonomic manager is added to the system. A robust solution that 
is insulated from the identified challenges is required and this book suggests that the 
autonomic architecture can provide us with such solution.

This book posits that the autonomic architecture should envision (and provide 
for) interoperability support from the scratch. This is to say that the autonomic 
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architecture should be scalable and dynamic enough to accommodate expected 
and unexpected developments. So, a stigmergic interoperability approach based on 
TrAArch has been presented. The stigmergic interoperability solution provides indi-
rect coordination between autonomic managers in a multi-manager scenario without 
the need for planning (or pre-knowledge of the existence of other autonomic man-
agers), control or direct communications between coexisting autonomic managers. 
This provides efficient collaboration (as against competition) between coexisting 
autonomic managers. See Chapter 3 for detailed discussion on stigmergy.

The stigmergic, architecture-based interoperability solution is presented in 
Chapter 6. This approach is based on the TrAArch architecture, which includes 
mechanisms and instrumentation to explicitly support interoperability and trustwor-
thiness. The interoperability support of the architecture builds on the stigmergic 
phenomenon. In the actual sense of this approach, autonomic managers are designed 
to sense their environment and dynamically adjust (retune) their behaviour as soon 
as they notice process conflicts. In real life, this is typical of two staff that share 
an office space but work at different times. If each returns to their next respective 
shift and finds the office rearranged, they will each adjust in their arrangement of 
the office until an accepted compromise structure is reached. This can be achieved 
without both staff ever meeting. It has been shown how the TrAArch architecture 
can enable the design of autonomic managers that support efficient collaborations 
with other managers without individual awareness or pre-knowledge of each other. 
The experimental analysis of a multi-manager datacentre scenario shows that the 
proposed interoperability solution achieves over 42 per cent performance improve-
ment (in terms of stability) in a complex, conflict-prone, coexistence of autonomic 
managers.

8.6 � Level of autonomicity (LoA)

Measuring Level of Autonomicity (LoA) is an ongoing challenge that is being 
addressed in the autonomic computing research community. Existing approaches 
include the scale-based approach [165, 168] and the metrics-based approach [166], 
etc. However, these approaches are qualitative (relying on interpretation of descrip-
tion of a system) and do not discriminate between behaviour types. It is proposed 
that a more appropriate approach should comprise both qualitative and quantitative 
(as a way of assigning magnitude or value to the description and classification of 
systems) measures. According to Hawthorne [177], such a method of measuring 
autonomicity would be hugely beneficial as new autonomic solutions could be quan-
tifiably substantiated rather than as an abstract quality. According to the findings of 
the background study (see Chapter 2), there is a lack of a quantitative approach for 
assessing autonomic systems. Chapter 7 presents a novel quantitative technique for 
measuring LoA along several dimensions of autonomic system self-* functionali-
ties. This technique is robust as it is based on the functionalities of systems, making 
it possible to be tailored to suit the needs of any application domain.
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A system is better defined by its functionalities, and so measuring the LoA of 
autonomic systems without a reference to autonomic functionalities would be inac-
curate. In the proposed functionality-based LoA measurement, a typical autonomic 
system is defined by some core autonomic functionalities and LoA is measured with 
respect to these functionalities. Each functionality is defined by a set of metrics. The 
metric values are normalised and aggregated to give the autonomic contribution of 
each functionality, which are then combined to yield a LoA value for an autonomic 
system.

The proposed approach is in two forms: the specific case approach and the 
generic case approach. The specific case approach works perfectly well in cases where 
functionalities are orthogonal and for specific systems of a limited (fixed) number 
of functionalities (e.g., the self-CHOP functionalities). The generic case approach is 
used to demonstrate a generic case instance where functionalities are not necessarily 
orthogonal and where systems are defined by ‍n‍ number of autonomic functionalities 
(e.g., the self-* functionalities). It has been shown, with examples, how this approach 
can flexibly adapt existing qualitative approaches (e.g., the scale-based approach) 
to enable qualitative interpretation of LoA results. This new approach is sufficiently 
more sophisticated than existing approaches in a number of ways:

•• It is the only approach that ties down LoA to a numeric value;
•• It takes into account individual weights for metrics and functionalities;
•• It is generic and flexible in the sense that it is independent of the number of 

autonomic functionalities;
•• It is also independent of the number of metrics used to measure each of the 

autonomic functionalities; and
•• The numeric value is scaled always to a normalised value. If you do not nor-

malise it, more dimensions of autonomicity will result in bigger scores which 
gives the wrong impression that the more metrics that are used, the higher the 
resulting autonomicity level. Normalisation provides the power to compare two 
different systems no matter the number of individual metrics.

The standardisation of a technique for the measurement of LoA will bring many 
quality-related benefits which include being able to compare alternative configura-
tions of autonomic systems, and even to be able to compare alternate systems them-
selves and approaches to building autonomic systems, in terms of the LoA they 
offer. This in turn has the potential to improve the consistency of the entire life-
cycle of autonomic systems and in particular links across the requirements analysis, 
design and acceptance testing stages.

8.7 � Future work

It is important to note that while progress has been made in this work towards trust-
worthy autonomic systems, achieving the full goal of trustworthiness remains an 
open challenge that requires more research. A broad and general analysis of the 
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autonomic computing research, in terms of identifying trends in the research, gives a 
thorough review of the state-of-the-art in trustworthy autonomics. Results show that 
trustworthy autonomics, which is essential to the success of autonomic computing, 
has received very little attention compared to other focus areas.

The identified challenges for future work include the study and standardisa-
tion of autonomic measuring metrics for different autonomic systems. The metrics 
definitions can be grouped or modularised (e.g., the standardised categorisation of 
unmanned systems in Reference [11]). This will involve looking at standardised 
ways of properly defining and generating autonomic metrics to strengthen the pro-
posed LoA measurement approach. Another future challenge is to focus on improv-
ing the robustness of the proposed TrAArch. For TrAArch, this will include scaling 
the DependabilityCheck component to be able to provide mechanisms and instru-
mentations for emerging autonomics capabilities — ability to flexibly add more 
sub-components (e.g., predictive/learning sub-component). Also, of importance is 
verifying how results of this approach can vary in other contexts and seeing which 
factors could influence its adoption or not in practice. Another open challenge is 
interoperability, discussed in Chapter 6. The required effort here will include evalu-
ating the nature and scope of the interoperability challenges for autonomic comput-
ing systems, identifying a set of requirements for a universal solution, and proposing 
a service-based interoperability approach to handle both direct and indirect conflicts 
in a multi-autonomic manager scenario.

These are only a few of the main open challenges. As technology evolves, lead-
ing to new complexities and issues, the trustworthy autonomic computing solutions 
will need to evolve too.
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The concept of autonomic computing seeks to reduce the complexity of pervasively ubiquitous 
system management and maintenance by shifting the responsibility for low-level tasks from 
humans to the system while allowing humans to concentrate on high-level tasks. This is 
achieved by building self-managing systems that are generally capable of self-configuring, 
self-healing, self-optimising, and self-protecting.  

Trustworthy autonomic computing technologies are being applied in datacentre and cloud 
management, smart cities and autonomous systems including driverless cars. However, there 
are still significant challenges to achieving trustworthiness. This book covers challenges and 
solutions in autonomic computing trustworthiness from methods and techniques to achieve 
consistent and reliable system self-management. Researchers, developers and users need to 
be confident that an autonomic self-managing system will remain correct in the face of any 
possible contexts and environmental inputs. 

The book is aimed at researchers in autonomic computing, autonomics and trustworthy 
autonomics. This will be a go-to book for foundational knowledge, proof of concepts and novel 
trustworthy autonomic techniques and approaches. It will be useful to lecturers and students 
of autonomic computing, autonomics and multi-agent systems who need an easy-to-use text 
with sample codes, exercises, use-case demonstrations. This is also an ideal tutorial guide for 
independent study with simple and well documented diagrams to explain techniques and 
processes.
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