
The concept of autonomic computing seeks to reduce the complexity of pervasively ubiquitous
system management and maintenance by shifting the responsibility for low-level tasks from
humans to the system while allowing humans to concentrate on high-level tasks. This is
achieved by building self-managing systems that are generally capable of self-configuring,
self-healing, self-optimising, and self-protecting.

Trustworthy autonomic computing technologies are being applied in datacentre and cloud
management, smart cities and autonomous systems including driverless cars. However, there
are still significant challenges to achieving trustworthiness. This book covers challenges and
solutions in autonomic computing trustworthiness from methods and techniques to achieve
consistent and reliable system self-management. Researchers, developers and users need to
be confident that an autonomic self-managing system will remain correct in the face of any
possible contexts and environmental inputs.

The book is aimed at researchers in autonomic computing, autonomics and trustworthy
autonomics. This will be a go-to book for foundational knowledge, proof of concepts and novel
trustworthy autonomic techniques and approaches. It will be useful to lecturers and students
of autonomic computing, autonomics and multi-agent systems who need an easy-to-use text
with sample codes, exercises, use-case demonstrations. This is also an ideal tutorial guide for
independent study with simple and well documented diagrams to explain techniques and
processes.

About the Author

Thaddeus Eze is a cybersecurity senior lecturer and researcher at the Computer Science
Department, University of Chester, UK. He is a 2004 graduate of Anambra State University,
Nigeria, with BSc (Upper 2nd Class) in Computer Science. He holds an MSc (with Distinction,
2010) in Mobile Computing and Communications and a PhD in Trustworthy Autonomics from
the University of Greenwich, London, UK.

Trustworthy Autonomic Computing

Trustw
orthy A

utonom
ic C

om
puting

Thaddeus Eze

Trustworthy Autonomic
Computing

Eze

The Institution of Engineering and Technology
theiet.org
978-1-78561-883-3

Trustworthy Autonomic
Computing

IET COMPUTING SERIES 30

Other volumes in this series:

Volume 1	 Knowledge Discovery and Data Mining M.A. Bramer (Editor)
Volume 3	 Troubled IT Projects: Prevention and turnaround J.M. Smith
Volume 4	 UML for Systems Engineering: Watching the wheels, 2nd Edition J. Holt
Volume 5	 Intelligent Distributed Video Surveillance Systems S.A. Velastin and P. Remagnino (Editors)
Volume 6	 Trusted Computing C. Mitchell (Editor)
Volume 7	 SysML for Systems Engineering J. Holt and S. Perry
Volume 8	 Modelling Enterprise Architectures J. Holt and S. Perry
Volume 9	 Model-Based Requirements Engineering J. Holt, S. Perry and M. Bownsword
Volume 13	 Trusted Platform Modules: Why, when and how to use them A. Segall
Volume 14	� Foundations for Model-based Systems Engineering: From Patterns to Models J. Holt, S. Perry and

M. Bownsword
Volume 15	 Big Data and Software Defined Networks J.Taheri (Editor)
Volume 18	 Modeling and Simulation of Complex Communication M. A. Niazi (Editor)
Volume 20	 SysML for Systems Engineering: A Model-Based Approach, 3rd Edition J.Holt and S. Perry
Volume 22	� Virtual Reality and Light Field Immersive Video Technologies for Real-World Applications G. Lafruit and

M. Tehrani
Volume 23	 Data as Infrastructure for Smart Cities L. Suzuki and A. Finkelstein
Volume 24	 Ultrascale Computing Systems J. Carretero, E. Jeannot and A. Zomaya
Volume 25	 Big Data-Enabled Internet of Things M. Khan, S. Khan, A. Zomaya (Editors)
Volume 26	 Handbook of Mathematical Models for Languages and Computation A. Meduna, P. Horáček, M. Tomko
Volume 29	� Blockchains for Network Security: Principles, technologies and applications H. Huang, L. Wang, Y. Wu,

K. R. Choo (Editors)
Volume 32	� Network Classification for Traffic Management: Anomaly detection, feature selection, clustering and

classification Z. Tari, A. Fahad, A. Almalawi and X. Yi
Volume 33	 Edge Computing: Models, technologies and applications J.Taheri and S. Deng (Editors)
Volume 34	� AI for Emerging Verticals: Human-robot computing, sensing and networking

M. Z. Shakir and N. Ramzan (Editors)
Volume 35	 Big Data Recommender Systems Vol 1 & 2 O. Khalid, S. U. Khan, A. Y. Zomaya (Editors)
Volume 37	 Handbook of Big Data Analytics Vol 1 & 2 V. Ravi and A. K. Cherukuri (Editors)
Volume 39	 ReRAM-based Machine Learning H. Y, L. Ni and S. M. P. Dinakarrao
Volume 40	� E-learning Methodologies: Fundamentals, technologies and applications M. Goyal, R. Krishnamurthi and

D. Yadav (Editors)
Volume 44	� Streaming Analytics: Concepts, architectures, platforms, use cases and applications P. Raj,

C. Surianarayanan, K. Seerangan and G. Ghinea (Editors)
Volume 44	� Streaming Analytics: Concepts, architectures, platforms, use cases and applications P. Raj, A. Kumar,

V. García Díaz and N. Muthuraman (Editors)
Volume 54	� Intelligent Network Design Driven by Big Data Analytics, IoT, AI and Cloud Computing S. Kumar,

G. Mapp and K. Cergiz (Editors)
Volume 115	� Ground Penetrating Radar: Improving sensing and imaging through numerical modelling

X. L. Travassos, M. F. Pantoja and N. Ida

Trustworthy Autonomic
Computing
Thaddeus Eze

The Institution of Engineering and Technology

Published by The Institution of Engineering and Technology, London, United Kingdom

The Institution of Engineering and Technology is registered as a Charity in England & Wales
(no. 211014) and Scotland (no. SC038698).

© The Institution of Engineering and Technology 2022

First published 2022

This publication is copyright under the Berne Convention and the Universal Copyright
Convention. All rights reserved. Apart from any fair dealing for the purposes of research or
private study, or criticism or review, as permitted under the Copyright, Designs and Patents
Act 1988, this publication may be reproduced, stored or transmitted, in any form or by
any means, only with the prior permission in writing of the publishers, or in the case of
reprographic reproduction in accordance with the terms of licences issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publisher at the undermentioned address:

The Institution of Engineering and Technology
Futures Place
Kings Way, Stevenage
Herts, SG1 2UA, United Kingdom

www.theiet.org

While the author and publisher believe that the information and guidance given in this
work are correct, all parties must rely upon their own skill and judgement when making use
of them. Neither the author nor publisher assumes any liability to anyone for any loss or
damage caused by any error or omission in the work, whether such an error or omission is
the result of negligence or any other cause. Any and all such liability is disclaimed.

The moral rights of the author to be identified as author of this work have been asserted by
him in accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing in Publication Data
A catalogue record for this product is available from the British Library

ISBN 978-1-78561-883-3 (hardback)
ISBN 978-1-78561-884-0 (PDF)

Typeset in India by Exeter Premedia Services Private Limited
Printed in the UK by CPI Group (UK) Ltd, Croydon
Cover Image: MF3d / E+ via Getty Images

Dedication

To the memories of mum and dad. To my siblings. To my lovely wife, Ezinne,
and our three boys.

This page intentionally left blank

Contents

About the Author� xi
Preface� xiii
Acknowledgments� xvii

1	 Trustworthy autonomics primer� 1
	 1.1	� Introduction to autonomic computing� 2
	 1.1.1	� Autonomic computing definitions� 2
	 1.1.2	� Autonomic functionalities� 5
	 1.1.3	� The autonomic computing system� 8
	 1.2	� Foundations of trustworthy autonomics� 9
	 1.2.1	� Towards trustworthy autonomics� 11
	 1.2.2	� Pillars of trustworthy autonomic systems� 14
	 1.3	� Conclusion� 17

2	 Evolution of autonomic computing� 19
	 2.1	� Importance of understanding the evolution of autonomic computing� 20
	 2.2	� Autonomic architecture� 20
	 2.3	� Autonomic computing: trends and direction� 25
	 2.3.1	� Background� 26
	 2.3.2	� Autonomic computing in the first decade� 30
	 2.3.3	� Autonomic computing in the second decade� 37
	 2.3.4	� First and second decades of autonomic computing research

at a glance� 43
	 2.4	� Trends, direction and open challenges� 45
	 2.4.1	� Trends and direction� 47
	 2.4.2	� Open challenges� 49
	 2.5	� Conclusion� 51

3	 Autonomic enabling techniques� 53
	 3.1	� About autonomic enabling techniques� 54
	 3.2	� Simple exponential smoothing� 54
	 3.2.1	� Implementing an SES using python� 55
	 3.2.2	� Basic implementation of an SES using microsoft excel sheet� 56
	 3.2.3	� Implementing SES in autonomic computing� 58
	 3.3	� Dead-zone logic� 59
	 3.3.1	� Implementing dead-zone logic in autonomic computing� 65

viii  Trustworthy autonomic computing

	 3.4	� Stigmergy� 68
	 3.4.1	� Natural stigmergy: wildlife� 68
	 3.4.2	� Natural stigmergy: humans� 69
	 3.4.3	� Stigmergy in autonomic systems� 72
	 3.5	� Policy autonomics� 74
	 3.5.1	� Policy-based networking� 75
	 3.5.2	� Policy-based autonomics� 77
	 3.6	� Utility function� 79
	 3.6.1	� UF in autonomic systems� 82
	 3.7	� Fuzzy logic� 84
	 3.7.1	� Moving vehicle case example� 84
	 3.7.2	� Fuzzy logic controller� 86
	 3.7.3	� Fuzzy logic in autonomic system� 86
	 3.8	� Autonomic nervous system� 87
	 3.9	� Combining autonomic techniques� 89
	 3.10	� Conclusion� 91

4	 Trustworthy autonomic computing� 93
	 4.1	� About trustworthy autonomic computing� 94
	 4.2	� Trustworthy autonomic computing vs trusted computing� 94
	 4.3	� Trustworthy autonomic architecture� 97
	 4.3.1	� TrAArch framework� 99
	 4.3.2	� Overview of the TrAArch architecture components� 100
	 4.3.3	� Other relevant [early] architectures� 105
	 4.4	� Conclusion� 107

5	 Trustworthy autonomic architecture implementations� 109
	 5.1	� Case example scenario 1: autonomic marketing system� 111
	 5.1.1	� Experimental environment� 114
	 5.1.2	� Results and evaluation� 117
	 5.2	� Case example scenario 2: self-adapting resource allocation� 120
	 5.2.1	� TrAArch simulator� 122
	 5.2.2	� Experimental environment� 135
	 5.2.3	� Simulation� 140
	 5.2.4	� Results and Analysis� 146
	 5.3	� Stability versus optimality� 164
	 5.4	� Conclusion� 165

6	 Multi-agent interoperability� 167
	 6.1	� Introduction to multi-agent interoperability� 168
	 6.2	� Multi-agent systems and multi-agent coordination� 168
	 6.3	� A review of autonomic interoperability solutions� 171
	 6.4	� The architecture-based interoperability� 175
	 6.4.1	� Scheduling and resource allocation� 175

Contents  ix

	 6.5	� Complex interactions in multi-manager scenario� 178
	 6.5.1	� Simulation design� 179
	 6.5.2	� Autonomic manager logic� 180
	 6.5.3	� Simulation scenarios and metrics� 184
	 6.5.4	� Results analysis� 188
	 6.6	� Conclusion� 194

7	 Level of autonomicity� 197
	 7.1	� Introduction to level of autonomicity� 198
	 7.2	� Measuring LoA� 200
	 7.2.1	� Autonomic measuring metrics� 204
	 7.2.2	� Normalisation and scaling of autonomic metrics dimensions� 206
	 7.3	� Methodology for measuring LoA� 207
	 7.3.1	� A specific case method� 211
	 7.3.2	� A generic case method� 212
	 7.4	� Evaluating autonomic systems� 215
	 7.5	� Conclusion� 216

8	 Conclusions and future work� 217
	 8.1	� A case for trustworthy autonomics� 218
	 8.2	� The autonomic computing state of the art� 219
	 8.3	� Techniques that power autonomic computing� 220
	 8.4	� Trustworthy autonomic architecture� 221
	 8.5	� Interoperability� 222
	 8.6	� Level of autonomicity (LoA)� 223
	 8.7	� Future work� 224

References� 227
Index� 241

This page intentionally left blank

About the Author

Thaddeus Eze is a cybersecurity senior lecturer and researcher at the Computer
Science Department, University of Chester, UK. He is the programme leader for
MSc Cybersecurity (Conversion) and the postgraduate assessment officer for the
Computer Science department. His research interests include cybersecurity aware-
ness and training, trustworthy autonomic computing, ethical hacking, cryptogra-
phy, and digital forensics. He is a member of CIISec and was the Vice Chair of
the IEEE Young Professionals, UK & Ireland Section from 2014 to 2022. He’s
the Convener and organiser of the IEEE UK & Ireland YP Postgraduate STEM
Research Symposium (three successful editions already organised). He was actively
involved in organising the first ever UK Pitch Bootcamp and the IEEE Professional
Development Networking Workshop 2017. He is a 2004 graduate of Anambra State
University, Nigeria, with BSc (Upper 2nd Class) in Computer Science. He holds an
MSc (with Distinction, 2010) in Mobile Computing and Communications and a PhD
in Trustworthy Autonomics from the University of Greenwich, London, UK.

This page intentionally left blank

Preface

Computing systems are growing exponentially in terms of increasing heterogeneity,
scale, and ubiquity, and are becoming exceedingly complex for human management.
These systems are getting more pervasive, being embedded in everyday objects, and
are exposed to environments where system working conditions are dynamic, uncer-
tain and sometimes, unpredictable. IBM [1] introduced the Autonomic Computing
concept in 2001 as a solution for managing such heterogeneously knitted and per-
vasively ubiquitous systems. The autonomic computing concept seeks to reduce the
complexity of system management and maintenance by shifting the responsibility
for low-level tasks from humans to the system while allowing humans to concentrate
on high-level tasks. This is achieved by building self-managing systems that are gen-
erally capable of self-configuring, self-healing, self-optimising, and self-protecting
(self-CHOP). These self-CHOP capabilities are commonly considered the founda-
tional autonomic functionalities of an autonomic computing system. Autonomic
computing systems or autonomic systems are also known as self-managing systems

The autonomic computing concept is now well understood. However, there has
been limited progress towards trustworthy autonomic computing. This book seeks to
bring focus on the issues of autonomics trustworthiness – trustworthiness is defined
in this book to mean a quality that enables the user to be confident that an autonomic
system will remain correct in the face of any possible contexts and environmental
inputs and sequences of these. In other words, it enables users to be confident that an
autonomic system will do what it is expected to do over short- and longer-term time
frames. This book makes the case for autonomic system trustworthiness, exposes the
issues therein and offers ways (methods and techniques) of achieving trustworthy
autonomic systems. Case example scenarios are used to demonstrate these methods
and techniques. I believe that the ultimate goal of autonomic computing should tran-
scend the achievement of self-management to include the achievement of consist-
ency and reliability of results through self-management.

[trustworthiness is defined in this book to mean a quality that enables the user to be
confident that an autonomic system will remain correct in the face of any possible
contexts and environmental inputs and sequences of these]

Despite the progress in autonomic computing research, there are still significant
challenges in the area of trustworthiness. These include the lack of support for
inbuilt mechanisms for trustworthiness in the design methods used for the technol-
ogy, the limitations regarding the way autonomic systems are validated, and the lack

xiv  Trustworthy autonomic computing

of self-monitoring support that is capable of achieving stability over longer term
time frames. Without addressing trustworthiness, there is the possibility of overall
inconsistency in the autonomic system despite autonomic control decisions being
validated within the internally defined logical boundary. There are also the issues
of autonomic interoperability of co-existing autonomic elements in multi-element
systems. Autonomic systems, designed in isolation, should be able to coopera-
tively work together towards a common goal, and efficiently too, in a mutli-system
environment.

An analysis-by-problem approach, introduced in Chapter 2, has been used to
show the pattern of how the trustworthy autonomic challenge is being tackled by the
autonomic computing research community. This shows that only a few studies have
identified trustworthiness as a challenge and fewer have proposed actual methodolo-
gies relating to validation, trustworthiness and certification – of which the majority
are application-dependent.

The coverage of this book includes foundations of autonomic computing and
trustworthy autonomics, speaking autonomics [definition of autonomics terminol-
ogy], level of autonomics, autonomic architecture, trustworthy autonomics, runtime
self-validation and conformance testing, autonomics enabled techniques, logic and
functions, and interoperability. The breakdown of the different chapters is as follows:

●● Chapter 1: Trustworthy Autonomics Primer
This chapter gives a low-level overview of the autonomic computing concept
and leads a general introductory discussion on trustworthy autonomic com-
puting. Focus includes making the case for trustworthy autonomic comput-
ing, the state-of-the-art in research, relevant tools, and terminologies.

●● Chapter 2: Evolution of Autonomic Computing
This chapter takes a holistic view of the entire field of autonomic computing
research in order to gain a clearer picture of the need for and lack of effort
towards trustworthy autonomic computing. It also establishes an understand-
ing of the level of work that has already gone into the autonomic computing
research, how that can be harnessed, and where the work needs to be concen-
trated in order to achieve trustworthiness.

●● Chapter 3: Autonomic Enabling Techniques
Autonomic enabling techniques are tools for designing and delivering desired
autonomic functionalities. This chapter presents some of these techniques
and shows examples of how they can be used to achieve relevant autonomic
computing features.

●● Chapter 4: Trustworthy Autonomic Computing
For complete reliance on autonomic computing systems, the human user will
need a level of trust and confidence that these systems will satisfy specified

Preface  xv

requirements and will not fail. This chapter looks at the differences between
Trustworthy Autonomic Computing and Trusted (or Trustworthy) Computing
and then presents a framework for a trustworthy autonomic architecture
which forms the basis for several implementations in this book.

●● Chapter 5: TrAArch Implementations
This chapter provides an implementation and empirical analysis of a new
trustworthy autonomic architecture (TrAArch) framework. This framework
has inbuilt mechanisms and instrumentation to support trustworthiness. Two
experimental demonstrations – an easy-to-understand autonomic marketing
scenario and a more complex self-adapting datacentre resource request and
allocation management case scenario are used.

●● Chapter 6: Multi-agent Interoperability
The deployment of autonomic systems has grown over time, both in scale
and ubiquity, leading to situations where more autonomic managers (agents)
could be integrated to achieve a common goal. This chapter provides an
overview of interoperability solutions and makes case for a proposed solu-
tion that is suitable for trustworthy autonomic computing. An implementa-
tion and empirical analysis of the proposed solution is presented.

●● Chapter 7: Level of Autonomicity
Level of autonomicity is one of the pillars of trustworthy autonomic computing
as it ensures that autonomic systems are defined in a universal language. This
chapter introduces the concept of measuring the level of autonomicity (LoA)
for autonomic systems, reviews some of the existing approaches for measuring
level of autonomicity, and presents a quantitative technique for measuring LoA.

Why the Book

I decided to write this book because it was the type of book I wished I had had when
I started my research in trustworthy autonomics. One of my early studies [2], dur-
ing my PhD, revealed that the early stage research in autonomic computing focused
mainly on stating the problem and challenges of an ever-growing system complexity,
the need for solution and justifying autonomicity as that solution, developing and
applying autonomic techniques, and identifying and solving specific problems in
isolation. There were limited published information, especially books, on autonomic
computing and absolutely no book on trustworthy autonomics when I first started my
research. Though there are now more books, especially journal compilations, and
informative websites on self-managing systems and autonomic computing, there is
still a very limited number of books on trustworthy autonomic computing. I still
find it difficult to find books aimed at beginners and newcomers in trustworthy auto-
nomic computing. Beginners still struggle with understanding where to start, what
to read first and where to get the expected prerequisite skills.

xvi  Trustworthy autonomic computing

This book does not have abbreviations, making it easy to read and work with. It
is intended to be an ideal guide for independent study. It includes sample program
codes for the relevant in-text activities, simulations and use-case/case study dem-
onstrations. These easy-to-understand sample codes will help readers easily walk
through the examples as well as design their own experiments.

This book uses simple examples and well-documented diagrams and images to
explain techniques and processes. The examples used in this book are clearly pre-
sented and easy to understand, making them accessible to all. Each chapter begins
with an introduction and explains how it fits into and supports the beginner’s under-
standing of trustworthy autonomics.

This book has been planned to have a very wide appeal and is targeted at:

–	 Early researchers in autonomic and trustworthy autonomic computing.
This offers a go-to book for foundational knowledge, proof of concepts and
novel trustworthy autonomic techniques and approaches.

–	 Teachers and students of autonomic computing and multi-agent systems
who need an easy-to-use text with sample codes, exercises, use-case
demonstrations; it is also suitable for self-teaching.

–	 Early programmers who require accessible pseudocode and code examples
for application demonstrations.

–	 Others studying or researching other areas of computer science and
engineering requiring a basic grounding in the techniques presented in the
book.

Another interesting aspect of this book is that some of the techniques explained here
are generic and can be used in other fields. For example, Chapter 3 presents auto-
nomic enabling techniques most of which are relevant concepts in different fields
of study. These concepts are presented, with simple examples, in ways that clearly
show how they work and how they can be implemented. This can help in develop-
ing understanding of these concepts and ideas of how they can be adapted in other
application domains.

Case studies and simulations are presented in a way that makes them easy to be
replicated. For simulations and some example demonstrations, enough details are
provided that will allow users to replicate the experiments and compare results. To
support this, this book comes with the simulator (TrAArch Simulator) that was used
for the experiments in this book. The simulator is well-documented and supports
the creation of a wide range of experimental scenarios. The documentation helps in
understanding the design of the simulator (in case if someone wants to design theirs)
and how to use it for different experiments.

This book draws from my PhD research, to build on identified gaps in relevant
autonomic and trustworthy autonomic computing topic areas and establish grounded
understanding in these areas.

Acknowledgments

I would like to thank the IET for the invitation to write this book and their patience
despite the numerous missed deadlines. The making of this book was fraught with
many challenges – no thanks to the Covid-19 pandemic. Glad that we are here at last.

Many thanks to my lovely family for their immeasurable support and under-
standing throughout this project and beyond. To my wife, Ezinne, who makes me
look like a superdad. Throughout my countless busy times she maintains sanity at
home and makes raising a family look easy. To our first son, my pride, Chisom (10),
who asked all the questions and always wanted to help. Special thanks to him for
making the objects used in this book’s chapter photos. To our special and smart boy,
Chidia (7) the handsome one, and to the ‘Chairman’ of the house, Chidera (1), for
the joy you boys bring. The joy of meeting you at the door is always a natural therapy
for a stressful day. Thank you, and thank you again!

I would also like to thank Dr Richard Anthony for encouraging me to take on
this project. As my PhD supervisor, you introduced me to the autonomic computing
research. Your support was top-notch that I came from knowing nothing about auto-
nomic computing to being invited to write a book on the topic.

Above all, many thanks to God!

Downloadable material

As a supporting material for this book, a simulator is provided and can be
downloaded from https://drive.google.com/file/d/1uOKVKkB8lFG8h4MhsjOmPF
wFjDWP0vLd/view?usp=share_link (https://bit.ly/3hzGFqI). Note that this is an
executable file and so your computer might flag it as a security threat. The TrAArch
simulator is an application developed in C# for simulating autonomic managers for
datacentres. This is a direct demonstration of the TrAArch presented in Chapter 4. The
simulator can be used to evaluate the performance of three autonomic managers. For
help or information regarding the simulator, please contact thaddeusonyinyeeze@
gmail.com.

This page intentionally left blank

Chapter 1

Trustworthy autonomics primer

This chapter will give a low-level overview of the autonomic computing concept
and lead a general introductory discussion on trustworthy autonomic computing.
Focus will include making the case for trustworthy autonomic computing, the state-
of-the-art in research, relevant tools and terminologies.

‍ ‍

There are a wide range of views on meaning, architecture, methodology and
implementations in trustworthy autonomic computing which will be addressed.
These will be covered under two core areas of introduction to autonomic computing
and foundations of trustworthy autonomics.

2  Trustworthy autonomic computing

To help the reader’s appreciation of trustworthy autonomic computing, it is
important to first understand the meaning of autonomic computing and what makes
a system autonomic. In this chapter you will learn:

•• The general functionalities of an autonomic system
•• The building blocks and internal structure of autonomic elements
•• Why trustworthy autonomic computing is necessary
•• The meaning of key autonomic terminologies

1.1 � Introduction to autonomic computing

This section gives a general overview of autonomic computing and what it means to
say that a system is autonomic. To start with, the differences between the keywords
of automation, autonomy (autonomous) and autonomic (autonomicity) are discussed
in order to provide relevant working definitions. These definitions establish how
these terms are used in this book.

1.1.1  �Autonomic computing definitions
Because terms do have a wide range of definitions, it is important to clearly differ-
entiate these to help the understanding of the reader of this book. The terms auto-
mation, autonomy and autonomic all refer to processes that may be completed, to
various extents, without human intervention. Each of these seeks to remove human
intervention as much as possible – and this has been achieved in different degrees.

Automation deals with replacing repetitive manual processes with technology.
This technology, e.g., a software, hardware, systems or a combination of all, fol-
lows a well-defined sequence of steps to complete the same task. In automation,
the processes are well-known and perfected. Some level of human participation is
still required. However, automation makes processes faster, efficient and reduces
the possibility of error. For example, most car factories have replaced the manual
assembly of car parts by humans with robotic arms. Figure 1.1, a MeArm robot arm
that I assembled as part of a study, illustrates a robot arm that can be assembled to
automate a particular task.

Let’s assume that the task here is to grab an object and move it from position A
to position B, defined by the simple algorithm:

‍ ‍

Trustworthy autonomics primer  3

Figure 1.1  � MeArm robot arm. This is an open-source robot arm design that
could be built from a small number of components. Its movement is
controlled by four small motors.

4  Trustworthy autonomic computing

Instead of having a human to regularly monitor and move any object found in
position A to position B, this task can be automated using a robotic arm configured
with Algorithm 1.1. As long as there is no obstacle in its path, the robot arm will
always move any object in position A to position B.

Autonomy goes beyond automation to include some level of independent
decision-making. It focuses on a particular task and guides itself (self-direction)
towards achieving that task. It involves independent decision-making based on
coded logic (e.g., Algorithm 1.1 with some additional tweaks) and real-time events.
Using the robot arm example, if there is an obstacle in its path, the robot arm auto-
matically decides how best to achieve the task of moving the object from position
A to position B regardless of the obstacle. The robot arm decides how to navigate
around the obstacle (e.g., move further left, raise the arm higher, alert human admin-
istrator, remove the obstacle) for the success of the task. Autonomous systems are
context-aware systems.

Autonomic adds another layer of human independence to autonomous. It
involves context-aware decision-making processes for the success of a particular
task and the successful operation of the system. The robot arm in Figure 1.1 is oper-
ated by four different motors. If, e.g., one of the motors stops working or malfunc-
tions, meaning that the robot could not turn left, the robot could still achieve the task
by turning right (assuming there is 360° turning capability) all the way to the desired
position – this is known as fault tolerance. Given a particular goal, whereas the
system may have the self-governance/self-direction (autonomy) to decide between
relevant parameters for achieving that goal, autonomic capability ensures that the
system continues to operate under uncertain conditions and to cope with dynamic
changes in the environment [3]. Autonomic systems are self-managing systems. The
measure (or classification) of autonomic systems, according to the degree of auton-
omicity achieved, is covered in Chapter 7.

The idea of autonomic computing is to reduce the complexity of system man-
agement and maintenance by shifting the responsibility for low-level tasks from the
user to the system while allowing the user to concentrate on high-level tasks. This
is achieved by building self-managing systems that are capable of self-configuring,
self-healing, self-optimising and self-protecting – these are known as the auto-
nomic functionalities and are discussed in section 1.1.2. With such capabilities, self-
managing (autonomic) systems are able to automatically manage mundane tasks in
the background while still focusing on achieving the goal of the system. Examples of
such tasks include addressing runtime behavioural, structural or code errors as well
as unplanned configuration tasks and spontaneous trend shifts. These are dynamic,
unpredictable events and should be handled in the background. This approach is
similar to the biological nervous system where, e.g., breathing rate, heartbeat, sweat-
ing, are regulated without the consciousness of the mind [4] so that activities like
deciding where to go and how to get there can gain more focus.

Trustworthy autonomics primer  5

The high-level design of the internal structure of an autonomic system is shown
in Figure 1.2. The sensor represents the source of contextual information (e.g.,
unforeseen events and changes in the system’s environment). These received infor-
mation are analysed by the autonomic controller (AC) and based on the analysis,
actions are decided that are executed by the actuator. In the end, instead of directly
controlling the system, the human operator defines general rules and policies, for
the AC, to guide the self-management process of the system. Autonomics technol-
ogy is suitable for large scale and heterogeneous systems with dynamic processes of
sometimes unknown and unpredictable outcomes.

Many techniques, e.g., machine learning, policy autonomics, fuzzy logic and
utility functions have been used to build autonomic systems – some of these are
covered in Chapter 3. There are also various autonomic architecture designs incor-
porating dynamic adaptation solutions, building on the traditional MAPE (monitor,
analyse, plan and execute) control loop. The MAPE control (Figure 1.3), originally
described in Reference [1], gives the basic view of the design and mechanisms of
autonomic systems. The monitor component receives status updates of the managed
system, filters and then passes data received to the analyse function. The data are
analysed and the suggested decision (course of action) is passed to the plan function.
The plan function maps out how the decision will be implemented and then passes it
to the execute function for execution.

Autonomic system can also be seen as a multi-agent system, comprising of
different agents known as autonomic elements, working together to achieve a par-
ticular goal – the intended or original goal of the system. ‘Multi-agent systems’ is a
generic term referring to systems consisting of different sub-systems (agents) that
cooperate (interact) with each other in order to achieve a common goal. The idea
of a system with several components working together towards a common goal has
been applied to an increasing number of domains including distributed systems,
autonomic systems, supply chains, networks of networks and so on.

1.1.2 � Autonomic functionalities
Autonomic functionalities are the building blocks of autonomic systems. These
are the characteristics or functional areas that define the capabilities of auto-
nomic systems. Autonomic functionalities can be emergent, and these vary (or are

Figure 1.2  � High-level autonomic system structure. The sensor receives inputs
(context information) into the system, and the AC analyses these
inputs and based on the outcome of the analysis decides on an
adaptation action that is then executed by the actuator.

6  Trustworthy autonomic computing

defined) according to application instances. Although there is an ongoing debate
on the composition of autonomic functionalities, and the list is substantially grow-
ing [3, 5], the self-CHOP (self-Configuring, self-Healing, self-Optimising and
self-Protecting) functionalities remain the original/core and most widely accepted
four functionalities. There are other more generic, or evolving, functionalities
(e.g., self-stabilising, self-aware, self-regulating) and these are denoted as self-*
functionalities.

To provide a working knowledge, we will focus on the self-CHOP functional-
ities in this section. This is because a computing system is said to be autonomic if it
is capable of demonstrating at least one of these four functionalities/attributes.

1.1.2.1  �Self-configuration
A system is self-configuring when it is able to automate its own installation and
setup according to high-level goals. This means that the system is capable of car-
rying out automatic configuration of components. For example, when a new com-
ponent is introduced into an autonomic system or a multi-system environment, it
registers itself so that other components can easily interact with it.

Figure 1.3  � MAPE autonomic architecture. This is based on the monitor,
analyse, plan and execute (MAPE) control loop.

Trustworthy autonomics primer  7

Corporate systems, like data centres and networks, are examples of large-scale
system environments with heterogeneity of devices, services, platforms and vendors
where new installations and upgrades could lead to complex compatibility issues.
An autonomic system would rely on high-level policies, representing business-level
objectives, to configure its components and sub-systems to automatically and seam-
lessly adjust to new environmental conditions.

Examples
Most times, when a new compatible component is attached to a network, it
gets automatically configured and deployed. The work of the Dynamic Host
Configuration Protocol (DHCP) is an example of self-configuration. The DHCP
automatically assigns IP addresses and other network configuration parameters
to each network device on the network. This prepares these devices and makes
them able to communicate with other devices on the network, without the help of
the human user. Another example is the auto configuration capability of operating
systems. When a new device, say a printer, is attached to a computer, some operat-
ing systems are able to automatically find and install the printer’s driver and get
it ready for use. Self-configuration is usually behind the general ‘plug and play’
concept.

1.1.2.2 � Self-healing
A system is self-healing when it is able to detect errors or symptoms of potential
errors by monitoring its own platform and automatically initiating remediation.
Fault tolerance is a typical example of self-healing. It allows the system to continue
its operation possibly at a reduced level instead of stopping completely as a result of
a part failure. Fault-tolerant solutions may require a level of redundancy that allows
the system some options to switch to when necessary.

In the early years of technological innovation, systems were designed to
display error messages and hang up if problems occur. Modern systems, with
fault tolerance capabilities, are able to overcome, repair or isolate errors and
continue.

Examples
Self-healing capabilities have evolved over the centuries – for example, from the
ancient Romans who used self-healing concrete that allowed crystals to grow
into cracks to repair them to modern unmanned spacecraft that are capable of
repairing themselves to continue their mission. Some modern cars have a safety
feature that allows the car to be driven, at a reduced restricted speed when a major
component fails, as it may be dangerous for the car to come to a sudden halt, say
in a motorway. This attribute enables an autonomic system to focus on achieving
its original goal, set out at the beginning, regardless of unexpected contextual
problems.

8  Trustworthy autonomic computing

1.1.2.3 � Self-optimisation
A system is self-optimising when it is capable of adapting to meet current require-
ments and also of taking necessary actions to self-adjust (adjustment to preferences) to
better its performance. Resource management (e.g., load balancing) is a typical exam-
ple of self-optimisation. A component of a system may be overloaded to the point that
it introduces delay and bottleneck that ultimately affects the goal of the system. A self-
optimising system has the capability of maximising its resources in a way that avoids
overloading of its components so that it concentrates on achieving its original goal.

Example
A self-optimising autonomic system would self-adjust its behaviour, without affect-
ing its intended goal, in the face of uncertain events – for example, changing work-
loads, components, demands and external conditions. The system does not always
succeed but the idea here is to attempt to stay on achieving the intended goal, regard-
less of unplanned performance challenges.

1.1.2.4 � Self-protection
A system is self-protecting when it is able to detect and protect itself from attacks by
automatically configuring and tuning itself to achieve security and data protection
goals. It may also be capable of proactively preventing a security breach through
its knowledge based on previous occurrences. While self-healing is reactive, self-
protecting is proactive. Autonomic systems are capable of learning from past events
and be able to proactively defend themselves against malicious and non-malicious
attacks/problems unresolved by the self-healing component.

Example
With self-protection, the system is able to detect and stop threats that are capable of
harming its operations. An intrusion prevention system (IPS) is a typical example.
The idea here is the ability of the system to continuously monitor its operating envi-
ronment, identify possible threats that may mitigate against its goal, gather informa-
tion about the threats (that will be useful in subsequent similar situations) and stop
them from preventing the system from achieving its goal.

Note that while self-CHOP and self-* may be used interchangeably in different
texts, self-CHOP refers to the traditional four autonomic functionalities (the self-
Configuring, self-Healing, self-Optimising and self-Protecting functionalities) and
self-* refers to generic autonomic functionalities that comprise of both the self-
CHOP functionalities and any other possible or application-dependent functional-
ities (e.g., self-stabilising, self-aware, self-regulating, etc.). For more on the above
definitions, see References 6−8.

1.1.3 � The autonomic computing system
For a generalised context, it is important to introduce some useful terminologies
that may be easily misunderstood. Some of these have been used interchangeably in

Trustworthy autonomics primer  9

other texts and this can be confusing. Let us follow on from section 1.1.1, referring
to Figure 1.3, Figure 1.4 gives us a clearer definition of an autonomic system.

An autonomic element (Figure 1.4) will consist of at least one managed system
and one autonomic manager who controls, manages and represents the managed
system(s). An autonomic manager (Figure 1.4b) will comprise of relevant resources
and tools required to autonomically control a non-autonomic system. The managed
system could be a CPU, a printer, a database, a window blind, a car, a heating sys-
tem, a data centre, a business process, etc. An autonomic system could also be an
interactive collection of autonomic elements that interact with each other, includ-
ing the environment, via their autonomic managers. This ‘environment’ may also
include a touch-point through which the system programmer could interact with
the system. Self-management of the autonomic elements’ internal behaviour and
relationships with others will be based on the policies established by the human
(e.g., the user, programmer) or other elements from the internal self-management of
the individual autonomic elements – just as the social intelligence of an ant colony
arises largely from the interactions among individual ants. A distributed, service-
oriented infrastructure will support autonomic elements and their interactions.

The autonomic manager is powered by the manager logic. This is a term used
in this book to describe the actual individual control logic employed by autonomic
managers in order to achieve stated system performance goals. It explains the inbuilt
functions and logic of autonomic managers. This is not a formal autonomic termi-
nology but is specifically used in this book to explain the technology and algorithms
behind the workings of autonomic managers.

1.2 � Foundations of trustworthy autonomics

This section will lead a general introductory discussion on trustworthy autonomic
computing, why it is important and the state of the art in research. The autonomic
computing concept has received strong interest amongst the academic and indus-
trial research communities since its introduction in 2001. It is now well-understood
and established across an ever-widening spectrum of application domains. However,
there has been limited progress towards trustworthy autonomic computing – a qual-
ity that enables the confidence of the user in the ability of the autonomic system to
remain correct in the face of any possible contexts and environmental inputs and
sequences of these.

The main idea put forward in this book is that trustworthiness (and any other
desired autonomic capability) should be conceived at the design stage. This means
that the architecture should be flexible (and yet robust) enough to provide instru-
mentations that allow designers to specify processes to achieve desired goals. It then
follows that we need to rethink the autonomic architecture. This is the basis of the
trustworthy autonomics solution presented in Chapters 4 and 5. This section dis-
cusses a general review of early research effort towards trustworthy autonomics – that

10  Trustworthy autonomic computing

Figure 1.4  � (a) Autonomic element – comprising the entire system, including the
managed or monitored target (b) Autonomic manager – excludes the
managed or monitored target

Trustworthy autonomics primer  11

includes validation, trustworthiness and certification and then presents the pillars of
trustworthy autonomic systems.

1.2.1 � Towards trustworthy autonomics
Let us start with a general overview of early research towards trustworthy auto-
nomics, covering validation, trustworthiness (sometimes referred to as reliability or
dependability in other works) and certification.

Chan et al. [9] ask the critical question of ‘How can we trust an autonomic
system to make the best decision?’ and propose a ‘trust’ architecture to win the trust
of autonomic system users. The proposal is to introduce trust into the system by
assigning an ‘instantaneous trust index’ (ITI) to each execution of a system’s auto-
nomic manager – where ITI could be computed, e.g., by examining what fraction of
the actions, suggested by the autonomic manager, the user accepts unchanged, or by
examining how extensive the changes that the user makes to the suggested actions
are. The overall trust index, which reflects the system user’s level of trust in the auto-
nomic manager, is computed as the function ‍f

�
ITIi

�
‍ where ‍i‍ = 1, 2, 3, … and ‍ITIi‍

are the individual ITIs for each autonomic manager execution. This kind of solution
is favoured in this book as it considers trust as architecture-based and also defines
trust in the language of the user – it is the user who needs to be satisfied that the
autonomic system is making and executing the best (beneficial) decisions. However,
this method will be overly complex (and may be out of control) in large systems
with multiple autonomic managers if the user is required to moderate every single
autonomic manager-suggested action. In such systems, some of the autonomic man-
ager’s decisions are not transparent to the human user.

Another effort that supports the idea that dependability should be architecture-
based, i.e., conceived at design time and not retrofitted to systems, is the work in
Reference [10]. Hall and Rapanotti [10] in proposing an Assurance-Driven Design
posit that engineering design should include the detailing of a design for a solution that
guarantees satisfaction of set requirements and the construction of arguments to assure
users that the solution will provide the needed functionality and qualities. The key
point here is that trustworthiness is all about securing the confidence of the user (that
the system will do what it says) and the way to achieve this is by getting the design
(architecture) right. This is also the main thrust of this book. Shuaib et al. [11] propose
a framework that will allow for proper certification of autonomic systems. Central to
this framework is an alternative autonomic architecture based on Intelligent Machine
Design (IMD) which draws from the human autonomic nervous system.

Shinji et al. [12] propose a policy verification and validation framework that is
based on model checking to verify the validity of administrator’s specified policies
in a policy-based system because a known performing policy may lead to errone-
ous behaviour if the system, in any aspect, is changed slightly. The framework is
based on checking the consistency of the policy and the system’s defined model or

12  Trustworthy autonomic computing

characteristics. This is another important aspect of the proposed solution in this book –
validation is done with reference to the system’s defined goal. A trustworthy auto-
nomic grid computing architecture is presented in Reference 13. This is to be enabled
through a proposed fifth self-* functionality, self-regulating. Self-regulating capability
is able to derive policies from high-level policies and requirements at runtime to regu-
late self-managing behaviours. One concern here is that proposing a fifth autonomic
functionality to regulate the self-Configuring (self-CHOP), Healing, Optimising, and
Protecting functionalities as a solution to autonomic system trustworthiness assumes
that trustworthiness can be achieved when all four functionalities perform ‘optimally’.

[One concern here is that proposing a fifth autonomic functionality to
regulate the self-Configuring (self-CHOP), Healing, Optimising, and
Protecting functionalities as a solution to autonomic system trustworthi-
ness assumes that trustworthiness can be achieved when all four func-
tionalities perform ‘optimally’]

This assumption is not entirely correct. The self-CHOP functionalities alone do
not guarantee trustworthiness in autonomic systems. For example, the self-CHOP
functionalities do not address validation that is a key factor in autonomic system
trustworthiness.

Another idea is that trustworthiness is achieved when a system is able to provide
accounts of its behaviour to the extent that the user can understand and trust. But
these accounts must, amongst other things, satisfy three requirements: provide a rep-
resentation of the policy guiding the accounting, provide some mechanism for vali-
dation and provide accounting for system’s behaviour in response to user demands
[14]. The system’s actions are transparent to the user and also allow the user, if
required, the privilege of authorising or not authorising a particular process. This is
a positive step (at least it provides the user a level of confidence and trust) but also
important is a mechanism that ensures that any ‘authorised’ process does not lead to
undependable or misleading results.

[This is a positive step (at least it provides the user a level of confidence
and trust) but also important is a mechanism that ensures that any
‘authorised’ process does not lead to undependable or misleading results]

This is one aspect not considered by many research efforts. There are possibilities
of erratic behaviour, which is not healthy for the system, despite the autonomic man-
ager’s decisions being approved. This aspect is addressed in the solution proposed
in this book.

Heo and Abdelzaher [15] presented ‘AdaptGuard’, a software designed to guard
adaptive systems from instability resulting from system disruptions. The software is

Trustworthy autonomics primer  13

able to infer and detect instability and then intervenes (to restore the system) without
actually understanding the root cause of the problem – root-cause-agnostic recovery.

Instability is another aspect addressed in the solution proposed in this book.
Because autonomic manager control brevity could lead to instability despite process
correctness, it is important to also consider this scenario. Hawthorne et al. [16] dem-
onstrate Teleo-Reactive (T-R) programming approach to autonomic software systems
and show how T-R technique can be used to detect validation issues at design time
and thus reduce the cost of validation issues. T-R programming is similar to Reflective
Programming as both techniques allow the development of codes that can modify
themselves, i.e., adaptive programs. However, based on conditions and priorities, the
code in T-R dynamically adapts without needing to rewrite itself as in Reflection [17].
Also, with Reflection it is possible to modify a code directly while it is running while
with T-R, it is impossible to predict what bit of code is running at any given time.

Validation is central to achieving trustworthy autonomics, and this has to meet
runtime requirements. A generic self-test approach is presented in Reference [18].
The authors of [18] extended the Monitor Analyse Plan and Execute (MAPE) con-
trol loop to include a new function called Test (Figure 1.5). By this, they define
a new control loop comprising Monitor, Analyse, Decision, Test and Execute –
MADTE activities.

Figure 1.5  � MAPE based autonomic control loop with a self-test component
[18]. The self-test component ensures that adaptation decisions are
tested or validated before they are executed.

14  Trustworthy autonomic computing

The MADTE loop works like the MAPE loop only that the Decision activity
calls the Test activity to validate a chosen action should it determine to adapt a
suggested behaviour. The Test activity carries out a test on the action and returns
its result to the Decision activity that then decides whether to implement, skip or
choose another action. An adaptation is favoured if the Test indicates that it will lead
to a component’s better performance in terms of characteristics such as optimisa-
tion, robustness or security. The process is repeated if the latter is the case. When
an action is decided on, the Decision activity passes it to the Execute activity for
implementation. This is vital to runtime self-validation and is consistent with the
solution in this book in terms of designing validation into the system’s architecture.

A feedback-based validation that relies on a kind of secondary (mostly external)
expertise feedback to validate the output of a system is presented in Reference 19.
This is reactionary and makes no contribution to the result of the system in the first
place. Though this may suffice for some specific system’s needs, what is generally
required for autonomic system validation is runtime validation of decisions (or pro-
cesses) that lead to system outputs.

[It should be noted that autonomic system trustworthiness goes beyond
secure computing. It is result oriented; not focusing on how a goal is
achieved but on the dependability of the output achieved]

It should be noted that autonomic system trustworthiness goes beyond secure
computing. It is result oriented; not focusing on how a goal is achieved but on
the dependability of the output achieved. All systems, no matter how simple, are
designed to meet a particular need, but not all systems have security concerns. So,
trustworthiness is not all about security and validation. On the other hand, it is not
about showing that a system or process works but also making sure that it does
exactly what it is meant to do, in a way that ensures a dependable outcome. This
aspect is addressed in the proposed trustworthy autonomic architecture, in Chapter
4, by a component that carries out a longer-term assessment of the system’s actions.
These have been the evolving challenges and where work must be concentrated if
we are to achieve certifiable autonomic systems.

This section has presented a broad and general background study that analysed
early research towards trustworthy autonomic computing. More recent studies have
leveraged existing achievements but do not differ significantly in what has been
achieved. There is, however, increased awareness of the need and effort towards
trustworthy autonomics. This is covered in section 2.3.

1.2.2 � Pillars of trustworthy autonomic systems
One significant realisation from the analysis so far is the possibility of an auto-
nomic manager’s adaptive smartness to introduce a kind of noise in terms of, e.g.,

Trustworthy autonomics primer  15

instability into the system over time. In this case, the system may not have breached
any adaptation rules but may be pushing out results that ultimately may not be reli-
able or may lead to spikes or instability in the control behaviour. For results to be
fit-for-purpose, there needs to be a rolling evaluation of the impact of the autonomic
manager’s actions on the system.

So, the pillars of trustworthiness would ensure, amongst other things:

•	 continuous evaluation of control actions – validation of adaptive decisions and
behaviour;

•	 fit-for-purpose results – dependable and reliable outcomes;
•	 and support for the definition of systems in a universal language – this needs

to be at both system design (for understanding of the system and the trust and
validation requirements) and post system design (for system classification and
evaluation). See Level of Autonomicity in Chapter 7. For a robust solution then,
trustworthiness support needs to be conceived during system design and so
should be integrated into the autonomic architecture.

So, the identified pillars of trustworthy autonomic systems are validation,
dependability and architecture considerations.

1.2.2.1 � Self-validation
Robust self-management in autonomic computing systems resulting in dynamic
changes and reconfigurations requires that autonomic systems should be able to con-
tinuously perform self-validation of their own behaviour and configuration, against
their high-level behavioural goals and be able to reflect on the quality of their own
adaptation behaviour. It is important to note that there is a significant difference
between trustworthy autonomic computing and trusted (or secure) computing – this
is explained in section 4.2. For complete reliance on autonomic systems, the human
user will need a level of trust and confidence that these systems will satisfy specified
requirements, will remain correct in the face of any possible environmental dyna-
mism and will not fail.

[It is also not enough that systems are safe, secure and performing within
the boundaries of specified rules; outputs must also be seen to be reliable,
not misleading, and hence dependable.]

Trustworthiness is sometimes referred to as reliability and dependability
in other works. Trustworthiness, or the lack of it, may explain the level of the
public’s acceptance of autonomic systems. A primary feature of a trustworthy
autonomic system is self-validation. Figure 1.6 is a revision of the autonomic
architecture (Figure 1.2) to include self-validation (represented by the VC com-
ponent) capability.

16  Trustworthy autonomic computing

The autonomic decisions, made by the autonomic controller (AC) for actuation
based on context information, are passed to the validation controller (VC) for valida-
tion against high-level policies, representing business-level objectives before those
decisions are executed. The dynamic nature of autonomic systems makes it close
to impossible to comprehensively predict possible outcomes at design time. So, it
becomes highly complex to predetermine whether the AC’s decision(s) are in the
overall interest and good of the system. There is a vital need therefore to dynami-
cally validate the runtime decisions of the system.

So, runtime validation is a continuous and dynamic self-validation of own
behaviour. That is to say that the autonomic system is able to continuously check its
own actions to ensure that those actions satisfy the goal of the system. Validation in
trustworthy autonomic computing will need to meet runtime specifications. Design-
time validation, on the other hand, does not suffice for autonomic system trustwor-
thiness as it depends on (or is limited to) the designer’s knowledge of the system’s
environment and operations.

1.2.2.2 � Dependability
An autonomic system is dependable to the extent that its results (outputs) are con-
sistent and with minimum fluctuation from the desired goal. A good way of ensuring
dependability is by dynamically monitoring the impact of the autonomic manager’s
intervention over time. This may mean looking at the system’s state after a particular
number of autonomic decision-making cycles and deciding whether to allow the
autonomic manager to carry on or enforce some retuning. Another aspect of depend-
ability is self-stabilisation [20].

Self-stabilisation mechanisms reduce the reliance of autonomic sys-
tems on external supervision and extend their behavioural scope and
trustability. It helps a system track its goal in a gradual manner to
avoid over-compensation when a system is already close to its goal or
under-compensation that could lead to erratic behaviour or misleading
results.

Figure 1.6  � Self-validating autonomic architecture. The sensor receives inputs
(context information) into the system, the autonomic controller (AC)
analyses these inputs and based on the outcome of the analysis
decides an adaptation action, the validation check (VC) validates the
decided action before it is then executed by the actuator.

Trustworthy autonomics primer  17

Take an autonomic resource allocation system for example. The system allocates
resources according to requests. A robust system would be able to track known
working state and revert to such state in the case of detected disruption. System state
could be tracked as a one-off (e.g., the initial state or a state at time T) or as several
over a period of time. Now, reverting to a known working state could bring destabi-
lisation if one of the systems requesting resources is no longer operating at the level
of the known state. At this point, resetting the system to the initial state or time T
would destabilise the system rather than help. A solution could be tracking and reset-
ting to the nearest known working state, but the nearest known working state may
not be a safe state if the lag between disruption and identification of the disruption is
not considered. To obtain a safe state we can measure the lag (how long it takes the
system) to identify disruption and then plug that value as a tolerance-range-check.

The tolerance-range-check guides the resetting process outside a crisis state to a
safe state. For example, if a disruption occurs at time ‍t1‍ and the system identifies it at
time ‍t2‍, it will only be safe to reset the system to ‍t1‍ or below but not far from ‍t1‍. Between
‍t1‍ and ‍t2‍ is crisis state and further down from ‍t1‍ to ‍t0‍ may cause destabilisation as ser-
viced systems may not be operating at those levels. For some systems, it may be possi-
ble to calculate average latency (or lag) say ‍tavg‍ (with some safety margins) and always
reset to (‍t2 � tavg‍). Another solution might be to reset the system to the latest resource
allocation time. The DYCASS project [21] provides a lead in this methodology.

1.2.2.3 � Architecture
Trustworthiness requires a holistic approach. It requires a long-term focus as against the
near-term needs that merely address methods for securing (or building trust in) existing
systems. This means that trustworthiness needs to be designed into systems as inte-
gral properties. In real life when buildings are constructed, required specifications (e.g.,
floor space, pillar strength, anti-vibration measures, drainage) are usually specified and
catered for in the building design produced by the architect. This enables the builders to
make provisions for all requirements from foundations up. A building that is structur-
ally adjusted to accommodate some fittings cannot be said to be of the same standing
as one that catered for those fittings in the first instance from scratch. In the same way,
it is best to cater for relevant autonomic capability requirements in the design stage of
autonomic systems. This is why this book advocates for architecture-based solutions.
So, architecture plays a very significant role in building trustworthy autonomic systems.

The evolution of autonomic architecture is presented in Chapter 2, while a trust-
worthy autonomic architecture, capable of meeting the identified requirements, is
presented in Chapter 4.

1.3 � Conclusion

This chapter has introduced the autonomic computing concept as a solution to deal-
ing with the problem of increasing cost of ownership and complex management of

18  Trustworthy autonomic computing

computing systems, while also making the case for trustworthy autonomic comput-
ing. Definition of relevant autonomic terminologies has also been provided. This is
important to ensure adequate understanding of the concepts and ideas presented in
this book. The self-CHOP autonomic functionalities are at the core of autonomic
computing. These have been introduced, with examples.

A general introductory discussion on trustworthy autonomic computing
and a review of the research in trustworthy autonomic computing are discussed.
Trustworthy autonomic computing is built on three pillars, covering validation,
dependability and architecture considerations. These pillars would ensure, amongst
other things, fit-for-purpose results, continuous evaluation of control actions and
will support the definition of systems in universal language at both system design
and post system design. Trustworthiness support will need to be conceived during
system design and so should be integrated into the autonomic architecture.

Chapter 2

Evolution of autonomic computing

The major theme in this book deals with identifying and developing techniques to
make autonomic computing systems trustworthy. To achieve this, it is important to
first understand the level of work that has already gone into the autonomic comput-
ing research and how that can be harnessed. This chapter starts with an overview of
the autonomic computing architecture and its life cycle. A broad analysis of auto-
nomics research to show the trends in and direction of the autonomic computing
research and where the work needs to be concentrated to address open challenges
and achieve trustworthiness is presented. It is also important to take a holistic view
of the entire field of research in order to gain a clearer picture of the need for and
lack of effort towards trustworthy autonomic computing.

‍ ‍

20  Trustworthy autonomic computing

In this chapter, you will learn the following:

•• the design of autonomic systems
•• the life cycle of autonomic architecture
•• key factors of trustworthy autonomic computing design
•• major trends and direction in the autonomic computing research
•• about key studies and researchers that have shaped the study of autonomic

computing

2.1 � Importance of understanding the evolution of autonomic
computing

The evolution of autonomic computing can be tracked based on what it promises to
achieve (the original intended goal of the concept), the design and the actual imple-
mentations – from conceptual ideas to actual developments and implementations.
The idea of trustworthiness was not part of the initial thinking in the development of
the autonomic computing concept. Our earlier study [2] has shown how important
this has become.

2.2 � Autonomic architecture

Trustworthiness cannot be reliably retrofitted into systems; it must be designed into
system architectures. The design of an autonomic system is fundamental to its oper-
ations. The autonomic architecture is key to autonomic trustworthiness, and that is
why it is important to start by discussing the development in the autonomic architec-
ture. This section tracks the autonomic architecture (leading to trustworthiness), pic-
torially and in detail, in a number of progressive stages addressing it in an increasing
level of detail and sophistication. Figure 2.1 provides a key to the symbols used.

•• Sensor and actuator

These are the touchpoints where the autonomic manager connects with the man-
aged system or monitored environment. The autonomic manager takes in relevant
context data (from the managed system or monitored environment), processes it for
a decision and then executes that decision. The sensor represents a source of ambi-
ent/context data for the autonomic manager, while the actuator provides capacity for
executing the adaptation decision of the autonomic manager.

•• Console
Autonomic systems come in maturity stages – from basic autonomic (requir-

ing a level of human interference and/or control) to complete autonomic
(requiring no human interference or control) systems. The console represents a

Evolution of autonomic computing  21

touchpoint for human interference and interaction with the autonomic manager.
This could be one-way or bi-directional, e.g.,

1.	 One-way: This could be a dashboard for the autonomic
manager to display information intimating the user of its
actions. It could also be a control panel for the user to in-
terfere with (e.g., configure, reconfigure or override) the
autonomic manager after observing its actions.

2.	 Bi-directional: This could be a provision for the autonomic
manager to provide feedback to the user with a possibility
for the user to override or compliment the decisions and ac-
tions of the autonomic manager. There are several possible
variations of this.

•• Autonomic controller

The autonomic controller (AC) represents basic autonomic manager control
logic. It analyses input from the sensor and decides an adaptation action based on
the chosen autonomic control logic.

•• Dependability check

Figure 2.1   Pictographic key used for the autonomic architecture life cycle

22  Trustworthy autonomic computing

The dependability check (DC) provides the capability of staying on course to
achieve the goal of the autonomic manager. It takes a holistic view of adaptation
decisions and considers the short- and long-term effects of those decisions in order
to efficiently guide the autonomic manager towards its intended goal.

•• Validation check

The validation check (VC) represents the ability to verify adaptation decisions
before they are executed. This helps in ensuring that decisions conform to the poli-
cies behind the control logic and that there are no errors in the process. It is impor-
tant to note that the type of validation defined by the VC is runtime-based (i.e.,
runtime validation).

•• Direct control

This arrow indicates the flow of control – the preceding object or component
passes control to the succeeding object.

•• Feedback

This indicates feedback from one object to another. This can be in any form,
e.g., control or [re]calibration feedback.

Figure 2.2 illustrates the progression, in sophistication, of autonomic architec-
tures and how close they have come to achieving trustworthiness. Although this may
not be exhaustive as several variations and hybrids of the combinations may exist, it
represents a series of discrete progressions in current approaches.

Two distinct stages of sophistication are identified. The first stage represents the
traditional autonomic architecture (Figure 2.2 levels (i) and (ii)), basically concerned
with direct self-management of a controlled/monitored system following some basic
sense-manage-actuate logic defined in the AC component. For the prevailing con-
text, AC is just a container of autonomic control logic, which could be based on
Monitor-Analyse-Plan-Execute (Figure 1.3) or any other autonomic control logic.
The original autonomic architecture, proposed with the introduction of autonomic
computing [7] falls within this level. This achieves basic self-management capa-
bility and has since been adapted in several studies to offer more smartness and
sophistication. To add a degree of trust and safeguard, an external interface for user
control input is introduced in Figure 2.2 level (ii). This chronicles such approaches
that provide a console or touchpoint for external administrative interactions (e.g.,
real-time monitoring, tweaking, feedback, knowledgebase source, trust input) with
the autonomic process. An example of level (ii) is work in Reference [14] where,
in addressing the problem of human–computer interactions raised by the auto-
nomic computing vision, the authors proposed a solution where system’s actions

Evolution of autonomic computing  23

are transparent to the user and the user can moderate the behaviour of the system by
allowing or disallowing system decided actions. The system has a console that offers
the user the privilege of authorising or not authorising a particular process. Another
example in this category is unmanned vehicles (UVs). In UVs, there are provisions
for activating auto piloting and manual piloting. The user can decide when to acti-
vate either of the two or run a hybrid.

The second stage (Figure 2.3) represents efforts towards addressing runtime
validation. Instrumentations to enable systems to check the conformity of manage-
ment decisions are added. This includes such approaches that are capable of runtime
self-validation of autonomic management decisions. The self-validation check is
done by the VC component and this results in either a pass (in which case the vali-
dated decision is actuated) or a fail. Where the check fails, VC sends feedback to
AC with notification of failure (e.g., policy violation) and a new decision is gener-
ated. An additional layer of sophistication is introduced in level (iv) with external
touchpoint for higher level of manageability control. This can be in the form of an
outer control loop monitoring, over a long-time frame, an inner short-time frame
control loop. The work in Reference [18] (see section 1.2.1, Figure 2.4), which is an
extension of the Monitor-Analyse-Plan-Execute control to include a ‘Test’ activity

Figure 2.2  � Pictorial representation of trustworthy autonomic architecture life
cycles. This is not exhaustive but represents major themes identified
in research. Finer-grained sub-stages and design may exist.

24  Trustworthy autonomic computing

corresponds to level (iii). The test activity tests every suggested action (adaptation
decision made) by the plan activity for conformity before the action is executed –
leading to a new Monitor-Analyse-Decision-Test-Execute control. If the test fails,
the action is dropped and a new one is decided again.

The work in Reference [22], which corresponds to level (iv) of Figure 2.3, is an
extension of the work in Reference [18] to include auxiliary test service components that
facilitate manual test management and a detailed description of interactions between
test managers and other components (see Figure 2.4). Here, test managers implement
closed control loops on autonomic managers (such as autonomic managers implement
on managed systems/resources) to validate change requests generated by the autonomic
managers. Notice also that touchpoints are provided as manageability interfaces.

At the level of current sophistication (state-of-the-art), there are techniques
to provide runtime VC (for behavioural and structural conformity), additional

Figure 2.4  � High-level architectural model for an integrated self-testing
framework for autonomic computing systems [22] (with permission)

Figure 2.3  � Second stage representation of trustworthy autonomic architecture
life cycles. The major improvement of this stage is the consideration
for runtime validation.

Evolution of autonomic computing  25

console for higher level (external) control, etc. Emerging and needed capabili-
ties include techniques for managing oscillatory behaviour in autonomic sys-
tems. These are mainly implemented in isolation. What is required is a holistic
framework that collates all these capabilities into a single autonomic unit. Policy
autonomics is one of the most used autonomic solutions. Autonomic managers
follow rules to decide on actions. As long as policies are validated against set
rules, the autonomic manager adapts its behaviour accordingly. This may mean
changing between states. And when the change becomes rapid, despite meeting
validation requirements, it is capable of introducing oscillation, vibration and
erratic behaviour – all in the form of noise into the system. This is more notice-
able in highly sensitive systems. So, a trustworthy autonomic architecture needs
to provide a way of addressing these issues. Level (v) of Figure 2.2, shown in
Figure 2.5, falls within the next stage of sophistication required to address the
identified issues and ensure dependability.

2.3 � Autonomic computing: trends and direction

This section covers the analysis of research efforts towards achieving the goal of
autonomic computing in the first two decades of the introduction of the concept. The
nature of the analysis is geared towards identifying recurring themes, trends, vital
areas to be covered to achieve the goal of autonomic computing, where the research
should be heading and the open/emerging challenges.

An analysis-by-problem approach is used to show the pattern, in terms of matu-
rity stages, of how researchers have attempted addressing the autonomic computing
challenge. This is addressed in two broad periods: the first decade, covering years
2001–2011 and the second decade, covering studies and developments from years
2012 to 2019. Note that the autonomic computing concept was introduced by IBM
in 2001. The analysis in this section is drawn from proceedings of the International

Figure 2.5  � Design for a trustworthy autonomic architecture addressing the
identified issues and ensuring dependability. The sensor (S) receives
inputs (context information) into the system; the AC analyses
these inputs and based on the outcome of the analysis decides an
adaptation action. The VC validates the decided action and returns
feedback if validation fails, and the DC monitors the behaviour
of the system over time and compares that with the general goal
of the system and may inhibit the actuator (A), which executes the
adaptation decision. The touchpoints allow for user intervention.

26  Trustworthy autonomic computing

Conference on Autonomic Computing (ICAC) and the International Conference on
Autonomic and Autonomous Systems (ICAS). These were the early leading inter-
national conferences on the general concept of autonomic computing, and I believe
that they both give a true representation of the distribution of interest, work done and
trends in autonomic computing research.

2.3.1 � Background
Computing systems, including hardware, software and communications, started
growing exponentially in terms of increasing heterogeneity, scale and ubiquity,
becoming exceedingly complex for human management. Computing devices got
more pervasive, embedded in everyday objects and exposed to environments where
system working conditions are dynamic, uncertain and unpredictable. Managing
such systems, which are heterogeneously knitted together and pervasively ubiqui-
tous, became daunting and utterly complex. With highly limited expertise to address
this concern, the cost of system ownership and management rose exponentially. To
deal with such complexity necessitated the introduction of a new concept, namely
Autonomic Computing, by IBM in 2001 [1],[7],[23].

The autonomic computing concept was introduced to address the complexity of
managing ever-growing and evolving systems by shifting the responsibility for low-
level tasks from the human to the system. This is achieved by building self-managing
systems that are capable of self-configuring, self-healing, self-optimising and self-
protecting, for a start. These are widely referred to as the autonomic self-CHOP or
self-* functionalities. With such capabilities, autonomic systems are able to manage
themselves and thereby reduce the computing system management complexities for
humans. This created a new research area with many challenges. Earlier autonomic
computing researchers like Salehie and Tahvildari [24] proposed a categorisation of
complexity in computing systems and presented an overview of autonomic comput-
ing research area. The work in Reference [24] captures the fundamental IT complex-
ities and the autonomic capabilities that would address them and then outlines the
underlying research issues/challenges from a practical and theoretical point of view.

Researchers took on the challenge of developing this new concept. The auto-
nomic computing concept is now well-understood, and a lot has been achieved since
it was introduced. The efforts of academic and industry researchers have gone a long
way in addressing the goal of the concept. However, there are still open and emerg-
ing challenges. It is therefore important to continuously assess the extent to which
the original vision of the concept has been accomplished, understand the trends and
explore ideas for addressing the open and emerging research challenges. This is one
of the focus points in this chapter.

The number of dedicated conferences and journals in this research area has con-
tinued to increase. These provide a good source of data for analysing and under-
standing the extent of work done in the autonomic computing research area. ICAC

Evolution of autonomic computing  27

and ICAS are two leading autonomic computing conferences and have together pub-
lished about 1,050 high quality research papers in the first two decades of autonomic
computing research.

The work in this chapter is based on the review of the 1,050 ICAC and ICAS
publications. Because of their unique composition, it is believed that these two con-
ferences will give a true representation of the distribution of interest, work done
and trends in autonomic computing research. ICAS is academia dominated while
ICAC is industry dominated and both have a good blend of academia–industry
collaborations.

The analysis of the first decade of autonomic computing study [2] reveals a pro-
gressive result in terms of what was achieved. However, there are gaps that need to
be addressed. It has been established that towards the end of the first decade, empha-
sis shifted to addressing the bigger picture, dealing with the issues of large-scale
systems and creating re-usable solutions using already established techniques. This
led to new challenges, including issues of heterogeneity of services and platforms,
interoperability of ever-growing coexisting multi-agent systems and trustworthy
autonomics. The case is made, of particular interest, to address users’ need for assur-
ance that autonomic managers can reliably manage today’s systems of increased
scale and complexity.

There is a lack of effort in offering a holistic analysis and evaluation of how the
actual work has progressed in achieving the original vision of the autonomic comput-
ing concept. Jeffrey Kephart, one of the leading autonomic computing researchers
and a researcher with IBM, in a keynote during ICAC 2011 presented an excellent
analysis of the extent to which the original autonomic computing vision had been
realised with some discussions and speculations about the remaining research chal-
lenges [25]. While Kephart concentrated more on the various technological threads,
their origins and how they have progressed, the focus in this book is mainly on the
level of maturity in terms of the types of, and scale of, problems targeted at the vari-
ous stages. This enables us to reflect on the overall progress in the field, and to be
able to identify current and emerging challenges. This work is not just a review but
also a substantiation of an earlier proposed roadmap (pathway) to achieving the goal
of autonomic computing [26]. We had posited (and explained how) that the journey
to the goal of autonomic computing would proceed from defining systems and auto-
nomicity to ultimately achieving certifiable autonomic computing systems. This is
corroborated in this report.

Although limited, studies evaluating the trends in autonomic computing have
largely focused on specific applications and autonomic functionalities. Out of the
1,050 publications reviewed in this study, only 12 (9 in the first decade and 3 in
the second) are somewhat related to evaluating the trends in autonomic comput-
ing. A significant chunk of these References [27–31] focuses on the comparison of
approaches and techniques for autonomic computing. Krupitzer et al. [27] define

28  Trustworthy autonomic computing

self-improvement as an adaptation of an autonomic system’s adaptation logic and
present a comparison of approaches for self-improvement in autonomic comput-
ing and self-adaptive systems. Maggio and Hoffmann [28] present a comparison of
decision-making approaches to self-optimising autonomic systems, while Alhaisoni,
Liotta and Ghanbari [29] compare two popular Live and Video-on-Demand P2P
streaming applications. Mohamed, Romdhani and Ghedira [30] evaluate the con-
cepts in Meta-Object Facility and Eclipse Modelling Framework meta-models
for model transformation. Gjørven, Eliassen and Aagedal [31] examine different
approaches for self-adaptation. None of these is a comprehensive analysis covering
the generality of trends and efforts in autonomic computing research as in this book.

Other slightly related studies, within the study window, include surveys that
categorise existing autonomic computing research efforts as well as highlight open
challenges [24,32,33,34] and those that focus on specific topics [35,36]. An overview
of academic- and industry-led autonomic projects and autonomic characteristic-
based comparison of those projects is presented in Reference [24]. Nami and Bertels
[32] provide a general survey of autonomic computing systems, the underlying fea-
tures, architectures and challenges. It also highlights the challenges of achieving
autonomicity in systems. An analysis of the requirements of context adaptation in
autonomic computing, evaluation of approaches for autonomic context adaptation
and a survey of existing work on context adaption in autonomic computing are pre-
sented in Reference [33]. The survey in Reference [34] presents a review, focusing
on existing autonomic computing frameworks, architectures and self-management
techniques. On more whittled focus, Higgins et al. [35] present a survey on security
challenges for swarm robotics (multiple autonomous agents), while Ding et al. [36]
evaluate and characterise service level objectives performance goals for autonomic
cloud applications. While these studies have addressed reviews of various isolated
and specific areas of autonomic research, this book considers the general key areas
and presents the review in a way that shows the research stages against a maturity
timeline.

The analyses in the following sections 2.2.2 and 2.2.3 are based on the review
of about 1,050 research publications using webometrics and direct analysis tech-
niques. These are analysed in terms of main application domain, emphasis and
technical approach as well as author distribution (Table 2.1). This classification is
chosen based on the observed interest of researchers and sponsors. The result is an
empirical evaluation of the overall impact, trends and state-of-the-art of autonomic
computing research activity. An analysis-by-problem approach reveals a particular
pattern (problem definition to issues of scale) in addressing the autonomic comput-
ing vision.

2.3.1.1 � Data and methodology for the trend analysis
In order to be able to recreate this study, it is important to understand the source of
data and the method employed. This study involves the review of all the proceedings

Evolution of autonomic computing  29

of ICAC and ICAS in the first two decades, covering autonomic computing research
from 2001 to 2019. These are two leading autonomic computing conferences with
widespread distribution of academic and industry participation. Publications used in
this work are sourced from ThinkMind*, IEEE Xplore† and IEEE Computer Society‡
digital libraries. A total of 1,050 research publications, including keynotes (626 of
which are from ICAC and 424 from ICAS), were reviewed using webometrics and
direct analysis techniques. Figure 2.6 is the distribution of the reviewed papers.

* ThinkMind Digital Library via http://www.thinkmind.org/
† IEEE Xplore Digital Library via https://ieeexplore.ieee.org/Xplore/home.jsp
‡ IEEE Computer Society Digital Library via http://www.computer.org/portal/web/csdl/proceedings

Table 2.1   Classification, in terms of focus area, for the reviewed publications

Authoring Main application domain Others

Academic Data centre Design and architecture
Industry Distributed systems Learning and knowledge
Joint (academic

and industry)
Networks Performance management

Robotics Policy autonomics
Storage and database management Self-CHOP

Survey
VT(Validation and Trustworthiness)
Actual VT proposal

Figure 2.6  � Conference distribution of publications. This represents autonomic
computing research published in both ICAC and ICAS from
2001 to 2019.

30  Trustworthy autonomic computing

These are analysed in terms of main application domain, research empha-
sis, technical approach as well as author distribution as shown in Table 2.1 and
explained in Table 2.2 and Table 2.3. The grouping of these papers is not exhaustive
but reflects recurring major themes from both conferences (ICAC and ICAS). The
following result is an empirical analysis of the overall state-of-the-art of autonomic
computing research activity, covering key themes, in the first two decades.

Every paper is reviewed and allocated to the relevant group and category (e.g.,
Tables 2.4 and 2.5). Some papers, depending on content, are allocated to more than
one category. The analysis considers the first and second decades of autonomic
computing research both separately and jointly. An analysis-by-problem approach
reveals a noticeable pattern (from problem definition to issues of scale) in tackling
the autonomic computing vision. A number of open and emerging challenges are
identified – these include runtime validation, trustworthiness, interoperability (coex-
istence of autonomic managers) and certification, requiring solutions specifically
tailored for runtime self-adaptive systems.

Overall, by the end of the second decade, very impressive progress has been
made and this has been driven by widespread effort and collaborations from aca-
demic and industry players.

2.3.2 � Autonomic computing in the first decade
The first ten years after the introduction of the autonomic computing concept saw
an increasing show of interest by researchers to grasp and make the most of the
concept. It was not as though there was no self-management computing at that time,

Table 2.2   Grouping of the reviewed papers

Distribution Description

Authoring This considers the affiliation of the authors and is classified according
to academic (authors from an academic institution), industry (authors
from the industry) and joint (collaboration between academic and
industry authors) – regardless of location. If all authors are from
same category, say Industry, but one is also affiliated to an academic
institution, the paper is classed as Joint

Emphasis This group consists of studies that prominently focus on specific themes
– autonomic computing focus areas

Main
application
domain

Studies in this category focus on the application of autonomic
computing in different domains. In most cases, this is about applying
the autonomic functionalities in specific systems

Technical
approach

These are technological approaches to autonomic computing. This is
about mainly using known and established techniques to achieve or
enable autonomic functionalities

Evolution of autonomic computing  31

but the concept opened a new dedicated door for addressing self-management com-
puting. Overall, very impressive progress was made in the first decade, and this was
driven by the interest of the main sponsors – industry leaders such as IBM, Sun,
Motorola, Google, Microsoft and Hewlet Packard, amongst others. A detailed work
in this regard is published in Reference [2].

Figure 2.7 shows the stages (A, B and C) adopted by researchers in addressing
autonomic computing and the emerging challenges (D and E) towards achieving
the overall goal of autonomic computing. This is a high-level view as finer-grained
sub-stages may exist. The stages are classified against a maturity timeline as shown
in Figure 2.8. This study is based on the review of 647 proceedings (publications –
Tables 2.4 and 2.5) from ICAC and ICAS. These were the early major collation of
generic autonomic computing-based publications.

Table 2.3   Categorisation of the grouping of reviewed papers

Category Description

Authoring
Academic All authors are from the academia
Industry All authors are from the industry, government and non-academic

organisations
Joint At least one author from academic and one from industry or same

author from both academic and industry
Emphasis
Storage and database

management
Using autonomic computing to improve data storage and database

management
Design and

architecture
Proposing and demonstrating autonomic architectures and design

Performance
management

Demonstrating performance management goals, e.g., using
autonomics to improve quality of service

Self-CHOP Studies in this category also touch on one or more of the self-
Configuring, Healing, Optimisation and Protection autonomic
functionalities in particular

Survey Surveys and reviews
VT VT-related studies
Actual VT Studies proposing actual validation and/or trustworthiness methods
Main application domain
Data centre Studies using data centres as case studies
Distributed systems Studies using distributed systems as case studies
Networks (+ wireless

sensor networks)
Studies focusing on networks, including wireless sensor networks

Robotics Studies involving robots
Technical approach
Policy Studies utilising policies and rules to enable autonomicity – rule-

based or policy autonomics
Learning and

knowledge
Studies utilising learning and knowledge techniques, e.g., artificial

intelligence, machine learning, cognitive computing, etc.

Table 2.4   ICAC proceedings distribution (first decade) [2]

Distribution icac 04 icac 05 icac 06 icac 07 icac 08 icac 09 icac 10 icac 11 Total %

Authoring
Academic 39 30 20 15 15 18 18 32 187 55.6547619
Industry 17 18 09 06 05 10 04 01 70 20.8333333
Joint 08 16 14 11 06 06 05 13 79 23.5119048
Total 64 64 43 32 26 34 27 46 336
Emphasis
Storage and database management 05 05 04 02 00 00 01 04 21 6.25000000
Design and architecture 07 12 01 02 04 03 03 03 35 10.4166667
Performance management 09 05 05 03 01 06 03 08 40 11.9047619
Self-CHOP 11 09 04 05 07 06 04 02 48 14.2857143
Survey 00 00 00 00 00 00 00 01 01 0.29761905
VT 04 03 03 04 02 03 00 00 19 5.6547619
Actual VT 01 01 01 03 01 01 00 00 08 2.38095238
Main application domain
Data centre 03 11 11 11 09 10 09 12 76 22.6190476
Distributed systems 17 06 05 04 00 01 02 04 39 11.6071429
Networks (+ wireless sensor

networks)
08 02 00 01 00 00 01 03 15 4.46428571

Robotics 01 00 00 00 00 00 00 02 03 0.89285714
Technical approach
Policy 02 06 03 02 02 00 01 00 16 4.76190476
Learning and knowledge 08 04 03 01 06 03 01 03 29 8.63095238

Table 2.5   ICAS proceedings distribution (first decade) [2]

Distribution icas 05 icas 06 icas 07 icas 08 icas 09 icas 10 icas 11 Total %

Authoring
Academic 20 39 53 34 48 27 23 244 78.4565916
Industry 01 10 13 00 04 01 01 30 9.64630225
Joint 02 09 03 09 05 02 07 37 11.8971061
Total 23 58 69 43 57 30 31 311
Emphasis
Storage and database management 00 04 03 01 03 00 01 12 3.8585209
Design and architecture 03 15 07 02 09 03 07 46 14.7909968
Performance management 01 05 07 03 06 02 00 24 7.7170418
Self-CHOP 00 01 01 01 03 03 01 10 3.21543408
Survey 00 01 02 01 03 00 01 08 2.57234727
VT 01 03 01 00 00 01 03 09 2.89389068
Actual VT 00 00 01 00 00 00 00 01 0.32154341
Main application domain
Data centre 01 06 04 03 03 04 02 23 7.39549839
Distributed system 05 12 07 01 05 01 02 33 10.6109325
Networks (+wireless sensor

networks)
04 07 06 02 05 03 01 28 9.00321543

Robotics 01 03 01 04 04 01 03 17 5.46623794
Technical approach
Policy 00 02 02 03 03 02 00 12 3.8585209
Learning and knowledge 00 01 04 06 04 00 01 16 5.14469453

34  Trustworthy autonomic computing

Tables 2.4 and 2.5, adapted from Reference [2], are high level analysis of ICAC
and ICAS conference proceedings, covering autonomic computing research in the
first decade. These were analysed in a way of showing research stages against a
maturity timeline.

At this stage of autonomic computing research, the foremost focus of the
research community, in terms of application scenario and emphasis, was mostly data
centre, distributed systems, storage and database management, design and architec-
ture, learning and knowledge, and self-CHOP. Validation and trustworthiness (VT)
with its methodologies is one critical area that received less attention.

In terms of main application domain, the data centre clearly tops the ranking in
terms of interest to the community. This is partly because the autonomic computing

Figure 2.7  � Observed trend and direction of autonomic computing research in
the first decade of its inception (2001–2011)

Figure 2.8   Stage classification for all reviewed publications

Evolution of autonomic computing  35

vision is industry-borne and has continued to be driven by the industry. This is
evidenced by the number of papers (including on data centres) that are authored,
co-authored or sponsored by the industry partners. Data centres are very complex;
in fact, they have many dimensions of complexity, which arise from their scale, nec-
essary speed of operation and large number of tuning parameters. In addition, they
have high power costs, including a significant cost component for the cooling sys-
tems. Autonomic computing arose because of the need for automatic management
of such complexity and successful autonomic techniques in this domain translate
into significant financial reward for the owners and users of such systems. There is
now a social responsibility dimension to it – to reduce the carbon footprint of data
centres as a response to climate change. This high complexity is also attractive to
academic researchers as it provides a rich domain to evaluate a wide range of tech-
niques, tools and frameworks for autonomic computing.

Investigation [2] reveals that, shortly after the introduction of the autonomic
computing concept, initial research focus was mainly on stating the problem and
challenge of the ever-growing system complexity [37,38] and justifying auto-
nomic computing as a reliable [39,40] solution. Most of the work in this area
was industry sponsored and widely based on dynamic resource allocation, e.g.,
References 41 and 42. Some major industry players then were IBM, HP, Sun, etc.
Following the early stage, after establishing the case for autonomic computing
as a promising solution, research efforts shifted to developing and applying tech-
niques which were then established and increasingly used, e.g., policy autonomics
[43,44], utility functions [45,46], fuzzy logic [47,48], dead-zone logic [20,49], etc.
These autonomic enabling techniques are discussed in Chapter 3. Progress was
also made in identifying and solving specific problems in isolation. A significant
number of studies offered specific solutions to specific problems. Some examples
of the variety of these include References [50–54]. In Reference [53], authors
propose a control scheme for dynamic resource provisioning in a virtualised data
centre environment to address issues of power management without trading per-
formance. Experiments report that the controller, while still maintaining quality of
service goals, is able to conserve power by 26 per cent. References [52,54] investi-
gate the use of thermal load management to address heating in data centres. While
Moore et al. [52] concentrated on predicting the effects of workload distribution
and cooling configurations on temperature (deducing heat profile), Ghanbari et al.
[54] based their work on workload scaling. Calinescu in Reference 51 implements
an earlier proposed generic autonomic framework (based on service-oriented
architecture) and demonstrates the effectiveness of his framework in resource allo-
cation, while Benoit [50] presents an automatic diagnosis framework to dynami-
cally identify bottlenecks in large systems. At this stage, studies largely comprise
implementations, demonstrations and presentation of experimental results of pro-
posed ideas.

Towards the end of the first decade, emphasis shifted to addressing the big-
ger picture, dealing with the issues of scale [55–57] and creating re-usable solu-
tions using already established techniques. This led to fresh challenges, including

36  Trustworthy autonomic computing

issues of heterogeneity of services and platforms [58, 59]. Solutions were then pro-
posed for addressing large-scale systems with varying heterogeneous platforms. The
increase in scale and size of systems, coupled with heterogeneity of services and
platforms, leads to further complexity and means that more autonomic managers
could be integrated to achieve a particular goal. With more autonomic managers
integrated, working together towards a particular goal comes the need for interoper-
ability between autonomic managers. As in the nature of technology, the addressing
of one problem always leads to new challenges. As expected, this growth of systems
in scale and complexity led to reliability (and by extension trustworthiness) concerns
for large-scale systems [60]. There is no way we can succeed in self-managing large-
scale complex systems without addressing trustworthiness (reliability) concerns. So,
interoperability and trustworthiness became some of the emerging major challenges
at the end of the first decade. These needed, and still need, to be addressed if we are
to attain the full goal of autonomic computing.

[There is no way we can succeed in self-managing large-scale complex
systems without addressing trustworthiness (reliability) and interoper-
ability concerns.]

Interoperability was somewhat neglected as a challenge in this era. Earlier stud-
ies were fundamentally concerned with getting autonomic computing to work and
establishing relevant concepts and demonstrating viability. Many mechanisms and
techniques were explored but focus started shifting, towards the end of the decade,
to the next level, e.g., how to reliably manage multi-manager scenarios, to govern
interactions between managers and to arbitrate when conflicts arise. These are the
kind of solutions needed to address the challenges arising from the increased avail-
ability of large systems with multiple autonomic agents. When more than one auto-
nomic manager is needed to coordinate a system, there may be situations where one
manager counters the decision of another. Although there were some mentions and
general discussion around this area, significant progress was not made. For example,
Anthony et al. [61] evaluate the nature and scope of the interoperability challenges
for autonomic computing systems, identify a set of requirements for a universal
solution and propose a service-based approach to interoperability to handle both
direct and indirect conflicts in a multi-manager scenario.

In another example, Beran et al. [62] examine the web services solution devel-
oped as a part of the Consortium of Universities for the Advancement of Hydrologic
Science, Inc. (CUAHSI) Hydrologic Information System (HIS) project. CUAHSI
HIS is a web services solution that standardises access to cross-domain hydro-
logic data repositories (of disparate semantic and syntactic definitions and hosted
on heterogeneous platforms) to facilitate data discovery and enable cross-domain
interoperability. The project emphasises the idea of a seamless interface through
which access can be gained to hydrologic data from multiple heterogeneous data
sources. An architecture-led interoperability solution, based on the extension of the

Evolution of autonomic computing  37

trustworthy autonomic architecture discussed in Chapter 4, is presented in Chapter 6.
The idea is that interoperability support should be designed in and integral at the
architectural level as doing otherwise (retro-fitted solution) may lead to further com-
plexities and unreliability.

[Evidence has shown that while the industry community (and by the way,
the originator of the autonomic computing research) set the pace for the
research, the academic community expatiated the research and is playing
huge collaborative role in achieving the research goal.]

The second decade and beyond would need to start from addressing the issues of
self-validation, trustworthiness, certification and many more. Questions that need
addressing include the following:

•• What are the processes to ensure that component upgrades that are tested and
confirmed in isolation will not cause harm in a multi-system environment?

•• How can certified autonomic systems be achieved?
•• How can users be confident that a system does what it says?
•• How can consistency and reliability be achieved, over longer time frames,

beyond attaining self-management?

Such challenges and questions are acknowledged and discussed in [Reference 9].
Figure 2.9 shows an analysis of the reviewed publications in the first decade, in
terms of their topic areas. Only about 4.3 per cent of these papers are VT related and
out of these, only a few, about 1.2 per cent of the papers, are actual VT methodolo-
gies. This number includes mainly those studies that incorporate validation, testing
and reliability into their architectures, frameworks or implementations and not nec-
essarily as a core or critical feature. This shows an understanding of the challenges
of VT but yet to be fully grasped. Some of the very few publications that actually
propose actual VT methodologies are non-generic and tackle application specific
problems. Figure 2.9 shows the low-level research into trustworthy autonomics in
the first decade.

Moving forward, it is important to note that making autonomic systems trust-
worthy is not optional – it is an essential prerequisite for the ultimate success of
autonomic computing.

2.3.3 � Autonomic computing in the second decade
The first decade of autonomic computing summarily shows a progressive result in
terms of what was achieved. Emerging challenges, e.g., large-scale systems, increas-
ing heterogeneity of services and platforms, interoperability of systems etc., from
the first decade started receiving attention in the second decade. Tables 2.6 and
2.7 are high level analysis of ICAC and ICAS conference proceedings, covering

38  Trustworthy autonomic computing

autonomic computing research in the second decade. As in the first decade, these are
analysed to show research stages against a maturity timeline.

In terms of author distribution, the academic community continues to dominate
the research effort, with the most publications. There is a 5 per cent reduction in
contribution from the industry category. However, there is a significant increase in
collaboration between academic and industry researchers. On the average, 26 per
cent of all publications in the second decade are classed as joint. This represents
an increase of over 8 per cent from 17.9 per cent in the first decade. This shows a
growing synergy between the academia and the industry in achieving the autonomic
computing goal as the challenges are well-understood.

In terms of emphasis, there is significant increase in storage and database
management (by 10 per cent), performance management (by 22 per cent) and
self-CHOP (by 18 per cent) related publications. This is expected as it cor-
roborates the trend identified towards the end of the first decade. The signifi-
cant jump in applying autonomic computing to address these areas is a direct
response to the challenge of large-scale systems identified towards the end of
the first decade. This shows how the second decade responds to the emerging
challenges of the first decade. The increase in scale and size of systems (e.g.,

Figure 2.9  � Reviewed the first decade publications in terms of major focus areas.
The focus areas, which are not exhaustive, represent recurring major
themes from both ICAC and ICAS conferences.

Table 2.6   ICAC proceedings distribution (second decade)

Distribution icac 12 icac 13 icac 14 icac 15 icac 16 icac 17 icac 18 icac 19 Total %

Authoring
Academic 18 17 20 19 40 30 18 13 175 60.3448276
Industry 10 3 3 5 3 3 0 1 28 9.65517241
Joint 19 14 6 14 11 10 5 8 87 30
Total 47 34 29 38 54 43 23 22 290
Emphasis
Storage/Database

management
14 11 8 11 5 5 2 4 60 20.6896552

Design and architecture 10 2 0 8 10 6 3 1 40 13.7931034
Performance

management
20 21 19 11 17 6 14 8 116 40

Self-CHOP 7 8 5 11 25 17 8 5 86 29.6551724
Survey 0 0 0 0 1 0 0 1 2 0.68965517
VT 2 1 1 1 3 2 0 1 11 3.79310345
Actual VT 2 0 0 1 2 1 0 0 6 2.06896552
Main application domain
Data centre 8 7 10 5 6 3 7 1 47 16.2068966
Distributed system 26 12 11 22 17 8 9 9 114 39.3103448
Networks (+ wireless

sensor networks)
4 7 2 2 7 8 4 3 37 12.7586207

Robotics 0 0 0 0 0 0 0 0 0 0
Technical approach
Policy 0 1 0 4 2 3 2 3 15 5.17241379
Learning and

knowledge
1 4 7 5 15 10 8 9 59 20.3448276

Table 2.7   ICAS proceedings distribution (second decade)

Distribution icas 12 icas 13 icas 14 icas 15 icas 16 icas 17 icas 18 icas 19 Total %

Authoring
Academic 14 13 6 17 3 9 9 11 82 72.5663717
Industry 2 1 1 1 1 3 2 2 13 11.5044248
Joint 3 3 1 5 1 5 0 0 18 15.9292035
Total 19 17 8 23 5 17 11 13 113
Emphasis
Storage/Database

management
1 0 0 0 0 0 0 0 1 0.88495575

Design and architecture 3 2 1 5 0 1 0 3 15 13.2743363
Performance

management
1 2 2 4 1 2 1 0 13 11.5044248

Self-CHOP 11 8 2 1 0 0 0 0 22 19.4690265
Survey 1 0 0 0 0 0 0 0 1 0.88495575
VT 3 2 0 2 0 1 0 1 9 7.96460177
Actual VT 0 0 0 0 0 0 0 1 1 0.88495575
Main application domain
Data centre 4 2 2 1 0 0 0 0 9 7.96460177
Distributed system 2 7 3 8 1 4 1 1 27 23.8938053
Networks (+wireless

sensor networks)
0 1 1 0 0 1 6 1 10 8.84955752

Robotics 1 2 1 4 3 2 1 7 21 18.5840708
Technical approach
Policy 3 0 1 1 0 0 0 1 6 5.30973451
Learning and

knowledge
2 2 3 1 0 4 6 4 22 19.4690265

Evolution of autonomic computing  41

cloud computing, online services and big data applications) has led to increased
demand and management of storage systems [63–66] – these studies also propose
solutions. Several other studies have proposed autonomic solutions to workload
scaling [52–54]. Performance management saw the second highest jump (22 per
cent) of all the categories. Studies in this category are widespread, ranging from
variety of performance metrics [67–71] to specific considerations, e.g., quality of
service and service level agreement [72–77] to energy efficient [78–83] related
performance management. There is no significant change in any of the design
and architecture, survey, VT and actual VT categories from the first decade.
These unchanged categories are discussed in detail in the general trend discus-
sion section below.

Findings in the analysis of the second decade largely corroborate those of the
first decade, (Figure 2.10). In terms of main application domain, the data centre
continues to dominate in the ranking of interest to the community. However, this
time we have noticed an increase in the consideration of energy efficiency for
data centres [78-83], encouraging green computing as a way to manage climate
change. Network and robotic categories saw a minor increase in consideration
from the first decade. There is no massive interest in these areas from the analysis.
Data centre/distributed systems remains the main application domain for auto-
nomic computing. This is an area that is witnessing exponential growth, due to
increasing reliance on cloud computing, leading to more complexities. As a result,
there is a significant upsurge in learning and knowledge, reflecting the applica-
tion of modern technologies, like machine learning and artificial intelligence, to
address those complexities. This also reflects current line of thinking and direc-
tion in technology solutions – ‘artificial intelligence to the rescue of everything
difficult’. This explains the significant rise, by 13 per cent, in the number of learn-
ing and knowledge–related publications in this decade. Although other autonomic
enabling techniques like fuzzy logic [47, 48, 84, 85], utility functions [86–89],
etc., still exist and continue to help in pushing the autonomic boundary, policy
autonomic remains the dominant technique.

There is reduction in the focus on design and architecture as there is now a
good hang on the design of autonomic systems. Trustworthy autonomics (VT and
VT_Actual) remains an area of real concern and importance but still largely unex-
plored. Recurring themes include autonomic power management in ever growing
data centres and distributed systems. Effort towards reducing data centre’s contribu-
tion to climate change is taking centre stage.

[Trustworthy autonomics (VT and VT_Actual) remains an area of
real concern and importance but still largely unexplored. Only about
3 per cent of the over 1,000 reviewed publications are VT related.
Far fewer than this are actual proposals for trustworthy autonomics
solution.]

42  Trustworthy autonomic computing

Figure 2.10  � Reviewed first and second decade publications in terms of major
focus areas. The focus areas, which are not exhaustive, represent
recurring major themes from both ICAC and ICAS conferences.
Analysis considers actual number of publications (a) and
percentage of all publications (b).

Evolution of autonomic computing  43

It is important to note the insignificant shift in the study of trustworthy auto-
nomics. We are well into the second decade of the study of autonomic computing,
and the general effort focusing on trustworthy autonomics has barely changed.
Only about 3 per cent of the over 1,000 reviewed publications are VT related. Far
fewer than this are actual proposals for trustworthy autonomics solution. There
is still a wide gap in our appreciation of the need for trustworthy autonomics and
the availability of the appropriate solutions. This further strengthens the case for
this book.

2.3.4 � First and second decades of autonomic computing research
at a glance

A general overview in the first two decades of the study of autonomic computing in
terms of major focus areas shows that survey and distributed systems are the least
and most considered areas, respectively (Table 2.8 and Figure 2.11). This shows the
level of understanding there is, in these considerations, of the extent of work done in
achieving the goal of autonomic computing. The second least considered category,
Actual VT, raises a concern. The dynamic nature of autonomic systems means that it
is close to impossible to comprehensively predict possible outcomes at design time,
making it difficult to predetermine whether the autonomic manager’s decisions are
or will be in line with the overall system’s goal. As a result, there is a vital need for
runtime validation of autonomic decisions which also contributes to trustworthy
autonomics. This area is still largely unexplored.

Analysis so far shows a progressive result in terms of what has been achieved
in the autonomic computing research. The academia is clearly leading the effort.
There is significant and increasing reduction in the number of publications in
both conferences (Figure 2.12). This can be due to a number of factors, includ-
ing acceptance rate (this usually modulates according to uptake), visibility of
conferences (publicity outlets), proliferation of conferences, etc. It is suggested
that this continuous decrease is largely due to the number of other publication
avenues – conferences and journals that accept similar topics. These avenues,
including those dedicated to autonomic computing, have continued to emerge
following the introduction of the autonomic computing concept. It would be
interesting to know if this trend will continue or whether these two conferences
will bounce back in the coming years. However, it is preferable to have dedicated
topic-specific conferences. This would help in tracking efforts being made in
those research areas.

As can be seen in Figure 2.11, trustworthy autonomics is still largely unex-
plored. Note that some of these publications only touched on some specific aspects
of the categories. The analysis results of the second decade largely corroborate those
of the first decade. These correctly reflect the identified trend and direction towards
the end of the first decade.

Table 2.8   ICAC and ICAS proceedings distribution in the first two decades of autonomic computing research

Distribution

icac
icas
04

icac
icas
05

icac
icas 06

icac
icas 07

icac
icas
08

icac
icas
09

icac
icas
10

icac
icas
11

icac
icas
12

icac
icas
13

icac
icas
14

icac
icas
15

icac
icas
16

icac
icas
17

icac
icas
18

icac
icas
19 Total %

Authoring
Academic 39 50 59 68 49 66 45 55 32 30 26 36 43 39 27 24 688 65.52
Industry 17 19 19 19 5 14 5 2 12 4 4 6 4 6 2 3 141 13.43
Joint 8 18 23 14 15 11 7 20 22 17 7 19 12 15 5 8 221 21.05
Total 64 87 101 101 69 91 57 77 66 51 37 61 59 60 34 35 1050 100
Main application domain
Data centre 3 12 17 15 12 13 13 14 12 9 12 6 6 3 7 1 155 14.76
Distributed

systems
17 11 17 11 1 6 3 6 28 19 14 30 18 12 10 10 213 20.29

Networks 8 6 7 7 2 5 4 4 4 8 3 2 7 9 10 4 90 8.57
Robotics 1 1 3 1 4 4 1 5 1 2 1 4 3 2 1 7 41 3.90
Storage and

database
management

5 5 8 5 1 3 1 5 15 11 8 11 5 5 2 4 94 8.95

Others
Design/

Architecture
7 15 16 9 6 12 6 10 13 4 1 13 10 7 3 4 136 12.95

Learning/
Knowledge

8 4 4 5 12 7 1 4 3 6 10 6 15 14 14 13 126 12

Performance
management

9 6 10 10 4 12 5 8 21 23 21 15 18 8 15 8 193 18.38

Policy 2 6 5 4 5 3 3 0 3 1 1 5 2 3 2 4 49 4.67
Self-CHOP 11 9 5 6 8 9 7 3 18 16 7 12 25 17 8 5 166 15.81
Survey 0 0 1 2 1 3 0 2 1 0 0 0 1 0 0 1 12 1.14
VT 4 4 6 5 2 3 1 3 5 3 1 3 3 3 0 2 48 4.57
Actual VT 1 1 1 4 1 1 0 0 2 0 0 1 2 1 0 1 16 1.52

Evolution of autonomic computing  45

2.4 � Trends, direction and open challenges

In this section, the analysis-by-problem approach (Figure 2.13) is used to show the
pattern (in terms of maturity stages) that the autonomic computing research commu-
nity follows in tackling the research challenge. This is useful in identifying the direc-
tion of travel and open/remaining research challenges and helps to focus the minds of
researchers. Figure 2.13 shows the observed stages (A–C) the research community has
adopted in addressing autonomic computing and a view of the current and open chal-
lenges (D) towards achieving the goal of autonomic computing. Stage D represents
themes that are considered open challenges based on the direction of research.

The analysis here is kept to a high level; however, finer-grained sub-stages may
exist. The stages are classified against a maturity timeline, as shown in Table 2.9
Figure 2.8. Although there are possible overlaps, only major and recurring themes
are considered for these stages.

Figure 2.11  � General overview in the first two decades (2004–2019) of the study
of autonomic computing. This analysis is based on the review of
about 1,050 conference (ICAC and ICAS) paper publications.

46  Trustworthy autonomic computing

Figure 2.12   Number of ICAC and ICAS conference publications

Figure 2.13  � Stages showing observed trend and direction of research after the
first two decades

Evolution of autonomic computing  47

Figure 2.14 shows the classification of proceedings used for determining the
information in Figure 2.13. Stage A represents research efforts (in this case proceed-
ings of both conferences) from 2004 to 2009. This is the early stage of the research.
The middle stage, Stage B, represents efforts from 2010 to 2014 – a time covering
towards the end of the first decade and the early years of the second decade. Stage C
covers efforts well into the second decade.

2.4.1 � Trends and direction
In the early stage (Figure 2.14), investigation reveals that research focused mainly
on stating the problem/challenge of evergrowing system complexity [37, 38], the
need for solution and justifying autonomicity as that solution [40, 90]. Majority of
work in this area, data centre and distributed systems, e.g., were hinged on dynamic
resource allocation [41, 42, 91] and were industry (e.g., IBM, HP, Sun) dominant.
Towards the middle stage, the research community intensified effort in developing
and applying techniques that have now been established and are increasingly used in
today’s research, e.g., policy-driven autonomics [43, 44], utility functions [46, 92],
fuzzy logic [47, 48]. There was also a huge effort in understanding the self-CHOP
autonomic functionalities. Although there has been debate on the actual composition
of autonomic functionalities and the list substantially growing [3, 5], it is a choice
to limit it to the original and generally accepted four self-CHOP functionalities in
this chapter.

By the middle stage, many of the autonomic enabling techniques, e.g., policy
autonomics, utility functions, fuzzy logic, etc., were fully developed and widely
accepted/used. Progress was now made in identifying and solving specific problems
in isolation and a significant number of papers offered specific solutions to spe-
cific problems. This stage saw an increase in studies specifically devoted to demon-
strating the autonomic functionalities in different application domains – examples
include self-configuration in distributed systems [93] and for autonomic managers
[94], self-healing in control theory [95], self-optimisation-based architecture [96]

Figure 2.14  � Stage classification for all conference proceedings. This is the
classification of proceedings used for determining the observed
trend and direction of research after the first two decades.

48  Trustworthy autonomic computing

and self-protection in pervasive systems [97]. Other specific areas of focus include
virtualisation for distributed systems and data centres [98–100], performance man-
agement – especially quality of service [73, 101, 102] and autonomic energy man-
agement [103]. The establishment of the composition of autonomic functionalities
led to interests, e.g., in how autonomic systems can be described in a universal
language that allows for a way to measure the extent of autonomicity exhibited by
a particular system [104]. Studies in this stage largely consist of implementations,
demonstrations and presentation of experimented results of proposed ideas.

Towards the beginning of the second decade saw the community starting to
address the bigger picture with concern now more to do with scale [56, 105] and
generalisation of techniques so as to make re-usable solutions. At this stage issues
of heterogeneity of services and platforms also began to arise. For example, the
community was now faced with addressing large-scale data centres with diverse
heterogeneous platforms. This increase in scale and size of systems (e.g., data
centres/distributed systems) coupled with heterogeneity of services and platforms
means that more autonomic managers could be integrated to achieve a particular
goal. This bringing together of many autonomic managers for a common goal led to
the need for interoperability between autonomic managers – this became one of the
new challenges for the second decade. It is still an open challenge.

Interoperability was somewhat neglected as a challenge in the first decade. Earlier
work, within the research community, was fundamentally concerned with getting
autonomic computing to work and establishing fundamental concepts and demon-
strating viability. Many mechanisms and techniques were explored. Now, in the sec-
ond decade, that the concept of autonomic computing is well understood and widely
accepted, the focus can shift to the next level; e.g., interoperability – how to manage
multi-manager scenarios, to govern interactions between managers and to arbitrate
when conflicts arise. These are the kind of problems that arose with the increasing
scale of systems [65, 66]. For example, when more than one autonomic manager is
needed to coordinate a large-scale system, there may be situations where one manager
counters the decision of another. There were a few mentions and general discussion
around this challenge [12, 106, 107] towards the end of the first decade.

The community had not yet made good progress on interoperability though there
were efforts on the way. For example, Anthony et al. [61] evaluate the nature and
scope of the interoperability challenges for autonomic computing systems, identify
a set of requirements for a universal solution and propose a service-based approach
to interoperability to handle both direct and indirect conflicts in a multi-manager
scenario. In this approach, an interoperability service interacts with autonomic
managers through a dedicated interface and is able to detect possible conflicts of
management interest. In this way, the interoperability service manages all interoper-
ability activities by granting or withholding management rights to different auto-
nomic managers as appropriate. Another example is the work in Reference [62]
which examines a web services solution that standardises access to cross-domain

Evolution of autonomic computing  49

hydrologic data repositories (of disparate semantic and syntactic definitions and
hosted on heterogeneous platforms) to facilitate data discovery and enable cross-
domain interoperability. The project emphasises the idea of a seamless interface
through which access can be gained to hydrologic data from multiple heterogeneous
data sources.

There has now been an increased focus in the autonomic research community
on interoperability. Several studies [36, 108, 109, 110, 36, 111] in the later stage
(Figure 2.14) have addressed the challenge of interoperability in many ways. The
study in Reference [108] looks at interoperability within autonomous swarms of
unmanned systems, another study in Reference [109] focuses on autonomic conflict
management between coexisting applications, while the study in Reference [110]
addresses interference-aware load balancing. The research in Reference [36] looks
at interoperability in achieving service level objectives, and Reference [111] is inter-
ested in multi-agent interaction within supply scheduling.

One recurring theme in the later stage is power management. Climate change
awareness/campaign has become popular in the last decade. This is also reflected
in the direction of research within the autonomic computing community as increas-
ingly several studies are focused on autonomic power management of data centre.
Efforts towards reducing the data centre’s contribution to climate change are taking
centre stage [79–83]. It is important to remember that the current stage is character-
ised by increased scale, new challenges and extended technologies (Figure 2.13). As
a result, there is a significant jump in learning and knowledge (Figure 2.11), reflect-
ing the application of modern technologies, like machine learning, to address those
complexities [63][112][113]. This explains the increase in learning and knowledge
in Figure 2.11. Also noticeable in Figure 2.11 is the decrease in the focus on design
and architecture as there is now a good hang on the design of autonomic systems
compared to the first decade.

2.4.2 � Open challenges
On the other hand, beyond current mainstream focus are evolving and open chal-
lenges, including issues of validation, trustworthiness and certification. The follow-
ing set of questions identified earlier [9] are yet to be fully answered:

•• What are the processes to ensure that component upgrades that are tested and
confirmed in isolation will not cause harm in a multi-system environment?

•• How can certified autonomic systems be achieved?
•• How can users be confident that a system does what it says?
•• How can consistency and reliability be achieved, over longer time frames,

beyond attaining self-management?

Out of the 1,050 reviewed publications, only 48 are VT related while only 16
are actual VT methodologies. The number for VT includes mainly those papers that

50  Trustworthy autonomic computing

incorporated validation, testing and reliability into their architectures, frameworks
or implementations and not necessarily as a core or critical feature. For example, in
the two decades under review, only two ICAS papers [12, 114] propose a method.
The work in Reference [12] presents a framework (based on model checking) for
verifying and detecting constraint violation when two or more workflows are exe-
cuted on the same system as a way of ensuring system trustworthiness. Page et al.
[114] propose a methodology to analyse and test autonomous systems in hazardous
environments, with the aim of verifying safe decision-making.

The few VT-related papers in ICAC include [9][115][116][117]. Hoi et al. [9]
ask the critical question of ‘How can we trust an autonomic system to make the best
decision?’ and proposes a ‘trust’ architecture to win the trust of autonomic com-
puting system users. The proposal is to introduce trust into the system by assign-
ing an ‘instantaneous trust index’ (ITI) to each execution of a system’s autonomic
manager – where ITI could be computed, e.g., by examining what fraction of auto-
nomic manager suggested actions the user accepts unchanged, or by examining how
extensive the changes that the user makes to the suggested actions are. The overall
trust index, which reflects the system administration’s level of trust in the autonomic
manager, is computed as the function ‍f

�
ITIi

�
‍ where ‍i = 1, 2, 3, : : :‍ and ‍ITIi‍ are the

individual ITIs for each autonomic manager execution. Kikuchi et al. [115] propose
a policy verification and validation framework that is based on model checking to
verify the validity of administrator’s specified policies in a policy-based system.
Because a known performing policy may lead to erroneous behaviour if the system
(in any aspect) is changed slightly, the framework is based on checking the con-
sistency of the policy and the system’s defined model or characteristics. In all the
reviewed first decade papers, this is the only VT method implemented with data cen-
tre case study. Landauer and Bellman [116] present a methodology that facilitates
the evaluation of design choices at system definition time while Reference [117]
concentrates on computational trust.

It should be noted that autonomic system trustworthiness goes beyond secure
computing. It is result oriented, not focusing on how a goal is achieved but the
dependability of the output. All systems, no matter how simple, are designed to
meet a need, but not all systems have security concerns. So, trustworthiness is not
all about security and validation; on the other hand, it is not about showing that a
system or process works but ensuring that it does exactly what it is meant to do. It is
also important to note that validation here needs to be runtime.

We have identified the problems of robust design, validation and related issues
on trustworthiness leading to certification [26]. In Reference [26], we outline the
challenges in current autonomic system validation methods and propose a strategy
leading to the achievement of autonomic systems certification. This strategy is a
roadmap defining the stages or processes in the journey towards full autonomic com-
puting. We posit that there are significant limitations to the way in which autonomic
systems are validated, with heavy reliance on traditional design-time techniques,

Evolution of autonomic computing  51

despite the highly dynamic behaviour of these systems in dealing with runtime
configuration changes and environmental and context changes. These limitations
ultimately undermine the trustability of these systems and are barriers to eventual
certification. Shuaib et al. [11] propose a framework that will allow for proper certi-
fication of autonomic computing systems. Central to this framework is an alternative
autonomic architecture based on intelligent machine design which draws from the
human autonomic nervous system. It is strongly believed that certification is critical
to achieving the full goal of autonomic computing.

[There are significant limitations to the way in which autonomic systems
are validated, with heavy reliance on traditional design-time techniques,
despite the highly dynamic behaviour of these systems in dealing with
runtime configuration changes and environmental and context changes]

Another open challenge is interoperability, discussed in Chapter 6. Effort here
will include evaluating the nature and scope of the interoperability challenges
for autonomic computing systems, identifying a set of requirements for a univer-
sal solution and proposing a service-based approach to interoperability to handle
both direct and indirect conflicts in a multi-manager scenario. An efficient solution,
e.g., stigmergic-based interoperability [118], will need to be seamless and consider
interoperability as an integral part of the system.

These are only a few main open challenges. As technology evolves, leading
to new complexities and issues, the autonomic computing solutions will need to
evolve too.

2.5 � Conclusion

This chapter has discussed the evolution of autonomic computing, focusing on the
autonomic architecture life cycle and the trend and direction of research towards
addressing the autonomic computing challenge.

For autonomic architecture, at the level of current state of practice, there are
techniques to provide runtime validation (for behavioural and structural conformity)
and additional console for higher level (and external) control. What is missing are
techniques for managing, e.g., in a longer time frame, instability and oscillatory
behaviour in autonomic systems. A holistic framework that collates all these capa-
bilities into a single autonomic unit is required. These are proposed in this book.

A broad and general analysis of autonomic computing research, in terms of
identifying trends in the research from 2004 to 2019, has also been presented. This
gives a thorough review of the state-of-the-art in trustworthy autonomics. Results
show that trustworthy autonomics, which is essential to the success of autonomic

52  Trustworthy autonomic computing

computing, has received very little attention compared to other focus areas. Only 9
per cent of over 1,000 reviewed research publications identify trustworthiness as a
challenge while only about 3 per cent propose actual methodologies targeting vali-
dation and trustworthiness although majority of these methodologies are application
dependent.

A roadmap towards achieving trustworthy autonomic systems, identifying
stages of layered autonomic solution within which appropriate processes and instru-
mentations are defined, needs to be followed. The stages can also be seen as concrete
autonomic developmental phases (in terms of maturity timeline) that lead to achiev-
ing certifiable autonomic systems. These stages should include the following:

•• Defining an autonomic system – what makes a system autonomic? This will
include a description of autonomicity and a means to measure the level of auto-
nomicity required for or attained by the system.

•• Setting out validation requirements, appropriate to the system’s definition, that
will meet runtime conditions.

•• Defining robust techniques and measures that ensure the system remains
consistent and reliable under almost all perceivable operating and contextual
circumstances.

The trend seen in the analysis in this chapter seems to be revealing a kind of
plan that is consistent with the roadmap towards achieving trustworthy autonomic
systems.

Chapter 3

Autonomic enabling techniques

Autonomic computing has been powered by a combination of many established and
new techniques. These include different algorithms, logics, functions, mechanisms,
routines, tools, etc., which are used to deliver desired autonomic functionalities.
This chapter presents some of these techniques and shows examples of how they can
be used to achieve relevant autonomic computing features.

‍ ‍

54  Trustworthy autonomic computing

In this chapter, you will be able to:

•• Study different autonomic enabling techniques
•• Understand how autonomic enabling techniques can be used to achieve auto-

nomic functionalities
•• Practice with autonomic enabling techniques
•• Understand how autonomic enabling techniques can be combined to achieve

trustworthy autonomics

3.1 � About autonomic enabling techniques

Autonomic computing leads to the creation of systems that are capable of self-
management – autonomic systems. This has been widely accepted to mean that such
systems are able to demonstrate some level of autonomic functionalities. So, auto-
nomic systems are defined by the autonomic functionalities they provide. These
autonomic functionalities, arguably not exhaustive, depending on domain applica-
tion, were originally limited to self-configuration, self-healing, self-optimisation
and self-protection (self-CHOP).

Each of the autonomic functionalities can be enabled by a single technique or a

combination of different techniques. For example, self-healing can be achieved by
implementing any fault-tolerant technique. Self-healing can also be achieved by speci-
fying relevant behaviours as policies (or rules). Building autonomic systems requires
imbedding these autonomic enabling techniques into the design of the systems.

3.2 � Simple exponential smoothing

Autonomic systems are designed to make decisions and adapt based on contextual
information. Relevant inputs from the operating environment are fed into the auto-
nomic system, which are processed for the system’s adaptation. Sometimes, these
inputs are erratic, irregular and could lead to instability in the system’s behaviour.
Making decisions based on erratic inputs can lead to unreliable outcomes. To enable
an autonomic system make reliable decisions with highly irregular inputs, the system
needs to be able to sanitise the inputs first. This sanitisation may involve analysing
the inputs for trends and removing noise before acting on them. Sometimes, it may
be necessary to be able to forecast or have an idea of the subsequent data inputs (next
expected values) and take those into consideration for more efficient adaptation deci-
sions. One way of doing this is to find a way of forecasting future values (data points)
with reference to the most recent data points. This is especially relevant in situations,
like autonomic computing, where data values have no form of trend or seasonality.

Simple exponential smoothing (SES) is a technique for extrapolating patterns
and trends in time-series data. This is used in analysing time-series data to smooth
the data stream, remove noise and forecast the next data in the sequence. In signal

Autonomic enabling techniques  55

processing, for example, the signal may fluctuate with high-frequency (noise), and
SES can be used to remove the noise and smooth the data. The SES (‍St‍) of a data
sequence (‍x‍) at time (‍t‍) is defined by the following:

St =
�
˛ � xt

�
+
��
1 � ˛

�
� St�1

�

where, ‍S0 = x0, t > 0‍ and ‍0 < ˛ < 1‍

The smoothed value ‍St‍ is a forecast for the next data sequence ‍xt+1‍ . The smooth-
ing constant (﻿‍˛‍) controls the closeness of the forecast value to the actual value. The
sequence begins at ‍t = 0‍, allowing for at least one observation before forecast can
start. The result is that ‍St‍ smoothens the data sequence, generating new values that
are stable and close to ‍xt‍ as possible. The idea here is to use a weighted average of
previous values in a particular series to forecast future values. This idea is very use-
ful in autonomic computing for making reliable decisions with unstable data inputs.

3.2.1 � Implementing an SES using python
SES is one out of three types of exponential smoothing techniques. It is suitable for
series that are unpredictable, i.e., series with no trend or seasonality. Holt’s expo-
nential smoothing is suitable for series with trend and no seasonality while Winter’s
exponential smoothing is suitable for series with trend and seasonality. These can be
implemented in Python using the Statsmodels package:

‍ ‍

The smoothing constant (﻿﻿‍˛‍) can be specified using smoothing_level, but
if this is not specified or set to None, the model will automatically optimise the

56  Trustworthy autonomic computing

value – Statsmodels will automatically find an optimised ﻿﻿‍˛‍ value for the forecast.
However, since a satisfactory forecast value is application domain dependent, an
‘optimised’ value may not always be the best value for ﻿﻿‍˛‍. So, it may be necessary
to specify different ﻿﻿‍˛‍ values and then choose a smoothed forecast option that best
meets the goal of the system in the case scenario – see the next section 3.2.2. For
more details about SES, see References 119, 120 and 121.

3.2.2 � Basic implementation of an SES using microsoft excel sheet
Implementing SES in Microsoft Excel is very straightforward. We need to note the
SES function, which is computed in order to generate the required forecast.

‍St =
�
˛ � xt

�
+
��
1 � ˛

�
� St�1

�
‍

Figure 3.1 is a Microsoft Excel computation of SES for a fictitious sample data
series (column C). Different ﻿‍˛‍ values (column A: 0.2, 0.3, 0.5, 0.8 and 0.25) are used
to generate different forecasts. As highlighted, the SES function (=(A2*$C3)+
((1-A2)*D2)) that is computed for Cell D3 is replicated for all the other cells in that
column. The ‘$’ notation is used to keep those values constant when replicating the

Figure 3.1  � Microsoft Excel computation of simple exponential smoothingSES
with different values

Autonomic enabling techniques  57

function. For example, the SES function becomes =(A2*$C12)+((1-$A$2)*D11)
for Cell D12. However, the column A values are changed for the other columns to
capture the different values of ﻿‍˛‍. For example, the SES function for Cells E3 and F3
becomes =(A3*$C3)+((1-$A$3)*E2) and =($A$4*$C3)+((1-A4)*F2), respec-
tively. The chart for the forecast is shown in Figure 3.2.

Figure 3.2 shows the SES of a sample series using different smoothing con-
stants. Ideally, the closer the smoothing constant is to 1, the closer the forecast will
be to the actual (expected) value. However, a value of ﻿‍˛ = 1‍, which would return the
exact expected actual value, does not necessarily mean that the forecast is optimised.
For studies showing how to determine optimal values of exponential smoothing
constants, see References 122, 123, 124, 125 and 126.

It is important to note that an optimised value of ﻿‍ ˛‍ is relative. In a situation
where it is useful to generate a more accurate forecast, an optimised value of ﻿‍˛‍, for
example, generated by default as explained in the Python implementation, would be
one that produces forecasts that are satisfactorily close to the actual value. In another
instance, say where the series is highly erratic and unpredictable, it may be preferred
to choose a smoothing constant that generates forecasts that are more stable as well
as close to the actual value. In the example of Figure 3.2, a smoothing constant value
of ‍̨ = 0.5‍ may be preferred as it represents a more fine-tuned outcome. This choice
may be justified because it smoothens out unwanted cyclical and irregular values.
It may also be the case that even a more stable outcome is desired, in which case
a smoothing constant value of ‍̨ = 0.3‍ is preferred. As can be seen in Figure 3.2, a
value of ‍̨ = 0.3‍ leads to an outcome that is well within the standard deviation of the
series, i.e., between data values of 3 and 15.

Figure 3.2  � Sample series showing SES. Different smoothing constants (0.2,
0.25, 0.3, 0.5 and 0.8) are used

58  Trustworthy autonomic computing

The smoothing constant value may also depend on the standard deviation of the
data series, considering the amount of variation of the forecast from the expected.
The important thing is to choose a smoothing constant value that enables the system
in which it is applied to achieve its intended goal. For example, in trustworthy auto-
nomic computing, having different values of the smoothing constant is useful for
dynamic tuning of behaviours. This is the focus of the implementation in this book
as explained in section 3.2.3. It is important to then note that the choice of a smooth-
ing constant value should be application dependent.

3.2.3 � Implementing SES in autonomic computing
SES is used in this book in Chapter 6 for analysing interoperability in a multi-
autonomic manager datacentre scenario. The model of the datacentre used in the
experimentation is as follows.

The datacentre model comprises the following:

•• A pool of resources ‍Si‍ (live servers) – a collection of servers available to the
autonomic manager.

•• A pool of shutdown servers Ši . These are ready to be powered and restored to
‍Si‍ as needed.

•• A list of applications ‍Aj‍ – a collection of applications supported (as services)
by the datacentre.

•• A pool of services Ṳ. This is a combination of applications and their provision-
ing servers.

•• Two autonomic managers that optimise the entire system.

As service requests arrive, the autonomic manager dynamically populates Ṳ to
service the requests. Service (application) requests arrive and are queued. If there
are enough resources to service a particular request, then it is serviced; otherwise,
it remains in the queue (or may eventually be dropped). The autonomic manager
checks for resource availability and deploys server(s) according to the size of the
request.

[In order to efficiently provision for service requests, the autonomic man-
ager needs a way of having an idea of the level of expected requests so as
to prepare for them. A trustworthy autonomic manager would require the
ability to forecast these expected requests.]

The size of application requests and the capacity of servers are defined in million
instructions per second. When a server is deployed, it is placed in a queue for a
time defined by a particular time variable. This queue simulates the time (delay) it
takes to load or configure a server with necessary application before provisioning.
Any server can be (re)configured for different applications and so servers are not
pre-configured. Servers are then ‘provisioned’ after spending time in the queue. The

Autonomic enabling techniques  59

provisioning pool is constantly populated as requests arrive. As requests are fully
serviced (completed), servers are released into the server pool and redeployed as
may be needed.

A basic system without any form of smartness can barely go far before the
whole system is clogged due to inefficient and unstructured resource management.
The level to which any autonomic manager can successfully and efficiently man-
age the process defined above depends on its level of sophistication. This largely
depends on how each autonomic manager is wired (in terms of architecture and
not necessarily the scheduling algorithm or actual component logic used) and may
include, in this case, the ability to optimally forecast requests for efficient adap-
tation. For example, two autonomic managers, differently wired, may employ the
same scheduling algorithm but achieve different results. Results here may be looked
at in terms of, say, ‘with such level of available resources how many requests were
successfully serviced over a period of time?’. These are the kinds of considerations
for trustworthy autonomic managers.

In this scenario, resource requests are sometimes erratic and the autonomic man-
agers need to be able to forecast requests and be able to plan for what is coming. The
smoothing constant variable (﻿﻿‍˛‍) for calculating SES is used to forecast the size (capac-
ity) of arriving or expected requests. The autonomic managers with interoperability
solution use SES in calculating when it is safe to start restoring servers or stop shut-
ting servers down as the case may be. The smoothing average is implemented on the
capacity (million instructions per second) of arriving requests, which sometimes can
be highly erratic. Taking decisions based on erratic behaviour can destabilise the entire
system and so appropriate smoothing constant (﻿﻿‍˛‍) is needed to stabilise the system. An
experiment with different smoothing constant values is shown in Figure 3.3.

It is important to choose a smoothing constant value that will not result in expo-
nential smoothed average that is very close to the actual data as that will not smoothen
the system’s behaviour. For the experiments in Chapter 6, exponential results using
three smoothing constants (0.05, 0.15 and 0.25) are analysed (Figure 3.3). Using any
of 0.15 or 0.25, as shown, will result in exponential smoothed average very close to
the actual data with no significant difference and so does not smoothen the system’s
behaviour. However, the smoothing constant of 0.05 proves best in smoothing the
system behaviour and using this will enable the autonomic managers to take more
reliable decisions. The experimental analyses presented in Chapter 6 are based on
smoothing constant value of 0.05.

3.3 � Dead-zone logic

In system design considerations, there are broadly two types of systems. These
are systems with predetermined behaviour, leading to predictable outcomes, and
systems whose behaviour may not be predetermined and whose outcomes are

60  Trustworthy autonomic computing

unpredictable. The operating and environmental conditions of predictable or fixed
systems are well-known. These conditions are adequately captured when configur-
ing the systems so that their behaviour and outcomes are always predictable under
almost all conceivable conditions.

On the other hand, flexible systems are exposed to environments where system
working conditions are dynamic, uncertain and most times, unpredictable. For these
systems, it is impracticable to fully predetermine their operating and environmental
conditions. These systems are designed to adapt their behaviour dynamically. Such
systems, for example, autonomic systems, are getting more pervasive and being
embedded in everyday objects. To adapt their behaviour, these systems are influenced
by contextual input – environmental condition, direct data input, etc. However, these
contextual inputs are not always predetermined and cannot be planned for during sys-
tem design time. Also, they are sometimes erratic or sporadic, and this can lead to
unstable behaviour and unreliable outcomes. Trustworthy autonomic systems should
be able to handle sporadic inputs and yet remain stable and produce reliable outcomes.

Consider two systems – a basic radiator controller with fixed input and condi-
tions and a driverless car with unpredictable inputs and conditions, for example.
Heating controllers are connected to a central heating system and are used to control
the overall ambient temperature of the environment, e.g., the home. They come in
all forms of shapes and with different features. There are ‘smart controllers’ these
days, like the Hive Active Heating (Figure 3.4). Regardless of all the smartness
of new heating controllers, they are based on a simple device called thermostat.

Figure 3.3  � Simple exponential smoothed results with three values of α (the
smoothing constant). It is important to have a justification for the
choice of α

Autonomic enabling techniques  61

A thermostat senses the temperature of an environment and controls the switching
ON or OFF of a heating system to maintain a desired temperature setpoint. Heating
controllers like Figure 3.4 are simply called thermostats.

The basic function of a thermostat is to sense ambient temperature and main-
tains it at a setpoint. Once a target temperature is set, the system maintains that tem-
perature. For example, in Figure 3.4, the TARGET temperature is set to 20 degrees
and the ACTUAL ambient is 18 degrees. As shown, heating is turned ON and will
remain so until ACTUAL temperature gets up to 20 degrees. As long as this sys-
tem is in use, it will not let the ambient temperature to fall below the TARGET
temperature without switching heating ON. This is a typical example of a fixed sys-
tem with known environmental conditions and predictable outcomes. The design of
such system can predetermine all conceivable environmental conditions (ACTUAL
temperature is either below or above TARGET temperature), making the system
predictable (heating is turned ON or OFF). Thermostats are reliable candidates for
home heating controllers because home temperature does not fluctuate frequently,
meaning that it is okay to have a system with a binary decision line.

In a different system, e.g., a driverless car (Figure 3.5), it is almost impossible to
predetermine all the driving conditions the car will face. This makes the design of such
cars very complex because designers cannot completely determine how the car should
react. Even with experience and research, human knowledge of driving conditions is
still limited. Machine learning and artificial intelligence may help the driverless car
make some important decisions; however, as driving conditions also include consid-
erations for human behaviour (e.g., the decision process of other road users – drivers,
cyclists, pedestrians, bystanders, etc.) which is highly unpredictable, it is difficult to
predict outcomes. It is also important to note that some of the ambient inputs the driv-
erless car uses for its decision-making are erratic and volatile, and decisions based on
such inputs can lead to undesirable outcomes not anticipated at design. This is a typical

Figure 3.4  � Hive Active Heating 2 control – an example of a fixed system with
predetermined behaviour

62  Trustworthy autonomic computing

example of a flexible system, which is exposed to environments where system work-
ing conditions are dynamic, uncertain and most times, unpredictable.

Dead-zone (DZ) logic is a simple mechanism to stabilise an erratic behaviour. It
was originally introduced by Dr. Richard Anthony [20, 43] and extensively demon-
strated in Reference 49. It prevents unnecessary, inefficient and ineffective control
brevity when an adaptive system is sufficiently close to its target state. This can be
used in designing fixed and flexible systems, where input-based decisions change
quite regularly, in order to calm system behaviour. This is widely relevant for trust-
worthy autonomic systems.

DZ logic is implemented using a tolerance range check object which controls the
choice of action to be taken, depending on specified or learned rules. These adaptation-
related actions could be as simple as increase value, decrease value or do not change
value. This logic is used in configuring the dependability check component of trust-
worthy autonomic architecture (TrAArch – see Chapters 4, 5 and 6) to enable the
autonomic manager achieve stability by mitigating oscillation and unwanted erratic
behaviours. The DZ width, demarcated by the DZ boundaries, defines an area (or state)
within which the autonomic manager does not allow a system to change its action.

Figure 3.6 is a representation of a system behaviour on a behaviour space divided
into two zones (A and B). A particular policy or adaptation action is activated within
each zone, demarcated by a decision boundary. So, for example, the policy action
for zone A is activated when the system’s state falls within the boundaries of zone
A. Within each zone, at decision or state points (represented by x and y), actions are
changed or maintained and these are persisted until the decision boundary is crossed.
For the behaviour in Figure 3.6, there seems to be stability in the system as the points
of behaviour change (state points – x and y) are reasonably far from the decision
boundary. This shows that the system does not change its behaviour frequently.

Figure 3.5  � RAC’s illustration of a driverless car – an example of a flexible system
whose behaviour may not be predetermined (Image from RAC.co.uk)

Autonomic enabling techniques  63

However, this cannot always be guaranteed as some systems are dynamic with fluc-
tuating and erratic behaviour caused by sporadic contextual inputs, for example.
This is the case with the example in Figure 3.7.

In Figure 3.7, the points of behaviour change are sometimes very close to the
zone boundary. This shows that the system changes its behaviour quite frequently.
This kind of performance might not be desirable in situations where each change
has significant overall implications. Take for instance, a system that helps in making
stock trading decisions might not be profitable if it frequently changes its decisions
in a volatile market condition. Such sensitive systems need to be able to tune out
erratic contextual inputs that could cause oscillation and instability in the process.
This is where the DZ logic is helpful.

In Figure 3.8, the system’s behaviour space is further divided into different
zones (A, B, C and D). This introduces DZ boundaries, defining DZ widths within
which a change of action is not allowed, which reduce the rate of action change
and thereby increasing stability. In this case, the points of behaviour change (state
points) indicate which zone action is activated or running – a, b, c and d indicate

Figure 3.6  � System behaviour space showing stable outcome. The behaviour of
the systems, represented by the graph, is not erratic

Figure 3.7  � System behaviour space showing unstable outcome. The system
behaviour may be erratic

64  Trustworthy autonomic computing

actions for zones A, B, C and D, respectively. Ideally, without the DZ boundaries, a
new action is activated each time the system behaviour crosses the decision bound-
ary. Without the DZ boundaries in Figure 3.8, there would have been 18 action
changes, which are now reduced to 9 by implementing DZ logic.

However, there are situations where it might be necessary to dynamically adjust
(tune) the DZ width to allow the system some flexibilities in decision-making based
on current (unplanned and learned) realities. Consider Figures 3.7–3.8 as good exam-
ples of when it may be necessary to dynamically tune the DZ widths. In Figure 3.9,
the system’s state points are very close to the edges of the DZ boundaries. At this
behaviour, it may be necessary to dynamically increase the DZ width – this is known
as dynamic tuning (e.g., ‍DZWidth + ˛‍). On the other hand, in Figure 3.10, where
most of the state points are far from the DZ boundaries which means that the system
rarely adapts, it may be necessary to reduce the DZ width (‍DZWidth � ˛‍) if the

Figure 3.8  � Illustration of DZ logic over a system behaviour space divided into
different zones and expressed in two dimensions of freedom. The system
behaviour is erratic in some places and a bit stable in other places

Figure 3.9   Dynamic tuning of DZ width to reduce adaptation

Autonomic enabling techniques  65

system is desired to adapt more frequently. It is important to note that the dynamic
tuning of DZ widths is application dependent. See Reference 49 for a detailed pre-
sentation of DZ logic.

3.3.1 � Implementing dead-zone logic in autonomic computing
Consider an experiment in which an autonomic manager is monitoring a system
behaviour to track a particular goal over time. A random number generator is used to
generate numbers between and including 15 and 25. An autonomic manager moni-
tors the number generation, tracking the value of 20, and performs one of three
actions at every number generation cycle – if generated number < 20, perform action
A, if > 20, perform action B and if = 20, perform no action. This can be an example
representation of so many smart systems, e.g., a heating controller monitoring the
fluctuating temperature of an environment, a sensor-powered system monitoring the
humidity around a preserved item, a sensor monitoring the movement of a fragile
cargo during transportation, etc. The role of the autonomic manager is to perform
some actions based on the outcome of the number generator (representing some
environmental conditions), and this can be implemented using the following code:

‍ ‍

Figure 3.10   Dynamic tuning of DZ width to increase adaptation

66  Trustworthy autonomic computing

This is a very basic implementation of the system and, depending on the rate
of the number generation, if the outcome frequently fluctuates around 20, the auto-
nomic manager will change its action frequently as well. That level of decision
change might be considered instability in some applications. Implementing a DZ
logic will help the autonomic manager calm the situation as follows:

‍ ‍

Autonomic enabling techniques  67

Note: this is an adaptation of a C# script for implementing the experiment
explained above. To be able to plot the graph shown in Figure 3.11 in
real time, you would need to use graphics class (e.g., the System.Drawing
Namespace) that provides for drawing to the display device. You can
always Google how to plot graphs in C# using System.Drawing or any
other Namespace.

In this second implementation, the autonomic manager implements DZ logic. By
implementing DZ logic, it becomes sensitive to the effects of its actions on the sys-
tem. This means that the manager looks at the impact of its actions on the system
over a long-term time frame and decides whether to retune itself. In this case, for
example, if the actions of the autonomic manager cause the system to oscillate, e.g.,
frequently changing its action, it creates a tolerance behaviour range within which
actions are not changed, i.e., actions are persisted. In order to manage erratic behav-
iour, the autonomic manager decides whether to reduce its rate of action change by
increasing the DZ width and thereby making the decision boundary (20 + DZWidth)
instead of 20 following some defined policy. The policy ensures that for every 10
decision cycles, decision change count of 4 or above is considered unstable while
no decision change is considered inactive. So, the autonomic manager is configured
to dynamically throttle the size of the DZWidth to only allow minimum of 1 and
maximum of 3 decision changes in every 10 decision cycles. Figure 3.11 shows the
result of this experiment.

Figure 3.11 represents the behaviour trend (in terms of action change) of the
autonomic manager with and without dead zone. The autonomic manager imple-
mented with DZ logic is represented by AutonomicManager_WithDZ while

Figure 3.11  � System behaviour analysis of an autonomic manager with and
without DZ logic. The autonomic manager implemented with DZ
logic is represented by AutonomicManager_WithDZ while the same
autonomic manager implemented without DZ logic is represented
by AutonomicManager_NoDZ

68  Trustworthy autonomic computing

the same autonomic manager implemented without DZ logic is represented by
AutonomicManager_NoDZ. The trend, indicated by the graph, shows the state of
each autonomic manager over a period of time – it alternates between crest and
trough each time the autonomic manager changes its decision. Results of the experi-
ment show that while AutonomicManager_NoDZ changed its decision a total of 236
times, AutonomicManager_WithDZ changed its decision 93 times. This represents a
significant improvement with DZ logic. Imagine, for example, how inefficient it will
be for a real-life smart system to make 236 decisions whereas it can make only 93
efficient decisions within the same time frame and conditions by simply implement-
ing DZ logic. It is obvious then that DZ logic can reduce instability and this is useful
in building trustworthy autonomic systems.

3.4 � Stigmergy

Stigmergy was first introduced in 1959, in reference to termite behaviour, by a
French biologist Pierre-Paul Grassé who defined it as ‘Stimulation of workers by
the performance they have achieved’ [127]. This has since inspired a wide range
of research and application in computer science leading to more accessible defini-
tions, understanding and implementations. Two interesting definitions of stigmergy
by Wiktionary are as follows:

“A mechanism of spontaneous, indirect coordination between agents or
actions, where the trace left in the environment by an action stimulates
the performance of a subsequent action.”

“A mechanism of indirect coordination between agents or actions, in
which the aftereffects of one action guide a subsequent action.”

Stigmergy is a self-organisation technique that enables coexisting agents (some-
times unaware of the existence of others) to achieve seamless coordination without
external control, planning or direct communication between agents. This is similar
to what is observed in ant colony. When an ant finds food, it leaves traces (phero-
mones) on its way back to the ant hill. These traces will guide other ants and itself
back to the food source. This type of collaboration also helps the ants to find and
establish shortest paths to food. The idea of stigmergy is simple – in a multi-agent
environment, the actions of one agent leave signs (traces) in the environment, which
are sensed by other agents and which influence their subsequent actions.

3.4.1 � Natural stigmergy: wildlife
Ever wondered how school/swarm of fish, birds, ants, termites, etc. (Figure 3.12)
coordinate their activities? Observing a bird flock, flying very closely and synchro-
nously in their hundreds and even thousands, perform some amazing choreographic
display can be satisfyingly intriguing. There are three important features to observe

Autonomic enabling techniques  69

here: the size of the individual bird is significantly so small compare to the size of
the swarm, a bird at the tail of the swarm does not see the one at the front and no
individual bird is in charge. Similar features are also observed in a school of fish.
Millions of tiny fish can move with such a ‘coordinated’ precision that when a preda-
tor attacks, without warning and in split-second, the school move in the same direc-
tion and speed. There appears to be a set of ‘natural’ simple rules that individuals
follow which leads to a collective intelligence.

This kind of behaviour where a synchronised coordination is achieved without
a dedicated or centralised leadership is possible because of stigmergy. Work done
by individuals leave guides for others in the environment. This is an example of col-
lective intelligence, which is achieved by a group of individuals working together,
sometimes unaware of the existence of others in the group, to achieve a common
goal. This is also known as swarm intelligence. This can result in a group of simple
devices following simple rules (e.g., policies) to efficiently achieve complex tasks.

3.4.2 � Natural stigmergy: humans
Stigmergy can also be observed in the way humans behave. Countless social experi-
ments have shown how easy it is for humans to be influenced in the way they behave

Figure 3.12  � Images showing swarm of birds, locusts, bees and fish. Image
credit: for birds, John Holmes (rs-online.com); for locusts,
Reuters; for bees, Deb Conway (GirlzWurk); for fish, Jamie Smith
(storytrender.com)

70  Trustworthy autonomic computing

by the environment in which they find themselves. Take a roadside trash pileup for
example. If a driver pulls up at a roadside and finds a trash nearby, instinctively some-
thing suggests to them that ‘it is okay to drop your trash here’. There is a big chance
that the driver will drop their trash in that same location. Although not all drivers will
behave in this way, it is likely that most drivers will, and with time there will be enough
contribution of trash to form a concentration of litter in that location. Whereas this is
an unwanted outcome, it shows how information or trace left in the environment can
influence the behaviour of other users and collectively, without any conscious coordina-
tion, a noticeable outcome that also affects the environment (for all the users) will be
achieved. This sounds like a perfect example of Pierre-Paul Grassé’s definition of stig-
mergy as the ‘Stimulation of workers [users] by the performance they have achieved’.

Pierre-Paul Grassé’s idea of stigmergy, a process in which termites achieve order
(building a home) from disorder (mud) through a cooperative process, has been stud-
ied and used to explain how some disordered systems can self-organise into ordered
systems without a plan or a central control [128, 129]. A special edition of Cognitive
Systems Research on Human Stigmergy [129] has documented some important stud-
ies and discussions on the theoretical developments and new applications in this area.

Just like stigmergy enables ants to use trails to find the shortest path between
points, human stigmergy also has the property of finding the shortest paths. While
‘shortest path’, for ants, might be the shortest path from their home to a food source,
for humans, it might be finding the most relevant or useful information. Take
Google Search* for example. Each time we conduct a search we expect the search
to return the most useful and relevant output following our search term. To achieve
this, Google Search engine deploys a number of complex algorithms to seek out the
‘most desired’ output. One of the algorithms that power this is Google PageRank
(Figure 3.13). This algorithm is based on popularity measure of webpages. Webpages
contain links (hyperlinks) to one another and thereby providing information about
which pages are most desired. The number of webpages that reference (contain links
to) a particular webpage is an indication of how important that particular webpage
is. As shown in Figure 3.13, the size of each webpage is proportional to the number
of links pointing to it. Google Search uses this popularity measure information to
place the most sought-after pages in the search result. The important property to note
here is that without any form of control, millions of webpages developed and used
by humans collectively ‘work together’ to improve the user experience of everyone
on the internet. This is an example of human stigmergy, achieved through uncoordi-
nated collective effort of different web developers.

It is natural to assume that more people using a particular thing is an indica-
tion of how good that thing is. Human behaviour and decision-making are usually
influenced by the experience of others and their feedback. We love to go where
others have gone before. In the research community, for example, the quality of a

* https://www.google.com/search/howsearchworks/

Autonomic enabling techniques  71

research publication is measured using some indices and metrics. These indices and
metrics mostly rely on number of citations. Research papers with more research-
ers and other papers referencing them (i.e., with more citations) are regarded as
high quality. Figure 3.14 shows the Google Scholar popularity/quality measure of
a researcher and IEEE Xplore popularity/quality measure of the IEEE Transactions
on Computers journal.

Stackoverflow†, a website that provides quick answers to computer science-
related questions, is another example of human stigmergy. Users ask questions and
other users provide answers. Users who find a particular answer useful upvote that
answer. According to Stackoverflow, ‘Upvoting helps exceptional content to rise
to the top and bring awareness to useful responses’. The system uses the upvotes
and date of posts to keep the most relevant contents on top. This way, through the

† https://stackoverflow.com/

Figure 3.13  � Example illustration of Google PageRank used in Google
Search engine. This represents different webpages with links to
(referencing) other webpages. The more webpages pointing to
a particular webpage, the more important that webpage is and
the more likely that it will be returned, in a search, as the most
sought-after source. In this case, the webpage in the middle (with
a dartboard) would certainly be returned as the most relevant and
useful webpage for the search

72  Trustworthy autonomic computing

uncoordinated actions of users on the environment (in this case Stackoverflow), the
users help themselves to find best question and answer match.

3.4.3 � Stigmergy in autonomic systems
Stigmergy in computer science involves modelling the behaviour of social animals,
especially ants, in which individual entities cooperate to solve complex problems. In
this organic cooperative arrangement, individuals work as if they were alone while
their collective activities appear to be coordinated [127]. A study in Harvard has dem-
onstrated how collective behaviour in biological systems can be applied to comput-
ing and robotics [130, 131]. In this study, a thousand identical tiny robots were pro-
grammed to mimic the collective behaviour of biological systems in forming different
patterns (Figure 3.15). Although these robots were given the same rules, they were
programmed with stigmergic properties to behave differently. With this, they were
able to achieve collective intelligence in completing tasks like formation of different
patterns without any central control. Although these formations are not as natural and
swift as observed in that of swarm of birds, the same idea is demonstrated. It took the
robots about 12 hours to complete each of the formations shown in Figure 3.15.

Figure 3.14  � Google Scholar and IEEE Xplore popularity/quality measure of a
researcher and a journal respectively. h-Index is the largest number
h such that h publications have at least h citations. i10-index is the
number of publications with at least 10 citations. Impact factor is
the average number of times articles from a journal published in
the past two years have been cited in the Journal Citation Reports
(JCR) year. Eigenfactor™ Score considers the number of times
articles from a journal published in the last five years have been
cited in the Journal Citation Reports year while also considering
which journals have contributed these citations. Article Influence™
Score is also a prestige measure and has all the features of the
Eigenfactor Score, with an additional normalisation to the number
of published papers. Explanations taken directly from Google
Scholar and IEEE Xplore

Autonomic enabling techniques  73

This technique can be useful for multi-agent coordination and control. Stigmergy-
based coordination is a rich and wide area of research that can be explored in many
forms. The potential of utilising stigmergy by software agents to interact with each
other and to collectively solve a common task is presented in Reference 132. A
multi-agent stigmergic coordination in manufacturing control system has been dis-
cussed in Reference 133. Coordination amongst the agents in the manufacturing
control system is a direct reflection of the pheromone-based stigmergy in ant colony.

One of the important observations here is that the robots in Figure 3.15 were
able to complete these tasks without any chaos. Notwithstanding the small space, a
thousand tiny robots, without the express knowledge of the presence of each other,
were able to collectively complete such tasks without counteracting one another.
This is a good idea and provides a promising solution for managing complex interac-
tions between coexisting autonomic systems in a multi-autonomic system environ-
ment. This is a required feature for trustworthy autonomic systems. In trustworthy
autonomic computing, there is need for a level of confidence in successful coexis-
tence of autonomic systems whether they are aware of the presence of others or not.

In this book, Chapter 6, stigmergy-based interoperability solution for managing
complex interactions between autonomic managers in a multi-manager scenario is
presented. Two autonomic managers are used in this arrangement (Figure 3.16). The
scenario is a datacentre managed by two autonomic managers: a power manager
responsible for optimising power usage and a performance manager responsible for
handling resource allocation. A basic conflict could arise, for example, when the
power manager tries to take off a server that the performance manager is about to
deploy. With stigmergy, both autonomic managers could be designed to collectively

Figure 3.15  � A thousand self-organising robots forming different patterns
through the cooperation of all. This is a demonstration of swarm
intelligence as shown in Reference 130. The robots were able to
collectively complete different formations without a central control

74  Trustworthy autonomic computing

compliment rather than conflict each other even without the express knowledge of
the presence of each other. With the existence of large and complex datacentres,
managed by multiple autonomic systems, stigmergy can help in achieving reliable
interoperability. See Chapter 6 for more discussions on multi-agent interoperability
and experiments.

Autonomic managers are designed by different vendors and may not have been
wired at design to coexist with other autonomic managers. Although they may per-
form brilliantly in isolation, but when they coexist with others may counter each
other’s actions. A stigmergic inspired solution, built into the system’s design, will
enable different autonomic managers to coexist and to achieve seamless coordina-
tion without even direct communication between them.

3.5 � Policy autonomics

Generally, a policy is a system of propositions, sometimes expressed as procedures,
for achieving desired outcomes. In computing, a policy can be used to express rules

Figure 3.16  � An illustration of a datacentre that is managed by two autonomic
managers. The power manager is responsible for optimising power
usage while the performance manager is responsible for handling
resource allocation

Autonomic enabling techniques  75

that define a system’s goal. In autonomic computing, these are context-sensitive
rules that determine runtime behaviour of the autonomic system. An autonomic sys-
tem takes in context data, analyses them and takes decisions for action. This process
can be captured in a policy as shown, for example, in the policy pseudocode for a
sensor below:

‍ ‍

3.5.1 � Policy-based networking
In networking, a policy is a formal set of statements, sometimes written in natural
language, that define how traffic should be routed or how resources should be man-
aged or allocated. For resource allocation, network management systems retrieve
policy statements stored in a policy repository during operation. A policy statement
can be as simple as:

‍ ‍

Policy-based routing is a technique used in making routing decisions based on
pre-decided policies written by network administrators. All network devices, for
example, routers and network hosts, usually use routing tables to decide how to
move packets across a network. A routing table contains a set of rules and necessary
information for determining where and how network packets will be directed. These
include routes/paths to destinations, metrics associated with those routes, best and/
or default path towards packet destinations, etc. Figure 3.17 is an illustration of a
network consisting of five Cisco routers (R1, R2, R3, R4 and R5).

76  Trustworthy autonomic computing

A router receives and forwards data packets to other network destinations.
When a router receives a packet, it checks the destination address of that packet
and then looks up on the routing table to decide the best or favoured route to the
identified network destination. So, the default routing decision here is based on the
destination address. However, there might be need to base this routing decision on
other criteria. For example, the network administrator may want to define special
routing for certain types of traffic based on certain conditions. This is achieved using
policy-based routing. It enables network administrators to override the default set-
tings of a routing table.

Let us assume that the default arrangement in Figure 3.17 is that a packet from
router one (R1) to router five (R5) travels from router one (R1) to router two (R2)
to router three (R3) and then to router five (R5) – R1 → R2 → R3 → R5. Policy-
based routing allows the administrator to override this arrangement. For example,
the network administrator can tell R2 to check for the source address, as well as
the destination address, of any packet and use R4 as the next hop if the source
address is R1. In this case, the packet from R1 to R5 will follow R1 → R2 →
R4 → R3 → R5 instead of R1 → R2 → R3 → R5. This will ensure that all packets
from R1 will avoid the R2 ↔ R3 interface. Whereas an interface is avoided in this
basic example, this may be used to avoid passing certain traffic through certain
networks.

Achieving policy-based re-routing as explained above will involve creating an
access control list that will be used to identify the traffic/packet of interest, creating
a route map using conditional (e.g., IF … THEN … ELSE) statements based on the
created access control list and then applying the route map using IP policy com-
mands. Below is a basic policy-based routing sample for achieving R1 → R2 → R4
→ R3 → R5:

Figure 3.17  � An illustration of policy-based routing. The routers will forward
data packets to target destinations based on default routing
information or based on defined routing policy

Autonomic enabling techniques  77

‍ ‍

3.5.2 � Policy-based autonomics
Policy-based autonomics is about using policies to achieve required autonomic
functionalities. This entails automating the process of achieving a task based on
the known or defined rules governing that task. A policy can be used to express
the structure and sequence of logical steps to be followed in achieving a specific
task. Methods for building policies for autonomic functionalities (e.g., self-CHOP)
have been explored in References 20 and 134. Richard Anthony [20] describes a
policy expression language which helps in building policies for autonomic systems.
A framework for building self-CHOP policies and performing policy-based auto-
nomic actions is presented in Reference 134.

The design of autonomic systems has fundamentally been based on the use
of policies and rules. This is one of the earliest autonomic enabling techniques.
It has been adapted, over time, with new technologies in the design of autonomic
systems and it is still very relevant today. One of the easiest ways of delivering
autonomic behaviours and functionalities is to express the desired goal using poli-
cies or rules and getting the system to adapt its behaviour accordingly. A desired
feature of a trustworthy autonomic system is proactive adaptation. It enables the
autonomic system to recognise or forecast adaptation concerns in advance and
prepares for it. This helps the autonomic system to deal with the peculiar con-
text dynamism in autonomic computing which places unique and complex chal-
lenges on trustworthy autonomic computing systems. Marwin Zufle et al. [135]
proposed a rule-based forecasting method for autonomic systems. The proposed
method supports dynamic rule learning which enables the autonomic system to
adapt its forecasting according to runtime conditions. The authors argue that ‘the
uncertainty that results from the gap between design time and runtime for adap-
tive systems, as well as the environmental uncertainty at runtime, decreases the
possibility that a forecasting method chosen at design time can cope with runtime
demands’ [135].

78  Trustworthy autonomic computing

[A desired feature of a trustworthy autonomic system is proactive adapta-
tion. It enables the autonomic system to recognise or forecast adaptation
concerns in advance and prepares for it. This helps the autonomic sys-
tem to deal with the peculiar context dynamism in autonomic computing
which places unique and complex challenges on trustworthy autonomic
computing systems.]

Policy autonomics has been well-studied and demonstrated. It has been used
in the actual design of autonomic systems as well as in different domain-based
applications. For example, policy autonomics is used in the design of autono-
mous agents in environments with uncertainties and different levels of complex-
ity [136]. One major challenge, with growing complexity, in business computing
of today is efficient management of cloud computing resources. Many studies
and implementations have relied on the use of historical data to forecast future
cloud system states and resource requirements. Whereas this has helped, to some
extent, in managing resource scheduling, there are still challenges – one exam-
ple is to do with scaling. This is because resource demand, in cloud computing,
remains heterogeneous and varies over time. Autonomic policy-based autoscal-
ing has been proposed as an efficient autoscaling scheduling solution [137, 138].
Policies are set and modified by system designers or admins and the autonomic
systems execute these policies by adapting their behaviour accordingly in order
to achieve the set goal.

Policy autonomics has been well-studied and demonstrated. It has been used in
the actual design of autonomic systems as well as in different domain-based applica-
tions. For example, policy autonomics is used in the design of autonomous agents
in environments with uncertainties and different levels of complexity [136]. One
major challenge, with growing complexity, in business computing of today is effi-
cient management of cloud computing resources. Many studies and implementa-
tions have relied on the use of historical data to forecast future cloud system states
and resource requirements. Whereas this has helped, to some extent, in managing
resource scheduling, there are still challenges – one example is to do with scaling.
This is because resource demand, in cloud computing, remains heterogeneous and
varies over time. Autonomic policy-based autoscaling has been proposed as an effi-
cient autoscaling scheduling solution [137, 138]. Policies are set and modified by
system designers or admins and the autonomic systems execute these policies by
adapting their behaviour accordingly in order to achieve the set goal.

One advantage of policy autonomics is that the system behaviour can easily
be modified. Since the policies determine the way the autonomic system behaves,
the system’s behaviour can be modified at any time by updating the policies. Note
that policies can be implemented as modules, which are fed into the system. These
simply comprise rules and actions. Consider the following basic room temperature
monitoring example.

Autonomic enabling techniques  79

3.5.2.1 � Room temperature monitoring example
Consider how you might implement a very simple room temperature monitoring
and control system. The rule is that the room temperature should not go below 15
degrees. The following set of C# pseudocode will perfectly implement this system.

‍ ‍

The rule for achieving the system’s goal, which is ‘room temperature should not
go below 15 degrees’, is expressed using a set of policy commands that ensures that
heating is turned ON whenever room temperature goes below 15 degrees. The ran-
dom number generation here represents inputs (room temperature measurements)
from sensors. Every time this code is called upon (the interval can be implemented
using a Timer class), the system checks the room temperature and decides whether
to switch heating ON or OFF.

3.6 � Utility function

In economics, utility is a simple concept for representing worth. The usage of this
concept has evolved and become very handy in may application domains – for
defining individual preferences. A utility function (UF) is a relative measure of how
much, to an individual, an option is preferred over another option. This measure is
relative because worth is defined by the individual. It provides a means of choosing
from several options, which are expressed as a series of weighted terms [20]. Terms
are values representing the options while weights represent worth. Actual utility
is then defined as the combination of the terms and weights. The higher utility is
always preferred.

Example
Let Utility = ‍U ‍, Term = ﻿‍T ‍and Weight = ‍W ‍, we can present the utilities of two options,
‍x‍ and ‍y‍, severally as follows:

•• If ‍Ux = 5‍ and ‍Uy = 10‍, then ‍y‍ is preferred over ‍x‍ (doesn’t mean ‍y‍ is twice better)
•• ‍Ux =

�
Tx1,Wx1, Tx2,Wx2, : : : , Txn,Wxn

�
‍

•• ‍Uy =
�
Ty1,Wy1, Ty2,Wy2, : : : , Tyn,Wyn

�
‍

80  Trustworthy autonomic computing

•• ‍Ux =
˚�
Tx1 �Wx1

�
,
�
Tx2 �Wx2

�
, : : : ,

�
Txn �Wxn

��
‍

•• ‍Uy =
˚�
Ty1 �Wy1

�
,
�
Ty2 �Wy2

�
, : : : ,

�
Tyn �Wyn

��
‍

•• ‍Ux =
˚�
Tx1 +Wx1

�
,
�
Tx2 +Wx2

�
, : : : ,

�
Txn +Wxn

��
‍

•• ‍Uy =
˚�
Ty1 +Wy1

�
,
�
Ty2 +Wy2

�
, : : : ,

�
Tyn +Wyn

��
‍

The higher utility is always preferred. However, it does not necessarily mean
that the higher utility is better by the magnitude of the difference. It is possible for an
option to have more than one term and associated weight. Utility can be expressed in
many ways, and the products of each term and its associated weight are combined,
in a certain way, to determine the worth of each option. There are several ways of
representing preferences and these are the basic ones:

•• ‍Ux > Uy‍     ‍x‍ is strictly preferred to ‍y‍
•• ‍Ux = Uy‍      either ‍x‍ or ‍y‍ can be chosen as both are equally preferred
•• ‍Ux � Uy‍     ‍x‍ is preferred at least as much as ‍y‍
•• ‍Ux � Uy � Uz‍     ‍x‍ is preferred at least as much as ‍y‍ and ﻿‍z‍
•• ‍Ux � Uy = Uz‍     ‍x‍ is preferred at least as much as ‍y‍ or ﻿‍z‍

So, utility is a measure of preferences amongst options while UF is a rule that
assigns importance to the available options. This explanation, illustrated using
Figure 3.18, is a very basic and simplistic representation of the concept. However,
this economic concept can be borrowed and adapted for decision-making process in
autonomic computing.

Figure 3.18 is an illustration of how we can calculate the utilities of two sys-
tems to decide our preference. Both systems have Terms defined as ‍SysATi‍ ,‍SysBTi‍

Figure 3.18   Basic utility calculator, programmed in C#

Autonomic enabling techniques  81

and Weights defined as ‍SysAWi‍ and ‍SysBWi‍. The terms can be seen as important or
required features of a system – if a system exhibits a particular feature (‍i‍), then a
value of 1 is selected otherwise 0 is selected. The weights represent the degree of
importance of the terms to the system. So, the utility for both systems is calculated
as follows:

	﻿‍ SysAUtility =
�
SysAT1 � SysAW1

�
+
�
SysAT2 � SysAW2

�
+
�
SysAT3 � SysAW3

�

+
�
SysAT4 � SysAW4

� ‍�

	﻿‍ SysBUtility =
�
SysBT1 � SysBW1

�
+
�
SysBT2 � SysBW2

�
+
�
SysBT3 � SysBW3

�

+
�
SysBT4 � SysBW4

�
‍�

The utility calculator (Figure 3.18) is developed using C#, and the commented code
is presented below. This is for the benefit of those who are new to programming,
showing how a simple concept can be coded.

‍ ‍

82  Trustworthy autonomic computing

3.6.1 � UF in autonomic systems
Below are some UF implementation considerations for autonomic systems.

3.6.1.1 � Autonomic system with multiple input sources – one or more
sources can be used

A simple illustration of the adaptation of UF in autonomic computing is shown in
Figure 3.19. The basic operation of an autonomic system is based on a sensor gener-
ating inputs (context information) into the system and an autonomic controller ana-
lysing these inputs to decide on adaptation actions, which are then executed by an
actuator (Figure 3.19(a)). Assuming we have a scenario where inputs are generated
by multiple sensors (Figure 3.19(b)), we are left with deciding which input the auto-
nomic controller should use per time. This may be a situation of having redundancy
to ensure high-availability, in which case input from any of the sensors can be used.
However, we can go further to achieve a better result as well as high-availability.

As shown in Figure 3.19(c), we can use UF to combine all input sources, instead
of using one per time, for a better outcome. It doesn’t matter if a particular source

Figure 3.19  � Adaptation of UF in autonomic computing: Panel (a) is a basic
illustration of an autonomic system. Panel (b) is an autonomic
system with multiple alternate input sources. Panel (c) combines all
input sources using UF for a better outcome

Autonomic enabling techniques  83

is down – if only one source is available, its input is used, otherwise all available
inputs are combined so that the best, say two out of three, sources are used. In this
kind of setting, it is desirable and feasible to use one or more out of all available
sources. A case example where it is important to use the most reliable source is
presented below.

3.6.1.2 � Autonomic system with multiple input sources – only most
reliable source can be used

In autonomic computing, the UF concept can be useful in a scenario where, for
example, the autonomic manager has several sources of input and needs to decide
on preferred input before acting on it. In this case, the term values are supplied by
environment sensors and the weights are set to reflect the application’s interpretation
of utility, as used in Reference 20. In the example presented in Reference 20, the
autonomic manager receives two signals from two sensors and needs to determine
which signal to use. Each signal has two terms (SpikeLevel and NoiseLevel) with
associated weights (W_spike and W_noise), respectively. A UF is used to determine
which signal to use.

According to Figure 3.20, the two signals are received and processed to generate
their individual SpikeLevel and NoiseLevel values. These two values are combined
with their associated weights in a UF to determine which signal is preferred at that
time. The utility of the signals (‍Ui‍) is determined by the tuple { ‍Ti1‍ , ‍Wnoise‍ , ‍Ti2‍
, ‍Wspike‍ } ﻿‍!‍ {(Ti1 * Wnoise), {(Ti2 * Wspike)} or {(Ti1 + Wnoise), {(Ti2 + Wspike)} . This
process is repeated each time the autonomic manager requires input from the sen-
sors. The preferred signal is used as input for the actual self-management process.

Figure 3.20  � Example of an autonomic manager using UF to choose between
signals (adapted from Reference 20). Autonomic decision can be
based on ether Signal-1 or Signal-2 and UF is used to decide on
the best signal to use

84  Trustworthy autonomic computing

This kind of setting is useful when it is important to ensure the reliability of the
input. Having more than one sensor helps in reducing input error – if one sensor is
unstable, obstructed or generates unreliable input, an alternative is used.

3.6.1.3 � Measuring autonomic systems
Another important application of UF in autonomic computing is in the area of measur-
ing the autonomicity of autonomic systems. Take Figure 3.18, for example, we can use
this system to measure the level of autonomicity (LoA) of both SysA and SysB – that
is, the degree to which both systems are autonomic. If we assume that any autonomic
system is defined by the self-CHOP functionalities (the important features of an auto-
nomic system), we can represent these functionalities as terms. We then assign weights
to the terms to define their level of importance for the different systems in a particular
context. Note that in order to effectively compare two systems, you need to define their
capabilities in the same context or application domain. The utilities of both systems
can now be calculated to establish their levels of autonomicity.

Measuring the LoA of autonomic systems is an important idea in the study
of autonomic systems and achievement of trustworthy autonomic computing. LoA
provides a quantitative approach to classifying autonomic systems according to
extent of autonomicity. See Chapter 7 for more details on this topic.

3.7 � Fuzzy logic

Traditionally, decision-making is based on binary logic – ‘0 or 1’, ‘yes or no’, ‘true or
false’, etc., without consideration of any degree of truth – the extent to which a state
is represented. For example, a cup of tea might be considered to be ‘cold’ or ‘hot’.
But because the definitions of ‘cold’ and ‘hot’ are relative, we need some ‘degree of
truth’ to put it in context – the tea could be very cold, cold, warm, hot, very hot, etc.
This is mostly how things are represented in real life and how the human brain rates
things. We do not live in a ‘yes or no’ world. There are usually some level of vague-
ness and imprecise information when it comes to decision-making and addressing
these properly will lead to more reliable decisions and outcomes.

Fuzzy logic is a technique for representing vagueness and imprecise informa-
tion. It allows for modelling of uncertainties in decision-making where conditions
are not precise and a lot of different factors need to be considered. It takes relevant
factors in decision-making and presents them as fuzzy sets and fuzzy rules, which
are combined for a more efficient decision. Fuzzy sets and rules reveal the vagueness
in those factors and express them in degrees of truth.

3.7.1 � Moving vehicle case example
Consider the example of a moving vehicle that needs to apply the brakes when it
is close to an object. The decision here is to stop the vehicle to avoid a collision
while the factors are ‘close’ and ‘brake’. Table 3.1 shows two decision-making logic

Autonomic enabling techniques  85

options for the vehicle stopping example. In the ordinary logic situation, the goal is
stated and the human driver decides, while considering a lot of imprecise factors,
when and how hard to apply the brakes. This sort of decision-making is quite rela-
tively straightforward for humans because they possess the natural ability to easily
deal with vague and imprecise data. In a world of growing automation, we would
like to replicate such ability in machines. However, this is not as easy or straightfor-
ward. We need to be able to let the machine in on how to deal with imprecise data
in decision-making. This is where the fuzzy logic option comes in (Table 3.1). It is
easier for the machine to deal with vague and imprecise data if they are defined as
sets and rules as shown. Note that sets are ideally expressed as a range of 0 (ele-
ment not belonging at all) to 1 (element fully belonging). However, we have used
the range of 1–5 in this example for easy explanation. Generally, fuzzy sets require
minimum value, maximum value and resolution (number of steps between mini-
mum and maximum values).

In this example, decision-making in the ‘ordinary logic’ case is Boolean based –
it is either the vehicle is close to the object or not and the response is to apply the
brakes or not. However, this does not entirely represent real-life situations. Ideally,
we would want to know how close the vehicle is to the object in order to decide how
fast or hard to apply the brakes. This is where fuzzy logic comes in. Fuzzy logic
considers how close (the degree of closeness is expressed as a range, in this case)
the vehicle is to the object as well as the weight of the vehicle (which affects how
the brakes perform) before deciding how fast or hard to apply the brakes. More rules
can be defined to take care of more possibilities. Also, more factors like vehicle
height, vehicle speed, other vehicles approaching behind, etc., may be considered to
define additional sets. This is closer to how humans make decisions – considering
‘all possible’ factors. By applying fuzzy rules on fuzzy sets, computers or automated
systems are able to represent knowledge in a way that allows them mimic human
decision-making process.

Table 3.1   Ordinary versus fuzzy logic-based decision-making

Ordinary logic Fuzzy logic

IF the vehicle is close to the object THEN
apply the brakes

Sets
•	 Distance to object (range): D = (1–5)
•	 Weight of the vehicle (range): W = (1–5)
•	 Force on brake pedal (range): F = (1–5)
•	 …
Rules
•	 IF D > 3 THEN F = 2
•	 IF D < 3 THEN F = 4
•	 IF D < 3 AND W >= 4 THEN F = 5
•	 IF D ≥ 2 AND W < 4 THEN F = 3
•	 …

86  Trustworthy autonomic computing

3.7.2 � Fuzzy logic controller
Figure 3.21 is an example of a fuzzy system, showing a typical fuzzy logic controller
for the moving vehicle case example. The system, which comprises four different
modules, processes some input sets to generate actionable output sets. The inputs
and outputs are crisp sets, i.e., precise values. For example, the weight of the vehicle
and its distance to an object are precise values. Also, the decision at the other end
(the output) is a definite action. The system takes in crisp inputs, fuzzifies them by
representing them in degrees of possibilities, applies some rules to generate fuzzy
decisions and then defuzzifies the decisions into crisp actions.

The fuzzification module converts the crisp inputs into fuzzy sets. These, in this
case, are several possible representations of the weight of the vehicle and its distance
to an object. From the example in Figure 3.21, it shows that the vehicle is significantly
heavy (W = 0.7) and not too close to the object (D = 0.4). The fuzzification module
also has defined fuzzy set for force on the break. The rules module defines several pos-
sible fuzzy rules, which are used in making the final decision. The Inference module
is the brainbox – it takes inputs from the fuzzification module and decides which rule
that best suits the condition defined by those inputs. The output(s) of the inference
module, which are still fuzzy values, are defuzzified by the defuzzification module.

3.7.3 � Fuzzy logic in autonomic system
Fuzzy logic, in reflecting human reasoning, attempts to model the human decision-
making and thought process. This is widely used in computing, especially expert
systems. The idea is to recreate, as close as possible, the human natural instinct in
terms of reasoning, and use that to build more reliable intelligent systems.

Fuzzy logic is a very important technique for autonomic computing, especially
trustworthy autonomic computing. It is desirable that autonomic managers are

Figure 3.21   Fuzzy logic controller for a moving vehicle (Table 3.1)

Autonomic enabling techniques  87

able to make reliable decisions. With fuzzy logic, autonomic managers make more
informed decisions as they are exposed to ‘all the facts’ about the situation. The idea
is to factor fuzzy logic into the design of autonomic systems. For example, let us
consider an autonomic stock trading system. The system should be able to consider
relevant factors and then decide when best to sell/buy, by what margin, and by what
magnitude. The system needs to track changes (e.g., in trade volumes, price, rates,
market mood, etc.) in real time in order to make profitable trading decisions.

Figure 3.22 is an example of implementing a fuzzy logic-powered autonomic
stock trading system. The fuzzy sets and rules can be as many as possible to reflect
as diverse and many conditions (or realities) and responses as possible. The more
fine-grained these are, the better the trading decision. This sits well with trustworthy
autonomic computing.

The fuzzy logic concept is about mapping a set of inputs onto a set of possible
outputs and combining them in a fuzzy function, which is capable of capturing the
imprecise, vague and overlapping concepts in an efficient manner [139].

3.8 � Autonomic nervous system

The autonomic nervous system is part of the human nervous system which con-
trols key functions without conscious awareness or involvement of the human.
It coordinates and organises how the activities of the body’s major organs and
glands are stimulated or inhibited. Take for example, an athlete running for the
Olympic 10,000 m Gold does not have a say on their heartbeat rate, rather they
concentrate on executing their planned technique for achieving the goal at hand.
The job of regulating the heart rate is done in the background without the athlete’s
consciousness.

Figure 3.22  � Fuzzy logic implementation for autonomic stock trading. Efficient
decisions are reached by processing imprecise information

88  Trustworthy autonomic computing

The autonomic nervous system is an independent control mechanism within the
human body that monitors body changes and affects appropriate regulatory response
to ensure survival amongst other things. To achieve this, the autonomic nervous sys-
tem autonomically regulates a number of parameters within ‘predetermined’ safe or
operational limits. These parameters have a bearing on survivability and examples
include blood–glucose concentration, sweat, food digestion, blood pressure, heart
rate and so on. However, all parameters are not uniformly related to lethality. To
survive, all essential parameters must be kept within their defined safe limits. Ashby
[140] has described those parameters that are closely linked to survival and are also
closely linked to each other such that changes in one lead to changes in others as
essential parameters. Observing that the human internal mechanisms, by working
together, continuously maintain the body’s essential parameters within their safe
limits, Ashby concludes that a system is adaptive only if it maintains its essential
parameters within the bounds required for ‘survival’.

[This is typically the idea mimicked by the autonomic computing concept –
setting a boundary (safe limits) within which parameters, sometimes pre-
determined, can be dynamically maintained to achieve a specific goal. This
is then powered by the self-* autonomic functionalities.]

The autonomic nervous system is a very complex system. The scope of this section
does not cover its intricate details and so, readers are encouraged to conduct per-
sonal studies on that if required. However, the main idea here is that mundane tasks
are completed in the background without the human consciously getting involved.
This allows the human to concentrate on other actions that require consciousness.
This is the idea that inspired autonomic computing. Autonomic computing is all
about mimicking the human autonomic nervous system, giving autonomic systems
the capability to manage some routine tasks by themselves while the user focuses on
achieving the system’s goal. With such capabilities, self-managing (autonomic) sys-
tems are able to ‘automatically’ (autonomically) manage mundane tasks in the back-
ground so the administrator can focus on the system’s goal – that is why they are
called self-managing systems. Any system that is capable of mimicking the human
autonomic nervous system, even in parts, can be considered an autonomic system.

While the runner focuses on the goal, Figure 3.23, a number of other things are
going on in the body (e.g., elevated heart rate, adrenaline release, sweat release,
increased breathing, etc.), without the runner’s control. In real life, the goal might
be a fixed target, as in in this case, the finish line. However, there are situations
where the goal is a moving target, dynamically changed or influenced by wide-
ranging (e.g., contextual) factors. This concept is very critical for trustworthy auto-
nomic computing. Trustworthy autonomic systems are goal-centric, i.e., the system
focuses on its goal and does any and everything within its capabilities to ensure that
the defined goal is achieved. This is why the definition of a goal, for trustworthy
autonomic systems, needs rethinking in order to cater for dynamic goals.

Autonomic enabling techniques  89

3.9 � Combining autonomic techniques

The autonomic enabling techniques can individually be adapted to achieve some
level of autonomic functionalities. For example, DZ logic can be used to build a
self-optimising autonomic system. Also, the whole idea of autonomic computing
is based on adapting the autonomic nervous system. It is also possible to achieve
greater autonomic functionality by combining techniques. For example, stig-
mergy has been used, in combination with trend analysis and DZ logic, to imple-
ment multi-agent interoperability in autonomic computing – see Chapter 6. The
proposed stigmergy-based dynamic interoperability solution allows for indirect
coordination, through the operating environment, between coexisting autonomic
managers.

Trustworthy autonomic computing is about strengthening the capability of the
autonomic system to make consistent and reliable decisions. There are many ways
of combining autonomic enabling techniques.

One example of combining techniques is where utilities are rendered using poli-
cies. A working example of combining UF and policy autonomics, where UFs are
specified within policy logic, is presented in Reference 20. Figure 3.24 shows how
UF, fuzzy logic and policy autonomics can be combined. Using the autonomic stock

Figure 3.23  � A runner naturally focuses on their goal and strategy while their
body works on taking them there

90  Trustworthy autonomic computing

trading example (see section 3.7.3 and Figure 3.22), a UF-based system can be used
to generate more accurate trading information.

So, Figure 3.24 is a combination of Figures 3.21.–3.22 to demonstrate the com-
bined effect of UF and fuzzy logic in building a more reliable autonomic stock trad-
ing system. The system can take input (trading information – represented as Signal-1
and Signal-2) from different sources. These inputs are processed to generate relevant
terms (‍Ti‍ – represented as NoiseLevel and SpikeLevel), which are combined with
associated weights (‍Wi‍ – represented as W_noise and W_spike) in a UF to return a
reliable trading information (‍x‍ – which represents the preferred of the two sources
or aggregated information from both sources). This is then fed into the fuzzy logic
module. The fuzzy rules can be presented using policies. An autonomic stock trad-
ing system that is based on this kind of combination will more likely lead to reliable
outcomes.

Another possible combination that is capable of resulting in more reliability
is shown in Figure 3.25. The combination of SES and DZ logic can lead to greater
stability in autonomic systems. Recall that DZ logic uses the DZ width to determine
when and when not to take adaptation action. Dynamically tuning the DZ width, as
discussed in section 3.3.1, can enable the autonomic system achieve self-stability
(see Figure 3.11). The value of the DZ width can be dynamically determined using
SES calculation, and as demonstrated in Chapter 6, the smoothing constant ﻿‍˛‍ can
influence the dynamical tuning of system behaviour, when combined with a DZ
logic, in order to achieve greater self-stability.

Figure 3.24  � A combination of UF, fuzzy logic and policy autonomics. UF is used
to select the best input from different sources and the selected input
is processed using fuzzy logic whose rules are expressed using
policies

Autonomic enabling techniques  91

The combination of SES and DZ logic, as explained above, can be crucial
in dealing with dynamic goals. Sometimes, the goal of an autonomic system is
a moving target and tracking such a goal requires dynamic decision-making and
adaptation.

3.10 � Conclusion

There are many autonomic enabling techniques and this chapter has only consid-
ered a few. These techniques are the building blocks that make autonomic sys-
tems what they are. If you consider these as standalone components with connec-
tion and interoperability interfaces, they can be used to define autonomic systems
of varying functionalities. Deploying one component is capable of achieving at
least one of the self-* autonomic functionalities and combining more components
results in even more functionalities. There is probably no limit to how autonomic
enabling techniques can be combined – examples have been discussed in this
chapter. The more efficiently these can be combined, the more trustworthy the
resulting autonomic systems will be. So, trustworthy autonomic computing will
require some level of leveraging the capabilities of different autonomic enabling
techniques.

There are other relevant techniques that can be used to achieve some level of
autonomic capabilities. For example, fault tolerance, which gives a system the abil-
ity to continue operating despite failure in some parts of the system, can be used

Figure 3.25  � A combination of SES and DZ logic. The smoothing constant
influences the size of the DZ width. With this, the DZ width can be
tracked dynamically

92  Trustworthy autonomic computing

to achieve self-healing autonomic functionality. Trend analysis helps in deducing
useful trends and information from a continuous stream of data, and this can help in
adaptation decision-making process of autonomic systems. The use of trend analysis
is shown in Chapter 6. Load balancing is another important technique. It enables
the efficient distribution of tasks across resources and can be used to achieve self-
optimisation autonomic functionality.

Chapter 4

Trustworthy autonomic computing

Trustworthy autonomic computing (TAC) looks beyond the basics of successfully
achieving an autonomic system to establishing basis for trusting that the autonomic
system does 'what it says it will do'. This chapter introduces the trustworthy auto-
nomic architecture (TrAArch) and covers the following:

•• The importance of TAC
•• The differences between TAC and Trusted Computing
•• How a TrAArch can be designed
•• Overview of the TrAArch framework

‍ ‍

94  Trustworthy autonomic computing

4.1 � About trustworthy autonomic computing

As we have seen, in Chapter 2, TAC has not been at the top of the list of priorities
for autonomic researchers. Efforts have mainly concentrated on design and method-
ology. Trustworthy autonomics entails a rethink – from just thinking ‘how do we
build autonomic systems’ to ‘how do we build dependable autonomic systems’.
The perception of users on the reliability of autonomic systems may be reflected in
the level of the public’s acceptance of autonomic systems. For complete reliance
on autonomic computing systems, the human user will need a level of trust and
confidence that these systems will satisfy specified requirements and will not fail.
It is also not sufficient that systems are safe, secure and perform within requirement
boundaries; outputs must also be seen to be reliable and dependable. Trustworthy
autonomics is a non-negotiable priority for researchers, developers and users.

This chapter looks at the differences between TAC and Trusted (or Trustworthy)
Computing and then presents a framework for a trustworthy autonomic architecture. This
trustworthy architecture will form the basis for several implementations in this book.

4.2 � Trustworthy autonomic computing vs trusted computing

In 2002, 1 year after the introduction of autonomic computing, Microsoft launched
the Trusted Computing (TC) paradigm with four pillars (security, privacy, reliability
and business integrity) for achieving trustworthy systems [141]. The same drive
for trustworthy systems also led to the formation of the Trusted Computing Group
(TCG), successor to the Trusted Computing Platform Alliance (TCPA), whose aim
is to improve the trustworthiness and security of future computer systems.

However, autonomic systems are unique in context when compared to ordinary
computing systems. For example, when a security-tight system pushes out unstable
outputs as a result of adaptive-borne oscillations, the system may be secure but has
not yet achieved trustworthiness. The peculiarity of context dynamism in autonomic
computing places unique and different challenges on TAC systems from those on
TC systems. Validation, e.g., which is an essential requirement for trustworthiness,
can be design-time based for ordinary computing systems but must be runtime based
for autonomic systems. This shows that achieving TC systems and TAC systems
take different courses.

[The peculiarity of context dynamism in autonomic computing places
unique and different challenges on Trustworthy Autonomic Computing
systems from those on Trusted Computing systems. Validation, for exam-
ple, which is an essential requirement for trustworthiness, can be design-
time based for ordinary computing systems but must be runtime based for
autonomic systems.]

Trustworthy autonomic computing  95

Computing has always been defined as the whole idea of a system taking an input,
processing that input and then outputting a result. This is illustrated using some
basic flowchart symbols in Figure 4.1. For ordinary computers, Figure 4.1a, valida-
tion would rely on coded rules based on predetermined and expected conditions.
This means that validation processes, represented by the Preparation symbol, can
be determined at design time for validating the system’s behaviour based on known
and expected conditions. For autonomic systems, Figure 4.1b, validation would rely
on adaptive procedures based on context dynamism. This means that validation pro-
cesses, now represented by the Alternate Process symbol, have to be able to deal
with unexpected conditions.

The Committee on Information Systems Trustworthiness in a publication defines
a trustworthy system as one which does what people expect it to do – and nothing
more – despite any form of disruption [142]. This definition has been the driving
force for achieving trustworthiness both in autonomic and non-autonomic systems.
The International Conference on Trust & Trustworthy Computing (TRUST) and the
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom) are two major conferences with significant work in
the TC domain. In this domain, trust is defined in terms of establishing confidence
in the authentication of the identities of parties at both ends of a communication line
[143]. Major themes addressed in this domain include access control, privacy, intru-
sion detection, malicious attack detection and prevention, secure communication,
authentication, etc.

Figure 4.1  � Validation processes in normal and autonomic computing systems.
Validation is predetermined in normal systems but not in autonomic
systems

96  Trustworthy autonomic computing

[Within the Trusted Computing domain, trust is defined in terms of estab-
lishing confidence in the authentication of the identities of parties at both
ends of a communication line.]

The TC paradigm focuses mainly on addressing security issues and concerns posed by
spiralling security attacks and susceptibilities. The prime concern here is developing
computing systems that would be more rugged in dealing with security issues than the
current ones. TAC on the other hand focuses on trustworthiness in autonomic environ-
ments – with unique and dynamic variabilities. There is a careful consideration of the
environmental conditions in which these systems operate. The primary concern here
is not how a system operates to achieve a result but how dependable is that result from
the user’s perspective. The question here is how do we show that a system is capable
of achieving a desired and dependable result under expected range of contexts and
environmental conditions and beyond? This implies that trustworthiness in autonomic
computing should be result orientated and not process orientated. This is necessary for
self-managing systems to mitigate the threat of losing control and confidence.

While TC covers general computing, it does not address the dynamic contextual
characteristics in which autonomic systems operate. For example, TC seeks trusted
interactions and interoperability between parties and platforms. But having a trusted
third party or platform does not entirely suggest trustworthiness at the user’s end.
While this assures security and privacy, it does not assure reliability of results in
terms of the degree of assuredness of the system’s dependability in the face of any
performance tuning. In self-managing systems, decisions are ‘made on the fly’ to
address runtime changes and TAC will ensure that these decisions do not affect the
system negatively. TAC will nonetheless benefit from the TC concept. Table 4.1 is a
summary of some points that distinguish the TC paradigm (as it is) from the required
TAC solution. This in a way explains what will be needed for a TAC solution.

Trusted Computing Paradigm
Trustworthy Autonomic Computing
Solution

Trust is defined in terms of establishing
confidence in the authentication of the
identities of parties at both ends of a
communication line

The primary concern here is not how a
system operates to achieve a result but how
dependable is that result from the user’s
perspective

Table 4.1   An overview of TC vs TAC

TC Paradigm TAC Solution

Result Predefined Could be dynamic
Validation Design-time Requires runtime consideration
Orientation Process orientated Result orientated
Main Focus Security focused Dependability focused

Trustworthy autonomic computing  97

While the introduction of the TC paradigm has led to discussions about trust-
worthy computing, there is as yet no defined and widely accepted trustworthy con-
cept, methodology or architecture specifically targeting autonomic systems. There
is, therefore, a need for a context based trustworthy autonomic solution.

4.3 � Trustworthy autonomic architecture

The autonomic architecture as originally presented in the autonomic computing
blueprint has been widely accepted and deployed across an ever-widening spectrum
of autonomic system designs and implementations. This has predominantly focused
on the architecture’s basic Monitor-Analyse-Plan-Execute control loop. However,
several implementation variations of this control loop have been promoted. Despite
the progress made, the traditional autonomic architecture and its variations are not
sophisticated enough to produce trustworthy autonomic systems. A new approach
with inbuilt mechanisms and instrumentation to support trustworthiness was
required.

At the core of system trustworthiness is validation and this has to satisfy runtime
requirements. In large systems with very wide behavioural space and many dimen-
sions of freedom, it is close to impossible to comprehensively predict possible out-
comes at the design stage. So, it becomes highly complex to ensure that or determine
whether the autonomic manager’s decision(s) are in the overall interest and good of
the system. There is a vital need, then, to dynamically validate the runtime decisions
of the autonomic manager to avoid the system ‘shooting itself in the foot’ through
control brevity, i.e., either too loose or too tight control leading to unresponsive
or unstable systems, respectively. The traditional autonomic architecture does not
explicitly and integrally support runtime self-validation; a common practice is to
treat validation and other needed capabilities as add-ons. One of the earlier solu-
tions was an extension of the traditional architecture to accommodate validation by
including a test activity [18] – see section 4.2.1. The main point of this solution is
to integrate a self-test activity into the autonomic architecture to provide a runtime
self-validation of autonomic manager decision-making processes. But the concern
remains whether validation alone can guarantee trustworthiness.

[The ultimate goal of the new approach is not just to achieve self-
management but also to achieve consistency and reliability of results
through self-management.]

The need for trustworthiness in the face of the peculiar nature of autonomic systems
(e.g., context dynamism) comes with unique and complex challenges that valida-
tion alone cannot sufficiently address. Take, for instance, if an autonomic manager
erratically changes its decision, it ends up introducing noise to the system rather than
smoothly steering the system. In that instance, a typical validation check will pass each

98  Trustworthy autonomic computing

correct decision (following a particular logic or rule) but this could lead to oscillation
in the system resulting in instability and inconsistent output which could emerge at a
different logical level or time scale. A typical example could be an autonomic manager
that follows a set of rules to decide when to move a server to or from a pool of servers.
As long as the conditions of the rules are met, the autonomic manager will move serv-
ers around not minding the frequency of changes in the conditions. An erratic change
of decision (high rate of moving servers around) will cause undesirable oscillations
that ultimately detriment the system. What is required is a kind of intelligence that
enables the manager to smartly carry out a change only when it is safe and efficient to
do so – within a particular (defined) safety margin. A higher level of self-monitoring to
achieve, e.g., stability over longer time frames, is absent in the traditional autonomic
architectures. This is why autonomic systems need a different approach. The ultimate
goal of the new approach is not just to achieve self-management but also to achieve
consistency and reliability of results through self-management. These are the core val-
ues of the proposed architecture in this chapter.

[What is required is a kind of intelligence that enables the manager to
smartly carry out a change only when it is safe and efficient to do so –
within a particular (defined) safety margin.]

We have looked at some proposed trustworthy architectures and some isolated pieces
of work that could contribute to TAC in section 4.2.1. We have also established
the case for the consideration of trustworthiness as an integral part of the system’s
architecture. What is missing is the capability of addressing issues beyond system
validation. As important as validation capability is, also crucial is the capability to
ensure that any ‘validated’ process does not lead to oscillation and/or instability in
the system resulting in undesirable results.

This section presents a new architecture for trustworthy autonomic systems. This
new architecture differs from the traditional autonomic computing architecture and
includes mechanisms and instrumentation to explicitly support runtime self-validation
and trustworthiness. The traditional architecture does not lend itself robustly enough to
support trustworthiness and system dependability. For example, despite validating the
system’s decisions within a logical boundary set for the system, there is the possibility
of overall erratic behaviour or inconsistency in the system emerging, e.g., at a different
logical level or on a different time scale. So, a more thorough and holistic approach,
with a higher level of checking, is presented here to convincingly address the depend-
ability and trustworthy concerns. In the new approach presented here, validation and
trustworthiness are designed-in and integral at the architectural level.

First, the new TrAArch is introduced. This would represent the stage of sophis-
tication in the autonomic architecture life-cycle denoted by level (v) in Figure 2.2
and shown in Figure 4.2. Next, the components of the new architecture are each
discussed in full details. The components themselves are not hardwired – underlying
logic are application dependent.

Trustworthy autonomic computing  99

4.3.1 � TrAArch framework
TrAArch is a new architecture for trustworthy autonomic computing. This sec-
tion presents a general view of the architecture followed by a detailed explana-
tion of its components. Figure 4.3 shows the components of the autonomic frame-
work that embody self-management, self-validation and dependability provisions.
The architecture builds on the traditional autonomic solution, denoted as the
AutonomicController (AC) component. Other components include ValidationCheck
(VC) and DependabilityCheck (DC). The VC component is integrated with the
decision-making object of the controller to validate all the AC decisions, while the
DC component guarantees stability and reliability after validation. The DC com-
ponent works at a different time scale, thus overseas the finer-grained sequence of
decisions made by the AC and VC components.

Figure 4.2  � Autonomic architecture life-cycle stage denoting trustworthy
autonomics. The sensor (S) receives inputs (context information)
into the system, the autonomic controller (AC) analyses these inputs
and based on the outcome of the analysis decides on an adaptation
action, the validation check (VC) validates the decided action and
returns feedback if validation fails, the dependability check (DC)
monitors the behaviour of the system over time and compares that
with the general goal of the system and may inhibit the actuator
(A) that executes the adaptation decision

Figure 4.3   High-level view of the TrAArch

100  Trustworthy autonomic computing

The AC component (based on, e.g., Monitor-Analyse-Plan-Execute logic,
Intelligent Machine Design framework [11], etc.) monitors the managed system
for context information and takes decisions for action based on this information.
Initially, the system’s goal is defined using policies. The line of action decided
by the AC component is then validated against the policies/rules defining the
system’s goal by the VC component before execution. If, e.g., there is a policy
violation, meaning that the validation fails, the VC reports back to the AC other-
wise the DC is called to ensure that the outcome does not lead to, e.g., instability
in the system.

The DC component comprises of other sub-components that make it adaptable
to address different challenges. This feature makes TrAArch generic and suitable
for addressing evolving autonomic capability requirements. Take, for instance, as in
Chapter 6, TrAArch can be adapted to address interoperability challenges in com-
plex interactions in multi-agent scenarios. Predictive component is one example of
the DC sub-components that allows it to predict the outcome of the system based on
the validated decision. The DC either prevents execution and sends feedback, e.g.,
some calibration parameters, to the AC or calls the actuator to execute the validated
decision.

4.3.2 � Overview of the TrAArch architecture components
Let us start by representing the TrAArch architecture in progressive stages of
increasing level of detail. First, the self-management process is defined as a Sense–
Manage–Actuate loop, where Sense and Actuate define touchpoints, and Manage is
the embodiment of the actual autonomic self-management. The touchpoints are the
autonomic manager’s interfaces with the managed system. Figure 4.4 is a detailed
representation of the architectural framework.

Figure 4.4  � TrAArch framework. The AC analyses inputs from the sensor and
decides the adaptation action to take. The VC performs runtime
validation of the adaptation decision. The DC performs a longer-
term validation while the actuator executes the adaptation actions

Trustworthy autonomic computing  101

Traditionally, the AC senses context information, decides on what action to
take, following some predefined rules or policies, and then executes the decided
action. This is the basic routine of any autonomic manager and it is at the core of
most of the autonomic architectures in use today. At this level, it matters that there
is an autonomic unit. However, the content of that unit does not matter much –
that is, it does not matter what autonomic control logic is employed so long as it
provides the desired autonomic functionalities. This means that the AC component
can be configured according to any autonomic control logic of choice, making the
framework generic as it is not tied to any one control logic. However, the choice of
the autonomic control logic will contribute to the eventual Level of Autonoimicity
rating of the system – see LoA in Chapter 7.

[The AC component of the TrAArch framework provides designers the
platform to express rules that govern target goal and policies that drive
decisions on context information for system adaptation to achieve the
target goal.]

Basically, the AC component introduces some smartness into the system by intel-
ligently controlling the decision-making of the system. Once an action is decided,
following a detailed analysis of context information, the decision is passed on for
execution. This is at the level of sophistication defined by the autonomic architecture
life-cycle level 1 (Figure 2.2 (i) and (ii) – section 4.1). So, the AC component of the
TrAArch framework provides designers the platform to express rules that govern
the target goal and policies that drive decisions on context information for system
adaptation to achieve the target goal.

There is one significant concern that is unique to autonomic systems: input vari-
ables, also known as context information, are dynamic and most times unpredict-
able. Although rules and policies are carefully and robustly constructed, sensors
(data sources) sometimes do inject rogue variables that are capable of thwarting
process and policy deliberations. In addition, the operating environment itself can
have varying volatility – causing the controller to become unstable in some cir-
cumstances. Thus, a mechanism was needed to mitigate behavioural and structural
anomalies. Examples of behavioural anomalies include contradiction between two
policies, goal distortion, etc., while examples of structural anomalies include illegal
structure not conforming to requirement, division by zero, etc. This is where the VC
component comes in. It should be noted that AC will always decide on action(s) no
matter what the input variable is. Once the AC reaches a decision, it passes control
to the VC, which then validates the decision and passes it on for execution. For
example, the VC checks to ensure that no system policy is violated as a result of
any behavioural and/or structural anomalies. If the check fails, VC sends control
feedback (CF) to AC while retaining previous passed decisions. A CF is more of an
inhibition command that controls what actions are and are not allowed by the man-
ager. This can be configured according to deployment requirements.

102  Trustworthy autonomic computing

The overview of the VC is that while it focuses on the goal of the system, it
deploys self-validation mechanisms to continuously perform self-validation of the
autonomic manager’s behaviour and configuration against its behavioural goals and
also reflects on the quality of the manager’s adaptation behaviour. The nature and
level of test, and how it is configured, are entirely user-defined. So, the VC is a
higher-level mechanism that oversees the activities of the AC to keep the system’s
goal in check and on track. The ultimate concern here is to maintain the system goal
whilst adhering to defined rules and policies, i.e., adding a level of trust by ensur-
ing that the target goal is reached only within the boundaries of specified rules. It
is then left for designers to define what constitute validation ‘pass’ and validation
‘fail’. Actual component logics is application specific but some examples in litera-
ture include fuzzy logic [47], reinforcement learning [144], policy autonomics, etc.
This is at the level of sophistication defined by the autonomic architecture life-cycle
level 2 (Figure 2.2 (iii) and (iv) – section 4.1).

In real life however, we understand that despite the autonomic manager tak-
ing legitimate decisions within the boundaries of specified rules, it is still pos-
sible to have overall system behavioural inconsistencies, that is, a situation where
each individual decision could be correct, by logic, and yet the overall behaviour
is wrong. A situation where the autonomic manager erratically, though legally,
changes its mind, thereby injecting oscillation into the system, could be a major
concern especially in large scale and sensitive systems. This is beyond the level of
consideration in the state-of-the-art shown in Figure 2.2 (i-iv). Therefore, it is nec-
essary to find a way of enabling the autonomic manager to avoid unnecessary and
inefficient change of decisions that could lead to oscillation. This task is handled
by the DC component.

The DC allows the autonomic manager to change its decision (i.e., adapt) only
when it is necessary and safe to do so. Consider a simple example of a room temper-
ature controller, in which it is necessary to track a dynamic goal – a dynamic target
room temperature, which depends on inter alia weather conditions. The autonomic
manager is configured to maintain the target temperature by complying with the fol-
lowing logic and automatically switching heating ON or OFF:

IF RoomTemperature < TargetTemperature THEN ON_Heating
ELSE IF RoomTemperature > TargetTemperature THEN OFF_Heating

The VC would allow any decision or action that complies with the above basic
logic. With the lag in adjusting the temperature, the system may decide to switch
ON or OFF heating at every slight tick of the gauge below or above the target,
when room temperature is sufficiently close to the target temperature. This may
in turn cause oscillation, which can lead to undesirable effects. The effects are
more pronounced in more sensitive and critical systems, where such changes
come at some cost. For example, a data centre management system that errati-
cally switches servers between pools at every slight fluctuation in demand load

Trustworthy autonomic computing  103

is cost ineffective. Actual component and sub-component logic of the DC are
user-defined.

One powerful logic example for implementing the DC component is the Dead-
Zone (DZ) Logic. A DZ logic is a mechanism to prevent unnecessary, inefficient and
ineffective control brevity when the system is sufficiently close to its target value.
In simple terms, the logic helps to manage inconsistent and erratic adaptation. It is
implemented using an object known as Tolerance-Range-Check (TRC) that encap-
sulates the logic and a three-way decision fork that flags which action (left, null or
right) to take depending on the rules specified [20]. The DZ can be dynamically
adjusted to suit changes in environmental volatility. A mechanism to automatically
monitor the stability of an autonomic component, in terms of the rate the component
changes its decision, e.g., when close to a threshold tipping point, is presented in
Reference 43. Dead zone logic allows the system to monitor itself and take action if
it detects instability at a higher level than the actual decision-making activity – this
means that a system has to exceed a boundary by a minimum amount before action
is taken. The DZ Logic is explained in Chapter 3 and implemented in Chapter 5.

The DC component may also implement other sub-components like Prediction,
Learning, etc. This enables it to predict the outcome of the system and to decide
whether it is safe to allow a particular decision or not. An example sub-component
logic is Trend Analysis logic, which identifies patterns within streams of informa-
tion supplied directly from different sources (e.g., sensors). By identifying trends
and patterns within a particular information, e.g., spikes in signal strength, fluctua-
tion in stock price, rising/falling trends, etc., the logic enables the autonomic man-
ager to make more-informed control decisions. This has the potential of reducing the
number of control adjustments and can improve overall efficiency and stability. The
analysis of recent trends enables a more accurate prediction of the future – so with
Trend Analysis logics, autonomic managers can base decisions on a more complete
view of system behaviour.

So, after validation phase, the DC is called to check, based on specified rules, for
dependability. DC avoids unnecessary and inefficient control inputs to maintain stabil-
ity. If the check passes, control is passed to the Actuator otherwise a recalibration feed-
back (RF) is sent to the AC component. An example of a RF is dynamically adjusting
(or retuning) the dead zone width of the DZ logic as appropriate. The RF enables the
autonomic manager to adjust its behaviour to maintain the level of required trust.

So, while VC looks at the immediate actions, DC takes a longer-term view of
the autonomic manager’s behaviour over a certain defined time interval. A particular
aspect of concern, though, is that for dynamic systems, the boundary definition of
the DZ may itself be context dependent – that is, in some circumstances it may be
appropriate to allow some level of changes that under different circumstances may
be considered destabilising. This concern is taken into consideration when defining
such boundaries (the DZ width).

104  Trustworthy autonomic computing

[An autonomic system, no matter the context of deployment, is truly trust-
worthy when its actions are continuously validated (i.e., at run time) to
satisfy set requirements (system goal) and results produced are depend-
able and not misleading.]

So, the traditional autonomic architecture suffices for short-term adaptation. To
handle longer-term frame adaptation, e.g., cases where continuous validation
fails to guarantee stability and reliability, requires a robust autonomic approach.
This robust autonomic approach is what the proposed TrAArch offers. Consider
the whole TrAArch as a nested control loop (Figure 4.5) with AC as the core
control loop while VC and DC are intermediate and outer control loops, respec-
tively. In summary, a system, no matter the context of deployment, is truly trust-
worthy when its actions are continuously validated (i.e., at run time) to satisfy
set requirements (system goal) and results produced are dependable and not
misleading.

There are issues that may need further investigation. The three (AC, VC and
DC) TrAArch components allow the autonomic system designer to specify indi-
vidual controls and processes that will guide the system to reach stated goals – that
is, the system’s goal state or expectations. However, it is possible for the system to
struggle to or never be able to reach that goal state. The DC component, in particu-
lar, has the capacity to dynamically and continuously modify the general system
behaviour until the goal state is reached. But, if the system is not able to ever reach
the goal state, it will then be appropriate to modify the design of the components
starting with the DC component as it inhibits the behaviour of VC and AC com-
ponents. There is no element of time in TrAArch solution – there is no specified
time limit before the system is considered unable to converge to goal state. A time
element will depend on the goal of the system and could be learnt over time for a
specific application or could be determined at design.

Figure 4.5   A nested loop representation of TrAArch

Trustworthy autonomic computing  105

It is also important to note that, as a limitation, the success of the TrAArch is
largely dependent on the way that the system goals are stated. For example, the
checks carried out by VC and DC components are in conformity with the system’s
stated goals. So, the behaviour of these components and, in general, the output of the
system will be affected if there is a problem in the rules defining the system goals
or if the goals are ambiguous. Although the DC component can be configured to
dynamically detect and address some levels of anomalies, this will be to the extent
of the component logic used.

4.3.3 � Other relevant [early] architectures
Additional area of relevance is the architectures from the Robotics research such as
Rodney Brooks’ Subsumption Architecture [145] and William Ashby’s Ultrastable
Systems [146]. Both architectures are selected because of their close relevance to
the proposed TrAArch. The subsumption architecture is in some way related to
TrAArch in terms of the control techniques employed – for example, layered and
multi-loop control techniques. Ultrastable systems relate to TrAArch in the aspect
of stability and reliability. In a way, TrAArch may be seen as containing a hybrid of
the Subsumption and Ultrastable architectures.

The subsumption architecture is a reactive behaviour-based robotic architec-
ture. As an alternative to the traditional artificial intelligence behaviour guidance
through symbolic mental representations of the world, the architecture uses a sense-
decide-action control to guide robotic behaviour. Generally, the architecture uses
the approach of decomposing a problem into several units, solving the sub-problems
for each unit and then composing the solutions [145]. In this approach, based on
the complete desired behaviour for a robot, the architecture decomposes the desired
behaviour into a hierarchy of layered sub-behaviours with corresponding levels of
competence. A level of competence is a specification of all the behaviours expected
of a robot. Each of the layers is responsible for implementing a particular level
of behaviour competence and higher layers are able to subsume (i.e., suppress or
inhibit) lower layers. All the layers receive sensor information and then generate
decisions that are passed on to actuators.

4.3.3.1 � The subsumption architecture and TrAArch
In terms of layered control, the controls in the subsumption architecture are based on
the desired behaviour and environment for the robot while the controls in TrAArch,
specified within the AC, VC and DC components, are based on the stated goals of
the system with additional capacity to handle unexpected environmental conditions.
In terms of multi-loop control, higher levels of control in both architectures are
able to inhibit lower levels of control. In subsumption architecture, however, higher
levels of competence include, as subsets, lower levels of competence. For example,
if a robot encounters a task requiring a level of behaviour competence at level ‘2’,
the layer of control at level ‘2’ will inhibit the controls at levels ‘1’ and ‘0’ while the
controls from level ‘3’ up will not be activated. With this approach, the system gets

106  Trustworthy autonomic computing

more complex as the level of competence grows. In TrAArch, on the other hand, a
higher control inhibits a lower control only when the lower control ‘operates outside
the system stated goals’. Whereas sensor information is fed into all the layers (both
active and inactive) in the subsumption architecture at the same time, only the first
layer, the AC, in TrAArch receives sensor information. For the subsumption archi-
tecture, feeding sensor information to all the layers has memory implications and
also leads to redundancy, as all layers do not use the information at the same time.
In TrAArch, the sensor information is fed into the AC component that makes control
decisions after analysing the sensed information. In actual sense, the output of the
AC component is passed as input to the VC component and the output of the VC
component is passed as input to the DC component.

4.3.3.2 � The ultrastable system architecture and TrAArch
The Ashby’s ultrastable system architecture [146] defines adaptive behaviour that is
aimed at achieving stability in the same way and manner the human autonomic nerv-
ous system aims to achieve survivability. The whole idea of the ultrastable system
is to maintain the subsystems in a state of stable equilibrium. Parashar and Hariri
[147] give a detailed description of Ashby’s ultrastable system within the framework
of the autonomic nervous system (ANS). ANS is an independent control mecha-
nism within the human body that monitors body changes and affects appropriate
regulatory responses to ensure survival amongst other things. To achieve this, the
ANS autonomically regulates a number of parameters within ‘predetermined’ safe
or operational limits. These parameters have a bearing on survivability and exam-
ples include blood-glucose concentration, blood pressure, heartbeat rate, pressure
of heat on the skin, and so on. However, all parameters are not uniformly related to
lethality. To survive, all essential parameters must be kept within their defined safe
limits. Ashby has described those parameters that are closely linked to survival and
are also closely linked to each other such that changes in one lead to changes in oth-
ers as essential parameters [146]. Observing that the human internal mechanisms,
by working together, continuously maintain the body’s essential parameters within
their safe limits, Ashby concludes that a system is adaptive only if it maintains its
essential parameters within the bounds required for ‘survival’. The term ‘survival’ is
relative and, in ultrastable systems, means a state of ‘stable equilibrium’.

The ultrastable system architecture builds on two principles: (1) the goal of the
adaptive behaviour and the survivability of the system are directly linked and (2)
the system will always work towards returning to its original equilibrium state if
the environment pushes it out of its state of stable equilibrium [147]. The ultrastable
system architecture consists of two feedback loops: one that operates frequently and
makes small corrections to control small disturbances and a second that operates
infrequently and changes the structure of the system when the essential parameters
are pushed outside the survival boundary – the later handles longer disturbances.
The two feedback loops allow the system to continuously interact with the environ-
ment and be able to self-adapt to maintain a stable state of equilibrium.

Trustworthy autonomic computing  107

Ashby’s ultrastable system is an excellent technique for achieving stability
within the frameworks of a predefined state of stable equilibrium. This overlaps with
the stability aspect of TrAArch. Although in TrAArch, the boundary that defines
state of stability could be dynamic which the system is able to track over time. Also,
within the frameworks of stability as defined in TrAArch, the rate at which the ultra-
stable system architecture returns a system to stable equilibrium could itself have a
bearing on instability.

4.4 � Conclusion

In this chapter, I have analysed the differences between TAC and Trusted (or
Trustworthy) Computing. I note that, although a trustworthy system has been defined
as one that ‘does what people expect it to do – and nothing more – despite any
form of disruption’, the peculiarity of context dynamism in autonomic computing
places unique and different challenges on trustworthiness for autonomic systems.
So appropriate measures need to be put in place – for example, runtime based self-
validation and self-monitoring capability that guarantees stability over longer-term
time frames.

I have also analysed the traditional autonomic architecture, with its variations,
and have found that it is not sophisticated enough to guarantee the level of trustwor-
thiness required for autonomic systems. A new architecture for trustworthy auto-
nomic systems that is different from the traditional architecture and that includes
instrumentation to explicitly support runtime self-validation and trustworthiness has
also been presented. The new architecture is termed TrAArch. The definitive goal
of this new approach is not just to achieve self-management but also to achieve
consistency and reliability of results through self-management. Other relevant archi-
tectures have also been discussed.

The Monitor-Analyse-Plan-Execute (MAPE) control loop forms the building
blocks of the traditional autonomic architecture. With wide acceptance, many auto-
nomic studies and implementations are predominantly based on this architecture’s
control loop. I admit that while successes have been achieved using this architecture,
it remains vague and limited in offerings as already identified. For example, the
MAPE-based architecture does not integrally support runtime self-validation that is
a prerequisite for trustworthiness; a common practice is to treat validation and other
needed capabilities as add-ons. It is important to note that these capabilities cannot
be reliably retro-fitted to systems.

[A trustworthy system has been defined as one which does what users
expect it to do – and nothing more – despite any form of disruption.
However, the peculiarity of context fluidity in autonomic computing
places unique challenges on trustworthiness for autonomic systems.]

108  Trustworthy autonomic computing

It is also important to note that validation alone does not always guarantee trust-
worthiness as each individual decision could be logically correct but overall sys-
tem may be unreliable. Take, for instance, a system that makes decisions based on
binary conditions will be validated as long as such conditions are met, regardless
of how close to the margins. But it could be undesirable and distractingly annoy-
ing to human users if the system changes its decision at every slight deviation from
the margins – in this case, the actions of the controller may be validated but at the
same time lead to unstable and undesirable conditions. So, it is important to con-
sider situations beyond the level of validation where logical processes/actions could
sometimes lead to overall system instability. Such a situation, capable of injecting
oscillation into the system, is a major concern especially in large scale and sensitive
systems. Consequently, a new approach is required in which validation and support
for trustworthiness are not treated as add-ons. The TrAArch design guarantees self-
monitoring over shorter and longer time frames. To demonstrate the feasibility and
practicability of the proposed approach, empirical analysis case example scenarios
have been presented in this book (see Chapters 5 and 6).

Chapter 5

Trustworthy autonomic architecture
implementations

The traditional autonomic architecture has been shown in Chapter 2 not to explic-
itly and integrally support runtime self-validation that is a prerequisite for trustwor-
thiness. The practice of treating required capabilities, e.g. for trustworthiness, as
retrofitted add-ons are unscalable and unsustainable. A new trustworthy autonomic
architecture (TrAArch) with inbuilt mechanisms and instrumentation to support
trustworthiness is proposed in Chapter 4. This chapter provides an implementation
and empirical analysis of the new architecture.

‍ ‍

110  Trustworthy autonomic computing

In this chapter, you will:

•• learn the workings of TrAArch
•• understand how to adapt, implement and use the new architecture
•• appreciate the attributes of trustworthy autonomics
•• understand the differences between stability and optimality in the context of

autonomic computing

This chapter provides an implementation and empirical analysis of the new
architecture. Two experimental demonstrations – an easy-to-understand autonomic
marketing scenario and a more complex self-adapting datacentre resource request
and allocation management case scenario – are used. The first case scenario demon-
strates how the new architecture can maximise cost and improve trustability and effi-
cient target marketing in a company-centric autonomic marketing system that has
many dimensions of freedom and which is sensitive to a number of contextual vola-
tilities. The second case example scenario, which is an implementation of a datacen-
tre resource request and allocation management, is a more complex experimental
analysis designed to analyse the performance of the proposed TrAArch architecture.

To demonstrate the attributes of the new architecture, this chapter presents an
implementation and simulation analysis of the TrAArch architecture. Two case
example scenarios are examined. The first case example is a deployment of the
architecture to an envisioned autonomic marketing system that has many dimen-
sions of freedom and which is sensitive to a number of contextual volatilities. An
autonomic marketing system, equipped with autonomic functionalities, monitors the
market in real time to formulate, using real-time market information, appropriate
marketing strategies for dynamic, adaptive and effective target marketing. This sce-
nario is chosen because autonomic marketing offers a simple, easy-to-understand
and yet robust platform for expressing autonomic systems according to discrete
levels of autonomic capabilities. In the second example, the architecture is demon-
strated in a resource allocation scenario, modelling basic datacentre resource alloca-
tion management. This is a more complex and robust implementation of TrAArch.
Since datacentres have many dimensions of complexities, arising from their scale,
large number of tuning parameters, etc., they provide a rich domain in which to
evaluate a wide range of techniques, tools and frameworks for autonomic comput-
ing. However, the implementation here focuses on resource request and allocation.

In both examples, detailed experiments are designed to analyse the performance
of three different systems, based on three different autonomic architectures. The
first system (SysA) is based on the traditional autonomic architecture, represented
by the basic Monitor–Analyse–Plan–Execute logic. The second system (SysB) is
an upgraded version of the traditional autonomic architecture that includes a test
element, represented by Monitor–Analyse–Plan–Validate–Execute logic. The third
system (SysC) is based on TrAArch, represented by a nested Monitor–Analyse–
Plan–Validate–DependabilityCheck–Execute logic. The DependabilityCheck

Trustworthy autonomic architecture implementations  111

component incorporates the dead-zone logic (see Chapter 3). Note that SysB does
everything SysA can do and more and SysC does everything SysB can do plus more
(see Figure 5.1).

Key for Figure 5.1:

•• S – Sensor for monitoring context information
•• AC – Autonomic Controller, comprising the analyse and plan elements of the

MAPE loop
•• VC – Validation Check, for testing/validating the decision taken by the AC
•• DC – Dependability check, a longer-term check on the validated decision to

ensure output is trustworthy
•• A – for actuating/executing the overall/eventual decision

5.1 � Case example scenario 1: autonomic marketing system

The scenario here is that of targeted television advertising during a live sports
game. A company wishes to run an adaptable marketing campaign on television
with different adverts (of different products), appealing to audiences (fans) of dif-
ferent demographics. For example, to be aired at different times, in two countries,
during a live World Cup match between the two nations. There are four adverts
(Ad1, Ad2, Ad3 and Ad4) to be run and the choice of an ad will be influenced by,
amongst other things, viewer demographics, time of ad (local time, time in game,
e.g. half time, TV peak/off-peak time, etc.), length of ad (time constraint), cost of
ad, who is winning in the match, etc. The ad choice, amongst other things, would
have to meet business goals and also appeal to viewers. The autonomic manager is
expected, within the boundaries of the system’s set rules and goal (see excerpt in
Rule 5.1), to dynamically decide on which ad to run. So, at every decision instance,

Figure 5.1  � Representation of systems for the experiment. SysA is based on
the traditional autonomic architecture, while SysB is an upgraded
version of the traditional autonomic architecture that includes a test
element and SysC is based on TrAArch.

112  Trustworthy autonomic computing

the autonomic marketing system collects context information (e.g. viewer demo-
graphics, ad constraints, who is winning in the game, etc.) and makes decisions
based on the analysis of the information collected.

‍ ‍

The idea is to dynamically and yet efficiently run localised market campaigns
that are sensitive to fans’ setting while the match lasts. This is a typical example of a
system with many dimensions of freedom and very wide behaviour space. For brevity,
the behaviour space is divided into four different zones (Zones A–D) and expressed
along two dimensions of freedom (Mood and CostImplication) as shown in Figure 5.2.

The two dimensions of freedom represent a collation of all possible deci-
sion influencers (context information) into two key external variables – Mood and
CostImplication. Mood is defined by many variables (e.g., MatchScore, i.e., infor-
mation about who is winning, and WeatherInfo), while CostImplication is defined
by other variables like TimeOfAd and LengthOfAd. An action (in this case, RunAd1
or RunAd2 or RunAd3 or RunAd4) is defined for each zone. Each action (ad run) is
thus activated only in its allocated zone, following specified policy (excerpt shown
in Rule 5.2). The policy analyses the context information fed into the system and
throws up a decision for an action – which ad to run. If the behaviour of the sys-
tem, for example, falls within the zone defined by low mood and low costimplica-
tion (Zone C), the autonomic manager activates RunAd1 – in this case, Ad1 is run.
Various design-time specified internal variables, e.g., L_BenchMarkMatchScore
and U_BenchMarkTimeOfAd, are used to define decision benchmarks, Lower and
Upper limits, respectively. The fixed logic in the policy (Rule 5.2) enables the man-
ager to make specific decisions based on the dynamic environmental information
(external variables).

Trustworthy autonomic architecture implementations  113

‍ ‍

Figure 5.2   System behaviour space

114  Trustworthy autonomic computing

5.1.1 � Experimental environment
The system goal is defined by a set of rules (Rule 5.1) that the autonomic manager
must adhere to in making decisions. A decision here is whether to change a run-
ning ad to another one or not. Basically, SysA is concerned with making decisions
within the boundaries of the rules, while in SysB, those decisions are validated for
conformity with the rules. SysC verifies that the measure of success is achieved.
SysC also improves reliability by instilling stability in the system. This is done by
implementing a dead-zone logic that introduces dead-zone boundaries (Figure 5.3)
to the boundaries of the behaviour zones defined in Figure 5.2.

Within the dead-zone boundaries, no change of action is allowed – in this
case, a running ad is not changed. So, take, for instance, in Figure 5.3, the action
for Zone A (RunAd2) is usually activated within the area defined by (x) and when
the system behaviour falls outside, this area another action is activated. With
dead-zone logic implemented, this boundary is dynamically extended to the area
defined by (y). So, in this case, the action for Zone A (RunAd2) is persisted until
the (y) boundary is breached. As soon as the system behaviour moves beyond the
area of (y) to the right, the action for Zone B (RunAd3) is activated. This action,
likewise, is persisted until system behaviour moves beyond the area defined by
(z). The gap, (i), between the new boundaries (represented by the double-edged
arrow lines) can be dynamically adjusted. This technique is implemented by the
DC component of SysC and helps to avoid erratic and unnecessary changes.
Although the size of the boundaries can be dynamically adjusted to suit real-time
changes, it is initially design-time specified. See Chapter 3 for full details of the
dead-zone logic.

Figure 5.3  � System behaviour space with dead zone. Without dead zone, Ad2
would be activated whenever the system behaviour falls within the
area defined by ‍x‍, but with dead zone, Ad2 is extended to the area
defined by ‍y‍.

Trustworthy autonomic architecture implementations  115

The runtime context for this application arises from collecting and analysing sam-
ples of context information. The AC component (available in SysA, SysB and SysC)
will, at every sample collection, decide (using the policy in Rule 5.2) which ad to run
and then sends a trap message (notice of change of ad). Since it is wired to make a fresh
decision at every policy execution, it is bound to send a trap message at every sample
collection or decision instance. But before that decision is implemented, the VC com-
ponent (available in SysB and SysC) validates it for pass/fail. It is important to define
what pass/fail means in this context: for example, if the decided action is the same as
the previous action (current ad), the VC component returns fail (then no trap is sent
and no change is made) and passes control back to the AC component while retaining
the previous action. The VC component also returns fail if the policy is violated in
decision making, i.e., decision must be within the boundaries of specified benchmarks
(e.g., a ‘Null’ return should not influence action change). Control is passed to the DC
component each time VC returns a pass. The DC component (available only in SysC)
is concerned with the measure of success aspect of the rule. In this case, a Tolerance
Range Check is implemented: DC returns fail if ActionChange is more than one within
the first five sample collections and subsequently if action changes at every sample
instance. So, the DC component maintains action change at maximum of one within
the first five sample collections and subsequently maximum of two in any three sample
instances. This will help calm any erratic behaviour that could arise. Take, for instance,
the fact that there could be a 360° change in ‘Mood’ within a short space of time (e.g.,
a team’s status in a game could change from winning→losing→winning within a very
short space of time), which is capable of adversely affecting the choice of an ad.

‍ ‍

Rules 5.3 (a) and (b) show excerpts of managers of SysB and SysC, respec-
tively. This shows the conditions under which the managers change their actions.
‘Action’ in this case refers to ‘Ad’ – so ‘CurrentAction’ refers to currently running
ad or new ad to run, while ‘CurrentActionCounter – 1’ refers to the previous ad. The
need for a new and different approach is reinforced by the capabilities exhibited in
SysC. It addresses situations where it is possible for the overall system to fail despite
process (in terms of structural, legal, syntactical, etc.) correctness.

116  Trustworthy autonomic computing

The experiments presented here simulate the performances of three autonomic
systems (SysA, SysB and SysC) for the defined autonomic marketing scenario. Four
external variables, now referred to as context samples (MatchScore, WeatherInfo,
TimeOfAd and LengthOfAd), are fed into the autonomic managers of the systems
(SysA, SysB and SysC) at every sample collection instance. Sample collection
instances are defined by a set time interval that can be fixed (design-time specific) or
dynamically tuned. Based on the policies (Rule 5.2), the managers decide how, when
and which ad to change/run. The simulation was run for a total duration of 50 sample
collection instances. During this simulation, the managers are analysed for the total
number of ad changes and the distributions of those changes. For accurate analysis
and comparison, the same samples at the same time instance and interval are fed into
the managers concurrently. This is because samples may (most likely) change at every
time instance and separately feeding these to the managers will lead to unbalanced
judgment. Table 5.1 shows the main parameters used for the experiments.

It is important to note that the external variables hold values representing
dynamic context information fed into the system. The computation of these values
according to the policy in Rule 5.2 results in decision parameters with which the
manager decides on what action to take. Also, several internal variables are used to
specify boundaries as decision benchmarks. The metrics for analysis are explained
as follows:

•• No. of action (ad) change: the number of times actions change in any given
sample collection interval. The lower value of action change means the better
performance of the autonomic manager.

•• Rate of action change: the rate at which actions change, measured as the number
of action changes per sample collection (no. of action change/simulation time).
This illustrates the level of stability in the system. A lower value means better
performance.

•• Rate of action run: the rate at which ads were run. This calculates the ratio of ad
run to number of sample collections. Value of 1 indicates that the manager runs
a different ad at every sample collection which means the manager is highly
unstable.

Table 5.1   Main experimental parameters

Parameter Value

Autonomic systems SysA, SysB and SysC
Simulation time 50 sample collections
Metrics No. of action (ad) change, rate of action change, rate of

action run, no. of action run, action run distribution and
no. of samples per time

Sample interval Five samples
External variables MatchScore, WeatherInfo, TimeOfAd and LengthOfAd

Trustworthy autonomic architecture implementations  117

•• No. of action runs: the cumulative number of individual action runs. This is the
summation of the number of runs for each ad. This metric illustrates the sen-
sitivity of the manager to the configuration of the behaviour space. This value
does not directly, on its own, translate to level of performance. However, it
validates the action distribution metric.

•• Action run distribution: the distributed number of action runs. This gives the
breakdown of the total action run. Nature of action run distribution illustrates
the performance of the manager in terms of cost management.

•• No. of samples per time: a constant (in this case, 50) spread across a defined
time interval (in this case, five samples).

5.1.2 � Results and evaluation
The results presented are for a simulation of 50 sample collections. All three auto-
nomic managers (for SysA, SysB and SysC) are analysed based on the number of ad
changes and number of ad distributions. Table 5.2 shows the results of 10 simulation
runs for each of 50 sample collections.

Table 5.2 is a high-level view of the systems' performances. Figures 5.4 and 5.5
are a closer inspection and analysis of the system’s performances. There is a clear
indication of the stability and autonomic efficiency in SysC.

As a benchmark to compare against, it is difficult to say exactly what a perfect
performance would be as that is context- and application-dependent. However, it
is quite easy to say what a poor performance would be. For ‘no. of ad change’,
a very poor performing (non-autonomic) system would have 50 ad changes in 50
sample collections. ‘No. of ad run’ wouldn’t have a benchmark as the distribution
of individual ad run is dependent on decision parameters (i.e., the combination of
real-time context information). Value of ‘1’ for ‘rate of ad change’ indicates that
the manager is rapidly changing its mind which shows instability and lack of self-
optimisation. So, the higher the ‘rate of ad change’ is, the lower the performance of
the system. For ‘rate of ad run’, the performance of the system is very poor if value
is ‘1’ – this indicates that the manager runs a different ad at every sample collection
and collectively runs all ads almost the same number of times. A quick glance at the
results (Table 5.2) reveals that there is a significant performance gap between SysC
and the other two systems. Also, the lower standard deviation in SysC gives more
confidence in the spread of the results of the 10 simulation runs.

The optimisation of the TrAArch (SysC) in this autonomic marketing scenario
is in terms of achieving a balance between efficient just-in-time target-marketing
decision and cost effectiveness (savings maximisation) while maintaining improved
trustability and dependability in the process. Figure 5.5 shows the behaviour of the
systems in 50 sample collections in a game duration in which SysC shows signifi-
cant gain in stability, efficiency and cost savings. It is clearly seen, for example, how
SysC smoothened the high fluctuation rate (high adaptability frequency) experienced

Table 5.2   Results of 10 simulation runs

Runs No. of ad changes (x) No. of ad runs (y) Rate of ad change (x/50) Rate of ad run (y/50)

SysA SysB SysC SysA SysB SysC SysA SysB SysC SysA SysB SysC

1 12 12 7 7 7 5 0.24 0.24 0.14 0.14 0.14 0.1
2 8 6 3 7 5 3 0.16 0.12 0.06 0.14 0.1 0.06
3 15 11 8 12 8 6 0.3 0.22 0.16 0.24 0.16 0.12
4 10 7 6 7 7 5 0.2 0.14 0.12 0.14 0.14 0.1
5 15 12 9 10 9 7 0.3 0.24 0.18 0.2 0.18 0.14
6 10 9 8 9 9 8 0.2 0.18 0.16 0.18 0.18 0.16
7 13 10 6 12 9 6 0.26 0.2 0.12 0.24 0.18 0.12
8 11 11 7 7 7 5 0.22 0.22 0.14 0.14 0.14 0.1
9 11 9 7 10 9 7 0.22 0.18 0.14 0.2 0.18 0.14

10 11 9 7 9 7 6 0.22 0.18 0.14 0.18 0.14 0.12
Avg 11.6 9.6 6.8 9 7.7 5.8 0.232 0.192 0.136 0.18 0.154 0.116
SD 2.2 2 1.6

Trustworthy autonomic architecture implementations  119

Figure 5.4  � Graphical representation of the results of 10 simulation runs (note
that the values for rate of ad change/run have been scaled up by 2 to
improve graph visibility)

Figure 5.5   An instance of systems’ behaviour in a 50-sample collection

120  Trustworthy autonomic computing

between the 5th and 25th sample collections. In general, the average ad change ratio
of about one change in three samples (1:3) is reduced to one change in ten samples
(1:10), representing an overall gain of about 68.75 per cent in terms of stability and
cost efficiency.

Figure 5.6 shows the distribution of ads across the 50-sample duration.
‘NullActions’, i.e., ‘run no ad’, are not shown. This also corroborates the significant
gain made by the SysC manager. For example, the SysC autonomic manager runs
only one Ad3 and two Ad2, while SysB runs four Ad3 and Ad2 in both cases. This
directly translates to adaptive cost savings by SysC. Recall from Figure 5.2 that Ad2
is run when Mood is high and CostImplication is low (best value for money), while
Ad3 is run when Mood and CostImplication are both high (when it costs more to run
an Ad). SysC runs more of Ad2 (best value for money).

While it has been shown that the TrAArch (SysC) is capable of maintaining
reliability by reducing inefficient adaptation (cutting off unnecessary adaptations),
it should be noted that reduction alone is not the answer. If the rate is very low,
it will not be right either. For example, if the rate of change is too low, it could
indicate that the manager is almost inactive (or not making decisions frequently
enough). For every application, it is necessary to determine which rate is appropri-
ate or cost effective in the long run. The proposed approach in this book provides
a way for tuning this (e.g., through dynamically adjusting the width of the dead
zone). There is a cost associated with bad or over-frequent changes and also a cost
with not making frequent enough changes. Success is measured by striking a bal-
ance between the two.

5.2 � Case example scenario 2: self-adapting resource allocation

In case example scenario 2, a more complex experimental analysis is designed to
analyse the performance of the proposed TrAArch architecture over existing auto-
nomic architectures. The experimental analysis is an implementation of a datacentre
resource request and allocation management scenario. Although the demonstration
of the proposed architecture uses a datacentre scenario, which though offers a way of
efficiently managing complex datacentres, the application of the architecture can be
widespread. In other words, although a datacentre is used to demonstrate the func-
tionalities of the proposed architecture, it is not limited to this scenario. The datacen-
tre model represents a very simple datacentre scenario where the simulation focuses
on the efficiency and dependability of resource request and allocation management
rather than other vast areas of datacentre, e.g., security, power, cooling, etc. So, the
purpose of the experiments is to demonstrate the applicability and performance of
the proposed architecture and not to investigate datacentres themselves. However,
the datacentre is chosen as the implementation scenario because its many dimen-
sions of complexity and large number of tuning parameters offer a rich domain in
which to evaluate a wide range of techniques, tools and frameworks.

Trustworthy autonomic architecture implementations  121

Figure 5.6  � A distribution of the ads (Ad1, Ad2 and Ad3). (a) Distribution of Ad1.
(b) Distribution of Ad2. (c) Distribution of Ad3.

122  Trustworthy autonomic computing

Several research works, e.g. References 148–150, have proposed scheduling
algorithms that optimise the performance of datacentres. In a utility function-based
approach, Das et al. [148] are able to quantify and manage trade-offs between com-
peting goals such as performance and energy consumption. Their approach reduced
datacentre power consumption by up to 14 per cent. Other works that have resulted
in improved performance and resource utilisation by proposing new schedul-
ing algorithms include Reference 149, which focuses on the allocation of virtual
machines in datacentre nodes, and Reference 150, which uses a ‘greedy resource
allocation algorithm’ that allows distributing a web workload among different serv-
ers assigned to each service. This book, on the other hand, does not propose any
new scheduling algorithm for efficient utilisation of datacentre resources; instead, it
uses the basic resource allocation technique to model the performance of datacentre
autonomic managers in terms of the effectiveness of resource request and allocation
management.

5.2.1 � TrAArch simulator
Note: It is important to first go through the experiments presented in this book before
attempting to use this application. This will ensure that the user fully understands
how the application works so that it can be used properly and efficiently. This will
also help the user understand the parameters properly.

The TrAArch simulator is an application developed in C# for simulating auto-
nomic managers for datacentres. This is a direct demonstration of the TrAArch
presented in Chapter 4. The simulator can be used to evaluate the performance of
three autonomic managers – SysA (represented by AC), SysB (represented by VC)
and SysC (represented by DC). The application supports two experiments ‘Normal
Simulation’ and ‘Interoperability’ – example normal simulation is presented here
while interoperability is presented in Chapter 6. Figure 5.7 shows the front end of
the simulator.

The simulator is available via Downloadable material. To use the application,
follow these steps:

•• Select the type of simulation you want – Normal Simulation or Interoperability.
Selecting Normal Simulation gives the options of simulating the individual auto-
nomic managers (AC, VC or DC) separately or concurrently (AC+VC+DC) for
performance analysis of the three systems. The Interoperability option allows
for the analysis and comparison of two autonomic managers – one with interop-
erability capability and the other without.

•• Set the resource parameters. The application supports a maximum of four appli-
cations and 1000 servers. Select these from the drop-down lists. The size of the
applications can be changed before or during the simulation via the Change App
Size button.

Trustworthy autonomic architecture implementations  123

•• Set additional parameters – the internal and external variables. Clicking on Set
Internal Variables button allows the user to see the default values and to change
any variable of choice. Description of these variables can be accessed via the
Info button and in section 5.2.2.2. Note that these variables cannot be changed
once the simulation starts. The rate at which service requests are received can
be adjusted via the Request Rate control. The dead zone width (DZWidth) is set
to auto by default and can be changed to manual.

•• Run Simulation will start the simulation.
•• Once the simulation starts, the user can inject burst into the system via +burst,

change the size of each application and add or remove applications and serv-
ers. The user can also view the servers that are on the queue and the applica-
tions they are prepared to service via Show Queued Servers. The application is
designed to print selected graphs of the simulation results in real time, and these
can be viewed via Show Graph and Show Graph (appOffset). The entire simula-
tion result can be exported to Microsoft Excel at the end of the simulation via
Export Results. Also, the Simulation Speed parameter is used to configure and
track Request Rate – i.e., the number of requests per time.

The Export Results and Show Graph are two unique features of this application.
The export results feature allows for the entire simulation result (according to met-
rics) to be exported to Microsoft Excel at the end of the simulation while the show

Figure 5.7   TrAArch simulator

124  Trustworthy autonomic computing

graph feature allows for real-time graph plotting of the results. Below are C# code
implementations of the three features and SysC:

Export Results: This example is for only six metrics – more can be added as
required.

‍ ‍

Show Graph: This example plots graphs of selected metrics for all three sys-
tems (AC, VC and DC).

‍

Trustworthy autonomic architecture implementations  125

‍

Simulation Speed: The user can adjust the simulation speed by increasing or
reducing the request rate in real time. The request rate measures the number of
requests received per time – minimum of one request per second. This feature is
implemented using a TrackBar. The track bar also shows the request rate in real
time. Here is the code for the implementation:

‍

126  Trustworthy autonomic computing

‍

SysC (DC): This is the system represented as DC in the simulator and the auto-
nomic manager is denoted as PeM_DC (Performance Manager DC). Note that three
systems (autonomic managers – AC, VC and DC) are simulated and whose perfor-
mances can be analysed individually (as [AC], [VC] or [DC]) or collectively (as
[AC+VC+DC]). Below is the code implementation of SysC also known as PeM_DC:

When the user clicks on ‘Run Simulation’, internal variables (which are set
or selected before the simulation starts) are fetched (Figure 5.8), the ‘Set Internal
Variables’ button is disabled to prevent the change of internal variables in real time,
some validations are carried out, and then the PeM_DC object is called.

‍ ‍

PeM_DC, and all major aspects of the simulator, are implemented as Timer
objects with different settings. This helps to synchronise and manage the entire sys-
tem and all its parts in real time. The simulator works on the basis of provisioning
servers to service application requests. Application requests is simulated using a
random number generator – every instance of the random number generation repre-
sents an application request for app1, app2, app3 or app4.

Trustworthy autonomic architecture implementations  127

app4.‍ ‍

128  Trustworthy autonomic computing

‍ ‍

Trustworthy autonomic architecture implementations  129

‍ ‍

130  Trustworthy autonomic computing

‍ ‍

Trustworthy autonomic architecture implementations  131

‍ ‍

Once an application request is generated, the system provisions a server (or
servers, depending on the size of outstanding application requests) for that par-
ticular application. Over time, the system is able to forecast application requests
using historic data. So, servers are released/loaded and queued in anticipation of
the forecast requests. Queued servers are managed by formQS and can be seen by
clicking on the 'Show Queued Servers’ button.

‍ ‍

132  Trustworthy autonomic computing

‍ ‍

Trustworthy autonomic architecture implementations  133

‍ ‍

134  Trustworthy autonomic computing

‍ ‍

Figure 5.8  � TrAArch simulator: set internal variables. This shows default
simulation variables and enables the user to change them as desired.

Trustworthy autonomic architecture implementations  135

5.2.2 � Experimental environment
The experiments are designed and implemented using the TrAArch simulator (sec-
tion 5.2.1) developed in C# programming. The scope of the experiments focuses on
the performance of datacentre autonomic managers in resource request and allo-
cation management activities under varying workloads. Although some workload
parameters are sourced from experimental results of other research, e.g., References
151-153, the designed experiments allow for the tailoring of all parameters (internal
and external variables) according to user preferences. Simulations are designed to
model several options of real datacentre scenarios. So, depending on what is being
investigated, the user can design individual scenarios and set workloads according
to specific requirements.

5.2.2.1 � Scheduling and resource allocation
Let us consider the model of the datacentre used in this experimentation in detail –
in terms of scheduling and request services. The datacentre model comprises a pool
of resources ‍Si‍ (live servers), a pool of shutdown servers Ši (ready to be powered
and restored to ‍Si‍ as need be), a list of applications ‍Aj‍, a pool of services Ṳ (a com-
bination of applications and their provisioning servers) and an autonomic manager
(performance manager, denoted PeM) that optimises the entire system. ‍Aj‍ and ‍Si‍
are, respectively, a collection of applications supported (as services) by the datacen-
tre and a collection of servers available to the manager (PeM) for provisioning (or
scheduling) available services according to request. As service requests arrive, PeM
dynamically populates Ṳ to service the requests. Ṳ is defined
by (5.1)

	﻿‍

Ṳ=

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

A1W
�
S11, S12, S13, : : : , S1i

�

A2W
�
S21, S22, S23, : : : , S2i

�

: : : : : : : : : : : : : : : : : :

AnW
�
Sn1, Sn2, Sn3, : : : , S

�
‍�

(5.1)

where ‍A1W
�
S11, S12, S13, : : : , S1i

�
‍ means that ‍

�
S11, S12, S13, : : : , S1i

�
‍ servers are cur-

rently allocated to Application ‍A1‍ and ‍An‍ is the number of application entries into Ṳ.
Equation (5.1) indicates that a server can be (re)deployed for different applications.
All the servers in ‍Si‍ are up and running (constantly available – or so desired by PeM)
waiting for (re)deployment. The primary performance goal of PeM is to minimise
oscillation and maximise stability [including just-in-time service delivery to meet
service level achievement (SLA) target], while the secondary performance goal is to
maximise the throughput.

Service (application) requests arrive and are queued. If there are enough
resources to service a particular request, then it is serviced otherwise it remains

136  Trustworthy autonomic computing

in the queue (or may eventually be dropped). The autonomic manager checks for
resource availability and deploys server(s) according to the size of the request. The
size of application requests and the capacity of servers are defined in million instruc-
tions per second (MIPS). In this book, ‘size’ and ‘capacity’ are used interchangeably
and mostly would refer to MIPS, i.e., the extent of its processing requirement. When
a server is deployed, it is placed in a queue (Figure 5.9) for a time defined by the
variable ProvisioningTime. This queue simulates the time (delay) it takes to load or
configure a server with necessary application before provisioning.

Recall from (5.1) that any server can be (re)configured for different applica-
tions, and so servers are not pre-configured. Servers are then ‘Provisioned’ after
spending ProvisioningTime in the queue (Figure 5.9). The provisioning pool is con-
stantly populated as requests arrive. Now as a result of the lag between provision-
ing time and the rate of request arrival or as a result of some unforeseen process
disruptions, some servers do overshoot their provisioning time and thereby are left
redundant in the queue. This can be addressed by the autonomic manager, depend-
ing on configuration, to reduce the impact on the whole system. As requests are fully
serviced (completed) servers are released into the server pool and redeployed as
may be needed. Note that SLA is calculated based on accepted requests. Rejected or
dropped requests are not considered in calculating SLA. The essence of the request
queue is to allow the autonomic manager to accept requests only when it has enough
resources to service them. The service contract is entered only when requests are
accepted. So, the manager could look at its capacity, in terms of available resources,

Figure 5.9   TrAArch simulator showing queued servers

Trustworthy autonomic architecture implementations  137

compare that with the capacity requested and say ‘sorry I haven’t got enough
resources’ and reject or drop the request. This whole process goes on and the man-
ager manages the system to the level of its sophistication.

A basic system without any form of smartness can barely go far before the
whole system is clogged due to inefficient and unstructured resource management.
The level to which any autonomic manager can successfully and efficiently manage
the process defined above depends on its level of sophistication. For me, this largely
depends on how each manager is wired (in terms of architecture) and not necessarily
the scheduling algorithm or actual component logic used. For example, two auto-
nomic managers, differently wired, may employ the same scheduling algorithm but
achieve different results. Results here may be looked at in terms of, say, ‘with such
level of available resources how many requests were successfully serviced over a
period of time?’. These are the kinds of considerations in the following experiments
where three differently wired autonomic managers are analysed.

5.2.2.2 � Workload and simulation parameters
The result of every simulation analysis is relative to the set of workload or parameter
set used that configures the specific application instance. The parameter set used
for the datacentre model analysis is classified into internal and external variables.
Internal variables are those variables that do not change during runtime, e.g., the
capacity of a server. External variables, on the other hand, are those that can change
in the course of the simulation, e.g., the rate at which requests arrive. External vari-
ables are usually system generated and are always unpredictable. The experimental
design has the capacity for heterogeneous workload representation. This means that
even the internal variables can be reset before the simulation begins, thereby offer-
ing the possibility of scaling to high/low load to suit user preferences . The range
of value options for most of the variables reflects the experimental results of other
research, especially References 151–153. Note that the following variables are used
with the C#-based TrAArch simulator.

•• Internal variables

Below is the list of internal variables used in this experiment. Some of the
variables used are specific to this experiment while some are general datacentre
variables.

•• SmoothingConstant

This variable is the smoothing constant (α) for calculating simple exponential
smoothing used to forecast the size (capacity) of expected/arriving requests. This, as
used in this experiment, enables the autonomic manager to decide safe boundaries at
which it is no longer safe to allow server shutdown. Alpha (α) is a number between

138  Trustworthy autonomic computing

0 and 1. The experiments in this book use experimental results for three values of α
(0.05, 0.15 and 0.25) to justify the choice of alpha. It is important to choose an α value
that will not result in exponential smoothed average that is very close to the actual
data as that will not smoothen the system’s behaviour. See Chapter 3 for more details
about the exponential smoothing average technology used in experiments in this book.

•• server.sCapacity

This represents the service capacity of each server and for the purposes of the
experiments here all servers are assumed to be of equal capacity – 40 000 MIPS.
Server capacity (size) is measured in MIPS.

•• RetrieveRequestParam

The tuning parameter indicating when to start shutting services (this simulates
service request completion) – at which point some running requests are closed as
completed. This value is measured as percentage of number of servers in use and
has been restricted to a value between 0.1 and 0.3. The margin 0.1–0.3 (representing
10–30 per cent) is used because experiments show that it is the safest margin within
which accurate results can be guaranteed. The datacentre is not completely settled
below 10 per cent, and beyond 30 per cent, scenarios with a low number of servers
will yield inaccurate results. The higher the value of RetrieveRequestParam, the
earlier the start of request completion.

•• RetrieveRate

This indicates the rate at which requests are completed once simulation for ser-
vice request completion is initiated. Value is relative to the rate of request arrival –
e.g., if value is 5, then it means service request completion is five times slower than
the rate of service request.

•• Burtsize

This indicates how long the user wants the burst (injected disturbance) to last.
This value is measured in milliseconds. Burst is a disturbance introduced by the
user to cause disruption in the system. This alters the smooth running of the system
and autonomic managers react to it differently. Often, injecting a burst disorientates
the system. The nature of this disruption is usually in the form of sudden burst or
significant shift in the rate of service request.

•• ServerProvisioningTime

This indicates how long it takes to load or configure a server with an applica-
tion. This is relative to the rate of request arrival – it is measured as half the rate of
request arrival, e.g., the value of 3 will translate to 1.5 of the rate of request arrival.

Trustworthy autonomic architecture implementations  139

•• ServerOnTime

This indicates how long it takes a server to power on. This is relative to the rate
of request arrival – it is ServerProvisioningTime + 1.

•• RequestRateParam

This constant is used to adjust the possible range of request arrival rate. The user
of the TrAArch Application can set the request rate according to preference, but this
preference may not be accommodated within the available rate range. For example,
if the least available rate is 1 request/second and the user wishes to use 2 requests/
second, the RequestRateParam parameter can be used to extend the available range.
A higher value increases the range for a lower rate of request arrival.

•• External variables

Below is the list of external variables used in this experiment. Recall that exter-
nal variables, also known as dynamic variables, are those variables that are fed into
the system during runtime either as system generated (dynamic sensitivity to contex-
tual changes) or human input (through external touch-points). Some of the variables
used are specific to this experiment while some are general datacentre variables.

•• DZConst

This variable is the tuning parameter that the autonomic manager uses to dynam-
ically adjust dead zone boundaries. Because this variable has a significant effect on
the system, it is suggested that the initial value be set at 1.5. The autonomic manager
usually adjusts this value dynamically, and there is also a provision to manually
adjust the value during run time.

•• AppSize

This variable represents the size or capacity of a service request (request for an
application). In the experiments that follow, except otherwise changed, all applica-
tions are initially assumed to be of the same size. There are touch-points to dynami-
cally change this value. The application size variable is measured in MIPS.

•• RequestRate

This variable, also referred to as rate of service request or rate of request arrival,
is the measure of the frequency of service request. This is in terms of the number
of requests recorded per unit of time. In real systems, this can be calculated as an
average for all services (applications) or for individual services. In Reference 151,
for example, RequestRate values are calculated for each service and are presented

140  Trustworthy autonomic computing

in requests/day. The experiments in this book take an average of RequestRate for all
services and represent values as requests/second.

•• BurstInterval

This variable defines the interval at which bursts are injected into the system
during the simulation. This is specific to the experimental application and is depen-
dent on what the user wants to investigate. Usually, bursts are introduced once at a
specific time or several at random times.

The experimental workload is flexible in that all variables can be scaled to suit
user’s workload (high or low) requirements. Every experiment has a detailed work-
load outline used, as shown in the following experiments.

5.2.3 � Simulation
The purpose of this simulation is not to investigate datacentres but to analyse the
performance of three autonomic manager architectures based on varying datacen-
tre model scenarios to investigate their level of dependability and robustness. The
three systems here are the same as in section 5.1. The first system (SysA) is based
on the traditional autonomic architecture, represented by the basic Monitor–
Analyse–Plan–Execute logic. The second system (SysB) is an upgraded version
of the traditional autonomic architecture that includes a test element, represented
by Monitor–Analyse–Plan–Validate–Execute logic. The third system (SysC) is
based on TrAArch, represented by a nested Monitor–Analyse–Plan–Validate–
DependabilityCheck-Execute logic. The DependabilityCheck component incor-
porates the dead-zone logic (see Chapter 3). Note that SysB does everything
SysA can do and more and SysC does everything SysB can do plus more (see
Figure 5.1).

The primary goal of the autonomic manager, in this case also referred to
as the performance manager – PeM, is to ensure that the system remains stable
under almost all perceivable operating and contextual circumstances and is
capable of achieving desired and dependable results within such circumstances
(i.e., over the expected range of contexts and environmental conditions and
beyond). The secondary goal is to maximise the throughput.

5.2.3.1 � Autonomic manager logic
The autonomic manager logic describes the individual control logic employed by
each of the autonomic managers in order to achieve the performance goal. This
explains the logical composition of each autonomic manager.

•• SysA

This autonomic manager implements the basic autonomic control logic.
Structurally based on Figure 5.10, the manager receives requests and allocates

Trustworthy autonomic architecture implementations  141

resources accordingly. The basic allocation logic here is to deploy a server whenever
capacity offset (i.e., excess capacity of running servers – these are used to service
new requests) is less than the current capacity of a single request. This is known as
the DecisionBoundary. This is depicted, for example, as:

‍ ‍

SysA has no additional intelligence. For example, decisions are not validated
and the manager does not consider the rate at which system behaviour crosses the
DecisionBoundary. As long as boundary conditions are met, the autonomic manager
executes appropriate decisions.

Figure 5.10 is a representation of the early stages of autonomic architecture life-
cycle presented in section 2.2.

•• SysB

This autonomic manager shows a higher level of intelligence than SysA. One
aspect of validation here is to check the performance of the manager in terms of cor-
rectness. The manager does not start a job that cannot be completed – i.e., at every
DecisionBoundary, the manager checks to make sure that it has enough resources
to service a request. Where this is not the case, meaning the check has failed, the
manager rejects the request and updates itself. The manager has a limit to which it
can allow capacity deficit which is expressed as:

‍ ‍

So, in addition to the basic control and resource allocation logic of SysA, SysB
carries out a validation of every allocation decision. Validation here is in terms of

Figure 5.10   Structural representation of SysA

142  Trustworthy autonomic computing

behavioural (e.g., starting a job only when there is enough capacity to complete it)
and structural (e.g., avoiding initiating provisioning when server pool is empty, i.e.,
listViewServer.Items.Count = 0) correctness.

Figure 5.11 is a representation of the current stages of autonomic architecture
life-cycle presented in Section 2.2. Beyond the level of validation, SysB exhibits no
further intelligence.

•• SysC

SysC performs all the activities of the SysA and SysB autonomic managers
with additional intelligence. The manager looks at the balance of cost over longer
term and retunes its configuration to ensure a balanced performance. For example,
the autonomic manager implements dead-zone logic on decision boundaries. First,
the dead-zone boundaries (upper and lower bounds), for example, are calculated as
follows:

‍ ‍

Note: DZConst is a tuning parameter used to adjust the dead-zone width.
The size of dead-zone width depends on the nature of the system and data being
processed. For example, in fine-grained data instance, where small shifts from
the target can easily tip decisions, sometimes leading to erratic behaviour, the
dead-zone width is expected to be small and closely tracked to the target value.

Figure 5.11   Structural representation of SysB

Trustworthy autonomic architecture implementations  143

However, in other cases as in this experiment, the dead-zone width cannot be as
closely tracked to the target value. Here the target value (DecisionBoundary) is
defined by capacity Offset (see later) and this is used by the autonomic manager
to decide whether or not to deploy a server. Also, because Offset is populated
in serverCapacity and depleted in appCapacity, any movement across the deci-
sion boundary, either on the positive side or on the negative side, is in excess
of appCapacity. This means that fluctuations around the decision boundary are
usually in multiples of appCapacity, and to handle erratic behaviour around
DecisionBoundary, the manager will need to take appCapacity into consider-
ation when calculating dead-zone boundaries. This explains the boundary size
calculation of App1.DZUpperBound and App1.DZLowerBound above. Offset is
positive when there is excess capacity and negative when there is a shortfall.
Also, sample simulation results show that smaller sizes of dead-zone width have
no effect on the system behaviour.

Second, the zone areas are defined as follows (two zones are defined with one
on either side of the DecisionBoundary – see Figure 5.12):

‍ ‍

Then stability is maintained by persisting the behaviour (DecisionBoundary out-
come) of the system across the zones as follows:

Figure 5.12   Dead-zone logic implemented by SysC

144  Trustworthy autonomic computing

‍ ‍

Thus, the DecisionBoundary in SysA, which would be (app1SysCOffset < app1.
appCapacity) becomes (App1.SystemBehaviour == "IsInDeployZone") in SysC.
The manager dynamically changes the DZ.DZConst value between three values of
1, 1.5 and 2. By doing this, the manager is sensitive to its own behaviour and pro-
actively regulates (retunes) its decision pattern to maintain stability and reliability.

In Figure 5.12, the area denoted ‍y‍ (‍y1‍ and ‍y2‍ represents the ‘IsInDeployZone’,
which means the autonomic manager should deploy a server, while the area
denoted ‍x‍ (‍x1‍ and ‍x2‍ represents the ‘IsNotInDeployZone’, which means the man-
ager should not deploy a server. Likewise, the dotted shade pattern (‍y1‍) repre-
sents the ‘IsInDeployZone’, while the diagonal shade pattern (‍y2‍) represents the
‘IsNotInDeployZone’ when dead-zone logic is applied. As shown, if, for example,
the system behaviour falls within the ‘IsNotInDeployZone’ area, the manager will
persist the action associated to the ‘IsNotInDeployZone’ area until the system behav-
iour falls below the ‘DZLowerBound’ boundary at which point the action associated
to the ‘IsInDeployZone’ area is activated. This way the autonomic manager is able
to maintain reliability and efficiency. The autonomic manager also retunes its behav-
iour (as explained earlier) by adjusting the DZ Width (i.e., dynamically changing the
size of DZConst as appropriate) if fluctuation is not reduced to an acceptable level.
Thus, three behaviour regions, in which different actions are activated, are defined:

•• ‘Upper Region’ (IsNotInDeployZone) with ‘DO NOT DEPLOY SERVER’
action,

•• ‘Lower Region’ (IsInDeployZone) with ‘DEPLOY SERVER’ action
•• ‘In DZ’ (‍x2‍ and ‍y2‍ – within the DZ Width) with either of the two actions above.

It is important to note, as shown in Figure 5.12, that within the DZ boundary (‍x2‍
and ‍y2‍) i.e., the ‘In DZ’ region, either of the actions associated to ‘IsInDeployZone’
and ‘IsNotInDeployZone’ areas could be maintained depending on the ‘current
action’ prior to deviation into the ‘In DZ’ region. So actions activated in the ‘Upper
Region’ and ‘Lower Region’ are, respectively, persisted in the ‘In DZ’ region. This
is further explained in Figure 5.13 which shows the resultant effect of the DZ logic
in terms of what zone action is activated per time.

Trustworthy autonomic architecture implementations  145

Figure 5.13 explains what happens in Figure 5.12. As system behaviour fluc-
tuates around the decision boundary, the autonomic manager dynamically adjusts
the DZBoundary to mitigate erratic adaptation. As shown, minor deviations
across the DecisionBoundary do not result in decision (or action) change. In this
case (Figure 5.13), actions for IsInDeployZone and IsNotInDeployZone are per-
sisted at states ‘‍x‍’ and ‘‍y‍’, respectively, despite system behaviour crossing the
DecisionBoundary at those state points.

Figure 5.14 is a representation of the next level of sophistication in autonomic
architecture life cycle required to ensure dependability. This also represents the
internal structure of TrAArch proposed in this book. See an illustration of the opera-
tion of the dead-zone logic in Chapter 3.

5.2.3.2 � Simulation scenarios
In the following simulations to analyse the performances of the three systems (SysA,
SysB and SysC), four simulation scenarios are used. The scenarios are presented
in Table 5.3. The user of the TrAArch application can define further scenarios as
required – see section 5.2.1 for details.

Scenario 1: In this scenario, all parameters are kept constant except those (e.g.,
DZConst) that may need dynamic tuning by the autonomic manager as the need

Figure 5.13  � Illustration explaining the actual performance effect of dead-zone logic

Figure 5.14   Structural representation of SysC

146  Trustworthy autonomic computing

arises. This scenario gives a default view of the behaviour of the autonomic manag-
ers under normal conditions. Under this scenario of normal conditions, it is expected
that all autonomic managers will behave significantly closely.

Scenario 2: This scenario creates a condition where the managers will have to
deal with irregular sizes of service request. This leads to contention between appli-
cations – huge applications will demand huge resources thereby starving smaller
applications. Performance analysis here will include individual application analysis.
Request rate is kept constant so that the effect of varying application sizes could be
better analysed.

Scenario 3: This is the most complex scenario, with resource contention and
several instances of burst injected at chosen SimulationTimes in the simulation. The
impact of the burst is relative to the size of the burst (BurstSize). This scenario
creates a tough operating situation for the autonomic manager. Request sizes vary
leading to resource contention, and request rate is highly erratic. Inconsistent request
rate can also lead to ‘flooding’ which is also a kind of burst. Flooding is a situation
where the system is inundated with requests at a disproportionate rate.

5.2.4 � Results and Analysis
This section presents the analysis of the experimental results. Results will be pre-
sented according to simulation scenarios, and in doing this, the metrics listed in
Table 5.3 will be used. A detailed description of the metrics is presented below, fol-
lowed by the simulation results.

5.2.4.1 � Metrics
All metrics are mathematically defined, giving the reader a clear picture of the defi-
nition criteria should they wish to replicate this experiment.

SLA: SLA is the ratio of provided service to requested service. It measures the
system’s level of success in meeting request needs. Note that requests and services

Table 5.3   Self-adapting resource allocation simulation scenarios

Scenario Description Metrics

Scenario 1 Basic case: uniform request rate
and application size

SLA
Server deployment rate
Optimum provisioning (Offset
analysis)

Scenario 2 Medium case: uniform request
rate and varying application sizes

Scenario 3 Complex case: varying
application sizes with
inconsistent request rate

Trustworthy autonomic architecture implementations  147

are not time bound, so the time it takes to complete a request does not count in this
regard. The metric is defined as (5.2):

	﻿‍

SLA=

8
<̂
:̂

ProvisionedCapacity
RequestedCapacity

�
i
�

AvailableCapacity
RunningCapacity

�
ii
�

‍�

(5.2)

where ProvisionedCapacity is the total deployed server capacity (excluding those in the
queue and including those already reclaimed back to the pool) and RequestedCapacity
is the total size of request (including completed requests). AvailableCapacity is
ProvisionedCapacity minus capacity of reclaimed servers (ReclaimedCapacity), while
RunningCapacity is the total size of request (excluding completed requests). In (5.2),
(i) is more of a whole picture consideration – considering the entire capacity activities
of the system, while (ii) takes a real-time view of the system – tracking to the minute
details of the system with delay, completed requests and reclaimed server effects all
considered. The reference value for SLA is 1 indicating 100 per cent. Any value above
1 indicates over-provisioning while values under 1 indicate shortfall. Optimum provi-
sioning is achieved at close proximity to 1.

Deployment rate: Server deployment or redeployment rate is the ratio of server
deployment to service request. It measures the frequency at which autonomic man-
agers deploy servers with regard to the nature of requests. This is mathematically
represented as (5.3):

	﻿‍
DeploymentRate =

DeployedCapacity�
RequestedCapacity � CompletedCapacity

�
‍�

(5.3)

The lower value of deployment rate means the better performance of the system
translating to better maximisation of throughput.

Optimum provisioning: This metric is also an offset analysis. It indicates
whether and when the autonomic manager is over- or under-provisioning. This is
also known as efficiency calculation. Offset is calculated as shown in (5.4):

	﻿‍ Offset = AvailableCapacity � RunningCapacity‍� (5.4)

In ideal circumstances, average offset is not expected to fall below zero. The system
is optimally provisioning when offset falls between zero and the average capacity
of all applications. The closer to zero the offset value is, the better the performance
of the system is.

Note that, for all metrics, low or high values do not always necessarily translate
to better performance. It is not usually realistic for the supposed better autonomic
manager to always outperform the other managers. There are times when the man-
ager underperforms and usually there may be a trade-off of some kind that explains
the situation.

148  Trustworthy autonomic computing

5.2.4.2 � Additional metrics
For the simulations in this book, only the metrics identified above will be used. For
class exercises or if the reader wishes to explore further, additional metrics may be
defined for more studies. Note that as well as real-time graph printing, the provided
simulator also outputs raw simulation results to a Spreadsheet for further tailored
analysis. Two examples of additional metrics are provided below.

Delay cost: Delay cost can be calculated in many different ways as the cost can
be influenced by many delay contributors. In this instance, delay cost is defined as
the cost (in capacity) as a result of the delay experienced by the servers. This delay
affects the completion time of service requests. This is mathematically represented
as follows:

	﻿‍
DeployCost =

DeployedCapacity � ProvisionedCapacity
DeployedCapacity

=
ProvisioningCapacity
DeployedCapacity ‍�

ProvisioningCapacity is the capacity of servers in the queue, while DeployedCapacity
is the total capacity of all deployed servers. The lower value of delay cost means the
better performance of the system.

Scheduling cost: This is the capacity cost of servicing each request, i.e., the
unnecessary capacity consumed in scheduling resources for individual requests. So,
it measures the cost in excess of capacity (MIPS) for servicing each request and is
represented as follows:

	﻿‍
SchedulingCost =

DeployedCapacity � RunningCapacity
RequestedCapacity ‍�

The lower value of scheduling cost means the better performance of the system.

5.2.4.3 � Scenarios and result analysis
Results are presented and analysed according to simulation scenarios. It is important
to note the workload and parameters used for individual simulations as results will
largely depend on those.

5.2.4.3.1  Scenario 1: basic case: uniform request rate and application size
Table 5.4 is a collection of the major parameters used in this scenario. For precise
results, ten different simulations of scenario 1 are performed and the results pre-
sented are based on average of these ten simulations. For each of the ten simulations,
the same parameter set as in Table 5.4 is used. However, the number of requests
and the distribution of those requests amongst the four applications will differ as
they are dynamically generated and unpredictable. This does not distort the results
as analysis is based on system-wide performance and not on individual application
performance.

In every simulation, there are 400 servers of 40 000 MIPS capacity each.
This means there is a total of initial 16 000 000 MIPS available to share between

Trustworthy autonomic architecture implementations  149

Table 5.4   Scenario 1 simulation parameters

Parameter Value

No. of servers 400
No. of applications 4
Request rate 1 req/s
Application capacity (MIPS) 20 000
Server capacity (MIPS) 40 000
Internal variables RetrieveRate 5x

RequestRateParam 10
RetrieveRequestParam 0.2
ServerProvisioningTime 3 (1.5 sec)

Autonomic Managers
(PeM – Performance Manager)

SysA, SysB & SysC)

DZConst 1.5

requests for four applications (App1, App2, App3 and App4). Reclaimed servers
are later added to this available capacity. If the total requested capacity is higher
than the total provisioned capacity, the unused server list will be empty (leaving
the autonomic manager with a deficit of outstanding requests without resources to
service them) and the datacentre is overloaded. So the simulation stops whenever
any autonomic manager runs out of resources – i.e., when the unused server list
of any manager becomes empty. It is necessary to stop the simulation at this point
because as soon as the unused server list of a particular manager becomes empty,
the RequestedCapacity for that manager starts piling up while AvailableCapacity
remains at zero, which leads to continuously increasing negative Offset. This will
lead to an inaccurate assessment of the three managers (recall that all three manag-
ers are compared concurrently and it is safer to do this, while all three managers are
active). Also, usually at this point, other managers may have outstanding resources
and this will mean better efficiency.

Table 5.5 is a number distribution of requests and services for ten simulation
runs of scenario 1. The values shown are collected at the end of each simulation, for
example, it can be seen that the manager of SysA has no servers left in each of the
simulations, while SysB has a few and SysC even more. Though SysA and SysB
are able to service almost the same number of requests, SysB has outstanding server
capacity (‍9.3 � 40 000 = 372 000mips‍) and could service about ‍

372 000
20 000 = 19‍ more

requests. However, the additional smartness of SysB does not always translate to
better performance as highlighted in Table 5.5 (this is an example of manager inter-
ference leading to overcompensation). SysC clearly outperformed the others with an
average of about 46 outstanding servers out of 400 initial plus Reclaimed servers.
This means that SysC could still service about 92 more requests. Figures 5.15–5.17
give a breakdown of the performances against the metrics in Table 5.3 for the three
autonomic managers.

Table 5.5  � High-level performance analysis of managers over ten simulation runs of scenario 1

Sim. Unused server Serviced request Dropped/queued request Deployed server

SysA SysB SysC SysA SysB SysC SysA SysB SysC SysA SysB SysC

1 0 29 30 706 699 687 0 7 19 459 439 405
2 0 8 45 725 719 697 0 6 28 465 467 392
3 0 4 46 735 729 711 0 6 24 470 465 386
4 0 1 35 732 726 701 0 6 31 462 469 394
5 0 13 59 702 695 674 0 7 28 456 447 368
6 0 3 51 708 706 681 0 2 27 460 455 374
7 0 14 48 706 702 684 0 4 22 468 443 369
8 0 12 59 701 694 675 0 7 26 457 453 369
9 0 7 51 710 705 686 0 5 24 462 462 386

10 0 2 31 759 756 733 0 3 26 472 479 400
Avg 0 9.3 45.5 718.4 713.1 692.9 0 5.3 25.5 463.1 457.9 384.3

Trustworthy autonomic architecture implementations  151

Figure 5.15  � Offset = AvailableCapacity – RunningCapacity: provisioning
analysis for scenario 1

Figure 5.16   Server deployment rate for scenario 1

The difference between requested capacity and provisioned capacity (or in real
time analysis, running capacity and available capacity) is known as Offset. Where
offset is close to zero, the difference with respect to running and available MIPS
is low and the autonomic manager is therefore very efficient. That means that the
closer to zero the offset value is, the better the performance of the autonomic man-
ager is. When offset is much greater than or much less than zero, the autonomic man-
ager is over-provisioning or under-provisioning respectively and is very inefficient.

152  Trustworthy autonomic computing

The autonomic managers are designed to have a window of optimum provisioning
defined by the interval (‍0 � Offset � AvgAppCapacity‍), which means that the man-
agers are configured to maintain AvailableCapacity of up to average appCapacity
for just-in-time provisioning. However, manager efficiency is defined by its ability
to maintain Offset as close as possible to zero. Figure 5.15 shows the efficiency
analysis of the three autonomic managers in terms of maximising resources. This
shows the average performances of the three autonomic managers over ten simu-
lation runs. This means that the same scenario was run for ten times and then the
average result was calculated in order to obtain a clearer and more accurate analysis
of manager performance.

Figure 5.15 shows that, in terms of efficiency, SysA performed significantly simi-
lar to SysB with offset at about 20 000 MIPS. There are a couple of instances where
SysA also performed better than SysB. This is as a result of overcompensation intro-
duced by the extra level of smartness in SysB. The validation check of SysB gives it
an advantage over SysA, but it sometimes leads to overcompensation. For example,
though SysB checks to ensure resource availability against resource requests, it is not
adequately sensitive to erratic request fluctuation. High level of erratic request fluc-
tuation disorientates SysB (as can be seen in scenarios 3 where burst is injected), but
this effect is naturally and dynamically handled by SysC. SysC, with a trustworthiness
component (DependabilityCheck), takes a longer-term look at the self-management
effect on the datacentre and retunes its self-management behaviour.

The rate at which the autonomic managers change decision (which can indi-
cate erratic behaviour) is indicated by the gap between the crests and troughs of
the graph in Figure 5.15. A smaller gap indicates an erratic change of decision,

Figure 5.17   Service level achievement analysis for scenario 1

Trustworthy autonomic architecture implementations  153

while a bigger gap indicates a more persisted decision. As can be clearly seen, SysC
has significantly more persisted decisions and this allows it to more adequately
track resource availability against resource requests, which leads to more efficient
performance as can be seen. Recall that optimum provisioning is defined by the
(‍0 � Offset � AvgAppCapacity‍) interval that in this case is between 0 and 20 000
MIPS. SysC clearly falls within this range, though a bit towards the 20 000 border,
while SysA and SysB revolve around the upper bound, significantly away from 0.
This means that while SysA and SysB try to maintain AvailableCapacity of up to
20 000 MIPS for just-in-time provisioning, SysC efficiently depletes this reserve
to maximise resources while at the same time maintaining the same level of per-
formance and even better compared to the other two. This is evidently seen in the
following deployment rate and SLA metrics analyses.

Figure 5.16 shows the rate at which the three autonomic managers deploy servers
as requests arrive. With the same rate of request arrival, the managers deployed servers
differently. While SysA deployed the most servers (average of 1.5 servers per service
request), closely followed by SysB, SysC deployed the least servers (average of 1.2
servers per service request). Whereas the difference might seem small, this is actually
significant in this context – it means an increase in scheduling, delay and power costs.
This explains why SysA easily runs out of servers followed by SysB, while SysC still
retains a number of unused servers (Table 5.5). Interestingly, this does not negatively
affect the performance of SysC and when SysC underperforms in one aspect there is
usually compensation, say trade-off, in another aspect. The lower server deployment
rate of SysC resulted in a slightly lower SLA value of SysC when compared to SysA
and SysB – Figure 5.17. But this only keeps the value very close to the optimum value
of 1, which also indicates high efficiency. It is important to note even though SysC
does not significantly outperform the others for SLA, it has far more unused servers,
which means it services more requests under the same condition.

Figure 5.17 depicts the service levels of the three autonomic managers. As
expected, following the result trend above, SysA and SysB performed quite simi-
larly, with each outperforming the other in some places. SysC on the other hand
keeps SLA as close as possible to the target goal of 1 – a perfect system would keep
SLA at 1. SysC has the ability to dynamically scale down unnecessary and inef-
ficient provisioning by proactively throttling oscillation. This capability also leads
to cost savings. The high level of deployment rate (i.e. deploying more MIPS than
required) for SysA and SysB (Figure 5.16) leads to high cost (in terms of excess
MIPS) of servicing individual requests. Also, this means that the rate at which serv-
ers enter the provisioning queue is much higher than the rate they leave the queue.
This results in an increasing number of redundant servers in the queue, which con-
tributes to delay cost.

The results analyses of scenario 1 indicate that the proposed TrAArch (repre-
sented by SysC) has significant performance improvement over existing architec-
tures. This assertion is further tested in the following scenarios.

154  Trustworthy autonomic computing

5.2.4.3.2  Scenario 2: medium case: uniform request rate and varying appli-
cation sizes
Table 5.6 is a collection of the major parameters used in this scenario. As in scenario
1, ten different simulations are conducted and the results presented are based on
average of these ten simulations.

In every simulation of this scenario, there are 400 servers of 40 000 capacity each
to be shared amongst two applications (App1 and App2). This means there is a total
of initial 16 000 000 MIPS to share between requests for App1 with 10 000 MIPS and
App2 with 30 000 MIPS. The capacity gap between the two applications is so wide that
it may naturally lead to contention with App2 demanding more resources than App1. In
this kind of situation, where it is easy to underserve one application because of the con-
tention, it is left for the datacentre autonomic managers to decide how best to efficiently
allocate resources. Results show that while SysA maintained a proportionate resource
allocation (in terms of applications) for the two applications, SysB and SysC prioritised
provisioning for App2 with much higher MIPS request. One disadvantage of propor-
tionate provisioning is that it treats requests according to applications (in this case two
applications) and not according to capacity (in this case 10 000 versus 30 000). When
this happens, the high capacity application (App2) will be heavily under-provisioned,
while the low capacity application (App1) will be adequately provisioned (and some-
times over-provisioned) compared to the level of provisioning for App2 as shown in
Figure 5.18(a) for SysA Offset analysis. Also, this amounts to inefficiency and explains
why SysA easily exhausts its resources as shown in Table 5.7 – the results of requests
distribution amongst the three autonomic managers.

The ‘dropped/queued request’ column shows that in prioritising App2, SysB
and SysC dropped more of App1 requests, while SysA, which does not drop any
application, struggled to cope with the capacity imbalance. For a clearer picture,

Table 5.6   Scenario 2 simulation parameters

Parameter Value

No. of servers 400
No. of applications 2
App capacity (MIPS) App1 10 000

App2 30 000
Request rate 1 req/s
Server capacity (MIPS) 40 000
Internal variables RetrieveRate 5x

RequestRateParam 10
RetrieveRequestParam 0.2
ServerProvisioningTime 3 (1.5 s)

Autonomic managers (PeM – performance manager) SysA, SysB and SysC
DZConst 1.5

Trustworthy autonomic architecture implementations  155

Figure 5.18  � Individual autonomic manager offset analysis for scenario 2.
(a) SysA Offset analysis for App1 and App2. App1 is about adequately provisioned
(i.e. Offset ≈ 0), while App2 is heavily under-provisioned. (b) SysB Offset analysis
for App1 and App2. App1 is about adequately provisioned while App2 is over-
provisioned (well above the optimal provisioning mark which is defined by 0 ≤ Offset
≤ AvgAppCapacity). (c) SysC Offset analysis for App1 and App2. App1 is about
adequately provisioned while App2 is slightly over-provisioned (slightly above the
optimal provisioning mark which is defined by 0 ≤ Offset ≤ AvgAppCapacity).

Table 5.7   High-level performance analysis of managers over ten simulation runs of scenario 2

Sim. Unused server Serviced request Dropped/Queued request Deployed server

SysA SysB SysC SysA SysB SysC SysA SysB SysC SysA SysB SysC

app1 app2 app1 app2

1 0 165 171 559 312 309 0 236 11 236 14 492 287 281
2 0 161 174 572 322 315 0 237 13 239 18 499 285 271
3 0 161 166 579 329 323 0 237 13 234 22 497 289 286
4 0 169 180 574 318 309 0 240 17 242 24 500 285 269
5 0 164 180 566 318 308 0 238 10 242 16 492 291 270
6 0 160 151 559 320 326 0 222 17 215 18 492 281 295
7 0 162 192 612 334 316 0 266 12 272 24 509 297 258
8 0 172 171 550 309 306 0 224 17 223 21 487 275 276
9 0 179 188 583 310 306 0 258 15 256 21 492 271 264

10 0 164 172 575 324 315 0 236 15 240 20 497 293 279
Avg 0 165.7 174.5 572.9 319.6 313.3 0 239.4 14 239.9 19.8 495.7 285.4 274.9

Trustworthy autonomic architecture implementations  157

Figure 5.19 shows how SysB and SysC prioritised App2 over App1. As can be
seen, there is a consistent trend of high rate of dropped App1 requests. This means
that more resources were allocated to App2, thereby starving App1. As this conten-
tion continued, it led to more App1 requests being dropped as there were limited
resources per time to service App2 requests. Also noticeable is the smoothness of
provisioning for App2 compared to the bumpiness of provisioning for App1 – this is
further explained in the offset analysis that follows.

SysA on the other hand did not drop any request and trying to evenly joggle
resources between the highly imbalanced MIPS requests for the two applications
meant that more resources per time than necessary are used. This explains why SysA
exhausted its resources quite early in the simulation while the other managers have
hundreds of servers still unused (Table 5.7). Figure 5.18(a) shows that while App1
is about adequately provisioned, App2 is heavily under-provisioned. This is because
SysA evenly provisioned for the two applications, thereby starving App2 that has
very high MIPS requests. So by accepting all requests despite low resource avail-
ability, SysA under-provisioned for App2 far more than it did for App1 because of
the large size of App2 requests. There is no check in SysA to ensure resource avail-
ability before requests are accepted.

In Figure 5.18, App1 average offset is maintained at about (−17 000 ≤ 12
000 MIPS) by SysA, (−10 000 ≤ −4 000 MIPS) by SysB and (−10 000 ≤ −3 000
MIPS) by SysC. Also, App2 offset ranges between (7 000 and −200 000 MIPS) for
SysA, (−30 000 and 34 000 MIPS) for SysB and (−30 000 and 24 000 MIPS) for
SysC. This shows that while SysA treats requests according to applications (i.e.,
by trying to evenly provision for both applications), SysB and SysC are sensitive

Figure 5.19   Dropped and queued request analysis for scenario 2

158  Trustworthy autonomic computing

to the individual size of requests. As a result, by taking on all requests and attempt-
ing an even distribution of resources for both applications, SysA heavily under-
provisions for App2 but performed well for App1. SysB and SysC on the other
hand maintained more balanced resource allocation for both applications in terms
of request capacity with SysC showing higher efficiency than SysB. Note that a
positive Offset above the optimal provisioning mark amounts to over-provisioning
while a negative Offset amounts to under-provisioning. Recall that optimal provi-
sioning mark is defined by the interval (‍0 � Offset � AvgAppCapacity‍) which in
this case is (‍0 � Offset �

��
10000 + 30000

�
/2
�
‍) – i.e., between 0 and 20 000 MIPS.

Figure 5.20 shows the average manager efficiency analysis for all three systems.

On average, SysA did not stand up to the complex provisioning condition of sce-
nario 2 as did the other systems. Figure 5.20 shows that SysA could not efficiently
cope with the level of resource contention experienced between App1 and App2.
SysB and SysC show almost the same level of autonomic sophistication; however,
SysC is shown to be more efficient. Although both systems have a similar level
of under-provisioning, SysB has a higher level of over-provisioning – significantly
above the optimal provisioning mark. This indicates that SysC is efficiently more
sophisticated in handling complex resource allocation scenarios that would ordinar-
ily prove difficult for traditional autonomic managers (SysA and SysB) to handle. For
example, this increased efficiency arises from the fact that the DependabilityCheck
sub-component of SysC enables it to go beyond dropping requests, if there are insuf-
ficient resources, to deploying resources only when it is necessary and efficient to do
so. Also, the SLA analysis (Figure 5.21) corroborates the above results. While SysA
performed just below the SLA reference point of one ‘1’, SysC performed very close
to the reference point indicating very high efficiency.

Figure 5.20  Autonomic manager efficiency analysis for scenario 2

Trustworthy autonomic architecture implementations  159

The results analyses of scenario 2 is a further corroboration of the assertion that
the proposed TrAArch (represented by SysC) has significant performance improve-
ment over the existing architectures. There is one more complex simulation scenario
to further test this assertion.

5.2.4.3.3  Scenario 3: complex case: varying application sizes with incon-
sistent request rate
This is the most complex scenario with a combined effect of the previous scenarios.
The complexity presented by this scenario (i.e., a combined effect of resource con-
tention and two injected disruptions) allows us to further test the robustness of these
systems by stretching their capabilities to extremes. Table 5.8 is a collection of the
major parameters used in this scenario. As in previous scenarios, the results pre-
sented are based on the average of ten different simulation runs.

In every simulation of this scenario, there are 400 servers of 40 000 MIPS each
to be shared amongst two applications (App1 and App2). This means there is a total
of initial 16 000 000 MIPS to share between requests for App1 with 5 000 MIPS and
App2 with 20 000 MIPS. Table 5.9 shows a distribution of requests and services for
ten simulation runs of scenario 3.

Results reveal that SysA is not adequately robust in such complex situations
as in scenario 3. The system is heavily inefficient in handling this type of situation
[Figure 5.22, Figure 5.22(a)]. Its algorithm, which maintains proportionate provi-
sioning with respect to number of applications as against capacity of requests, was
disorientated by the level of contention and disruption experienced.

Figure 5.21  SLA analysis for scenario 2

160  Trustworthy autonomic computing

As shown in Figure 5.22, the first burst was injected at about 120s, while the
second was injected at 300s. SysA is limited in its ability to handle complex situ-
ations and so cannot be relied upon to operate large-scale and complex datacen-
tres. SysB and SysC both have a wide range of operability in complex situations.
However, a closer look at SysB and SysC [Figure 5.22(b)] in this scenario reveals a
unique change in the expected (as observed in scenario 1) trend. Under a more nor-
mal situation, like in scenario 1, SysC is expected to drop significantly (about five
times) more servers than SysB. Table 5.9 shows that SysC dropped only a few more
servers than SysB. This was also noticed in scenario 2, which is a bit more complex
than scenario 1. In this scenario 3 situation, the level of disturbance (as a result of
resource contention and erratic request disorder) in the datacentre led to instability in
SysB which caused it to overreact by inefficiently dropping requests. This instability
reveals a weakness in design because in real-life datacentres, such disturbances (like
sudden request spikes) do occur and autonomic managers are expected to adequately
stabilise the entire system under such circumstances. SysC, on the other hand, with
the capability of a longer-term view of the entire system, was able to take on more
requests. It can be seen that SysC is slightly more efficient with performance a bit
closer to the optimal provisioning mark.

(a) Autonomic manager efficiency analysis of all three systems
However, this achievement comes with an associated trade-off in delay cost.

This shows that SysC is more sensitive to the relationship between the requested
MIPS and available MIPS. For example, in a situation where SysB dropped a num-
ber of requests following a fixed decision boundary (when there is lack of immediate
available resources to handle incoming requests), SysC used a dynamic decision
boundary to accommodate more requests allowing it to efficiently use up its available

Table 5.8   Scenario 3 simulation parameters

Parameter Value

No. of servers 400
No. of applications 2
App capacity (MIPS) App1 5 000

App2 20 000
Request rate (initial) 1 req/s
Server capacity (MIPS) 40 000
Internal variables RetrieveRate 5x

RequestRateParam 10
RetrieveRequestParam 0.2
BurstSize 1 500 ms
ServerProvisioningTime 3 (1.5 s)

Autonomic managers (PeM – performance manager) SysA, SysB and
SysC)

DZConst (initial) 1.5

Table 5.9   High level performance analysis of managers over ten simulation runs of Scenario 3

unused server serviced request dropped/queued request deployed server

SysA SysB SysC SysA SysB SysC SysA SysB SysC SysA SysB SysC

1 0 259 271 584 265 257 0 319 327 521 178 168
2 0 250 264 587 276 279 0 311 308 523 189 185
3 0 256 271 572 264 257 0 308 415 511 180 165
4 0 162 155 460 340 349 0 120 111 432 289 276
5 0 262 265 585 264 256 0 321 329 519 182 176
6 0 246 278 575 272 253 0 303 322 512 198 153
7 0 242 247 574 292 284 0 282 290 514 201 197
8 0 246 271 611 287 272 0 324 339 531 204 171
9 0 235 252 578 292 287 0 286 291 516 202 188
10 0 252 272 565 270 261 0 295 304 506 192 159
Avg 0 241 254.6 569.1 282.2 275.5 0 286.9 303.6 508.5 201.5 183.8

162  Trustworthy autonomic computing

resources. By taking on more requests, SysC trades off scheduling cost by a very
tiny margin. See section 5.2.4.2 for how to calculate delay and scheduling costs.
Interestingly, the efficiency level is not affected – Figure 5.22(b) shows that effi-
ciency performance is even slightly better in SysC. So, we have a situation where,

Figure 5.22 � Autonomic manager efficiency analysis for scenario 3. Bursts were
introduced at 120 s and 300 s time frames. (a) Autonomic manager
efficiency analysis of all three systems. (b) Autonomic manager
efficiency analysis of SysB and SysC.

Trustworthy autonomic architecture implementations  163

on average, SysC utilised significantly fewer resources (servers) to serve slightly
higher number of requests than SysB and still maintains approximately same level
of SLA (Figure 5.23), delay cost, scheduling cost and efficiency achievements with
SysB.

There is consistent corroboration of the fact that SysA is limited in the range of
its operational scope when it comes to complex situations. Scenario 3 results show
that it is highly expensive, inefficient and unreliable to operate complex datacentres
with autonomic managers based on SysA. However, SysA-based managers may suf-
fice for simple and basic datacentres. On the other hand, SysC has shown consistent
reliability in all tested scenarios. The level of robustness exhibited in this scenario
by SysC is a clear indication that it is not a hard-wired one-directional self-managing
system. For example, in this scenario, we have seen that SysC does not only act
when SysB is taking more actions than necessary but also when it is taking fewer
actions than necessary. So, it can be said that SysC is capable of reducing inefficient
adaptation (e.g., when SysB’s decisions are erratic) as well as increasing adapta-
tion when it is necessary and efficient to (e.g., when SysB is not making decisions
frequently enough). This capability of increased adaptation has been shown in sce-
narios 2 and 3 – SysC is able to maximise resources while achieving the same level
of performance as SysB.

From the results of the three experimental scenarios presented above, we can
conclude that SysA has a narrow envelope of operational conditions in which it is
both self-managing and returns satisfactory behaviour. On the other hand, SysB
tends towards a wider operational envelope with increased efficiency and satisfac-
tory behaviour, but once the limits of that envelope are reached, the efficiency and

Figure 5.23  SLA analysis for scenario 3

164  Trustworthy autonomic computing

reliability of the system drop. In moderate operational complexities, SysB performs
adequately efficient but fluctuates rapidly and may need human input to override
some decisions that lead to instability in the case of a highly erratic and complex sit-
uation, which, for example, SysC can deal with autonomically. Results have shown
that SysC is sufficiently sophisticated to operate efficiently and yield satisfactory
results under almost all perceivable operating circumstances. So, we can now con-
fidently conclude that the proposed TrAArch (represented by SysC) has significant
performance improvement over existing architectures and can be relied upon to
operate (or manage) almost all level of datacentre scale and complexity.

Generally, SysC shows significant performance improvement over SysB.
However, the extent of this improvement is application and context dependent.
Results show that there are circumstances in which performance improvement is
evident from SysC as well as circumstances in which improvement is not evident.
Complex applications with the possibility of unexpected behaviour patterns, e.g.,
large-scale datacentres with complex algorithms, will usually experience improve-
ment with SysC. Also, applications that are sensitive to fluctuating environmental
inputs (i.e., depend on volatile environmental information for decision-making), for
example, auto stock trading systems are expected to see greater benefit from SysC.
On the other hand, there are applications that are not expected to see any benefit.
Example includes small-scale datacentres with predefined request rate and request
capacity.

5.3 � Stability versus optimality

This subsection provides a further discussion on system stability and performance.
Up to this point in this book, stability has been used as a metric for measuring sys-
tem performance and it may wrongly seem that high stability is always synonymous
to optimality. While it has been shown, from experimental results so far, that stabil-
ity contributes to optimality and reliability, it is important to note that stability and
optimality are not necessarily always mutually inclusive. That is, a system is not
necessarily performing optimally because it is stable. The definition of stability, on
its own, is dependent on the context and goal of the system. For example, there are
situations where it may be suitable to allow some level of fluctuation and decision
changes which under different situations may be considered destabilising. So, for
every system, it is necessary to pre-define an acceptable level of fluctuation.

Naturally, a system that does not make any decisions or rarely changes its deci-
sions is considered to be very stable. However, this is inefficient and would be a
wrong generalisation for autonomic systems. A proposed solution in this book is to
determine a boundary of the appropriate and efficient level of system behaviour fluc-
tuation for each system and then plug this into the design of the system’s autonomic
manager. For example, as used in this book, limits of acceptable fluctuation or stabil-
ity are defined as benchmarks in the system’s goals and these are used to configure

Trustworthy autonomic architecture implementations  165

the decision fork of the tolerance range check object used by the dead-zone logic
– see Chapter 3. In essence, stability is defined in the goals of the system (note that
systems are designed based on or to meet a set goal) and the system designer imple-
ments this through the component logic of the system. For example, as specified in
the rule for the experiment in section 3.2.1, for every 10 decision cycles, decision
change count of 4 or above is considered unstable, while no decision change is con-
sidered inactive. So, the autonomic manager is configured to dynamically throttle
the size of the DZ Width to only allow a minimum of 1 and maximum of 3 decision
changes in every 10 decision cycles.

5.4 � Conclusion

This chapter has presented an implementation and empirical investigation of the
proposed trustworthy architecture. Two case examples have been used to demon-
strate an implementation of the TrAArch. Experiments are based on different scenar-
ios that replicate real-life systems and operating conditions. The experiments inves-
tigate performance differences between the traditional autonomic architecture and
the proposed TrAArch. Results show that the proposed architecture has significant
performance improvement over the existing architectures and can be relied upon to
operate (or manage) almost all levels of autonomic system scale and complexity. The
traditional architecture has a narrow envelope of operational conditions in which it
is both self-managing and returns satisfactory behaviour, while TrAArch is suffi-
ciently sophisticated to operate efficiently and yield satisfactory results under almost
all perceivable operating circumstances. This chapter has also shown the importance
of trustworthiness, also referred to as dependability, to autonomic computing and
how this can significantly improve the performance of autonomic systems.

The TrAArch simulator has also been presented in Section 5.2.1 with a detailed
explanation of how to use it. This is particularly important if the reader wants to
recreate the experiments presented in this book or design new ones. To help the
reader further understand or demonstrate the effect of trustworthiness, it is advisable
to design new simulations of different scenarios and analyse the results following
the examples presented here. For the self-adapting resource allocation case example,
only three scenarios are used in this book. The reader can study more scenarios for
this same case example. This can also help as a guide for studying other case studies
of choice.

This page intentionally left blank

Chapter 6

Multi-agent interoperability

The concept of autonomic computing was initially envisioned to address the increas-
ing complexity of managing computing systems. Over time, also with improved and
new technologies, these systems have continued to grow both in scale and ubiquity,
leading to even more and more management complexities. This increase in scale
and deployment of multi-agent systems (e.g., datacentres and distributed systems)
coupled with heterogeneity of services and platforms means that more autonomic
managers (agents) could be integrated to achieve a particular goal. This bringing
together of many autonomic managers for a common goal has led to the need for
interoperability – managing the unique and complex interactions between the coex-
isting autonomic managers. Autonomic computing is an aspect of multi-agent sys-
tem field where autonomic managers act as individual agents.

‍ ‍

168  Trustworthy autonomic computing

In this chapter you will

•• learn about multi-agent systems coordination
•• learn about trustworthy autonomic interoperability
•• explore experimental demonstrations of trustworthy autonomic interoperability

6.1 � Introduction to multi-agent interoperability

This chapter provides an overview of interoperability solutions and makes case
for a proposed solution that is suitable for trustworthy autonomic computing. An
implementation and empirical analysis of the proposed solution are presented. This
involves an experimental demonstration using a datacentre multi-manager scenario.

Autonomic computing has progressively grown to become a mainstream con-
cept. Many mechanisms and techniques have been successfully explored, and the
very success of autonomic systems has inevitably led to situations where multiple
autonomic managers need to coexist and/or interact (directly or indirectly) within
the same system. This is evident, e.g., in the increasing availability of large-scale
datacentres with multiple (heterogeneous) managers (agents), which are indepen-
dently designed. This increase in scale and size of datacentres coupled with het-
erogeneity of services and platforms means that more autonomic managers could
be integrated to achieve a particular goal, e.g., datacentre optimisation. This has
led to the need for interoperability between autonomic managers. Interoperability
deals with how to manage multi-manager scenarios, to govern complex interactions
between managers and to arbitrate when conflicts arise. Although several research-
ers have identified interoperability as a key challenge for future autonomic systems,
the challenge is already imminent.

Potentially, problems can arise as a result of conflict of interest when these
autonomic managers (components/agents) coexist. There is a growing concern that
the lack of support for interoperability will become a break issue for future sys-
tems. This book presents an architecture-based solution to interoperability. The pro-
posed solution is based on the Trustworthy Autonomic Architecture (presented in
Chapter 4), which includes mechanisms and instrumentation to explicitly support
interoperability and trustworthiness. Interoperability support should be designed in
and integral at the architectural level, and not be treated as an add-on as it cannot
be reliably retro-fitted to systems. This chapter analyses the issue of interoperability
and presents the proposed approach using a datacentre multi-manager scenario.

6.2 � Multi-agent systems and multi-agent coordination

‘Multi-agent systems’ is a generic term referring to systems consisting of different
subsystems (agents) that cooperate (interact) with each other in order to achieve

Multi-agent interoperability  169

a common goal. The idea of a system with several components working together
towards a common goal has been applied to an increasing number of domains includ-
ing distributed systems, autonomic systems, supply chain, networks of networks,
etc. Multi-agent coordination deals with the way the subsystems interact with each
other in the process of working together to achieve the common goal – and many
techniques have been proposed. A detailed survey of multi-agent systems, e.g., is
presented in Reference 154. Multi-manager scenario – which is an aspect of multi-
agent systems – as described in this book, is a situation requiring the cooperation of
different autonomic managers in the same system, and this cooperation is referred to
as interoperability. Several multi-agent coordination techniques have been proposed
in the multi-agent systems community, and this chapter also compares some of the
early techniques.

A multi-agent coordination in multi-robot systems is discussed in Reference
155. A multi-robot system is a system of heterogeneous cooperative robots work-
ing together to achieve a common goal. The multi-robot coordination discussed in
Reference 155 is based on genetic programming. To coordinate a cooperative task
between robots, Liu and Iba [155] proposed an approach called evolutionary sub-
sumption arguing that it is inefficient and intractable to directly use genetic program-
ming to generate a controller for complex behaviours. The proposed evolutionary
subsumption applies genetic programming to Brooks’ subsumption architecture
[145]. The subsumption architecture is an early autonomous robotics architecture
in which the complete behaviour of a robot is decomposed into sub-behaviours pre-
sented as hierarchical layers where higher-level layers can subsume the roles of
lower levels. Take for instance, a robot could have ‘avoid objects’, ‘move around’
and ‘explore the room’ layers which are interdependent – in order to explore the
room, the robot would need to be able to move around freely and should be able
to avoid obstacles. These layers are implemented as separate competences which
generate outputs, and the higher-level layers can subsume the competences of lower
levels by suppressing their outputs.

In a subsumption architecture, as illustrated in Figure 6.1, all layers take input
(contextual data) from the sensor and send output (decision, action, etc.) to the actua-
tor. However, higher layers can ‘inhibit’ the outputs of lower layers and cause theirs
to be actuated instead. This is the central idea of the subsumption architecture and
can be adapted for multi-agent coordination in which case the layers will represent
different agents (autonomic managers).

Challenge 6.1
The subsumption architecture gives us an idea that can be very useful
in autonomic systems interoperability. Try an implementation of two or
three autonomic managers working together for a specific goal. Design it
in a way that there will be at least one conflict – it could be a case where
the output (action) of one manager contradicts the output of another
manager and thereby affects the overall goal. Adapting the subsumption

170  Trustworthy autonomic computing

architecture, let the autonomic managers act as sublayers in which
conflicts can be resolved by higher autonomic managers inhibiting the
actions of lower autonomic managers. One of the main issues here would
be the algorithm for the conflict resolution – how to decide higher/lower
managers (may need to be defined by policy, learning, etc.), how and
when to inhibit actions, the direction of communication flow, etc. To keep
things simple, limit the autonomic functionalities of the managers to any
or all of the four self-managing functionalities.

Stigmergy is another promising concept for autonomic interoperability. The
potential of utilising stigmergy by software agents to interact with each other and
to collectively solve a common task is presented in Reference 132. Stigmergy,
which is found among social insects (e.g., ant colony), is the indirect commu-
nication among coexisting individuals through their environment. O’Reilly and
Ehlerspresent a methodology of mimicking stigmergy into a software system
positing that many software projects are deemed failures due to the inability of
the software systems to adapt to changing business environments. A multi-agent
stigmergic coordination in manufacturing control system has been presented in
References 133 and 156. Coordination among the agents in the manufacturing
control system is a direct reflection of the pheromone-based stigmergy in ant col-
ony. In this approach, the control system consists of agents (e.g., resource, product
and order) that distribute pheromones (e.g., agents’ connections, location and gen-
eral info) within the environment (cyber world) in which they reside. Sharing such
global information on a collective environment (the cyber world) reduces design
cycle, products’ time to market and order lead times and also facilitates flexibility
[133]. Stigmergy-based coordination is a rich and wide area of research that can
be explored in many forms, and this is just one aspect. The principle of stigmergy
is explained in Chapter 3.

However, in these and many other approaches, the agents are logically (and in
some approaches, physically) connected together which, in actual sense, indicates

Figure 6.1   Illustration of the subsumption architecture with three layers

Multi-agent interoperability  171

that the agents are aware of the existence of others. This is not always the case
in real-life systems. In some real-life environment, multi-agent systems are made
up of agents by different vendors which are designed to perform in environments
where they are not necessarily aware of the existence of other agents. In the stig-
mergic approach presented in this chapter, the agents do not need to be aware
of the existence of other agents. The agents have a sense of operating in ‘isola-
tion’ and simply respond to changes in the environment (in the form of process
conflicts, unexpected disturbance, etc.) – see the office share example in section
6.3. Trend analysis (TA) logic enables agents to easily infer the presence of other
‘agents’ by the kind (or nature) of environmental changes experienced. In this
approach, an external adjustment of some parameters (by a human user) – which
by the way may be correctly or erroneously applied – is considered an agent action
by other agents. One sophistication of the stigmergic interoperability approach is
that, no matter the conflict or disturbance, agents (in this case autonomic manag-
ers) are designed to react (e.g., by self-retuning) within the boundaries of the sys-
tem’s stated goals. This is because the agents are designed using the trustworthy
autonomic architecture (TrAArch).

6.3 � A review of autonomic interoperability solutions

The challenge of multi-manager interactions can be understandably enormous. This
stems from the fact that, e.g., components (and indeed autonomic managers) could
be multi-vendor supplied, upgrades in one manager could trigger unfamiliar events,
increasing scale can introduce bottlenecks, one manager may be unaware of the
existence of another and managers, though tested and perfected in isolation, may
not have been wired at design to coexist with other managers. Multi-manager coex-
istence leads to potential conflicts. A typical example is illustrated with a multi-
manager datacentre scenario – Figure 6.2.

Consider a figurative datacentre with three independent autonomic managers
working together (unaware of each other) to optimise the datacentre as in Figure 6.2.
The autonomic managers have direct control and management of certain aspects
of the datacentre – they pass control signals (solid arrow) to the datacentre and
receive feedback (dotted arrow) on the impact of their actions. The performance
manager optimises resource provisioning to maintain service-level achievement
(SLA). It does this, e.g., by dynamically (re)allocating resources and maintaining a
pool of idle servers to ensure high responsiveness to high-priority applications. The
power manager seeks to optimise power usage (as power is one of the major cost
overheads of datacentres) by shutting down servers that have been idle for a certain
length of time. The cooling manager ensures that the temperature of the datacentre is
maintained within a certain range of degrees. Although each manager performs bril-
liantly in isolation, by coexisting, the success of one manager may defeat the goal of
another. In this scenario, one can identify two sources of conflict:

172  Trustworthy autonomic computing

a.	 one manager seeks to shut down a server that another manager seeks to keep
alive and

b.	 another manager seeks to maintain temperature, within a certain range, using
power that another manager seeks to preserve.

The (in)activities of one autonomic manager affect the costs of provisioning
(e.g., delay cost, scheduling cost, competition cost, etc.) for another autonomic man-
ager in one way or the other. One way of mitigating this conflict is to have an exter-
nal agent that can detect and diagnose the conflict. The problem with this is that it
introduces more complexity (e.g., any additional autonomic manager will require
rewiring of the other autonomic managers) as system is scaled up. This leads to add-
ing more complexity in the process of solving a complexity problem which is not
desirable. There are a couple of efforts in this direction. A trustworthy autonomic
solution suitable for addressing this sort of scenario is demonstrated in section 6.4.

Kephart et al. [107] presented a clear demonstration of the need for interopera-
bility mechanisms. In that work, two independently developed autonomic managers

Figure 6.2  � Illustration of a simple multi-manager datacentre. The power
manager is responsible for optimising power usage while the
performance manager is responsible for handling resource
allocation, and the cooling manager is responsible for maintaining
the desired room temperature

Multi-agent interoperability  173

were implemented: the first dealt with application resource management (specifi-
cally central processing unit (CPU) usage optimisation) and the second, a power
manager, dealt with modulating the operating frequency of the CPU to ensure that
the power cap was not exceeded. It was shown that without a means to interact, both
autonomic managers throttled and sped up the CPU without recourse to one another,
thereby failing to achieve their intended optimisations and potentially destabilising
the system. There is widespread repetition of this sort of problem requiring appropri-
ate interoperability solution.

Anthony et al. [61] evaluated the nature and scope of the interoperability chal-
lenges for autonomic systems, identified a set of requirements for a universal solu-
tion and proposed a service-based approach to interoperability to handle both direct
and indirect conflicts in a multi-manager scenario. In this approach, an interopera-
bility service interacts with autonomic managers through a dedicated interface and is
able to detect possible conflict of management interests. New autonomic managers
register their capabilities and requirements (in terms of the kind of services they pro-
vide and what aspects of the system they intend to manage) with the interoperability
service, which then grants management rights only if no other autonomic manager
in its database is managing the same aspect of the system to which management
right is requested. In this way, the interoperability service manages all interoperabil-
ity activities by granting or withholding management rights to different autonomic
managers as appropriate. One problem with this approach is that if a new autonomic
manager is more capable of managing (e.g., in terms of efficiency) an aspect of the
system that an existing autonomic manager is already managing, the new autonomic
manager will be denied management right. Another challenge with the service-based
approach is the complexity of reconfiguring the interoperability service each time
a new autonomic manager is added whereas in the architecture-based solution pre-
sented in section 6.4, the autonomic managers seamlessly readjust their behaviour
each time a new manager is added. Two types of conflicts in a multi-manager sce-
nario are discussed in Reference 61: direct conflicts occur where autonomic manag-
ers attempt to manage the same explicit resource while indirect conflicts arise when
autonomic managers control different resources, but the management effects of one
have an undesirable impact on the management function of the other. This latter type
of conflict is believed to be the most frequent and problematic, as there are such a
wide variety of unpredictable ways in which such conflicts can occur.

Another form of interoperability that entails the collaboration of multiple man-
agers in the form of information exchange to achieve an overall system objective is
presented in Reference 157. In this arrangement, server machines are grouped into
node groups, and a node group manager allocates server processes and requests to
individual nodes using modelling and optimisation algorithms. The group manager
also estimates the ability of each group to fulfil its service-level objectives based on
the number of nodes available to it and then pushes the estimates to a provisioning
manager which allocates server machines to the groups using the provided esti-
mates. The exchange of information between these managers will require a form

174  Trustworthy autonomic computing

of interface for their communication, and this again brings us back to the issue of
having to reconfigure interfaces each time a new autonomic manager is added. This
approach only provides ‘static interoperability’ solution and is somewhat scalabil-
ity proof. The new solution proposed in this book is a ‘dynamic interoperability’
approach in the sense that autonomic managers do not need recoding each time new
managers are added. They autonomically retune (modulate) their behaviour as soon
as they sense process conflicts.

There are also works that deal with homogenous competing autonomic manag-
ers. For example, in order to avoid jobs being starved of resources, Reference 48
implemented a two-level autonomic data management system. A global manager
allocates physical resources to virtual servers while local managers manage the vir-
tual servers, using fuzzy logic to infer the expected resource requirements of the
applications that run on the virtual servers. Other works focus on bespoke interoper-
ability solution [158], direct autonomic managers interactions at the level of auto-
nomic elements to ensure that management obligations are met [159], hierarchical
relationship to autonomic element interactions [160] and Monitor-Analyse-Plan-
Execute (MAPE) architecture modification [105] where it is suggested to separate
out the monitoring and analysis stages of the MAPE loop into distinct autonomic
elements, with designed-in interactions between them.

The interoperability solutions discussed so far are some of the early efforts.
They are more generic and provide solid foundation for addressing the interoper-
ability issue. The recent solutions are more specific and application dependent.
Several studies [36, 109, 111] have addressed the challenge of interoperability
in many ways. Focus areas include interoperability within autonomous swarms
of unmanned systems [108] and interference-aware load balancing [110]. Hadj
et al. [109] focus on autonomic conflict management between coexisting appli-
cations while Ding et al. [36] look at interoperability in achieving service-level
objectives, and Tsarev et al. [111] are interested in multi-agent interaction within
supply scheduling.

The research community has made valuable progress towards autonomic man-
ager interoperability but this progress has yet to lead to a standardised approach.
Although the current state of research is a significant step, available solutions do
not completely tackle the problem of unintended or unexpected interactions that
can occur when independently developed autonomic managers coexist in a system.
Furthermore from that, and more realistically, autonomic managers may not neces-
sarily need to know about the existence of other managers – they are designed in
isolation (probably by different vendors) and operate differently (for different goals)
without recourse to one another. So, to have close-coupled interoperability (i.e.,
where specific actions in one autonomic manager react to, or complement those of
another), the source code and detailed functional specifications of each autonomic
manager must be available to all autonomic managers. This is near impossible and

Multi-agent interoperability  175

where it is possible, requires a rewiring (or recoding) of each autonomic manager
whenever a new autonomic manager is added. That is why this book favours a solu-
tion that is tied to the autonomic architecture to provide a dynamic solution – hence,
the architecture-based approach presented next. To avoid introducing further com-
plexity through solving the interoperability problem, the autonomic architecture
should envision (and provide for) interoperability support from scratch. That is to
say, the autonomic architecture should be scalable and dynamic enough to accom-
modate expected and unexpected developments. This is one aspect of trustworthy
autonomic computing – a trustworthy autonomic system should be designed with
the capability to address unintended or unexpected complex (conflicting) interac-
tions that can occur when independently developed autonomic managers coexist in
a system.

6.4 � The architecture-based interoperability

An efficient interoperability solution will need to be seamless and consider inter-
operability as an integral part of the system. This section presents a ‘dynamic
interoperability’ approach initially proposed in Reference 118. This approach
uses stigmergy and is based on the TrAArch. The TrAArch (see Chapters 4 and 5),
through its DependabilityCheck (DC) component can be extended to accommo-
date desired autonomic functionalities. In the proposed interoperability approach,
a TA logic is implemented in the DC component to enable the autonomic manager
to automatically detect conflicts, and using dead-zone (DZ) logic the autonomic
manager is able to regulate its behaviour as appropriate. Datacentre case exam-
ple experimentation is used to demonstrate this approach. The central idea here
is that interoperability capability should be designed into the system from the
beginning. This capability is achieved by utilising the stigmergic principle – the
autonomic managers are designed to learn from the signals available in their
operating environment and be able to adjust their behaviour to avoid potential
conflicts.

6.4.1 � Scheduling and resource allocation
Let us consider, in more detail (Figure 6.3), the multi-manager datacentre exam-
ple presented earlier in section 6.3 (Figure 6.2): the datacentre comprises a pool of
resources ‍Si‍ (live servers), a pool of shutdown servers ‍Ši‍ (ready to be powered and
restored to ‍Si‍ as need be), a list of applications ‍Aj‍, a pool of services Ṳ (a combina-
tion of applications and their provisioning servers) and two autonomic managers
A-M1 (performance manager (PeM)) and A-M2 (a PoM) that optimise the entire
datacentre. ‍Aj‍ and ‍Si‍ are, respectively, a collection of applications supported (as
services) by the datacentre and a collection of servers available to the PeM for provi-
sioning (or scheduling) available services according to requests. As service requests
arrive, PeM dynamically populates Ṳ to service the requests (actual scheduling
algorithm is presented in the experiment). Ṳ is defined by

176  Trustworthy autonomic computing

‍

Ṳ=

8ˆ̂̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂ˆ̂̂
:

A1W
�
S11, S12, S13, : : : , S1i

�

A2W
�
S21, S22, S23, : : : , S2i

�

: : : : : : : : : : : : : : : : : :

AnW
�
Sn1, Sn2, Sn3, : : : , Sni

�
‍

where ‍A1W
�
S11, S12, S13, : : : , S1i

�
‍ means that ‍

�
S11, S12, S13, : : : , S1i

�
‍

servers are currently allocated to Application ‍A1‍, and ‍An‍ is the number of appli-
cation entries into Ṳ. This setting indicates that a server can be (re)deployed for
different applications. All the servers in ‍Si‍ are up and running (constantly available
– or so desired by PeM) waiting for (re)deployment. The primary performance goal
of PeM is to minimise oscillation and maximise stability (including just-in-time
service delivery to meet SLA target) while the secondary performance goal is to
maximise throughput. The goal of the PoM, on the other hand, is to optimise power
consumption. This task is simply achieved, e.g., by shutting down any server that
has been idle for time ‍Ts‍.

Figure 6.3  � Architecture-based interoperability solution [118]. The DC component
of TrAArch provides interoperability management. The two A-Ms are
designed independently and operate independently as well.

Multi-agent interoperability  177

To manage interoperability between PeM and PoM using TrAArch, Figure 6.3
shows the communications and control within the components of the TrAArch
architecture. The autonomic managers take performance decisions, which are
then validated by their respective ValidationCheck (VC) components (‍VCpom‍ and
‍VCpem‍) for correctness. A control feedback (CF) is generated if validation fails
and with this feedback, the autonomic manager adjusts its decisions. The DC
component takes a longer-term view of the autonomic managers’ behaviour and
either allows a manager to carry on with its actions (if check passes) or generates
a recalibration feedback (RF) otherwise. DC contains other subcomponents (﻿﻿‍K ‍),
e.g., interoperability, stability, etc. The stability subcomponent is usually con-
figured using DZ logic as shown in the experiments of Chapter 5. The interoper-
ability subcomponent, in this case example, is configured using TA logic (which
identifies patterns within streams of information supplied directly from differ-
ent sources) with a combined effect of exponential smoothing technique (see
Chapter 3). The details of the logic usage are explained in section 6.5.2. Note that
the designer of the autonomic manager can define as many DC subcomponents
as necessary.

Note: It is important to first read Chapter 4, and possibly Chapter 5 as well, in order
to understand how TrAArch works.

Consider Figure 6.3. The interoperability component is implemented using
knowledge-based technology. It learns and keeps track of the system’s state follow-
ing the historical decisions of the autonomic manager. If after a number of decision
instances, the manager senses a conflict with its decisions (based on expected versus
actual system state), another RF is generated to retune the manager’s decisions.
Take for instance, if after sometime PoM senses that the same set of servers it has
shut down have constantly come back live without it powering them, there is only
one conclusion: another operation (probably a human, another manager, etc.) is not
‘happy’ with PoM’s decisions. So, PoM’s DC generates an RF with an appropri-
ate tuning parameter value (β) to throttle the size of ‍Ts‍ as follows: (Ts = Ts * β). By
sensing the effects of its actions and dynamically throttling ‍Ts‍ within an acceptable
boundary, PoM is able to coexist with any other autonomic manager with conflicting
actions. On the other hand, PeM can retune its behaviour, e.g., if it senses that the
set of servers it tries to keep running are constantly switched off. However, there are
boundaries within which each manager’s cleverness is limited. For example, the size
of ‍Ts‍ has a maximum limit.

Notice that the two autonomic managers do not need to know any details
or even the existence of each other. In real life, this is typical of two staff that
share an office space but work at different times. If each returns on their next
respective shift and finds the office rearranged, they will each adjust in their
arrangement of the office until an accepted compromise structure is reached.
This can be achieved without both getting to meet. The DC component provides

178  Trustworthy autonomic computing

extra capacity for an autonomic manager to dynamically throttle its behaviour
to suit the goal of the system. In actual sense this approach builds on the stig-
mergic phenomenon [161], which is a process of achieving indirect coordination
between coexisting agents by means of indirect communication via the environ-
ment. That is, using their environment for indirect communication, the agents
are able to sense and adjust their actions and this way they achieve efficient col-
laboration. So, the stigmergic interoperability solution provides indirect coor-
dination between autonomic managers in a multi-manager scenario without the
need for planning (or pre-knowledge of the existence of other autonomic manag-
ers), control or direct communications between coexisting autonomic managers.
This provides efficient collaboration (as against competition) between coexist-
ing autonomic managers.

There are costs associated with the operations of a datacentre. These costs are
affected in one way or the other by the actions of the autonomic managers. These
and many other metrics are used to analyse the proposed interoperability solution in
the following experimentation.

6.5 � Complex interactions in multi-manager scenario

This section presents experimental analysis of the proposed interoperability solu-
tion using a datacentre resource request and allocation management scenario.
The datacentre scenario used is the same as the one used in Chapter 5 but in this
case, there is an additional manager (PoM) that optimises the datacentre power
consumption. The essence of this analysis is not to investigate datacentres but
to examine the performance effects of the proposed interoperability solution in a
multi-manager datacentre scenario using easy-to-assess examples. The analysis
will investigate the performance of the datacentre with and without interoper-
ability solution.

It is important, however, to point out that the proposed interoperability solu-
tion works well in a closed-world model but has some limitations in an open-world
model and so may not be relied on to reach convergence. Convergence defines a
point at which system is stable and has reached a steady state. In a closed system,
there are a definite number of actors (in this case autonomic managers) that influ-
ence the environment and the individual actions of each autonomic manager can be
tracked as a trend. In this way, it is possible for each manager to detect persistent
actions that conflict with its actions and be able to readjust behaviour. However,
in an open system, there are indefinite number of actors that can influence the
environment. An actor in this model can be a third party that interferes with the
system, and this interference could be a one-off instance or several instances from
different actors. For example, the office share scenario discussed earlier in this sec-
tion is a closed-world model but it becomes an open-world model if a third party

Multi-agent interoperability  179

(say, different office cleaners) randomly contributes to the office (re)arrangement.
So, the proposed solution can be relied on to reach convergence in a closed-world
model but may require further readjustments to reach convergence in an open-
world model.

6.5.1 � Simulation design
The experiments here are designed and implemented using the TrAArch Simulator
(discussed in section 5.2.1), which is a C#-based application specifically developed
for simulating autonomic datacentre. Figure 6.4 is a pictorial illustration of the data-
centre implementation scenarios used. The two implementations of the datacentre
(Datacentre 1 and Datacentre 2) both have two autonomic managers as explained
in section 6.4 – a PeM and a PoM, optimising resource allocation and power man-
agement, respectively. Each autonomic manager is unaware of the existence of the
other. The scenarios are explained as follows:

•• Datacentre 1 – Both managers coexist without any form of interoperability
solution. This means that both managers perform their tasks within the bound-
aries of their individual autonomic framework without recourse to one another.
In this case, PeM and PoM are represented by PeM_NoInt and PoM_NoInt,
respectively while the datacentre is represented by NoInteroperability in the
simulation analysis.

•• Datacentre 2 – Both managers coexist with the proposed interoperability solu-
tion. This means that both managers, while performing their tasks within the
boundaries of their individual autonomic framework, are sensitive to external
interference. Here, external interference is defined as any action or effect that
alters the manager’s expected system state. In this case, PeM and PoM are

Figure 6.4  � Datacentre scenario with and without interoperability solution.
Datacentre 1 implements no interoperability solution while
Datacentre 2 does

180  Trustworthy autonomic computing

represented by PeM_Int and PoM_Int, respectively while the datacentre is rep-
resented by Interoperability in the simulation analysis.

Note that both managers are designed based on TrAArch framework (Figure 6.3),
and the investigation herein focuses on Datacentre 1 (NoInteroperability) versus
Datacentre 2 (Interoperability). So, this is performance analysis of a multi-manager
datacentre with and without interoperability solution.

6.5.2 � Autonomic manager logic
Manager logic describes the actual individual control logic employed by each
of the autonomic managers in order to achieve the stated performance goal.
This explains the logical composition of each manager. There are two instances
of each manager, i.e., when the manager is designed without interoperability
solution (PeM_NoInt) and when it is designed with interoperability solution
(PeM_Int).

•• Performance Manager

The PeM is directly responsible for resource request and allocation manage-
ment. The manager receives requests and allocates resources according to the algo-
rithm defined in section 6.4.1. The first instance of this manager (PeM_NoInt) has
no inbuilt interoperability solution.

- PeM_NoInt

As requests arrive, the manager checks for resource availability and deploys
server(s) according to the size of the request. When a server is deployed, it is
queued for a certain amount of time (ProvisioningTime) simulating the time
(delay) it takes to load or configure a server with necessary application. Servers
are then ‘provisioned’ after spending ProvisioningTime in the queue. The provi-
sioning pool is constantly populated as requests arrive. Additionally, the man-
ager calculates a smoothing average (see Chapter 3) of the capacity of arriving
requests:

smoothedAvgCapacityPeM_NoInt = (smoothingConstant * avgAppCapac-
ity) + ((1 − smoothingConstant) * oldMean)

The SmoothingConstant used and the choice justification are presented later in the
experimental analysis. The calculated smoothing average is a forecast of the next
expected request MIPS – i.e., it is used to predict requests. (The size of application
requests and the capacity of servers are defined in million instructions per second
(MIPS).) With this forecast information, the manager constantly checks to ensure

Multi-agent interoperability  181

that the difference between the predicted MIPS and the available MIPS (idle server
capacity ready for deployment) is not less than the equivalent of two servers. And if
it is, the manager quickly checks and restores servers from the shutdown server pool
(‍Ši‍). Procedure 6.1 is a basic algorithm explaining the server restoration process by
the PeM_NoInt manager.

‍ ‍

Note: PeM_NoIntTuningParam is a parameter representing time interval at
which the PeM_NoInt manager checks to decide whether or not to power and
restore servers that are down. This parameter is measured in number of service
requests.

This check ensures that, where possible, the manager maintains at least the
capacity equivalent of two servers readily available for deployment (i.e., enough
resources for current request and the next expected request). Checks are carried
out at an interval defined by a tuning parameter (PeM_NoIntTuningParam).
This ensures that the manager does not wait until late, the critical point, before
acting. So, at every interval, the manager checks and restores all servers on the
‍Ši‍ pool.

- PeM_Int

The PeM_Int manager has an embedded interoperability solution based on
the proposed interoperability solution (Figure 6.3). In addition to all the func-
tionalities of PeM_NoInt, the PeM_Int manager performs further checks and
retunes its behaviour. The manager tracks system state as it carries out the
checks at the specified interval defined by PeM_IntTuningParam. Each check is
calculated as ‘one observation’ and if on a periodic third observation, the ‍Ši‍ pool
is not empty (signalling that the pool is being populated as it is being emptied
by PeM_Int), the manager adjusts its checks interval (by increasing the tuning
parameter) to reduce the rate at which it empties the ‍Ši‍ pool (i.e., to be sympa-
thetic to the other manager whose presence is implied, rather than to compete
with it):

182  Trustworthy autonomic computing

‍ ‍

Note: PeM_IntTuningParam is a parameter representing the initial time inter-
val at which the PeM_Int manager checks to decide whether or not to power and
restore servers that are down. Unlike PeM_NoIntTuningParam, the size of PeM_
IntTuningParam parameter is dynamically adjusted by the PeM_Int manager. This
parameter is measured in number of service requests.

A further internal set of observation iterations, as shown above, are carried out.
The tuning parameter is further adjusted if condition persists (i.e., persisted interfer-
ence) after each fourth observation of the initial third interval of observations. So,
what happens here is that the manager powers ON all servers (restores servers from
‍Ši‍) and keeps checking that there are enough reserves for prompt deployment. As,
in this case, the PoM_Int manager continues to shut servers down, it causes insta-
bility in the system as both managers counter each other’s actions. If the PeM_Int
manager senses that the restored servers are constantly put out of service, it relaxes
its rate of repowering the servers – this is because the whole essence is collaboration
rather than competition. If after a certain time (defined by the new check interval)
the interference continues, the manager further relaxes the rate of its actions. This
process is repeated until a stable condition is reached. This is demonstrated in detail
in section 6.5.4.

•• Power Manager

The PoM is directly responsible for power usage optimisation in the datacen-
tre. The power optimisation method implemented by the manager is in the form of
power conservation in which idle servers are shut down to conserve power. Other
researchers have used different forms of power management which optimises power
consumption, e.g., by adjusting the processor speed of servers [162] and a power

Multi-agent interoperability  183

manager which is embedded in the firmware of a server and can use feedback con-
trol to precisely control the server’s power consumption [163]. While these are
processor-level power management, the PoM manager conserves power by shutting
idle servers and repowering them as need arises. This is basic and sufficient to create
conflicts with the PeM manager, which seeks to keep as many servers as possible
running in order to have enough capacity reserve. This form of power management
technique is also used in Reference 164 in which machines are turned ON/OFF to
conserve power.

- PoM_NoInt

Here the manager checks and shuts down idle servers at a time interval defined
by a tuning parameter (PoM_NoIntTuningParam). The idle servers are the same
servers that PeM_NoInt considers as available resources. So, in essence, when serv-
ers are shut down, AvailableCapacity is depleted which in turn affects the perfor-
mance of PeM_NoInt. So, PoM_NoInt continues to check and shut down servers
within a certain boundary. Procedure 6.2 is a basic algorithm explaining how the
PoM_NoInt manager checks and shuts down servers.

‍ ‍

So, what this means is that the PoM_NoInt manager will continue to shut idle
servers as long as the number of servers in the ‍Si‍ pool (available servers) is greater
than one-fifth of the total servers. The DC component of PoM_NoInt is configured to
stop shutting servers at ‍

�
LSi count =

�
server.sNumber / 5

��
‍ because if the manager

continues shutting servers beyond this point it will drag the entire datacentre to the
brink of unresponsiveness which ultimately leads to underprovisioning and ineffi-
ciency. This process continues regardless of the actions of the PeM. The PeM_NoInt
manager may at this point be restoring the servers to increase AvailableCapacity,
and this ultimately leads to high rate of server movement in the datacentre.

- PoM_Int

On the other hand, the embedded interoperability solution enables the manager
to sense conflicts and then readjust its behaviour. The same method as in PeM_Int

184  Trustworthy autonomic computing

is used here. For example, the manager keeps count of servers in the ‍Ši‍ pool (list-
ViewShutServer.Items.Count) as it shuts and repowers servers and if on a periodic
tenth check the server count does not match expected count (signifying an unknown
interference), the manager adjusts the tuning parameter:

‍ ‍

The manager keeps adjusting the tuning parameter (PoM_IntTuningParam)
until it senses stability in the datacentre. Recall the conflict resolution example of
the two staff sharing an office space discussed earlier. This is the fundamentals of the
proposed stigmergic-inspired interoperability solution in this book.

6.5.3 � Simulation scenarios and metrics
This simulation scenario is used to analyse the performance effects of the proposed
stigmergic-inspired interoperability solution using the datacentre case example. The
scenario and metrics used in the analysis are presented in Table 6.1. Further analysis
can be done by downloading and running the TrAArch application (see section 5.2.1
in Chapter 5).

Scenario 1: In Scenario 1, all parameters are kept constant except those (e.g.,
DZConst) that may need dynamic tuning by the autonomic manager as need arises.
This scenario gives a default view of the datacentre performance both when the
two managers implement the proposed interoperability solution and when they do
not. Under this scenario of normal conditions, all parameters are kept constant, and

Multi-agent interoperability  185

the two managers work independently without any physical or logical connections
between them.

Scenario 2: This scenario is an exercise for the reader to complete, using the
TrAArch Simulator. See full details at the end of the section (Challenge 6.2).

•• Workload and simulation parameters

The result of every simulation analysis is relative to the set of workload or
parameter set used. The parameter set used for the interoperability analysis is clas-
sified into internal and external variables. Most of these have been presented in
Chapter 5 (section 5.2.2.2). The workload and simulation parameters specific to the
interoperability analysis are:

- PowerCoefficient

Power coefficient represents the average server power consumption. That is, the
average power a server consumes at any point in time for being active (switched on
and running). This is measured in kilowatt (kw). According to References 151 and
152, on average, servers consume 3.195 MW/h worth of power. This value is scaled
and PowerCoefficient is pegged at 0.887 kw/s in the simulations. This is just reflec-
tive and a guide as actual values can significantly vary owing to a lot of factors (e.g.,
cooling, processor, machine type, etc.). Interestingly, the TrAArch Simulator allows
for the tailoring of all parameters according to user preferences. The usage of this
variable is limited to investigating the impact of interoperability actions in terms of
power consumption.

- PeM_IntTuningParam

Tuning parameter representing the initial time interval at which the PeM_Int
manager checks to decide whether or not to power and restore servers that are down.

Table 6.1   Interoperability simulation scenarios and metrics

Scenario Description Metrics

Scenario 1 Standard resource allocation
management with uniform
request rate and application
size

Power consumption
Power savings
Instability
SLA

Scenario 2 Varying application size with
inconsistent request rate

186  Trustworthy autonomic computing

The manager dynamically adjusts the size of the parameter. This is measured in
number of requests.

- PeM_NoIntTuningParam

Tuning parameter representing the time interval at which the PeM_NoInt man-
ager checks to decide whether or not to power and restore servers that are down. The
manager does not dynamically adjust the size of the parameter. This is measured in
number of requests.

- PoM_NoIntTuningParam

Tuning parameter representing the time interval at which the PoM_NoInt man-
ager checks to decide whether or not to shut down idle servers. Value is not dynami-
cally adjusted and is measured in number of service requests.

- PoM_IntTuningParam

Tuning parameter representing the initial time interval at which the PoM_Int
manager checks to decide whether or not to shut down idle servers. Value is dynami-
cally adjusted by manager and is measured in number of service requests.

•• Metrics

All metrics are mathematically defined to give the reader a clear picture
of the definition and usage criteria for the metrics. The metrics are specifically
chosen to reflect the impact of interoperability solution in a multi-manager
datacentre.

Service level achievement: This has been discussed and defined in section
5.2.4.1 as:

‍

SLA =

8ˆ̂̂̂
<̂
ˆ̂̂
ˆ̂:

ProvisionedCapacity
RequestedCapacity

�
i
�

AvailableCapacity
RunningCapacity

�
ii
�

‍

PowerConsumption: This metric represents the aggregated power consumption per
unit time for all idle servers, i.e., servers that are running but not yet deployed. It is
important to consider these servers as they can as well be switched OFF and pow-
ered ON only when needed. Although this could have a slight effect on SLA, the
trade-off in power savings may be worthwhile. So, if we assume that each server,

Multi-agent interoperability  187

on average, consumes PowerCoefficient kilo watts worth of power per second, then
PowerConsumption is calculated as:

‍PowerConsumption = PowerCoefficient � #IdleServers‍

PowerConsumption is calculated at every time interval defined by request rate.
Individual manager power consumption is different from the normal or general
power consumption. For general power consumption, number of idle servers will
be the total of server count in ‍Si‍ and ‍Ši‍ pools while for individual manager power
consumption (with or without interoperability) number of idle servers will be the
total of server count in ‍Si‍ pool:

‍PowerConsumption = PowerCoefficient �
�
Server.Count + ShutServer.Count

�
‍

	﻿‍ PowerConsumptionInt = PowerCoefficient � Server.Count‍�

	﻿‍ PowerConsumptionNoInt = PowerCoefficient � Server.Count‍�

Note that as a result of individual operations of the managers, ​server.​count for
Datacentre 1 will usually be different from that of Datacentre 2 (Figure 6.4).

PowerSavings: PowerSavings is calculated as the difference between general power
consumption and individual power consumption:

‍PowerSavings = GeneralPC � IndividualPC ‍

So, e.g., the PowerSavings for Datacentre 1 will be calculated as

	﻿‍ PowerSavingsNoInt = PowerConsumption � PowerConsumptionNoInt‍�

and the PowerSavings for Datacentre 2 as

	﻿‍ PowerSavingsInt = PowerConsumption � PowerConsumptionInt‍�

As PoM intends to optimise power usage, which also entails saving power, the
PowerSavings metric will be useful to analyse the impact of the manager’s power
management capability.

Instability: Instability measures the rate at which servers are moved around the
datacentre. It is inefficient to move servers around frequently. The cost effect can be
enormous in terms of cooling, power, scheduling costs, etc.

‍Instability = #ServersMoved⁄Time‍
Instability in terms of irregular and high rate of server movement from one pool

to another is a costly, unsafe and undesirable occurrence in datacentres. This is a
potential situation when you have two managers optimising the same datacentre as
in the case example here.

188  Trustworthy autonomic computing

6.5.4 � Results analysis
This section presents the analysis of the experimental results. Results are presented
and analysed according to simulation scenarios and in doing this the metrics listed in
Table 6.1 will be used. Each simulation will analyse the performances of Datacentre
1 (NoInteroperability) and Datacentre 2 (Interoperability) under the same condi-
tions. Presented results are based on average of ten simulation runs per scenario. For
more accurate analysis, consider performances between 201s and 1801s – reflecting
when the simulation is settled.

Scenario 1: Resource request and allocation management with uniform request
rate and application size

Table 6.2 is a collection of the major parameters used in this scenario. For pre-
cise results, the average of ten simulation results is presented. For each of the ten
simulations, the same parameter set as in Table 6.2 is used. However, the number
of requests and the distribution of those requests among the four applications will
differ as they are dynamically generated and unpredictable. This does not distort
the results as analysis is based on system-wide performance and not on individual
application performance.

With 10 000 servers of 40 000 MIPS each, it means that there is a total of initial
40 000 000 MIPS available to share between four applications (App1, App2, App3
and App4). Reclaimed servers are subsequently added to this available capacity.
Table 6.3 shows a distribution of requests and services for ten simulation runs of
Scenario 1.

Table 6.2  Scenario 1 simulation parameters

Parameter Value

Number of servers 1 000
Number of applications 4
Request rate 1 req/s
Application capacity (MIPS) 20 000
Server capacity (MIPS) 40 000
Internal variables RetrieveRate 5×

RequestRateParam 10
RetrieveRequestParam 0.2
PowerCoefficient 0.887 kw/s
SmoothingConstant 0.05
ServerProvisioningTime 3 (1.5 s)

Autonomic managers
(PeMs and PoMs)

PeM_NoInt
PeM_Int PoM_NoInt
PoM_Int

DZConst 1.5

Multi-agent interoperability  189

From Table 6.3, there is no substantial performance difference between when
interoperability solution is implemented (Int) and when it is not (NoInt) in terms of
requests and services distribution. Although results slightly favour Int, the resource
per service efficiency of (1007.9/2174.5) is to (1015/2182.8) that is (0.4635:0.4650),
is negligible. This is shown in the SLA performance of both datacentres (Figure 6.5).
However, of most importance is the cost of achieving both levels of performance
which is explored later. Also, the Int scenario has more outstanding (unused) server
capacity (8.3 * 40 000 = 332 000) and could service about 332 000/20 000 = 17 more
application requests.

For SLA, Figure 6.5 shows that both datacentres performed optimally in terms
of efficiently utilising available resources and meeting expected service level.
This is indicated by the proximity of both SLAs to value 1, which is the mark of
optimal performance. However, analyses of other results reveal that Datacentre 1
(NoInteroperability) was quite unstable and would cost more to maintain.

Figure 6.6 is the analysis of behaviour patterns (ActionTrend) in both datacen-
tres. The level 0.5 is irrelevant as it is just used to indicate behaviour patterns (in
terms of tuning and retuning actions) of autonomic managers in both datacentres in
the face of conflict. Each line indicates a server move. Datacentre 1 (represented by
_NoInt) shows no dynamic retuning of behaviour pattern. Because managers were
designed without any embedded interoperability solution, they maintained their
behaviour (persisted actions) despite any conflict (interference) or instability in the
datacentre. On the other hand, there is a level of autonomic retuning of behaviour
patterns in Datacentre 2 (represented by _Int). At 101s, the autonomic managers
sense a conflict (resulting in high level of server movement) and readjust their tuning
parameter (explained in section 6.5.2) which reduced the conflict. Further dynamic

Table 6.3  � High-level performance analysis over ten simulation runs of Scenario 1

Sim.

Unused server Serviced request
Dropped/Queued
request Deployed server

Int NoInt Int NoInt Int NoInt Int NoInt

1 6 0 2 166 2 166 118 118 1 012 1 023
2 0 0 2 196 2 196 101 101 1 016 1 013
3 13 0 2 170 2 180 129 119 1 000 1 011
4 18 0 2 139 2 152 110 97 996 1 008
5 0 0 2 208 2 226 116 98 1 014 1 010
6 11 0 2 177 2 182 114 109 1 007 1 022
7 0 0 2 197 2 207 140 130 1 022 1 017
8 29 0 2 155 2 161 121 115 985 1 015
9 6 0 2 150 2 170 117 97 1 008 1 011

10 0 0 2 187 2 188 107 106 1 019 1 020
Avg 8.3 0 2174.5 2182.8 117.3 109 1007.9 1015

190  Trustworthy autonomic computing

readjustments are performed (e.g., at 201s, 401s) until an acceptable (stable) behav-
iour level is achieved at point 1001s. Both datacentres settle towards the end of the
simulation.

Figure 6.7 shows how many servers were moved (from one pool to another) per
time. Datacentre 1 shows high level of instability, and this is as a result of high fre-
quency of server movement. The coexistence of PeM_NoInt and PoM_NoInt man-
agers without any form of interoperability solution meant that more servers were
frequently moved about. In isolation, both autonomic managers would adequately
move servers about without causing instability in the datacentre while their coex-
istence led to conflicts which saw servers erratically moved between pools. Recall
that while the PeM_NoInt seeks to keep servers running as reserves, PoM_NoInt

Figure 6.5   SLA analysis for both datacentres

Figure 6.6  ActionTrend analysis for both datacentres

Multi-agent interoperability  191

seeks to shut servers that are idle and this leads to conflicts. This is not the case
with Datacentre 2, which implements a dynamic interoperability solution that seam-
lessly resolves the conflicts experienced by Datacentre 1. This is achieved by both
managers dynamically retuning their behaviour (section 6.5.2) whenever instability
is sensed.

The movement of servers around the datacentre has some power cost implica-
tions. In this study, conflicts are specifically as a result of a PeM countering the
actions of a PoM and to further understand the impact of the interoperability solution
the analyses will hinge on power performance. The PoM in isolation can achieve
huge reductions in power consumption. However, this achievement is significantly
reduced when there are conflicts. Figure 6.8 shows the level of power consumption
in both datacentres.

In Datacentre 1 (NoInteroperability), there is no noticeable drop in power
consumption because the servers that are shut down to save power are constantly
repowered by the PeM. So, the power consumption is almost as expected. There
is, however, a tiny drop in power consumption in Datacentre 2. This is because the
embedded interoperability solution allows the autonomic managers to relax their
actions in the face of conflicts leading to more servers remaining shut down a longer
time before being repowered. This may not be significant; however, these results
depend on the scenario and set of parameters used. Figure 6.9 shows the power sav-
ings (i.e., difference between the actual and expected power consumptions) in both
datacentres.

Figure 6.7   Instability analysis for both datacentres

192  Trustworthy autonomic computing

The power savings metric gives a clearer view of the datacentres’ performances
in terms of power optimisation and the impact of the interoperability solution.
There is a consistent (uniform) power savings of about 1.8 kw/s for Datacentre 1
in the duration of the simulation. This is because both managers (PeM_NoInt and
PoM_NoInt) operate within fixed autonomic boundaries – i.e., they persisted their
actions despite any conflicts as long as such actions fall within their separate legal
autonomic boundaries. So, we have a situation of almost equal action and reac-
tion (server power down and server power up) on the same system which basically
leaves the system on the same spot. Although there is occasional savings drop in the
negative in Datacentre 2, there is significant overall improvement in power savings.
The occasional drop in savings can be attributed to the time lag between when a
manager detects a situation that warrants retuning of its behaviour and when it actu-
ally retunes itself to maintain stability. The interoperability solution is dynamically
sensitive to interferences to manager actions. For more accurate analysis, consider
performances between 201s and 1801s – reflecting when the simulation is settled.

In the analysed datacentre scenario, there are requirements for performance
optimisation (in terms of resource request and allocation management) and power

Figure 6.8  � Power consumption analysis for both datacentres.
‘NormalPowerConsumption’ is the expected level of power
consumption in the datacentre without a PoM

Multi-agent interoperability  193

optimisation (in terms of power management), and these optimisations are handled
by two conflicting managers. Results have shown that while performance optimisa-
tion is not significantly affected (Figure 6.5 and Table 6.3) by the conflict in both
studied datacentres, power optimisation is significantly affected (Figures 6.8 and
6.9). In both datacentres, there is almost optimal resource provisioning with high
level of efficiency and insignificant difference in level of performance. This is partly
because the actions of the PeM have enormous impact on the PoM whereas the
PeM has a way of mitigating the effects of the PoM’s actions. Where impacts exist
on the later the managers rely on the robustness of their underlying architecture
(TrAArch) to stabilise the system. In Datacentre 1, with no interoperability solution,
power optimisation is heavily affected because of the conflicts between the manag-
ers. These conflicts are dynamically addressed in Datacentre 2 by the interoperabil-
ity solution. So, we can conclude, based on the presented results, that the proposed
interoperability solution is capable of adequately handling complex interactions in
multi-manager system scenarios. This is another step towards trustworthy autonomic
computing. This assertion can be further tested – consider the following exercise.

Note: The performance analysis results of Scenario 1, between
Datacentre 1 and Datacentre 2, do not show significant difference apart
from the Instability metric. This is because simulation Scenario 1 is a
basic setup. This is somewhat expected as the operating conditions are
moderate. Significant performance differences have been observed in the
results of more complex scenarios. For example, the setup in Scenario 2
(Challenge 6.2) represents a more complex operating condition in which
significant performance differences are expected.

Figure 6.9   Power savings analysis for both datacentres

194  Trustworthy autonomic computing

Challenge 6.2
Table 6.4 presents a second simulation scenario, ‘Scenario 2’ – with vary-
ing application size and inconsistent request rate. This is a more complex
scenario with resource contention and burst injection. This scenario cre-
ates a situation where there is resource contention (as a result of hugely
varied request sizes) and the possibility of abrupt and inefficient server
deployment as a result of inconsistent request rate. This condition is per-
fect for testing the robustness of the stigmergy-inspired interoperability
solution. The effect of resource contention and irregular (sometimes
erratic) request rate is usually rapid and frequent movement of servers
around the datacentre. This is made worse when there is conflict between
the two managers, with one restoring servers and another powering them
down, which leads to more server movement. The robustness of the inter-
operability solution is tested by its level of sensitivity to this situation.

Conduct a new experiment using the parameters in Table 6.4 for
Scenario 2. Analyse as many metrics as possible and discuss your findings
about the stigmergic interoperability solution. You can access the TrAArch
Simulator from Downloadable material. Once you export the simulation
result to Microsoft Excel, you can analyse as many metrics as possible.
Read section 5.2.1 in Chapter 5 for details on how to use the simulator.

6.6 � Conclusion

This chapter has presented an overview of multi-agent systems coordination and
the challenges of interoperability between autonomic managers in multi-manager

Table 6.4   Scenario 2 simulation parameters

Parameter Value

Number of servers 400
Number of applications 2
App capacity (MIPS) App1 30 000

App2 15 000
Request rate (initial) 1 req/s
Server capacity (MIPS) 40 000
Internal variables RetrieveRate 5×

RequestRateParam 10
RetrieveRequestParam 0.2
BurstSize 2 500 ms
ServerProvisioningTime 3 (1.5 s)

Managers (for NoInt and Int) PeM and PoM
DZConst (initial) 1.5

Multi-agent interoperability  195

scenarios. The very success of autonomic computing has inevitably led to situa-
tions where multiple autonomic managers need to coexist and/or interact directly
or indirectly within the same system. Potentially, problems can arise due to conflict
of interest when these managers (components) coexist. This is partly as a result of
increasing scale and complexity of newer systems. Interoperability challenges stem
from the fact that these components could be multi-vendor supplied, upgrades in one
component could trigger compatibility issues, increasing scale can introduce bottle-
necks, one component may be unaware of the existence of another and components,
though tested and perfected in isolation, may not have been wired at design to coex-
ist with other components.

An overview of a few interoperability solutions has been presented. These solu-
tions are based on different established mechanisms. An architecture-based interop-
erability solution that addresses complex interactions between coexisting autonomic
managers has also been presented. The interoperability solution, which is based on
the TrAArch architecture, builds on the Stigmergy mechanism – this mechanism
allows for indirect coordination, through the operating environment, between coex-
isting autonomic managers. In this approach, autonomic managers are designed to
sense their environment and dynamically (re)adjust (retune) their behaviour as soon
as they notice process conflicts. Experimental analyses have been presented to eval-
uate the performance of the stigmergy-inspired interoperability solution. The impor-
tance of considering interoperability capability as an integral part of the autonomic
manager design has also been proposed. This is another step towards trustworthy
autonomic computing.

This page intentionally left blank

Chapter 7

Level of autonomicity

This book has so far covered some grounds on the pillars of trustworthy autonomic
systems which ensure, amongst other things, fit-for-purpose results (dependability/
reliability, continuous evaluation of control actions) and validation. Another impor-
tant aspect is the support for the definition of autonomic systems in universal lan-
guage. This needs to be at both system design (for understanding the system and
its requirements) and post system design (for system classification and evaluation).

‍ ‍

In this chapter, the concept of measuring the level of autonomicity (LoA) for
autonomic systems is introduced. A review of some of the existing approaches
for measuring level of autonomicity is presented. Finally, a quantitative technique

198  Trustworthy autonomic computing

for measuring LoA along several dimensions of autonomic system self-* function-
alities is discussed.

In this chapter you will:

•• Understand the concept and importance of measuring LoA
•• Be able to classify autonomic systems

7.1 � Introduction to level of autonomicity

The rapid advancement in the study of autonomic computing is not without chal-
lenges. One of these challenges is the wide range of views, within the autonomic
computing community, on meaning, architecture, methodology and implementa-
tions. This proliferation of views is majorly fuelled by the lack of universal stand-
ards for the technology itself and its development. Anyone can design a system
and call it autonomic – but how does one really come to that conclusion? Chapter
1 has attempted to address the issue of definitions. However, moving from that, the
criticality of understanding extent of autonomicity in defining autonomic computing
systems has necessitated the need for evaluating these systems. Defining the LoA of
autonomic systems is one of the building blocks of trustworthy autonomic comput-
ing. Also, as identified before in section 1.2, another building block is an appropriate
testing methodology that seeks to validate the autonomic system decision-making
process. But to know what validation is appropriate requires knowledge of the sys-
tem in terms of its extent of autonomicity (either required or exhibited).

Understanding how and being able to measure level of autonomicity make it
possible to compare autonomic systems and also facilitate a proper understanding
of such systems. The majority of research in this area has been qualitative and
application domain specific. Existing techniques have mainly qualitatively clas-
sified autonomic systems according to some defined levels with no reference to
the building blocks (core autonomic functionalities) of the systems. There is lack
of quantitative approach for assessing autonomic systems. However, there have
been efforts towards classifying autonomic systems according to extent of auto-
nomicity but these efforts have not successfully met the need for assessing auto-
nomic systems. This chapter reviews some of the early approaches and presents
a generic technique for measuring LoA along several dimensions of autonomic
system self-* functionalities. Recall from Chapter 1 that while self-CHOP refers
to the traditional four autonomic functionalities (the self-configuring, self-healing,
self-optimising, and self-protecting functionalities) self-* refers to generic auto-
nomic functionalities, which comprises of both the self-CHOP functionalities and
any other possible or application-dependent functionalities (e.g., self-stabilising,
self-aware, self-regulating). This is important for the LoA solution presented in
this chapter.

Level of autonomicity  199

Designers of autonomic systems need to answer the ‘How autonomic should a
system be?’ question. This is important because autonomic specification is a critical
part of the whole system requirements definition. It helps in determining the level of
autonomy required for a specific system. For this, a level of autonomy assessment
tool would be required. To address post system design phase, system designers and
users need to answer the ‘How autonomic is a system and how is this determined?’
question. This question is in two parts. On one hand is the need to define systems
according to a measure of autonomicity and on the other is the method and nature of
the measure. Addressing this issue is the main thrust of this chapter. Another signifi-
cant aspect addressed here is the need for a standard way for assessing, comparing
and evaluating different autonomic systems (with flexibility across many domains)
and also in terms of their individual functionalities. Not only do we measure auto-
nomicity but also look at how systems can be evaluated and compared in terms of
their autonomic compositions.

The ‘How autonomic should a system be?’ question has mainly been answered
with scales that describe and analyse autonomy in systems. These scales provide
fundamental understanding of system autonomy by categorising autonomy accord-
ing to the level of human-machine involvement in decision-making and execu-
tion. One issue with this approach is that low human involvement does not always
necessarily translate to high autonomicity and vice versa. Also, these methods do
not assess autonomic systems based on demonstrated functionalities but on per-
ceived or observed outcomes (performance). Efforts in this area include scale-based
approaches, which define a number of autonomy scales for ranking system auton-
omy. For example, Proud et al. [165] designed an 8-level autonomy scale to rank
human-machine involvement in decision-making, Clough [166] proposed a 10-level
scale for determining unmanned aerial vehicles’ autonomy, and IBM’s white paper
[23] describes 5 levels of automation for IT and business processes. These scales
only characterise autonomy levels qualitatively and offer no quantitative means of
measuring level (extent) of autonomicity. So, they are more suitable for proposing
an appropriate level of autonomy during the design of a new system.

The ISO/IEC 9126-1 standard decomposes overall software product quality into
characteristics, sub-characteristics (attributes) and associated measures. This means
that the quality of a software can be effectively determined by evaluating how it
meets or demonstrates the expected attributes and sub-attributes for that particular
software – assuming that there is a standardised (or at least, a generally accepted) set
of domain-specific attributes. This approach can be adapted in defining a framework
for measuring LoA based on the autonomic system self-* functionalities. Systems
are well-defined by their set of functional capabilities and a measure of these capa-
bilities will form a better representation of the systems. These functional capabilities
may be extended to mean, in other systems, characteristics (or attributes) and sub-
characteristics (or sub-attributes). The technique presented here applies to both spe-
cific scenarios of core autonomic functionalities, the self-CHOP functionalities, and

200  Trustworthy autonomic computing

general scenarios of all possible essential functionalities, the self-* functionalities.
This extends the scope of deployment of the technique thereby making it generic.
Specific metrics for each of the functionalities are identified and the cumulative
measure of these metrics defines a LoA. This technique is robust as it is based on
the functionalities of systems making it possible to be tailored to suit the needs of
any application domain. Also, it can be used for both autonomic and non-autonomic
systems – all that is required is to identify system characteristics (autonomic func-
tionalities in the case of autonomic systems) and define metrics for each characteris-
tic or functionality. However, this book focuses on autonomic systems. The novelty
of the technique is in the fact that it offers a quantitative measure of LoA in terms of
system’s functionalities-based description and can be flexibly applied across differ-
ent application instances. This approach is originally published in Reference [167].

7.2 � Measuring LoA

This section starts with a brief overview of existing techniques for classifying auto-
nomic systems. This is followed by an introduction to autonomic measuring metrics,
which are used in the proposed LoA measuring technique presented next.

One major existing proposal for classifying autonomic systems according to
the extent of autonomicity (or measuring LoA) is the scale-based approach. This
approach, based on the level of human-machine involvement in decision-making
and execution, uses a scale of (1 – max) to define a system’s LoA where ‘1’ is the
lowest autonomic level, usually describing a state of least machine involvement in
decision-making and ‘max’ is the highest autonomic level describing a state of least
human involvement (which can be different for different functionalities).

Examples in this category include References [165, 166, 168 and 169. Clough
[166] proposes a scale of (1–10) for determining unmanned aerial vehicles’ (UAV’s)
autonomy. Level 1 ‘remotely piloted vehicle’ describes the traditional remotely
piloted aircraft, while level 10 ‘fully autonomous’ describes the ultimate goal of
complete autonomy for UAVs. Clough populates the levels between by defining
metrics for UAVs. Clough’s work, although specific to UAVs, is useful for the tech-
nique presented here as it gives an example of how metrics can be used to define a
system’s operational characteristics.

Sheridan [168] also proposes a 10-level scale of autonomic degrees. Unlike
Clough’s scale, Sheridan’s levels 2–4 centre on who makes the decisions (human or
machine), while levels 5–9 centre on how to execute decisions. Proud et al. [165], in a
study to determine the level of autonomy of a particular autonomic system decision-
making function, developed an 8-level autonomy assessment tool (Table 7.1). The
tool ranks each of the OODA (observe, orient, decide and act) loop functions across
Sheridan’s proposed scale of autonomy [168]. OODA is a decision-making loop

Level of autonomicity  201

architecture for autonomic systems. The scale’s bounds (1 and 8) correspond to
complete human and complete machine responsibilities, respectively.

The authors of that work [165] first identified the tasks encompassed by each of
the functions and then tailored each level of the scale to fit appropriate tasks. The
challenge here is ensuring relative consistency in magnitude of change between
levels across the functions. The levels are broken into three sections. Levels 1–2
(human is primary, computer is secondary), levels 3–5 (computer and human
have similar levels of responsibility) and levels 6–8 (computer is independent of
human). To determine the level of autonomy needed to design into a spaceflight
vehicle, Proud et al. [165] needed a way to map particular functions onto the scale
and determine how autonomous each function should be. They designed a ques-
tionnaire and sent it to system designers, programmers and operators. The question-
naire considered what they call ‘factors for determining level of autonomy’, which
include level of autonomy trust limit and cost/benefit ratio limit. This implies that
a particular level of autonomy for a function is favoured when a balance is struck
between trust and cost/benefit ratio limits. Ultimately, the pertinent question is
‘How autonomous should future spaceflight vehicles be?.’ This is a brilliant tech-
nique towards answering the first identified question (‘How autonomic should a
system be?’).

 
IBM’s five levels of automation [23] describes the extent of automation of the IT

and business processes. However, these levels are too narrowly defined and the dif-
ferentiation between levels is too vague to describe the diversity of self-management
in autonomic systems.

One major concern with the scale-based approach is that a system is not neces-
sarily less autonomic when a human interferes with its operations and vice versa.
Another is the complexity of applying the approach across different application
instances – this is in terms of populating the levels in-between the scales: the differ-
entiation between levels is complex (and subjective and thus can vary significantly
depending on who is using the approach) to determine appropriate magnitude for
each level. In general, the autonomy scale approach is qualitative and does not dis-
criminate between behaviour types. A more appropriate approach should comprise
both qualitative and quantitative (as a way of assigning magnitude or value to the
description and classification of systems) measures. These concerns are considered
and addressed in the approach presented in this book.

Huang et al. [169] describe a government’s front for addressing the challenge
of classifying the pervasive Unmanned Systems (UMS) according to their levels of
autonomy. They allude that UMS’ autonomy cannot be rightly evaluated quantita-
tively without thorough technical basis and that the development of autonomy levels
for unmanned systems must consider factors like task complexity, human interac-
tion and environmental difficulty. The product in Reference [169] is autonomy

Table 7.1  � Level of autonomy assessment scale by Proud et al. [165]. An example of a scale-based autonomy classification
approach.

Level Observe Orient Decide Act

8 The computer gathers, filters and
prioritizes data without displaying
any information to the human.

The computer predicts, interprets
and integrates data into a result
which is not displayed to the
human.

The computer performs
ranking tasks. The
computer performs final
ranking, but does not
display results to the
human.

Computer executes
automatically and does not
allow any human interaction.

7 The computer gathers, filters and
prioritizes data without displaying
any information to the human.
Though, a program functioning flag is
displayed.

The computer anlayses, predicts,
interprets and integrates data
into a result which is only
displayed to the human if result
fits programmed context (context
dependant summaries).

The computer performs
ranking tasks. The
computer performs final
ranking and displays a
reduced set of ranked
options without displaying
‘why’ decisions were made
to the human.

Computer executes
automatically and only informs
the human if required by
context. It allows for override
ability after execution. Human
is shadow for contingencies.

6 The computer gathers, filters and
prioritizes information displayed to the
human.

The computer overlays predictions
with analysis and interprets the
data. The human is shown all
results.

The computer performs
ranking tasks and displays
a reduced set of ranked
options while displaying
‘why’decisions were made
to the human.

Computer executes
automatically, informs the
human, and allows for override
ability after execution. Human is
shadow for contingencies.

(Continues)

Level Observe Orient Decide Act

5 The computer is responsible for
gathering the information for the
human, but it only displays non-
prioritised, filtered information.

The computer overlays
predictions with analysis and
interprets the data. The human
shadows the interpretation for
contingencies.

The computer performs
ranking tasks. All results,
including ‘why’decisions
were made, are displayed
to the human.

Computer allows the human a
context-dependant restricted
time to veto before execution.
Human is shadow for
contingencies.

4 The computer is responsible for
gathering the information for
the human and for displaying all
information, but it highlights the non-
prioritised, relevant information for
the user.

The computer analyses the data
and makes predictions, though
the human is responsible for
interpretation of the data.

Both human and computer
perform ranking tasks, the
results from the computer
are considered prime.

Computer allows the human
a preprogrammed restricted
time to veto before execution.
Human is shadow for
contingencies.

3 The computer is responsible for
gathering and displaying unfiltered,
unprioritised information for the
human. The human still is the prime
monitor for all information.

Computer is the prime source of
analysis and predictions, with
human shadow for contingencies.
The human is responsible for
interpretation of the data.

Both human and computer
perform ranking tasks, the
results from the human are
considered prime.

Computer executes decision
after human approval. Human
is shadow for contingencies.

2 Human is the prime source for
gathering and monitoring all
data, with computer shadow for
emergencies.

Human is the prime source
of analysis and predictions,
with computer shadow for
contingencies. The human is
responsible for interpretation of
the data.

The human performs all
ranking tasks, but the
computer can be used as a
tool for assistance.

Human is the prime source
of execution, with computer
shadow for contingencies.

1 Human is the only source for
gathering and monitoring (defined
as filtering, prioritising and
understanding) all data.

Human is responsible for
analysing all data, making
predictions, and interpretation of
the data.

The computer does not
assist in or perform
ranking tasks. Human must
do it all.

Human alone can execute
decision.

Table 7.1  Continued

204  Trustworthy autonomic computing

levels for unmanned systems (ALFUS) framework which, more specifically, pro-
vides the terminology for prescribing and evaluating the level of autonomy that an
unmanned system can achieve. The framework, in which the levels of autonomy can
be described, addresses the technical aspects of UMS and includes terms and defi-
nitions (set of standard terms and definitions that support the autonomy level met-
rics), detailed model for autonomy levels, summary model for autonomy levels and
guidelines, processes and use cases. While it is accepted that autonomicity cannot
be correctly evaluated without thorough technical basis, the approach in this book
further considers key functionalities of autonomic systems rather than individual
breakdown of technical operations and operational conditions – a major difference
with this work. The work in Reference [169] has been updated in Reference [170] to
focus more on standardised categorisation of UMS.

In evaluating the autonomy of software agents, Alonso et al. [171] believe that
a measure of autonomy (or any other agent feature) can be determined as a function
of well-defined characteristics. First, they identify the agent autonomy attributes
(as self-control, functional independence and evolution capability) and then define
a set of measures for each of the identified attributes. By normalising the results
of the defined measures using a set of functions, the agent’s LoA is defined. This
method considers autonomicity measure with reference to system’s characteristics
and attributes. But these ‘characteristics’ are a broad range of attributes that describe
a system, which also include features outside the system’s core functionalities. This
approach differs to the approach proposed in this book in terms of the constitution
of system attributes (or functionalities), but the important aspect to note is the idea
of defining a system with respect to its attributes and characteristics. This approach
has been adapted for the solution presented in this book but with reference to [core]
autonomic self-* functionalities.

7.2.1 � Autonomic measuring metrics
This section introduces the core four autonomic functionalities and suggests how
to define metrics for each of them. Though metrics are application domain depend-
ent, the ideas presented in this section are generic and serve as examples only.
Autonomic functionalities are emergent and these vary (or are defined) according
to application instances. The point is that, for any system (whether autonomic or
not), there are required functionalities which can be measurable by some identifiable
metrics. For any system, it is left to the designer and/or user to identify appropriate
functionalities and define corresponding metrics. This work suggests how to define
at least one metric for each of the functionalities (using the self-CHOP functionali-
ties as example). This is part of a wide and separate research focus. This section
only suggests examples of how autonomic metrics can be generated. How metrics
values can be normalised is presented in section 7.2.2. We will start with a definition
of each CHOP functionality, as presented in Reference [167]. (For more on these
definitions see [6, 7].)

Level of autonomicity  205

Self-­configuring: A system is self-configuring when it is able to automate its
own installation and setup according to high-level goals. For example, when a new
component is introduced into an autonomic system, it registers itself so that other
components can easily interact with it. The extent of this co-existence is a measure
of self-configuration, measured as ratio of the actual number of components suc-
cessfully interacting with the new component (after configuration) to the number of
components expected to interact with the new component. This measures the extent
to which a system is distorted by an upgrade. A system is self-configuring to the
extent of its ability to curb this distortion.

Self-­healing: A system is self-healing when it is able to detect errors or symp-
toms of potential errors by monitoring its own platform and automatically initiate
remediation [8]. Fault tolerance is a typical example of self-healing. It allows the
system to continue its operation possibly at a reduced level instead of stopping
completely as a result of a part failure. One critical factor here is latency, i.e., the
amount of time the system takes to detect a problem and then react to it. Reaction
time is defined as a metric for self-healing capability. This is crucial to the reliabil-
ity of a system. If a change occurs at time ‍ta‍ and the system is able to detect and
work out a new configuration and is ready to adapt at time ‍tb‍, then the difference
between ‍tb‍ and ‍ta‍ defines the reaction time. Where variations of reaction time are
possible, average may be taken instead. A case scenario is a stock trading system
where time is of paramount importance. The system needs to track changes (e.g.,
in trade volumes, price, rates) in real time in order to make profitable trading
decisions.

Self-­optimising: A system is self-optimising when it is capable of adapting
to meet current requirements and also of taking necessary actions to self-adjust to
better its performance. Resource management (e.g., load balancing) is a typical
example of self-optimisation. An autonomic system is then required to be able to
learn how to adapt its state to meet the new challenges. Also needed is consistent
updating of the system’s knowledge of how to modify its state. State is defined by
a set of variables such as current load distribution, CPU utilisation, resource usage,
etc. The values of these variables are influenced by certain event occurrences like
new requirements (e.g., process fluctuations or disruptions). By changing the values
of these variables, the event also changes the state of the system. The status of these
variables is then updated by a set of executable statements (policies) to meet any
new requirement. A typical example would be an autonomic job scheduling system.
At first, the job scheduler could assign equal processing time quanta to all systems
requiring processing time. The size of the time quantum becomes the current state
and as events occur (e.g., fluctuations in processing time requirement, disruptions
of any kind), the scheduler is able to adjust the processing time allocation according
to priorities specified as policies. In this way the state of the system is updated. But
this may lead to erratic tuning (as a result of over or under compensation) causing
instability in the system.

206  Trustworthy autonomic computing

Stability is defined as a measure of self-optimisation. If an event leads to erratic
behaviour, incoherent results or system is not able to retrace its working state beyond a
certain safe margin – a margin within which instability is tolerated, then the system is
not effectively self-optimising. Note that where metrics are an affirmation of a capabil-
ity, such as in this case, this can be normalised into a value as discussed in section 7.2.2.

Self-­protecting: A system is self-protecting when it is able to detect and protect
itself from attacks by automatically configuring and tuning itself to achieve security.
It may also be capable of proactively preventing a security breach through its knowl-
edge based on previous occurrences. While self-healing is reactive, self-protecting
is proactive. A proactive system, e.g., would maintain a log of trends (or signatures)
leading to security threats and breaches and a list of solutions to resolve them – a
list of problems and corresponding solutions only applies to self-healing. One major
metric here is the ability of the system to prevent security issues based on its experi-
ence of past occurrences. For example, let us assume‍p 2

˚
Pij
�
‍ to be true if ‍ith‍ trend

leads to ‍jth‍ problem where ‍pij‍ is a log of all identified trends and corresponding
problems. ‍p‍ is a particular instance of trend-problem combination. A self-protecting
manager will avoid a situation of same trend leading to the same problem again
by blocking the problem, addressing it or preventatively shutting down part of the
system. Ability to detect repeat events ﻿‍E‍ is defined as a self-protecting metric. ﻿‍E‍ is
a Boolean value (True indicates that the manager is able to stop a repeating problem
while False indicates otherwise). If we choose two samples of ‍

˚
Pij
�
‍ at different

times (‍t1‍ and ‍t2‍), then ‍E = True 8ijif
˚
Pij
�
t1 \

˚
Pij
�
t2 = ¿‍. Different trends may

lead to the same problem but a repeated trend-problem combination indicates a fail-
ure of the system to prevent a reoccurrence.

7.2.2 � Normalisation and scaling of autonomic metrics dimensions
There is still a point though that needs to be addressed. When computing LoA, we are
normalising values that are products of aggregated metric values of different units and
dimensions. Depending on the application domain, metrics could be scalar (of differ-
ent measures) or non-scalar values (e.g., observing a capability, Boolean based deci-
sions). So, despite what measure or form these metrics take, there needs to be a way
of scaling the metric values of all contributing metrics to a centric unit of autonomic
metric contribution within a certain normalised range. But, because the range of values
and metrics can vary significantly, each choice of how these are scaled can influence
very differently the final LoA. A possible solution is to define scaling factors for all
contributing metrics within the normalised range of [0, 1] in this case. In this way, the
metrics’ values, irrespective of units of measure, are normalised into real numbers that
are summed to give LoA. One challenge here, though, is defining the scaling factors.
Two simple methods for normalisation are suggested:

1.	 By ranking values according to high, medium, and low. The meaning of this
ranking is metric-dependent and is based on a defined margin. For example, if
a maximum expected value is 6, a value of 0–2 will likely be ranked low, while

Level of autonomicity  207

3–4 will be ranked medium and 5−6 high. A medium value would contribute
50 per cent of the metric’s autonomic value contribution in the range of [0, 1],
while the two extremes would contribute 0 and 100 per cent — these may differ
depending on choice of usage. This can be used for scalar metrics like the co-
existence and reaction time metrics discussed in section 7.2.1 earlier.

2.	 By having a Boolean kind of contribution where two values can suggest two
extremes – either affirming a capability or not. For example, if a ‘True’ outcome
affirms a capability then it contributes 100 per cent of the autonomic value con-
tribution, while a ‘False’ outcome contributes zero. Another example in this
category is where an instance of an event either does or does not confirm a capa-
bility (e.g., the stability metric for self-optimising functionality). Other specific
methods, like the Mahalanobis distance discussed and used in Reference 172,
have been proposed. In scaling the different dimensions of distance between
points (measured in different distance measurement units), Huebscher and
McCann [172] used a simplified form of the Mahalanobis distance, where for
each dimension, they compute the standard deviation over all available values
and then express the components of the distances between points as multiples
of the standard deviation for each component.

For this work, autonomic contributions across functionalities should be nor-
malised within the range (‍0.0 � aij � 1.0‍) so that the total autonomic contribution
of each functionality is a maximum of the number of metrics for that functional-
ity according to the normalisation rule in section 7.3.2. Scaling and normalisation
should be used uniformly to enable the evaluation and comparison of different sys-
tems. As noted earlier, autonomics measuring metrics is a new research area and
also not a main focus of this book. What is provided here, in terms of metrics, nor-
malisation, and scaling, serve as examples and can be improved upon.

7.3 � Methodology for measuring LoA

This section presents a quantitative technique for measuring LoA. This technique
is based on the self-* functionalities and is presented in two formats – for specific
and generic considerations. The approach is to define LoA for an autonomic system
in terms of its extent of achieving the self-* functionalities [8]. Note that ‘self-*’
is generic and covers all the self-CHOP functionalities as well as any identified
functionalities, relevant for a particular autonomic system. So, a system must dem-
onstrate at least a certain level of one of the self-* functionalities in order to be con-
sidered autonomic. It also follows that, for a particular autonomic system, a set of
autonomic functionalities may be identified as required for that particular system. If
the system demonstrates all of the required functionalities that system is said to have
achieved 'full' autonomicity. The methods here are defined mathematically.

Each autonomic functionality is defined by one or more metrics, which are com-
bined together to give a level of autonomic value for that functionality. This means

208  Trustworthy autonomic computing

that each autonomic metric contributes a proportion of the autonomic value for
the relevant autonomic functionality. Metrics and functionalities may be weighted
to reflect relevance or importance. The cumulative normalisation of the measure
of all metrics (for all functionalities) defines a LoA. The normalisation of values
makes it possible and easy to compare different autonomic systems. As there is no
standardised list of functionalities that defines an autonomic system, the proposed
approach is generic to accommodate evolving functionalities as may be defined
by the user. Figure 7.1 illustrates the proposed approach. An autonomic system is
expressed along the dimensions of its functionalities and corresponding functional-
ity metrics.

Note that the number of autonomic metrics may vary for the same functionality
across different autonomic systems. For example, self-healing for autonomic system
1 may have different number of metrics compared to self-healing for autonomic
system 2. Normalisation is performed to ensure that the resultant LoA values are
always between 0 and 1 regardless of the number of metrics or the weight of indi-
vidual metrics. Given that any autonomic system is defined by a number of self-*
autonomic functionalities, say ‍n‍, the following mathematical expression represents
the possible combinations of the functionalities:

	﻿‍

nP
r=1

nCr
‍�

(7.1)

Figure 7.1  � Illustration of how LoA is achieved by summing the metric
autonomic value contributions of all metrics defining all
functionalities of a particular autonomic system [167]

Level of autonomicity  209

The above expression (7.1) indicates the possible functionality compositions of a
system where ‍n‍ is the number of functionalities (the self-*) and ﻿‍ r‍ is a category
of the possibilities – a specific implementation combination of the functionalities.
For example, if ‍n = 4‍ (in the case of the self-CHOP functionalities), then ‍r � 4‍.
With ﻿‍r = 4‍, the expression computes to 15 which indicates the number of possible
functionality combinations – (see Figure 7.2). Note that the 16th category is non-
autonomic. The functionalities may not be of equal importance to an application
domain, so categories indicate which functionality is important to an application
domain. Also, depending on choice of usage, this may be defined as required func-
tionalities (in which case ‍r = n‍) or demonstrated functionalities (in which case ‍r � n
‍). Required functionalities are those functionalities that are not optional for a par-
ticular system while demonstrated functionalities are a combination of required and
optional (‘nice to have’) functionalities demonstrated by the autonomic manager.
For example, self-optimisation is a required functionality in a load balancing system
while self-protection may be optional. So, if a load balancing autonomic manager
self-optimises as well as self-protects, then it can be said that in terms of required

Figure 7.2  � Combination of autonomic functionalities (for self-CHOP systems
with n=4 and r=4). This is a representative example as n could
potentially be more than 4 as in self-* based systems [167].

210  Trustworthy autonomic computing

functionality ﻿‍r = 1‍ while in terms of demonstrated functionalities ﻿‍r = 2‍. The impor-
tance of each functionality is indicated by the weight assigned to it as discussed later.

We understand that autonomic functionalities may overlap as they are not nec-
essarily orthogonal. The generic case methodology addresses situations where some
algorithms may influence several autonomic functionalities by applying weighting.
By implication, if an algorithm influences more than one functionality, the level of
influence is taken care of by the weights applied. We also understand that systems,
and by extension, functionalities, are not always linear as all functional adjustments
may not uniformly affect the achieved LoA. The case of non-linearity can also be
catered for by weighting and normalisation. Weights are applied to reflect impact.
For example, the level of one functionality can be indirectly proportional to another
and this is dependent on importance or relevance which is reflected by the weights.
In general, dealing with (non-)orthogonality and (non-)linearity are open challenges
that need further addressing. However, the proposed LoA methodology is flexible
and can be applied to both cases.

Two LoA methodologies, addressing specific and generic cases, are presented.
For the specific case, the autonomic functionalities are known and fixed while for the
generic case, the autonomic functionalities can be any number. Table 7.2 presents a

Table 7.2   LoA notations [167]

Key Description

‍aij‍
Autonomic value contribution for individual
metric ‍j‍ of functionality ‍i‍

‍ki‍
Autonomic value contribution for individual
functionality ‍i‍

‍LoA‍ Total LoA measure for all ‍ni‍ and ‍mij‍
‍Mi‍ Number of metrics for functionality ‍i‍

‍Mc‍ , ‍Mh‍ , ‍Mo‍, and ‍Mp‍
Number of metrics for each of the self-CHOP
functionalities, respectively

‍j‍ Individual metrics
‍n‍ Number of functionalities
‍i‍ Individual functionalities
‍r‍ Category of functionalities possible combinations

‍Ri‍
Rank of a functionality ‍i‍ in the autonomic
composition of a system

‍vi‍ Weighting for functionality ‍i‍
‍wij‍ Weighting for metric ‍j‍ of functionality ‍i‍

‍ci‍, ‍hi‍, ‍oi‍ and ‍pi‍
Autonomic metric contributions of the
functionalities for a CHOP-based system

All indices (i and j) begin at 1

Level of autonomicity  211

list of notations used in the mathematical algorithms that define the methodologies.
To measure the LoA of a system, we require the following:

•• The number of functionalities present or required in a particular system – i.e., a
specific implementation combination of the functionalities.

•• The number of metrics identified for the respective functionalities.
•• The weighting assigned to functionalities and metrics according to priority or

importance.

7.3.1 � A specific case method
This method works well in cases where autonomic functionalities are orthogo-
nal and for specific systems of limited (known) number of functionalities. Now,
following on from the initial expression 7.1) for the possible combination of all
autonomic functionalities, and taking a specific system in isolation (e.g., a system
with only four functionalities, say, a self-CHOP-based system), this will give 15
possible combinations (Figure 7.2). Note that ‍n = 4‍, while ‍r = 1, 2, 3 and 4‍ –
zero value is a special case so it is excluded and not considered further as it
means the system demonstrates no autonomic functionality. The self-CHOP func-
tionalities may not be of equal importance to an application domain so catego-
ries indicate what CHOP functionality is important to an application domain.
Category 2, ﻿‍ r = 2‍, means that only two functionalities are of importance to the
system’s domain – so e.g., {C, H, Not O, Not P} is a specific category represent-
ing a system indicated by System 4 (CH--) in Figure 7.2 . Note that the numbers
[1–16] on the right of Figure 7.2 are just labels identifying individual systems
and not categories.

According to Figure 7.2, an autonomic system, within the boundaries of the
self-CHOP autonomic functionalities, can be described in one of fifteen ways. Each
trace of line (1–16) from start to finish represents an autonomic system except line
16. If we can define autonomic metrics for each of the functionalities, the LoA for
that particular system is calculated by the sum total of the autonomicity in each
of the constituent functionalities for that systems (7.1). For example, the LoA of
autonomic system 6 in Figure 7.2 will be the summation of the autonomic metrics
defining the self-configuring and self-optimising functionalities.

	﻿‍
LoA =

McP
i=1

�
ci
�
+
MhP
i=1

�
hi
�
+
MoP
i=1

�
oi
�
+

MpP
i=1

�
pi
�
‍�

(7.2)

where, ‍Mc‍, ‍Mh‍, ‍Mo‍ and ‍Mp‍ are the numbers of identified metrics for the respective
functionalities. ‍ci‍, ‍hi‍, ‍oi‍ and ‍pi‍ are the autonomic metric contributions of the func-
tionalities. These may have values of different measures which can be normalised,
as explained in section 7.2.2. It is important to note that the specific case method is
limited to addressing systems of discrete functionalities. There is need to cater for
systems of indiscrete functionalities as well.

212  Trustworthy autonomic computing

7.3.2 � A generic case method
This section presents a generic method for calculating LoA for autonomic systems
of unknown number of functionalities. This LoA approach is suited for application
across different scenario instances. This is achieved by introducing weighting to
the specific case approach. This is because autonomic functionalities are not neces-
sarily orthogonal – a single behaviour could enhance the contribution of more than
one metric and this could be across more than one functionality. This is important
because the measurement approach has to work in situations where the functionali-
ties either are or are not orthogonal. In cases of non-orthogonality, the weighting is
applied to tune sensitivity of contributing behaviours. For flexibility, all values are
normalised within the same interval range (0, 1):

	﻿‍

Normalisation interval=

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

0.0 � LoA � 1.0

0.0 � aij � 1.0

0.0 � wij � 1.0

0.0 � vi � 1.0 ‍�

(7.3)

The need for normalisation is to be able to compare different systems and address
varying circumstances. The way we measure the system should not on its own
change the outcome, e.g., higher number of metrics should not result in higher LoA
value and as well does not translate to being ‘more autonomic’. So, in all cases, and
for normalisation purposes, the following rules must apply:

	﻿‍

Normalisation rule

8
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂ˆ̂̂ˆ̂̂̂
ˆ̂̂
ˆ̂:

MiP
i=1

wij = 1.0 ! the sum of the weights for all

metrics for a given

functionality must be 1.0
nP
i=1

vi = 1.0 ! the sum of the weights for all

functionalities must be 1.0
MiP
i=1

aij � Mi ! the sum of all metric autonomic

contribution for a giving functionality is

a maximum ofthenumberofmetrics for

that functionality as 0 � aij � 1.0 ‍�

(7.4)

where ‍wij‍ and ‍aij‍ are both with reference to individual functionalities and so are bound
to the number of metrics for those functionalities (‍Mi‍) while ‍vi‍ is with reference to the
system itself and so is bound to the total number of functionalities (‍n‍) for the system.
This enables the total individual autonomic value contribution (‍

P
ki‍) to go up to ‍n‍

(i.e., not be limited to the four self-CHOP functionalities) – see (7.5) .

Level of autonomicity  213

If we ignore, for now, all indices and have a top-level view of the proposed LoA
calculation, for a single functionality, then:

	﻿‍

k = (a � w) � 1.0X
k � n ‍�

(7.5)

That is to say, if individual functionality autonomic contribution is bound to maxi-
mum of ‘1’, then the total autonomic contribution of all functionalities will be a
maximum number of functionalities, ‍n‍. So, the overall achieved LoA will be the
sum of the product of total autonomic contribution and weighting:

	﻿‍ LoA =
P�

k � v
�
‍�

	﻿‍ !
P��

a � w
�

� v
�

8 a,w, v � 1.0‍� (7.6)

Decomposing (7.5) and (7.6) above, and for total autonomic value contribution of
all functionalities ‍ni‍:

	﻿‍
ki =

MiP
j=1

�
aij � wij

�
8 i and j

‍�
(7.7)

where, ‍j‍ represents individual metrics and ‍Mi‍ represents the number of metrics.
Applying the functionality weighting to the individual autonomic value contribution
(‍ki‍):

	﻿‍
LoAi = vi �

MiP
j=1

�
aij � wij

�!
8 i and j

‍�
(7.8)

So, the overall achieved autonomicity level LoA is then given by summing (7.8) for
all values of ‍i‍ and ‍j‍:

	﻿‍
LoA =

nP
i=1

vi �

MiP
j=1

�
aij � wij

�!!

‍�
(7.9)

In the case of orthogonality or where weighting is not required, the LoA is given by
the basic expression:

Table 7.3  Autonomic contributing values for a ‍n = 3‍ system

Functionality
(﻿‍n‍)

Weight
(‍vi‍)

Metric
(‍Mi‍)

Metric weight
(‍wij‍)

Metric contribution
(‍aij‍)

Self-optimisation 0.60 Stability 0.25 30
Trend analysis 0.50 20
Switching 0.25 50

Self-healing 0.30 Sensitivity 0.40 50
Robust 0.60 50

Self-configuration 0.10 Unsupervised 0.25 25
Continuous 0.25 50
Awareness 0.50 25

214  Trustworthy autonomic computing

	﻿‍
LoA =

nP
i=1

MiP
j=1

�
aij
�
‍�

(7.10)

Equation (7.10) is equivalent to (7.2). Procedure 7.1 is a basic algorithm of the
implementation of the proposed measure of autonomicity.

‍ ‍

LoA example:
To illustrate this system of measurement, consider a very basic example to

explain the implementation of the technique. Table 7.3 shows relevant values for
a particular self-optimising, self-healing and self-configuring (i.e., three functional-
ities) system. The LoA of the system can be calculated as follows:

‍n = 3‍

For ‍n1‍ : ‍M1‍ = 3, ‍v1‍ = 0.60, ‍w11‍ = 0.25, ‍w12‍ = 0.50, ‍w13‍ = 0.25, ‍a11‍ = 0.30,
‍a12‍ = 0.20 and ‍a13‍ = 0.50
For ‍n2‍ : ‍M2‍ = 2, ‍v2‍ = 0.30, ‍w21‍ = 0.40, ‍w22‍ = 0.60, ‍a21‍ = 0.50 and ‍a22‍ = 0.50
For ‍n3‍ : ‍M3‍ = 3, ‍v3‍ = 0.10, ‍w31‍ = 0.25, ‍w32‍ = 0.25, ‍w33‍ = 0.50, ‍a31‍ = 0.25,
‍a32‍ = 0.50 and ‍a33‍ = 0.25
‍k1‍ = (‍a11‍ * ‍w11‍) + (‍a12‍ * ‍w12‍) + (‍a13‍ * ‍w13‍) = (0.30 * 0.25) + (0.20 * 0.50) +

(0.50 * 0.25)
= (0.075) + (0.10) + (0.125) = 0.30
‍k2‍ = (‍a21‍ * ‍w21‍) + (‍a22‍ * ‍w22‍) = (0.50 * 0.40) + (0.50 * 0.60)
= (0.20) + (0.30) = 0.50
‍k3‍ = (‍a31‍ * ‍w31‍) + (‍a32‍ * ‍w32‍) + (‍a33‍ * ‍w33‍) = (0.25 * 0.25) + (0.50 * 0.25) +

(0.25 * 0.50)
= (0.063) + (0.125) + (0.125) = 0.313
then,
LoA = (‍k1‍ * ‍v1‍) + (‍k2‍ * ‍v2‍) + (‍k3‍ * ‍v3‍)
= (0.30 * 0.60) + (0.50 * 0.30) + (0.313 * 0.10)
0.18 + 0.15 + 0.0313 = 0.3613

Level of autonomicity  215

7.4 � Evaluating autonomic systems

Evaluating autonomic systems using (7.2) or (7.9) gives their separate LoA values. –
which are aggregated values. This, however, does not give a fine-grained picture of
the systems’ performances in terms of individual functionalities. Systems are clas-
sified according to categories (﻿‍r‍). This is in terms of what self-* functionalities are
required or demonstrated in their specific application domains. One thing remains
to be clarified at this point: ‘How do we rank each functionality in the autonomic
composition of a system?’ This can be in terms of importance or extent of function-
ality provided. We focus on the later – the extent of functionality provided as against
what is needed. Take for instance, if two systems are of the same category we may
wish to know which of them provides a greater degree of say self-healing (or any
other self-*) functionality in any application domain. To address this, a function that
measures agent’s decision-making power in a multiagent autonomic system defined
in Reference [173] is adapted. The rank of a functionality ‍Ri‍ in the autonomic com-
position of a system is defined by the ratio of its autonomic contribution (‍

�
ki � vi

�
‍

or ‍aij‍) to the total autonomic contribution of all metrics defining the composite func-
tionalities of that system:

	﻿‍
Ri =

�
ki � vi

�

LoA ‍�
(7.11)

In the case of (7.10) weighting is considered. But in a case where weighting is not
considered, ‍Ri‍ is given in:

	﻿‍
Ri =

MiP
j=1

aij

LoA ‍�
(7.12)

Table 7.4  � Challenge 7.1 This table is a representation of three systems – SysA,
SysB and SysC. These are three progressive stages of the same system,
showing different autonomic capabilities. This means that the systems
are all in the same domain and are expected to have/demonstrate the
same autonomic functionalities, ‍n = 4‍ and r = 3. Calculate the LoA of
all three systems.

Characteristics (metrics) Label Contributing CHOP SysA SysB SysC

Continuous Knt C √ √ √
Unsupervised Uns C √ √ √
Trends examination TE O - √ √
Stability Stb O - √ √
Dynamic (logic switching) DS O - - √
Signal characteristics SC C √ √ √
Signal differentiation SD C √ √ √
Failure sensitivity (sensors) FS H - - -
Robust (fault tolerance) Rbs H - - √

216  Trustworthy autonomic computing

where (‍ki‍ or ‍aij‍) is the autonomic contribution of the considered functionality which
could be the summation ‍ci‍, ‍hi‍, ‍oi‍ or ‍pi‍ in (7.2) or the calculation of ‍ki‍ in (7.7) or
the summation of ‍aij‍ (e.g., the case in (7.10)). With (7.11) , (7.12) any composite
functionality can be ranked in terms of their autonomic contribution.

7.5 � Conclusion

This chapter has discussed the idea of measuring LoA and has presented a quanti-
tative approach. The methodology presented here is a two-dimensional definition,
supporting only two levels of description – a system on one hand and its character-
istics (functionalities) on the other hand. To support higher dimensional definition
– a system, its characteristics and sub-characteristics, a bit of adaptation is required.

Also note that while this approach can be used to quantitatively measure the
LoA of an autonomic system, there are assumptions to consider when comparing
LoA achievements of different systems. For example, using the proposed approach,
the LoA of two autonomic systems can only be directly compared if both systems
are of the same category (i.e., if the same number and level of autonomic function-
alities are required for both systems). It is also assumed that all autonomic metric
contributions would be normalised within the range of (0–1).

Chapter 8

Conclusions and future work

This chapter concludes the work and summarises the key points covered in this
book. It also discusses the direction of future work.

‍ ‍

Autonomic and self-managing systems are now increasingly pervasive across
an ever-widening spectrum of application domains. The autonomic technology is
advancing at a high rate, yet there are no universal standards for the technology

218  Trustworthy autonomic computing

itself, the design methods and the definitions used. On the positive side, this meant
that researchers had (and still have) a very wide scope for potential ideas (for evalu-
ating a wide range of techniques) and improvements into the technology. On the
negative side, the lack of universal standards, definitions, design and implementa-
tion fuels the proliferation of views. This is in terms of the research community get-
ting stuck and everyone pursuing their individual approaches as against a coherent
and consistent standardised and widely accepted approach. In the end, this has led
to a number of difficult challenges and has not made the autonomic research any
easier. For example, there have been significant limitations to the way in which
autonomic systems are validated, with heavy reliance on traditional design-time
techniques, despite the highly dynamic behaviour of such systems in dealing with
runtime configuration changes and environmental and context changes. These limi-
tations ultimately undermine the trustability of autonomic systems and are barriers
to eventual certification. This book has focused on autonomic trustworthiness, set-
ting the groundwork for the introduction of standards for autonomic computing,
and with a longer-term vision of contributing towards certification of autonomic
systems, which entails providing behavioural guarantees for these dynamic adaptive
systems despite exposure to changing environmental and operating contexts.

The background study (Chapter 2) shows that research efforts, in the beginning,
predominantly concentrated on autonomic design and architecture with bespoke appli-
cation of autonomic techniques to specific problems in isolation. This book has estab-
lished the evolution of the autonomic computing paradigm, identifying what has been
achieved in the first two decades of the introduction of autonomic computing and the
remaining open challenges. There is a lack of concrete effort towards trustworthy auto-
nomics, despite its significance to the goal of autonomic computing, and as a result
attaining autonomic system certification still has a long way to go. It is proposed, in
this book, that the first vital step in this chain is to introduce robust techniques by which
the systems can be described in universal language, starting with a description of, and
means to measure the extent of autonomicity exhibited by a particular system. Referred
to as the level of autonomicity (LoA), this is covered in Chapter 7 of this book. Also,
this book posits that trustworthy autonomic computing is essential to attaining auto-
nomic system certification and that a robust solution would need to be thought through
from design up support for trustworthiness should be designed in and integral at the
architectural level, and not treated as add-on. The approach to this in this book is trust-
worthy autonomic architecture (TrAArch) and this is covered in Chapter 5.

8.1 � A case for trustworthy autonomics

The importance of trustworthiness in computing, in general, has been echoed in
the computing research association’s ‘four grand challenges in trustworthy com-
puting’ [174] and Microsoft’s white paper on trustworthy computing [141]. The
Committee on Information Systems Trustworthiness in Reference [142] defines a
trustworthy system as one which does what people expect it to do—and nothing

Conclusions and future work  219

more—despite any form of disruption. Although this definition has been the driving
force for achieving trustworthiness both in autonomic and non-autonomic systems,
the peculiarity of context dynamism in autonomic computing places unique and dif-
ferent challenges on trustworthiness for autonomic systems. Validation, e.g., which
is an essential requirement for trustworthiness, can be design-time based for non-
autonomic systems but must be runtime based for autonomic systems. Despite the
different challenges, it is generally accepted that trustworthiness is a non-negotiable
priority for computing systems.

For autonomic systems, the primary concern is not how a system operates to
achieve a result but how dependable that result is from the user’s perspective. For com-
plete reliance on autonomic computing systems, the human user will need a level of
trust and confidence that these systems will satisfy specified requirements and will not
fail. It is not sufficient that systems are performing within required boundaries; outputs
must also be seen to be reliable and dependable. This is necessary for self-managing
systems in order to mitigate the threat of losing control and confidence [175].

Chapter 1 makes a case for trustworthy autonomic computing and has shown
the importance of trustworthiness along the progressive stages towards autonomic
system certification. Trustworthiness is a prerequisite to certification. With the lack
of standards and generally accepted definitions of terminologies in the autonomic
computing domain, it is difficult to offer a generic meaning of trustworthiness in
autonomic computing as it may itself be context dependent. For example, in some
circumstances it may be appropriate to allow some level of changes, which under
different circumstances may be considered destabilising, and also validation is
always goal dependent. However, trustworthiness, in this book, means a quality that
enables us to be confident that an autonomic system will remain correct in the face
of any possible contexts and environmental inputs and sequences of these, and this
is achieved through robust runtime decision self-validation, process conformity, etc.

8.2 � The autonomic computing state of the art

The major theme in this book deals with identifying and developing techniques to
make autonomic computing systems trustworthy. To achieve this, it is important to
first understand the level of work that has already gone into the autonomic com-
puting research and how that can be harnessed. A broad analysis of autonomics
research, to show the trends in and direction of the autonomic computing research
and where the work needs to be concentrated in order to achieve trustworthiness and
certification, has been presented. This also includes a holistic view of the entire field
of research in order to gain a clearer picture of the need for and lack of effort towards
trustworthy autonomic computing.

Since its introduction, in 2001, the autonomic computing concept has received
strong interest amongst the academic and industrial research communities. Although

220  Trustworthy autonomic computing

efforts in this research area have led to significant successes, there are still open and
emerging challenges. An analysis-by-problem approach has been used to show the
pattern, in terms of maturity stages, of how researchers have attempted addressing
the autonomic computing challenge. This has been addressed in two broad periods
—the first decade, covering years 2001 to 2011 and the second decade, covering
studies and developments from the years 2012 to 2019.

A broad and general analysis of the autonomic computing research in terms of
identifying trends in the research from 2004 to 2019 has also been presented. This
gives a thorough review of the state-of-the-art in trustworthy autonomics. Results
show that trustworthy autonomics, which is essential to the success of autonomic
computing, has received very little attention compared to other focus areas. Only
9 per cent of over 1 000 reviewed research publications identify trustworthiness
as a challenge, while only about 3 per cent propose actual methodologies targeting
validation and trustworthiness, although majority of these methodologies are appli-
cation dependent.

8.3 � Techniques that power autonomic computing

Autonomic computing has been powered by a combination of many established
and new techniques. These include different algorithms, logics, functions, mecha-
nisms, routines, tools, etc., which are used to deliver desired autonomic functionali-
ties. Each of the autonomic functionalities can be enabled by a single technique or
a combination of different techniques. For example, self-healing can be achieved
by implementing any fault-tolerant technique. Self-healing can also be achieved
by specifying relevant behaviours as policies (or rules). Self-optimisation can be
achieved by implementing any load balancing technique. Building autonomic sys-
tems requires imbedding these autonomic enabling techniques into the design of the
systems.

Chapter 3 presents some of these techniques and shows examples of how they
can be used to achieve relevant autonomic computing features. These autonomic
enabling techniques can individually be adapted to achieve some level of autonomic
functionalities and can also be combined to achieve greater autonomic functionality.
These include:

•• Simple exponential smoothing
•• Dead-zone logic
•• Stigmergy
•• Policy autonomics
•• Utility function
•• Fuzzy logic
•• Autonomic nervous system

Conclusions and future work  221

8.4 � Trustworthy autonomic architecture

The traditional monitor-analyse-plan-execute-(MAPE) based autonomic architec-
ture, as originally presented in the autonomic computing blueprint [23], has been
widely accepted and autonomic research efforts are predominantly based on this
architecture’s control loop. We must admit that a good research success has been
achieved using the traditional autonomic architecture. However, this book supposes,
like other studies, e.g., [11, 18], that this architecture is vague and thus cannot lead
to the full goal of autonomic computing. For example, the MAPE-based architecture
does not explicitly and integrally support runtime self-validation, which is a prereq-
uisite for trustworthiness; a common practice is to treat validation and other needed
capabilities as add-on and these cannot be reliably retro-fitted to systems. Thus, this
architecture (and its variations) is not sophisticated enough to produce trustworthy
autonomic systems. At a glance, the traditional autonomic efforts look like a ‘race
to the finish line’ to achieve self-management. But the ultimate goal of autonomic
computing is not just to achieve self-management but will include achieving consist-
ency and reliability of results through self-management.

It is also important to note that validation alone does not always guarantee trust-
worthiness, as each individual decision could be correct (validated), but the overall
system may be inconsistent or unstable and thus not dependable. For example, a
window blind controller is validated as long as it automatically opens and closes the
blind within the boundaries of set policies (which may be a function of the intensity
of sun rays). But it could be undesirable and distractingly annoying to human users
if the blind keeps operating every minute because of slight changes in sun intensity.
In this case, the actions of the controller are validated but at the same time, lead
to unstable and undesirable conditions. So, it is important to consider situations
beyond the level of validation where logical processes/actions could sometimes lead
to overall system instability. A situation where the autonomic manager erratically
(though legally) changes its mind, thereby injecting oscillation into the system, is
a major concern, especially in large-scale and sensitive systems. Consequently, a
new approach is required in which validation and support for trustworthiness are not
treated as add-on.

A new architecture for trustworthy autonomic systems is presented in Chapter 4.
Different from the traditional autonomic solutions, this new architecture consists of
inbuilt mechanisms and instrumentation to support runtime self-validation and trustwor-
thiness. The new TrAArch guarantees self-monitoring over short-time and long-time
frames. At the core of the architecture are three components: the AutonomicController,
ValidationCheck and DependabilityCheck, which allow developers to specify controls
and processes to improve system trustability. To demonstrate the feasibility and practi-
cability of TrAArch, two empirical analysis case example scenarios have been presented
in Chapter 5. The first case scenario demonstrates how the proposed architecture can
maximise cost, improve trustability and efficient target-marketing in a company-centric

222  Trustworthy autonomic computing

Autonomic Marketing System that has many dimensions of freedom and which is sensi-
tive to a number of contextual volatility. The second case example scenario, which is an
implementation of a datacentre resource request and allocation management, is a more
complex experimental analysis designed to analyse the performance of the proposed
TrAArch architecture over existing autonomic architectures.

8.5 � Interoperability

The very success of autonomic computing has inevitably led to situations where
multiple autonomic managers need to coexist and/or interact directly or indi-
rectly within the same system. This is evident, e.g., in the increasing availability
of large datacentres with heterogeneous managers that are independently designed.
Potentially, problems can arise as a result of conflict of interest when these manag-
ers (components) coexist. Interoperability challenges stem from the following facts:

•• Components (and indeed autonomic managers) could be multi-vendor supplied
•• Upgrades in one autonomic manager could trigger unfamiliar events
•• Increasing scale can introduce bottlenecks
•• One autonomic manager may be unaware of the existence of another
•• Although tested and perfected in isolation, autonomic managers may not have

been wired at design to coexist with other autonomic managers.

There is a growing concern that the lack of support for interoperability will
become a break issue for future systems.

Researchers, e.g. [61, 107, 155, 176], have made valuable progress towards
autonomic manager interoperability but this progress is yet to lead to a standardised
approach. Although these efforts are significant, they have not successfully tackled
the problem of unintended or unexpected interactions that can occur when indepen-
dently developed autonomic managers coexist in a system. Further from that, and
more realistically, autonomic managers may not necessarily need to know about the
existence of other managers —they are designed in isolation (probably by different
vendors) and operate differently (for different goals) without recourse to one another.
Thus, close-coupled interoperability (i.e., where specific actions in one autonomic
manager react to, or complement those of another) cannot be a reliable solution as it
will require the source code and detailed functional specifications of each autonomic
manager to be available to all autonomic managers. This is near impossible and
where it is possible, requires a rewiring (or recoding) of each autonomic manager
whenever a new autonomic manager is added to the system. A robust solution that
is insulated from the identified challenges is required and this book suggests that the
autonomic architecture can provide us with such solution.

This book posits that the autonomic architecture should envision (and provide
for) interoperability support from the scratch. This is to say that the autonomic

Conclusions and future work  223

architecture should be scalable and dynamic enough to accommodate expected
and unexpected developments. So, a stigmergic interoperability approach based on
TrAArch has been presented. The stigmergic interoperability solution provides indi-
rect coordination between autonomic managers in a multi-manager scenario without
the need for planning (or pre-knowledge of the existence of other autonomic man-
agers), control or direct communications between coexisting autonomic managers.
This provides efficient collaboration (as against competition) between coexisting
autonomic managers. See Chapter 3 for detailed discussion on stigmergy.

The stigmergic, architecture-based interoperability solution is presented in
Chapter 6. This approach is based on the TrAArch architecture, which includes
mechanisms and instrumentation to explicitly support interoperability and trustwor-
thiness. The interoperability support of the architecture builds on the stigmergic
phenomenon. In the actual sense of this approach, autonomic managers are designed
to sense their environment and dynamically adjust (retune) their behaviour as soon
as they notice process conflicts. In real life, this is typical of two staff that share
an office space but work at different times. If each returns to their next respective
shift and finds the office rearranged, they will each adjust in their arrangement of
the office until an accepted compromise structure is reached. This can be achieved
without both staff ever meeting. It has been shown how the TrAArch architecture
can enable the design of autonomic managers that support efficient collaborations
with other managers without individual awareness or pre-knowledge of each other.
The experimental analysis of a multi-manager datacentre scenario shows that the
proposed interoperability solution achieves over 42 per cent performance improve-
ment (in terms of stability) in a complex, conflict-prone, coexistence of autonomic
managers.

8.6 � Level of autonomicity (LoA)

Measuring Level of Autonomicity (LoA) is an ongoing challenge that is being
addressed in the autonomic computing research community. Existing approaches
include the scale-based approach [165, 168] and the metrics-based approach [166],
etc. However, these approaches are qualitative (relying on interpretation of descrip-
tion of a system) and do not discriminate between behaviour types. It is proposed
that a more appropriate approach should comprise both qualitative and quantitative
(as a way of assigning magnitude or value to the description and classification of
systems) measures. According to Hawthorne [177], such a method of measuring
autonomicity would be hugely beneficial as new autonomic solutions could be quan-
tifiably substantiated rather than as an abstract quality. According to the findings of
the background study (see Chapter 2), there is a lack of a quantitative approach for
assessing autonomic systems. Chapter 7 presents a novel quantitative technique for
measuring LoA along several dimensions of autonomic system self-* functionali-
ties. This technique is robust as it is based on the functionalities of systems, making
it possible to be tailored to suit the needs of any application domain.

224  Trustworthy autonomic computing

A system is better defined by its functionalities, and so measuring the LoA of
autonomic systems without a reference to autonomic functionalities would be inac-
curate. In the proposed functionality-based LoA measurement, a typical autonomic
system is defined by some core autonomic functionalities and LoA is measured with
respect to these functionalities. Each functionality is defined by a set of metrics. The
metric values are normalised and aggregated to give the autonomic contribution of
each functionality, which are then combined to yield a LoA value for an autonomic
system.

The proposed approach is in two forms: the specific case approach and the
generic case approach. The specific case approach works perfectly well in cases where
functionalities are orthogonal and for specific systems of a limited (fixed) number
of functionalities (e.g., the self-CHOP functionalities). The generic case approach is
used to demonstrate a generic case instance where functionalities are not necessarily
orthogonal and where systems are defined by ‍n‍ number of autonomic functionalities
(e.g., the self-* functionalities). It has been shown, with examples, how this approach
can flexibly adapt existing qualitative approaches (e.g., the scale-based approach)
to enable qualitative interpretation of LoA results. This new approach is sufficiently
more sophisticated than existing approaches in a number of ways:

•• It is the only approach that ties down LoA to a numeric value;
•• It takes into account individual weights for metrics and functionalities;
•• It is generic and flexible in the sense that it is independent of the number of

autonomic functionalities;
•• It is also independent of the number of metrics used to measure each of the

autonomic functionalities; and
•• The numeric value is scaled always to a normalised value. If you do not nor-

malise it, more dimensions of autonomicity will result in bigger scores which
gives the wrong impression that the more metrics that are used, the higher the
resulting autonomicity level. Normalisation provides the power to compare two
different systems no matter the number of individual metrics.

The standardisation of a technique for the measurement of LoA will bring many
quality-related benefits which include being able to compare alternative configura-
tions of autonomic systems, and even to be able to compare alternate systems them-
selves and approaches to building autonomic systems, in terms of the LoA they
offer. This in turn has the potential to improve the consistency of the entire life-
cycle of autonomic systems and in particular links across the requirements analysis,
design and acceptance testing stages.

8.7 � Future work

It is important to note that while progress has been made in this work towards trust-
worthy autonomic systems, achieving the full goal of trustworthiness remains an
open challenge that requires more research. A broad and general analysis of the

Conclusions and future work  225

autonomic computing research, in terms of identifying trends in the research, gives a
thorough review of the state-of-the-art in trustworthy autonomics. Results show that
trustworthy autonomics, which is essential to the success of autonomic computing,
has received very little attention compared to other focus areas.

The identified challenges for future work include the study and standardisa-
tion of autonomic measuring metrics for different autonomic systems. The metrics
definitions can be grouped or modularised (e.g., the standardised categorisation of
unmanned systems in Reference [11]). This will involve looking at standardised
ways of properly defining and generating autonomic metrics to strengthen the pro-
posed LoA measurement approach. Another future challenge is to focus on improv-
ing the robustness of the proposed TrAArch. For TrAArch, this will include scaling
the DependabilityCheck component to be able to provide mechanisms and instru-
mentations for emerging autonomics capabilities — ability to flexibly add more
sub-components (e.g., predictive/learning sub-component). Also, of importance is
verifying how results of this approach can vary in other contexts and seeing which
factors could influence its adoption or not in practice. Another open challenge is
interoperability, discussed in Chapter 6. The required effort here will include evalu-
ating the nature and scope of the interoperability challenges for autonomic comput-
ing systems, identifying a set of requirements for a universal solution, and proposing
a service-based interoperability approach to handle both direct and indirect conflicts
in a multi-autonomic manager scenario.

These are only a few of the main open challenges. As technology evolves, lead-
ing to new complexities and issues, the trustworthy autonomic computing solutions
will need to evolve too.

This page intentionally left blank

	 [1]	 Paul H. Autonomic computing: IBM perspective on the state of information
technology. NY: IBM T.J. Watson Labs; 2001.

	 [2]	 Eze T., Anthony R., Walshaw C., Soper A. ‘Autonomic computing in the
first decade: trends and direction’. The Eighth International Conference on
Autonomic and Autonomous Systems: ICAS; St. Maarten, The Netherlands
Antilles, 2012.

	 [3]	 Truszkowski W., Hallock H., Rouff C, et al. ‘Autonomous and autonomic
systems: with applications to nasa intelligent spacecraft operations and ex-
ploration systems’. London: Springer, XVII; 2010. p. 56.

	 [4]	 Schmidt A., Thews G. ‘Autonomic nervous system’ in Janig W. (ed.).
Human physiology. 2 edn. New York, NY: Springer-Verlag; 1989. pp.
333–70.

	 [5]	 Tianfield H. ‘Multi-agent based autonomic architecture for network man-
agement’. Proceedings of IEEE International Conference on Industrial
Informatics (INDIN); 2003. pp. 462–69.

	 [6]	 McCann J., Huebscher M. ‘Evaluation issues in autonomic computing’.
Proceedings of Grid and Corporative Computing (GCC) Workshop, LNCS
3252; Springer-Verlag, Birlin Heidelber, 2004. pp. 597–608.

	 [7]	 Kephart J.O., Chess D.M. ‘The vision of autonomic computing’. Computer.
2003, vol. 36(1), pp. 41–50.

	 [8]	 Bantz D.F., Bisdikian C., Challener D., et al. ‘Autonomic personal comput-
ing’. IBM Systems Journal. 2003, vol. 42(1), pp. 165–76.

	 [9]	 Hoi Chan, Segal A., Arnold B., Whalley I. ‘How can we trust an autonomic
system to make the best decision?’. Second International Conference on
Autonomic Computing (ICAC’05); Seattle, WA, USA, 2003.

	 [10]	 Hall J., Rapanotti L. ‘Assurance-driven design in problem oriented engi-
neering’. International Journal On Advances in Intelligent Systems (IntSys).
2009, vol. 2, pp. 26–37.

	 [11]	 Shuaib H., Anthony R., Pelc M. ‘A framework for certifying autonomic
computing systems’. Proceedings of the Seventh International Conference
on Autonomic and Autonomous Systems: (ICAS); Venice, Italy, 2011.

	 [12]	 Kikuchi S., Tsuchiya S., Adachi M., Katsuyama T. ‘Constraint verifica-
tion for concurrent system management workflows sharing resources’.
Third International Conference on Autonomic and Autonomous Systems
(ICAS’07); Athens, Greece, 2006.

References

228  Trustworthy autonomic computing

	 [13]	 Yang L.T., Jin H., Ma J., Ungerer T. ‘Autonomic and trusted computing’.
Berlin, Heidelberg; 2006. pp. 143–52.

	 [14]	 Anderson S., Hartswood M., Procter R., et al. ‘Making autonomic com-
puting systems accountable’. Proceedings of the fourteenth International
Workshop on Database and Expert Systems Applications (DEXA); 2003.

	 [15]	 Heo J., Abdelzaher T. ‘AdaptGuard: guarding adaptive systems from in-
stability’. Proceedings of the sixth International Conference on Autonomic
Computing (ICAC); Barcelona, Spain, 2009.

	 [16]	 Hawthorne J., Anthony R., Petridis M. ‘Improving the development pro-
cess for teleo-reactive programming through advanced composition’.
Proceedings of the Seventh International Conference on Autonomic and
Autonomous Systems (ICAS); Venice, Italy, 2011.

	 [17]	 Hawthorne J., Anthony R. ‘A reconfigurable component model using reflec-
tion’. Proceedings of the 2008 RISE/EFTS Joint International Workshop on
Software Engineering for Resilient Systems; Newcastle, ACM, 2008. pp.
95–100.

	 [18]	 Diniz A., Torres V., José C. ‘A self-adaptive process that incorporates A self-
test activity’. Monografias em Ciência da Computação, number 32/09; Rio
– Brazil, 2009.

	 [19]	 Richards D., Taylor M., Busch P. ‘Expertise recommendation: A triangu-
lated approach’. International Journal On Advances in Intelligent Systems
(IntSys). 2009, vol. 2, pp. 12–25.

	 [20]	 Anthony R.J. ‘Policy-based autonomic computing with integral support for
self-stabilisation’. International Journal of Autonomic Computing. 2009,
vol. 1(1), p. 1.

	 [21]	 DySCAS Project ‘Dynamically self-configuring automotive systems’ in
Part of the portfolio of the embedded systems unit – G3 directorate general
information society & media;

	 [22]	 King T.M., Ramirez A.E., Cruz R., Clarke P.J. ‘An integrated self-testing
framework for autonomic computing systems’. Journal of Computers. 2007,
vol. 2(9), pp. 37–49.

	 [23]	 IBM Autonomic Computing White Paper ‘An architectural blueprint for au-
tonomic computing’. 2005.

	 [24]	 Salehie M., Tahvildari L. ‘Autonomic computing: emerging trends and open
problems’ in Workshop on the design and evolution of autonomic applica-
tion software (DEAS). St Louis Missouri USA; 2005.

	 [25]	 Kephart J. ‘Autonomic computing: the first decade’. Keynote at the 8th
International Conference on Autonomic Computing (ICAC); Germany,
2011.

	 [26]	 Eze T., Anthony T., Walshaw C., Soper A. ‘The challenge of validation for
autonomic and self-managing systems’. The 7th International Conference
on Autonomic and Autonomous Systems (ICAS); Venice, Italy, 2011.

References  229

	 [27]	 Krupitzer C., Roth F.M., Pfannemuller M., Becker C. ‘Comparison of ap-
proaches for self-improvement in self-adaptive systems’. 2016 IEEE
International Conference on Autonomic Computing (ICAC); Wurzburg,
2016.

	 [28]	 Maggio M., Hoffmann H. ‘Decision making in autonomic computing
systems: comparison of approaches and techniques’. 8th International
Conference on Autonomic Computing (ICAC); Karlsruhe, Germany, 2011.

	 [29]	 Alhaisoni M., Liotta A., Ghanbari M. ‘An assessment of self-managed P2P
streaming’. 5th International Conference on Autonomic Computing (ICAC),
2009; Washington DC, USA, 2009.

	 [30]	 Mohamed M., Romdhani M., Ghedira K. ‘MOF-EMF alignment’. Third
International Conference on Autonomic and Autonomous Systems (ICAS’07);
Athens, Greece, 2007.

	 [31]	 Gjørven E., Eliassen F., Aagedal J. ‘Quality of adaptation’. The 2nd
International Conference on Autonomic and Autonomous Systems (ICAS);
CA, USA, 2006.

	 [32]	 Nami M.R., Bertels K. ‘A survey of autonomic computing systems’.
Third International Conference on Autonomic and Autonomous Systems
(ICAS’07); Athens, Greece, 2007.

	 [33]	 Klein C., Schmid R., Leuxner C., Sitou W., Spanfelner B. ‘A survey of con-
text adaptation in autonomic computing’. The 4th International Conference
on Autonomic and Autonomous Systems (ICAS); Gosier, Guadeloupe, 2008.

	 [34]	 Khalid A., Haye M.A., Khan M.J., Shamail S. ‘Survey of frameworks, ar-
chitectures and techniques in autonomic computing’. The 5th International
Conference on Autonomic and Autonomous Systems (ICAS); Karlsruhe,
Germany, 2009.

	 [35]	 Higgins F., Tomlinson A., Martin K.M. ‘Survey on security challenges
for swarm robotics’. The 5th International Conference on Autonomic and
Autonomous Systems (ICAS); Karlsruhe, Germany, 2009.

	 [36]	 Ding J., Cao R., Saravanan I., Morris N., Stewart C. ‘Characterizing ser-
vice level objectives for cloud services: realities and myths’. 2019 IEEE
International Conference on Autonomic Computing (ICAC); Umea, Sweden,
2019.

	 [37]	 Musunoori S., Horn G., Eliassen F., Mourad A. ‘On the challenge of allocat-
ing service based applications in a grid environment’. Proceedings of the
second International Conference on Autonomic and Autonomous Systems
(ICAS); California, USA, 2006.

	 [38]	 Ranganathan A., Campbell R. ‘Self-optimization of task execution in per-
vasive computing environments’. Proceedings of the second International
Conference on Autonomic Computing (ICAC); Seattle, USA, 2005.

	 [39]	 Bonino D., Bosca A., Corno F. ‘An agent based autonomic semantic plat-
form’. Proceedings of the first International Conference on Autonomic
Computing (ICAC); New York, USA, 2004.

230  Trustworthy autonomic computing

	 [40]	 Menasc´e D., Bennani M. ‘Autonomic virtualized environments’.
Proceedings of the second International Conference on Autonomic and
Autonomous Systems (ICAS); California, USA, 2006.

	 [41]	 Bennani M., Menasc´e D.I. ‘Resource allocation for autonomic data
centers using analytic performance models’. Proceeding of the second
International Conference on Autonomic Computing (ICAC); Seattle, USA,
2005.

	 [42]	 Lee C., Kim H. ‘A part release considering tool scheduling and dynamic tool
allocation in flexible manufacturing systems’. Proceedings of the second
International Conference on Autonomic and Autonomous Systems (ICAS);
California, USA, 2006.

	 [4]	 Anthony R.J. ‘Policy-centric integration and dynamic composition of au-
tonomic computing techniques’. Proceedings of the fourth International
Conference on Autonomic Computing (ICAC); Florida, USA, 2007.

	 [5]	 Bahati R.M., Bauer M.A., Vieira E.M. ‘Adaptation strategies in policy-driven
autonomic management’. Third International Conference on Autonomic and
Autonomous Systems (ICAS’07); Athens, Greece, 2007.

	 [45]	 Stehle E., Shevertalov M., deGrandis P., Mancoridis S., Kam M. ‘Perception
of utility in autonomic voip systems’. International Journal On Advances in
Intelligent Systems (IntSys). 2009, vol. 2, pp. 92–106.

	 [46]	 Perez J., Germain-Renaud C., Loomis C. ‘Utility-based reinforcement learn-
ing for reactive grids’. Proceedings of the fifth International Conference on
Autonomic Computing (ICAC); Illinois, USA, 2008.

	 [47]	 Yu T.-J., Lai K.R., Lin M.-W., Kao B.-R. ‘A fuzzy constraint-directed autono-
mous learning to support agent negotiation’. Third International Conference
on Autonomic and Autonomous Systems (ICAS’07); Athens, Greece, 2007.

	 [48]	 Xu J., Zhao M., Fortes J., Carpenter R., Yousif M. ‘On the use of fuzzy
modeling in virtualized data center management’. Proceedings of the fourth
International Conference on Autonomic Computing (ICAC); Florida, USA,
2007.

	 [49]	 Eze T., Anthony R. ‘Dead-zone logic in autonomic systems’. 2014 IEEE
Conference on Evolving and Adaptive Intelligent Systems (EAIS); Linz,
Austria, 2014.

	 [50]	 Benoit D.G. ‘Performance diagnosis for changing workloads’. Third
International Conference on Autonomic and Autonomous Systems (ICAS’07);
Athens, Greece, 2007.

	 [51]	 Calinescu R. ‘Implementation of a generic autonomic framework’.
Proceedings of the fourth International Conference on Autonomic and
Autonomous Systems (ICAS); Gosier, Guadeloupe, 2008.

	 [52]	 Ghanbari S., Soundararajan G., Chen J., Amza C. ‘Adaptive learning of met-
ric correlations for temperature-aware database provisioning’. Proceedings
of the fourth International Conference on Autonomic Computing (ICAC);
Florida, USA, 2007.

	 [53]	 Kusic D., Kephart J.O., Hanson J.E., Kandasamy N., Jiang G. ‘Power
and performance management of virtualized computing environments via

References  231

lookahead control’. Proceedings of the fifth International Conference on
Autonomic Computing (ICAC); Illinois, USA, 2008.

	 [54]	 Moore J., Chase J.S., Ranganathan P. ‘Weatherman: automated, online and
predictive thermal mapping and management for data centers’. Proceeding
of the Third International Conference on Autonomic Computing (ICAC);
Dublin, Ireland, 2006.

	 [55]	 Toure M., Stolf P., Hagimont D., Broto L. ‘Large scale deployment’.
Proceedings of the sixth International Conference on Autonomic and
Autonomous Systems (ICAS); Cancun, Mexico, 2010.

	 [56]	 Wang C., Schwan K., Talwar V., Eisenhauer G., Hu L., Wolf M. ‘A flex-
ible architecture integrating monitoring and analytics for managing large-
scale data centers’. Proceedings of the eighth International Conference on
Autonomic Computing (ICAC); Karlsruhe, Germany, 2011.

	 [57]	 Zhang H., Jiang G., Yoshihira K., Chen H., Saxena A. ‘Resilient work-
load manager: taming bursty workload of scaling internet applications’.
Proceedings of the sixth International Conference on Autonomic Computing
(ICAC); Barcelona, Spain, 2009.

	 [58]	 Nou R., Torres J. ‘Heterogeneous qos resource manager with prediction’.
Proceedings of the Fifth International Conference on Autonomic and
Autonomous Systems (ICAS); Karlsruhe, Germany, 2009.

	 [59]	 Ramachandran V., Gupta M., Sethi M., Chowdhury S.R. ‘Determining
configuration parameter dependencies via analysis of configuration
data from multi-tiered enterprise applications’. Proceedings of the sixth
International Conference on Autonomic Computing (ICAC); Barcelona,
Spain, 2011.

	 [60]	 Zheng Z., Yu L., Lan Z., Jones T. ‘3-dimensional root cause diagnosis via co-
analysis’. Proceedings of the ninth International Conference on Autonomic
Computing (ICAC); California,USA, 2011.

	 [61]	 Anthony R., Pelc M., Shauib H. ‘The interoperability challenge for auto-
nomic computing’. Proceedings of the third International Conference on
EMERGING Network Intelligence (EMERGING); Lisbon, Portugal, 2011.

	 [62]	 Beran B., Valentine D., Zaslavsky I., Jonathan S., Cox D., McGee J. ‘Web
services solutions for hydrologic data access and cross-domain interoper-
ability’. International Journal On Advances in Intelligent Systems (IntSys).
2009, vol. 2, pp. 317–24.

	 [63]	 Huang S., Liang S., Fu S., Shi W., Tiwari D., Chen H. ‘Characterizing disk
health degradation and proactively protecting against disk failures for re-
liable storage systems’. The 16th International Conference on Autonomic
Computing (ICAC); Umea, Sweden, 2019.

	 [64]	 Trotter M., Wood T., Hwang J. ‘Forecasting a storm: divining optimal con-
figurations using genetic algorithms and supervised learning’. The 16th
International Conference on AutonomicComputing (ICAC); Umea, Sweden,
2019.

	 [65]	 Sun H., Birke R., Binder W., Bjorkqvist M., Chen L.Y. ‘AccStream:
accuracy-aware overload management for stream processing systems’. The

232  Trustworthy autonomic computing

14th International Conference on AutonomicComputing (ICAC); Columbus,
OH, USA, 2017.

	 [66]	 Poghosyan A.V., Harutyunyan A.N., Grigoryan N.M. ‘Compression for time
series databases using independent and principal component analysis’. The
14th International Conference on Autonomic Computing (ICAC); Columbus,
OH, USA, 2017.

	 [67]	 Lee G.J., Fortes J.A.B. ‘Hierarchical self-tuning of concurrency and resource
units in data-analytics frameworks’. The 14th International Conference on
Autonomic Computing (ICAC); Columbus, OH, USA, 2017.

	 [68]	 Balasubramanian S., Ghosal D., Balasubramanian Sharath K.N, et al. ‘Auto-
tuned publisher in a pub/sub system: design and performance evaluation’.
The 15th International Conference on Autonomic Computing (ICAC);
Trento, 2018.

	 [69]	 Mehta A., Elmroth E. ‘Distributed cost-optimized placement for latency-
critical applications in heterogeneous environments’. The 15th International
Conference on Autonomic Computing (ICAC); Trento, Italy, 2018.

	 [70]	 Riley I., Gamble R. ‘Using system profiling for effective degradation detec-
tion’. The 15th International Conference on Autonomic Computing (ICAC);
Trento, Italy, 2018.

	 [71]	 Larsson L., Tarneberg W., Klein C., Elmroth E. ‘Quality-elasticity: improved
resource utilization, throughput, and response times via adjusting output
quality to current operating conditions’. The 16th International Conference
on Autonomic Computing (ICAC); Umea, Sweden, 2019.

	 [72]	 Adiththan A., Ravindran K., Ramesh S. ‘Management of qos-oriented
adaptation in automobile cruise control systems’. The 14th International
Conference on Autonomic Computing (ICAC); Columbus, Ohio-USA,
2017.

	 [73]	 Sliem M., Salmi N., Ioualalen M. ‘Using performance modelling for au-
tonomic resource allocation strategies analysis’. The 10th International
Conference on Autonomic and Autonomous Systems (ICAS); Chamonix,
France, 2014.

	 [74]	 Hadded L., Tata S. ‘Efficient resource allocation for autonomic service-based
applications in the cloud’. The 15th International Conference on Autonomic
Computing (ICAC); Trento, Italy, 2018.

	 [75]	 Barlaskar E., Dichev K., Kilpatrick P., Spence I., Nikolopoulos D.S.
‘Supporting cloud iaas users in detecting performance-based violation for
streaming applications’. The 15th International Conference on Autonomic
Computing (ICAC); Trento, Italy, 2018.

	 [76]	 Baylov K., Petrova-Antonova D., Dimov A. ‘Platform for autonomous ser-
vice composition’. The 11th International Conference on Autonomic and
Autonomous Systems (ICAS); Rome, Italy, 2015.

	 [77]	 Orleans L., Zimbrao da Silva G. ‘QoS-aware scale up on iaas clouds’. The
12th International Conference on Autonomic and Autonomous Systems
(ICAS); Lisbon, Portugal, 2016.

References  233

	 [78]	 Maroulis S., Zacheilas N., Kalogeraki V. ‘ExpREsS: energy efficient
scheduling of mixed stream and batch processing workloads’. The 14th
International Conference on Autonomic Computing (ICAC); Columbus,
Ohio-USA, 2017.

	 [79]	 Krzywda J., Ali-Eldin A., Wadbro E., Ostberg P.-O., Elmroth E. ‘ALPACA:
application performance aware server power capping’. The 15th International
Conference on Autonomic Computing (ICAC); Trento, Italy, 2018.

	 [80]	 Malla S., Christensen K. ‘Reducing power use and enabling oversubscrip-
tion in multi-tenant data centers using local price’. The 14th International
Conference on Autonomic Computing (ICAC); Columbus, Ohio-USA, 2017.

	 [81]	 Schmitt N., Ifflander L., Bauer A., Kounev S. ‘Online power consump-
tion estimation for functions in cloud applications’. The 16th International
Conference on Autonomic Computing (ICAC); Umea, Sweden, 2019.

	 [82]	 Imes C., Zhang H., Zhao K., Hoffmann H. ‘CoPPer: soft real-time applica-
tion performance using hardware power capping’. The 16th International
Conference on Autonomic Computing (ICAC); Umea, Sweden, 2019.

	 [83]	 Safieddine I., de Palma N. ‘Efficient management of cooling systems in
green datacenters’. The 11th International Conference on Autonomic and
Autonomous Systems (ICAS); Rome, Italy, 2015.

	 [84]	 Srivastava B., Bigus J., Schlosnagle D. ‘Bringing planning to autonomic
applications with ABLE’. The 1st International Conference on Autonomic
Computing (ICAC); New York, USA, 2004.

	 [85]	 Topalova I., Radoyska P. ‘Adaptive control of traffic congestion with neuro-
fuzzy based weighted random early detection’. The 15th International
Conference on Autonomic and Autonomous Systems (ICAS); Athens, Greece,
2019.

	 [86]	 Tesauro G., Das R., Walsh W., Kephart J. ‘Utility-function-driven resource
allocation in autonomic systems’. The 2nd International Conference on
Autonomic Computing (ICAC); Seattle, USA, 2005.

	 [87]	 Walsh W., Tesauro G., Kephart J., Das R. ‘Utility functions in autonom-
ic systems’. The 1st International Conference on Autonomic Computing
(ICAC); New York, USA, 2004.

	 [88]	 Arellanes D., Lau K.-K. ‘Workflow variability for autonomic IoT systems’.
The 16th International Conference on Autonomic Computing (ICAC); Umea,
Sweden, 2019.

	 [89]	 Boubin J., Chumley J., Stewart C., Khanal S. ‘Autonomic computing chal-
lenges in fully autonomous precision agriculture’. The 16th International
Conference on Autonomic Computing (ICAC); Umea, Sweden, 2019.

	 [90]	 Mahabhashyam S., Gautam N. ‘Dynamic resource allocation of shared data
centers supporting multiclass requests’. The 1st International Conference on
Autonomic Computing (ICAC); New York, USA, 2004.

	 [91]	 David V., Nikolai I. ‘A reinforcement learning framework for dynamic
resource allocation: first results’. The 2nd International Conference on
Autonomic Computing (ICAC); Seattle, USA, 2005.

234  Trustworthy autonomic computing

	 [92]	 Das R., Kephart J., Whalley I., Vytas P. ‘Towards commercialization of
utility-based resource allocation’. The 3rd International Conference on
Autonomic Computing (ICAC); Dublin, Ireland, 2006.

	 [93]	 Bu X., Rao J., Xu C.-Z. ‘CoTuner: A framework for coordinated auto-
configuration of virtualized resources and appliances’. The 7th International
Conference on Autonomic Computing (ICAC); Washington, USA, 2010.

	 [94]	 Anthony R.J., Pelc M., Byrski W. ‘Context-aware reconfiguration of auto-
nomic managers in real-time control applications’. The 7th International
Conference on Autonomic Computing (ICAC); Washington, USA, 2010.

	 [95]	 Gaudin B., Vassev E.I., Nixon P., Hinchey M. ‘A control theory based
approach for self-healing of un-handled runtime exceptions’. The 8th
International Conference on Autonomic Computing (ICAC); Germany,
2011.

	 [96]	 Hachemi Bendahmane E., Dillenseger B., Moreaux P. ‘Introduction of
self optimization features in a selfbenchmarking architecture’. The 7th
International Conference on Autonomic and Autonomous Systems (ICAS);
Venice, Italy, 2011.

	 [97]	 He R., Lacoste M., Leneutre J. ‘A policy management framework for self-
protection of pervasive systems’. The 6th International Conference on
Autonomic and Autonomous Systems (ICAS); Cancun, Mexico, 2010.

	 [98]	 Gupta A., Kalé L.V. ‘Optimizing VM placement for HPC in the cloud’. The
9th International Conference on Autonomic Computing (ICAC); San Jose,
USA, 2012.

	 [99]	 Hu L., Schwan K., Gulati A., Zhang J., Wang C. ‘Net-cohort: detect-
ing and managing VM ensembles in virtualized data centers’. The 9th
International Conference on Autonomic Computing (ICAC); San Jose,
USA, 2012.

	[100]	 Campello D., Crespo C., Verma A., Rangaswami R., Jayachandran P.
‘Coriolis: scalable VM clustering in clouds’. The 10th International
Conference on Autonomic Computing (ICAC); San Jose, USA, 2013.

	[101]	 Delimitrou C., Bambos N., Kozyrakis C. ‘QoS-aware admission con-
trol in heterogeneous datacenters’. The 10th International Conference on
Autonomic Computing (ICAC); San Jose, USA, 2013.

	[102]	 Ayadi I., Simoni N., Diaz G. ‘QoS-aware component for cloud computing’.
The 9th International Conference on Autonomic and Autonomous Systems
(ICAS); Lisbon, Portugal, 2013.

	[103]	 Gadafi A., Broto L., Sayah A., Hagimont D., Depalma N. ‘Autonomic energy
management in a replicated server system’. The 6th International Conference
on Autonomic and Autonomous Systems (ICAS); Cancun, Mexico, 2010.

	[104]	 Eze T., Anthony R., Soper A., Walshaw C. ‘A technique for measuring the
level of autonomicity of self-managing systems’. The 8th International
Conference on Autonomic and Autonomous Systems (ICAS); Maarten,
Netherlands Antilles, 2012.

References  235

	[105]	 Kutare M., Eisenhauer G., Wang C., Schwan K., Talwar V., Wolf M.
‘Monalytics: online monitoring and analytics for managing large scale data
centers’. Proceedings of the seventh International Conference on Autonomic
Computing (ICAC); Washington DC, USA, 2010.

	[106]	 Jones D., Keeney J., Lewis D., O’Sullivan D. ‘Knowledge delivery mecha-
nism for autonomic overlay network management’. The 6th International
Conference on Autonomic Computing (ICAC); Barcelona, Spain, 2009.

	[107]	 Kephart J.O., Chan H., Das R., et al. ‘Coordinating multiple autonomic
managers to achieve specified power-performance tradeoffs’. Proceedings
of the fourth International Conference on Autonomic Computing (ICAC);
Florida, USA, 2007.

	[108]	 Autefage V., Chaumette S., Magoni D. ‘A mission-oriented service discov-
ery mechanism for highly dynamic autonomous swarms of unmanned sys-
tems’. The 12th International Conference on Autonomic Computing (ICAC);
Grenoble, France, 2015.

	[109]	 Hadj R.B., Chollet S., Lalanda P., Hamon C. ‘Sharing devices between
applications with autonomic conflict management’. The 13th International
Conference on Autonomic Computing (ICAC); Würzburg, Germany,
2016.

	[110]	 Javadi S.A., Gandhi A. ‘DIAL: reducing tail latencies for cloud applications
via dynamic interference-aware load balancing’. The 14th International
Conference on Autonomic Computing (ICAC); Columbus, Ohio-USA,
2017.

	[111]	 Tsarev A., Skobelev P., Ochkov D. ‘Effective interaction in asynchronous
multi-agent environments for supply scheduling in real-time’. The 11th
International Conference on Autonomic and Autonomous Systems (ICAS);
Rome, Italy, 2015.

	[112]	 Naidoo N., Bright G. ‘Support vector machine learning in multi-robot
teams’. The 11th International Conference on Autonomic and Autonomous
Systems (ICAS); Rome, Italy, 2015.

	[113]	 Mishra N., Lafferty J.D., Hoffmann H. ‘ESP: A machine learning approach
to predicting application interference’. The 14th International Conference
on Autonomic Computing (ICAC); Columbus, Ohio-USA, 2017.

	[114]	 Page V., Webster M., Fisher M., Jump M. ‘Towards a methodology to test
uavs in hazardous environments’. The 15th International Conference on
Autonomic and Autonomous Systems (ICAS); Athens, Greece, 2019.

	[115]	 Kikuchi S., Tsuchiya S., Adachi M., Katsuyama T. ‘Policy verification
and validation framework based on model checking approach’. The 4th
International Conference on Autonomic Computing (ICAC); Florida, USA,
2007.

	[116]	 Landauer C., Bellman K.L. ‘An architecture for self-awareness experi-
ments’. The 14th International Conference on Autonomic Computing
(ICAC); Columbus, Ohio-USA, 2017.

236  Trustworthy autonomic computing

	[117]	 Kantert J., Tomforde S., von Zengen G., Weber S., Wolf L., Muller-Schloer
C. ‘Improving reliability and reducing overhead in low-power sensor net-
works using trust and forgiveness’. The 13th International Conference on
Autonomic Computing (ICAC); Würzburg, Germany, 2016.

	[118]	 Eze T., Anthony R. ‘Stigmergic interoperability for autonomic systems:
managing complex interactions in multi-manager scenarios’. IEEE SAI
Computing Conference (SAI); London, UK, 2016.

	[119]	 Brown R. Exponential smoothing for predicting demand. Arthur D Little
Inc; 1956.

	[120]	 Hyndman R., Athanasopoulos G. ‘Forecasting: principles and practice’ in
OTexts. 2nd edition; 2018.

	[121]	 Shmueli G., Lichtendahl K. Practical time series forecasting with R: A
hands-on guide. 2nd edition. Axelrod Schnall Publishers; 2016.

	[122]	 Ravinder H.V. ‘Determining the optimal values of exponential smooth-
ing constants – does solver really work?’. American Journal of Business
Education (AJBE). 2019, vol. 9(1), pp. 1–14.

	[123]	 Ravinder H.V. ‘Forecasting with exponential smoothing whats the right
smoothing constant?’. Review of Business Information Systems (RBIS).
2019, vol. 17(3), pp. 117–26.

	[124]	 Prestwich S.D. ‘Tuning forecasting algorithms for black swans’. IFAC-
PapersOnLine. 2019, vol. 52(13), pp. 1496–501.

	[125]	 Karmaker C. ‘Determination of optimum smoothing constant of single expo-
nential smoothing method: A case study’. International Journal of Research
in Industrial Engineering. 2017.

	[126]	 Dhali M.N., Barman N., Hasan M.B. ‘Determination of optimal smooth-
ing constants for holt - winter’s multiplicative method’. Dhaka University
Journal of Science. 2016, vol. 67(2), pp. 99–104.

	[127]	 Theraulaz G., Bonabeau E. ‘A brief history of stigmergy’. Artificial Life.
1999, vol. 5(2), pp. 97–116.

	[128]	 Heylighen F. ‘Stigmergy as a universal coordination mechanism: compo-
nents, varieties andapplications’ in Cognitive systems research - human-
human stigmergy. Vol. 38. Elsevier; 2016. pp. 1–13.

	[129]	 Lewis T.G., Marsh L. ‘Human stigmergy: theoretical developments and new
applications’. Cognitive Systems Research. 2016, vol. 38, pp. 1–3.

	[130]	 Rubenstein M., Cornejo A., Nagpal R. ‘Robotics. programmable self-
assembly in a thousand-robot swarm’. Science. 2014, vol. 345(6198), pp.
795–99.

	[131]	 Berlinger F., Gauci M., Nagpal R. ‘Implicit coordination for 3D underwater
collective behaviors in a fish-inspired robot swarm’. Science Robotics. 2021,
vol. 6(50), eabd8668.

	[132]	 O’Reilly G., Ehlers E. ‘Synthesizing stigmergy for multi agent systems’ in
Lecture notes in computer science (LNCS). Vol. 4088. Springer; 2006. pp.
34–45.

References  237

	[133]	 Hadeli K., Valckenaers P., Kollingbaum M., Brussel H. ‘Multi-agent coor-
dination and control using stigmergy’ in Lecture notes in computer science
(LNCS). Vol. 2977. Springer; 2004. pp. 105–23.

	[134]	 Ronen O., Allen R. ‘Autonomic policy creation with singlestep uni-
ty’. Proceedings of the second International Conference on Autonomic
Computing (ICAC); Seattle, USA, 2005.

	[135]	 Zuefle M., Bauer A., Lesch V., et al. ‘Autonomic forecasting method selec-
tion: examination and ways ahead’. The 16th International Conference on
Autonomic Computing (ICAC); Umea, Sweden, 2019.

	[136]	 Shopov V., Markova V. ‘Deep learning with evolutionary strategies for
building autonomous agents behaviour’. The 15th International Conference
on Autonomic and Autonomous Systems (ICAS); 2019.

	[137]	 Ramirez Y.M., Podolskiy V., Gerndt M. ‘Capacity-driven scaling schedules
derivation for coordinated elasticity of containers and virtual machines’. The
16th International Conference on Autonomic Computing (ICAC); Umea,
Sweden, 2019.

	[138]	 Tantawi A.N., Steinder M. ‘Autonomic cloud placement of mixed workload:
an adaptive bin packing algorithm’. The 16th International Conference on
Autonomic Computing (ICAC); Umea, Sweden, 2019.

	[139]	 Khan M.J., Shamail S., Awais M.M. ‘Decision making in autonomic man-
agers using fuzzy inference system’. Proceedings of the Fifth International
Conference on Autonomic and Autonomous Systems (ICAS); Karlsruhe,
Germany, 2009.

	[140]	 Ashby W.R. Design for a brain. Dordrecht: Chapman & Hall Ltd; 1960.
	[141]	 Mundie J.J., Eichna D.M., DeLima M.D. ‘Orientation outcomes in 2000

and beyond: an educational and financial partnership’. Journal for Nurses in
Staff Development. 2002, vol. 18(5), pp. 241–47.

	[142]	 Schneider F. ‘Trust in cyberspace’ in Committee on information systems
trustworthiness. Washington, D.C: National Academy Press; 1998.

	[143]	 Hamdi S., Bouzeghoub A., Gancarski A.L., Yahia S.B. ‘Trust inference
computation for online social networks’. Proceedings of the twelfth IEEE
International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom); Melbourne, VIC Australia, 2013. pp. 210–17.

	[144]	 Li H., Venugopal S. ‘Using reinforcement learning for controlling an elastic
web application hosting platform’. Proceedings of the eighth International
Conference on Autonomic Computing (ICAC); Karlsruhe, Germany, 2011.

	[145]	 Brooks R. ‘A robust layered control system for A mobile robot’. IEEE
Journal on Robotics and Automation. 2011, vol. 2(1), pp. 14–23.

	[146]	 Ashby W.R. Design for a brain. Dordrecht: Chapman & Hall Ltd; 1960.
	[147]	 Parashar M., Hariri S. ‘Autonomic computing: an overview’ in Lecture notes

in computer science (LNCS). Vol. 3566. Springer; 2005. pp. 257–69.
	[148]	 Das R., Kephart J.O., Lenchner J., Hamann H. ‘Utility-function-driven

energy-efficient cooling in data centers’. Proceeding of the Seventh

238  Trustworthy autonomic computing

International Conference on Autonomic Computing (ICAC); Washington,
DC, USA, 2005.

	[149]	 Goiri I., Fito J.O., Julia F., et al. ‘Multifaceted resource management for deal-
ing with heterogeneous workloads in virtualized data centers’. Proceedings
of Eleventh IEEE/ACM International Conference on GRID Computing
(GRID); Brussels, Belgium, 2010.

	[150]	 Chase J.S., Anderson D.C., Thakar P.N., Vahdat A.M., Doyle R.P. ‘Managing
energy and server resources in hosting centers’. ACM SIGOPS Operating
Systems Review. 2005, vol. 35(5), pp. 103–16.

	[151]	 Berral J., Gavalda R., Torres J. ‘“Living in barcelona” li-BCN workload 2010’
in Technical report libcn10. Barcelona, Spain: Barcelona Supercomputing
Centre; 2010.

	[152]	 Pretorius M., Ghassemian M., Ierotheou C. ‘An investigation into en-
ergy efficiency of data centre virtualisation’. Proceedings of International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing; Fukuoka,
Japan, 2010.

	[153]	 Pretorius M., Ghassemian M., Ierotheou C. ‘Virtualisation –securing a
greener tomorrow with yesteryear’s technology’. Proceeding of the Twelfth
IFIP/IEEE International Symposium on Integrated Network Management
(IM 2011); Dublin, Ireland, 2011.

	[154]	 Stone P., Veloso M. ‘Multiagent systems: A survey from A machine learning
perspective’ in Autonomous robots. Vol. 8. Springer; 2000. pp. 345–83.

	[155]	 Liu H., Iba H. ‘Multi-agent learning of heterogeneous robots by evolution-
ary subsumption’ in Lecture notes in computer science (LNCS). Vol. 2724.
Springer; 2003. pp. 1715–28.

	[156]	 Hadeli K., Valckenaers P., Zamfirescu C, et al. ‘Self-organising in multi-
agent coordination and control using stigmergy’ in Lecture notes in com-
puter science (LNCS). Vol. 2977. Springer; 2004. pp. 105–23.

	[157]	 Chess D., Pacifici G., Spreitzer M., Steinder M., Tantawi A., Whalley I.
‘Experience with collaborating managers: node group manager and provi-
sioning manager’. Proceedings of the second International Conference on
Autonomic Computing (ICAC); Seattle, USA, 2005.

	[158]	 Wang M., Kandasamyt N., Guezl A., Kam M. ‘Adaptive performance con-
trol of computing systems via distributed cooperative control: application
to power management in computing clusters’. Proceedings of the third
International Conference on Autonomic Computing (ICAC); Dublin, Ireland,
2006.

	[159]	 Zhao M., Xu J., Figueiredo J. ‘Towards autonomic grid data manage-
ment with virtualized distributed file systems’. Proceedings of the third
International Conference on Autonomic Computing (ICAC); Dublin, Ireland,
2006.

	[160]	 Khargharia B., Hariri S., Yousif M.S. ‘Autonomic power and performance
management for computing systems’. Proceedings of the third International
Conference on Autonomic Computing(ICAC); Dublin, Ireland, 2004.

References  239

	[161]	 Dorigo M., Bonabeau E., Theraulaz G. ‘Ant algorithms and stigmergy’.
Future Generation Computer Systems. 2000, vol. 16(8), pp. 851–71.

	[162]	 Durani V. ‘IBM bladecenter systems up to 30 percent more energy efficient
than comparable HP blades.’ IBM Press Release; 2006.

	[163]	 Wang X., Lefurgy C., Ware M. ‘Managing peak system-level power with
feedback control’ in Research report RC23835. IBM; 2005.

	[164]	 Berral J.Ll., Goiri Í., Nou R., et al. ‘Towards energy-aware scheduling in
data centers using machine learning’. Proceeding of the 1st International
Conference on Energy-Efficient Computing and Networking (e-Energy);
New York, USA, 2010.

	[165]	 Proud R., Hart J., Mrozinski R. ‘Methods for determining the level of au-
tonomy to design into A human spaceflight vehicle: A function specific
approach’. Proceedings of the 2003 Performance Metrics for Intelligent
Systems (PerMIS’03) Workshop; Gaithersburg, MD, 2003.

	[166]	 Clough B. ‘Metrics, schmetrics! how the heck do you determine A UAV’s
autonomy anyway?’. Proceedings of the 2003 Performance Metrics for
Intelligent Systems (PerMIS’03) Workshop; Gaithersburg, MD, 2003.

	[167]	 Eze T., Anthony R., Walshaw C., Soper A. ‘A generic approach towards
measuring level of autonomicity in adaptive systems’. International Journal
on Advances in Intelligent Systems. 2012, vol. 5, pp. 553–66.

	[168]	 Sheridan T. Telerobotics, automation, and human supervisory control.
Cambridge, MA, USA: The MIT Press; 1992.

	[169]	 Huang H., Albus J., Messina E., Wade R., English W. ‘Specifying autonomy
levels for unmanned systems: interim report’. Proceedings of SPIE Defense
and Security Symposium, Conference 5422; Orlando, Florida, USA, 2004.

	[170]	 Huang H.-M., Gerhart G.R., Shoemaker C.M., et al. ‘Autonomy levels for
unmanned systems (ALFUS) framework: an update’. Defense and Security;
Orlando, Florida, USA, 2005.

	[171]	 Alonso F., Fuertes J.L., Martinez L., Soza H. ‘Towards a set of measures for
evaluating software agent autonomy’. Proceedings of the eighth Mexican
International Conference on Artificial Intelligence (MICAI); Guanajuato,
Mexico, 2009.

	[172]	 Huebscher M.C., McCann J.A. ‘An adaptive middleware framework for
context-aware applications’. Personal and Ubiquitous Computing. 2006,
vol. 10(1), pp. 12–20.

	[173]	 Barber K., Martin C. ‘Agent autonomy: specification, measurement, and
dynamic adjustment’. Proceedings of the Autonomy Control Software
Workshop at Autonomous Agents (Agents’99); Seattle, USA, 1999.

	[174]	 Computing Research Association ‘Four grand challenges in trustwor-
thy computing’. Proceedings of Second Conferences on Grand Research
Challenges in Computer Science and Engineering, November 16–19; 2003.

	[175]	 Yang L., Ma J. Introduction to the Journal of autonomic and trusted comput-
ing. American Scientific Publishers; Available from www.aspbs.com/joatc.​
html 26/08/13

240  Trustworthy autonomic computing

	[176]	 White S., Hanson J., Whalley I., Chess M., Kephart J. ‘An architectural
approach to autonomic computing’. Proceedings of the first International
Conference on Autonomic Computing (ICAC); New York, USA, 2004.

	[177]	 Hawthorne J. 2013. ‘Investigation of a Teleo-Reactive Approach for the
Development of Autonomic Manager Systems’. [PhD thesis in computing
and mathematical sciences]. University of Greenwich

AdaptGuard 12
Analysis-by-problem approach 25–26,

28, 45, 46, 220
appCapacity 143
AppSize 139
Autonomic controller (AC) 5, 16, 21, 82
Autonomic elements 5, 8–9
Autonomic manager logic 140, 180–184
Autonomic marketing system 111–120
Autonomic nervous system (ANS)

87–88, 106
Autonomic policy-based autoscaling

78
Autonomics computing 218–219

computing system 8–9
dead-zone (DZ) logic implemention

in 65–68
definitions 2–5
enabling techniques (see Enabling

techniques, autonomic)
evolution 19–20, 51–52

analysis-by-problem approach
25–26, 45, 46

architecture 20–22
background 26–30
challenges 49–51
in first decade 30–37, 48–52
in second decade 37–43
trend analysis 28–31
trends and direction 47–49

functionalities 5–6
self-configuration 6–7
self-healing 7
self-optimisation 8
self-protection 8
simple exponential smoothing (SES)

implemention in 58–59

Autonomy levels for unmanned systems
(ALFUS) framework 204

AvailableCapacity 147

BurstInterval 140
Burtstsize 138

CUAHSI HIS project 36

Dead-zone (DZ) logic 59–68, 89–90,
121, 175

DecisionBoundary 141–144
Delay cost 148
Dependability check (DC) 21–22, 175
Deployment rate 147
Dynamic host configuration protocol

(DHCP) 7
Dynamic tuning 64, 65
DZConst 139, 144

Enabling techniques, autonomic 53–54
dead-zone (DZ) logic 59–68
fuzzy logic 84–85

in autonomic system 86
controller 86
moving vehicle case example

84–85
nervous system, autonomic 87–88
policy autonomics 74

policy-based autonomics 77–79
policy-based networking 75–77

simple exponential smoothing (SES)
54–59

Index

242  Trustworthy autonomic computing

stigmergy 68–74
utility function 79–84

Fault tolerance 4
Feedback-based validation 14
Fuzzy logic 84–85

in autonomic system 86
controller 86
moving vehicle case example 84–85

Google PageRank 70, 71
Google Search 70, 71

High-level autonomic system 5
Hive Active Heating 2 control 60–61

ICAC. See International Conference on
Autonomic Computing (ICAC)

ICAS. See International Conference on
Autonomic and Autonomous
Systems (ICAS)

Instability 13, 187–188
Instantaneous trust index (ITI) 11, 50
Integrated self-testing framework 24
International Conference on Autonomic

and Autonomous Systems
(ICAS) 26–27, 29, 30, 33, 34,
37, 40, 42, 44–46

International Conference on Autonomic
Computing (ICAC) 25–27, 29,
30, 32–34, 37–40, 42, 44–46, 50

Interoperability 36–37, 54
Intrusion prevention system (IPS) 8

Level of autonomicity (LoA)
evaluating autonomic systems 215
measurement 84, 200–204

methodology 207–211
metrics 204–206
normalisation and scaling 206–207

overview 197–200, 216, 223–224

Mahalanobis distance 207
Manager logic 9
MeArm robot arm 2–4
Microsoft excel, SES implemention

56–58
Monitor, Analyse, Decision, Test and

Execute (MADTE) 13
Monitor-Analyse-Plan-Execute

(MAPE) control loop 5–6,
13–14, 107

Monitor-Analyse-Plan-Execute logic
110, 140

Monitor-Analyse-Plan-Validate-
DependabilityCheck-Execute
logic 110–111, 140

Monitor-Analyse-Plan-Validate-Execute
logic 110, 140

Multi-agent coordination 168–171
Multi-agent interoperability

architecture-based interoperability
175–178

experimental analysis 178–193
multi-agent coordination 168–171
multi-agent systems 168–171
in multi-manager datacentre scenario

178–179
autonomic manager logic 180–184
results analysis 188–193
simulation design 179–180
simulation scenarios and metrics

184–188
overview 167–168, 206–207
solutions 171–175

Multi-agent system 5, 168–171

Networking, policy-based 75–77
Normalisation 206-207
Normalisation interval 212
Normalisation rule 212–217

Observe, orient, decide and act
(OODA) 200

Optimum provisioning 147, 152
Ordinary logic 85

Index  243

PeM_IntTuningParam 181–182
PeM_NoIntTuningParam 182
Performance manager 180–182
Policy autonomics 74–75

policy-based autonomics 77–78
policy-based networking 75–77

Policy-based routing 76
PoM_IntTuningParam 186
PoM_NoIntTuningParam 186
Power autonomic computing 220
PowerCoefficient 185
Power consumption 186–187
Power manager 182–184
Power savings 192
ProvisionedCapacity 147
ProvisioningTime 136, 180
Python, SES implemention 55–56

Reclaimed servers 148–149
RequestedCapacity 147
RequestRate 139–140
RequestRateParam 139
RetrieveRate 138
RetrieveRequestParam 138
Room temperature monitoring 79
RunningCapacity 147
Runtime validation 16

Scale-based autonomy classification
approach 202–203

Scheduling cost 148
Self-adapting resource allocation,

TrAArch 120–122
experimental environment 135–140
results and analysis 146–164
simulation 140–146
TrAArch simulator 122–134

Self-CHOP functionalities 6–7, 8, 12, 18,
84, 198, 199, 204, 207, 211–212

Self-configuration 6–7, 205, 218
Self-healing 7–9, 54, 205, 218
Self-improvement 28
Self-managing systems 88
Self-optimisation 8, 205–206, 209

Self-protection 8, 206
Self-validation 15–16, 23, 102
Sense-decide-action control 105
Server capacity 138, 147
ServerOnTime 139
ServerProvisioningTime 138
Service level achievement (SLA) 136,

146, 153, 157–159, 163, 171,
186, 189–190

Simple exponential smoothing (SES)
90

implemention
in autonomic computing 58–59
using microsoft excel sheet 56–58
using python 55–56

SmoothingConstant 137, 180–181
Stability, defined 206
Stackoverflow 71–72
Stigmergy 68, 170

in autonomic systems 72–74
natural

humans 69–72
wildlife 68–69

Sub-component logic 103
Subsumption architecture 105–106

TAC. See Trustworthy autonomic
computing (TAC)

Teleo-Reactive (T-R) programming
approach 13

Thermostats 61
Tolerance range check (TRC) 17, 62,

103, 115, 165
TrAArch. See Trustworthy autonomic

architecture (TrAArch)
Trusted Computing (TC) paradigm 94,

96–97
Trusted Computing Platform Alliance

(TCPA) 94
Trustworthy autonomic architecture

(TrAArch) 93, 109–111,
231–232

autonomic marketing system
111–120

components 101–105

244  Trustworthy autonomic computing

framework 99–100
self-adapting resource allocation

120–122
experimental environment

135–140
results and analysis 146–164
simulation 140–146
TrAArch simulator 122–134

stability vs. optimality 164–165
subsumption architecture and 105–106
ultrastable system architecture and

106–107
Trustworthy autonomic computing

(TAC) 93–94
architecture 97–98

subsumption architecture 105–106
TrAArch framework 99–105

ultrastable system architecture
106–107

vs. trusted computing 94–97
Trustworthy autonomics

case 218–219
foundations 9–17
pillars 14–17

Ultrastable system architecture 106–107
Unmanned systems (UMS) 201
Utility calculator 80–81
Utility function 79–81, 90–91

Validation and trustworthiness (VT) 34
Validation check (VC) 22

The concept of autonomic computing seeks to reduce the complexity of pervasively ubiquitous
system management and maintenance by shifting the responsibility for low-level tasks from
humans to the system while allowing humans to concentrate on high-level tasks. This is
achieved by building self-managing systems that are generally capable of self-configuring,
self-healing, self-optimising, and self-protecting.

Trustworthy autonomic computing technologies are being applied in datacentre and cloud
management, smart cities and autonomous systems including driverless cars. However, there
are still significant challenges to achieving trustworthiness. This book covers challenges and
solutions in autonomic computing trustworthiness from methods and techniques to achieve
consistent and reliable system self-management. Researchers, developers and users need to
be confident that an autonomic self-managing system will remain correct in the face of any
possible contexts and environmental inputs.

The book is aimed at researchers in autonomic computing, autonomics and trustworthy
autonomics. This will be a go-to book for foundational knowledge, proof of concepts and novel
trustworthy autonomic techniques and approaches. It will be useful to lecturers and students
of autonomic computing, autonomics and multi-agent systems who need an easy-to-use text
with sample codes, exercises, use-case demonstrations. This is also an ideal tutorial guide for
independent study with simple and well documented diagrams to explain techniques and
processes.

About the Author

Thaddeus Eze is a cybersecurity senior lecturer and researcher at the Computer Science
Department, University of Chester, UK. He is a 2004 graduate of Anambra State University,
Nigeria, with BSc (Upper 2nd Class) in Computer Science. He holds an MSc (with Distinction,
2010) in Mobile Computing and Communications and a PhD in Trustworthy Autonomics from
the University of Greenwich, London, UK.

Trustworthy Autonomic Computing

Trustw
orthy A

utonom
ic C

om
puting

Thaddeus Eze

Trustworthy Autonomic
Computing

Eze

The Institution of Engineering and Technology
theiet.org
978-1-78561-883-3

	Contents
	About the Author�����������������������
	Preface��������������
	Acknowledgments����������������������
	1 Trustworthy autonomics primer��������������������������������������
	1.1 Introduction to autonomic computing��
	1.1.1 Autonomic computing definitions��
	1.1.2 Autonomic functionalities��������������������������������������
	1.1.3 The autonomic computing system���

	1.2 Foundations of trustworthy autonomics��
	1.2.1 Towards trustworthy autonomics���
	1.2.2 Pillars of trustworthy autonomic systems���

	1.3 Conclusion���������������������

	2 Evolution of autonomic computing���
	2.1 Importance of understanding the evolution of autonomic computing���
	2.2 Autonomic architecture���������������������������������
	2.3 Autonomic computing: trends and direction��
	2.3.1 Background�����������������������
	2.3.2 Autonomic computing in the first decade��
	2.3.3 Autonomic computing in the second decade���
	2.3.4 First and second decades of autonomic computing research at a glance���

	2.4 Trends, direction and open challenges��
	2.4.1 Trends and direction���������������������������������
	2.4.2 Open challenges����������������������������

	2.5 Conclusion���������������������

	3 Autonomic enabling techniques��������������������������������������
	3.1 About autonomic enabling techniques��
	3.2 Simple exponential smoothing���������������������������������������
	3.2.1 Implementing an SES using python���
	3.2.2 Basic implementation of an SES using microsoft excel sheet���
	3.2.3 Implementing SES in autonomic computing��

	3.3 Dead-zone logic��������������������������
	3.3.1 Implementing dead-zone logic in autonomic computing��

	3.4 Stigmergy��������������������
	3.4.1 Natural stigmergy: wildlife��
	3.4.2 Natural stigmergy: humans��������������������������������������
	3.4.3 Stigmergy in autonomic systems���

	3.5 Policy autonomics����������������������������
	3.5.1 Policy-based networking������������������������������������
	3.5.2 Policy-based autonomics������������������������������������

	3.6 Utility function���������������������������
	3.6.1 UF in autonomic systems������������������������������������

	3.7 Fuzzy logic����������������������
	3.7.1 Moving vehicle case example��
	3.7.2 Fuzzy logic controller�����������������������������������
	3.7.3 Fuzzy logic in autonomic system��

	3.8 Autonomic nervous system�����������������������������������
	3.9 Combining autonomic techniques���
	3.10 Conclusion����������������������

	4 Trustworthy autonomic computing��
	4.1 About trustworthy autonomic computing��
	4.2 Trustworthy autonomic computing vs trusted computing���
	4.3 Trustworthy autonomic architecture���
	4.3.1 TrAArch framework������������������������������
	4.3.2 Overview of the TrAArch architecture components��
	4.3.3 Other relevant [early] architectures���

	4.4 Conclusion���������������������

	5 Trustworthy autonomic architecture implementations���
	5.1 Case example scenario 1: autonomic marketing system��
	5.1.1 Experimental environment�������������������������������������
	5.1.2 Results and evaluation�����������������������������������

	5.2 Case example scenario 2: self-adapting resource allocation���
	5.2.1 TrAArch simulator������������������������������
	5.2.2 Experimental environment�������������������������������������
	5.2.3 Simulation�����������������������
	5.2.4 Results and Analysis���������������������������������

	5.3 Stability versus optimality��������������������������������������
	5.4 Conclusion���������������������

	6 Multi-agent interoperability�������������������������������������
	6.1 Introduction to multi-agent interoperability���
	6.2 Multi-agent systems and multi-agent coordination���
	6.3 A review of autonomic interoperability solutions���
	6.4 The architecture-based interoperability��
	6.4.1 Scheduling and resource allocation���

	6.5 Complex interactions in multi-manager scenario���
	6.5.1 Simulation design������������������������������
	6.5.2 Autonomic manager logic������������������������������������
	6.5.3 Simulation scenarios and metrics���
	6.5.4 Results analysis�����������������������������

	6.6 Conclusion���������������������

	7 Level of autonomicity������������������������������
	7.1 Introduction to level of autonomicity��
	7.2 Measuring LoA������������������������
	7.2.1 Autonomic measuring metrics��
	7.2.2 Normalisation and scaling of autonomic metrics dimensions��

	7.3 Methodology for measuring LoA��
	7.3.1 A specific case method�����������������������������������
	7.3.2 A generic case method����������������������������������

	7.4 Evaluating autonomic systems���������������������������������������
	7.5 Conclusion���������������������

	8 Conclusions and future work������������������������������������
	8.1 A case for trustworthy autonomics��
	8.2 The autonomic computing state of the art���
	8.3 Techniques that power autonomic computing��
	8.4 Trustworthy autonomic architecture���
	8.5 Interoperability���������������������������
	8.6 Level of autonomicity (LoA)��������������������������������������
	8.7 Future work����������������������

	References�����������������
	Index������������

