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Preface

Quantum information and quantum computing have evolved into a
revolutionary topic where general interest and scientific research have
intensified in the recent years. A successful experimental realization
of a quantum computer will bring a new technological revolution
similar to the advent of the transistor and integrated circuits that
form the modern digital world. Many tech companies are investing
in quantum computing and are motivated by its potential to solve
hard problems. Therefore, a skilled workforce is necessary to help
develop this technology as it matures. Remarkably, the field of quan-
tum computing is multi-disciplinary, needing expertise from physi-
cists, mathematicians, engineers, computer scientists, chemists, and,
economists and business leaders.

The traditional route to entering this field necessitates a rigor-
ous physics education that involves foundational studies in quan-
tum mechanics, atomic and molecular physics, optics, and more. Of
course, these topics also rely on a good understanding of classical
mechanics and electrodynamics. As a result, the traditional path
delayed teaching quantum computing to graduate school. However,
it has been recognized that basic knowledge for entry-level quantum
computing can be prepared for a wider audience, especially younger
students or professionals who have a growing interest in this field.

This book is a compilation of materials from three years of
summer Q-camps in the Shabani group at New York Univer-
sity (NYU) sponsored by Army Educational Outreach Programs
(AEOP). Co-author Eva Gurra was trained in this program with
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a focus on shortening the time to cover foundations and making the
course accessible to beginners while still teaching advanced topics
and valuable skills. Eva’s introduction to quantum computing was in
her sophomore year of college. When she first entered the program,
she had just finished taking introductory physics courses and a mod-
ern physics course where she was first exposed to the strangeness of
quantum mechanics.

Eva’s journey in quantum computing began with difficult read-
ings and advanced mathematics. However, through interactions with
experts at NYU and other students in the program, and coding with
IBM Qiskit, she began to better understand quantum computing
concepts, such as superposition, entanglement, quantum state char-
acterization, and the effects of noise. After the first summer, she was
motivated to continue her study of quantum physics and proceeded
to take upper-level courses in classical mechanics, electrodynamics,
quantum mechanics, statistical mechanics, and solid-state physics.
Eva came back each summer until she graduated from the Univer-
sity of Connecticut. She is now pursuing a doctorate program in
physics with a focus on quantum computing and quantum hardware
at the University of Colorado Boulder.

The concepts and topics presented in this book serve to create the
foundation of forefront research. These introductory topics include
qubits, superposition, and entanglement, with a variety of exercises
for the reader to dig into the details and check their understanding.
We hope to motivate and guide beginners through these necessary
prerequisites. The book is aimed at early college students and moti-
vated high school students with an interest in the topic of quantum
computing, pretty much like how Eva got started.
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Introduction

Information science and technology are concerned with the storage,
movement, analysis, and protection of information. Our everyday
life relies heavily on devices, from iPhones to cloud servers, that use
information. The total amount of information created in the world’s
electronic devices has surpassed the zettabyte (1 with 21 zeroes after
it). Perhaps, we are producing and distributing more knowledge than
we can use and process, which has fueled our enthusiasm for gathering
and sharing information and answering difficult questions.

There are still important questions that we cannot answer using
current information technology. For example, it is a computation-
ally difficult problem to model and target a drug solution to cure
a disease (e.g. cancer) because current supercomputers do not have
the power to calculate the energy states of a complicated molecule,
let alone search through all possible variations to find a solution.
Another difficult problem is weather forecasting, where, for exam-
ple, it is possible to forecast the path of a hurricane accurately, but
because weather conditions are constantly varying, it would take a
long time to get a solution and we need the answer before the hurri-
cane happens!

Quantum computing is a thriving and broad multidisciplinary
field encompassing aspects of physics, engineering, computer science,
and mathematics. With “quantum” as part of its name, it is fun-
damentally rooted in physics and math, namely the mathematical
framework, of quantum mechanics and linear algebra.

1
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Shortcomings of Classical Physics

At a fundamental level, physics aims to understand the laws that
govern nature. Before becoming a branch of science, physics was a
philosophical subject, which emerged due to a movement towards
a rational rather than a religious or mythological understanding of
nature. Many of these philosophical concepts emerged in ancient
Greece, where the “laws of the universe” and atomism were pro-
posed and drafted by Heraclitus, Leucippus, and Democritus around
500 BCE [1]. During the classical period (500–400 BCE), Aristotle
tried to explain how motion occurred, and the idea of gravity with
the “theory of four elements”: earth, water, air, and fire. This was an
effort to establish some fundamental principles or a theory to explain
everything physical.

As mathematics advanced, nature could be more rigorously
explained with physical theories, developed on paper, and tested
through experiments. For example, Archimedes (300 BCE) gave the
mathematical foundation for hydrostatics, levers, and pulley systems.
This provided useful and practical knowledge that could be applied
to advance technology by developing complex systems of pulleys to
move heavy or large objects with less need for manpower. Other civ-
ilizations, such as in Ancient China (400 BCE), contributed some
of the first studies of magnetism and developed the magnetic-needle
compass used for navigation and establishing a true north [2]. In the
Middle East (7–15 centuries AD), Ibn al-Haytham was regarded as
the “father of the modern scientific method” because of the atten-
tion to reproducible experimental data. During the 16th and 17th
centuries, a scientific revolution enabled progress in the fields of
mechanics and astronomy, which resulted in universally valid charac-
terizations of motion and planets in the solar system. One of the most
prominent figures was Galileo Galilei, who is regarded as the “father
of modern science” due to his push for mathematical descriptions of
physical phenomena.

By the late 1800s, physics had greatly advanced and expanded to
sub-categories of its own: mechanics, electromagnetism, thermody-
namics, and statistical mechanics. Classical mechanics, also known as
Newtonian mechanics, was developed based on the physical principles
laid out by Sir Isaac Newton and mathematical methods invented by
renowned mathematicians Gottfried Leibniz, Joseph-Louis Lagrange,
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and Leonhard Euler. To this day, it remains a powerful theory to
predict the motion of macroscopic objects including astronomical
objects. Electromagnetism describes the interaction between parti-
cles with electromagnetic fields. The theory and principles of elec-
tromagnetism, whose roots began with physicists Charles-Augustin
de Coulomb, André-Marie Ampère, and Michael Faraday, were com-
bined into compact equations by James Clerk Maxwell. Electromag-
netism has formed the basis for explaining light, waves, electricity
and magnetism. Thermodynamics explains the nature of heat flow,
temperature, and work, and how they are related to energy, radiation,
and physical properties of matter itself. Statistical mechanics rose out
of thermodynamics to explain macroscopic physical properties such
as temperature and pressure in terms of microscopic parameters.
Large numbers of particles can be described using probability distri-
butions, and macroscopic parameters can be calculated from these
probability distributions. Ludwig Boltzmann, James Clerk Maxwell,
and Josiah Willard Gibbs were the key founders of the field of
statistical mechanics.

Experiments and theoretical work during the late 1800s and early
1900s showed that classical physics, while very powerful, could not
explain all aspects of nature. One of the first shortcomings in clas-
sical physics was in the prediction of heat capacities for diatomic
gases, such as hydrogen, oxygen, and nitrogen.1 Classical calculations
required that any energy added would be equally divided among the
different forms of motion (translational, rotational, and vibrational),2

but there was no minimum energy to mark where a particular motion
would “kick in” [3]. This was later explained by quantum mechanics,
which allowed for a minimum or threshold energy for rotational and
vibrational motions.

Other shortcomings of classical physics were in the concepts of
space and time which led to Einstein’s special theory of relativity

1These are very common and abundant gases on Earth, so it was critical to have
a theory that matches closely with experimental results.
2This is known as the Equipartition theorem. Translational motion is when

a molecule moves from one place to another along the same axis. Rotational
motion occurs when a molecule rotates around an axis. Vibrational motion is
when molecules vibrate in place.
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proposed in 1905 [4]. In essence, the theory states that clocks in dif-
ferent inertial reference frames run at different rates which depends
on their relative velocities. This was confirmed in high-energy exper-
iments involving collisions of elementary particles, namely protons
with carbon and other nuclei in the atmosphere, to produce other
tiny particles, such as pions or muons.3 Such high-energy particles are
constantly bombarding us due to cosmic rays colliding with molecules
in the upper atmosphere. When cosmic ray protons collide with air
molecules, pions are formed, which decay into muons after a short
time. These muons can be detected because they reach the surface of
Earth while pions do not. To measure the average lifetime of a pion,
particle accelerators are used to accelerate protons so that they travel
about 99.997% the speed of light. When they collide with each other,
pions are produced.

When pions are produced in the lab, they are observed to have an
average lifetime of 26 nanoseconds. In other experiments, where the
pion is moving at about 91.6% the speed of light (about 275000 km/s)
relative to the laboratory and had an average lifetime was about
64 nanoseconds [5]. The only difference between the two experiments
was the relative motion of the observer and the particle4 and it meant
that time is different for observers in motion than for those at rest.
This highlighted a breakdown of Newton’s laws, where time is con-
sidered to be the same for all observers. Similar experiments showed
that space was not the same for all observers as well and that it
stretched or contracted depending on the frame of the observer. As a
result, velocity could no longer obey classical laws either. In classical
physics, there was no upper bound on velocity, but these new prop-
erties of space and time dictated that there is indeed an upper bound
on how fast particles could travel: the speed of light, 2.998×108 m/s.

Another striking limitation of classical physics was in understand-
ing atomic structure. Although atomic theory had existed in a philo-
sophical sense since 500 BCE, it was not until the early 1800s that
John Dalton presented the first scientific atomic theory, proposing
that an atom was a hard sphere that could not be subdivided. By

3A pion is born through the collision of a proton with a carbon nucleus in the
upper atmosphere. Pions are short-lived particles and they quickly decay into
muons and neutrinos.
4In the “lab frame,” we are sitting there watching the pion, while in the moving

frame, we would move with the pion.
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the beginning of the 1900s, JJ Thomson had discovered the electron
and believed that atoms could be divided. Several years later, his
student, Ernest Rutherford conducted the so-called gold-foil exper-
iment in 1909, where he showed that the atom consisted of a posi-
tively charged nucleus that contained most of the mass of the atom
with electrons orbiting it [3]. However, these orbits had no particular
structure, and based on classical physics, an orbiting electron would
constantly change direction and emit light as it continuously lost
energy. This meant that after a very short time, the electron would
spiral down into the positively charged nucleus, and therefore, atoms
could only exist for a very short time on the order of 10−12 s. Obvi-
ously, this was catastrophically wrong. If that were the case, matter
as we know it could not exist!

Development of Quantum Mechanics

Blackbody Radiation

As the shortcomings of classical physics became more and more
apparent, physicists were coming up with ways to explain the dis-
crepancies and in the process create a new theory. The word quantum
was first used by Max Planck in 1900 when he studied blackbody
radiation [6].

Theoretically, a blackbody is any object that absorbs all radia-
tion falling on it perfectly and emits radiation more than any other
object at the same temperature, as depicted in Fig. 1. The radiation
it emits is called blackbody radiation which occurs when the body is

Figure 1. Depiction of a blackbody. In the first case, we have a small hole in
a large box where all radiation that gets inside bounces around and is absorbed.
In the second case, we can think of the box as an oven with a tiny hole emitting
radiation that only depends on its temperature.
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at thermal equilibrium (has a uniform temperature). Thus, it is con-
sidered a perfect absorber and an ideal emitter because it does not
reflect or transmit any radiation. At room temperature, a blackbody
appears to be black because it radiates infrared light which we can-
not perceive. As the temperature increases, it appears reddish and
eventually becomes blue-white. Experimental results showed that the
blackbody spectrum only depended on the temperature of the object
and not the material and that more energy was emitted at higher
temperatures for all wavelengths. While classical physics could cap-
ture these points, it was unable to account for the shape of the black-
body spectrum which increased quickly, peaked at blue wavelengths,5

and then sharply decreased for visible wavelengths and beyond, as
shown in the graph in Fig. 2.

In classical physics, the concept of an energy limit did not exist, so
it predicted that there should be no energy limit for radiation at low
wavelengths, but this was experimentally proven wrong. Max Planck
proposed that the energy for different frequencies of light should be
different. Energy comes in a “clump” known as a quantum and is
transferred in set amounts directly proportional to the frequency of
light.

Figure 2. Emission spectrum shape for a blackbody at a temperature of
7000 K.

5This is why blue stars are hotter than red stars.
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Photoelectric Effect

The start of quantum physics is marked by Einstein’s formalization
of the photoelectric effect in 1905 [7]. Experimentally, the photoelec-
tric effect was first discovered by Heinrich Hertz in 1887, who illumi-
nated a metal surface with light and observed electrons being emitted
from the surface [3]. To explain this phenomenon, Einstein proposed
that light behaved as localized quanta called photons. Photons have
linear momentum and energy which are characteristic properties of
particles. A single electron released from the metal is a result of the
electron colliding with a single photon which transferred its energy
to the electron, as illustrated in Fig. 3. This phenomenon was verified
in further experiments with different metals. This work showed that
the classical distinction between waves and particles was not correct.

Bohr’s Atom

The concept of a bundle or a clump of energy (quantum) helped Niels
Bohr rectify the mistake of classical physics in explaining atomic
structure and provided the reason for the observed absorption and
emission spectra of hydrogen in 1911 [8]. He postulated that electrons

Figure 3. Cartoon view of photoelectric effect. Photons transfer their energy
to the electrons in the metal which ejects them from the surface of the material.
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revolve in stable orbits around the nucleus without radiating energy.
The orbits could be numbered and have limits on the number of
electrons they can host. For example, the innermost orbit can host
two electrons, the second eight electrons, the third 18 electrons, and
so on. The key was that electrons could only jump from one orbit
to another by absorbing or emitting light at specific frequencies, as
explained by Planck. For a single electron, a photon at the right
frequency is necessary to jump up an energy level. Likewise, a photon
at the same frequency will be emitted if that electron jumps back
down. This absorption and emission of photons at specific frequencies
is what would determine, for example, the colors that metals appear.

Double-Slit Experiment

It became clear that this new way of thinking provided necessary
explanations for observed phenomena, but a theory had yet to be for-
mulated. In 1924, French physicist Louis de Broglie proposed that the
concepts of momentum, which corresponds to objects with mass, also
corresponded to light or photons which were massless [9]. Likewise,
a particle, such as an electron also has some wavelength associated
with it. This is all because of the idea of wave–particle duality! In
1927, a diffraction experiment using electrons, conducted by Davisson
and Germer at Bell Laboratories, showed that what was classically
considered a particle can also exhibit wave-like properties [10]. Typ-
ically, when a wave encounters a slit or obstacle, it bends through
the slit or around the corners and produces a distinctive diffrac-
tion pattern which has peaks of constructive interference at spe-
cific angles determined by the width of the slit or obstacle and the
wavelength.

The experiment involved sending a beam of electrons through a
single slit, which was reflected from a crystal of nickel on the opposite
side, as portrayed in Fig. 4. The electrons were reflected at some angle
relative to the incident beam and some would strike a fixed detector
positioned on one side [3]. Based on the size of the slit, it was observed
that at some specific angle, the reflection intensity was highest. This
was used to calculate the “wavelength” of the electrons and results
matched closely with the predicted de Broglie wavelength. Further
experiments with different particles showed the same result, verifying
the strange wave–particle duality concept proposed by Einstein!
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Figure 4. Double-slit experiment with electrons.

The concept of wave–particle duality became one of the hall-
mark properties of quantum theory. In quantum computing, this
concept of interference is important when executing quantum algo-
rithms because you want to boost the amplitude of getting the correct
answer.

Stern–Gerlach Experiment

Another significant experiment was the Stern–Gerlach experiment
which demonstrated the existence of an interesting property of quan-
tum system: intrinsic angular momentum also known as spin.6 This
experiment was developed by Otto Stern in 1921 and conducted suc-
cessfully by Walter Gerlach in 1922 [11]. The experiment originally
involved sending a beam of silver atoms along one direction through
a non-uniform magnetic field oriented in a direction perpendicular
to the incoming beam and observing the distribution on the screen,
as illustrated in Fig. 5. A non-uniform field was necessary so that
the silver atom would experience a sideways deflection and hit the
screen.

6Angular momentum is a classical phenomenon and it is the rotational ana-
logue of classical momentum. It can be naturally understood by thinking about
a spinning disc.
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Figure 5. Stern–Gerlach apparatus.

Classical physics would have predicted a continuous spread (would
be represented by a line on the screen) of magnetic moments7 due
to the random thermal effects in the oven that produce silver atoms.
However, instead, the atoms would either deflect upwards or down-
wards, confirming a kind of space quantization known as intrinsic
spin.

As we will see later in the book, a single qubit can be described as
a superposition of two states, and it turns out that a spin controlled
by magnetic fields can be a natural qubit! In fact, spin qubits are
currently an active area of research and are promising in terms of
scalability.

First Quantum Theory

Experimental developments and theory were working concurrently
during these beginnings in hopes of arriving at some concrete rules
for how reality works at small scales. Erwin Schrödinger developed
his work on the Schrödinger equation in 1926. The equation is
known as a linear partial differential equation where the goal is to
solve for the wavefunction or the function that fully describes the
state of a quantum system. It can be thought of as the analog to

7The magnetic moment is a vector quantity that represents the strength and
orientation of a magnet or any object that produces a magnetic field. Everything
from atoms, and cells, to astronomical objects has a magnetic moment.
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Newton’s second law. Schrödinger’s work was fundamental to devel-
oping a bonafide theory for quantum mechanics. Many contributors
to the theory followed, including Werner Heisenberg, Max Born and
Pascual Jordan, who introduced “matrix mechanics”. They devel-
oped an interpretation for the wavefunction that came to be known
as the Copenhagen interpretation [12]. The Hamiltonian which
describes the total energy of a particular system was represented in
matrix form. It was a good formulation to account for the jumps in
electron orbits, for example, since matrices describe discrete systems
by nature.

The Copenhagen interpretation remains the oldest and most com-
monly taught interpretation of quantum theory where particles or
any material object is ill defined until it is observed or measured.
Before measurement, its state is fully described by its wavefunction,
and after measurement, the system probabilistically collapses to one
defined state, known as an eigenstate.

Other Quantum Phenomena

Other interesting quantum phenomena include quantum tunneling
and entanglement. Tunneling occurs when some particle has a prob-
ability of traveling through a barrier without breaking energy con-
servation. Classically, it makes sense that an object cannot get past
some kind of barrier (potential in physics terms) unless it has enough
energy to overcome it, but quantum particles have a wave-like nature.
For example, sound waves can travel through a wall so that a person
can hear it on the other side. Perhaps, it will be more muffled due to
the barrier, but some of it still travels through just enough so that
we can hear it in the other room. The same thing would happen to
a quantum particle in this case which has its own wave-like nature.

Quantum tunneling was experimentally discovered from studies of
radioactivity in 1896 by Henry Becquerel. Studying uranium salts,
he found that radiation came from the uranium itself without any
need for excitation by external energy sources. Along with Marie
and Pierre Curie,8 they studied thorium, polonium, radium, and

8Unfortunately, the discovery of radioactivity led Bacquerel to suffer serious skin
burns from handling radioactive materials and he quickly died in 1908 from acute
radiation exposure, a cause that was unidentified at the time. Marie Curie and
Pierre Curie followed later in 1934.
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other radioactive elements. They discovered and noted that each ele-
ment had a distinctive decay rate and that decay was probabilistic
because of the instability in radioactive nuclei. Particles and photons
were being emitted from radioactive nuclei through tunneling via an
energy barrier (the nuclei of the radioactive element in this case)
that could not have otherwise been crossed if the particle did not
have enough energy.

Entanglement occurs when the states are highly correlated, so
knowing the state of one entangled particle lets one know about the
states of the other particles in the system. When measuring physical
properties, such as position, momentum, and spin, of entangled par-
ticles, results may be perfectly correlated. For example, if we have
two entangled electrons where the total spin of the system is zero
and one measurement shows one electron to be spin-up, the other
electron is known to be spin down!

Albert Einstein, Boris Podolsky, and Nathan Rosen first discussed
this strange prediction of quantum theory in 1935 [13]. In fact, their
goal was to show that the newly developed quantum theory involving
wavefunctions was incomplete. The thought experiment is known as
the EPR paradox. Einstein and Schrödinger were deeply dissatisfied
with entanglement due to concerns about information traveling faster
than the speed of light travel. This is why Einstein later coined the
term “spooky action at a distance” to describe entanglement.

For a while, the paradox remained unsolved until 1964 when John
Stewart Bell showed that quantum theory predicted an upper limit on
the strength of correlation or level of entanglement, which is known
as Bell’s inequality [14]. There was no fishy faster than the speed of
light communication! By 1972, the first experiments were conducted
to test Bell’s inequality. The experiment involved measuring the spin
of two entangled photons and comparing results with what was pre-
dicted by the EPR paradox vs. Bell’s inequality.

The mind-boggling aspect of this phenomenon is that the spa-
tial separation of entangled particles is irrelevant because entangled
particles form a system. In this system, any one particle cannot be
described without considering the others. This work showed that the
principle of “local locality” where an object is only directly influ-
enced by its immediate surroundings was false. Einstein died before
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the EPR paradox was resolved although he probably would have
disliked this anyway.

Development of Computing

The modern programmable computer started out as an abstract
model known as the Turing machine [15, 16]. This Turing machine
performs computations by reading and writing to an infinite tape
based on programmed instructions. The Turing machine consists of
the tape that represents memory, a tape head or a pointer to read
or write an inspected cell from memory, and a state transition table
that gives the instructions, as depicted in Fig. 6.

The machine can only discern the difference between two states,
which we now consider the states for a bit 0 or 1, but in an abstract
sense, it could be any two states that are different. It operates using
a tape head or a pointer which is always on one particular state or
memory cell on the tape. The pointer is programmed to move by
consulting a transition table which instructs it to either do noth-
ing to the current cell or write a new value to change its state and
whether to move left or right. This exactly simulates what we con-
sider modern-day programs which have many lines executed one after
the other and depending on the data in memory, the program can
produce different results for different data.

(a) (b) (c)

Figure 6. Representation of Turing machine.
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Although this fundamental idea seems so simple now, it was rev-
olutionary at first! It gave rise to the Church–Turing thesis:

Any algorithmic process can be efficiently simulated using a
Turing machine.

The idea is that any machine that can perform algorithms is a
machine that is simulated by a Turing machine. Computers from
electrical components were soon constructed after Turing laid this
theoretical basis. Further, John von Neumann came up with a the-
oretical model for assembling the necessary components for a com-
puter to act as a Turing machine. By 1947, John Bardeen, Walter
Brattain, and Will Shockley developed the transistor [17]. This is the
electrical component that fostered rapid technological advancement.
In fact, the growth was so dramatic that by 1965 Gordon Moore
developed Moore’s law as a way to predict the increase in computer
power [18]. The law states that computer power will double at a
constant cost roughly every two years.

Moore’s predictions have held true for decades, but conventional
fabrication techniques are running up against a wall. Transistor sizes
are becoming much smaller (the current state of the art is approxi-
mately 4–5 nanometers) as devices are made up of more and more of
them with every technological advancement with the goal of making
devices thinner and more efficient. However, with silicon technology,
there is a fundamental limit on how much size of transistors could be
scaled down and that is the size of a silicon atom which is approx-
imately 0.2 nm. Further, quantum effects, which do not generally
affect our macroscopic world, become non-negligible at the nanoscale
level. This has been a motivation to research a new paradigm: quan-
tum computing and quantum information. Quantum computing tries
to exploit the strangeness of quantum physics to develop devices and
computers that may provide speed and advantage for solving difficult
and interesting problems, and transform cybersecurity. These prob-
lems include simulations of complicated molecules which can help in
the synthesis of new drugs or fertilizers.

Development of Quantum Computing

The idea of building a quantum computer was first proposed in 1980
at the First Conference on the Physics of Computation at MIT.
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Renowned physicists Richard Feynman and Paul A. Benioff gave
talks about how a computer can operate under the laws of quan-
tum mechanics and why a quantum computer would be the best way
to simulate quantum systems [19]. Feynman proposed a high-level
model for building a quantum computer. These new ideas inspired
other scientists to build on these early proposals. David Deutsch
described the first universal quantum computer and later proposed a
computational problem that could be solved efficiently on a quantum
computer but not with a classical computer [20].

Before the discovery of Shor’s Algorithm in 1994 by computer sci-
entist Peter Shor, research in this new field was still slow. After his
discovery, the United States government held a workshop on quan-
tum computing, and proposals for realizing quantum computers and
experimental work began. What was so groundbreaking about Shor’s
Algorithm? The algorithm showed that prime factorization for large
integers and the discrete logarithm problem could be solved efficiently
on quantum computers [21]. Again, why is this relevant? Well, theo-
retically, this meant that many existing crypto-systems in the world
could be broken if a quantum computer existed! Widely used crypto-
systems like RSA rely on prime factorization of large numbers being
very difficult, implying that you cannot break the code in a human
lifetime. You can start to understand why even the theoretical idea
that crypto-systems could be broken would spark such an immediate
interest. It marked the start of an important and exciting race (more
like a marathon) of who could build the first quantum computer and
essentially save themselves from the potential security threat.

Of course, these immediate actions from different sides would
make one think that there was an immediate threat, but the truth
is we are still far away from realizing a quantum computer capable
of implementing Shor’s algorithm to such a large scale. Nonetheless,
this has not receded the interests of researchers, industry leaders and
world governments.

Goal and Structure of This Book

The goal of this book is to be a starter guide to beginners interested
in quantum information theory. Oftentimes, the introductory content
in this field requires too many prerequisites. This book is designed to
be self-contained so that the reader does not need to reference other



16 First Step to Quantum Computing: A Practical Guide for Beginners

materials to understand the contents of the book. But, we hope that
this book inspires you to seek out more content.

The book is organized to give the necessary background to under-
stand some of the basic principles within the subject of quantum
computing. Qubits, the fundamental units of quantum information,
are described as complex vectors. To understand and operate on com-
plex vectors, we provide introduction to complex numbers and lin-
ear algebra. Measurement and extraction of information from qubits
require knowledge of probability theory since measurements are prob-
abilistic. The theory that combines the mathematics and the physical
interpretation to understand qubits lies in quantum mechanics.

In the first and second chapters of the book, we give the math-
ematical background or the language of quantum mechanics which
includes discussion and examples of working with complex numbers,
combinatorics and probability theory, and linear algebra. In the third
chapter, we introduce quantum mechanics and discuss systems that
can be used as qubits, such as photon polarization and spins in mag-
netic fields. In the fourth and fifth chapters, we discuss single qubits
and how they can be controlled and measured, and examples show-
ing their possible applications. In the sixth chapter, we discuss two
qubits, the nature of entanglement, and what is possible with many
qubits. The application discussed is quantum teleportation and why
it is of interest. Finally, chapter seven discusses the experimental
implementation of quantum computers, the current state of the art,
and the relevant concerns researchers face in trying to develop this
technology.



Chapter 1

Preliminary Math Tools

To begin our study of quantum information, let’s first review some
mathematical concepts and tools that are fundamental to the lan-
guage that describes quantum information and will be seen through-
out the book. The first of these is complex numbers. The language
of quantum mechanics inherently works in a complex vector space,
so qubits, the fundamental unit of quantum information, are repre-
sented by complex numbers. The second tool inherent to the language
and interpretation of quantum mechanics, is probability theory. In
this chapter, we cover the basics of random variables and probability
distributions which will be necessary to understand later chapters of
the book.

1.1 Complex Numbers

We know that the “normal” numbers we work with are numbers that
live in a one-dimensional line, called the real number line, as shown
in Fig. 1.1. These are numbers that we typically encounter, and they
could be integers, rational numbers which are defined as a ratio of
two integers (e.g. 2

3), or irrational numbers that cannot be expressed
as a ratio of two integers. Irrational numbers include mathematical
constants such as π ≈ 3.14159 . . . , which is defined as the ratio of a
circle’s circumference to its diameter. Another famous mathematical
constant is e ≈ 2.71828 . . . , known as Euler’s number. This num-
ber comes up in the study of compounded interest, probability, and
complex numbers.

17
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–3 –2 –1 0 1 2 3

e

π

√2

Re

Figure 1.1. Real number line, including integers, rational and irrational
numbers.

The real number line does not include the result you would get
if you calculated the square root of a negative number, for example,√−1. It turns out that the result of calculating the square root of
negative numbers plays an important role in physics. To do so, the
real number line is not sufficient and a new dimension or axis must
be added to include the results of taking the square root of negative
numbers. This new axis includes what we call imaginary numbers,
which are labeled by the real number times i, for example, i, 2i, 3i, . . ..
Specifically, we define one unit along the imaginary axis to be

√−1 = i

which means that

i2 = −1
i3 = −i
i4 = 1

and so on.
Adding this new axis generalizes what numbers are. It tells us

that numbers can have real and imaginary components. This new
combination is known as a complex number. So, complex numbers
will now live on a complex plane composed of a real number axis and
an imaginary number axis, as shown in Fig. 1.2. Any point on the
plane is a complex number.
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Figure 1.2. Definition of complex plane consisting of the imaginary and real
axes.

1.1.1 Standard Representation

Here are some properties of complex numbers, z1 = a + bi, z2 =
c+di, where a and c are the real parts and b and d are the imaginary
parts, respectively:

1. Addition: z1 + z2 = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.
2. Multiplication: z1z2 = (a+ bi)(c+ di) = a(c+ di)+ bi(c+ di) =
ac− bd+ i(ad + bc).

3. Conjugate: For z1 = a+ bi, the conjugate is z∗1 = a− bi.
The product of a complex number with its conjugate yields z1z

∗
1 =

(a+ bi)(a− bi) = a2 + b2.

We can also define the angle, θ, with respect to the real number
axis, for a line connecting the origin and the point where the com-
plex number is located. Then, we may use trigonometric functions
to describe complex numbers as you would on a regular Cartesian
plane.1 To do so, we also need to know the distance, D, between
the origin and the point where the complex number is located. This
quantity is also known as the magnitude of a complex number, z,
and is denoted as |z|. We can calculate this quantity by using the
distance formula:

|z| = D =
√
a2 + b2 =

√
zz∗

1Refer to Appendix chapter C for a review of the trigonometric functions.
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So, we can now see the relationship between the complex number
and its conjugate. Then, θ can be written as

cos θ =
a

D

sin θ =
b

D

tan θ =
b

a

Examples

1. Let’s say we have two complex numbers, z1 = 4 + 3i and z2 =
5−2i. We may plot the numbers on the complex plane to visualize
them in Fig. 1.3.

As we can see, if we add these two complex numbers, we are
adding the real components and the complex components to each
other, respectively, so that z3 = z1 + z2 = (4 + 5) + (3 − 2)i =
9 + i. Let’s also use trigonometry to calculate the relative angle

Figure 1.3. Complex plane plot of example 1.
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between the real axis and line that connects the complex numbers
and origin. For z1, we label angle θ1 from the real axis in the
counterclockwise direction:

tan θ1 =
3

4
−→ θ1 = arctan

(
3

4

)
≈ 37◦

For z2, we label angle θ2 from the real axis in the clockwise
direction:

tan θ2 =
−2
5
−→ θ2 = arctan

(−2
5

)
≈ −22◦

Lastly, for z3, we label angle θ3 from the real axis in the counter-
clockwise direction:

tan θ3 =
1

9
−→ θ3 = arctan

(
1

9

)
≈ 6◦

2. Let’s try to multiply z1 by the imaginary number 2i. Algebraically,
we may compute this easily now that we know the properties of
complex numbers:

2i · (4 + 3i) = 8i+ 2 · 3i2 = 8i− 6

What does this mean geometrically? The plot is shown in Fig. 1.4.
While multiplying the complex number by the imaginary num-

ber 2i, we observe that the magnitude of z1 is scaled by a factor
of 2. More interestingly, it rotated z1 by 90◦ counterclockwise. If
we had multiplied by −2i, there still would have been a scaling
by a factor of 2, but the rotation would have been 90◦ clockwise
instead.

3. Now, let’s multiply two complex numbers, p1 = 3 + i and p2 =
4 + 2i, we would obtain the following result:

p3 = p1 · p2 = 3(4 + 2i) + i(4 + 2i) = 12 + 6i+ 4i+ 2i2

= (12− 2) + i(6 + 4) = 10 + 10i

Let’s visualize this by plotting the complex numbers on the com-
plex plane in Fig. 1.5.

We can tell that the resulting complex number, p3, is stretched
and rotated by some amount. In fact, the amount that p1 is rotated
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Figure 1.4. Complex plane plot for example 2.

by to get to p3 is exactly α2, the relative angle that defines the
line connecting point p2 with the origin. Let’s compute α1 and α2

to see if they add up to α3:

tanα1 =
1

3
−→ α1 = arctan

(
1

3

)
≈ 18.4◦

tanα2 =
2

4
−→ α1 = arctan

(
2

4

)
≈ 26.6◦

tanα3 =
10

10
= 1 −→ α1 = arctan(1) = 45◦

Indeed, α1 + α2 = α3.
Now, let’s see how the magnitude of p1 changed when p1 and p2

were multiplied. We compute the distances from the origin or the
magnitudes of p1, p2, and p3 and denote them as |p1| |p2|, and|p3|,
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Figure 1.5. Complex plane plot for example 3.

respectively:

|p1| =
√
32 + 12 =

√
10

|p2| =
√
42 + 22 =

√
20

|p3| =
√
102 + 102 =

√
200 =

√
10
√
20

As in the previous example, the magnitude of p1 was scaled by
the magnitude of p2 to produce p3.

4. Lastly, let’s compute the result of dividing a complex number by
an imaginary number:

3 + 12i

2i

As a convention, having complex numbers in the denominator is
not preferred, so we need to multiply both top and bottom of the
fraction by the conjugate of the term in the denominator so that
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we can have a real number in the denominator:

3 + 12i

2i
· −2i−2i =

−(3 · 2)i− (12 · 2)i2
−(2 · 2)i2 =

−6i+ 24

4
= 6− 3

2
i

In this case, having divided by 2i ended up being as if we mul-
tiplied by −2i, or rotating clockwise by 90◦, and scaled by 1

2 .
Indeed, the magnitude of 3+ 12i is ≈ 12.4 and magnitude for the
final answer 6− 3

2 i is ≈ 6.2.

1.1.2 Polar Representation

We saw in example 2 that multiplying a complex number by an
imaginary number leads to a 90◦ rotation. So, if we were to take the
number 1 and multiply it by i and continue multiplying the resulting
values by i, we would have

1 · i = i

i · i = i2 = −1
−1 · i = −i
−i · i = −i2 = 1

As we can see, the effect of multiplying by an imaginary number
is periodic because we returned back 1 after 4 multiplications by i.
In fact, what we did was go around a circle. We started at 0◦, then
rotated counterclockwise, 90◦, 180◦, 270◦ (or 90◦ rotation clockwise),
and 360◦ (or back to 0◦). Thinking about complex numbers in this
way allows us to represent them in polar form, where we are defin-
ing the magnitude of the complex number, or the distance from the
origin, and the angle it is rotated by relative to the real axis.

A compact way to represent this rotation around a circle is using
Euler’s formula:

eiθ = cos θ + i sin θ

There are direct similarities with this representation to the unit circle
from trigonometry which is defined on the xy-plane, as can be seen
in Fig. 1.6. The x-axis now corresponds to the real component of the
complex number and y-axis to the imaginary component. The angle
θ can be computed using trigonometry, as we did in the previous
section.
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Figure 1.6. Unit circle rotations.

Any complex number that we represented using the standard form
can be rewritten using Euler’s formula to polar form. While Euler’s
formula represents the unit circle, if we scale a unit circle by any other
number, then we can obtain circles with different radii. The thought
process behind this is to multiply the number eiθ by the magnitude
(|z| = √z∗z) of that complex number, so we have a complex number
that falls on the circle of radius |z|2:

z = a+ bi =
√
z∗z(cos θ + i sin θ) = |z| eiθ

Examples

1. Let’s say we have a complex number z = 4+3i and we want to rep-
resent it in polar form. We need to compute the magnitude of z,

|z| =
√

42 + 32 =
√
25 = 5

and the relative angle from the real axis:

ϕ = arctan

(
3

4

)
≈ 37◦ or 0.64 rad

So, now, we have found that our complex number falls on a circle
whose radius is 5 and is located at an angle ϕ ≈ 0.64 rad from
the real axis. Let’s visualize this result in Fig. 1.7.

2As per convention, the angle, ϕ, that we put into Euler’s formula is generally
presented in radians instead of degrees.
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Figure 1.7. Complex number represented in polar form for Example 1.

2. Let’s redo the examples of multiplying two complex numbers
p1 = 3 + i and p2 = 4 + 2i by first converting them to the polar
representation:

|p1| =
√

32 + 12 =
√
10 ϕ1 = arctan

(
1

3

)
≈ 0.32 rad

−→ p1 =
√
10 ei0.32

|p2| =
√

22 + 42 =
√
20 ϕ2 = arctan

(
2

4

)
≈ 0.46 rad

−→ p2 =
√
20 ei0.46

Okay, now we are ready to multiply3:

p3 = p1 · p2 =
(√

10ei0.32
)
·
(√

20ei0.46
)
=
√
10 ·
√
20 ei0.32 · ei0.46

=
√
200 ei(0.32+0.46) =

√
200 ei0.78

3Refer to Appendix chapter C for a review of multiplying exponentials.
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Let’s convert back to the standard notation to ensure we got the
same answer as in the previous section4:

p3 =
√
200 ei0.78 =

√
200(cos 0.78 + i sin 0.78)

≈ 14.14(0.71 + i0.70) ≈ 10 + 10i

Also, if we convert 0.78 rad to degrees, we get

0.78 · 180
◦

π
≈ 45◦

So, with the polar representation, it is much clearer that when we
multiply two complex numbers, their angles actually add. This is
the benefit of using the polar representation.

3. Lastly, let us do the last example from the previous section

3 + 12i

2i

using the polar representation. First, let’s write the complex num-
ber in the numerator (let’s label it n) and the imaginary number
in the denominator (let’s label it d) in polar form:

|n| =
√

32 + 122 =
√
153 ϕ = arctan

(
12

3

)
≈ 1.33 rad

−→ n =
√
153 ei1.33

|d| =
√
22 = 2 ϕ = 90◦ =

π

2
≈ 1.57

−→ d = 2 ei1.57

So, using the rules of dividing exponentials,

n

d
=

√
153 ei1.33

2 ei1.57
=

√
153

2
· (ei(1.33−1.57)) ≈ 6.18 e−i0.24

We can check that the answers are the same:

6.18 e−i0.24 = 6.18(cos(−0.24) + i sin(−0.24))
≈ 6.18(0.97 − i0.24) ≈ 6− i1.5

In the following chapters, we will see both representations of com-
plex numbers used to write down qubit states.

4Since we rounded the values for some of the angles, the answer is not exact but
very close.
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1.2 Probability

1.2.1 Introduction

In a few words, probability is a branch of mathematics that provides
numerical descriptions on the likelihood of certain events. The sim-
plest probability experiment is the coin toss. We know that for a
fair coin, the probability of getting heads or tails is 1

2 . This means
that each event is equally likely because the sample space, consist-
ing of all the possible outcomes of the experiment, is {Head,Tail}.
If we two coins at the same time, then the sample space would be
{HH,HT,TH,TT}. We can visually understand this by making a
table, where the first row represents the outcomes for one of the coins
and the first column represents the outcomes for the other coin:

H T
H HH HT
T TH TT

A key point to make about this kind of experiment is that we are
assuming that events are independent of each other, implying that
if you get heads in one trial, it does not affect the result in the next
trial.

So, if we define event A to be getting heads and event B to be
tails, then we can mathematically express this as

P (A) =
1

2

P (B) =
1

2

An important point is that events A and B cannot occur at the
same time, implying that you cannot get both heads and tails in any
one trial. Events that cannot happen together in any given trial are
mutually exclusive or disjoint thus:

P (A and B) = 0

But, the probability of getting heads or tails is

P (A or B) =
1

2
+

1

2
= 1

This means, in any trial, you will get heads or tails with 100% chance.
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This coin toss experiment is an example of a Bernoulli trial. A
Bernoulli trial is a randomized experiment with exactly two possi-
ble outcomes. In such a trial, you define a probability of “success”
and a probability of “failure.” This idea appears in many real-world
applications. For example, in epidemiology, one is concerned about
infection rates, where for any given person in the population, there is
some probability, p, that they are infected and probability, q = 1−p,
that they are not infected.

Rules of Probability

1. For all events, E, in the sample space, S, the probability of that
event of occurring must lie between 0 and 1.

2. The probability of the sample space, S, must equal 1. This is
because the sample space contains all the possible outcomes of a
random experiment and whatever event occurs belongs to S, so
the probability of the sample space “occurring” is always 1.

3. For several disjoint events, E1, E2, E3, ..., the probabilities of get-
ting any of those events add5:

P(E1 or E2 or E3 or ...) = P(E1) + P(E2) + P(E3) + · · ·

Checkpoint Exercise

If we roll 2 tetrahedron dice (each die has only 4 sides labeled 1,2,3,4),
what is the probability that the sum of the the 2 outcomes is 5?

1.2.2 Combinatorics

Combinatorics is concerned with counting. We will cover what is nec-
essary to understand the common probability distributions we will
encounter with qubits. First, let us introduce the factorial operation:

n! = n · (n− 1) · (n− 2) · (n− 3) · · · · · 1

where n is a non-negative integer.6

5The “or” statement is to denote that in the case of disjoint events you can have
one event or the other, etc. and the probabilities will add because the events
cannot occur at the same time.
60! = 1.
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You may already be familiar with the basic counting principle.
For example, if we have 4 different colored shirts and 5 different
colored pants then for one shirt there are 5 different possible colors
for pants, so the number of possible outfits is 4× 5 = 20.

Now, what if we wanted to consider in how many ways we could
arrange the shirts and pants in our closet if we want 3 unique
outfits? Well, we can think about the shirts and pants separately.
For the first day, we have 4 options for shirts, the second day, we
have 3 options (because we want unique outfits), and the third day,
we have 2 options. So, the number of ways to wear the shirts is
4× 3× 2 = 24. Similarly, for pants, 5 options for first day, 4 options
for second day, and 3 options for the third day. So, the number of
ways to wear the pants is 5× 4× 3 = 60. The total number of ways
to arrange the outfits is 24× 60 = 1440.

Now, in how many ways could we choose 2 shirts and 2 pairs of
pants to pack for a two-day trip? In this case, the order in which we
count the shirts and pants does not matter. We are choosing 2 shirts
from our pile of 4 shirts, so there are 4 options for first choice and
3 for the second choice. We know there are only 2 ways to arrange
any 2 shirts since we don’t care about the order, the number of
combinations is 4×3

2 = 6. Similarly, for pants, we choose 2 from a
pile of 5 pairs of pants, where there are 2 ways to arrange 2 pants, so
the number of combinations is 5×4

2 = 10. The total number of ways
to pack 2 shirts and 2 pairs of pants in this case would be 6×10 = 60
ways.

While these problems are simple, if the number of objects we are
dealing with is large, it’s best to use a formula. For the problem
where we are concerned with how many ways we could arrange 3
unique outfits, we can simply use the permutations formula:

nPk =
n!

(n− k)!
This formula tells us the number of arrangements or permutations of
k objects from a set of n. So, for our problem, we wanted to choose
3 unique shirts from a set of 4: 4P3 = 4!

(4−3)! = 24. Similarly, we

wanted 3 unique pairs of pants from a set of 5: 5P3 =
5!

(5−3)! = 60.

For the second case, where we wanted to know how many ways
we could choose our shirts and pants for the day trip, we were not
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concerned about the order that we were choosing. We could use the
combinations formula in this case:

nCk =

(
n
k

)
=

n!

k!(n − k)!
The modification here from the permutations formula is that we are
also dividing by the number of ways we can arrange k objects because
we don’t care about the order they are in unlike permutations. So, if
we want the number of ways to choose 2 shirts from a set 4, 4C2 =

4!
2!(4−2)! = 6. Similarly, if we want 2 pairs of pants from a set of 5,

5C2 =
5!

2!(5−2)! = 10.

Checkpoint Exercises

1. How many unique license plate numbers with 3 letters followed by
2 numbers are possible? (Hint : There are 26 letters in the alphabet
and numbers may be from 0 to 9.)

2. In how many ways can you arrange 3 math textbooks, 1 chem-
istry textbook, and 5 physics textbooks (because you love physics
obviously) so that the all the math books are stacked up next each
other, all the chemistry books are stacked up next to each other,
and all the physics books are stacked up next to each other?

3. Suppose we have two basketballs teams, Team 1 and Team 2,
where Team 1 has 5 players and Team 2 has 6 players.

a. How many ways can we arrange the players if all players in
Team 1 stand together?

b. Suppose you want to choose 3 players, which either have to be
all from Team 1 or all from Team 2?

1.2.3 Discrete Random Variables

As we discussed previously, when dealing with random events, it is
useful to define a sample space, S, that consists of all the possible
outcomes of an experiment. Further, we can generalize the way we
consider these outcomes by defining a useful quantity known as a
random variable. This variable can be discrete, meaning it has specific
values over some range, or continuous, where it can take any value
over a specified range. For the purposes of this book, we will focus
on discrete random variables.
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Table 1.1. Probabilities
for random variable Z.

Z P(Z = z)

0

(
5

6

)3

1 3

(
1

6

)(
5

6

)2

2 3

(
1

6

)2 (
5

6

)

3

(
1

6

)3

In fact, a random variable is a function of the random outcome.
For example, let’s consider rolling a die one time, and define X to be
a random variable for rolling the dice once. We know that X could
take on the values 1, 2, 3, 4, 5, or 6 (the outcomes of rolling the
die) which are all equally likely to be 1

6 . Now, let’s suppose we roll
a die once and define a random variable Y to be 1 for obtaining an
odd outcome (1,3,5) and 0 for even outcomes. Both even and odd
outcomes are equally likely so that we obtain 1

2 of the time odd and
1
2 even.

Let’s do a more complicated example: let random variable Z
denote the number of 4s we get when we roll a die three times. Well,
in this case, Z can take on the values 0, 1, 2, 3 because there is a
chance we will not roll a four or we roll a four just once, or twice, or
all three times. It is best to make a table and assign a probability to
each possible outcome as done in Table 1.1.

Let’s understand why those are the correct probabilities. For

Z = 0, we would get
(
5
6

)3
because 5

6 is the probability of NOT get-
ting a 4, but because each dice roll is independent, the probabilities
multiply. For Z = 1 , we would have one occurrence of 4 (with prob-
ability 1

6), but this can happen in
(
3
1

)
= 3 ways (on the first roll,

second roll, or third roll) which is why we have “3” in front. The same
idea follows for Z = 2 where

(
3
2

)
= 3. For Z = 3, we would get 4s

for all three rolls where each roll is independent. So, the distribution
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we have in this case is

P(Z = k) =

(
3
k

)
pk(1− p)n−k

This is known as the binomial distribution, where probability p rep-
resents the probability of “success,” in this case getting a 4, and we
are repeating the experiment a total of 3 times. So, the binomial
distribution may be considered as repeating n Bernoulli trials.

As you can see, defining random variables is a very versatile way
of working with probabilities and allows for generalizations to prob-
ability distributions. These are mathematical functions that give the
probabilities of different outcomes for a certain experiment and the
input to these functions are the set of values which a specified random
variable can take.

Checkpoint Exercises

1. Suppose we toss a fair coin 2 times. Let random variable S denote
the number of heads that appear.

a. What are the values that S can take?
b. What are the probabilities associated with each of those values?

2. Eddie has been practicing his free throws and has a probability
of 0.8 of making it successfully. Suppose that each free throw is
independent of the other. If Eddie attempts 8 free throws, what
is the probability that he makes at least 3 of them successfully?

3. Pfizer conducted a study on a new version of their COVID-19
vaccine. Their study showed that the vaccine was 80% effective in
preventing COVID-19. What is the probability that of 6 randomly
selected patients, only 2 of them contract COVID-19 after having
received the vaccine?

1.2.4 Calculating Expected Values

You may wonder where we are heading with probabilities. Well,
we can use these ideas to calculate some useful quantities like the
expected value of an experiment. The expected value of a random
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Figure 1.8. Probability mass function for random variable X.

variable, X,7 is defined as

EX =
∑
x

xpX(x)

where pX(x) is the called the probability mass function (PMF) and
assigns a probability to each possible outcome of some experiment.
Let’s go back to the example of die with the defined random vari-
able, X. The probability mass function can be defined as follows:

pX(x) =

{
1
6 , 1 ≤ x ≤ 6

0, x > 6

Then we can calculate the expected value to be

EX = 1 · 1
6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
=

7

2
The expected value or the weighted average of the random variable

X is 3.5. We can visually identify the expected value as the “center of
mass” of the distribution. The distribution, pX , is shown in Fig. 1.8.

If we were considering the random variable Z we worked with
in the previous section, the corresponding PMF may be graphed as
shown in Fig. 1.9.
Then, the expected value is

EZ = 0 ·
(
5

6

)3

+ 1 · 3
(
1

6

)(
5

6

)2

+ 2 · 3
(
1

6

)2(5

6

)
+ 3 ·

(
1

6

)3

=
1

2

7Random variable, X, may take values X = 0, 1, 2, 3, ..., x, as needed for the
experiment we are describing.
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Figure 1.9. Probability mass function for random variable Z.

Checkpoint Exercises

1. Refer back to your solution of checkpoint exercise #1 in the pre-
vious section. What is the expected value of the experiment?

2. Suppose that we have a random variable Y that has the following
PMF:

pY (y) =

⎧⎪⎨
⎪⎩

1/8, y = 0

3/8, 1 ≤ y ≤ 2

1/8, y = 3

a. Plot the distribution by hand or using a graphing tool.
b. Compute the expected value of the distribution.

1.2.5 Law of Large Numbers

So far, we have discussed some simple probability experiments like
the coin toss and die roll. We understand that if we toss a coin, we
have a probability of 1

2 to get heads or tails, and that if we roll a

die, we have a probability of 1
6 to get 1, 2, 3, 4, 5, or 6. These should

both be uniform PMFs.
Let’s suppose that we toss that coin 25 times. We will not get

an equal number of heads or tails. We will get either more heads or
more tails. In fact, this variation will always exist, but as we toss
the coin N times, where N is a very large number that conceptually
approaches infinity, we see the following behavior plotted in Fig. 1.10.
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Figure 1.10. Number of coin tosses vs. probability of getting heads (or tails).

Figure 1.11. Number of dice rolls vs. average value.

As the number of flips becomes very large, we approach the
expected value for the coin toss experiment 0.5. Likewise, in the
case of rolling a fair die, Fig. 1.11 shows the behavior. Once again,
we can see that the average value over the many trials approaches
the expected value of 3.5 that we calculated previously.

This is known as the law of large numbers where the averaged
results from many trials approaches the expected value. It is sig-
nificant for guaranteeing long-term stability for averages of random
events. This idea has many applications in probability, statistics,
finance, and physics, so we will see it in action in the following sec-
tion.
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1.2.6 Information Entropy

In physics, the concept of entropy arose in thermodynamics as a
measure of the randomness or uncertainty in a physical system. For
example, how gas particles disperse to fill the volume of a room.
In 1870, Ludwig Boltzmann developed the statistical definition of
entropy by analyzing the behavior of the microscopic constituents of
the system. He defines entropy to be the logarithmic measure of the
number of microstates in a system that has a significant probability
of being occupied, defined as follows8 [22]:

S = −kB
∑
i

pi ln pi

where pi is the probability that the system is in the ith state and
this probability depends on the distribution of the states and kB ≈
1.38 · 10−23J/K is the Boltzmann constant.

Claude Shannon took the concept of entropy from physics and
applied it to information theory in 1948 as a way to represent
the “degree of surprises” that the transfer of some information can
bring [23]. Shannon entropy, H, is defined in a way similar to the
previous definition:

H(X) = −
∑
x

p(x) logb p(x)

where x represents the values that a random variable X can take and
b is the base of the logarithm which is 2. If you knew exactly what
the outcome of the message would be, then the Shannon entropy
is 0. As an example, consider that we are tossing a coin which will
give an equal outcome of head or tails depending on whether it is a
fair coin or not. The more the coin is biased toward one particular
outcome, the lower the entropy since the outcome will not surprise
you as much as the outcome of a fair coin.

This entropy is especially important in information theory
because it tells you the minimum number of bits that are needed to

8Here, the ln function is called the natural logarithm, which is a logarithm with
base e, the base of the exponential form we saw previously to represent complex
numbers in polar notation. Well, e ≈ 2.71828 and is also called Euler’s number.
Refer to C for a review of logarithms.
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convey a message, also known as data compression. If a sender uses
fewer bits than this minimum, the message they are trying to send
will be distorted. The concept of entropy comes up again in quantum
information theory in the context of entanglement. Entropy can be
used as a way to measure how much entanglement exists between
two qubits.

Homework 1

Complex Numbers

Perform the indicated operation between the specified complex num-
bers in two ways:

1. in standard form and convert the final answer to polar,
2. in polar form and convert the final answer to standard form.

Plot the complex numbers and solution of the problems on a complex
plane (by hand or using Python). Briefly describe how the complex
numbers are rotated and scaled.

1. z1 = (1− i), z2 = (6− 5i), solve z1 · z2.
2. p1 = 7 + i, p2 = 2 + i, solve p1

p2
.

3. d1 = i, d2 = 1 + i, d3 = 1 + 3i, solve d1· d2
d3

.

Probability Sample Spaces

Consider an urn containing 3 balls: 1 blue, 1 yellow, and 1 orange.

1. You take 1 ball from the urn for each turn and place the ball
back in the urn each time before choosing the next ball. Write
the sample space of the experiment, noting the blue ball as B, the
yellow ball as Y, and the orange ball as O.

2. You take 1 ball from the urn and do not replace before drawing
the second ball. Write the sample space of the experiment, noting
the blue ball as B, the yellow ball as Y, and the orange ball as O.
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Discrete Distributions

Suppose that an urn contains 5 blue, 4 yellow, and 3 orange balls.
A ball is randomly drawn and replaced 5 times. Suppose the random
variable X denotes the number of blue balls that are drawn from the
urn.

1. What are the possible values that random variable X can take?
2. What are the probabilities associated with each value of X?
3. Plot the distribution.
4. What is the probability that at least 3 of the balls drawn are blue?

Calculating Expected Values

Continuing with the previous problem statement, where a ball is
drawn and replaced 2 times. Suppose that $2 can be earned for
selecting a yellow ball and $1 is lost for selecting a blue ball. Let
the random variable E denote earnings.

1. What are the possible values of E?
2. What are the probabilities associated with each value of E?
3. What do you expect to earn?
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Chapter 2

Basics of Linear Algebra

In order to start properly familiarizing ourselves with quantum com-
puting, the first stepping stone is linear algebra which provides the
mathematical tools to work with quantum information. The second
stepping stone is quantum mechanics, the tool to understand the
physical nature that governs quantum information. The following
table shows some words that we encounter throughout this book.
It highlights the connection between quantum mechanics and linear
algebra.

Quantum Mechanics Linear Algebra
Quantum state Vector
Physical system Hilbert space
Linear operators Matrices

Measurable quantities Hermitian matrices
Eigenstate Eigenvector

Scalars are quantities that have no direction associated with them,
for example, distance traveled, temperature, or mass. Vectors are
objects that have both a magnitude and a direction. Vectors often
show up in physics because they represent useful quantities, such
as the position of an object, its velocity and acceleration, and the
forces that are acting on it. For example, if a ball was rolling down
an inclined plane, we can learn about its motion by measuring its
speed (a scalar quantity) and observing that it moves down at the
same angle as the incline which is the direction of the ball. Knowing
the speed and direction of motion, we can define the velocity of the

41
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ball. The speed is the magnitude of the velocity and the direction
is given by a unit vector, or a vector whose magnitude is one. In
the off-chance that someone tries to block the ball from rolling down
completely, then we say that there is a force acting on the ball in
the direction opposing its motion, so the force is a vector quantity.
One such opposing force would be the friction force the ball feels
due to being in contact with the surface of the incline which slows
the ball down. The point here is that the direction and magnitude
of these physical quantities, such as velocity, acceleration, and force,
are measurable.

A vector can be written in the row form, where its components
are along one row as follows:

(x1 . . . xn)

or in a column form: ⎛
⎜⎜⎝
x1
...

xn

⎞
⎟⎟⎠

Vectors are used to represent a particular state of the physical system.
For example, if a person moves from one place to another, we can
give a number that tells us how much they moved and the direction
they were moving along. This is otherwise known as displacement.
In order for the numbers to mean something, we have to define the
directions of movement that make sense to measure. For example,
we may quantify how much someone moved in north and east. If the
numbers are negative, then we may say they moved south or west
instead. So, we think of north and east as being perpendicular direc-
tions that describe any kind of movement that someone could make
on a flat plane. Alternatively, we can also measure along different
directions like northeast and northwest. Basically, we just need to
agree on two reference directions that are different from each other
in order to describe the motion of someone on this flat plane.

Vectors live in vector spaces which are defined by the dimensions
of the vectors in the space (e.g. 3D, 4D, or N -dimensional). The
elements of the vector can be real (denoted R) or complex (denoted
C) numbers. As such, when we talk about vector spaces, we provide
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the dimensionality and whether its vectors are real or complex. To say
that you have a vector space is to say that there are certain operations
that must be defined, such as addition and scalar multiplication.
These operations must happen in such a way that they are “closed”,
meaning that the vector that results after performing the operation
is in the same vector space (e.g. has the same dimension).

A matrix is a rectangular array of numbers arranged in rows and
columns. A matrix “operates on” or “transforms” vectors to produce
new vectors. These new vectors may have different dimensions or
may keep the same dimension. An eigenvector is a special vector
that when operated on by some particular matrix is only multiplied
by a scalar called the eigenvalue. In other words, the vector would
still point in the same direction, but it may be stretched or shrunk,
depending on the eigenvalue.

We will see in the following chapters that in quantum mechan-
ics, the quantum state (which represents the physical system) is
expressed as a complex vector that lives in a complex vector space
known as the Hilbert space. In this vector space, the length or norm
of the complex vector can be defined, which is critical for physi-
cal states! Basically, finding the length of the vector removes its
dimensionality and reduces the vector to a real-valued, positive scalar
number. Matrices, or gates, which are linear transformations or lin-
ear operators, act on the quantum states to change their state. In
particular, Hermitian matrices are special matrices that represent
measurable quantities, such as position, momentum, and energy, etc.
Lastly, the term eigenstate is the same as the eigenvector of these
linear operators. The eigenvectors of the Hermitian matrices, in par-
ticular, are special because they represent the measurable outcomes.

2.1 Introduction to Linear Algebra

2.1.1 Euclidean Vectors

Vectors are mathematical objects that have both a magnitude1 and
a direction. Vectors are typically labeled with letters and can either

1Magnitude is the same thing as length, or distance from the origin, and it can
be computed using the distance formula.
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have an arrow on top or be bolded. For example, letter P , we would
denote that P is a vector as

�P or P

One geometric representation of a vector is that it is a line with a
given length which points in some direction denoted by an arrow. A
common and intuitive way to describe vectors is through a Cartesian
coordinate system with x, y, and z components. Figure 2.1 shows a
3D coordinate system which is defined by three mutually perpendic-
ular or mutually orthogonal unit vectors, î, ĵ, and k̂. These unit
vectors define the directions of the x, y, and z axes, respectively:

î =
(
1 0 0

)
ĵ =

(
0 1 0

)
k̂ =

(
0 0 1

)
These vectors are called unit vectors because they have a length

of one, so they will not affect the magnitude of the vector �P , but they
define its direction. Using this definition, we write �P as

�P =
(
x y z

)
= x î+ y ĵ + z k̂

This notation is telling us that we have moved x units along the x-axis
or î direction (forward and backward), y units along the y-axis of ĵ

Figure 2.1. Three-dimensional Cartesian coordinate system.
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direction (left and right), and z units along the z axis, or k̂ direction
(up and down).

Vector Algebra

There are rules for doing algebra with vectors, including how to scale
a vector by some amount and how to add and subtract two or more
vectors together.

If we have a vector �P and we scale it by a number a,
then its length will be scaled by the number a, as shown in
Fig. 2.2. For example, if �P = 2̂i + 4ĵ + 10k̂, and we multi-
plied by a = 1

2 , then we can distribute a to each of the vector
components:

a · �P =
1

2
(2̂i+ 4ĵ + 10k̂) = 1̂i+ 2ĵ + 5k̂

Now, �P still points in the same direction, but it is 1
2 its original

length.
If we are adding two vectors �P and �Q, we take the two vectors,

put them tip to tail, and then draw a line connecting the end of the
first vectors with the tip of the other. This is shown in Fig. 2.3(b).
Alternatively, we can bring both vectors at the same initial point and
complete the parallelogram. The diagonal of the parallelogram is the
resultant vector �P + �Q.

As an example, suppose we have the vector �P = 2̂i+4ĵ+10k̂ and
another vector �Q = 3̂i − 7ĵ − 1k̂, we wanted to compute the sum,
�P + �Q. The sum of these two vectors will also be a vector because we
can simply add the corresponding vector components to each other.

Figure 2.2. Scaling a vector �P by a factor a. If a > 1, the magnitude of �P will
increase. If 0 < a < 1, the magnitude of �P will decrease. If a < 0, then the vector
direction will flip by 180◦.
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(a) (b)

Figure 2.3. (a) Two vectors with different magnitudes pointing in different
directions; (b) parallelogram method of adding vectors.

We will call the sum, �R, the resultant vector:

�R = �P + �Q = (2̂i + 4ĵ + 10k̂) + (3̂i − 7ĵ − 1k̂)

= (2 + 3)̂i+ (4− 7)ĵ + (10− 1)k̂

= 5̂i− 3ĵ + 9k̂

The only restriction to adding vectors is that the vectors must be of
the same dimension. This is equivalent to saying that they have the
same number of components or that they must be in the same vector
space.

Dot Product

Now what if we also had another vector �Q = x′ î + y′ ĵ + z′ k̂ and
we wanted to project this vector onto �P to identify how much or
what percentage of �Q is along �P? To do so, we consider that there
is some angle, α, between the two vectors. As we can see in Fig. 2.4,
the projection of �Q on �P is | �Q| cosα.

The dot product of �P and �Q is defined as

�P · �Q = |�P || �Q| cosα

In general, to compute the dot product, we look at the actual vector
components. Note that the result is a scalar and NOT a vector quan-
tity. We can also think of the dot product as computing how much
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Figure 2.4. Representation of the dot product.

each component of the vectors overlap2:

�P · �Q = (x î+ y ĵ + z k̂) · (x′ î+ y′ ĵ + z′ k̂) = x · x′ + y · y′ + z · z′

The magnitude of the vector, |�P |, can be found using the distance
formula between the point (0, 0, 0) and (x, y, z):

|�P | =
√
x2 + y2 + z2

Note here that the magnitude of a vector can also be defined in terms
of the dot product:

|�P | =
√
�P · �P

In other words, the length of the vector is related to its projec-
tion on itself. Now, in the case of these Euclidean vectors, we have
a geometric understanding of what the “length” of a vector is, but
for vectors of higher dimensions, that we cannot visualize, this other
interpretation of the dot product is very useful. Through the dot
product or in more general terms, the inner product, we can rep-
resent the length of any vector, even higher-dimensional ones, that
we may not be able to visualize.

2Note here that we really distribute each term to perform the multiplication but
something interesting occurs when we multiply components that have different
unit vectors: Their dot product is 0 because they are orthogonal and cos 90◦ = 0.
So, the only terms of the components that have the same unit vector survive,
since their dot product is 1 (cos 0◦ = 1, and if it’s the same unit vector, the angle
difference between them is 0◦).
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If we wanted to consider what percentage of one vector overlaps
with the other, then we can simply normalize the two vectors we are
working with3:

�P√
�P · �P

·
�Q√
�Q · �Q

= cosα

This quantity is between −1 and 1. The resulting value tells us the
percentage of the overlap between the two vectors and the sign tells
us whether the vectors are parallel or 0◦ apart (positive sign) or anti-
parallel or 180◦ apart(negative sign). If the vectors are orthogonal
or 90◦ apart, there is no overlap, so we would get 0. This is the utility
of the dot product. It allows us to distinguish parallel and orthogonal
vectors of any dimension very easily!

N-dimension Generalization

Now, let’s stretch our understanding of vectors to higher dimensions.
There’s no reason why a vector should just be three-dimensional. Vec-
tors are abstract objects in mathematics and can “live” in finite N -
dimensional spaces or even in an infinite space. We can conceptually
understand this as needing more of those orthogonal axes to describe
our vector because they have more components. The downside is that
if we add more dimensions, we cannot visualize this any longer, but
the mathematics does not constrain itself to visualization, the same
principle that applies to 3D then applies to N -D. N -dimensional
vectors are very important in quantum computing, machine learn-
ing, physics, and more. For example, let’s suppose we have oranges,
bananas, apples, peaches, and strawberries and we want to keep track
of how much of each fruit we have. We can use a 5D vector to do so
because we have five kinds of fruits, and we can encode this infor-
mation to a vector with five components, each corresponding to the
fruits we have.

The last consideration is the fact that we can generalize vectors
from real elements to complex ones. In the case of a 3D Cartesian

3Normalization just means you scale the vector by its magnitude so that its
length equals 1.



Basics of Linear Algebra 49

coordinate system, the vector components x, y, and z are real num-
bers. But we may also have vectors that are defined more generally.
Such vectors will have complex numbers of the form a + bi as com-
ponents. In this case, these vectors would naturally live in a complex
vector space.

Checkpoint Exercises

1. Let’s consider the directions, up and down represented by N̂ ,
a unit vector representing the north direction, right and left as
Ê, a unit vector representing east direction, and a unit vec-
tor representing forward and backward directions as F̂ . Sup-
pose Sylvia moves 4 units east, 3 units backward, and 5 units
north.

a. Write down the vector �D, representing Sylvia’s displacement
and compute the magnitude of the vector.

b. Now suppose we change the unit vectors to N̂E, ˆNW , and F̂ ,
where N̂E and ˆNW are the unit vectors that are 45◦ from
the original N̂ axis. Compute the magnitude of the vector.
Comment on your results.

2. Suppose we have two vectors �P = î+3ĵ+4k̂ and �Q = 6̂i+3ĵ+2k̂.
Compute the sum of the two vector, �P + �Q, and the magnitude
of the resulting vector, �R.

3. What percentage of the two pairs of vectors overlaps? Are they
orthogonal?

a. �u =

⎛
⎝2
3
4

⎞
⎠ and �v =

⎛
⎝ 2
−6
7

⎞
⎠.

b. î and �p = (0, 4, 1).

2.1.2 Dirac Notation

Quantum states are represented as vectors that live in a complex
vector space known as the Hilbert space. The Hilbert space has useful
mathematical properties that guide the physical interpretation of
quantum states. For starters though, it is important to first become
familiar with the notation that will follow throughout the rest of the
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book. This notation is known as Dirac notation. Paul Dirac, a famous
British theoretical physicist, developed this notation to specifically
label vectors that belong to the Hilbert space.

Bras and Kets

Using Dirac notation, a bra is a row vector labeled using the 〈 |:
〈u| = (. . .)

A column vector is known as an ket and is labeled using the | 〉:

|v〉 =
(
...

)
The components of |v〉, for example, may be a complex number, vi,
which has a corresponding complex conjugate v∗i . If we write |v〉 and
the corresponding 〈v|, we would have

|v〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3
...

vn

⎞
⎟⎟⎟⎟⎟⎟⎠

〈v| = (v∗1 v∗2 v∗3 · · · v∗n)

So, what we see here is that the bra of a ket vector is the conjugate
transpose or adjoint of the ket vector. Transposing means that
we turned the column into a row. Conjugation of a vector is taking
the conjugate of each of the complex number components of the ket
vector.4

An important operation that will often be performed is known
as the inner product. The inner product is a more general ver-
sion of the dot product for higher dimensional vector spaces.
The dot product was a measure of overlap between two vec-
tors. This means that for vectors that are 90◦ apart, the dot
product would be zero because there is no overlap. However,

4Recall that the complex conjugate of a number z = a+ bi is z∗ = a− bi and is
denoted by the ∗ operator.
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if the vectors are parallel, then the overlap is non-zero. In
Eucledian vector spaces, we would define the dot product as
follows5:

�u · �v = |�u||�v| cos θ

If we have two ket vectors, |u〉 and |v〉, then their inner product is
defined as follows:

〈u|v〉 = (u∗1 u∗2 u∗3 · · · u∗n)
⎛
⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3
...

vn

⎞
⎟⎟⎟⎟⎟⎟⎠

= u∗1v1 + u∗2v2 + · · · + u∗nvn

To compute the magnitude of such a complex vector, |u〉, we may
in a similar fashion perform the inner product with itself, 〈u|u〉, and
take the square root, just as we did before with vectors whose ele-
ments were real numbers. Thus,

| |u〉 | =
√
〈u|u〉 =√u∗1u1 + u∗2u2 + · · · + u∗nun

| |u〉 | =
√
|u1|2 + |u2|2 + · · ·+ |un|2

So, to find the magnitude of the complex vector, we need to sum up
the squared magnitude of each of its complex components and take
the square root. This is just like the distance formula for the vectors
whose entries were real numbers. Thus, to make any complex vector,
|u〉, a unit vector, |n〉, we normalize the vector:

|n〉 = |u〉√〈u|u〉
5Note that the overlap would be determined by the cosine of the angle between

the vectors because the cosine corresponds to the adjacent side and cos 90◦ = 0,
as we explained before.
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Checkpoint Exercises

1. What is the bra vector for |u〉 =
(
1 + i
4

)
?

2. What is the ket vector for 〈v| = ((0.5 − i) 0.2 (1 + 0.5i) 0.2
)
?

3. Suppose we have two complex vectors:

|P 〉 =

⎛
⎜⎝

1

2 + i

i

⎞
⎟⎠ |Q〉 = 1

2

⎛
⎜⎝
2 + 2i

4

6 + 2i

⎞
⎟⎠

Normalize the vectors and then compute their inner product:
〈P |Q〉.

2.1.3 Superposition Principle

Superposition represents the sum of two or more physical quantities.
This sum makes up a third quantity which is different from the orig-
inal two. An intuitive picture of superposition is shown in Fig. 2.5
using classical waves.

As we can see in Fig. 2.5 when the peaks of the two waves align
with each other, the resultant wave has a larger amplitude, indicating
constructive interference. When the peaks of the waves do not align
at all, but the waves have the same amplitude, then there is full
cancellation which indicates destructive interference. These are the
two extremes, but if one of the waves has some phase shift that causes

Figure 2.5. In the first row, the amplitudes of the two waves add, implying
constructive interference. In the second row, the amplitudes of the two waves
cancel each other out, so we get destructive interference.
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the amplitudes to add up in some places and cancel out in others,
then we have a mixture of constructive and destructive interference.

We can also think about superposition in a more quantitative
manner using vectors. Let’s suppose we want to represent a column

vector |v〉 =
(
3
4

)
, we can write this vector as

|v〉 = 3

(
1

0

)
+ 4

(
0

1

)

where using the two vectors

(
1
0

)
,

(
0
1

)
, we may represent any arbi-

trary two-dimensional column vectors, |ψ〉, simply by changing the
scaling factors in front:

|ψ〉 = c1

(
1

0

)
+ c2

(
0

1

)
=

(
c1

c2

)

If we allow these factors, c1 and c2, to be complex, then{(
1
0

)
,

(
0
1

)}
are the spanning set for a two-dimensional complex

vector space which we can denote C
2. These vectors are linearly

independent, which means that there is no way to relate the two
vectors to each other through multiplying them by some scalar. In
fact, these two vectors also happen to be orthogonal, which you may
check by taking their inner product. In fact, this set of vectors also
forms a basis, which is the minimum number of linearly independent
vectors needed to represent any other vector (with the same number
of dimensions). This is the same idea as when we represented real

vectors in terms of the î, ĵ, and k̂ unit vectors. These three vectors
formed a basis for a real 3D vector space.

Quantum objects are represented as vectors which means that
they obey the superposition principle and all concepts we have dis-
cussed thus far. In particular, a 2D quantum state |ψ〉 can be written

as a superposition of the basis vectors

{(
1
0

)
,

(
0
1

)}
or as we later
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call them {|0〉, |1〉}. One reason this basis is used is because the two
vectors are orthogonal to each other (they do not overlap) so the
component in one direction does not affect in one direction does not
affect the other direction.

The quantum state must also be a unit vector because of the
probabilistic interpretation that we will learn in detail in the next
chapter. Basically, we cannot consider probabilities that are greater
than 1. Thus, the components that scale the basis vectors, c1 and
c2, must satisfy the normalization condition that makes |ψ〉 a unit
vector:

|c1|2 + |c2|2 = 1

Again, note that we must take the magnitude of the scaling factors
because they may be complex numbers!

Checkpoint Exercises

1. Determine if the following sets of vectors are linearly independent:

a. |v1〉 =
(
2
1

)
|v2〉 =

(
6
3

)
.

b. |v1〉 =
(
5
2

)
|v2〉 =

(
10
2

)
.

2. Suppose we want to represent a vector |ψ〉 =
(
15
2

)
in terms of the

two linearly independent vectors identified in Question 1. What
are the scaling factors c1 and c2 for the vectors |v1〉 and |v2〉 that
can be superposed to give us |ψ〉?

3. Suppose we have a quantum state that is not normalized |ψ〉 =(
i
1

)
. Write the state in the

{(
1
1

)
,

(
1
−1
)}

basis and find c1 and

c2 that normalize the state |ψ〉.
4. How is the orthogonality of two orthonormal quantum states, |u〉

and |v〉, defined? Use the following function in your answer, which
is called the Kronecker delta function:

δij =

{
0, i �= j

1, i = j
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2.2 Single Qubit Control with Matrices

Classical devices and computers work with the fundamental unit
called the bit. Physically, bits are digital signals that transistors
(which are voltage-controllable switches) toggle back and forth. Bits
can either have a value of 0 or 1 (representing ON or OFF states of
the switch), and in this sense, they represent classical two-state or
two-level systems. Through combinations of transistors, resistors,
and diodes, digital logic gates are constructed to manipulate data
and perform basic computation like addition or multiplication.

In quantum computing, we deal with quantum bits or qubits.
While the bit represents a classical two-level system, a qubit rep-
resents a quantum two-level system. A formal definition of a quan-
tum two-level system is two quantized energy levels which obey
Schrödinger’s equation. In most cases, quantum mechanical prop-
erties appear at small scales (nanometer size). These are the scales
where the wave–particle duality shows up. Interestingly enough, new
transistors are also reaching these scales and quantum effects should
even be considered in current chips.

We discussed that quantum objects can exhibit both particle-like
and wave-like properties, so they can be represented by |0〉, |1〉, or
a superposition of |0〉 and |1〉. This superposition is the state space
of the qubit which describes the set of all possible states the qubit
could be in. We start off explaining this concept using the coin toss
analogy.

We can think of the states |0〉 and |1〉 to be heads and tails,
respectively. These are the same as the bit states 0 and 1, as shown
in Fig. 2.6.

In the case of a qubit, we can have superposition states which are
effectively a continuum of the different possible orientations a coin

Figure 2.6. Head represents the 0 bit state or qubit state |0〉 and tail represents
the 1 bit state or qubit state |1〉.
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Figure 2.7. Continuum of different coin orientations when it is tossed.

can take when it is tossed. The qubit state could be anywhere on
this spectrum, as represented in Fig. 2.7.

The superposition is a sum of |0〉 and |1〉 with scaling factors that
indicate how much of state |0〉 and how much of state |1〉 makes up
a general qubit state, |ψ〉. To continue with the coin toss analogy,
we are thinking about the state of the qubit as some arbitrary ori-
entation of the coin and somehow we are keeping track of how close
(in probabilistic terms) it is to be heads vs. tails for one particular
trial.

2.3 Basis Vectors

The general single qubit state is represented as a complex vector.
The physical qubit itself may be an electron spin or the photon
polarization states, but both of these examples are mathemati-
cally represented as vectors. A useful way to define a general qubit
state is to first specify a convenient basis to work in. For a single
qubit, we need two basis vectors to specify this two-dimensional vec-
tor space that the qubit exists in. This space is complex because
we can scale our basis vectors with complex numbers. We take
a superposition of the basis vectors to generate arbitrary qubit
states.

Understanding bases is a critical part of the content moving for-
ward. Intuitively, the basis can be thought of as the minimum set of
vectors that defines the space. For example, for real 3D vectors, we
had 3 unit vectors that we scaled and summed to specify any other
3D vector. So, in this case, the basis was {̂i, ĵ, k̂}. With a single qubit,



Basics of Linear Algebra 57

the most convenient basis to work with is the {|0〉, |1〉} basis.

|0〉 =
(
1

0

)

|1〉 =
(
0

1

)

Now, any other qubit state can be formed as a linear combination or
superposition of the basis states |0〉 and |1〉. The general qubit state,
|ψ〉, can be written as column vectors as follows:

|ψ〉 = c1 |0〉+ c1 |1〉 =
(
c1

c2

)

Any |ψ〉 that represents a quantum state must be a unit vector and
therefore its magnitude (or squared magnitude) must be 1:

| |ψ〉 |2 = 1

We showed in the previous section that this constraint in the magni-
tude of quantum states gives rise to the normalization condition,
where the squared magnitudes of the scaling factors must add up
to 1:

|c1|2 + |c2|2 = 1

The scaling factors in front of the basis vectors, c1 and c2, are known
as probability amplitudes and they may be complex numbers.
This is why we need to take their magnitudes. The value |c1|2 gives
the probability of getting |0〉 when we measure |ψ〉 and |c2|2 gives us
the probability of getting |1〉 when we measure |ψ〉.

Now, in order to do anything useful with qubits, we have to be
able to control them or perform some operation to change its state
from one to the other. But how can we perform operations on vectors?
Well, we need matrices!
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2.4 Fundamentals of Matrices

A matrix is a rectangular array of numbers or symbols that con-
sists of rows and columns. One can write the most general matrix as
follows, where there are 1, 2, . . . ,m rows and 1, 2, . . . , n columns:

A =

⎛
⎜⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 ... amn

⎞
⎟⎟⎟⎟⎠

The number of rows and columns defines the dimensions of the
matrix. Matrices are generally labeled by a bold-faced, uppercase
letter, while the matrix elements are denoted by a lowercase letter in
subscripts. The subscripts label the location of the elements within
the matrix. For example, a23 would be an element in the second
row and third column (right after a22). When using these matrices
on qubits, we will deal with square matrices, which are matri-
ces that have the same number of rows as they do columns, thus
m = n.

2.4.1 Working with Matrices

Let’s go through some of the mechanics of working with matrices [24].

Notation

Suppose we have three matrices of the same dimension: A, B,
and C.

1. Aᵀ represents the transpose of matrixA. This action flips a matrix
over its diagonal, for example,

A =

[
1 4

6 8

]
Aᵀ =

[
1 6

4 8

]
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2. I represents the identity matrix which is the matrix that is equiv-
alent of the number 1:

I =

⎡
⎢⎢⎢⎢⎣
1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 ... 1

⎤
⎥⎥⎥⎥⎦

3. A−1 represents the inverse of a matrix. The matrix inverse exists
only for square matrices with non-zero determinants.6 The matrix
inverse has the property A−1A = I = AA−1.

Matrix Addition

Suppose we wanted to add the following two matrices, A and B:

A+B =

[
1 4

6 8

]
+

[
1 5

4 8

]
=

[
2 9

10 16

]

As you can see, matrix addition works by adding the elements that
are in the same corresponding rows and columns. Thus, addition is
commutative, meaning that A + B = B + A. Note, however, that
if the dimensions of the matrix were not the same, then we would
not be able to add them which is the same as with vector addition.
Matrix addition is also associative, so if we had another 2×2 matrix,
C, and added it to A and B, we would find that

A+B+C = A+ (B+C) = (A+B) +C

Matrix Multiplication

This is the most important computation we will be doing with matri-
ces. To multiply two matrices, first we take the row of the first matrix

6The determinant is a scalar quantity that tells us how the space is being
stretched or compressed. For example, the determinant of a 2×2 matrix represents
the area of one grid of the space. It is area because we are in 2D. For 3×3 matrix,
the determinant corresponds to the volume and so on.
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and perform a dot product with the column of the second matrix and
so on. Here is a concrete example:

AB =

[
1 4

6 8

] [
1 5

4 8

]
=

[
(1 ∗ 1) + (4 ∗ 4) (1 ∗ 5) + (4 ∗ 8)
(6 ∗ 1) + (8 ∗ 4) (6 ∗ 5) + (8 ∗ 8)

]
=

[
17 37

38 94

]

What if we took BA?

BA =

[
1 5

4 8

] [
1 4

6 8

]
=

[
(1 ∗ 1) + (5 ∗ 6) (1 ∗ 4) + (5 ∗ 8)
(4 ∗ 1) + (8 ∗ 6) (4 ∗ 4) + (8 ∗ 8)

]
=

[
31 44

52 80

]

As we can see, multiplication is NOT commutative for matrices. The
multiplication cares about the order.

The dimensions of the matrices are also important when doing
matrix multiplication. Note that the number of columns in the first
matrix must match the number of rows in the second matrix in order
to multiply the two matrices. For example, a 2 × 2 matrix can be
multiplied to any matrix with two rows. So, in general, if we have
two matrices with dimensions m1 × n1 and m2 × n2, then in order
for the multiplication to work out, the number of columns of the
first matrix, n1, must be equal to the number of rows in the second
matrix, m2. The dimensions of the final answer will be m1 × n2.
Lastly, if the matrix has a scalar in front, each element of the matrix
will be scaled by that factor just as with vectors.

Continuing forward, we are concerned specifically with square
matrices and will introduce special types of square matrices that
are used to control and change the state of qubits.

Checkpoint Exercises

Perform the indicated operations on the following matrices if
possible:

A =

(−8 −6
7 3

)
B =

(
9 −1
5 0

)
C =

(
2 −2
4 1

)
D =

⎛
⎜⎝
2 −2
4 1

3 0

⎞
⎟⎠

1. Aᵀ + B + C,
2. B + D,
3. ADᵀ,
4. DA,
5. 3C.
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2.4.2 Linear Transformations

As we saw, qubits are represented by complex vectors and the space
in which they live in is a complex vector space known as the Hilbert
space. For a single qubit, the space is called C

2 because we need two
complex numbers which scale the basis vectors to specify an arbitrary
single qubit state, |ψ〉. We can use matrices to change the state of
qubits. A single qubit is represented as a 2× 1 column vector, so we
need a 2 × 2 matrix, M (since we want the final state to be of the
same dimension as the one we started with) to take us from the state
|ψ〉 to |ψ′〉: ∣∣ψ′〉 =M |ψ〉
Matrices could be regarded of as linear transformations which in
the world of quantum mechanics are known as operators. They are
used to manipulate quantum states, such as our qubits. The nature
of quantum systems requires all these matrices to be reversible. We
discuss the important property of linearity, learn to calculate special
values and vectors for operators known as eigenvalues and eigenvec-
tors, and discuss the properties of unitary and Hermitian matrices.

Understanding Linearity

Linearity itself is an intuitive concept. If we have some transformation
or function that takes in certain inputs, and these inputs are scaled
by some factor or two or more inputs are added together, the output
of the function responds in the same way! One key feature of a linear
transformation is that if the input is zero, then the output must also
be zero. If nothing is happening to the input, then nothing should
happen to the output.

Suppose we have a transformation, T , taking a sum of input vec-
tors �x1 + �x2, if the function is linear, then the result will be the sum
of each output plugged into the function separately:

T (�x1 + �x2) = T (�x1) + T (�x2)

Also, let’s say we wanted to know what happened if the input
vector, �x1, was scaled by some factor, c, then

T (c�x1) = cT (�x1)
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This is what is meant by “the function responds in the same way.”
If the input is a superposition of input vectors, then the result is the
superposition of the output vectors. In a more general sense, linearity
is defined as

T (c�x1 + d�x2) = cT (�x1) + dT (�x2)

So, for a transformation to be linear, it must satisfy the following7:

T (�0) = �0

T (c�x1 + d�x2) = cT (�x1) + dT (�x2)

A nonlinear transformation would be a transformation that does not
satisfy the properties above, for example, if we had a function f(x) =
mx + b. Such a function would not satisfy the first condition for
linearity because f(0) = b and not zero. Functions such as p(x) = x2

are also considered nonlinear because they do not satisfy the second
property of linearity:

p(cx1 + dx2) = (cx1 + dx2)
2 �= cp(x1) + dp(x2)

Matrix Transformations

When using matrices to transform vectors, the transformations will
always be linear. In quantum mechanics, we will be concerned with
transformations involving square matrices, and matrices that pre-
serve the magnitude of a quantum state, because we always need the
state to be normalized.

Suppose that we have the state |0〉 and we operate on it with the
matrix

X =

(
0 1

1 0

)

So, we would have the following:

X |0〉 =
(
0 1

1 0

)(
1

0

)
=

(
0

1

)
= |1〉

As we can see, this matrix transformation changed the original vec-
tor, but the resulting vector still has a magnitude of 1 and the same

7�0 is called the zero vector and it is the vector whose elements are all zeros.
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dimensions as the input vector. This matrix flipped the qubit from
|0〉 to |1〉, so it essentially performed a rotation on the qubit. In
fact, these kinds of matrices that keep the output vector in the same
dimension and magnitude as the input vector can be thought of as
rotation matrices.

What if we tried to operate on the state |v〉 = 1√
2

(
1
−1
)
:

X |v〉 =
(
0 1

1 0

)(
1√
2

(
1

−1
))

=
1√
2

(
0 1

1 0

)(
1

−1
)

=
1√
2

(−1
1

)
= − |v〉

So, in this example, when we tried to operate on |v〉 with X, we got
the same vector back but scaled by a factor of −1. This means for this
vector in particular, the matrix X only scales the vector. We learn in
the following section that such a vector is known as an eigenvector
and the value that it is scaled by is called an eigenvalue of X.

Checkpoint Exercises

1. Operate on the vector |u〉 = 1√
2

(
1
i

)
with the matrix X. Is |u〉 an

eigenvector of X?

2. Operate on the vector |u〉 = 1√
2

(
1
i

)
with the matrix Y =(

0 −i
i 0

)
. Is |u〉 an eigenvector of Y?

3. Operate on the vector |ψ〉 = c1 |0〉 + c2 |1〉 with the matrix Z =(
1 0
0 −1

)
. Is |ψ〉 an eigenvector of Z?

2.4.3 Eigenvalues and Eigenvectors

In mathematics, the term eigen means “proper” or “characteris-
tics.” So, an eigenvector is a characteristic vector of some matrix
or operator, M, whereas an eigenvalue is a characteristic value of an
operator, M. For the 2 × 2 matrices, there are two eigenvalues and
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two corresponding eigenvectors. The relationship that represents this
idea is

M |u〉 = λ |u〉

This means that there are some vectors |u〉 that when operated
on by the matrix, M, the result is the same vector scaled by some
number, λ. |u〉 are the eigenvectors of M and the numbers λ are
the eigenvalues of M. Let’s do an example to illustrate how we may
calculate the eigenvalues and eigenvectors.

Suppose we have a matrix, M =

[
1 1
4 1

]
, and we want to find its

eigenvectors, |u1〉 and |u2〉, and their corresponding eigenvalues, λ1
and λ2. The easiest way to think about the problem is as follows:

[
1 1

4 1

] [
a

b

]
= λ

[
a

b

]

If we perform matrix multiplication on the left side and scalar
multiplication on the right side, then we end up with the following
linear system of equations:

a+ b = λa

4a+ b = λb

Solving the first equation for b, we have b = a(λ − 1). We plug
this into the second equation and simplify:

4a+ a(λ− 1) = λa(λ− 1)

3a = a(λ2 − 2λ)

Cancelling out the a’s, we have

λ2 − 2λ− 3 = (λ− 3)(λ+ 1) = 0

We have just solved for our eigenvalues. We can label λ1 = 3 and
λ2 = −1.
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Now, we can go back to the original matrix equation and solve
the eigenvectors corresponding to these eigenvalues:[

1 1

4 1

] [
a

b

]
= 3

[
a

b

]
→ a+ b = 3a

4a+ b = 3b[
1 1

4 1

] [
a

b

]
= −1

[
a

b

]
→ a+ b = −a

4a+ b = −b
If we solve each set of linear equations, we find that the eigenvector

|u1〉 corresponding to λ1 is |u1〉 =

[
1
2

]
and eigenvector |u2〉 cor-

responding to λ2 is |u2〉 =

[
1
−2
]
. We can easily check that these

are correct by performing the matrix multiplication with each vector
and ensuring that we get the same vector scaled by its corresponding
eigenvalue.

The calculations of these values and vectors are straightforward,
but what does this mean? Well, a matrix is transforming the space.
Let’s say we have our familiar 2D Euclidean coordinate plane that is

defined by the unit vectors �e1 =

[
1
0

]
and �e1 =

[
0
1

]
. If we transformed

these vectors using M , then we would have

M �e1 =

[
1

4

]

M �e2 =

[
1

1

]

Basically, instead of having each grid in the plane have area of 1
as we would with the unit vectors, we would now have a new grid
that is stretched and rotated. The area that it covers is given by the
determinant of the matrix M, as shown in Fig. 2.8.

The eigenvectors |u1〉 and |u2〉 have a special property where they
only get stretched or compressed. In other words, they are simply
scaled by the factor the eigenvalues λ1 and λ2 that correspond to
each vector. They are not rotated or translated in any way. So, if
we had a 2D plane defined that was using |u1〉 and |u2〉, and we
applied M, nothing would change about the orientation of the space.
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(a) (b)

Figure 2.8. (a) The unit vectors, ê1 and ê2, form our familiar 2D coordinate
grid, where each grid has an area of 1; (b) the matrix changes this grid and now
the new area of one grid is the determinant of the matrix M.

Figure 2.9. Grid is defined in terms of the eigenvectors, |u1〉 and |u2〉. When
matrix M acts on these vectors (shown in black), it only scales them but does
not change the orientation of the grid.
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When we define the space in terms of the eigenvectors, this is called
the eigenspace. The visual representation of this is given in Fig. 2.9.

Characteristic Equation

A more ubiquitous way to calculate the eigenvalues of a matrix is to
use the characteristic polynomial. We start again with our eigenvalue
equation:

M |u〉 = λ |u〉

We can move the λ |u〉 term to the left and factor our |u〉8:

(M− λI) |u〉 = 0

Now, vector |u〉 cannot be the 0 vector if it is to be an eigenvector
of matrix M. However, the equation implies that when this matrix
(M − λI) operates on |u〉, we get the 0 vector, which means that
(M − λI) must not have an inverse.9 A matrix without an inverse
has a determinant of 0. Thus, we have our characteristic equation:

det(M− λI) = 0

The determinant of a general 2 × 2 matrix, A, can be computed as
follows:

det(A) =

∣∣∣∣a b

c d

∣∣∣∣ = ad− bc

Let’s look at another example of finding the eigenvalues but directly
using the characteristic equation method.

Suppose we have the matrix D =

(
1 0
1 −1

)
and we want to find its

eigenvalues and eigenvectors. We would have the following eigenvalue

8Note here that we are multiplying λ by I which is the identity matrix that we
mentioned before as being like multiplying by the number 1.
9For a matrix inverse to exist, we must have that A |v〉 = 0, where |v〉 = 0.

Otherwise, the inverse of matrix A does not exist.
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equation:

D |v〉 = λ |v〉
Rearranging the equation by moving the λ |v〉 term to the left and
factoring out |v〉,

(D− λI) |v〉 = 0

Now, we just need to find the determinant of the matrix:

(D− λI) =
(
1 0

1 −1
)
−
(
λ 0

0 λ

)
=

(
1− λ 0

1 −1− λ
)

det(D− λI) =
∣∣∣∣1− λ 0

1 −1− λ

∣∣∣∣ = (1− λ)(−1− λ) + 0

= −1− λ+ λ+ λ2

= λ2 − 1 = 0

Thus, λ = ±1.

Checkpoint Exercises

1. Find the eigenvectors for matrix D.

2. Find the eigenvalues and eigenvectors of the matrix P =

(
1 1
1 −1

)
.

2.4.4 Properties of Unitary Matrices

A unitary matrix , U , is a special kind of square matrix that is used
throughout quantum computing. It has the following property:

U†U = UU† = I

The † symbol denotes conjugate transpose operation (also called
Hermitian adjoint) and is denoted by

† ←→ ∗ᵀ
As it’s defined, first, we take the conjugate of each of the elements
of the matrix10 and then we transpose the matrix.

10Elements may be complex numbers, so (a + bi)∗ = (a − bi). If they are real
numbers, then (a)∗ = a.
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Let’s consider the matrix U = 1√
2

(
1 1
i −i

)
and check if it is uni-

tary. We need to find the adjoint of U, so we first take the conjugate
of the matrix and then we transpose:

U† =
1√
2

[((
1 1

i −i
))∗]ᵀ

=
1√
2

[(
1 1

−i i
)]ᵀ

=
1√
2

(
1 −i
1 i

)

Now, we can verify:

U†U =

(
1√
2
· 1√

2

)(
1 −i
1 i

)(
1 1

i −i
)

=
1

2

(
12 − i2 12 + i2

12 + i2 12 − i2
)

=
1

2

(
2 0

0 2

)
=

(
1 0

0 1

)
= I

We have shown that the above matrix U is unitary. Recall from the
complex numbers section that we interpreted multiplication by com-
plex numbers as rotation. In fact, the reason why unitary matrices
are so useful is because they perform rotations around a unit circle
while preserving the magnitude of the vector.

Hermitian Matrices

There is another special class of matrices used in quantum comput-
ing known as Hermitian matrices. These matrices or operators
are very important in quantum mechanics because they represent
observables. Observables are Hermitian operators that correspond to
some physical quantity of the system, such as spin, energy, position,
or momentum.

Hermitian operators have the property that they are equal to
their conjugate transpose. So, a Hermitian matrix H = H†. This is
true if the diagonal elements of the matrix are real numbers and the
off-diagonal elements are complex conjugates of each other. Remem-
ber that when we transpose a matrix, the diagonal elements do not
change, and if we want the original matrix to be equal to its complex
conjugate, this means that the diagonal elements have to be real so
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that a∗ = a. The off-diagonal elements have to be complex conju-
gates of each other so that if we apply the conjugate operation and
then transpose, we end up with the same matrix:

H† =
1√
2

[([
1 1 + i

1− i −1
])∗]ᵀ

=
1√
2

[
1 1− i

1 + i −1
]ᵀ

=
1√
2

[
1 1 + i

1− i −1
]
= H

Since Hermitian matrices are equal to their conjugate transpose,
one can prove that they possess only real eigenvalues. Let’s see this
by finding the eigenvalues of matrix H using what we learned in the
previous section:

det(H− λI) =
∣∣∣∣∣∣
(

1√
2
− λ

)
1√
2
(1 + i)

1√
2
(1− i)

(
− 1√

2
− λ

)
∣∣∣∣∣∣ = −

(
1√
2
− λ
)(

1√
2
+ λ

)

− 1

2
(1 + i)(1 − i) = 0

Simplifying the characteristic polynomial further, we have11

λ2 − 3

2
= 0

Therefore, we obtain the following eigenvalues for matrix H which
are real:

λ1 =

√
3

2
λ2 = −

√
3

2

Checkpoint Exercises

Determine whether the following matrices are unitary or Hermitian
and find their eigenvalues using the characteristic equation and then
find the corresponding eigenvectors:

11Note that when multiplying a complex number by its conjugate,

(a+ ib)(a− ib) = a2 − iab+ iab− (ib)2 = a2 +−i2b2 = a2 + b2
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1. Y =

(
0 −i
i 0

)
.

2. F =

(
0 1
i 0

)
.

Homework 2

1. The vertices of a triangle are give by the points A = (3, 1, 1);
B = (4, 6,−1); C = (2, 3, 3). Find the three interior angles of the
angles. (Hint : Assign vectors to each side of the triangle by sub-
tracting the points. Then, use the dot product in the two different
ways we learned to solve for the angle.)

2. Suppose we have a symmetric beam splitter12 on each side that
the photon is reflected, it would pick up a 90◦ = π

2 rad = 1.57 rad
phase shift which can be represented with the complex number,
ei1.57 = i. When the photon is transmitted, the beam splitter

12The beam splitter is an important optical component used to split light into
different directions and recombine light coming in from two different directions.
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Figure 2.10. Phase shifts that the beam splitter causes to an incoming photon
polarized in the horizontal or vertical direction.

introduced no phase shift. For a 50/50 beam splitter, 50% of
incoming photons are reflected and 50% are transmitted. This
beam splitter is pictured in Fig. 2.10.

Let us consider that there is a laser beam whose intensity can
be turned down such that you can send single photons at a time
through the beam splitter. This beam splitter will split the pho-
ton into two paths: one moving to the right which is transmit-
ted through the beam splitter and one moving upward which is
reflected off the beam splitter. Let |x〉 be the state of the photon
moving to the right (horizontal) and |y〉 be the state of the photon
moving upward (vertical). If |x〉 goes through the beam splitter,
the resulting state is an equal superposition between the horizon-
tal and vertical states with a 90◦ phase shift on the vertical state,
since it is reflected:

|P0〉 = 1√
2
(|x〉+ i |y〉)
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If |y〉 goes through the beam splitter, the resulting state is still an
equal superposition but with a 90◦ phase shift on the horizontal
state now:

|P1〉 = 1√
2
(i |x〉+ |y〉)

A. If we are working in the {|x〉 , |y〉} basis, come up with the
matrix that represents the action of the beam splitter on the
two basis states. Find the eigenvalues and eigenvectors of the
matrix.

B. Now, consider what would happen if we still had a symmetric
beam splitter but instead of 50/50, we used a 60/40 beam
splitter where 60% of the incoming photons are reflected and
40% are transmitted. Construct the matrix that represents the
action of this beam splitter and show that it transforms the
horizontal and vertical states, as expected.
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Chapter 3

Introduction to Quantum Mechanics

Quantum mechanics is the physics describing nature at small scales
(atom scale and smaller). Just as classical mechanics is governed by
Newton’s laws, quantum mechanics is governed by the Schrödinger
equation. Since its birth, it has been crucial in explaining how the
world works in ways classical physics cannot. From the structure of
the atom, fusion in stars, superconductors, structure of DNA, and
behavior of elementary particles, application of quantum mechanics
has provided accurate predictions of experimental data. As a result,
it is the accepted theory to explain physical processes. The interest
now is to extend this framework to computing and see how it can be
exploited to solve interesting and complex problems.

The concept of wave–particle duality, where particles can act
like waves, and waves like particles, is at the forefront of quantum
theory. For example, in the double-slit experiment from optics, you
can think about a particle version where a beam of electrons are sent
one by one through a double slit. If electrons are unobserved, we will
see an interference pattern like for waves, indicating that particles
like electrons have a wave-like nature. On the other hand, when a
laser of a certain frequency is directed towards a piece of metal,
electrons (which make up the metal) are emitted from the surface.
This means that single particles of light called photons collided with
each electron in the metal, thereby transferring their energy to the
electron and allowing it to escape from the surface of the metal.
In this sense, light which we often think of as a wave exhibits this
particle-like property.

75
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The mathematical background from Chapters 1 and 2 will now be
combined to understand quantum mechanics which is a linear theory.
This means that if A and B are the solutions to the Schrödinger
equation, then A+B is also a solution. Quantum mechanics relies on
linear algebra, and the solution to Schrödinger’s equation represents
the probability distribution for a quantum object like a qubit. In this
chapter, we will study the examples of light polarization and spins
in magnetic fields to demonstrate how quantum objects work. These
are examples of how qubits could be implemented and will aid our
understanding how quantum information works.

Schrödinger’s Cat

Erwin Schrödinger, a key physicist who helped develop fundamental
results in quantum theory, came up with the Schrödinger equation,
which provides the “wave mechanics” approach to quantum mechan-
ics. The Schrödinger equation is a differential equation used to solve
for the wavefunction (or the state) of a quantum system. This wave-
function is a complex vector which contains all the necessary spatial
information about a quantum state and how it will change in time.
Solving for the wavefunction is analogous to finding the superposi-
tion or sum of possible states that the quantum system could be in.
Then, based on boundary and initial conditions from the physical
system, the scaling factors can be calculated. Boundary conditions
are spatial, while initial conditions are based on time.

To motivate the peculiarity of quantum mechanics, we will discuss
an apparent paradox and misunderstanding of quantum superposi-
tion in the Copenhagen interpretation. In 1935, Schrödinger devel-
oped a thought experiment in discussion with Albert Einstein [43]:

There is cat locked in a steel chamber along with a device that
follows its movements. On the wall, there is a Geiger counter1

affixed on the wall with a small amount of a radioactive sub-
stance. The radioactive substance has a 50% chance of decaying
in the course of 1 hour or a 50% chance of not decaying. In the
case that it decays, the tube of the Geiger counter will discharge
and a relay will release a hammer that shatters a small flask of
hydrocyanic acid which will poison the cat.

1A Geiger counter is a device that measures radioactive particles, such as alpha,
beta and gamma.
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(a) (b)

Figure 3.1. (a) Geiger counter is not triggered and the cat is alive; (b) Geiger
counter is triggered and the cat is poisoned.

The thought experiment can be visualized in Fig. 3.1. We can
consider ∣0⟩ to represent the state that the radioactive substance does
not decay and ∣1⟩ to be represent the state that radioactive substance
decays. Until the radioactive substance is measured, it exists in a
superposition of the states ∣0⟩ and ∣1⟩. Since the radioactive substance
is a quantum system, there is some probability to measure either ∣0⟩
or ∣1⟩. However, we will only obtain one answer from measuring the
state. If we leave the state unchanged and keep measuring it, we
will continue to get the same answer, as we should since we did not
change anything. So, in this sense, there is no way for us to know
the probability distribution from a single measurement. The only
way we could obtain the distribution is to have multiple radioactive
substances that are prepared in the same situation and repeatedly
measure each system.

For now, let us assume that someone has already done the hard
work of gathering statistics and figured out that this particular
radioactive substance has a 50% chance of decaying within the course
of the hour, and thus a 50% chance of not decaying. Let us also
assume, as was believed by some physicists at the time, that only
conscious observers can cause the superposition state to “collapse”
to a definite event. Then, the whole system in the steel chamber is
quantum, and the cat has a 50% chance of being alive and a 50%
chance of being dead. Only when an observer opens the door will
the fate of the cat be determined. So, the question that is posed by
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this famous thought experiment is: “What/who decides if a quan-
tum system stops existing as a superposition and becomes a definite
state?”

In fact, the resolution to the paradox is that not only conscious
observers can cause the quantum superposition to collapse, but any
interaction of the quantum state with its environment can cause the
state to collapse to a definite event [14]. In this steel chamber, there
is the radioactive substance, the Geiger counter and the cat. The fate
of the cat is determined way before a conscious observer opens the
door to look.

To summarize, the radioactive substance is a quantum system
that exists in an equal superposition of decaying and not decaying
but with the cat and the Geiger counter in the box, this indetermi-
nate state has probabilistically collapsed. Thus, the substance has
either decayed or not so that the Geiger counter is not triggered and
the cat remains alive OR the Geiger counter is triggered and the
cat is poisoned, each with 50% chance of occurring. In other words,
it has become a definite or classical event. In general, the thought
experiment is used to illustrate that an observation or measurement
is not necessarily performed by a so-called “conscious” observer. It
can be thermal effects in the environment or a cat that does not know
anything about radioactivity!

Checkpoint Exercises

1. A quantum state can exist in a superposition which can be
described by linear algebra. This is because quantum mechanics
is a linear theory similar to classical Maxwell equation.

a. Based on what we have learned so far about superposition,
what are the two independent states (or independent vectors)
for the radioactive substance?

b. What are the scaling factors for those independent states?
Write the superposition state for ∣ψ⟩. (Hint : Start with what
we know about the probabilities of getting ∣0⟩ and ∣1⟩ and then
normalize the state.)

2. We have learned now that quantum states can be disturbed/mea-
sured by any interaction they have with the outside the world.
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When does the superposition state of the radioactive particle col-
lapse? (Hint : Think about everything that is inside the steel cham-
ber with the radioactive particle.)

3.1 Measurement of Quantum States

In the Schrödinger’s cat example, we only briefly discussed measure-
ment or observation of quantum states and the idea of the super-
position state probabilistically collapsing when it is observed. This
observation or measurement can be a conscious observer like us, con-
ducting an experiment, and interacting with the quantum object to
learn about it. It could also be the environment itself! Quantum
states are extremely fragile and retain their superposition in well-
isolated and/or sub-Kelvin temperatures (close to absolute zero2).
This means that we should be aware of thermal effects, which always
exist at finite temperature. If the temperature is large enough (e.g.
room temperature), the superposition could collapse (e.g. supercon-
ducting qubits). This is one of the reasons why we do not encounter
quantum behavior in our macroscopic experience. The other reason
is dissipation. It is important to mention that quantum behavior
can be observed at millimeter scale when temperature is low enough
(compared to qubit energy) and dissipation is removed.

Another reason why we do not see quantum effects in everyday
objects is because quantum objects have energy quantization which
exists at atomic and subatomic distances characterized by the unit
angströms (Å) that is of the order of 10−10 m. Energy quantization
means that quantum objects can only have certain energies, and in
between two energies, there is nothing (only observable if tempera-
ture is smaller than quantization energy). This is something that we
cannot see in a macroscopic object since they have so many of these
atoms bonding together. As a result, the energy spectrum becomes
extremely dense and appears pretty much continuous, as shown in
Fig. 3.2.

2Absolute zero or 0 K (−459○F) is, as it sounds, the lowest absolute tempera-
ture that can be achieved, where essentially all motion of particles stops. While
absolute zero can never be reached, experimenters have gotten very close. Tem-
peratures around 10 mK can be routinely achieved using dilution refrigerators.
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Figure 3.2. Quantum objects like an atom have discrete energy levels, while
classical objects like a metal rod appear to have continuous energy levels.

In this section, we discuss in detail how a quantum state is mea-
sured assuming that it is well isolated, and we are experimenters
trying to study it. The key takeaway should be understanding what
the measurement basis or computational basis is and how pro-
jective measurement work.

3.1.1 Spins in Magnetic Fields

One important physical example to demonstrate how the choice of
measurement basis affects measurement of quantum systems is the
Stern–Gerlach experiment that we briefly discussed in the introduc-
tion. We know that atoms and subatomic particles such as electrons,
protons and neutrons have some intrinsic properties like charge and
weight. The Stern–Gerlach experiment was critical in showing the
existence of another intrinsic property called spin. It’s difficult to
explain what spin is exactly because there is no direct analogue to
classical physics, but it exists nonetheless!

In the Bohr version of an atom, there is a dense nucleus in the
middle and electrons orbiting around this nucleus in specific orbits
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corresponding to the energy levels of the atom. Since electrons are
moving charged particles, a current is induced around this “orbit”
and therefore a magnetic field. The Bohr version of the atom can
also be considered as a “planetary model” of the atom where elec-
trons move around in quantized or specific energy levels. Although
this is an intuitive understanding from a classical perspective, this
description was not correct because electrons aren’t really in orbits
but rather in a “cloud” around the nucleus. This means that there’s
no way to know where the electron is at any given point in time.
Bohr’s model is accurate for the hydrogen atom which only contains
one electron, but for atoms with multiple electrons, it is merely an
approximation!

Experimental Details

We can think of the electron in the orbit as a loop of current I and
area A produces a magnetic moment denoted μ:

μ = IA
The current due to a charged particle like an electron is simply

I = e
2πrv, where e is the charge of the electron moving around a cir-

cular orbit of circumference 2πr with velocity v. Then, the magnetic
moment can be expressed as

μ = v e

2πr
πr2 = er

2
v

Now, we will make one final substitution for the quantity known
as orbital angular momentum, L = mvr, where m is the mass of
electron in this case. This orbital angular momentum for an electron
moving around an orbit is analogous to the earth revolving around
the sun. So, we can finally express the magnetic moment as3

μ⃗ = e

2m
L⃗

3Note that angular momentum is actually defined as L⃗ = r⃗ × mv⃗. This is
a vector quantity that contains x-, y-, z-components and is computed by
taking the cross-product of the radius vector, r⃗ and velocity vector, v⃗. To sim-
plify the above derivation, we assumed that the velocity and the radius vec-
tor of the loop were perpendicular so that the magnitude of L⃗ was simply
∣L⃗∣ =mrv sin 90○ =mrv [11].
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Figure 3.3. Visualization of the spin of a quantum particle.

However, the earth also rotates around its own axis, so keeping
with the analogy, the electron could also rotate around its own axis
and possess a property known as intrinsic angular momentum or
spin, as is heuristically represented in Fig. 3.3.

Spin can be expressed as4

μ⃗s = g e

2m
S⃗

We are skipping the detailed derivation of this equation, but that
information is encapsulated in the additional dimensionless factor
g known as the g-factor. This is as far as the analogy of an elec-
tron being a sphere that rotates around its own axis can go. This
is because fundamental particles like electrons that cannot be sub-
divided into smaller components are considered to be point-like, yet
they still possess this property of spin. We may, for our own intuition,
think of these quantum particles as tiny spheres rotating about their
own axis. However, this is only a heuristic description and we know
this is not correct.

Particles that possesses a spin magnetic moment (like electrons)
experience a torque when an external magnetic field is applied, which
leads to a rotation about the origin. The vectors would trace out
equal cones opening in different directions as presented in Fig. 3.4.

4Again, spin is intrinsic angular momentum and is a vector quantity that con-
tains x-, y-, z-components.
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Figure 3.4. Spin 1
2
particles in an external magnetic field.

The electron can be considered as a spinning top or gyroscope
that creates a magnetic moment, S⃗. There are two cones traced out
because the spin of an electron could be either “spin-up” or “spin-
down.” If we only took the z-component of S⃗, Sz, then we could
measure the spin to be either +1

2 h̵ or −1
2 h̵, as shown in the figure.5 If

we tried to measure x- or y-components of S⃗, we would also measure+1
2 h̵ or −1

2 h̵. Other particles like protons and neutrons are also spin 1
2

particles, so they also have two orientations along any axis: “spin-up”
or “spin-down.”

The original setup of the Stern–Gerlach experiment measured the
z-component of spin for neutral silver atoms going through a non-
uniform magnetic field which is now known as a Stern–Gerlach appa-
ratus or SG apparatus [25]. Neutral atoms are used because it can
be very difficult to observe the quantized spin effects when working

5The constant h̵ is known as reduced Planck’s constant and is fundamental to
quantum mechanics and has units of angular momentum (kg ⋅ m2/s).
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with charged particles like electrons alone.6 So, how could these neu-
ral silver atoms then be used to show the existence of spin? Well, a
silver atom is composed of 47 electrons, 47 protons and somewhere
between 60 and 62 neutrons (depending on the isotope used). Protons
and neutrons are much heavier than electrons,7 so they have negligi-
ble contribution to the magnetic moment that we derived, which was
inversely proportional to mass. Now, with a quick look at the elec-
tron configuration of silver, we find that the outermost shell contains
only one electron which gives the total contribution to the magnetic
moment of the atom.

Measurement of Spins

Let’s suppose we have a source of silver atoms going through one by
one into the SG apparatus so that we can measure their spin [26].
Its outer electron comes in at some arbitrary spin orientation, ∣ψ⟩,
and goes through magnetic field oriented mostly in the z-direction
which orients the spin axis of the electron along what we consider
the z-direction and thus we can observe the possible outputs ∣↑⟩ or∣↓⟩, as shown in Fig. 3.5.

These states ∣↑⟩ or ∣↓⟩ are the states that make up the z compu-
tational basis. The electron is initially in an arbitrary superposition
state:

∣ψ⟩ = α ∣↑⟩ + β ∣↓⟩
Once the electron goes through the SG apparatus, it will either

collapse to the ∣↑⟩ or ∣↓⟩ state with a 50% chance of either state to
occur. If we then were to send the resulting state through an SG
apparatus oriented in the x-direction, then we would measure ∣→⟩ or∣←⟩ with a 50% chance of either state occurring. The total proba-
bility of measuring either of these states is only 25% of the original.
It is clear that the choice of basis greatly influences the results of
measurements. Basically, we can think about the basis states as the

6An electron in the presence of a magnetic field experiences a Lorentz force
given as qv⃗× B⃗, where q is the charge of the electron. As a result, their trajectory
will be curved and they tend to have large deflections when traveling through a
magnetic field.
7The mass of protons and neutrons is about 2000 times more than the mass of

an electron!
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Figure 3.5. The input to the SG apparatus is a free electron, ∣ψ⟩, with arbi-
trary spin orientation and the outputs are the computational basis states for the
z-components, ∣↑⟩ or ∣↓⟩.

axes which provide us with orientation in the space. Physically, it
would be the alignment of our measurement apparatus. In the case
of the SG apparatus, it is the magnet that is set up to measure some
specific component of the spin.

Now, because of the quantization of quantum states, when a mea-
surement is performed, the result can only be one of the basis states.
This is because the measurement apparatus can only detect those
basis states, that is how it is set up. However, prior to measurement,
the quantum state is in superposition, and the result when measured
is probabilistic. The probability of getting ∣↑⟩ is ∣α∣2 and ∣↓⟩ is ∣β∣2,
and these two values must add up to one:

∣α∣2 + ∣β∣2 = 1
This is the physical meaning of the normalization condition we intro-
duced in Chapter 2. Furthermore, the states ∣↑⟩ and ∣↓⟩ are orthog-
onal, so ⟨↑∣↓⟩ = 0, so they do not overlap with each other. The
conclusion here is that the basis must be chosen carefully because
once a quantum state is measured, the state prior to measurement is
destroyed!

Checkpoint Exercises

1. If a source of silver atoms is sent through the SG apparatus where
its magnetic field is oriented in y-direction, what would we see on
the screen?

2. Random electron spins are sent through two consecutive SG appa-
rati both with magnetic fields oriented in the z-direction, what is
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Figure 3.6. Figure for Question 2.

the output of the second apparatus and what is the probability of
getting that output (Fig. 3.6)?

3. Random electron spins are sent through the following SG apparati.
What is the final output? What is the final probability of getting
either “spin-up” or “spin-down,” considering the entire sequence
shown in Fig. 3.7?

Figure 3.7. Sequence for Question 3.

3.1.2 Light Polarization

What we see as visible light is just electromagnetic waves that are
oscillating in spacetime. As we know, in vacuum, these waves move at
the speed of light, c = 2.998 × 108 m/s, but in other media like water
or glass, they move at a slower speed. However, there is no media
where the waves move faster than c. Light also has other proper-
ties. For example, polarization is a property of light that defines the
geometrical orientation of the oscillation which is perpendicular to
the direction of propagation or the direction the wave is moving.
If we consider a single-mode laser, which emits coherent light that
can be focused to a tightly contained spot in space, the laser will
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Figure 3.8. Red arrow denotes vertically polarized light. Blue arrow denotes
horizontally polarized light. Green arrow indicates linearly polarized light at a
45○ angle.

be shining light outward, say in the z-direction, while the electric
field (which may be described by some sinusoidal wave) is oscillat-
ing in the xy-plane. A field that oscillates in the horizontal direction
(x-axis) is known as horizontally polarized light, and we will denote
the unit vector of this direction as ∣→⟩ = (10) or ∣H⟩ for horizontal.
A field that oscillates in the vertical direction (y-axis) is known as
vertically polarized light and we will denote the unit vector of this
direction as ∣↑⟩ = (01) or ∣V ⟩ for vertical.

Light can also be linearly polarized at an angle. For example, we
can have linearly polarized light at 45○, denoted ∣↗⟩ (∣D⟩ meaning
diagonal) which can be understood as an equal superposition of hor-
izontally and vertically polarized light. The orthogonal vector to ∣↗⟩
is ∣↘⟩ (∣A⟩ for anti-diagonal):

∣↗⟩ = ∣D⟩ = 1√
2
(∣→⟩ + ∣↑⟩) = 1√

2
(1
1
)

∣↘⟩ = ∣A⟩ = 1√
2
(∣→⟩ − ∣↑⟩) = 1√

2
( 1−1)

The reason why we have 1√
2
scaling the two horizontal and vertical

unit vectors is because we also want ∣↗⟩ to be a unit vector in this
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45○ direction, and we know that unit vectors must have magnitude
of 1:

∣ ∣↗⟩ ∣ = √⟨↗∣↗⟩ =����( 1√
2
)2 + ( 1√

2
)2 =√1

2
+ 1

2
= 1

We can also generate circularly polarized light, in which the electric
field oscillates in circular fashion clockwise, ∣⟳⟩, or counterclockwise,∣⟲⟩. Circularly polarized light in the clockwise direction may also
be denoted as ∣R⟩, implying “right-handed,” while the light in the
counterclockwise direction is denoted as ∣L⟩, implying “left-handed”
as represented in Fig 3.9.

Circular polarizations can occur when we shift the phase of the
electric field by ±90○. So, we would have the horizontal and vertical
components in equal superposition but with a phase difference of
90○. This phase difference occurs when we multiply ∣↑⟩ state by the
imaginary number i, which we learned in Chapter 1 represents a 90○

rotation:

∣⟳⟩ = ∣R⟩ = 1√
2
(∣→⟩ − i ∣↑⟩) = 1√

2
( 1−i)

∣⟲⟩ = ∣L⟩ = 1√
2
(∣→⟩ + i ∣↑⟩) = 1√

2
(1
i
)

Light polarization is widely used to measure materials and
molecules because they tend to rotate the polarization of light that

(a) (b)

Figure 3.9. (a) Right-handed polarization is in the clockwise direction;
(b) left-handed polarization is in the counterclockwise direction.
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passes through them. Substances such as sugar water, collagen and
insulin are considered optically active because they change the polar-
ization of light that passes through them. So, light polarization has
nothing “inherently” quantum about it, but it is light itself which
has a quantum description. Classically, we know that light is electro-
magnetic waves, but its quantum description is the photon which is
an indivisible bundle of energy. We may think of the photon as an
infinitesimal blip of light that does not extend over any distance but
has some polarization. Single photon emitters have been researched
and can be used along with optical components such as polarizers,
mirrors, beam splitters, and crystals to manipulate the polarization
of the photon and thus encode information in it. This forms the basis
for optical quantum computing.

Checkpoint Exercises

1. Express the vertical polarization state in the {∣↗⟩ , ∣↘⟩} basis.
2. Express the horizontal polarization state in the {∣⟳⟩ , ∣⟲⟩} basis.
Measurement with Light

The first step to understanding measurement is to have an intuitive
idea about the computational basis. Suppose that a light wave is
coming in at a 45○ angle, which we can denote as ∣↗⟩, but we only
have polarizing filters positioned ∣↑⟩ and ∣→⟩. Well, we know that ∣↗⟩
is equally composed of ∣↑⟩ and ∣→⟩. Applying either polarizer will
allow that component through. Note in Fig. 3.10 that after applying
a polarizer and analyzer in case 1, the information about the original
wave, ∣↗⟩, is gone, and we only have the ∣↑⟩ component. Of course,
if we run this wave through the ∣→⟩ polarizer, we would expect no
light to go through because there is no ∣→⟩ component in the ∣↑⟩ light
wave.

However, we can change that second polarizer to ∣↗⟩ instead of
the ∣→⟩ polarizer for the third case in the figure. In this case, we know
that ∣↑⟩ is equally composed of ∣↖⟩ and ∣↗⟩. Thus, we would observe
the ∣↗⟩ component. Once again, information about the incoming ∣↑⟩
wave is destroyed with this choice of measurement bases.
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Figure 3.10. Light waves going through polarizers.

Recall that waves have some amplitude and frequency associated
with them. When the ∣↗⟩ goes through the ∣↑⟩ polarizer, the ampli-
tude of the wave is not the same. The resulting wave after the polar-
izer is 50% of the original amplitude of the ∣↗⟩. If we were to send
the ∣↑⟩ wave through a ∣↗⟩ polarizer than once again, we would get
50% of the original amplitude of the ∣↑⟩, which is 25% of the first ∣↗⟩
wave.

So, how does this relate to qubits? Light obeys Maxwell’s rules
of electromagnetism which is a linear theory. Qubits obey quantum
rules through the Schrödinger equation which is also linear. This is
in contrast to Newton laws of motion for particles which is a non-
linear theory. Hence, there is a close connection between light waves
and qubits! The takeaways are that the choice of polarizing filters
sets the computational basis which are the results of measuring or
observing the system. The filter causes the original state to collapse
to one of the basis states. It is always best to choose two directions
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that do not overlap with each other (orthogonal), like the ∣↑⟩ and ∣→⟩
polarizers, which you can always distinguish unambiguously from
each other. Now, we see that the act of measurement is destructive
because it forces the original state into one of the basis states. How-
ever, this is a necessary evil because otherwise we would not get any
information!

Checkpoint Exercise

Consider light polarized in the 45○ direction, passing through a ∣↑⟩
polarizer, then another ∣↗⟩ polarizer and finally a ∣→⟩ polarizer.
Label the quantum state of the photon before passing through each
polarizer and the effect of the polarizers on the amplitude of the
photon state.

3.2 Postulates of Quantum Mechanics

In mathematical terms, a postulate is a statement that is taken to be
true. In the case of quantum mechanics, these postulates were sum-
marized after many aspects of the behavior of quantum states were
tested theoretically and experimentally. The goal is to summarize the
fundamental elements that make up the theory [26]:

1. The state of a quantum system is completely specified by a func-
tion, ψ, the wavefunction, that can be represented as a complex

vector ∣ψ⟩ = (αβ ). The complex probability amplitudes are α and

β. The squared magnitudes of these quantities, ∣α∣2 and ∣β∣2, repre-
sent the probability of finding the system at a particular location
after some time. For example, in the Schrodinger cat example, the
radioactive particle has a 50% chance of decaying or not decay-
ing. The corresponding probability amplitude would be 1√

2
which

when squared yields 1
2 . As a result of this probabilistic interpre-

tation, ∣α∣2 + ∣β∣2 = 1, or in other words, ∣ψ⟩ must be a unit vector.
2. Every observable in classical mechanics, such as position, veloc-

ity, momentum, and energy, corresponds to a linear operator in
quantum mechanics.
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3. The measurement results of any observable are the eigenvalues
of the operator that represents it. For example, in the Stern–
Gerlach experiment, spin is the observable or quantity that is
being measured. Eigenvalue +h̵/2 corresponds to measuring the
state ∣↑⟩ and eigenvalue −h̵/2 corresponds to measuring the state∣↓⟩. Any arbitrary spin state that goes through the apparatus will
always yield either ∣↑⟩ or ∣↓⟩.

Homework 3

Let’s consider an optical setup called a Mach–Zehnder Interferome-
ter, which is set up on Quantum Flytrap, as shown in Fig. 3.11. You
may click on experimental setups →Mach–Zehnder Interferometer to
use the pre-made setup. For more information on Quantum Flytrap,
refer to Appendix B.

This setup is used to determine a phase shift between a pho-
ton whose path is split in two using a beam splitter. In one path
(transmitted in this case), the photon encounters some medium or
sample, like glass, which may alter its phase. The photon is then

Figure 3.11. Path and corresponding phase shifts for the initially split photon.
The red triangle is a laser source, the gray blocks are mirrors, the blue blocks are
beam splitters and the curved square plate between the beam splitter and the
mirror on the top row is a piece of glass whose refractive index can be changed.
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reflected off of a mirror and travels to second beam splitter before
being detected. In the other path (reflected in this case), the photon
reflects off a mirror and travels to the second beam splitter before
being detected.

1. Without altering the phase of the glass yet, send a couple of pho-
tons in using the “Loop” feature. What do you observe?

2. Now, change the phase of the glass to 0.5. What do you observe
now?

3. Recall that beam splitters can introduce a phase shift in reflected
light. In this virtual optical table, the beam splitter is “symmet-
ric,” implying that on each side light is reflected, a 90○ phase shift
is induced, and both of these phase shifts add up to 180○ or π, as
we discussed before for a non-symmetric beam splitter. Use the
backward and forward buttons to observe the phase changes in
the split photon as it goes through its path and verify the arrow
directions and phases indicated in Fig. 3.11.

4. Now, perform a similar analysis on the case when the phase of the
glass is 0.5.

5. What occurs to the photon path when the glass is set to a 0.25
phase shift?
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Chapter 4

Single Qubit Representation and
Measurement

In this chapter, we develop a visual representation of a single qubit
based on what we have learned so far. A single qubit is a two-level
quantum system that can be represented as a complex 2D vector.
We will show that the 2D complex vector, can be mapped to a 3D
vector so that we can visualize it.

So far, we have represented the qubit as a superposition of the
unit vectors |0〉 and |1〉:

|ψ〉 = c1 |0〉+ c2 |1〉
where the scaling coefficients, c1 and c2, may be complex. These com-
plex coefficients must satisfy the following normalization condition
for |ψ〉 to be a unit vector:

|c1|2 + |c2|2 = 1

If we rewrite the complex coefficients in terms of Euler’s formula
as we learned in Chapter 1, then we recover an intuitive connection
between representing |ψ〉 as a 2D complex vector and as a vector on a
unit sphere called the Bloch sphere, whose location can be defined in
terms of two angles using spherical coordinates. This representation
will allow us to visualize how the state of the qubit changes when we
operate on it with quantum gates.

95
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The quantum gates we will cover include the Pauli matrices, rota-
tion matrices and more. We will also go into more detail about how
measurement works and the importance of choosing the right com-
putational basis to measure quantum states, generating probability
distributions, and calculating expected values.

4.1 Bloch Sphere

To motivate the discussion of mapping the complex vector |ψ〉 to a
point on a unit sphere, we use the analogy of thinking of the qubit
as a globe where north pole is |0〉 and the south pole |1〉, as shown
in Fig. 4.1.

The arbitrary state of the qubit may be anywhere on the surface
of this globe and the scaling factors c1 and c2 can be translated to
two angles. This is analogous to specifying longitude and latitude to
give one’s position on Earth.

To mathematically see this mapping, we refer back to our super-
position state which we used to represent an arbitrary state for the
qubit:

|ψ〉 = c1 |0〉+ c2 |1〉

Figure 4.1. Analogy of the globe with a single qubit.
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We know that coefficients c1 and c2 are complex numbers and can
be expressed in terms of Euler’s formula,

c1 = r1e
iϕ1

c2 = r2e
iϕ2

Here, r1 and r2 represent the radii of the circles formed by the com-
plex numbers, and ϕ1 and ϕ2 represent the angles from the real axis
for each of the complex numbers. Let’s plug these into the superpo-
sition for |ψ〉:

|ψ〉 = r1e
iϕ1 |0〉+ r2e

iϕ2 |1〉
Note here that we still have four unknowns, r1, r2, ϕ1, ϕ2, just as
we would have had if we tried to solve for the complex coefficients
in standard form. Now, let’s simplify the equation by dividing both
sides by eiϕ1 :

|ψ〉 e−iϕ1 = r1 |0〉+ r2e
iϕ2−ϕ1 |1〉

Let’s define the relative angle of rotation in the complex plane to be
ϕ = ϕ2 − ϕ1 and cut down on one unknown angle:

|ψ〉 e−iϕ1 = r1 |0〉+ r2e
iϕ |1〉

Now, we see that the quantum state vector must have a magnitude
of 1, so let’s see if |ψ〉 e−iϕ1 also has a magnitude of 1:

| 〈ψ|ψ〉 e−iϕ1 |2 = | 〈ψ|ψ〉 |2(e−iϕ1eiϕ1)2 = | |ψ〉 |2 = 1

The e−iϕ1 factor is known as a global phase factor, and when we take
its magnitude we need to multiply by its complex conjugate and
which gives a magnitude of 1. This means that global phase factors
do not change the magnitude of the quantum state. Now, we still
have the familiar normalization condition:

| |ψ〉 |2 = |r1|2 + |r2eiϕ|2 = 1

Here, r1 and r2 are real numbers. As we just saw, when we take the
magnitude of a global phase factor like eiϕ, we will get 1. So, we can
reduce this to the following:

r21 + r22 = 1

This is the familiar Pythagorean identity, so we can define r1 =
cos θ and r2 = sin θ. We have now one less unknown because of the
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normalization condition. So, we only need to specify the relative angle
ϕ and the angle θ in order to specify our quantum state |ψ〉. Let’s
do a quick check to identify our angle ranges. If we want |ψ〉 = |0〉,
then we want θ = 0, but if we want |ψ〉 = eiϕ |1〉, then θ = π

2 . So, we
can represent |ψ〉 as

|ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
eiϕ |1〉

where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. We have reduced the amount
of unknowns from 4 to 2 because of the definition of the relative
angle ϕ = ϕ1 − ϕ2 and the normalization condition! Now, we have
mapped the representation of a qubit to a unit sphere, as can be seen
in Fig. 4.2, where we only need to specify θ and ϕ to visualize the
location of the qubit.

The main takeaway from this section is that the vectors |0〉 and
|1〉 form an orthonormal basis which means that |0〉 and |1〉 are
orthogonal to each other and each is normalized. This basis is defined
as the minimum number of vectors needed to describe the space that
we are working with. So, if we have one qubit, we need two basis
states to describe an arbitrary state |ψ〉. If we have two qubits, then
we need four basis states to describe an arbitrary state so we have the

Figure 4.2. Bloch sphere representation of a single qubit.
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set {|00〉 , |01〉 , |10〉 , |11〉}. For three qubits, we need 8 basis states
{|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉}. For n qubits,
we need 2n basis states.

An interesting point is that for n = 325, we would have 2325 ≈
7×1097 states. This is enough qubits to represent all the particles in
the universe. Such state storage is not possible with a classical com-
puter, which is why quantum computing can be so interesting for
simulating complex systems. Any simulations of molecules done on
classical computers ultimately relies on approximations in order to
reduce the complexity of the problem. In turn, we only get approx-
imate solutions to such problems because solving the full problem
has exponential complexity. However, there is a catch: we only have
access to 325 outputs or measurements. We cannot access the mas-
sive amount of stored information. This is where smart algorithms
come in to evolve such large states such that when you collapse
this large state by measuring it, you can get the answer you are
looking for.

4.2 Controlling Qubits

We will discuss some important single qubit quantum gates in this
section, implement them using Qiskit quantum circuits to visualize
what happens on the Bloch sphere, and calculate the eigenvalues and
eigenvectors for these gates. See Appendix A for more information to
set up Qiskit. Keep in mind that quantum gates are square matrices
which may contain complex elements. We represent our quantum
states with vectors and these matrices rotate our qubit but preserve
the dimensionality of the state.

4.2.1 Pauli Matrices

A set of important operations we will apply to our qubits are known
as the Pauli matrices or Pauli gates. They are 2×2 Hermitian matri-
ces that represent rotations around the Bloch sphere and form the
basis for mathematically representing spin. They are named after
the Austrian theoretical physicist Wolfgang Pauli, who provided the
basis for the theory of spin.
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These matrices/gates are listed as follows:

X =

(
0 1

1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0

0 −1
)

I =

(
1 0

0 1

)

As we have seen by now, it is very important to know the eigenvalues
and eigenvectors of the operators that we work with. Using the tech-
niques we have learned, we can easily see that all of the Pauli spin
matrices except for the identity matrix have the same eigenvalues:
+1 and −1. The eigenvalues are real, so all of these matrices cor-
respond to an observable quantity, which is the spin components in
this case. Knowing the eigenvalues, we can show that the eigenvalues
are as follows:

X : |u1〉 = 1√
2

(
1

1

)
|u2〉 = 1√

2

(
1

−1
)

Y : |v1〉 = 1√
2

(
1

i

)
|v2〉 = 1√

2

(
1

−i
)

Z : |w1〉 =
(
1

0

)
|w2〉 =

(
0

1

)

Qiskit Implementation: X-gate

We worked with the X-gate in the previous chapter and saw that we
could flip the |0〉 state to |1〉 and vice versa using this matrix. Let’s
construct a one qubit quantum circuit in Qiskit and visualize how
the |0〉 state is rotated on the Bloch sphere. In Qiskit, the default
qubit state is |0〉, so we can generate a circuit that contains one
quantum register to store the qubit we are working with and one
classical register to store the result of measuring that qubit if we
were to measure it. As we can see, the Pauli X-gate performs the
expected operation of flipping the qubit from |0〉 to |1〉, which on the
Bloch Sphere is shown as a 180◦ rotation. You can check that if you
apply the gate twice, you will end up back at |0〉.
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Qiskit Implementation: Y-gate

Now, let’s try to implement the Y-gate in Qiskit and see what hap-
pens. The Y-gate looks similar to the X-gate in that they both have
zeros across the diagonal elements. This means that we can expect
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that the qubit will be flipped from |0〉 to |1〉 and vice versa, but
because there is an imaginary term, this means that the qubit will
also pick up a phase of i or 90◦ when the gate is applied:

Y |0〉 = i |1〉
Y |1〉 = −i |0〉

Indeed, we observe that qubit was flipped, but we can see in the
printed state vector that it picked up a phase. However, with the
Bloch sphere, we will not be able to observe such global phases in
the measurement (assuming projection on z-axis). For single qubits,
only relative phases (when we have superposition of states) will be
observable.
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Qiskit Implementation: Z-gate

Finally, let us see the effect of using the Z-gate. In this case, we can
tell from the matrix that Z will do nothing to |0〉 and contribute a
global phase of 180◦ to |1〉 since there is a −1 in the second diagonal
term. In terms of the Bloch sphere, we would not observe anything
in Qiskit, but we can see from the Statevector simulator that when
we start with the |1〉 state, we pick up a negative sign because the
associated eigenvalue for the |1〉 state is −1.
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4.2.2 Rotation Gates

With the Pauli matrices, we observed 180◦ rotations and some global
phase shifts which were not observable. Using arbitrary rotations
which can be represented as unitary gates, we may fully rotate our
qubit and move it to any point on the Bloch sphere.

Some intuitive rotations we may think about are how to rotate
the qubit about the x-axis,1 denoted Rx(θ), y-axis, denoted Ry(θ), or
z-axis, denoted Rz(ϕ), where θ is the angle the qubit is being rotated
by from the z-axis and ϕ is the angle of rotation on the xy-plane, as
shown in Fig. 4.2:

Rx(θ) =

(
cos (θ/2) −i sin (θ/2)
−i sin (θ/2) cos (θ/2)

)
Ry(θ) =

(
cos (θ/2) − sin (θ/2)

sin (θ/2) cos (θ/2)

)

Rz(ϕ) =

(
e−iϕ/2 0

0 eiϕ/2

)

From the Bloch sphere, we know that 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π.
The easiest one to start with is Rz(ϕ). If the angle of rotation is

ϕ = 180◦, then we end up with the Z-gate. If we have |0〉 or |1〉 and
we apply the Rz gate, then all that happens is that the state picks
up a global phase factor which we said before is not something we
can observe on the Bloch sphere. It does not affect the magnitude of
the vector, and therefore, it won’t affect the measurement result. So,
if we measure Rz(ϕ) |0〉 = e−ϕ/2 |0〉 in the {|0〉 , |1〉} basis, we would
just get |0〉. However, if the state was not along the z-axis but instead
on xy-plane, then applying Rz(ϕ) would rotate the state around the
xy-plane by angle ϕ.

Next, a rotation using Ry(θ) would allow us to rotate our qubit
in the xz-plane. If we take |0〉 state and rotate it by θ = π

2 , then we
go from the z-axis to the x-axis fully and generate an equal superpo-
sition state in the {|0〉 , |1〉} basis. The same thing would occur with
Rx(θ) except now the rotations are on the yz-plane and that is why

1When we are rotating about some axis, say x-axis, it means imagine that with
your right hand, you point your thumb along the x-axis and curl your fingers in
the direction of the angle you are rotating, Positive rotations would be counter-
clockwise, so your thumb would point outwards, and negative rotations would be
clockwise, so your thumb would point inwards toward the page.
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we have imaginary components in the off-diagonal elements similar
to what we saw for Pauli Y matrix.

Qiskit Implementation of Rotation Gates

1. Rx(θ) where θ = 30◦ = π
6 rad:

As we can see on the Bloch sphere, Rx

(
π
6

)
rotated the qubit from

the default state of |0〉 state on the yz-plane and the state vector is
given in the printed array.
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2. Ry(θ) where θ = 30◦ = π
6 rad:

This time the operation rotated the qubit from the default state of
|0〉 on the xz-plane. Note that the |0〉 component is the same as in
the previous example, but in this case the qubit has a component
along the x-axis which is real because of the Ry matrix.
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3. Finally, let us keep the Ry

(
π
6

)
rotation and add a Rz

(
π
2

)
rotation

so that we will be able to observe the effect of the Rz gate:

As we can see, the Rz rotation further rotated our state from the
xz-plane back to the yz-plane.
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4.2.3 Arbitrary Rotation Gate

A general rotation, about any axis, n̂, takes the state

|ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
eiϕ |1〉

which provided a clear correspondence between the qubit and the
surface of the unit sphere and perform the following transformation:∣∣ψ′〉 = U |ψ〉

If we tried to transform the |0〉 state using general unitary, U , we
know it should take |0〉 → |ψ〉. This gives us the first column of the
unitary matrix. Then, the second column will tell us what happens to
the |1〉 state, since we are working in the {|0〉 , |1〉} basis. As we have
learned, the second column (in general) will consist of two complex
numbers, a and b, which have four unknowns:

U =

(
cos (θ/2) a

eiϕ sin (θ/2) b

)

However, we also know that the unitary matrix must satisfy the
constraint: U †U = I. Writing this down, we have

U †U =

(
cos (θ/2) e−iϕ sin (θ/2)

a∗ b∗

)(
cos (θ/2) a

sin (θ/2) eiϕ b

)
=

(
1 0

0 1

)

When we perform the matrix multiplication on the left-hand
side, we obtain 3 equations, which allows us to solve for: a =
−e−iλ sin(θ/2) and b = e−i(λ+ϕ) cos(θ/2). Note that we have intro-
duced a new phase angle, λ. This is because a and b are general com-
plex numbers, however, we saw previously that this complex phase
(also known as global phase) does not affect the measurement results
because for a general single qubit state |ψ〉 = α |0〉 + β |1〉, we need
to take |α|2 and |β|2 which makes the effect of multiplying by any
complex phase undetectable.



Single Qubit Representation and Measurement 109

Finally, we can express the general unitary gate as

U(θ, ϕ, λ) =

(
cos (θ/2) −eiλ sin (θ/2)

eiϕ sin (θ/2) ei(λ+ϕ) cos (θ/2)

)

We may express the Pauli gates and other single-qubit gates as
specific cases of this general unitary gate. Alternatively, the Pauli
gates also form a basis, {I,X, Y, Z}, with which any other single-
qubit gate can be written. For example, you may check that the
rotation matrices we introduced in the previous section can be equiv-
alently expressed as follows:

Rx(θ) = U(θ,−π/2, π/2) = cos(θ/2)I − i sin(θ/2)X
Ry(θ) = U(θ, 0, 0) = cos(θ/2)I − i sin(θ/2)Y
Rz(ϕ) = U(0, 0, ϕ) = cos(ϕ/2)I − i sin(ϕ/2)Z

Additionally, the unitary matrix may be used to express Clifford
gates. Clifford gates have the property of transforming one Pauli gate
to another Pauli gate. An important Clifford gate is the Hadamard
gate:

H =
1√
2

(
1 1

1 −1
)

= U(π/2, 0, π)

The Hadamard gate is the same as performingRy

(
π
2

)
operation. The

Hadamard gate is important because it generates equal superposition
states:

H |0〉 = 1√
2
(|0〉+ |1〉)

H |1〉 = 1√
2
(|0〉 − |1〉)

Let’s implement the gate in Qiskit, starting with the default state
|0〉:
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Now let’s have the initial state as |1〉:
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Checkpoint Exercises

1. Verify that the eigenvectors for the Pauli matrices are as given in
Section 4.2.1.

2. Show that the condition U †U = I in 4.2.3 yields a =
−e−iλ sin(θ/2) and b = e−i(λ+ϕ) cos(θ/2).
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3. What rotation gate(s) can we use to generate the following state?
Implement those gates and visualize this state in Qiskit:

|ψ〉 = 2√
3
|0〉+ 1√

3
|1〉

4. What gate(s) can act on the state |1〉 to produce the following
superposition? Implement those gates and visualize this state in
Qiskit:

|ψ〉 = 1√
2
(|0〉 − i |1〉)

4.3 Describing Measurement

In quantum mechanics, a state is represented by the probability
amplitudes, c1 and c2, which may be complex numbers. In order
to obtain probability, which has to be real and positive, we take the
squared magnitudes of c1 and c2 to get |c1|2 and |c2|2. The normal-
ization condition is therefore interpreted as probability conservation:

|c1|2 + |c2|2 = 1

When expressing an arbitrary qubit state |ψ〉, it is critical to specify
a basis in which we can write the state. For example, if we are trying
to measure the z-component of the spin, then we will express |ψ〉
in terms of the Z-basis which is our familiar {|0〉 , |1〉} set of basis
vectors. If we were measuring the x-component of spin, then we would
express |ψ〉 in terms of X-basis that are the states {|+〉 , |−〉}, which
may be written as a superposition of the Z-basis states:

|+〉 = 1√
2
(|0〉+ |1〉)

|−〉 = 1√
2
(|0〉 − |1〉)

Figure 4.3 provides a visual way of thinking about different basis
states. Two orthogonal states (no overlap with each other) will serve
as the axes with which we can specify a quantum state. States in
different bases may be rewritten in terms of each other as necessary.
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Figure 4.3. X-basis vs. Z-basis.

The way that we express the quantum state has a lot to do with
what we are trying to measure. The basis that the measuring device
works in is known as the measurement basis. Sometimes, we can
have a measuring device oriented along the state of the qubit, and
sometimes, the measurement device is fixed so it can only distinguish
states that are oriented along its direction. Thus, we would need to
rotate our qubit in some way to align with the basis of the measure-
ment device. For spin, in this case, the measurement basis can be
specified in terms of what component of spin we are interested in
measuring (up, down,...). It is critical to have the state we want to
measure align with the measurement basis and vice versa because if
we measure in the wrong basis, we will force the quantum state to
an incompatible basis and lose information. The act of measurement
destroys the original superposition implying that after measurement
we only have classical information.

Once we have expressed the state in the appropriate basis, then
we can interpret the coefficients in front of the basis states as giving
us the probability of getting the corresponding basis state. If we were
trying to measure the z-component of spin, then we would express
|ψ〉 in terms of the Z-basis, and we would have a probability of |c1|2
to get |0〉 and a probability of |c2|2 to get |1〉. We would obtain such
statistics by preparing many states |ψ〉, running them through a SG
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apparatus oriented in the z direction, and keeping track of the num-
ber of times we get |0〉 or |1〉. With these statistics, we could con-
struct a histogram to represent the probability distribution. Using
this probability distribution, we can estimate the expected outcome
from measuring the quantum state. The eigenvalues of the observable
or gate that we are measuring represent the outcome of the measure-
ment. For z-component of spin, the corresponding observable would
be the Pauli Z matrix whose eigenvalues are −1 and 1.

4.3.1 Computing the Result of a Measurement

Now that we are familiar with measuring a quantum state, we will go
through the mathematics that yields the measurement result. Recall
the concept of the inner product that we discussed before. The inner
product represents the projection of one vector onto another vector,
or how much they overlap. For example, if we have the vector |ψ〉
and we wanted to know how much this vector overlaps with |0〉 or
|1〉, we can take the inner product as follows:

〈0|ψ〉 = c1 〈0|0〉+ c1 〈0|1〉

But we said that |0〉 and |1〉 are orthogonal, so their overlap is 0
(〈0|1〉 = 0) and a vector completely overlaps with itself (〈0|0〉 = 1)
so that inner product is 1. Therefore,

〈0|ψ〉 = c1

Similarly,

〈1|ψ〉 = c2

All we have shown here is another way of saying the components of
|ψ〉 are c1 along |0〉 and c2 along |1〉. If we wanted to figure out the
probability that we obtain the state |0〉 or |1〉,

P(|0〉) = | 〈0|ψ〉 |2 = |c1|2

P(|1〉) = | 〈1|ψ〉 |2 = |c2|2
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Note, however, that if |0〉 and |1〉 were not orthogonal, we would not
be able to trust the results of our measurements because there would
be some overlap between the two states. This is why we will always
choose a computational basis that is orthogonal and normalized or
orthonormal.

Suppose we wanted to measure the x-component of spin of an
arbitrary single qubit state, |ψ〉 = c1 |0〉 + c2 |1〉. The observable
corresponding to this is the X matrix, so we can rewrite |ψ〉 in terms
of the eigenvectors of X:
Then, we can express |ψ〉 in this new basis:

|ψ〉 = d1 |u1〉+ d2 |u2〉

Note here that |0〉 and |1〉 as superpositions of |u1〉 = 1√
2

(1
1

)
and

|u2〉 = 1√
2

(
1
−1

)
:

|0〉 = 1√
2
(|u1〉+ |u2〉)

|1〉 = 1√
2
(|u1〉 − |u2〉)

Plugging into |ψ〉 = c1 |0〉+ c2 |1〉, we can solve for the coefficients d1
and d2 in terms of c1 and c2:

|ψ〉 =
(
c1 + c1√

2

)
|u1〉+

(
c1 − c2√

2

)
|u2〉

If we measured this state, our apparatus would either read +1,
which is the eigenvalue corresponding to |u1〉 with probability∣∣∣ c1+c1√

2

∣∣∣2 or −1, the eigenvalue corresponding to |u2〉 with probability∣∣∣ c1−c2√
2

∣∣∣2.
Knowing all this information, we may now compute the expected

value of performing an X-gate on the state |ψ〉 = c1 |0〉 + c2 |1〉.
Recall from our discussion of discrete random variables in Chapter
2. In this case, eigenvalues of the matrix can be considered as the
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random variables and the probabilities are part of the probability
mass function of getting one particular eigenstate of the matrix. So,
first, we rewrote |ψ〉 from {|0〉 , |1〉} basis in terms of the {|u1〉 , |u2〉}
basis and obtained the coefficients d1 and d2, which gave us the
probabilities of |ψ〉 being in either |u1〉 or |u2〉. In this case, the
expected value for applying the X-gate can be computed as follows:

〈ψ|X†X |ψ〉 =
∣∣∣∣c1 + c1√

2

∣∣∣∣
2

−
∣∣∣∣c1 − c2√

2

∣∣∣∣
2

The term 〈ψ|X†X |ψ〉 is simply the inner product of the resulting
state X |ψ〉, and the left side is each probability scaled by its corre-
sponding eigenvalue.

Let’s do some simple checks for this result. If |ψ〉 = |0〉, which
has c1 = 1 and c2 = 0 which corresponds to the positive z-axis of
the Bloch sphere or vice versa |ψ〉 = |1〉, where c1 = 0 and c2 = 1,
which corresponds to the negative z-axis of the Bloch sphere, then we
would not expect any x-component for spin, so the above equation
should equal 0. If |ψ〉 = |u1〉, then we expect to obtain +1, and if
|ψ〉 = |u2〉, then we expect to obtain −1.

It is important to note that the Hadamard gate allows us to switch
from the z-measurement basis, {|0〉 , |1〉}, to the x-measurement
basis, {|+〉 , |−〉}, where |+〉 ⇐⇒ |u1〉 and |−〉 ⇐⇒ |u2〉. So, the
Hadamard gate can be interpreted as a way to move information
around a qubit since it is exchanging information that could be mea-
sured from the X-basis to the Z-basis and vice versa.

Remember that in order for us to build up a probability distribu-
tion, we need many trials. We have to prepare a large number of |ψ〉
and measure them to gather enough statistics. Then, we are able to
calculate the average result that we would expect if we measured the
state |ψ〉. If we just have one |ψ〉, then we only have “one trial,” so
the apparatus will yield +1 or −1 and the superposition will collapse
to the corresponding eigenstate, |u1〉 or |u2〉, leaving us with limited
knowledge about the original state. This is the same thing we saw
with the light polarization example. Once the light passed through
the polarizer, where only what got through would continue to prop-
agate, the information about the polarization of the original source
of light is lost.
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4.3.2 Qiskit Example: Characterizing Single
Qubit States with Measurement

Thus far, we have learned about how to rotate qubits around the
Bloch sphere, studied the importance of measuring in the right basis,
and learned how to compute expected values of some observable
quantity like the spin in the x-direction. Now, let’s use this knowl-
edge to characterize quantum states. In practice, if we have some
unknown quantum state, then there is no way for us to know the
state vector. The only way we can interact with the state to learn
about it is through measurement. It turns out that if it is possible
to prepare many of the quantum states and perform measurements
in different bases, then we can get enough information to fully char-
acterize its state.

We will implement the solution to such a problem in Qiskit. The
ground rules are that Qiskit has a fixed measurement basis {|0〉, |1〉},
so we will only be able to gain insight into the z-component of the
state on the Bloch sphere. We can learn about the other axes if we
perform additional rotations on the qubit so that we can measure
other components. To perform measurements, we will be using the
qasm simulator backend which provides us with measurement counts
for the output of measuring a particular quantum state. We can
specify the number of times we measure. In practice, this means that
we prepare many identical quantum states and we measure each and
record the output. The data are organized using a histogram which
tells us what states were output and with what probability those
states occurred.

Let’s do an example with a state that someone else prepared a
quantum state and we do not know what it is. Let’s say the state is
given by the following circuit:
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If we are given such a quantum state and asked to figure out
its x-, y-, and z-components on the Bloch sphere, we need to per-
form thoughtful measurements of the qubit, knowing that the Qiskit
measurement is fixed to only measure along the z-axis. But we can
look at different components of the state is by performing additional
rotations. Specifically, we want to be able to rotate the x- and y-axes
to align with the default position of the z-axis. To move the cur-
rent x-axis to the position of the current z-axis, we need to perform
a rotation about the y-axis by 90◦ clockwise, as shown in Fig. 4.4.
To move the current y-axis to the position of the current z-axis, we
would need to rotate about x-axis by 90◦ counterclockwise, as shown
in Fig. 4.5.

Then we can calculate the expected value of measuring along each
of the axes and we would get the spin x-, y-, and z-components
of the state, where the eigenvalues for each are still 1, −1 and the
probabilities will be given from the histogram.

Measurement of the z-component

Let’s start off by first measuring the z-component which does not
require doing any rotation. We will use a function called “deepcopy”
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Figure 4.4. By performing a rotation of 90◦ clockwise about the y-axis, the
z- and x-axes swap so that the measuring device measures along x.

Figure 4.5. By performing a rotation of 90◦ counterclockwise about the x-axis,
the z- and y-axes swap so that the measuring device measures along y.

which essentially copies the Quantum Circuit object in Python. We
may physically interpret this action as preparing another state iden-
tical to the original so that we may just focus on measuring the
z-component. Physically, this can be done with physical quantum
systems that can be initialized through their ground states. Contin-
uing on from the previous code, we can write the following code,
where we are relabeling the “copied” circuit as “circZ” denoting that
we want to measure the z-component. In the “qasm simulator,” we
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specify 100 shots, meaning we prepared 100 states that are iden-
tical, and we measure each of them and record the output. Then,
with the probabilities we get, we can calculate the expected value for
measuring along the z-axis as follows, remembering that our random
variables are −1 and 1.

Ez = P(0)− P(1)

Therefore, using the equation from above, the z-component of this
qubit would be 0.89 − 0.11 = 0.78.
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Measuring the y-component

Now, let us repeat the same procedure by adding the necessary rota-
tion to swap the z- and y-axes through the 90◦ counterclockwise
rotation about the x-axis. The expected value of measuring along
the y-axis is still

Ey = P(0)− P(1)

So, the y-component for the qubit is 0.48 − 0.52 = −0.04. Glancing
back at the original state on the Bloch sphere, the state is positioned
on the xz-plane, so it makes sense that we do not really have any
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y-component. The reason why we still computed some y-component
is due to counting errors since we only have 100 counts.

Measuring the x-component

Finally, let us repeat the same procedure by adding the necessary
rotation to swap the z- and x-axes through the 90◦ clockwise rotation
about the y-axis. The expected value of measuring along the x-axis
is still

Ex = P(0)− P(1)

So, the x-component for the qubit is 0.81− 0.19 = 0.62
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Figure 4.6. With the Hadammard gate, the +x-axis is in the place of |1〉, but
it represents |0〉, while the −x-axis is in the place of |0〉, but it represents |1〉. So,
we have to swap the eigenvalues that correspond to these states.

It is interesting to note that instead of the 90◦ clockwise rotation
about the y-axis, we may also use the Hadamard gate which also lets
us swap the z- and x-axes, as shown in Fig. 4.6. The expected value
is still

Ex = P(0)− P(1)

We can implement this in Qiskit in a similar fashion. So, the
x-component for the qubit is 0.85−0.15 = 0.7, which is close to what
we got doing the y-rotation. Of course, the results are probabilistic,
so they will be different.
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Checkpoint Exercise

Your friend gives you a quantum state that can be represented by
the following circuit:

1. Implement the circuit in Qiskit and plot the quantum state on the
Bloch sphere to visualize it.

2. Now, pretend you do not know what the state is and perform
measurements to figure out the x-, y-, and z-components of the
state. Use 100 shots for running the “qasm simulator.”

3. Verify your results with the Bloch vector you plotted in number 1.
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4. Compute the magnitude of the vector:√
x2 + y2 + z2

Does it equal 1? Why or why not?
5. If you increase the number of shots to 1000, what is the magnitude

of the vector now? Is it closer to 1?

4.3.3 Projective Measurements of Observables

As we have seen thus far, measurement of qubits could be tricky
because we have to ensure that we are in the right basis so that
our measurement outcomes make sense. Suppose we are trying to
measure some particular observable, M , which is Hermitian because
M † = M . This operator will have real eigenvalues, λj, and an
orthonormal set of eigenvectors which we will denote as {|φj〉}. So,
M can be expressed as follows2:

M =
N∑
j=1

λj |φj〉 〈φj |

So now, if we have an arbitrary qubit, |ψ〉, we can write the state
in the eigenbasis of the observable we want to measure:

|ψ〉 = c1 |φ1〉+ · · ·+ cN |φN 〉
Now, depending on the observable we have, the results we obtain

from the measurement apparatus will be one of the eigenvalues, λj,
and these values must clearly be real so that we may measure them.
The probability that we read off this eigenvalue is |cj |2. The state of
|ψ〉 after measuring will be the eigenvector, |φj〉 that corresponds to
the eigenvalue, λj .

2The notation, |u〉 〈u|, represents an outer product which results in a matrix,
for example,

|0〉 〈0| =
[
1

0

] [
1 0

]
=

[
1 ∗ 1 1 ∗ 0
0 ∗ 1 0 ∗ 0

]
=

[
1 0

0 0

]
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4.3.4 No-Cloning Theorem

Our discussion of measurement gives rise to an important idea: since
the act of measurement is destructive, causing the collapse of the
superposition state, it would be impossible to clone or create an
independent and identical copy of some unknown, arbitrary quantum
state. In order to copy a state, we would need to first know what
that state is, but if we know the state, the superposition will have
collapsed, so we are unable to copy the original state.

This seems strange and limiting in some sense. For example, in
classical computing, the majority of error-correcting codes involve
using repetition or having backup copies of bits in case something
went wrong. In quantum computing, this is clearly impossible! How-
ever, there is a bright side to this phenomena: highly secure commu-
nication with quantum which we will discuss more of in the following
chapter.

Homework 4

1. Using the procedure we discussed for performing projective mea-
surements in Qiskit, implement a function that takes in the fol-
lowing inputs:

1. Quantum Register object,
2. Classical Register object,
3. Quantum Circuit object,
4. Number of shots to run the qasm simulator.

The output of the function should be an array or list object that
contains the x-, y-, z-coordinates of the state obtained using only
measurements from the qasm simulator.

The necessary imports to run your code are as follows:

#Import necessary packages to run code

import numpy as np

from math import pi

from qiskit import *

from qiskit.quantum_info import Statevector

from qiskit.visualization import plot_bloch_

multivector , plot_histogram

from copy import deepcopy
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You may take advantage of the following helper functions:

def getCounts (circuit , shots):

"""

Inputs: Quantum Circuit and number of shots

Returns: dictionary of measurement counts

"""

simulator = Aer.get_backend (’qasm_simulator ’)

circ_transpile = transpile (circuit , backend =

simulator )

result = simulator .run(circ_transpile ,shots =

shots).result()

counts = result.get_counts ()

return result.get_counts (circuit)

def getExpectationValue (counts , shots):

"""

Inputs: Dictionary of measurement counts and

number of shots

Returns: Expectation value

"""

E = (counts.get(’0’ ,0) - counts.get(’1’ ,0))/

shots

return E

2. Test your functions on the two example circuits shown in Figs. 4.7
and 4.8.

Figure 4.7. Circuit 1.

Figure 4.8. Circuit 2.
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Figure 4.9. Circuit 3.

Do some additional post-processing to convert the coordinates to
angles using the following:

tanϕ =
y

x

cos θ = z

Verify that if you plug these angles back into the Bloch State we
derived before, its close to the state vector output by the “Stat-
evector simulator”:

|ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
eiϕ |1〉 =

(
cos(θ/2)

sin(θ/2)eiϕ

)

Now, do one more case that is shown in Fig. 4.9.
You will find that there is a global phase inconsistency between
the method we are using and Statevector. Is this is a concern in
terms of measuring such a state?



Chapter 5

Applications with Single Qubits

5.1 Classical Cryptography

Cryptography is the art of concealing information from unautho-
rized third parties, while two authorized parties exchange informa-
tion. This notion has been around since ancient times and continues
to be used in the modern world for data protection in commercial
and public institutions. Binary strings or numbers that are randomly
chosen from a large set are known as keys and they provide the secu-
rity for cryptographic protocols, including encryption, authentication
and sharing.

There are two classes of keys: symmetric or public–private key
pairs. Symmetric keys consist of one key or a pair of keys that can
be easily computed from one to the other, and are only known to the
communicating parties. In this case, the involved parties must all
guard the key! Public–private key pairs comprise a public key which
is known to all and a private key which has to be guarded by the
owner.

The essential structure of a cryptographic scheme using a sym-
metric key is represented in Fig. 5.1. Before sending any secret infor-
mation, Bob (the sender) sends a plain text with a secret key to which
an encryption algorithm is applied to scramble the message, known
as the cipher text. The cipher text is unscrambled using a decryption
algorithm for Alice to read. The only way to understand the plain
text from the cipher text is by knowing the key, so some eavesdrop-
per, Eve, will be unable to deduce the secret message. In this case,

129
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Figure 5.1. Essentials of a cryptographic scheme using a symmetric key.

Figure 5.2. Essentials of a cryptographic scheme using public–private key pairs.

the shared key is the same for both encryption and decryption.
The protocol structure of a cryptographic scheme using a public–

private key pair is presented in Fig. 5.2. In this case, the public key
is used to encrypt Bob’s private message which can be decrypted
by Alice using the matching private key. Alice is the private key
owner and the one associated with the public key to maintain
confidentiality.
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It is fundamental that Alice and Bob establish keys of truly ran-
dom numbers, so that an unauthorized third party, Eve, cannot
deduce the key. Secondly, it is critical that Eve cannot intercept the
secret throughout the exchange between Alice and Bob. One extra
step to the process is the distribution of an open padlock in which
Bob (the sender) has to authenticate this padlock to verify that it has
not been tampered with and that it comes from the intended recipi-
ent, Alice. These padlocks are called “one-way” functions which are
mathematical expressions that are easy to compute but very difficult
to reverse. The most common example is the RSA public-key system
which relies on factorization of prime numbers. So, two prime num-
bers are very easy to multiply but if only the product is known, it is
very difficult to go backwards and find the two prime numbers that
were multiplied together.

5.2 Quantum Key Distribution

Quantum key distribution protocols could be one of the first appli-
cations of quantum information processing that exploits quantum
effects for security. The famous example we will discuss here is
known as the BB84 protocol that was first invented in 1984 by IBM
researcher Charles Bennett and Gilles Brassard from the University
of Montreal [27]. The goal of this protocol is to establish a secret
key that is known only to Alice and Bob. Alice and Bob want to use
this key to exchange secret messages and detect potential tampering
by Eve.

Consider that there are two channels of communication, a quan-
tum channel and a classical channel which can both be observed by
Eve, as shown in Fig. 5.3.

Firstly, over the quantum channel, Alice starts out by choosing
a random sequence of bits which can be generated using a random
number generator (e.g. 01101001). She also randomly chooses a basis
to encode each bit in the sequence. In this situation, Alice transmits
a photon for each bit where the polarization depends on the basis. As
we discussed before in the photon polarization example, the choice of
basis will determine our measurement results! In this case, we stick
with the following linear polarization bases:
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Figure 5.3. Quantum key distribution model and channels.

1. Standard basis (S):

0→ |↑〉
1→ |→〉

2. Diagonal basis (D):

0→ |↗〉
1→ |↖〉

When Bob receives the photons, he also randomly selects either
basis to measure the photons. Then, Alice and Bob use the classi-
cal channel to (1) check that Bob has indeed received each photon
Alice sent and (2) compare the bases that they used to encode and
measure the photons, respectively. If they both used the same basis,
Bob’s measured state agrees with the one Alice sent and if they
didn’t, there is only a 50% chance that Bob’s result matches what
Alice sent. Without actually revealing the bit values, they discard
the ones for which the choice of basis was different. On average, 50%
of Alice’s originally transmitted bits remain part of the shared key,
and depending on the level of security Alice and Bob want, they may
compare some of the bit values to identify if eavesdropping occurred
and discard the bits that do not match.
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Table 5.1. Generating a private shared key between Alice and Bob using
quantum key distribution.

Alice’s random bit sequence 0 0 1 1 0 1 1 0

Alice’s basis S S S D D S D S

Alice’s polarization |↑〉 |↑〉 |→〉 |↖〉 |↗〉 |→〉 |↖〉 |↑〉
Bob’s basis S D D S D S D D

Bob’s measurements |↑〉 |↗〉 |↗〉 |↑〉 |↗〉 |→〉 |↖〉 |↗〉
Private shared key 0 0 1 1

Table 5.1 shows an example of such a procedure.1

So, how can Alice and Bob identify interceptions from Eve? Well,
remember that over the classical channel, Alice and Bob only discuss
what bases they chose but NOT the bit values themselves, so Eve
cannot learn the key from listening to the classical channel. However,
she can try to intercept the photons transmitted by Alice through
the quantum channel. To do so, Eve has to send photons to Bob
before knowing what their choice of bases were since bases confirma-
tion between Alice and Bob occurs after Bob receives the photons.
However, if Eve sends different photons to Bob, then Alice and Bob
can detect the issue when they compare notes over the classical chan-
nel, while if she were to send the original photons to Bob, she would
not gain any information.

Eve can also try to measure the photons Alice is sending before
they get to Bob, but just like when Bob would measure the photons,
there is 50% chance that Eve will measure in the wrong basis and thus
cause a collapse of the initial states that Alice sent. Now, the photons

1Note that when the bases do not match, there is only a 50% chance that what
Alice transmitted will be measured by Bob, for example,

|↗〉 = 1√
2
(|↑〉+ |→〉

In this case, when Bob is in the diagonal basis and tries to measure a photon
whose polarization is in the standard basis which results in only a 50% chance of

measuring correctly
(
| 1√

2
|2 = 1

2

)
!
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Bob receives have been tampered with, so even if Bob measures in
the same basis as Alice, he can only measure the correct polarization
states 50% of the time. Of the bits that remain, after Alice and Bob
share what basis they used, there is a 25% chance that Bob measured
a different bit value than what Alice originally sent.2 This will be
detectable by Alice and Bob when they compare a subset of the bits
over the classical channel. If the bits agree, then they can use them
as the private key, otherwise they know that Eve has intercepted.

Eve’s problem is that she does not know what basis to measure
the photons in before Bob receives them. If she could know the basis,
then her interception would go unnoticed. The right way for her is
to try to copy the state of the photons and send the original to Bob.
Then, after learning the bases used while listening to the classical
channel, she can measure her copies. This is impossible, however,
because quantum states cannot be copied due to the no-cloning the-
orem! To copy something, it has to measured, and if a quantum state
is measured, one cannot reliably know what the original state was
unless the basis is known beforehand.

5.3 Quantum Bomb Detection

Physicists Avshalom C. Elitzur and Lev Vaidman published a paper
in 1993 concerned with interaction-free measurements [28]. This prin-
ciple was used to determine the existence of an object in some region
of space without directly interacting with it through the use of quan-
tum experiments. An intriguing example they proposed is to check a
bomb without exploding it. Suppose that we are in a quantum fac-
tory and have the task of testing a newly developed light-sensitive
bombs which have a special sensor installed. If a single photon hits
the sensor, the bomb will explode. If the sensor is defective, then we
consider the bomb to be a dud. However, we don’t want to destroy

2This is the same concept as we discussed in the light polarization example. If
the light wave coming in at a 45◦ angle, |↗〉, passed through a polarizer positioned
|↑〉, then we would get 50% of the original wave amplitude. If we pass this wave
through a |↗〉 again, then it will only be 25% of the original amplitude! This is
because of that mismatch in bases occurring in the first measurement.
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Figure 5.4. Setup of quantum bomb problem.

the entire factory, so we need a way of testing whether the bombs
are defective or not that guarantees with high probability that the
bomb will not explode.

5.3.1 Classical Approach

We can think of the bomb as a black box since we do not know
whether it works or not. Let’s consider a simple probabilistic
approach to test the bombs: we flip a coin and if heads (or |0〉) comes
up, we declare the bomb to be live without testing. If tails (or |1〉)
comes up, then we send a photon through and report the bomb as
a dud if it does not explode. With such an approach, half the time,
we will flip heads and can only correctly declare the bomb as not
defective only half of those times. Similarly, if tails are flipped, the
bomb will explode half of the time, but we can only be correct in
calling it a dud half of that time. So, our success rate is 50% which
is as bad as if we just tested each bomb one by one.

5.3.2 Quantum Setup

Now, perhaps using our knowledge of qubits, we can test whether
the bomb works without actually exploding it. To do so, we exploit
quantum measurement and quantum gates to increase our odds.

In the quantum setup of this problem, the bomb acts as a mea-
surement device for the incoming photons or qubits. If the bomb is
live, it performs a measurement on the qubit, and if the bomb is a
dud, it does not. By developing a quantum circuit that implements
some of the single-qubit gates we were introduced to in the previous
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sections, we can increase our odds of figuring whether the bomb is
live without exploding it [29].

Let’s consider the case that the incoming qubit (or photon) is in
a superposition:

|ψ〉 = α |0〉+ β |1〉
If the bomb happens to be a dud, then it does not perform a

measurement, so the output state of the qubit remains |ψ〉. However,
if the bomb is live, then the bomb measures the incoming qubit in
the {|0〉 , |1〉} basis. The result will be |0〉 with probability |α|2, so the
bomb will not explode even though it is live. On the other hand, there
is |β|2 probability, the outcome is |1〉 and the bomb will explode. So,
we must do something to increase |α|2 and thus lower |β|2.

First, we start with our qubit/photon in the |0〉 state and apply
some rotation to the qubit to put in superposition using the gate
U(θ, 0, 0), which we rename R(θ):

R(θ) =

(
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)

Thus, we have the qubit going through the bomb:

R(θ) |0〉 = cos(θ/2) |0〉+ sin(θ/2) |1〉
If θ = π

2 , then we would get the rotation gate:

R
(π
2

)
=

1√
2

(
1 −1
1 1

)

Thus, the qubit state would be |+〉 = 1√
2
(|0〉 + |1〉). So, if we

sent |+〉 through a defective bomb, we would just get |+〉 back. If
the bomb was live, it would perform a measurement and the output
state would be |0〉 50% of the time that the bomb has not exploded.
If we ran the output of the bomb back through the same rotation
gate, then we need to change the basis to the {|+〉 , |−〉} basis, so we
can appropriately measure the results of the output.3 If the bomb

3Note here that we want to distinguish |+〉 and |0〉, but their inner product
(you may verify) 〈+|0〉 = 1√

2
	= 0, and if because of the live bomb performs a

measurement, then we only obtain |0〉 25% of the time. But, we get the state |+〉
50% time when the bomb is a dud. So, we are exploiting this imbalance to ensure
we measure the |+〉 state correctly.
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was defective, we will obtain

R
(π
2

)
|+〉 = |1〉

Otherwise, if the bomb was not defective, we obtain |0〉 50% of the
time,

R
(π
2

)
|0〉 = |+〉

Now, there is a 50% chance from this result that we obtain either |0〉
or |1〉.

So, from the beginning, if the bomb was live, we had 50% chance
of getting |0〉 after it was passed through the bomb. Then, we rotated
again, so there was only a 50% chance there to get |0〉 at the output.
In the last measurement, we only had a 25% chance to measure |0〉.
Our overall success rate is therefore4:

1

2
+

1

2
· 1
4
= 62.5%

There is a 62.5% chance of identifying the bomb without exploding!
Can we do better?

Let’s try to rotate the qubit by the angle, θ = π
3 , and send it

through the bomb twice. So, our rotation gate is

R
(π
3

)
=

(√
3
2 −1

2

1
2

√
3
2

)

So, the input state will be

R
(π
3

)
|0〉 =

√
3

2
|0〉+ 1

2
|1〉

If the bomb is a dud, and we are sending this state through the
bomb and rotating it two more times, at the end, we will measure
and get |1〉 as expected because we have just rotated the qubit by π

2

4For any given bomb, 50% of the time, the bomb can be a dud and we always
can correctly identify the dud. The other 50% of the time, the bomb is live, but
we are able to say it’s not a dud by increasing our chances of measuring |0〉 at the
end. This computation of the success probability, P(success) = P(D) + P(UL),
where D stands for dud, and UL stands for live bomb that were not exploded.
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in total. If the bomb is live, the input state goes into the bomb once
and has a 3

4 chance of outputting |0〉 and a 1
4 chance of getting |1〉 and

detonating. Then, we run the |0〉 state through another R
(
π
3

)
which

goes through the bomb again. Now, the probability of detonating
(getting |1〉) is reduced to 3

4 · 14 = 3
16 , and thus, 9

16 of the time, the
output is |0〉 and it makes it through. Finally, it is rotated again to
ensure we can distinguish the original state from |0〉. So, at the end,
we measure |0〉, 9

16 · 34 = 27
64 . Our probability of success is therefore

1

2
+

1

2
· 27
64

=
91

128
≈ 71%

5.3.3 Generalization

Thus far, we saw that if we performed a π
2 rotation, we needed to

repeat the rotation twice, for a π
3 rotation, we repeated the rotation

three times. If we perform a rotation of angle ε = π
N , where N is the

number of repetitions by which we repeat the process of rotating the
|0〉 qubit and sending it through the bomb, then the probability of
getting |1〉 and the bomb detonating is5

sin2
( ε
2

)
≈ ε2

4

The total probability of setting off the bomb is

N sin2
( ε
2

)
≈ N ε2

4
=

π2

4N

Thus, the probability of success is

P(success) = 1− π2

4N

So, if we were to repeat the process N = 100 times, then we would
have ≈ 97.5% success rate of testing bombs and not exploding them.
Now, we have devised a safe way to test these bombs and not burn
down our quantum factory.

5As N gets really large, the angle ε gets very small, which allows us to perform
a Taylor expansion to the sine function for small ε. For small angles, sin θ ≈ θ, so
sin2 θ ≈ θ2.
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Homework 5

1. Alice and Bob are teachers that want to come up with exam ques-
tions and they want to communicate securely so that their very
tech-savvy student Eve does not learn the questions prior to the
exam. In order to communicate securely, they must establish a pri-
vate secret key because they know that Eve will try to eavesdrop
on their conversation. They decide it’s best to deploy the BB84
protocol, so they can detect whether Eve eavesdropped. They use
a quantum channel to send qubits and each randomly chooses
a basis to encode the key. They communicate over the classical
channel each time Alice sends the qubits, so she can verify that
Bob got them.

Suppose that the standard basis means Z-basis corresponding
to the polarization states |0〉, |1〉 and diagonal basis means X-
basis corresponding the polarization states, |+〉, |−〉. Let’s also
suppose that Alice has chosen the following random bit sequence,
basis, and Bob has chosen the following basis and performed the
measurements:

Table 5.2. Generating a private shared key between Alice and Bob using
quantum key distribution.

Alice’s random bit Sequence 0 0 1 1 0 1 1 0

Alice’s basis Z X Z X X Z X Z

Alice’s polarization |0〉 |+〉 |1〉 |−〉 |+〉 |1〉 |−〉 |0〉
Bob’s basis Z Z X Z X Z X X

Bob’s measurements |0〉 |0〉 |+〉 |0〉 |+〉 |0〉 |−〉 |+〉

Based on the table, what should be the privately shared key? Has
Eve eavesdropped? How do you know?

Followup Questions

a. Assuming Eve is sleeping and cannot eavesdrop, how many bits
should Alice randomly generate in order to use the BB84 proto-
col if she wants to have a bit-key string that is 256 bits? (Hint :
Consider what is the probability of Bob choosing the same basis
as Alice when he measures.)
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b. Now, Eve is awake. Alice and Bob compare the measurement bases
at the end of their transfer of bits but do not share information
about the bits themselves. What is the probability that Eve can
correctly guess the bit for a single bit key?

c. If Alice sends Bob 40 keys and they perform the protocol end-
ing up with a 20 bit key in which their bases matched, what is
the probability that Eve could have eavesdropped on all 20 bits
without being detected?

2. We have discussed how to resolve the Elitzur Vaidmann Bomb
problem. Now, let’s try to implement the problem in Qiskit. The
idea is if we have a bomb that is live, we want to rotate it by
the small angle ε and measure so that it can keep collapsing to
the |0〉 state and not detonate. If the bomb is not live, we rotate
and measure just once and get |1〉, but the bomb will not explode
because it is a dud. You may copy and use the following code
as a skeleton to set up your solution. The green text are Python
comments to help guide you through coding the solution.

from qiskit import *

import numpy as np

from math import pi

import matpotlib .pyplot as plt

N = 100 #Number of rotations performed

rotation_angle = pi/N #Angle of rotation

shots = 100 #Number of measurements performed

def elitzur_vaidmann_bomb (isBomb):

"""

Input: boolean object called isBomb.

1. isBomb = True , means the bomb is live .

2. isBomb = False , means bomb is a dud

Output: list of the number of measurements that

predicted the bomb but did not detonate it, measured

duds , and bombs that did detonate

"""

#Performing N rotations where each measurement will

be stored in the Classical Register

meas = 0
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#If we have a Live bomb

#Need to keep measuring after each rotation to

reset the state back to |0>

#Bomb is a dud

#Only need to measure once

q = QuantumRegister (1) #Setting up Quantum Register

with 1 qubit to go through the bomb

c = ClassicalRegister (meas) #Classical Register holds

each measurement made after each rotation

circ = QuantumCircuit (q,c) #Quantum Circuit object

#Loop to perform rotations and perform measurements

after each rotation if there is a live bomb

#.....

circ.measure(0, meas -1) #For a dud , we only measure

once .

simulator = Aer.get_backend (’qasm_simulator ’)

circ_transpile = transpile (circ , backend = simulator )

result = simulator .run(circ_transpile ,shots = shots).

result()

counts = result.get_counts ()

#Post -processing to make Histogram

predicted_bomb = 0

dud = 0

detonated = 0

if isBomb == True: #Bomb is alive

predicted_bomb = counts.get(’0’*meas) #predicted

bombs but no explosion

detonated = shots - predicted_bomb - dud

else : #Bomb is a dud

if ’0’ in counts:

predicted_bomb = counts.get(’0’ ,0)

dud = counts.get(’1’)

detonated = 0

return [predicted_bomb ,dud ,detonated ]



142 First Step to Quantum Computing: A Practical Guide for Beginners

Now, use the following code to plot your results when setting the
input to the function as both True and False. Plot the results as
Probability (%) vs. Predicted Bomb, Dud, and Detonated:

predicted_bomb ,dud ,detonated = #elitzur_vaidmann_bomb

(...)

#convert results to probabilities

predicted_bomb_prob = #...

dud_prob = #...

detonated_prob = #...

plt.xticks(np.arange (3), [’Predicted �Bomb ’, ’Dud’, ’

Detonated ’])

plt.bar(np.arange (3) ,[predicted_bomb_prob ,dud_prob ,

detonated_prob ])

plt.ylabel(’Probability ’);



Chapter 6

Two Qubits and Entanglement

Thus far, we have seen how to manipulate, represent, and measure
single qubits using linear algebra. However, a single qubit is not useful
in itself for solving the difficult problems that quantum computing
may be able to tackle. While superposition is an interesting prop-
erty of qubits, superposition exists classically with waves. Now that
we have a better understanding of how quantum mechanics works,
we are ready to tackle perhaps one of the strangest phenomena in
quantum physics: entanglement. This aspect of quantum comput-
ing is completely non-classical and holds the key to solving difficult
problems more efficiently. The main goal of this chapter is to dis-
cuss the concept of entanglement and see how we can generate Bell
states, which are the maximally entangled two-qubit states. Finally,
we discuss the famous EPR paradox, which is an interesting thought
experiment about entanglement, Bell’s theorem and the resolution
to the paradox.

6.1 Product States

We have learned that a single qubit is a two-level system, so the
dimension of the complex vector space we use to work with them is
d = 2. For single qubits, we saw that we needed two basis states to
fully represent any other state in the vector space. For two qubits, the
dimension of the complex vector space is d = 4, so we need four basis
states. This is because the dimension of the complex vector space
for qubits grows exponentially, as 2n, with the number of qubits, n.

143
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In this chapter, instead of having a 2D column vector for a single
qubit, we will have a 4D column vector for two qubits.

Using the standard basis, we will have our four basis states:

|00〉 =

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ |01〉 =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠ |10〉 =

⎛
⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠ |11〉 =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠

Now, we can write down the most general two-qubit state as

|ψ〉 = c1 |00〉+ c2 |01〉+ c3 |10〉+ c4 |11〉 =

⎛
⎜⎜⎝
c1
c2
c3
c4

⎞
⎟⎟⎠

The rules for measurement work in the same way. We need to
take the squared magnitude of the projection of the basis state with
the qubit state. For example, the probability to measure |00〉 is

P(|00〉) = | 〈00|ψ〉 |2 =

∣∣∣∣∣∣∣∣
(
1 0 0 0

)
⎛
⎜⎜⎝
c1
c2
c3
c4

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣

2

= |c1|2

Similarly, we would obtain

P(|01〉) = |c2|2 P(|10〉) = |c3|2 P(|11〉) = |c4|2

and again, we must satisfy the normalization condition:

| |ψ〉 |2 = |c1|2 + |c2|2 + |c3|2 + |c4|2 = 1

The procedure to normalize a two-qubit state is the same as
before:

|ψ〉
| |ψ〉 |

Now, let us understand how to generate these two qubits in more
detail using the tensor product.
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6.1.1 Tensor Product

In the two-qubit and multi-qubit case, we need to keep track of the
increase in the dimension of the Hilbert space. Mathematically, we
can think of joining two qubits as combining the two Hilbert spaces
in some way. For each qubit, we know that each individual Hilbert
space is noted as C2, and now, we want to go to C

4. The operation
that will take us there is called the tensor product.

Some information on notation and properties of the tensor prod-
uct operation to keep in mind are [30]:

1. The tensor product operation is written as ⊗.
2. Consider two vector spaces V and W , where v is an element of
V and w is an element of W . The tensor product takes the two
elements v and w and generates a new element v ⊗ w. This new
element belongs to a new object V ⊗W , which is called a tensor.
The dimension of the tensor is the product of the dimensions of
the two vector spaces V and W .

3. Recall our discussion about basis states from previous chapters,
let’s suppose that the set of vectors {vi} are a set of basis vectors
for V and the set of vectors {wi} are a set of basis vectors for W ,
the basis for V ⊗W is actually the set {vi ⊗ wi}.

4. The tensor product operation is associative implying that

(u⊗ v)⊗ w = u⊗ (v ⊗ w)

5. The tensor product is not commutative implying that

u⊗ v �= v ⊗ u

Computing the Tensor Product

Having some familiarity with the properties of the tensor product,
let us use it to derive a general two-qubit state. We know that each
qubit belongs to a 2D complex vector space denoted as C2, thus two
qubits belong to C

2 ⊗ C
2, which is a tensor with dimension four.

Let’s suppose we have the following two qubits:

|u〉 =
(
a
b

)
|v〉 =

(
c
d

)
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To derive the product state, |uv〉, we perform the tensor product
as follows:

|uv〉 = |u〉 ⊗ |v〉 =

⎛
⎜⎜⎝
a×

(
c
d

)

b×
(
c
d

)
⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
ac
ad
bc
bd

⎞
⎟⎟⎠

The tensor product is not a commutative operation, so the state
|vu〉 is different:

|vu〉 = |v〉 ⊗ |u〉 =

⎛
⎜⎜⎝
c×

(
a
b

)

d×
(
a
b

)
⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
ca
cb
da
db

⎞
⎟⎟⎠

We can also perform a tensor product of matrices. Let’s take some
matrices we are familiar with from Chapter 4. For example, suppose
we wanted to take the tensor product of a Pauli X-gate with a Pauli
Z-gate:

X ⊗ Z =

(
0 1
1 0

)
⊗
(
1 0
0 −1

)
=

⎛
⎜⎜⎝
0×

(
1 0
0 −1

)
1×

(
1 0
0 −1

)

1×
(
1 0
0 −1

)
0×

(
1 0
0 −1

)
⎞
⎟⎟⎠

X ⊗ Z =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠

Now, let’s use this new matrix we have constructed and operate on
the |01〉 state that we introduced in the previous section. Let us call
X ⊗Z, XZ, which is the lazy notation so that we don’t always need

to write the tensor product. We know that |01〉 = |0〉 ⊗ |1〉 =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠,
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so XZ |01〉 is

XZ |01〉 = X⊗Z(|0〉⊗|1〉) =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
−1

⎞
⎟⎟⎠ = − |11〉

It appears as though the X-gate acted on the first qubit and the
Z-gate acted on the second qubit. In mathematical terms, we want
to verify the following:

X ⊗ Z(|0〉 ⊗ |1〉) ?
= (X |0〉)⊗ (Z |1〉)

From the right-hand side of the above equation, we know that

X |0〉 =
(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉

and

Z |1〉 =
(
1 0
0 −1

)(
0
1

)
=

(
0
−1
)

= − |1〉

So,

(X |0〉)⊗ (Z |1〉) = |1〉 ⊗ (− |1〉) = − |1〉 ⊗ |1〉 = − |11〉
Thus, we have shown that

X ⊗ Z(|0〉 ⊗ |1〉) = (X |0〉)⊗ (Z |1〉)
In general, if we have some gates A and B, and two quantum

states |u〉 and |v〉,
(A⊗B)(|u〉 ⊗ |v〉) = (A |u〉)⊗ (B |v〉)

This is a useful mathematical property of tensor products which
saves some time in computing multiplication of vectors and matrices
of higher dimensions. In the case of two-qubit product states, we can
compute the result of each gate on the specific qubit it operates on
and this is determined by the order in which the gates are written.
As we saw in the above example, XZ means that X acts on the first
qubit and Z acts on the second qubit. We can also have two-qubit
operations that only change the state of one qubit. For example, IX
means identity is applied to the first qubit and X is applied to the
second qubit. As we saw before, the identity operation just gives you
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back the same state, so the IX-gate is a two-qubit gate that only
changes the second qubit.

Checkpoint Exercises

1. Show using the tensor product operation that the vectors |00〉,
|01〉, |10〉, and |11〉 are

|00〉 =

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ |01〉 =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠ |10〉 =

⎛
⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠ |11〉 =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠

2. Check if the following states are normalized. If they are not, nor-
malize them:

|ψ〉 = 1
2(|00〉+ |01〉+ |10〉+ |11〉)

|ψ〉 = 1
2 |00〉+ 1

4 |01〉
3. Perform the following tensor products:

X ⊗ Z(|0〉 ⊗ |+〉)
I ⊗ Y (|1〉 ⊗ |−〉)

6.2 Entangled States

The product we saw in the previous section are not entangled
because we are able to perform independent measurements on the
qubit, where knowledge from measuring one qubit does not tell you
anything about the others. In other words, measurements are not
correlated.

However, quantum states also have an interesting property in that
they may become entangled. Quantum entanglement occurs when
a group of particles are either generated from source, interacted
in some way, or are near each other spatially so that each parti-
cle in the group is not independent of the state of the others. This
means that measurements are correlated. In fact, entangled particles
may be separated from each other by a large distance and the mea-
surement would still be correlated. Entanglement is a phenomenon
that not only highlights the major differences between classical and
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quantum physics but also brings up many philosophical questions
about locality.1

6.2.1 Physical Generation of Entangled States

Physically generating entangled states still remains an open area
of research. Researchers are curious about new and useful ways to
generate entanglement for potentially realizing quantum networks.
Quantum networks rely primarily on efficiently generating entangle-
ment between qubits and photons since photons can travel for long
distances.

One way to generate entangled photons is using a process known
as spontaneous parametric down-conversion or SPDC [31]. The pro-
cess typically relies on a nonlinear crystal which splits a single photon
typically called a pump photon into pairs of photons called signal and
idler photons. The “spontaneous” part of the name is because there
is no applied field that stimulates the process. “Parametric” refers to
a process that depends on the electric field which is a vector quan-
tity. “Down-conversion” refers to the fact that a photon splits into
two lower energy photons. So, in simpler terms, this process takes in
a single photon and produces two photons that must satisfy energy
and momentum conservation.

The conservation of energy and momentum are related to the
frequency, ω, and propagation vectors, �k, of the input photon and
output photons by Planck’s constant, respectively:

�ωp = �ω1 + �ω2

��kp = ��k1 + ��k2

These equations are known as the phase matching conditions and
they tell us the frequency of the incoming light to the crystal must be
equal to sum of the frequencies of the two outgoing photons and sim-
ilarly for �k, the vector of propagation. The frequencies and directions
of propagation for the outgoing photons depends on the properties
of the nonlinear crystal, such as the index of refraction and angle

1In simple terms, the principle of locality means that an object is influenced by
its immediate environment, which entanglement seems to violate.
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of incidence of the incoming photon. Inside this crystal, the light is
reflected and refracted in complicated ways, which we will not go
into details here. The picture to keep in mind is that by sending in
a pump photon into the nonlinear crystal, we get an entangled pair
of photons (signal and idler).

When both of the outgoing photons have the same polarization,
this is called Type I down-conversion.2 Recalling from Section 3.1.2
on light polarization, |H〉 corresponds to a horizontally polarized
photon, and |V 〉 refers a vertically polarized photon, the general state
will be

|Φ〉 = 1√
2

(|H1H2〉+ eiϕ |V1V2〉
)

When the outgoing photons do not have the same polarization,
this is called Type II down-conversion, then the general state will be

|Ψ〉 = 1√
2

(|H1V2〉+ eiϕ |V1H2〉
)

These states are highly correlated and cannot be expressed as a prod-
uct state. This fact is what leads to the interpretation that an entan-
gled state cannot be fully described by the state of one of the photons;
the states of both photons are needed. In this case, it is the nonlin-
ear crystal that causes the signal and the idler to become entangled.
Experimentally, the special orientations of the crystal’s optical axis
are studied so that the incoming photon source (pump photons) can
be adjusted to generate outgoing photons that are entangled. To
deduce whether they are entangled, the correlations of the two out-
going photons are measured. This experiment would be done many
times and statistics would be collected in order to see this. In the
Type I down-conversion case, if one of the photons is either ordinary

2Type I spontaneous down-conversion occurs when the signal and the idler both
have ordinary polarization. In order to get correlated states, two nonlinear crystals
are used and they are oriented so that from the perspective of the pump pho-
ton, one of the crystals is rotated 90◦ about the direction of propagation of the
pump photon. Essentially, this is creating the horizontal (ordinary) and vertical
(extraordinary) basis, so now the pump appears as though it’s in a superposition
of ordinary and extraordinary polarizations when it interacts with the crystal.
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Figure 6.1. Entangled photons generated by sending coherent laser light
through a nonlinear crystal.

or extraordinary, the other will also be the same. In the Type II
down-conversion, if one of the photons is ordinary, the other will
be extraordinary and vice versa. Through many measurements, the
statistics tells experimenters if they are really generating entangled
photons or not.

For example, the result for Type II down-conversion can be under-
stood from Fig. 6.1. The generated photons are emitted in two cones.
The top and bottom cones have two different polarizations and the
additional phase ϕ is due to birefringence from the nonlinear crys-
tal which introduces a relative phase between the ordinary (typically
considered to be horizontal polarization) and extraordinary polarized
light (typically considered to be vertical polarization). In this case,
photons are found in a superposition where the signal and idler cones
intersect. At these intersection points, it is indeterminate what the
polarization of a photon was before a measurement was made and
this is why a superposition state results from the above equations.

Checkpoint Exercise

In Quantum Flytrap (see Appendix B), it is possible to create entan-
gled states using a BBO crystal which is an acronym for Beta Barium
Borate, a type of nonlinear optical crystal. Right click on the crystal,
select the different types of Bell states (labeled |Ψ±〉 and |Φ±〉) that
can be generated, and using the “Waves” view and the ket represen-
tation on the right-hand side of window, write down the Bell states
in the photon polarization basis.
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6.2.2 Generating Entanglement with Controlled
Quantum Gates

Controlled quantum gates or operations are formed by applying a
gate to one qubit where the outcome is conditioned or dependent on
the state of another qubit. For example, let’s say you want to flip the
first qubit if the second qubit is in the |1〉 state. This operation is
known as a controlled X-gate or CNOT gate because it performs a
Pauli X-gate on the second qubit conditioned on the first qubit being
in the |1〉 state. In fact, this gate corresponds to the XOR logic gate
in classical computing. This is just one example of a controlled gate.
In general, you can have a controlled gate that applies some arbitrary
rotation to the first qubit outcome conditioned on the second qubit.

Let us study the CNOT gate by using the truth table of the gate,
which tells us the outputs for some given inputs. Suppose that we
have two qubits, we saw before that the complete basis of two qubits
consists of the four basis states {|00〉 , |01〉 , |10〉 , |11〉}. If we want to
derive a matrix of the CNOT gate, we have to consider what this
gate will do to each of these basis states. Consider that this gate
flips the second qubit only if the first qubit is in the |1〉 state.

As we can see from the truth table in Table 6.1, we may
now express the CNOT gate as a matrix in the two qubit basis
{|00〉 , |01〉 , |10〉 , |11〉}:

CNOT =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

Table 6.1. Truth table for
the CNOT gate.

Before CNOT After CNOT

|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉
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In these control gates, the qubit that we do an operation on (in the
example above, the second qubit) is called the target qubit. The
qubit that controls whether we do an operation to the target qubit
is conveniently called the control qubit.

We can use the same procedure to derive other controlled Pauli
operations or controlled rotations about the x-, y-, or z-axes or any
arbitrary axis. So, if we keep the control qubit to be the first qubit
and the target to be the second qubit, then we can generate any
controlled operation in a similar way:

|00〉 �→ |00〉
|01〉 �→ |01〉

|10〉 �→ |1〉 ⊗ U |0〉
|11〉 �→ |1〉 ⊗ U |1〉

So, if we have some arbitrary single-qubit unitary gate parameterized
in terms of angles, U(θ, φ, λ), then we would obtain the following
controlled unitary gate, CU :

CU(θ, φ, λ) =

⎛
⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 cos(θ/2) e−iλ sin(θ/2)

0 0 eiϕ sin(θ/2) ei(λ+ϕ) cos(θ/2)

⎞
⎟⎟⎟⎠

We can now see the structure of the controlled operation. If the
control qubit is |0〉, we apply the identity gate as can be seen in the
first two rows and columns of the matrix. If the control qubit is |1〉,
we apply the gate of interest to the target qubit.

6.2.3 Bell States

Now that we’ve learned more about how entangled states could be
physically generated and have these new controlled gates in our arse-
nal, let us examine how to generate maximally entangled states.

We need to make use of the controlled gates that we have learned.
Recall in our discussion of spontaneous parametric down-conversion
that the way to generate entangled states is by having the pump
photon in a superposition state when it enters the nonlinear crystal.
The superposition state and crystal orientation would then determine
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which one of the maximally entangled states would be measured.
Now, in a more mathematical picture, the nonlinear crystal is really
serving as some sort of controlled operation.

Let the ordinary polarization be denoted by |0〉 and the extraor-
dinary polarization by |1〉. Now, let’s focus on one of the controlled
operations we just learned, say CNOT. We know that for this opera-
tion, we need a control and target qubit, where the control basically
signals whether or not to do an operation on the target. We will con-
tinue to stick with the convention that if the control qubit is |1〉, we
perform the operation on the target qubit.

Let’s try the case when the control qubit is in an equal superpo-
sition state and the target is in state |0〉:

|ψControl〉 = 1√
2
(|0〉+ |1〉)

|ψTarget〉 = |0〉

∣∣∣ψ̃〉 = |ψControl〉 ⊗ |ψTarget〉 = 1√
2
(|00〉+ |10〉) = 1√

2

⎛
⎜⎜⎝
1
0
1
0

⎞
⎟⎟⎠

Let’s take this state and apply CNOT:

CNOT
∣∣∣ψ̃〉 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ 1√

2

⎛
⎜⎜⎝
1
0
1
0

⎞
⎟⎟⎠ =

1√
2

⎛
⎜⎜⎝
1
0
0
1

⎞
⎟⎟⎠

So, we have ended up with the following state:

|Φ+〉 = 1√
2
(|00〉+ |11〉)

This is an example of a Bell state. Looking back at the sponta-
neous down-conversion section, we can compare and see that this is
one state that results from Type I down-conversion. This is a maxi-
mally entangled state because there is no way that we can decompose
this state into a superposition of product states. We can also generate
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the antisymmetric state by having the control as

|ψControl〉 = 1√
2
(|0〉 − |1〉)

so that we obtain the following state when applying CNOT:

|Φ−〉 = 1√
2
(|00〉 − |11〉)

The other two Bell states are

|Ψ±〉 = 1√
2
(|01〉 ± |10〉)

You will figure out how to generate these in the homework exercises
at the end of the chapter.

6.2.4 Quantifying the Degree of Entanglement

We know about how to generate maximally entangled states, but
what about a state that might not be maximally entangled, how can
we quantify its degree of entanglement? Well, one simple measure is
called concurrence. Suppose we have a general two-qubit state:

|ψ〉 = c1 |00〉+ c2 |01〉+ c3 |10〉+ c4 |11〉
The concurrence is defined as

C = 2|c1c4 − c2c3|
Note that for a maximally entangled state, like Bell states, the con-
currence will reach the maximum value of C = 1.

Now, suppose we have some state:

|ψ〉 = 1√
3
(|00〉+ |01〉+ |11〉)

Then its concurrence would be

C = 2

∣∣∣∣ 1√
3
· 1√

3
− 1√

3
· 0
∣∣∣∣ = 2

3

We can see here that this state, |ψ〉, almost looks like a Bell state,
but the correlation is not perfect because we have some component
of |01〉. So, this state is only partially entangled.
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Meanwhile, for a product state, we would have all the basis states
in the superposition, for example,

|+〉 ⊗ |−〉 = 1

2
(|00〉 − |01〉+ |10〉 − |11〉) (6.1)

Here, the concurrence would be

C = 2

∣∣∣∣−1

2
· 1
2
−
(
−1

2
· 1
2

)∣∣∣∣ = 0

Checkpoint Exercise

1. Using the Qiskit Quantum Circuits class, generate and visualize
all of the Bell states we discussed in the previous section. The
CNOT gate in Qiskit can be implemented as follows:

q = QuantumRegister (2)

c = Classical Register (2)

circ.cx(q[0], q[1]) #CNOT gate , where the first

argument specifies the control qubit and the second

argument specifies the target qubit

As we are working with two qubits, the Bloch sphere will not
be useful anymore since it is only a single-qubit representation.
There’s no nice way to visualize 4D complex space, so we will
instead visualize Bell states using the graphing tool:

plot_state_city

This plot is introducing a topic that we will not cover in this intro-
ductory book, which is density matrix formalism. It is yet another
way to represent quantum states through a matrix instead of sim-
ply the state vector. This representation allows us to write down
states that are not pure, implying that they cannot be expressed
in terms of a state vector.

2. Compute the concurrence for the following states:

(a) |ψ〉 = 1
2

(√
2 |00〉 − |01〉+ |10〉),

(b) |ψ〉 = 1√
3

(√
2 |00〉+ |11〉),

(c) |ψ〉 = 1√
2

(|01〉+ eiφ |10〉).
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6.3 EPR Paradox

The early 20th century was filled in exciting theoretical and experi-
mental discoveries which contributed to the development of quantum
theory. Planck’s work on blackbody radiation, Einstein’s Nobel Prize
winning work on the photoelectric effect and Bohr’s revolutionary
paper on the hydrogen atom spurred the important development of
the probabilistic interpretation of quantum mechanics. This involved
Schrödinger’s equation which was developed to describe the evolu-
tion of the wavefunction. Further, Heisenberg formulated the uncer-
tainty principle and matrix mechanics to highlight that operators
and not the wavefunction itself evolves with time. The uncertainty
principle states that observables that do not commute3 cannot have
simultaneous eigenstates, implying that you cannot have the “simul-
taneous realities” from the resulting measurement of the two observ-
ables. For example, if a quantum state is localized in space, implying
that it was measured and found to be in some particular location,
you have maximal uncertainty about its speed or momentum because
position and momentum are non-commuting observables. Einstein
was a firm opponent of the uncertainty principle and opposed even
more the idea of the non-locality that was permitted by considering
entangled states. As we learned, non-locality is at the heart of entan-
glement since the states of two entangled particles are dependent on
each other regardless of how much they are spatially separated.

The EPR paradox is based on a paper published in Physical
Review by Einstein, Podolsky, and Rosen in 1935 at Princeton Uni-
versity [13]. This paper brought to question the completeness of quan-
tum mechanics, specifically, it questions the key claim of quantum
theory: the wavefunction of the system provides a complete descrip-
tion of the system. Their paper defines “physical reality” to consist
of physical quantities which can be predicted with certainty without
needing to disturb the system. The suggested solution to the conun-
drum is whether there are some hidden variables that determine state
collapse.

3The commutator of two observables in this case tells us whether multiplication
of two observables A and B is commutative, i.e. is AB = BA?
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The setup of the thought experiment goes something like this:

Suppose that we have a neutral π-meson in our large particle
detector and we observe that it quickly (in about 850 fs) decays
into a pair of photons. This pair of photons can be described by
a single quantum state, so the photons are entangled with each
other. As time passes, the photons continue to move (in oppo-
site directions with opposite spins because of linear and angular
momentum conservation), but they remain entangled nonethe-
less. Let’s label one photon A and the other B and suppose the
experimenter measures the spin in z-direction of the photon A.
If we measure A to be spin-up, then they know that B must
have spin-down without ever needing to measure B. Now, we
learned before that measuring in z will project the spin along
the z-axis and the spin will be either up or down. Since A has
been projected into +z, if we try to measure spin-x, we have
a 50–50 chance to get spin-up or spin-down along x-axis and
conditioned on that the spin of B will be the opposite. It seems
as though the measurement of A is instantaneously telling us
about the state of B.

The seemingly instantaneous nature of the measurement of
A telling us what B is really disturbed Einstein about entanglement.
He questioned the validity of entanglement because it seemed to con-
tradict a key postulate of the special theory of relativity, namely that
speed of light is constant in all reference frames. This deep distrust
came from not accepting non-locality. Essentially, if entanglement
was local, this means that something would have to travel through
space instantly and tell B what the spin of A was measured to be so
that B can be the opposite of that, which is not physically plausi-
ble and contradicts special relativity! This is also where the phrase
“spooky action at a distance” was coined. Due to how the problem
was outlined, there were basically two options on the table:

1. Accept quantum mechanics despite the discomforting contradic-
tion with special relativity.

2. Propose that there are local hidden variables that solve the prob-
lem of seemingly instantaneous action at a distance and satisfy
special relativity.

You can guess which one Einstein went with!
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Bell’s Theorem

For a while, this thought experiment sat with scientists, unproven,
and the problem was rephrased in different ways which all seemed
to point to how quantum states cannot somehow represent physi-
cal reality. Meanwhile, quantum mechanics was proving itself to be
useful and yielding correct predictions for experimental results. It
formed the basis for explaining quantum chemistry, electronics, and
quantum optics. Of particular importance to technology, having a
good understanding of semiconductor physics led to the invention of
the transistor. So, while this seemingly uncomfortable point about
implications of non-locality was still in the air, quantum mechanics
continued to be useful in understanding our world.

In 1964, John Bell tried to clear the air [14]. He proposed a way to
test for the existence of hidden variables and developed an inequality
or bound that could tell experimenters about hidden variables based
on the statistics of their experiment. In fact, Bell initially studied
whether it was possible to solve the non-locality “issue” with quan-
tum mechanics using hidden-variable theories and in fact he found
that you could, but only for a specific case of the problem. The gen-
eral problem could not be explained with hidden-variable theories.
In fact, he concluded that any local hidden variable theory cannot
explain the predictions of quantum mechanics.

To understand the first part of Bell’s theorem, let’s start by
assuming we have the following entangled state:

|ψ〉 = |↑↓〉 − |↓↑〉√
2

This is known as a spin singlet. We can see here that the two parti-
cles are anti-correlated so that when particle 1 is spin-up, particle 2
is spin-down, and vice versa. Instead of thinking about the case of
measuring the spin of both particles along the same direction (e.g. ẑ
as we considered in the EPR paradox), Bell thought about a more
general case where we could measure the spin of particle A along
some arbitrary axis �a and the spin of particle B along another axis �b.
We can then gather statistics from such an experiment by recording
+1 for spin-up and −1 for spin-down along the axes we are measuring
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Table 6.2. Statistics from mea-
suring the spins of Particle A and
B along axes �a and �b, respectively.

Particle A Particle B

+1 −1
−1 −1
+1 −1
−1 +1
+1 +1
...

...

for each particle. What we are doing here is building a probability
distribution for measuring spin along the specified axis. Our statistics
will then look something like that in Table 6.2.

To have a compact way of representing our results, we can think
about the measurement along each axis as a random variable, �σa and
�σb, denoting spin along �a and �b axes, respectively. If we assume that
these random variables are independent, then the average value of
�σa · �σb, or expectation value, can be denoted as

E(�a,�b) = 〈 �σa · �σb〉 = −�a ·�b
We get back to the EPR paradox problem when we assume that

�a = �b, and thus, E(�a,�b) = −1 always for the spin singlet state
because if we measure spin-up for particle A, then we will always
measure spin-down for particle B and vice versa.

The following is a derivation of Bell’s famous inequality. Let us
suppose that the outcomes of measuring particles A and B along
their respective axes depend on a hidden variable λ which we do
not control. We assume that it has some probability distribution
associated with it Λ(λ) which is normalized so that

∑
λ Λ(λ) = 1.

The measurement of particle A is now described as some function
of �a and λ, A(�a, λ) and similarly for particle B, B(�b, λ). Now, our
average value is4

E(�a,�b) =
∑
λ

Λ(λ)A(�a, λ)B(�b, λ)

4Recall our discussion in Section 1.2.4 about calculating expected values.
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It is still always true that if we have the spin singlet state and
�a = �b, then the results are anti-correlated so that A(�a, λ) = −B(�a, λ)

or A(�b, λ) = −B(�b, λ)
Thus, we can write the expected value as

E(�a,�b) = −
∑
λ

Λ(λ)A(�a, λ)A(�b, λ)

Now, suppose that we measure the spins of the particles along
another axis �c for which the measurement outcome will now be
A(�c, λ) = −B(�c, λ), then

E(�a,�b)− E(�a,�c) = −
∑
λ

Λ(λ)
(
A(�a, λ)A(�b, λ)−A(�a, λ)A(�c, λ)

)

Factoring out A(�a, λ)A(�b, λ) and using the fact that (A(�b, λ))2 = 1,
we obtain

E(�a,�b)−E(�a,�c) = −
∑
λ

Λ(λ)
(
1−A(�b, λ)A(�c, λ)

)
A(�a, λ)A(�b, λ)

We also know that |A(�a, λ)A(�b, λ)| = 1, so let’s take the abso-
lute value of both sides of the equation and also use the fact that

Λ(λ)
(
1−A(�b, λ)A(�c, λ)

)
≥ 0, so we get that

|E(�a,�b)− E(�a,�c)| ≤
∑
λ

Λ(λ)
(
1−A(�b, λ)A(�c, λ)

)

We know that
∑

λ Λ(λ) = 1 and
∑

λ Λ(λ)A(
�b, λ)A(�c, λ) = E(�b,�c)

So, we finally have that

|E(�a,�b)− E(�a,�c)| ≤ 1 + E(�b,�c)

As you can see, the derivation of Bell’s theorem is relatively simple
and the result is powerful. What we will see is that predictions from
quantummechanics violate this inequality. Further, experiments test-
ing the inequality are consistent with quantum mechanics and also
violate the inequality. Physicists Alain Aspect, John F. Clauser, and
Anton Zeilinger won the 2022 Nobel Prize in Physics for experimen-
tally proving that Bell’s inequality is violated.
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Let’s do a concrete example to understand how it works by consid-
ering the Stern–Gerlach experiment for measuring electron spin back
in Section 3.1.1. By passing a beam of electrons through a detector
aligned along z, for example, we will observe the particles deflect up
or down. So, you can measure the spin to be either +�

2 or −�

2 along
any axis. We have also seen through examples in that section that
it’s not possible to measure spin in z if your state is an eigenstate of
spin in x and vice versa. If the state is in some definite spin along one
axis, it’s not possible to measure it along another axis. For a detector
aligned along x, we would observe left and right. In the electron spin
basis, the four Bell states would be

|Φ±〉 = 1√
2
(|↑↑〉 ± |↓↓〉)

|Ψ±〉 = 1√
2
(|↑↓〉 ± |↓↑〉)

The original formulation considers the following entangled state,
in which the spins of the electrons are anti-correlated:

|Ψ−〉 = |↑↓〉 − |↓↑〉√
2

Suppose that (somehow) we are able to take these entangled elec-
trons and separate them so that one is in a lab in the US and the
other in Europe. In both labs, they have Stern–Gerlach detectors
that can be rotated to arbitrary angles, and the three angles that
are agreed upon are angles A,B, and C to be 0◦, 45◦ and 90◦. When
measuring along each axis, the outcome will be that the electron is
spin-up or spin-down. The possible states that each electron can be
in after measurement is summarized in the Venn diagram in Fig. 6.2.
We can see that for any pair of measurements of the electrons, two
labs always obtain anti-correlated results regardless of the axis that
the spin is measured along.

At least 2
3 of the time, the labs will obtain the same results in

any one experiment where they measure along different axes. For
example, if one of the electrons is measured along 0◦ and the other
is 45◦ in one lab and in the other 45◦ and 0◦, then we can see that
2
3 ≈ 67% of the time they measure → for in the 0◦ detector and ↙
in the 45◦. However, if we look at all the statistics of this case, for



Two Qubits and Entanglement 163

United States Europe

Figure 6.2. Two Venn diagrams representing the eight possible states that
the electrons can have after going through the three different detector orienta-
tions in the United States lab and the Europe lab. The three circles represent
the orientation of the electron and the elements inside the circle are the possi-
ble measurement outcomes for each detector orientation. Red represents the up,
right, or diagonal eigenstate, and blue represents the down, left, and anti-diagonal
eigenstate depending on the basis.

the different spin orientations, we find that 6
8 or 75% of the time we

get the same result if the electrons are measured along different axes
in the two labs, which is greater than Bell’s upper bound!

Checkpoint Exercise

1. Go through the steps we took to derive Bell’s theorem once more
and show that from

E(�a,�b)− E(�a,�c) = −
∑
λ

Λ(λ)
(
A(�a, λ)A(�b, λ)−A(�a, λ)A(�c, λ)

)

we end up with

E(�a,�b)− E(�a,�c) = −
∑
λ

Λ(λ)
(
1−A(�b, λ)A(�c, λ)

)
A(�a, λ)A(�b, λ)

Note that A(�a, λ) = ±1, A(�b, λ) = ±1 and A(�c, λ) = ±1 so
(A(�a, λ))2 = 1 and so on.
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6.4 Three-Qubit States and Operations

For three qubits, we have 23 = 8 basis states. The general three-qubit
state can be written as

|ψ〉 = c1 |000〉+ c2 |001〉+ c3 |010〉+ c4 |011〉+ c5 |100〉+ c6 |101〉

+ c7 |110〉 c8 |111〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
c2
c3
c4
c5
c6
c7
c8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where |000〉 = |0〉 ⊗ |0〉 ⊗ |0〉, |001〉 = |0〉 ⊗ |0〉 ⊗ |1〉, and so on.
Three-qubit operations can be constructed in a similar way by

taking tensor products of single-qubit gates, e.g. IZX = I ⊗Z ⊗X,
where

IZX |101〉 = (I |1〉)⊗ (Z |0〉)⊗ (X |1〉) = |100〉
There is also an important three-qubit gate known as a Toffoli

gate which you can also call a controlled CNOT gate or CCNOT.
This gate will perform an X-gate on the third qubit, only if the first
two qubits are in |1〉. So, if we were to write down the matrix in the
three-qubit basis we just discussed (keeping the ordering as listed in
the general qubit state), we would get

TOFF = CCNOT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

An important three-qubit state is the GHZ (Greenberger–Horne–
Zelinger) state. The GHZ state is basically a maximally entangled
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three qubit state given as follows:

|GHZ〉 = |000〉+ |111〉√
2

To generate the state from an initial state |000〉, first we perform
a Hadamard gate on the first qubit and then a string of CNOTs
between the first and second qubits and the second and third qubits.
You may go through the exercise of deriving the state. This state is
particularly interesting because if we were to measure the third par-
ticle of the GHZ state, we could end up with a maximally entangled
Bell state. You can also prove that |GHZ〉 state can be written as

|GHZ〉 = 1

2
(|00〉+ |11〉)⊗ |+〉+ 1

2
(|00〉 − |11〉)⊗ |−〉

So, you can see that if we were to measure the third particle in the
{|+〉, |−〉} basis, we would end up with one of the Bell states. For
more than three qubits, we can still construct GHZ-like states as
follows:

|GHZ〉 = |000 . . . 0〉+ |111 . . . 1〉√
2

6.5 Universal Gate Sets

The concept of universal quantum gates is very important for build-
ing useful quantum computers. A universal gate set means that you
have a set of gates for which any operation can be expressed as a
sequence of these gates from the set. Based on the types of quantum
gates we have seen so far, it seems like a universal gate set should
satisfy certain criteria [29]:

(1) Create superposition states, for example, with the Hadamard
gate or single-qubit rotation gates which take any |ψ〉 to any
point around the Bloch sphere.

(2) Create entanglement with two-qubit gates or three-qubit gates,
such as CNOT or CCNOT.

(3) Create states with complex amplitudes (e.g. |0〉+i|1〉√
2

). While

Hadamard, for example, can create superposition states, it con-
tains only positive entries in its matrix, so you would need
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another single-qubit gate in the gate set, e.g. the phase gate.
However, something like an arbitrary rotation gate satisfies this
criteria already.

One easy universal gate set you could think of is the set of all
single-qubit operations and CNOT. Another is the set of all two-
qubit gates. This result implies that there is no need to build quan-
tum gates that involve a large number of qubits. Mathematically,
there are many universal gate sets that can be constructed, but prac-
tically, there are a few that are easy to implement depending on the
architecture. Furthermore, as we have started to see, errors in the
qubits and gates may be more or less likely, depending on the gate
set. The bottom line is that it is great that there are many possible
gate sets that are universal, but some are more practical than others
to implement.

Checkpoint Exercise

Determine and explain whether the following gate sets are universal.
Can you express any unitary operation with the gates in this set?

(a) {Pauli gates, CNOT},
(b) {CNOT, Hadamard},
(c) {CCNOT, Hadamard, Phase5},
(d) {Rotation gates, CNOT}.

6.6 Quantum Teleportation and Beyond

Quantum teleportation is a pivotal protocol of many quantum algo-
rithms [30,32]. The idea is to transfer the state of one qubit to another
qubit which enables a way to overcome the complications imposed by
the no-cloning theorem that we discussed in Chapter 4. Thus, even if
we cannot create an exact copy of a quantum state, we could teleport

5The phase gate is (
1 0
0 i

)
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Bob

Alice

AB

H

Figure 6.3. Quantum teleportation circuit for transferring a single-qubit state.
Alice has two quantum registers. In one, she has prepared the single-qubit state
she wants to teleport to Bob and in the second she has the qubit that she shares
with Bob for the entangled Bell state. Bob has one quantum register that contains
the qubit he is sharing with Alice for the entangled state, labeled |ΦAB〉.

it and destroy the original state. The teleportation here is typically
over short distances, for example, transferring information between
nearby qubits on a chip. This is especially useful because then we do
not have to engineer all-to-all interactions between the qubits.

The original quantum teleportation protocol was proposed by
Charles Bennett in 1993. The protocol involves two parties, Alice
and Bob, that want to transfer some quantum state |ψ〉, as can be
seen in Fig. 6.3. Let’s assume that Alice has a single-qubit state

|ψ〉 = α |0〉+ |β〉 |1〉
For the protocol to work, there must also be a pre-shared entangled
state between Alice and Bob, say, the maximally entangled Bell state,

|ΦAB〉 = 1√
2
(|00〉+ |11〉)

So in this case, the protocol requires three qubits, two of which are
in Alice’s register (one for the state she wants to transfer, and one
entangled with Bob’s qubit), and one in Bob’s register entangled with
one of Alice’s qubit. Thus, the initial state of the system is

|ψ0〉 = |ψ〉 ⊗ |ΦAB〉
After this initial state preparation, Alice performs a CNOT opera-
tion between her single-qubit state |ψ〉 and her other qubit which is
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entangled with Bob’s. This operation gives

|ψ1〉 = CNOTA |ψ0〉 = α |0〉 |ΦAB〉+ β |1〉 |ΨAB〉

where |ΨAB〉 = 1√
2
(|01〉+ |10〉), which is another maximally entan-

gled Bell state.
Alice applies a Hadamard gate on the state she wants to transport,

which puts the system in the state

|ψ2〉 = 1√
2
[α (|0〉 + |1〉) |ΦAB〉+ β (|0〉 − |1〉) |ΨAB〉]

Finally, we can rearrange the state by regrouping Alice’s and
Bob’s state from above before Alice makes a measurement as follows:

|ψ2〉 = 1

2
[|00〉 (α |0〉+ β |1〉) + |01〉 (α |1〉+ β |0〉)

+ |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)]

Now, when Alice makes the two measurements from her regis-
ter, they could be m1m2 → 00, 01, 10, 11. She then communicates
the result to Bob through a classical channel which informs Bob’s
decision to make certain operations depending on the received infor-
mation. When Alice makes her measurement, she has an equal prob-
ability of 1

4 of getting any of the measurement results. The no-cloning
theorem is satisfied in this protocol because Alice cannot recover the
teleported state anymore. For example, if Alice tells him 00, then
Bob just receives the state |ψ〉 without needing to do anything. If
Alice tells him 10, then Bob should perform an Z-gate in order to
get back to the original |ψ〉 that Alice wanted to send. You will work
out what operations he needs to do in the coming exercises if Alice
sends the other measurement results.

Some sanity checks about the protocol:

(1) After Alice makes her two-qubit measurement, she can no
longer recover the teleported state, so the No-cloning theorem
is satisfied.

(2) There is no information transfer faster than the speed of light
since Alice has to tell Bob her measurement results over a clas-
sical channel.
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So far, the protocol may not seem very intuitive since the choices
of the operations done in between is unclear. In the initial state,
Alice and Bob each have one bit from a pre-shared Bell state, and
the entanglement here is serving as a way to connect or correlate
those two bits of information. But now, Alice also holds this other
qubit state that she wants to send to Bob. When Alice performs the
CNOT operation with the single-qubit state and her shared qubit
with Bob, she is already sharing information with Bob about the
state but not in a readable way, so more operations are needed to
make it clearer for Bob. So, then, performing the Hadamard gate on
the state basically randomizes the outcome of her measurement in a
uniform way so that the state |ψ〉 can be extracted as a result of any
of the measurements Alice makes in the {|00〉, |01〉, |10〉, |11〉} basis.

Checkpoint Exercise

1. Go through the steps of deriving the state |ψ2〉 that is presented at
the end of the section. Hint : Follow the quantum circuit carefully
through each step.

2. What operations should Bob perform if Alice tells him that

(a) m1m2 = 01,
(b) m1m2 = 10,
(c) m1m2 = 11.

Homework 6

1. Distinguish two Bell states with a single shot measurement:
First, generate the two Bell states called singlet, |S〉, and triplet
0, |T0〉, in Qiskit:

|S〉 = 1√
2
(|01〉 − |10〉)

|T0〉 = 1√
2
(|01〉+ |10〉)

There many potential gates you can use to generate these states,
but for now, use only the Pauli gates, Hadamard and CNOT:
{X,Y,Z,H,CNOT}. Here is some code that will be helpful to
start:
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1. Necessary imports:

import numpy as np

from math import *

from qiskit import *

from copy import deepcopy

2. Generating the state:

#Preparing state:

q = QuantumRegister (2)

c = ClassicalRegister (2)

circ = QuantumCircuit (q,c)

... #Flip second qubit

... #Superposes first qubit

circ.cx(q[0],q[1]) #perform CNOT gate

state = Statevector (circ)

print(state)

Remember this is a two-qubit state, so we cannot actually visu-
alize the full state on the Bloch sphere as we could for a single-
qubit state.

If you just measured these two Bell states in {|00〉, |01〉,
|10〉, |11〉}, you would obtain equal probabilities of 0.5 for |01〉
and |10〉 for both states and could not distinguish which one you
started with. Devise a way to discriminate in a single shot manner
if you are measuring |S〉 or |T0〉.
Hint : Think about what rotation you can perform on the unknown
state before measuring so that the measurement results help you
to distinguish the states.

2. Eavesdropping during Quantum teleportation:

Suppose that Eve intercepts the teleportation of Alice’s state to
Bob in the following cases and show/explain whether Alice and
Bob can detect that she is eavesdropping:

(a) right after Alice performs the CNOT operation between the
state she wants to transfer and the shared Bell state with
Bob,
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(b) before Alice makes a measurement of |ψ2〉,
(c) after Alice makes the measurement and Eve intercepts during

the classical communication of the result of m1m2.

Hint : Eve’s interception is essentially making a measurement on
whatever the quantum state is at the point where she eavesdrops.
To determine what happens, carry out the protocol to completion
accounting for the eavesdropping.
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Chapter 7

Experimental Implementation

So far, we have covered the basic theoretical concepts needed to
understand quantum information. In this chapter, we overview some
popular state-of-the-art realizations of qubits. In particular, we focus
on spin qubits and superconducting qubits. We conceptually discuss
the design, implementation, performance and limitations.

7.1 Classical Computing

A fact that we may not appreciate as much as we should is that we
trust our desktop PC and MAC computers to accurately implement
any arbitrary computer algorithm. This is because these devices are
said to be Turing-complete or computationally universal. In fact, it
is not at all obvious if a given hardware can perform any algorithm
that we abstract. This relies on a fine relationship between hardware
building blocks and computational space.

Alan Turing was an English mathematician who formalized the
concept of algorithms and computation for general-purpose comput-
ers. He developed a mathematical model which would describe an
abstract machine. His theory was used as a guideline when develop-
ing classical computing hardware for data storage and manipulation
based on rule sets. A fun fact is that if the hardware is a univer-
sal Turing machine, then it should be able to simulate any Turing

173
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machine. From a hardware perspective, this has an interesting con-
sequence. Let’s say we build a computer out of a certain component,
e.g. light bulb, first, we need to show this is a universal computer
implying that by having the lights “on” and “off,” we can implement
any calculation including anything our iPhones can do. This depends
on the underlying mechanism that creates the notion of a “bit,” in
this example the lights turn on and off, and we can tell by looking at
it when we “read out” the results. If we are successful in achieving a
universal system, then we can be confident we can compete with any
other computer made out of other components, not just light bulbs.
For example, imagine someone comes up with a computer made out
of relays and switches. If we have shown that our light bulb computer
is universal, Turing tells us we can simulate any algorithm that the
relay computer can. This is important because it gives us confidence
in terms of universality. This means that if we stick to these rules for
universality, everyone on the planet will get the same results when
they run a program on both a light bulb and a relay computer (or
any hardware that satisfies the universality rule sets). However, there
could be certain advantages to using one hardware over another one.
For instance, one could be faster, cheaper, more reliable (less faulty
elements as it ages), smaller and lighter weight, more scalable, etc.
These considerations also enter into designing qubit platforms, as we
will discuss further in this chapter.

In classical computers, the hardware consists of transistors,
diodes, switches, and other circuit elements. Their primary task is
to perform basic operations such as AND, OR, NAND and Toffoli
gates which define a set of rules. These rules are the building blocks
of the computer and allow us to explore the computational space.
Mathematically, we could define an algorithm with “actions” which
translate to rule sets that the hardware is capable of carrying out.
This is usually done through a software called “compiler” in classical
computers. The rule sets understand both the operation and details
of the hardware. Depending on the hardware, the sets could be based
on reversible gates like Toffoli gates or irreversible ones like AND. In
classical computing, the NAND gate alone provides a path to uni-
versal computing meaning any algorithm can be implemented by an
architecture, perhaps complex, of only NAND components.
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7.2 Universal Quantum Computing:
DiVincenzo Criteria

As we have learned, quantum computing is based on reversible uni-
tary operations. It is interesting to ask what quantum gate sets would
provide universal quantum computing. Basically, we are interested in
knowing what set of gates can express any unitary operation with a
finite number of gates. It is not hard to see that we need more than
single-qubit gates to do this. This is because single-qubit gate rota-
tions are distinct from entangling gates. So, perhaps a combination
of both would work. This has been a topic of research in the past
two decades and was briefly discussed in Chapter 6. One example of
a universal gate set is the Clifford set which consists of three gates
(CNOT, H, S) plus T gate.

Similar to classical computation, once a set of universal gates have
hardware realization, in principle, we can scale up complex architec-
tures to implement various quantum algorithms like Shor’s factoring
algorithm and Grover’s search algorithm. The ideal criteria is a phys-
ical system that has two quantum levels (implying that their physics
is governed by the Schrödinger equation), represented by our single-
qubit Bloch sphere. We will need physical ways to control its state
using experimental tools such as a microwave signal generator to send
microwave pulses (or laser pulses). We also need to create many of
these two-level systems and make them interact through two-qubit
gates to create entanglement.

Let’s consider that our qubit is the spin state of a single electron.
Spin is inherently a two-level system: spin-up and spin-down. In most
cases, these levels are degenerate (have the same energy) until a
magnetic field is applied. The value of magnetic field is proportional
to the separation of the two spin levels. By tuning this energy, we
can choose the frequency that could excite spin-down to spin-up and
operate spin as a single qubit. Isolating an electron to manipulate its
spin requires a cryogenic temperature. Typically, these measurements
are done in tens of milliKelvin temperatures. For reference 1K is
−273.15◦C. Since the microwave frequencies (MHz–GHz) are easy to
generate and can be made with very low noise, most spin qubits are
operated in the microwave regime by adjusting the magnetic field to
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set the levels in this energy regime. As we can see, there are many
considerations for choosing a platform for qubits which include the
degree of stabilization, control, operation, scaling, and readout that
needs to be considered. Another successful qubit platform that has
risen to fame is based on superconducting circuits. Most quantum
hardware companies are using a variant of superconducting qubits,
each with its advantages and challenges. Big tech companies such
as Google, IBM, and Amazon now have superconducting processors
with hundreds of qubits and plan for thousands and more in the next
few years. This is fast progress if we recall that the first realization
of the superconducting qubit happened only in 1999.

Another difference among various hardware platforms (e.g. spin or
superconducting) is the way each platform’s quantum nature allows
for certain gate sets. For example, we discussed CNOT as a primary
two-qubit gate, but it is very difficult to physically implement it
on certain platforms. For example, in optically based systems, it is
easier to create a controlled phase gate and not CNOT. The good
news is that if we have access to universal gates, then we can generate
any other gate. This is usually done as part of transpiling (similar
to compiling in classical hardware) to convert our algorithm from
a programming language into an equivalent natural gate set of our
platform.

To unify all the requirements of realization of a qubit indepen-
dent of the specific platform, theoretician David DiVincenzo set sev-
eral criteria necessary for constructing a quantum computer in 2000.
These criteria are listed as follows:

• well-defined scalable qubit array,
• the ability to initialize the qubits into a well-defined state such as

“000. . . ”,
• long enough coherence times to perform computation without los-

ing information,
• a universal set of gate operations,
• the ability to measure any single qubit in the qubit array.

These criteria, known as DiVincenzo criteria, need to be satis-
fied by experimental setups to show their potential for implementing
quantum algorithms, such as Grover’s search algorithm or Shor’s fac-
torization algorithm.
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While it may come as a surprise, there are more than 30 quan-
tum two-level systems that can be used as qubits. Each of these
platforms has their advantages and challenges. Some are being heav-
ily researched and it is hard to say which platform will be the win-
ner. For example, while superconducting qubits are frontrunners for
solid-state systems and have the most coherent qubits, they need to
be measured at milliKelvin (mK) temperatures reached by cryogenic
systems called dilution refrigeration units. Typically, these qubits are
about 1 mm in size which could pose challenges for scaling. In addi-
tion, controlling many such qubits could require connecting millions
of cables from room temperature to milli-Kelvin dilution refrigerators
which is neither easy nor scalable. On the other hand, spin qubits
are small, with sizes of hundreds of nanometers, however, this prox-
imity causes crosstalk and decoherence. In the following sections, we
discuss the basics of spin-qubit and superconducting-qubit platforms
and their corresponding pros and cons.

7.3 Spin Qubits

Spin qubits are typically created using nanofabrication of metallic
gates. Imagine a sheet of electrons in 2D; by creating a pattern of
choice and applying a negative voltage, one can remove most elec-
trons in the sheet down to a single one. Figure 7.1 shows a schematic
diagram of such a setup. Historically, the sheet of electrons can be
fabricated into thin films. Researchers have developed techniques to
count individual electrons using charge sensing [33]. When the last
electron is trapped, we consider it a charge qubit and by applying a
magnetic field, we can form the spin qubit.

The Hamiltonian, which gives the total energy of the system, is
typically used to study the dynamics of qubits. In our treatment, we
are thinking of the qubit as a system with two discrete energy levels,
so the Hamiltonian can be expressed as a matrix. As such, we can
use our linear algebra knowledge to calculate the eigenvalues and the
eigenvectors.

For a spin in a magnetic field, the Hamiltonian describes the cou-
pling between the spin and the magnetic field. For an electron, the
most general form is

H =
e

me
Ŝ · �B (7.1)
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Gate 2DEG

Single Electron

Figure 7.1. Example implementation of spin qubits. The quantum dot is
defined in the two-dimensional electron gas (2DEG). The 2DEG is formed when
electrons are confined within the interface of two different materials, so their
motion is two-dimensional while being tightly confined in the third direction.
The electron spin (denoted pictorially in orange) is confined by the surface gate
electrodes. The spin is typically controlled using magnetic fields.

Recall that · here represents the dot product between two vec-
tor quantities. If we assume the magnetic field is oriented in the
z-direction, we have

H0 =
e

me
BzŜz (7.2)

where Bz is the strength of the magnetic field in ẑ direction, and e
andme are the charge and mass of the electron, respectively. Ŝz =

�

2Z
is the spin operator, which is proportional to the Pauli Z operator.
So, the Hamiltonian can be re-expressed as

H0 = μBBzZ =

(
1 0

0 −1
)

(7.3)

where μB = e�
2me

is the Bohr magneton, a fundamental constant
with units of the dipole moment. So, now, we could read off the
eigenvalues, the diagonal elements of this matrix, μBBz and −μBBz,
which are the energies of the two levels. For the preceding derivation,
we will redefine the value of the energy levels to be ε

2 = μBBz.
Now, suppose that we applied a magnetic field not only in ẑ but

also in x̂ and ŷ. Now, the magnetic field components in x̂ and ŷ couple
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to Ŝx = �

2X and Ŝy = �

2Y , respectively. Now, the full Hamiltonian
will be

H =
ε

2
Z +

Δ

2
X +

Δ̃

2
Y (7.4)

where we have redefined the constants associated with the x̂- and
ŷ-components to be Δ

2 = μBBx and Δ̃
2 = μBBy. These definitions

have made the solution to this Hamiltonian more general. For exam-
ple, now, the solution does not just have to apply to spins in a mag-
netic field, but it could also apply to an electric dipole coupling to
an electric field (H = −d̂e · �E), etc.

Now, let’s look at it in matrix form and solve the eigenvalue
problem:

H =
1

2

(
ε Δ− iΔ̃

Δ + iΔ̃ −ε
)

(7.5)

You will go through the derivation of the results in the checkpoint
exercise. For now, the final solution to the characteristic equation is
that the eigenvalues are

E± = ±1

2

√
ε2 +Δ2 + Δ̃2 (7.6)

≡ ±1

2
�ωq (7.7)

where �ωq =
√
ε2 +Δ2 + Δ̃2 and represents the new qubit ener-

gies. Instead of immediately saying we are in the {|0〉 , |1〉} basis or
{|↑〉 , |↓〉}, we can keep it more general and say we are in some start-
ing basis, {|ϕ+〉 , |ϕ−〉}. We still have the visual representation of the
Bloch sphere, but now, we relabel the axes as shown in Fig. 7.2. The
angular components can be defined as

tan θ =

√
Δ2 + Δ̃2

ε
(7.8)

tanϕ =
Δ̃

Δ
(7.9)
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Figure 7.2. Eigensystem of a general two-level quantum system on the Bloch
sphere. |ϕ±〉 are the eigenstates of the pure-diagonal Hamiltonian (e.g. the spin
Hamiltonian (7.2)), while |ψ±〉 are the eigenstates of the general Hamiltonian
with off-diagonal elements.

The eigenvectors can be written as

|ψ+〉 = cos
θ

2
|ϕ+〉+ eiϕ sin

θ

2
|ϕ−〉 (7.10)

|ψ−〉 = sin
θ

2
|ϕ+〉+ eiϕ cos

θ

2
|ϕ−〉 (7.11)

Checkpoint Exercises

1. Starting with the characteristic equation for the general Hamilto-
nian, find the eigenvalues:

det(H − IE±) = det

(
ε− 2E± Δ− iΔ̃
Δ + iΔ̃ −ε− 2E±

)
= 0 (7.12)

2. Using geometric arguments, show why the angular components of
the Bloch sphere could be defined as

tan θ =

√
Δ2 + Δ̃2

ε

tanϕ =
Δ̃

Δ
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Hint : Recall that in a 2D plane for a vector with x-, y-components,
we can define the angle it makes with the x-axis as tan θ = y

x . In
the 3D case here, we have one 2D plane that defines the equatorial
plane of the sphere and a 2D plane perpendicular to that.

7.3.1 Controlling Spins

In the previous section, we were treating the Hamiltonian in more
generality. Now, let’s make some useful mapping between the general
case and the specific case of electron spin:

|ϕ+〉 −→ |0〉 (7.13)

|ϕ+〉 −→ |1〉 (7.14)

Let’s now look more closely how the magnetic field is controlling the
electron spin:

1. Considering only the z-component of the magnetic field (no off-
diagonal components of the Hamiltonian), the spin state can be
expressed as a superposition of |0〉 and |1〉. Let’s consider how the
state would evolve in time. Though the full derivation is outside
the scope of the book, it turns out that if the spin initially starts
out in some arbitrary state |ψ0〉 = α |0〉 + β |1〉, it will pick up a
phase so that the state at a later time would become

|ψ(t)〉 = αe−i
µBBz

�
t |0〉+ ei

µBBz
�

t |1〉 (7.15)

Factoring out e−i
µBBz

�
t, we have a state that is rotating in time,

with a frequency ω0 = 2μBBz

�
= eBz

me
, which is known as the

cyclotron frequency of a classical electron in a magnetic field. At
time t, the azimuthal angle has changed by Δϕ = 2μBBz

�
t = ω0t.

Recall the z-axis rotation matrix, RZ(ϕ) from Chapter 4. In

fact, we can see that by acting RZ

(
2μBBz

�
t
)
on the initial state,

|ψ0〉, we get the final state, |ψ(t)〉:

RZ

(
2
μBBz

�
t

)
|ψ0〉 =

(
e−

µBBz
�

t 0

0 e−
µBBz

� t

)(
α
β

)
=

(
αe−

µBBz
�

t

βe
µBBz

�
t

)

(7.16)
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So, physically, having the magnetic field on in the z-direction for
some amount of time rotates the state about the z-axis. The
amount it rotates can be controlled by the amount of time we
wait, and the strength of the magnetic field, which can be used
to set the rotation frequency faster or slower. For example, if we
wanted to rotate the state by Δϕ = π radians, then

Δϕ = ωΔt = π =⇒ Δt =
π

ω
.

By making the frequency faster, we could rotate faster or vice
versa.

2. With the off-diagonal components, the original basis, {|0〉 , |1〉}
would be rotated to a new basis defined by {|ψ+〉 , |ψ−〉}, as shown
in Fig. 7.2. This new basis would take the Hamiltonian originally
written in {|0〉 , |1〉} and diagonalize it so that the new energies are
E±, as we found in the previous section. Pictorially, this would
mean the spin is rotating around a new axis, implying rotation
of θ. So, now, if we wanted to prepare a state and turn on the
magnetic field components for some amount of time, we can rotate
the spin around the new axis. Then, we would get an arbitrary
rotation gate, Rn(Δη), where n denotes the new axis and Δη is
the rotation angle.

One of the main issues with the static magnetic field method
we have discussed thus far is that the strength of the field in
the z-direction sets the rotation frequency of the spin, and real-
istically, this frequency ends up being much faster than desired.
What if we want to keep the energy level splitting between |0〉
and |1〉 while also controlling the rate at which the qubit rotates
between states? To achieve this, the answer ends up being to have
a large static field in ẑ-direction, which forms the two energy levels
we need, and a small time-dependent field in the x̂- or ŷ-direction
to control how fast we transition between states.

For example, let’s take a magnetic field �B = Bzẑ+B1 cos(ωDt)x̂.
The key is to tune the frequency of the time-dependent field to
be on-resonance so that ωD = ω0. This means that the field will
induce a transition between the energy levels which will mix the
energy levels (we will have off-diagonal components in the Hamil-
tonian). Similarly, when we diagonalize, we will be oriented along
a new axis (essentially a Δθ rotation). However, now, we have
fine control of the amount of rotation, which is set by the fre-
quency ω1 = μBB1

�
= eB1

2m where B1 was the amplitude of the
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time-dependent magnetic field. The calculation details are beyond
the scope of the book, but if we were to start in some arbitrary
location on the Bloch sphere, the final state after waiting some
time is

|ψ(t)〉 = cos
ω1t

2
|0〉+ ei(ω0t+π) sin

ω1t

2
|1〉

So, we can see that azimuthal rotation, Δϕ = ω0t + π, is
still controlled by ω0, while the Δθ = ω1t is controlled by the
slower frequency. This discussion is the basis of nuclear magnetic
resonance (NMR) which is used for magnetic resonance imaging
(MRI), studying the structure of compounds, and now as a qubit
control technique [34–36].

7.4 Superconducting Qubits

Superconducting circuits are one of the most promising qubit sys-
tems, currently scaling to hundreds of qubits with the potential for
quantum error correction and applications in quantum simulations.
In particular, IBM and Google have been pursuing this platform and
have built these larger-scale systems.

Superconductivity was discovered more than 100 years ago when
scientists learned to make refrigerators that could reach tempera-
tures of −269.15◦C or about 4.2K [37]. This is the boiling point of
liquid helium. It was discovered that if you dip a piece of super-
conducting material like Niobium in liquid He, its resistivity will
fall to zero, forming a superconducting state. One of the first mate-
rials this phenomenon was observed in was mercury [38]. It took
physicists several decades to understand the microscopic and macro-
scopic properties of this phenomenon, which led to many new direc-
tions in condensed matter research. The first successful theory to
describe superconductivity was the Bardeen–Cooper–Schrieffer the-
ory, commonly abbreviated as BCS theory. This theory describes how
electrons in a superconductor pair up into what we call a Cooper
pair. This process is mediated by vibrations in the structure of the
superconductor called phonons.1 Fundamentally, nothing stops us

1Similar to how photons are the quanta of light, phonons are the quanta of
vibration.
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from having a room-temperature superconductor, however now that
we know what ingredients are needed like electron–phonon coupling,
we can look for best-case scenarios and we still find ourselves with
superconducting cases only at low temperatures (<50 K).

How do we make a qubit out of something that has zero resis-
tance? We must make a quick detour from superconductivity to dis-
cuss the simple harmonic oscillator or SHO. Common examples of a
simple harmonic oscillator are the pendulum, the mass on a spring
and the electrical LC circuit. All of these systems have equivalent
expressions for their equations of motion and their energy.

7.4.1 Classical Simple Harmonic Oscillator

Let’s start by looking at the model of a mass on a spring. Imagine
you have a block with mass m attached to a wall by a spring so that
the spring can push and pull on the block and it slides back and forth
without friction. Hooke’s law tells us that when displacing the spring
by some amount x relative to its natural length, the mass will feel a
restoring force −kx, where k is the spring constant and x is spring’s
displacement from equilibrium (equilibrium is the position when the
spring is not pushing or pulling on the block). The +x direction is
oriented away from the wall, and the −x direction is toward the wall.

Now, let’s look at how we can solve this problem and go from the
classical case to the quantum case.

Forces and Newton’s Second Law

Plugging in F = −kx into Newton’s second law, F = m · a, we get a
second-order ordinary differential equation:

−kx(t) = mẍ(t) (7.17)

where ẍ(t) is a notation physicists use for the second derivative of
position x with respect to time t. The details of solving the equation
are not important for understanding the physics, but if you do know
how to take derivatives, you can check that the following equation
solves Eq. (7.22):

x(t) = Ae
i
√

k
m
t
+Be

−i
√

k
m
t

(7.18)

where A and B are just arbitrary constants, determined from the
initial position and velocity of the mass. Using Euler’s formula, we



Experimental Implementation 185

can rewrite Eq. (7.23) in terms of sines and cosines:

x(t) = A

[
cos

(√
k

m
t

)
+ i sin
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k

m
t

)]

+B

[
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)
− i sin
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k

m
t

)]
(7.19)

A mass on a spring cannot have an imaginary position, so the
right A and B must be chosen so that the imaginary terms drop out.
Let’s leave it as an exercise to you to figure out what A and B could
be in terms of some other constants C and D:

x(t) = C cos

(√
k

m
t

)
+D sin

(√
k

m
t

)
(7.20)

Now that the solution is in a more intuitive form, we can see
that this block will oscillate at its natural frequency or resonant

frequency, ω =
√

k
m , where ω is the angular frequency. You can

think of angular frequency as the angular displacement of an object
(measured in radians) per unit time, so the units are rad/s. So, to
convert to frequency, which has units of 1/s, we divide the angular
frequency by 2π radians, f = ω

2π .

Energy Perspective

Now, let’s look at the same problem from a different perspective.
Let us think about the kinetic energy, which is associated with the
motion of the mass, and the potential energy stored in the spring.
The expression for the kinetic energy of the mass on the spring is

KE =
p2

2m
(7.21)

where p = m · v is the momentum of the mass.
The potential energy is

PE =
kx2

2
(7.22)

Again, k is the spring constant and x is the displacement of the spring
from equilibrium.
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The potential energy is maximal when the spring is completely
stretched out or completely compressed.2 At the moment before the
spring moves in the opposing direction, the block is stationary and
has zero momentum, so its kinetic energy is 0. The kinetic energy
will be maximal when the block moves through the equilibrium point
of the spring, where the spring will not resist the block’s motion. At
this point, the potential energy of the spring is 0. So, there is this
periodic energy conversion where the potential energy of the spring
gives kinetic energy to the mass and vice versa.

7.4.2 Quantum Simple Harmonic Oscillator

Now, let’s solve the same problem, but with quantum mechanics.
The energy perspective is more easily translatable to the quantum
problem than thinking about forces. So, now our mass is a quan-
tum object whose motion is constrained by the potential energy

of the spring: kx̂2

2 . The Hamiltonian of a particle confined to this
potential is

Ĥ =
p̂2

2m
+

1

2
kx̂2 (7.23)

Note that we have switched from the classical position, x, and
momentum, p, to position and momentum operators x̂ and p̂, respec-
tively. While the full treatment of this problem is outside the scope
of the book, conceptually we can understand that the position and
momentum operators are continuous, so we would have an infinite-
dimensional matrix to represent them. We want to solve for the
eigenvalues and eigenvectors of the Hamiltonian. This will tell us
the energies we expect to measure and the state of the mass. The
eigenvalue problem can be expressed as we learned in Chapter 2:

Ĥ |ψ〉 = E |ψ〉 (7.24)

2Of course, in reality, you don’t want to stretch or compress the spring so much
that you change its starting natural length because then Hooke’s law would not
apply.
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Skipping the detailed treatment of the problem here, we have the
eigenvalues of the system [26]:

En = �ω

(
n+

1

2

)
(7.25)

where ω is the same angular frequency as the classical version of the
problem:

ω =

√
k

m
(7.26)

|ψn〉 or |n〉 are the orthonormal eigenstates of the Hamiltonian.
Here, n is any positive integer from 0 to infinity:

n = 0, 1, 2, 3, 4, ...

A representation of this result is shown in Fig. 7.3.
Let’s first consider the first energy level which is the eigenstate

n = 0:

Ĥ |ψ0〉 = �ω

2
|ψ0〉 (7.27)

|ψ0〉 is called the ground state because it is the state with the
minimum possible energy. Having a non-zero minimum energy is a

Figure 7.3. Potential energy as a function of x with the labeled quantized
energy levels.
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dramatic difference from the classical problem. In the classical sce-
nario, the minimum energy is 0. This occurs when the mass is at
rest in equilibrium (the momentum is 0 and the position is 0, so
the total energy is 0). In the quantum version of the problem, the
mass/particle cannot have zero energy; there is always a minimum
energy of �ω

2 . The next highest energy state is |ψ1〉 when n = 1 with

energy �ω + �ω
2 . For n = 2, the energy is 2�ω + �ω

2 . Each successive
energy level is spaced out by �ω. The system has “quantized” energy
levels with equal spacing.

Now that we looked at the classical and quantum harmonic oscil-
lators, we can step back and think about other harmonic systems
that have identical solutions. In the example of the mass on a spring,
the frequency of oscillation, ω, was determined by the constants k
and m. For other SHOs, we have different constants depending on
the problem. A simple pendulum’s equations of motion and energy
are almost identical to the mass on the spring except instead of m
and k, you have g and l, where l is the length of the pendulum and
g is the gravitational force on the pendulum. The angular frequency

of the simple pendulum is
√

l
g .

Since the discovery of superconducting circuits like the harmonic
oscillator above, researchers have shown that we can make ideal
capacitors and inductors from superconductors. Capacitance is how
much electric charge we can store on a conducting metal. Capaci-
tance results from having metals or superconductors being close to
another metal or superconductor and depends on the geometry of the
circuit. As an analogy, the capacitor is typically thought of as the
“mass” in a circuit. The inductance of a conductor can be described
as its tendency to oppose a change in current. Inductors are typi-
cally coils of wire wound together. When the current varies, it causes
a change in the magnetic flux, so the inductance is defined as the
ratio of the magnetic flux to the current. Magnetic flux is the mag-
netic field times the enclosed area that contains it (in this case, the
coils enclose some area). The value of the inductance depends not
only on the geometry (number of windings, area enclosed) but also
on the inherent properties of the metal. Keeping on with the anal-
ogy, the inductor can be considered as the “spring” in the circuit.
A circuit that has capacitance, C, and inductance, L, can resonate.
This means there is a resonance frequency at which charge and flux
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bounce back and forth. The LC circuit is yet another version of the
simple harmonic oscillator.

One thing we have not included in the analysis is dissipation. For
example, let’s consider a pendulum. When we lift and release a pen-
dulum at some height, we expect that it will travel the same distance
to the opposite side and come back. Of course, in real life, the initial
height slowly decreases until it comes to a full stop due to dissipation
in the form of friction. A good pendulum could go many cycles before
it slows down and bad ones only a few. In superconducting circuits,
we can have resonators with millions of cycles before slowing down
due to the low-loss nature of superconductors.

LC oscillator

Let’s now consider a harmonic oscillator from an LC circuit. LC cir-
cuits are circuits composed of a capacitor and an inductor. Energy
builds up on a capacitor with capacitance C as it accumulates sta-
tionary charge denoted by the variable Q. Energy builds up in an
inductor with inductance L when current flowing through it gener-
ates magnetic flux denoted by the variable φ. The charge and the
magnetic flux are analogous to the momentum of the mass and the
position of the spring. In the same way that the energy of the mass
on the spring oscillates back and forth between the potential energy
of the spring and the kinetic energy of the mass, the energy in an LC
circuit oscillates back and forth between the magnetic flux through
the inductor and the electric charge on the capacitor. The “equa-
tions of motion” of the LC circuit are mathematically equivalent to
the mass on a spring with the following substitutions:

x −→ φ (7.28)

k −→ 1

L
(7.29)

p −→ Q (7.30)

m −→ C (7.31)

(7.32)

The same math we used to solve the classical and the quantum
SHO map over to the LC circuit problem. At room temperature, an
LC circuit behaves like a classical mass on a spring. When the LC



190 First Step to Quantum Computing: A Practical Guide for Beginners

circuit is cooled down to superconducting temperatures, the Cooper
pairs have condensed into a single wavefunction with observables: φ̂
and Q̂. We then arrive at the Hamiltonian:

Ĥ =
Q̂2

2C
+
φ̂2

2L
(7.33)

The Hamiltonian in Eq. (7.33) is equivalent to Hamiltonian in

Eq. (7.23), but now, the resonant frequency is ω =
√

1
LC instead

of ω =
√

k
m .

Now, how do we make this superconducting LC circuit into a
qubit? At first glance, we could map the ground state |ψ0〉 to |0〉 and
the first excited state to |ψ1〉 to |1〉, however there is a huge flaw
with this. Imagine we measure the LC circuit to determine the state
that it is in: We will have a spectrum of photons, each at a different
energy. If the LC is in the ground state, it will absorb the photon
with energy �ω and jump up to the first excited state. If the circuit
is already in the first excited state, and you repeat the experiment,
it will also absorb the photon with energy �ω and jump up to the
second excited state. No matter what state you are in, it will always
absorb the photon with energy �ω because all of the states are evenly
spaced out by �ω. There is no way to tell if your superconducting
resonator is in |ψ0〉, |ψ1〉 or |ψn〉.

So, we need a way to make the levels anharmonic (not evenly
spaced) so that we could isolate two energy levels that we can call
the ground and excited states of the qubit, as can be seen in Fig. 7.4.
One circuit element that solves this issue is called the “Josephson
junction.” A Josephson junction (JJ) consists of a thin layer of insu-
lating material sandwiched between superconducting metal. The JJ
is typically less than 2 nm thick. The Cooper pairs in the supercon-
ductor can no longer flow freely through this barrier, but they can
tunnel through the barrier. The junction adds a nonlinear component
to the Hamiltonian, EJ cos φ̂:

Ĥ =
φ̂2

2L
+EJ cos φ̂ (7.34)

The new term adds anharmonicity to the LC circuit. It staggers
out the energy levels so that the energy transition from the ground
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Figure 7.4. Representation of the potential energy going from harmonic to
anharmonic, which causes the energy levels to stagger out and thus allows us to
isolate two energy levels.

state to the first excited state is no longer exactly the same as the
energy transition from the first state to the second excited state.
This effect can be visualized in Fig. 7.4. Now, we can go back to
our original idea to map the ground state to |0〉 and the first excited
state to |1〉.

We know superconducting circuits have to be cold, but how cold
is cold? The answer is that these circuits work below the critical
temperature of the superconductor. For aluminum, this is 1.2 K, and
for niobium, it is 9 K. Let’s convert temperature to frequency, so
we can make a direct comparison. The thermal energy of a given
temperature, T , is kBT , where kB is the Boltzmann constant. As dis-
covered by Planck and Einstein, the quanta of energy is hν, where h
is Planck’s constant and ν is the frequency of the photon. Equating
these two relations tells us that 1 GHz is 48 mK, 2 GHz is 96 mK,
5 GHz is 240 mK, and so on. Aluminum has a critical temperature
of 1.2 K, which is about 23 GHz, while niobium (critical tempera-
ture is about 9 K) is 194 GHz. Superconducting circuits are typically
operated in a frequency range between 2–10 GHz. This is for two rea-
sons: (1) existing microwave components and generators can be used
to reliably control and measure the qubit in the 2–10 GHz regime;
(2) we want it to be much colder than the critical temperature of the
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superconductor (and therefore lower frequency) to reduce unwanted
thermal excitations which degrade qubit performance.3

A typical energy spacing for superconducting qubits is 5 GHz
where we have access to pristine microwave tools and operate at the
base temperature of a dilution fridge, 10 mK. Now, what does this
imply about the size of our resonators? The speed of light, c ≈ 3×108
m/s, equals the product of the wavelength, λ, and the frequency,
f : c = λ · f . So, for 5 GHz, the wavelength of the light is about
60 mm. So, you can imagine that if we had a cable that long just
filled with air, then it would resonate at 5 GHz. In reality, this cable
would be made on a silicon or sapphire chip and would be coupled
to the qubit, so the speed of light is reduced, so that the size of the
on-chip resonators can be a few millimeters.4 In one way, this is an
amazing finding that we can have a fully quantum mechanical object
that is millimeter scale completely governed by the Schrödinger equa-
tion. On the other hand, compared to spin qubits, we could say this
is a big object and not very favorable for scaling. One million super-
conducting qubits could become a meter-long object, but we should
remind ourselves that the first classical computers were also the size
of a room.

7.5 Performance Comparisons Across Different Qubit
Platforms

Some of the key performance metrics that will be reported to compare
qubit platforms are the coherence time, often noted as T2 time, and
the relaxation time, often noted as T1 time. Physically, the coherence
time represents the amount of time that the qubit can retain its

3This is essentially saying that if we want to have the qubit in the ground state
or |0〉, we do not want a hot thermal environment to excite the qubit to the
excited state or |1〉 erroneously. A simple statistical mechanics argument shows
that, for example, if we prepare the qubit in |0〉 and want it to be in that 99.99%
of the time, then we should lower the temperature down to around 100 mK. So,
now, we need dilution refrigerators to reach such low temperatures. In practice,
the base temperature of the dilution fridge can be as low as 10 mK to reduce
these unwanted thermal excitations.
4The speed of light is about 7.5×107 m/s in silicon (4× slower than in vacuum),

and about 1.5 × 108 m/s in sapphire (2× slower than in vacuum).
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superposition state. Imagine doing the following experiment: You
start with the qubit in the ground state (positioned up along the
z-axis of the Bloch sphere), and you apply a 90◦ Rx or Ry rotation
to put it on the equatorial plane of the Bloch sphere. Then, you wait
for a certain amount of time until the phase or superposition state
completely decoheres. The amount of time that it took is essentially
T2. Now, imagine that you again start with the qubit in the ground
state and you apply a 180◦ Ry rotation, which is also known as a
π-pulse. Then, you wait for the qubit to relax or decay back to the
ground state. The amount of time that it takes is the T1 time. These
timescales are measured across different qubit platforms and are used
to compare what is best. The combined effect of these timescales has
huge implications on how useful a platform will be for running large-
scale useful and interesting algorithms.

So, let’s briefly compare the performance of the two platforms we
discussed, spin qubits and superconducting qubits:

1. In spin qubits, one practical advantage is that they are small
(nanoscale size) and can therefore be easily scaled up. As we dis-
cussed, these qubits can be controlled using NMR and electron-
spin resonance (ESR) techniques which can isolate the qubit
and protect it from unwanted interactions. Another advantage
is depending on the implementation, the qubits could work even
at room temperature.5 The coherence times of spin qubits using
quantum dots are typically of the order of a few microseconds and
not as long as state-of-the-art superconducting qubits [40].

2. In superconducting qubits, we have the advantage of working
at milliKelvin temperatures with very low dissipation and ther-
mal excitations which allows for making devices with little loss
of information. Further, the energy scale of the qubit allows us
to use existing microwave tools that provide low-noise operation
in the 2–10 GHz regime. Electrical engineers, especially in the
aerospace and telecommunications industries, have great famil-
iarity and experience making low-noise sources, amplifiers, and

5If you are curious, spin qubits can be implemented by trapping electrons using
quantum dots (which are devices made on a chip and controlled with microwave
signals), but they can also be nuclear spins of a diamond, for example, called NV
centers, which can work at room temperature and are laser-controlled [39].
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detectors in this frequency regime. Some of the state-of-the-art
relaxation times and coherence times achieved in these qubits
(at the time this edition of the book was published) are 1 ms
and 1.5 ms, respectively [41]. By studying different ways to engi-
neer these qubits, research has come a long way from the origi-
nal superconducting qubits which only had a coherence time of
nanoseconds!

There are heaps of other performance metrics that matter includ-
ing the speed at which gates can be performed, the fidelity or accu-
racy of those gates, the fidelity of preparing a particular state, being
able to reliably couple and control multiple qubits, and so on. We
will not go into those details here but let’s consider an example, to
give you an idea of how delicate the problem of engineering qubits
could become. Superconducting qubits have some of the fastest gates
while atom-based or ion-based qubits have slower gate times. How-
ever when you divide the coherence time by the gate clock period,
you could achieve more or less the same number of operations. So
for a given algorithm they provide the same number of coherent gate
operations. Right now, it is not clear if they outperform each other
because qubit systems are multifaceted. It is not just one metric
that decides which platform is better. The higher the time a qubit
can maintain its quantum state is clearly important, but so is the
speed of operations and the ease of being able to entangle qubits.



Conclusion

You have arrived to end of this book and your head might be filled
with visions of a quantum future. It has been more than a century full
of discoveries from the inception of the theory of quantum mechanics.
We have now realized many conceptual ideas into laboratory reali-
ties. This century started with a more fascinating dream of not just
observing and discovering new quantum phenomena but also trying
to go beyond by very precisely controlling quantum states. Building
and controlling quantum states, like qubits, may unlock solutions to
longstanding problems that are known to be computationally diffi-
cult. This technology may become part of our every day life in the
next century or sooner.

Quantum computing is a highly multidisciplinary topic and you
could find the footprints of many science disciplines in it. From
physics to chemistry, from computer science to software engineer-
ing, from microwave engineering to materials science. Everyone plays
a crucial role. This book aims to provide entry-level but practical
background to those who are keen on learning quantum computing,
but have not gone through the rigorous quantum physics education.
The book covers basic mathematical concepts as well as important
thought experiments and laboratory discoveries that were key to the
formation of our quantum computing platforms today. We provided
the basics of linear algebra as it is necessary to understand quan-
tum information. Using this mathematical background, we gained
physical intuition by describing various physical situations of how
qubits could be implemented, how they can be controlled through
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gates or matrices, and how measurement is tied to the eigenvalues
and eigenvectors of those matrices.

While a single-qubit representation is relatively simple, we
described a few examples of how crucially different quantum con-
cepts could be from their classical counterparts. We continued by
extending number of qubits to two and introducing entanglement.
The EPR paradox shows how the founders of quantum mechanics
had trouble accepting the concept of entanglement and non-locality.
While it can be debated from a philosophical point of view, entan-
glement is real and defines the real power of quantum computers.
We provided two examples of spin and superconductivity as physical
platforms where these concepts can be employed in reality.

This book is a starter’s guide, but by no means is it completely
covering every subject. This strategy is used throughout the book
with the goal of providing essential materials for understanding prac-
tical and widely used quantum information concepts. The state of the
art will surely march forward, and independent of whichever platform
will be the forerunner, the concepts described here remain the same.
We hope that Qiskit and Quantum Flytrap softwares could serve
as virtual labs to help with visualization of abstract concepts being
developed in real laboratories.



Chapter A

Coding with Qiskit

Qiskit was initially released on March 2017 by IBM Research. It is
an open-source framework for quantum computing that allows users
to develop and manipulate quantum programs and run them on real
quantum processors through IBMQ, simulators and even low-level
simulations through OpenQasm [42]. The primary version of Qiskit
uses the popular programming language, Python, but versions for
JavaScript are used for OpenQasm. We will be using the primary
version of Qiskit, simulating quantum circuits and understanding
their behavior through the Bloch sphere.

Qiskit is made up of four different elements:

1. Terra: This allows for composing quantum circuits where you
define the number of qubit registers and classical registers, which
store results after measuring the circuit. There also exist visual-
ization tools to plot measurement results.

2. Aer: This contains the simulators for the quantum circuits,
including the Statevector simulator, which is what our Bloch
sphere is trying to physically show, the Qasm simulator, which
runs circuits multiple times and returns probabilistic results, and
the Unitary simulator, which returns a matrix that represents the
circuit that the user built.

3. Ignis: Real quantum hardware is susceptible to many differ-
ent kinds of random errors or noise. If a circuit is run on the
IBMQ processors, the results will not be 100% accurate due to
the presence of noise. This element of Qiskit provides ways to
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characterize and mitigate errors so that circuits can provide more
accurate results even in the presence of noise.

4. Aqua: This element of Qiskit operates at the highest level thus far
since it contains algorithms that can be used to build applications
to solve problems. The main problems where quantum computing
may have a real advantage are in chemistry (since molecules are
inherently quantum systems), artificial intelligence, optimization
and finance.

As more research is published and interest in quantum computing
rises, Qiskit remains an open community, taking input from users,
researchers and software developers. For information on Qiskit, read
their documentation (https://qiskit.org/documentation/index.html)
or look through Qiskit Learn (https://qiskit.org/learn) for tutorials
to get started.

Qiskit Installation

Currently, the optimal way to install Qiskit is by using virtual
Python environments. Specifically, we will use Anaconda, a free,
open source distribution to simplify package management for Python
which includes CLI and GUI interfaces through Anaconda Power-
Shell Prompt and Anaconda Navigator, respectively. When working
in a conda environment, all dependencies and package versions are
checked automatically to ensure that there are no conflicting depen-
dencies.

First, install latest version of Anaconda to your machine. The
appropriate versions for your OS can be found at: https://docs.ana
conda.com/anaconda/install/.

After installing Anaconda, open the Anaconda PowerShell
Prompt and create a new environment to use Qiskit by typing the
follow commands:

conda create -n qiskit_env python=3

Running this command will list several packages that will be installed
and ask you whether to proceed. Type y when asked and then acti-
vate your environment:

conda activate qiskit_env

https://qiskit.org/documentation/index.html
https://qiskit.org/learn
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/install/
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The next step is to install some additional packages that will be
necessary to use along with Qiskit. This includes NumPy, SciPy,
matplotlib and Jupyter Notebook. Type the following command to
begin installation:

conda install numpy scipy matplotlib jupyter notebook

Again, after running the command, you will be asked to install several
packages, so type y to proceed.

Now, we are ready to install Qiskit! Type:

pip install qiskit

Once the installation is complete, also install visualization tools:

pip install qiskit[visualization ]

Now, you can start up Jupyter Notebook by typing:

jupyter notebook

This will open up a web page that has the files on your computer.
You can create a new folder to store the notebooks where you work
with Qiskit. When you open a new notebook, you will note that there
is an empty block. This is where you can type your code and then
press Shift + Enter to execute and output will appear below. A
new code block is created every time you execute a previous one, but
you can always go back to previous cells, edit and rerun.

Start off by importing Qiskit to ensure that the installation was
successful. Executing the following code should output:

Alternatively, you can access JupyterLab online through Ana-
conda Cloud service via the link: https://anaconda.cloud/.

https://anaconda.cloud/
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Chapter B

Quantum Flytrap:
Virtual Optical Table

We will use Quantum Flytrap (https://quantumflytrap.com/virtual-
lab), a virtual optical table, as a resource to understand how to
generate different kinds of light polarization and how they can be
measured in different bases.

The default light source is a laser that provides horizontally polar-
ized light. Using the many optical tools that are offered, we can mod-
ify the polarization and observe it in different bases. Some tools are
described in the following and also shown in Fig. B.1.

1. Flat mirror: This is used to reflect incident light by the same
angle.

2. Beam splitter: This splits beam of incident light into two, where
some percentage of light is transmitted through the beam splitter
and the rest is reflected.

3. Polarizer: This is the optical filter that may be oriented to only
allow light of specific polarization to pass through and block light
of other polarizations.

4. Wave plate: This is also known as retarder and is a device that
alters the polarization of a light wave traveling through it. This
is of two types:

Half-wavelength plates: These shift the polarization direction
of linearly polarized light and delays phase by 180◦. This allows
us to switch from horizontal to vertical or angles between 0–90◦,
depending on the orientation of the plate.
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(a) (b)

Figure B.1. (a) Optical tools in Quantum Flytrap. First row : mirror, beam
splitters, reflective cube; second row : light absorber, polarizer, quarter-wavelength
wave plate, and half-wavelength wave plate; third row : sugar solution, Faraday
rotator, glass and vacuum jar for changing phase. (b) Measurement bases can be
viewed when enabling “Wave” mode.

Quarter-wavelength plates: These shift the polarization direc-
tion from linear to circular and vice versa, and delay the phase
by 90◦.

5. Faraday rotator: This is a device that involves sending light
through a magnetic field, which rotates the polarization state.

These tools may be dragged into the optical table and rotated
as necessary. The changes in the quantum state can be tracked in
different bases and are shown to the right of the screen. Let’s take
the default horizontal polarization and turn into vertical. We can
do this using the half-wavelength plate, which delays polarization by
one half of a wavelength, as shown in Fig. B.2. We must rotate the
wave plate by 45◦ because the wave plate delays the phase at twice
the angle that it’s rotated at, thus achieving a 90◦ shift.

Similarly, we can generate circularly polarized light by using a
quarter-wavelength plate, which delays polarization by one quarter
of a wavelength. Once again, we rotate the wave plate at a 45◦ angle
so that the incident line is coming through at 45◦ so that the quarter-
wavelength plate can shift the polarization to circular. Specifically,
we generate right-handed circular light, as shown in Fig. B.3.

If we wanted to generate left-handed light, then we would have to
rotate the wave plate by an additional 90◦.
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Figure B.2. Changing polarization from horizontal to vertical.

Figure B.3. Changing polarization from horizontal to circular right-handed
light.

Generating Photon Superposition Using Beam

Splitters

The beam splitter is a device used to split light and recombine it
in certain cases. A beam splitter does not change the polarization
of light, but instead splits it and the split beams move in different
directions. The beam splitter is made of glass and has a dielectric
coating on one side. Light that is reflected from the dielectric side
picks up a π phase shift. Light reflected from the side of the glass does
not pick up any phase shift. Finally, all transmitted light experiences
no phase shift. This can be seen in Fig. B.4. If we think about the
wave nature of light, a π phase shift means that each peak of the
original light is shifted forward by one. This is important when we
have two beams that later recombine, as the π phase shift in one will
mean destructive interference!

We can also generate a superposition state by using a 50/50 beam
splitter, where 50% of the light intensity is transmitted (goes through
the beam splitter) and 50% is reflected. In the optical table, we drag



204 First Step to Quantum Computing: A Practical Guide for Beginners

(a) (b)

Figure B.4. (a) Light that is reflected from the dielectric side (blue arrows)
is phase shifted by π rad, while light reflected from glass side (orange arrows)
has no phase shift. Any light that is transmitted experiences no phase shift.
(b) Visual of +π or 180◦ phase shift for a wave.

the beam splitter and rotate it at a 45◦ angle so that the incident
horizontal light reaches the beam splitter at a 45◦ angle. We also
place two detectors in the path we expect the light to follow and
observe which detector triggered.

In this experiment, we have the laser providing us single photons.
For each photon that we send in, only one of the detectors is trig-
gered. In this way, the photon is behaving like a particle instead of a
wave. If we sent many photons in one by one and gathered the statis-
tics for the number of times either detector was triggered, we would
see that for a 50/50 beam splitter, either detector may be triggered
with an equal chance (you may try this by enabling the “Loop” set-
ting under “Waves”). This is because the photon state, which we will
denote as |P 〉, is in a superposition until it reaches the detectors, as
shown in Fig. B.5(a):

|P 〉 = 1√
2
(|→〉+ |↑〉)

What if we tried a beam splitter with a different splitting ratio
like 60/40? We can right click on the beam splitter and change its
reflectivity to 60%. Now, 60% of the incident light is reflected, and
only 40% is transmitted, as shown in Fig. B.5. Once again, if we
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(a) (b)

Figure B.5. (a) 50/50 Beam splitter setup to generate a superposition. Green
monsters are detectors that measure the state of the light reaching them;
(b) 60/40 beam splitter setup to generate a superposition.

sent many single photons one by one and gather statistics, we would
see that the detector oriented along the path of the reflected photon
direction will be triggered more often because we set the beam split-
ter to reflect more light. The photon still behaves like a particle, so
it will only reach one of the detectors, but this change in the beam
splitters alters the superposition so that we have a 60% chance of
reaching the detector positioned along the path of the reflected pho-
tons vs. only a 40% chance of triggering the detector positioned in
the path of the transmitted photons. Alternatively, if we had made
the beam splitter only 40% reflective then, 60% of the photons would
be transmitted, thus the detector positioned along the path of the
transmitted photons has a 60% chance of being triggered.
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Chapter C

Additional Math Review

This is a reference sheet for additional math content that will be
necessary.

Trigonometry

Trigonometry studies right-angled triangles or right triangle and
uses trigonometric functions to relate an angle of right trian-
gles to the ratio of two of its side lengths. The hypotenuse of a
right triangle can be computed by using the Pythagorean theorem:
c2 = a2 + b2.

A

B C

c
a

b
θ

hyp
otenuse

opposite

adjacent

Figure C.1. Right triangle.
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The trigonometric functions are known as cosine, sine, and
tangent, and they are defined in the following manner:

cos θ =
adjacent

hypotenuse
=
b

c

sin θ =
opposite

hypotenuse
=
a

c

tan θ =
opposite

adjacent
=
a

b
=

sin θ

cos θ

If we know the side lengths of the triangles, we may compute the
angle θ1 by performing an inverse operation on the trigonometric
functions, which can be denoted as −1 or with the prefix “arc”:

θ = cos−1

(
b

c

)
= sin−1

(a
c

)
= tan−1

(a
b

)

θ = arccos

(
b

c

)
= arcsin

(a
c

)
= arctan

(a
b

)

Unit Circle

A circle is a curve defined in terms of its radius r. If we plot the
circle on a Cartesian plane, then any point on the circumference of
the circle can be labeled as (x, y). A unit circle is a circle centered
at the origin and has a radius of 1. The x coordinate can be described
using “cos”, and the y coordinate can be described using “sin”:

x = r cos θ

y = r sin θ

1Angles may be written in the form of degrees, noted as ◦ or in radians, noted
as rad. A full circle has 360◦ or 2π radians, and we may convert from radians to
degrees using the ratio:

360◦

2π
=

180◦

π
.

We may also convert from degrees to radians using the reciprocal of that ratio:
π

180◦.
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Figure C.2. Unit circle.

Using the Pythagorean theorem, we must have that

x2 + y2 = r2 = (r cos θ)2 + (r sin θ)2 = r2(cos2 θ + sin2 θ)

From this, we obtain the trigonometric identity:

cos2 θ + sin2 θ = 1.

There are some common angles that are often encountered for
which we know the value of “cos”, “sin”, and “tan”:

Angle, θ◦ Angle, θ rad cos θ sin θ
0◦ 0 1 0

30◦ π/6
√
3/2 1/2

45◦ π/4
√
2/2

√
2/2

60◦ π/3 1/2
√
3/2

90◦ π/2 0 1

The table shows the angles in the first quadrant, however, the
cos, sin and tan of other angles can be related to these angles which
are known as reference angles. For example, if we wanted to know
cos 135◦, the reference angle can be computed as 180◦ − 135◦ = 45◦.
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The only thing we have to watch out for is the sign. We can see from
the unit circle that if we have θ > 90◦, then the x-components are
negative, and since cos represents the x-components, then cos 135◦ =

−
√
2
2 .
If θ > 180◦, say, 270◦, then the reference angle can be computed as

360◦− 270◦ = 90◦. Again, we have to watch out for the sign, looking
at the unit circle, θ = 270◦ corresponds to the negative y-axis. So,
cos 270◦ = 0, but sin 270◦ = −1.

Lastly, the convention for positive angular direction is counter-
clockwise, �, and that for the negative direction is clockwise, �. For
example, if we have an angle that is greater than 180◦, we may also
write it conveniently in the clockwise direction:

270◦ = −90◦
315◦ = −45◦

Rules for Exponents

An exponential includes an exponent which represents repeated mul-
tiplication of some number, which is called the base. So, we have

23 = 2 · 2 · 2, where 2 is the base and 3 is the exponent. The rules for
working with exponents are general and apply whether the exponent
is a specified number or variable:

1. Zero-exponent rule states anything raised to the zero power is 1:

a0 = 1

2. Power rule:

(am)n = am·n

3. Negative exponent rule:

a−n =
1

an
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4. Product rule2:

am · an = am+n

5. Quotient rule3:

am

an
= am−n

2Note that the base of the two exponentials must be the same to apply this rule,
if they are not, you cannot perform this simplification.
3Again, bases of the exponentials must be the same for this rule to apply.
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Chapter D

Checkpoint Exercise Solutions

Chapter 1

Probability

Introduction

First, we look at the sample space for this probabilistic experiment.
We may use a table to visually see what our sample space is:

1 2 3 4
1 1,1 1,2 1,3 1,4
2 2,1 2,2 2,3 2,4
3 3,1 3,2 3,3 3,4
4 4,1 4,2 4,3 4,4

As we can see, we have 16 possible outcomes which are all equally
likely. So the probability of each event occurring is 1

16 . Now, we want
the probability that the sum of the two outcomes is 5, and we can
see from the table that this occurs for four events: (1,4), (2,3), (3,2),
(4,1). Thus,

P(sum = 5) = 4

16
= 1

4

213
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Combinatorics

1. There are 3 places for letters and 2 places for numbers and we
want unique license plates, implying that we don’t repeat any
letters or numbers. There are 26 letters in the alphabet and 10
choices for numbers from 0 to 9, so we have the following:

26 × 25 × 24 × 10 × 9 = 1,404,000

2. There are 3! ways to arrange 3 math textbooks because we have
3 possible choices for the first place, 2 for the second, and 1 for
the third, so 3 × 2 × 1 = 3! = 6. Similarly, there is only one way
to arrange the chemistry textbook: 1! = 1. Lastly, there are 5! =
5×4×3×2×1 = 120 ways to arrange our beloved physics textbooks.
Now, the last step is to figure out the possible ways that the
textbooks can be arranged, for example, which sets of textbooks
go on the left, next, and so on. This is the same as considering
the number of ways to arrange 3 objects since we have 3 different
subjects of textbooks here. This may be arranged in 3! ways. So,
our final result is

3! ⋅ (3! ⋅ 1! ⋅ 5!) = 4320

3. (a) Here, we are trying to arrange the players so that Team 1
players stand together. That means that Team 1 can be con-
sidered as one group while the players from Team 2 can be
treated as 6 distinct groups since we don’t have this restric-
tion that they all have to stand next to each other. This gives
us 7 distinct groups that can be arranged in 7! = 5040 ways.
For example, if Team 1 is positioned in the middle and they
stand all together, some players from Team 2 may stand to
the left or to the right of Team 1. Now, we know how many
ways we could arrange these distinct groups. The last step is
to consider that while the players in Team 1 stand next to
each other, there are 5! = 120 ways that the players can be
arranged within the group. Our final answer is thus

7! ⋅ 5! = 604,800

(b) Now, we are choosing 3 players which must all be either from
Team 1 or Team 2. This is a combinations problem: there are(5
3
) ways to choose 3 players from Team 1 and (6

3
) ways to
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choose 3 players from Team 2. Since we are saying “or” and
the occurrence of these events occurring is disjoint, we add
the number of ways:

(5
3
) + (6

3
) = 5!

3!(5 − 3)! + 6!

3!(6 − 3)! = 30

Discrete Random Variables

1. (a) If we toss a coin twice and keep track of the number of heads
that appear, the random variable S may be 0, 1, 2. This means
that we may get no heads for both toss times, only one head
or two heads for both times.

(b) Each outcome of the coin is equally likely and independent.
So, if we got 0 heads, then that means we got 2 tails instead
and this has a probability of P(0H) = 1

2 ⋅ 12 = 1
4 of occurring. If

we get one head, then the other time we tossed, we got tails,
but the head could appear either on the first or second toss,
so the probability of getting one head in this experiment is
P(1H) = 2 ⋅ 12 ⋅ 12 = 1

2 . Lastly, if we got 2 heads, then

P(2H) = 1

2
⋅ 1
2

= 1

4

This experiment can be represented by the following binomial
distribution:

P(S = k) = (2
k
)(1

2
)k (1

2
)2−k

Using our rules of exponentials, we can reduce this to

P(S = k) = (2
k
)(1

2
)(2−k)+k = (2

k
)(1

2
)2 = (2

k
)(1

4
)

2. Each free throw Eddie makes can be considered as a Bernoulli
trial since there is a probability of him succeeding and failing. We
are given the probability of Eddie succeeding at making the free
throw: p = 0.8. The number of times he attempts the free throws
is n = 8. So, we can define a random variable, say T , to keep track
of the number of free throws Eddie makes successfully. T can take
following values: 0, 1, 2, 3, 4, 5, 6, 7, 8. This means Eddie may
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fail at all free throws and succeed at making some of them or all
of them. Thus, we can write the Binomial distribution:

P(T = k) = (8
k
)(0.8)k(0.2)8−k

We are asked to calculate the probability that he makes at least 3
of these free throws successfully, which we represent as P(T ≥ 3).
Making at least 3 successfully means that he could have made 3,
4, 5, 6, 7 or 8 free throws successfully. So, we would need to add
up P(T = 3), P(T = 4) ... P(T = 8). Another way to reframe the
answer and cut down on so much computation is to say Eddie
making at least 3 successfully is the same as if he does not make
0, 1, 2 free throws:

P(T ≥ 3) = 1 − P(T ≤ 2) = 1 − P(T = 2) − P(T = 1) − P(T = 0)
Plugging these into the equation for the distribution:

P(T ≥ 3) = 1 − (8
2
)(0.8)2(0.2)6 − (8

1
)(0.8)(0.2)7

− (8
0
)(0.8)0(0.2)8 = 0.99877

So, because Eddie’s probability of success is quite high, we can
understand how he is able to make many free throws successfully.
If we look at the distribution, we also note how the highest prob-
abilities occur for T ≥ 3:
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2. In this problem, we view the effectiveness of the vaccine as a
Bernoulli trial. In this case, the Pfizer vaccine has 0.8 effective-
ness in preventing COVID-19. We have n = 6 patients. If we define
a random variable I which keeps track of how many patients are
infected after receiving the vaccine, then I can be 0, 1, 2, 3, 4, 5, 6.
This means that 0 patients may contract the virus after receiving
the vaccine, some may contract it, or all may contract it. So, now,
since we are keeping track of who gets infected, we need to write
our Binomial distribution with p = 0.2, the probability of getting
infected:

P(I = k) = (6
k
)(0.2)k(0.8)6−k

We are asked to find the probability that only two patients con-
tract the virus after having the received the vaccine:

P(I = 2) = (6
2
)(0.2)2(0.8)4 ≈ 0.245

So, there is a 24.5% chance that 2 people will contract COVID-19
after having received the Pfizer vaccine. The plot of the distribu-
tion is shown in the following. As we can see, since the vaccine
has a pretty high success rate (and therefore a lower failure rate,
i.e. someone gets infected after having received the vaccine), the
highest probabilities are associated with 0 or 1 patient actually
becoming infected after receiving the vaccine, while the probabil-
ity of more than 4 patients getting infected is very low.
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Calculating Expected Values

1. Looking back at our solution for exercise 1 in the previous section,
we said that the random variable S can be 0, 1, 2 implying that
we got no heads for both coin tosses, only one head or two heads
both times. The probabilities associated with those values were

P(0H) = 1

2
⋅ 1
2

= 1

4

P(1H) = 2 ⋅ 1
2
⋅ 1
2

= 1

2

P(2H) = 1

2
⋅ 1
2

= 1

4

So, the expected value would be

ES = 0 ⋅ 1
4
+ 1 ⋅ 1

2
+ 2 ⋅ 1

4
= 1

So, we expect to get 1 head when we toss a coin twice, which
makes sense!

2. (a) The plot of the distribution is shown above.
(b) The expected value can be computed as

EY = 0 ⋅ 1
8
+ 1 ⋅ 3

8
+ 2 ⋅ 3

8
+ 3 ⋅ 1

8
= 1.5

The distribution is symmetric, so the expected value which can
also be viewed as the center of mass of a distribution should be
at 1.5 in this case, which is what we have calculated.
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Chapter 2

Eucledian Vectors

1. (a) In this case, our coordinate system consists of a plane where

the axes are the N̂ and Ê directions which are analogous to ŷ
and x̂ and in and out of place direction is in this F̂ direction.
So, if we can write a displacement vector, D⃗, in terms of these
axes, then

D⃗ = 4Ê + 5N̂ − 3F̂

The magnitude of the vector is

∣D⃗∣ = √
42 + 52 + (−3)2 = √

50 ≈ 7.1

(b) If we now have these new axes N̂E and ˆNW that are 45○

from the original axes, then we can see that these vectors are
made of equal components of Ê and N̂ , so first we can write
these new unit vectors in terms of the old ones. Normalizing
the vectors, we find that

N̂E = 1√
2
(N̂ + Ê)

ˆNW = 1√
2
(N̂ − Ê)

Then, we can re-express the original unit vectors in terms of
the new unit vectors as

Ê = 1√
2
(N̂E − ˆNW )

N̂ = 1√
2
(N̂E + ˆNW )

So, now, the movement 4Ê = 4√
2
(N̂E − ˆNW ) and 5Ê =

5√
2
(N̂E + ˆNW ). Thus, the total amount of movement in the

N̂E and ˆNW directions are 4√
2
+ 5√

2
= 9√

2
and− 4√

2
+ 5√

2
= 1√

2
,

respectively. Alternatively, you can take the dot product to
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figure out the projection of 4Ê and 5N̂ in the new axes in the
following way:

4Ê ⋅ ˆNW = 4Ê ⋅ 1√
2
(N̂ + Ê) = 4√

2

Noting here that Ê ⋅ N̂ = 0 since the vectors are orthogonal!
Either way, the result will be the same. Movement in F̂ axes
remains −3F̂ . So, the vector written with these new axes is

D⃗′ = 9√
2
N̂E + 1√

2
ˆNW − 3F̂

If we compute the magnitude of this vector,

∣D⃗′∣ = ����( 9√
2
)2 + ( 1√

2
)2 + (−3)2 = √

50 ≈ 7.1

This is an important conclusion in linear algebra, the magni-
tude of a vector does not depend on how you choose to write
the vector. The unit vectors that we choose to write the vec-
tor form what is known as basis and here we can see that the
magnitude or length of a vector is basis independent !

2. Using the rules of adding vectors, we simply add the components
that are the same to each other, so

R⃗ = P⃗ + Q⃗ = (1 + 6)̂i + (3 + 3)ĵ + (4 + 2)k̂ = 7̂i + 6ĵ + 6k̂

Taking the magnitude of R̂,∣R̂∣ = √
72 + 62 + 62 = √

151 ≈ 12.3

3. The point of this problem is to normalize vectors and use the dot
product.

(a) To normalize u⃗ and v⃗, we just need to divide the vectors by
their magnitude, respectively:∣u⃗∣ = √

22 + 32 + 42 = √
29

∣v⃗∣ = √
22 + (−6)2 + 72 = √

89

Taking the dot product, we have

u⃗√
29

⋅ v⃗√
89

= 2 ⋅ 2 + 3 ⋅ −6 + 4 ⋅ 7√
29

√
89

= 14√
2581

≈ 0.28



Checkpoint Exercise Solutions 221

(b) We already know that î = (1 0 0) and we just need to nor-

malize p⃗ which has a magnitude of
√
17. However, we did

not even need to do that here because we see that p⃗ has no
component in the î direction at all, so their dot product is 0.
Geometrically, p⃗ is located purely in the yz-plane.

Dirac Notation

1. The bra vector is the “dual” of the ket vector, i.e. the conjugate
transpose of a ket vector:⟨u∣ = ((∣u⟩)∗)⊺ = ((1 − i) 4)
The ∗ symbol means taking the conjugate of each element in the
vector and the ⊺ symbol means transposing or essentially making a
column vector into a row vector. From a dimensions perspective, a
column vector is 2×1 meaning 2 rows and 1 column. Transposing
flips these dimensions, leading to 1 × 2, implying 1 row and 2
columns, which is a row vector!

2. The ket vector is the dual of the bra vector. Using the same idea
as in (1),

⟨v∣ =
⎛⎜⎜⎜⎜⎜⎝
0.5 + i
0.2

1 − 0.5i

0.2

⎞⎟⎟⎟⎟⎟⎠
3. This problem is very similar to what we did in the previous exer-

cises with vectors in real vector spaces. We need to normalize and
compute the inner product which is a generalized version of the
dot product:

∣ ∣P ⟩ ∣ = √⟨P ∣P ⟩ =
������(1 (2 − i) − i)⎛⎜⎝

1
2 + i
i

⎞⎟⎠
= √

12 + (2 − i)(2 + i) + (−i)(i) = √
1 + (22 + 12) + 1 = √

7

Similarly,

∣ ∣P ⟩ ∣ = √⟨P ∣P ⟩ = √
1

22
(22 + 22) + 42 + (62 + 22)) = 4
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So, the inner product of the normalized vectors is

⟨P ∣Q⟩ = 1√
7
(1 (2 − i) − i) 1

2 ⋅ 4 ⎛⎜⎝
2 + 2i
4

6 + 2i

⎞⎟⎠
= 1

8
√
7
((2 + 2i) + 4(2 − i) − i(6 + 2i)) = 12 − 8i

8
√
7

≈ 0.57 − 0.38i

Superposition Principle

1. In this problem, the key is to determine whether the two vectors
are scalar multiples of each other.

(a) It is clear that ∣v1⟩ and ∣v2⟩ are linearly dependent since 3 ∣v1⟩ =∣v2⟩.
(b) It is clear that there is no scalar that we multiply either vector

to obtain the other.

2. In Q1, we found that the set of vectors from part b were linearly
independent, and now, we can use these vectors to construct the
vector ∣ψ⟩. In this way, ∣ψ⟩ is a linear combination of the two
vectors, ∣v1⟩ and ∣v2⟩, where our job is to find what scaling factors
achieve this:

∣ψ⟩ = c1 ∣v1⟩ + c2 ∣v2⟩
The more systematic way to do this is to actually use matrices,
where the columns of the matrix are the linearly independent vec-
tors. All that basically gets us is the following system of equations:

5c1 + 10c2 = 15

2c1 + 2c2 = 2

However, we can also figure this out through trial and error. It is
easy to check that c1 = −1 and c2 = 2:

−(5
2
) + 2(10

2
) = (15

2
)

One thing the system of equations tells us is that there is only
one unique solution here to express ∣ψ⟩ in terms of these chosen
linearly independent vectors.
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3. We have learned now that a quantum state can be represented
as a complex vector, which means that c1 and c2 can be complex
numbers, thus there are actually 2 unknowns for each number: its
real and imaginary parts. Now, we have a system of equations:

c1 + c2 = i
c1 − c2 = 1

Solving the system, we obtain that c1 = i+1
2 and c2 = i−1

2 . To
normalize, we just need the magnitude of ∣ψ⟩:√⟨ψ∣ψ⟩ = √∣c1∣2 + ∣c2∣2 = √

2

Thus, the normalized ∣ψ⟩, labeled ∣ψ̂⟩, can be written as the fol-
lowing linear combination of the basis states:

∣ψ̂⟩ = 1√
2
∣ψ⟩ = 1√

2
( i + 1

2
(1
1
) + i − 1

2
( 1−1))

4. We defined in the notes that if ∣u⟩ and ∣v⟩ are two vectors that
have n elements, then their inner product is

⟨u∣v⟩ = (u∗1 u∗2 u∗3 . . . u∗n)
⎛⎜⎜⎜⎜⎜⎝
v1
v2
v3⋮
vn

⎞⎟⎟⎟⎟⎟⎠
= u∗1v1 + u∗2v2 +⋯+ u∗nvn

Orthogonality means that the inner product of the two vectors
must be 0 if they are orthogonal and 1 if they are the same vector,
i.e. ∣u⟩ = ∣v⟩, since we are saying that both states are normalized.
Then, for two indices i and j which just mean the ith element of∣u⟩ and jth element of ∣v⟩, their inner product is⟨u∣v⟩ = δij

Matrices

1. Recall that tranposing a matrix means to flip it over its diagonal.
So, we have that

A⊺ +B +C = (−8 7−6 3
) + (9 −1

5 0
) + (2 −2

4 1
) = (3 4

3 4
)
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2.

B +D = (9 −1
5 0

) + ⎛⎜⎜⎝
2 −2
4 1

3 0

⎞⎟⎟⎠
This computation cannot be carried out because the matrices do
not have the same dimensions!

3.

AD⊺ = (−8 −6
7 3

)( 2 4 3−2 1 0
)

= (−8(2) − 6(−2) −8(4) − 6(1) −8(3) − 6(0)
7(2) + 3(−2) 7(4) + 3(1) 7(3) + 3(0) )

= (−4 −38 −24
8 31 21

)
4.

DA = ⎛⎜⎜⎝
2 −2
4 1

3 0

⎞⎟⎟⎠(−8 −6
7 3

)
= ⎛⎜⎜⎝

2(−8) − 2(7) 2(−6) − 2(3)
4(−8) + 1(7) 4(−6) + 1(3)
3(−8) + 0(7) 3(−6) + 0(3)

⎞⎟⎟⎠
= ⎛⎜⎜⎝

−30 −18−25 −21−24 −18
⎞⎟⎟⎠

5.

3C = 3(2 −2
4 1

) = ( 6 −6
12 3

)
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Linear Transformations

1. The matrix X acting on ∣u⟩ results in the following:

1√
2
(0 1

1 0
)(1

i
) = 1√

2
(i
1
)

Let’s try to factor out an i to see if we can get ∣u⟩ back just scaled
by some number. Recall that 1/i = −i, so we have that

X ∣u⟩ = i√
2
( 1−i)

Thus, ∣u⟩ is not an eigenvector of X.
2. The matrix Y acting on ∣u⟩ results in the following:

1√
2
(0 −i
i 0

)(1
i
) = 1√

2
(1
i
) = ∣u⟩

Thus, ∣u⟩ is an eigenvector of Y with eigenvalue +1.
3. The matrix Z acting on ∣ψ⟩ results in the following:

1√
2
(1 0
0 −1)(c1

c2
) = ( c1−c2) ≠ ∣ψ⟩

Thus, ∣ψ⟩ is not an eigenvector of Z. However, ∣0⟩ = (1
0
) and

∣1⟩ = (0
1
) states are.

Calculating Eigenvalues and Eigenvectors

1. The eigenvalues for matrix D were found in the corresponding
section to be λ = ±1. In order to find eigenvectors, we need to find
the vectors that satisfy the following:

D ∣e⟩ = λ ∣u⟩
(1 0
1 −1)(a

b
) = ±(a

b
)

where a and b are the unknown elements of the eigenvector, which
can be found by using one of the linear equations. In this case, we
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take the equation from the second row of the matrix:

a − b = ±b
Thus, a = 2b or a = 0. In the first case, for any choice of b, a is
twice that. For the second case, a is always 0, so b can take on
any value. So the two eigenvectors are

∣u1⟩ = (2
1
) ∣u2⟩ = (0

1
)

Let’s prove that they give us what we want:

(1 0
1 −1)(2

1
) = (2

1
)

So, ∣u1⟩ is the eigenvector associated with the eigenvalue +1:
(1 0
1 −1)(0

1
) = ( 0−1) = −(0

1
)

So, ∣u2⟩ is the eigenvector associated with the eigenvalue −1.
2. Now, we follow the same procedure to find the eigenvalues and

eigenvectors of matrix P. Once again, we want to solve the fol-
lowing eigenvalue equation:

P ∣u⟩ = λ ∣u⟩
First, let’s compute the determinant of this matrix to find the
characteristic equation:

det(P − λI) = ∣1 − λ 1
1 −1 − λ∣ = (1 − λ)(−1 − λ) − 1 = 0

Expanding out the polynomial, we get

λ2 − 2 = 0

λ = ±√2

Now, we can find the eigenvectors by plugging back the eigenvalues
into the eigenvalue problem:

(1 1
1 −1)(a

b
) = ±√2(a

b
)
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Taking the equation formed by the first row,

a + b = ±√2a

So, we get that b = (√2 − 1)a or b = −(√2 + 1)a. If we take a = 1,
then we obtain the following eigenvectors:

∣u1⟩ = ( 1(√2 − 1)) ∣u2⟩ = ( 1−(√2 + 1))
Let’s test that we obtain the expected result:

P ∣u1⟩ = (1 1
1 −1)( 1(√2 − 1)) = ( √

2(2 −√
2)) = √

2( 1(√2 − 1))
P ∣u2⟩ = (1 1

1 −1)( 1−(√2 + 1)) = ( −√2(2 +√
2)) = −√2( 1−(√2 + 1))

Properties of Unitary Matrices

1. First, to check if the matrix is unitary, we must verify that
Y⊺Y = I.

[0 −i
i 0

] [0 −i
i 0

] = [1 0
0 1

] = I

We have shown that the matrix is unitary, now let us use the
characteristic equation to find the eigenvalues:

det(Y − λI) = 0 = ∣−λ −i
i −λ∣ = −λ2 − 1 = 0

So, the eigenvalues are clearly λ = ±1. Now, we can solve the
eigenvectors by plugging the eigenvalues back into the eigenvalue
problem:

Y ∣u⟩ = ± ∣u⟩
(0 −i
i 0

)(a
b
) = ±(a

b
)

Taking the equation from the second row, we have

ia = ±b
which means if b = ±1, then a = i. So, our two eigenvectors are

∣u1⟩ = (i
1
) ∣u2⟩ = ( i−1)
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2. First, let’s check if F is unitary:

[0 −i
1 0

] [0 1
i 0

] = [1 0
0 1

] = I

We have shown that the matrix is unitary, now let us use the
characteristic equation to find the following eigenvalues:

det(F − λI) = 0 = ∣−λ i
1 −λ∣ = −λ2 + i = 0

So, the eigenvalues are clearly λ = ±√i. Recalling complex expo-
nentials, we know that ei

π
2 = cos π

2 + i sin π
2 = i. Therefore, √

i =
ei

π
4 = 1+i√

2
. Now, we can solve the eigenvectors by plugging the

eigenvalues back into the eigenvalue problem:

F ∣u⟩ = ± ∣u⟩
(0 1
i 0

)(a
b
) = ±(1 + i√

2
)(a

b
)

Taking the equation from the first row, we have

b = ±(1 + i√
2

)a
which means if a = 1, then b = ±(1+i√

2
). So, our two eigenvectors

are

∣u1⟩ = ⎛⎝ 1(1+i√
2
)⎞⎠ ∣u2⟩ = ⎛⎝ 1−(1+i√

2
)⎞⎠

Chapter 3

Introduction to Quantum Mechanics

1. (a) Based on the definition of the Schrodinger cat paradox,
the independent states for the radioactive substance are
“decayed,” ∣1⟩ or “not decayed” ∣0⟩.
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(b) We know that each of the independent states listed in part a
have a 50% chance of occurring. We also understand that we
can express the general state of the quantum system in terms
of the basis states, which in this case are the independent
vectors ∣0⟩ and ∣1⟩. We can start with the following guess for
the general superposition state:

∣ψ⟩ = 1

2
∣0⟩ + 1

2
∣1⟩

However, this state is not normalized since ⟨ψ∣ψ⟩ ≠ 1. So, we
use the normalization condition to solve for the normalization
factor, c:

∣ψ⟩ = c

2
(∣0⟩ + ∣1⟩)

⟨ψ∣ψ⟩ = ∣ c
2
∣2 + ∣ c

2
∣2 = 1

Therefore, we can solve that c is

2 ∣ c
2
∣2 = 1

c = 2√
2

Plugging this in, we have that ∣ψ⟩ is
∣ψ⟩ = 1√

2
∣0⟩ + 1√

2
∣1⟩

2. The main point that Schrodinger was trying to express with this
proposed paradox is that the “conscious observer”-driven inter-
pretation of the collapse of the superposition state was wrong,
and it was shown to be wrong experimentally as well. So, if
we were to consider the radioactive substance in the situation
described, the superposition would collapse due to the interaction
of the radioactive substance with the Geiger count, the measure-
ment device. The superposition would not collapse to a definite
state just because a conscious observer opened the steel chamber.
Again, the lesson here is that quantum superposition is disturbed
by the interaction of the quantum state with ANYTHING in the
environment.
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Spins in Magnetic Fields

1. If the source of silver atoms were sent through an SG apparatus
whose field is mostly oriented in the y-direction, we would still
observe atoms deflect either up or down leading to two distinct
spots on the screen, indicating ∣↑⟩ or ∣↓⟩.

2. In this setup, there is a beam of silver atoms which have ran-
dom spin orientations and the beam goes through the first SG
apparatus, oriented in the z-direction. The spins are measured
to be one of the basis states ∣↑⟩ or ∣↓⟩, indicating “spin-up” or
“spin-down,” respectively. Then, the “spin-up” pile is redirected
through another SG apparatus where the field is oriented in the
z-direction. The resulting measurement will only yield spin-up
atoms with 100% probability, since the states sent to the second
SG apparatus were definitely ∣↑⟩ which is a basis state of the SG
apparatus whose field is oriented in the z-direction.

3. Once again, we have a a beam of silver atoms which have random
spin orientations and the beam goes through the first SG appara-
tus, oriented in the z-direction. The spins are measured to be one
of the basis states ∣↑⟩ or ∣↓⟩ indicating “spin-up” or “spin-down,”
respectively. Then, the “spin-up” pile is redirected through an SG
apparatus whose field is oriented in the x-direction. The basis
states that the apparatus can measure are ∣→⟩ and ∣←⟩. We know
that if we are sending in only the “spin-up” pile, there is a 50%
chance of getting either ∣→⟩ and ∣←⟩. Finally, we redirect just the∣→⟩ pile to another SG apparatus, whose field is oriented in the
z-direction. Now, the basis states are ∣↑⟩ or ∣↓⟩, so sending in ∣→⟩,
we will get either ∣↑⟩ or ∣↓⟩ with 50% probability for each case. So,
the final output is a superposition of ∣↑⟩ or ∣↓⟩ each with 50% prob-
ability of being measured. Considering the entire sequence from
the beginning, we have the original beam where 50% of it ends up
being ∣↑⟩, and then redirected through the second SG apparatus,
there is 25% chance for the original beam to be ∣→⟩, and finally,
there is a 12.5% chance to measure ∣↑⟩ or ∣↓⟩.

Light Polarization

1. From the notes, we know that the vertical polarization state is∣↑⟩ = (0
1
), and we also know that the vectors ∣↗⟩ and ∣↘⟩ can be
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written in the {∣→⟩, ∣↑⟩} basis as follows:

∣↗⟩ = ∣D⟩ = 1√
2
(∣→⟩ + ∣↑⟩) = 1√

2
(1
1
)

∣↘⟩ = ∣A⟩ = 1√
2
(∣→⟩ − ∣↑⟩) = 1√

2
( 1−1)

If we take ∣↗⟩ − ∣↘⟩, we end up with

∣↗⟩ − ∣↘⟩ = 2√
2
∣↑⟩

Solving for ∣↑⟩ and noting that
√
2
2 = 1√

2
, we get that

∣↑⟩ = 1√
2
(∣↗⟩ − ∣↘⟩)

We could also have seen this visually.
2. Again, from the notes, we know that the horizontal polarization

state is ∣→⟩ = (1
0
), and we also know that the vectors ∣⟳⟩ and∣⟲⟩ can be written in the {∣→⟩, ∣↑⟩} basis as follows:

∣⟳⟩ = ∣R⟩ = 1√
2
(∣→⟩ − i ∣↑⟩) = 1√

2
( 1−i)
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∣⟲⟩ = ∣L⟩ = 1√
2
(∣→⟩ + i ∣↑⟩) = 1√

2
(1
i
)

By observation, we see that taking a sum of ∣⟳⟩ + ∣⟲⟩, we have

∣⟳⟩ + ∣⟲⟩ = 2√
2
∣→⟩

Solving for ∣→⟩ and noting that
√
2
2 = 1√

2
, we get

∣→⟩ = 1√
2
(∣⟳⟩ + ∣⟲⟩)

Measurement with Light

The state emitted from the laser is initially ∣ψ⟩ = ∣↗⟩, so 50% goes
through the ∣↑⟩ polarizer and now is projected into the ∣↑⟩ state. After
passing through the ∣↗⟩ polarizer, the state becomes

∣ψ′⟩ = 1√
2
(∣→⟩ + ∣↑⟩)

So, when this state goes through the ∣→⟩ polarizer, ∣ψ⟩ will be pro-
jected onto ∣→⟩:

⟨ψ∣→⟩ = 1√
2
(⟨→∣→⟩ + ⟨↑∣→⟩)

But we know that ∣↑⟩ and ∣→⟩ are orthogonal states, so ⟨↑∣→⟩) = 0
and ⟨→∣→⟩ = 1. Thus,

⟨ψ∣→⟩ = 1√
2

This square of this result gives us the probability, which is 1
2 . This

means that only 50% of the state ∣ψ′⟩ actually makes it through
the ∣→⟩ polarizer. So, considering that we started with ∣ψ⟩ = ∣↗⟩,
which went through the ∣↑⟩ polarizer by 50%, it was then only 50%
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that made it through the ∣↗⟩, and finally, only 50% of that made it
through the ∣→⟩ polarizer. Thus, only 12.5% of the original state can
actually be observed after passing through all the polarizers.

Chapter 4

Controlling Qubits

1. The Pauli X, Y , and Z matrices are

X = (0 1
1 0

) Y = (0 −i
i 0

) Z = (1 0
0 −1) I = (1 0

0 1
)

We are just being asked to verify that the eigenvectors are as
given in Section 4.2.1. Another way to label the Pauli matrices
is using the symbol σ with a subscript i = X,Y,Z. So, to verify
the eigenvectors, we know that they need to satisfy the eigenvalue
equation:

σi ∣u⟩ = λ ∣u⟩
For X, we have

(0 1
1 0

)⎛⎝ 1√
2± 1√
2

⎞⎠ = ±1 ⋅ ⎛⎝ 1√
2± 1√
2

⎞⎠
⎛⎝± 1√

2
1√
2

⎞⎠ = ±1 ⋅ ⎛⎝ 1√
2± 1√
2

⎞⎠
Distributing the ±1, we see that both sides of the equation are
equal. Similarly, for Y , we have

(0 −i
i 0

)⎛⎝ 1√
2± i√
2

⎞⎠ = ±1 ⋅ ⎛⎝ 1√
2± i√
2

⎞⎠
Doing out the matrix multiplication and remembering that−i ⋅ i = 1, we get ⎛⎝± 1√

2
i√
2

⎞⎠ = ±1 ⋅ ⎛⎝ 1√
2± i√
2

⎞⎠
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Distributing the ±1, we see that both sides of the equation are
equal. The same procedure is followed to verify the eigenvectors
of Z.

2. In Section 4.2.3, the reference point of deriving the general unitary
transformation was that any single-qubit state in the {∣0⟩, ∣1⟩}
basis can be written as

∣ψ⟩ = cos
θ

2
∣0⟩ + sin

θ

2
eiϕ ∣1⟩

which let us say that there is some unitary transformation that
takes ∣0⟩ = (10) to ∣ψ⟩. So, if we write the transformation in the{∣0⟩, ∣1⟩} basis, then our starting point is

U = ( cos (θ/2) a

eiϕ sin (θ/2) b
)

where a and b are complex numbers which we have to solve for.
We use the fact that unitary matrices satisfy U †U = I. Writing
this down, we have

U †U = (cos (θ/2) e−iϕ sin (θ/2)
a∗ b∗

)( cos (θ/2) a

sin (θ/2) eiϕ b
) = (1 0

0 1
)

Now, let us do the matrix multiplication on the left-hand side:

( cos2 (θ/2) sin2 (θ/2) cos (θ/2) ⋅ a + e−iϕ sin (θ/2) ⋅ b
cos (θ/2) ⋅ a∗ + e−iϕ sin (θ/2) ⋅ b∗ a∗a + b∗b )
= (1 0

0 1
)

The first matrix element cos2 (θ/2) sin2 (θ/2) = 1, so that doesn’t
tell us anything. The rest of the matrix elements give us the fol-
lowing three equations:

cos (θ/2) ⋅ a + e−iϕ sin (θ/2) ⋅ b = 0

cos (θ/2) ⋅ a∗ + e−iϕ sin (θ/2) ⋅ b∗ = 0

a∗a + b∗b = 1
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Using the first equation, we can rearrange it to solve for b in terms
of a:

b = − cot (θ/2)eiϕ ⋅ a1
The complex conjugate b∗ is

b∗ = − cot (θ/2) e−iϕ ⋅ a∗
Plugging these two equations into the third equation a∗a+b∗b = 1,
we get

a∗a(1 + cot2 (θ/2)) = 1

Using the trig identity csc2 θ − cot2 = 1, where csc θ = 1
sinθ , we can

simplify the equation to get

a∗a = ∣a∣2 = sin2 (θ/2)
Thus, the magnitude of ∣a∣ is sin (θ/2), however a itself can have
some phase, so to be completely general, we must say that a =
sin (θ/2)eiλ, where λ is some arbitrary phase. Plugging this back
into the equation for b, we get

b = − cot (θ/2)eiϕ ⋅ sin (θ/2)eiλ
which simplifies to

b = − cos (θ/2)ei(ϕ+λ)

1Here, we have used the definition of cot θ = cosθ
sinθ

and the rule for exponentials
1

eiϕ
= e−iϕ to simplify the equation.
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Describing Measurements

1. The solution is shown in Fig. D.1.

Figure D.1. Solution to Question 1.

2. First, let’s make copies of the circuit and do the relevant rotations
to measure each component:

from copy import deepcopy

circX = deepcopy(circ)

circX.h(0)

circX.measure(q,c)

circY = deepcopy(circ)

circY.rx(pi/2,0)

circY.measure(q,c)

circZ = deepcopy(circ)

circZ.measure(q,c)
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The results are shown in Figs. D.2–D.4. The resulting xyz vector
is (0.52 0.52 0.62).

Figure D.2. Solution to Question 2 for X-component.

3. We can convert the x-, y-, z-components into angles θ = arccos z,
and φ = arctan y

x . Plugging in, we get θ = 0.9 rad or ≈ 52○

and φ = π/4 rad or 45○. The Bloch vector is ( cos(0.9/2)
sin(0.9/2)eiπ/4) ≈

( 0.9
0.3 + 0.3i

). This is the difference from the Bloch vector output

by Statevector. In reality, there is an overall global phase of about−π
8 rad which resolves this seeming inconsistency. Remember that

the global phase will not affect measurement outcomes!
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Figure D.3. Solution to Question 2 for Y -component.

4. Computing the magnitude of the vector, we obtained

√
0.522 + 0.522 + 0.622 ≈ 0.96

The value does not exactly equal one because we always have
some statistical error since we cannot measure an infinite number
of times.

5. Using 1000 shots, we get an updated xyz vector, (0.508 0.538
0.692), which has a magnitude

√
0.5082 + 0.5382 + 0.6922 ≈ 1

Thus, having more shots makes the vector more accurate!
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Figure D.4. Solution to Question 2 for Z-component.

Chapter 6

Product states

1. Using our knowledge of the tensor product, we can compute

∣00⟩ = (1 × (10)
0 × (10)) = ⎛⎜⎜⎜⎝

1
0
0
0

⎞⎟⎟⎟⎠
∣01⟩ = (1 × (01)

0 × (01)) = ⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠
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∣10⟩ = (0 × (10)
1 × (10)) = ⎛⎜⎜⎜⎝

0
0
1
0

⎞⎟⎟⎟⎠
∣11⟩ = (0 × (01)

1 × (01)) = ⎛⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎠
2. Let’s ensure that all the sum of the squared magnitude of all the

coefficients is equal to 1. For the first state,

∣ ∣ψ⟩ ∣ = √
1

2

2 + 1

2

2 + 1

2

2 + 1

2

2 = √
1

4
+ 1

4
+ 1

4
+ 1

4
= 1

For the second state,

∣ ∣ψ⟩ ∣ = √
1

2

2 + 1

4

2 = √
1

4
+ 1

16
= √

5

4
≈ 0.56

So, this state is not normalized. To normalize it, we should divide
by the magnitude we just computed. Then the normalized state
becomes

∣ψ⟩N = ∣ψ⟩∣ ∣ψ⟩ ∣ = 1√
5
(2 ∣00⟩ + ∣01⟩)

3. Using the property of the tensor product that we discussed,(A⊗B)(∣u⟩ ⊗ ∣v⟩) = (A ∣u⟩) ⊗ (B ∣v⟩), the first product is

X ⊗Z(∣0⟩ ⊗ ∣+⟩) =X ∣0⟩ ⊗Z ∣+⟩ = ∣1⟩ ⊗ ∣−⟩
The second product is

I ⊗ Y (∣1⟩ ⊗ ∣−⟩) = I ∣1⟩ ⊗ Y ∣−⟩ = ∣1⟩ ⊗ i ∣+⟩
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We can compute out Y ∣−⟩ since it is not obvious:

Y ∣−⟩ = 1√
2
(0 −i
i 0

)( 1−1) = 1√
2
(i
i
) = i√

2
(1
1
) = i ∣+⟩

Entangled states

1. In this problem, we will prepare all the Bell states using Qiskit
and then visualize the states using the “plot state city” function.
This function is a way to visualize the density matrix. Instead of
using the Statevector to represent the state, we could also write
the state in matrix form. It turns out that this is a more general
way to write down any quantum state, not just the pure quantum
states that we have working with in this book. A pure state means
that you could write down a Statevector. However, in realistic
situations, where noise is present, quatum states are not pure.
For example, suppose we have a ∣Φ+⟩ Bell state, but because of
noise, there is some small percentage of the ∣01⟩ state. We could
not really write down a Statevector for this situation, however, we
could write down a density matrix. For pure states, the density
matrix, ρ, is simply the outer product2:

ρ = ∣ψ⟩ ⟨ψ∣
Let’s start with the ∣Φ+⟩ state. The circuit is given in Fig. D.5
and the plot from the “plot state city” function in Fig. D.6. As
you can see, the matrix tells us that we have a probability of 0.5
to measure the state in ∣00⟩ or ∣11⟩.

2As a quick example for a single-qubit state, ∣0⟩, the density matrix would be a
2 × 2 matrix:

∣0⟩ ⟨0∣ = (
1
0
)(1 0) = (

1 0
0 0

)

The entries of the matrix are telling us the probabilities to find the state in one
of the basis states.



242 First Step to Quantum Computing: A Practical Guide for Beginners

Figure D.5. Circuit for generating the ∣Φ+⟩ Bell state.

Figure D.6. Plot state city density matrix plot for the ∣Φ+⟩ Bell state.
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Then, let’s look at the ∣Φ−⟩ state. The circuit is given in Fig. D.7
and the plot from the “plot state city” function in Fig. D.8.

Figure D.7. Circuit for generating the ∣Φ−⟩ Bell state.

Figure D.8. Plot state city density matrix plot for the ∣Φ−⟩ Bell state.
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Then, let’s look at the ∣Ψ+⟩ state. The circuit is given in Fig D.9
and the plot from the “plot state city” function in Fig. D.10.

Figure D.9. Circuit for generating the ∣Ψ+⟩ Bell state.

Figure D.10. Plot state city density matrix plot for the ∣Ψ+⟩ Bell state.
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Finally, let’s focus on the ∣Ψ−⟩ state. The circuit is given in Fig.
D.11 and the plot from the “plot state city” function in Fig. D.12.

Figure D.11. Circuit for generating the ∣Ψ−⟩ Bell state.

Figure D.12. Plot state city density matrix plot for the ∣Ψ−⟩ Bell state.
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2. Recall the formula for concurrence is

C = 2 ∣c1c4 − c2c3∣
(a)

C = 2 ∣√2

2
⋅ 0 − (−1)

2
⋅ 1
2
∣ = 1

2
,

(b)

C = 2

44444444444
√

2

3
⋅√1

3
− 0√

3
⋅ 0√

3

44444444444 = 2
√
2

3
≈ 0.94,

(c)

C = 2 ∣ 0√
2
⋅ 0√

2
− 1√

2
⋅ eiφ√

2
∣ = ∣eiφ∣ = 1.3

EPR Paradox

We know that A(a⃗, λ) = ±1, A(b⃗, λ) = ±1 and A(c⃗, λ) = ±1, so(A(a⃗, λ))2 = 1 and so on. Starting from

E(a⃗, b⃗) −E(a⃗, c⃗) = −∑
λ

Λ(λ) (A(a⃗, λ)A(b⃗, λ) −A(a⃗, λ)A(c⃗, λ))
we factor out A(a⃗, λ)A(b⃗, λ) and obtain

= −∑
λ

Λ(λ)(1 − A(c⃗, λ)
A(b⃗, λ))A(a⃗, λ)A(b⃗, λ))

Multiplying by
(A(b⃗,λ))2

(A(b⃗,λ))2 , we have

= −∑
λ

Λ(λ)(1 − (A(b⃗, λ))2(A(b⃗, λ))2 A(c⃗, λ)
A(b⃗, λ))A(a⃗, λ)A(b⃗, λ))

3Remember that the magnitude of a phase is 1:

∣eiφ∣ = e−iφ ⋅ eiφ = ei0 = 1.
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Canceling out A(b⃗, λ) in denominator and then using (A(b⃗, λ))2 = 1,
we obtain the result we are looking for:

= −∑
λ

Λ(λ) (1 −A(b⃗, λ)A(c⃗, λ))A(a⃗, λ)A(b⃗, λ))
Universal Gate Sets

(a) This gate set is not universal. Let’s go through our checklist from
Section 6.5.

1. We cannot create any superposition states with Pauli gates.
2. CNOT can entangle qubits, but if we cannot create superpo-

sition states, this won’t be useful!
3. We have the Pauli Y -gate which can give us complex ampli-

tude states, but again if we cannot have superposition states,
this is still not very useful.

(b) This gate set is not universal.

1. Hadamard can generate superpositions.
2. CNOT can entangle qubits and since we have superpositions,

this is useful.
3. Hadamard only has real entries, we need another gate that

can give a complex phase.

(c) This gate set is universal.

1. Hadamard can generate superposition.
2. CCNOT can entangle qubits which can work since we can

generate superpositions.
3. The phase gate allows for states with complex phases.

(d) This gate set is universal.

1. The rotation gates can generate any superposition states.
2. CNOT can entangles qubits, which will work since we have

superposition states.
3. The rotation gates take us anywhere on the Bloch sphere,

therefore we can access states with complex phase.

Quantum teleportation

1. Let’s work step by step to derive ∣ψ2⟩. The initial state, ∣ψ0⟩, is
∣ψ0⟩ = ∣ψ⟩ ⊗ ∣Φ⟩AB = α√

2
∣0⟩ (∣00⟩ + ∣11⟩) + β√

2
∣1⟩ (∣00⟩ + ∣11⟩)
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We can rearrange to pull out Alice’s qubits:

= α√
2
∣00⟩A ∣0⟩B + α√

2
∣01⟩A ∣1⟩B + β√

2
∣10⟩A ∣0⟩B + β√

2
∣11⟩A ∣1⟩B

The next step is to apply a CNOT gate between Alice’s qubits.
Remember that CNOT will flip the target qubit if the control
qubit is ∣1⟩, so CNOT ∣10⟩A = ∣11⟩ and CNOT ∣11⟩A = ∣10⟩. Thus,
we end up with

∣ψ1⟩CNOTA ∣ψ0⟩ = α√
2
∣00⟩A ∣0⟩B + α√

2
∣01⟩A ∣1⟩B + β√

2
∣11⟩A ∣0⟩B

+ β√
2
∣10⟩A ∣1⟩B

Rearranging again, we get

∣ψ1⟩ = α ∣0⟩ (∣00⟩ + ∣11⟩√
2

) + β ∣1⟩ ( ∣01⟩ + ∣10⟩√
2

)
∣ψ1⟩ = α ∣0⟩ ∣Φ+⟩AB + β ∣1⟩ ∣Ψ+⟩AB

Then, Alice applies a Hadamard gate to her first qubit, which gets
us to ∣ψ2⟩: ∣ψ2⟩ = αH ∣0⟩ ∣Φ+⟩AB + βH ∣1⟩ ∣Ψ+⟩AB

This then gives

∣ψ2⟩ = α√
2
(∣0⟩ + ∣1⟩) ∣Φ+⟩AB + β√

2
(∣0⟩ − ∣1⟩) ∣Ψ+⟩AB

Expanding this out again and regrouping Alice’s qubits together,

∣ψ2⟩ = 1

2
[α (∣00⟩A ∣0⟩B + ∣01⟩A ∣1⟩B + ∣10⟩A ∣0⟩B + ∣11⟩A ∣1⟩B)

+ β (∣00⟩A ∣1⟩B + ∣01⟩A ∣0⟩B − ∣10⟩A ∣1⟩B − ∣11⟩A ∣0⟩B) ]
After simplifying, we get

∣ψ2⟩ = 1

2
[ ∣00⟩ (α ∣0⟩ + β ∣1⟩) + ∣01⟩ (α ∣1⟩ + β ∣0⟩)

+ ∣10⟩ (α ∣0⟩ − β ∣1⟩) + ∣11⟩ (α ∣1⟩ − β ∣0⟩) ]
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Table D.1. Possible outcomes of
the teleportation protocol.

m1m2 Bob’s state

00 α ∣0⟩ + β ∣1⟩

01 α ∣1⟩ + β ∣0⟩

10 α ∣0⟩ − β ∣1⟩

11 α ∣1⟩ − β ∣0⟩

2. Table D.1 gives the possible measurement outcomes Alice would
get based on the state ∣ψ2⟩ and the state that Bob receives. So, we
can already see that for 00, Bob doesn’t need to do any additional
rotation.

(a) For the outcome 01, Bob should do an X-gate in order to flip∣0⟩ and ∣1⟩.
(b) For the outcome 10, Bob should do a Z-gate in order to correct

for the phase of the ∣1⟩ state.
(c) For the outcome 11, Bob should do an X- and Z-rotation to

get flip to flip ∣0⟩ and ∣1⟩ and correct the phase of the ∣1⟩ state.
Chapter 7

Spin Qubits

1. In this problem, we want to derive the eigenvalues of the general
two-level state Hamiltonian given in Eq. (7.2). So, we start with
the characteristic equation:

det(H − IE±) = det(ε − 2E± Δ − iΔ̃
Δ + iΔ̃ −ε − 2E±

) = 0

Computing the determinant and simplifying, we get

−(ε − 2E±)(ε + 2E±) − (Δ2 + Δ̃2) = 0−(ε2 − 4E2
±) = (Δ2 + Δ̃2)

E± = ±1
2

√
ε2 +Δ2 + Δ̃2
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2. In this case, we can treat the diagonal elements of the Hamiltonian
as the z-component, the real part of the off-diagonal elements
is the x-component and the imaginary part of the off-diagonal
elements is the y-component, as we say in Eq. (7.4), when we
expressed the Hamiltonian in terms of the Pauli matrices. We
know from relating the Cartesian coordinates, x, y, z, to spherical
coordinates that

cos θ = z
r

tan θ = y

x

where r = √
x2 + y2 + z2. Another way to define θ is to think of

the ratio of the projection of the vector on the xy-plane, which is√
x2 + y2 to the z-component, which is tan θ = √x2+y2

z . Substitut-
ing in for the components we just identified (i.e. z → ε, x → Δ and
y → Δ̃), we have

tan θ = √
Δ2 + Δ̃2

ε

tanφ = Δ̃

Δ



Chapter E

Homework Solutions

Homework 1

Complex Numbers

1. Standard form:

(1− i)(6− 5i) = 1(6− 5i)− i(6− 5i) = 6− 5i− 6i+5i2 = 1− 11i

Magnitude:
√
112 + 12 =

√
122 ≈ 11

Phase angle: cos θ = 1/
√
122 −→ θ = cos−1

(
1√
122

)
≈ 85◦ or

1.5 rad, clockwise
Rectangular to polar: 1− 11i = 11 e−i1.5

Polar form: First, we find magnitudes of z1 and z2 and their rel-
ative angles from the real axis:

|z1| =
√

12 + 12 =
√
2 ≈ 1.414

θ1 = cos−1

(
1√
2

)
= 45◦ ≈ 0.8 rad, clockwise

|z2| =
√

62 + 52 =
√
61 ≈ 7.81

θ2 = cos−1

(
6√
61

)
≈ 40◦ ≈ 0.7 rad, clockwise

251
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Now, we perform the following operation:

z1 · z2 =
√
2 e−i0.8 ·

√
61 e−i0.7 = (

√
2 ·
√
61)ei(−0.8−0.7) ≈ 11 e−i1.5

Converting back to standard form,

11 e−i1.5 = 11(cos(−1.5) + i sin(−1.5)) ≈ 11(0.1 − i) ≈ 1− 11i

We can see from the plotted solution in Fig. E.1 that the product
of z1 and z2 is the result of z1 being scaled by the magnitude of z2
(1.414·7.81 = 11) and rotated by θ2 which was a clockwise rotation
of 40◦. So, our solution ends up at 45◦+40◦ = 85◦ clockwise. This
is what we observe from the figure.

2. Standard form:

7 + i

2 + i
=

7 + i

2 + i
· 2− i
2− i =

14− 7i+ 2i− i2
5

=
15− 5i

5
= 3− i

Magnitude:
√
32 + 12 =

√
10 ≈ 3.16

Phase angle: cos θ = 3√
10
−→ θ = cos−1

(
3√
10

)
≈ 18◦ or 0.3 rad,

clockwise
Rectangular to polar: 3− i = 3.16 e−0.32i

Figure E.1. Plot for Question 1.
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Polar form: First, we find magnitudes of p1 and p2 and their rel-
ative angles from the real axis:

|p1| =
√

72 + 12 =
√
50 ≈ 7.07

θ1 = cos−1

(
7√
50

)
= 8◦ ≈ 0.14 rad, counterclockwise

|p2| =
√

22 + 12 =
√
5 ≈ 2.24

θ2 = cos−1

(
2√
5

)
≈ 26◦ ≈ 0.46 rad, counterclockwise

Now, we perform the following operation:

p1
p2

=

√
50 ei0.14√
5 ei0.46

=

( √
2√
61

)
ei(0.14−0.46) ≈ 3.16 e−i0.32

Converting back to standard form,

11 e−i0.09 = 11(cos(−0.09) + i sin(−0.09)) ≈ 11(0.996− i0.09) ≈ 11− i

We can see from the plotted solution in Fig. E.2 that the ratio
of p1 and p2 is the result of z1 being scaled by the reciprocal of

Figure E.2. Plot for Question 2.
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the magnitude of p2 (7.072.24 ) and rotated clockwise by θ2, since we
multiplied by the conjugate to simplify the expression. So, our
solution ends up at 8◦ − 26◦ = −18◦.

3. Standard form:

i(1 + i)

1 + 3i
=
i+ i2

1 + 3i
· 1− 3i

1− 3i
=

(i− 1)(1 − 3i)

12 + 32
i(1− 3i)− 1(1 − 3i)

10

−→ i− 3i2 − 1 + 3i

10
=

4i+ 2

10
=

2i+ 1

5
= 0.2 + 0.4i

Magnitude:
√

(0.2)2 + (0.4)2 =
√
0.2 ≈ 0.45

Phase angle: cos θ = 0.2√
0.2
−→ θ = cos−1

(
0.2√
0.2

)
≈ 63◦ or 1.1

rad, counterclockwise
Rectangular to polar: 0.2 + 0.4i = 0.45 e1.11i

Polar form: First, we find magnitudes of d1, d2, and d3 and their
relative angles from the real axis:

|d1| = 1 θ1 = 90◦ =
π

2
rad ≈ 1.6 rad, counterclockwise

|d2| =
√

12 + 12 =
√
2 ≈ 1.414 θ2 = cos−1

(
1√
2

)

= 45◦ ≈ 0.8 rad, counterclockwise

|d3| =
√

12 + 32 =
√
10 ≈ 3.16 θ3 = cos−1

(
1√
10

)

= 72◦ ≈ 1.3 rad, counterclockwise

So, now, we can perform the following operation:

d1 · d2
d3

=
ei1.57 · √2 ei0.785√

10ei1.25
=

√
2√
10

ei(1.57+0.785)

ei1.25

=

√
2√
10
ei(2.36−1.25) ≈ 0.45 ei1.11
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Figure E.3. Plot for Question 3.

Converting back to standard form,

0.45 ei1.11 = 0.45(cos 1.11 + i sin 1.11)

= 0.45(0.44 + i0.9) ≈ 0.2 + i0.4

As we can see from the plotted solution in Fig. E.3, the final
answer results from a mixture of scaling due to division by d3 and
rotations. Let’s assume we started with d2, first we multiplied this
number by d1 = i, which caused a 90◦ rotation counterclockwise,
so we had θ2 + 90◦ = 45◦ + 90◦ = 135◦. The magnitude of d2 was
|d2| =

√
2. Then, we divided by d3, so the magnitude of d2 was

scaled by 1√
10

and there was a clockwise rotation of θ3 = 72◦. So,
the final answer ended up at an angle θ = θ2 + 90◦ − θ3 = 63◦,
and the magnitude was

√
2√
10

= 0.45.

Probability Sample Spaces

1. Since we are replacing placing the ball back in the urn, for the
second choice, we may still pick a ball of the same color. Thus are
3 × 3 = 9 possible outcomes: BB, BY, BO, YY, YB, YO, OO,
OB, OY.
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2. When we do not replace the first ball, there are now only 3×2 = 6
possible outcomes: BY, BO, YB, YO, OB, OY.

Discrete Distributions

1. We are choosing 5 times from the urn, so the possible values that
X can take are 0, 1, 2, 3, 4, and 5.

2. X is a binomial random variable since we have a probability of
success (choosing a blue ball) to be 5

12 . Therefore, the probabili-
ties associated with each value of the random variable X can be
computed as follows:

P(X = k) =

(
5
k

)(
5

12

)k ( 7

12

)n−k

where k are the values that X can take. Computing each case, we
have

P(X = 0) =

(
5
0

)(
7

12

)5

≈ 0.0675

P(X = 1) =

(
5
1

)(
5

12

)(
7

12

)4

≈ 0.241

P(X = 2) =

(
5
2

)(
5

12

)2( 7

12

)3

≈ 0.345

P(X = 3) =

(
5
3

)(
5

12

)3( 7

12

)2

≈ 0.246

P(X = 4) =

(
5
4

)(
5

12

)4( 7

12

)
≈ 0.0879

P(X = 5) =

(
5
5

)(
5

12

)5

≈ 0.0126
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3. The plot of the distribution is shown as follows:

4. Getting at least 3 blue balls means that we can have X = 3, 4, 5,
so we need to compute P(X ≥ 3), which can alternatively be
considered as

P(X ≥ 3) = 1− P(X ≤ 2) = 1− P(X = 0)− P(X = 1)

− P(X = 2) ≈ 0.3465

So, we reframed the question of “at least 3 blue balls” to figuring
out the probability of NOT getting at most 2 blue balls. Alterna-
tively, we could have obtained our result from the distribution in
the previous part, adding up all the probabilities corresponding
to X ≥ 3.

Calculating Expected Values

1. We are drawing and replacing a ball 2 times from the urn of 5 blue,
4 yellow and 3 orange balls. Now, we can gain $2 for choosing a
yellow ball, lose $1 for choosing a blue ball, and lose/gain nothing
for choosing orange. So, naturally, we can choose a yellow ball 0,
1, or 2 of the times and we can write the sample space: BB, BO,
OO, YB, YO, YY. Now, our earnings, E, in $, can be −2, −1, 0,
1, 2, 4.
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2. In total, we have 12 balls that we are choosing from, and we want
to find the probabilities of obtaining the choices that we listed in
our sample space. The probabilities are as follows1:

P(BB) =

(
5
2

)
(
12
2

) =
5

33

P(BO) =

(
5
1

)(
3
1

)
(
12
2

) =
5

22

P(OO) =

(
3
2

)
(
12
2

) =
1

22

P(Y B) =

(
4
1

)(
5
1

)
(
12
2

) =
10

33

P(Y O) =

(
4
1

)(
3
1

)
(
12
2

) =
2

11

P(Y Y ) =

(
4
2

)
(
12
2

) =
1

11

If we add up all these probabilities, we get 1, as expected.

1Note that random variable E is not binomial. This is because we did not specify
what consists of “success,” we are just listing all the possible outcomes of drawing
and replacing a ball from the urn twice and what can be earned based on those
outcomes.
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3. To calculate the expected earnings, we now have all the ingredi-
ents, including the possible values that random variable E can
take and the probabilities associated with those values:

−2 · 5
33
− 1 · 5

22
+ 0 · 1

22
+ 1 · 10

33
+ 2 · 2

11
+ 4 · 1

11
≈ 0.23

So, on average, we would earn $0.23, playing this urn game. Not
amazing odds, but it is a small win.

Homework 2

1. This question requires using the two different ways we learned
for computing the dot product of two Eucledian vectors �P =(
x1 y1 z1

)
and �Q =

(
x2 y2 z2

)
:

�P · �Q = x1x2 + y1y2 + z1z2

�P · �Q = |�P || �Q| cos θ

where θ is the angle between two vectors.
First, we are given the vertices of the triangle, so we must first

use the points to form vectors �AB = B − A, �CB = B − C,
�AC = C − A. Subtracting the corresponding components of the
points, we have that

�AB =
(
1 5 − 2

)
�CB =

(
2 3 − 4

)
�AC =

(−1 2 2
)

The magnitudes for the vectors are | �AB| = √30, | �CB| = √29,
| �AC| = 3. Now, we take the following dot products using the first
way:

�AB · �AC = 1 · −1 + 5 · 2− 2 · 2 = 5

�AB · �CB = 1 · 2 + 5 · 3− 2 · −4 = 25
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These must be equal to what we would get by computing the
product using the second way:

�AB · �AC = | �AB|| �AC| cos θ1 = 5

�AB · �CB = | �AB|| �CB| cos θ2 = 25

Solving for θ1 and θ2, we get

θ1 = cos−1

(
5

3
√
30

)
≈ 72.3◦

θ2 = cos−1

(
25√
30
√
29

)
≈ 32.1◦

Then, knowing that the total angles in a triangle must add up to
180◦, θ3, the angle formed between vectors �AC and �CB is 75.6◦.

2A. Our two basis states here are |x〉 =
(
1
0

)
, representing light

polarized in the horizontal direction, and |y〉 =
(
0
1

)
, representing

light polarized in the vertical direction. Based on Fig. 2.10, we can
see that if the incident light is polarized in the horizontal direction,
|x〉, 50% of the light is reflected and moves in the vertical direction,
|y〉, and gets a 90◦ phase shift, so it’s i |y〉 while the other 50%
is transmitted and gets no phase shift, so it remains |x〉. So, we
have some beam-splitter matrix, MBS, that when the initial state
is |x〉, we end up with the following state:

MBS |x〉 = 1√
2
(|x〉+ i |y〉)

Similarly, if the incident light is polarized in the vertical direction,
|y〉, 50% is transmitted without a phase shift and the other 50% is
reflected and gets a 90◦ phase shift. So, the beam-splitter matrix
gives

MBS |y〉 = 1√
2
(i |x〉+ |y〉)

We can try to guess what the matrix would be by considering
that it will be written in the {|x〉 , |y〉} basis. So, the first column of
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the matrix will correspond to the action on |x〉 and the second will
correspond to the action on |y〉. A more systematic way of finding
all the elements is to consider that the 2× 2 matrix will have four
entries corresponding to 〈x|MBS |x〉, 〈x|MBS |y〉, 〈y|MBS |x〉, and
〈y|MBS |y〉. Here, we are keeping in mind that 〈x|x〉 = 〈y|y〉 = 1,
while 〈x|y〉 = 0 since |x〉 and |y〉 are orthonormal. Now, we can
find the elements of MBS by considering the matrix element:

〈x|MBS |x〉 = 〈x| 1√
2
(|x〉+ i |y〉) = 1√

2
(〈x|x〉+ i 〈x|y〉) = 1√

2

Doing the same for the other elements, 〈x|MBS |y〉, 〈y|MBS |x〉,
〈y|MBS |y〉, we end up with

MBS =

[
1√
2

i√
2

i√
2

1√
2

]

Note that this matrix is unitary!2 Let’s check that this gives us
what we expect:[ 1√

2
i√
2

i√
2

1√
2

](
1

0

)
=

( 1√
2
i√
2

)
=

1√
2
(|x〉+ i |y〉)

[
1√
2

i√
2

i√
2

1√
2

](
0

1

)
=

(
i√
2
1√
2

)
=

1√
2
(i |x〉+ |y〉)

Now, let’s use the machinery we have learned to find the eigen-
values and eigenvectors of MBS. Let’s write down the characteris-
tic polynomial, as we learned in Chapter 2:

det(MBS − λI) =
∣∣∣∣∣
[ 1√

2
− λ i√

2
i√
2

1√
2
− λ

]∣∣∣∣∣ =
(

1√
2
− λ

)2

+
1

2
= 0

Simplifying, we have

1√
2
− λ = ±

√
−1

2
−→ λ =

1√
2
± i 1√

2

2If we check M†
BSMBS, we will see it’s equal to the identity matrix!
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Now, let’s find the eigenvectors:

MBS |u〉 = λ |u〉 =
[ 1√

2
i√
2

i√
2

1√
2

](
a

b

)
=

1± i√
2

(
a

b

)

We obtain two sets of equations for each eigenvalue:[ 1√
2

i√
2

i√
2

1√
2

](
a

b

)
=

1 + i√
2

(
a

b

)
→

1√
2
a+ i√

2
b = 1+i√

2
a

i√
2
a+ 1√

2
b = 1+i√

2
b

Solving this set of equations, we end up with the eigenvector,

|u1〉 = 1√
2

(
1

1

)
:

[ 1√
2

i√
2

i√
2

1√
2

](
a

b

)
=

1− i√
2

(
a

b

)
→

1√
2
a+ i√

2
b = 1−i√

2
a

i√
2
a+ 1√

2
b = 1−i√

2
b

Solving this set of equations, we end up with the eigenvec-

tor, |u2〉 = 1√
2

(
1

−1
)
. You can check that these vectors satisfy

MBS |u〉 = λ |u〉.
2B. Now, we are given a different beam splitter which reflects
60% of incoming photons and transmits 40%. Turning these into
fractions, 60% = 3

5 , and 40% = 2
5 . If the state is initially |x〉, then

after going through the beam splitter, the state would become

MBS |x〉 =
√

2

5
|x〉+ i

√
3

5
|y〉

Similarly, if the state is initially |y〉, then after going through the
beam splitter, it becomes

MBS |y〉 = i

√
3

5
|x〉+

√
2

5
|y〉

Using a similar approach as in the previous part, we obtain the
matrix

MBS =

⎡
⎣
√

2
5 i

√
3
5

i
√

3
5

√
2
5

⎤
⎦
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Let’s check that this matrix works as expected:

⎡
⎢⎣
√

2
5 i

√
3
5

i
√

3
5

√
2
5

⎤
⎥⎦(1

0

)
=

⎛
⎜⎝
√

2
5

i
√

3
5

⎞
⎟⎠ =

√
2

5
|x〉+ i

√
3

5
|y〉

⎡
⎢⎣
√

2
5 i

√
3
5

i
√

3
5

√
2
5

⎤
⎥⎦(0

1

)
=

⎛
⎜⎝i
√

3
5√
2
5

⎞
⎟⎠ = i

√
3

5
|x〉+

√
2

5
|y〉

Homework 3

1. In this question, we use the optical setup for the Mach–Zehnder
interferometer in Quantum Flytrap. The first part asks us just
to make some observations using the different features. Going to
“Waves” mode and using the “Loop” feature, we should observe
that with the default setting of the glass, all the light from the
laser go to the detector to the right of the last beam splitter in
the light path.

2. Now, we right click on the glass and change the phase shift induced
by the glass to 0.5 or half-wavelength. We should observe that all
the light goes to the detector directly below the last beam splitter
in the light path.

3. Now, we need to actually analyze the setup and figure out why
we are getting this constructive and destructive interference at the
detectors based on the phase shift of the glass. In this part, we go
back to the 0 phase shift in the glass. In the right-hand side of the
Quantum Flytrap interface, there is information about the wave
of light as it goes through its trajectory. The information is given
in polar form and consists of an amplitude (normalized to one)
and phase, as we learned in Chapter 1. We can select the basis we
want to track the state in. In this case, we have linearly polarized
light, so we can stay in the default |→〉 , |↑〉 basis. Starting from
the beginning, we have a horizontally polarized light source which
we can verify by looking at the right-hand side. We see that the
amplitude is 1 and the phase is 0 rad. After the state goes through
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the beam splitter, it splits and is thus in a superposition:

|ψ〉 = 1√
2
(|→〉+ i |↑〉)3

As the wave travels through the glass and is reflected off the
mirror, nothing happens. Finally, the horizontally polarized state
is reflected off the mirror and the waves recombine at the beam
splitter. As we saw at the first beam splitter, the state that goes
through the beam splitter does not pick up a phase shift, but the
state reflected off does pick up a π

2 or 90◦ phase shift. So, the wave
that already has a 90◦ phase shift will pick up another 90◦ phase
when reflected off, but pick up no phase shift as it moves through
the beam splitter. Thus, at the bottom detector there the waves
combine, but there is an overall 180◦ phase difference between
them, so they experience perfect destructive interference, while at
the detector to the right, both waves have 90◦ phases which add
constructively. This is exactly why we see all the light in the right
detector and none at the bottom detector. This confirms what is
seen in Fig. 3.11.

4. If we just change the phase of the glass to 0.5, we will observe
that most of the analysis will be the same except that when the
wave moving to the right after the first beam splitter goes through
the glass, the glass induces a phase shift of π ≈ 3.14 rad or 180◦.
So, when the waves meet again at the second beam splitter, the
one moving to the right (which had a 90◦ phase shift because it
was reflected off the first beam splitter) picks up an additional
90◦ phase shift when it is reflected off the beam splitter. The light
moving down goes through the beam splitter (picks up no addi-
tional phase shift) and has phase 180◦ because it passed through
the glass as it moves to the bottom detector but is reflected and
picks up an additional 90◦ phase shift moving toward the right
detector. Now, at the bottom detector, the two waves have the
same phase of 180◦, so they add constructively, while at the right

3The 1√
2
factor comes from the amplitude which is 0.71 since |1〉√2 ≈ 0.707.

The i factor comes from the fact that ei1.57 = ei
π
2 = cos π

2
+ i sin π

2
= 0 + i.



Homework Solutions 265

detector, one wave has a phase of 270◦ and the other has a phase
of 90◦, and the relative difference is 180◦, so they destructively
interfere. Thus, we see all the light goes to the bottom detector
and none goes to the right detector.

5. Finally, if the phase of the glass is λ/4, the wave that moves to the
right after the beam splitter and through the glass acquires a 90◦
phase shift and when waves meet at the second beam splitter, the
waves moving to the right of the beam splitter is reflected and has
an overall phase of 180◦, but the wave moving down has a phase of
90◦, so they do not destructively interfere. The same exact thing
happens at the right detector, and thus, we end up measuring 50%
of the light in each detector, but the total probability of finding
light in one or the other detector adds up to 100%, as expected.

Homework 4

1. First let’s import the necessary packages and take advantage of
the given helper functions:

#Import necessary packages to run code

import numpy as np

from math import pi

from qiskit import *

from qiskit.quantum_info import Statevector

from qiskit.visualization import

plot_bloch_multivector , plot_histogram

from copy import deepcopy

#Helper functions :

def getCounts (circuit , shots):

"""

Inputs: Quantum Circuit and number of shots

Returns: dictionary of measurement counts

"""

simulator = Aer.get_backend (’qasm_simulator ’)

circ_transpile = transpile (circuit , backend =

simulator )

result = simulator .run(circ_transpile ,shots =

shots).result()

counts = result.get_counts ()
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return result.get_counts (circuit)

def getExpectationValue (counts , shots):

"""

Inputs: Dictionary of measurement counts and

number of shots

Returns: Expectation value

"""

E = (counts.get(’0’ ,0) - counts.get(’1’ ,0))/

shots

return E

Based on what we learned in Chapter 4 for doing projective mea-
surements, we will write a function that takes a quantum circuit
and converts it into x-, y-, and z-coordinates. We will need to
do rotations on the original state to measure along each axis and
then take the outcome of the histograms and convert them into
coordinates.

Here is what the function should look like:

def BlochVectorXYZ (circuit , qr , cr, shots):

"""

Inputs: QuantumCircuit object , QuantumRegister

object ,

ClassicalRegister object , and number of

shots

Returns: a vector of x,y,z coordinates of the

QuantumCircuit

"""

#Cartesian coordinates

circZ = deepcopy (circuit) #Copy original Quantum

Circuit object

circZ.measure(qr,cr)

countsZ = getCounts (circZ , shots)

z = getExpectationValue (countsZ , shots)

circY = deepcopy (circuit) #Copy original Quantum

Circuit object

circY.rx(pi/2,0) #90 degree rotation about X-axis

to swap Z and Y

circY.measure(qr,cr)
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countsY = getCounts (circY , shots)

y = getExpectationValue (countsY , shots)

circX = deepcopy (circuit) #Copy original Quantum

Circuit object

circX.h(0) #Hadamard gate to swap Z and X

circX.measure(qr,cr)

countsX = getCounts (circX , shots)

x = getExpectationValue (countsX , shots)

return np.array([x , y, z])

2. Now, let’s test that the function works properly. The first circuit
we are told to test consists of a Pauli X-gate and a Hadamard gate.
We know that first the X-gate will take us from |0〉 to |1〉, and the
Hadamard will swap the x- and z-axes, so our Bloch vector will be
on the negative side of the x-axis. Using our function, converting
to polar coordinates, and comparing with the Statevector output,
we get the solution shown in Fig. E.4.

Figure E.4. Solution to the first circuit in Problem 2.
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Figure E.5. Visualization to the second circuit in Problem 2.

We can see that the Statevector output is close to the result we
get. The mismatch is due to sampling errors, since we don’t have
an infinite number of shots.

The second circuit we are told to test consists of a Pauli X-gate
and a −45◦ rotation about the y-axis. Again, the X-gate will first
take us from |0〉 to |1〉 and the y-rotation of −45◦ will put us on
the XZ-plane. This can be visualized in Fig. E.5.

Using our function, converting to polar coordinates, and com-
paring with the Statevector output, we get the solution shown in
Fig. E.6.

We once again observe that the output our function gives is
close to the Statevector output but not exact.

Now, for the last circuit, we have a Pauli X-gate and a rotation
of 60◦ about X, which puts us on the Y Z-plane. This can be
visualized in Fig. E.7.
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Figure E.6. Solution to the second circuit in Problem 2.

Figure E.7. Visualization of the third circuit in Problem 2.
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Figure E.8. Solution to the third circuit in Problem 2.

Using our function, converting to polar coordinates, and com-
paring with the Statevector output, we get the solution shown in
Fig. E.8.

Now, we see that there is an overall scaling of i = ei
π
2 mismatch

between the result we get and the Statevector result. But because
this is a global phase factor, this would not affect measurement
results!

Homework 5

1. In the first problem, we need to analyze the given table to assess
what the privately shared key between Alice and Bob is. Recall
the protocol, Alice selects a random bit sequence and randomly
chooses a basis to encode the states in. The states are sent via
a quantum channel to Bob, who also randomly selects a basis
to measure each state in. Finally, Alice and Bob communicate
over the classical channel to confirm that Bob received each state
and Alice reveals the basis she used to encode the state and Bob
also reveals which bases match or not. They immediately dis-
card results measured in bases that do not match. If they knew
that there was no one eavesdropping on their communication, this
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Table E.1. Homework problem 1 solution.

Alice’s random bit sequence 0 0 1 1 0 1 1 0

Alice’s basis Z Z Z X X Z X Z

Alice’s polarization |0〉 |0〉 |1〉 |−〉 |+〉 |1〉 |−〉 |0〉
Bob’s basis Z X X Z X Z X X

Bob’s measurements |0〉 |+〉 |+〉 |0〉 |+〉 |0〉 |−〉 |+〉
Private shared key 0 0 1 1

would be the end of the procedure and we would end up with
Table E.1.

However, they are wary that Eve may eavesdrop, so they actu-
ally compare half of the bits that passed the first check. Let’s
suppose Alice randomly selects and reveals the bits in columns 2
and 7 of the table. They will then see that they get inconsistent
results in column 7, so then they know that Eve has actually
eavesdropped. Then, they should discard this bit sequence and
start over. However, if Alice had chosen a different set of bits,
then they may have proceeded without knowing. Obviously, they
do not want to compare all the bits because Eve could intercept
the classical channel!

(a) So, here, we are assuming that Eve is not eavesdropping, and
that there are two bases that Alice is using to encode the infor-
mation, so there’s a 50% chance that Alice and Bob will use the
same basis. So, under the assumption of no eavesdropping, their
bit string would be 128 bits long.

(b) For Eve to guess the correct bit for one of the bit keys, she
would have to measure in the right basis. But she has no idea of
the basis until after Bob measures and Alice communicates with
Bob. So, whatever basis she chooses, she has a 50% chance to get
the right bit string. Remember, if Eve intercepts when Alice sends
the bits but measures in the wrong basis, the original information
will be lost, so Bob will be able to tell when he compares bases
with Alice.

(c) So, for a single bit key, Eve has a 50% chance of guessing
correctly, and assuming that each bit key is independent, then
the probability of guessing all 20 bit keys is (0.5)20 ≈ 10−6 or
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0.0001%. So, having a longer bit string reduces the probability of
Eve guessing the key.

2. The following is the code implementing the Elitzur Vaidmann
Bomb problem in using Qiskit. Based on the number of rotations
we perform, if we have a live bomb, we can prevent the bomb from
detonating by continuously forcing the state to be |0〉.

N = 100 #Number of rotations performed

rotation_angle = pi/N #Angle of rotation

shots = 100 #Number of measurements performed

def elitzur_vaidmann_bomb (isBomb):

"""

Input: boolean object called isBomb.

1. isBomb = True , means the bomb is live .

2. isBomb = False , means bomb is a dud

Output: dictionary of counts from running qasm

simulator

"""

#Performing N rotations where each measurement

will be stored in the Classical Register

meas = 0

if isBomb == True: #If we have a Live bomb

meas = N+1 #Need to keep measuring after each

rotation to reset the state back to |0>

else : #Bomb is a dud

meas = 1 #Only need to measure once

q = QuantumRegister (1) #Setting up Quantum

Register with 1 qubit to go through the bomb

c = ClassicalRegister (meas) #Classical Register

holds each measurement made after each rotation

circ = QuantumCircuit (q,c) #Quantum Circuit object

for i in range(N):

circ.ry(pi/N,0)

if isBomb == True: #If the bomb is live

circ.measure(0,i) #Measurement after each

small rotation to reset state back to |0>

circ.measure(0, meas -1) #For a dud , we only

measure once.
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simulator = Aer.get_backend (’qasm_simulator ’)

circ_transpile = transpile (circ , backend =

simulator )

result = simulator .run(circ_transpile ,shots =

shots).result()

counts = result.get_counts ()

#Post -processing to make Histogram

predicted_bomb = 0

dud = 0

detonated = 0

if isBomb == True: #Bomb is alive

predicted_bomb = counts.get(’0’* meas) #

predicted bombs but no explosion

zero_one = ’0’*(dud - 1) + ’1’

if zero_one in counts:

dud = counts.get(zero_one ,0)

else :

dud = 0

detonated = shots - predicted_bomb - dud

else : #Bomb is a dud

if ’0’ in counts:

predicted_bomb = counts.get(’0’,0)

dud = counts.get(’1’)

detonated = 0

return [predicted_bomb ,dud ,detonated ]

Now, using the above code, we can make a histogram of the
results. If the bomb is not live, we obtain the results shown in
Fig. E.9, which is saying that the bomb is not live 100% of the time.
If the bomb is live, we obtain the results shown in Fig. E.10. We can
see that about 95% of the time the bomb does not detonate even
though it’s live, and only detonates 5% of the time. If we increased
the number of rotations, then this would be further improved.
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Figure E.9. Histogram results for a bomb that is not live.

Figure E.10. Histogram results for a bomb that is live.
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Homework 6

1. First, we start by generating the singlet state |S〉 and the triplet
0 state |T0〉 in Qiskit which can be done using the following code.
First let’s do some necessary imports:

import numpy as np

from math import *

from qiskit import *

from copy import deepcopy

Then, let’s prepare the |T0〉 state. We will need two qubits:

#Prepared Triplet 0 state:

q = QuantumRegister (2)

c = ClassicalRegister (2)

circT = QuantumCircuit (q,c)

circT.x(1) #flip second qubit

circT.h(0) #superposes first qubit

circT.cx(q[0],q[1]) #perform CNOT gate

stateT = Statevector (circT)

print(stateT)

This will output a vector 1√
2

⎛
⎜⎜⎜⎝
0

1

1

0

⎞
⎟⎟⎟⎠. Let’s also prepare the |S〉 state:

#Prepared Triplet 0 state:

q = QuantumRegister (2)

c = ClassicalRegister (2)

circS = QuantumCircuit (q,c)

circS.x(1) #flip second qubit

circS.h(0) #superposes first qubit

circS.cx(q[0],q[1]) #perform CNOT gate

circS.z(1) # Pauli -Z gate on second qubit

stateT = Statevector (circT)

print(stateT)
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This will output a vector 1√
2

⎛
⎜⎜⎜⎝

0

1

−1
0

⎞
⎟⎟⎟⎠.

Now, we want to figure out a way to rotate the states so that
we can determine using a single measurement if we had the sin-
glet or triplet state. If we think about each qubit before doing
the entanglement, then we have the second qubit pointing −ẑ
on the Bloch sphere (because we performed an X-gate), and the
first qubit pointing along x̂ on the Bloch sphere (because we per-
formed a Hadamard gate). Then, the CNOT gate entangles the
qubits. The difference between |S〉 and |T0〉 is whether we apply
the Z-gate on the second qubit or not. Now, let’s imagine we apply
a Hadamard gate to each qubit state:

HH |S〉 = 1√
2

⎛
⎜⎜⎜⎝

0

−1
1

0

⎞
⎟⎟⎟⎠

HH |T0〉 = 1√
2

⎛
⎜⎜⎜⎝

1

0

0

−1

⎞
⎟⎟⎟⎠

We can see that the for the |S〉 state, the Hadamard gate results
in a phase rotation of 180◦ to the original state, while for |T0〉, it
turned it into another entangled Bell state, |T1〉. For |S〉, the
measurement results are contained to the subspace containing
{|01〉 , |10〉}, while for the |T0〉 state, the measurements results
are contained to the subspace containing {|00〉 , |11〉}. So, when
we do the measurement, we can just check which one of these sub-
spaces we are in to determine if it’s the triplet 0 or singlet state.
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The following function implements this logic:

def singletOrTriplet (circ):

#Copy original circuit to perform measurement

meas = deepcopy(circ)

#Perform Hadamard gate on each qubit

meas.h(1)

meas.h(0)

#Measure each qubit

meas.measure ([0,1],[0 ,1])

shots = 1 #single -shot measurement

simulator = Aer.get_backend (’qasm_simulator ’)

circ_transpile = transpile (meas , backend =

simulator )

result = simulator .run(circ_transpile ,shots =

shots).result()

counts = result.get_counts ()

#extract the keys of the counts dictionary and

take the first key

state = list (counts)[0]

# If the two elements of the key are the same

i.e 00 or 11 -> it’s Triplet 0 state

if state[0] == state [1]:

print(’Triplet�0�State’)

#Otherwise , it’s the Singlet state

else :

print(’Singlet�State’)

As an interesting exercise, you can also check whether this func-
tion can distinguish |T2〉 = 1√

2
(|00〉+ |11〉) from |S〉. However, for

the state |T1〉 = 1√
2
(|00〉 − |11〉), two measurements are needed

to distinguish it from |S〉. As a follow-up, if you enjoyed this prob-
lem, you can think of a way to distinguish between the 3 triplet
states.

2. In this problem, we will analyze the quantum teleportation proto-
col if we have Eve intercepting. Let’s quickly review the protocol:
Alice wants to send a qubit state |ψ〉 to Bob. They already share
an entangled state, say |Φ〉AB = 1√

2
(|00〉+ |11〉), so the initial
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state is |ψ0〉 = |ψ〉 ⊗ |Φ〉AB. Then Alice performs a CNOT opera-
tion between her single qubit state |ψ〉 and her other qubit which
is entangled with Bob’s. Then, she applies a Hadamard gate on
the state she wants to transport and performs a measurement on
both qubits, which yields some bit string. She communicates the
bit strong with Bob over a classical channel who then knows what
additional gate to apply in order to recover the state Alice wanted
to send. Let’s look back at Section 6.6 to recall the quantum cir-
cuit and states that we are dealing with.

(a) For this problem, we are told that Eve is making a measure-
ment after Alice performs the CNOT gate, so Eve is perform-
ing a measurement on the state |1〉:

|ψ1〉 = α |0〉
[

1√
2
(|00〉+ |11〉)

]
+ β |1〉

[
1√
2
(|01〉+ |10〉)

]

Let’s rearrange and simplify by pulling out Alice’s qubits
because that’s where Eve will try to make a measurement4:

|ψ1〉 = 1√
2
[α |00〉 |0〉+ α |01〉 |1〉 + β |10〉 |1〉+ β |11〉 |0〉]

So, if Eve measures Alice’s qubits, she has a probability of |α|2
2

to get |00〉 or |01〉 and |β|2
2 to get |10〉 or |11〉. So, by making

a measurement, she destroys the state Alice actually wants
to send. Eve will in essence teleport |0〉 or |1〉 to Bob. Let’s
say Alice and Bob continue the protocol to the end. If Alice
continues the protocol, she would apply a Hadamard gate to
the qubit she wants to teleport, but suppose the state has
collapsed to |ψ1〉 = |00〉A |0〉B. Then, we would have

|ψ2〉 = 1√
2
(|0〉A + |1〉A) |0〉A |0〉B

If Alice makes a final measurement to the state, Bob still has
|0〉, so it doesn’t make a difference. However, despite her inter-
ception, Eve still hasn’t learned the state that Alice actually
wanted to send.

4Remember Alice has the superposition state and the first qubit in the Bell
states.
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(b) If Eve measures the state |ψ2〉 before Alice, then she randomly
chooses the state that goes to Bob. After Alice measures the
state again, it will remain the same, so the correct state will
still get teleported to Bob. Eve will know the bit-string out-
come from her measurement, so she could know what gate Bob
had to do to get the state Alice sent, but she still wouldn’t
be able to know the state exactly. In this case, Alice and Bob
won’t be able to tell Eve’s interception.

(c) After Alice makes the measurement, the state is teleported to
Bob and she cannot recover the teleported state anymore by
the no-cloning theorem. If Eve intercepts during the classical
communication, she will only know the bit-string outcome of
Alice’s measurement and thus only know the gate that Bob
had to do to get Alice’s state, but still would not know what
the actual state was!



This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



Bibliography

[1] S. Berryman. Ancient atomism. In E.N. Zalta, (ed.), The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Winter, 2016.

[2] A.W. Hummel. Science and civilisation in china, volume IV, physics
and physical technology, part 1, physics. By J. Needham et al., The
American Historical Review, 68(2): 463–464, 01 1963. doi: 10.1086/
ahr/68.2.463. https://doi.org/10.1086/ahr/68.2.463.

[3] K.S. Krane. Modern Physics. Wiley, 3rd edition, 2012.
[4] A. Einstein. On the electrodynamics of moving bodies. Annalen der

Physik, 17: 891–921, 1905a.
[5] A.J. Greenberg, D.S. Ayres, A.M. Cormack, R.W. Kenney, D.O.

Caldwell, V.B. Elings, W.P. Hesse, and R.J. Morrison. Charged-pion
lifetime and a limit on a fundamental length. Physical Review Let-
ters, 23: 1267–1270, Nov 1969. doi: 10.1103/PhysRevLett.23.1267.
https://link.aps.org/doi/10.1103/PhysRevLett.23.1267.

[6] M. Planck. The Theory of Heat Radiation. Dover Books on Physics
Series. Dover Publications, 1991. https://books.google.com/books?
id=eNdD03 92nYC.

[7] A. Einstein. On a heuristic point of view concerning the production
and transformation of light. Annalen der Physik, 17: 132–148, 1905.

[8] N. Bohr. On the constitution of atoms and molecules. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-
ence, 26(151): 1–25, 1913. doi: 10.1080/14786441308634955. https://
doi.org/10.1080/14786441308634955.

[9] B.R. Wheaton. De Broglie Wavelength (γ = h/p), Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009. pp. 152–154. doi: 10.1007/
978-3-540-70626-7 46. https://doi.org/10.1007/978-3-540-70626-7 46.

281

https://doi.org/10.1086/ahr/68.2.463
https://link.aps.org/doi/10.1103/PhysRevLett.23.1267
https://books.google.com/books?id=eNdD03_92nYC
https://books.google.com/books?id=eNdD03_92nYC
https://doi.org/10.1080/14786441308634955
https://doi.org/10.1080/14786441308634955
https://doi.org/10.1007/978-3-540-70626-7_46


282 First Step to Quantum Computing: A Practical Guide for Beginners

[10] C. Davisson and L.H. Germer. The scattering of electrons by a single
crystal of nickel. Nature, 119(2998):5 58–560, April 1927. doi: 10.
1038/119558a0. https://doi.org/10.1038/119558a0.

[11] J.D Cresser. Particle spin and the stern-gerlach experiment, Quantum
Physics Lecture Notes. J.D. Cresser Publisher: Macquarie University,
2009. http://physics.mq.edu.au/∼jcresser/Phys301/Chapters/Chapt
er6.pdf.

[12] J. Faye. Copenhagen interpretation of quantum mechanics. In E.N.
Zalta, (ed.), The Stanford Encyclopedia of Philosophy. Metaphysics
Research Lab, Stanford University, Winter, 2019.

[13] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical
description of physical reality be considered complete? Physi-
cal Review, 47: 777–780, May 1935. doi: 10.1103/PhysRev.47.777.
https://link.aps.org/doi/10.1103/PhysRev.47.777.

[14] J.S. Bell. On the einstein podolsky rosen paradox. Physics Physique
Fizika, 1: 195–200, Nov 1964. doi: 10.1103/PhysicsPhysiqueFizika.1.
195. https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195.

[15] A. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical
Society, 42(1): 230–265, 1936. doi: 10.2307/2268810.

[16] B.J. Copeland. The Church-Turing Thesis. In E.N. Zalta and
U. Nodelman, (eds.), The Stanford Encyclopedia of Philosophy. Meta-
physics Research Lab, Stanford University, Spring, 2024.

[17] W. Shockley. The path to the conception of the junction transistor.
IEEE Transactions on Electron Devices, 31(11): 1523–1546, 1984. doi:
10.1109/T-ED.1984.21749.

[18] G.E. Moore. Cramming more components onto integrated circuits,
reprinted from electronics, Volume 38, Number 8, April 19, 1965,
pp. 114 ff. IEEE Solid-State Circuits Society Newsletter, 11(3): 33–35,
2006. doi: 10.1109/N-SSC.2006.4785860.

[19] R.P. Feynman. Simulating physics with computers. International
Journal of Theoretical Physics, 21(6): 467–488, June 1982. doi:
10.1007/BF02650179. https://doi.org/10.1007/BF02650179.

[20] D. Deutsch. Quantum computation. Physics World, 5(6): 57, Jun
1992. doi: 10.1088/2058-7058/5/6/38. https://dx.doi.org/10.1088/
2058-7058/5/6/38.

[21] P.W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Com-
puting, 26(5): 1484–1509, 1997. doi: 10.1137/S0097539795293172.
https://doi.org/10.1137/S0097539795293172.

[22] D.V. Schroeder. An Introduction to Thermal Physics. Addison Wes-
ley, 2000. https://books.google.com/books?id=m9 GMAAACAAJ.

https://doi.org/10.1038/119558a0
http://physics.mq.edu.au/~jcresser/Phys301/Chapters/Chapter6.pdf
http://physics.mq.edu.au/~jcresser/Phys301/Chapters/Chapter6.pdf
https://link.aps.org/doi/10.1103/PhysRev.47.777
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1007/BF02650179
https://dx.doi.org/10.1088/2058-7058/5/6/38
https://dx.doi.org/10.1088/2058-7058/5/6/38
https://doi.org/10.1137/S0097539795293172
https://books.google.com/books?id=m9_GMAAACAAJ


Bibliography 283

[23] C.E. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27(3):379–423, 1948. doi: 10.1002/
j.1538-7305.1948.tb01338.x.

[24] S. Axler. Linear Algebra Done Right. Undergraduate Texts in Math-
ematics. Springer New York, 1997. https://books.google.com/books?
id=ovIYVIlithQC.

[25] M. Bauer. The stern-gerlach experiment, translation of: “der experi-
mentelle nachweis der richtungsquantelung im magnetfeld”, 2023.

[26] D.J. Griffiths and D.F. Schroeter. Introduction to quantum mechan-
ics. Cambridge University Press, Cambridge ; New York, NY, third
edition, 2018.

[27] C.H. Bennett and G. Brassard. Quantum cryptography: Pub-
lic key distribution and coin tossing. Theoretical Computer Sci-
ence, 560: 7–11, 2014. doi: https://doi.org/10.1016/j.tcs.2014.05.025.
https://www.sciencedirect.com/science/article/pii/S030439751400
4241. Theoretical Aspects of Quantum Cryptography — celebrating
30 years of BB84.

[28] A.C. Elitzur and L. Vaidman. Quantum mechanical interaction-free
measurements. Foundations of Physics, 23(7): 987–997, Jul 1993. doi:
10.1007/bf00736012. http://dx.doi.org/10.1007/BF00736012.

[29] S. Aaronson. Introduction to Quantum Information Science, UT
Austin, 2018. https://www.scottaaronson.com/qclec/6.pdf. https://
www.scottaaronson.com/qclec/11.pdf.

[30] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge, 2010.

[31] C. Couteau. Spontaneous parametric down-conversion. Contempo-
rary Physics, 59(3): 291–304, 2018. doi: 10.1080/00107514.2018.
1488463. https://doi.org/10.1080/00107514.2018.1488463.

[32] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
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EPR paradox, 143, 157
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expected value, 33

F

frequency, 90

G
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information theory, 37
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Josephson junction, 190
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no-cloning theorem, 126, 168
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quantum
channel, 131
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teleportation, 166

R

random variable, 17, 31
real number, 17
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resonant frequency, 185
reversible unitary operations,

175
RSA public-key system, 131

S

sample space, 28
scalars, 41
Schrödinger equation, 75
Schrödinger’s cat, 76
Shannon entropy, 37
Shor’s factoring algorithm, 175
simple harmonic oscillator, 184
special relativity, 158
speed of light, 86
spin, 76

magnetic moment, 82
qubits, 173

spins, 76
spontaneous parametric

down-conversion, 149
state collapse, 79

state space, 55
state vector, 117
Stern–Gerlach experiment, 80
superconducting circuits,

183
superconducting qubits, 173
superconductors, 75
superposition, 52
symmetric keys, 129

T

T1 time, 192
T2 time, 192
tensor product, 144
thermal effects, 79
thermal energy, 191
Toffoli gate, 164
transistors, 55
two-level, 55
two-level system, 95
two-state, 55
Type I down-conversion, 150
Type II down-conversion, 150

U

uncertainty principle, 157
unit circle, 25
unit vector, 42
unitary, 68
unitary gates, 104
universal gate set, 165
universal Turing machine, 173
universality, 174

V

vector, 41
bra, row, 50
ket, column, 50
components, 49
spaces, 42

vertical polarization, 87

W

wave–particle duality, 55, 75
wavefunction, 91
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