

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB and its many features varies across reading devices and applications. Use your device or app settings to customize the presentation to your liking. Settings that you can customize often include font, font size, single or double column, landscape or portrait mode, and figures that you can click or tap to enlarge. For additional information about the settings and features on your reading device or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the eBook in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

Foundational
Python for Data
Science

[image: A page lists the similar books launched by Pearson Addison-Wesley. The covers of the books are shown. Link to the data series is shown. Areas of focus in these books are provided. The social media apps to connect are represented by their logos.]

Foundational
Python for Data
Science

Kennedy R. Behrman

[image: Addison-Wesley logo is shown.]

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw.

Library of Congress Control Number: 2021940284

Copyright © 2022 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-662435-6
ISBN-10: 0-13-662435-9

ScoutAutomatedPrintCode

Editor-in-Chief

Mark Taub

Acquisitions Editor

Malobika Chakraborty

Development Editor

Mark Renfrow

Managing Editor

Sandra Schroeder

Senior Project Editor

Lori Lyons

Copy Editor

Kitty Wilson

Production Manager

Aswini Kumar/codeMantra

Indexer

Timothy Wright

Proofreader

Abigail Manheim

Compositor

codeMantra

❖

This book is dedicated to Tatiana, Itta, and Maple,
who is probably still under the bed.

❖

Contents at a Glance

Preface

I: Learning Python in a Notebook Environment

1 Introduction to Notebooks

2 Fundamentals of Python

3 Sequences

4 Other Data Structures

5 Execution Control

6 Functions

II: Data Science Libraries

7 NumPy

8 SciPy

9 Pandas

10 Visualization Libraries

11 Machine Learning Libraries

12 Natural Language Toolkit

III: Intermediate Python

13 Functional Programming

14 Object-Oriented Programming

15 Other Topics

A Answers to End-of-Chapter Questions

Index

Table of Contents

Preface

I: Learning Python in a Notebook Environment

1 Introduction to Notebooks

Running Python Statements

Jupyter Notebooks

Google Colab

Colab Text Cells

Colab Code Cells

Colab Files

Managing Colab Documents

Colab Code Snippets

Existing Collections

System Aliases

Magic Functions

Summary

Questions

2 Fundamentals of Python

Basic Types in Python

High-Level Versus Low-Level Languages

Statements

Performing Basic Math Operations

Using Classes and Objects with Dot Notation

Summary

Questions

3 Sequences

Shared Operations

Testing Membership

Indexing

Slicing

Interrogation

Math Operations

Lists and Tuples

Creating Lists and Tuples

Adding and Removing List Items

Unpacking

Sorting Lists

Strings

Ranges

Summary

Questions

4 Other Data Structures

Dictionaries

Creating Dictionaries

Accessing, Adding, and Updating by Using Keys

Removing Items from Dictionaries

Dictionary Views

Checking to See If a Dictionary Has a Key

The get Method

Valid Key Types

The hash Method

Sets

Set Operations

Frozensets

Summary

Questions

5 Execution Control

Compound Statements

Compound Statement Structure

Evaluating to True or False

if Statements

while Loops

for Loops

break and continue Statements

Summary

Questions

6 Functions

Defining Functions

Control Statement

Docstrings

Parameters

Return Statements

Scope in Functions

Decorators

Anonymous Functions

Summary

Questions

II: Data Science Libraries

7 NumPy

Installing and Importing NumPy

Creating Arrays

Indexing and Slicing

Element-by-Element Operations

Filtering Values

Views Versus Copies

Some Array Methods

Broadcasting

NumPy Math

Summary

Questions

8 SciPy

SciPy Overview

The scipy.misc Submodule

The scipy.special Submodule

The scipy.stats Submodule

Discrete Distributions

Continuous Distributions

Summary

Questions

9 Pandas

About DataFrames

Creating DataFrames

Creating a DataFrame from a Dictionary

Creating a DataFrame from a List of Lists

Creating a DataFrame from a File

Interacting with DataFrame Data

Heads and Tails

Descriptive Statistics

Accessing Data

Bracket Syntax

Optimized Access by Label

Optimized Access by Index

Masking and Filtering

Pandas Boolean Operators

Manipulating DataFrames

Manipulating Data

The replace Method

Interactive Display

Summary

Questions

10 Visualization Libraries

matplotlib

Styling Plots

Labeled Data

Plotting Multiple Sets of Data

Object-Oriented Style

Seaborn

Seaborn Themes

Plotly

Bokeh

Other Visualization Libraries

Summary

Questions

11 Machine Learning Libraries

Popular Machine Learning Libraries

How Machine Learning Works

Transformations

Splitting Test and Training Data

Training and Testing

Learning More About Scikit-learn

Summary

Questions

12 Natural Language Toolkit

NLTK Sample Texts

Frequency Distributions

Text Objects

Classifying Text

Summary

Exercises

III: Intermediate Python

13 Functional Programming

Introduction to Functional Programming

Scope and State

Depending on Global State

Changing State

Changing Mutable Data

Functional Programming Functions

List Comprehensions

List Comprehension Basic Syntax

Replacing map and filter

Multiple Variables

Dictionary Comprehensions

Generators

Generator Expressions

Generator Functions

Summary

Questions

14 Object-Oriented Programming

Grouping State and Function

Classes and Instances

Private Methods and Variables

Class Variables

Special Methods

Representation Methods

Rich Comparison Methods

Math Operator Methods

Inheritance

Summary

Questions

15 Other Topics

Sorting

Lists

Reading and Writing Files

Context Managers

datetime Objects

Regular Expressions

Character Sets

Character Classes

Groups

Named Groups

Find All

Find Iterator

Substitution

Substitution Using Named Groups

Compiling Regular Expressions

Summary

Questions

A Answers to End-of-Chapter Questions

Index

Preface

The Python language has been around for a long time and worn many hats. Its original implementation was started by Guido van Rossum in 1989 as a tool for system administration as an alternative to Bash scripts and C programs.1 Since its public release in 1991, it has evolved for use in a myriad of industries. These include everything from web-development, film, government, science, and business.2

I was first introduced to Python working in the film industry, where we used it to automate data management across departments and locations. In the last decade, Python has become a dominant tool in Data Science.

This dominance evolved due to two developments: the Jupyter notebook, and powerful third-party libraries. In 2001 Fernando Perez began the IPython project, an interactive Python environment inspired by Maple and Mathematica notebooks.3 By 2014, the notebook-specific part of the project was split off as the Jupyter project. These notebooks have excelled for scientific and statistical work environments. In parallel with this development, third-party libraries for scientific and statistical computing were developed for Python. With so many applications, the functionality available to a Python programmer has grown immensely. With specialized packages for everything from opening web sockets to processing natural language text, there is more available than a beginning developer needs.

This project was the brainchild of Noah Gift.4 In his work as an educator, he found that students of Data Science did not have a resource to learn just the parts of Python they needed. There were many general Python books and books about Data Science, but not resources for learning just the Python needed to get started in Data Science. That is what we have attempted to provide here. This book will not teach the Python needed to set up a web page or perform system administration. It is also not intended to teach you Data Science, but rather the Python needed to learn Data Science.

I hope you will find this guide a good companion in your quest to grow your Data Science knowledge.

Example Code

Most of the code shown in examples in this book can be found on GitHub at:

https://github.com/kbehrman/foundational-python-for-data-science.

1 https://docs.python.org/3/faq/general.html#why-was-python-created-in-the-first-place

2 https://www.python.org/success-stories/

3 http://blog.fperez.org/2012/01/ipython-notebook-historical.html

4 https://noahgift.com

Figure Credits

	Figure

	Credit Attribution

	Cover

	Boris Znaev/Shutterstock

	Cover

	Mark.G/Shutterstock

	Figure 1-01

	Screenshot of Colab Dialogue © 2021 Google

	Figure 1-02

	Screenshot of Renaming Notebook © 2021 Google

	Figure 1-03

	Screenshot of Google Drive © 2021 Google

	Figure 1-04

	Screenshot of Editing Text Cells © 2021 Google

	Figure 1-05

	Screenshot of Formatting Text © 2021 Google

	Figure 1-06

	Screenshot of Lists © 2021 Google

	Figure 1-07

	Screenshot of Headings © 2021 Google

	Figure 1-08

	Screenshot of Table of Contents © 2021 Google

	Figure 1-09

	Screenshot of Hiding Cells © 2021 Google

	Figure 1-10

	Screenshot of LaTeX Example © 2021 Google

	Figure 1-11

	Screenshot of A Files © 2021 Google

	Figure 1-12

	Screenshot of Upload Files © 2021 Google

	Figure 1-13

	Screenshot of Mount Google Drive © 2021 Google

	Figure 1-14

	Screenshot of Code Snippets © 2021 Google

Register Your Book

Register your copy of Foundational Python for Data Science on the InformIT site for convenient access to updates and/or corrections as they become available. To start the registration process, go to informit.com/register and log in or create an account. Enter the product ISBN 9780136624356 and click Submit. Look on the Registered Products tab for an Access Bonus Content link next to this product, and follow that link to access any available bonus materials. If you would like to be notified of exclusive offers on new editions and updates, please check the box to receive email from us.

Acknowledgments

The idea for this book first came from Noah Gift. It is he who really identified the need for a specialized introduction to Python targeted at students of Data Science. Thank you for that, Noah. And thank you to Colin Erdman who, acting as technical editor, brought an attention to detail that was much appreciated and needed. I also want to thank the Pearson team, including Malobika Chakraborty, who guided me through the whole process, Mark Renfrow, who came in and helped get the project done, and Laura Lewin, who helped get it going.

About the Author

Kennedy Behrman is a veteran software engineer. He began using Python to manage digital assets in the visual effects industry and has used it extensively since. He has authored various books and training programs around Python education. He currently works as a senior data engineer at Envestnet.

Part I

Learning Python in a Notebook Environment

1

Introduction to Notebooks

All animals are equal, but some animals are more equal than others.

George Orwell

In This Chapter

	Running Python statements

	Introduction to Jupyter notebooks

	Introduction to Google Colab hosted notebooks

	Text and code cells

	Uploading files to the Colab environment

	Using a system alias to run shell commands

	Magic functions

This chapter introduces Google Colab’s Jupyter notebook environment, which is a great way for a beginner to get started in scientific Python development. This chapter begins by looking at traditional ways of running Python code.

Running Python Statements

Historically, Python was invoked either in an interactive Python shell or by supplying text files to the interpreter. If you have Python installed on your system, you can open the Python built-in interactive shell by typing python at the command line:

Click here to view code image

python

Python 3.9.1 (default, Mar 7 2021, 09:53:19)

[Clang 12.0.0 (clang-1200.0.32.29)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

Note

For code in this book, we use bold text for user input (the code you would type), and non-bold text for any output that results.

You can then type Python statements and run them by pressing Enter:

print("Hello")

Hello

As shown here, you see the result of each statement displayed directly after the statement’s line.

When Python commands are stored in a text file with the extension .py, you can run them on the command line by typing python followed by the filename. If you have a file named hello.py, for example, and it contains the statement print("Hello"), you can invoke this file on the command line as follows and see its output displayed on the next line:

python hello.py

Hello

For traditional Python software projects, the interactive shell was adequate as a place to figure out syntax or do simple experiments. The file-based code was where the real development took place and where software was written. These files could be distributed to whatever environment needed to run the code. For scientific computing, neither of these solutions was ideal. Scientists wanted to have interactive engagement with data while still being able to persist and share in a document-based format. Notebook-based development emerged to fill the gap.

Jupyter Notebooks

The IPython project is a more feature-rich version of the Python interactive shell. The Jupyter project sprang from the IPython project. Jupyter notebooks combine the interactive nature of the Python shell with the persistence of a document-based format. A notebook is an executable document that combines executable code with formatted text. A notebook is composed of cells, which contain code or text. When a code cell is executed, any output is displayed directly below the cell. Any state changes performed by a code cell are shared by any cells executed subsequently. This means you can build up your code cell by cell, without having to rerun the whole document when you make a change. This is especially useful when you are exploring and experimenting with data.

Jupyter notebooks have been widely adopted for data science work. You can run these notebooks locally from your machine or from hosted services such as those provided by AWS, Kaggle, Databricks, or Google.

Google Colab

Colab (short for Colaboratory) is Google’s hosted notebook service. Using Colab is a great way to get started with Python, as you don’t need to install anything or deal with library dependencies or environment management. This book uses Colab notebooks for all of its examples. To use Colab, you must be signed in to a Google account and go to https://colab.research.google.com (see Figure 1.1). From here you can create new notebooks or open existing notebooks. The existing notebooks can include examples supplied by Google, notebooks you have previously created, or notebooks you have copied to your Google Drive.

[image: Initial Google colab dialog window is shown. The tabs examples, recent, Google drive, github, and upload are present. Recent tab is selected, a table in the pane lists the title, first opened, last opened, and type. New notebook button at the bottom is to be selected.]

Figure 1.1 The Initial Google Colab Dialog

When you choose to create a new notebook, it opens in a new browser tab. The first notebook you create has the default title Untitled0.ipynb. To change its name, double-click on the title and type a new name (see Figure 1.2).

[image: A snapshot illustrates the method of renaming a notebook. The notebook name is highlighted at the top and is editable. A callout reads, rename notebook. Tools are present at the left pane.]

Figure 1.2 Renaming a Notebook in Google Colab

Colab automatically saves your notebooks to your Google Drive, which you can access by going to Drive.Google.com. The default location is a directory named Colab Notebooks (see Figure 1.3).

[image: A snapshot illustrates the colab notebooks folder highlighted. The folder names in the drive are books, colab notebooks, digital editions, and music.]

Figure 1.3 The Colab Notebooks Folder at Google Drive

Colab Text Cells

A new Google Colab notebook has a single code cell. A cell can be one of two types: text or code. You can add new cells by using the + Code and + Text buttons in the upper left of the notebook interface.

Text cells are formatted using a language called Markdown. (For more information on Markdown, see https://colab.research.google.com/notebooks/markdown_guide.ipynb.) To edit a cell, you double-click it, and the Markdown appears to the right, with a preview of its output to the left (see Figure 1.4).

[image: A snapshot illustrates the text cells. The right pane depicts the text with a link and the left pane depicts the preview. The preview contains unformatted text.]

Figure 1.4 Editing Text Cells in a Google Colab Notebook

As shown in Figure 1.5, you can modify text in a notebook to be bold, italic, struck through, and monospaced.

[image: A snapshot illustrates the process of formatting text in a Google Colab Notebook. The right pane depicts the preview and the left pane depicts the formatting styles. The styles listed are bold, italic, strikethrough, and monospace.]

Figure 1.5 Formatting Text in a Google Colab Notebook

As shown in Figure 1.6, you can create a numbered list by prefacing items with numbers, and you can create a bulleted list by prefacing items with stars.

[image: A snapshot illustrates the process of creating lists in a Google Colab Notebook. The right pane depicts the preview and the left pane depicts the syntax used. Numbers and stars are used as prefix to create numbered and bulleted lists respectively.]

Figure 1.6 Creating Lists in a Google Colab Notebook

As shown in Figure 1.7, you can create headings by preceding text with hash signs. A single hash sign creates a top-level heading, two hashes creates a first level heading, and so forth.

[image: A snapshot illustrates creation of headings in a Google Colab Notebook. The right pane depicts the preview and the left pane depicts the syntax used. A single hashtag is used to create a heading, addition of more single hashtags create sub and sub-sub-headings.]

Figure 1.7 Creating Headings in a Google Colab Notebook

A heading that is at the top of a cell determines the cell’s hierarchy in the document. You can view this hierarchy by opening the table of contents, which you do by clicking the Menu button at the top left of the notebook interface, as shown in Figure 1.8.

[image: A snapshot represents the table of contents. Left pane contains the tools and the menu options are at the top. Table of contents lists the topics within introduction to Google Colab.]

Figure 1.8 The Table of Contents in a Google Colab Notebook

You can use the table of contents to navigate the document by clicking on the displayed headings. A heading cell that has child cells has a triangle next to the heading text. You can click this triangle to hide or view the child cells (see Figure 1.9).

[image: A screenshot illustrates the hiding cell button. Text cells window is open. At the top-left corner, is a button with a triangle. A callout reads, expand 7 child cells under this section header.]

Figure 1.9 Hiding Cells in a Google Colab Notebook

LaTeX

The LaTeX language (see https://www.latex-project.org/about/), which is designed for preparing technical documents, excels at presenting mathematical text. LaTeX uses a code-based approach that is designed to allow you to concentrate on content rather than layout. You can insert LaTeX code into Colab notebook text cells by surrounding it with dollar signs. Figure 1.10 shows an example from the LaTeX documentation embedded in a Colab notebook text cell.

[image: A screenshot represents the preview and the embedded code. The code contains the terms for the equation. The right pane displays the Maxwell's equations. Tools are present at the top and window options are present at the top-right corner.]

Figure 1.10 LaTeX Embedded in a Google Colab Notebook

Colab Code Cells

In Google Colab notebooks, you use code cells to write and execute Python code. To execute a Python statement, you type it into a code cell and either click the Play button at the left of the cell or press Shift+Enter. Pressing Shift+Enter takes you to the next cell or creates a new cell if there are none following. Any output from the code you execute is displayed below the cell, as in this example:

print("Hello")

hello

Subsequent chapters of this book use only code cells for Colab notebooks.

Colab Files

To see the files and folders available in Colab, click the Files button on the left of the interface (see Figure 1.11). By default, you have access to the sample_data folder supplied by Google.

[image: A snapshot represents the viewing files window in Google Colab. The files button in the left pane is selected. Drive and sample data are the listed folder names. The menu is at the top. Upload, refresh, and mount drive buttons are present above the folders list.]

Figure 1.11 Viewing Files in Google Colab

You can also click the Upload button to upload files to the session (see Figure 1.12).

[image: A snapshot represents uploading files. The files button in the left pane is selected. Drive and sample data are the listed folder names. Upload, refresh, and mount drive buttons are present above the folders list. A tooltip for upload reads, upload to session storage.]

Figure 1.12 Uploading Files in Google Colab

Files that you upload are available only in the current session of your document. If you come back to the same document later, you need to upload them again. All files available in Colab have the path root /content/, so if you upload a file named heights.over.time.csv, its path is /content/heights.over.time.csv.

You can mount your Google Drive by clicking the Mount Drive button (see Figure 1.13). The contents of you drive have the root path /content/drive.

[image: A snapshot represents mounting the Google drive. The files button in the left pane is selected. Drive and sample data are the listed folder names. Upload, refresh, and mount drive buttons are present above the folders list. A tooltip for mount drive is shown.]

Figure 1.13 Mounting Your Google Drive

Managing Colab Documents

By default, notebooks are saved to your Google Drive. In the File menu you can see other options for saving notebooks. You can save them to GitHub, either as gists or as tracked files. You can also download them either in Jupyter notebook format (with the .ipynb extension) or as Python files (with the .py extension). You can also share notebooks by clicking the Share button in the upper right of the notebook interface.

Colab Code Snippets

The Code Snippets section of the left navigation section of Colab lets you search and select code snippets (see Figure 1.14). You can insert selected snippets by clicking the Insert button. Using code snippets is a great way to see examples of what can be done in Colab, including making interactive forms, downloading data, and using various visualization options.

[image: A snapshot illustrates the code snippets section. The code snippet button at the left pane is selected. Links to adding form fields, camera capture, cross-output communication, and so on are provided. Filter code snippets box is present above the links.]

Figure 1.14 Using Code Snippets in Google Colab

Existing Collections

You can use Google Colab notebooks to explain and demonstrate techniques, concepts, and workflows. Data science work is shared in many collections of notebooks available around the web. Kaggle (see https://www.kaggle.com/code) has plenty of shared notebooks, as does the Google Seedbank (see https://research.google.com/seedbank/).

System Aliases

You can run a shell command from within a Colab notebook code cell by prepending the command with an exclamation point. For example, the following example prints the working directory:

!pwd

/content

You can capture any output from a shell command in a Python variable, as shown here, and use it in subsequent code:

var = !ls sample_data

print(var)

Note

Don't worry about variables yet. You will learn about them in Chapter 2, “Fundamentals of Python.”

Magic Functions

Magic functions are functions that change the way a code cell is run. For example, you can time a Python statement by using the magic function %timeit() as shown here:

Click here to view code image

import time

%timeit(time.sleep(1))

As another example, you can have a cell run HTML code by using the magic function %%html:

Click here to view code image

%%html

<marquee style='width: 30%; color: blue;'>Whee!</marquee>

Note

You can find more information about magic functions in Cell Magics example notebooks that is part of the Jupyter documentation at https://nbviewer.jupyter.org/github/ipython/ipython/blob/1.x/examples/notebooks/Cell%20Magics.ipynb.

Summary

Jupyter notebooks are documents that combine formatted text with executable code. They have become a very popular format for scientific work, and many examples are available around the web. Google Colab offers hosted notebooks and includes many popular libraries used in data science. A notebook is made up of text cells, which are formatted in Markdown, and code cells, which can execute Python code. The following chapters present many examples of Colab notebooks.

Questions

1. What kind of notebooks are hosted in Google Colab?

2. What cell types are available in Google Colab?

3. How do you mount your Google Drive in Colab?

4. What language runs in Google Colab code cells?

2

Fundamentals of Python

All models are wrong, but some are useful.

George E.P. Box

In This Chapter

	Python built-in types

	Introduction to statements

	Expression statements

	Assert statements

	Assignment statements and variables

	Import statements

	Printing

	Basic math operations

	Dot notation

This chapter looks at some of the building blocks you can use to create a Python program. It introduces the basic built-in data types, such as integers and strings. It also introduces various simple statements you can use to direct your computer’s actions. This chapter covers statements that assign values to variables and statements to ensure that code evaluates as expected. It also discusses how to import modules to extend the functionality available to you in your code. By the end of this chapter, you will have enough knowledge to write a program that performs simple math operations on stored values.

Basic Types in Python

Biologists find it useful to organize living things into a hierarchy from domain and kingdom down to genus and species. The lower down this hierarchy you go, the more alike the life-forms that share a group. A similar hierarchy exists in data science.

A parser is a program that takes your code as input and translates it into instructions to a computer. The Python parser breaks up your code into tokens, which have particular meaning defined for the Python language. It is useful to group these tokens based on shared behaviors and attributes, much as biologists do with beings in nature. These groups in Python are called collections and types. There are types that are built into the language itself, and there are types that are defined by developers outside the language core. At a high level, the Python documentation (see https://docs.python.org/3/library/stdtypes.html) defines the principal built-in types as numerics, sequences (see Chapter 3, “Sequences”), mappings (see Chapter 4, “Other Data Structures”), classes (see Chapter 14, “Object-Oriented Programming”), instances (see Chapter 14), and exceptions. At a low level, the most basic built-in types are as follows:

	Numerics: Booleans, integers, floating point numbers, and imaginary numbers

	Sequences: Strings and binary strings

At the simplest, integers (or ints) are represented in code as ordinary digits. Floating point numbers, referred to as floats, are represented as a group of digits including a dot separator. You can use the type function to see the type of an integer and a float:

type(13)

int

type(4.1)

float

If you want a number to be a float, you must ensure that it has a dot and a number to the right, even if that number is zero:

type(1.0)

float

Booleans are represented by the two constants, True and False, both of which evaluate to the type bool, which, behind the scenes, is a specialized form of int:

type(True)

bool

type(False)

bool

A string is characters surrounded by quotation marks. You can use strings to represent a variety of text, with many different uses. The following is one example:

type("Hello")

str

Note

You will learn much more about strings and binary strings in Chapter 4.

A special type, NoneType, has only one value, None. It is used to represent something that has no value:

type(None)

NoneType

High-Level Versus Low-Level Languages

Writing software is, at its essence, just giving a computer instructions. The trick is to translate actions from a human-understandable form to instructions a computer can understand. Programming languages today range from being very close to how a computer understands logic to being much closer to human language. The languages closer to the computer’s instructions are referred to as low-level languages. Machine code and assembly language are examples of low-level languages. With these languages, you have the ultimate control over exactly what your computer’s processor does, but writing code with them is tedious and time-consuming.

Higher-level languages abstract groups of instructions together into larger chunks of functionality. Different languages across this spectrum have unique strengths. For example, the language C, which is on the lower end of high-level languages, enables you to directly manage a program’s use of memory and write the highly optimized software required for embedded systems. Python, in contrast, is on the upper end of high-level languages. It does not allow you to directly say how much memory to use to save your data or free that memory when you’re done. Python’s syntax is much closer to logic as defined in human language and is generally easier to understand and write than low-level languages. Translating actions from human language to Python is generally a fast and intuitive process.

Statements

A Python program is constructed of statements. Each statement can be thought of as an action that the computer should perform. If you think of a software program as being akin to a recipe from a cookbook, a statement is a single instruction, such as “beat the eggs yolks until they turn white” or “bake for 15 minutes.”

At the simplest, a Python statement is a single line of code with the end of the line signifying the end of the statement. A simple statement could, for example, call a single function, as in this expression statement:

print("hello")

A statement could also be more complicated, such as this statement, which evaluates conditions and assigns a variable based on that evaluation:

Click here to view code image

x,y = 5,6

bar = x**2 if (x < y) and (y or z) else x//2

Python allows for both simple and complex statements. Simple Python statements include expression, assert, assignment, pass, delete, return, yield, raise, break, continue, import, future, global, and nonlocal statements. This chapter covers some of these simple statements, and later chapters cover most of the rest of them. Chapter 5, “Execution Control,” and Chapter 6, “Functions,” cover complex statements.

Multiple Statements

While using a single statement is enough to define a program, most useful programs consist of multiple statements. The results of one statement can be used by the statements that follow, building functionality by combining actions. For example, you can use the following statement to assign a variable the result of an integer division, use that result to calculate a value for another variable, and then use both variables in a third statement as inputs to a print statement:

Click here to view code image

x = 23//3

y = x**2

print(f"x is {x}, y is {y}")

x is 7, y is 49

Expression Statements

A Python expression is a piece of code that evaluates to a value (or to None). This value could be, among other things, a mathematical expression or a call to a function or method. An expression statement is simply a statement that just has an expression but does not capture its output for further use. Expression statements are generally useful only in interactive environments, such as an IPython shell. In such an environment, the result of an expression is displayed to the user after it is run. This means that if you are in a shell and you want to know what a function returns or what 12344 divided by 12 is, you can see the output without coding a means to display it. You can also use an expression statement to see the value of a variable (as shown in the following example) or just to echo the display value of any type. Here are some simple expression statements and the output of each one:

Click here to view code image

23 * 42

966

"Hello"

'Hello'

import os

os.getcwd()

'/content'

You will see a number of expression statements used in this book to demonstrate Python functionality. In each case, you will see the expression first, with its result on the following line.

Assert Statements

An assert statement takes an expression as an argument and ensures that the result evaluates to True. Expressions that return False, None, zero, empty containers, and empty strings evaluate to False; all other values evaluate to True. (Containers are discussed in Chapter 3, “Sequences,” and Chapter 4, “Other Data Structures.”) An assert statement throws an error if the expression evaluates to False, as shown in this example:

Click here to view code image

assert(False)

AssertionError Traceback (most recent call last)

<ipython-input-5-8808c4021c9c> in <module>()

----> 1 assert(False)

Otherwise, the assert statement calls the expression and continues on to the next statement, as shown in this example:

assert(True)

You can use assert statements when debugging to ensure that some condition you assume to be true is indeed the case. These statements do have an impact on performance, though, so if you are using them generously when you develop, you might want to disable them when running your code in a production environment. If you are running your code from the command line, you can add the -o, optimize, flag to disable them:

python -o my_script.py

Assignment Statements

A variable is a name that points to some piece of data. It is important to understand that, in an assignment statement, the variable points to the data and is not the data itself. The same variable can be pointed to different items—even items that are of different types. In addition, you can change the data at which a variable points without changing the variable. As in the earlier examples in this chapter, a variable is assigned a value using the assignment operator (a single equals sign). The variable name appears to the left of the operator, and the value appears to the right. The following examples shows how to assign the value 12 to the variable x and the text 'Hello' to the variable y:

x = 12

y = 'Hello'

Once the variables are assigned values, you can use the variable names in place of the values. So, you can perform math by using the x variable or use the y variable to construct a larger piece of text, as shown in this example:

Click here to view code image

answer = x - 3

print(f"{y} Jeff, the answer is {answer}")

Hello Jeff, the answer is 9

You can see that the values for x and y are used where the variables have been inserted. You can assign multiple values to multiple variables in a single statement by separating the variable names and values with commas:

x, y, z = 1,'a',3.0

Here x is assigned the value 1, y the value 'a', and z the value 3.0.

It is a best practice to give your variables meaningful names that help explain their use. Using x for a value on the x-axis of a graph is fine, for example, but using x to hold the value for a client’s first name is confusing; first_name would be a much clearer variable name for a client’s first name.

Pass Statements

Pass statements are placeholders. They perform no action themselves, but when there is code that requires a statement to be syntactically correct, a pass statement can be used. A pass statement consists of the keyword pass and nothing else. Pass statements are generally used for stubbing out functions and classes when laying out code design (that is, putting in the names without functionality). You’ll learn more about functions in Chapter 6, “Functions,” and classes in Chapter 14.

Delete Statements

A delete statement deletes something from the running program. It consists of the del keyword followed by the item to be deleted, in parentheses. Once the item is deleted, it cannot be referenced again unless it is redefined. The following example shows a value being assigned to a variable and then deleted:

Click here to view code image

polly = 'parrot'

del(polly)

print(polly)

NameError Traceback (most recent call last)

<ipython-input-6-c0525896ade9> in <module>()

 1 polly = 'parrot'

 2 del(polly)

----> 3 print(polly)

NameError: name 'polly' is not defined

When you try to access the variable using a print function in this example, an error is raised.

Note

Python has its own garbage collection system, and, generally you don’t need to delete objects to free up memory, but there may be times when you want to remove them anyway.

Return Statements

A return statement defines the return value of a function. You will see how to write functions, including using return statements, in Chapter 6.

Yield Statements

Yield statements are used in writing generator functions, which provide a powerful way to optimize for performance and memory usage. We cover generators in Chapter 13, “Functional Programming.”

Raise Statements

Some of the examples so far in this chapter have demonstrated code that causes errors. Such errors that occur during the running of a program (as opposed to errors in syntax that prevent a program from running at all) are called exceptions. Exceptions interrupt the normal execution of a program, and unless they are handled, cause the program to exit. Raise statements are used both to re-invoke an exception that has been caught and to raise either a built-in exception or an exception that you have designed specifically for your program. Python has many built-in exceptions, covering many different use cases (see https://docs.python.org/3/library/exceptions.html#bltin-exceptions). If you want to invoke one of these built-in exceptions, you can use a raise statement, which consists of the raise keyword followed by the exception. For example, NotImplementedError is an error used in class hierarchies to indicate that a child class should implement a method (see Chapter 14). The following example raises this error with a raise statement:

Click here to view code image

raise NotImplementedError

NotImplementedError Traceback (most recent call last)

<ipython-input-1-91639a24e592> in <module>()

----> 1 raise NotImplementedError

Break Statements

You use a break statement to end a loop before its normal looping condition is met. Looping and break statements are covered in Chapter 5.

Continue Statements

You use a continue statement to skip a single iteration of a loop. These statements are also covered in Chapter 5.

Import Statements

One of the most powerful features of writing software is the ability to reuse pieces of code in different contexts. Python code can be saved in files (with the .py extension); if these files are designed for reuse, they are referred to as modules. When you run Python, whether in an interactive session or as a standalone program, some features are available as core language features, which means you can use them directly, without additional setup. When you install Python, these core features are installed, and so is the Python Standard Library. This library is a series of modules that you can bring into your Python session to extend functionality. To have access to one of these modules in your code, you use an import statement, which consists of the keyword import and the name of the module to import. The following example shows how to import the os module, which is used to interact with the operating system:

import os

Once os is imported, you can use the module’s functionality as if it were built in. The os module has a listdir function that lists the contents of the current directory:

Click here to view code image

os.listdir()

['.config', 'sample_data']

When modules or groups of modules are prepared for wider distribution, they are referred to as packages. One of the appealing aspects of Python, especially for data science, is the large ecosystem of third-party packages. These packages can be local to you or your organization, but the majority of public packages are hosted in the Python Package Index, pypi.org. To use one of these packages, you must install it first, generally by using pip, the standard package manager for Python. For example, to install the famously useful Pandas library for your local use, you run the following at the command line:

pip install pandas

Then you import it into your code:

import pandas

You can also give a module an alias during import. For example, it is a common convention to import Pandas as pd:

import pandas as pd

You can then reference the module by using the alias rather than the module name, as shown in this example:

Click here to view code image

pd.read_excel('/some_excel_file.xls')

You can also import specific parts of a module by using the from keyword with import:

Click here to view code image

import os from path

path

<module 'posixpath' from '/usr/lib/python3.6/posixpath.py'>

This example imports the submodule path from the module os. You can now use path in your program as if it were defined by your own code.

Future Statements

Future statements allow you to use certain modules that are part of a future release. This book does not cover them as they are rarely used in Data Science.

Global Statements

Scope in a program refers to the environment that shares definitions of names and values. Earlier you saw that when you define a variable in an assignment statement, that variable retains its name and value for future statements. These statements are said to share scope. When you start writing functions (in Chapter 6) and classes (in Chapter 14), you will encounter scopes that are not shared. Using a global statement is a way to share variables across scopes. (You will learn more about global statements in Chapter 13.)

Nonlocal Statements

Using nonlocal statements is another way of sharing variables across scope. Whereas a global variable is shared across a whole module, a nonlocal statement encloses the current scope. Nonlocal statements are valuable only with multiple nested scopes, and you should not need them outside of very specialized situations, so this book does not cover them.

Print Statements

When you are working in an interactive environment such as the Python shell, IPython, or, by extension, a Colab notebook, you can use expression statements to see the value of any Python expression. (An expression is piece of code that evaluates to a value.) In some cases, you may need to output text in other ways, such as when you run a program at the command line or in a cloud function. The most basic way to display output in such situations is to use a print statement. By default, the print function outputs text to the standard-out stream. You can pass any of the built-in types or most other objects as arguments to be printed. Consider these examples:

print(1)

1

print('a')

a

You can also pass multiple arguments, and they are printed on the same line:

print(1,'b')

1 b

You can use an optional argument to define the separator used between items when multiple arguments are provided:

print(1,'b',sep='->')

1->b

You can even print the print function itself:

Click here to view code image

print(print)

<built-in function print>

Performing Basic Math Operations

You can use Python as a calculator. Basic math operations are built into the core functionality. You can do math in an interactive shell or use the results of calculations in a program. The following are examples of addition, subtraction, multiplication, division, and exponentiation in Python:

2 + 3

5

5 – 6

-1

3*4

12

9/3

3.0

2**3

8

Notice that division returns a floating-point number, even if integers are used. If you want to limit the result of division to integers, you can use a doubled forward slash, as shown in this example:

5//2

2

Another handy operator is modulo, which returns the remainder of a division. To perform the modulo operation, you use the percent sign:

5%2

1

Modulo is useful in determining whether one number is a factor of another (in which case the result is zero). This example uses the is keyword to test if the result of the modulo is zero:

14 % 7 is 0

True

We will look at more math operations in Part II, “Data Science Libraries.”

Using Classes and Objects with Dot Notation

In Chapter 14 you will learn about defining your own classes and objects. For now, you can think of an object as a bundling of functionality with data. The majority of things in Python have attributes or methods attached to them. To access an object’s attributes or methods (that is, functions attached to an object), you use dot syntax. To access an attribute, simply use a dot after the object’s name, followed by the attribute name.

The following example shows how to access the numerator attribute of an integer:

a_number = 2

a_number.numerator

You access object methods in a similar way, but with parentheses following. The following example uses the to_bytes() method of the same integer:

Click here to view code image

a_number.to_bytes(8, 'little')

b'\x02\x00\x00\x00\x00\x00\x00\x00'

Summary

Programming languages provide a means of translating human instructions to computer instructions. Python uses different types of statements to give a computer instructions, with each statement describing an action. You can combine statements together to create software. The data on which actions are taken is represented in Python by a variety of types, including both built-in types and types defined by developers and third parties. These types have their own characteristics, attributes, and, in many cases, methods that can be accessed using the dot syntax.

Questions

1. With Python, what is the output of type(12)?

2. When using Python, what is the effect of using assert(True) on the statements that follow it?

3. How would you use Python to invoke the exception LastParamError?

4. How would you use Python to print the string "Hello"?

5. How do you use Python to raise 2 to the power of 3?

3

Sequences

Errors using inadequate data are much less than those using no data at all.

Charles Babbage

In This Chapter

	Shared sequence operations

	Lists and tuples

	Strings and string methods

	Ranges

In Chapter 2, “Fundamentals of Python,” you learned about collections of types. This chapter introduces the group of built-in types called sequences. A sequence is an ordered, finite collection. You might think of a sequence as a shelf in a library, where each book on the shelf has a location and can be accessed easily if you know its place. The books are ordered, with each book (except those at the ends) having books before and after it. You can add books to the shelf, and you can remove them, and it is possible for the shelf to be empty. The built-in types that comprise a sequence are lists, tuples, strings, binary strings, and ranges. This chapter covers the shared characteristics and specifics of these types.

Shared Operations

The sequences family shares quite a bit of functionality. Specifically, there are ways of using sequences that are applicable to most of the group members. There are operations that relate to sequences having a finite length, for accessing the items in a sequence, and for creating a new sequence based a sequence’s content.

Testing Membership

You can test whether an item is a member of a sequence by using the in operation. This operation returns True if the sequence contains an item that evaluates as equal to the item in question, and it returns False otherwise. The following are examples of using in with different sequence types:

Click here to view code image

'first' in ['first', 'second', 'third']

True

23 in (23,)

True

'b' in 'cat'

False

b'a' in b'ieojjza'

True

You can use the keyword not in conjunction with in to check whether something is absent from a sequence:

'b' not in 'cat'

True

The two places you are most likely to use in and not in are in an interactive session to explore data and as part of an if statement (see Chapter 5, “Execution Control”).

Indexing

Because a sequence is an ordered series of items, you can access an item in a sequence by using its position, or index. Indexes start at zero and go up to one less than the number of items. In an eight-item sequence, for example, the first item has an index of zero, and the last item an index of seven.

To access an item by using its index, you use square brackets around the index number. The following example defines a string and accesses its first and last substrings using their index numbers:

Click here to view code image

name = "Ignatius"

name[0]

'I'

name[4]

't'

You can also index counting back from the end of a sequence by using negative index numbers:

name[-1]

's'

name[-2]

'u'

Slicing

You can use indexes to create new sequences that represent subsequences of the original. In square brackets, supply the beginning and ending index numbers of the subsequence separated by a colon, and a new sequence is returned:

Click here to view code image

name = "Ignatius"

name[2:5]

'nat'

The subsequence that is returned contains items starting from the first index and up to, but not including, the ending index. If you leave out the beginning index, the subsequence starts at the beginning of the parent sequence; if you leave out the end index, the subsequence goes to the end of the sequence:

name[:5]

'Ignat'

name[4:]

'tius'

You can use negative index numbers to create slices counting from the end of a sequence. This example shows how to grab the last three letters of a string:

name[-3:]

'ius'

If you want a slice to skip items, you can provide a third argument that indicates what to count by. So, if you have a list sequence of integers, as shown earlier, you can create a slice just by using the starting and ending index numbers:

Click here to view code image

scores = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

scores[3:15]

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

But you can also indicate the step to take, such as counting by threes:

scores[3:15:3]

[3, 6, 9, 12]

To count backward, you use a negative step:

scores[18:0:-4]

[18, 14, 10, 6, 2]

Interrogation

You can perform shared operations on sequences to glean information about them. Because a sequence is finite, it has a length, which you can find by using the len function:

name = "Ignatius"

len(name)

8

You can use the min and max functions to find the minimum and maximum items, respectively:

Click here to view code image

scores = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

min(scores)

0

max(name)

'u'

These methods assume that the contents of a sequence can be compared in a way that implies an ordering. For sequence types that allow for mixed item types, an error occurs if the contents cannot be compared:

Click here to view code image

max(['Free', 2, 'b'])

TypeError Traceback (most recent call last)

<ipython-input-15-d8babe38f9d9> in <module>()

----> 1 max(['Free', 2, 'b'])

TypeError: '>' not supported between instances of 'int' and 'str'

You can find out how many times an item appears in a sequence by using the count method:

name.count('a')

1

You can get the index of an item in a sequence by using the index method:

name.index('s')

7

You can use the result of the index method to create a slice up to an item, such as a letter in a string:

Click here to view code image

name[:name.index('u')]

'Ignati'

Math Operations

You can perform addition and multiplication with sequences of the same type. When you do, you conduct these operations on the sequence, not on its contents. So, for example, adding the list [1] to the list [2] will produce the list [1,2], not [3]. Here is an example of using the plus (+) operator to create a new string from three separate strings:

Click here to view code image

"prefix" + "-" + "postfix"

'prefix-postfix'

The multiplication (*) operator works by performing multiple additions on the whole sequence, not on its contents:

[0,2] * 4

[0, 2, 0, 2, 0, 2, 0, 2]

This is a useful way of setting up a sequence with default values. For example, say that you want to track scores for a set number of participants in a list. You can initialize that list so that it has an initial score for each participant by using multiplication:

Click here to view code image

num_participants = 10

scores = [0] * num_participants

scores

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Lists and Tuples

Lists and tuples are sequences that can hold objects of any type. Their contents can be of mixed types, so you can have strings, integers, instances, floats, and anything else in the same list. The items in lists and tuples are separated by commas. The items in a list are enclosed in square brackets, and the items in a tuple are enclosed in parentheses. The main difference between lists and tuples is that lists are mutable, and tuples are immutable. This means that you can change the contents of a list, but once a tuple is created, it cannot be changed. If you want to change the contents of a tuple, you need to make a new one based on the content of the current one. Because of the mutability difference, lists have more functionality than tuples—and they also use more memory.

Creating Lists and Tuples

You create a list by using the list constructor, list(), or by just using the square bracket syntax. To create a list with initial values, for example, simply supply the values in brackets:

Click here to view code image

some_list = [1,2,3]

some_list

[1, 2, 3]

You can create tuples by using the tuple constructor, tuple(), or using parentheses. If you want to create a tuple with a single item, you must follow that item with a comma, or Python will interpret the parentheses not as indicating a tuple but as indicating a logical grouping. You can also create a tuple without parentheses by just putting a comma after an item. Listing 3.1 provides examples of tuple creation.

Listing 3.1 Creating Tuples

Click here to view code image

tup = (1,2)

tup

(1,2)

tup = (1,)

tup

(1,)

tup = 1,2,

tup

(1,2)

Warning

A common but subtle bug occurs when you leave a trailing comma behind an argument to a function. It turns the argument into a tuple containing the original argument. So the second argument to the function my_function(1, 2,) will be (2,) and not 2.

You can also use the list or tuple constructors with a sequence as an argument. The following example uses a string and creates a list of the items the string contains:

Click here to view code image

name = "Ignatius"

letters = list(name)

letters

['I', 'g', 'n', 'a', 't', 'i', 'u', 's']

Adding and Removing List Items

You can add items to a list and remove items from a list. To conceptualize how it works, think of a list as a stack of books. The most efficient way to add items to a list is to use the append method, which adds an item to the end of the list, much as you could easily add a book to the top of a stack. To add an item to a different position in the list, you can use the insert method, with the index number where you wish to position the new item as an argument. This is less efficient than using the append method as the other items in the list may need to move to make room for the new item; however, this is typically an issue only in very large lists. Listing 3.2 shows examples of appending and inserting.

Listing 3.2 Appending and Inserting List Items

Click here to view code image

flavours = ['Chocolate', 'Vanilla']

flavours

['Chocolate', 'Vanilla']

flavours.append('SuperFudgeNutPretzelTwist')

flavours

['Chocolate', 'Vanilla', 'SuperFudgeNutPretzelTwist']

flavours.insert(0,"sourMash")

flavours

['sourMash', 'Chocolate', 'Vanilla', 'SuperFudgeNutPretzelTwist']

To remove an item from a list, you use the pop method. With no argument, this method removes the last item. By using an optional index argument, you can specify a specific item. In either case, the item is removed from the list and returned.

The following example pops the last item off the list and then pops off the item at index 0. You can see that both items are returned when they are popped and that they are then gone from the list:

Click here to view code image

flavours.pop()

'SuperFudgeNutPretzelTwist'

flavours.pop(0)

'sourMash'

flavours

 ['Chocolate', 'Vanilla']

To add the contents of one list to another, you use the extend method:

Click here to view code image

deserts = ['Cookies', 'Water Melon']

desserts

['Cookies', 'Water Melon']

desserts.extend(flavours)

desserts

['Cookies', 'Water Melon', 'Chocolate', 'Vanilla']

This method modifies the first list so that it now has the contents of the second list appended to its contents.

Nested List Initialization

There is a tricky bug that bites beginning Python developers. It involves combining list mutability with the nature of multiplying sequences. If you want to initialize a list containing four sublists, you might try multiplying a single list in a list like this:

Click here to view code image

lists = [[]] * 4

lists

[[], [], [], []]

This appears to have worked, until you modify one of the sublists:

Click here to view code image

lists[-1].append(4)

lists

[[4], [4], [4], [4]]

All of the sublists are modified! This is because the multiplication only initializes one list and references it four times. The references look independent until you try modifying one. The solution to this is to use a list comprehension (discussed further in Chapter 13, “Functional Programming”):

Click here to view code image

lists = [[] for _ in range(4)]

lists[-1].append(4)

lists

 [[], [], [], [4]]

Unpacking

You can assign values to multiple variables from a list or tuple in one line:

a, b, c = (1,3,4)

a

1

b

3

c

4

Or, if you want to assign multiple values to one variable while assigning single ones to the others, you can use a * next to the variable that will take multiple values. Then that variable will absorb all the items not assigned to other variables:

Click here to view code image

*first, middle, last = ['horse', 'carrot', 'swan', 'burrito', 'fly']

first

['horse', 'carrot', 'swan']

last

'fly'

middle

'burrito'

Sorting Lists

For lists you can use built-in sort and reverse methods that can change the order of the contents. Much like the sequence min and max functions, these methods work only if the contents are comparable, as shown in these examples:

Click here to view code image

name = "Ignatius"

letters = list(name)

letters

['I', 'g', 'n', 'a', 't', 'i', 'u', 's']

letters.sort()

letters

['I', 'a', 'g', 'i', 'n', 's', 't', 'u']

letters.reverse()

letters

['u', 't', 's', 'n', 'i', 'g', 'a', 'I']

Strings

A string is a sequence of characters. In Python, strings are Unicode by default, and any Unicode character can be part of a string. Strings are represented as characters surrounded by quotation marks. Single or double quotations both work, and strings made with them are equal:

Click here to view code image

'Here is a string'

'Here is a string'

"Here is a string" == 'Here is a string'

True

If you want to include quotation marks around a word or words within a string, you need to use one type of quotation marks—single or double—to enclose that word or words and use the other type of quotation marks to enclose the whole string. The following example shows the word is enclosed in double quotation marks and the whole string enclosed in single quotation marks:

Click here to view code image

'Here "is" a string'

'Here "is" a string'

You enclose multiple-line strings in three sets of double quotation marks as shown in the following example:

Click here to view code image

a_very_large_phrase = """

Wikipedia is hosted by the Wikimedia Foundation,

a non-profit organization that also hosts a range of other projects.

"""

With Python strings you can use special characters, each preceded by a backslash. The special characters include \t for tab, \r for carriage return, and \n for newline. These characters are interpreted with special meaning during printing. While these characters are generally useful, they can be inconvenient if you are representing a Windows path:

Click here to view code image

windows_path = "c:\row\the\boat\now"

print(windows_path)

ow heoat

 ow

For such situations, you can use Python’s raw string type, which interprets all characters literally. You signify the raw string type by prefixing the string with an r:

Click here to view code image

windows_path = r"c:\row\the\boat\now"

print(windows_path)

c:\row\the\boat\now

As demonstrated in Listing 3.3, there are a number of string helper functions that enable you to deal with different capitalizations.

Listing 3.3 String Helper Functions

Click here to view code image

captain = "Patrick Tayluer"

captain

'Patrick Tayluer'

captain.capitalize()

'Patrick tayluer'

captain.lower()

'patrick tayluer'

captain.upper()

'PATRICK TAYLUER'

captain.swapcase()

'pATRICK tAYLUER'

captain = 'patrick tayluer'

captain.title()

'Patrick Tayluer'

Python 3.6 introduced format strings, or f-strings. You can insert values into f-strings at runtime by using replacement fields, which are delimited by curly braces. You can insert any expression, including variables, into the replacement field. An f-string is prefixed with either an F or an f, as shown in this example:

Click here to view code image

strings_count = 5

frets_count = 24

f"Noam Pikelny's banjo has {strings_count} strings and {frets_count} frets"

'Noam Pikelny's banjo has 5 strings and 24 frets'

This example shows how to insert a mathematic expression into the replacement field:

Click here to view code image

a = 12

b = 32

f"{a} times {b} equals {a*b}"

'12 times 32 equals 384'

This example shows how to insert items from a list into the replacement field:

Click here to view code image

players = ["Tony Trischka", "Bill Evans", "Alan Munde"]

f"Performances will be held by {players[1]}, {players[0]}, and {players[2]}"

'Performances will be held by Bill Evans, Tony Trischka, and Alan Munde'

Ranges

Using range objects is an efficient way to represent a series of numbers, ordered by value. They are largely used for specifying the number of times a loop should run. Chapter 5 introduces loops. Range objects can take start (optional), end, and step (optional) arguments. Much as with slicing, the start is included in the range, and the end is not. Also as with slicing, you can use negative steps to count down. Ranges calculate numbers as you request them, and so they don’t need to store more memory for large ranges. Listing 3.4 demonstrates how to create ranges with and without the optional arguments. This listing makes lists from the ranges so that you can see the full contents that the range would supply.

Listing 3.4 Creating Ranges

Click here to view code image

range(10)

range(0, 10)

list(range(1, 10))

[1, 2, 3, 4, 5, 6, 7, 8, 9]

list(range(0,10,2))

[0, 2, 4, 6, 8]

list(range(10, 0, -2))

[10, 8, 6, 4, 2]

Summary

This chapter covers the import group of types known as sequences. A sequence is an ordered, finite collection of items. Lists and tuples can contain mixed types. Lists can be modified after creation, but tuples cannot. Strings are sequences of text. Range objects are used to describe ranges of numbers. Lists, strings, and ranges are among the most commonly used types in Python.

Questions

1. How would you test whether a is in the list my_list?

2. How would you find out how many times b appears in a string named my_string?

3. How would you add a to the end of the list my_list?

4. Are the strings 'superior' and "superior" equal?

5. How would you make a range going from 3 to 13?

4

Other Data Structures

Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write.

Samuel S. Wilks

In This Chapter

	Creating dictionaries

	Accessing and updating dictionary contents

	Creating sets

	Set operations

The order-based representation of data is powerful, but other data representations are also possible. Dictionaries and sets are data structures that do not rely on the order of the data. Both are powerful models that are integral to the Python toolbox.

Dictionaries

Imagine that you are doing a study to determine if there is a correlation between student height and grade point average (GPA). You need a data structure to represent the data for an individual student, including the person’s name, height, and GPA. You could store the information in a list or tuple. You would have to keep track of which index represented which piece of data, though. A better representation would be to label the data so that you wouldn’t need to track the translation from index to attribute. You can use dictionaries to store data as key/value pairs. Every item, or value, in a dictionary is accessed using a key. This lookup is very efficient and is much faster than searching a long sequence.

With a key/value pair, the key and the value are separated with a colons. You can present multiple key/value pairs, separated by commas and enclosed in curly brackets. So, a dictionary for the student record might look like this:

Click here to view code image

{ 'name': 'Betty', 'height': 62,'gpa': 3.6 }

The keys for this dictionary are the strings'name', 'height', and 'gpa'. Each key points to a piece of data: 'name' points to the string'Betty', 'height' points to the integer 62, and 'gpa' points to the floating point number 3.6. The values can be of any type, though there are some restrictions on the key type, as discussed later in the chapter.

Creating Dictionaries

You can create dictionaries with or without initial data. You can create an empty dictionary by using the dict() constructor method or by simply using curly braces:

Click here to view code image

dictionary = dict()

dictionary

{}

dictionary = {}

dictionary

{}

The first example creates an empty dictionary by using the dict() constructor method and assigns that dictionary to a variable named dictionary. The second example creates an empty dictionary by using curly braces and also assigns to the same variable. Each of these examples produces an empty dictionary, represented by empty curly braces.

You can also create dictionaries initialized with data. One option for doing this is to pass in the keys and values as named parameters as in this example:

Click here to view code image

subject_1 = dict(name='Paula', height=64, gpa=3.8, ranking=1)

An alternative is to pass in the key/value pairs to the constructor as a list or tuple of lists or tuples, with each sublist being a key/value pair:

Click here to view code image

subject_2 = dict([['name','Paula'],['height',64],['gpa',3.8]],['ranking',1])

A third option is to create a dictionary by using curly braces, with the keys and values paired using colons and separated with commas:

Click here to view code image

subject_3 = {'name':'Paula', 'height':64, 'gpa':3.8, 'ranking':1}

These three methods all create dictionaries that evaluate the same way, as long as the same keys and values are used:

Click here to view code image

subject_1 == subject_2 == subject_3

True

Accessing, Adding, and Updating by Using Keys

Dictionary keys provide a means to access and change data. You generally access data by the relevant key in square brackets, in much the way you access indexes in sequences:

Click here to view code image

student_record = {'name':'Paula', 'height':64, 'gpa':3.8}

student_record['name']

'Paula'

student_record['height']

64

student_record['gpa']

3.8

If you want to add a new key/value pair to an existing dictionary, you can assign the value to the slot by using the same syntax:

Click here to view code image

student_record['applied'] = '2019-10-31'

student_record

{'name':'Paula',

 'height':64,

 'gpa':3.8,

 'applied': '2019-10-31'}

The new key/value pair is now contained in the original dictionary.

If you want to update the value for an existing key, you can also use the square bracket syntax:

Click here to view code image

student_record['gpa'] = 3.0

student_record['gpa']

3.0

A handy way to increment numeric data is by using the += operator, which is a shortcut for updating a value by adding to it:

Click here to view code image

student_record['gpa'] += 1.0

student_record['gpa']

4.0

Removing Items from Dictionaries

Sometimes you need to remove data, such as when a dictionary includes personally identifiable information (PII). Say that your data includes a student’s ID, but this ID is irrelevant to a particular study. In order to preserve the privacy of the student, you could update the value for the ID to None:

Click here to view code image

student_record = {'advisor': 'Pickerson',

 'first': 'Julia',

 'gpa': 4.0,

 'last': 'Brown',

 'major': 'Data Science',

 'minor': 'Math'}

student_record['id'] = None

student_record

{'advisor': 'Pickerson',

 'first': 'Julia',

 'gpa': 4.0,

 'id': None,

 'last': 'Brown',

 'major': 'Data Science',

 'minor': 'Math'}

This would prevent anyone from using the ID.

Another option would be to remove the key/value pair altogether by using the del() function. This function takes the dictionary with the key in square brackets as an argument and removes the appropriate key/value pair:

Click here to view code image

del(student_record['id'])

student_record

{'advisor': 'Pickerson',

 'first': 'Julia',

 'gpa': 4.0,

 'last': 'Brown',

 'major': 'Data Science',

 'minor': 'Math'}

Note

Of course, to really protect the subject’s identity, you would want to remove the person’s name as well as any other PII.

Dictionary Views

Dictionary views are objects that offer insights into a dictionary. There are three views: dict_keys, dict_values, and dict_items. Each view type lets you look at the dictionary from a different perspective.

Dictionaries have a keys() method, which returns a dict_keys object. This object gives you access to the current keys of the dictionary:

Click here to view code image

keys = subject_1.keys()

keys

dict_keys(['name', 'height', 'gpa', 'ranking'])

The values() method returns a dict_values object, which gives you access to the values stored in the dictionary:

Click here to view code image

values = subject_1.values()

values

dict_values(['Paula', 64, 4.0, 1])

The items() method returns a dict_items object, which represents the key/value pairs in a dictionary:

Click here to view code image

items = subject_1.items()

items

dict_items([('name', 'Paula'), ('height', 64), ('gpa', 4.0), ('ranking', 1)])

You can test membership in any of these views by using the in operator. This example shows how to check whether the key 'ranking' is used in this dictionary:

'ranking' in keys

True

This example shows how to check whether the integer 1 is one of the values in the dictionary:

1 in values

True

This example shows how to check whether the key/value pair mapping 'ranking' is 1:

('ranking',1) in items

True

Starting in Python 3.8, dictionary views are dynamic. This means that if you change a dictionary after acquiring a view, the view reflects the new changes. For example, say that you want to delete a key/value pair from the dictionary whose views are accessed above, as shown here:

Click here to view code image

del(subject_1['ranking'])

subject_1

{'name': 'Paula', 'height': 64, 'gpa': 4.0}

That key/value pair is also deleted from the view objects:

Click here to view code image

'ranking' in keys

False

1 in values

False

('ranking',1) in items

False

Every dictionary view type has a length, which you can access by using the same len function used with sequences:

Click here to view code image

len(keys)

3

len(values)

3

len(items)

3

As of Python 3.8, you can use the reversed function on a dict_key view to get a view in reverse order:

Click here to view code image

keys

dict_keys(['name', 'height', 'gpa'])

list(reversed(keys))

['gpa', 'height', 'name']

The dict_key views are set-like objects, which means that many set operations will work on them. This example shows how to create two dictionaries:

Click here to view code image

admission_record = {'first':'Julia',

 'last':'Brown',

 'id': 'ax012E4',

 'admitted': '2020-03-14'}

student_record = {'first':'Julia',

 'last':'Brown',

 'id': 'ax012E4',

 'gpa':3.8,

 'major':'Data Science',

 'minor': 'Math',

 'advisor':'Pickerson'}

Then you can test the equality of keys:

Click here to view code image

admission_record.keys() == student_record.keys()

False

You can also look for a symmetric difference:

Click here to view code image

admission_record.keys() ^ student_record.keys()

{'admitted', 'advisor', 'gpa', 'major', 'minor'}

Here is how you look for intersection:

Click here to view code image

admission_record.keys() & student_record.keys()

{'first', 'id', 'last'}

Here is how you look for difference:

Click here to view code image

admission_record.keys() - student_record.keys()

{'admitted'}

Here is how you look for union:

Click here to view code image

admission_record.keys() | student_record.keys()

{'admitted', 'advisor', 'first', 'gpa', 'id', 'last', 'major', 'minor'}

Note

You will learn more about sets and set operations in the next section.

The most common use for key_item views is to iterate through a dictionary and perform an operation with each key/value pair. The following example uses a for loop (see Chapter 5, “Execution Control”) to print each pair:

Click here to view code image

for k,v in student_record.items():

 print(f"{k} => {v}")

first => Julia

last => Brown

gpa => 4.0

major => Data Science

minor => Math

advisor => Pickerson

You can do similar loops with dict_keys or dict_values, as required.

Checking to See If a Dictionary Has a Key

You can use the dict_key and the in operator to check whether a key is used in a dictionary:

Click here to view code image

'last' in student_record.keys()

True

As a shortcut, you can also test for a key without explicitly calling the dict_key view. Instead, you just use in directly with the dictionary:

'last' in student_record

True

This also works if you want to iterate through the keys of a dictionary. You don’t need to access the dict_key view directly:

Click here to view code image

for key in student_record:

 print(f"key: {key}")

 key: first

 key: last

 key: gpa

 key: major

 key: minor

 key: advisor

The get Method

Trying to access a key that is not in a dictionary by using the square bracket syntax causes an error:

Click here to view code image

student_record['name']

KeyError Traceback (most recent call last)

<ipython-input-18-962c04650d3e> in <module>()

----> 1 student_record['name']

 KeyError: 'name'

This type of error stops the execution of a program that is run outside a notebook. One way to avoid these errors is to test whether the key is in the dictionary before accessing it:

Click here to view code image

if 'name' in student_record:

 student_record['name']

This example uses an if statement that accesses the key ‘name’ only if it is in the dictionary. (For more on if statements, see Chapter 5.)

As a convenience, dictionaries have a method, get(), that is designed to for safely accessing missing keys. By default, this method returns a None constant if the key is missing:

Click here to view code image

print(student_record.get('name'))

None

You can also provide a second argument, which is the value to return in the event of missing keys:

Click here to view code image

student_record.get('name', 'no-name')

'no-name'

You can also chain together multiple get statements:

Click here to view code image

student_record.get('name', admission_record.get('first', 'no-name'))

 'Julia'

This example tries to get the value for the key 'name' from the dictionary student_record, and if it is missing, it tries to get the value for the key 'first' from the dictionary admission_record, and if that key is missing, it returns the default value 'no-name'.

Valid Key Types

You can change the values of some objects, but other objects have static values. The objects whose values can be changed are referred to as mutable. As you have already seen, lists are mutable objects; other objects whose value can be changed are also mutable. On the other hand, you cannot change the value of immutable objects. Immutable objects include integers, strings, range objects, binary strings, and tuples.

Immutable objects, with the exception of certain tuples, can be used as keys in dictionaries:

Click here to view code image

{ 1 : 'an integer',

 'string' : 'a string',

 ('item',) : 'a tuple',

 range(12) : 'a range',

 b'binary' : 'a binary string' }

Mutable objects, such as lists, are not valid keys for dictionaries. If you try to use a list as a key, you experience an error:

Click here to view code image

{('item',): 'a tuple',

1: 'an integer',

b'binary': 'a binary string',

range(0, 12): 'a range',

'string': 'a string',

['a', 'list'] : 'a list key' }

 TypeError Traceback (most recent call last)

 <ipython-input-31-1b0e555de2b5> in <module>()

 ----> 1 { ['a', 'list'] : 'a list key' }

 TypeError: unhashable type: 'list'

A tuple whose contents are immutable can be used as a dictionary key. So, tuples of numbers, strings, and other tuples are all valid as keys:

Click here to view code image

tuple_key = (1, 'one', 1.0, ('uno',))

{ tuple_key: 'some value' }

{(1, 'one', 1.0, ('uno',)): 'some value'}

If a tuple contains a mutable object, such as a list, then the tuple is not a valid key:

Click here to view code image

bad_tuple = ([1, 2], 3)

{ bad_tuple: 'some value' }

TypeError Traceback (most recent call last)

<ipython-input-28-b2cddfdda91e> in <module>()

 1 bad_tuple = ([1, 2], 3)

----> 2 { bad_tuple: 'some value' }

TypeError: unhashable type: 'list'

The hash Method

You can think of a dictionary as storing values in an indexed list-like structure, with a method that quickly and reliably maps the key objects to the appropriate index numbers. This method is known as a hash function and can be found on immutable Python objects as the __hash__() method. It is designed to be used behind the scenes but can be called directly:

Click here to view code image

a_string = 'a string'

a_string.__hash__()

4815474858255585337

a_tuple = 'a','b',

a_tuple.__hash__()

7273358294597481374

a_number = 13

a_number.__hash__()

13

This hash function uses the value of an object to produce a consistent output. Hence for a mutable object, no consistent hash can be produced. You cannot get a hash of a mutable object such as a list:

Click here to view code image

a_list = ['a','b']

a_list.__hash__()

TypeError Traceback (most recent call last) <ipython-input-40-c4f99d4ea902> in

<module>()

 1 a_list = ['a','b']

----> 2 a_list.__hash__()

TypeError: 'NoneType' object is not callable

Dictionaries and lists are among the most commonly used data structures in Python. They give you great ways to structure data for meaningful, fast lookups.

Note

Although the key/value lookup mechanism does not rely on an order of the data, as of Python 3.7, the order of the keys reflects the order in which they were inserted.

Sets

The Python set data structure is an implementation of the sets you may be familiar with from mathematics. A set is an unordered collection of unique items. You can think of a set as a magic bag that does not allow duplicate objects. The items in sets can be any hashable type.

A set is represented in Python as a list of comma-separated items enclosed in curly braces:

{ 1, 'a', 4.0 }

You can create a set either by using the set() constructor or by using curly braces directly. However, when you use empty curly braces, you create an empty dictionary, not an empty set. If you want to create an empty set, you must use the set() constructor:

Click here to view code image

empty_set = set()

empty_set

set()

empty_set = {}

empty_set

{}

You can create a set with initial values by using either the constructor or the curly braces.

You can provide any type of sequence as the argument, and a set will be returned based on the unique items from the sequence:

Click here to view code image

letters = 'a', 'a', 'a', 'b', 'c'

unique_letters = set(letters)

unique_letters

{'a', 'b', 'c'}

unique_chars = set('mississippi')

unique_chars

{'i', 'm', 'p', 's'}

unique_num = {1, 1, 2, 3, 4, 5, 5}

unique_num

{1, 2, 3, 4, 5}

Much like dictionary keys, sets hash their contents to determine uniqueness. Therefore, the contents of a set must be hashable and, hence, immutable. A list cannot be a member of a set:

Click here to view code image

bad_set = { ['a','b'], 'c' }

TypeError Traceback (most recent call last)

 <ipython-input-12-1179bc4af8b8> in <module>()

----> 1 bad_set = { ['a','b'], 'c' }

TypeError: unhashable type: 'list'

You can add items to a set by using the add() method:

Click here to view code image

unique_num.add(6)

unique_num

{1, 2, 3, 4, 5, 6}

You can use the in operator to test membership in a set:

Click here to view code image

3 in unique_num

True

3 not in unique_num

False

You can use the len() function to see how many items a set contains:

len(unique_num)

6

As with lists, you can remove and return an item from a set by using the pop() method:

Click here to view code image

unique_num.pop()

unique_num

{2, 3, 4, 5, 6}

Unlike with lists, you cannot rely on pop() to remove a set’s items in any particular order. If you want to remove a particular item from a set, you can use the remove() method:

Click here to view code image

students = {'Karl', 'Max', 'Tik'}

students.remove('Karl')

students

{'Max', 'Tik'}

This method does not return the item removed. If you try to remove an item that is not found in the set, you get an error:

Click here to view code image

students.remove('Barb')

KeyError Traceback (most recent call last)

 <ipython-input-3-a36a5744ac05> in <module>()

----> 1 students.remove('Barb')

KeyError: 'Barb'

You could write code to test whether an item is in a set before removing it, but there is a convenience function, discard(), that does not throw an error when you attempt to remove a missing item:

Click here to view code image

students.discard('Barb')

students.discard('Tik')

students

{'Max'}

You can remove all of the contents of a set by using the clear() method:

Click here to view code image

students.clear()

students

set()

Remember that because sets are unordered, they do not support indexing:

Click here to view code image

unique_num[3]

TypeError Traceback (most recent call last)

<ipython-input-16-fecab0cd5f95> in <module>()

----> 1 unique_num[3]

TypeError: 'set' object does not support indexing

You can test equality by using the equals, ==, and not equals, !=, operators (which are discussed in Chapter 5). Because sets are unordered, sets created from sequences with the same items in different orders are equal:

Click here to view code image

first = {'a','b','c','d'}

second = {'d','c','b','a'}

first == second

True

first != second

False

Set Operations

You can perform a number of operations with sets. Many set operations are offered both as methods on the set objects and as separate operators (<, <=, >, >=, &, |, and ^). The set methods can be used to perform operations between sets and other sets, and they can also be used between sets and other iterables (that is, data types that can be iterated over). The set operators work only between sets and other sets (or frozensets).

Disjoint

Two sets are disjoint if they have no items in common. With Python sets, you can use the disjoint() method to test this. If you test a set of even numbers against a set of odd numbers, they share no numbers, and hence the result of disjoint() is True:

Click here to view code image

even = set(range(0,10,2))

even

{0, 2, 4, 6, 8}

odd = set(range(1,11,2))

odd

{1, 3, 5, 7, 9}

even.isdisjoint(odd)

True

Subset

If all the items in a set, Set B, can be found in another set, Set A, then Set B is a subset of Set A. The subset() method tests whether the current set is a subset of another. The following example tests whether a set of positive multiples of 3 below 21 are a subset of positive integers below 21:

Click here to view code image

nums = set(range(21))

nums

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

threes = set(range(3,21,3))

threes

{3, 6, 9, 12, 15, 18}

threes.issubset(nums)

 True

You can use the <= operator to test whether a set to the left is a subset of a set to the right:

threes <= nums

True

As mentioned earlier in this chapter, the method version of this operator works with non-set arguments. The following example tests whether a set of multiples of 3 are in the range 0 through 20:

Click here to view code image

threes.issubset(range(21))

True

The operator does not work with a non-set object:

Click here to view code image

threes <= range(21)

TypeError Traceback (most recent call last)

 <ipython-input-30-dbd51effe302> in <module>()

 ----> 1 threes <= range(21)

TypeError: '<=' not supported between instances of 'set' and 'range'

Proper Subsets

If all the items of a set are contained in a second set, but not all the items in the second set are in the first set, then the first set is a proper subset of the second set. This is equivalent to saying that the first set is a subset of the second and that they are not equal. You use the < operator to test for proper subsets:

Click here to view code image

threes < nums

True

threes < {'3','6','9','12','15','18'}

False

Supersets and Proper Supersets

A superset is the reverse of a subset: If a set contains all the elements of another set, it is a subset of the second set. Similarly, if a set is a superset of another set and they are not equal, then it is a proper superset. Python sets have an issuperset() method, which takes another set or any other iterable as an argument:

Click here to view code image

nums.issuperset(threes)

True

nums.issuperset([1,2,3,4])

True

You use the greater-than-or-equal-to operator, >=, to test for supersets and the greater-than operator, >, to test for proper supersets:

Click here to view code image

nums >= threes

True

nums > threes

True

nums >= nums

True

nums > nums

False

Union

The union of two sets results in a set containing all the items in both sets. For Python sets you can use the union() method, which works with sets and other iterables, and the standalone bar operator, |, which returns the union of two sets:

Click here to view code image

odds = set(range(0,12,2))

odds

{0, 2, 4, 6, 8, 10}

evens = set(range(1,13,2))

evens

{1, 3, 5, 7, 9, 11}

odds.union(evens)

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

odds.union(range(0,12))

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

odds | evens

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Intersection

The intersection of two sets is a set containing all items shared by both sets. You can use the intersection() method or the and operator, &, to perform intersections:

Click here to view code image

under_ten = set(range(10))

odds = set(range(1,21,2))

under_ten.intersection(odds)

{1, 3, 5, 7, 9}

under_ten & odds

{1, 3, 5, 7, 9}

Difference

The difference between two sets is all of the items in the first set that are not in the second set. You can use the difference() method or the minus operator, –, to perform set difference:

Click here to view code image

odds.difference(under_ten)

{11, 13, 15, 17, 19}

odds - under_ten

{11, 13, 15, 17, 19}

Symmetric Difference

The symmetric difference of two sets is a set containing any items contained in only one of the original sets. Python sets have a symmetric_difference() method, and the caret operator, ^, for calculating the symmetric difference:

Click here to view code image

under_ten = set(range(10))

over_five = set(range(5, 15))

under_ten.symmetric_difference(over_five)

{0, 1, 2, 3, 4, 10, 11, 12, 13, 14}

under_ten ^ over_five

{0, 1, 2, 3, 4, 10, 11, 12, 13, 14}

Updating Sets

Python sets offer a number of ways to update the contents of a set in place. In addition to using update(), which adds the contents to a set, you can use variations that update based on the various set operations.

The following example shows how to update from another set:

Click here to view code image

unique_num = {0, 1, 2}

unique_num.update({3, 4, 5, 7})

unique_num

{0, 1, 2, 3, 4, 5, 7}

The following example shows how to update from a list:

Click here to view code image

unique_num.update([8, 9, 10])

unique_num

{0, 1, 2, 3, 4, 5, 7, 8, 9, 10}

The following example shows how to update the difference from a range:

Click here to view code image

unique_num.difference_update(range(0,12,2))

unique_num

{1, 3, 5, 7, 9}

The following example shows how to update the intersection:

Click here to view code image

unique_num.intersection_update({ 2, 3, 4, 5 })

unique num

{3, 5}

The following example shows how to update the symmetric difference:

Click here to view code image

unique_num.symmetric_difference_update({5, 6, 7 })

unique_num

{3, 6, 7}

The following example shows how to update the union operator:

Click here to view code image

unique_letters = set("mississippi")

unique_letters

{'i', 'm', 'p', 's'}

unique_letters |= set("Arkansas")

unique_letters

{'A', 'a', 'i', 'k', 'm', 'n', 'p', 'r', 's'}

The following example shows how to update the difference operator:

Click here to view code image

unique_letters -= set('Arkansas')

unique_letters

{'i', 'm', 'p'}

The following example shows how to update the intersection operator:

Click here to view code image

unique_letters &= set('permanent')

unique_letters

{'m', 'p'}

unique_letters ^= set('mud') 2 unique_letters

{'d', 'p', 'u'}

Frozensets

Because sets are mutable, they cannot be used as dictionary keys or even as items in sets. In Python, frozensets are set-like objects that are immutable. You can use frozensets in place of sets for any operation that does not change its contents, as in these examples:

Click here to view code image

froze = frozenset(range(10))

froze

frozenset({0, 1, 2, 3, 4, 5, 6, 7, 8, 9})

froze < set(range(21))

True

froze & set(range(5, 15))

frozenset({5, 6, 7, 8, 9})

froze ^ set(range(5, 15))

frozenset({0, 1, 2, 3, 4, 10, 11, 12, 13, 14})

froze | set(range(5,15))

frozenset({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14})

Summary

Python’s built-in data structures offer a variety of ways to represent and organize your data. Dictionaries and sets are both complements to the sequence types. Dictionaries map keys to values in an efficient way. Sets implement mathematical set operations as data structures. Both dictionaries and sets are great choices where order is not the best operating principle.

Questions

1. What are three ways to create a dictionary with the following key/value pairs:

{'name': 'Smuah', 'height':62}

2. How would you update the value associated with the key gpa in the dictionary student to be '4.0'?

3. Given the dictionary data, how would you safely access the value for the key settings if that key might be missing?

4. What is the difference between a mutable object and immutable object?

5. How would you create a set from the string "lost and lost again"?

5

Execution Control

An approximate answer to the right problem is worth a good deal more than an exact answer to an approximate problem.

John Tukey

In This Chapter

	Introduction to compound statements

	Equality operations

	Comparison operations

	Boolean operations

	if statements

	while loops

	for loops

Up until this point in the book, you’ve seen statements as individual units, executing sequentially one line at a time. Programming becomes much more powerful and interesting when you can group statements together so that they execute as a unit. Simple statements that are joined together can perform more complex behaviors.

Compound Statements

Chapter 2, “Fundamentals of Python,” introduces simple statements, each of which performs an action. This chapter looks at compound statements, which allow you to control the execution of a group of statements. This execution can occur only when a condition is true. The compound statements covered in this chapter include for loops, while loops, if statements, try statements, and with statements.

Compound Statement Structure

A compound statement consists of a controlling statement or statements and a group of statements whose execution is controlled. A control statement starts with a keyword indicating the type of compound statement, an expression specific to the type of statement, and then a colon:

<keyword> <expression>:

The controlled statements can be grouped in one of two ways. The first, more common, way is to group them as a code block, which is a group of statements that are run together. In Python, code blocks are defined using indentation. A group of statements that share the same indentation are grouped into the same code block. The group ends when there is a statement that is not indented as far as the others. That final statement is not part of the code block and will execute regardless of the control statement. This is what a code block looks like:

Click here to view code image

<control statement>:

 <controlled statement 1>

 <controlled statement 2>

 <controlled statement 3>

< statement ending block>

Using indentation to define code blocks is one of the features that differentiates Python from most other popular languages, which use other mechanisms, such as curly brackets, to group code.

Another way to group controlled statements is to list them directly following the control statement and separate the controlled statements with semicolons:

Click here to view code image

<control statement>:<controlled statement 1>;<controlled statement 2>;

You should use this second style only when you have very few controlled statements and you feel that limiting the compound statement to one line will enhance, not detract from, the readability of the program.

Evaluating to True or False

if statements, while loops, and for loops are all compound statement that rely on a controlling expression that must evaluate to True or False. Luckily, in Python, pretty much everything evaluates as equal to one of these. The four most commonly used built-in expressions used as controls for compound statements are equality operations, comparison operations, Boolean operations, and object evaluation.

Equality Operations

Python offers the equality operator, ==, the inequality operator, !=, and the identity operator, is. The equality and inequality operators both compare the value of two objects and return one of the constants True or False. Listing 5.1 assigns two variables with integer values of 1, and another with the value 2. It then uses the equality operator to show that the first two variables are equal, and the third is not. It does the same with the inequality operator, whose results are opposite those of the equality operator with the same inputs.

Listing 5.1 Equality Operations

Click here to view code image

Assign values to variables

a, b, c = 1, 1, 2

Check if value is equal

a == b

True

a == c

False

a != b

False

a != c

True

You can compare different types of objects by using the equality/inequality operators. For numeric types, such as floats and integers, the values are compared. For example, if you compare the integer 1 to the float 1.0, they evaluate as equal:

1 == 1.0

True

Most other cross-type comparisons return False, regardless of value. Comparing a string to an integer will always return False, regardless of the values:

'1' == 1

False

Web forms often report all user input as strings. A common problem occurs when trying to compare user input from a web form that represents a number but is of type string with an actual number. String input always evaluates to False when compared to a number, even if the input is a string version of the same value.

Comparison Operations

You use comparison operators to compare the order of objects. What “the order” means depends on the type of objects compared. For numbers, the comparison is the order on a number line, and for strings, the Unicode value of the characters is used. The comparison operators are less than (<), less than or equal to (<=), greater than (>), and greater than or equal to (>=). Listing 5.2 demonstrates the behavior of various comparison operators.

Listing 5.2 Comparison Operations

Click here to view code image

a, b, c = 1, 1, 2

a < b

False

a < c

True

a <= b

True

a > b

False

a >= b

True

There are certain cases where you can use comparison operators between objects of different types, such as with the numeric types, but most cross-type comparisons are not allowed. If you use a comparison operator with noncomparable types, such as a string and a list, an error occurs.

Boolean Operations

The Boolean operators are based on Boolean math, which you may have studied in a math or philosophy course. These operations were first formalized by the mathematician George Boole in the 19th century. In Python, the Boolean operators are and, or, and not. The and and or operators each take two arguments; the not operator takes only one.

The and operator evaluates to True if both of its arguments evaluate to True; otherwise, it evaluates to False. The or operator evaluates to True if either of its arguments evaluates to True; otherwise, it evaluates to False. The not operator returns True if its argument evaluates to False; otherwise, it evaluates to False. Listing 5.3 demonstrates these behaviors.

Listing 5.3 Boolean Operations

Click here to view code image

True and True

True

True and False

False

True or False

True

False or False

False

not False

True

not True

False

Both the and and or operators are short-circuit operators. This means they will only evaluate their input expression as much as is needed to determine the output. For example, say that you have two methods, returns_false() and returns_true(), and you use them as inputs to the and operator as follows:

Click here to view code image

returns_false() and returns_true()

If returns_false() returns False, returns_true() will not be called, as the result of the and operation is already determined. Similarly, say that you use them as arguments to the or operation, like this:

Click here to view code image

returns_true() or returns_false()

In this case, the second method will not be called if the first returns True.

The not operator always returns one of the Boolean constants True or False. The other two Boolean operators return the result of the last expression evaluated. This is very useful with object evaluation.

Object Evaluation

All objects in Python evaluate to True or False. This means you can use objects as arguments to Boolean operations. The objects that evaluate to False are the constants None and False, any numeric with a value of zero, or anything with a length of zero. This includes empty sequences, such as an empty string ("") or an empty list ([]). Almost anything else evaluates to True.

Because the or operator returns the last expression it evaluates, you can use it to create a default value when a variable evaluates to False:

Click here to view code image

a = ''

b = a or 'default value'

b

'default value'

Because this example assigns the first variable to an empty string, which has a length of zero, this variable evaluates to False. The or operator evaluates this and then evaluates and returns the second expression.

if Statements

The if statement is a compound statement. if statements let you branch the behavior of your code depending on the current state. You can use an if statement to take an action only when a chosen condition is met or use a more complex one to choose among multiple actions, depending on multiple conditions. The control statement starts with the keyword if followed by an expression (which evaluates to True or False) and then a colon. The controlled statements follow either on the same line separated by semicolons:

Click here to view code image

if True:message="It's True!";print(message)

It's True!

or as an indented block of code, separated by newlines:

Click here to view code image

if True:

 message="It's True"

 print(message)

It's True

In both of these examples, the controlling expression is simply the reserved constant True, which always evaluates to True. There are two controlled statements: The first assigns a string to the variable message, and the second prints the value of this variable. It’s usually more readable to use the block syntax, as in the second example.

If the controlling expression evaluates to False, the program continues executing and skips the controlled statement(s):

Click here to view code image

if False:

 message="It's True"

 print(message)

The Walrus Operator

When you assign a value to a variable, Python does not return a value. A common situation is to make a variable assignment and then check the value of the variable. For example, you might assign to a variable the value returned by a function, and if that value is not None, you may use the returned object. The search method of the Python re module (covered in Chapter 15, “Other Topics”) returns a match object if it finds a match in a string, and it returns None otherwise, so if you want to use the match object, you need to make sure it's not None first:

Click here to view code image

import re

s = '2020-12-14'

match = re.search(r'(\d\d\d\d)-(\d\d)-(\d\d)', s)

if match:

 print(f"Matched items: {match.groups(1)}")

else:

 print(f"No match found in {s}")

Python 3.8 introduced a new operator, the assignment operator (:=). It is referred to as the walrus operator due to its resemblance to a walrus’s head. This operator assigns a value to a variable and returns that value. You could rewrite the match example by using it:

Click here to view code image

import re

s = '2020-12-14'

if match := re.search(r'(\d\d\d\d)-(\d\d)-(\d\d)', s):

 print(f"Matched items: {match.groups(1)}")

else:

 print(f"No match found in {s}")

This operator creates less complicated, more readable code.

Here is an example that uses a membership test as the controlling expression:

Click here to view code image

snack = 'apple'

fruit = {'orange', 'apple', 'pear'}

if snack in fruit:

 print(f"Yeah, {snack} is good!"

Yeah, apple is good!

This example checks whether the value of the variable snack is in the set fruit. If it is, an encouraging message is printed.

If you want to run an alternative block of code when the controlling expression is False, you can use an else statement. An else statement consists of the keyword else followed by a colon and then a block of code that will execute only if the controlling expression preceding it evaluates to False. This lets you branch the logic in your code. Think of it as choosing which actions to take based on the current state. Listing 5.4 shows an else statement added to the snack-related if statement. The second print statement executes only if the controlling expression snack in fruit is False.

Listing 5.4 else Statements

Click here to view code image

snack = 'cake'

fruit = {'orange', 'apple', 'pear'}

if snack in fruit:

 print(f"Yeah, {snack} is good!")

else:

 print(f"{snack}!? You should have some fruit")

cake!? You should have some fruit

If you want to have multiple branches in your code, you can nest if and else statements as shown in Listing 5.5. In this case, three choices are made: one if the balance is positive, one if it is negative, and one if it is negative.

Listing 5.5 Nested else Statements

Click here to view code image

balance = 2000.32

account_status = None

if balance > 0:

 account_status = 'Positive'

else:

 if balance == 0:

 account_status = 'Empty'

 else:

 account_status = 'Overdrawn'

print(account_status)

Positive

While this code is legitimate and will work the way it is supposed to, it is a little hard to read. To perform the same branching logic in a more concise way, you can use an elif statement. This type of statement is added after an initial if statement. It has a controlling expression of its own, which will be evaluated only if the previous statement’s expression evaluates to False. Listing 5.6 performs the same logic as Listing 5.5, but has the nested else and if statements replaced by elif.

Listing 5.6 elif Statements

Click here to view code image

balance = 2000.32

account_status = None

if balance > 0:

 account_status = 'Positive'

elif balance == 0:

 account_status = 'Empty'

else:

 account_status = 'Overdrawn'

print(account_status)

Positive

By chaining multiple elif statements with an if statement, as demonstrated in Listing 5.7, you can perform complicated choices. Usually an else statement is added at the end to catch the case that all the controlling expressions are False.

Listing 5.7 Chaining elif Statements

Click here to view code image

fav_num = 13

if fav_num in (3,7):

 print(f"{fav_num} is lucky")

elif fav_num == 0:

 print(f"{fav_num} is evocative")

elif fav_num > 20:

 print(f"{fav_num} is large")

elif fav_num == 13:

 print(f"{fav_num} is my favorite number too")

else:

 print(f"I have no opinion about {fav_num}")

is my favorite number too

while Loops

A while loop consists of the keyword while followed by a controlling expression, a colon, and then a controlled code block. The controlled statement in a while loop executes only if the controlling statement evaluates to True; in this way, it is like an if statement. Unlike an if statement, however, the while loop repeatedly continues to execute the controlled block as long as its control statement remains True. Here is a while loop that executes as long as the variable counter is below five:

Click here to view code image

counter = 0

while counter < 5:

 print(f"I've counted {counter} so far, I hope there aren't more")

 counter += 1

Notice that the variable is incremented with each iteration. This guarantees that the loop will exit. Here is the output from running this loop:

Click here to view code image

I've counted 0 so far, I hope there aren't more

I've counted 1 so far, I hope there aren't more

I've counted 2 so far, I hope there aren't more

I've counted 3 so far, I hope there aren't more

I've counted 4 so far, I hope there aren't more

You can see that the loop runs five times, incrementing the variable each time.

Note

It is important to provide an exit condition, or your loop will repeat infinitely.

for Loops

for loops are used to iterate through some group of objects. This group can be a sequence, a generator, a function, or any other object that is iterable. An iterable object is any object that returns a series of items one at a time. for loops are commonly used to perform a block of code a set number of times or perform an action on each member of a sequence. The controlling statement of a for loop consists of the keyword for, a variable, the keyword in, and the iterable followed by a colon:

for <variable> in <iterable>:

The variable is assigned the first value from the iterable, the controlled block is executed with that value, and then the variable is assigned the next value. This continues as long as the iterable has values to return.

A common way to run a block of code a set number of times is to use a for loop with a range object as the iterable:

Click here to view code image

for i in range(6):

 j = i + 1

 print(j)

 1

 2

 3

 4

 5

 6

This example assigns the values 0, 1, 2, 3, 4, and 5 to the variable i, running a code block for each one.

Here is an example of using a list as the iterable:

Click here to view code image

colors = ["Green", "Red", "Blue"]

for color in colors:

 print(f"My favorite color is {color}")

 print("No, wait...")

My favorite color is Green

No, wait...

My favorite color is Red

No, wait...

My favorite color is Blue

No, wait...

Each item in the list is used in the code block, and when there are no items left, the loop exits.

break and continue Statements

The break statement gives you an early exit from a while or for loop. When the statement is evaluated, the current block ceases to execute, and the loop is ended. This is usually used in conjunction with a nested if statement. Listing 5.8 shows a loop whose controlling expression is always True. A nested if statement calls break when its condition is met, ending the loop at that point.

Listing 5.8 break Statement

Click here to view code image

fish = ['mackerel', 'salmon', 'pike']

beasts = ['salmon', 'pike', 'bear', 'mackerel']

i = 0

while True:

 beast = beasts[i]

 if beast not in fish:

 print(f"Oh no! It's not a fish, it's a {beast}")

 break

 print(f"I caught a {beast} with my fishing net")

 i += 1

I caught a salmon with my fishing net

I caught a pike with my fishing net

Oh no! It's not a fish, it's a bear

The continue statement skips a single iteration of a loop when it is invoked. It is also usually used in conjunction with a nested if statement. Listing 5.9 demonstrates the use of a continue statement to skip printing names that don’t begin with the letter b.

Listing 5.9 continue Statement

Click here to view code image

for name in ['bob', 'billy', 'bonzo', 'fred', 'baxter']:

 if not name.startswith('b'):

 continue

 print(f"Fine fellow that {name}")

Fine fellow that bob

Fine fellow that billy

Fine fellow that bonzo

Fine fellow that baxter

Summary

Compound statements such as if statements, while loops, and for loops are a fundamental part of code beyond simple scripts. With the ability to branch and repeat your code, you can form blocks of action that describe complex behavior. You now have tools to structure more complex software.

Questions

1. What is printed by the following code if the variable a is set to an empty list?

Click here to view code image

if a:

 print(f"Hiya {a}")

else:

 print(f"Biya {a}")

2. What is printed by the previous code if the variable a is set to the string "Henry"?

3. Write a for loop that prints the numbers from 0 to 9, skipping 3, 5, and 7.

6

Functions

In our lust for measurement, we frequently measure that which we can rather than that which we wish to measure…and forget that there is a difference.

George Udny Yule

In This Chapter

	Defining functions

	Docstrings

	Positional and keyword parameters

	Wildcard parameters

	Return statements

	Scope

	Decorators

	Anonymous functions

The last and perhaps most powerful compound statement that we discuss is the function. Functions give you a way to name a code block wrapped as an object. That code can then be invoked by use of that name, allowing the same code to be called multiple times and in multiple places.

Defining Functions

A function definition defines a function object, which wraps the executable block. The definition does not run the code block but just defines the function. The definition describes how the function can be called, what it is named, what parameters can be passed to it, and what will be executed when it is invoked. The building blocks of a function are the controlling statement, an optional docstring, the controlled code block, and a return statement.

Control Statement

The first line of a function definition is the control statement, which takes the following form:

Click here to view code image

def <Function Name> (<Parameters>):

The def keyword indicates a function definition, <Function Name> is where the name that will be used to call the function is defined, and <Parameters> is where any arguments that can be passed to the function are defined. For example, the following function is defined with the name do_nothing and a single parameter named not_used:

def do_nothing(not_used):

 pass

The code block in this case consists of a single pass statement, which does nothing. The Python style guide, PEP8, has conventions for naming functions (see https://www.python.org/dev/peps/pep-0008/#function-and-variable-names).

Docstrings

The next part of a function definition is the documentation string, or docstring, which contains documentation for the function. It can be omitted, and the Python compiler will not object. However, it is highly recommended to supply a docstring for all but the most obvious methods. The docstring communicates your intentions in writing a function, what the function does, and how it should be called. PEP8 provides guidance regarding the content of docstrings (see https://www.python.org/dev/peps/pep-0008/#documentation-strings). The docstring consists of a single-line string or a multiline string surrounded in three pairs of double quotes that immediately follows the control statement:

Click here to view code image

def do_nothing(not_used):

 """This function does nothing."""

 pass

For a single-line docstring, the quotes are on the same line as the text. For a multiline docstring, the quotes are generally above and below the text, as in Listing 6.1.

Listing 6.1 Multiline Docstring

Click here to view code image

def do_nothing(not_used):

 """

 This function does nothing.

 This function uses a pass statement to

 avoid doing anything.

 Parameters:

 not_used - a parameter of any type,

 which is not used.

 """

 pass

The first line of the docstring should be a statement summarizing what the function does. With a more detailed explanation, a blank line is left after the first statement. There are many different possible conventions for what is contained after the first line of a docstring, but generally you want to offer an explanation of what the function does, what parameters it takes, and what it is expected to return. The docstring is useful both for someone reading your code and for various utilities that read and display either the first line or the whole docstring. For example, if you call the help() function on the function do_nothing(), the docstring is displayed as shown in Listing 6.2.

Listing 6.2 Docstring from help

Click here to view code image

help(do_nothing)

Help on function do_nothing in module __main__:

do_nothing(not_used)

This function does nothing.

This function uses a pass statement to avoid doing anything.

Parameters:

 not_used - a parameter of any type,

 which is not used.

Parameters

Parameters allow you to pass values into a function, which can be used in the function’s code block. A parameter is like a variable given to a function when it is called, where the parameter can be different every time you call the function. A function does not have to accept any parameters. For a function that should not accept parameters, you leave the parentheses after the function name empty:

Click here to view code image

def no_params():

 print("I don't listen to nobody")

When you call a function, you pass the values for the parameters within the parentheses following the function name. Parameter values can be set based on the position at which they are passed or based on keywords. Functions can be defined to require their parameters be passed in either or a combination of these ways. The values passed to a function are attached to variables with the names defined in the function definition. Listing 6.3 defines three parameters: first, second, and third. These variables are then available to the code block that follows, which prints out the values for each parameter.

Listing 6.3 Parameters by Position or Keyword

Click here to view code image

def does_order(first, second, third):

 '''Prints parameters.'''

 print(f'First: {first}')

 print(f'Second: {second}')

 print(f'Third: {third}')

does_order(1, 2, 3)

First: 1

Second: 2

Third: 3

does_order(first=1, second=2, third=3)

First: 1

Second: 2

Third: 3

does_order(1, third=3, second=2)

First: 1

Second: 2

Third: 3

Listing 6.3 defines the function does_order() and then calls it three times. The first time, it uses the position of the arguments, (1, 2, 3), to assign the variable values. It assigns the first value to the first parameter, first, the second value to the second parameter, second, and the third value to the third parameter, third.

The second time the listing calls the function does_order(), it uses keyword assignment, explicitly assigning the values using the parameter names, (first=1, second=2, third=3). In the third call, the first parameter is assigned by position, and the other two are assigned using keyword assignment. Notice that in all three cases, the parameters are assigned the same values.

Keyword assignments do not rely on the position of the keywords. For example, you can assign third=3 in the position before second=2 without issue. You cannot use a keyword assignment to the left of a positional assignment, however:

Click here to view code image

does_order(second=2, 1, 3)

File "<ipython-input-9-eed80203e699>", line 1

 does_order(second=2, 1, 3)

 ^

SyntaxError: positional argument follows keyword argument

You can require that a parameter be called only using the keyword method by putting a * to its left in the function definition. All parameters to the right of the star can only be called using keywords. Listing 6.4 shows how to make the parameter third a required keyword parameter and then call it using the keyword syntax.

Listing 6.4 Parameters Requiring Keywords

Click here to view code image

def does_keyword(first, second, *, third):

 '''Prints parameters.'''

 print(f'First: {first}')

 print(f'Second: {second}')

 print(f'Third: {third}')

does_keyword(1, 2, third=3)

First: 1

Second: 2

Third: 3

If you try to call a required keyword parameter using positional syntax, you get an error:

Click here to view code image

does_keyword(1, 2, 3)

 TypeError Traceback (most recent call last)

<ipython-input-15-88b97f8a6c32> in <module>

----> 1 does_keyword(1, 2, 3)

TypeError: does_keyword() takes 2 positional arguments but 3 were given

You can make a parameter optional by assigning to it a default value in the function definition. This value will be used if no value is provided for the parameter during the function call. Listing 6.5 defines a function, does_defaults(), whose third parameter has the default value 3. The function is then called twice: first using positional assignment for all three parameters and then using the default value for the third.

Listing 6.5 Parameters with Defaults

Click here to view code image

def does_defaults(first, second, third=3):

 '''Prints parameters.'''

 print(f'First: {first}')

 print(f'Second: {second}')

 print(f'Third: {third}')

does_defaults(1, 2, 3)

First: 1

Second: 2

Third: 3

does_defaults(1, 2)

First: 1

Second: 2

Third: 3

Much as with the restriction regarding the order of keyword and position arguments during a function call, you cannot define a function with a default value parameter to the left of a non-default value parameter:

Click here to view code image

def does_defaults(first=1, second, third=3):

 '''Prints parameters.'''

 print(f'First: {first}')

 print(f'Second: {second}')

 print(f'Third: {third}')

File "<ipython-input-19-a015eaeb01be>", line 1

 def does_defaults(first=1, second, third=3):

 ^

SyntaxError: non-default argument follows default argument

Default values are defined in the function definition, not in the function call. This means that if you use a mutable object, such as a list or dictionary, as a default value, it will be created once for the function. Every time you call that function using that default, the same list or dictionary object will be used. This can lead to subtle problems if it is not expected. Listing 6.6 defines a function with a list as the default argument. The code block appends 1 to the list. Notice that every time the function is called, the list retains the values from previous calls.

Listing 6.6 Mutable Defaults

Click here to view code image

def does_list_default(my_list=[]):

 '''Uses list as default.'''

 my_list.append(1)

 print(my_list)

does_list_default()

[1]

does_list_default()

[1, 1]

does_list_default()

 [1, 1, 1]

Generally, it’s a good practice to avoid using mutable objects as default parameters to avoid difficult-to-trace bugs and confusion. Listing 6.7 demonstrates a common pattern to handle default values for mutable parameter types. The default value in the function definition is set to None. The code block tests whether the parameter has an assigned value. If it does not, a new list is created and assigned to the variable. Because the list is created in the code block, a new list is created every time the function is called without a value supplied for the parameter.

Listing 6.7 Default Pattern in a Code Block

Click here to view code image

def does_list_param(my_list=None):

 '''Assigns default in code to avoid confusion.'''

 my_list = my_list or []

 my_list.append(1)

 print(my_list)

does_list_param()

[1]

does_list_param()

[1]

does_list_param()

[1]

As of Python 3.8, you can restrict parameters to positional assignment only. A parameter to the left of a forward slash (/) in a function definition is restricted to positional assignment. Listing 6.8 defines the function does_positional so that its first parameter, first, is positional only.

Listing 6.8 Positional-Only Parameters (Python 3.8 and Later)

Click here to view code image

def does_positional(first, /, second, third):

 '''Demonstrates a positional parameter.'''

 print(f'First: {first}')

 print(f'Second: {second}')

 print(f'Third: {third}')

does_positional(1, 2, 3)

First: 1

Second: 2

Third: 3

If you try to call does_positional by using keyword assignment for first, you get an error:

Click here to view code image

does_positional(first=1, second=2, third=3)

TypeError Traceback (most recent call las t)

<ipython-input-24-7b1f45f64358> in <module>

----> 1 does_positional(first=1, second=2, third=3)

TypeError: does_positional() got some positional-only arguments passed as

keyword arguments: 'first'

Listing 6.9 modifies does_positional to use positional-only and keyword-only parameters. The parameter first is positional only, the parameter second can be set using positional or keyword assignment, and the last, third, is keyword only.

Listing 6.9 Positional-Only and Keyword-Only Parameters

Click here to view code image

def does_positional(first, /, second, *, third):

 '''Demonstrates a positional and keyword parameters.'''

 print(f'First: {first}')

 print(f'Second: {second}')

 print(f'Third: {third}')

does_positional(1, 2, third=3)

First: 1

Second: 2

Third: 3

You can use wildcards in function definitions to accept an undefined number of positional or keyword arguments. This is often done when a function calls a function from an outside API. The function can pass the arguments through without requiring that all of the outside API’s parameters be defined.

To use a wildcard for positional parameters, you use the * character. Listing 6.10 demonstrates the definition of a function with the positional wildcard parameter *args. The code block receives any positional arguments given in a function call as items in a list named args. This function goes through the list and prints each item. The function is then called with the arguments 'Donkey', 3, and ['a'], each of which is accessed from the list and printed.

Listing 6.10 Positional Wildcard Parameters

Click here to view code image

def does_wildcard_positions(*args):

 '''Demonstrates wildcard for positional parameters.'''

 for item in args:

 print(item)

does_wildcard_positions('Donkey', 3, ['a'])

Donkey

3

['a']

To define a function with keyword wildcard parameters, you define a parameter that starts with **. For example, Listing 6.11 defines the function does_wildcard_keywords with the parameter **kwargs. In the code block, the keyword parameters are available as keys and values in the dictionary kwargs.

Listing 6.11 Keyword Wildcard Parameters

Click here to view code image

def does_wildcard_keywords(**kwargs):

 '''Demonstrates wildcard for keyword parameters.'''

 for key, value in kwargs.items():

 print(f'{key} : {value}')

does_wildcard_keywords(one=1, name='Martha')

one : 1

name : Martha

You can use both positional and keyword wildcard parameters in the same function: Just define the positional parameters first and the keyword parameters second. Listing 6.12 demonstrates a function using both positional and keyword parameters.

Listing 6.12 Positional and Keyword Wildcard Parameters

Click here to view code image

def does_wildcards(*args, **kwargs):

 '''Demonstrates wildcard parameters.'''

 print(f'Positional: {args}')

 print(f'Keyword: {kwargs}')

does_wildcards(1, 2, a='a', b=3)

Positional: (1, 2)

Keyword: {'a': 'a', 'b': 3}

Return Statements

Return statements define what value a function evaluates to when called. A return statement consists of the keyword return followed by an expression. The expression can be a simple value, a more complicated calculation, or a call to another function. Listing 6.13 defines a function that takes a number as an argument and returns that number plus 1.

Listing 6.13 Return Value

Click here to view code image

def adds_one(some_number):

 '''Demonstrates return statement.'''

 return some_number + 1

adds_one(1)

2

Every Python function has a return value. If you do not define a return statement explicitly, the function returns the special value None:

Click here to view code image

def returns_none():

 '''Demonstrates default return value.'''

 pass

returns_none() == None

True

This example omits a return statement and then tests that the value returned is equal to None.

Scope in Functions

Scope refers to the availability of objects defined in code. A variable defined in the global scope is available throughout your code, whereas a variable defined in a local scope is available only in that scope. Listing 6.14 defines a variable outer and a variable inner. Both variables are available in the code block of the function shows_scope, where you print them both.

Listing 6.14 Local and Global Scope

Click here to view code image

outer = 'Global scope'

def shows_scope():

 '''Demonstrates local variable.'''

 inner = 'Local scope'

 print(outer)

 print(inner)

shows_scope()

Global scope

Local scope

The variable inner is local to the function, as it is defined in the function’s code block. If you try to call inner from outside the function, it is not defined:

Click here to view code image

print(inner)

NameError Traceback (most recent call last)

<ipython-input-39-9504624e1153> in <module>

----> 1 print(inner)

NameError: name 'inner' is not defined

Understanding scope is useful when you use decorators, as described in the next section.

Decorators

A decorator enables you to design functions that modify other functions. Decorators are commonly used to set up logging using a set convention or by third-party libraries. While you may not need to write your own decorators, it is useful to understand how they work. This section walks through the concepts involved.

In Python, everything is an object, including functions. This means you can point a variable to a function. Listing 6.15 defines the function add_one(n), which takes a number and adds 1 to it. Next, it creates the variable my_func, which has the function add_one() as its value.

Note

When you are not calling a function, you do not use parentheses in the variable assignment. By omitting the parentheses, you are referring to the function object and not to a return value. You can see this where Listing 6.15 prints my_func, which is indeed a function object. You can then call the function by adding the parentheses and argument to my_func, which returns the argument plus 1.

Listing 6.15 A Function as Variable Value

Click here to view code image

def add_one(n):

 '''Adds one to a number.'''

 return n + 1

my_func = add_one

print(my_func)

<function add_one at 0x1075953a0>

my_func(2)

3

Because functions are objects, you can use them with data structures such as dictionaries or lists. Listing 6.16 defines two functions and puts them in a list pointed to by the variable my_functions. It then iterates through the list, assigning each function to the variable my_func during its iteration and calling the function during the for loop’s code block.

Listing 6.16 Calling a List of Functions

Click here to view code image

def add_one(n):

 '''Adds one to a number.'''

 return n + 1

def add_two(n):

 '''Adds two to a number.'''

 return n + 2

my_functions = [add_one, add_two]

for my_func in my_functions:

 print(my_func(1))

2

3

Python allows you to define a function as part of another function’s code block. A function defined in this way is called a nested function. Listing 6.17 defines the function nested() in the code block of the function called_nested(). This nested function is then used as a return value for the outer function.

Listing 6.17 Nested Functions

Click here to view code image

def call_nested():

 '''Calls a nested function.'''

 print('outer')

 def nested():

 '''Prints a message.'''

 print('nested')

 return nested

my_func = call_nested()

outer

my_func()

nested

You can also wrap one function with another, adding functionality before or after. Listing 6.18 wraps the function add_one(number) with the function wrapper(number). The wrapping function takes a parameter, number, which it then passes to the wrapped function. It also has statements before and after calling add_one(number). You can see the order of the print statements when you call wrapper(1) and see that it returns the expected values from add_one: 1 and 2.

Listing 6.18 Wrapping Functions

Click here to view code image

def add_one(number):

 '''Adds to a number.'''

 print('Adding 1')

 return number + 1

def wrapper(number):

 '''Wraps another function.'''

 print('Before calling function')

 retval = add_one(number)

 print('After calling function')

 return retval

wrapper(1)

Before calling function

Adding 1

After calling function

2

It is also possible to go a step further and use a function as a parameter. You can pass a function as a value to a function that has a nested function definition wrapping the function that was passed. For example, Listing 6.19 first defines the function add_one(number) as before. But now it defines the function wrapper(number) nested in the code block of a new function, do_wrapping(some_func). This new function takes a function as an argument and then uses that function in the definition of wrapper(number). It then returns the newly defined version of wrapper(number). By assigning this result to a variable and calling it, you can see the wrapped results.

Listing 6.19 Nested Wrapping Function

Click here to view code image

def add_one(number):

 '''Adds to a number.'''

 print('Adding 1')

 return number + 1

def do_wrapping(some_func):

 '''Returns a wrapped function.'''

 print('wrapping function')

 def wrapper(number):

 '''Wraps another function.'''

 print('Before calling function')

 retval = some_func(number)

 print('After calling function')

 return retval

 return wrapper

my_func = do_wrapping(add_one)

wrapping function

my_func(1)

Before calling function

Adding 1

After calling function

2

You can use do_wrapping(some_func) to wrap any function that you like. For example, if you have the function add_two(number), you can pass it as an argument just as you did add_one(number):

Click here to view code image

my_func = do_wrapping(add_two)

my_func(1)

wrapping function

Before calling function

Adding 2

After calling function

3

Decorators provide syntax that can simplify this type of function wrapping. Instead of calling do_wrapping(some_func), assigning it to a variable, and then invoking the function from the variable, you can simply put @do_wrapping at the top of the function definition. Then the function add_one(number) can be called directly, and the wrapping happens behind the scenes.

You can see in Listing 6.20 that add_one(number) is wrapped in a similar fashion as in Listing 6.18, but with the simpler decorator syntax.

Listing 6.20 Decorator Syntax

Click here to view code image

def do_wrapping(some_func):

 '''Returns a wrapped function.'''

 print('wrapping function')

 def wrapper(number):

 '''Wraps another function.'''

 print('Before calling function')

 retval = some_func(number)

 print('After calling function')

 return retval

 return wrapper

@do_wrapping

def add_one(number):

 '''Adds to a number.'''

 print('Adding 1')

 return number + 1

wrapping function

add_one(1)

Before calling function

Adding 1

After calling function

2

Anonymous Functions

The vast majority of the time you define functions, you will want to use the syntax for named functions. This is what you have seen up to this point. There is an alternative, however: the unnamed, anonymous function. In Python, anonymous functions are known as lambda functions, and they have the following syntax:

lambda <Parameter>: <Statement>

where lambda is the keyword designating a lambda function, <Parameter> is an input parameter, and <Statement> is the statement to execute using the parameter. The result of <Statement> is the return value. This is how you define a lambda function that adds one to an input value:

lambda x: x +1

In general, your code will be easier to read, use, and debug if you avoid lambda functions, but one useful place for them is when a simple function is applied as an argument to another. Listing 6.21 defines the function apply_to_list(data, my_func), which takes a list and a function as arguments. When you call this function with the intention of adding 1 to each member of the list, the lambda function is an elegant solution.

Listing 6.21 Lambda Function

Click here to view code image

def apply_to_list(data, my_func):

 '''Applies a function to items in a list.'''

 for item in data:

 print(f'{my_func(item)}')

apply_to_list([1, 2, 3], lambda x: x + 1)

2

3

4

Summary

Functions, which are important building blocks in constructing complex programs, are reusable named blocks of code. Functions are documented with docstrings. Functions can accept parameters in a number of ways. A function uses a return statement to pass a value at the end of its execution. Decorators are special functions that wrap other functions. Anonymous, or lambda, functions are unnamed.

Questions

For Questions 1–3, refer to Listing 6.22.

Listing 6.22 Functions for Questions 1–3

Click here to view code image

def add_prefix(word, prefix='before-'):

 '''Prepend a word.'''

 return f'{prefix}{word}'3

def return_one():

 return 1

 def wrapper():

 print('a')

 retval = return_one()

 print('b')

 print(retval)

1. What would be the output of the following call:

add_prefix('nighttime', 'after-')

2. What would be the output of the following call:

add_prefix('nighttime')

3. What would be the output of the following call:

add_prefix()

4. Which line should you put above a function definition to decorate it with the function standard_logging ?

Click here to view code image

*standard_logging

**standard_logging

@standard_logging

[standard_logging]

5. What would be printed by the following call:

wrapper()

Part II

Data Science Libraries

7

NumPy

Everything should be as simple as it can be, but not simpler.

Roger Sessions (interpreting Einstein)

In This Chapter

	Introducing third-party libraries

	Creating NumPy arrays

	Indexing and slicing arrays

	Filtering array data

	Array methods

	Broadcasting

This is the first of this book’s chapters on Data Science Libraries. The Python functionality explored so far in this book makes Python a powerful generic language. The libraries covered in this part of the book make Python dominant in data science. The first library we will look at, NumPy, is the backbone of many of the other data science libraries. In this chapter, you will learn about the NumPy array, which is an efficient multidimensional data structure.

Third-Party Libraries

Python code is organized into libraries. All of the functionality you have seen so far in this book is available in the Python Standard Library, which is part of any Python installation. Third-party libraries give you capabilities far beyond this. They are developed and maintained by groups outside the organization that maintains Python itself. The existence of these groups and libraries creates a vibrant ecosystem that has kept Python a dominant player in the programming world. Many of these libraries are available in the Colab environment, and you can easily import them into a file. If you are working outside Colab, you may need to install them, which generally is done using the Python package manager, pip.

Installing and Importing NumPy

NumPy is preinstalled in the Colab environment, and you just need to import it. If you are working outside Colab, there are a few different ways to install it (enumerated at https://scipy.org/install.html), but the most common is to use pip:

pip install numpy

Once you have NumPy installed, you can import it. When you import any library, you can change what it is called in your environment by using the keyword as. NumPy is typically renamed np during import:

import numpy as np

When you have the library installed and imported, you can then access any of NumPy’s functionality through the np object.

Creating Arrays

A NumPy array is a data structure that is designed to efficiently handle operations on large data sets. These data sets can be of varying dimensions and can contain numerous data types—though not in the same object. NumPy arrays are used as input and output to many other libraries and are used as the underpinning of other data structures that are important to data science, such as those in Pandas and SciPy.

You can create arrays from other data structures or initialized with set values. Listing 7.1 demonstrates different ways to create a one-dimensional array. You can see that the array object is displayed as having an internal list as its data. Data is not actually stored in lists, but this representation makes arrays easy to read.

Listing 7.1 Creating an Array

Click here to view code image

np.array([1,2,3]) # Array from list

array([1, 2, 3])

np.zeros(3) # Array of zeros

array([0., 0., 0.])

np.ones(3) # Array of ones

array([1., 1., 1.])

np.empty(3) # Array of arbitrary data

array([1., 1., 1.])

np.arange(3) # Array from range of numbers

array([0, 1, 2])

np.arange(0, 12, 3) # Array from range of numbers

array([0, 3, 6, 9])

np.linspace(0, 21, 7) # Array over an interval

array([0. , 3.5, 7. , 10.5, 14. , 17.5, 21.])

Arrays have dimensions. A one-dimensional array has only one dimension, which is the number of elements. In the case of the np.array method, the dimension matches that of the list(s) used as input. For the np.zeros, np.ones, and np.empty methods, the dimension is given as an explicit argument.

The np.range method produces an array in a way similar to a range sequence. The resulting dimension and values match those that would be produced by using range. You can specify beginning, ending, and step values.

The np.linspace method produces evenly spaced numbers over an interval. The first two arguments define the interval, and the third defines the number of items.

The np.empty method is useful in producing large arrays efficiently. Keep in mind that because the data is arbitrary, you should only use it in cases where you will replace all of the original data.

Listing 7.2 shows some of the attributes of an array.

Listing 7.2 Characteristics of an Array

Click here to view code image

oned = np.arange(21)

oned

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

oned.dtype # Data type

dtype('int64')

oned.size # Number of elements

21

oned.nbytes # Bytes(memory) consumed by elements of the array

168

oned.shape # Number of elements in each dimension

(21,)

oned.ndim # Number of dimensions

1

If you check the data type of the array, you see that it is np.ndarray:

type(oned)

numpy.ndarray

Note

ndarray is short for n-dimensional array.

As mentioned earlier, you can make arrays of many dimensions. Two-dimensional arrays are used as matrixes. Listing 7.3 creates a two-dimensional array from a list of three three-element lists. You can see that the resulting array has 3×3 shape and two dimensions.

Listing 7.3 Matrix from Lists

Click here to view code image

list_o_lists = [[1,2,3],

 [4,5,6],

 [7,8,9]]

twod = np.array(list_o_lists)

twod

array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

twod.shape

(3, 3)

twod.ndim

2

You can produce an array with the same elements but different dimensions by using the reshape method. This method takes the new shape as arguments. Listing 7.4 demonstrates using a one-dimensional array to produce a two-dimensional one and then producing one-dimensional and three-dimensional arrays from the two-dimensional one.

Listing 7.4 Using reshape

Click here to view code image

oned = np.arange(12)

oned

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

twod = oned.reshape(3,4)

twod

array([[0, 1, 2, 3],

 [4, 5, 6, 7],

 [8, 9, 10, 11]])

twod.reshape(12)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

twod.reshape(2,2,3)

array([[[0, 1, 2],

 [3, 4, 5]],

 [[6, 7, 8],

 [9, 10, 11]]])

The shape you provide for an array must be consistent with the number of elements in it. For example, if you take the 12-element array twod and try to set its dimensions with a shape that does not include 12 elements, you get an error:

Click here to view code image

twod.reshape(2,3)

ValueError Traceback (most recent call last)

<ipython-input-295-0b0517f762ed> in <module>

----> 1 twod.reshape(2,3)

ValueError: cannot reshape array of size 12 into shape (2,3)

Reshaping is commonly used with the np.zeros, np.ones, and np.empty methods to produce multidimensional arrays with default values. For example, you could create a three-dimensional array of ones like this:

Click here to view code image

np.ones(12).reshape(2,3,2)

array([[[1., 1.],

 [1., 1.],

 [1., 1.]],

 [[1., 1.],

 [1., 1.],

 [1., 1.]]])

Indexing and Slicing

You can access the data in arrays by indexing and slicing. In Listing 7.5, you can see that indexing and slicing with a one-dimensional array is the same as with a list. You can index individual elements from the start or end of an array by supplying an index number or multiple elements using a slice.

Listing 7.5 Indexing and Slicing a one-Dimensional Array

Click here to view code image

oned = np.arange(21)

oned

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

oned[3]

3

oned[-1]

20

oned[3:9]

array([3, 4, 5, 6, 7, 8])

For multidimensional arrays, you can supply one argument for each dimension. If you omit the argument for a dimension, it defaults to all elements of that dimension. So, if you supply a single number as an argument to a two-dimensional array, that number will indicate which row to return. If you supply single-number arguments for all dimensions, a single element is returned. You can also supply a slice for any dimension. In return you get a subarray of elements, whose dimensions are determined by the length of your slices. Listing 7.6 demonstrates various options for indexing and slicing a two-dimensional array.

Listing 7.6 Indexing and Slicing a Two-Dimensional Array

Click here to view code image

twod = np.arange(21).reshape(3,7)

twod

array([[0, 1, 2, 3, 4, 5, 6],

 [7, 8, 9, 10, 11, 12, 13],

 [14, 15, 16, 17, 18, 19, 20]])

twod[2] # Accessing row 2

array([14, 15, 16, 17, 18, 19, 20])

twod[2, 3] # Accessing item at row 2, column 3

17

twod[0:2] # Accessing rows 0 and 1

array([[0, 1, 2, 3, 4, 5, 6],

 [7, 8, 9, 10, 11, 12, 13]])

twod[:, 3] # Accessing column 3 of all rows

array([3, 10, 17])

twod[0:2, -3:] # Accessing the last three columns of rows 0 and 1

array([[4, 5, 6],

 [11, 12, 13]])

You can assign new values to an existing array, much as you would with a list, by using indexing and slicing. If you assign a values to a slice, the whole slice is updated with the new value. Listing 7.7 demonstrates how to update a single element and a slice of a two-dimensional array.

Listing 7.7 Changing Values in an Array

Click here to view code image

twod = np.arange(21).reshape(3,7)

twod

array([[0, 1, 2, 3, 4, 5, 6],

 [7, 8, 9, 10, 11, 12, 13],

 [14, 15, 16, 17, 18, 19, 20]])

twod[0,0] = 33

twod

array([[33, 1, 2, 3, 4, 5, 6],

 [7, 8, 9, 10, 11, 12, 13],

 [14, 15, 16, 17, 18, 19, 20]])

twod[1:,:3] = 0

array([[33, 1, 2, 3, 4, 5, 6],

 [0, 0, 0, 10, 11, 12, 13],

 [0, 0, 0, 17, 18, 19, 20]])

Element-by-Element Operations

An array is not a sequence. Arrays do share some characteristics with lists, and on some level it is easy to think of the data in an array as a list of lists. There are many differences between arrays and sequences, however. One area of difference is when performing operations between the items in two arrays or two sequences.

Remember that when you do an operation such as multiplication with a sequence, the operation is done to the sequence, not to its contents. So, if you multiply a list by zero, the result is a list with a length of zero:

 [1, 2, 3]*0

 []

You cannot multiply two lists, even if they are the same length:

Click here to view code image

 [1, 2, 3]*[4, 5, 6]

TypeError Traceback (most recent call last)

<ipython-input-325-f525a1e96937> in <module>

----> 1 [1, 2, 3]*[4, 5, 6]

TypeError: can't multiply sequence by non-int of type 'list'

You can write code to perform operations between the elements of lists. For example, Listing 7.8 demonstrates looping through two lists in order to create a third list that contains the results of multiple pairs of elements. The zip() function is used to combine the two lists into a list of tuples, with each tuple containing elements from each of the original lists.

Listing 7.8 Element-by-Element Operations with Lists

Click here to view code image

L1 = list(range(10))

L2 = list(range(10, 0, -1))

L1

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

L2

 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

L3 = []

for i, j in zip(L1, L2):

L3.append(i*j)

L3

[0, 9, 16, 21, 24, 25, 24, 21, 16, 9]

While it is possible to use loops to perform element-by-element operations on lists, it is much simpler to use NumPy arrays for such operations. Arrays do element-by-element operations by default. Listing 7.9 demonstrates multiplication, addition, and division operations between two arrays. Notice that the operations in each case are done between the elements of the arrays.

Listing 7.9 Element-by-Element Operations with Arrays

Click here to view code image

array1 = np.array(L1)

array2 = np.array(L2)

array1*array2

array([0, 9, 16, 21, 24, 25, 24, 21, 16, 9])

array1 + array2

array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10])

array1 / array2

array([0. , 0.11111111, 0.25 , 0.42857143, 0.66666667,

 1. , 1.5 , 2.33333333, 4. , 9.])

Filtering Values

One of the most used aspects of NumPy arrays and the data structures built on top of them is the ability to filter values based on conditions of your choosing. In this way, you can use an array to answer questions about your data.

Listing 7.10 shows a two-dimensional array of integers, called twod. A second array, mask, has the same dimensions as twod, but it contains Boolean values. mask specifies which elements from twod to return. The resulting array contains the elements from twod whose corresponding positions in mask have the value True.

Listing 7.10 Filtering Using Booleans

Click here to view code image

twod = np.arange(21).reshape(3,7)

twod

array([[0, 1, 2, 3, 4, 5, 6],

 [7, 8, 9, 10, 11, 12, 13],

 [14, 15, 16, 17, 18, 19, 20]])

mask = np.array([[True, False, True, True, False, True, False],

 [True, False, True, True, False, True, False],

 [True, False, True, True, False, True, False]])

twod[mask]

array([0, 2, 3, 5, 7, 9, 10, 12, 14, 16, 17, 19])

Comparison operators that you have seen returning single Booleans before return arrays when used with arrays. So, if you use the less-than operator (<) against the array twod as follows, the result will be an array with True for every item that is below five and False for the rest:

twod < 5

You can use this result as a mask to get only the values that are True with the comparison. For example, Listing 7.11 creates a mask and then returns only the values of twod that are less than 5.

Listing 7.11 Filtering Using Comparison

Click here to view code image

mask = twod < 5

mask

array([[True, True, True, True],

 [True, False, False, False],

 [False, False, False, False]])

twod[mask]

array([0, 1, 2, 3, 4])

As you can see, you can use comparison and order operators to easily extract knowledge from data. You can also combine these comparisons to create more complex masks. Listing 7.12 uses & to join two conditions to create a mask that evaluates to True only for items meeting both conditions.

Listing 7.12 Filtering Using Multiple Comparisons

Click here to view code image

mask = (twod < 5) & (twod%2 == 0)

mask

array([[True, False, True, False],

 [True, False, False, False],

 [False, False, False, False]])

twod[mask]

array([0, 2, 4])

Note

Filtering using masks is a process that you will use time and time again, especially with Pandas DataFrames, which are built on top of NumPy arrays. You will learn about DataFrames in Chapter 9, “Pandas.”

Views Versus Copies

NumPy arrays are designed to work efficiently with large data sets. One of the ways this is accomplished is by using views. When you slice or filter an array, the returned array is, when possible, a view and not a copy. A view allows you to look at the same data differently. It is important to understand that memory and processing power are not used in making copies of data every time you slice or filter. If you change a value in a view of an array, you change that value in the original array as well as any other views that represent that item. For example, Listing 7.13 takes a slice from the array data1 and names it data2. It then replace the value 11 in data2 with -1. When you go back to data1, you can see that the item that used to have a value of 11 is now set to -1.

Listing 7.13 Changing Values in a View

Click here to view code image

data1 = np.arange(24).reshape(4,6)

data1

array([[0, 1, 2, 3, 4, 5],

 [6, 7, 8, 9, 10, 11],

 [12, 13, 14, 15, 16, 17],

 [18, 19, 20, 21, 22, 23]])

data2 = data1[:2,3:]

data2

array([[3, 4, 5],

 [9, 10, 11]])

data2[1,2] = -1

data2

array([[3, 4, 5],

 [9, 10, -1]])

data1

array([[0, 1, 2, 3, 4, 5],

 [6, 7, 8, 9, 10, -1],

 [12, 13, 14, 15, 16, 17],

 [18, 19, 20, 21, 22, 23]])

This behavior can lead to bugs and miscalculations, but if you understand it, you can gain some important benefits when working with large data sets. If you want to change data from a slice or filtering operation without changing it in the original array, you can make a copy. For example, in Listing 7.14, notice that when an item is changed in the copy, the original array remains unchanged.

Listing 7.14 Changing Values in a Copy

Click here to view code image

data1 = np.arange(24).reshape(4,6)

data1

array([[0, 1, 2, 3, 4, 5],

 [6, 7, 8, 9, 10, 11],

 [12, 13, 14, 15, 16, 17],

 [18, 19, 20, 21, 22, 23]])

data2 = data1[:2,3:].copy()

data2

array([[3, 4, 5],

 [9, 10, 11]])

data2[1,2] = -1

data2

array([[3, 4, 5],

 [9, 10, -1]])

data1

array([[0, 1, 2, 3, 4, 5],

 [6, 7, 8, 9, 10, 11],

 [12, 13, 14, 15, 16, 17],

 [18, 19, 20, 21, 22, 23]])

Some Array Methods

NumPy arrays have built-in methods both to get statistical summary data and to perform matrix operations. Listing 7.15 shows methods producing summary statistics. There are methods to get the maximum, minimum, sum, mean, and standard deviation. All these methods produce results across the whole array unless an axis is specified. If an axis value of 1 is specified, an array with results for each row is produced. With an axis value of 0, an array of results is produced for each column.

Listing 7.15 Introspection

Click here to view code image

data = np.arange(12).reshape(3,4)

data

array([[0, 1, 2, 3],

 [4, 5, 6, 7],

 [8, 9, 10, 11]])

data.max() # Maximum value

11

data.min() # Minimum value

0

data.sum() # Sum of all values

66

data.mean() # Mean of values

5.5

data.std() # Standard deviation

3.452052529534663

data.sum(axis=1) # Sum of each row

array([6, 22, 38])

data.sum(axis=0) # Sum of each column

array([12, 15, 18, 21])

data.std(axis=0) # Standard deviation of each row

array([3.26598632, 3.26598632, 3.26598632, 3.26598632])

data.std(axis=1)) # Standard deviation of each column

array([1.11803399, 1.11803399, 1.11803399])

Listing 7.16 demonstrates some of the matrix operations that are available with arrays. These include returning the transpose, returning matrix products, and returning the diagonal. Remember that you can use the multiplication operator (*) between arrays to perform element-by-element multiplication. If you want to calculate the dot product of two matrices, you need to use the @ operator or the .dot() method.

Listing 7.16 Matrix Operations

Click here to view code image

A1 = np.arange(9).reshape(3,3)

A1

array([[0, 1, 2],

 [3, 4, 5],

 [6, 7, 8]])

A1.T # Transpose

array([[0, 3, 6],

 [1, 4, 7],

 [2, 5, 8]])

A2 = np.ones(9).reshape(3,3)

array([[1., 1., 1.],

 [1., 1., 1.],

 [1., 1., 1.]])

A1 @ A2 # Matrix product

array([[3., 3., 3.],

 [12., 12., 12.],

 [21., 21., 21.]])

A1.dot(A2) # Dot product

array([[3., 3., 3.],

 [12., 12., 12.],

 [21., 21., 21.]])

A1.diagonal() # Diagonal

array([0, 4, 8])

An array, unlike many sequence types, can contain only one data type. You cannot have an array that contains both strings and integers. If you do not specify the data type, NumPy guesses the type, based on the data. Listing 7.17 shows that when you start with integers, NumPy sets the data type to int64. You can also see, by checking the nbytes attribute, that the data for this array takes 800 bytes of memory.

Listing 7.17 Setting Type Automatically

Click here to view code image

darray = np.arange(100)

darray

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,

 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])

darray.dtype

dtype('int64')

darray.nbytes

800

For lager data sets, you can control the amount of memory used by setting the data type explicitly. The int8 data type can represent numbers from –128 to 127, so it would be adequate for a data set of 1–99. You can set an array’s data type at creation by using the parameter dtype. Listing 7.18 does this to bring the size of the data down to 100 bytes.

Listing 7.18 Setting Type Explicitly

Click here to view code image

darray = np.arange(100, dtype=np.int8)

darray

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,

 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99],

 dtype=int8)

darray.nbytes

100

Note

You can see the many available NumPy data types at https://numpy.org/devdocs/user/basics.types.html.

Because an array can store only one data type, you cannot insert data that cannot be cast to that data type. For example, if you try to add a string to the int8 array, you get an error:

Click here to view code image

darray[14] = 'a'

ValueError Traceback (most recent call last)

<ipython-input-335-17df5782f85b> in <module>

----> 1 darray[14] = 'a'

ValueError: invalid literal for int() with base 10: 'a'

A subtle error with array type occurs if you add to an array data of a finer granularity than the array’s data type; this can lead to data loss. For example, say that you add the floating-point number 0.5 to the int8 array:

darray[14] = 0.5

The floating-point number 0.5 is cast to an int, which leaves a value of 0:

darray[14]

0

As you can see, it is important to understand your data when deciding on the best data type.

Broadcasting

You can perform operations between arrays of different dimensions. Operations can be done when the dimension is the same or when the dimension is one for at least one of the arrays. Listing 7.19 adds 1 to each element of the array A1 three different ways: first with an array of ones with the same dimensions (3, 3), then with an array with one dimension of one (1, 3), and finally by using the integer 1.

Listing 7.19 Broadcasting

Click here to view code image

A1 = np.array([[1,2,3],

 [4,5,6],

 [7,8,9]])

A2 = np.array([[1,1,1],

 [1,1,1],

 [1,1,1]])

A1 + A2

array([[2, 3, 4],

 [5, 6, 7],

 [8, 9, 10]])

A2 = np.array([1,1,1])

A1 + A2

array([[2, 3, 4],

 [5, 6, 7],

 [8, 9, 10]])

A1 + 1

array([[2, 3, 4],

 [5, 6, 7],

 [8, 9, 10]])

In all three cases, the result is the same: an array of dimension (3, 3). This is called broadcasting because a dimension of one is expanded to fit the higher dimension. So if you do an operation with arrays of dimensions (1, 3, 4, 4) and (5, 3, 4, 1), the resulting array will have the dimensions (5, 3, 4, 4). Broadcasting does not work with dimensions that are different but not one.

Listing 7.20 does an operation on arrays with the dimensions (2, 1, 5) and (2, 7, 1). The resulting array has the dimensions (2, 7, 5).

Listing 7.20 Expanding Dimensions

Click here to view code image

A4 = np.arange(10).reshape(2,1,5)

A4

array([[[0, 1, 2, 3, 4]],

 [[5, 6, 7, 8, 9]]])

A5 = np.arange(14).reshape(2,7,1)

A5

array([[[0],

 [1],

 [2],

 [3],

 [4],

 [5],

 [6]],

 [[7],

 [8],

 [9],

 [10],

 [11],

 [12],

 [13]]])

A6 = A4 - A5

A6

array([[[0, 1, 2, 3, 4],

 [-1, 0, 1, 2, 3],

 [-2, -1, 0, 1, 2],

 [-3, -2, -1, 0, 1],

 [-4, -3, -2, -1, 0],

 [-5, -4, -3, -2, -1],

 [-6, -5, -4, -3, -2]],

 [[-2, -1, 0, 1, 2],

 [-3, -2, -1, 0, 1],

 [-4, -3, -2, -1, 0],

 [-5, -4, -3, -2, -1],

 [-6, -5, -4, -3, -2],

 [-7, -6, -5, -4, -3],

 [-8, -7, -6, -5, -4]]])

A6.shape

(2, 7, 5)

NumPy Math

In addition to the NumPy array, the NumPy library offers many mathematical functions, including trigonometric functions, logarithmic functions, and arithmetic functions. These functions are designed to be performed with NumPy arrays and are often used in conjunction with data types in other libraries. This section takes a quick look at NumPy polynomials.

NumPy offers the class poly1d for modeling one-dimensional polynomials. To use this class, you need to import it from NumPy:

[1] 1 from numpy import poly1d

Then create a polynomial object, giving the coefficients as an argument:

poly1d((4,5))

poly1d([4, 5])

If you print a poly1d object, it shows the polynomial representation:

Click here to view code image

c = poly1d([4,3,2,1])

print(c)

 3 2

4 x + 3 x + 2 x + 1

If for a second argument you supply the value True, the first argument is interpreted as roots rather than coefficients. The following example models the polynomial resulting from the calculation (x – 4)(x – 3)(x – 2)(x – 1):

Click here to view code image

r = poly1d([4,3,2,1], True)

print(r)

 4 3 2

1 x - 10 x + 35 x - 50 x + 24

You can evaluate a polynomial by supplying the x value as an argument to the object itself. For example, you can evaluate the preceding polynomial for a value of x equal to 5:

r(5)

24.0

The poly1d class allows you to do operations between polynomials, such as addition and multiplication. It also offers polynomial functionality as special class methods. Listing 7.21 demonstrates the use of this class with polynomials.

Listing 7.21 Polynomials

Click here to view code image

p1 = poly1d((2,3))

print(p1)

2 x + 3

p2 = poly1d((1,2,3))

print(p2)

 2

1 x + 2 x + 3

print(p2*p1) # Multiplying polynomials

 3 2

2 x + 7 x + 12 x + 9

print(p2.deriv()) # Taking the derivative

2 x + 2

print(p2.integ()) # Returning anti-derivative

 3 2

0.3333 x + 1 x + 3 x

The poly1d class is just one of the many specialized mathematical tools offered in the NumPy toolkit. These tools are used in conjunction with many of the other specialized tools that you will learn about in the coming chapters.

Summary

The third-party library NumPy is a workhorse for doing data science in Python. Even if you don’t use NumPy arrays directly, you will encounter them because they are building blocks for many other libraries. Libraries such as SciPy and Pandas build directly on NumPy arrays. NumPy arrays can be made in many dimensions and data types. You can tune them to control memory consumption by controlling their data type. They are designed to be efficient with large data sets.

Questions

1. Name three differences between NumPy arrays and Python lists.

2. Given the following code, what would you expect for the final value of d2?

Click here to view code image

d1 = np.array([[0, 1, 3],

 [4, 2, 9]])

d2 = d1[:, 1:]

3. Given the following code, what would you expect for the final value of d1[0,2]?

Click here to view code image

d1 = np.array([[0, 1, 3],

 [4, 2, 9]])

d2 = d1[:, 1:]

d2[0,1] = 0

4. If you add two arrays of dimensions (1, 2, 3) and (5, 2, 1), what will be the resulting array’s dimensions?

5. Use the poly1d class to model the following polynomial:

 4 3 2

6 x + 2 x + 5 x + x -10

8

SciPy

Most people use statistics like a drunk man uses a lamppost; more for support than illumination.

Andrew Lang

In This Chapter

	Math with NumPy

	Introduction to SciPy

	scipy.misc submodule

	scipy.special submodule

	scipy.stats submodule

Chapter 7, “NumPy,” covers NumPy arrays, which are foundational building blocks for many data science–related libraries. This chapter introduces the SciPy library, which is a library for mathematics, science, and engineering.

SciPy Overview

The SciPy library is a collection of packages that build on NumPy to provide tools for scientific computing. It includes submodules that deal with optimization, Fourier transformations, signal processing, linear algebra, image processing, and statistics, among others. This chapter touches on three submodules: the scipy.misc submodule, the scipy.special submodule, and scipy.stats, which is the submodule most useful for data science.

This chapter also uses the library matplotlib for some examples. It has visualization capabilities for numerous plot types as well as images. The convention for importing its plotting library is to import it with the name plt:

import matplotlib.pyplot as plt

The scipy.misc Submodule

The scipy.misc submodule contains functions that don’t have a home elsewhere. One fun function in this module is scipy.misc.face(), which can be run with this code:

Click here to view code image

from scipy import misc

import matplotlib.pyplot as plt

face = misc.face()

plt.imshow(face)

plt.show()

You can try this yourself to generate the output.

The ascent function returns a grayscale image that is available for use and demos. If you call ascent(), the result is a two-dimensional NumPy array:

Click here to view code image

a = misc.ascent()

print(a)

[[83 83 83 ... 117 117 117]

 [82 82 83 ... 117 117 117]

 [80 81 83 ... 117 117 117]

 ...

 [178 178 178 ... 57 59 57]

 [178 178 178 ... 56 57 57]

 [178 178 178 ... 57 57 58]]

If you pass this array to the matplotlib plot object, you see the image shown in Figure 8.1:

plt.imshow(a)

plt.show()

[image: A grayscale photographs shows two persons climbing the outdoor stairs.]

Figure 8.1 Demo Image from the scipy.misc Submodule

As you can see in this example, you use the plt.imshow() method to visualize images.

The scipy.special Submodule

The scipy.special submodule contains utilities for mathematical physics. It includes Airy functions, elliptical functions, Bessel functions, Struve functions, and many more. The majority of these functions support broadcasting and are compatible with NumPy arrays. To use the functions, you simply import scipy.special from SciPy and call the functions directly. For example, you can calculate the factorial of a number by using the special.factorial() function:

Click here to view code image

from scipy import special

special.factorial(3)

6.0

You can calculate the number of combinations or permutations as follows:

Click here to view code image

special.comb(10, 2)

45.0

special.perm(10,2)

90.0

This example shows 10 items and choosing 2 of them at a time.

Note

scipy.special has a scipy.stats submodule, but it is not meant for direct use. Rather, you use the scipy.stats submodule for your statistics needs. This submodule is discussed next.

The scipy.stats Submodule

The scipy.stats submodule offers probability distributions and statistical functions. The following sections take a look at just a few of the distributions offered in this submodule.

Discrete Distributions

SciPy offers some discrete distributions that share some common methods. These common methods are demonstrated in Listing 8.2 using a binomial distribution. A binomial distribution involves some number of trials, with each trial having either a success or failure outcome.

Listing 8.2 Binomial Distribution

Click here to view code image

from scipy import stats

B = stats.binom(20, 0.3) # Define a binomial distribution consisting of

 # 20 trials and 30% chance of success

B.pmf(2) # Probability mass function (probability that a sample is equal to 2)

0.02784587252426866

B.cdf(4) # Cumulative distribution function (probability that a

 # sample is less than 4)

0.2375077788776017

B.mean # Mean of the distribution

6.0

B.var()# Variance of the distribution

4.199999999999999

B.std()# Standard deviation of the distribution

2.0493901531919194

B.rvs()# Get a random sample from the distribution

5

B.rvs(15) # Get 15 random samples

array([2, 8, 6, 3, 5, 5, 10, 7, 5, 10, 5, 5, 5, 2, 6])

If you take a large enough random sample of the distribution:

Click here to view code image

rvs = B.rvs(size=100000)

rvs

array([11, 4, 4, ..., 7, 6, 8])

You can use matplotlib to plot it and get a sense of its shape (see Figure 8.2):

Click here to view code image

import matplotlib.pyplot as plt

plt.hist(rvs)

plt.show()

[image: A histogram represents binomial distribution.]

A binomial distribution is illustrated via a histogram. The horizontal axis ranges from 0 to 14, in increments of 2. The vertical axis ranges from 0 to 35000, in increments of 5000. The data extracted from the graph is as follows: (0, 500); (2, 2200); (4, 20000); (6, 17500); (7, 35000); (8, 12000); (10, 9800); (12, 1000); (13, 400). Note: All the mentioned values are approximate.

Figure 8.2 Binomial Distribution

The numbers along the bottom of the distribution in Figure 8.2 represent the number of successes in each 20-trial experiment. You can see that 6 out of 20 is the most common result, and it matches the 30% success rate.

Another distribution modeled in the scipy.stats submodule is the Poisson distribution. This distribution models the probability of a certain number of individual events happening across some scope of time. The shape of the distribution is controlled by its mean, which you can set by using the mu keyword. For example, a lower mean, such as 3, will skew the distribution to the left, as shown in Figure 8.3:

Click here to view code image

P = stats.poisson(mu=3)

rvs = P.rvs(size=10000)

rvs

array([4, 4, 2, ..., 1, 0, 2])

plt.hist(rvs)

plt.show()

[image: A histogram represents a poisson distribution skewed to the left.]

A histogram skewed to the left is shown. The horizontal axis ranges from 0 to 16, in increments of 2. The vertical axis ranges from 0 to 40000, in increments of 10000. The data extracted from the graph is as follows: (0, 2000); (3, 45000); (4, 16000); (6, 15000); (7, 1000); (9, 500). Note: All the mentioned values are approximate.

Figure 8.3 Poisson Distribution Skewed Left

A higher mean, such as 15, pushes the distribution to the right, as you can see in Figure 8.4:

Click here to view code image

P = stats.poisson(mu=15)

rvs = P.rvs(size=100000)

plt.hist(rvs)

plt.show()

[image: A histogram represents a poisson distribution skewed to the right.]

A histogram skewed to the right is shown. The horizontal axis ranges from 0 to 30, in increments of 5. The vertical axis ranges from 0 to 25000, in increments of 5000. The data extracted from the graph is as follows: (3 to 5, 500); (5 to 8, 3000); (8 to 12, 15000); (12 to 15, 27000); (15 to 17, 27500); (17 to 21, 17000); (21 to 23, 7000); (23 to 27, 1500); (27 to 30, 500). Note: All the mentioned values are approximate.

Figure 8.4 Poisson Distribution Skewed Right

Other discrete distributions modeled in the scipy.stats submodule include the Beta-binomial, Boltzmann (truncated Planck), Planck (discrete exponential), geometric, hypergeometric, logarithmic, and Yule–Simon, among others. At the time of this writing, there are 14 distributions modeled in the scipy.stats submodule.

Continuous Distributions

The scipy.stats submodule includes many more continuous than discrete distributions; it has 87 continuous distributions as of this writing. These distributions all take arguments for location (loc) and scale (scale). They all default to a location of 0 and scale of 1.0.

One continuous distribution modeled is the Normal distribution, which may be familiar to you as the bell curve. In this symmetric distribution, half of the data is to the left of the mean and half to the right. Here’s how you can make a normal distribution using the default location and scale:

Click here to view code image

N = stats. norm()

rvs = N.rvs(size=100000)

plt.hist(rvs, bins=1000)

plt.show()

Figure 8.5 shows this distribution plotted.

[image: A bell curve is given.]

A graph depicts a bell curve with minute fluctuations. The horizontal axis ranges from negative 4 to 4, in increments of 2. The vertical axis ranges from 0 to 350, in increments of 50. The graph traces the following points (negative 3, 0), (negative 1, 200), (0, 340), (1, 200), and (4, 0). All the mentioned values are approximate.

Figure 8.5 Bell Curve

You can see that the distribution is centered on 0 and is encompassed roughly between –4 and 4. Figure 8.6 shows the effects of creating a second normal distribution—this time setting the location to 30 and the scale to 50:

Click here to view code image

N1 = stats.norm(loc=30,scale=50)

rvs = N1.rvs(size=100000)

plt.hist(rvs, bins=1000)

plt.show()

[image: An offset bell curve is represented in a figure.]

A graph depicts an offset bell curve with minute fluctuations. The horizontal axis ranges from negative 200 to 300, in increments of 100. The vertical axis ranges from 0 to 400, in increments of 100. The graph traces the following points (negative 150, 0), (0, 280), (50, 360), (100, 140), and (200, 0). All the mentioned values are approximate.

Figure 8.6 Offset Bell Curve

Notice that the distribution is now centered around 30 and encompasses a much wider range of numbers. Continuous distributions share some common functions, which are modeled in Listing 8.3. Notice that this listing uses the second Normal distribution with the offset location and greater standard deviation.

Listing 8.3 Normal Distribution

Click here to view code image

N1 = stats.norm(loc=30, scale=50)

N1.mean() # Mean of the distribution, which matches the loc value

30.0

N1.pdf(4) # Probability density function

0.006969850255179491

N1.cdf(2) # Cumulative distribution function

0.28773971884902705

N1.rvs() # A random sample

171.55168607574785

N1.var() # Variance

2500.0

N1.median()# Median

30.0

N1.std() # Standard deviation

50.0

Note

If you try the examples shown here, some of your values may differ due to random number generation.

The following continuous distribution is an exponential distribution, which is characterized by an exponentially changing curve, either up or down (see Figure 8.7):

Click here to view code image

E = stats.expon()

rvs = E.rvs(size=100000)

plt.hist(rvs, bins=1000)

plt.show()

[image: An exponentially decreasing distribution is shown.]

A graph illustrates an exponentially changing distribution. The horizontal axis ranges from negative 0 to 12, in increments of 2. The vertical axis ranges from 0 to 1200, in increments of 200. The curve is decreasing and traces the following points (0, 1200), (1, 550), (2, 200), and (5, 10). All the mentioned values are approximate.

Figure 8.7 Exponentially Changing Distribution

You can see that Figure 8.7 displays a curve as you would expect from an exponential function. The following is a uniform distribution, which is has a constant probability and is also known as a rectangular distribution:

Click here to view code image

U = stats.uniform()

rvs = U.rvs(size=10000)

rvs

array([8.24645026e-01, 5.02358065e-01, 4.95390940e-01, ...,

 8.63031657e-01, 1.05270200e-04, 1.03627699e-01])

plt.hist(rvs, bins=1000)

plt.show()

This distribution gives an even probability over a set range. Its plot is shown in Figure 8.8.

[image: A graph illustrates the uniform distribution.]

A plot represents uniform distribution. The horizontal axis ranges from 0.0 to 1.0, in increments of 0.2. The vertical axis ranges from 0 to 20, in increments of 5. The graph often fluctuates within the range 5 to 15. Some of the points in the graph are (0.0, 11), (0.25, 14), (0.4, 13), (8, 12.5), and (1.0, 11). All the mentioned values are approximate.

Figure 8.8 Uniform Distribution

Summary

The NumPy and SciPy libraries both offer utilities for solving complex mathematical problems. These two libraries cover a great breadth and depth of resources, and entire books have been devoted to their application. You have seen only a few of the many capabilities. These libraries are the first places you should look when you embark on solving or modeling complex mathematical problems.

Questions

1. Use the scipy.stats submodule to model a Normal distribution with a mean of 15.

2. Generate 25 random samples from the distribution modeled in Question 1.

3. Which scipy submodule has utilities designed for mathematical physics?

4. What method is provided with a discrete distribution to calculate its standard deviation?

9

Pandas

To clarify, *add* data.

Edward R. Tufte

In This Chapter

	Introduction to Pandas DataFrames

	Creating DataFrames

	DataFrame introspection

	Accessing data

	Manipulating DataFrames

	Manipulating DataFrame data

The Pandas DataFrame, which is built on top of the NumPy array, is probably the most commonly used data structure. DataFrames are like supercharged spreadsheets in code. They are one of the primary tools used in data science. This chapter looks at creating DataFrames, manipulating DataFrames, accessing data in DataFrames, and manipulating that data.

About DataFrames

A Pandas DataFrame, like a spreadsheet, is made up of columns and rows. Each column is a pandas.Series object. A DataFrame is, in some ways, similar to a two-dimensional NumPy array, with labels for the columns and index. Unlike a NumPy array, however, a DataFrame can contain different data types. You can think of a pandas.Series object as a one-dimensional NumPy array with labels. The pandas.Series object, like a NumPy array, can contain only one data type. The pandas.Series object can use many of the same methods you have seen with arrays, such as min(), max(), mean(), and medium().

The usual convention is to import the Pandas package aliased as pd:

import pandas as pd

Creating DataFrames

You can create DataFrames with data from many sources, including dictionaries and lists and, more commonly, by reading files. You can create an empty DataFrame by using the DataFrame constructor:

Click here to view code image

df = pd.DataFrame()

print(df)

Empty DataFrame

Columns: []

Index: []

As a best practice, though, DataFrames should be initialized with data.

Creating a DataFrame from a Dictionary

You can create DataFrames from a list of dictionaries or from a dictionary, where each key is a column label with the values for that key holding the data for the column. Listing 9.1 shows how to create a DataFrame by creating a list of data for each column and then creating a dictionary with the column names as keys and these lists as the values. The listing shows how to then pass this dictionary to the DataFrame constructor to construct the DataFrame.

Listing 9.1 Creating a DataFrame from a Dictionary

Click here to view code image

first_names = ['shanda', 'rolly', 'molly', 'frank',

 'rip', 'steven', 'gwen', 'arthur']

last_names = ['smith', 'brocker', 'stein', 'bach',

 'spencer', 'de wilde', 'mason', 'davis']

ages = [43, 23, 78, 56, 26, 14, 46, 92]

data = {'first':first_names,

 'last':last_names,

 'ages':ages}

participants = pd.DataFrame(data)

The resulting DataFrame, participants, looks as follows in Colab or in a Jupyter notebook:

	

	first

	last

	ages

	0

	shanda

	smith

	43

	1

	rolly

	brocker

	23

	2

	molly

	stein

	78

	3

	frank

	bach

	56

	4

	rip

	spencer

	26

	5

	steven

	de wilde

	14

	6

	gwen

	mason

	46

	7

	arthur

	davis

	92

Note

In this chapter, DataFrame tables that result from a code example will be presented as a table after the code.

You can see the column labels across the top, the data in each row, and the index labels to the left.

Creating a DataFrame from a List of Lists

You can create a list of lists, with each sublist containing the data for one row, in the order of the columns:

Click here to view code image

data = [["shanda", "smith", 43],

 ["rolly", "brocker", 23],

 ["molly", "stein", 78],

 ["frank", "bach", 56],

 ["rip", "spencer", 26],

 ["steven", "de wilde", 14],

 ["gwen", "mason", 46],

 ["arthur", "davis", 92]]

Then you can use this as the data argument:

Click here to view code image

participants = pd.DataFrame(data)

participants

You get the same result as when creating a DataFrame from a dictionary:

	

	0

	1

	2

	0

	shanda

	smith

	43

	1

	rolly

	brocker

	23

	2

	molly

	stein

	78

	3

	frank

	bach

	56

	4

	rip

	spencer

	26

	5

	steven

	de wilde

	14

	6

	gwen

	mason

	46

	7

	arthur

	davis

	92

Notice that the resulting DataFrame has been created with integer column names. This is the default if no column names are supplied. You can supply column names explicitly as a list of strings:

Click here to view code image

column_names = ['first', 'last', 'ages']

Similarly, you can supply index labels as a list:

Click here to view code image

index_labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

These labels are then used during initialization, using the parameters columns and index:

Click here to view code image

participants = pd.DataFrame(data,

 columns=column_names,

 index=index_labels)

	

	first

	last

	ages

	a

	shanda

	smith

	43

	b

	rolly

	brocker

	23

	c

	molly

	stein

	78

	d

	frank

	bach

	56

	e

	rip

	spencer

	26

	f

	steven

	de wilde

	14

	g

	gwen

	mason

	46

	h

	arthur

	davis

	92

Creating a DataFrame from a File

While creating DataFrames from dictionaries and lists is possible, the vast majority of the time you will create DataFrames from existing data sources. Files are the most common of these data sources. Pandas supplies functions for creating DataFrames from files for many common file types, including CSV, Excel, HTML, JSON, and SQL database connections.

Say that you want to open a CSV file from the FiveThirtyEight website, https://data.fivethirtyeight.com, under the data set college_majors. After you unzip and upload the CSV file to Colab, you open it by simply supplying its path to the Pandas read_csv function:

Click here to view code image

college_majors = pd.read_csv('/content/all-ages.csv')

college_majors

	

	Major

	Major_category

	Total

	Unemployment_rate

	0

	GENERAL AGRICULTURE

	Agriculture & Natural Resources

	128148

	0.026147

	1

	AGRICULTURE PRODUCTION AND MANAGEMENT

	Agriculture & Natural Resources

	95326

	0.028636

	2

	AGRICULTURAL ECONOMICS

	Agriculture & Natural Resources

	33955

	0.030248

	...

	...

	...

	...

	...

	170

	MISCELLANEOUS BUSINESS & MEDICAL ADMINISTRATION

	Business

	102753

	0.052679

	171

	HISTORY

	Humanities & Liberal Arts

	712509

	0.065851

	172

	UNITED STATES HISTORY

	Humanities & Liberal Arts

	17746

	0.073500

Pandas uses the data in the CSV file to determine column labels and column types.

Interacting with DataFrame Data

Once you have data loaded into a DataFrame, you should take a look at it. Pandas offers numerous ways of accessing data in a DataFrame. You can look at data by rows, columns, individual cells, or some combination of these. You can also extract data based on its value.

Note

When I first load data that I am unfamiliar with, I start by taking a peek at the top few rows and checking summary statistics on the data. Looking at the top rows of a DataFrame gives me a sense of what the new data looks like and allows me to confirm that the data is what I expect.

Heads and Tails

To see the top rows of a DataFrame, you can use the head method, which returns the top five rows:

college_majors.head()

	

	Major

	Major_category

	Total

	Unemployment_rate

	0

	GENERAL AGRICULTURE

	Agriculture & Natural Resources

	128148

	0.026147

	1

	AGRICULTURE PRODUCTION AND MANAGEMENT

	Agriculture & Natural Resources

	95326

	0.028636

	2

	AGRICULTURAL ECONOMICS

	Agriculture & Natural Resources

	33955

	0.030248

	3

	ANIMAL SCIENCES

	Agriculture & Natural Resources

	103549

	0.042679

	4

	FOOD SCIENCE

	Agriculture & Natural Resources

	24280

	0.049188

The head method takes an optional argument, which specifies the number of rows to return. You would specify the top three rows like this:

college_majors.head(3)

	

	Major

	Major_category

	Total

	Unemployment_rate

	0

	GENERAL AGRICULTURE

	Agriculture & Natural Resources

	128148

	0.026147

	1

	AGRICULTURE PRODUCTION AND MANAGEMENT

	Agriculture & Natural Resources

	95326

	0.028636

	2

	AGRICULTURAL ECONOMICS

	Agriculture & Natural Resources

	33955

	0.030248

The tail method works in a similar way to head but returns rows from the bottom. It also takes an optional argument that specifies the number of rows to return:

college_majors.tail()

	

	Major

	Major_category

	Total

	Unemployment_rate

	168

	HOSPITALITY MANAGEMENT

	Business

	200854

	0.051447

	169

	MANAGEMENT INFORMATION SYSTEMS AND STATISTICS

	Business

	156673

	0.043977

	170

	MISCELLANEOUS BUSINESS & MEDICAL ADMINISTRATION

	Business

	102753

	0.052679

	171

	HISTORY

	Humanities & Liberal Arts

	712509

	0.065851

	172

	UNITED STATES HISTORY

	Humanities & Liberal Arts

	17746

	0.073500

Descriptive Statistics

Once I’ve taken a look at some rows from a DataFrame, I like to get a sense of the shape of the data. One tool for doing this is the DataFrame describe method, which produces various descriptive statistics about the data. You can call describe with no arguments, as shown here:

college_majors.describe()

	

	Total

	Unemployment_rate

	count

	1.730000e+02

	173.000000

	mean

	2.302566e+05

	0.057355

	std

	4.220685e+05

	0.019177

	min

	2.396000e+03

	0.000000

	25%

	2.428000e+04

	0.046261

	50%

	7.579100e+04

	0.054719

	75%

	2.057630e+05

	0.069043

	max

	3.123510e+06

	0.156147

This method calculates the count, mean, standard deviation, minimum, maximum, and quantiles for columns containing numeric data. It accepts optional arguments to control which data types are processed and the ranges of the quantiles returned. To change the quantiles, you use the percentiles argument:

Click here to view code image

college_majors.describe(percentiles=[0.1, 0.9])

	

	Total

	Unemployment_rate

	count

	1.730000e+02

	173.000000

	mean

	2.302566e+05

	0.057355

	std

	4.220685e+05

	0.019177

	min

	2.396000e+03

	0.000000

	10%

	9.775600e+03

	0.037053

	50%

	7.579100e+04

	0.054719

	90%

	6.739758e+05

	0.080062

	max

	3.123510e+06

	0.156147

This example specifies percentiles for 10% and 90% rather than the default 25% and 75%. Note that 50% is inserted regardless of the argument.

If you want to see statistics calculated from nonnumeric columns, you can specify which data types are processed. You do this by using the include keyword. The value passed to this keyword should be a sequence of data types, which can be NumPy data types, such as np.object. In Pandas, strings are of type object, so the following includes columns with string data types:

Click here to view code image

import numpy as np

college_majors.describe(include=[np.object])

This would also find the string name of the data type, which, in the case of np.object, would be object. The following returns statistics appropriately for the type:

Click here to view code image

college_majors.describe(include=['object'])

So, for strings, you get the count, the number of unique values, the top value, and the frequency of this top value:

	

	Major

	Major_category

	count

	173

	173

	unique

	173

	16

	top

	GEOSCIENCES

	Engineering

	freq

	1

	29

You can pass the string all instead of a list of data types to produce statistics for all the columns:

Click here to view code image

college_majors.describe(include='all')

	

	Major

	Major_category

	Total

	Unemployment_rate

	count

	173

	173

	1.730000e+02

	173.000000

	unique

	173

	16

	NaN

	NaN

	top

	GEOSCIENCES

	Engineering

	NaN

	NaN

	freq

	1

	29

	NaN

	NaN

	mean

	NaN

	NaN

	2.302566e+05

	0.057355

	std

	NaN

	NaN

	4.220685e+05

	0.019177

	min

	NaN

	NaN

	2.396000e+03

	0.000000

	25%

	NaN

	NaN

	2.428000e+04

	0.046261

	50%

	NaN

	NaN

	7.579100e+04

	0.054719

	75%

	NaN

	NaN

	2.057630e+05

	0.069043

	max

	NaN

	NaN

	3.123510e+06

	0.156147

Note

Where a statistic is not appropriate for a data type, such as with the standard deviation for a string, the not-a-number value NAN is inserted.

In case you want to exclude certain data types rather than specify which ones to include, Pandas supplies the exclude argument, which takes the same types of arguments as include:

Click here to view code image

college_majors.describe(exclude=['int'])

Accessing Data

Once you have taken an initial peek at a frame using head or tail and gotten a sense of the shape of the data using describe, you can start looking at the data and individual columns, rows, or cells.

This is the participants DataFrame from earlier in the chapter:

participants

	

	first

	last

	ages

	a

	shanda

	smith

	43

	b

	rolly

	brocker

	23

	c

	molly

	stein

	78

	d

	frank

	bach

	56

	e

	rip

	spencer

	26

	f

	steven

	de wilde

	14

	g

	gwen

	mason

	46

	h

	arthur

	davis

	92

Bracket Syntax

To access columns or rows in Pandas DataFrames, you need to use bracket syntax. This syntax is great for interactive sessions where you are exploring and playing with data, and using it is a best practice.

To access a single column, you supply the column name as an argument in brackets, much as you would a dictionary key:

Click here to view code image

participants['first']

a shanda

b rolly

c molly

d frank

e rip

f steven

g gwen

h arthur

Name: first, dtype: object

You can see that this returns the data for the column along with its index, label, and data type. If a column name does not contain dashes or special characters, and if the column name is not the same as an existing attribute of the DataFrame, you can access the column as an attribute.

For example, here is how you access the ages column:

Click here to view code image

participants.ages

a 43

b 23

c 78

d 56

e 26

f 14

g 46

h 92

Name: ages, dtype: int64

This would not work with the columns first or last, as these already exist as attributes of the DataFrame.

To access multiple columns, you specify the column label as a list:

Click here to view code image

participants[['last', 'first']]

	

	last

	first

	a

	smith

	shanda

	b

	brocker

	rolly

	c

	stein

	molly

	d

	bach

	frank

	e

	spencer

	rip

	f

	de wilde

	steven

	g

	mason

	gwen

This returns a DataFrame with only the requested columns.

The bracket syntax is overloaded to allow you to grab rows as well as columns. To specify rows, you use a slice as an argument. If the slice uses integers, then those integers represent the row numbers to return. To return rows 3, 4, and 5 of the DataFrame participants, for example, you can use the slice 3:6:

participants[3:6]

	

	first

	last

	ages

	d

	frank

	bach

	56

	e

	rip

	spencer

	26

	f

	steven

	de wilde

	14

You can also slice using index labels. When you use labels to slice, the last value is included. So to get rows a, b, and c, you slice using a:c:

participants['a':'c']

	

	first

	last

	ages

	a

	shanda

	smith

	43

	b

	rolly

	brocker

	23

	c

	molly

	stein

	78

You can indicate which rows to return by using a list of Booleans. The list should have one Boolean per row: True for the desired rows, and False for the others. The following example returns the second, third, and sixth rows:

Click here to view code image

mask = [False, True, True, False, False, True, False, False]

participants[mask]

	

	first

	last

	ages

	b

	rolly

	brocker

	23

	c

	molly

	stein

	78

	f

	steven

	de wilde

	14

The bracket syntax provides a very convenient and easy-to-read way to access data. It is often used in interactive sessions when experimenting with and exploring DataFrames, but it is not optimized for performance with large data sets. The recommended way to index into DataFrames in production code or for large data sets is to use the DataFrame loc and iloc indexers. These indexers use a bracket syntax very similar to what you have seen here. The loc indexer indexes using labels, and iloc uses index positions.

Optimized Access by Label

With the loc indexer, you can supply a single label, and the values for that row will be returned. To get the values from the row labeled c, for example, you simply supply c as an argument:

Click here to view code image

participants.loc['c']

first molly

last stein

ages 78

Name: c, dtype: object

You can provide a slice of labels, and once again, the last label is included:

participants.loc['c':'f']

	

	first

	last

	ages

	c

	molly

	stein

	78

	d

	frank

	bach

	56

	e

	rip

	spencer

	26

	f

	steven

	de wilde

	14

Or you can provide a sequence of Booleans:

Click here to view code image

mask = [False, True, True, False, False, True, False, False]

participants.loc[mask]

	

	first

	last

	ages

	b

	rolly

	brocker

	23

	c

	molly

	stein

	78

	f

	steven

	de wilde

	14

An optional second argument can indicate which columns to return. If you want to return all the rows for the column first, for example, you specify all rows with a slice, a comma, and the column label:

Click here to view code image

participants.loc[:, 'first']

a shanda

b rolly

c molly

d frank

e rip

f steven

g gwen

h arthur

Name: first, dtype: object

You could provide a list of column labels:

Click here to view code image

participants.loc[:'c', ['ages', 'last']]

	

	ages

	last

	a

	43

	smith

	b

	23

	brocker

	c

	78

	stein

Or you could provide a list of Booleans:

Click here to view code image

participants.loc[:'c', [False, True, True]]

	

	last

	ages

	a

	smith

	43

	b

	brocker

	23

	c

	stein

	78

Optimized Access by Index

The iloc indexer enables you to use index positions to select rows and columns. Much as you’ve seen before with brackets, you can use a single value to specify a single row:

Click here to view code image

participants.iloc[3]

first frank

last bach

ages 56

Name: d, dtype: object

Or you can specify multiple rows by using a slice:

participants.iloc[1:4]

	

	first

	last

	ages

	b

	rolly

	brocker

	23

	c

	molly

	stein

	78

	d

	frank

	bach

	56

You can, optionally, indicate which column to return by using a second slice:

participants.iloc[1:4, :2]

	

	first

	last

	b

	rolly

	brocker

	c

	molly

	stein

	d

	frank

	bach

Masking and Filtering

A powerful feature of DataFrames is the ability to select data based on values. You can use comparison operators with columns to see which values meet some condition. For example, if you want to see which rows of the college_majors DataFrame have the value Humanities & Liberal Arts as a major category, you can use the equality operator (==):

Click here to view code image

college_majors.Major_category == 'Humanities & Liberal Arts'

0 False

1 False

2 False

3 False

 ...

169 False

170 False

171 True

172 True

Name: Major_category, Length: 173, dtype: bool

This produces a pandas.Series object that contains True for every row that matches the condition. A series of Booleans is mildly interesting, but the real power comes when you combine it with an indexer to filter the results. Remember that loc returns rows for every True value of an input sequence. You can make a condition based on a comparison operator and a row, for example, as shown here for the greater-than operator and the row Total:

Click here to view code image

total_mask = college_majors.loc[:, 'Total'] > 1200000

You can use the result as a mask to select only the rows that meet this condition:

Click here to view code image

top_majors = college_majors.loc[total_mask]

top_majors

	

	Major

	Major_category

	Total

	Unemployment_rate

	25

	GENERAL EDUCATION

	Education

	1438867

	0.043904

	28

	ELEMENTARY EDUCATION

	Education

	1446701

	0.038359

	114

	PSYCHOLOGY

	Psychology & Social Work

	1484075

	0.069667

	153

	NURSING

	Health

	1769892

	0.026797

	158

	GENERAL BUSINESS

	Business

	2148712

	0.051378

	159

	ACCOUNTING

	Business

	1779219

	0.053415

	161

	BUSINESS MANAGEMENT AND ADMINISTRATION

	Business

	3123510

	0.058865

You can use the min() method to check whether the resulting DataFrame meets the condition:

top_majors.Total.min()

1438867

Now say that you want to see which major categories have the lowest unemployment rates. You can use describe on a single column as well as with a full DataFrame. If you use describe on the column Unemployment_rate, for example, you can see that the top rate for the bottom percentile is 0.046261:

Click here to view code image

college_majors.Unemployment_rate.describe()

count 173.000000

mean 0.057355

std 0.019177

min 0.000000

25% 0.046261

50% 0.054719

75% 0.069043

max 0.156147

Name: Unemployment_rate, dtype: float64

You can create a mask for all rows with an unemployment rate less than or equal to this:

Click here to view code image

employ_rate_mask = college_majors.loc[:, 'Unemployment_rate'] <= 0.046261

And you can use this mask to produce a DataFrame with only these rows:

Click here to view code image

employ_rate_majors = college_majors.loc[employ_rate_mask]

Then you can use the pandas.Series object’s unique method to see which major categories are in the resulting DataFrame:

Click here to view code image

employ_rate_majors.Major_category.unique()

array(['Agriculture & Natural Resources', 'Education', 'Engineering',

 'Biology & Life Science', 'Computers & Mathematics',

 'Humanities & Liberal Arts', 'Physical Sciences', 'Health',

 ‘Business’], dtype=object)

All these categories have at least one row with an employment rate that meets the condition.

Pandas Boolean Operators

You can use the three Boolean operators AND (&), OR (|), and NOT (~) with the results of your conditions. You can use & or | to combine conditions and create more complex ones. You can use ~ to create a mask that is the opposite of your condition.

For example, you can use AND to create a new mask based on the previous ones to see which major categories of the most popular majors have a low unemployment rate. To do this, you use the & operator between your existing masks to produce a new one:

Click here to view code image

total_rate_mask = employ_rate_mask & total_mask

total_rate_mask

0 False

1 False

2 False

3 False

4 False

 ...

168 False

169 False

170 False

171 False

172 False

Length: 173, dtype: bool

By looking at the resulting DataFrame, you can see which of the most popular majors have the lowest unemployment rates:

Click here to view code image

college_majors.loc[total_rate_mask]

	

	Major

	Major_category

	Total

	Unemployment_rate

	25

	GENERAL EDUCATION

	Education

	1438867

	0.043904

	28

	ELEMENTARY EDUCATION

	Education

	1446701

	0.038359

	153

	NURSING

	Health

	1769892

	0.026797

You can use the ~ operator with your employment rate mask to create a DataFrame whose rows all have an employment rate higher than the bottom percentile:

Click here to view code image

lower_rate_mask = ~employ_rate_mask

lower_rate_majors = college_majors.loc[lower_rate_mask]

You can check this work by using the min method on the Unemployment_rate column to see that it is above the top rate for the bottom percentile:

Click here to view code image

lower_rate_majors.Unemployment_rate.min()

0.046261360999999994

To select all the rows that either fit the top majors condition or the employment rate condition, you can use the | operator:

Click here to view code image

college_majors.loc[total_mask | employ_rate_mask]

The resulting DataFrame contains all the rows that fit either condition.

Manipulating DataFrames

Once you have the data you need in a DataFrame, you might want to change the DataFrame. You can rename columns or indexes, you can add new columns and rows, and you can delete columns and rows.

Changing the label of a column is simple using the DataFrame rename method. This is how you can use the DataFrame columns attribute to look at the current column names:

Click here to view code image

participants.columns

Index(['first', 'last', 'ages'], dtype='object')

You can then rename the columns of your choice by providing a dictionary mapping each old column name to the new one. For example, here is how you change the label of the column ages to Age:

Click here to view code image

participants.rename(columns={'ages': 'Age'})

	

	first

	last

	Age

	a

	shanda

	smith

	43

	b

	rolly

	brocker

	23

	c

	molly

	stein

	78

	d

	frank

	bach

	56

	e

	rip

	spencer

	26

	f

	steven

	de wilde

	14

	g

	gwen

	mason

	46

	h

	arthur

	davis

	92

By default, the rename method returns a new DataFrame using the new column labels. So, if you check your original DataFrame's column names again, you see the old column name:

Click here to view code image

participants.columns

Index(['first', 'last', 'ages'], dtype='object')

This is how many DataFrame methods work (preserving the original state). Many of these methods offer an optional inplace argument, which, if set to True, changes the original DataFrame:

Click here to view code image

participants.rename(columns={'ages':'Age'}, inplace=True)

participants.columns

Index(['first', 'last', 'Age'], dtype='object')

You can use the indexer syntax to create new columns. To do so, you simply access the column as if it already exists by using an indexer and the cited values:

Click here to view code image

participants['Zip Code'] = [94702, 97402, 94223, 94705,

 97503, 94705, 94111, 95333]

participants

	

	first

	last

	Age

	Zip Code

	a

	shanda

	smith

	43

	94702

	b

	rolly

	brocker

	23

	97402

	c

	molly

	stein

	78

	94223

	d

	frank

	bach

	99

	94705

	e

	rip

	spencer

	26

	97503

	f

	steven

	de wilde

	14

	94705

	g

	gwen

	mason

	46

	94111

	h

	arthur

	davis

	92

	95333

You can use operations between columns such as string addition to create values for a new column. If you decide you want to add a column with participants’ full names, you can construct the values from the existing columns for their first and last names:

Click here to view code image

participants['Full Name'] = (participants.loc[:, 'first'] +

 participants.loc[:, 'last'])

participants

	

	first

	last

	Age

	Zip Code

	Full Name

	a

	shanda

	smith

	43

	94702

	shandasmith

	b

	rolly

	brocker

	23

	97402

	rollybrocker

	c

	molly

	stein

	78

	94223

	mollystein

	d

	frank

	bach

	99

	94705

	frankbach

	e

	rip

	spencer

	26

	97503

	ripspencer

	f

	steven

	de wilde

	14

	94705

	stevende wilde

	g

	gwen

	mason

	46

	94111

	gwenmason

	h

	arthur

	davis

	92

	95333

	arthurdavis

You can update a column by using the same syntax. For example, if you decide that the values in the full name column should have a white space between the names, you can just assign new values by using the same column name:

Click here to view code image

participants['Full Name'] = (participants.loc[:, 'first'] +

 ' ' +

 participants.loc[:, 'last'])

participants

	

	first

	last

	Age

	Zip Code

	Full Name

	a

	shanda

	smith

	43

	94702

	shanda smith

	b

	rolly

	brocker

	23

	97402

	rolly brocker

	c

	molly

	stein

	78

	94223

	molly stein

	d

	frank

	bach

	99

	94705

	frank bach

	e

	rip

	spencer

	26

	97503

	rip spencer

	f

	steven

	de wilde

	14

	94705

	steven de wilde

	g

	gwen

	mason

	46

	94111

	gwen mason

	h

	arthur

	davis

	92

	95333

	arthur davis

Manipulating Data

Pandas gives you many ways to change data in a DataFrame. You can set values by using the same indexers you used before. You can do operations on whole DataFrames or on individual columns. And you can apply functions to change elements in a column or create new values from multiple rows or columns.

To change data using an indexer, you select the location where you want the new data to reside in the same way you select to view data, and then you assign a new value. To change arthur in column h to Paul, for example, you can use loc:

Click here to view code image

participants.loc['h', 'first'] = 'Paul'

participants

	

	first

	last

	Age

	Zip Code

	Full Name

	a

	shanda

	smith

	43

	94702

	shanda smith

	b

	rolly

	brocker

	23

	97402

	rolly brocker

	c

	molly

	stein

	78

	94223

	molly stein

	d

	frank

	bach

	99

	94705

	frank bach

	e

	rip

	spencer

	26

	97503

	rip spencer

	f

	steven

	de wilde

	14

	94705

	steven de wilde

	g

	gwen

	mason

	46

	94111

	gwen mason

	h

	paul

	davis

	92

	95333

	arthur davis

Alternatively, you can use iloc to set the age of Molly in row c to 99:

Click here to view code image

participants.iloc[3, 2] = 99

participants

	

	first

	last

	Age

	Zip Code

	Full Name

	a

	shanda

	smith

	43

	94702

	shanda smith

	b

	rolly

	brocker

	23

	97402

	rolly brocker

	c

	molly

	stein

	78

	94223

	molly stein

	d

	frank

	bach

	99

	94705

	frank bach

	e

	rip

	spencer

	26

	97503

	rip spencer

	f

	steven

	de wilde

	14

	94705

	steven de wilde

	g

	gwen

	mason

	46

	94111

	gwen mason

	h

	paul

	davis

	92

	95333

	arthur davis

This should seem fairly intuitive if you think of it as a variation on the indexed assignment you have used with lists and dictionaries.

Earlier in this chapter, you used operations between columns to construct values for a new column. You can also use in-place operators such as +=, -=, and /= , to change values in a column. To subtract 1 from the age of each participant, for example, you can use the -= operator:

Click here to view code image

participants.Age -= 1

participants

	

	first

	last

	Age

	Zip Code

	Full Name

	a

	shanda

	smith

	42

	94702

	shanda smith

	b

	rolly

	brocker

	22

	97402

	rolly brocker

	c

	molly

	stein

	77

	94223

	molly stein

	d

	frank

	bach

	98

	94705

	frank bach

	e

	rip

	spencer

	25

	97503

	rip spencer

	f

	steven

	de wilde

	13

	94705

	steven de wilde

	g

	gwen

	mason

	45

	94111

	gwen mason

	h

	paul

	davis

	91

	95333

	arthur davis

The replace Method

The replace method finds and replaces values across a DataFrame. For example, you can use it to replace the name rolly with Smiley:

Click here to view code image

participants.replace('rolly', 'Smiley')

	

	first

	last

	Age

	Zip Code

	Full Name

	a

	shanda

	smith

	42

	94702

	shanda smith

	b

	smiley

	brocker

	22

	97402

	rolly brocker

	c

	molly

	stein

	77

	94223

	molly stein

	d

	frank

	bach

	98

	94705

	frank bach

	e

	rip

	spencer

	25

	97503

	rip spencer

	f

	steven

	de wilde

	13

	94705

	steven de wilde

 ...

This method also works with regular expressions. Here is how you construct a regular expression that matches words starting with s and replaces the s with S:

Click here to view code image

participants.replace(r'(s)([a-z]+)', r'S\2', regex=True)

	

	first

	last

	Age

	Zip Code

	Full Name

	a

	shanda

	smith

	42

	94702

	Shanda Smith

	b

	rolly

	brocker

	22

	97402

	rolly brocker

	c

	molly

	stein

	77

	94223

	molly Stein

	d

	frank

	bach

	98

	94705

	frank bach

	e

	rip

	spencer

	25

	97503

	rip Spencer

	f

	steven

	de wilde

	13

	94705

	Steven de wilde

	g

	gwen

	mason

	45

	94111

	gwen mason

	h

	paul

	davis

	91

	95333

	arthur davis

Both DataFrames and the pandas.Series object have an apply() method that can call a function on values. In the case of a pandas.Series object, the apply() method calls a function of your choosing on every value in the pandas.Series object individually.

Say that you define a function that capitalizes any string passed to it:

Click here to view code image

def cap_word(w):

 return w.capitalize()

Then, if you pass it as an argument to apply() on the column first, it capitalizes each first name:

Click here to view code image

participants.loc[:, 'first'].apply(cap_word)

a Shanda

b Rolly

c Molly

d Frank

e Rip

f Steven

g Gwen

h Paul

Name: first, dtype: object

In the case of a DataFrame, apply takes a row as an argument, enabling you to produce new values from the columns of that row. Say that you define a function that uses values from the columns first and Age:

Click here to view code image

def say_hello(row):

 return f'{row["first"]} is {row["Age"]} years old.'

You can then apply the function to the whole DataFrame:

Click here to view code image

participants.apply(say_hello, axis=1)

a shanda is 42 years old.

b rolly is 22 years old.

c molly is 77 years old.

d frank is 98 years old.

e rip is 25 years old.

f steven is 13 years old.

g gwen is 45 years old.

h paul is 91 years old.

dtype: object

You can use this method to call a function across rows or across columns. You use the axis argument to indicate whether your function should expect a row or a column.

Interactive Display

If you are working with DataFrames in Colab, you should try running this snippet:

Click here to view code image

%load_ext google.colab.data_table

This makes the output of your DataFrames interactive and enables you to filter and select interactively.

Summary

A Pandas DataFrame is a powerful tool for working with data in a spreadsheet-like environment. You can create DataFrames from many sources, but creating a DataFrame from a file is the most common. You can extend DataFrames with new columns and rows. You can access the data itself by using powerful indexers, which you can also use to set data. DataFrames provide a great way to explore and manipulate data.

Questions

Use this table to answer the following questions:

	Sample Size (mg)

	%P

	%Q

	0.24

	40

	60

	2.34

	34

	66

	0.0234

	12

	88

1. Create a DataFrame representing this table.

2. Add a new column labeled Total Q that contains the amount of Q (in mg) for each sample.

3. Divide the columns %P and %Q by 100.

10

Visualization Libraries

The greatest value of a picture is when it forces us to notice what we never expected to see.

John Tukey

In This Chapter

	Creating and styling plots with matplotlib

	Plotting with Seaborn and Seaborn themes

	Plots with Plotly and Bokeh

Visualizing data is essential to exploring and presenting data. The saying “a picture is worth a thousand words” certainly applies to understanding data. You can often gain insights from visualizations that are not obvious from summary statistics. The statistician Francis Anscombe famously created four data sets whose summary statistics were nearly identical but that varied greatly when plotted.

Explaining your data is also often easier when you have visuals. Think about how effective charts and plots are in presentations. Luckily, there are quite a few libraries in Python designed for visualization.

matplotlib

matplotlib is a bedrock tool for creating publication-ready charts. It is used extensively on its own and also as the basis of other plotting libraries. It is part of the SciPy ecosystem, along with NumPy and Pandas. It is a very large project with wide-ranging capabilities, but because of this size, it can be complicated to use.

There are multiple interfaces for using matplotlib. One interface you may see if you search online, especially in older examples, is pylab, which is generally imported like this:

from matplotlib.pylab import *

While those older examples may have some use, the use of pylab is now discouraged. It was originally intended to simulate an environment similar to that of MATPLOT, which is a non-Python mathematical plotting tool. But importing all of the contents of a module—which is what happens with import *—is generally seen as a bad practice in Python. The recommended practice is to explicitly import only what you will use.

The recommended interface for matplotlib is pyplot, which is by convention aliased as plt:

import matplotlib.pyplot as plt

Two main concepts in matplotlib are figures and axes. Figures are used to graph data. Axes are areas where points can be specified using coordinates. Axes are visualized using figures. A single figure may have multiple axes, but an axis can be attached to only a single figure.

matplotlib offers two approaches to creating figures and axes: Create them explicitly or implicitly. The following examples show the implicit approach.

There are some plotting methods, such as plt.plot and plt.hist, that plot to the current axis and figure. These methods create an axis and a parent figure if it doesn’t already exist.

The method plt.plot creates a line plot based on x and y values, as shown in Figure 10.1:

Click here to view code image

[X = [0, 1, 2, 3, 4, 5, 7, 8, 9, 10]

Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]

plt.plot(X, Y)

[image: A line graph is shown in a figure.]

A line plot is shown. The horizontal axis ranges from 0 to 10, in increments of 2. The vertical axis ranges from 0 to 100, in increments of 20. The line curve traces the following points (0, 20), (1, 25), (2, 35), (3, 50), (4, 10), (5, 12), (7, 20), (8, 40), (9, 70), and (10, 110).

Figure 10.1 Line Plot Based on x and y Values

Styling Plots

You can control the style of a plot by using two different mechanisms. One is to use any of the properties of the matplotlib.Line2D class. These properties control the markers used in the plot, the style of the line, and the color. You can find a full list of matplotlib.Line2D properties in the matplotlib documentation (see https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.lines.Line2D.html).

You can use these properties as keyword arguments to plt.plot. This section demonstrates the use of the marker, linestyle, and color properties.

The available marker types are as follows:

	.

	point marker

	,

	pixel marker

	o

	circle marker

	v

	triangle_down marker

	^

	triangle_up marker

	<

	triangle_left marker

	>

	triangle_right marker

	1

	tri_down marker

	2

	tri_up marker

	3

	tri_left marker

	4

	tri_right marker

	s

	square marker

	p

	pentagon marker

	*

	star marker

	h

	hexagon1 marker

	H

	hexagon2 marker

	+

	plus marker

	x

	x marker

	D

	diamond marker

	d

	thin_diamond marker

	|

	vline marker

	_

	hline marker

You can specify a marker type by using the keyword marker. This example sets the markers as squares (see Figure 10.2):

Click here to view code image

X = [0, 1, 2, 3, 4, 5, 7, 8, 9, 10]

Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]

plt.plot(X, Y, marker='s')

[image: A line graph with markers is shown.]

A line plot is shown. The horizontal axis ranges from 0 to 10, in increments of 2. The vertical axis ranges from 0 to 100, in increments of 20. The line curve traces the following points (0, 20), (1, 25), (2, 35), (3, 50), (4, 10), (5, 12), (7, 20), (8, 40), (9, 70), and (10, 110). Square markers are used to mark these points.

Figure 10.2 Markers as Squares Plot

These are the available line styles:

	-

	solid line style

	--

	dashed line style

	-.

	dash-dot line style

	:

	dotted line style

You can use the keyword linestyle to set the line style (see Figure 10.3):

Click here to view code image

X = [0, 1, 2, 3, 4, 5, 7, 8, 9, 10]

Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]

plt.plot(X, Y, marker='s', linestyle=':')

[image: A line graph with markers is shown.]

A line plot is shown. The horizontal axis ranges from 0 to 10, in increments of 2. The vertical axis ranges from 0 to 100, in increments of 20. The line curve traces the following points (0, 20), (1, 25), (2, 35), (3, 50), (4, 10), (5, 12), (7, 20), (8, 40), (9, 70), and (10, 110). Square markers are used to mark these points. The line used for the curve is dotted.

Figure 10.3 Parameter Set with the Keyword linestyle

These are the available colors:

	b

	blue

	g

	green

	r

	red

	c

	cyan

	m

	magenta

	y

	yellow

	k

	black

	w

	white

You can set the color by using the color keyword. If you try this example, you will see the same plot as Figure 10.3, but with color:

Click here to view code image

X = [0, 1, 2, 3, 4, 5, 7, 8, 9, 10]

Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]

plt.plot(X, Y, marker='s', linestyle=':', color='m')

An alternative way to set style properties is to use the fmt argument. This is a position parameter that appears to the right of the Y parameter. It consists of a format string that uses a shorthand for marker, line style, and color settings. The format string is of the form [marker][line][color], with all the sections being optional. For example, for the plot in Figure 10.4, you can set the markers to squares, the line style to dashed, and the color to red by using the format string s-.r:

Click here to view code image

X = [0, 1, 2, 3, 4, 5, 7, 8, 9, 10]

Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]

fmt = 's-.r'

plt.plot(X, Y, fmt)

[image: A line graph with markers is shown.]

A line plot is shown. The horizontal axis ranges from 0 to 10, in increments of 2. The vertical axis ranges from 0 to 100, in increments of 20. The line curve traces the following points (0, 20), (1, 25), (2, 35), (3, 50), (4, 10), (5, 12), (7, 20), (8, 40), (9, 70), and (10, 110). Square markers are used to mark these points. A dash dotted line is used for the curve.

Figure 10.4 Line Plot Using the Format String s-.r

You can use a format string and a keyword argument together. For example, the plot in Figure 10.5 combines the format string ‘s-.r' with the keyword linewidth:

Click here to view code image

X = [0, 1, 2, 3, 4, 5, 7, 8, 9, 10]

Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]

fmt = 's-.r'

plt.plot(X, Y, fmt, linewidth=4.3)

[image: A line graph with markers is shown.]

A line plot is shown. The horizontal axis ranges from 0 to 10, in increments of 2. The vertical axis ranges from 0 to 100, in increments of 20. The line curve traces the following points (0, 20), (1, 25), (2, 35), (3, 50), (4, 10), (5, 12), (7, 20), (8, 40), (9, 70), and (10, 110). Square markers are used to mark these points. A two dash line is used for the curve.

Figure 10.5 Line Plot Formatted with the Keyword linewidth

Labeled Data

matplotlib’s plotting functions can use labeled data, including Pandas DataFrames, dictionaries, and pretty much any data structure for which data is accessed using bracket syntax. Instead of supplying a sequence of values for x and y, you supply the appropriate labels.

Here is how you could create a DataFrame of U.S. men’s and women’s average heights over a 16-year period, based on Centers for Disease Control and Prevention data (see https://www.cdc.gov/nchs/data/nhsr/nhsr122-508.pdf):

Click here to view code image

import pandas as pd

data = {"Years": ["2000", "2002", "2004", "2006", "2008",

 "2010", "2012", "2014", "2016"],

 "Men": [189.1, 191.8, 193.5, 196.0, 194.7,

 196.3, 194.4, 197.0, 197.8],

 "Women": [175.7, 176.4, 176.5, 176.2, 175.9,

 175.9, 175.7, 175.8, 175.3]}

heights_df = pd.DataFrame(data)

You can create a line plot of women’s heights by specifying the labels of the columns to use for x and y, as well as the DataFrame from which to pull the data (see Figure 10.6):

Click here to view code image

plt.plot('Years', 'Women', data=heights_df)

[image: A line plot illustrates the height data.]

A line plot represents the height data of women through the years. The horizontal axis ranges from 2000 to 2016, in increments of 2. The vertical axis ranges from 175.4 to 176.4, in increments of 0.2. The line curve traces the following points (2000, 175.7), (2002, 176.4), (2004, 176.5), (2006, 176.2), (2008, 175.9), (2010, 175.9), (2012, 175.7), (2014, 175.8), and (2016, 175.3).

Figure 10.6 Line Plot with x and y Labels Specified

Plotting Multiple Sets of Data

There are three approaches to plotting multiple sets of data on the same chart. The first is to just call the plotting function multiple times:

Click here to view code image

X = [0, 1, 2, 3, 4, 5, 7, 8, 9, 10]

Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]

fmt = 's-.r'

X1 = [0, 1, 2, 3, 4, 5, 7, 8, 9, 10]

Y2 = [90, 89, 87, 82, 72, 60, 45, 28, 10, 0]

fmt2 = '^k:'

plt.plot(X, Y, fmt)

plt.plot(X1, Y2, fmt2)

Remember that plt.plot uses the current axis and figure. This means that multiple calls will continue sharing the same figure and plot. You can see multiple plots on the same figure in Figure 10.7.

[image: A figure contains multiple plots.]

A graph plots two line curves. The horizontal axis ranges from 0 to 10, in increments of 2. The vertical axis ranges from 0 to 100, in increments of 20. The first line curve traces the following points (0, 20), (1, 25), (2, 35), (3, 50), (4, 10), (5, 12), (7, 20), (8, 40), (9, 70), and (10, 110). Square markers are used to mark these points. A dash dotted line is used for the first curve. The second line curve traces the following points (0, 90), (1, 89), (2, 87), (3, 82), (4, 72), (5, 60), (7, 45), (8, 28), (9, 10), and (10, 0).

Figure 10.7 Multiple Plots on the Same Figure

The second way to plot multiple sets of data on the same chart is to pass multiple data sets to the plotting function directly:

plt.plot(X, Y, fmt, X1, Y2, fmt2)

For labeled data, you can pass multiple labels, and each column will be added to the chart (see Figure 10.8):

Click here to view code image

plt.plot('Years', 'Women', 'Men', data=heights_df)

[image: A line plot with multiple data sets is shown.]

A graph plots two line curves. The horizontal axis ranges from 2000 to 2016, in increments of 2. The vertical axis ranges from 175 to 195, in increments of 5. The first line is thick and traces the following points (2000, 175.7), (2002, 176.4), (2004, 176.5), (2006, 176.2), (2008, 175.9), (2010, 175.9), (2012, 175.7), (2014, 175.8), and (2016, 175.3). The second line is thin and traces the following points (2000, 189.1), (2002, 191.8), (2004, 193.5), (2006, 196.0), (2008, 194.7), (2010, 196.3), (2012, 194.4), (2014, 197.0), and (2016, 197.8).

Figure 10.8 Line Plot with Multiple Data Sets

matplotlib offers convenience functions to add labels, a title, and a chart legend. You can create a labeled version of the plot from Figure 10.8 as follows (see Figure 10.9):

Click here to view code image

plt.plot('Years', 'Women', 'Men', data=heights_df)

plt.xlabel('Year')

plt.ylabel('Height (Inches)')

plt.title("Heights over time")

plt.legend(['Women', 'Men'])

[image: A line plot represents height over time.]

A graph plots two line curves. The horizontal axis represents year and it ranges from 2000 to 2016, in increments of 2. The vertical axis represents height, in inches and it ranges from 175 to 195, in increments of 5. The first line is thick and traces the following points (2000, 175.7), (2002, 176.4), (2004, 176.5), (2006, 176.2), (2008, 175.9), (2010, 175.9), (2012, 175.7), (2014, 175.8), and (2016, 175.3). The second line is thin and traces the following points (2000, 189.1), (2002, 191.8), (2004, 193.5), (2006, 196.0), (2008, 194.7), (2010, 196.3), (2012, 194.4), (2014, 197.0), and (2016, 197.8). A legend is provided at the top-left corner of the graph. Thick line represents women and thin line represents men.

Figure 10.9 Adding Multiple Labels to a Plot

Object-Oriented Style

The implicit way of dealing with figures and axes that you have seen up to this point in the chapter is a handy way to explore data, especially in an interactive environment. matplotlib also enables you to deal with figures and axes directly, which gives you more control. The plt.subplots() function returns a figure and as many axes as you specify. You can then plot on the axes in much the same way as when using implicit plotting:

Click here to view code image

fig, ax = plt.subplots()

ax.plot('Years', 'Women', 'Men', data=heights_df)

ax.set_xlabel('Year')

ax.set_ylabel('Height (Inches)')

ax.set_title("Heights over time")

ax.legend(['Women', 'Men'])

The results will match those plotted using the same data in Figure 10.9.

If you want to make multiple charts on the same figure, you can specify multiple axes, as shown in Listing 10.1. The first argument specifies the number of rows, and the second argument specifies the number of columns. Figure 10.10 shows an example of creating two axes on a figure.

Listing 10.1 Creating Multiple Axes

Click here to view code image

fig, (ax1, ax2) = plt.subplots(1, 2). # Create one figure and two axes

ax1.plot('Years', 'Women', data=heights_df) # Plot women by years on axis one

ax1.set_xlabel('Year') # Label the x axis of the first axis

ax1.set_ylabel('Height (Inches)') # Label the y axis of the first axis

ax1.set_title("Women") # Set the title of the first axis

ax1.legend(['Women']) # Set the legend of the first axis

ax2.plot('Years', 'Men', data=heights_df) # Plot the second axis

ax2.set_xlabel('Year') # Set the x label for the second axis

ax2.set_title("Men") # Set the title for the second axis

ax2.legend(['Men']) # Set the legend for the second axis

fig.autofmt_xdate(rotation=65) # Rotate the date labels

[image: A pair of graphs represents the heights of women and men.]

A figure contains two graphs representing the height of women and men. The first graph represents women. The horizontal axis represents year and it ranges from 2000 to 2016, in increments of 2. The vertical axis represents height, in inches and it ranges from 175.4 to 176.4, in increments of 0.2. The curve traces the following points (2000, 175.7), (2002, 176.4), (2004, 176.5), (2006, 176.2), (2008, 175.9), (2010, 175.9), (2012, 175.7), (2014, 175.8), and (2016, 175.3). The second graph represents men. The horizontal axis represents year and it ranges from 2000 to 2016, in increments of 2. The vertical axis represents height, in inches and it ranges from 190 to 198, in increments of 2. The curve traces the following points (2000, 189.1), (2002, 191.8), (2004, 193.5), (2006, 196.0), (2008, 194.7), (2010, 196.3), (2012, 194.4), (2014, 197.0), and (2016, 197.8). A legend is provided at the top-left corner of the graphs.

Figure 10.10 Plotting Two Axes on a Figure

The implicit style of plotting is great for exploring data in an interactive mode. The explicit style gives you much more control and is generally recommended for plotting in production code.

Seaborn

Seaborn is a statistical plotting library that is built on top of matplotlib. It is designed to make creating good-looking statistics graphics easily, and is known, among other things, for having a default style that is generally better looking than other libraries offer.

By convention, Seaborn is imported as sns:

import seaborn as sns

Seaborn includes a series of sample data sets that are used in the provided documentation and tutorials. These data sets also provide a convenient source of data when exploring Seaborn’s features. You load the data sets as Pandas DataFrames, using the function sns.load_dataset(), with the name of the data set as an argument. The available data sets are listed at https://github.com/mwaskom/seaborn-data.

This example shows how to load up a data set of car crashes and then select the columns to work with:

Click here to view code image

car_crashes = sns.load_dataset('car_crashes')

car_crashes = car_crashes[['total', 'not_distracted', 'alcohol']]

This example uses Seaborn’s sns.relplot() function to plot the relationship between two columns (see Figure 10.11):

Click here to view code image

sns.relplot(data=car_crashes,

 x='total',

 y='not_distracted')

[image: A scatter plot illustrates increasing data.]

A scatter plot represents the relationship between not distracted and total. The horizontal axis represents total and it ranges from 5.0 to 22.5, in increments of 2.5. The vertical axis represents not distracted and it ranges from 0 to 20, in increments of 5. The plots are steadily increasing from (5.5, 6) to (22.5, 21.5). An outlier exists at (17.5, 1) approximately.

Figure 10.11 Using Seaborn’s sns.relplot() Function to Plot the Relationship Between Two Columns

Seaborn Themes

Using Seaborn themes is an easy way to control the look of charts. To use Seaborn’s default theme, you can use the following function:

sns.set_theme()

You can replot the data to see the new look shown in Figure 10.12:

Click here to view code image

sns.relplot(data=car_crashes,

 x='total',

 y='not_distracted')

[image: A figure represents seaborn theme applied to a chart.]

A graph with seaborn theme applied is shown. The scatter plot within the graph represents the relationship between not distracted and total. The plot has a white grid in the background. The horizontal axis represents total and it ranges from 5.0 to 22.5, in increments of 2.5. The vertical axis represents not distracted and it ranges from 0 to 20, in increments of 5. The plots are steadily increasing from (5.5, 6) to (22.5, 21.5). An outlier exists at (17.5, 1) approximately.

Figure 10.12 Using Seaborn Themes to Control the Look of the Chart

When you set a Seaborn theme, it is applied to any subsequent plots, even those made using matplotlib directly. Seaborn groups matplotlib parameters into two groups: one dealing with the aesthetic style of a plot and the other with scale elements.

Five preset Seaborn style themes are available: darkgrid, whitegrid, dark, white, and ticks. You can set the style by using the sns.set_style() function. For example, you could set the dark style as follows (see Figure 10.13):

[image: A figure represents dark theme applied to a chart.]

A graph with dark style theme applied is shown. The scatter plot within the graph represents the relationship between not distracted and total. The plot has a grey background. The horizontal axis represents total and it ranges from 5.0 to 22.5, in increments of 2.5. The vertical axis represents not distracted and it ranges from 0 to 20, in increments of 5. The plots are steadily increasing from (5.5, 6) to (22.5, 21.5). An outlier exists at (17.5, 1) approximately.

Figure 10.13 Using the Dark Style Theme

Click here to view code image

sns.set_style('dark')

sns.relplot(data=car_crashes,

 x='total',

 y='not_distracted')

The themes available for setting the scale of figure elements are based on the target presentation. They are paper, notebook, talk, and poster.

You set a theme by using the sns.set_context function:

sns.set_context('talk')

If you replot the data, the scale is adjusted, as shown in Figure 10.14:

Click here to view code image

sns.relplot(data=car_crashes,

 x='total',

 y='not_distracted')

[image: A figure shows a scaled down and data replotted graph.]

A scaled down graph is shown. The scatter plot represents the relationship between not distracted and total. The horizontal axis represents total and it ranges from 5.0 to 20, in increments of 5. The vertical axis represents not distracted and it ranges from 0 to 20, in increments of 5. The plots are steadily increasing from (5.5, 6) to (22.5, 21.5). An outlier exists at (17.5, 1) approximately.

Figure 10.14 Data Replotted Using the sns.set_context Function

Seaborn offers many plot types. One of the most useful types for looking for correlation in data is sns.pairplot(), which creates a grid of axes plotting the relationships among all the columns of the DataFrame. You can create a pairplot by using the iris data set as follows (see Figure 10.15):

Click here to view code image

df = sns.load_dataset('iris')

sns.pairplot(df, hue='species')

[image: A figure contains sixteen plots representing the petal and sepal measurements of three different species.]

A group of plots represent the petal to sepal ratio of three different species. A total of sixteen graphs are present. The horizontal axis for the first column of graphs represent the sepal length and it ranges from 4 to 8, in increments of 2. The horizontal axis for the second column represent the sepal width and it ranges from 2 to 4. The horizontal axis for the third column represent the petal length and it ranges from 2.5 to 7.5, in increments of 2.5. The horizontal axis for the fourth column represents petal width and it ranges from 0 to 2. The vertical axis for the first, second, third, and fourth columns represent the sepal length, sepal width, petal length, and petal width respectively. The petal widths range from 0 to 2, in increments of 1. The petal length ranges from 2 to 6, in increments of 2. The sepal width ranges from 2 to 4 and the sepal length ranges from 5 to 8. The first graph for sepal length versus sepal length plots three areas resembling cones. The second graph representing sepal length versus sepal width plots two groups of plots. The width of the species setosa is comparatively larger than the other two species. The third graph shows that the petal length of setosa is lower than the other two species. The fourth graph shows that the petal width of setosa is lower than the other species. Setosa has larger sepal width compared to the sepal length, petal length, and petal width as given in the fifth, seventh, and eighth graphs respectively. The versicolor species has a moderate sepal width as given in the sixth graph. The petal lengths are lowest for setosa as mentioned in the ninth, tenth, and twelfth graphs. The points are concentrated below the value 2 of vertical axis. The eleventh graph shows that virginica has the longest petal length. The thirteenth, fourteenth, and fifteenth graphs show that setosa has the lowest petal widths. The sixteenth graph is an area graph representing petal width. The setosa species has the lowest petal width.

Figure 10.15 Pairplot Using the Iris Data Set

Plotly

matplotlib and Seaborn are excellent tools for creating publication-ready static charts. Both of them can be extended to create interactive data presentations. However, the libraries Plotly and Bokeh are specifically designed for the creation of high-quality interactive charts. Plotly offers many chart types, but one way it stands out is that it makes it easy to build 3D charts. Figure 10.16 shows a static version of a dynamic plot. If you run this code in a notebook, you will be able to rotate and zoom with that plot:

Click here to view code image

import plotly.express as px

iris = px.data.iris()

fig = px.scatter_3d(iris,

 x='sepal_length',

 y='petal_width',

 z='petal_length',

 color='species')

fig.show()

[image: A three-dimensional plot represents the petal and sepal aspects of three different species.]

A figure shows the static version of a dynamic plot representing the petal and sepal measurements. The x-axis represents the sepal length and it ranges from 4.5 to 8, in increments of 0.5. The y-axis represents petal width and it ranges from 0.5 to 2.5, in increments of 0.5. The z-axis represents petal length and it ranges from 1 to 7, in increments of 1. A three dimensional view of the plot is shown. The plots for the species setosa are concentrated around the region (4.5, 0.5, 1) and (5.5, 1, 2). The plots for the species versicolor are concentrated around the region (4.5, 0.5, 3) and (6.5, 1.25, 3). All the mentioned values are approximate.

Figure 10.16 Static Version of a Dynamic Plot

Bokeh

Bokeh is an alternative to Plotly for easily creating interactive graphics. One way that Bokeh stands out is in its use of the special data object ColumnDataSource. This object offers improved performance and allows, among other things, the data to be updated or appended without requiring a reload of the state. The data source can also be shared across figures so that interaction with the data in one figure modifies the data in another figure. Listing 10.2 sets up multiple figures sharing a data object, and Figure 10.17 shows the result.

[image: A figure shows a pair of graphs sharing a data object.]

A pair of graphs illustrate brushing. The first graph contains increasing points. The horizontal axis ranges from 0 to 100, in increments of 20. The vertical axis ranges from 0 to 200, in increments of 50. The points increase from (0, 0) to (100, 200). The region between (40, 75) and (80, 157) is shaded. The second graph contains an increasing curve with points. The horizontal axis ranges from 0 to 100, in increments of 20. The vertical axis ranges from 0 to 4000, in increments of 1000. The curve increases through (0, 0), (50, 1000), (70, 2000), and (100, 4000). The region between (40, 600) and (80, 2500) is shaded. Note: All the mentioned values are approximate.

Figure 10.17 Multiple Figures Sharing a Data Object

Note

Be forewarned that Bokeh requires extra setup in Colab. This example gives you an idea of Bokeh’s capabilities but does not show you how to get it to plot in Colab.

Listing 10.2 Bokeh Shared Data

Click here to view code image

from bokeh.io import output_notebook

from bokeh.plotting import figure, show

from bokeh.models import ColumnDataSource

from bokeh.layouts import gridplot

Y = [x for x in range(0,200, 2)]

Y1 = [x**2 for x in Y]

X = [x for x in range(100)]

data={'x':X,

 'y':Y,

 'y1':Y1}

TOOLS = "box_select" # Select interactive tools

source = ColumnDataSource(data=data) # Create ColumnDataSource

left = figure(tools=TOOLS,

 title='Brushing') # Create figure using the selected tools

left.circle('x',

 'y',

 source=source) # Create a circle plot on first figure

right = figure(tools=TOOLS,

 title='Brushing') # Create figure using the selected tools

right.circle('x',

 'y1',

 source=source) # Create circle plot on second figure

p = gridplot([[left, right]]) # Put the figures on a grid

show(p) # Show the grid

The figures that are output allow for cross-axes selection, as defined by the chosen tool. This means that if you select a section of one plot, the corresponding points of the second plot are also selected.

Other Visualization Libraries

There are many other great visualization libraries in addition to the ones described so far in this chapter. Here are some others you may want to explore:

	geoplotlib: Enables visualization of maps and geographic data

	ggplot: Based on the R language package ggplot2

	pygal: Allows you to easily create simple plots

	folium: Enables you to create interactive maps

	missingno: Enables visualization of missing data

Summary

Visualization is an extremely useful part of data exploration and an important part of data presentation. There are many libraries available for visualizing data, all with different specialties and focuses. matplotlib is the base for many other libraries. It offers wide capabilities but a steep learning curve. Seaborn is a statistics visualization library built on matplotlib that makes it easy to improve the look of plots and to create plots for different target media. Plotly and Bokeh are both designed for the creation of interactive charts and dashboards.

Questions

Use this example to answer the following questions:

Click here to view code image

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

data = {'X' : [x for x in range(50)],

 'Y' : [y for y in range(50, 0, -1)],

 'Y1' : [y**2 for y in range(25, 75)]}

df = pd.DataFrame(data)

1. Use matplotlib to plot the relationship between columns X and Y.

2. Use matplotlib to add the relationship between columns X and Y1 to the same plot.

3. Use matplotlib to plot the relationships from Questions 1 and 2 on separate axes of the same figure.

4. Use Seaborn to change the theme to darkgrid and then repeat the plots from Question 3.

11

Machine Learning Libraries

To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of.

Ronald Fisher

In This Chapter

	Overview of popular machine learning libraries

	Introduction to Scikit-learn

	Overview of the machine learning process

Machine learning consists of letting a computer find a way to solve a problem using data. In contrast, with traditional programming, the programmer defines, in code, the way to find a solution, rather than the solution itself. This chapter provides a brief overview of some of the popular libraries used for machine learning. These libraries implement the algorithms used to create and train machine learning models. These models have various uses, depending on the type of problem. For example, some models are useful for predicting future values, and others are useful for classifying data into groups or categories.

Popular Machine Learning Libraries

Four of the most popular machine learning libraries are TensorFlow, Keras, PyTorch, and Scikit-learn:

	TensorFlow: Google developed this powerful library for internal use. It is used to solve problems using deep learning. This involves defining layers that transform the data and that are tuned as the solution is fit to data.

	Keras: This open-source library was designed to work with TensorFlow, and it is now included in the TensorFlow library (see https://www.tensorflow.org/guide).

	PyTorch: This is Facebook’s contribution to production-worthy machine learning libraries. It is based on the Torch library, which makes use of GPUs in solving deep learning problems (see https://pytorch.org/docs/stable/index.html).

	Scikit-learn: This popular library for starting machine learning is built on top of NumPy and SciPy. It has classes for most of the traditional algorithms. You will learn more about Scikit-learn in the next section.

How Machine Learning Works

Machine learning algorithms can be divided into two types: unsupervised and supervised learning. Unsupervised learning involves discovering insights about data without preexisting results to test against. This generally means identifying patterns based on the data’s characteristics without any input from a data scientist. Supervised learning involves using known data to train and test a model. Generally, the steps to training a supervised model are as follows:

1. Transform data.

2. Separate out test data.

3. Train the model.

4. Test accuracy.

Scikit-learn has tools to simplify each of these steps, as discussed in the following sections.

Transformations

For some algorithms, it is advantageous to transform the data before training a model. For example, you might want to turn a continuous variable, such as age, into discrete categories, such as age ranges. Scikit-learn includes many types of transformers, including transformers for cleaning, feature extraction, reduction, and expansion. These are represented as classes, which generally use a .fit() method to determine the transformation and a .transform() method to modify data using the transformation. Listing 11.1 uses the MinMaxScaler transformer, which scales values to fit in a defined range—between 0 and 1 by default.

Listing 11.1 Transform Using MinMaxScaler

Click here to view code image

import numpy as np

from sklearn.preprocessing import MinMaxScaler

data = np.array([[100, 34, 4],

 90, 2, 0],

 78, -12, 16],

 23, 45, 4]]) # Array with data range -12 to 100

data

array([[100, 34, 4],

 [90, 2, 0],

 [78, -12, 16],

 [23, 45, 4]])

minMax = MinMaxScaler() # Create a transformer object

scaler = minMax.fit(data) # Fit the transformer to the data

scaler.transform(data) # Scale to range between 0 and 1

array([[1. , 0.80701754, 0.25],

 [0.87012987, 0.24561404, 0.],

 [0.71428571, 0. , 1.],

 [0. , 1. , 0.25]])

There may be times when you want to separate your data before fitting the transformer. When you do this, the transformer settings will not be affected by the test data. Fitting and transforming require separate methods; it is easy to fit to the train data and use that to transform the test data.

Splitting Test and Training Data

One important pitfall to avoid when training a model is overfitting, which occurs when a model perfectly predicts the data used to train it but has little predictive power with new data. In the simplest sense, you avoid overfitting by not testing the model with the data with which it was trained. Scikit-learn offers helper methods to make splitting data easy.

Before looking at an example of splitting data, you can load a simple example. Like a number of other data science libraries, Scikit-learn comes with some sample data sets. Listing 11.2 loads the iris data set. Notice that the .load_iris() functions loads two NumPy arrays of data: The first is the source data (the characteristics that will be used to make predictions), and the second is the target characteristic to predict. In the case of the iris data set, the source data has 150 samples of 4 characteristics and 150 targets that represent the types of iris.

Listing 11.2 Loading a Sample Data Set

Click here to view code image

from sklearn import datasets # Load the sample data sets

source, target = datasets.load_iris(return_X_y=True) # Load source and targets

print(type(source))

<class 'numpy.ndarray'>

print(source.shape)

(150, 4)

print(type(target))

<class 'numpy.ndarray'>

print(target.shape)

 (150,)

Listing 11.3 uses the Scikit-learn function train_test_split() to split the iris data set provided with the library into training and test data sets. You can see that the samples are split so that 112 of them are in the training set, and 38 of them are in the test set.

Listing 11.3 Splitting a Data Set

Click here to view code image

from sklearn.model_selection import train_test_split

train_s, test_s, train_t, test_t = train_test_split(source, target)

train_s.shape

(112, 4)

train_t.shape

(112,)

test_s.shape

(38, 4)

test_t.shape

(38,)

Training and Testing

Scikit-learn offers many classes representing various machine learning algorithms. These classes are referred to as estimators. Many estimators can be tuned using parameters during instantiation. Each estimator has a .fit() method, which trains the model. Most of the .fit() methods take two arguments. The first is some sort of training data, referred to as samples. The second is the results, or targets, for those samples. Both arguments should be array-like objects, such as NumPy arrays. When the training is done, the model can predict results by using its .predict() method. The accuracy of this prediction can be checked using functions from the method’s module.

Listing 11.4 shows a simple example using the KNeighborsClassifier estimator. K-nearest neighbors is an algorithm that groups samples based on the distance between characteristics. It makes predictions by comparing a new sample to the existing samples that are its closest neighbors. You can tune the algorithm by choosing how many neighbors are compared to the new sample. When the model is trained, you can make predictions using the test data and check the accuracy of those predictions.

Listing 11.4 Training a Model

Click here to view code image

from sklearn.neighbors import KNeighborsClassifier # Import estimator class

from sklearn import metrics # Import the metrics module to test accuracy

knn = KNeighborsClassifier(n_neighbors=3) # Create 3-neighbor estimator

knn.fit(train_s, train_t) # Train the model using the training data

test_prediction = knn.predict(test_s) # Make predictions from source data

metrics.accuracy_score(test_t, test_prediction) # Accuracy against test data

0.8947368421052632

Learning More About Scikit-learn

This chapter only scratches the surface of Scikit-learn’s capabilities. Other important features include tools for cross-validation, where a data set is split multiple times to avoid overfitting on test data, and pipelines, which wrap up transformers, estimators, and cross-validation together. If you want to learn more about Scikit-learn, you can find great tutorials at https://scikit-learn.org/stable/.

Summary

Many of the algorithms used to create machine learning models are represented in the major Python machine learning libraries. TensorFlow is a deep learning library created by Google. PyTorch is a library built on Torch by Facebook. Scikit-learn is a popular library for getting started with machine learning. It has modules and functions to perform the steps involved in creating and analyzing a model.

Questions

1. In which step of training a supervised estimator would a Scikit-learn transformer be useful?

2. Why is it important to separate training data and test data in machine learning?

3. After you have transformed your data and trained your model, what should you do next?

12

Natural Language Toolkit

One of the first things taught in introductory statistics textbooks is that correlation is not causation. It is also one of the first things forgotten.

Thomas Sowell

In This Chapter

	Introduction to the NLTK package

	Accessing and loading sample texts

	Using frequency distributions

	Text objects

	Classifying text

Using a computer to derive insights into text is incredibly useful. The subset of data science that addresses deriving insights into text is called natural language processing. The Natural Language Toolkit (NLTK) is a Python package for all things language processing. This chapter takes a quick look at this powerful package.

NLTK Sample Texts

The NLTK package offers sample texts from many sources that you can download and then use to explore language processing. Project Gutenberg is a project that puts copies of books online (see http://www.gutenberg.org). It is comprised largely of books in the public domain. A subset of this collection is available for download for use with NLTK. You can use the nltk.download() function to download the data into the nltk_data/corpora directory in your home directory:

Click here to view code image

import nltk

nltk.download('gutenberg')

[nltk_data] Downloading package gutenberg to

[nltk_data] /Users/kbehrman/nltk_data...

[nltk_data] Unzipping corpora/gutenberg.zip.

True

You can then import the data into your Python session as a corpus reader object:

Note

Each corpus reader is designed to read a specific collection of texts provided by NLTK.

Click here to view code image

from nltk.corpus import gutenberg

gutenberg

<PlaintextCorpusReader in '/Users/kbehrman/nltk_data/corpora/gutenberg'>

There are corpus readers for different types of text sources. This example uses PlaintextCorpusReader, which is designed for plaintext. You can list the individual texts by using the fileids() method, which lists the filenames that can be used to load the texts:

Click here to view code image

gutenberg.fileids()

['austen-emma.txt',

 'austen-persuasion.txt',

 'austen-sense.txt',

 'bible-kjv.txt',

 'blake-poems.txt',

 'bryant-stories.txt',

 'burgess-busterbrown.txt',

 'carroll-alice.txt',

 'chesterton-ball.txt',

 'chesterton-brown.txt',

 'chesterton-thursday.txt',

 'edgeworth-parents.txt',

 'melville-moby_dick.txt',

 'milton-paradise.txt',

 'shakespeare-caesar.txt',

 'shakespeare-hamlet.txt',

 'shakespeare-macbeth.txt',

 'whitman-leaves.txt']

The corpus reader has different methods for reading the text. You can load the text broken into individual words, sentences, or paragraphs. Listing 12.1 loads the text to William Shakespeare’s Julius Caesar in all three formats.

Listing 12.1 Loading Text

Click here to view code image

caesar_w = gutenberg.words('shakespeare-caesar.txt') # List of words

caesar_w

['[', 'The', 'Tragedie', 'of', 'Julius', 'Caesar', ...]

nltk.download('punkt') # Download tokenizer used to define sentence endings

[nltk_data] Downloading package punkt to /Users/kbehrman/nltk_data...

[nltk_data] Unzipping tokenizers/punkt.zip.

True

caesar_s = gutenberg.sents('shakespeare-caesar.txt') # List of sentences

caesar_s

[['[', 'The', 'Tragedie', 'of', 'Julius', 'Caesar', 'by', 'William',

 'Shakespeare', '1599', ']'], ['Actus', 'Primus', '.'], ...]

caesar_p = gutenberg.paras('shakespeare-caesar.txt') # List of paragraphs

caesar_p

[[['[', 'The', 'Tragedie', 'of', 'Julius', 'Caesar', 'by', 'William', 'Shakespeare',

'1599', ']']], [['Actus', 'Primus', '.'], ['Scoena', 'Prima', '.']], ...]

Notice that before you can parse the text into sentences, you need to download the Punkt tokenizer. A tokenizer is used to break up, or tokenize, a piece of text. The Punkt tokenizer is used to break text into sentences. It is designed to work on texts of numerous languages.

Listing 12.2 shows how to look at the NLTK subdirectory of your home directory by using the shell command ls, which lists objects and directories. You can see that there are directories for corpora and tokenizers. In the corpora directory, you can see the downloaded collection. In the tokenizers directory, you can see the downloaded tokenizer. The punkt subdirectory contains files for each language covered.

Listing 12.2 Data Directory

Click here to view code image

!ls /root/nltk_data

corpora tokenizers

!ls /root/nltk_data/corpora

gutenberg gutenberg.zip

!ls /root/nltk_data/tokenizers

punkt punkt.zip

!ls /root/nltk_data/tokenizers/punkt

PY3 english.pickle greek.pickle russian.pickle

README estonian.pickle italian.pickle slovene.pickle

czech.pickle finnish.pickle norwegian.pickle spanish.pickle

danish.pickle french.pickle polish.pickle swedish.pickle

dutch.pickle german.pickle portuguese.pickle turkish.pickle

Frequency Distributions

You can count the number of occurrences of each word in the text by using the nltk.FreqDist class. This class has methods that let you see which words appear most frequently and the number of distinct words a text contains. (In this case, the term word refers to any piece of text that is not white space.)

FreqDist separates punctuation as separate words from other text. The following example uses FreqDist to find the most common words in the text:

Click here to view code image

caesar_dist = nltk.FreqDist(caesar_w)

caesar_dist.most_common(15)

 [(',', 2204),

 ('.', 1296),

 ('I', 531),

 ('the', 502),

 (':', 499),

 ('and', 409),

 ("'", 384),

 ('to', 370),

 ('you', 342),

 ('of', 336),

 ('?', 296),

 ('not', 249),

 ('a', 240),

 ('is', 230),

 ('And', 218)]

If you want to see the most common words without including punctuation marks, you can filter out the punctuation. The Python Standard Library string module has a punctuation attribute that you can leverage for this purpose. Listing 12.3 loops through the original words of the text. It checks whether each item is a punctuation mark, and if it is not, it adds it to a new list in the variable caesar_r. This listing also compares the lengths of the original and the filtered file and finds 4,960 punctuation marks in the text. The listing then makes a new frequency distribution to show the most common non-punctuation words.

Listing 12.3 Removing Punctuation

Click here to view code image

import string

string.punctuation # Look at the punctuation string

'!"#$%&\'()*+,-./:;<=>?@[\\]^_'{|}~'

caesar_r = []

for word in caesar_w:

 if word not in string.punctuation:

 caesar_r.append(word) # Add non-punctuation words

len(caesar_w) - len(caesar_r) # Get number punctuation words

4960

caesar_dist = nltk.FreqDist(caesar_r)

caesar_dist.most_common(15)

[('I', 531),

 ('the', 502),

 ('and', 409),

 ('to', 370),

 ('you', 342),

 ('of', 336),

 ('not', 249),

 ('a', 240),

 ('is', 230),

 ('And', 218),

 ('d', 215),

 ('in', 204),

 ('that', 200),

 ('Caesar', 189),

 ('my', 188)]

You can see in Listing 12.3 that Caesar appears in the text 189 times. The other common words do not provide much insight into the text. You might want to filter out common words such as “the” and “is”; to do so, you use the NLTK corpus named stopwords. Listing 12.4 shows how to download this corpus and filter out these words before making a new frequency distribution.

Listing 12.4 Filtering Stop Words

Click here to view code image

nltk.download('stopwords') # Download stopwords corpus

from nltk.corpus import stopwords

[nltk_data] Downloading package stopwords to

[nltk_data] /Users/kbehrman/nltk_data...

[nltk_data] Unzipping corpora/stopwords.zip.

english_stopwords = stopwords.words('english') # Load English stop words

english_stopwords[:10]

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're"]

caesar_r = []

for word in caesar_w:

 if word not in string.punctuation:

 if word.lower() not in english_stopwords:

 caesar_r.append(word) # Not punctuation and not stop words

len(caesar_w) - len(caesar_r)

14706

caesar_dist = nltk.FreqDist(caesar_r)

caesar_dist.most_common(15)

[('Caesar', 189),

 ('Brutus', 161),

 ('Bru', 153),

 ('haue', 128),

 ('shall', 107),

 ('Cassi', 107),

 ('thou', 100),

 ('Cassius', 85),

 ('Antony', 75),

 ('know', 66),

 ('Enter', 63),

 ('men', 62),

 ('vs', 62),

 ('man', 58),

 ('thee', 55)]

The list of the most common words now gives you more insight into the text: You can see which characters are mentioned the most. Not surprisingly, Caesar and Brutus are at the top of the list.

Listing 12.5 looks at some of the methods of the FreqDist class.

Listing 12.5 The FreqDist Class

Click here to view code image

caesar_dist.max() # Get the word with the most appearances

'Caesar'

caesar_dist['Cassi'] # Get the count for a particular word

107

caesar_dist.freq('Cassi') # Count of the word divided by total count

0.009616248764267098

caesar_dist.N() # Get number of words

11127

caesar_dist.tabulate(10) # Display the counts for the top 10 words

Caesar Brutus Bru haue shall Cassi thou Cassius Antony know

 189 161 153 128 107 107 100 85 75 66

FreqDist also comes with a built-in plot method. The following example plots the 10 most frequently appearing words (see Figure 12.1):

caesar_dist.plot(10)

[image: A graph plots the counts of sample words.]

A line graph represents the frequency of words. The horizontal axis represents samples. The vertical axis represents the counts and it ranges from 60 to 180, in increments of 20. The line curve traces the following points (Caesar, 189), (Brutus, 161), (Bru, 153), (haue, 128), (shall, 107), (Cassi, 107), (thou, 100), (Cassius, 85), (Antony, 75), and (know, 66).

Figure 12.1 The Ten Most Frequently Occurring Words

Text Objects

The NLTK library offers a Text class that provides functionality that is useful when you are beginning to explore a new text. The Text class takes a list of words as an argument during initialization:

Click here to view code image

from nltk.text import Text

caesar_t = Text(caesar_w)

type(caesar_t)

nltk.text.Text

The Text.concordance() method shows the context around a given word. In this example, it shows five examples of Antony in context:

Click here to view code image

caesar_t.concordance('Antony', lines=5)

Displaying 5 of 75 matches:

efulnesse . Exeunt . Enter Caesar , Antony for the Course , Calphurnia , Porti

 Of that quicke Spirit that is in Antony : Let me not hinder Cassius your de

He loues no Playes , As thou dost Antony : he heares no Musicke ; Seldome he

r ' d him the Crowne ? Cask . Why Antony Bru . Tell vs the manner of it , ge

I did not marke it . I sawe Marke Antony offer him a Crowne , yet ' twas not

The Text.collocations() method displays words that most commonly appear together:

Click here to view code image

caesar_t.collocations(num=4)

Mark Antony; Marke Antony; Good morrow; Caius Ligarius

The Text.similar() method finds words that appear in contexts similar to a given word:

Click here to view code image

caesar_t.similar('Caesar')

me it brutus you he rome that cassius this if men worke him vs feare world thee

The Text.findall() method prints text that matches a regular expression to search text. You can define the regular expression match pattern by using < and > to define word boundaries and .* as a wildcard that matches anything. The following pattern then matches all occurrences of the word O followed by any word that starts with C:

Click here to view code image

caesar_t.findall(r'<O><C.*>')

O Cicero; O Cassius; O Conspiracie; O Caesar; O Caesar; O Caesar; O

Constancie; O Caesar; O Caesar; O Caesar; O Cassius; O Cassius; O

Cassius; O Coward; O Cassius; O Clitus

The Text.dispersion_plot() method lets you compare where in a text given words occur (see Figure 12.2):

Click here to view code image

caesar_t.dispersion_plot(['Caesar', 'Antony', 'Brutus', 'Cassi'])

[image: A lexical dispersion plot is shown.]

A figure shows a lexical dispersion plot. The frequency of the plots are represented via bar-code like shapes. The horizontal axis represents word offset and it ranges from 0 to 25000, in increments of 5000. The vertical axis represents the words. The range of concentration for the words approximately are as follows. Cassi: 0 to 5000, 12000 to 14000, 18000 to 23500; Brutus: 500 to 2500, 5500 to 6500, 8000 to 25000; Antony: 10000 to 17500, 22000 to 25000; Caesar: 0 to 5000, 9500 to 17000, 22000 to 25000.

Figure 12.2 Results of the Text.dispersion_plot() Method

Classifying Text

NLTK has classifier classes that implement different algorithms for handling the labeling of text data. Generally, to create a model for classifying text, you need to prepare a set of features paired with a category or label. This section walks through a simple example using the Brown corpus that is available through NLTK (see http://korpus.uib.no/icame/brown/bcm.html). This corpus has precategorized texts.

Say that you believe you can label a paragraph from one of these texts as either editorial or fiction, based on the appearance of certain words, pointed to by the variable tell_words:

Click here to view code image

tell_words = ['american', 'city', 'congress', 'country', 'county',

 'editor', 'fact', 'government', 'national', 'nuclear',

 'party', 'peace', 'political', 'power', 'president',

 'public', 'state', 'states', 'united', 'war',

 'washington', 'world', 'big', 'church', 'every', 'eyes',

 'face', 'felt', 'found', 'god', 'hand', 'head', 'home',

 'house', 'knew', 'moment', 'night', 'room', 'seemed',

 'stood', 'think', 'though', 'thought', 'told', 'voice']

Listing 12.6 shows how to download the corpuses you will use and get paragraphs for the editorial and fiction categories.

Listing 12.6 Downloading Corpuses

Click here to view code image

nltk.download('brown') # Download the Brown corpus

[nltk_data] Downloading package brown to /Users/kbehrman/nltk_data...

[nltk_data] Unzipping corpora/brown.zip.

from nltk.corpus import brown

nltk.download('stopwords')

from nltk.corpus import stopwords

english_stopwords = stopwords.words('english')

ed_p = brown.paras(categories='editorial') # Load only editorial paragraphs

fic_p = brown.paras(categories='fiction') # Load only fiction paragraphs

print(len(ed_p))

1003

print(len(fic_p))

1043

The format of the supplied paragraphs is lists of lists, with the sublists representing sentences. For the purpose of this exercise, say that you want a set of words for each paragraph. Listing 12.7 defines a flattening method and then flattens the paragraphs in each data set.

Listing 12.7 Flattening Nested Lists

Click here to view code image

def flatten(paragraph):

 output = set([]) # Use a set as you only care about a

single occurrence of a word

 for item in paragraph:

 if isinstance(item, (list, tuple)): # Add item is a list or tuple

 output.update(item)

 else:

 output.add(item) # Add item

 return output

ed_flat = []

for paragraph in ed_p:

 ed_flat.append(flatten(paragraph)) # Flatten the editorial paragraphs

fic_flat = []

for paragraph in fic_p:

 fic_flat.append(flatten(paragraph)) # Flatten the fiction paragraphs

Next, you need to pair each paragraph with the label based on its source category. Listing 12.8 does this for both editorial and fiction texts and then shuffles the order, using the shuffle method from the random module, to ensure that the order will not influence the classifier.

Listing 12.8 Labeling Data

Click here to view code image

labeled_data = []

for paragraph in ed_flat:

 labeled_data.append((paragraph, 'editorial'))

for paragraph in fic_flat:

 labeled_data.append((paragraph, 'fiction'))

from random import shuffle

shuffle(labeled_data)

The classifier does not use the original paragraphs but rather expects a feature set. This feature set will be in the form of a dictionary that maps features to values. Listing 12.9 defines a function to create a feature dictionary whose values are set to True if a tell word is found in the paragraph and False if not. It then uses this to list paired features and labels. It splits this information into training and test data so you can train your classifier.

Listing 12.9 Defining Features

Click here to view code image

def define_features(paragraph):

 features = {}

 for tell_word in tell_words:

 features[tell_word] = tell_word in paragraph

 return features

feature_data = []

for labeled_paragraph in labeled_data:

 paragraph, label = labeled_paragraph

 feature_data.append((define_features(paragraph), label,))

train_data = feature_data[:1400]

test_data = feature_data[1400:]

Listing 12.10 shows how to train the model, using the nltk.NaiveBayesClassifier class, and use the trained model to classify an individual feature set, check which of the tell words had the most influence on the training, and then check the accuracy by using the test data.

Listing 12.10 Training and Testing the Model

Click here to view code image

bayes = nltk.NaiveBayesClassifier.train(train_data) # Train a model

bayes.classify(train_data[0][0]) # Classify one of the training set paragraphs

'fictio'

bayes.show_most_informative_features()

Most Informative Features

 knew = True fictio : editor = 22.3 : 1.0

 editor = True editor : fictio = 16.6 : 1.0

 stood = True fictio : editor = 16.0 : 1.0

 political = True editor : fictio = 14.5 : 1.0

 nuclear = True editor : fictio = 12.4 : 1.0

 government = True editor : fictio = 10.8 : 1.0

 thought = True fictio : editor = 10.2 : 1.0

 seemed = True fictio : editor = 7.0 : 1.0

 national = True editor : fictio = 6.6 : 1.0

 public = True editor : fictio = 6.5 : 1.0

nltk.classify.accuracy(bayes, test_data) # Check the accuracy

0.6842105263157895

You can see that the model is about 66% accurate in predicting the labels for the test data; this is better than a coin flip.

This example should give you a sense of using an NLTK classifier. There is much more to NLTK than you have learned about in this chapter. If you want to learn more about natural language processing using NLTK, check out the book Natural Language Processing with Python, authored by the creators of the library (see http://www.nltk.org/book).

Summary

The library NLTK contains tools for processing text and comes with sample texts that you can download and work with. The FreqDist class lets you gain insights into the frequency at which different words appear. The Text class provides a handy way to explore a new text. NLTK comes with built-in classifier classes that can be used to categorize text based on training data.

Exercises

1. Load the text Emma by Jane Austen as words, sentences, and paragraphs.

2. Count the occurrence of the word Alice in Alice in Wonderland by Lewis Carroll.

3. Use tabulate to view the top 10 words in Alice in Wonderland, excluding punctuation and stop words.

4. Find words that are similar to rabbit in Alice in Wonderland.

5. Use the corpus names to find the 10 most frequently occurring names in Hamlet.

Part III

Intermediate Python

13

Functional Programming

Controlling complexity is the essence of computer programming.

Brian Kernighan

In This Chapter

	Introduction to functional programming

	State and scope

	Functional functions

	List comprehensions

	Generators

As you have seen so far in this book, a Python program, at its most basic, is composed of a series of statements, which can be simple or compound. The way in which you organize these statements has ramifications for performance, readability, and ease of modification. Some approaches that have been widely adopted are procedural programming, functional programming, and object-oriented programming. This chapter introduces some of the concepts of functional programming, including comprehensions and generators, both of which were borrowed from purely functional languages.

Introduction to Functional Programming

Functional programming is based on the mathematical definition of functions. A function, in this sense, maps an input to an output. For any input, there can only be a single output; in other words, the output for a distinct input will always be the same. Some programming languages, such as Haskell and Erlang, adhere to this limitation strictly. Python is flexible enough that it can adopt some functional concepts without the strictness. Functional programming in Python is sometimes referred to as functional light programming.

Scope and State

The state of a program comprises names, definitions, and values that exist at a certain time in that program, including function definitions, modules imported, and values assigned to variables. State has what’s known as a scope—the area of the program for which the state holds. Scopes are hierarchical. When you indent a block of code, this code has a nested scope. It inherits scope from the unindented code around it but does not directly change the outer scope.

Listing 13.1 sets values for the variables a and b in the outer scope. Then the code block of the function sets a to a different value and prints both variables. You can see that when the function is called, it uses its own definition of the variable a but inherits that definition for b from the outer scope. In the outer scope, the value assigned by the function to a is ignored, as it is out of scope.

Listing 13.1 Inheriting Scope

Click here to view code image

a = 'a outer'

b = 'b outer'

def scoped_function():

 a = 'a inner'

 print(a)

 print(b)

scoped_function()

a inner

b outer

print(a)

a outer

print(b)

b outer

Depending on Global State

The code in this book up until now has mostly been presented using the procedural approach. In this approach, the current state is defined by the statements that have run on the lines before the present one. This state is shared through the program and modified throughout. This means that a function that uses the state to determine its output could have a different output with the same input. Let’s look at some examples contrasting the procedural approach with a functional one.

Listing 13.2 creates a function, describe_the_wind(), which returns a sentence using a variable, wind, defined in the outer scope. You can see that the output of this function will be different depending on this variable.

Listing 13.2 Depending on Outer Scope

Click here to view code image

wind = 'Southeast'

def describe_the_wind():

 return f'The wind blows from the {wind}'

describe_the_wind()

'The wind blows from the Southeast'

wind = 'North'

describe_the_wind()

'The wind blows from the North' f

A more functional approach is to pass the variable as an argument. In this way, the function will return the same value for a value passed to it, regardless of the outer state:

Click here to view code image

def describe_the_wind(wind):

 return f'The wind blows from the {wind}'

describe_the_wind('Northeast')

'The wind blows from the Northeast'

Changing State

In addition to not relying on outside state, a functional function should not directly change outside state. Listing 13.3 shows a program that changes an outer state variable, WIND, within the function change_wind(). Notice the use of the keyword global, which indicates to change an outer state variable rather than define a new variable in the inner state.

Listing 13.3 Modifying Outer Scope

Click here to view code image

WINDS = ['Northeast', 'Northwest', 'Southeast', 'Southwest']

WIND = WINDS[0]

def change_wind():

 global WIND

 WIND = WINDS[(WINDS.index(WIND) + 1)%3]

WIND

'Northeast'

change_wind()

WIND

'Northwest'

for _ in WINDS:

 print(WIND)

 change_wind()

Northwest

Southeast

Northeast

Northwest

A more functional approach to getting the same output is to move the winds variable into the inner state and have the function change_wind() take an argument to determine the output, as shown in Listing 13.4.

Listing 13.4 Not Modifying Outer Scope

Click here to view code image

def change_wind(wind_index):

 winds = ['Northeast', 'Northwest', 'Southeast', 'Southwest']

 return winds[wind_index]

print(change_wind(0))

Northeast

print(change_wind(1))

Northwest

print(change_wind(2))

Southeast

print(change_wind(3))

Southwest

Changing Mutable Data

A more subtle way of changing outside state is by passing mutable objects. Remember that mutable objects are objects, such as lists and dictionaries, whose contents can be changed. If you set a variable in an outer state, pass it as an argument to a function, and then change its value in the function’s inner state, the outer state version of the variable will retain its original value. Here is an example:

Click here to view code image

b = 1

def foo(a):

 a = 2

foo(b)

print(b)

1

However, if you pass a mutable object, such as a dictionary, as an argument to a function, any change made to that object in the function will be reflected in the outer state as well. The following example defines a function that takes a dictionary as an argument and changes one of its values:

Click here to view code image

d = {"vehicle": "ship", "owner": "Joseph Bruce Ismay"}

def change_mutable_data(data):

 '''A function which changes mutable data.'''

 data['owner'] = 'White Star Line'

change_mutable_data(d)

print(d)

{'vehicle': 'ship', 'owner': 'White Star Line'}

You can see that the dictionary, d, when passed to this function, had its value changed in the outer state.

Changing the outside scope of mutable objects in this manner can lead to subtle bugs. One way to avoid this, if your data structure isn’t too big, is to make a copy in the inner scope, and manipulate the copy:

Click here to view code image

d = {"vehicle": "ship", "owner": "Joseph Bruce Ismay"}

def change_owner(data):

 new_data = data.copy()

 new_data['owner'] = 'White Star Line'

 return new_data

changed = change_owner(d)

changed

{'owner': 'White Star Line', 'vehicle': 'ship'}

By working on the copy, it is much easier to see where the values are changed.

Functional Programming Functions

Three built-in Python functions that come from the functional programming world are map(), filter(), and reduce().

The map() function applies to a sequence of values and returns a map object. The input sequence can be any iterable type—that is, any object that can be iterated, such as a Python sequence. The map object returned is an iterable also, so you can loop through it or cast it to a list to view the results:

Click here to view code image

def grow_flowers(d):

 return d * "❀"

gardens = map(grow_flowers, [0,1,2,3,4,5])

type(gardens)

map

list(gardens)

['', '❀', '❀❀', '❀❀❀', '❀❀❀❀', '❀❀❀❀❀']

You can supply map() with a function that takes multiple arguments and supply multiple sequences of input values:

Click here to view code image

l1 = [0,1,2,3,4]

l2 = [11,10,9,8,7,6]

def multi(d1, d2):

 return d1 * d2

result = map(multi, l1, l2)

print(list(result))

 [0, 10, 18, 24, 28]

Notice in this example that one of the input sequences is longer than the other. The map() function stops when it reaches the end of the shortest input sequence.

The reduce() function also takes a function and an iterable as arguments. It then uses the function to return a single value, based on the input. For example, if you want to subtract an amount from an account balance, you can do it with a for loop, like this:

Click here to view code image

initial_balance = 10000

debits = [20, 40, 300, 3000, 1, 234]

balance = initial_balance

for debit in debits:

 balance -= debit

balance

6405

You could achieve the same result by using the reduce() function, like this:

Click here to view code image

from functools import reduce

inital_balance = 10000

debits = [20, 40, 300, 3000, 1, 234]

def minus(a, b):

 return a - b

balance = reduce(minus, debits, initial_balance)

balance

6405

The operator module provides all the standard operators as functions, including functions for the standard mathematical operations. You can use the operator.sub() function as an argument to reduce() as a replacement for the minus() function:

Click here to view code image

from functools import reduce

import operator

initial_balance = 10000

debits = [20, 40, 300, 3000, 1, 234]

reduce(operator.sub, debits, initial_balance)

6405

The filter() function takes a function and an iterable as arguments. The function should return True or False, based on each item. The result is an iterable object of only input values that causes the function to return True. For example, to get only the capital letters from a string, you can define a function that tests whether a character is capitalized and pass it and the string to filter():

Click here to view code image

charles = 'ChArlesTheBald'

def is_cap(a):

 return a.isupper()

retval = filter(is_cap, charles)

list(retval)

['C', 'A', 'T', 'B']

One of the few times I really recommend using lambda functions is when you’re using the map(), filter(), and reduce() functions. When you are doing a simple comparison—such as for all the numbers less than 10 and greater than 3—you can use a lambda function and range() in a clean and easy-to-read way:

Click here to view code image

nums = filter(lambda x: x > 3, range(10))

list(nums)

 [4, 5, 6, 7, 8, 9]

List Comprehensions

List comprehensions are syntax borrowed from the functional programming language Haskell (see https://docs.python.org/3/howto/functional.html). Haskell is a fully functional programming language implemented with syntax that lends itself to a purely functional approach. You can think of a list comprehension as a one-line for loop that returns a list. Although the source of list comprehensions is in functional programming, their use has become standard in all Python approaches.

List Comprehension Basic Syntax

The basic syntax for a list comprehension is as follows:

Click here to view code image

[\<item returned\> for \<source item\> in \<iterable\>]

For example, given a list of names for which you want to change the names to title capitalization (so that the first letter is uppercase), you use x.title() as the item returned and each name as a source item:

Click here to view code image

names = ['tim', 'tiger', 'tabassum', 'theodora', 'tanya']

capd = [x.title() for x in names]

capd

['Tim', 'Tiger', 'Tabassum', 'Theodora', 'Tanya']

This would be the equivalent process using a for loop:

Click here to view code image

names = ['tim', 'tiger', 'tabassum', 'theodora', 'tanya']

capd = []

for name in names:

 capd.append(name.title())

capd

['Tim', 'Tiger', 'Tabassum', 'Theodora', 'Tanya']

Replacing map and filter

You can use list comprehensions as replacements for the map() and filter() functions. For example, the following code maps the numbers 0 through 5, with a function that inserts them into a string:

Click here to view code image

def count_flower_petals(d):

 return f"{d} petals counted so far"

counts = map(count_flower_petals, range(6))

list(counts)

['0 petals counted so far',

 '1 petals counted so far',

 '2 petals counted so far',

 '3 petals counted so far',

 '4 petals counted so far',

 '5 petals counted so far']

You can replace this code with the following much simpler list comprehension:

Click here to view code image

[f"{x} petals counted so far" for x in range(6)]

['0 petals counted so far',

 '1 petals counted so far',

 '2 petals counted so far',

 '3 petals counted so far',

 '4 petals counted so far',

 '5 petals counted so far']

You can also add a conditional to a list comprehension, using the following syntax:

Click here to view code image

[\<item returned\> for \<source item\> in \<iterable\> if \<condition\>]

By using a conditional, you can easily duplicate the functionality of the filter() function. For instance, the following filter() example returns only uppercase letters:

Click here to view code image

characters = ['C', 'b', 'c', 'A', 'b', 'P', 'g', 'S']

def cap(a):

 return a.isupper()

retval = filter(cap, characters)

list(retval)

['C', 'A', 'P', 'S']

You can replace this function with the following list comprehension that uses a conditional:

Click here to view code image

characters = ['C', 'b', 'c', 'A', 'b','P', 'g', 'S']

[x for x in characters if x.isupper()]

['C', 'A', 'P', 'S']

Multiple Variables

If the items in a source iterable are sequences, you can unpack them by using multiple variables:

Click here to view code image

points = [(12, 3), (-1, 33), (12, 0)]

[f'x: {x} y: {y}' for x, y in points]

['x: 12 y: 3', 'x: -1 y: 33', 'x: 12 y: 0']

You can perform the equivalent of nested for loops by using multiple for statements in the same list comprehensions:

Click here to view code image

list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]

[x for y in list_of_lists for x in y]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Dictionary Comprehensions

Dictionary comprehensions use a syntax similar to that of list comprehensions. However, whereas you append a single value to a list, you add a key/value pair to a dictionary. This example uses the values in two lists to construct a dictionary:

Click here to view code image

names = ['James', 'Jokubus', 'Shaemus']

scores = [12, 33, 23]

{ name:score for name in names for score in scores}

{'James': 23, 'Jokubus': 23, 'Shaemus': 23}

Generators

One of the big advantages of using a range object over using a list when dealing with big numeric ranges is that the range object calculates results as you request them. This means that its memory footprint is consistently small. Generators let you use your own calculations to create values on demand, working in a similar way to range objects.

Generator Expressions

One way to create generators is through generator expressions, which use the same syntax as list comprehensions except that the enclosing square brackets are replaced with parentheses. This example shows how to create a list and a generator based on the same calculation and print them:

Click here to view code image

l_ten = [x**3 for x in range(10)]

g_ten = (x**3 for x in range(10))

print(f"l_ten is a {type(l_ten)}")

l_ten is a <class 'list'>

print(f"l_ten prints as: {l_ten}")

l_ten prints as: [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

print(f"g_ten is a {type(g_ten)}")

g_ten is a <class 'generator'>

print(f"g_ten prints as: {g_ten}")

g_ten prints as: <generator object <genexpr> at 0x7f3704d52f68>

When you print the list, you can see its contents; this is not the case with the generator. To get a value from a generator, you have to request the next value, which you can do by using the next() function:

next(g_ten)

0

Or, more commonly, you can iterate through a generator in a for loop:

Click here to view code image

for x in g_ten:

 print(x)

1

8

27

64

125

216

343

512

729

Because generators only generate values on demand, there is no way to index or slice them:

Click here to view code image

g_ten[3]

TypeError Traceback (most recent call last)

<ipython-input-6-e7b8f961aa33> in <module>()

 1

----> 2 g_ten[3]

TypeError: 'generator' object is not subscriptable

One of the important advantages of generators over lists is their memory footprint. The following examples use the sys.getsizeof() function to compare the sizes of a list and a generator:

Click here to view code image

import sys

x = 100000000

l_big = [x for x in range(x)]

g_big = (x for x in range(x))

print(f"l_big is {sys.getsizeof(l_big)} bytes")

l_big is 859724472 bytes

print(f"g_big is {sys.getsizeof(g_big)} bytes")

g_big is 88 bytes

Generator Functions

You can use generator functions to create complex generators. Generator functions look like normal functions but with the return statement replaced with a yield statement. The generator keeps its own internal state, returning values as requested:

Click here to view code image

def square_them(numbers):

 for number in numbers:

 yield number * number

s = square_them(range(10000))

print(next(s))

0

print(next(s))

1

print(next(s))

4

print(next(s))

9

An additional advantage of generators over lists is the ability to create an infinite generator—that is, a generator with no end. An infinite generator returns as many values as requested. For example, you can make a generator that increments a number as many times as you like:

Click here to view code image

def counter(d):

 while True:

 d += 1

 yield d

c = counter(10)

print(next(c))

11

print(next(c))

12

print(next(c))

13

Listing 13.5 chains together four generators. This is a useful way to keep each generator understandable, while still harnessing the just-in-time calculations of the generators.

Listing 13.5 Generator Pipeline

Click here to view code image

evens = (x*2 for x in range(5000000))

three_factors = (x//3 for x in evens if x%3 == 0)

titles = (f"this number is {x}" for x in three_factors)

capped = (x.title() for x in titles)

print(f"The first call to capped: {next(capped)}")

The first call to capped: This Number Is 0

print(f"The second call to capped: {next(capped)}") The second call to capped: This

Number Is 2

print(f"The third call to capped: {next(capped)}")

The third call to capped: This Number Is 4

Using generators is a great way to make your code performant. You should consider using them whenever you are iterating through a long sequence of calculated values.

Summary

Functional programming is an approach to organizing programs that is useful for designing software that can be run concurrently. It is based on the idea that a function’s inner state should be changed by or should change the outer state of the code calling it. A function should always return the same value for a given input. Three built-in Python functions that come from the functional programming world are map(), filter(), and reduce(). Using list comprehensions and generators are both very Pythonic ways of creating sequences of values. Using generators is recommended when you’re iterating through any large number of values or when you don’t know how many values you need.

Questions

1. What would the following code print?

Click here to view code image

a = 1

b = 2

def do_something(c):

 c = 3

 a = 4

 print(a)

 return c

b = do_something(b)

print(a + b)

2. Use the map() function to take the string 'omni' and return the list ['oo','mm', 'nn', 'ii'].

3. Use the sum() function, which sums the contents of a sequence, with a list comprehension to find the summation of the positive even numbers below 100.

4. Write a generator expression that returns cubed numbers up to 1,000.

5. A Fibonacci sequence starts with 0 and 1, and every subsequent number is the sum of the previous two numbers. Write a generator function that calculates a Fibonacci sequence.

14

Object-Oriented Programming

Any fool can write code that a computer can understand. Good programmers write code that humans can understand.

Martin Fowler

In This Chapter

	Linking state and function

	Classes and objects

	Special functions

	Class inheritance

The object-oriented approach to programming is one of the most popular approaches. It is an approach that tries to model objects and their relationships by combining functionality and data. If you think of modeling a car in code, the object-oriented approach is to have both methods that take actions such as accelerating or breaking as well as data such as the amount of fuel in the gas tank attached to the same object. Other approaches would keep the data (the gas level, in this case) separate from the function definitions, perhaps passing the data as arguments to the functions. The big advantage of the object-oriented approach is the ability to make human-understandable representations of complex systems.

Grouping State and Function

Unlike the functional approach, object-oriented programming bundles data and functionality together into bundles known as objects. It can be argued that everything in Python is an object; even basic types have methods as well as data. For example, an int object doesn’t just hold a value; it also has methods. One of these methods is the to_bytes() method, which converts values to their bytes representations:

Click here to view code image

my_num = 13

my_num.to_bytes(8, 'little')

b'\r\x00\x00\x00\x00\x00\x00\x00'

More complex data types, such as lists, strings, dictionaries, and Pandas DataFrames, all combine data and functionality. In Python, a function that is attached to an object is referred to as a method. The power in Python’s object-oriented capabilities is that you can use objects from provided libraries, and you can also design your own objects.

Classes and Instances

Objects are defined by classes. Think of a class as a template for an object. When you instantiate a class, you get an object of that class type. The syntax for creating a basic class definition is as follows:

Click here to view code image

class <class name>():

 <statement>

You can use a pass statement to define a simple class that does nothing:

class DoNothing():

 pass

The syntax for instantiating a class is as follows:

<class name>()

So, to create an instance named do_nothing from the DoNothing class, you would instantiate the object like this:

do_nothing = DoNothing()

If you check the type of this object:

Click here to view code image

type(do_nothing)

__main__.DoNothing

you see that it is a new type, defined by the DoNothing class. You can confirm this by using the built-in isinstance() function, which tests if an object is an instance of a particular class:

Click here to view code image

isinstance(do_nothing, DoNothing)

True

The most common way to define a method attached to a class is to indent the function definition to the inner scope of the class, using this syntax:

Click here to view code image

class <CLASS NAME>():

 def <FUNCTION NAME>():

 <STATEMENT>

The first argument to the function is the instance from which it is called. By convention, this is named self. The following example defines a class, DoSomething, with the method return_self(), which returns self, and then makes an instance and demonstrates that the return value of return_self() is in fact the instance itself:

Click here to view code image

class DoSomething():

 def return_self(self):

 return self

do_something = DoSomething()

do_something == do_something.return_self()

True

Note

Although you are required to have self as a parameter in the method definition, when you call the method, you don’t specify self, as it is passed automatically behind the scenes.

Outside of the self parameter, you can define methods just as you would other functions. You can also use the self object to create and access object variables within the class definition by using this syntax:

self.<VARIABLE NAME>

In a similar way, methods and attributes will be attached to the object instantiated from the class:

Click here to view code image

class AddAttribute():

 def add_score(self):

 self.score = 14

add_attribute = AddAttribute()

add_attribute.add_score()

add_attribute.score

14

To call one method from another in the same class, you use the following syntax:

self.<METHOD NAME>

Listing 14.1 demonstrates how to call one method from another in the same class.

Listing 14.1 Calling Methods Internally

Click here to view code image

class InternalMethodCaller():

 def method_one(self):

 print('Calling method one')

 def method_two(self, n):

 print(f'Method two calling method one {n} times')

 for _ in range(n):

 self.method_one()

internal_method_caller = InternalMethodCaller()

internal_method_caller.method_one()

Calling method one

internal_method_caller.method_two(2)

Method two calling method one 2 times

Calling method one

Calling method one

Private Methods and Variables

The methods and variables of an object are accessible to anyone who has access to that object. The methods and variables you have seen so far are known as public because they represent data and functionality that are meant to be used directly. Sometimes in the process of defining a class, you need to define variables or methods that you do not want to be used directly. These are known as private attributes, and their implementation details could change as a class evolves. Private attributes are used by public methods internally. Python does not have a mechanism to prevent access to private attributes, but a private attribute’s name typically begins with an underscore, as shown in the following example:

Click here to view code image

class PrivatePublic():

 def _private_method(self):

 print('private')

 def public_method(self):

 # Call private

 self._private_method()

 # ... Do something else

Class Variables

Variables you define by using the syntax self.<VARIABLE NAME> are known as instance variables. These variables are bound to the individual instances of a class. Each instance can have a different value for its instance variables. You can also bind variables to a class. These class variables are shared by all instances of that class. Listing 14.2 demonstrates a class with both a class variable and an instance variable. The two instances of this class share the data of the class variable, but have unique values for the instance variable. Notice that the class variable is not attached to the instance object, self.

Listing 14.2 Class and Instance Variables

Click here to view code image

class ClassyVariables():

 class_variable = 'Yellow'

 def __init__(self, color):

 self.instance_variable = color

red = ClassyVariables('Red')

blue = ClassyVariables('Blue')

red.instance_variable

'Red'

red.class_variable

'Yellow'

blue.class_variable

'Yellow'

blue.instance_variable

'Blue'

Special Methods

In Python, some special method names are reserved for certain functionality. These include methods for operator and container functionality as well as object initialization. The most frequently used of these methods is the __init__() method, which is called every time an object is instantiated. It is generally used to set up initial attribute values for an object. Listing 14.3 defines a class, Initialized, with an __init__() method, which takes an extra parameter, n. When you instantiate an instance of this class, you must supply a value for this parameter, and it is then assigned to the variable count. This variable can then be accessed by other methods in the class as self.count or from the instantiated object as <object>.<attribute>.

Listing 14.3 The __init__ Method

Click here to view code image

class Initialized():

 def __init__(self, n):

 self.count = n

 def increment_count(self):

 self.count += 1

initialized = Initialized(2)

initialized.count

2

initialized.increment_count()

initialized.count

3

Representation Methods

The methods __repr__() and __str__() are used to control how an object is represented. The __repr__() method is meant to give a technical description of an object. Ideally this description includes the information necessary to re-create the object. This is the representation you see if you use an object as a statement. The __str__() method is meant to define a less strict but more human-friendly representation. This is the output when you cast an object to a string, as is done automatically by the print() function. Listing 14.4 shows both __repr__() and __str__() in use.

Listing 14.4 __repr__ and __str__

Click here to view code image

class Represented():

 def __init__(self, n):

 self.n = n

 def __repr__(self):

 return f'Represented({self.n})'

 def __str__(self):

 return 'Object demonstrating __str__ and __repr__'

represented = Represented(13)

represented

Represented(13)

r = eval(represented.__repr__())

type(r)

__main__.Represented

r.n

13

str(represented)

'Object demonstrating __str__ and __repr__'

print(represented)

Object demonstrating __str__ and __repr__

Rich Comparison Methods

Rich comparison methods are used to define how an object will behave when used with Python’s built-in operators. Listing 14.5 shows how to define methods for the various comparison operators. The CompareMe class uses the variable score to determine comparisons, and it falls back to the variable time only when necessary.

Listing 14.5 Comparison Methods

Click here to view code image

class CompareMe():

 def __init__(self, score, time):

 self.score = score

 self.time = time

 def __lt__(self, O):

 """ Less than"""

 print('called __lt__')

 if self.score == O.score:

 return self.time > O.time

 return self.score < O.score

 def __le__(self, O):

 """Less than or equal"""

 print('called __le__')

 return self.score <= O.score

 def __eq__(self, O):

 """Equal"""

 print('called __eq__')

 return (self.score, self.time) == (O.score, O.time)

 def __ne__(self, O):

 """Not Equal"""

 print('called __ne__')

 return (self.score, self.time) != (O.score, O.time)

 def __gt__(self, O):

 """Greater Than"""

 print('called __gt__')

 if self.score == O.score:

 return self.time < O.time

 return self.score > O.score

 def __ge__(self, O):

 """Greater Than or Equal"""

 print('called __ge__')

 return self.score >= O.score

Listing 14.6 instantiates the CompareMe class with some different values and then tests some of the comparison operators.

Listing 14.6 Trying Operators

Click here to view code image

high_score = CompareMe(100, 100)

mid_score = CompareMe(50, 50)

mid_score_1 = CompareMe(50, 50)

low_time = CompareMe(100, 25)

high_score > mid_score

called __gt__

True

high_score >= mid_score_1

called __ge__

True

high_score == low_time

called __eq__

False

mid_score == mid_score_1

called __eq__

True

low_time > high_score

called __gt__

True

It is possible to define comparisons that compare an attribute to an object. Listing 14.7 creates a class that directly compares its score attribute to another object. This lets you compare an object to any other type that is comparable to an int. (For the sake of brevity, this listing implements only the less-than and equals methods.)

Listing 14.7 Comparing to an Object

Click here to view code image

class ScoreMatters():

 def __init__(self, score):

 self.score = score

 def __lt__(self, O):

 return self.score < O

 def __eq__(self, O):

 return self.score == O

my_score = ScoreMatters(14)

my_score == 14.0

True

my_score < 15

True

It is important not to define confusing or illogical comparisons in Python code. You need to keep the end user in mind in these definitions. For example, Listing 14.8 defines a class that is always bigger than anything it is compared to—even itself. This would probably lead to confusion for an end user of the class.

Listing 14.8 A Confusingly Big Class

Click here to view code image

class ImAllwaysBigger():

 def __gt__(self, O):

 return True

 def __ge__(self, O):

 return True

i_am_bigger = ImAllwaysBigger()

no_i_am_bigger = ImAllwaysBigger()

i_am_bigger > "Anything"

True

i_am_bigger > no_i_am_bigger

True

no_i_am_bigger > i_am_bigger

True

i_am_bigger > i_am_bigger

True

Math Operator Methods

There are special Python methods for math operations. Listing 14.9 defines a class that implements methods for the +, -, and * operators. This class returns new objects based on its .value variable.

Listing 14.9 Selected Math Operations

Click here to view code image

class MathMe():

 def __init__(self, value):

 self.value = value

 def __add__(self, O):

 return MathMe(self.value + O.value)

 def __sub__(self, O):

 return MathMe(self.value - O.value)

 def __mul__(self, O):

 return MathMe(self.value * O.value)

m1 = MathMe(3)

m2 = MathMe(4)

m3 = m1 + m2

m3.value

7

m4 = m1 - m3

m4.value

-4

m5 = m1 * m3

m5.value

21

There are many more special methods, including methods for bitwise operations and for defining container-like objects that support slicing. For a full list of special methods, see https://docs.python.org/3/reference/datamodel.html#special-method-names.

Inheritance

One of the most important and powerful concepts in object-oriented programming is inheritance. With inheritance, a class declares another class or classes as a parent(s). The child can use the methods and variables from its parents as if they were declared in its definition. Listing 14.10 defines a class, Person, and then uses it as a parent class for another class, Student.

Listing 14.10 Basic Inheritance

Click here to view code image

class Person():

 def __init__(self, first_name, last_name):

 self.first_name = first_name

 self.last_name = last_name

class Student(Person):

 def introduce_yourself(self):

 print(f'Hello, my name is {self.first_name}')

barb = Student('Barb', 'Shilala')

barb.first_name

'Barb'

barb.introduce_yourself()

Hello, my name is Barb

Notice that the method Student.introduce_yourself() uses the variable Person.first_name as if it were declared as part of the Student class. If you check the type of the instance, you see that it is Student:

type(barb)

__main__.Student

Importantly, if you use the isinstance() function, you can see that the instance is both an instance of the Student class:

isinstance(barb, Student)

True

and an instance of the Person class:

isinstance(barb, Person)

True

Inheritance is useful when you are writing code that expects some shared behaviors across classes. For example, if you are implementing a job orchestration system, you might expect that every type of job has a run() method. Instead of testing for every possible job type, you can just define a parent class with a run() method. Any job that inherits from, and is therefore an instance of, the parent class will have the run() method defined, as shown in Listing 14.11.

Listing 14.11 Testing for a Base Class

Click here to view code image

class Job():

 def run(self):

 print("I'm running")

class ExtractJob(Job):

 def extract(self, data):

 print('Extracting')

class TransformJob(Job):

 def transform(self, data):

 print('Transforming')

job_1 = ExtractJob()

job_2 = TransformJob()

for job in [job_1, job_2]:

 if isinstance(job, Job):

 job.run()	

I'm running

I'm running

If a child class defines a variable or method with the same name as is defined in its parent, instances of the child will use the child’s definition. For example, say that you define a parent class with a run() method:

Click here to view code image

class Parent():

 def run(self):

 print('I am a parent running carefully')

Also say that you define a child class that redefines the method:

Click here to view code image

class Child(Parent):

 def run(self):

 print('I am a child running wild')

Instances of the child will then use the child class’s definition:

Click here to view code image

chile = Child()

chile.run()

I am a child running wild

There are times when it is useful to call a parent class’s method explicitly. For example, it is not unusual to call a parent class’s __init__() method from within the child class’s __init__() method. The super() function accesses the parent class and its attributes. The following example uses super() to call Person.__init__() from the child class Student:

Click here to view code image

class person():

 def __init__(self, first_name, last_name):

 self.first_name = first_name

 self.last_name = last_name

class student(person):

 def __init__(self, school_name, first_name, last_name):

 self.school_name = school_name

 super().__init__(first_name, last_name)

lydia = student('boxford', 'lydia', 'smith')

lydia.last_name

'smith'

Inheritance is not limited to one parent or one level. A class can inherit from a class, which itself inherits from another class:

Click here to view code image

class A():

 pass

class B(A):

 pass

class C(B):

 pass

c = C()

isinstance(c, B)

True

isinstance(c, A)

True

A class can also inherit from multiple parents:

Click here to view code image

class A():

 def a_method(self):

 print(A's method)

class B():

 def b_method(self):

 print(B's method)

class C(A, B):

 pass

c = C()

c.a_method()

A's method

c.b_method()

B's method

Note

In general, I advise against constructing overly complex inheritance trees when possible. Complex inheritance can become very difficult to debug as you trace the interactions between variables and methods defined through the tree.

Note

There has been much writing on object-oriented design. I recommend researching it further before embarking on a large object-oriented project to avoid unnecessary pitfalls.

Summary

Object-oriented programming involves grouping data and functionality in objects that are defined by classes. Special methods let you define classes that will work with Python’s operators and classes, which implement container behavior. Classes can inherit definitions from other classes.

Questions

1. What does the variable self represent in a class definition?

2. When is the __init__() special method called?

3. Given the following class definition:

Click here to view code image

class Confuzed():

 def __init__(self, n):

 self.n = n

 def __add__(self, O):

 return self.n – O

what result would you expect from the following?

c = Confuzed(12)

c + 12

4. What will be the output of the following code?

Click here to view code image

class A():

 def say_hello(self):

 print('Hello from A')

 def say_goodbye(self):

 print('Goodbye from A')

class B(A):

 def say_goodbye(self):

 print('Goodbye from B')

b = B()

b.say_hello()

b.say_goodbye()

15

Other Topics

The most important property of a program is whether it accomplishes the intention of its user.

C.A.R. Hoare

In This Chapter

	Sorting lists

	Reading and writing files

	datetime objects

	Regular expressions

This chapter covers some Python Standard Library components that are powerful tools for both data science and general Python use. It starts with various ways to sort data and then moves to reading and writing files using context managers. Next, this chapter looks at representing time with datetime objects. Finally, this chapter covers searching text using the powerful regular expression library. It is important to have at least a high-level understanding of these topics as they are all highly leveraged in production programming. This chapter should give you enough familiarity with these topics that you will understand them when you need them.

Sorting

Some Python data structures, such as lists, NumPy arrays and Pandas DataFrames, have built-in sorting capabilities. You can use these data structures out of the box or customize them with your own sorting functions.

Lists

For Python lists you can use the built-in sort() method, which sorts a list in place. For example, say that you define a list of strings representing whales:

Click here to view code image

whales = ['Blue', 'Killer', 'Sperm', 'Humpback', 'Beluga', 'Bowhead']

If you now use this list’s sort() method as follows:

whales.sort()

you see that the list is now sorted alphabetically:

Click here to view code image

whales

['Beluga', 'Blue', 'Bowhead', 'Humpback', 'Killer', 'Sperm']

This method does not return a copy of the list. If you capture the return value, you see that it is None:

Click here to view code image

return_value = whales.sort()

print(return_value)

None

If you want to create a sorted copy of a list, you can use Python’s built-in sorted() function, which returns a sorted list:

Click here to view code image

sorted(whales)

['Beluga', 'Blue', 'Bowhead', 'Humpback', 'Killer', 'Sperm']

You can use sorted() on any iterable, including lists, strings, sets, tuples, and dictionaries. Regardless of the iterable type, this function returns a sorted list. If you call it on a string, it returns a sorted list of the string’s characters:

Click here to view code image

sorted("Moby Dick")

[' ', 'D', 'M', 'b', 'c', 'i', 'k', 'o', 'y']

Both the list.sort() method and the sorted() function take an optional reverse parameter, which defaults to False:

Click here to view code image

sorted(whales, reverse=True)

['Blue', 'Sperm', 'Beluga', 'Killer', 'Bowhead', 'Humpback']

Both list.sort() and sorted() also take an option key argument that is used to define how the sorting should be defined. To sort whales using the length of the strings, for example, you can define a lambda that returns the string length and pass it as the key:

Click here to view code image

sorted(whales, key=lambda x: len(x))

['Blue', 'Sperm', 'Beluga', 'Killer', 'Bowhead', 'Humpback']

You can also define more complex key functions. The following example shows how to define a function that returns the length of a string, unless that string is 'Beluga', in which case it returns 1. This means that as long as the other strings have a length greater than 1, the key function will sort the list by string length, except for 'Beluga', which is placed first:

Click here to view code image

def beluga_first(item):

 if item == 'Beluga':

 return 1

 return len(item)

sorted(whales, key=beluga_first)

['Beluga', 'Blue', 'Sperm', 'Killer', 'Bowhead', 'Humpback']

You can also use sorted() with classes that you define. Listing 15.1 defines the class Food and instantiates four instances of it. It then sorts the instances by using the attribute rating as a sort key.

Listing 15.1 Sorting Objects Using a Lambda

Click here to view code image

class Food():

 def __init__(self, rating, name):

 self.rating = rating

 self.name = name

 def __repr__(self):

 return f'Food({self.rating}, {self.name})'

foods = [Food(3, 'Bannana'),

 Food(9, 'Orange'),

 Food(2, 'Tomato'),

 Food(1, 'Olive')]

foods

[Food(3, Bannana), Food(9, Orange), Food(2, Tomato), Food(1, Olive)]

sorted(foods, key=lambda x: x.rating)

[Food(1, Olive), Food(2, Tomato), Food(3, Bannana), Food(9, Orange)]

If you call sorted() on a dictionary, it will return a sorted list of the dictionary’s key names. As of Python 3.7 (see https://docs.python.org/3/whatsnew/3.7.html), dictionary keys appear in the order in which they were inserted into the dictionary. Listing 15.2 creates a dictionary of whale weights based on data from https://www.whalefacts.org/how-big-are-whales/. It prints the dictionary keys to demonstrate that they retain the order in which they were inserted. You then use sorted() to get a list of key names sorted alphanumerically and print out the whale names and weights, in order.

Listing 15.2 Sorting Dictionary Keys

Click here to view code image

weights = {'Blue': 300000,

 'Killer': 12000,

 'Sperm': 100000,

 'Humpback': 78000,

 'Beluga': 3500,

 'Bowhead': 200000 }

for key in weights:

 print(key)

Blue

Killer

Sperm

Humpback

Beluga

Bowhead

sorted(weights)

['Beluga', 'Blue', 'Bowhead', 'Humpback', 'Killer', 'Sperm']

for key in sorted(weights):

 print(f'{key} {weights[key]}')

Beluga 3500

Blue 300000

Bowhead 200000

Humpback 78000

Killer 12000

Sperm 100000

Pandas DataFrames have a sorting method, .sort_values(), which takes a list of column names that can be sorted (see Listing 15.3).

Listing 15.3 Sorting Pandas DataFrames

Click here to view code image

import pandas as pd

data = {'first': ['Dan', 'Barb', Bob'],

 'last': ['Huerando', 'Pousin', 'Smith'],

 'score': [0, 143, 99]}

df = pd.DataFrame(data)

df

 first last score

0 Dan Huerando 0

1 Bob Pousin 143

2 Bob Smith 99

df.sort_values(by=['last','first'])

 first last score

0 Bob Pousin 143

1 Bob Smith 99

2 Dan Huerando 0

Reading and Writing Files

You have already seen that Pandas can read various files directly into a DataFrame. At times, you will want to read and write file data without using Pandas. Python has a built-in function, open(), that, given a path, will return an open file object. The following example shows how I open a configuration file from my home directory (although you can use any file path the same way):

Click here to view code image

read_me = open('/Users/kbehrman/.vimrc')

read_me

<_io.TextIOWrapper name='/Users/kbehrman/.vimrc' mode='r' encoding='UTF-8'>

You can read a single line from a file object by using the .readline() method:

Click here to view code image

read_me.readline()

'set nocompatible\n'

The file object keeps track of your place in the file. With each subsequent call to .readline(), the next line is returned as a string:

Click here to view code image

read_me.readline()

'filetype off\n'

It is important to close your connection to a file when you are done, or it may interfere with the ability to open the file again. You do this with the close() function:

read_me.close()

Context Managers

Using a context manager compound statement is a way to automatically close files. This type of statement starts with the keyword with and closes the file when it exits its local state. The following example opens a file by using a context manager and reads it by using the readlines() method:

Click here to view code image

with open('/Users/kbehrman/.vimrc') as open_file:

 data = open_file.readlines()

data[0]

'set nocompatible\n'

The file contents are read as a list of strings and assigned to the variable named data, and then the context is exited, and the file object is automatically closed.

When opening a file, the file object is ready to read as text by default. You can specify other states, such as read binary ('rb'), write ('w'), and write binary ('wb'). The following example uses the 'w' argument to write a new file:

Click here to view code image

text = 'My intriguing story'

with open('/Users/kbehrman/my_new_file.txt', 'w') as open_file:

 open_file.write(text)

Here’s how you can check to make sure the file is indeed created:

Click here to view code image

!ls /Users/kbehrman

Applications Downloads Movies Public

Desktop Google Drive Music my_new_file.txt

Documents Library Pictures sample.json

JSON is a common format for transmitting and storing data. The Python Standard Library includes a module for translating to and from JSON. This module can translate between JSON strings and Python types. This example shows how to open and read a JSON file:

Click here to view code image

import json

with open('/Users/kbehrman/sample.json') as open_file:

 data = json.load(open_file)

datetime Objects

Data that models values over time, called time series data, is commonly used in solving data science problems. In order to use this kind of data, you need a way to represent time. One common way is to use strings. If you need more functionality, such as the ability to easily add and subtract or easily pull out values for year, month, and day, you need something more sophisticated. The Datetime library offers various ways to model time along with useful functionality for time value manipulation. The datetime.datetime() class represents a moment in time down to the microsecond. Listing 15.4 demonstrates how to create a datetime object and access some of its values.

Listing 15.4 datetime Attributes

Click here to view code image

from datetime import datetime

dt = datetime(2022, 10, 1, 13, 59, 33, 10000)

dt

datetime.datetime(2022, 10, 1, 13, 59, 33, 10000)

dt.year

2022

dt.month

10

dt.day

1

dt.hour

13

dt.minute

59

dt.second

33

dt.microsecond

10000

You can get an object for the current time by using the datetime.now() function:

Click here to view code image

datetime.now()

datetime.datetime(2021, 3, 7, 13, 25, 22, 984991)

You can translate strings to datetime objects and datetime objects to strings by using the datetime.strptime() and datetime.strftime() functions. Both of these functions rely on format codes that define how the string should be processed. These format codes are defined in the Python documentation, at https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior.

Listing 15.5 uses the format codes %Y for a four-digit year, %m for a two-digit month, and %d for a two-digit day to create a datetime from a string. You can then use the %y, which represents a two-digit year, to create a new string version.

Listing 15.5 datetime Objects to and from Strings

Click here to view code image

dt = datetime.strptime('1968-06-20', '%Y-%m-%d')

dt

datetime.datetime(1968, 6, 20, 0, 0)

dt.strftime('%m/%d/%y')

'06/20/68'

You can use the datetime.timedelta class to create a new datetime relative to an existing one:

Click here to view code image

from datetime import timedelta

delta = timedelta(days=3)

dt - delta

datetime.datetime(1968, 6, 17, 0, 0)

Python 3.9 introduced a new package, called zoneinfo, for setting time zones. With this package, it is easy to set the time zone of a datetime:

Click here to view code image

from zoneinfo import ZoneInfo

dt = datetime(2032, 10, 14, 23, tzinfo=ZoneInfo("America/Jujuy"))

dt.tzname()

'-03'

Note

As of the writing of this book, Colab is still running Python 3.7, so you may not have access to zoneinfo yet.

The datetime library also includes a datetime.date class:

Click here to view code image

from datetime import date

date.today()

datetime.date(2021, 3, 7)

This class is similar to datetime.datetime except that it tracks only the date and not the time of day.

Regular Expressions

The last package covered in this chapter is the regex library, re. Regular expressions (regex) provide a sophisticated language for searching within text. You can define a search pattern as a string and then use it to search target text. At the simplest level, the search pattern can be exactly the text you want to match. The following example defines text containing ship captains and their email addresses. It then searches this text using the re.match() function, which returns a match object:

Click here to view code image

captains = '''Ahab: ahab@pequod.com

 Peleg: peleg@pequod.com

 Ishmael: ishmael@pequod.com

 Herman: herman@acushnet.io

 Pollard: pollard@essex.me'''

import re

re.match("Ahab:", captains)

<re.Match object; span=(0, 5), match='Ahab:'>

You can use the result of this match with an if statement, whose code block will execute only if the text is matched.

Click here to view code image

if re.match("Ahab:", captains):

 print("We found Ahab")

We found Ahab

The re.match() function matches from the beginning of the string. If you try to match a substring later in the source string, it will not match:

Click here to view code image

if re.match("Peleg", captains):

 print("We found Peleg")

else:

 print("No Peleg found!")

No Peleg found!

If you want to match any substring contained within text, you use the re.search() function:

Click here to view code image

re.search("Peleg", captains)

<re.Match object; span=(22, 27), match='Peleg'>

Character Sets

Character sets provide syntax for defining more generalized matches. The syntax for character sets is some group of characters enclosed in square brackets. To search for the first occurrence of either 0 or 1, you could use this character set:

"[01]"

To search for the first occurrence of a vowel followed by a punctuation mark, you could use this character set:

"[aeiou][!,?.;]"

You can indicate a range of characters in a character set by using a hyphen. For any digit, you would use the syntax [0-9], for any capital letter, [A-Z], or for any lowercase letter, [a-z]. You can follow a character set with a + to match one or more instances. You can follow a character set with a number in curly brackets to match that exact number of occurrences in a row. Listing 15.5 demonstrates the use of character sets.

Listing 15.6 Character Sets

Click here to view code image

re.search("[A-Z][a-z]", captains)

<re.Match object; span=(0, 2), match='Ah'>

re.search("[A-Za-z]+", captains)

<re.Match object; span=(0, 4), match='Ahab'>

re.search("[A-Za-z]{7}", captains)

<re.Match object; span=(46, 53), match='Ishmael'>

re.search("[a-z]+\@[a-z]+\.[a-z]+", captains)

<re.Match object; span=(6, 21), match='ahab@pequod.com'>

Character Classes

Character classes are predefined groups of characters supplied for easier matching. You can see the whole list of character classes in the re documentation (see https://docs.python.org/3/library/re.html). Some commonly used character classes are \d for digital characters, \s for white space characters, and \w for word characters. Word characters generally match any characters that are commonly used in words as well as numeric digits and underscores.

To search for the first occurrence of a digit surrounded by word characters, you could use "\w\d\w":

Click here to view code image

re.search("\w\d\w", "His panic over Y2K was overwhelming.")

<re.Match object; span=(15, 18), match='Y2K'>

You can use the + or curly brackets to indicate multiple consecutive occurrences of a character class in the same way you do with character sets:

Click here to view code image

re.search("\w+\@\w+\.\w+", captains)

<re.Match object; span=(6, 21), match='ahab@pequod.com'>

Groups

If you enclose parts of a regular expression pattern in parentheses, they become a group. You can access groups on a match object by using the group() method. Groups are numbered, with group 0 being the whole match:

Click here to view code image

m = re.search("(\w+)\@(\w+)\.(\w+)", captains)

print(f'Group 0 is {m.group(0)}')

Group 0 is ahab@pequod.com

print(f'Group 1 is {m.group(1)}')

Group 1 is ahab

print(f'Group 2 is {m.group(2)}')

Group 2 is pequod

print(f'Group 3 is {m.group(3)}')

Group 3 is com

Named Groups

It is often useful to refer to groups by names rather than by using numbers. The syntax for defining a named group is as follows:

(?P<GROUP_NAME>PATTERN)

You can then get groups by using the group names instead of their numbers:

Click here to view code image

m = re.search("(?P<name>\w+)\@(?P<SLD>\w+)\.(?P<TLD>\w+)", captains)

print(f'''

Email address: {m.group()}

Name: {m.group("name")}

Secondary level domain: {m.group("SLD")}

Top level Domain: {m.group("TLD")}''')

Email address: ahab@pequod.com

Name: ahab

Secondary level domain: pequod

Top level Domain: com

Find All

Until now, you have only been able to find the first occurrence of a match. You can use the re.findall() function to match all occurrences. This function returns each match as a string:

Click here to view code image

re.findall("\w+\@\w+\.\w+", captains)

['ahab@pequod.com',

 'peleg@pequod.com',

 'ishmael@pequod.com',

 'herman@acushnet.io',

 'pollard@essex.me']

If you have defined groups, re.findall() returns each match as a tuple of strings, with each string beginning the match for a group:

Click here to view code image

re.findall("(?P<name>\w+)\@(?P<SLD>\w+)\.(?P<TLD>\w+)", captains)

[('ahab', 'pequod', 'com'),

 ('peleg', 'pequod', 'com'),

 ('ishmael', 'pequod', 'com'),

 ('herman', 'acushnet', 'io'),

 ('pollard', 'essex', 'me')]

Find Iterator

If you are searching for all matches in a large text, you can use re.finditer(). This function returns an iterator, which returns each subsequent match with each iteration:

Click here to view code image

iterator = re.finditer("\w+\@\w+\.\w+", captains)

print(f"An {type(iterator)} object is returned by finditer")

An <class 'callable_iterator'> object is returned by finditer

m = next(iterator)

f"""The first match, {m.group()} is processed

without processing the rest of the text"""

'The first match, ahab@pequod.com is processed

without processing the rest of the text'

Substitution

You can use regular expressions for substitution as well as for matching. The re.sub() function takes a match pattern, a replacement string, and a source text:

Click here to view code image

re.sub("\d", "#", "Your secret pin is 12345")

 'Your secret pin is #####'

Substitution Using Named Groups

You can refer to named groups in a replacement string by using this syntax:

\g<GROUP_NAME>

To reverse the email addresses in the captains text, you could use substitution as follows:

Click here to view code image

new_text = re.sub("(?P<name>\w+)\@(?P<SLD>\w+)\.(?P<TLD>\w+)",

 "\g<TLD>.\g<SLD>.\g<name>", captains)

print(new_text)

Ahab: com.pequod.ahab

Peleg: com.pequod.peleg

Ishmael: com.pequod.ishmael

Herman: io.acushnet.herman

Pollard: me.essex.pollard

Compiling Regular Expressions

There is some cost to compiling a regular expression pattern. If you are using the same regular expression many times, it is more efficient to compile it once. You do so by using the re.compile() function, which returns a compiled regular expression object based on a match pattern:

Click here to view code image

regex = re.compile("\w+: (?P<name>\w+)\@(?P<SLD>\w+)\.(?P<TLD>\w+)")

regex

re.compile(r'\w+: (?P<name>\w+)\@(?P<SLD>\w+)\.(?P<TLD>\w+)', re.UNICODE)

This object has methods that map to many of the re functions, such as match(), search(), findall(), finditer(), and sub(), as demonstrated in Listing 15.7.

Listing 15.7 Compiled Regular Expression

Click here to view code image

regex.match(captains)

<re.Match object; span=(0, 21), match='Ahab: ahab@pequod.com'>

regex.search(captains)

<re.Match object; span=(0, 21), match='Ahab: ahab@pequod.com'>

regex.findall(captains)

[('ahab', 'pequod', 'com'),

 ('peleg', 'pequod', 'com'),

 ('ishmael', 'pequod', 'com'),

 ('herman', 'acushnet', 'io'),

 ('pollard', 'essex', 'me')]

new_text = regex.sub("Ahoy \g<name>!", captains)

print(new_text)

Ahoy ahab!

Ahoy peleg!

Ahoy ishmael!

Ahoy herman!

Ahoy pollard!

Summary

This chapter introduces data sorting, file objects, the Datetime library, and the re library. Having at least a passing knowledge of these topics is important for any Python developer. You can do sorting either with the sorted() function or object sort() methods, such as the one attached to list objects. You can open files by using the open() function, and while files are open, you can read from them or write to them. The Datetime library models time and is particularly useful when dealing with time series data. Finally, you can use the re library to define complicated text searches.

Questions

1. What is the final value of sorted_names in the following example?

Click here to view code image

names = ['Rolly', 'Polly', 'Molly']

sorted_names = names.sort()

2. How would you sort the list nums = [0, 4, 3, 2, 5] in descending order?

3. What cleanup specific to file objects does a context manager handle?

4. How would you create a datetime object from the following variables:

Click here to view code image

year = 2022

month = 10

day = 14

hour = 12

minute = 59

second = 11

microsecond = 100

5. What does \d represent in a regular expression pattern?

A

Answers to End-of-Chapter Questions

The answers to the questions at the end of each chapter are listed here.

Chapter 1

1. Jupyter notebooks.

2. Text and code.

3. Use the Mount Drive button in the Files section of the left navigation.

4. Python in Google Colab.

Chapter 2

1. int

2. They will execute as normal.

3. raise LastParamError

4. print("Hello")

5. 2**3

Chapter 3

1. 'a' in my_list

2. my_string.count('b')

3. my_list.append('a')

4. Yes

5. range(3, 14)

Chapter 4

1. dict(name='Smuah', height=62)

Or

{'name':'Smuah', 'height':62}

Or

Click here to view code image

dict([['name','Smuah'],['height',62]])

2. student['gpa'] = 4.0

3. data.get('settings')

4. A mutable object has data that can be changed; an immutable object has data that cannot be changed after its creation.

5. set("lost and lost again")

Chapter 5

1. Biya []

2. Hiya Henry

3. for x in range(9):

 if x not in (3, 5, 7):

 print(x)

Chapter 6

1. 'after-nighttime'

2. 'before-nighttime'

3. An error.

4. @standard_logging

5. a

b

1

Chapter 7

1. NumPy arrays contain only one data type.

NumPy arrays do element by element operations.

NumPy arrays have matrix math methods.

2.

array([[1, 3],

 [2, 9]])

3.

array([[0, 1, 0],

 [4, 2, 9]])

4. 5, 2, 3

5. poly1d((6,2,5,1,-10))

Chapter 8

1. stats.norm(loc=15)

2. nrm.rvs(25)

3. scipy.special

4. std()

Chapter 9

1.

Click here to view code image

df = pd.DataFrame({'Sample Size(mg)':[0.24, 2.34, 0.0234],

 '%P': [40, 34, 12],

 '%Q': [60, 66, 88]})

Or

Click here to view code image

df = pd.DataFrame([[0.24, 40, 60],

 [2.34, 34, 66],

 [0.0234, 12, 88]],

 columns=['Sample Size(mg) ', '%P', '%Q'])

2.

Click here to view code image

df['Total Q'] = df['%Q']/df['Sample Size(mg)']

Or

Click here to view code image

df['Total Q'] = df.loc[:,'%Q']/df.loc[:,'Sample Size(mg)']

Or

Click here to view code image

df['Total Q'] = df.iloc[:,2]/df.iloc[:,0]

3. df.loc[:, ['%P', '%Q']] / 100

Chapter 10

1. plt.plot(data['X'], data['Y']

2. plt.plot(data['X'], data['Y'])

3.

Click here to view code image

fig, (ax1, ax2) = plt.subplots(1, 2)

ax1.plot(data['X'], data['Y'])

ax2.plot(data['X'], data['Y1'])

fig.show()

Or

Click here to view code image

fig, (ax1, ax2) = plt.subplots(1, 2)

ax1.plot('X','Y', data=data)

ax2.plot('X','Y1', data=data)

fig.show()

Chapter 11

1. Transform data.

2. To avoid overfitting.

3. Test the model’s accuracy.

Chapter 12

1.

Click here to view code image

gutenberg.words('austen-emma.txt')

gutenberg.sents('austen-emma.txt')

gutenberg.paras('austen-emma.txt')

2.

Click here to view code image

alice = gutenberg.words('carroll-alice.txt')

alice['Alice']

3.

Click here to view code image

alice = gutenberg.words('carroll-alice.txt')

alice_r = []

for word in alice_w:

 if word not in string.punctuation:

 if word.lower() not in english_stopwords:

 alice_r.append(word)

alice_dist = nltk.FreqDist(alice_r)

alice_dist.tabulate(10)

4.

Click here to view code image

alice = Text(gutenberg.words('carroll-alice.txt'))

alice.similar('rabbit')

5.

Click here to view code image

nltk.download('names')

names = nltk.corpus.names

all_names = names.words('male.txt')

all_names.extend(names.words('female.txt'))

hamlet_w = gutenberg.words('shakespeare-hamlet.txt')

hamlet_names = []

for word in hamlet_w:

 if word in all_names:

 hamlet_names.append(word)

hamlet_dist = nltk.FreqDist(hamlet_names)

hamlet_dist.most_common(5)

Chapter 13

1. 4

4

2.

Click here to view code image

list(map(lambda x: f'{x}'*2, 'omni'))

Or

Click here to view code image

list(map(lambda x: f'{x}{x}', 'omni'))

3. sum([x for x in range(100, 2)])

4. (x**2 for x in range(1000))

5.

Click here to view code image

def fib():

 f0 = 0

 f1 = 1

 while True:

 yield f0

 f0, f1 = f1, f0 + f1

Chapter 14

1. The current instance of the class.

2. When an object is instantiated.

3. 0

4. Hello from A

Goodbye from B

Chapter 15

1. None

2. nums.sort(reverse=True)

3. Closing the file object.

4. datetime(year, month, day, hour, minute, second, microsecond)

5. A digit.

Index

A

anonymous functions, 80

Anscombe, F., 135

apply() method, 132–133

arguments, 30

arrays

broadcasting, 98–99

expanding dimensions, 99–100

changing values in, 91

copies, changing values in, 95

creating, 86–88

one-dimensional, 87

two-dimensional, 88

using reshape method, 88–89

element-by-element operations, 91–92

filtering values, 92–94

indexing, 89–90

matrix operations, 96–97

methods, 95–96

one-dimensional, 87

sequences and, 91

setting type automatically, 97

setting type explicitly, 97–98

slicing, 89–90

two-dimensional, 88

indexing and slicing, 90

views, 94

changing values in, 94

assert statements, 16–17

assignment statements, 17

attributes, 22

axes, 136, 143–144

B

binomial distribution, 105–107

Bokeh, 149–150

Boolean operators, 14, 58–59, 125

DataFrames and, 126–127

bracket syntax, 121–122

break statement, 64

break statements, 19

broadcasting, 98–99

expanding dimensions, 99–100

built-in types, 14

C

cells, 4–5

character classes, 209

character sets, 208–209

classes, 22, 188–189

datetime.date, 207

inheritance, 196–199

variables, 190–191

classifier classes, 166

code blocks, 56, 63–64

collocations() method, 165

columns

creating, 128

updating, 129

comparison operators, 57–58, 93–94

compiling regular expressions, 211–212

compound statements, 55

if, 59–62

structure, 56

concordance() method, 165

constructors

dict(), 38

list(), 29

tuple(), 29

context managers, 205

continue statements, 19

continuous distributions, 108

exponential distribution, 110

normal distribution, 108–110

uniform distribution, 110–111

control statements, 56, 68

copies, changing values in, 95

corpus readers, 160

loading text, 160–161

tokenizers, 161

corpuses, downloading, 166–167

creating

arrays, 86–88

one-dimensional, 87

two-dimensional, 88

using reshape method, 88–89

columns, 128

DataFrames, 114

from a dictionary, 114–115

from a file, 116

from a list of lists, 115–116

datetime object, 206

dictionaries, 38

lists, 29–30

tuples, 29–30

D

DataFrames, 113

accessing data, 120–121

apply() method, 132–133

Boolean operators, 126–127

bracket syntax, 121–122

columns

creating, 128

updating, 129

creating, 114

from a dictionary, 114–115

from a file, 116

from a list of lists, 115–116

data manipulation, 129–131

describe method, 118

exclude argument, 120

include keyword, 119–120

percentiles argument, 118–119

head method, 117

interacting with, 117

interactive display, 133

manipulating, 127–128, 129

masking and filtering, 125–126

methods, 128

optimized access

by index, 124

by label, 123–124

replace method, 131–132

sorting, 204

tail method, 118

datetime object, 207

creating, 206

setting the time zone, 207

translating strings to, 207

decorators, 76–77, 79

syntax, 79–80

del() function, 40

delete statements, 18

describe method, 118

exclude argument, 120

include keyword, 119–120

percentiles argument, 118–119

dict() constructor, 38

dict_key view, 41–42

dictionaries, 37–39

checking for keys, 43

creating, 38

creating DataFrames from, 114–115

get method, 43–44

hash() method, 45

key/value pairs

adding, 39

updating, 39

removing items, 39–40

valid key types, 44–45

dictionary comprehensions, 181

dictionary views, 40–42

dict_key, 41–42

key_item, 42

difference() method, 51

discrete distributions, 105

binomial distribution, 105–107

Poisson distribution, 107–108

disjoint sets, 48

dispersion_plot() method, 165–166

docstrings, 68–69

dot notation, 22

downloading, corpuses, 166–167

E

elif statement, 62

else statement, 61

equality operators, 56–57, 125

estimators, 156

exceptions, 18–19

exponential distribution, 110

expressions, 16

generator, 182–183

extend method, 31

F

figures, 136

fileids() method, 160

files

creating DataFrames from, 116

Google Colab, 9–10

opening, 205

reading and writing, 204–205

filter() function, 179

replacing with a list comprehension, 180

filtering, DataFrames, 125–126

find iterator, 211

findall() method, 165

flattening nested lists, 167

for loops, 63–64

FreqDist class

built-in plot method, 164

methods, 164

frequency distributions, 161–162

filtering stopwords, 163–164

removing punctuation, 162–163

frozensets, 53

f-strings, 34

functional programming, 173, 174–175

changing mutable data, 176–177

dictionary comprehensions, 181

filter() function, 179

generator(s), 182

expressions, 182–183

functions, 183–184

lambda functions, 179

list comprehensions, 179

conditionals and, 181

multiple variables, 181

replacing map() and filter() with, 180

syntax, 179–180

map() function, 177–178

operator module, 179

reduce() function, 178, 179

scope, 173–174

inheriting, 174

outer, 175–176

state, 174

functions, 15, 67

anonymous, 80

control statement, 68

datetime.now(), 206

decorators, 76–77, 79

syntax, 79–80

del(), 40

docstring, 68–69

generator, 183–184

helper, 33–34

lambda, 179

len, 27

max, 28

min, 28

nested, 77

nested wrapping, 78–79

open(), 204–205

as a parameter, 78

parameters, 69–70

default value, 71–72

keyword assignments, 70–71

keyword wildcard, 74–75

mutable defaults, 72–73

positional wildcard, 74

positional-only, 73

re.compile(), 211

re.findall(), 210

re.finditer(), 211

re.match(), 207–208

re.search(), 208

return statements, 75

reversed, 41

scope, 75–76

sorted(), 202–204

wrapping, 77–78

future statements, 20

G

generator(s), 182

expressions, 182–183

functions, 183–184

get method, 43–44

global statements, 20

Google Colab, 5–6

code cells, 9

Code Snippets, 11

existing collections and, 11

files, 9–10

headings, 7–8

LaTeX, 8–9

notebooks, managing, 10

shell commands, 11–12

system aliases, 11–12

text cells, 6–8

groups, 209–210

named, 210

H

hash() method, 45

head method, 117

helper functions, 33–34

high-level programming languages, 15

I

if statements, 59–62

immutable objects, 44–45

import statements, 19–20

index method, 28

indexing, 26

arrays, 89–90

DataFrames and, 124

inequality operators, 56–57

inheritance, 196–199

inheriting scope, 174

installing, NumPy, 86

instances, 188

interacting with DataFrame data, 117

interrogation, 27–28

intersections, 51

ints, 14

numerator attribute, 22

issuperset() method, 50

items() method, 40

J-K

JSON files, opening and reading, 205

Jupyter notebooks, 4–5

Keras, 153

key_item view, 42

keys() method, 40

key/value pairs, 37

adding, 39

updating, 39

L

labels, DataFrames access and, 123–124

lambda functions, 80, 179

LaTeX, 8–9

len function, 27

libraries. See also NumPy; SciPy

machine learning, 153–154

SciPy, 103

third-party, 85

visualization, matplotlib, 135–136

list comprehensions, 179

conditionals and, 181

multiple variables, 181

replacing map() and filter() with, 180

syntax, 179–180

list() constructor, 29

lists, 29

adding and removing items, 30–31

creating, 29–30

creating DataFrames from, 115–116

flattening, 167

nested, 31

sorting, 32, 201–204

unpacking, 31–32

loops

break statement, 64

for, 63–64

while, 62–63

low-level programming languages, 15

M

machine learning, 153. See also Scikit-learn

overfitting, 155

splitting test and training data, 155–156

supervised versus unsupervised learning, 154

transformations, 154–155

magic functions, 12

manipulating DataFrames, 127–128, 129

map() function, 177–178

replacing with a list comprehension, 180

Markdown, 6

math operations, 21–22

math operator methods, 195–196

matplotlib, 135–136

colors, 139

creating multiple axes, 143–144

labeled data, 140–141

line styles, 138

marker types, 137–138

object-oriented style, 143

plotting multiple sets of data, 141–143

styling plots, 137, 139–140

matrix operations, 96–97

max function, 28

methods, 188–190

to_bytes(), 187–188

apply(), 132–133

arrays and, 95–96

collocations(), 165

concordance(), 165

count, 28

DataFrames, 128

describe, 118

exclude argument, 120

include keyword, 119–120

percentiles argument, 118–119

difference(), 51

disjoint(), 48

dispersion_plot(), 165–166

extend, 31

fileids(), 160

findall(), 165

get, 43–44

hash(), 45

head, 117

index, 28

inheritance, 196–199

intersection(), 51

issuperset(), 50

items(), 40

keys(), 40

math operator, 195–196

min(), 125

pop, 30

private, 190

public, 190

replace, 131–132

representation, 192

reverse, 32

rich comparison, 192–195

similar(), 165

sort, 32

sort(), 201–202

special, 191

subset(), 49

symmetric difference(), 51

tail, 118

union(), 50

values(), 40

min function, 28

min() method, 125

MinMaxScaler transformer, 154–155

multiple statements, 16

mutable objects, 44, 176–177

N

named groups, 210

substitution and, 211

natural language processing, 159

Natural Language Processing with Python, 169

nested functions, 77

nested lists, 31

nested wrapping functions, 78–79

NLTK (Natural Language Toolkit), 159

classifier classes, 166

defining features, 168

downloading corpuses, 166–167

flattening nested lists, 167

labeling data, 167

training and testing, 168–169

corpus readers, 160

loading text, 160–161

tokenizers, 161

fileids() method, 160

FreqDist class

built-in plot method, 164

methods, 164

frequency distributions, 161–162

filtering stopwords, 163–164

removing punctuation, 162–163

sample texts, 159–160

Text class, 165

collocations() method, 165

concordance() method, 165

dispersion_plot() method, 165–166

findall() method, 165

similar() method, 165

NoneType, 15

nonlocal statements, 20

normal distribution, 108–110

notebooks, 4–5

Google Colab, 5–6

Jupyter, 4–5

managing, 10

numerics, 14

NumPy. See also arrays; SciPy

creating arrays, 86–87

installing and importing, 86

polynomials, 100–101

O

object-oriented programming, 187

classes, 188–189

variables, 190–191

inheritance, 196–199

instances, 188

methods, 188–190

math operator, 195–196

representation, 192

rich comparison, 192–195

special, 191

objects, 187–188

private methods, 190

objects, 22, 187–188

datetime, creating, 206

evaluation, 59

immutable, 44–45

mutable, 44, 176–177

range, 34–35

one-dimensional arrays, 87

open() function, 204–205

in operator, 26, 40

or operator, 59

operators, 21–22

Boolean, 58–59

Boolean operators, 126–127

comparison, 57–58, 93–94

equality/inequality, 56–57, 125

in, 40

math, 28–29

or, 59

walrus, 60

overfitting, 155

P

packages, zoneinfo, 207

Pandas DataFrames. See DataFrames

parameters

default value, 71–72

functions as, 78

keyword assignments, 70–71

keyword wildcard, 74–75

mutable defaults, 72–73

positional wildcard, 74

positional-only, 73

parser, 14

pass statements, 18

Plotly, 148–149

Poisson distribution, 107–108

polynomials, 100–101

pop method, 30

print statements, 20–21

private methods, 190

procedural programming, 174

programming languages, high-level versus low-level, 15

proper subsets, 49

public methods, 190

Punkt tokenizer, 161

Python, types, 14–15

PyTorch, 154

Q-R

quotation marks, strings and, 33

raise statements, 18–19

ranges, 34–35

raw strings, 33

reading files, 204–205

re.compile() function, 211

reduce() function, 178, 179

re.findall() function, 210

re.finditer() function, 211

regular expressions, 207–208

compiling, 211–212

groups, 209–210

named groups, 210

substitution, 211

using named groups, 211

re.match() function, 207–208

removing, items from dictionaries, 39–40

replace method, 131–132

representation methods, 192

re.search() function, 208

return statements, 18, 75

reverse method, 32

rich comparison methods, 192–195

running statements, 4

S

Scikit-learn, 154

estimators, 156

MinMaxScaler transformer, 154–155

splitting test and training data, 155–156

training a model, 156

training and testing, 156

tutorials, 157

SciPy, 103

continuous distributions, 108

exponential distribution, 110

normal distribution, 108–110

uniform distribution, 110–111

discrete distributions, 105

binomial distribution, 105–107

Poisson distribution, 107–108

scipy.misc submodule, 104–105

scipy.special submodule, 105

scipy.stats submodule, 105

scope, 20, 75–76, 173–174

inheriting, 174

Seaborn, 144–145

plot types, 148

themes, 145–147

sequences, 14, 25

arrays and, 91

frozensets and, 53

indexing, 26

interrogation, 27–28

intersections, 51

lists, 29

adding and removing items, 30–31

nested, 31

sorting, 32

unpacking, 31–32

math operations, 28–29

slicing, 27

testing membership, 26

tuples, 29

unpacking, 31–32

sets, 46–48

difference between, 51

disjoint, 48

proper subsets, 49

subsets and, 49

supersets and, 50

symmetric difference, 51

union, 50

updating, 51–52

shared operations, 25

similar() method, 165

slicing, 27

arrays, 89–90

DataFrames, 122

sort() method, 201–202

sort method, 32

sorted() function, 202–204

sorting, lists, 32, 201–204

special characters, 33

statements, 15–16

assert, 16–17

assignment, 17

break, 19, 64

code blocks, 56, 63–64

continue, 19, 64–65

delete, 18

elif, 62

else, 61

expression, 16

future, 20

global, 20

if, 59–62

import, 19–20

multiple, 16

nonlocal, 20

pass, 18

print, 20–21

raise, 18–19

return, 18, 75

running, 4

yield, 18

stopwords, 163–164

strings, 14, 32–33

f-, 34

helper functions, 33–34

quotation marks and, 33

raw, 33

special characters, 33

translating to datetime object, 207

submodules

scipy.misc, 104–105

scipy.special, 105

scipy.stats, 105

subset() method, 49

substitution, 211

supersets, 50

symmetric difference() method, 51

syntax

bracket, 121–122

decorators, 79–80

list comprehensions, 179–180

T

tail method, 118

TensorFlow, 153

text cells, 6–8

Text class, 165

collocations() method, 165

concordance() method, 165

dispersion_plot() method, 165–166

findall() method, 165

similar() method, 165

third-party libraries, 85

time series data, 206

time zone, setting for datetime object, 207

to_bytes() method, 187–188

tokenizers, 161

transformations, 154–155

tuple() constructor, 29

tuples, 29

creating, 29–30

unpacking, 31–32

two-dimensional arrays, 88

indexing and slicing, 90

types, 14–15. See also sequences

U

uniform distribution, 110–111

union() method, 50

updating

columns, -129

sets, 51–52

V

values() method, 40

variables, 190–191

views, 94

changing values in, 94

visualization libraries, 151

Bokeh, 149–150

matplotlib, 135–136

colors, 139

creating multiple axes, 143–144

labeled data, 140–141

line styles, 138

marker types, 137–138

object-oriented style, 143

plotting multiple sets of data, 141–143

styling plots, 137, 139–140

Plotly, 148–149

Seaborn, 144–145

plot types, 148

themes, 145–147

W

walrus operator, 60

while loops, 62–63

wrapping functions, 77–78

writing file data, 204–205

X-Y-Z

yield statements, 18

zoneinfo package, 207

[image: A figure shows a page titled data science books, ebooks and video. The page lists some of the skills such as machine learning, analytics, hadoop and spark, R Programming, and so on. Inform it and Pearson logos are present at the bottom left corner.]

[image: An advertisment page represents an offer to register your product at inform it dot com for 35 percent discount. Details about the product and inform it are given. Logos of social media, inform it, and pearson are present at the bottom left corner.]

Code Snippets

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the eBook in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

OEBPS/Images/021pro04.jpg
print(print)
<built-in function print>

OEBPS/Images/bm01.jpg
Data Science
Books, eBooks & Video

G

No matter your role or job description, almost everyone
these days is expected to have some skills in data
science including data collection, data analysis, building
Al algorithms, programming with R, and more. We have
learning resources for every level of experience.

* Machine Learning and Al

+ Analytics

+ Hadoop and Spark

* R Programming

+ Python Programming Language
+ Visualization

Visit informit.com/dataresources to read sample chapters,
shop, and watch video lessons from featured products.

A be Press - Cisco Press - Microsoft Press - Pearson IT Certification - Que - Sams - Peachpit Press

L y
@ Pearson

OEBPS/Images/bm02.jpg
Photo by izusel/gettyimages

Register Your Product at informit.com/register
Access additional benefits and save 35% on your next purchase

Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

Download available product updates.

Access bonus material if available.”

Check the box to hear from us and receive exclusive offers on new
editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformiIT is the online home of information technology brands at Pearson, the world's
foremost education company. At InformIT.com, you can:
Shop our books, eBooks, software, and video training
Take advantage of our special offers and promotions (informit.com/promotions)
Sign up for special offers and content newsletter (informit.com/newsletters)
Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community
oA
informit

Addison-Wesley - Adobe Press « Cisco Press « Microsoft Press - Pearson IT Certification + Que + Sams + Peachpit Press

@ pearson

OEBPS/Images/196pro01.jpg
class Person():
def __init__(self, first_name, last_name):
self.first_name = first_name
self.last_name = Tast_name

class Student (Person):
def introduce_yourself(self):
print(f'Hello, my name is {self.first_name}')

barb = Student('Barb', 'Shilala’)
barb. first_name
'Barb’

barb. introduce_yourself ()
Hello, my name is Barb

OEBPS/Images/151pro01.jpg
"HpOrt AtpTOtiTh.pyplot as pit

isport sesborn 33 s

part panas 35 34

s = (X0 [for x 1 rnge(50))
LIy for y i ranan(s0, 0. 1))
2 ey in raese (25, 79))

o B A

OEBPS/Images/179pro01.jpg
from Tunctools import reduce
import operator

initial_balance = 10000
debits = [20, 40, 300, 3000, 1, 234]

reduce (operator.sub, debits, initial_balance)
5405

OEBPS/Images/049pro05.jpg
threes < nums
True

threes < {'3','6','9","'12','15",'18")
False

OEBPS/Images/049pro04.jpg
TypeError Traceback (most recent call last)
<ipython-input-30-dbd51effe302> in <module>()
----> 1 threes <= range(21)

TypeError: not supported between instances of 'set' and 'range'

OEBPS/Images/049pro03.jpg
threes.issubset(range(21))
True

OEBPS/Images/179pro04.jpg

OEBPS/Images/218pro01.jpg

OEBPS/Images/049pro01.jpg
n

nums
nums
{0, 1,2, 3, 4,5,86,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)

set(range(21))

threes = set (range(3,21,3))
threes
(3. 6, 9, 12, 15, 18}

threes. issubset (nuns)
True

OEBPS/Images/179pro02.jpg
charles = 'ChArlesTheBald"

def is_cap(a):
return a.isupper ()

retval = filter(is_cap, charles)
list(retval)
CCt AT T B

OEBPS/Images/218pro03.jpg

OEBPS/Images/004pro01.jpg
python
Python 3.9.1 (default, Mar 7 2021, 09:53:19)
[Clang 12.0.0 (clang-1200.0.32.29)] on darwin
Type "help”, "copyright”, "credits” or "license" for more information.

OEBPS/Images/179pro03.jpg
hums = Tilter(lambda x: x > 3, range(10))
Tist (nums)
(4, 5, 6, 7, 8, 9]

OEBPS/Images/218pro02.jpg

OEBPS/Images/218pro05.jpg
rig, (ax1, axZ) = plt.subplots(1, 2)
ax1.plot ('X','Y", data=data)
ax2.plot('X','Y1", data=data)
fig.show()

OEBPS/Images/218pro04.jpg
rig, (ax1, axz) = plt.subplots(1, 2)
ax1.plot(data['X'], data['Y'])
ax2.plot(data['X'], data['Y1'])
fig.show()

OEBPS/Images/218pro06.jpg
gutenberg.words(austen-emma.txt)
gutenberg. sents ('austen-emma. txt')
gutenberg.paras('austen-emma.txt"')

OEBPS/Images/050pro01.jpg
nums .1ssuperset(threes)
True

nums . issuperset ([1,2,3,4])
True

OEBPS/Images/122pro01.jpg
lask = [False, Irue, Irue, False, False, lrue, False, False|]
participants[mask]

OEBPS/Images/037pro01.jpg

OEBPS/Images/202pro01.jpg
whales
['Beluga', 'Blue', 'Bowhead', 'Humpback', 'Killer', 'Sperm']

OEBPS/Images/202pro02.jpg
return_value = whales.sort()
print (return_value)
None

OEBPS/Images/078pro01.jpg
def add_one(number):
"*'Adds to a number.''’
print(‘Adding 1')
return number + 1

def wrapper (number) :
**'Wraps another function.
print(*Before calling function')
retval = add_one (number)
print(*After calling function')
return retval

wrapper (1)

Before calling function
Adding 1

After calling function
5

OEBPS/Images/078pro02.jpg
det add_one(number):
**'Adds to a number.''"
print(*Adding 1')
return number + 1

def do_wrapping(some_func) :
**'Returns a wrapped function.
print(‘wrapping function')

def wrapper (number) :
**'Wraps another function.''’
print('Before calling function')
retval = some_func (number]

print(*After calling function')
return retval

return wrapper

my_func = do_wrapping(add_one)
wrapping function

my_func (1)

Before calling function
Adding 1

After calling function
5

OEBPS/Images/202pro07.jpg
det beluga_tirst(item):
if item == 'Beluga':
return 1
return Ten(item)

sorted(whales, key=beluga first)
['Beluga', 'Blue', 'Sperm', 'Killer', 'Bowhead', 'Humpback']

OEBPS/Images/202pro05.jpg
sorted(whales, reverse=irue)
['Blue', 'Sperm', 'Beluga', 'Killer', 'Bowhead', 'Humpback']

OEBPS/Images/202pro06.jpg
sorted(whales, key=lambda x: len(x))
['Blue', 'Sperm', 'Beluga', 'Killer', 'Bowhead', 'Humpback']

OEBPS/Images/202pro03.jpg
sorted(whales)
['Beluga', 'Blue', 'Bowhead', 'Humpback', 'Killer', 'Sperm']

OEBPS/Images/202pro04.jpg

OEBPS/Images/163pro01.jpg
femioac stepwords corpus.
rom mit.corpus Teprt stopuerds

(15K ot Dounloading pacage stcpords o

ik arta) Iisarskboraaninl . Gta

(A1 onta) Unzipping corporalstopmords.ip.

g5 stpuords = Stpords.vords("ongl ') Loag Enghish st vords
g 4. stouords{10)
VL ha eyt o

st o, "y

——
for vord 1n casar v
T vord ot 1 sring punctuation:
¢ ord.ower() nt fn sngh o, stopuerss:
caesar.oppond(uord) Not punctuntion and et st vords

en(esesar) - Tenteaesar. o)
e

T r—
vt ost_comon(5)
(CCaesae 189
Coros' 161
Con, 169)

25
o)
ot 1on)
(oo, 00
Ccomtin, 86,
Canny”. 79)
Choon' 68)

M-l 5

OEBPS/Images/146pro01.jpg
sns.relplot(data=car_crashes,
x='total’,
not_distracted"')

OEBPS/Images/0146pro02.jpg
sns.set_style('dark’)

sns.relplot(data=car_crashes,
x='total",
y='not_distracted')

OEBPS/Images/099pro01.jpg
A4 = np.arange(10).reshape(2,1,3)
A4
array([[[0, 1, 2, 3, 4]]

(5. 6, 7, 8 911])

AS = np.arange (14) . reshape (2,7,1)
AS
array([[[0],

(1,
(2,
(3,
[4,
[5].
(611,
.
(8,
(9,
101,
(11,
(2],
113111)
A6 = A4 - A5
A6
array([[[0, 1, 2, 3, 4],
-1, 0, 1 2, 3],
[-2 1, 2],
(-3, o, 11,
[-4 -1, 0],
[-5 -2, 1],
(-6, -3, 2],
-2, 1, 2],
(-3 o, 11,
[-4 -1, 0],
[-5 -2, -1,
[-6 -3, -2],
[-7, , -4, -3],
[-8, -7, -6, -5, -4]11)
A6.shape

(2, 7, 5)

OEBPS/Images/062pro02.jpg
fav_num = 13

if fav_num in (3,7):
print(f"{fav_num} is Tucky")
elif fav_num 0
print (f"{fav_num} is evocative")
elif fav_num > 20:
print(f"{fav_num} is large")
elif fav_num == 13:
print (f"{fav_num} is my favorite number too")
else:
print(f"I have no opinion about {fav_num}")
is my favorite number too

OEBPS/Images/062pro01.jpg
balance = 2000.32
account_status = None

if balance > 0:

account_status = 'Positive’
e1if balance ==

account_status = 'Empty’
else:

account_status = 'Overdrawn

print (account_status)
Positive

OEBPS/Images/042pro06.jpg
for K,v 1n student_record.items():
print(f'{k} => {v}")

first => Julia

last => Brown

gpa => 4.0

najor => Data Science

minor => Math

advisor => Pickerson

OEBPS/Images/042pro05.jpg
admission_record.keys() | student_record.keys()
{"admitted' . 'advisor', 'first'. 'gpa', 'id'. 'last'. 'major', 'minor')

OEBPS/Images/184pro01.jpg
def counter(d)
while True:
d+=1

yield ¢

c = counter (10)

print (next (c))
1"

print (next (c))
12

print (next (c))
17

OEBPS/Images/184pro02.jpg
evens = (x"2 for X 1n range(2000000))
three_factors = (x//3 for x in evens if x%3 0)
title (f"this number is {x}" for x in three_factors)
capped = (x.title() for x in titles)

print (f"The first call to capped: {next(capped)}"
The first call to capped: This Number Is O

print (f"The second call to capped: {next(capped)}") The second call to capped: This
Number Is 2

print(f"The third call to capped: {next(capped)}")
The third call to capped: This Number Is 4

OEBPS/Images/087pro01.jpg
oned = np.arange(21)

oned

array([0, 1, 2, 3, 4, 5, 6, 7, 8 9,10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

oned.dtype # Data type
dtype("int64")

oned.size # Number of elements
21

oned.nbytes # Bytes(memory) consumed by elements of the array
168

oned.shape # Number of elements in each dimension
21,)
oned.ndim # Number of dimensions

1

OEBPS/Images/206pro02.jpg
datetime.now()
datetime.datetime (2021, 3, 7, 13, 25, 22, 984991)

OEBPS/Images/206pro01.jpg
from datetime import datetime

dt = datetime(2022, 10, 1, 13, 59, 33, 10000]

dt

datetime.datetime(2022, 10, 1, 13, 59, 33, 10000)

dt.year
2022

dt.month
1

dt . day

1

dt . hour
13

dt.minute
59

dt.second
33

dt.microsecond
10000

OEBPS/Images/033pro02.jpg
a_very_large_phrase
Wikipedia is hosted by the Wikimedia Foundation,
a non-profit organization that also hosts a range of other projects.

OEBPS/Images/033pro01.jpg
‘Here
'Here

1s” a string’
is" a string'

OEBPS/Images/175pro03.jpg
WINDS = ["Northeast’, "Northwest', 'Southeast’, "Southwest]
WIND = WINDS[0]

def change_wind():
global WIND
WIND = WINDS[(WINDS. index (WIND) + 1)%3]

WIND
‘Northeast"

change_wind ()
WIND
"Northwest'

for _ in WINDS:
print (WIND)
change_wind()
Northwest
Southeast
Northeast
Northwest

OEBPS/Images/175pro02.jpg
def describe_the wind(wind):
return f'The wind blows from the {wind}

describe_the_wind('Northeast')
"The wind blows from the Northeast'

OEBPS/Images/175pro01.jpg
wind = ‘Southeast’

def describe_the_wind():
return f'The wind blows from the {wind}

describe_the_wind()
"The wind blows from the Southeast’

wind = 'North'
describe_the_wind()
"The wind blows from the North' £

OEBPS/Images/033pro05.jpg
captain =
captain
"Patrick Tayluer'

Patrick Tayluer”

captain.capitalize()
"Patrick tayluer’

captain. Tower ()
"patrick tayluer’

captain.upper ()
'PATRICK TAYLUER'

captain. swapcase ()
"PATRICK tAYLUER

captain = 'patrick tayluer'
captain.title()
'Patrick Tayluer'

OEBPS/Images/105pro03.jpg
from scipy import stats
B = stats.binom(20, 0.3) # Define a binomial distribution consisting of
20 trials and 30% chance of success

.pnf(2) # Probability mass function (probability that a sample is equal to 2)
.02784587252426866

<

.cdf (4) # Cunulative distribution function (probability that a
sample is Tess than 4)
.2375077788776017

-

.mean # Mean of the distribution
.0

@

.var()# Variance of the distribution
.199999999999999

-

.std()# Standard deviation of the distribution
.0493901531919194

~

.rvs()# Get a random sample from the distribution

B.rvs(15) # Get 15 random samples
array([2, 8, 6, 3, 5, 5,10, 7, 5, 10, 5, 5, 5 2, 6])

OEBPS/Images/033pro04.jpg
windows_path = rc:\row\thelboat\now"
print (windows_path)
row\the\boat \now

OEBPS/Images/105pro02.jpg
special.comb(10, 2)
45.0

special.perm(10,2)
90 0

OEBPS/Images/033pro03.jpg
windows_path \rowithelboatinow
print (windows_path)

ow heoat
ow

OEBPS/Images/105pro01.jpg
from scipy import special
special . factorial (3)
6.0

OEBPS/Images/071pro03.jpg
def does_defaults(first=1, second, third=3):
"''Prints parameters.'''
print (f'First: {first}')
print (f'Second: {second}')
print(f'Third: {third}')
File "<ipython-input-19-a015eaeb0ibe>", 1ine 1
def does_defaults(first=1, second, third=3):

SyntaxError: non-default argument follows default argu

OEBPS/Images/071pro02.jpg
det does_defaults(first, second, third=
**'Prints parameters.’ '’
print(f'First: {first}')
print(f'Second: {second}')
print(f'Third: {third)')

does_defaults(1, 2, 3)

First: 1
Second: 2
Third: 3

does_defaults(1, 2)
First: 1
Second: 2
Third: 3

OEBPS/Images/071pro01.jpg
does_keyword(1, 2, 3)

TypeError Traceback (most recent call last)
<ipython-input-15-88b97f8a6c32> in <module>
----> 1 does_keyword(1, 2, 3)

TypeError: does_keyword() takes 2 positional arguments but 3 were given

OEBPS/Images/188pro04.jpg
type(do_nothing)
__main__.DoNothing

OEBPS/Images/188pro05.jpg
isinstance (do_nothing, DoNothing)
True

OEBPS/Images/188pro06.jpg
class <CLASS NAME>():
def <FUNCTION NAME>():
<STATEMENT>

OEBPS/Images/188pro01.jpg
my_num = 13
ny_num. to_bytes (8, 'Tittle')
'\ r\ x001 x00' x00\ x00\ x00\ x00\ x00"

OEBPS/Images/188pro02.jpg
class <class name>():
<statement>

OEBPS/Images/012pro02.jpg
import time
stimeit (time.sleep(1))

OEBPS/Images/057pro04.jpg
a<=b
True

a>b
False

a>b
True

OEBPS/Images/126pro01.jpg
college_majors.Unemployment_rate.describe()
count 173.000000

mean 0.057355
std 0.019177
min 0.000000
25% 0.046261
50% 0.054719
75% 0.069043
max 0.156147

Name: Unemployment_rate, dtype: float64

OEBPS/Images/012pro03.jpg
<marquee styl

width: 30%; color: blue;'>Whee!</marquee>

OEBPS/Images/126pro03.jpg

OEBPS/Images/057pro01.jpg
Assign values to variables
a, b, c=1,1,2

Check if value is equal

a ==

True

al!=b
False
al!=c

OEBPS/Images/126pro02.jpg

OEBPS/Images/fmfig01.jpg
The Pearson Addison-Wesley
Data & Analytics Series

MACHINE DEEP PROGRAMMING
LEARNING LEARNING | | o

T PYTHON
EVERYONE

Visit informit.com/awdataseries for a complete list of available publications.

he Pearson Addison-Wesley Data & Analytics Series provides readers with
practical knowledge for solving problems and answering questions with data.
Titles in this series primarily focus on three areas:

1. Infrastructure: how to store, move, and manage data

2. Algorithms: how to mine intelligence or make predictions based on data

3. Visualizations: how to represent data and insights in a meaningful and
compelling way

The series aims to tie all three of these areas together to help the reader build
end-to-end systems for fighting spam; making recommendations; building
personalization; detecting trends, patterns, or problems; and gaining insight
from the data exhaust of systems and user interactions.

You

L]
Make sure to connect with us!
informit.com/socialconnect

@ Pearson informit.com

Addison-Wesley ey i

OEBPS/Images/126pro05.jpg
total_rate_mask = employ_rate_mask & total_mask
total_rate_mask

0 False
1 False
2 False
3 False
4 False
168 False
169 False
170 False
171 False
172 False

Length: 173, dtype: bool

OEBPS/Images/126pro04.jpg
employ_rate_majors.fajor_category.unique()
array (['Agriculture & Natural Resources', 'Education’, 'Engineering’.
"Biology & Life Science', 'Computers & Mathematics',

'Humanities & Liberal Arts', 'Physical Sciences', 'Health',
‘Business'], dtype=object)

OEBPS/Images/192pro01.jpg
class Represented():
def __init__(self, n):
self.n=n

def __repr__(self):
return f'Represented({self.n})"

def _str__(self):

return 'Object demonstrating _str__ and _repr__

represented = Represented (13)

represented
Represented(13)

r = eval (represented._repr__())
type(r)
__main__.Represented

r.n
13

str(represented)
'Object demonstrating __str__ and __repr__'

print (represented)
Object demonstrating __str__ and _ _repr__

OEBPS/Images/042pro02.jpg
admission_record.keys() “ student_record.keys()
{'admitted', 'advisor', 'gpa', 'major', 'minor'}

OEBPS/Images/042pro01.jpg
admission_record.keys()
False

student_record.keys()

OEBPS/Images/042pro04.jpg
admission_record.keys() - student_record.keys()
{"admitted'}

OEBPS/Images/042pro03.jpg
admission_record.keys() & student_record.keys()
{'first', 'id'. 'last'}

OEBPS/Images/125pro01.jpg
college_majors.Major_category == "Humanities & Liberal Arts
0 False

1 False
2 False
3 False
169 False
170 False
171 True
172 True

Name: Major category, Length: 173, dtype: bool

OEBPS/Images/125pro02.jpg

OEBPS/Images/125pro03.jpg
top_majors = college _majors.loc|total_mask|
top_majors

OEBPS/Images/075pro03.jpg
outer = 'Global scope’

def shows_scope() :
'''Demonstrates local variable.'""
inner = 'Local scope’
print (outer)
print (inner)
shows_scope ()
Global scope
Local scope

OEBPS/Images/130pro03.jpg
participants.Age
participants

OEBPS/Images/075pro01.jpg
det adds_one(some_number):
'''Demonstrates return statement.''’
return some_number + 1

adds_one (1)
>

OEBPS/Images/130pro01.jpg
participants.loc{ 'h", "Tirst'] = "Paul

participants

OEBPS/Images/193pro02.jpg
nigh_score = Comparefe (100, 100)

mid_score = CompareMe (50, 50)
mid_score_1 = CompareMe (50, 50)
Tow_time = CompareMe (100, 25)

high_score > mid_score
called _ gt
True

high_score >= mid_score_1

called _ge
True

high_score == Tow_time
called __eq__

False

mid_score == mid_score_1
called __eq__
True

Tow_time > high_score
called gt
True

OEBPS/Images/075pro02.jpg
det returns_none():
"' 'Demonstrates default return value.'"'
pass

returns_none() == None
True

OEBPS/Images/130pro02.jpg
participants.iloc({3, 2] = 99
participants

OEBPS/Images/086pro01.jpg
np.array([1,2,3])
array([1, 2, 3])

np.zeros (3)

array([0., 0.
np.ones (3)
array([1., 1.

np.empty (3)

array([1., 1.

np.arange (3)

, 0.1)

1.0

L 1)

array([0, 1, 2])

np.arange (0, 12, 3)
array ([0, 3, 6, 9])

np.Tinspace(0, 21, 7)

array([0. .

3.5,

7.

Array

Array

Array

Array

Array

Array

Array
, 10.5,

from list

of zeros

of ones

of arbitrary data

from range of numbers

from range of numbers

over an interval
14. . 17.5, 21.]

OEBPS/Images/155pro01.jpg
R 1 o S R
urce, 1arge = datasets.Tondrts(ratur X yeTrue) Losd source and arget

rinttysoure))
rass ooy nrrsy'>
o searce. sope)
0.)

it (ypattargot))
Crass "oy narcsy'>

OEBPS/Images/041pro04.jpg
‘ranking' 1in keys
False

1 in values
False

("ranking',1) in items
Falca

OEBPS/Images/101pro01.jpg
r = polyld([4,3,2,1], True)
print (r)

4 3 2

x - 10 x + 35 x - 50 x + 24

OEBPS/Images/041pro05.jpg
len(keys)
3
len(values)
3

len(items)
3

OEBPS/Images/041pro06.jpg
Keys .
dict_keys(['name’, 'height', 'gpa'])

1ist (reversed (keys))
['gpa', 'height', 'name']

OEBPS/Images/101pro03.jpg
p1 = polyld((2,3))
print (p1)
2 x +3

p2 = polyld((1,2,3))
print (p2)

2
1x+2x+3

print (p2*p1) # Multiplying polynomials
32
2x + 7T x+12x+9

print (p2.deriv()) # Taking the derivative

2 x +2

print (p2.integ()) # Returning anti-derivative
3 2

0 3333 x + 1 X + 3 x

OEBPS/Images/041pro07.jpg
admission_record = {'first': 'Julia’,
“last': 'Brown’,
'id': 'ax012E4',

‘admitted': '2020-03-14'}
student_record = {'first':"'Julia’,
"last':'Brown’,

"id': 'ax012E4°,
'gpa':3.8,
'major':'Data Science',

‘minor': 'Math',
*advisor': 'Pickerson'}

OEBPS/Images/193pro01.jpg
class Comparelle():
def _init__(self, score, time):
self.score = score
self.time = time

def __1t_ (self, 0):

" Less than"

print(‘called __1t_")

if self.score 0.score:
return self.time > 0.time

return self.score < 0.score

def _le_(self, 0):
"""Less than or equal""
print(‘called _le_')
return self.score <= 0.score

def __eq_(self, 0):
o qual v
print(‘called _eq ')
return (self.score, self.time) == (0.score, O.time)

e__(self, 0):
ot Equal
print(‘called _ne_')

return (self.score, self.time) != (0.score, 0.time

f __gt_(self, 0)
“"“Greater Than
print(*called _gt_')
if self.score

return self.time < 0.time
return self.score > 0.score

def __ge_(self, 0):
"""Greater Than or Equal"""

print(‘called _ge_')

[FOPTRISSI TSt - ——"

OEBPS/Images/154pro01.jpg
e =
rom sklean.preprocess o aport Himtasester

s = mprray(i(100, 34, 4).
. 2. 0
2, 8.
25,45, A1) # Array i st rom 12 t0 100

o, %, 4]
(% 2 o
(18 2. 16
(R

Hintacstor() # Craato transtormr obgect
S) # FIE the tramtorser to th dat

— £ seate o rangs Botueen and 1
Pt oamonse, 025)

(03102087, 0. 2050408, h

(o.maasen. o. 1)

1

= o om In

OEBPS/Images/199pro01.jpg
class CLonfuzed(

def _init__(self, n):
self.n = n

def __add__(self, 0):

Fatins salt. h = O

OEBPS/Images/050pro03.jpg
odds = set(range(0,12,2))
odds
{0, 2, 4, 6, 8 10}

evens = set (range(1,13,2))
evens
{(1,3,5 7,9, 11)

odds . union (evens)
{0.1,2,3 4,56, 7,8, 9, 10, 11)

odds..union (range (0,12))
{0, 1,2, 3, 4, 5 6,7, 8 9, 10, 1)

odds | evens
0.1,2 3. 4.5 6, 7.8 9, 10, 11)

OEBPS/Images/050pro02.jpg
nums >= threes
True

nums > threes
True

nums >= nums
True

nums > nums
False

OEBPS/Images/095pro01.jpg
datal = np.arange(24).reshape(4,6)

data

array([[0, 1, 2, 3, 4, 5],
[6, 7. 8 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]]

data2 = datal[:2,3:].copy()
data2
array([[3, 4, 5],

{9, 10, 11])
data2[1,2] = -1
data2
array([[3, 4, 5],

[9,10, -1]])
datat

array([[0, 1, 2, 3, 4, 5],
(e, 7, 8, 9,10, 1],
(12, 13, 14, 15, 16, 17],
118, 19, 20, 21, 22, 2311)

OEBPS/Images/095pro02.jpg
"

data = np.arange(12).reshape(3,4)

data
array([[0, 1, 2, 3],
[4, 5 6 7],
[8 9, 10, 11]])
data.max() # Maximum value
1
data.min() # Minimum value
0
data.sum() # Sum of all values
66
data.mean () # Mean of values
5.5
data.std() # Standard deviation

3.452052529534663

data.sun(axis=1) # Sun of each row
array([6, 22, 38])

data.sun(axis=0) # Sum of each column
array([12, 15, 18, 21])

data.std(axis=0) # Standard deviation of each row
array([3.26598632, 3.26598632, 3.26598632, 3.26598632])

data.std(axis=1)) # Standard deviation of each column
array([1.11803399. 1.11803399, 1.11803399]

OEBPS/Images/164pro01.jpg
BT TRG word WiEh The mest appearances

cvsar_gist{‘Cosi’] ¥ Got the count for & particlar verd
o

cussr_gis.froqCass1®) & Cont of tho vord aiviced by o) et
) ORETEZTON0TORD

avsar_a1st X # ot osber of woras
izt

s 615t ISRA(10) ¥ Display the cots fer th tp 10 sorss
caiar Srotn Gra e il Casst thou Cosius Antony b

OEBPS/Images/183pro01.jpg
g ten[3]

TypeError Traceback (most recent call last)
<ipython-input-6-e7b8f961aa33> in <module>()

1
----> 2 g_ten[3]

TypeError: 'generator' object is not subscriptable

OEBPS/Images/183pro02.jpg
import sys
x = 100000000

1_big = [x for x in range(x)]
g_big = (x for x in range(x))

print(f"1_big is {sys.getsizeof (1_big)} bytes")
1_big is 859724472 bytes

print(f"g_big is {sys.getsizeof(g_big)} bytes")
ig is 88 bytes

OEBPS/Images/028pro06.jpg
‘prefix” + 7-T + Tpostfix’
‘prefix-postfix’'

OEBPS/Images/028pro05.jpg
name | :name.index('u’)]
‘Ignati'

OEBPS/Images/041pro03.jpg
del(subject_1[‘ranking'])
subject_1
{'name': 'Paula', 'height': 64, 'gpa': 4.0)

OEBPS/Images/028pro02.jpg
max(['Free', 2, 'b'])

TypeError Traceback (most recent call last)
<ipython-input-15-d8babe38f9dg> in <module>()

> 1 max(['Free’, 2, 'b'])

TypeError not supported between instances of

int' and 'str'

OEBPS/Images/028pro01.jpg
scores = |0, 1, 2, 3, 4, 9, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18]
min(scores)
0

max (name)

u

OEBPS/Images/110pro02.jpg
£ = stats.expon()
rvs = E.rvs(size=100000)
p1t.hist(rvs, bins=1000)
51t show()

OEBPS/Images/110pro01.jpg
N1 = stats.norm(loc=30, scale=50
N1.mean() # Mean of the distribution, which matches the Toc value
30.0

N1.pdf (4) # Probability density function
0.006969850255179491

N1.cdf(2) # Cumulative distribution function
0.28773971884902705

N1.rvs() # A random sample
171.55168607574785
N1.var () # Variance

2500.0

N1.median()# Median
30.0

N1.std() # Standard deviation
50 0

OEBPS/Images/110pro03.jpg
U = stats.umiform()
rvs = U.rvs(size=10000)
rvs

array([8.24645026e-01, 5.02358065e-01, 4.95390940e-01, ..
8.63031657e-01, 1.05270200e-04, 1.03627699-01])

plt.hist(rvs, bins=1000)
plt.show()

OEBPS/Images/149pro01.jpg
from boken.io import output_notebook
from bokeh.plotting import figure, show

from bokeh.models import ColumnDataSource

from bokeh.layouts import gridplot

Y = [x for x in range(0,200, 2)]
Y1 = [x**2 for x in Y]
X = [x for x in range(100)]
data={'x":X,

tytiy,

TOOLS = "box_select”
source = ColumnDataSource (data=data) #
left = figure (tools=TOOLS

*

title='Brushing') #
Teft.circle('x",
'y
source=source) #
right = figure (tools=TOOLS
title='Brushing') #
right.circle('x
',
source=source) #
p = gridplot([[left, right]]) #
show(p) #

Select interactive tools
Create ColumnDataSource

Create figure using the selected tools

Create a circle plot on first figure

Create figure using the selected tools

Create circle plot on second figure

Put the figures on a grid
Show the grid

OEBPS/Images/219pro07.jpg

OEBPS/Images/219pro08.jpg
fo=0
f1=1
while True:

yield f0

fo, f1 = f1, fO + f1

OEBPS/Images/219pro06.jpg

OEBPS/Images/183pro03.jpg
def square_them(numbers):
for number in numbers:
yield number * number

s = square_them(range(10000))

print (next (s))

print (next (s))

print (next (s))

print (next (s))

OEBPS/Images/219pro03.jpg
Text(gutenberg.woras(carroli-alice.txt’))
alice.similar('rabbit')

OEBPS/Images/219pro04.jpg
nitk.download(names ')
names = n1tk.corpus.names
al1_names = names.words ('male.txt')
a11_names. extend(names.words (' female.txt'))
hamlet_w = gutenberg.words('shakespeare-hamlet.txt')
hamlet_names = []
for word in hamlet_w:

if word in all_names:

hamlet_names . append (word)

hamlet_dist = nltk.FreqDist(hamlet_names)
hamlet_dist.most_common(5)

OEBPS/Images/019pro01.jpg
raise NotlmplementedError

NotImplementedError Traceback (most recent call last)
<ipython-input-1-91639a24e592> in <module>()
> 1 raise NotImplementedError

OEBPS/Images/219pro01.jpg
e = gutenberg.words(carroli-alice.txt’)
alice['Alice']

OEBPS/Images/019pro02.jpg
os. listdir()
[*.config', 'sample_ data']

OEBPS/Images/219pro02.jpg
gutenberg.words(carroll-alice.txt)
alice_r = []
for word in alice_w:
if word not in string.punctuation:
if word.Tower () not in english_stopwords.
alice_r.append (word)

alice_dist = nitk.FreqDist (alice_r)
alice_dist.tabulate(10)

OEBPS/Images/079pro02.jpg
det do_wrapping(some_tunc):
**'Returns a wrapped function.''"
print(‘wrapping function')

def wrapper (number) :
""'Wraps another function.'''
print(‘Before calling function')
retval = some_func(number)
print('After calling function')
return retval

return wrapper

edo_wrapping

def add_one (number) :
*"'Adds to a number.''’
print(‘Adding 1°)
return number + 1

wrapping function

add_one (1)

Before calling function
Adding 1

After calling function
9

OEBPS/Images/10fig13.jpg
20
B 15
S
g
2
U\
g 10
5
5.0

7.5

10.0

125

15.0
total

175 200 225

OEBPS/Images/034pro01.jpg
strings_count = 5
frets_count = 24

f"Noam Pikelny's banjo has {strings_count} strings and {frets_count} frets"
'Noam Pikelny's banijo has 5 strings and 24 frets'

OEBPS/Images/079pro01.jpg
my_tunc
my_func (1)

wrapping function
Before calling function
Adding 2

After calling function
q

do_wrapping(add_two)

OEBPS/Images/104pro02.jpg
a = misc.ascent()

print (a)

([83 83 .17 117 117)
[82 8 .17 117 117)
[80 81 M7 117 117)
(178 178 178 ... 57 59 57]
(178 178 178 ... 56 57 57)

(178 178 178 57 57 58]]

OEBPS/Images/10fig12.jpg
20
815
o
8
o
U\
%10
ol §
o
o
5
50 75 100

.
o0 ©
- .
o ‘..
So o
o © 8
°® o B
. .
@® o
%
.
.

125 150 175 20.0 225
total

OEBPS/Images/034pro02.jpg
12

32

“{a} times {b} equals {a’b}"
times 32 equals 384"

OEBPS/Images/104pro01.jpg
from scipy import misc
import matplotlib.pyplot as plt
face = misc. face()

p1t. imshow face

51t show()

OEBPS/Images/10fig11.jpg
not_distracted

20

o

o

5.0

75 100 125 150 175 200 225
total

OEBPS/Images/034pro03.jpg
players = [“Tony Trischka”, "Bill Evans™, "Alan Munde"]
f"Performances will be held by {players[1]}, {players[0]}, and {players[2]}"
‘Performances will be held by Bill Evans, Tony Trischka, and Alan Munde'

OEBPS/Images/10fig10.jpg
Men

Women

Men

. @\QW
L VNQW
%) >
2% >
80p, >
.@QQ >
VQQ >
WQQ >

198 A

198 A

194 4
192 4

190

. QQOW

Women

.wSrv
VNDFV
WNQW
QNQW
mQQW
QQQW
VQQW
Wberv

176.4 4

176.2 4

176.0
175.8 4

GioH
W

oup)

(say

175.6

175.4

00, >

Year

Year

OEBPS/Images/034pro04.jpg
range(10)
range(0, 10)

Tist(range(1, 10))
(1,2 3, 4,5 6 7,8 9

1ist (range (0,10,2))
[0, 2, 4, 6, 8]

list(range(10, 0, -2))
[10, 8, 6, 4, 2]

OEBPS/Images/10fig17.jpg
Brushing

Brushing

150

100

50

OEBPS/Images/10fig16.jpg
@ species=setosa
@ species=versicolor
©® species=virginica

4 @
©
%
2, & %
49(/ %q, &Yé\
@?Q, A @6‘ N
% o 6]
<" S0
% /

OEBPS/Images/10fig15.jpg
species

setosa

versicolor
virginica

s g
A %ﬁ. wﬁ

aafin,

§s§ﬁ

% .,. um.

|

mﬁ

m

@ N~ ©
yibus||edes

oo.—oo

yipim _m%m

ﬁm.

© < o
yibus|ejed

u.
am

[—

yipimejed

o

2
petal_width

2.5 50 75 0
petal_length

6
sepal_length

<

sepal_width

OEBPS/Images/10fig14.jpg
o
«

0 o

pajorlSIpTIou

15 20

total

10

OEBPS/Images/10fig09.jpg
Height (Inches)

Heights over time

195 4

190 4

185 4

180 4

175 4

—— Women
— Men

- Y

T T T T T T T T T
2000 2002 2004 2006 2008 2010 2012 2014 2016
Year

OEBPS/Images/195pro01.jpg
class ImAllwaysBigger():
f __gt_(self, 0):
return True

f __ge_(self, 0):
return True

i_am_bigger = ImAllwaysBigger ()
no_i_am_bigger = ImAllwaysBigger ()

i_am_bigger > "Anything"
True

i_an_bigger > no_i_am_bigger
True

no_i_am_bigger > i_am_bigger
True

i_am_bigger > i_am_bigger
True

OEBPS/Images/10fig08.jpg
195

190

185

180

175 A

- Y

T T T T T T T T T
2000 2002 2004 2006 2008 2010 2012 2014 2016

OEBPS/Images/195pro02.jpg
class Mathfe():
def __init_ (self, value):
self.value = value

def __add__(self, 0):
return MathMe(self.value + 0.value)

def __sub__(self, 0):
return MathMe (self.value - 0.value)

def __mul__(self, 0):
return MathMe (self.value * 0.value)

m = Mathhe (3)
Mathle (4)
i3 = ml + m2

m3.value

m4 = ml - m3
m4.value
4

mé = m1 * m3
m.value

OEBPS/Images/10fig07.jpg

OEBPS/Images/070pro02.jpg
def does_keyword(first, second,
'''Prints parameters.'''
print(f'First: {first}')
print(f'Second: {second}')
print(f'Third: {third}')

» third):

does_keyword(1, 2, third=3)
First: 1
Second: 2
Third: 3

OEBPS/Images/070pro01.jpg
does_order(second=2, 1, 3)
File "<ipython-input-9-eed80203e699>", line 1
does_order (second=2, 1, 3)
A

SyntaxError: positional argument follows keyword argument

OEBPS/Images/106pro01.jpg
rvs = B.rvs(size=100000)
rvs
array([11, 4. 4, ...

OEBPS/Images/106pro02.jpg
import matplotlib.pyplot as pit
p1t.hist (rvs)
51t . show()

OEBPS/Images/205pro03.jpg
with open("/Users/kbehrman/.vimrc') as open_file:
data = open_file.readlines()

data[0]
'set nocompatible\n'

OEBPS/Images/205pro02.jpg
read_me.readline()
‘filetype offin'

OEBPS/Images/205pro05.jpg
t1s /Users/kbehrman

Applications Downloads Movies Public

Desktop Google Drive Music my_new_file. txt
Documents Library Pictures sample.json

OEBPS/Images/205pro04.jpg
text = "My intriguing story

with open('/Users/kbehrman/my_new_file.txt', 'w') as open_file:
open_file.write(text)

OEBPS/Images/205pro01.jpg
read_me.readline()
'set nocompatible\n'

OEBPS/Images/10fig02.jpg
100

OEBPS/Images/094pro01.jpg
datal = np.arange(24).reshape(4,6)

datal

array([[0, 1, 2, 3, 4, 5],
[6 7, 8 9, 10, 11],
[12, 13, 14, 15, 16, 17],
(18, 19, 20, 21, 22, 23]])

data2 = data1[:2,3:]
data2
array([[3, 4, 5]

[9. 10, 11]])

data2[1,2] = -1

data2

array([[3, 4, 5],
[9, 10, -1]])

datal

array([[0, 1, 2, 3, 4, 5]
{6, 7. 8 9 10, -1],
(12, 13, 14, 15, 16, 17],
118, 19, 20, 21, 22, 2311)

OEBPS/Images/10fig01.jpg
100

OEBPS/Images/10fig06.jpg
176.44

176.2

176.0

175.8

175.6

175.4+

2000 2002 2004 2006 2008 2010 2012 2014 2016

OEBPS/Images/10fig05.jpg

OEBPS/Images/205pro06.jpg
import json

with open('/Users/kbehrman/sample.json') as open_file:
data = json.load(open_file)

OEBPS/Images/10fig04.jpg

OEBPS/Images/10fig03.jpg

OEBPS/Images/077pro01.jpg
det aad_one(n):
***Adds one to a number. '’
return n + 1

def add_two(n) :
'''Adds two to a number.'''
return n + 2

my_functions = [add_one, add_two]

for my_func in my_functions:
print (my_func (1))

2

3

OEBPS/Images/077pro02.jpg
def call_nested():
'"'Calls a nested function.'"'
print(‘outer')

def nested():
**'Prints a message.'""
print(*nested’)

return nested

my_func = call_nested()
outer

my_func ()

nested

OEBPS/Images/046pro02.jpg
empty_set
empty_set
set()

empty_set
empty_set
{}

n

et()

{

OEBPS/Images/140pro01.jpg
A=10,1,2,3, 4,9, /7,8, 9, 10]

Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]
fmt = 's-.r'

plt.plot(X, Y, fmt, linewidth=4.3)

OEBPS/Images/185pro01.jpg
b = 2
def do_something(c):
c=
a=4
print(a)
return ¢

b = do_something(b)
print(a + b)

OEBPS/Images/046pro03.jpg
letters ,oay, b,
unique_letters = set(letters)
unique_letters
{"a", 'b", "¢’}

unique_chars = set('mississippi')
unique_chars
{tit, 'mt, ety sty

unique_num = {1, 1, 2, 3, 4, 5, 5)
unique_num
{1, 2, 3, 4, 5)

OEBPS/Images/140pro02.jpg
import pandas as pd

data = {"Years": [, "2008"

“Men": [189.1, 191.8, 193.5, 196.0, 194.7,
196.3, 194.4, 197.0, 197.8],
“Women": [175.7, 176.4, 176.5, 176.2, 175.9,
175.9, 175.7, 175.8, 175.3]}
heights_df = pd.DataFrame(data)

OEBPS/Images/046pro04.jpg
bad_set
TypeError Traceback (most recent call last)
<ipython-input-12-1179bc4af8bg> in <module>()

> 1 bad_set = { ['a','b'], 'c' }

TypeError: unhashable type: 'list'

OEBPS/Images/046pro05.jpg
unique_num.add(6)
unique_num
{1, 2, 3, 4, 5, 6)

OEBPS/Images/080pro01.jpg
def apply_to_list(data, my_tunc):
*"'Applies a function to items in a Tist.''
for item in data:
print (f' {my_func(item)}')

apply_to_list([1, 2, 3], lambda x: x + 1)
2
3
4

OEBPS/Images/029pro01.jpg
num_participants = 10
scores = [0] * num_participants
scores

[0, 0, 0, 0,0, 0,0, 0,0, 0]

OEBPS/Images/162pro02.jpg
rrbiditbore?
iy poctuntion 2 Look 3t th punctuntion string
R AT

usar e = ()
or vord 1n caosr v
W vord ot in sing. unctiation:
£ 400 non-punctaation erds

2 Gat mmtor punctuation ords

ek Frqptstesesa. 1)
it nost comont15)
En

v, 39)
260,
20,
20,
216
25
Cin', 200
st).
Coansar, 189,
g

OEBPS/Images/137pro01.jpg
A=10,1,2,3, 4,9, 7,8, 9, 10]
Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]
plt.plot(X, Y, marker='s')

OEBPS/Images/029pro02.jpg
some_list = [1,2,3]
some_list
1, 2, 31

OEBPS/Images/029pro03.jpg
tup = (1,2)
tup
(1.2)

tup = (1,)
tup
(1)

tup = 1,2,
tup
(1,2)

OEBPS/Images/162pro01.jpg
CR0Sar_cIOT B RIL.Freqe’(coesaryi
aviar_o1t. ost._comon (15

OEBPS/Images/159pro01.jpg
poptiiriyn
ik, domlond(utendorg
14K csta) Dowloading pockase utenbarg
(ota] Tusasrkaenrmae s,

(06 eta] enigpig corpralquienery 21

OEBPS/Images/209pro02.jpg
re.search("\w\d\w", "His panic over Y2K was overwhelming.
<re.Match object: span=(15, 18), match='Y2K'>

OEBPS/Images/209pro03.jpg
re.search("\w+i€iw+l.\w+", captains,
<re.Match object: span=(6, 21), matcl

ahab@pequod. com'>

OEBPS/Images/209pro04.jpg
= re.search("(\w+)\€(Ilw+)1. (\w+)", captains,

print (f'Group 0 is {m.group(0)}")
Group 0 is ahab@pequod.com

print (f'Group 1 is {m.group(1)}')
Group 1 is ahab

print (f'Group 2 is {m.group(2)}')
Group 2 is pequod

print (f'Group 3 is {m.group(3)}')
Group 3 is com

OEBPS/Images/102pro01.jpg
di = np.array([[0, 1, 3],
[4, 2, 911)
42 = d1[:, 1:]

OEBPS/Images/209pro01.jpg
re.search("[A-Z][a-Z]", captains
<re.Match object; span=(0, 2), match='Ah'>

re.search("[A-Za-z]+", captains,
<re.Match object; span=(0, 4), match='Ahab'>

re.search("[A-Za-z]{7}", captains
<re.Match object; span=(46, 53), match="'Ishmael'>

re.search("[a-z]+\@[a-z]+\.[a-z]+", captains
<re.Match object: span=(6, 21). matcl

-ahab@pequod.. com' >

OEBPS/Images/197pro03.jpg
class Job():
def run(self):
print("I'm running")

class ExtractJob(Job):
def extract(self, data):
print('Extracting')

class TransformJob (Job) :
def transform(self, data):
print('Transforming')

job_1 = ExtractJob()
job_2 = TransformJob ()
for job in [job_1, job_2]:
if isinstance(job, Job):
job.run()
I'm running
I'm running

OEBPS/Images/197pro05.jpg
class Child(Parent
def run(self):
print('I am a child running wild')

OEBPS/Images/197pro04.jpg
class Parent():
def run(self):
print('I am a parent running carefully')

OEBPS/Images/102pro02.jpg
di = np.array([[0, 1, 3],

[4, 2, 9]])
d2 = d1[:, 1:]
d42[0,1

OEBPS/Images/160pro03.jpg
SPRSEREARS § & S S

Tragaste®, ot “woltos, “Caesar”,]

o1, donlosd(‘pkt’) 2 Sounlond okentzer used Ko define senonce endings
[ata] Oomnlostng package Prkt 1o /Usrs/Hbeneasn) G4t
(MUCsata) naipping tokenzers purkt21.

Ca0sar_s = Guteoarg sunts (" shkespesra-cansar. (') % LIS of sentances

e
Srakesp

s, “Comsart, by, W
e, “prine -

uterrg, prss(-shaksspsre-csesar xt) # List of parogrspre

T R e
Flki (Tt mrses, e SR oM e NTTME 2N

OEBPS/Images/160pro02.jpg
oypmeriestadeligrese o
[susten-oma.
Sustenporsuasion .
Siblecky. i
Slakerposns. i
bryant stories. e
Burgess bsterbronn .
earron-al zo. tat-
enestorionbal tat”
enestorton:thrsaay it
“edgmmortn parents.ac
salviTlosoty_gick.txt
it paraczo. tat
Snskespore-covar it
“Snakaspaare polet st
hennussytphdinqpusert

OEBPS/Images/074pro01.jpg
det does_wildcard_positions(“args):
**'Demonstrates wildcard for positional parameters.''
for item in args:
print (item)

does_wildcard_positions('Donkey’, 3, ['a'])
Donkey
3

['a']

OEBPS/Images/074pro03.jpg
det does_wildcards("args, "“kwargs):
**'Demonstrates wildcard parameters.'""
print(f'Positional: {args}')
print (f'Keyword: {kwargs}')
does_wildcards(1, 2, a='a’, b=3)

Positional: (1, 2)
Keyword: {'a': 'a',

.3

OEBPS/Images/074pro02.jpg
det does_wildcard_keywords (" "kwargs):
**"Demonstrates wildcard for keyword parameters.'
for key, value in kwargs.items():
print(f'{key} : {value}')

does_wildcard_keywords (one=1, name='Martha’
one 1 1
Ana. o Martha

OEBPS/Images/026pro01.jpg
‘Tarst’ an ['Tirst’, ‘second’, "third’]
True

23 in (23,)
True
'b' in ‘cat’
False

b'a’ in b'ieojjza
True

OEBPS/Images/212pro02.jpg
names = [Rolly , "Polly , "HMolly"]
sorted_names = names.sort()

OEBPS/Images/212pro01.jpg
regex.match(captains)
<re.Match object; span=(0, 21), match="Ahab: ahab@pequod.con'>

regex.search (captains)
<re.Match object; span=(0, 21), match='Ahab: ahab@pequod.com'>

regex. findall (captains)
[('ahab', 'pequod', 'com'),
('peleg’, 'pequod’, 'com'),
("ishmael’, 'pequod’, 'com'),
('herman’, ‘acushnet', 'io'),
('pollard’, 'essex’, 'me')]

new_text = regex.sub("Ahoy \g<name>!", captains)
print (new_text)

Ahoy ahab!

Ahoy peleg!

Ahoy ishmael!

Ahoy herman!

Ahoy pollard!

OEBPS/Images/026pro03.jpg

OEBPS/Images/092pro01.jpg
L1 = Tist(range(10))
2 = Tist(range(10, 0, -1))
5

[0,1,2, 3, 4,5,6,7,8,9]

L2
(10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

L3 =[]

for i, j in zip(L1, L2):

3. append (i*])

L3

[0, 9, 16, 21, 24, 25, 24, 21, 16, 9]

OEBPS/Images/092pro02.jpg
arrayl = np.array(L1)

array2 = np.array(L2)

array1*array2

array([0, 9, 16, 21, 24, 25, 24, 21, 16, 9])

array1 + array2
array([10, 10, 10, 10, 10, 10, 10, 10, 10, 10])

array1 | array2
array([0. . 0.11111111, 0.25 . 0.42857143, 0.66666667,
1. 1.5 . 2.33333333, 4. L 9. 1

OEBPS/Images/9780136624318.jpg
<

vv

ApbbisoN WESLEY DATA & ANALYTICS SERIES

B
RS
B

OEBPS/Images/059pro02.jpg
returns_true() or returns_talse()

OEBPS/Images/114pro02.jpg
first_names = ['shanda’, 'rolly’, 'molly", "frank’,
‘rip', 'steven', 'gwen', 'arthur']

last_names = ['smith', 'brocker', 'stein', 'bach',
"spencer’, 'de wilde', 'mason’, 'davis']

ages = [43, 23, 78, 56, 26, 14, 46, 92]

data = {'first':first_names,
‘last':last_names,
'ages':ages}

varticipants = pd.DataFrame (data)

OEBPS/Images/059pro01.jpg
returns_tTalse(

) and

returns_true()

OEBPS/Images/114pro01.jpg
dt = pd.DataFrame()
print (df)

Empty DataFrame
Columns: []

Index: []

OEBPS/Images/109pro01.jpg
N1 = stats.norm(loc=30,scale=50)
rvs = N1.rvs (size=100000)
p1t.hist(rvs, bins=1000)

51t show()

OEBPS/Images/059pro04.jpg
1T True:message="It's True!
It's True!

sprint(message)

OEBPS/Images/059pro03.jpg
s = ==

a or 'default value’

default value'

OEBPS/Images/072pro01.jpg
det does_list_detault(my_list=[]):
**'Uses Tist as default.''’
my_Tist.append(1)
print (my_Tist)

does_1ist_default()
]

does_1ist_default()
i, 1]

does_list_default()
M, 1,1

does_1ist_paran()
1

does_list_param()
1]

OEBPS/Images/190pro02.jpg
class (lassyvariables():
class_variable = 'Yellow'

def __init__(self, color):
self.instance_variable = color

red = ClassyVariables('Red")
blue = ClassyVariables('Blue')

red.instance_variable
‘Red’

red.class_variable
'Yellow'

blue.class_variable
‘Yellow'

blue.instance_variable
"Rlue’

OEBPS/Images/089pro01.jpg
twod.reshape(2,3)

ValueError Traceback (most recent call last)
<ipython-input-295-0b0517f762ed> in <module>
----> 1 twod. reshape(2,3)

ValueError: cannot reshape array of size 12 into shape (2,3)

OEBPS/Images/190pro01.jpg
class PrivatePublic():
def _private_method(self):
print(‘private’)

def public_method(self):
Call private
self._private_method()
... Do something else

OEBPS/Images/089pro02.jpg
np.ones(12) .reshape(2,3,2)
array ([[[1., 1.1,

[AER

., 1
., 1.,

[AE

., 1.111)

OEBPS/Images/089pro03.jpg
oned = np.arange(z21)

oned

array([0, 1, 2, 3, 4, 5 6, 7, 8 9,10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

oned[3]
3

oned[-1]
20

oned[3:9]
array([3. 4. 5. 6, 7. 8])

OEBPS/Images/210pro03.jpg
re.tindall (" (7P<name>\w+)\@(7P<SLD>\w+)\. (YP<ILD>\w+) ", captains)
[(‘ahab', 'pequod', 'com'),

('peleg', 'pequod', 'com'),

('ishmael', 'pequod', 'com'),

('herman', ‘acushnet', 'io'),

('pollard', 'essex', 'me')]

OEBPS/Images/139pro01.jpg
A=10,1,2,3, 4,5, 1/7,8,9,10]
Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]
plt.plot(X, Y, marker='s', linestyle=':', color='m')

OEBPS/Images/210pro02.jpg
re.Tindall (T\w+i€lw+l. iwt", captains)
['ahab@pequod.con' ,
*peleg@pequod. con',
*ishmael@pequod. con’
'herman@acushnet. o,
‘pollard@essex.me']

OEBPS/Images/210pro01.jpg
m = re.search(”(7P<name>\w+)\€(7P<SLD>\w+)\. (YP<ILD>\w+)", captains)

print(f''"
Email address: {m.group()}

Name: {m.group(“name")}

Secondary level domain: {m.group("SLD")}
Top level Domain: {m.group("TLD")}''")
Email address: ahab@pequod.com

Name: ahab

Secondary level domain: pequod

Top level Domain: com

OEBPS/Images/0147pro01.jpg
sns.relplot(data=car_crashes,
x='total",
not_distracted")

OEBPS/Images/139pro02.jpg
A=10,1,2,3, 4,5, 7,8,9,10]

Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]
fmt = 's-.r'

plt.plot(X, Y, fmt)

OEBPS/Images/160pro01.jpg
From nitR.corpus Thport gutemere
—
B e

OEBPS/Images/177pro01.jpg
a = {"vehicle”

~Joseph Bruce Ismay"}

def change_mutable_data(data):
*"'A function which changes mutable data
data['owner'] = 'White Star Line

change_nutable_data (d)
print (d)
{'vehicle': 'ship', 'owner': 'White Star Line'

OEBPS/Images/069pro03.jpg
def does_keyword(first, second, ", third
**'Prints parameters.''"
print(f'First: {first}')
print (f'Second: {second}')
print(f'Third: {third}')

does_order(1, 2, 3)

First: 1
Second: 2
Third: 3

does_order (first=1, second=2, third=3
First: 1
Second: 2
Third: 3

does_order (1, third=3, second=2)
First: 1
Second: 2
Third: 3

OEBPS/Images/132pro01.jpg
aet cap_word(w):
return w.capitalize()

OEBPS/Images/177pro03.jpg
R it o
return d *

gardens = map (grow_flowers, [0,1,2,3,4,5])
type (gardens)
nap

1ist (gardens)
O og e

OEBPS/Images/069pro02.jpg
det no_params():
print("I don't listen to nobody")

OEBPS/Images/132pro02.jpg
participants.loc|:, "Tirst |.apply(cap_word)
Shanda
Rolly
Molly
Frank
Rip
Steven
Gwen
Paul
lame: first, dtype: object

SRR R S

OEBPS/Images/177pro02.jpg
¢ “Joseph Bruce lsmay"}

a = {"vehicle":

def change_owner (data):
new_data = data.copy()
new_data['owner'] = 'White Star Line'
return new_data

changed = change_owner (d)

{'owner': 'White Star Line', 'vehicle': 'ship'}

OEBPS/Images/132pro03.jpg
aet say _hello(row):
return f'{row["first"]} is {row["Age"]} years old

OEBPS/Images/132pro04.jpg
participants.apply(say_hello, axis=1)
a shanda is 42 years old.

b rolly is 22 years old.

c molly is 77 years old.

d frank is 98 years old.

3 rip is 25 years old.

f steven is 13 years old.

g gwen is 45 years old.

h paul is 91 years old.

dtype: object

OEBPS/Images/016pro01.jpg
X
y = x*2
print(f'x is {x}, y is {y}")
X is 7,y is 49

won

OEBPS/Images/180pro04.jpg
[T7{x} petals counted

['0 petals
"1 petals
'2 petals
'3 petals
'4 petals
'5 petals

counted
counted
counted
counted
counted
counted

So tar” for x 1in range(0)]
far',
far',
far*
far',
far',
far')

OEBPS/Images/016pro02.jpg
966

"Hello"
‘Hello’

import os
0s..getcwd)
" lecontent '

OEBPS/Images/069pro01.jpg
help(do_nothing)
Help on function do_nothing in module _main_:
do_nothing(not_used)

This function does nothing.
This function uses a pass statement to avoid doing anything.
Parameters:

not_used - a parameter of any type,
which is not used.

OEBPS/Images/180pro01.jpg
mes = ["tim’, "tiger’, "tabassum', "theodora’, "tanya]
capd = [x.title() for x in names]

['Tim'. 'Tiger'. 'Tabassum', 'Theodora', 'Tanya']

OEBPS/Images/180pro03.jpg
def count_tlower_petals(d):
return f'{d} petals counted so far"

counts = map (count_flower_petals, range (6))

list (counts)
['0 petals counted so far',
"1 petals counted so far',
'2 petals counted so far',
'3 petals counted so far',
'4 petals counted so far',
'5 petals counted so far']

OEBPS/Images/072pro02.jpg
det does_list_param(my_list=None):
**'Assigns default in code to avoid confusion.''
my_list = my_list or []
my_list.append (1)
print (my_list)

does_1ist_param()
]
does_1ist_param()

(1

does_list_param()
11

OEBPS/Images/180pro02.jpg
lames = | "tim’, "tiger , "tabassum , "theodora , "tanya]
capd = []

for name in names:
capd. append (name. title())

capd
["Tim', 'Tiger', 'Tabassum', 'Theodora', 'Tanya']

OEBPS/Images/129pro02.jpg
participants{ Full Name' }

(participants.loc{:, "Tirst] +
v
participants.loc[:, 'last']
participants

OEBPS/Images/129pro01.jpg
participants{ Full Name' }

(participants.loc[:, "Tirst | +
participants.loc[:, 'last']

participants

OEBPS/Images/207pro04.jpg
from datetime import date

date. today ()
datetime.date (2021, 3, 7)

OEBPS/Images/207pro02.jpg
from datetime import timedelta
delta = timedelta(days=3)

dt - delta
datetime.datetime (1968, 6, 17, 0, 0)

OEBPS/Images/207pro03.jpg
from zoneinfo import Zonelnto

dt = datetime(2032, 10, 14, 23, tzinfo=ZoneInfo("America/Jujuy"))
dt. tzname ()

o

OEBPS/Images/207pro01.jpg
at = datetime.strptime(1968-06-20", "%Y-%m-%d")
dt
datetime.datetime(1968, 6, 20, 0, 0)

dt.strftime('%m/%d/%y")
'06/20/68"

OEBPS/Images/217pro04.jpg
dt = pd.DataFrame({ Sample Size(mg) :[0.24, 2.34, 0.0234],

%P (40, 34, 12],
%Q' 60, 66, 88 1})

OEBPS/Images/217pro05.jpg
d.Datakrame([| U.24, 40, 60 |,
[2.34, 34, 66],
[0.0234, 12, 88]],
columns=['Sample Size(mg) ', '%P', '%Q'])

OEBPS/Images/142pro01.jpg
pit.plot(Years', "Women', ‘"Men', data=heights_ar)
p1t.xTabel('Year')

plt.ylabel('Height (Inches)')

plt.title("Heights over time")
n1t.legend(['Women', 'Men'])

OEBPS/Images/167pro02.jpg
e © Ay
or parsgrap 1 ad ot
Tabated ata. sppend((paragraph. “adtortay’)

or parsgra 0 f1c i
Tsbelod ata. sppand((paragrsph. ttton’))

ron randon tport shutfle
g ey

OEBPS/Images/167pro01.jpg
e st
o Seurrons & 3 ord
o it i parsropn
i asmatace(sto, (118, o)
ot peneicen)
a
o, et
ot ot

o= ()
or paragrah 0 ed

it —
e st = ()
or paragrph in fhc. .

iy pliatie PR

tsa 3 30 35y oy care shut 3

aga stom .3 165t or wplo

5 acs seon

2 Flstten e aditoria) paragrapns

o Piaites S Tetien Sarrate

OEBPS/Images/044pro05.jpg
tuple_key = (1, ‘one’, 1.0, (‘uno’,))
{ tuple_key: 'some value' }
{(1, 'one'. 1.0, ('uno'.)): 'some value'l

OEBPS/Images/044pro03.jpg
L1 i an integer ,
‘string' @ 'a string',
("item',) : 'a tuple',
range(12) : 'a range',
b'binary’ : 'a binary string')

OEBPS/Images/044pro04.jpg
{("item”,): "a tuple’,

1: 'an integer',

b'binary': 'a binary string’,

range(0, 12): 'a range',

‘string’: 'a string’,

['a', "list'] : 'a Tist key' }
TypeError Traceback (most recent call last)
<ipython-input-31-1b0e555de2b5> in <module>()

> 1 { ['a', 'list'] : ‘'a list key' }

TypeError: unhashable type: 'list'

OEBPS/Images/044pro01.jpg
student_record.get(name , 'no-name)
'no-name '

OEBPS/Images/044pro02.jpg
student_record.get(name ', admission_record.get(first’, 'no-name’))
*Julia'

OEBPS/Images/052pro07.jpg
unique_letters
unique_Tetters
'm0’

set(permanent’)

unique_letters A= set('mud') 2 unique_letters
i ey

OEBPS/Images/052pro06.jpg
unique_letters -= set(Arkansas’)
unique_letters
PP

OEBPS/Images/052pro05.jpg
unique_letters = set("mississippi
unique_Tetters
Cit, e, pr s

unique_Tetters |= set("Arkansas")
unique_letters
{'A

OEBPS/Images/052pro04.jpg
unique_num.symmetric_difference_update({5, 6, 7 })
unique_num
(3.6, 7}

OEBPS/Images/204pro01.jpg
import pandas as pd
data = {'first': ['Dan', 'Barb', Bob'],
"last': ['Huerando', 'Pousin', 'Smith'],
"score': [0, 143, 99]}

df = pd.DataFrame (data)

df

first Tast score
0 Dan Huerando 0
1 Bob Pousin 143
2 Bob Smith 99

df .sort_values (by=['last','first'])

first Tast score
0 Bob Pousin 143
1 Bob Smith 99

2 Dan Huerando 0

OEBPS/Images/204pro02.jpg
read_me = open(/Users/kbenrman/.vimrc")
read_ne
_TextIOWrapper name='/Users/kbehrman/.vimrc' mode='r' encoding='UTF-8'>

OEBPS/Images/182pro01.jpg
I_ten = [x""3 Tor x 1n range(10)]
g_ten = (x**3 for x in range(10))

print (f"1_ten is a {type(1_ten)}")

1_ten is a <class 'list'>

print (f"1_ten prints as: {1_ten}")

1_ten prints as: [0, 1, 8, 27, 64, 125, 216, 343, 512, 729)

print (f"g_ten is a {type(g_ten)}")
g_ten is a <class 'generator'>

print(f"g_ten prints as: {g_ten}")
g_ten prints as: <generator object <genexpr> at 0x7f3704d52f68>

OEBPS/Images/119pro01.jpg
import numpy as np
college_majors.describe (include=[np.object])

OEBPS/Images/119pro03.jpg

OEBPS/Images/119pro02.jpg

OEBPS/Images/165pro02.jpg
St asilasskiom fumet)
caspiosmsmosinpu sy SREERINUC R

OEBPS/Images/120pro01.jpg

OEBPS/Images/165pro01.jpg
ebergegond b orbiorg
cavsar = Toxt (cssar_u)
petcansr.t)

OEBPS/Images/018pro01.jpg
polly = "parrot’
del (polly)
print (polly)
NameError Traceback (most recent call last)
<ipython-input-6-c0525896ade9> in <module>()
1 polly = 'parrot’
2 del(polly)
----> 3 print(polly)

NameError: name 'polly' is not defined

OEBPS/Images/165pro04.jpg
e
0 Clearo: 0 Casius: 0 Conspiraste: 0 Casar; O Caes O Cssar: 0
Costancio: 0 Caear: 0 Caonr: D Consa: O Cssiun: O Castun: O
s B e S L

OEBPS/Images/165pro03.jpg
gy btveghvall Mool
T ks e . s R St e 1wt saihe e v Ve it 1t

OEBPS/Images/165pro06.jpg
caesar_t.concordance(Antony", lines=9)
Displaying 5 of 75 matches:

efulnesse . Exeunt . Enter Caesar , Antony for the Course , Calphurnia , Port:
Of that quicke Spirit that is in Antony : Let me not hinder Cassius your de
He Toues no Playes , As thou dost Antony : he heares no Musicke ; Seldome he
r ' d hin the Crowne ? Cask . Why Antony Bru . Tell vs the manner of it , ge
I did not marke it . I sawe Marke Antony offer him a Crowne , yet ' twas not

OEBPS/Images/165pro05.jpg

OEBPS/Images/081pro01.jpg
“before

det add_prefix(word, pretix:
***Prepend a word. """’
return f' {prefix}{word})'3

def return_one():
return 1

def wrapper ():
print(‘a’)
retval = return_one()
print('b')
print (retval)

OEBPS/Images/198pro01.jpg
chile = Child()
chile.run()
I am a child running wild

OEBPS/Images/198pro02.jpg
class person():
def _init__(self, first_name, last_name):
self.first_name = first_name
self.last_name = last_name

class student (person):
def __init__(self, school_name, first_name, last_name):
self.school_name = school_name
super().__init__(first_name, last_name)

lydia = student ('boxford', 'lydia’, 'smith')
lydia.last_name
vemith'

OEBPS/Images/081pro02.jpg
“standard_logging
**standard_logging
estandard_logging
[standard_logging]

OEBPS/Images/198pro03.jpg
pass

class B(A):
pass

class C(B):
pass

c = C()
isinstance(c, B)
True

isinstance(c, A)
True

OEBPS/Images/198pro04.jpg
def a_method(self):
print(A's method)

class B():
def b_method(self):
print(B's method)

class C(A, B):
pass

¢ =C()
c.a_method ()
A's method

¢.b_method ()
B's method

OEBPS/Images/064pro02.jpg
Tish = ['mackerel”, "salmon’, "pike’

beasts = ['salmon’, 'pike’, 'bear’, ‘mackerel']
i=0
while True:

beast = beasts[i]
if beast not in fish:
print(f"0h no! It's not a fish, it's a {beast}")
break
print(f'I caught a {beast} with my fishing net")
P41
I caught a salmon with my fishing net
I caught a pike with my fishing net
Oh nol It's not a fish, it's a bear

OEBPS/Images/064pro01.jpg
colors = ["Green™, "Red”,

for color in colors:
print(f"My favorite color is {color}")
print("No, wait...")

My favorite color is Green

No, wait...

My favorite color is Red

No, wait...

My favorite color is Blue

No, wait...

“Blue™]

OEBPS/Images/08fig03.jpg

OEBPS/Images/08fig02.jpg

OEBPS/Images/040pro04.jpg
1tems = subject_1.1tems()
items
dict_items([('name', 'Paula'), ('height', 64), ('gpa', 4.0), ('ranking', 1)])

OEBPS/Images/08fig01.jpg

OEBPS/Images/040pro03.jpg
values = subject_1.values()
values
dict_values(['Paula', 64, 4.0, 1])

OEBPS/Images/216pro01.jpg
aict(|{| name’ , Smuan’ |

| height' ,62

OEBPS/Images/08fig07.jpg
1200

1000

800 -

600 -

400 -

200 -

OEBPS/Images/08fig06.jpg
—200 -100 0 100 200 300

OEBPS/Images/08fig05.jpg

OEBPS/Images/182pro03.jpg
for x 1n g_ten:
print (x)

RN

OEBPS/Images/08fig04.jpg

OEBPS/Images/097pro01.jpg
darray = np.

darray

array([0,
17,
34,
51,
68,
85,

darray.dtype
dtype(" int64

darray.nbyte
300

arange

1
18,
35,
52,
69,
86,

)

s

2,

19,
36,
53,
70,
87,

(100)

3,

20,
37,
54,
,
88,

21,
38,
55,
72,
89,

90,

23,
40,
57,
74,
91,

24,
41,
58,
75,
92,

25
42,
59,
76,
93,

9, 10, 11, 12, 13, 14, 15, 16,

2, 27,
43, 44,
60, 61,
77, 78,
94, 95

28,
45,
62,
79,
96,

29,
48,
63,
80,
97,

30,
47,
64,
81,
98,

31, 32, 33,
48, 49, 50,
65, 66, 67,
82, 83, 84,
99])

OEBPS/Images/097pro02.jpg
darray = np.

darray

array([0, 1, 2,

17, 18, 19,
34, 35, 36,
51, 52, 53,
68, 69, 70,
85, 86, 87,
dtype=int8)

darray.nbytes

100

arange (100,

3,

20,
37,
54,
,
88,

dtype=np.intg)

4,

21,
38,
55,
72,
89,

5,

22,
39,
56,
73,
90,

6,

23,
40,
57,
74,
91,

7,

24,
41,
58,
75,
92,

25,
42,
59,
76,
93,

9, 10, 11, 12, 13, 14, 15, 16,

26,
43,
60,
77,
94,

27,
44,
61,
78,
9,

28,
45,
62,
79,
96,

29,
46,
63,
80,
97,

30,
47,
64
81
98,

31, 32, 33,
48, 49, 50,
65, 66, 67,
82, 83, 84,
99],

OEBPS/Images/08fig08.jpg
20 -

OEBPS/Images/124pro03.jpg
participants.iloc(3]
first frank
last bach
ages 56

Name: d. dtype: object

OEBPS/Images/124pro02.jpg

OEBPS/Images/040pro02.jpg
Keys = subject_1.keys()
keys
dict_keys(['name', 'height'. 'gpa’. 'ranking'])

OEBPS/Images/124pro01.jpg

OEBPS/Images/040pro01.jpg
del(student_record["1d"])
student_record

{'advisor': 'Pickerson’,
“first': 'Julia',

‘gpa’: 4.0,

‘last': 'Brown',
‘major': 'Data Science’,
‘minor': 'Math'}

OEBPS/Images/115pro04.jpg

OEBPS/Images/068pro03.jpg
det do_nothing(not_used):
"""This function does nothing.
pass

OEBPS/Images/115pro02.jpg
participants
participants

pd.DataFrame (data)

OEBPS/Images/068pro04.jpg
det do_nothing(not_used):

This function does nothing.
This function uses a pass statement to
avoid doing anything.
Paraneters:
not_used - a parameter of any type,
which is not used.

pass

OEBPS/Images/115pro03.jpg

OEBPS/Images/068pro01.jpg

OEBPS/Images/115pro01.jpg
"spencer”, 26],
["steven", "de wilde", 14],
["guen”, “mason”, 46],
["arthur”, “davis", 92]]

OEBPS/Images/200pro02.jpg
class A():
def say_hello(self):
print('Hello from A')

def say_goodbye (self) :
print ('Goodbye from A')

class B(A):
def say_goodbye (self) :
print ('Goodbye from B')

b = B()
b.say_hello()
b.say_goodbye ()

OEBPS/Images/093pro02.jpg
mask = twod < o

mask

array([[True, True, True, True],
[True, False, False, False],
[False, False, False, False]])

twod [mask]
array([0, 1, 2, 3, 4])

OEBPS/Images/090pro01.jpg
twod = np.arange(21).reshape(3,7)

twod

array([[0, 1, 2, 3, 4, 5, 6],
[7, 8 9,10, 11, 12, 13],
(14, 15, 16, 17, 18, 19, 20]])

twod[2] # Accessing row 2
array([14, 15, 16, 17, 18, 19, 20])

twod[2, 3] # Accessing item at row 2, column 3
17
twod[0:2] # Accessing rows 0 and 1

array([[0, 1, 2, 3, 4, 5, 6]
[7. 8 9,10, 11, 12, 13]])

twod(:, 3] # Accessing column 3 of all rows
array([3, 10, 17])

twod[0:2, -3:] # Accessing the last three columns of rows 0 and 1
array([[4, 5, 6],
11, 12, 1311)

OEBPS/Images/093pro01.jpg
twod = np.arange(21).reshape(3,7)

twod

array([[0, 1, 2, 3, 4, 5 6],
[7. 8 9, 10, 11, 12, 13],
[14, 15, 16, 17, 18, 19, 20]])

mask = np.array([[True, False, True, True, False, True, False]
[True, False, True, True, False, True, False]
[True, False, True, True, False, True, False]]
twod [mask]
array([0, 2, 3, 5. 7. 9,10, 12, 14, 16, 17, 19]

OEBPS/Images/093pro03.jpg
mask = (twod < 5) & (twod%2 ==

mask

array([[True, False, True, False],
[True, False, False, False],
[False, False, False, False]])

twod [mask]
array([0, 2, 4])

OEBPS/Images/194pro01.jpg
class Scoreflatters():
def __init__(self, score)
self.score = score

f __1t__(self, 0):
return self.score < 0

f __eq_(self, 0):
return self.score =

ny_score = ScoreMatters (14)
ny_score == 14.0
True

ny_score < 15
, .

OEBPS/Images/039pro01.jpg
student_record| "applied’]
student_record
({‘name’:'Paula’,

‘height ' :64,

‘gpa’:3.8,

‘applied

+2019-10-31"

12019-10-31')

OEBPS/Images/052pro03.jpg
unique_num.intersection_update({ 2, 3, 4, 5 })
unique num
{3, 5}

OEBPS/Images/039pro02.jpg
student_record['gpa’] = 3.0
student_record['gpa‘]
20

OEBPS/Images/052pro02.jpg
unique_num.difference_update(range(0,12,2))

unique_num
(1.3 5 7. 9}

OEBPS/Images/039pro03.jpg
student_record[gpa |
student_record['gpa’]
4 0

1.0

OEBPS/Images/052pro01.jpg
unique_num.update((3, 9, 10])
unique_num
(0.1, 2.3 4.5 7. 8 9 10

OEBPS/Images/039pro04.jpg
student_record = {"advisor': "Pickerson’
“first': ‘Julia’
‘gpa': 4.0,
"last': 'Brown',
‘major': ‘Data Science'
‘minor': ‘Math'}
student_record['1d'] = None
student_record

{'advisor': 'Pickerson’,
‘first': 'Julia',
‘gpa': 4.0,

'id': None,

"last': 'Brown',
'major': 'Data Science',
‘minor': 'Math'}

OEBPS/Images/027pro04.jpg
scores = [0,
scores[3:15]
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

» % 3, 4,9,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18]

OEBPS/Images/127pro05.jpg
participants.columns
Index(['first', 'last', 'ages'], dtype='object')

OEBPS/Images/127pro06.jpg

OEBPS/Images/01fig11.jpg
& Chpt.1.Google.Colab.ipynb

File Edit View Insert Runtime Tools

Files X
el N

[
» (@ drive
» @ sample_data

OEBPS/Images/174pro01.jpg
= 'a outer’
b = 'b outer’

o
®

scoped_function():
a = ‘'a inner'
print(a)

print (b

scoped_function ()
a inner
b outer

print (a)
a outer

print (b)
b outer

OEBPS/Images/01fig10.jpg
TNV oBSEREE
BE > : =]

\left.\begin{aligned} —0X E,
B’&=-\partial\times E,\\ =0XB-— 471'j,
E’&=\partial\times B - 4\pi j, i
\end{aligned}

\right\}

\gquad \text{Maxwell’s equations}
\end{equation*}$

$\begin{equation*} }

Maxwell’s equations

OEBPS/Images/01fig13.jpg
» @ sample_data

OEBPS/Images/01fig12.jpg
= Files

o« B

0
£ B
» @@ drive
» @ sample_data

=

OEBPS/Images/191pro01.jpg
class Initialized():
def __init_ (self, n):
self.count = n

def increment_count (self):
self.count += 1

initialized = Initialized(2)
initialized.count

initialized. increment_count ()
initialized.count
7

OEBPS/Images/01fig14.jpg
Code snippets

= Filter code snippets

Adding form fields

Cross-output communication

9

Camera Capture >
9

9

display.Javascript to execute Java...

Downloading files or importing dat... >

Adding form fields INSERT

Forms example

Forms support multiple types of fields
with type checking including sliders,

OEBPS/Images/127pro03.jpg
lower_rate_majors.Unemployment_rate.min()
0 046261360999999994

OEBPS/Images/027pro01.jpg
name = “Ignatius’
name[2:5]
'nat '

OEBPS/Images/127pro04.jpg

OEBPS/Images/127pro01.jpg

OEBPS/Images/127pro02.jpg
lower_rate_mask = ~employ_rate_mask
lower_rate_majors = college _majors.loc[lower_rate_mask]

OEBPS/Images/061pro02.jpg
fruit = {'orange', 'apple’, 'pear'}
if snack in fruit:

print(f"Yeah, {snack} is good!")
else:

print (f*{snack}!? You should have some fruit")
cake!? You should have some fruit

OEBPS/Images/061pro03.jpg
balance = 2000.32
account_status = None

if balance > 0:
account_status = 'Positive’
else:
if balance ==
account_status = 'Empty’
else:
account_status = 'Overdrawn

print (account_status)
Positive

OEBPS/Images/100pro01.jpg
¢ = polyld([4,3,2,1])
print (c)

3 2
4 x +3x +2x +1

OEBPS/Images/0136pro03.jpg
(A=10,1,2,3,4,9°,7/7,8, 93, 10]
Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]
plt.plot(X, Y)

OEBPS/Images/061pro01.jpg
“apple’
fruit = {*orange', 'apple’, 'pear')
if snack in fruit:

print(f"Yeah, {snack} is good!"
Yeah, apple is good!

OEBPS/Images/056pro02.jpg

OEBPS/Images/056pro01.jpg
<control statement>:
<controlled statement 1>
<controlled statement 2>
<controlled statement 3>
< statement ending block>

OEBPS/Images/213pro01.jpg
month =
day = 14
hour = 1
minute = 59
second = 11
R P

100

OEBPS/Images/038pro01.jpg
dictionary = dict()
dictionary

{

dictionary = {}
dictionary

{}

OEBPS/Images/038pro02.jpg

OEBPS/Images/038pro03.jpg

OEBPS/Images/pub.jpg

OEBPS/Images/032pro02.jpg
name = “Ignatius™
letters = 1ist(name)

letters

['I', 'g', 'n', tal, ttt, it

letters.sort ()
letters
(T, at, gty i s

letters. reverse()
Tetters
['u

OEBPS/Images/116pro02.jpg
college_majors = pd.read_csv(/content/all-ages.csv’)
college majors

OEBPS/Images/032pro03.jpg
“Here 1s a string’
"Here is a string’

"Here is a string”
True

*Here is a string’

OEBPS/Images/116pro01.jpg
participants = pd.DataFrame(data,
columns=column_names.
index=index_labels)

OEBPS/Images/038pro04.jpg

OEBPS/Images/032pro01.jpg
“first, miadle, last = [‘horse’, 'carrot’, 'swan’, ‘burrito’, "Tly']
first
['horse’, 'carrot’, 'swan']

last
Sy

middle
‘burrito’'

OEBPS/Images/038pro05.jpg
ubject_1 == subject_z == subject_J

True

OEBPS/Images/038pro06.jpg
student_record = { 'name : Paula’, "height :64, 'gpa :3.8}
student_record]['name']
"Paula’

student_record['height']
64

student_record['gpa']
3 8

OEBPS/Images/076pro01.jpg
praint(inner)

NameError Traceback (most recent call last)
<ipython-input-39-9504624¢1153> in <module>
----> 1 print(inner)

NameError: name 'inner' is not defined

OEBPS/Images/031pro03.jpg
lists[-1].append(4)
lists

(141, [4], [4], [4]]

OEBPS/Images/031pro04.jpg
lists = [[] for _ n range(4)]
1ists[-1].append (4)

lists

11, n, 1, 4n

OEBPS/Images/031pro01.jpg
deserts = | Cookies', "Water Melon']
desserts
['Cookies', 'Water Melon']

desserts. extend (f1avours)
desserts

['Cookies', 'Water Melon', 'Chocolate', 'Vanilla']

OEBPS/Images/107pro02.jpg
P = stats.poisson(mu=15)
rvs = P.rvs(size=100000)
p1t.hist (rvs)

51t show()

OEBPS/Images/031pro02.jpg
lists = [[]] " 4
lists
(r1, 11, 11,

OEBPS/Images/076pro02.jpg
det aad_one(n):
'''Adds one to a number.
return n + 1

my_func = add_one
print (my_func)
<function add_one at 0x1075953a0>

ny_func (2)
3

OEBPS/Images/107pro01.jpg
P = stats.poisson(mu=3)

rvs = P.rvs(size=10000)

rvs

array([4, 4, 2, ..., 1, 0, 2])

p1t.hist (rvs)
51t . show()

OEBPS/Images/145pro01.jpg
car_crashes = sns.load_dataset(car_crashes’)
car_crashes = car_crashes[['total', 'not_distracted', 'alcohol']]

OEBPS/Images/145pro02.jpg
sns.relplot(data=car_crashes,
x='total’,
not_distracted"')

OEBPS/Images/01fig02.jpg
co £ UntitledO.ipynb

File EJFWNSINESRt Runtime Tools Help
Rename notebook
+ Code =

OEBPS/Images/01fig01.jpg
Filter notebooks

Title

CO Welcome To Colaboratory

& Untitledo.ipynb

&. MyFirstNotebook.ipynb

& Chpt5-Other-Python-Data_Structures.ipynb

First opened Last opened

3 days ago 0 minutes ago

0 minutes ago 0 minutes ago

3 days ago 3 days ago

Dec 28,2019 Dec 28,2019

NEW NOTEBOOK
&

CANCEL

OEBPS/Images/01fig04.jpg
Text cells
Your new notebook will have a single code cell. Cells can be of tuo

Text Cells

Your two types, text and code.

nb) . To edit a cell, double click
VALL appese to-the Fighe, and a preview of its outpat
o the tae)

cells by using the “+ Code' and "+ Text'buttons i the upper left of the
notebook interface. Text cells are formatted using a language called Markdown
quideipynb) . To edit a cell,
double click on it. The Markdown will appear to the right, and a preview of its output to
theleft.

OEBPS/Images/01fig03.jpg
Name 1

books

Colab Notebooks

Digital Editions

Music

OEBPS/Images/01fig06.jpg
AV oB O XY

w3 = g (=)

1. Ordered item

2. ordered item 1. Ordered item

2. Ordered item

* Unordered item
* Unordered item Unordered item

 Unordered item

OEBPS/Images/01fig05.jpg
TV B e XET

Fl: Bl ST

**Boldw*
italic

~strikethrough~ strikethrough

“monospace™ monospace

OEBPS/Images/01fig08.jpg
CO £ Chpt.1.Google.Colab.ipynb

File Edit View Insert Runtime Tools

Table of contents X

Introduction to Google Colab
Running Python Statements

Jupyter Notebooks

o Google Colab

OEBPS/Images/022pro05.jpg
a_number.to_bytes(8, '"little’)
b'\x02\x00\x00\x00\x00\x00\x00\x00"

OEBPS/Images/01fig07.jpg
Heading

Sub-heading Heading

Sub-sub-heading

Sub-heading

Sub-sub-heading

OEBPS/Images/189pro02.jpg
class AddAttribute():
def add_score (self):
self.score = 14

add_attribute = AddAttribute()
add_attribute.add_score ()

add_attribute.score
14

OEBPS/Images/01fig09.jpg
IRV = VA |

Text Cells

Expand 7 child cells under this section header
(Pross <SHhift> to also exvand sibling sections)
ot WTotenoo

will have a single code cell. Cells can be of two types, text and code. You can add
new cells by using the '+ Code' and '+ Text' buttons in the upper left of the notebook interface. Text
cells are formatted using a language called Markdown
(https:/colab.research.google.com/notebooks/markdown_guide.ipynb) . To edit a cell, double click
on it. The Markdown will appear to the right, and a preview of its output to the left.

b 7 cells hidden

OEBPS/Images/189pro01.jpg
class DoSomething():
def return_self (self):
return self

do_something = DoSomething ()

do_something == do_something. return_se1f ()
True

OEBPS/Images/047pro01.jpg
3 1n unique_num
True

3 not in unique_num
Ealsa

OEBPS/Images/189pro03.jpg
class InternalMethodCaller():
def method_one (self):
print('Calling method one')

def method_two(self, n):
print(f'Method two calling method one {n} times')
for _ in range(n):
self.method_one ()
internal_nmethod_caller = InternalMethodCaller ()
internal_nmethod_caller.method_one(
Calling method one

internal_method_caller.method_two (2
Method two calling method one 2 times
Calling method one

Calling method one

OEBPS/Images/047pro07.jpg
students.clear()
students
set ()

OEBPS/Images/047pro06.jpg
students.discard(Barb’)
students. discard('Tik")
students

{'Max'}

OEBPS/Images/047pro03.jpg
unique_num.pop ()
unique_num
(2.3, 4,5, 6}

OEBPS/Images/060pro04.jpg
s = '2020-12-14'
if match := re.search(r’ (\d\d\d\d)- (\d\d)-(\d\d)", s)
print (f"Matched items: {match.groups(1)}"

else:
print (f"No match found in {s}")

OEBPS/Images/060pro03.jpg
s = '2020-12-14'
match = re.search(r' (\d\d\d\d)-(\d\d)-(\d\d)", s)
if match:

print(f"Matched items: {match.groups(1)}")
else:

print (f"No match found in {s}")

OEBPS/Images/047pro05.jpg
students.remove(Barb’)

KeyError Traceback (most recent call last)
<ipython-input-3-a36a5744ac05> in <module>()

----> 1 students.remove('Barb')

KeyError: 'Barb'

OEBPS/Images/060pro02.jpg
11T False:
message="It's True"
print (message)

OEBPS/Images/047pro04.jpg
students = { Karl’, "Max', "Tik"}
students. remove ('Kar1')

students

{'Max' K 'Tik'}

OEBPS/Images/060pro01.jpg
1T True:
message="It's True"
print (message)

It's True

OEBPS/Images/121pro03.jpg

OEBPS/Images/166pro02.jpg
ohbprmigreteiretell el © SOMNI08¢ She Srovh corpus
1€kt Dowlaading pcksge brom o /sersTkbabraan/ K G,
ek enta] neipping corpraibrenn 21

rom a1t corps foport
1ok dounlonstapeards')
(rom k. corps. feprt sopuords
ng 14, stopords = stopords.vords("angl 1)

5 = brom puras(catagorion-satioriat) + Loxd cay edftortal prograph

6.5 = brow. parss(catogotess"fction'y Losd oy ictton paragrphs

ot 1en(04.0))
o0s

ot (Ten(t1.5))

OEBPS/Images/121pro02.jpg
participants.ages
43
23
78
56
2
14
46
92
ame: ages, dtype: int64

s -o%we me e o o f

OEBPS/Images/121pro01.jpg
participants| first'|
a shanda
b rolly
c molly
d frank
3 rip
f steven
9 gwen
h arthur
Name: first, dtype: object

OEBPS/Images/166pro01.jpg
st et L bl e bl e
ettor, Hact goermmnt | mttonsl, “mclesr”
arty, pesca', paliCIen, poart. ‘prestnt-
DBIE, st Catates', nited,
ashingion’, or1a", "big. “huren', “ovry”, “epes’
e i e
o’ et g "raon *seanad

setpenly B Spvercamasl i ol Ml Wl TN

OEBPS/Images/051pro01.jpg
under_ten = set(range(10))
odds = set(range(1,21,2))
under_ten. intersection (odds)
(1,3, 5,7, 9)

under_ten & odds
{1, 3, 5, 7, 9}

OEBPS/Images/051pro02.jpg
odas.ditference(under_ten)
{11, 13, 15, 17, 19}

odds - under_ten
{11, 13, 15, 17, 19}

OEBPS/Images/096pro01.jpg
A1

n

p.arange(9) .reshape(3,3)

A1
array([[0, 1, 2],
[3, 4, 5],
6,7, 8]1)
A1.T # Transpose
array([[0. 3, 6],
M. 4. 7.
(2,5, 8]])

A2 = np.ones(9) .reshape(3,3)
array([[1., 1., 1.],

M., 1., 1.1,

M., 1., 1.1)

A1 @ A2 # Matrix product
array([[3., 3., 3.1,

[12., 12., 12.],

[21., 21., 21.]])

A1.dot (A2) # Dot product
array([[3., 3., 3.1,
[12., 12., 12.],

[21., 21., 21.1])

A1.diagonal () # Diagonal
array([0, 4, 8])

OEBPS/Images/065pro01.jpg
for name in ['bob", "billy", "bonzo', "Tred’, "baxter]
if not name.startswith('b'):
continue
print(f"Fine fellow that {name}")
Fine fellow that bob
Fine fellow that billy
Fine fellow that bonzo
Flas fallow: that baxtar

OEBPS/Images/065pro02.jpg
1T al
print(f'Hiya {a}")
else:
print (f'Biya {a}")

OEBPS/Images/020pro02.jpg
import os from path
path
<module 'posixpath' from '/usr/1ib/python3.6/posixpath.py'>

OEBPS/Images/118pro01.jpg

OEBPS/Images/020pro01.jpg

OEBPS/Images/048pro03.jpg
even = set(range(0,10,2))
even
{0, 2, 4, 6, 8)

odd = set (range(1,11,2))
odd
{(1.3,5,7, 9

even. isdisjoint (odd)
True

OEBPS/Images/053pro01.jpg
froze = frozenset(range(10))
froze
frozenset ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9})

froze < set(range(21))
True

froze & set(range(5, 15))
frozenset ({5, 6, 7, 8, 9})

froze * set(range(5, 15))
frozenset({0, 1, 2, 3, 4, 10, 11, 12, 13, 14}

froze | set(range(5,15))
frozenset ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)})

OEBPS/Images/048pro01.jpg
unique_num{J3J
TypeError Traceback (most recent call last)
<ipython-input-16-fecabOcd5f95> in <module>()

> 1 unique_num[3]

TypeError: 'set' object does not support indexing

OEBPS/Images/048pro02.jpg
first = {"a’,’b’,’¢c’,'d"}
second = {'d",'c",'b","a"}
first == second

True

first != second
False

OEBPS/Images/051pro03.jpg
"

under_ten = set(range(10))

over_five = set(range(5, 15))
under_ten.symmetric_difference (over_five)
(0, 1, 2, 3, 4, 10, 11, 12, 13, 14}

under_ten * over_five
{0, 1, 2, 3, 4, 10, 11, 12, 13, 14}

OEBPS/Images/051pro04.jpg
unique_num = {0, 1, 2}
unique_num.update({3, 4, 5, 7})
unique_num

0,1, 2, 3, 4.5 7}

OEBPS/Images/133pro01.jpg

OEBPS/Images/168pro01.jpg
e«
)

- aben)

faatore
ot s & Somtire adtascs:

OEBPS/Images/12fig02.jpg
Caesar
Antony
Brutus

Cassi

Lexical Dispersion Plot

LT T I Lo RN T TR AR TR TRt L]
[TNy
5000 10000 15000 20000 25000

Word Offset

OEBPS/Images/12fig01.jpg
+ mouy|

+ Auojuy

r snisse)

rhoyL

L 1ssen

r lleus

L oney

- nig

sninig

+ Jesoe)

180

160

140 1
120

sunon

100

80

60

Samples

OEBPS/Images/131pro01.jpg

OEBPS/Images/131pro02.jpg

OEBPS/Images/168pro02.jpg
SEYO8 F RTIR.FRTveSayest-iasestier. Srath(irain ama) ¥ Treth & medt
yes. 1assi fy (1 Goa(0] 0]) Clsaify o of the training et paragrophs

e —
it Tnforeative Festoros

ettt = Troe esitor : fictio o
Sto00 1 True o - egiter « o
potsticn « Troe esitor : fletio o
mctoa « Troe ettt tictio o
soverosont = Trin atitor - fitio - o
s+ True Titto - egitor + o
Saenad < Troe Fitio - sattor « o
aation + True esitor fictio » o
it « Troe it : fictio = o

ek class1y. sccurscy (Bayes, est_data) # Check the accuacy

OEBPS/Images/181pro03.jpg
characters = ['L", 'b
[x for x in characters if x.isupper()]
Ler. AT P st

OEBPS/Images/181pro04.jpg
points = [(12, 3), (-1, 33), (12, 0)]

[f'x: {x}y: {y}' forx,
[X» B

y in points]

OEBPS/Images/181pro01.jpg

OEBPS/Images/181pro02.jpg
characters = | (',
def cap(a):
return a.isupper ()

retval = filter(cap, characters)

list(retval)
[er, AT, Pt st

OEBPS/Images/017pro03.jpg
answer = x - 3
print (f"{y} Jeff, the answer is {answer}")
Hello Jeff. the answer is 9

OEBPS/Images/017pro01.jpg
assert(False)

AssertionError Traceback (most recent call last)
<ipython-input-5-8808c4021c9c> in <module>()

-> 1 assert(False)

OEBPS/Images/181pro05.jpg
list_of_lists = [[1,2,3], [4,9,6], [/,8,9]]

[x for y in list_of_lists for x in y]
(1, 2.3, 4,5 6,7, 8, 9]

OEBPS/Images/181pro06.jpg
scores =

lames = | 'James', "Jokubus', ‘Shaemus’]
[12, 33, 23]

{ name:score for name in names for score in scores)
{'James': 23, 'Jokubus': 23, 'Shaemus': 23

OEBPS/Images/203pro02.jpg
weights = { Blue © 300000
"Killer': 12000,
"Sperm': 100000,
"Humpback' : 78000,
"Beluga': 3500,
"Bowhead"': 200000 }

for key in weights:
print (key)

sperm
Humpback
Beluga
Bowhead

sorted (weights)
['Beluga’, 'Blue’, 'Bowhead', 'Humpback', 'Killer'

for key in sorted(weights):
print(f'{key} {weights[key]}')

Beluga 3500

Blue 300000

Bowhead 200000

Humpback 78000

Killer 12000

Sperm 100000

"Spern’]

OEBPS/Images/156pro02.jpg
s o d . —Toous SUGM -
(ron sKlearn fsport setrica & Isport th setrica sodle o teat ccuracy
= RieighoraCIasetfio (o nfgruorssd) 3 Crests 3-noigoor 4stimator
. 18 (trat s, tesin t) 3 Train the sodl using th tratning coto

st pradiction = han prodict(tst_s) ke prediction fron source Sata

oteics.accurcy_scara(105L.t, test_prodieton) % Accuacy SpaIn st dut

OEBPS/Images/203pro01.jpg
class Food():
def _init_ (self, rating, name):
self.rating = rating
self.name = name

def __repr__(self):
return f'Food({self.rating}, {self.name})"

foods = [Food(3, 'Bannana'),
Food(9, 'Orange'),
Food(2, 'Tomato'),
Food(1, '0live')]

foods
[Food(3, Bannana), Food(9, Orange), Food(2, Tomato), Food(1, Olive)]

sorted(foods, key=lambda x: x.rating)
[Food(1, Olive), Food(2, Tomato), Food(3, Bannana), Food(9, Orange)]

OEBPS/Images/156pro01.jpg
Frem sRieamn. model selection Trpart frain testsphit

sins, tests, teain L, testL = tratn
rsin e shope
12, 8

T

sin e shape
e

S

OEBPS/Images/030pro01.jpg
name = “Ignatius™
letters = 1ist(nane)
letters

1

OEBPS/Images/030pro03.jpg
tlavours.pop()
'SuperFudgeNutPretzelTwist

flavours. pop (0)
*sourMash"

flavours
['Chocolate', 'Vanilla']

OEBPS/Images/030pro02.jpg
flavours = | Chocolate’, "Vamilla']
flavours
['Chocolate’, 'Vanilla'

flavours. append (' SuperFudgeNutPretzelTwist')
flavours
['Chocolate’, 'Vanilla', 'SuperFudgeNutPretzelTwist']

flavours. insert (0, "sourMash")
flavours
[*sourMash

‘Chocolate', 'Vanilla', 'SuperFudgeNutPretzelTwist']

OEBPS/Images/108pro01.jpg
N = stats. norm()

rvs = N.rvs(size=100000)
plt.hist(rvs, bins=1000)
n1t.show()

OEBPS/Images/178pro03.jpg
from Tunctools import reduce

inital_balance = 10000
debits = [20, 40, 300, 3000, 1, 234]

def minus(a, b):
return a - b

balance =
balance
5405

reduce (minus, debits, initial_balance)

OEBPS/Images/178pro01.jpg
11 =10,1,2,3,4]
12 = [11,10,9,8,7,6]

def multi(d1, d2):
return di * d2

result = map(multi, 11, 12)
print (1ist(result))
[0, 10, 18, 24, 28]

OEBPS/Images/058pro01.jpg
Irue and Irue
True

True and False
False

True or False
True

False or False
False

not False
True

not True
False

OEBPS/Images/178pro02.jpg
initial_balance
debits =

[20, 40, 300, 3000, 1, 234]

balance = initial_balance

for debit in debits:
balance -= debit

balance
5405

OEBPS/Images/091pro02.jpg
1, 2, 3J714, 95, 6]

TypeError Traceback (most recent call last)
<ipython-input-325-525a1696937> in <module>
----> 1 [1, 2, 3]*[4, 5, 6)

TypeError: can't multiply sequence by non-int of type 'list

OEBPS/Images/091pro01.jpg
twod = np.arange(<1).reshape(s,/)

twod

array([[0, 1, 2, 3, 4, 5 6],
r7, 8 9, 10, 11, 12, 13],
[14, 15, 16, 17, 18, 19, 20]])

twod[0,0] = 33

twod

array([(33, 1, 2, 3, 4, 5, 6],
(7, 8, 9, 10, 11, 12, 13],
(14, 15, 16, 17, 18, 19, 20]])

twod[1:,:3] = 0
array([[33, 1, 2, 3, 4, 5, 6],
[0, 0, 0, 10, 11, 12, 13],
[0, 0, 0,17, 18, 19, 20]])

OEBPS/Images/088pro02.jpg
oned = np.arange(12)
oned
array([0, 1, 2, 3, 4, 5 6, 7, 8 9,10, 11])

twod = oned. reshape (3,4)

twod

array([[0, 1, 2, 3]
[4 5 6 7],
[8 9,10, 11]])

twod . reshape (12)
array([0, 1, 2, 3, 4, 5 6, 7, 8 9,10, 11])

twod. reshape (2,2,3)

array([[([0, 1, 2],
[3, 4, 5],
[(re 7. 8],
[9, 10, 11111)

OEBPS/Images/143pro02.jpg
g,

ax
ax
ax
ax
ax

ax2.

IS

ax:
ax:
ax:

[SEN)

fig.

(ax1, ax2) = plt.subplots(1, 2)

.set_ylabel ("Height (Inches)')
.set_title("Women")
.Tegend (['Women"'])

plot('Years', 'Men', data=heights_df

.set_xlabel ('Year")
.set_title("Men")
.Tegend(['Men'])

autofmt_xdate (rotatiol

(reate one figure and two axes

.plot('Years', 'Women', datasheights_df) # Plot women by years on axis one
.set_xlabel("Year")

Label the x axis of the first axis

EENES

EEEE

N

Label the y axis of the first axis
Set the title of the first axis
Set the legend of the first axis

Plot the second axis

Set the x label for the second axis
Set the title for the second axis
Set the legend for the second axis

Rotate the date labels

OEBPS/Images/043pro01.jpg
“last’ 1n student_record.keys()
True

OEBPS/Images/088pro01.jpg
lst_o_lists = [[1,2,3],
[4,5,6],
[7,8,911

twod = np.array(1ist_o_lists)
twod
array([[1, 2, 3],

[4, 5, 6],

7. 8 911)

twod. shape
(3, 3)

twod.ndim
>

OEBPS/Images/143pro01.jpg
f1g, ax = plt.subplots()
x.plot('Years', 'Women', 'Men', data=heights_df)
x.set_xTlabel('Year')

x.set_ylabel('Height (Inches)')
ax.set_title("Heights over time")
x.legend (['Women', 'Men'])

S0 5S¢ 8¢

S

OEBPS/Images/0148pro01.jpg
df = sns.load_dataset('iris’)
sns.pairplot (df, hue='species’)

OEBPS/Images/043pro04.jpg
student_record["name "]

KeyError Traceback (most recent call last)
<ipython-input-18-962c04650d3e> in <module>()

> 1 student_record("name']
KeyError: 'name’

OEBPS/Images/043pro05.jpg
1T "name’ 1n student_record:
student_record[*name*]

OEBPS/Images/043pro03.jpg
for key in student_record:
print(f'key: {key}")

key: first

key: last

key: gpa

key: major

key: minor

key: advisor

OEBPS/Images/073pro01.jpg
det does_positional(first, /, second, third):
**'Demonstrates a positional parameter.'"'
print(f'First: {first}')
print (f'Second: {second}')
print(f'Third: {third)')

does_positional(1, 2, 3)
First: 1
Second: 2
Third: 3

OEBPS/Images/073pro02.jpg
does_positional (first=1, second=2, third=3)

TypeError Traceback (most recent call las t)
<ipython-input-24-7b1f45f64358> in <module>
----> 1 does_positional (first=1, second=2, third=3)

Typerror: does_positional() got some positional-only arguments passed as
keyword arguments: 'first'

OEBPS/Images/045pro03.jpg
a_list = ['a’, 'b’]
a_list.__hash__()

TypeError Traceback (most recent call last) <ipython-input-40-c4f99d4ea902> in
<module>()
1 alist = ['a','b']
----> 2 a_list.__hash__()
TypeError: 'NoneType' object is not callable

OEBPS/Images/045pro02.jpg
a_string = 'a string
a_string._hash__()
4815474858255585337

a_tuple = 'a’,'b’
a_tuple.__hash_()
7273358294597481374

a_number = 13
a_number.__hash__()
13

OEBPS/Images/045pro01.jpg
bad_tuple = ([1, 2], 3)
{ bad_tuple: 'some value' }

TypeError Traceback (most recent call last)
<ipython-input-28-b2cddfddagie> in <module>()
1 bad_tuple = ([1, 2], 3)
----> 2 { bad_tuple: 'some value' }
TypeError: unhashable type: 'list’'

OEBPS/Images/073pro03.jpg
det does_positional (first, /, second, *, third)
**'Demonstrates a positional and keyword parameters.''
print(f'First: {first}')
print(f'Second: {second}')
print(f'Third: {third)')

does_positional(1, 2, third=3)
First: 1
Second: 2
Third: 3

OEBPS/Images/208pro04.jpg
re.search(Peleg”, captains)
<re.Match object; span=(22, 27), match='Peleg'>

OEBPS/Images/208pro03.jpg
1T re.match("Peleg”, captains):
print("We found Peleg")
else:
print("No Peleg found!")
No Peleg found!

OEBPS/Images/043pro06.jpg
print(student_record.get('name’))
None

OEBPS/Images/208pro02.jpg
1T re.match(“Ahab
print("We found Ahab")
We found Ahab

OEBPS/Images/208pro01.jpg
- "Ahab: ahab€pequod.com
Peleg: peleg@pequod.com
Ishmael: ishmael@pequod.com
Herman: herman@acushnet.io
Pollard: pollard@essex.me'''
import re

re.match("Ahab:", captains)

<re.Match object; span=(0, 5), match='Ahab:'>

OEBPS/Images/141pro02.jpg
=10, 1,2, 3, 4,5, 1/,8, 9, 10]

= [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]
f it = 's-.r'
=1[0,1,2 3, 4,5 7,8,9, 10]
Y2 = [90, 89, 87, 82, 72, 60, 45, 28, 10, 0]
fmt2 = 'Ak:"
plt.plot(X, Y, fmt)
plt.plot (X1, Y2, fmt2)

OEBPS/Images/141pro01.jpg

OEBPS/Images/141pro03.jpg

OEBPS/Images/128pro02.jpg
participants.rename(columns={ ages
participants. columns

Index(['first', 'last', 'Age'], dtype='object')

< 'Age '}, 1nplace=irue)

OEBPS/Images/128pro03.jpg
participants| Zip Code | = [94/02, 97402, 94223, 94709,
97503, 94705, 94111, 95333]
participants

OEBPS/Images/128pro01.jpg
participants.columns
Index(['first', 'last', 'ages'], dtype='object')

OEBPS/Images/063pro02.jpg
counted 0
counted 1
counted 2
counted 3
counted 4

so
so
so
so
so

tar
far
far
far
far

hope
I hope
I hope
1 hope
1 hope

there
there
there
there

aren’'t
aren't
aren't
aren't
aren't

more
more
more
more
more

OEBPS/Images/063pro03.jpg
for 1 1n range(0):
IEREE!
print(j)
1

> s w N

OEBPS/Images/138pro01.jpg
A=10,1,2,3, 4,5, 17,8,9,10]
Y = [20, 25, 35, 50, 10, 12, 20, 40, 70, 110]
plt.plot(X, Y, marker='s', linestyle:

OEBPS/Images/063pro01.jpg
counter = 0
while counter < 5:
print(f"I've counted {counter} so far, I hope there aren't more")
PR

OEBPS/Images/201pro01.jpg

OEBPS/Images/123pro03.jpg
participants.loc(:, "Tirst']
a shanda
b rolly
N molly
d frank
3 rip
f steven
g gwen
h arthur
Name: first, dtype: object

OEBPS/Images/015pro02.jpg
X,y =
bar =

9,6
x**2 if (x <y) and (y or z) else x//2

OEBPS/Images/123pro01.jpg
participants.loc| ¢’]
first molly
last stein
ages 78
Name: ¢, dtype: object

OEBPS/Images/176pro01.jpg
def change_wind(wind_index):
winds = ['Northeast', 'Northwest', 'Southeast', 'Southwest']
return winds[wind_index]

print (change_wind(0))
Northeast

print (change_wind(1))
Northwest

print (change_wind(2))
Southeast

print (change_wind(3))
S —

OEBPS/Images/123pro02.jpg
lask = [False, Irue, Irue, False, False, lrue, False, False]
participants.loc[mask]

OEBPS/Images/176pro02.jpg
b = 1

def foo(a):
a=2

foo (b)
print (b)
1

OEBPS/Images/098pro01.jpg
darray[14]

ValueError Traceback (most recent call last)

<ipython-input -335-17df5782f85b> in <module>
----> 1 darray[14] = 'a’

ValueError: invalid literal for int() with base 10:

OEBPS/Images/098pro03.jpg
A

np.array([[1,2,3],
[4,5,6],
[7,8,911)

A2 = np.array([[1,1,1],
[1.1.11,
[1,1,111)

A1 + A2
array ([[

[
[

2, 3, 4],
5 6, 7],
8, 9, 10]])

A2 = np.array([1,1,1])
A1+ A2

array([[2, 3, 4],
(5 6 7],
(8, 9, 10]])

A1+ 1

array([[2, 3, 4],
(s 6 71,
18 9. 1011)

OEBPS/Images/161pro01.jpg
S tbisinpetics=ieed
orpors okentzers

e Irentim dsarcargora
piterbarg utenbarg 213

15 Ircotimix dtartokontaer
ke k215

16 Ircot I dseartokontzers punkt
v erglionolcie grosk pckle russtan pickl
esone estontan pickle Ttalian.pickle slovene pickl
ach pickle Fiomisn plckle. tormeotan pickle. spmiah pickl
inish plckle franch.pickle ollshplekle | smdieh pickl
et phaie xS Bertissd.aiatis tercher piaiis

OEBPS/Images/211pro04.jpg
regex = re.compile("\w+: (7P<name>\w+)1\@(7P<SLD>\w+) 1. (YP<TLD>\w+)")
regex
re.compile(r'\w+: (?P<name>\w+)\@(2P<SLD>\w+)\.(?P<TLD>\w+)'. re.UNICODE)

OEBPS/Images/148pro02.jpg
import plotly.express as px

iris = px.data.iris()

fig = px.scatter_3d(iris,
*sepal_length",
y='petal_width',
z="petal_length',
color="species")

fig.show()

OEBPS/Images/211pro03.jpg
new_text = re.sub (" (7P<name>\w+)\@(7P<SLD>\w+) 1. (YP<TLD>\w+) ",
"\g<TLD>.\g<SLD>.\g<name>", captains)

print (new_text)
Ahab: com.pequod.ahab
Peleg: com.pequod.peleg
Ishmael: com.pequod.ishmael
Herman: io.acushnet.herman
Pollard: me.essex.pollard

OEBPS/Images/211pro02.jpg
re.sub("\d",

, Your secret pin 1s 123457)
'Your secret pin is #####"

OEBPS/Images/211pro01.jpg
terator = re.finditer("iw+i€iwtl.\w+", captains)

print(f"An {type(iterator)} object is returned by finditer")
An <class 'callable_iterator'> object is returned by finditer

m = next (iterator)
he first match, {n.group()} s processed
without processing the rest of the tex
"The first match, ahab@pequod.com is processed
without processing the rest of the text'

