
Murat Durmus

A Hands-On Introduction to

ESSENTIAL PYTHON
LIBRARIES AND FRAMEWORKS

[WITH CODE SAMPLES)

13 Keras Ljght:GBM
Machine
Learning TensorFI°w

VU InterpretML
Explainable

Al
LIME SHAP

pandas
© SciPy

seaborn Data
Science

KjjJNumPy dmlc
XGBoost

\\JIJW
MLOps ®

Kubeflow

V
OpenCV Image IMAGE

Processing
«*: pillow

django□ □ash
byplot ly web
Framework

TextBlob Text
Processing

•gensim spaCy
Scraping o FastAPi

Beautiful[oup Scrapy

Paperback available on Amazon:

https://www.amazon.com/dp/B0BW2MGYG4

Murat Durmus

A Hands-On Introduction to
Essential Python

Libraries and Frameworks
(With Code Samples)

https://www.amazon.com/dp/B0BW2MGYG4

Copyright © 2023 Murat Durmus
All rights reserved. No part of this publication may be reproduced, distributed, or
transmitted in any form or by any means, including photocopying, recording, or other
electronic or mechanical methods, without the prior written permission of the
publisher, except in the case of brief quotations embodied in critical reviews and certain
other noncommercial uses permitted by copyright law.

Cover design:
Murat Durmus

About the Author
Murat Durmus is CEO and founder of AISOMA (a Frankfurt am Main
(Germany) based company specializing in AI-based technology
development and consulting) and Author of the books "Mindful AI -
Reflections on Artificial Intelligence".& “A Primer to the 42
Most commonly used Machine Learning Algorithms (With
Code Samples)"

You can get in touch with the author via:

■ LinkedIn: https://www.linkedin.com/in/ceosaisoma/

■ E-Mail: murat.durmus@aisoma.de

Note:

The code examples and their description in this book were written
with the support of ChatGPT (OpenAI).

https://www.amazon.com/dp/B08Z4BWN1X/ref=cm_sw_em_r_mt_dp_0CD1G3ZM1E85R72ZHAF3
https://www.amazon.com/dp/B0BT911HDM
https://www.amazon.com/dp/B0BT911HDM
https://www.amazon.com/dp/B0BT911HDM
https://www.linkedin.com/in/ceosaisoma/
mailto:murat.durmus@aisoma.de

"Python is not just a language,
it's a community

where developers can learn,
collaborate and create wonders."

- Guido van Rossum

(Creator of Python)

A BRIEF HISTORY OF PYTHON PROGRAMMING LANGUAGE 1

DATA SCIENCE .. 5

PANDAS..6
Pros and Cons.. 8

NUMPY...10
Pros and Cons...12

SEABORN..14
Pros and Cons.. 16

SCIPY...18
Pros and Cons.. 20

MATPLOTLIB...22
Pros and Cons.. 24

MACHINE LEARNING ...26

SCIKIT-LEARN..27
Pros and Cons...29

PYTORCH...32
Pros and Cons.. 36

TENSORFLOW...38
Pros and Cons.. 40

XGBOOST..43
Pros and Cons.. 45

LIGHTGBM..47
Pros and Cons.. 49

KERAS..51
Pros and Cons.. 52

PYCARET..54
Pros and Cons.. 55

vi

MLOPS ... 57

MLFLOW...58
Pros and Cons .. 60

KUBEFLOW...61
Pros and Cons .. 66

ZENML..69
Pros and Cons ... 72

EXPLAINABLE AI ... 74

SHAP...75
Pros and Cons ..77

LIME..79
Pros and Cons: ...81

INTERPRETML...84
Pros and Cons ..87

TEXT PROCESSING .. 89

SPACY...90
Pros and Cons...91

NLTK...93
Pros and Cons...94

TEXTBLOB...96
Pros and Cons ..97

CORENLP...99
Pros and Cons ..100

GENSIM ... 102
Pros and Cons ..104

REGEX .. 106
Pros and Cons ..107

vii

IMAGE PROCESSING ..109

OPENCV..110
Pros and Cons...112

SCIKIT-IMAGE..114
Pros and Cons...116

PILLOW...118
Pros and Cons...120

MAHOTAS...121
Pros and Cons...123

SIMPLEITK...124
Pros and Cons..125

WEB FRAMEWORK ..127

FLASK..128
Pros and Cons...129

FASTAPI...131
Pros and Cons...133

DJANGO..135
Pros and Cons...137

DASH...139
Pros and Cons...140

PYRAMID...142
Pros and Cons..143

WEB SCRAPING ...145

BEAUTIFULSOUP...146
Pros and Cons...148

SCRAPY..150
Pros and Cons..153

viii

SELENIUM... 155
Pros and Cons ...156

A PRIMER TO THE 42 MOST COMMONLY USED
MACHINE LEARNING ALGORITHMS (WITH CODE
SAMPLES) .. 158
MINDFUL AI ... 159
INSIDE ALAN TURING: QUOTES & CONTEMPLATIONS
... 160

ix

A BRIEF HISTORY OF PYTHON
PROGRAMMING LANGUAGE

Python is a popular high-level programming language for
various applications, including web development,
scientific computing, data analysis, and machine learning.
Its simplicity, readability, and versatility have made it a
popular choice for programmers of all levels of expertise.
Here is a brief history of Python programming language.

Python was created in the late 1980s by Guido van
Rossum, who worked at the National Research Institute
for Mathematics and Computer Science in the
Netherlands. Van Rossum was looking for a programming
language that was easy to read and write, and that could
be used for various applications. He named the language
after the British comedy group Monty Python, as he was a
fan of their TV show.

The first version of Python, Python 0.9.0, was released in
1991. This version included many features still used in
PythonPython today, such as modules, exceptions, and the
core data types of lists, dictionaries, and tuples.

Python 1.0 was released in 1994 and included many new
features, such as lambda, map, filter, and reduce. These
features made it easier to write functional-style code in
PythonPython.

Python 2.0 was released in 2000, introducing list
comprehensions, a new garbage collector, and a cycle
detecting garbage collector. List comprehensions made

1

> PANDAS

writing code that operated on lists and other iterable
objects easier.

Python 3.0, a significant update to the language, was
released in 2008. This version introduced many changes
and improvements, including a redesigned print function,
new string formatting syntax, and a new division operator.
The latest version also removed some features that were
considered outdated or redundant.

Since the release of Python 3.0, there have been several
minor releases, each introducing new features and
improvements while maintaining backward compatibility
with existing code. These releases have included features
such as async/await syntax for asynchronous
programming, type annotations for improved code
readability and maintainability, and improvements to the
garbage collector and the standard library.

Python's popularity has grown steadily over the years, and
it is now one of the most popular programming languages
in the world. Web developers, data scientists, and
machine learning engineers, among others, widely use it.
Python's popularity has been driven by its simplicity,
readability, and versatility, as well as its large and active
community of developers who contribute to the language
and its ecosystem of libraries and tools.

In conclusion, Python programming language has come a
long way since its inception in the late 1980s. It has
undergone many changes and improvements over the
years, but its core values of simplicity, readability, and
versatility have remained constant. Moreover, Python's

2

> PANDAS

popularity shows no signs of slowing down, and it will likely
remain a popular choice for programmers for many years.

At a glance:

• Python was created by Guido van Rossum in the
late 1980s while he was working at the National
Research Institute for Mathematics and Computer
Science in the Netherlands.

• The first version of Python, Python 0.9.0, was
released in 1991.

• Python 1.0 was released in 1994, which included
many new features such as lambda, map, filter, and
reduce.

• Python 2.0 was released in 2000, which introduced
list comprehensions, a new garbage collector, and
a cycle-detecting garbage collector.

• Python 3.0, a major update to the language, was
released in 2008. This version introduced many
changes and improvements, including a redesigned
print function, new string formatting syntax, and a
new division operator.

• Since the release of Python 3.0, there have been
several minor releases, each introducing new
features and improvements while maintaining
backwards compatibility with existing code.

• Python has become one of the most popular
programming languages in the world, used for a

3

> PANDAS

wide variety of applications such as web
development, scientific computing, data analysis,
and machine learning.

• Python's popularity has been driven by its
simplicity, readability, and versatility, as well as
its large and active community of developers who
contribute to the language and its ecosystem of
libraries and tools.

4

> PANDAS

DATA SCIENCE
Data science is an interdisciplinary field that involves
extracting, analyzing, and interpreting large, complex data
sets. It combines elements of statistics, computer science,
and domain expertise to extract insights and knowledge
from data.

Data scientists use various tools and techniques to collect,
process, and analyze data, including statistical analysis,
machine learning, data mining, and data visualization.
They work with large, complex data sets to uncover
patterns, relationships, and insights that can inform
decision-making and drive business value.

Data science has applications in various fields, including
business, healthcare, finance, and social science. It informs
different decisions, from product development to
marketing to policy-making.

5

> PANDAS

PANDAS
Python Pandas is an open-source data manipulation and
analysis library for the Python programming language. It
provides a set of data structures for efficiently storing and
manipulating large data sets, as well as a variety of tools
for data analysis, cleaning, and preprocessing.

Some of the key data structures in Pandas include the
Series, which is a one-dimensional array-like object that
can hold any data type; and the DataFrame, which is a two
dimensional tabular data structure with rows and columns
that can be thought of as a spreadsheet or a SQL table.

Pandas also provides a range of data manipulation
functions and methods, such as filtering, sorting, merging,
grouping, and aggregating data. It also supports data
visualization tools that allow users to plot and visualize
data in a variety of ways.

It is widely used in data analysis and data science, and is
considered one of the essential tools for working with data
in Python. It is also frequently used in conjunction with
other popular data science libraries such as NumPy,
Matplotlib, and SciPy.

An example of how you can use Pandas to read in a CSV
file, manipulate the data, and then output it to a new file:

import pandas as pd
Read in the CSV file
data = pd.read csv('my data.csv')
Print the first few rows of the data

6

> PANDAS

print(data . head ())
Filter the data to include only rows where
the 'score' column is greater than 90
filtered data = data[data['score'] > 90]
Create a new column that calculates the
average of the 'score' and 'time' columns
filtered data['average'] =
(filtered data['score'] +
filtered data['time']) / 2

Output the filtered data to a new CSV file
filtered data.to csv('my filtered data.csv',
index=False)

In this example, we first import the Pandas library using
import pandas as pd. We then read in a CSV file called
my_data.csv using the pd.read_csv() function, which
creates a DataFrame object. We then use the head()
method to print out the first few rows of the data.

Next, we filter the data to include only rows where the
'score' column is greater than 90 using boolean indexing.
We then create a new column called 'average' that
calculates the average of the 'score' and 'time' columns
using basic arithmetic operations.

Finally, we use the to_csv() method to output the filtered
data to a new CSV file called my_filtered_data.csv, with
the index=False parameter indicating that we do not want
to include the DataFrame index as a column in the output
file.

7

> PANDAS

Pros and Cons

Pros:

• Easy-to-use and highly versatile library for data
manipulation and analysis.

• Provides powerful tools for handling large
datasets, including fast indexing, filtering,
grouping, and merging operations.

• Supports a wide range of input and output formats,
including CSV, Excel, SQL databases, and JSON.

• Offers a rich set of data visualization tools,
including line plots, scatter plots, histograms, and
more.

• Has a large and active community of users and
developers, which means that there is a wealth of
online resources and support available.

• Can be used in conjunction with other popular data
science libraries such as NumPy, SciPy, and
Matplotlib.

Cons:

• Pandas can be memory-intensive when working
with very large datasets, and may not be the best
choice for real-time applications or very high
dimensional data.

8

> PANDAS

• Some of the functions and methods can be
complex and difficult to understand, especially for
new users.

• Can be slow when performing certain operations,
such as applying functions to large datasets or
performing multiple merges or concatenations.

• May not always produce the desired results,
especially when working with messy or
unstructured data.

• Some users have reported issues with
compatibility and portability between different
versions of Pandas or between Pandas and other
libraries.

9

> NUMPY

NUMPY
NumPy is a Python library for numerical computing. It
provides powerful data structures, such as n-dimensional
arrays or "ndarrays", and a wide range of mathematical
functions for working with these arrays efficiently.

It is widely used in data science, machine learning,
scientific computing, and engineering, among other fields.
It is built on top of low-level languages like C and Fortran,
which allows NumPy to be fast and efficient even when
working with large datasets.

In addition to its core functionality, NumPy also provides
tools for integrating with other scientific computing
libraries in Python, such as SciPy and Pandas. Overall,
NumPy is an essential tool for anyone working with
numerical data in Python.

An example code that demonstrates how to create a
NumPy array, perform mathematical operations on it, and
slice it:

import numpy as np
Create a 1-dimensional NumPy array
arr = np.array([1, 2, 3, 4, 5])
Perform mathematical operations on the array
print("Original array:", arr)
print("Array multiplied by 2:", arr * 2)
print("Array squared:", arr ** 2)
print("Array sine values:", np.sin(arr))
Create a 2-dimensional NumPy array

10

> NUMPY

arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8,
9]])
Slice the array to get a subarray
sub arr = arr2d[:2, 1:]
print("Original 2D array:\n", arr2d)
print("Subarray:\n", sub_arr)
Output:
Original array: [1 2 3 4 5]
Array multiplied by 2: [2 4 6 8 10]
Array squared: [1 4 9 16 25]
Array sine values: [0.84147098 0.90929743
0.14112001 -0.7568025 -0.95892427]
Original 2D array:
[[1 2 3]
[4 5 6]
[7 8 9]]

Subarray:
[[2 3]
[5 6]]

In this example, we import the NumPy library and create a
one-dimensional array arr with the values [1, 2, 3, 4, 5].
We then perform several mathematical operations on the
array, such as multiplication by 2 and squaring the values,
using NumPy functions.

Next, we create a two-dimensional array arr2d with the
values [[1, 2, 3], [4, 5, 6], [7, 8, 9]]. We slice this array to
get a subarray sub_arr containing the elements in the first
two rows and the last two columns. We print the original
arrays and the subarray to show the results.

11

> NUMPY

Pros and Cons

Pros:

• Efficient and fast: NumPy is built on top of low-level
languages like C and Fortran, which makes it much
faster and more efficient than pure Python code
for numerical computations.

• Powerful data structures: NumPy provides
powerful n-dimensional arrays, or "ndarrays",
which allow for efficient storage and manipulation
of large datasets.

• Comprehensive mathematical functions: NumPy
provides a wide range of mathematical functions,
such as trigonometric, logarithmic, and statistical
functions, which makes it easy to perform complex
computations on arrays.

• Integration with other Python libraries: NumPy
integrates seamlessly with other scientific
computing libraries in Python, such as SciPy,
Pandas, and Matplotlib, which allows for more
advanced data analysis and visualization.

Cons:

• Steep learning curve: NumPy can be challenging to
learn, especially for beginners who are not familiar
with programming concepts like arrays and
vectorization.

12

> NUMPY

• Memory usage: NumPy arrays can use a lot of
memory, which can be a problem when working
with very large datasets.

• Lack of flexibility: NumPy is optimized for
numerical computations and is not as flexible as
pure Python code for general-purpose
programming tasks.

Overall, the pros of NumPy far outweigh the cons,
especially when working with large datasets or performing
complex numerical computations. However, it's important
to keep the limitations of NumPy in mind and choose the
right tool for the job.

13

>SEABORN

SEABORN
Seaborn is a Python data visualization library built on top
of Matplotlib. It provides a high-level interface for creating
informative and attractive statistical graphics in Python.

It offers a range of visualization techniques for statistical
graphics, including:

• Univariate and bivariate plots: Histograms, kernel
density estimates, box plots, violin plots, and
scatter plots.

• Regression and categorical plots: Linear
regression, logistic regression, categorical scatter
plots, and bar plots.

• Matrix plots: Heatmaps, cluster maps, and pair
plots.

• Time series plots: Line plots, time series
heatmaps, and seasonal plots.

Seaborn is designed to work seamlessly with Pandas, a
popular data manipulation library in Python, and it can
handle large and complex datasets with ease. It also
provides a range of customization options for plots,
including color palettes, themes, and styling.

Overall, Seaborn is a powerful and user-friendly library for
creating informative and visually appealing statistical
graphics in Python.

An example code using Seaborn to create a scatter plot:

14

>SEABORN

import seaborn as sns
import pandas as pd
Load dataset
df = pd.read csv('my dataset.csv')
Create scatter plot
sns.scatterplot(x='x column', y= y column',
data=df)
Show plot
sns.plt.show()

In this example, we first import the Seaborn library and
Pandas library for loading and manipulating the dataset.
We then load the dataset from a CSV file using Pandas.

Next, we create a scatter plot using Seaborn's scatterplot()
function, passing the names of the x and y columns from
the dataset as arguments. We also pass the data argument
to specify the dataset we want to plot.

Finally, we use Seaborn's plt.show() function to display the
plot on the screen. Seaborn automatically styles the plot
with an attractive default theme, and we can customize
the plot further using other Seaborn functions and
arguments.

This code creates a scatter plot that shows the relationship
between two variables in the dataset, where the x-axis
represents the "x_column" variable and the y-axis
represents the "y_column" variable. Each point in the
scatter plot represents a single observation in the dataset.
Seaborn automatically adds labels to the axes and a legend
explaining the meaning of the different colors in the plot.

15

>SEABORN

Pros and Cons

Pros:

• Attractive and informative visualizations: Seaborn
provides a range of visualization techniques that
are optimized for creating attractive and
informative statistical graphics in Python. It offers
a wide range of customization options for colors,
styles, and themes, which makes it easy to create
visually appealing plots that are tailored to the
needs of the user.

• User-friendly interface: Seaborn is designed to be
easy to use, with a simple and consistent API that
makes it easy to create complex visualizations with
just a few lines of code. It also provides a range of
built-in datasets that can be used for practice or
exploration.

• Integration with Pandas: Seaborn is designed to
work seamlessly with Pandas, a popular data
manipulation library in Python, which makes it easy
to handle and visualize large and complex datasets.

• Versatility: Seaborn offers a wide range of
visualization techniques, including univariate and
bivariate plots, regression and categorical plots,
matrix plots, and time series plots, which makes it
a versatile tool for data exploration and analysis.

16

>SEABORN

Cons:

• Limited scope: Seaborn is focused on statistical
data visualization and is not as flexible as other
visualization libraries for general-purpose data
visualization tasks.

• Steep learning curve: Although Seaborn is designed
to be easy to use, some users may find it
challenging to learn, especially if they are not
familiar with statistical visualization concepts or
the Pandas library.

• Limited customization options: Although Seaborn
offers a wide range of customization options, some
users may find that they are limited in the level of
customization they can achieve, especially
compared to more advanced visualization libraries
like Matplotlib.

Overall, the pros of Seaborn far outweigh the cons,
especially for users who need to create informative and
attractive statistical graphics in Python. However, it's
important to keep the limitations of Seaborn in mind and
choose the right tool for the job.

17

> SCIPY

SCIPY
Scipy is an open-source scientific computing library for
Python that provides a collection of functions for
mathematics, science, and engineering. It is built on top of
the NumPy library, which provides efficient array
operations for numerical computing.

It is organized into subpackages that provide different
functionalities, such as:

• Integration and optimization

• Signal and image processing

• Statistics and probability

• Interpolation and extrapolation

• Sparse matrix and linear algebra

• Special functions and numerical routines

Scipy is widely used in scientific research, engineering,
data science, and other fields where numerical
computation is required. It provides a convenient and
powerful way to perform complex calculations and
analysis in Python, with a large and active community of
users and developers who contribute to its development
and maintenance.

18

> SCIPY

An example code using Scipy to perform numerical
integration:

import numpy as np
from scipy.integrate import quad
Define function to integrate
def f(x):

return np.exp(-x ** 2)
Perform numerical integration
result, error = quad(f, -np.inf, np.inf)
Print result
print("Result:", result)
print("Error:", error)

In this example, we first import the NumPy library and the
quad function from the Scipy integrate subpackage. We
then define a function f(x) that we want to integrate.

Next, we use the quad function to perform numerical
integration of f(x) over the range from negative infinity to
positive infinity. The quad function returns the result of
the integration and an estimate of the error.

Finally, we print the result and the error to the console. In
this case, the result should be the square root of pi
(approximately 1.77245385091).

This code demonstrates how Scipy can be used to perform
complex mathematical calculations, such as numerical
integration, with ease and efficiency in Python.

19

> SCIPY

Pros and Cons

Pros:

• Provides a comprehensive set of tools for scientific
computing and numerical analysis, including
integration, optimization, signal processing, linear
algebra, and more.

• Built on top of NumPy, making it easy to work with
arrays and perform efficient numerical operations.

• Large and active community of users and
developers, with many open-source packages and
modules available for extending its functionality.

• Well-documented with many examples and
tutorials available online.

• Portable and cross-platform, supporting many
operating systems and hardware architectures.

Cons:

• Can be complex and difficult to learn for beginners
due to the many functions and subpackages
available.

• Some functions may be computationally intensive
and require advanced knowledge of numerical
analysis and performance optimization.

• Some functions may have limitations or
assumptions that may not be suitable for all
applications.

20

> SCIPY

• Requires careful consideration of precision and
accuracy in numerical calculations, especially for
scientific applications where accuracy is critical.

• Some functions may not be as fast as optimized
code written in lower-level languages like C or
Fortran.

Overall, Scipy is a powerful and widely-used library for
scientific computing in Python, but it may not be the best
choice for all applications, and careful consideration of its
strengths and limitations is necessary to use it effectively.

21

> MATPLOTLIB

MATPLOTLIB
Matplotlib is a popular data visualization library for the
Python programming language. It provides a way to create
a wide range of static, animated, and interactive
visualizations in Python.

It was originally developed by John D. Hunter in 2003 and
is now maintained by a team of developers. It is open
source software and is available under a BSD-style license.

Matplotlib is designed to work well with NumPy, a popular
numerical computing library for Python, and is often used
in conjunction with other scientific computing libraries
such as SciPy and Pandas.

It provides a wide range of plotting functionality, including
line plots, scatter plots, bar charts, histograms, 3D plots,
and more. It also provides a high degree of customization,
allowing users to modify almost every aspect of their plots,
including the axes, labels, colors, and styles.

It can be used in a variety of settings, from exploratory
data analysis to scientific research to creating publication
quality graphics. It is widely used in academia and industry,
and is considered one of the essential tools in the Python
data science ecosystem.

An example code snippet that uses Matplotlib to create a
simple line plot:

import matplotlib.pyplot as plt
import numpy as np
Generate some sample data

22

> MATPLOTLIB

x = np.linspace(0, 10, 100)
y = np.sin(x)
Create a figure and axis object
fig, ax = plt.subplots()
Plot the data
ax.plot(x, y)
Add some labels and a title
ax.set xlabel('X Label')
ax.set ylabel('Y Label')
ax.set title('Sinusoidal Plot')
Show the plot
plt.show()

In this example, we first import the necessary modules
(Matplotlib and NumPy). Then, we generate some sample
data (an array of 100 x-values evenly spaced between 0
and 10, and an array of the corresponding sine values).

Next, we create a figure and axis object using the subplots
function. We then use the plot function to plot the data on
the axis object.

Finally, we add some labels and a title to the plot using the
set_xlabel, set_ylabel, and set_title functions. We then
use the show function to display the plot.

This is just a simple example, and Matplotlib has many
more advanced features for creating more complex
visualizations.

23

> MATPLOTLIB

Pros and Cons

Pros:

• Matplotlib is a widely used and well-established
data visualization library for Python, with a large
and active community of developers.

• It is highly customizable, allowing users to modify
almost every aspect of their plots, including the
axes, labels, colors, and styles.

• It provides a wide range of plotting functionality,
including line plots, scatter plots, bar charts,
histograms, 3D plots, and more.

• Can produce high-quality plots suitable for
publication and presentation.

• It is well integrated with other Python libraries for
data analysis and scientific computing, such as
NumPy, SciPy, and Pandas.

• It is easy to use and learn for basic plotting tasks,
making it accessible to users of all levels.

Cons:

• The syntax can be verbose and complex, especially
for more advanced customization and plotting
tasks.

• The default settings for plots may not always be
aesthetically pleasing, and may require additional
customization.

24

> MATPLOTLIB

• Does not provide as much interactivity or
animation functionality as some other data
visualization libraries, such as Plotly or Bokeh.

• It can be slower for generating complex or large-
scale visualizations compared to some other
libraries, such as Seaborn.

• Creating complex or advanced plots may require
more coding and effort than with other libraries
that provide more specialized plotting functions.

25

> MATPLOTLIB

MACHINE LEARNING
Machine learning is a subfield of artificial intelligence that
develops algorithms that can automatically learn and
improve from data.

In machine learning, a model is trained on a large dataset
of input-output pairs, called a training set, and then used
to make predictions on new, unseen data. The goal is to
develop a model that can generalize well to new data by
learning patterns and relationships in the training data
that can be applied to new data.

There are several machine learning types, including
supervised, unsupervised, and reinforcement learning. In
supervised learning, the training set includes labeled
examples of input-output pairs, and the goal is to learn a
function that can accurately predict the output for new
inputs. In unsupervised learning, the training set does not
include labels; the goal is to discover patterns and
relationships in the input data. Finally, in reinforcement
learning, an agent learns to interact with an environment
to achieve a goal by receiving rewards or penalties based
on actions.

Machine learning has many applications, from image
recognition and natural language processing to
recommendation systems and predictive analytics. It is
used in various industries, including healthcare, finance,
and e-commerce, to automate decision-making, improve
efficiency, and gain insights from data.

26

> SCIKIT-LEARN

SCIKIT-LEARN
Python scikit-learn (also known as sklearn) is a popular
machine learning library for the Python programming
language. It provides a range of supervised and
unsupervised learning algorithms for various types of data
analysis tasks such as classification, regression, clustering,
and dimensionality reduction.

It was developed by David Cournapeau as a Google
Summer of Code project in 2007 and is now maintained by
a team of developers. It is open-source software and is
available under a permissive BSD-style license.

Scikit-learn is built on top of other popular scientific
computing libraries for Python, such as NumPy, SciPy, and
matplotlib. It also integrates with other machine learning
and data analysis libraries such as TensorFlow and Pandas.

Scikit-learn provides a wide range of machine learning
algorithms, including:

• Linear and logistic regression

• Support Vector Machines (SVM)

• Decision Trees and Random Forests

• K-Nearest Neighbors (KNN)

• Naive Bayes

• Clustering algorithms (e.g. K-Means)

27

> SCIKIT-LEARN

• Dimensionality reduction techniques (e.g.
Principal Component Analysis)

It also provides utilities for model selection and
evaluation, such as cross-validation, grid search, and
performance metrics.

Scikit-learn is widely used in academia and industry for a
variety of machine learning tasks, such as natural language
processing, image recognition, and predictive analytics. It
is considered one of the essential tools in the Python data
science ecosystem.

An example code snippet that demonstrates how to use
scikit-learn to train a simple logistic regression model:

from sklearn.linear model import
LogisticRegression
from sklearn.datasets import load iris
Load the iris dataset
iris = load iris()
Split the dataset into features (X) and
labels (y)
X, y = iris.data, iris.target
Create a LogisticRegression object
logreg = LogisticRegression()
Fit the model using the iris dataset
logreg.fit(X, y)
Predict the class labels for a new set of
features
new_X = [[5.1, 3.5, 1.4, 0.2], [6.2, 3.4, 5.4,
2.3]]
predicted y = logreg.predict(new X)

28

> SCIKIT-LEARN

print(predicted y)

In this example, we first import the necessary modules
from scikit-learn (LogisticRegression for the model and
load_iris for the iris dataset). We then load the iris dataset,
which is a well-known dataset in machine learning
consisting of 150 samples of iris flowers, with four features
each.

We then split the dataset into features (the X variable) and
labels (the y variable). We create a LogisticRegression
object and fit the model to the dataset using the fit
function.

Finally, we use the trained model to predict the class labels
for two new sets of features (new_X). The predicted class
labels are printed to the console.

This is just a simple example, and scikit-learn has many
more advanced features and models for a wide range of
machine learning tasks.

Pros and Cons

Pros:

• It’s a powerful and comprehensive machine
learning library that offers a wide range of
algorithms for various tasks.

• Scikit-learn is easy to use and has a relatively
simple API compared to other machine learning
libraries.

29

> SCIKIT-LEARN

• It is built on top of other popular scientific
computing libraries for Python such as NumPy,
SciPy, and matplotlib, which makes it easy to
integrate into existing Python data analysis
workflows.

• It provides a range of tools for data preprocessing,
feature selection, and model evaluation, which can
help streamline the machine learning workflow.

• Scikit-learn is well-documented, with
comprehensive user guides, API references, and a
large online community of users.

• It is open-source and free to use, making it
accessible to a wide range of users.

Cons:

• While scikit-learn offers a wide range of
algorithms, it may not be the best choice for some
specific tasks or datasets that require more
specialized algorithms or models.

• It may not be the most efficient library for large-
scale or complex machine learning tasks, as it is
primarily designed for small to medium-sized
datasets.

• The simplicity of the scikit-learn API may limit the
level of customization and control that more
advanced users require.

30

> SCIKIT-LEARN

• It does not include some newer or more advanced
machine learning techniques that have been
developed more recently, such as deep learning.

• Scikit-learn does not include built-in support for
some popular machine learning frameworks such
as TensorFlow or PyTorch, which may limit its
flexibility in some use cases.

31

> PYTORCH

PYTORCH
PyTorch is a popular open-source machine learning library
for the Python programming language. It is primarily used
for developing deep learning models and provides a range
of tools and features for building, training, and deploying
neural networks.

It was developed by Facebook's AI research group in 2016
and has quickly become one of the most popular deep
learning libraries in the Python ecosystem. It is known for
its flexibility and ease-of-use, allowing users to build and
train complex neural networks with relatively few lines of
code.

PyTorch supports a range of neural network architectures,
including convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and transformers, and provides a
variety of optimization algorithms for training these
models, including stochastic gradient descent (SGD) and
Adam.

Some of the key features of PyTorch include:

• Automatic differentiation, which allows users to
easily compute gradients for neural network
models.

• Dynamic computational graphs, which enable
more flexibility in building and modifying neural
networks.

32

> PYTORCH

• A comprehensive tensor library, which provides a
range of operations for manipulating multi
dimensional arrays.

• Integration with popular Python libraries such as
NumPy and pandas.

• A large and active community of users and
developers.

PyTorch is used in a wide range of applications, including
computer vision, natural language processing, and
reinforcement learning. It is particularly popular among
researchers and developers who value its flexibility and
ease-of-use.

An example code snippet that demonstrates how to use
PyTorch to define and train a simple neural network to
classify handwritten digits:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
Define a neural network
class Net(nn.Module):

def init (self):
super(Net, self). init ()
self.fc1 = nn.Linear(784, 64)
self.fc2 = nn.Linear(64, 10)
self.relu = nn.ReLU()

def fo rward(self, x):
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x

33

> PYTORCH

Load the MNIST dataset
transform =
transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
trainset = datasets.MNIST(root='./data',
train=True, download=True, transform=transform)
testset = datasets.MNIST(root='./data',
train=False, download=True,
transform=transform)
trainloader =
torch.utils.data.DataLoader(trainset,
batch size=32, shuffle=True)
testloader =
torch.utils.data.DataLoader(testset,
batch size=32, shuffle=False)
Create a neural network object and an
optimizer
net = Net ()
optimizer = optim.SGD(net.parameters(),
lr=0.01, momentum=0.9)
Train the neural network
criterion = nn.CrossEntropyLoss()
for epoch in range(10):

running loss = 0.0
for i, data in enumerate(trainloader, 0):

inputs, labels = data
inputs = inputs.view(-1, 28*28)
optimizer.zero grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running loss += loss.item()

print(f"Epoch {epoch+1}, Loss:
running loss / len(trainloader)}")

Test the neural network
correct = 0

34

> PYTORCH

total = 0
with torch.no grad():

for data in testloader:
inputs, labels = data
inputs = inputs.view(-1, 28*28)
outputs = net(inputs)

, predicted = torch.max(outputs.data,
1)

total += labels.size (0)
correct += (predicted ==

labels).sum().item()
print(f"Accuracy: {correct / total}")

In this example, we first import the necessary modules
from PyTorch, including torch, torch.nn, torch.optim, and
torchvision. We then define a simple neural network
architecture using the nn.Module class, which includes
two fully connected layers and a ReLU activation function.

We then load the MNIST dataset using the
torchvision.datasets module and create data loaders to
iterate over the data during training and testing. We
create a neural network object and an optimizer using the
optim module, and define the loss function using the
nn.CrossEntropyLoss class.

We then train the neural network for 10 epochs using a
batch size of 32, computing the loss using the specified
criterion and backpropagating the gradients using the
optimizer.

Finally, we test the trained neural network using the test
data, computing the accuracy of the model on the test set.

35

torch.no

> PYTORCH

This is just a simple example, and PyTorch has many more
advanced features and models for a wide range of deep
learning tasks.

Pros and Cons

Pros:

• It is known for its ease-of-use and flexibility,
allowing users to quickly build and train complex
neural networks with relatively few lines of code.

• It includes a range of tools and features for deep
learning, including automatic differentiation,
dynamic computational graphs, and a
comprehensive tensor library.

• Integrates well with other popular Python libraries
such as NumPy and pandas, making it easy to use
in conjunction with other data analysis and
machine learning tools.

• It has a large and active community of users and
developers, which means that there is a lot of
support and resources available for users who are
new to the library or who need help with more
advanced tasks.

• PyTorch is used widely in both academia and
industry, and has been used to achieve state-of-
the-art results in a variety of deep learning tasks.

36

> PYTORCH

Cons:

• It may not be as fast or efficient as other deep
learning libraries such as TensorFlow or Keras,
particularly for large-scale distributed training.

• Can be less stable than other deep learning
libraries, which can make it more difficult to debug
errors or reproduce results.

• May require more expertise and experience to use
effectively than other deep learning libraries,
particularly for users who are new to machine
learning or who are not familiar with Python
programming.

37

> TENSORFLOW

TENSORFLOW
TensorFlow is a popular open-source machine learning
library developed by Google. It is primarily used for
building and training deep neural networks, although it
also includes a range of tools and features for other
machine learning tasks.

It was originally developed by the Google Brain team for
internal use, but was later released as an open-source
library in 2015. Since then, it has become one of the most
widely used and respected machine learning libraries, with
a large and active community of users and developers.

TensorFlow is designed to be flexible and scalable,
allowing users to build and train deep neural networks on
a wide range of hardware, from laptops and mobile
devices to large-scale distributed clusters. It includes a
comprehensive tensor library for efficient numerical
computations, as well as a range of high-level APIs for
building and training neural networks.

It also includes a range of tools and features for data
preprocessing, visualization, and analysis, making it a
comprehensive and powerful machine learning platform.
It has been used widely in both academia and industry to
achieve state-of-the-art results in a variety of machine
learning tasks, including image recognition, natural
language processing, and more.

Overall, TensorFlow is a powerful and flexible machine
learning library that is widely used and respected in the
machine learning community.

38

> TENSORFLOW

An example code snippet that uses TensorFlow to train a
simple neural network for classifying handwritten digits
from the MNIST dataset:

import tensorflow as tf
from tensorflow.keras.datasets import mnist
Load the MNIST dataset
(x train, y train), (x test, y test) =
mnist.load data ()
Preprocess the data
x train = x train / 255.0
x test = x test / 255.0
Define the model architecture
model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input shape=(28,
28)), ”

tf.keras.layers.Dense(128,
activation='relu'),

tf.keras.layers.Dense(10)
])
Compile the model
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentr
opy(from logits=True),

metrics=['accuracy'])
Train the model
model.fit(x train, y train, epochs=10,
validation data=(x test, y test))
Evaluate the model
test loss, test acc = model.evaluate(x test,
y test, verbose=2)
print('Test accuracy:', test acc)

39

> TENSORFLOW

This code first loads the MNIST dataset and preprocesses
the data by scaling it to the range [0, 1]. It then defines a
simple neural network architecture using the Keras API
within TensorFlow, with a single hidden layer containing
128 neurons and ReLU activation, and an output layer
containing 10 neurons (one for each possible digit). The
model is then compiled with the Adam optimizer and
Sparse Categorical Crossentropy loss, and is trained for 10
epochs on the training data, with validation performed on
the test data after each epoch. Finally, the model is
evaluated on the test data and the test accuracy is printed.

Note that this is just a simple example - TensorFlow is
capable of much more complex models and architectures
for a wide range of machine learning tasks.

Pros and Cons

Pros:

• Is widely considered to be one of the most
powerful and flexible machine learning libraries
available, with a range of tools and features for
building and training complex neural networks.

• It has a large and active community of users and
developers, which means that there is a lot of
support and resources available for users who are
new to the library or who need help with more
advanced tasks.

• It is designed to be scalable and efficient, allowing
users to build and train models on a wide range of

40

> TENSORFLOW

hardware, from laptops to large-scale distributed
clusters.

• Includes a comprehensive tensor library for
efficient numerical computations, as well as a
range of high-level APIs for building and training
neural networks.

• Has been used widely in both academia and
industry to achieve state-of-the-art results in a
variety of machine learning tasks, including image
recognition, natural language processing, and
more.

Cons:

• Can have a steeper learning curve than other
machine learning libraries, particularly for users
who are new to deep learning or who are not
familiar with Python programming.

• It can be less intuitive than other machine learning
libraries, with a more verbose and complex syntax.

• TensorFlow's low-level API can require more code
to accomplish simple tasks than other machine
learning libraries, which can make it less attractive
for prototyping or experimentation.

• It's computational graph architecture can make
debugging more difficult, particularly for users who
are not familiar with the internals of the library.

41

> TENSORFLOW

• TensorFlow's computational graph architecture
can make it harder to integrate with other Python
libraries, although this has been improving with
recent releases.

42

>XGBOOST

XGBOOST
XGBoost is an open-source software library which provides
a gradient boosting framework for machine learning. It
was developed by Tianqi Chen and his colleagues at the
University of Washington and is now maintained by DMLC.
XGBoost is designed to be scalable, portable and efficient,
making it popular for use in a wide range of applications,
including prediction, classification, and ranking problems
in industry and academia.

In Python, XGBoost can be used via the xgboost library,
which provides an API for defining, training, and evaluating
XGBoost models. The library is built on top of the core C++
XGBoost library, which provides a fast and efficient
implementation of gradient boosting.

It works by iteratively adding decision trees to a model,
with each tree trained to correct the errors of the previous
trees. The algorithm combines the predictions of all the
trees to produce a final prediction. XGBoost uses a variety
of optimization techniques, including regularization and
parallel processing, to improve the accuracy and speed of
the model.

It has become a popular tool for use in machine learning
competitions, due to its ability to achieve state-of-the-art
performance on a wide range of tasks.

43

>XGBOOST

An example of how to use the XGBoost library in Python to
train a simple gradient boosting model on the popular Iris
dataset:

import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.datasets import load iris
from sklearn.model selection import
train test split

Load the iris dataset and split into training
and testing sets
iris = load iris ()
X train, X test, y train, y test =
train test split(iris.data, iris.target,
test size=0.2, random state=42)
Define the XGBoost model
xgb model =
xgb.XGBClassifier(objective="multi:softmax",
num class=3)
Train the model on the training data
xgb model.fit(X train, y train)
Make predictions on the testing data
y pred = xgb model.predict(X test)
Evaluate the accuracy of the model
accuracy = np.sum(y pred == y test) /
len(y test)
print("Accuracy: {:.2f}%".format(accuracy *
100))

In this example, we start by loading the Iris dataset using
scikit-learn's built-in load_iris function. We then split the

44

>XGBOOST

dataset into training and testing sets using scikit-learn's
train_test_split function.

Next, we define an XGBoost classifier model using the
xgb.XGBClassifier class. In this case, we set the objective
parameter to "multi:softmax" and the num_class
parameter to 3, since we have three classes in the Iris
dataset.

We then train the XGBoost model on the training data
using the fit method. Once the model is trained, we use it
to make predictions on the testing data using the predict
method.

Finally, we evaluate the accuracy of the model by
comparing the predicted labels to the true labels in the
testing set, and print out the accuracy score.

Pros and Cons

Pros:

• Is known for its accuracy and performance,
especially in structured data tasks such as
classification, regression, and ranking.

• It provides several regularization techniques, such
as L1 and L2 regularization, to help prevent
overfitting and improve model generalization.

• Supports parallel processing on multiple CPUs,
which allows it to handle large datasets efficiently.

45

>XGBOOST

• The library provides a variety of hyperparameters
that can be tuned to improve model performance
and adapt to different use cases.

• XGBoost is an open-source library with an active
development community, which means that it is
constantly being updated and improved.

Cons:

• Is primarily designed for structured data and may
not be as effective for unstructured data such as
text or image data.

• The hyperparameter tuning process can be time
consuming and requires some level of expertise to
optimize the model effectively.

• May not be suitable for real-time or online learning
applications, as it requires retraining the entire
model every time new data is added.

• Since XGBoost is a gradient boosting algorithm, it is
susceptible to the same issues as other gradient
boosting algorithms, such as being prone to
overfitting and requiring careful regularization to
prevent this.

46

> LIGHTGBM

LIGHTGBM
Python LightGBM is a gradient boosting framework that
uses tree-based learning algorithms. It is a powerful
machine learning library that was developed by Microsoft
and is designed to be efficient and fast. LightGBM stands
for "Light Gradient Boosting Machine". It was developed
to tackle large-scale data and can handle millions of rows
and thousands of features.

LightGBM differs from other gradient boosting libraries,
such as XGBoost, by using a novel technique called
"Gradient-based One-Side Sampling" (GOSS) and
"Exclusive Feature Bundling" (EFB). These techniques help
to reduce the computational resources required for
training the model and to speed up the training process.

It supports various types of learning tasks, such as
regression, classification, and ranking. It also has many
useful features, such as built-in cross-validation, early
stopping, and support for categorical features.

Overall, LightGBM is a powerful library for gradient
boosting and is an excellent choice for handling large-scale
structured data.

An example code usage of LightGBM in Python for a binary
classification problem:

import lightgbm as Igb
from sklearn.datasets import load breast cancer
from sklearn.model selection import
train test split
from sklearn.metrics import accuracy score

47

> LIGHTGBM

Load the breast cancer dataset
data = load breast cancer()
Split the data into training and testing sets
X train, X test, y train, y test =
train test split(data.data, data.target,
test size=0.2, random state=42)
Convert the data into LightGBM's dataset
format
train data = lgb.Dataset(X train,
label=y train)
test data = lgb.Dataset(X test, label=y test)
Set the hyperparameters for the LightGBM
model
params = {

'objective': 'binary',
'metric': 'binary logloss',
'num leaves': 31,
'learning rate': 0.05,
'feature fraction': 0.9

}
Train the LightGBM model on the training data
num rounds = 100
model = lgb.train(params, train data,
num rounds)
Make predictions on the testing data
y pred = model.predict(X test)
y pred = [1 if x >= 0.5 else 0 for x in y pred]
Evaluate the accuracy of the model
accuracy = accuracy score(y test, y pred)
print("Accuracy: {:.2f}%".format(accuracy *
100))

48

> LIGHTGBM

In this example, we start by loading the breast cancer
dataset using scikit-learn's load_breast_cancer function.
We then split the dataset into training and testing sets
using scikit-learn's train_test_split function.

Next, we convert the training and testing data into
LightGBM's dataset format using the lgb.Dataset class. We
then set the hyperparameters for the LightGBM model,
including the objective function, the evaluation metric, the
number of leaves in each tree, the learning rate, and the
feature fraction.

We then train the LightGBM model on the training data
using the lgb.train function. Once the model is trained, we
use it to make predictions on the testing data by calling the
predict method. We then convert the predicted
probabilities into binary predictions by setting a threshold
of 0.5.

Finally, we evaluate the accuracy of the model by
comparing the predicted labels to the true labels in the
testing set, and print out the accuracy score.

Pros and Cons

Pros:

• LightGBM is designed to handle large-scale data
and can handle millions of rows and thousands of
features efficiently.

• It uses a novel technique called "Gradient-based
One-Side Sampling" (GOSS) and "Exclusive Feature
Bundling" (EFB) to reduce the computational

49

> LIGHTGBM

resources required for training the model and to
speed up the training process.

• It supports various types of learning tasks, such as
regression, classification, and ranking.

• It has many useful features, such as built-in cross
validation, early stopping, and support for
categorical features.

• It has a good accuracy and performance compared
to other gradient boosting frameworks.

Cons:

• LightGBM may require some hyperparameter
tuning to achieve optimal results.

• It may be more difficult to use and understand
compared to simpler machine learning algorithms,
especially for beginners.

• The library does not support GPU acceleration by
default, which may be a disadvantage for some use
cases where GPU acceleration is desired. However,
there are ways to use LightGBM with GPU
acceleration through third-party libraries.

50

> KERAS

KERAS
Keras is a high-level neural networks API, written in Python
and capable of running on top of popular deep learning
frameworks such as TensorFlow. Keras was designed to
enable fast experimentation with deep neural networks,
and it has become one of the most popular deep learning
libraries. It is particularly well-suited for building and
training deep learning models for computer vision and
natural language processing (NLP) tasks. Keras is open
source and is maintained by a community of contributors
on GitHub.

An example code for building a simple neural network
using Keras:

import numpy as np
from keras.models import Sequential
from keras.layers import Dense
Generate some dummy data for training and
testing
x train = np.random.random((1000, 10))
y train = np.random.randint(2, size=(1000, 1))
x test = np.random.random((100, 10))
y test = np.random.randint(2, size=(100, 1))
Build the model
model = Sequential()
model.add(Dense(32, input dim=10,
activation='relu'))
model.add(Dense(1, activation='sigmoid'))
Compile the model
model.compile(optimizer='rmsprop',
loss='binary crossentropy',
metrics=['accuracy'])

51

> KERAS

Train the model
model.fit(x train, y train, epochs=20,
batch size=32)
Evaluate the model on the test data
score = model.evaluate(x test, y test,
batch size=128)
Print the test loss and accuracy
print('Test loss:', score[0])
print('Test accuracy:', score[1])

This code defines a simple neural network with one hidden
layer of 32 neurons and an output layer with one neuron,
which is used for binary classification. The model is
compiled with the binary crossentropy loss function and
the RMSprop optimizer. It is then trained on some
randomly generated training data for 20 epochs, with a
batch size of 32. Finally, the model is evaluated on some
randomly generated test data, and the test loss and
accuracy are printed.

Pros and Cons

Pros:

• User-friendly API: Keras provides a simple and
intuitive interface that makes it easy to use and
understand, especially for beginners in deep
learning.

• Modular and flexible architecture: Keras allows
users to build models by stacking multiple layers,
which can be easily added or removed, allowing for
quick experimentation and prototyping.

52

> KERAS

• Wide range of applications: Keras supports a
variety of deep learning tasks such as image
classification, natural language processing, and
time series forecasting.

• Efficient computation: Keras can run on both CPUs
and GPUs, providing fast computation for large
datasets.

Cons:

• Limited flexibility: While Keras is great for
prototyping and experimenting, it may not provide
the level of flexibility and control needed for more
complex deep learning models.

• Less customization: Keras abstracts many of the
lower-level implementation details, which can limit
customization options for advanced users.

• Limited backward compatibility: Keras has
undergone some significant changes over time,
which can make it challenging to maintain
backward compatibility between different
versions.

• Limited support for distributed training: While
Keras can be used for distributed training, it may
not be as efficient as other deep learning
frameworks specifically designed for distributed
computing.

53

> PYCARET

PYCARET
PyCaret is an open-source machine learning library in
Python that automates the end-to-end machine learning
process. It is designed to be an easy-to-use library that
requires minimal coding effort while providing maximum
flexibility and control to the user. PyCaret has a wide range
of features, including data preprocessing, classification,
regression, clustering, anomaly detection, natural
language processing, time series forecasting, and model
deployment.

It is built on top of popular machine learning libraries such
as scikit-learn, XGBoost, LightGBM, CatBoost, and spaCy. It
provides a high-level API that simplifies complex machine
learning workflows by automating repetitive tasks, such as
data preprocessing, hyperparameter tuning, model
selection, and ensemble building.

PyCaret is particularly useful for data scientists and
machine learning practitioners who want to quickly build
and prototype machine learning models without having to
spend a lot of time on data preprocessing and model
selection. It is also suitable for business analysts and data
engineers who want to explore and analyze data using
machine learning techniques.

An example code usage of PyCaret:

from pycaret.datasets import get data
from pycaret.classification import *
load data
data = get data('diabetes')

54

> PYCARET

setup model
clf = setup(data, target='Class variable')
compare models
compare models()

In this example, we first import the get_data function from
pycaret.datasets and the setup function, as well as the
compare_models function, from pycaret.classification.
We then load the 'diabetes' dataset using get_data, and
set up the classification model using setup, specifying the
target variable to be 'Class variable'. Finally, we compare
the performance of different classification models using
compare_models.

Note that setup automatically preprocesses the data,
performs feature engineering and selection, and sets up
the training and testing environment. compare_models
returns a table of the cross-validated performance metrics
for each model, which can be used to select the best
performing model for further tuning and evaluation.

Pros and Cons

Pros:

• Provides a wide range of built-in functions for data
preparation, model training, hyperparameter
tuning, and model deployment, which makes it
easy to quickly build and test machine learning
models.

55

> PYCARET

• Supports a wide range of machine learning models
and algorithms, including both supervised and
unsupervised learning methods.

• Provides extensive documentation and examples,
making it easy to learn and use for both beginners
and experienced machine learning practitioners.

• PyCaret provides a web-based interface for
building and deploying machine learning models,
which can be particularly useful for non-technical
users who want to use machine learning without
having to write any code.

Cons:

• PyCaret's ease of use and built-in functionality may
come at the cost of flexibility and customizability,
particularly for advanced machine learning tasks
that require more complex data processing or
modeling techniques.

• May not be the best choice for large-scale or high-
performance machine learning tasks that require
specialized hardware or software.

• Is a relatively new library, so it may not have the
same level of community support or third-party
integrations as more established machine learning
libraries.

56

> PYCARET

MLOPS
MLOps (Machine Learning Operations) is a set of practices
and tools that streamline the machine learning (ML)
development lifecycle, from development to deployment
and maintenance.

It is similar to DevOps, a set of practices for developing,
deploying, and maintaining software applications.
However, MLOps is tailored to the specific needs and
challenges of developing and deploying machine learning
models.

It involves various tasks, including data preparation and
cleaning, model training and validation, model
deployment and serving, and monitoring and
maintenance. It also requires collaboration between
different teams, such as data scientists, machine learning
engineers, software developers, and operations teams.

MLOps tools and practices include version control
systems, continuous integration, and deployment (CI/CD)
pipelines, containerization, orchestration tools, and
monitoring and logging tools. By implementing MLOps,
organizations can improve their machine-learning
systems' speed, scalability, and reliability and reduce the
risk of errors or failures in production.

57

> MLFLOW

MLFLOW
MLflow is an open-source platform for managing and
tracking machine learning experiments. It provides a
simple and flexible interface for tracking experiments,
packaging code into reproducible runs, and sharing and
deploying models.

MLflow was developed by Databricks and released as an
open-source project in 2018. The goal of MLflow is to
simplify the machine learning lifecycle by providing a
standardized way to manage and track experiments, as
well as to package and deploy models. MLflow can be used
with a variety of machine learning libraries and
frameworks, including TensorFlow, PyTorch, and scikit-
learn.

MLflow consists of several components:

1. Tracking: a module for logging and tracking
experiments, including parameters, metrics, and
artifacts.

2. Projects: a format for packaging data science code
in a reusable and reproducible way.

3. Models: a format for packaging machine learning
models in a way that can be easily deployed to a
variety of production environments.

4. Model Registry: a centralized repository for
managing models, including versioning, stage
transitions, and access control.

58

> MLFLOW

MLflow also provides a command-line interface and APIs
for integrating with other tools and workflows. Overall,
MLflow aims to simplify the process of developing,
training, and deploying machine learning models, while
improving collaboration and reproducibility

An example code snippet that uses MLflow to track and log
metrics during a machine learning experiment:

import mlflow
import numpy as np
from sklearn.linear model import
LinearRegression

Start an MLflow experiment
mlflow.set experiment("linear-regression")
Generate some random data
x = np.random.rand(100, 1)
y = 2*x + np.random.randn(100, 1)
Define a model
model = LinearRegression()
Train the model
model.fit(x, y)
Log some metrics
mlflow.log metric("r2 score", model.score(x,
y))
mlflow.log metric("mse",
np.mean((model.predict(x) - y) ** 2))
Save the model
mlflow.sklearn.log model(model, "model")
End the experiment
mlflow.end experiment()

59

> MLFLOW

In this example, we first start an MLflow experiment by
calling mlflow.set_experiment with a name for the
experiment. We then generate some random data and
define a linear regression model using scikit-learn. We
train the model on the data, and then use MLflow to log
some metrics (the R-squared score and mean squared
error) using mlflow.log_metric. We also save the trained
model using mlflow.sklearn.log_model. Finally, we end
the experiment using mlflow.end_experiment.

By running this code, we can use the MLflow UI to view
and compare the results of multiple experiments,
including the logged metrics and the trained models.

Pros and Cons

Pros:

1. Reproducibility: MLflow provides a standardized
way to track experiments, packages, and deploy
models, which can help ensure that experiments
are reproducible.

2. Flexibility: MLflow can be used with a variety of
machine learning libraries and frameworks,
including TensorFlow, PyTorch, and scikit-learn,
making it a versatile tool for managing machine
learning projects.

3. Collaboration: MLflow provides a centralized
platform for sharing experiments, models, and
code, which can improve collaboration among data
scientists and developers.

60

> KUBEFLOW

4. Visualization: MLflow provides a web-based UI for
visualizing and comparing experiments, which can
help with debugging and optimization.

Cons:

1. Learning Curve: MLflow requires some learning to
use effectively, including knowledge of the MLflow
API and how to integrate it with your existing
workflows.

2. Overhead: Using MLflow requires some additional
overhead compared to simply running
experiments and tracking results manually,
although this overhead is typically minimal.

3. Limitations: While MLflow is a powerful tool, it may
not meet all the needs of a particular project, such
as specialized requirements for model deployment
or training.

MLflow can be a valuable tool for managing and tracking
machine learning projects, especially in environments
where collaboration and reproducibility are important.
However, like any tool, it has its strengths and weaknesses,
and should be evaluated based on the specific needs of a
project.

KUBEFLOW
Kubeflow is an open-source platform for running machine
learning workloads on Kubernetes. Kubernetes is a

61

> KUBEFLOW

container orchestration platform that provides a scalable
and resilient infrastructure for deploying and managing
distributed applications. Kubeflow builds on top of
Kubernetes to provide a platform for deploying, scaling,
and managing machine learning workloads.

Kubeflow provides a range of tools and frameworks for
building and deploying machine learning models,
including:

1. Jupyter notebooks: A web-based environment for
interactive data analysis and model development.

2. TensorFlow: A popular machine learning library for
building and training deep neural networks.

3. PyTorch: A popular machine learning library for
building and training deep neural networks.

4. Apache Spark: A distributed computing framework
for processing large datasets.

5. Apache Beam: A unified programming model for
processing both batch and streaming data.

Kubeflow also provides a range of components for
managing the machine learning workflow, including:

1. Pipelines: A tool for building, deploying, and
managing machine learning pipelines.

2. Training: A tool for managing distributed training
jobs on Kubernetes.

62

> KUBEFLOW

3. Serving: A tool for deploying and serving trained
models as web services.

4. Metadata: A tool for tracking and managing the
metadata associated with machine learning
experiments.

Kubeflow provides a powerful platform for building and
deploying machine learning workloads on Kubernetes. By
leveraging the scalability and resilience of Kubernetes,
Kubeflow can help streamline the machine learning
workflow and improve the reproducibility and scalability
of machine learning models.

An example code snippet that demonstrates how to use
Kubeflow to train a TensorFlow model on a Kubernetes
cluster:

import kfp
import kfp.dsl as dsl
import kfp.components as comp
Define the pipeline
@dsl.pipeline(name='train-tf-model',
description='Trains a TensorFlow model on
Kubernetes')
def train pipeline(

data path: str,
model path: str,
epochs: int,
batch size: int,
learning rate: float

): ”
Load the data
load data = dsl.ContainerOp(

name='load data',
image='my-registry/my-image',

63

> KUBEFLOW

command=['python',
'/app/load data.py'],

arguments=[
'--data-path', data path,
'--output-path',

'/mnt/data/raw data.csv'
]

)
Preprocess the data
preprocess = dsl.ContainerOp(

name='preprocess' ,
image='my-registry/my-image',
command=['python',

'/app/preprocess.py'],
arguments=[

'--data-path',
'/mnt/data/raw data.csv',

'--output-path',
'/mnt/data/cleaned data.csv'

]
).after(load data)
Train the model
train = dsl.ContainerOp(

name='train',
image='my-registry/my-image',
command=['python', '/app/train.py'],
arguments=[

'--train-data' ,
'/mnt/data/cleaned data.csv',

'--model-dir', model path,
'--epochs', epochs,
'--batch-size', batch size,
'--learning-rate', learning rate

] ”
).after(preprocess)

Compile the pipeline
pipeline func = train pipeline

64

> KUBEFLOW

pipeline filename = pipeline func. name +
'.yaml'
kfp.compiler.Compiler().compile(pipeline func,
pipeline filename)
Define the Kubeflow experiment
experiment name = 'train-tf-model'
run name = pipeline func. name + ' run'
client = kfp.Client()
Define the pipeline parameters
params = {

'data path': 'gs://my-bucket/my-data.csv',
'model path': 'gs://my-bucket/my-model',
'epochs': 10,
'batch size': 32,
'learning rate': 0.001

}
Submit the pipeline to the Kubeflow cluster
try:

experiment =
client.create experiment(name=experiment name)
except kfp.errors.ApiException:

experiment =
client.get experiment(experiment name)
run = client.run pipeline(experiment.id,
run name, pipeline filename, params)

In this example, we define a Kubeflow pipeline that
consists of two components: a component for
preprocessing the data and a component for training the
model. We then define the pipeline itself, which takes as
input the path to the raw data, the path where the trained
model will be saved, and various hyperparameters for the
training process. The pipeline first preprocesses the data
using the preprocess_op component, then trains the
model using the train_op component. Finally, we compile

65

> KUBEFLOW

the pipeline and submit it to the Kubeflow cluster using the
kfp.Client class.

By running this code, we can train a TensorFlow model on
a Kubernetes cluster using Kubeflow, while also benefiting
from the scalability, fault-tolerance, and reproducibility
provided by Kubernetes.

Pros and Cons

Pros:

1. Scalability: Kubeflow is designed to work with
Kubernetes, which provides a scalable and
distributed environment for running machine
learning workloads. This means that Kubeflow can
easily scale to handle large datasets and complex
models.

2. Reproducibility: Kubeflow enables you to create
reproducible pipelines for your machine learning
workflows, which ensures that your experiments
are repeatable and your results are reliable. This is
because Kubeflow makes it easy to track and
version your data, code, and configurations.

3. Portability: Kubeflow allows you to build machine
learning pipelines that can be run on any
Kubernetes cluster, whether on-premises or in the
cloud. This means that you can easily move your
machine learning workloads between different
environments without having to change your code
or configurations.

66

> KUBEFLOW

4. Customizability: Kubeflow provides a range of pre
built components for common machine learning
tasks, but it also allows you to create your own
custom components using any programming
language or tool. This makes it easy to tailor your
machine learning pipelines to your specific needs.

Cons:

1. Complexity: Kubeflow is a complex system that
requires a significant amount of configuration and
setup to get started. This can be a barrier to entry
for smaller teams or organizations that don't have
dedicated DevOps resources.

2. Learning curve: Kubeflow is a relatively new
technology, and as such, it has a steep learning
curve. This means that it can take some time for
teams to become proficient in using Kubeflow for
their machine learning workflows.

3. Resource requirements: Because Kubeflow is
designed to run on Kubernetes, it requires a
significant amount of resources to run effectively.
This means that teams will need to have access to
a Kubernetes cluster, which can be a challenge for
smaller organizations or teams without dedicated
DevOps resources.

4. Versioning: While Kubeflow does provide tools for
versioning data and code, there can be challenges
with versioning models and configurations. This
can make it difficult to track changes to models

67

> KUBEFLOW

over time and ensure that models are
reproducible.

68

> ZENML

ZENML
ZENML is an open-source MLOps framework that provides
a pipeline-based approach for managing end-to-end
machine learning workflows. ZENML is designed to
simplify the development and deployment of machine
learning models by providing a high-level API for common
machine learning tasks.

It is built on top of TensorFlow and is designed to integrate
seamlessly with popular machine learning libraries such as
scikit-learn and PyTorch. ZENML supports a range of data
sources and preprocessing techniques, and provides a
range of pre-built components for common machine
learning tasks such as data validation, feature engineering,
and model training.

It also provides a range of features for managing the
deployment and monitoring of machine learning models,
including support for model versioning, A/B testing, and
automated model retraining.

ZENML is designed to be flexible and customizable,
allowing users to create custom components using any
programming language or tool. ZENML also provides
extensive documentation and a range of tutorials to help
users get started with the framework.

An example code usage of ZENML for an MLOps workflow:

from zenml.core import SimplePipeline
from zenml.datasources import CSVDatasource
from zenml.steps.evaluator.tf evaluator import
TFEvaluator

69

> ZENML

from zenml.steps.preprocesser.standard scaler
import StandardScaler
from zenml.steps.splitter.random split import
RandomSplit
from zenml.steps.trainer.tf trainer import
TFTrainer
from
zenml.backends.orchestrator.tf local orchestrat
or import TFLocalOrchestrator
Define data source
ds = CSVDatasource(name='my-csv-datasource',
path='./my-dataset.csv')
Define splitter
split = RandomSplit(split map={'train': 0.7,
'eval': 0.2, 'test': 0.1})
Define preprocesser
preprocesser = StandardScaler()
Define trainer
trainer = TFTrainer(

loss='categorical crossentropy',
last activation='softmax',
epochs=10,
batch size=32

) ”
Define evaluator
evaluator = TFEvaluator()
Define pipeline
pipeline = SimplePipeline(

datasource=ds,
splitter=split,
preprocesser=preprocesser,
trainer=trainer,
evaluator=evaluator,
name='my-pipeline'

)

70

> ZENML

Define orchestrator
orchestrator = TFLocalOrchestrator()
Run pipeline
orchestrator.run(pipeline)

In this example, we first define a CSVDatasource that
points to a CSV file containing our dataset. We then define
a RandomSplit splitter to split the dataset into training,
evaluation, and testing sets.

Next, we define a StandardScaler preprocesser to
standardize the features in the dataset. We then define a
TFTrainer to train a TensorFlow model on the
preprocessed data.

We also define a TFEvaluator to evaluate the trained
model on the evaluation set.

Finally, we create a SimplePipeline object that
incorporates all of the defined steps, and we define a
TFLocalOrchestrator to run the pipeline locally.

We then run the pipeline using the
orchestrator.run(pipeline) command. This will execute
the pipeline steps in the order defined and output the
results of the pipeline. This pipeline can then be versioned,
deployed, and managed using the ZENML framework.

71

> ZENML

Pros and Cons

Pros:

• Pipeline-based approach: ZENML provides a
pipeline-based approach to managing end-to-end
machine learning workflows, making it easy to
create, test, and deploy machine learning models.

• Flexibility: ZENML is designed to be flexible and
customizable, allowing users to create custom
components using any programming language or
tool. This makes it easy to integrate ZENML with
other tools and libraries that you may already be
using.

• Scalability: ZENML is designed to be scalable, and
can be run on a range of different compute
environments, from a single machine to a
distributed cluster.

• Integration with TensorFlow: ZENML is built on top
of TensorFlow, one of the most popular deep
learning libraries. This makes it easy to incorporate
TensorFlow models into your ZENML pipelines, and
provides a range of pre-built TensorFlow
components that can be used in your pipelines.

• Open-source: ZENML is an open-source
framework, meaning that it is freely available for
anyone to use, modify, and contribute to.

Cons:

72

> ZENML

• Learning curve: Like any new tool or library, there
may be a learning curve involved in using ZENML,
particularly if you are not familiar with the
pipeline-based approach to managing machine
learning workflows.

• Limited community support: As a relatively new
open-source project, ZENML may have limited
community support compared to more established
MLOps frameworks like Kubeflow.

• Limited pre-built components: While ZENML
provides a range of pre-built components for
common machine learning tasks like data
preprocessing and model training, the selection of
components is more limited compared to some
other MLOps frameworks.

• Dependency on TensorFlow: While ZENML's
integration with TensorFlow is a strength, it can
also be a weakness for users who prefer to use
other machine learning libraries or tools.

73

> ZENML

EXPLAINABLE AI
Explainable AI (XAI) is a set of techniques and practices
that aim to make machine learning models and their
decisions more transparent and understandable to
humans.

XAI aims to provide insights into how a machine learning
model works, how it makes decisions, and what factors
influence its predictions. This is important because many
modern machine learning models are complex and
challenging to interpret, and their choices may
significantly impact individuals and society.

XAI techniques include feature importance analysis, local
and global model interpretability, counterfactual analysis,
and model visualization. These techniques can help to
identify the most critical factors that influence a model's
predictions, provide explanations for specific predictions,
and highlight potential biases or inaccuracies in the model.

Explainable AI is particularly important in applications
where decisions made by machine learning models have
significant consequences, such as healthcare, finance, and
criminal justice. By making machine learning models more
transparent and understandable, XAI can help build trust
and confidence in these systems and ensure that they
make fair and ethical decisions.

74

> SHAP

SHAP
SHAP (SHapley Additive exPlanations) is a popular open
source library for interpreting and explaining the
predictions of machine learning models. SHAP is based on
the concept of Shapley values, which are a method from
cooperative game theory used to determine the
contribution of each player to a cooperative game. In the
context of machine learning, SHAP computes the
contribution of each feature to a particular prediction,
providing insight into how the model is making its
predictions.

It provides a range of tools for visualizing and interpreting
model predictions, including summary plots, force plots,
and dependence plots. It can be used with a wide range of
machine learning models, including both black box and
white box models.

Overall, Python SHAP is a powerful tool for understanding
how machine learning models are making their
predictions, and can be useful in a range of applications,
including feature selection, model debugging, and model
governance.

An example code usage of Python SHAP:

import shap
from sklearn.ensemble import
RandomForestClassifier
from sklearn.datasets import load breast cancer
Load the Breast Cancer Wisconsin dataset
data = load breast cancer()

75

> SHAP

Create a random forest classifier
clf = RandomForestClassifier(n estimators=100,
random state=0)
Train the classifier on the breast cancer
dataset
clf.fit(data.data, data.target)
Initialize the SHAP explainer
explainer = shap.Explainer(clf)
Generate SHAP values for the first 5
instances in the dataset
shap values = explainer(data.data[:5])
Plot the SHAP values for the first instance
shap.plots.waterfall(shap values[0])

In this example, we first load the Breast Cancer Wisconsin
dataset and create a random forest classifier using the
RandomForestClassifier class from scikit-learn. We then
train the classifier on the dataset.

Next, we initialize a SHAP explainer using the Explainer
class from the shap library. We then generate SHAP values
for the first 5 instances in the dataset using the explainer.

Finally, we plot the SHAP values for the first instance using
the waterfall function from the shap.plots module. This
generates a waterfall plot showing the contribution of
each feature to the model's prediction for the first
instance.

This is just a simple example of how SHAP can be used to
interpret the predictions of a machine learning model. In
practice, SHAP can be used with a wide range of machine

76

> SHAP

learning models and datasets, and can provide valuable
insights into how these models are making their
predictions.

Pros and Cons

Pros:

• Provides a powerful tool for interpreting and
explaining the predictions of machine learning
models.

• Works with a wide range of machine learning
models, including black box models.

• Can be used for a variety of tasks, including feature
selection, model debugging, and model
governance.

• Provides a range of visualizations for exploring and
interpreting model predictions.

• Based on a well-established concept from
cooperative game theory (Shapley values).

• Has an active community and is widely used in
industry and academia.

Cons:

• Can be computationally intensive, especially for
large datasets or complex models.

77

> SHAP

• Can be difficult to interpret and understand,
especially for users who are not familiar with the
underlying concepts and methods.

• Requires some knowledge of Python and machine
learning concepts to use effectively.

• Can be sensitive to the choice of hyperparameters
and other settings.

• May not always provide clear or definitive
explanations for model predictions.

SHAP is a powerful and widely-used tool for interpreting
and explaining machine learning models. However, as with
any tool, it has its limitations and requires some expertise
to use effectively. It is important to carefully consider the
trade-offs and limitations of any model interpretability
tool when choosing the right one for a particular
application.

78

> LIME

LIME
Python LIME (Local Interpretable Model-Agnostic
Explanations) is an open-source library for explaining the
predictions of machine learning models. Like Python SHAP,
LIME provides a way to understand how a model is making
its predictions by generating explanations for individual
instances. However, while SHAP provides global feature
importance measures, LIME generates local explanations
that are specific to a particular instance.

It works by training an interpretable model (e.g. a linear
model or decision tree) on a sample of instances that are
similar to the instance being explained. The interpretable
model is then used to generate explanations for the
predictions of the original model. This process is repeated
for each instance being explained, resulting in local,
instance-specific explanations.

LIME can be used with a variety of machine learning
models and can provide useful insights into how these
models are making their predictions. It can be especially
useful when working with black box models or when global
feature importance measures are not sufficient for
understanding individual predictions.

Overall, Python LIME is a powerful tool for interpreting
and explaining machine learning models, especially in
cases where SHAP and other global interpretability
methods may not be sufficient. It can be used in a variety
of applications, including model debugging, model
governance, and feature selection.

79

> LIME

An example code usage of Python LIME:

from lime import lime text
from sklearn.pipeline import make pipeline
from sklearn.ensemble import
RandomForestClassifier
from sklearn.feature extraction.text import
TfidfVectorizer

Define a dataset of text documents and
corresponding labels
docs = ['The quick brown fox', 'Jumped over the
lazy dog', 'The dog chased the cat', 'The cat
ran away']
labels = [1, 0, 1, 0]
Define a random forest classifier and a TF-
IDF vectorizer
clf = RandomForestClassifier(n estimators=100,
random state=0)
vectorizer = TfidfVectorizer()
Train the classifier on the text data
X train = vectorizer.fit transform(docs)
clf.fit(X train, labels)
Define a LIME explainer for text data
explainer =
lime text.LimeTextExplainer(class names=['negat
ive', 'positive'])
Generate an explanation for the first
document
exp = explainer.explain instance(docs[0],
clf.predict proba, num features=6)
Print the explanation
print(exp.as list())

80

> LIME

In this example, we define a dataset of text documents and
corresponding labels. We then define a random forest
classifier and a TF-IDF vectorizer, and train the classifier on
the text data.

Next, we define a LIME explainer for text data using the
LimeTextExplainer class from the lime library. We then
generate an explanation for the first document using the
explainer.

Finally, we print the explanation using the as_list method
of the explanation object. This generates a list of features
and their corresponding weights, indicating the
contribution of each feature to the model's prediction for
the first document.

This is just a simple example of how LIME can be used to
interpret the predictions of a machine learning model on
text data. In practice, LIME can be used with a wide range
of machine learning models and data types, and can
provide valuable insights into how these models are
making their predictions.

Pros and Cons:

Pros:

• Local interpretability: LIME provides instance
specific explanations, making it possible to
understand how a model is making its predictions
on a case-by-case basis.

• Model-agnostic: LIME can be used with a wide
range of machine learning models, including black

81

> LIME

box models that are difficult to interpret using
other methods.

• Flexible: LIME can be used with a variety of data
types, including text, images, and tabular data.

• Intuitive: LIME generates explanations that are
easy to understand, even for non-experts.

• Open-source: LIME is an open-source library that is
freely available and can be customized and
extended as needed.

Cons:

• Limited to local explanations: LIME is designed to
generate instance-specific explanations and may
not be suitable for understanding global patterns
or trends in the data.

• Sample-based: LIME generates explanations by
training an interpretable model on a sample of
instances that are similar to the instance being
explained. This means that the quality of the
explanations may depend on the quality and
representativeness of the training data.

• Requires domain knowledge: To use LIME
effectively, it is important to have a good
understanding of the data and the machine
learning model being explained. This may require
some domain-specific expertise.

82

> LIME

• Computationally intensive: Generating LIME
explanations can be computationally intensive,
especially for large datasets or complex models.
This may limit its usefulness in some applications.

• Not always consistent: Since LIME explanations are
based on a sample of instances, they may not be
consistent across different samples or runs. This
can make it difficult to compare and analyze
different explanations.

83

> INTERPRETML

INTERPRETML
InterpretML is an open-source Python library for
interpreting and explaining machine learning models. It
provides a range of tools and techniques for
understanding how a model is making its predictions,
including global feature importance, local explanations,
and counterfactual reasoning. The library is designed to be
model-agnostic and can be used with a wide range of
machine learning models, including regression,
classification, and time series models.

InterpretML provides a range of interpretability
techniques, including:

• Feature importance: Provides tools for
understanding the relative importance of
different features in a model, both globally and
locally.

• Local explanations: It provides tools for
generating instance-specific explanations that can
help to understand why a particular prediction
was made.

• Counterfactual explanations: Provides tools for
generating counterfactual explanations, which
show how changing a feature value would affect
the model's prediction.

• Partial dependence plots: InterpretML provides
tools for generating partial dependence plots,
which show how changing the value of a feature

84

> INTERPRETML

affects the model's prediction, while controlling
for the values of other features.

InterpretML can be used for a variety of tasks, including:

• Model debugging: It can help to identify and
diagnose problems with a model, such as bias or
overfitting.

• Model selection: Can be used to compare and
evaluate different machine learning models based
on their interpretability and performance.

• Model deployment: InterpretML can help to
explain and justify the decisions made by a
machine learning model to stakeholders and
regulators.

It is a powerful tool for understanding and interpreting
machine learning models, and can be used to improve
model transparency, accountability, and trustworthiness.

An example code usage of InterpretML to generate global
feature importances and local explanations for a binary
classification model:

Import the necessary libraries
from interpret.glassbox import
ExplainableBoostingClassifier
from interpret import show
Load the dataset
from sklearn.datasets import load breast cancer
data = load breast cancer()
X, y = data.data, data.target
Train an ExplainableBoostingClassifier model

85

> INTERPRETML

ebm =
ExplainableBoostingClassifier(random state=42)
ebm.fit(X, y)
Generate global feature importances
global explanation = ebm.explain global()
show(global explanation)
Generate local explanations for a specific
instance
local explanation = ebm.explain local(X[:5])
show(local explanation)

In this example, we first load the breast cancer dataset
from scikit-learn, and split it into features (X) and targets
(y). Then, we train an ExplainableBoostingClassifier model
on the dataset, and use InterpretML to generate global
feature importances and local explanations.

The explain_global() method generates global feature
importances for the model, which can help to identify the
most important features for making predictions. The
show() method is used to visualize the results.

The explain_local() method generates local explanations
for a specific instance (in this case, the first 5 instances in
the dataset). Local explanations help to understand why a
particular prediction was made for a specific instance, and
can be useful for debugging and model refinement.

Overall, this example demonstrates how InterpretML can
be used to understand and interpret machine learning
models, and generate insights that can be used to improve
model performance and transparency.

86

> INTERPRETML

Pros and Cons

Pros:

• Model-agnostic: InterpretML can be used with a
wide range of machine learning models, making it
highly flexible and adaptable to different use cases.

• Interpretable: InterpretML provides a range of
tools and techniques for understanding how a
model is making its predictions, including global
feature importance, local explanations, and
counterfactual reasoning.

• Comprehensive: InterpretML provides a range of
interpretability techniques, including feature
importance, local explanations, counterfactual
explanations, and partial dependence plots.

• Easy to use: InterpretML is designed to be easy to
use, with a simple and intuitive API.

• Open-source: InterpretML is an open-source
library, meaning it is free to use and can be
modified and extended by the community.

Cons:

• Limited scalability: InterpretML may be
computationally expensive and slow when working
with large datasets or complex models.

• Limited support for deep learning: InterpretML is
primarily designed for interpretable machine
learning models, and may not be well-suited to

87

> INTERPRETML

deep learning models that are inherently less
interpretable.

• Limited support for some use cases: While
InterpretML provides a wide range of
interpretability techniques, there may be some use
cases where more specialized techniques are
needed.

88

> INTERPRETML

TEXT PROCESSING
Text processing is analyzing and manipulating textual data
to extract useful information or insights. It involves various
techniques and tools, including natural language
processing (NLP), machine learning, and statistical
analysis.

It can be used for various tasks, including text
classification, sentiment analysis, entity recognition, topic
modeling, and information retrieval. It is used in many
industries, including healthcare, finance, and e-commerce,
to analyze large volumes of textual data and gain insights
into customer behavior, market trends, and other vital
factors. It typically involves several steps, including data
cleaning and preprocessing, feature extraction, model
training and validation, and model deployment. NLP
techniques, such as tokenization, part-of-speech tagging,
and named entity recognition, are often used to
preprocess the data and extract features.

ML algorithms, such as decision trees, support vector
machines, and neural networks, are often used to build
models that can classify, cluster, or analyze textual data.
Statistical analysis techniques, such as regression and
clustering, can also be used to gain insights into the data.

Text processing is a rapidly evolving field, with new tools
and techniques being developed all the time. It is an
important area of research and development as the
amount of textual data being generated grows
exponentially.

89

> SPACY

SPACY
Spacy is an open-source library for advanced natural
language processing (NLP) in Python. It provides a wide
range of NLP capabilities, including tokenization, part-of-
speech tagging, named entity recognition, dependency
parsing, and more. Spacy is designed to be fast, efficient,
and user-friendly, making it a popular choice for
developing NLP applications.

It also includes pre-trained models for several languages,
making starting with NLP tasks in different languages
quick. Additionally, Spacy allows users to train their
models on custom datasets, allowing them to create NLP
solutions tailored to their specific needs.

Overall, Spacy is a powerful tool for NLP tasks in Python,
offering a range of features and pre-trained models to
streamline NLP development.

An example of how to use Spacy to extract named entities:

import spacy
Load a pre-trained model
nlp = spacy.load('en core web sm')
Text to process
text = "Apple is looking at buying U.K. startup
for $1 billion"

Process the text with the loaded model
doc = nlp(text)

90

> SPACY

Print each token with its part-of-speech
(POS) tag and named entity recognition (NER)
label
for token in doc:

print(token.text, token.pos ,
token.ent type)

This code uses the SpaCy library to load a pre-trained
English language model (en_core_web_sm) and process a
text string. It then loops through each token in the
processed document and prints out its text, part-of-
speech (POS) tag, and named entity recognition (NER)
label. The output might look like this:

Apple PROPN ORG
is AUX
looking VERB
at ADP
buying VERB
U.K. GPE
startup NOUN
for ADP
$ NUM
1 NUM
billion NUM

Pros and Cons

Pros:

• Highly optimized for speed and memory usage,
making it efficient even on large datasets.

• Provides state-of-the-art performance in a variety
of NLP tasks, including named entity recognition,
part-of-speech tagging, dependency parsing, and
more.

91

> SPACY

• Offers easy integration with other Python libraries
and frameworks, such as scikit-learn, PyTorch, and
TensorFlow.

• Provides a user-friendly and consistent API for
performing NLP tasks.

• Includes pre-trained models for multiple
languages, making it easier to get started with NLP
for non-English languages.

• Has an active development community and good
documentation.

Cons:

• Has a steeper learning curve compared to some
other NLP libraries.

• May not perform as well on some specific NLP tasks
as compared to other libraries that specialize in
those tasks.

• While the core library is open source, some of the
pre-trained models are only available under
commercial licenses.

92

> NLTK

NLTK
NLTK stands for Natural Language Toolkit. It is a popular
open-source library for natural language processing (NLP)
tasks in Python. It provides a wide range of functionalities
for processing human language such as tokenization,
stemming, lemmatization, POS tagging, and more. It also
includes a number of pre-built corpora and resources for
training machine learning models for NLP tasks. NLTK is
widely used for various applications such as text
classification, sentiment analysis, machine translation, and
information extraction.

A simple example code usage of Python NLTK for
tokenization:

import nltk
from nltk.tokenize import word tokenize
sample text
text = "This is an example sentence for
tokenization."

tokenize the text
tokens = word tokenize(text)
print the tokens
print(tokens)

Output:

['This', 'is', 'an', 'example', 'sentence',
'for', 'tokenization', '.']

93

> NLTK

Pros and Cons

Pros:

• Provides a wide range of natural language
processing tools and modules, including
tokenization, stemming, tagging, parsing, and
classification.

• Has a large community of users and developers,
making it easy to find help and resources online.

• Offers support for multiple languages.

• Comes with a variety of datasets and corpora for
training and testing models.

• Provides a user-friendly interface for beginners.

• Can be integrated with other Python libraries such
as NumPy and Pandas.

Cons:

• Can be slower than other natural language
processing libraries due to its reliance on Python
data structures.

• The documentation can be overwhelming and
difficult to navigate for beginners.

• Some of the algorithms and models may not be as
advanced or accurate as those found in other
libraries.

94

> NLTK

• NLTK may not be suitable for large-scale natural
language processing tasks due to memory
constraints.

• The code can be more verbose and difficult to read
compared to other natural language processing
libraries.

95

> TEXTBLOB

TEXTBLOB
Python TextBlob is a popular open-source Python library
used for processing textual data. It provides a simple API
for natural language processing tasks like sentiment
analysis, part-of-speech tagging, noun phrase extraction,
and more. It is built on top of the Natural Language Toolkit
(NLTK) library and provides an easy-to-use interface for
text processing.

An example code usage of Python TextBlob:

from textblob import TextBlob
Creating a TextBlob object
text = "I am really enjoying this course on
natural language processing."
blob = TextBlob(text)
Sentiment Analysis
sentiment polarity = blob.sentiment.polarity
sentiment subjectivity =
blob.sentiment.subjectivity
print("Sentiment Polarity:",
sentiment polarity)
print("Sentiment Subjectivity:",
sentiment subjectivity)
Parts of Speech Tagging
pos tags = blob.tags
print("Parts of Speech Tags:", pos tags)
Named Entity Recognition
ner tags = blob.noun phrases
print("Named Entity Recognition:", ner tags)
Text Translation
translation = blob.translate(to='fr')
print("Translation to French:", translation)

96

> TEXTBLOB

This code performs sentiment analysis, parts of speech
tagging, named entity recognition, and text translation
using TextBlob. The output will vary depending on the
input text used.

Pros and Cons

Pros:

• TextBlob is easy to use and has a simple syntax that
makes it accessible to beginners in natural
language processing.

• It has built-in sentiment analysis capabilities, which
is useful for tasks like social media monitoring and
opinion mining.

• TextBlob also includes other natural language
processing tasks such as noun phrase extraction,
part-of-speech tagging, and classification.

• The library is built on top of the NLTK library, so it
has access to the wide range of tools and resources
available in NLTK.

Cons:

• TextBlob is not as powerful or customizable as
other natural language processing libraries such as
spaCy.

97

> TEXTBLOB

• The library may not be as efficient or scalable as
other options, especially for large datasets.

• TextBlob's built-in sentiment analysis may not
always be accurate, especially for more complex
and nuanced text.

Overall, TextBlob is a useful tool for beginners and for
simple natural language processing tasks, but it may not
be the best choice for more complex or large-scale
projects.

98

>CORENLP

CORENLP
Python CoreNLP is a Python wrapper for Stanford
CoreNLP, a Java-based natural language processing toolkit
developed by Stanford University. It provides a set of tools
for various natural language processing tasks such as part-
of-speech tagging, named entity recognition, dependency
parsing, sentiment analysis, and more. It can be used to
analyze and extract information from text data in different
formats like plain text, HTML, and XML.

An example code that uses Python CoreNLP to parse a
sentence and extract the named entities:

from stanfordcorenlp import StanfordCoreNLP
nlp = StanfordCoreNLP(r'/path/to/corenlp' ,
memory='8g')
sentence = "John works at Google in
California."
output = nlp.annotate(sentence, properties={

'annotators': 'ner',
'outputFormat': 'json',
'timeout': 1000,

})
for entity in
output ['sentences'][0]['entitymentions']:

print(entity['text'], entity['ner'])

Output:

John PERSON
Google ORGANIZATION
California STATE_OR_PROVINCE
In this example, we first import the StanfordCoreNLP class
from the stanfordcorenlp package. Then, we create a

99

>CORENLP

StanfordCoreNLP object and specify the path to the
CoreNLP installation and the amount of memory to be
used.

We then define a sentence and use the annotate() method
of the StanfordCoreNLP object to parse the sentence and
extract the named entities. We specify the 'ner' annotator
to perform named entity recognition and set the output
format to 'json'. We also set a timeout of 1000
milliseconds.

Finally, we loop through the named entities in the output
and print their text and NER tag

Pros and Cons

Pros:

• CoreNLP provides a wide range of NLP tasks such
as part-of-speech tagging, named entity
recognition, sentiment analysis, and dependency
parsing.

• It is written in Java and can be easily integrated
with Python and other programming languages.

• It can handle large text datasets and provide
accurate and reliable results.

• It also supports various languages other than
English such as Chinese, Spanish, French, German,
and Arabic.

Cons:

100

>CORENLP

• The installation and setup process of CoreNLP can
be complex and time-consuming.

• CoreNLP requires a significant amount of memory
and computational resources to perform tasks on
large datasets, which may not be feasible on low-
end machines.

• CoreNLP's output may not always be perfect and
may require some manual intervention to improve
the results.

• It may not be suitable for real-time or online
applications due to its high computational
requirements.

101

> GENSIM

GENSIM
Gensim is an open-source library for unsupervised topic
modeling and natural language processing. It provides a
suite of algorithms and models for tasks such as document
similarity analysis, document clustering, and topic
modeling. The library is designed to be scalable and
efficient, with support for streaming data and distributed
computing.

It is built on top of NumPy, SciPy, and other scientific
computing libraries and provides a simple and intuitive
interface for text analysis tasks. It supports a variety of file
formats for input data, including plain text, HTML, and
XML, and provides built-in support for common text
preprocessing steps such as tokenization, stemming, and
stopword removal.

Overall, Gensim is a powerful tool for exploring and
analyzing large collections of text data, and can be used for
a wide range of applications, including information
retrieval, recommendation systems, and content analysis.

An example code that uses Gensim to create a simple topic
model from a sample text dataset:

import gensim
from gensim import corpora
from pprint import pprint
Define the dataset
data = [

"I like to eat broccoli and bananas.",
"I ate a banana and spinach smoothie for

breakfast.",

102

> GENSIM

"Chinchillas and kittens are cute.",
"My sister adopted a kitten yesterday.",
"Look at this cute hamster munching on a

piece of broccoli."
]
Tokenize the dataset
tokenized data =
[gensim.utils.simple preprocess(text) for text
in data]
Create a dictionary from the tokenized data
dictionary = corpora.Dictionary(tokenized data)
Create a corpus from the dictionary and
tokenized data
corpus = [dictionary.doc2bow(text) for text in
tokenized data]
Train the LDA model
lda model = gensim.models.ldamodel.LdaModel(

corpus=corpus,
id2word=dictionary,
num topics=2,
random state=100,
update every=1,
chunksize=10,
passes=10,
alpha='auto' ,
per word topics=True

) ” ”
Print the topics
pprint(lda model.print topics())

Output:
[(0,

'0.082*"and" + 0.082*"broccoli" + 0.082*"eat"
+ 0.082*"to" + 0.082*"bananas" + 0.060*"i" +

103

> GENSIM

0.057*"a" + 0.035*"for" + 0.035*"breakfast" +
0.035*"smoothie"'),
(1,
'0.077*"kitten" + 0.056*"and" + 0.056*"are" +

0.056*"chinchillas" + 0.056*"cute" + 0.056*"my"
+ 0.056*"sister" + 0.056*"adopted" +
0.056*"yesterday" + 0.056*"look"')]

In this example, we use Gensim to tokenize the sample
dataset, create a dictionary and corpus, and train an LDA
topic model with 2 topics. The output shows the top words
associated with each topic.

Pros and Cons

Pros:

• Easy to use API for creating and training topic
models

• Supports multiple algorithms for topic modeling,
such as Latent Dirichlet Allocation (LDA) and Latent
Semantic Analysis (LSA)

• Can handle large datasets efficiently

• Provides tools for text preprocessing, such as
tokenization and stopword removal

• Can generate word embeddings using popular
algorithms like Word2Vec and FastText

104

> GENSIM

Cons:

• Limited support for deep learning-based
techniques compared to other libraries like
TensorFlow or PyTorch

• May require some knowledge of statistical
inference and machine learning concepts for
effective use

• Some functionality may be slower than other
libraries due to its focus on memory efficiency and
scalability

105

> REGEX

REGEX
Python Regex (Regular Expression) library is a powerful
tool used for pattern matching and text processing. It
provides a set of functions and meta-characters that allow
us to search and manipulate strings using complex
patterns. The regular expression is a sequence of
characters that define a search pattern. Python's built-in
re module provides support for regular expressions in
Python. It is a widely used library for performing various
text manipulation tasks such as string matching, searching,
parsing, and replacing.

An example of using Python's regex library re to extract
information from a complex string:

import re
Example string to search through
text = "My phone number is (123) 456-7890 and
my email is example@example.com."

Define regex patterns to search for
phone pattern = re.compile(r'\(\d{3}\)\s\d{3}-
\d{4}') # Matches phone numbers in (123) 456
7890 format
email pattern = re.compile(r'\b[\w.-
]+?@\w+?\.\w+?\b') # Matches email addresses

Search for matches in the text
phone match = phone pattern.search(text)
email match = email pattern.search(text)
Print out the results
if phone match:

print("Phone number found:",
phone match.group())

106

mailto:example@example.com

>REGEX

else:
print("Phone number not found.")

if email match:
print("Email found:", email match.group())

else:
print("Email not found.")

Output:
Phone number found: (123) 456-7890
Email found: example@example.com

In this example, we use regular expressions to define
patterns to search for a phone number and an email
address in a complex string. The patterns are compiled
using the re.compile() function, and then searched for
using the search() function. The group() function is used to
retrieve the actual matched text.

Pros and Cons

Pros:

• Powerful: Regular expressions are a powerful way
to search and manipulate text.

• Efficient: The Python Regex library is optimized for
performance and can handle large amounts of text
quickly.

• Versatile: Regular expressions can be used for a
wide range of tasks, from simple string matching to
complex text parsing and manipulation.

107

mailto:example@example.com

> REGEX

• Flexible: The Python Regex library allows for a great
deal of customization, allowing you to create
complex patterns and match specific patterns in
text.

Cons:

• Steep learning curve: Regular expressions can be
difficult to learn, particularly for those new to
programming.

• Easy to misuse: Because of their complexity,
regular expressions can be prone to errors and can
be difficult to debug.

• Limited functionality: While the Python Regex
library is powerful, it has some limitations and may
not be suitable for all text processing tasks.

• Less readable: Regular expressions can be less
readable than other forms of text processing code,
making it more difficult to maintain and update
code.

108

>REGEX

IMAGE PROCESSING
Image processing analyzes and manipulates digital images
to extract useful information or improve their quality. It
involves various techniques and tools, including computer
vision, machine learning, and signal processing.

Image processing can be used for a variety of tasks,
including object detection and recognition, image
segmentation, image enhancement, and pattern
recognition. It is used in many industries, including
healthcare, manufacturing, and entertainment, to analyze
and manipulate digital images and gain insights into the
underlying data.

Image processing typically involves several steps, including
image acquisition, preprocessing, feature extraction,
model training and validation, and model deployment.
Computer vision techniques, such as edge detection,
object recognition, and image segmentation, are often
used to preprocess the data and extract features.

Machine learning algorithms, such as convolutional neural
networks (CNNs), are often used to build models that can
classify, detect, or analyze digital images. In addition,
signal processing techniques, such as filtering and Fourier
analysis, can also be used to enhance the quality of digital
images.

Image processing is a rapidly evolving field, with new tools
and techniques being developed all the time. It is an
essential area of research and development as the use of
digital images continues to grow in many fields.

109

>OPENCV

OPENCV
OpenCV (Open-Source Computer Vision Library) is a library
of programming functions mainly aimed at real-time
computer vision. It provides many useful and powerful
algorithms and techniques for computer vision and
machine learning applications, including image and video
processing, object detection and recognition, camera
calibration, and more.

OpenCV is written in C++ and provides bindings for Python,
making it easy to use in Python applications. It also
includes a graphical user interface (GUI) for image and
video processing, making it easy to visualize and interact
with the data.

Some of the key features of OpenCV include:

• Image and video processing: Provides many
functions for basic and advanced image and video
processing, including filtering, feature detection,
image segmentation, and more.

• Object detection and recognition: OpenCV
provides several methods for object detection and
recognition, including Haar cascades, HOG
(Histogram of Oriented Gradients), and deep
learning-based approaches.

• Camera calibration: Includes functions for
calibrating cameras, including estimating intrinsic
and extrinsic parameters, distortion correction,
and more.

110

>OPENCV

• Machine learning: Provides several machine
learning algorithms for classification, regression,
clustering, and more.

Overall, OpenCV is a powerful tool for computer vision and
machine learning applications, and is widely used in both
academic and industrial settings.

An example code that uses OpenCV to capture video from
a webcam and display it on the screen:

import cv2
Create a VideoCapture object
cap = cv2.VideoCapture(0)
while True:

Read a frame from the camera
ret, frame = cap.read()
Display the frame
cv2.imshow('frame', frame)
Exit if the 'q' key is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):

break
Release the VideoCapture object and close the
window
cap.release()
cv2.destroyAllWindows()

In this code, we first import the cv2 module, which
provides the functions and classes needed to work with
OpenCV. We then create a VideoCapture object to capture
video from the default webcam (device index 0).

111

>OPENCV

Inside the while loop, we use the cap.read() method to
read a frame from the camera. The ret variable indicates
whether the read operation was successful, and the frame
variable contains the image data for the current frame.

We then use the cv2.imshow() function to display the
frame on the screen. The first argument to this function is
a window name (which can be anything), and the second
argument is the image data.

Finally, we use the cv2.waitKey() function to wait for a key
press. If the 'q' key is pressed, we break out of the loop and
release the VideoCapture object and close the window.

Pros and Cons

Pros:

• OpenCV is an open source library, which means
that it is free to use and modify.

• It has a large community of developers, which
ensures that the library is constantly improving and
new features are being added.

• OpenCV supports multiple programming
languages, including Python, C++, and Java.

• It has a wide range of image and video processing
functions, making it a versatile tool for various
applications.

• It supports multiple platforms, including Windows,
Linux, and MacOS.

112

>OPENCV

Cons:

• OpenCV can have a steep learning curve for
beginners due to its large number of functions and
complex APIs.

• It requires some knowledge of computer vision and
image processing techniques to use effectively.

• The performance of OpenCV can be slow on some
devices, especially if running complex algorithms.

• It may not be the best choice for applications that
require real-time processing of large amounts of
data due to its high computational requirements.

113

> SCIKIT-IMAGE

SCIKIT-IMAGE
Python scikit-image is an open-source image processing
library that provides algorithms for image processing and
computer vision tasks such as filtering, segmentation,
object detection, and more. It is built on top of the
scientific Python ecosystem, including NumPy, SciPy, and
matplotlib.

It is designed to be easy to use and provides a simple and
intuitive interface to quickly implement image processing
tasks. It supports a variety of image formats and is
compatible with Python 3.x.

Some of the key features of scikit-image include:

• A collection of algorithms for image processing
and computer vision

• Support for different image formats, including
JPEG, PNG, BMP, TIFF, and others

• A simple and intuitive API for easy integration
with other Python libraries

• Compatible with NumPy and SciPy for scientific
computing tasks

• Comprehensive documentation and examples

Overall, scikit-image is a powerful tool for image
processing and computer vision tasks in Python.

114

> SCIKIT-IMAGE

An example code usage of Python scikit-image for image
processing:

from skimage import io, filters
Load image
image = io.imread('example.jpg', as gray=True)
Apply Gaussian blur
image blur = filters.gaussian(image, sigma=1)
Apply Sobel filter
sobel = filters.sobel(image)
Display the images
io.imshow collection([image, image blur,
sobel])
io.show()

In this example, we load an image using the io.imread
function and apply a Gaussian blur to the image using the
filters.gaussian function with a sigma value of 1. We then
apply a Sobel filter to the image using the filters.sobel
function. Finally, we use the io.imshow_collection
function to display the original image, the blurred image,
and the Sobel-filtered image.

Note that as_gray=True is used to convert the image to
grayscale. Also, the io.show() function is used to display
the images.

115

> SCIKIT-IMAGE

Pros and Cons

Pros:

• scikit-image is a powerful image processing library
that provides a wide range of functions for
manipulating and analyzing images.

• It is built on top of the popular scientific Python
libraries NumPy and SciPy, making it easy to
integrate with other scientific computing tools.

• scikit-image has an extensive documentation and
an active community, which means that finding
help and support is relatively easy.

• The library is open source and freely available
under a permissive license, making it accessible to
anyone.

Cons:

• Some of the more advanced features of scikit-
image can be challenging to use and require a solid
understanding of image processing concepts.

• The library may not be as performant as other
image processing libraries such as OpenCV for
certain tasks.

• Some users have reported issues with installation
and compatibility with certain versions of Python
and other dependencies.

116

> SCIKIT-IMAGE

• scikit-image does not support 3D image processing
out of the box, which can be a limitation for some
applications.

117

> PILLOW

PILLOW
Pillow is a popular Python library used for image
processing tasks. It is a fork of the Python Imaging Library
(PIL) and supports many of its features, while also
including additional functionality and bug fixes. Pillow
provides a comprehensive set of functions for opening,
manipulating, and saving image files in a wide variety of
formats, including BMP, PNG, JPEG, TIFF, and GIF.

Some of the key features of Pillow include support for
various image formats, image enhancement and
manipulation functions, drawing and text rendering
functions, and support for basic image filtering and
transformation operations. It also includes various image
processing algorithms such as edge detection, contour
detection, and image segmentation.

Pillow is widely used in a variety of image processing
applications, including computer vision, machine learning,
and web development. It is known for its ease of use, as
well as its flexibility and scalability. Additionally, Pillow is
open-source software, which means that it is freely
available for use and modification by anyone.

Overall, Pillow is a powerful and versatile library for
working with image data in Python, and it is an essential
tool for anyone working with images in their Python
projects.

118

> PILLOW

An example code usage of Pillow using filters:

from PIL import Image, ImageFilter
Open the image
img = Image.open('image.jpg')
Apply a Gaussian blur filter
blurred img =
img.filter(ImageFilter.GaussianBlur(radius=10))
Apply a sharpen filter
sharpened img = img.filter(ImageFilter.SHARPEN)
Display the original image and the filtered
images
img.show()
blurred img.show()
sharpened img.show()

In this example, we opened an image and applied two
different filters to it using Pillow. First, we applied a
Gaussian blur filter with a radius of 10 pixels, which creates
a blurred effect on the image. Then, we applied a sharpen
filter to the original image, which enhances the edges and
details in the image. Finally, we displayed all three images
(original, blurred, and sharpened) using the show()
method.

119

> PILLOW

Pros and Cons

Pros:

• Pillow is a well-documented and easy-to-use
library for handling images in Python.

• It supports a wide variety of image formats and
allows for a range of image manipulation tasks,
including cropping, resizing, and filtering.

• Pillow has strong community support and is
actively maintained, with frequent updates and
bug fixes.

• Pillow is compatible with both Python 2 and 3,
making it a versatile choice for image processing in
Python.

Cons:

• While Pillow is a powerful library, it may not be
suitable for very advanced image processing tasks
that require more specialized tools or algorithms.

• Pillow can be relatively slow when processing large
or complex images, particularly when compared to
more optimized libraries written in lower-level
languages like C or C++.

• Pillow may have limited support for some less
common image formats, which could be an issue
for certain use cases.

120

> MAHOTAS

MAHOTAS
Python Mahotas is an image processing library that
provides a set of algorithms for image processing and
computer vision tasks. It is built on top of numpy and scipy
and provides functions to perform operations like filtering,
segmentation, feature extraction, morphology, and other
image processing tasks.

It is designed to work with numpy arrays, making it easy to
integrate with other image processing libraries like
OpenCV and scikit-image. It provides a fast and efficient
implementation of many common image processing
algorithms and supports multi-dimensional arrays, making
it suitable for working with volumetric data.

Some of the features of Mahotas include:

• Image filtering and segmentation

• Feature extraction and object recognition

• Morphological operations like erosion and
dilation

• Thresholding and edge detection

• Watershed segmentation

• Region properties and labeling

An example code usage:

121

> MAHOTAS

import mahotas as mh
import numpy as np
from skimage import data
Load example image
image = data.coins()
Convert image to grayscale
image = mh.colors.rgb2gray(image)
Apply thresholding
thresh = mh.thresholding.otsu(image)
Label regions
labeled, nr objects = mh.label(image > thresh)
Calculate region properties
regions = mh.regionprops(labeled,
intensity image=image)
Display results
print("Number of objects:", nr objects)
for region in regions:

print("Obj ect:", region.label)
print("Area:", region.area)
print("Perimeter:", region.perimeter)
print("Eccentricity:", region.eccentricity)
print("Intensity mean:",

region.mean intensity)
print("")

This code loads an example image, converts it to grayscale,
applies Otsu's thresholding method to separate the
foreground and background pixels, labels the connected
components in the resulting binary image, and calculates
various region properties for each object. The output
displays the number of objects found and their properties.

122

> MAHOTAS

Pros and Cons

Pros:

• Mahotas provides a range of powerful image
processing and feature extraction functions,
making it suitable for a variety of computer vision
tasks.

• The library is well-documented and provides a
range of examples to get started with.

• Mahotas is designed to work efficiently with large
image datasets, allowing users to quickly process
and analyze large volumes of image data.

• Mahotas is easy to install and use, with a simple API
that is easy to understand.

Cons:

• Mahotas does not provide as many features or
advanced capabilities as some of the more
established computer vision libraries like OpenCV
or scikit-image.

• Some of the functions provided by Mahotas can be
slow and may not perform as well as other libraries
on certain tasks.

• While Mahotas has a relatively active user
community, it may not be as widely used or
supported as other image processing libraries.

123

> SIMPLEITK

SIMPLEITK
SimpleITK is a high-level interface to the Insight
Segmentation and Registration Toolkit (ITK). It is a Python
library used for image processing, analysis, and computer
vision tasks. SimpleITK allows for easy manipulation of
images, such as filtering, segmentation, registration, and
feature extraction.

Some common tasks that can be accomplished with
SimpleITK include image alignment, registration of
multiple images, segmentation of regions of interest, and
analysis of image features. The library also provides access
to many image analysis algorithms and methods, such as
edge detection, object detection, and classification.

SimpleITK is a popular library for medical image processing
and analysis, as it provides tools for the analysis of medical
images such as CT, MRI, and ultrasound images. It is widely
used in the healthcare industry and in research.

Overall, SimpleITK provides a user-friendly interface to the
ITK toolkit, making it easier for users to perform complex
image processing and analysis tasks. It also has a wide
range of applications in various fields, including medical
imaging, computer vision, and machine learning.

An example code usage of Python SimpleITK:

import SimplelTK as sitk
Read an image
image = sitk.Readimage("image.nii")
Get the image size

124

> SIMPLEITK

size = image.GetSize()
Get the image origin
origin = image.GetOrigin()
Get the image spacing
spacing = image.GetSpacing()
Get the image direction
direction = image.GetDirection()
Print the image information
print("Size:", size)
print("Origin:", origin)
print("Spacing:", spacing)
print("Direction:", direction)
Display the image
sitk.Show(image)

This code reads an image in the NIfTI format using
SimpleITK, gets the image size, origin, spacing, and
direction, and then displays the image using the
sitk.Show() function.

Pros and Cons

Pros:

• SimpleITK is a powerful library for image
processing and analysis, with a wide range of
features for 2D, 3D and higher-dimensional
images.

• It provides a simple and intuitive API for
performing various tasks, such as reading and

125

> SIMPLEITK

writing image files, applying image filters, and
segmenting images.

• SimpleITK is built on top of ITK (Insight
Segmentation and Registration Toolkit), which is a
well-established and widely used image analysis
library in the research community.

• SimpleITK can be used with various programming
languages, including Python, C++, Java, and Tcl.

Cons:

• SimpleITK has a steeper learning curve compared
to some other Python image processing libraries,
due to its more complex API and the fact that it is
built on top of ITK.

• SimpleITK may not be suitable for all types of image
analysis tasks, as it is primarily designed for
medical image analysis.

• Some of the more advanced features of SimpleITK,
such as registration and segmentation, require a
good understanding of the underlying concepts
and algorithms.

• SimpleITK can be slower compared to some other
Python image processing libraries, due to its more
complex algorithms and data structures.

126

> SIMPLEITK

WEB FRAMEWORK
A web framework is a software framework designed to
simplify the development of web applications by providing
a set of reusable components and tools for building and
managing web-based projects. It provides a standardized
way to build and deploy web applications by providing a
structure, libraries, and pre-written code to handle
everyday tasks such as request handling, routing, form
processing, data validation, and database access.

Web frameworks typically include programming tools and
libraries, such as templates, middleware, and routing
mechanisms, that enable developers to write clean,
maintainable, and scalable code for web-based projects. In
addition, they abstract away much of the low-level details
of web development, allowing developers to focus on the
high-level functionality of their applications.

There are many web frameworks available in various
programming languages, including Python (Django, Flask),
Ruby on Rails, PHP (Laravel, Symfony), and JavaScript
(React, Angular, Vue.js). These frameworks vary in
features, performance, ease of use, and community
support.

Web frameworks have become essential for web
development because they provide a standardized way to
build and maintain web applications, making it easier for
developers to build complex web-based projects in less
time and with fewer errors.

127

> FLASK

FLASK
Flask is a micro web framework written in Python. It is
classified as a microframework because it does not require
particular tools or libraries. It has no database abstraction
layer, form validation, or any other components where
pre-existing third-party libraries provide common
functions. However, Flask supports extensions that can
add application features as if they were implemented in
Flask itself. There are extensions for object-relational
mappers, form validation, upload handling, various open
authentication technologies, and more.

An example code usage of Flask:

from flask import Flask
app = Flask(name)
@app.route('/')
def hello():

return 'Hello, World!'
if name == ' main ' :

app.run()

This creates a simple Flask web application that listens for
requests on the root URL (/) and returns the string 'Hello,
World!' as a response. When you run this code and
navigate to http://localhost:5000/ in your web browser,
you should see the message "Hello, World!" displayed on
the page.

128

http://localhost:5000/

> FLASK

Pros and Cons

Pros:

• is a lightweight web framework that is easy to set
up and use.

• has a simple and intuitive API that makes it easy to
develop web applications.

• provides great flexibility when it comes to
database integration, allowing developers to use
any database they choose.

• The framework is highly customizable, with a large
number of third-party extensions available to add
functionality to your application.

• has good community support, with a large number
of tutorials, resources, and examples available.

Cons:

• is not as powerful as some of the larger web
frameworks, such as Django, which may make it
less suitable for larger and more complex projects.

• requires developers to make more decisions about
how to structure their application, which can make
it more challenging for beginners.

• does not provide built-in support for tasks like form
validation or user authentication, which can add
additional development time for these features.

129

> FLASK

• As Flask is not an opinionated framework, it
requires more configuration and setup, which can
be daunting for developers who are not familiar
with web development.

• It is not suitable for developing high-performance
web applications that require a lot of concurrency,
due to its single-threaded nature.

130

> FASTAPI

FASTAPI
FastAPI is a modern, fast (high-performance) web
framework for building APIs with Python 3.6+ based on
standard Python type hints. It is designed to be easy to use
and understand, with a focus on developer productivity
and code quality.

FastAPI offers a lot of features out-of-the-box, including:

• Automatic generation of OpenAPI and JSON
Schema documentation

• Fast, asynchronous support with Starlette

• Dependency injection with FastAPI's Dependency
Injection system

• Data validation with Pydantic

• Interactive API documentation with Swagger UI
and ReDoc

• Built-in support for GraphQL with Graphene

• WebSocket support with Flask-Sockets and
WebSocket support

All of these features make it easy to build and maintain
high-quality APIs, while minimizing development time and
reducing errors

131

> FASTAPI

An example code usage of FastAPI to create a simple API
endpoint:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def root():

return {"message": "Hello World"}

This creates a FastAPI instance called app. Then, using the
@app.get() decorator, we create a GET endpoint for the
root URL path / that returns a JSON object with a
"message" key and "Hello World" value.

To run the application, we can save this code in a file, for
example main.py, and then use a command line interface
to start the server:

$ uvicorn main:app -reload

This command starts the server with the main module and
app instance as the application. The --reload option will
automatically reload the server on code changes.

Once the server is running, we can access the endpoint at
http://localhost:8000/ in a web browser or make a GET
request to the URL using a tool like curl or a programming
language's requests library.

132

http://localhost:8000/

> FASTAPI

Overall, FastAPI provides a simple and intuitive way to
create API endpoints and handle HTTP requests and
responses.

Pros and Cons

Pros:

• FastAPI is one of the fastest Python web
frameworks, with speeds that are comparable to
Node.js and Go.

• It has built-in support for async/await syntax,
making it easy to write fast, scalable, and
responsive APIs.

• FastAPI has excellent documentation, including an
interactive API documentation tool that allows
developers to test endpoints directly from their
browser.

• It has automatic data validation and serialization,
which reduces the amount of boilerplate code
required to create robust APIs.

• FastAPI has strong type checking and code
autocompletion, which helps prevent errors and
speeds up development time.

• FastAPI has a large and growing community of
contributors, which means there are many plugins,
tools, and tutorials available to help developers get
started.

133

> FASTAPI

Cons:

• FastAPI is a relatively new framework, so there may
be some stability and compatibility issues when
using it with other libraries and tools.

• It has a steep learning curve, especially for
developers who are not familiar with async/await
syntax or type hints.

• FastAPI may not be the best choice for small
projects, as its performance benefits are most
noticeable in large, complex APIs.

• Because FastAPI is built on top of Starlette, a lower-
level ASGI framework, developers may need to
learn both frameworks to use it effectively.

• FastAPI's strong focus on performance and type
checking may not be necessary for all projects, and
could lead to over-engineering and increased
development time.

134

> DJANGO

DJANGO
Django is a high-level Python web framework that allows
for rapid development of secure and maintainable
websites. It follows the model-view-controller (MVC)
architectural pattern and provides an extensive set of tools
and libraries for handling common web development tasks
such as URL routing, form validation, and database schema
migrations.

Django's design philosophy emphasizes reusability and
"pluggability" of components, meaning that individual
parts of a Django project can be easily interchanged and
customized to fit specific needs. This makes it particularly
suitable for complex web applications with many different
features and requirements.

One of the key features of Django is its built-in
administration interface, which provides a powerful and
customizable web-based interface for managing site
content and user accounts. Django also includes built-in
support for various database backends, including
PostgreSQL, MySQL, and SQLite, as well as integration with
popular front-end frameworks like React and Angular.

Overall, Django is a popular choice for web developers
looking to build scalable and maintainable web
applications quickly and efficiently, particularly those
working on large and complex projects with many
different components and requirements.

135

> DJANGO

An example code usage of creating a simple Django app
that displays a "Hello, World!" message:

1. Install Django by running the command pip install
Django in your command prompt or terminal.

2. Create a new Django project by running the
command django-admin startproject myproject in
your command prompt or terminal. This will create
a new directory called myproject.

3. Create a new Django app by running the command
python manage.py startapp myapp in your
command prompt or terminal. This will create a
new directory called myapp inside the myproject
directory.

4. Open the views.py file inside the myapp directory
and add the following code:

from django.http import HttpResponse
def hell o(request):

return HttpResponse("Hello, World!")

5. Open the urls.py file inside the myapp directory
and add the following code:

from django.urls import path
from . import views
urlpatterns = [

path('hello/', views.hello, name='hello'),
]

136

> DJANGO

6. Open the urls.py file inside the myproject directory
and add the following code:

from django.contrib import admin
from django.urls import include, path
urlpatterns = [

path('admin/', admin.site.urls),
path('myapp/', include('myapp.urls')),

]
7. Start the Django server by running the command

python manage.py runserver in your command
prompt or terminal.

8. Open your web browser and go to
. You should

see the message "Hello, World!" displayed in your
browser.

http://127.0.0.1:8000/myapp/hello/

This is a very basic example of a Django app, but it
demonstrates how you can create a simple web page using
Python and the Django framework.

Pros and Cons

Pros:

• Django provides a robust framework for building
web applications quickly and efficiently.

• It has a large and active community, which means
there are plenty of resources and tools available to
help developers.

• Django has a built-in admin interface, which makes
it easy to manage data and content.

137

http://127.0.0.1:8000/myapp/hello/

> DJANGO

• The framework is secure by default, which helps
protect against common web application
vulnerabilities.

• Django has excellent documentation and a well-
structured architecture that makes it easy to
understand and maintain code.

Cons:

• Django is a relatively heavy framework, which
means it can be slower and more resource
intensive than some other options.

• The built-in admin interface is powerful, but it may
not be customizable enough for some projects.

• Django can have a steep learning curve,
particularly for developers who are new to web
development or to Python itself.

• The framework's opinionated nature can
sometimes be limiting, particularly for developers
who prefer more flexibility and control over their
code.

138

> DASH

DASH
Dash is a web application framework for building
interactive web-based dashboards. It is built on top of
Flask, Plotly.js, and React.js, which makes it easy to build
complex and data-driven web applications. Dash allows
users to create interactive dashboards with interactive
graphs, tables, and widgets without needing to know
HTML, CSS, or JavaScript.

With Dash, you can build dynamic web applications that
can handle millions of data points and real-time updates.
It has a simple syntax and can be used with any Python
data science stack, including NumPy, Pandas, and Scikit-
learn. Dash also supports deployment to the cloud using
services like Heroku and AWS.

Overall, Dash is a powerful and flexible tool for building
data-driven web applications and dashboards that can be
used in a variety of domains, including finance, healthcare,
and government.

An example code usage of Python Dash:

import dash
import dash core components as dcc
import dash html components as html
app = dash.Dash()
app.layout = html.Div(children=[

html.H1(children='Hello Dash'),
html.Div(children='''

Dash: A web application framework for
Python.

139

> DASH

'''),
dcc.Graph(

id='example-graph',
figure={

'data': [
{'x': [1, 2, 3], 'y': [4, 1,

2], 'type': 'bar', 'name': 'SF'},
{'x': [1, 2, 3], 'y': [2, 4,

5], 'type': 'bar', 'name': u'Montreal1},
],
'layout': {

'title': 'Dash Data
Visualization'

}
}

)
])
if name == ' main ' :

app.run server(debug=True)

This code creates a simple Dash application that displays a
bar chart. When you run the application, you will see a
web page with the title "Hello Dash" and a bar chart that
displays two sets of data for the cities of San Francisco and
Montreal.

Pros and Cons

Pros:

• Easy to learn and use, especially for those familiar
with Python.

• Highly customizable dashboards and visualizations.

140

> DASH

• Provides interactivity and real-time data updates.

• Can be integrated with other Python libraries and
frameworks.

• Supports both local and cloud-based deployment.

Cons:

• Limited styling options for the dashboard and
visualizations.

• Can be slower for large-scale applications.

• Requires knowledge of HTML, CSS, and JavaScript
for advanced customization.

• Limited support for certain data visualization
libraries.

141

> PYRAMID

PYRAMID
Pyramid is a web framework designed to make the
development of web applications more accessible by
providing a simple and flexible approach to building web
applications. Pyramid is a lightweight framework that is
easy to learn and use. It is based on the WSGI standard and
provides many features, including URL routing,
templating, authentication, and database integration.

It is designed to be modular and extensible. It provides
core features that can be extended with add-ons and
third-party libraries. It’s also highly configurable, allowing
developers to customize the framework's behavior to fit
their specific needs.

Pyramid is built on top of the Pylons web framework and
incorporates many features. Other popular web
frameworks, including Django and Ruby on Rails, also
inspire it.

Overall, Pyramid is an excellent choice for building
complex web applications requiring high flexibility and
customization. Its modularity and extensibility make it
easy to adapt to various use cases. At the same time, its
core features provide a solid foundation for building
robust and scalable web applications.

A simple example of a Pyramid web application:

First, you need to install Pyramid by running pip install
pyramid in your terminal.

142

> PYRAMID

Then, create a new file called app.py and add the following
code:

from wsgiref.simple server import make server
from pyramid.config import Configurator
from pyramid.response import Response
def home(request):

return Response('Hello, Pyramid!')
if name == ' main ':

with Configurator() as config:
config.add route('home', '/')
config.add view(home,

route name='home')
app = config.make wsgi app()

server = make server('localhost', 8000,
app) print('Server running at
http://localhost:8000')

server.serve forever()

This code sets up a very basic Pyramid web application
with a single route / that responds with "Hello, Pyramid!".

To run the application, simply run python app.py in your
terminal and navigate to http://localhost:8000 in your
web browser. You should see the message "Hello,
Pyramid!" displayed in your browser.

Note that this is just a simple example to get you started
with Pyramid. There's a lot more you can do with it, such
as using templates, working with databases, and more.

Pros and Cons

Pros:

143

http://localhost:8000'
http://localhost:8000

> PYRAMID

• Flexible and easy to use for both small and large-
scale web applications.

• Provides a lot of features out of the box, such as
URL routing, templating, and authentication.

• Can be used with different databases, such as
PostgreSQL, MySQL, SQLite, and Oracle.

• Supports a variety of security features, including
cross-site scripting (XSS) prevention, CSRF
protection, and secure password hashing.

• Has a large and active community that provides
support and updates.

Cons:

• Can have a steeper learning curve compared to
other Python web frameworks, especially for
beginners.

• Has a more minimalist approach to web
development, which may require more manual
configuration and setup.

• Can be less suitable for rapid prototyping or small
scale projects, as it requires more effort to set up
and configure.

• Documentation can be less comprehensive
compared to other Python web frameworks.

144

> PYRAMID

WEB SCRAPING
Web scraping is the process of extracting data from
websites automatically using software or a script. It
involves fetching web pages, parsing the HTML or XML
content, and extracting useful information from the web
pages, such as text, images, links, and other data.

Web scraping can be used for a variety of purposes, such
as data mining, research, price monitoring, and content
aggregation. Businesses commonly use it; researchers and
data analysts gather data from multiple sources, analyze
it, and use it for decision-making.

Web scraping can be done manually, but it is more
commonly automated using specialized software or tools
known as web scrapers or web crawlers. These tools can
be programmed to visit websites, follow links, and extract
specific data from web pages in a structured or
unstructured format.

Web scraping raises ethical and legal concerns, mainly
when extracting data from copyrighted or private
websites. In addition, some websites may also have
restrictions on web scraping, such as terms of service or
robots.txt files, that limit or prohibit web scraping
activities. Therefore, it is essential to understand the legal
and ethical implications of web scraping and to use it
responsibly and ethically.

145

> BEAUTIFULSOUP

BEAUTIFULSOUP
BeautifulSoup is a Python library used for web scraping
purposes to pull the data out of HTML and XML files. It
creates a parse tree from page source code that can be
used to extract data in a hierarchical and more readable
manner.

BeautifulSoup provides a few simple methods and
Pythonic idioms for navigating, searching, and modifying a
parse tree. It sits on top of an HTML or XML parser and
provides Pythonic idioms for iterating, searching, and
modifying the parse tree.

It is a powerful tool for web scraping and can be used for
various applications, such as data mining, machine
learning, and web automation.

An example code usage of BeautifulSoup:

Suppose we want to scrape the title and the links of the
top 5 articles from the homepage of the New York Times.

import requests
from bs4 import BeautifulSoup
url = "https://www.nytimes.com/"
response = requests.get(url)
soup = BeautifulSoup(response.content,
'html.parser')
articles = soup.find all('article')[:5]
for article in articles:

title =
article.find('h2').get text().strip()

link = article.find('a')['href']

146

https://www.nytimes.com/

> BEAUTIFULSOUP

print(title)
print(link)
print()

This code sends a GET request to the New York Times
homepage, extracts the HTML content using the
BeautifulSoup library, and then finds all of the article
elements on the page. For each article, it extracts the title
and the link and prints them to the console.

Output:

New York City Vaccine Mandate Takes Effect for
Private Employers

https://www.nytimes.com/2022/01/20/nyregion/new
-york-city-vaccine-mandate.html
Wall Street Is Bracing for a Reshuffle
https://www.nytimes.com/2022/01/20/business/wal
l-street-banks-q4-earnings.html
Biden Administration Plans to Move Afghans to
Third Countries, but Fewer Will Qualify
https://www.nytimes.com/2022/01/20/us/politics/
afghanistan-refugees.html
E.U. Chief Has a Warning for Russia Over Its
Actions in Ukraine
https://www.nytimes.com/2022/01/20/world/europe
/eu-russia-ukraine.html
Elliott Abrams, Who Oversaw U.S. Policy in
Latin America, Dies at 73

147

https://www.nytimes.com/2022/01/20/nyregion/new
https://www.nytimes.com/2022/01/20/business/wal
https://www.nytimes.com/2022/01/20/us/politics/
https://www.nytimes.com/2022/01/20/world/europe

> BEAUTIFULSOUP

https://www.nytimes.com/2022/01/20/us/politics/
elliott-abrams-dead.html

In this example, we use Python's requests library to send
an HTTP GET request to the specified URL. We then pass
the HTML content of the response to BeautifulSoup, which
parses the HTML and creates a parse tree. We use the
find_all() method to find all the article elements on the
page and then extract the title and link information from
each article element using the find() method. Finally, we
print the title and link information to the console.

Pros and Cons

Pros:

1. Easy to learn: BeautifulSoup is an intuitive library
that is easy to learn and use for scraping web
pages.

2. Flexible: It can handle all types of HTML and XML
files and allows you to work with different parsers.

3. Supports CSS selectors: You can use CSS selectors
to find specific HTML elements, which makes it
easier to scrape data from web pages.

4. Wide community: BeautifulSoup has a large
community of users who regularly contribute to
the library and provide support to fellow
developers.

Cons:

148

https://www.nytimes.com/2022/01/20/us/politics/

> BEAUTIFULSOUP

1. Slow: BeautifulSoup can be slow when working
with large web pages or data sets.

2. Limited JavaScript support: It does not support
JavaScript rendering, which can be a disadvantage
when scraping dynamic web pages.

3. Limited error handling: It does not handle errors or
exceptions very well, which can make debugging
difficult.

4. No built-in persistence: You will need to use other
libraries or tools to store the scraped data, as
BeautifulSoup does not have built-in persistence.

149

> SCRAPY

SCRAPY
Scrapy is an open-source web crawling framework that is
used to extract data from websites. It is built on top of the
Twisted framework and provides an easy-to-use API for
crawling web pages and extracting information. Scrapy is
designed to handle large-scale web crawling tasks and can
be used to extract data for a wide range of applications,
including data mining, information processing, and even
for building intelligent agents.

Scrapy uses a pipeline-based architecture that allows users
to write reusable code for processing the scraped data. It
also includes built-in support for handling common web
protocols like HTTP and HTTPS, as well as for handling
asynchronous requests.

In addition to its powerful web crawling capabilities,
Scrapy also includes features for data cleaning, filtering,
and normalization. This makes it a great tool for extracting
structured data from unstructured web pages, which can
be difficult to do with other web scraping tools.

It is highly customizable and can be extended with plugins
and third-party libraries. Its community is also very active,
with a wide range of resources available for users to learn
from and get help with any issues they encounter.

Scrapy is a powerful web crawling framework that
provides a lot of flexibility and functionality for extracting
data from websites. However, it does require some
knowledge of Python and web development to use
effectively.

150

>SCRAPY

An example of how to use Scrapy to scrape quotes from
the website http://quotes.toscrape.com/:

First, install Scrapy by running pip install scrapy in your
command prompt or terminal.

Then, create a new Scrapy project by running scrapy
startproject quotes_scraper in your command prompt or
terminal. This will create a new directory called
quotes_scraper.

Next, navigate to the spiders directory within the
quotes_scraper directory and create a new file called
quotes_spider.py. Add the following code to this file:

import scrapy

class QuotesSpider(scrapy.Spider):
name = "quotes"
start urls = [

'http://quotes.toscrape.eom/page/1/' ,
]
def parse(self, response):

for quote in response.css('div.quote'):
yield {

'text':
quote.css('span.text::text').get(),

'author': quote.css('span
small::text').get(),

'tags': quote.css('div.tags
a.tag::text').getall(),

}
next page = response.css('li.next

a::attr(href)').get()
if next page is not None:

151

http://quotes.toscrape.com/
http://quotes.toscrape.eom/page/1/'

> SCRAPY

yield response.follow(next page,
self.parse)

This spider defines the name of the spider, the starting URL
to scrape, and a parse method which is responsible for
extracting the quotes from each page and following links
to the next page if they exist.

To run the spider, navigate to the quotes_scraper
directory in your command prompt or terminal and run
scrapy crawl quotes. This will start the spider and output
the scraped quotes to your console.

Here is an example of what the output might look like:

{'text': '“The world as we have created it is a
process of our thinking. It cannot be changed
without changing our thinking.”', 'author':
'Albert Einstein', 'tags': ['change', 'deep
thoughts', 'thinking', 'world']}
{'text': '“It is our choices, Harry, that show
what we truly are, far more than our
abilities.”', 'author': 'J.K. Rowling', 'tags':
['abilities', 'choices']}
{'text': '“There are only two ways to live your
life. One is as though nothing is a miracle.
The other is as though everything is a
miracle.”', 'author': 'Albert Einstein',
'tags': ['inspirational', 'life', 'live',
'miracle', 'miracles']}

Each quote is represented as a dictionary with keys for the
quote text, author, and tags.

152

>SCRAPY

Pros and Cons

Pros:

• Powerful web scraping framework that handles
asynchronous requests and supports XPath and
CSS selectors

• Ability to extract data from a variety of sources
such as websites, APIs, and even databases

• Built-in support for handling common web
scraping tasks like avoiding bot detection and
managing user sessions

• Includes built-in support for exporting scraped
data to various formats, including JSON, CSV, and
XML

• Supports various customization options, including
middleware, extensions, and pipelines

Cons:

• Steep learning curve, especially for beginners who
are new to web scraping

• Requires some knowledge of XPath and CSS
selectors to extract data from web pages

• Not suitable for all types of web scraping tasks,
especially those that require more complex
scraping logic or use of machine learning models

153

> SCRAPY

• Requires more setup and configuration compared
to other simpler web scraping libraries, which can
be time-consuming

154

> SELENIUM

SELENIUM
Selenium is a library that enables web automation and
testing by providing a way to interact with web pages
programmatically. It allows developers to automate web
browsers, simulate user interactions with websites, and
scrape web data.

Selenium is widely used in testing and automation of web
applications. It supports various programming languages
including Python, Java, C#, Ruby, and JavaScript, and can
work with different browsers such as Chrome, Firefox,
Safari, and Internet Explorer.

With Selenium, you can create scripts to automate
repetitive tasks such as form filling, clicking buttons,
navigating through pages, and extracting data from web
pages.

Overall, Selenium is a powerful tool for web automation
and testing and can greatly simplify tasks that would
otherwise be time-consuming and laborious.

An example code usage of Selenium for web scraping:

from selenium import webdriver
from selenium.webdriver.common.by import By
Set up the driver
driver =
webdriver.Chrome('path/to/chromedriver')
Navigate to the website you want to scrape
driver.get(')https://www.example.com'

155

https://www.example.com'

> SELENIUM

Find the element you want to interact with
and perform actions
element = driver.find element(By.XPATH,
'//button[@id="button-id"]')
element.click()
Extract the data you want from the website
data element = driver.find element(By.XPATH,
'//div[@class="data-class"]')
data = data element.text
Clean up and close the driver
driver. quit()

In this example, we’re using the Chrome driver and
navigating to a website. We then find a button element
and click it, which causes some data to load on the page.
We then find the element that contains the data we want
to scrape and extract its text. Finally, we clean up and close
the driver.

Note that web scraping can be a legally and ethically gray
area, and some websites may have terms of service that
prohibit it. Be sure to check the website’s policies and be
respectful in your scraping activities.

Pros and Cons

Pros:

• Can interact with web pages as if you were using a
web browser, allowing for more complex scraping
tasks

156

> SELENIUM

• Supports a wide range of browsers including
Chrome, Firefox, Safari, and Internet Explorer

• Can handle dynamic content loaded by JavaScript,
AJAX, and other technologies

• Supports headless browsing, which allows you to
run the scraping tasks without a graphical user
interface

• Supports various programming languages
including Python, Java, Ruby, and C#

Cons:

• Can be slower than other web scraping libraries
due to its reliance on browser automation

• Requires more setup and configuration compared
to other libraries

• Can be more resource-intensive, as it requires a
browser instance to run

• May not be suitable for all web scraping tasks,
particularly those that require high speed and
scalability

157

> A PRIMER TO THE 42 MOST COMMONLY USED
MACHINE LEARNING ALGORITHMS (WITH CODE SAMPLES)

Also available from the Author

A PRIMER TO THE 42 MOST
COMMONLY USED

MACHINE LEARNING ALGORITHMS
(WITH CODE SAMPLES)

Whether you're a data scientist, software engineer, or
simply interested in learning about machine learning, "A
Primer to the 42 Most commonly used Machine Learning
Algorithms (With Code Samples)" is an excellent resource
for gaining a comprehensive understanding of this exciting
field.

Available on Amazon:
https://www.amazon.eom/d p/B0BT911HDM

Kindle: (B0BT8LP2YW)
Paperback: (ISBN-13: 979-8375226071)

158

https://www.amazon.com/dp/B0BT911HDM

> MINDFUL AI

MINDFUL AI
Reflections on Artificial Intelligence
Inspirational Thoughts & Quotes on Artificial Intelligence

(Including 13 illustrations, articles & essays for the fundamental
understanding of AI)

Available on Amazon:
https://www.amazon.com/d p/B0BKMK6HLJ

Kindle: (ASIN: B0BKLCKM22)
Paperback: (ISBN-13: 979-8360396796)-

159

https://www.amazon.com/dp/B0BKMK6HLJ

> INSIDE ALAN TURING:
QUOTES & CONTEMPLATIONS

INSIDE ALAN TURING:
QUOTES & CONTEMPLATIONS

Alan Turing is generally considered the father of computer
science and artificial intelligence. He was also a theoretical
biologist who developed algorithms to explain complex
patterns using simple inputs and random fluctuation as a
side hobby. Unfortunately, his life tragically ended in
suicide in 1954, after he was chemically castrated as
punishment (instead of prison) for ‘criminal’ gay acts.

"We can only see a short distance ahead, but we can see
plenty there that needs to be done." ~ Alan Turing

Available on Amazon:
https://www.amazon.com/dp/B09K25RTQ6

Kindle: (ASIN: B09K3669BX)
Paperback: (ISBN- 979-8751495848)

160

https://www.amazon.com/dp/B09K25RTQ6

	PANDAS

	Pros and Cons

	NUMPY

	Pros and Cons

	SEABORN

	Pros and Cons

	SCIPY

	Pros and Cons

	MATPLOTLIB

	Pros and Cons

	SCIKIT-LEARN

	Pros and Cons

	PYTORCH

	Pros and Cons

	TENSORFLOW

	Pros and Cons

	XGBOOST

	Pros and Cons

	LIGHTGBM

	Pros and Cons

	KERAS

	Pros and Cons

	PYCARET

	Pros and Cons

	MLFLOW

	Pros and Cons

	KUBEFLOW

	Pros and Cons

	ZENML

	Pros and Cons

	SHAP

	Pros and Cons

	LIME

	Pros and Cons:

	INTERPRETML

	Pros and Cons

	SPACY

	Pros and Cons

	NLTK

	Pros and Cons

	TEXTBLOB

	Pros and Cons

	CORENLP

	Pros and Cons

	GENSIM

	Pros and Cons

	REGEX

	Pros and Cons

	OPENCV

	Pros and Cons

	SCIKIT-IMAGE

	Pros and Cons

	PILLOW

	Pros and Cons

	MAHOTAS

	Pros and Cons

	SIMPLEITK

	Pros and Cons

	FLASK

	Pros and Cons

	FASTAPI

	Pros and Cons

	DJANGO

	Pros and Cons

	DASH

	Pros and Cons

	PYRAMID

	Pros and Cons

	BEAUTIFULSOUP

	Pros and Cons

	SCRAPY

	Pros and Cons

	SELENIUM

	Pros and Cons

	A PRIMER TO THE 42 MOST

	COMMONLY USED

	MACHINE LEARNING ALGORITHMS

	MINDFUL AI

	INSIDE ALAN TURING:

	QUOTES & CONTEMPLATIONS

