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Humanized AI (HAI), emerging as the next of the AI waves, refers to artificial social beings 
that are very close to humans in various aspects, beings who are machine-race humans, not 
digital slaves. Foundation, architecture, and prototyping of HAI deploy a novel small-data 
approach to vertically explore the spectrum of HAI.

Different from the popular big-data philosophy that is based on the rigid notion that the 
connotation of each concept is fixed and the same to everyone, this book treats understand-
ing as a process from simple to complex, and uses the similarity principle to effectively 
deal with novelties. Combining the efficiency of the Behaviorists’ goal-driven approach 
and the flexibility of a Constructivists’ approach, both the architecture of HAI and the 
philosophical discussions arising from it are elaborated upon.

Advancing a unique approach to the concept of HAI, this book appeals to professors and 
students of both AI and philosophy, as well as industry professionals looking to stay at the 
forefront of developments within the field.
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Preface

Humanized AI (HAI) is a phrase used to denote artificial social beings that are very close 
to humans in various displayed aspects. These may include learning ability, knowledge 
discovery, problem-solving, creativity, communicated emotion, self-awareness, and con-
sciousness. In a sense, AI is the artificialization of humans, while HAI is a re- humanization 
of artificialized humans. HAI may be considered as human-level AI or artificial general 
intelligence, but it also emphasizes human-like features. HAI agents are machine-race 
human beings, not digital slaves. It is noticed that the term “Humanized AI” might be 
used in a different context or a narrow sense by different people.

This book is about how to make HAI agents which come as the next AI wave. It covers 
philosophical discussions on central topics in HAI, the architectures of HAI, and proto-
typical HAI agents. The agents are virtually Zero-data based agents (Zda) and Language-
independent agents (Lia), having no-built-in natural languages. Both are capable of 
displaying great learning skills, self-awareness, consciousness, and emotional intelligence. 
Unlike narrow AI, where each agent can only have a particular skill, the elaboration toler-
ance of HAI enables a humanized agent to learn many different skills over time without 
restarting or erasing previous information.

I started to work on HIA in 2003, some 20 years ago, when I first realized a simple known 
fact: a human baby has virtually a data-empty brain and no inherited natural languages, 
but can learn things like languages and math skills. I immediately prototyped a very sim-
ple version of HAI using Microsoft Visual Basic. As I expected, the agents can learn and 
create very simple “language” through interactions by means of reinforcement learning. 
The approach is what is now called the Constructivist Approach. However, shortly there-
after I faced a challenge: when complex concepts are involved, traditional reinforcement 
learning has too many paths to explore before the agent can identify an optimal or reason-
able solution. I struggled to solve the problem for the next 15 years until I finally came up 
with the current synthesist’s approach in 2016, which combines the behaviorist’s efficiency 
and constructivist’s flexibility.

Behaviorists believe actions are reflections of what goes on in the mind, adopting a goal-
driven approach. Constructivists emphasize that knowledge cannot be a passive reflection 
of reality, but an active construction by the individual, from simple to complex. We take a 
synthetic approach by combining the two in our HAI architecture—a new  constructivist 
approach. In this approach, instead of emphasizing the notion that an agent’s action is 
based on the maximization of some utility as Rationalists do, we adopt probabilistically 
a randomized maximization to better emulate human-thinking and behaviors. The HAI 
architecture has four main components. (1) A Recursive Network of Patterns, for dynamic 
knowledge representation, provides a self-inclusive structure necessary for self- awareness. 
(2) Attention Mechanisms allow an HAI agent to focus on a few important things for effi-
cient learning and response. (3) Learning Mechanisms that feature hierarchical tokeni-
zation and recursive patternization allow progressive learning, from simple to complex. 
(4)  Adaptive Reinforcement Response Mechanisms, mimicking free will, randomize 
potential responses according to the associated rewards or frequencies. A major feature, 
or objective, of HAI is that imitation, doing what other people do under various situations, 
makes HAI agents adhere to social norms without pre-specifying any of the norms.
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Our HAI approach is constructed on several general principles and laws, including the 
Similarity Principle, Parsimony Principle, Association Principles, First Principles, Principle 
of Factor Isolation, Law of Summative Effects, and Weber-Fechner Laws. The principles 
make all specific methods or mechanisms in the HAI architecture coherent.

The Similarity Principle, used in learning and response mechanisms, is the key to deal-
ing with novelties encountered by HAI agents in patternization or scientific discovery. 
This is because everything is changing, and no two things are identical. This principle 
asserts that two similar objects behave similarly, thus allowing us and agents to group 
similar things into categories and make patterns. The Similarity Principle deals with imi-
tation and creativity under the same umbrella, i.e., in similarity replacement of the build-
ing blocks of the world with different degrees of similarity.

The Association Principle guarantees the association between two things that are spa-
tially or temporally close, and it serves as the backbone for learning. The Association 
Principle allows an agent to map natural language patterns to environmental event- 
patterns. In this sense, HAI can be considered as a computer program that automatically 
generates computer programs. What appears to be a complex universe can actually be 
modeled by a recursion of a simple world governed by a small set of principles.

Enlightened by First Principles and Connotation of understanding, we postulate that 
any complex concept or knowledge consists of a hierarchical recursion of elementary con-
cepts and any high-level skill is a composition of sequential and recursion of elementary 
movements of body parts. These atomic concepts and movements, despite varying from 
individual to individual, are the building blocks of our HAI agents—they make it possible 
to build HAI using a small-data approach!

The Weber-Fechner Laws serve the basis for building virtual sensory organs, the 
Parsimony Principle supports the adaptive reinforcement learning in response model, the 
Law of Summative Effects ensures that the sequence of short-term goal-driven actions will 
achieve a long-term goal, and the Principle of Factor Isolation guides experience-based 
learning (patternization) and cognitive learning (logical reasoning).

Given the complexity of HAI, studying HAI without discussions of architecture and pro-
totyping to show how it works will be somewhat empty and less convincing, while study-
ing HAI architecture and prototyping without understanding the fundamental issues and 
human characteristics is a mindless approach that will not lead too far either. Thus, I have 
an ambitious goal: to cover vertically the whole spectrum from foundation, architecture, 
and prototyping (algorithm and pseudocode) in a concise book. Keep in mind that even 
if (or when) we make the first agent exactly like a human baby, it will take 10–20 years to 
teach him what he needs to thrive. Principles and methods of teaching HAI agents are also 
a critical topic for our discussion.

The book has four parts and an appendix. Part I features philosophical discussions of 
some key aspects of HAI, such as consciousness, the connotation of understanding, roles 
of attention, imitation, analogy and creativity, and scientific principles. Part II reviews 
the AI waves, existing approaches to HAI, and the new synthesist’s approach. These two 
chapters constitute the foundation for the HAI Architecture in Part III, which elaborates 
the architectures of the new constructivist approach, including innate knowledge, knowl-
edge dynamic representation, learning mechanisms, response mechanisms, and effective 
teaching. Following the architecture blueprint, Part IV discusses prototyping the ani-
mated agents, Zda and Lia, with examples to show how language can be learned from 
scratch, how agents can learn playing board games starting from learning the rules, and 
many more. To make the book stand alone, The Appendix provides a concise review of 
narrow AI with emphasis on the ideas behind each method.
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This book is intended for anyone who is interested in HAI, including college professors, 
researchers, and students in Computer and Information Science, Computer Engineering, 
Data Science, Philosophy, Psychology, Education, Economics, and Political Science. The 
first two parts are geared toward the general audience, while Parts III and IV are more 
suitable for those who want to know exactly how HAI can be built to have human char-
acteristics such as understanding natural language, self-awareness, consciousness, imita-
tion, creativity, discovery, reasoning, goal-setting, and ethics. If you finish all four parts, 
you are expected to be able to use the computer language you are familiar with to translate 
the algorithms and pseudocode in Part IV into actionable agents, and to start to “raise” and 
teach your baby agents.

Mark Chang, PhD
Christmas, 2022

Boston University
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Part I

Philosophy of Humanized 
AI in Plain Language

Humanized AI looks, thinks, and behaves like humans, a life companion, not a digital 
slave. This chapter will discuss the fundamental aspects regarding human nature and 
surrounding controversies. Without necessary clarifications on these aspects, building 
HAI can become a baseless claim. The discussions of issues in this chapter will serve as 
the basis for HAI Architecture in Part III, while the architectures serve as the blueprint 
for the prototyping of HAI in Part IV. We will first delineate prospective HAI and the 
human-machine world in Chapter 1, followed by the discussion of the multifacetedness 
of the objective world. Chapter 3 discusses the fundamental principles that a human (thus 
an HAI agent, also) uses to formulate his perceptual world. Chapter 4 concerns critical 
aspects in learning, which will inform the construction of the architectures.

We avoid long discussions on each of the critical topics. Instead, the concise presentation 
will be just enough to support the later architecture-building. Readers should have criti-
cal eyes since there are many personal views that might significantly deviate from main-
stream views. Given the broad coverage of topics, readers may initially run through some 
of the topics but are definitely encouraged to review relevant parts when reading Part III, 
Architectures of HAI.

https://doi.org/10.1201/b23355-1
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1
The Human-Machine World to Create:  
Humanized AI

Artificial intelligence (AI) has closer scientific connections with philosophy than do other 
sciences, because AI shares many concepts with philosophy, e.g., action, consciousness, 
and epistemology—what is sensible to say about the world—and even free will (McCarthy, 
2006). A humanized AI (HAI) in this book refers to an agent that thinks and acts like a 
human, recognizing and accepting humans just as we recognize and accept them. As with 
human beings, this does not mean they will live in full harmony, without conflicts, or 
even wars. Some people refer to HAI as a scaled-down version of our HAI agent that only 
possesses some human emotional or social aspects. Artificial general intelligence (AGI) 
often refers to an integration of many narrow artificial intelligences (NAIs), each of them 
dealing with a particular problem, such as Medical AIs that involve the applications of AI 
technology in drug development and healthcare to improve health outcomes and patient 
experiences. Most NAIs involve extensive uses of data and thus are often called machine 
learning (ML). In other words, ML can be viewed as a subset of AI. Our great achievements 
so far are mainly in NAIs, such as deep-learning ANNs for image natural language pro-
cessing. This section is a big-picture view of HAI and human-machine society.

Regarding the future human-machine world, how would society evolve to the human-
machine world when humans decide not to have natural births and have machine children 
instead? Will the world eventually become such a machine world? Imagine a machine 
that could make human beings like us—Would we really know we are not machine-made 
humans? This circular meta-world evolves without a start and end: humans create agents 
that create humans who create agents that create humans … where are we in the circle 
now, do we really know? The answer is: we don’t.

1.1 Purpose of Developing AI

What is the purpose of developing AI? This question can be addressed in many ways. In a 
narrow sense, we may say, the purpose is to create technology that allows computers and 
machines to work intelligently. In the broad sense, the goal of AI research is to understand 
and build intelligent entities. Such an entity or system often includes two main ingredients 
in the many definitions of intelligence: (1) thought processes and reasoning (thinking) and 
(2) behavior and performance (acting). What I am more interested in is: what is the most 
fundamental or important purpose of Human Artificial Intelligence? This is the root ques-
tion that directly relates to our lives!

Our efforts are all for a happier and longer life, to which there seems to be no big objec-
tion. However, hard work does not necessarily lead to the happiness you want. Some peo-
ple believe that happiness is the absence of striving for happiness. Happiness is related 

https://doi.org/10.1201/b23355-2
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to health and prosperity. Happiness is connected to technological advancement, change 
in wealth, knowledge, and education. Being happy is relative: it is usually related to a 
person’s relative wealth in society or social status. Happiness is related to what one wants 
and what one gets. The higher the expectation is, the less likely it is to be satisfied, and 
the less happiness you may find. “If you want what you get, you will get what you want.” 
Happiness is also related to having hopes, dreams, and feeling empowered. How often a 
person feels happy is a reflection of an individual trait: an optimistic or pessimistic atti-
tude. Some people say that the purpose of life is to get the greatest happiness; some say the 
purpose of life is to live longer; some say that having a successful life is a balance between 
quality and quantity of life, and a balance between long-term and short-term happiness. 
Yet, others say that happiness is the enjoyment of the process of living.

Despite the complexity of the whole happiness issue, it seems that there is little doubt 
that technological innovations will bring us happiness. Is that true? We develop technol-
ogy in the hope of bringing more leisure time into our lives. However, the results are often 
the opposite: we repeatedly use the saved time to work even harder, longer on more chal-
lenging, more advanced technological innovations! We promote work efficiency and foster 
multitasking skills. All these appear to be the enjoyments of tech innovation as we hoped, 
but in reality, it is easy for us to become slaves of innovation. What should matter to us is 
not how much time we save, but what we do with the saved time.

When we have a choice, we feel empowered. Thus, we believe having more choices is 
better, but we hardly find it to be true. Instead, we all become syndromic in “informational 
obesity” and we suffer analysis paralysis in making a choice. We often cannot even feel 
happy after having made a good choice since we tend to feel a huge loss when we are not 
able to choose a majority of the options. To overcome this paralysis, we have developed 
AI technology that makes recommendations for us when, as only one example, we make 
an online purchase. However, the question is: would AI bring convenience and provide us 
with more and better choices, or does it take away certain freedoms of choice and make 
us sad? Like responses to many other questions, a correct answer to this question is not 
unique but depends upon the individual.

As Fredkin’s paradox (Minsky’s Optimization Paradox) states: The more equally attrac-
tive two alternatives seem, the harder it can be to choose between them—no matter that, 
to the same degree, the choice can only matter less (Minsky, 1988). Thus, a decision- 
making agent might spend the most time on the least important decisions. Instrumental 
 rationality is a pursuit of all means necessary to achieve a specific end, as we often say: do 
whatever it takes to achieve a goal. An intuitive resolution to Fredkin’s paradox is to cali-
brate decision-making time as cost (Klein, 2001). The paradox constitutes a major challenge 
to the possibility of pure instrumental rationality.

Technological innovation has experienced exponential growth, bringing prosperity to 
society. Unfortunately, the same innovation is also a major contributor to an increasingly 
large wealth gap. This might be the result of competition: everyone is micro-motivated and 
acts from his own perspective. The macro-consequences for society may not be what anyone 
wants, as wellillustrated by the Braess Paradox: adding more roads can make traffic worse.

How can we avoid all the traps that await us as we develop AI? First, AI development 
must aim toward a simple goal: helping us live simpler, happier, and longer lives. Second, as 
with narrow AI, medical AI will add greatly to the quality and spans of our lives. Third, our 
major efforts in AGI and HAI should focus on solving social, instead of technical, problems. 
AGI agents should be viewed as integral parts of our society. When the machines are treated 
(taught, trained) as humans, they will behave like humans. For example, as the aging of 
populations is coming much sooner than we thought and the impact is bigger than we 
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can imagine, AGI can provide emotional assistance and companionship for seniors. On the 
other hand, I cannot see how AI advancement in military applications, apart from defending 
us in times of war, can help us live healthier, happier, or longer lifespans. Fourth, in some 
other areas of AI or technological innovation, the developments have to be adjusted to an 
appropriate pace and must be used properly. Too many or too fast technological advances or 
any misuse of AI technologies can over-stimulate individual and societal desires, and make 
today’s wealth gaps bigger (a small gap is necessary to drive society forward) and people 
unhappier. Fifth, the ethical concerns and risks in developing AI collectively include:

• It is now possible to track and analyze one’s every move online and his or her 
daily business. Cameras are nearly everywhere, and facial recognition algorithms 
know who you are. Such information can be used to protect you but can also work 
against you.

• Social media, through its autonomous-powered algorithms, is very effective at 
surmising what we think, thus making the manipulation of elections more fea-
sible and influencing other important personal or social decision-making.

• Apart from being concerned that autonomous weapons might gain a “mind of 
their own,” a more imminent concern is the dangers autonomous weapons might 
have with an individual or government that doesn’t value human life.

1.2 Humanized Artificial Intelligence

HAI is similar to Artificial General Intelligence (AGI). AGI was introduced by Mark 
Gubrud in a 1997 discussion of the implications of fully automated military production 
and operations. Also known as strong AI, AGI is the intelligence of a machine that could 
successfully perform any intellectual task that a human being can, i.e., a machine capable 
of experiencing consciousness, discovery, creativity, self-awareness and cognitive evolu-
tion, collaborative intelligence, and even the creation of other AI agents. Or, some might 
say, it introduces a new kind of being with human-like mental capabilities. Jackson (2019) 
provides interesting discussions of AGI. In contrast to AGI, narrow (or weak) AI refers to 
the use of software to accomplish specific problems. Narrow AI does not attempt to attain 
the full range of human cognitive abilities. For this reason, the performance of narrow AI 
is often more efficient than a human’s, as far as a specific task is concerned.

HAI agents are not Virtual Humans. Virtual Humans, products of narrow AI, are typi-
cally seen as human-like characters on a computer screen, or otherwise presented with 
embodied life-like behavior that may include speech, emotions, locomotion, gestures and 
movements of the head, eyes, or other parts of an avatar body (Burden and Savin-Baden, 
2020). The applications of virtual humans include virtual instructors for simulation-based 
learning and training, skill development, team coordination, and decision-making.

AI research is an interdisciplinary study. Each discipline views AI from a different angle 
and addresses different questions:

• “Can HAI be achieved?” from Philosophy,
• “How does the brain work?” from Neuroscience,
• “How does a human learn?” from Cognitive Science,
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• “What is consciousness?” from Psychology,
• “What characteristics are necessary to be a social being?” from Sociology,
• “What are different attributes between life and non-life?” from Biology,
• “How do we build lives?” from Computer Science,
• “How do we adapt to the environment?” from Ecology,
• “How does one make a system reason?” from Mathematical Logic,
• “How does a human make a decision and act on it?” from Rationality in Economics,
• “How can we deal with uncertainty in the real world?” from Probability and Statistics,
• “How do we deal with novelty (uncharted territory),
• “Should we build languages into an agent or let agents learn them from interac-

tion with their environment?” from Linguistics,
• “What is the connotation of understanding and effective knowledge representa-

tion?” from Network Science,
• “How can we improve computational efficiency to meet HAI or AGI needs?” from

Quantum Computing in Physics, and
• “How do we build robots?” from Mechanical Engineering.

Of course, these have oversimplified the AI studies and may not be very accurate.
Experience and knowledge can mean slightly different things in different settings. One 

may often find circular definitions such as: Knowledge is facts, information, and skills 
acquired through experience or education; the theoretical or practical understanding of a 
subject. Experience is the knowledge or skill acquired by a period of practical experience 
of something, especially that gained in a particular profession. But here, in this book, we 
define knowledge as Patternized Experiences.

Learning is the acquisition of knowledge or skills through experience (observations, 
active engagements, experiments). Learning (cognition or cognitive learning) involves a 
refinement of what we already know through internal processes such as logical reasoning. 
Learning is a recursive process from simple to complex. Learning has to involve responses: 
strengthening correct responses and weakening incorrect responses. Learning is the pat-
ternization and organization of cumulative experiences in memory—a gain in knowledge. 
The notion of the Bayesian statistical learning paradigm asserts that posteriori knowl-
edge is the combination of prior knowledge and new data (Chang and Boral, 2008). All 
these characteristics of learning will guide us in building the HAI.

Researchers have approached the task of building agents from four different view-
points: (1) Acting like a human, e.g., the Turing test approach; (2) Thinking like a human 
via the cognitive modeling approach (as one example); (3) Thinking rationally, typically by 
the laws of thought approach; and (4) Acting rationally by the rational agent approach. The 
question is: can we build an agent that can both think and act in a human-like fashion?

Humanized AI (HAI) may be considered as a kind of AGI, but emphasizes the balance 
between intelligence and the humanistic aspects of AI, including not only their strengths 
but also their weaknesses. An HAI agent is an agent that can think and act humanely. To 
this end, it is necessary to re-examine very carefully the many fundamental concepts, 
instead of assuming that everyone has the same understanding of the concepts. The key 
concepts to be analyzed include human intelligence, discovery, causality, understanding, 
and consciousness down to a mechanical level so that we can mimic them in the HAI 
architecture. We start with the notions of humanness and human intelligence.



7The Human-Machine World to Create: Humanized AI 

What are humans and what is human intelligence? What makes humans different from 
all other animals? There are many different ways to answer these questions. From an 
HAI perspective, we could cite the complexities of our languages and thoughts, and our 
culture-based innovations and adaptations. Humans as social beings can understand 
complex things and discover natural laws; we have consciousness, self-awareness, and can 
empathize with others. Of course, not all these characteristics are unique to humans. What 
are the differences between a human and a monkey then? Since both mammals have very 
complicated neural networks, the current deep-learning Artificial Neural Network archi-
tectures seemingly cannot ensure that the brain we are going to build will be human-like 
and not monkey-like. This is probably a big barrier for AI connectionists in arguing for the 
use of ANNs as the basis for artificial general intelligence.

Some researchers like to differentiate Human identical intelligence (with biological 
embodiment) from human-level intelligence (without biological embodiment). However, as 
the Identity Paradox shows in Section 1.4, this differentiation may not be necessary since tech-
nological advancement and social norms tend to go hand-in-hand. Before AI reaches the full 
capacity of human beings, we would have accepted AI agents as another race (a machine race) 
of ourselves. Any discussion on this topic with a dynamic view of technology and a static 
view of societal norms would not make sense, since such a time will never come.

Intelligence involves essentially (1) the capacity to learn from experience and (2) the 
capacity to adapt to one’s environment. Three fundamental cognitive processes are abstrac-
tion, learning, and dealing with novelty. In cognitive psychology, there are two main ways 
to describe intelligence: the psychometric and information-processing approaches. The 
psychometric approach focuses on measuring or quantifying cognitive factors or abilities 
that make up intellectual performance. Those cognitive factors might include verbal com-
prehension, memory ability, perceptual speed, and reasoning. The information-processing 
approach defines intelligence by analyzing the components of cognitive processes. For 
example, Sternberg divides intelligence into (1) analytical or logical thinking skills that 
can be reflected on an IQ test; (2) problem-solving skills that require creative thinking, the 
ability to deal with novel situations, and the ability to learn from experience; and (3) using 
practical thinking skills that help a person to adjust to and cope with his sociocultural 
environment (Kosiński and Zaczek-Chrzanowska, 2007).

In any case, to build HAI, we need to understand human nature, a concept that denotes 
the fundamental dispositions and characteristics, including ways of thinking, feeling, and 
acting that are natural to humans.

To put it simply: Narrow Artificial Intelligence (NAI) focuses on a specific task or prob-
lem, whereas AGI can be a broad collection of NAIs or an integration of NAIs and Human-
Level AI agents that have general capabilities of humans but are used to serve humans. 
HAI agents look, think, and act like humans, can be considered a machine race, and are 
life companions, but not digital slaves, of human beings. Machines become humans only 
when they are treated (evolve) as humans. As this happens, AI-Human interactions will 
increasingly evidence two-way recognition and influence.

1.3 Innate Knowledge Learned Before Birth

Innate knowledge and innate behavior will be considered in building an HAI baby. Innate 
behavior is the inherent inclination of a living organism toward a particular complex 
behavior. Any behavior is instinctive if it is performed without being based upon prior 
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experience (i.e., in the absence of learning), and is therefore an expression of innate bio-
logical factors. Sea turtles, newly hatched on a beach, will instinctively move toward the 
ocean. The simplest example of an instinctive behavior is a fixed action pattern (FAP), 
which is a simple response of an organism to a specific stimulus, such as the contraction 
of the pupil in response to bright light. Instincts include other inborn complex patterns of 
behavior, not just simple reflexes.

The existence of the simplest instincts in humans is a widely debated topic, as we see 
from controversies regarding genetic factors versus learning on influencing one’s talent. 
Some well-known examples of instincts include: (1) An infant’s crying and suckling are 
manifestations of instinct. The infant cannot otherwise protect itself for survival during 
its long period of maturation. (2) Testosterone primes several instincts, especially sexual-
ity. (3) Disgust and Squeamishness in humans is an instinct developed during evolution 
to protect the body and avoid infections caused by various diseases (Curtis, et al 2011). 
Scholars (McDougall, 1928) also affirm the instinct of curiosity and its associated emotion 
of wonder.

Maslow (1954) argued that humans no longer have instincts because we have the ability 
to override them in certain situations. He felt that what is called instinct is often impre-
cisely defined. Richard Herrnstein (1972) found that McDougall’s theory of instinct and 
Skinner’s reinforcement theory have remarkable and largely unrecognized similarities, 
existing on both sides of the nature-nurture dispute as applied to the analysis of behavior. 
Mandal (2010) proposed a set of criteria by which behavior might be considered instinc-
tual. It should (a) be automatic, (b) be irresistible, (c) occur at some point in development, 
(d) be triggered by some event in the environment, (e) occur in every member of the spe-
cies, (f) be, in general, unmodifiable, and (g) govern behavior for which the organism needs 
no training (although the organism may profit from the experience and, to that degree, the
behavior is modifiable). From the evolutionary instinct point of view, instinct in humans can
generally be understood as the innate part of behavior that emerges without any training
or education. Behaviors such as cooperation, sexual behavior, child-rearing, and aesthetics
are seen as evolved psychological mechanisms with an instinctive basis.

In my view, from a Human Artificial Intelligence perspective, instinct can be viewed 
as something you learned in your mother’s body before your birth. All instincts are con-
stantly changing or continually modified (e.g., changing from suckling to sucking) after 
your birth, through experience. Human intelligence, including instincts, can be explained 
as collective intelligence at a lower level, e.g., the swarm intelligence of cells in some par-
ticular environment (e.g., the human body). In our humanized agents, Zda (male) and Lia 
(female), we will use very minimal built-in instincts as opposed to larger commonsense 
knowledge. This is a key to our small-data-based approach and will become much more 
clear in Part III when discussing the Architecture.

1.4 Self-awareness and the Identity Paradox

In a narrow sense, consciousness is awareness of one’s body and one’s environment; self-
awareness is recognition of that consciousness—not only understanding that one exists, 
but further understanding that one is aware of one’s existence.

In a general sense, consciousness refers to a being or an agent having some degree of 
awareness of self, one’s situation or relation to the world, one’s perceptions, thoughts and 
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actions, both past and present, and the potential consequences of decisions. A simple 
example would be: “I am analyzing the situation at the very moment.” Having conscious-
ness implies the ability of meta-thinking: thinking about thinking. For instance, “I am 
aware that I have consciousness,” “I know that I am aware that I have consciousness,” 
and so on. Blackmore (2011, pp. 286–301) provides an overview of research on artificial 
consciousness.

The elementary concept, “consciousness,” is so simple that everyone feels he under-
stands, and at the same time is so complex no one can satisfactorily explain it. Scholars 
try terms such as “feel,” “recall,” “attention,” “imagine,” and “emotionally” to define or 
explain consciousness. The problem is, however, the terms used in the definition, appear-
ing to be simpler, are, in fact, not less difficult to explain than the meaning of “conscious-
ness” itself. In my view, conscious behaviors are society-dependent and are learned from 
society as long as the agent has self-awareness. Therefore, how an agent behaves con-
sciously depends on the society he grows up in and how he was treated.

Most people have approached “consciousness” from a philosophical perspective since 
the time of Aristotle. Recently some researchers have tried searching for its physical foot-
prints (Koch, 2018). What is it about a highly excitable piece of brain matter that gives 
rise to consciousness? They seek, in particular, the neuronal correlates of conscious-
ness, defined as the minimal neuronal mechanisms jointly sufficient for any specific 
conscious experience.

The key to consciousness is self-awareness, i.e., an agent recognizing that there are two 
separate entities: self and external world. The self part includes the brain and any part, if 
being touched, that the brain will feel immediately. That is also why I wouldn’t think your 
hands are part of me, nor a chair I am sitting on. Thinking about thinking, I know I have 
self-awareness, and I realize that I have this knowledge of my self-awareness. However, 
as we discussed in the following Identity Paradox, if we cannot even clearly define “self,” 
how can we expect to have a unified definition of consciousness?

Interestingly, some scholars might think (stanford.edu, 1993): a colony is analogous to 
a brain where there are many neurons, each of which can only do something very simple, 
but together the whole brain can think. None of the neurons can think of an ant, but the 
brain can think of an ant, though nothing in the brain told that neuron to think of an ant. 
Others believe that ants could have consciousness and can think: the complexity observed 
in the behavior is not necessarily in the ant but in the interaction between the ant and the 
surrounding complex environment.

The Identity Paradox is closely related to the question as to whether AGI can have 
human consciousness or self-awareness. Puzzles about identity and persistence ask: under 
what conditions does an object persist through time as one and the same object? If the 
world contains things that endure and retain their identity despite undergoing alteration, 
then somehow those things must persist through changes (Chang, 2012, 2014).

We replace malfunctioning organs with healthy ones. We commit to physical exer-
cise to improve our health. We try hard to forget sad memories as soon as we can, and 
maybe we’ll be able to use medical equipment to erase undesirable memories in the future. 
We are constantly learning and equipping our brains with new knowledge. As these pro-
cesses continue, are we making a human-machine mixed race? When does a person lose 
his or her identity in the process?

The Identity Paradox can evolve. A Wiseman is getting old and weak physically. He says 
to a young man: “The only thing I regret is that I was so focused on knowledge when I 
was young, I didn’t get enough physical exercise.” “You can have my body in exchange 
for your wisdom,” the young man said. The Wiseman thinks this is a good suggestion, 
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and they decide to use the “incredible machine” to make the deal happen. In a moment, 
the machine has exchanged all information between the two brains (Figure 1.1). As we 
may expect, any bilateral-willing exchange should make both parties happy. But are they? 
When the exchange occurs, nearly all information, including personal history and emo-
tions, is interchanged. You might have already been aware that after the exchange the 
Wiseman’s mind and the young man’s body are bound together.

Some of us worry: Can, and in what ways, HAI agents surpass human beings? Will 
we become unnecessary? The most popular and controversial answers to this question 
come from technical perspectives. However, as we have discussed, we cannot even well-
define what humankind is, though everyone probably thinks he or she has a clear concept 
of what a human being is, and that it is similar to everyone else’s. I’d rather answer the 
question from a social instead of a technical perspective. During the long future course 
of HAI’s development, we humans will develop emotions toward HAI agents as they 
live with us on a daily basis. We will not discriminate against “anyone” because of race, 
color, gender, sexual orientation, or origin (machine-made or not); all that matters are time 
and intellectual interactions, be they technical or emotional. The concept (connotation and 
denotation) of a human being, like all other concepts, is subject to the dynamics of evolu-
tion. Before we can develop the full capacity of HAI, our societal view (our definition) 
of mankind will have to experience dramatic modifications. HAI agents will be recog-
nized as the machine race of humankind. On one hand, AGI will move closer and closer to 
human intelligence. On the other hand, humankind becomes more and more accepting of 
machine-kind. The two parties will meet and unite in a middle way.

Jackson (2019) uses the five-axiom definition of consciousness (Aleksander and Morton, 
2007) in his TalaMind architecture of human-level AI. In contrast, my approach to con-
sciousness will be based on the notion that displayed consciousness is consciousness.

In our HAI architecture, self-awareness, the basis of consciousness, is the nature of the 
self-inclusive net of the evolutionary knowledge net, as elaborated in Part III.

FIGURE 1.1
Body—wisdom swap.
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1.5 Social Beings and Collaboration

To build an HAI agent as a social being who is to conform with social norms and has the 
ability of collaboration, we need to briefly discuss the characteristics of social beings.

Individualism stresses individual goals and the rights of the individual. Collectivism 
focuses on group goals, what is best for the collective group, and personal relationships. 
Collectivism is the view that your life and body do not belong to you but belong to a society 
that may dispose of you as it wishes.

Whether individualist or collectivist, a Social Being lives or prefers to live in a com-
munity rather than alone, promotes companionship, and engages in social service. Social 
Collaboration is a common characteristic for a social being. Collaboration  is a working 
practice whereby individuals work together to a common purpose. To an agent, collabora-
tion means actively understanding other’s needs in the human-machine community and 
providing help. Current robots can provide great help to humans, but do so passively by 
pre-programmed algorithms. Collaboration can be in the form of fighting together against 
other communities or enemies.

Social Collaboration is important to individuals and a society for social efficiency and 
protection of the society. One interesting example is named Braess’ Paradox (Chang, 2012, 
2014), which shows that increasing an option can actually make a system less efficient 
(e.g.,  adding a new road can make traffic heavier) when individually motivated factors 
drive behavior without collaboration.

Interactions (collaboration and disunity) between members of human-machine soci-
ety can cultivate empathy or antipathy, friendship or enmity among advanced machines 
and humans. Most animals, such as ants and elephants, are considered social beings. A 
humanized agent should display such capabilities.

Social norms, like many other social phenomena, are the unplanned result of individu-
als’ interactions. Arguably, social norms ought to be understood as a kind of grammar of 
social interactions. Like grammar, a system of norms specifies what is acceptable and what 
is not in a society or group. Closely related to social norms, the concept of social justice in 
a society refers to a fair and equitable division of resources, opportunities, and privileges 
in the society, also a consequence of social interactions (stanford.edu, 2018). Therefore, 
social norms and justice will be different for a human society and a human-machine soci-
ety. Interactions create and define a society we live in; societal norms guide the develop-
ment of society. To exclude HAI agents from the society we live in by arguing that every 
agent is different from humans may be sound because every human is unique. Only intel-
lectual closeness and interactions, not what we are born with or are made of, determine 
social norms and the society we will live in.

HAI agents as social beings should be able to recognize controversies in morality and 
social fairness. For example, should a fair social system be “one person, one vote” or “one 
race, one vote”? We provide special education for children with special needs. Should we 
also provide less gifted people with some educational incentives? For the same-priced 
 airfare ticket, should a larger person get a larger seat than a small person, to be fair? Will 
you be OK with fishing as long as the person lets the fish go after catching it, or do you 
think he is a fish-abuser? For all these questions, whatever the conclusions we might arrive 
at cannot be a consequence of mathematical or logical reasoning. One can easily list many 
more social and ethical issues that mathematical reasoning cannot resolve.

As a further example, in evaluating the effect of a medical treatment, a clinical endpoint 
such as death rate, longevity, or quality-of-life (QOL) adjusted life expectancy may be used 
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as an evaluation criterion. However, each endpoint we might choose is a reflection of our 
values or morality: (1) if death rate is chosen to be the endpoint, we value each life equally 
regardless of age and health condition. This means that saving a 99-year-old cancer patient 
and a 10-year-old healthy child are equally important in the situation where we can only 
save one of them. (2) If longevity or life expectancy is the endpoint, the value of saving the 
child is larger than saving the old man because the survival time that could be saved is 
different between the two. (3) If QOL-adjusted life expectancy is preferred, not only the 
survival time rescued but also the quality of the time should be considered.

Assuming we agree to use the death rate as a measure of the major impact of COVID-19, 
then for what duration should deaths be collected? If the duration is 100 years, nearly all 
people who live beyond the pandemic will die anyway, and then the COVID-19 pandemic 
has no impact on the death rate. If the deaths are counted yearly, the COVID-19 pandemic 
will appear to have a positive impact in reducing the deaths and increasing longevity 
in the near future when it is over since many elderly and less healthy people have died 
in COVID-19. After objectively assessing the impact of the pandemic, the controversial 
morality issue regarding government intervention is how to balance between Individual 
Rights and Common Good, as we will face the Trolley Problem: should a government pull 
the lever to divert the runaway trolley onto the side track to kill the person on the track in 
order to reduce the overall number of deaths?

The Trolley Problem is an ethical dilemma: there is a runaway trolley barreling down 
a stretch of railway tracks. Ahead, on the tracks, there are five people tied up and unable 
to move. The trolley is headed straight for them. You are standing some distance off in 
the train yard, next to a lever (Figure 1.2). If you pull this lever, the trolley will switch to a 
 different set of tracks. However, you notice that there is one person on the sidetrack. You 
have two (and only two) options:

1. Do nothing, in which case the trolley will kill the five people on the main track.
2. Pull the lever, diverting the trolley onto the side track where it will kill one person.

Which is the more ethical option? The HAI agent’s answer (choice and reasoning) can be 
used to test his ethical maturity.

FIGURE 1.2
The trolley paradox—an ethical dilemma.
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As a member of human-machine society, the HAI agent we are creating does not 
intend to avoid or resolve such controversies but certainly must live with them. As a 
social being, making a choice will mean considering, more or less, its social impact or 
social norms, especially to those who are closely related to you: how you treat them will 
affect how they will treat you. From this notion, imitation mechanisms will make HAI 
agents conform to social norms and do what others (especially humans) would do in 
various social settings.

1.6 Decision-Making: Rational and Emotional Choices

A key aspect of HAI is how a decision or choice is made. Therefore, studying human 
choice and the consequences of choices are interesting.

Each of us has to make many choices in our lives, from the trivial to life-changing. 
Choices can be emotional or rational. So what factors are related to the motivation, ability, 
and result of the choice? Why are we often disappointed by our choices? Does the disap-
pointment after the choice necessarily mean the wrong choice was made? How can you 
make yourself a wiser chooser?

We live in an era of unprecedented abundance of diverse goods and services that pro-
vides us with more and more choices. From the perspective of traditional economic con-
cepts and American culture, the diversity of choices maximizes the benefits of rational 
people, because the more choices, the more opportunity everyone has to choose what they 
want. Traditional American wisdom firmly believes in this point. No matter whether it 
is ordinary people or academia, almost no one doubts its applicability and universality. 
However, when the selection of items increases, our level of happiness often does not nec-
essarily increase with it, but rather is confused by the choices. What is more disturbing is 
the phenomenon of excessive information in the information industry. When the number 
of TV channels increased from ten to several hundred, we kept switching channels for fear 
of losing the programs we most wanted to watch. The “everyone is a content producer” 
model is gradually being swayed by a large number of filter sources.

As for why too many choices may not make people more satisfied, I think there are 
at least six reasons: (1) When there are too many choices, the problem is complicated, 
and it is not easy to analyze, i.e., analysis is paralyzed. (2) When there are more choices, 
the differences between the various alternatives appear smaller. Each choice has its own 
 advantages and disadvantages, and it is difficult to judge whether it is good or bad. 
(3) Things that are rare are often considered prestigious. Too many choices will reduce 
people’s interest in the choosing. (4) Since we can only choose limited things, too many 
choices make us feel more loss (unselected items), and so we often doubt and regret 
our choice. (5) Too many choices make us greedy, or greedier than we were. (6) Too many 
choices make us spend too much time and energy creating theories about how to make 
intelligent choices and learning how to distinguish among many choices with insignifi-
cant differences but, in fact, we experience “psychological hypersensitivity” symptoms. 
On the contrary, we use anti-allergic drugs to “paralyze” the immune system to prevent 
allergies to food or plants.

There should be a single grand (implicit) “goal” for a human, but no one knows exactly 
what it is and how to achieve it. This is because achieving the goal is complicated: incom-
plete information, a constantly changing environment, massive options available, the 
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uncertain consequences associated with each choice, all of these make our choice difficult. 
Therefore, we break a goal into smaller goals in our life and think that every small goal 
achieved will get us one step closer to the grand goal. In most situations, we have to make 
decisions based on incomplete information and make them quickly. Later, if we made a 
mistake, we would correct it. Such a simple trial-error method is more powerful in learn-
ing. All complicated methods, such as deep learning and quantum mechanics, can be the 
consequences of this simple trial-error method

If we build utility based on the happiness goal instead of monetary, the rational approach 
can include emotional components. Whether we make a decision following our emotion 
or against emotion, the utility can have either a positive or negative impact. In addition, a 
proper utility function form is also important. Since our feelings about intensity from sen-
sory organs are logarithm-based according to Weber-Fechner laws, the monetary contri-
bution to happiness should also be a logarithm: Happiness = log(money) + emotional impact. 
Therefore, in principle, we can use a rational approach to maximize utility or happiness 
with appropriate utility.

Many of our actions are not a direct consequence of rationalization but a reflex that 
often includes a spontaneous emotional response. However, such a reflex can be viewed 
as an indirect use of rationalization. We believe that the sum of the small short-term goals 
is approximately equal to the grand goal (Law of Summative Effects). The small goals 
are often time-sensitive, such as quickly pulling back one’s hand when a finger touches a 
burning hot surface. A reflex is a way to deal with a time-sensitive situation and such situ-
ations frequently occur. The frequency of recurrent events is a proxy of a short-term goal. 
Thus, a viable rational approach should also include the time factor in the utility function. 
We will discuss this more in Part III, Architecture of HAI.

Interestingly, even when the information is complete and potential outcomes are known, 
we might still not be sure our choice is the best one. This further justifies the importance 
of the timing factor in building the utility. We elaborate this with Efron’s intransitive dice 
(Figure 1.3).

Efron’s dice are the four dice A; B; C; D with the following numbers on their six faces: 
A displaying {4; 4; 4; 4; 0; 0}, B with {3; 3; 3; 3; 3; 3}, C having {6; 6; 2; 2; 2; 2}, and D, {5; 5; 5; 1; 
1; 1}. It can be easily proved that die A beats die B; B beats C; C beats D; and D beats A, all 
with the same probability of 2/3. Therefore, the four dice are equally good.

FIGURE 1.3
A set of four intransitive dice.
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Now imagine if the numbers represent the evaluation scores of the four social sys-
tems (or forms of government, products, medical interventions) at six different times 
or aspects. If we are provided with social system options A, B, and C without know-
ing the existence of option D, we might think A is the right choice but actually the 
four choices are equally good. The conclusion can be applied to our decision-making in 
other situations, such as medical treatments of a certain disease. In this case, different 
dice may present different treatments A, B, C, and D, whereas the face values of a die 
may indicate the responses of different patients to that treatment. Without knowing the 
possible treatment D, we would conclude A is the best treatment after we run a clini-
cal trial. However, in fact, all four treatments are equally good. These examples seem 
to make us completely lose confidence in virtually any decision we have made or are 
going to make. Therefore, the “right” decision might be just an illusion in the eyes of the 
decision-maker or the agent.

There are many other sets of intransitive dice consisting of three or more dice. For 
instance, this set of three dice, Red {3, 3, 3, 3, 3, 6}, Blue {2, 2, 2, 5, 5, 5}, and Olive {1, 4, 4, 4, 
4, 4} is intransitive. Intransitive dice do not have to be 6-faced and the numbers do not have 
to be integers. The set of dice of {1, 4, 4, 4}, {2, 2, 5}, and {3, 3, 3, 6}, and set of {1, 1, 4, 4, 4, 4, 4, 
4}, {2, 2, 2, 2, 5, 5, 5, 5}, and {3, 3, 3, 3, 3, 3, 6, 6} are two sets of intransitive dice.

Can or should HAI involve future social decisions such as predential selection or 
constitution- making? For instance, facing the polarization of U.S. society today, we 
Americans can make changes in the election law to reduce polarization: each voter must 
elect different party candidates during primary and prudential elections. If you want 
to vote Democratic for the president, then you will have to vote for a Republican in the 
Primary. Thus you will vote for a Republican who is moderate or close to a Democrat. This 
way, only a moderate Republican and a moderate Democrat will be able to enter the final 
presidential election. The question is: will HAI be able to involve such a decision? In prin-
ciple they can, with our HAI architecture as given in Part III.

Having said that, we recognize that in decision-making, people change their opinions 
all the time, since everything, including the environment, changes constantly. Therefore, 
pursuing mathematical consistency in decision-making is not a viable solution for HAI.

1.7 Evolution and Devolution

In theory, we can make HAI agents that never die, but evolution involves powerful mech-
anisms that we can utilize to make incredible HAI agents capable of self-improvement 
from generation to generation. For this reason, it’s beneficial to have a discussion on the 
topic of evolution and devolution. The notion of multi-level evolution discussed here 
inspires me to use Pattern Survival Time in the forgetting-mechanism of HAI architec-
ture. The forgetting-mechanism is important in effective learning and prompt response 
for HAI agents.

The Chicken or the Egg Paradox we all know is: which came first, the chicken or the 
egg? This question also evokes a more general question of how life and the universe began.

The Theory of Evolution answers the question as follows: species change over time via 
mutation and selection. Since DNA can be modified only before birth, a mutation must 
have taken place at conception or within an egg so that an animal similar to a chicken, 
but not a chicken, laid the first chicken egg. Thus, both the egg and the chicken evolved 
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simultaneously from birds that were not chickens and did not lay chicken eggs but gradu-
ally became more and more like chickens over time.

According to Darwin, “… if variations useful to any organic being do occur, assuredly indi-
viduals thus characterized will have the best chance of being preserved in the struggle for life; 
and from the strong principle of inheritance, they will tend to produce offspring similarly char-
acterized. This principle of preservation, I have called, for the sake of brevity, Natural Selection.”

Darwin implied here the four essential conditions for the occurrence of evolution by 
natural selection:

1. Reproduction of individuals in the population, 
2. Heredity in reproduction, 
3. Variation that affects individual survival, and 
4. Finite resources causing competition.

Diversity is a necessary condition for evolution. However, more diversity can either speed 
up evolution or cause chaos in the population. Human society could become homogeneous 
owing to interracial marriages, the Internet, promotion of social equalities, and other fac-
tors. Such homogenization slows down evolution. Nevertheless, humans are still evolving. 
Experts believe that about 9% of our genes are undergoing rapid evolution, nearly as we 
speak! The genes most affected by natural selection are those involving the immune sys-
tem, sexual reproduction, and sensory perception.

However, not every scientist believes in evolutionary theory. Some completely oppose 
it and others agree on intraspecies evolution but contest cross-species evolution. Different 
species can have different starting points for evolution; there is no reason that all pieces 
are from the same ancestor.

The notion of natural selection has been used (and abused) throughout many scientific 
fields and in our daily lives. Artificial selection, a major technological application of evolu-
tionary principles, is the intentional selection of certain traits in a population of organisms. 
Humans have used artificial selection for thousands of years in the domestication of plants 
and animals, and more recently in genetic engineering, using selectable markers such as 
antibiotic resistance genes used to manipulate DNA in molecular biology.

Theoretically, evolution can happen on multiple levels: cell evolution makes better cells, 
organ evolution makes stronger organs, and human evolution makes healthy, happy, and 
longer-lived humans. But how can we be sure these nested or hierarchical evolutions 
would not be in conflict? We have seen that tumor cells are very strong in competing 
for nutrition with normal cells. However, such strong tumor cells are definitely miserable 
additions from the perspectives of organ and human evolution.

There is no reason to believe that devolution never happens within and between the 
same organisms. In fact, it can occur at different levels for various reasons: (1) A medicine 
can cure disease and make weaker people live longer, while at the same time devolving 
the human’s immune system. (2) As the environment changes, an organism that fits well 
in one environment may not fit into another; thus, as the environment circularly alters (as 
with the four seasons), the best-fitting organism alters accordingly. (3) Evolution can occur 
at a higher level, such as an entire society, and devolution can happen at a lower level, as 
with individuals, or vice versa. An example of statistical proof of possible devolution is 
discussed in Principles of Scientific Methods (Chang, 2014).

Since fitness is multifaceted, defining it is often subjective and difficult. For instance, 
suppose one couple is healthy and is expected to live long, but has low fertility, whereas 
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another couple is not as healthy as the first but has a high fertility and decides to have more 
children. Which couple’s race will be the winner via evolution after generations? Indeed, 
people have criticized the Darwinian notion of survival of the fittest by declaring that the 
whole thing is a simple tautology: whatever survives is fitting by definition! Defenders 
of the notion argue that fitness can be quantified by empirical measures such as speed, 
strength, resistance to disease, and aerodynamic stability independent of survivability 
(Chang, 2014).

The point here is that micro-motivated behavior at the individual level can be a devo-
lutionary force, making a weaker person live longer while society devolves in a sense. 
Controversially, everyone, every member of the human race, should (ethically speaking) 
have an equal chance to live for an equally long time. This is a force against biological evolu-
tion, we may argue, that will, however, make for the betterment of the society. In fact, many 
social justices promote biological devolution. How to balance the two aspects is a social issue.

In our HAI architectures, as long as we limit an agent’s longevity and Darwin’s four 
essential conditions, both evolution and devolution could occur. The cumulative reward 
received by an HAI agent can be used as the fitness, while replacing a human’s organs can 
be simulated by replacing parts of an agent.

1.8 The Humanized Agents Zda and Lia

As we discussed earlier, AI is Artificialized Human Intelligence, while HAI aims to empha-
size the full human aspects of AI, i.e., to humanize Artificialized Human Intelligence. 
In analogy, we translate English to Chinese and then translate the transcription back to 
English, but hope not much is lost in the translation.

The two typical humanized agents mentioned earlier are Zda (male) and Lia (female). 
Our approach to build the agents is the so-called synthetism or new constructivism as 
opposed to neurologism, logicalism, connectionism, behaviorism, and constructivism. We 
will discuss these later in Part II. The idea of synthetism is to combine the efficacy of 
behaviorism and the flexibility of constructivism. The minimalist notion is also accom-
modated in building the agents by having some minimal built-in knowledge (e.g., known 
commonsense knowledge) and no complicated learning algorithms. As the name indi-
cates, Zda (思达 in Chinese), the “baby” agent, is virtually a Zero-data agent as opposed to 
a big-data invention. Lia (丽雅) is shorthand for Language-independent agent. These two 
together mean that we build the baby agents virtually without built-in knowledge or any 
kind of natural language.

The baby’s brain is almost empty, except for memory that works with the organs that 
sense the external world. The brain will record sensed environments as subject-event 
strings, and then patternize (simplify) them into laws/rules, such as scientific laws and 
language grammars, so that the simplified information can fit into the agent’s mem-
ory and allow quick responses to external events. The patternization is cognition of 
humans and agents. We use the so-called hierarchical recursive patternization algo-
rithms, developed from the notion that later-recognized concepts are constructed on 
the basis of an understanding of earlier simple concepts. Such a hierarchical recursive 
approach is necessary for quick and flexible learning. Otherwise, we may have to build 
a large knowledge base, such as the Wordnet commonsense knowledge base, and put it 
into the agent’s brain. Even with that, the latter is not a humanized agent because it lacks 
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personality or individuality, lacks the desired dynamics—the ability to grow and learn 
over time and the flexibility that makes learning everything possible, including social 
norms, at different times in different societies. Such societal norms sometimes cannot be 
pre-specified because the agent’s society has not been formed yet at the time when the 
agent is built and any agent’s involvement will contribute to the society and its norms 
(see Part III for details).

Zda and Lia will be able to learn language through interaction with humans and the 
environment. They can even create their own language, if there is no human presence. We 
will demonstrate these aspects in later chapters.

Zda and Lia can become members of human-machine society, and can learn and behave 
according to the social norms as long as we treat them humanely, the same way we treat 
our children. Zda and Lia have self-awareness, can make, differentiate from, and learn 
from peers, teachers, friends, and enemies. You can call them whatever name you want to 
and the agents will know you are calling them through repeated interactions.

The main learning approaches of the agents include:

1. Learning via constructive teaching (passive learning)
2. Learning through general interactions (neutral)
3. Learning by observation and mimicking (active learning)
4. Learning by asking questions with purpose (active learning)
5. Learning from creativities, while creativities can be generated via analogy and

evolutionary operators (active learning)
6. Frequency-based and reward-based Patternization and Repatternization (self-

learning for discovery and rediscovery).

To facilitate the building of HAI, we will introduce the three-world theory (Figure 1.4): the 
world we live in, the world in our eyes, and the world in our mind. The world we live in 
is the objective multifaceted world, the world in our eyes is what each individual senses 
(observes) through his sensory organs. The world in our mind is a perceptual world in our 
minds using patternized information or scientific principles and laws.

The HAI architecture has four main components that bridge the three worlds. (1) An 
evolutionary Recursive Network of patterns for dynamic knowledge representation pro-
vides a self-inclusive structure necessary for self-awareness. (2) Attention Mechanisms 
allow an HAI agent to focus on a few important things for efficient learning and response. 

FIGURE 1.4
The three worlds in humanized AI architecture.
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(3) Learning Mechanisms that feature hierarchical tokenization and recursive patterniza-
tion allow progressive learning from simple to complex and then more complex concepts 
or skills. (4) Adaptive Reinforcement Response Mechanisms, mimicking free will, 
 randomize potential responses according to the associated rewards or the frequency of 
various responses observed in humans, or others, under similar circumstances. Imitation, 
doing what other people, or agents, do in various situations make HAI agents conform to 
social norms without pre-specifying the norms.

In our HAI architecture, the limited objective world under Zda’s attention at any moment 
is characterized by event-strings. Since multiple events can happen at the same time, the 
event-strings are usually (multidimensional) vector strings. However, we can unidimen-
sionalize them into a recursive decision network of one-dimensional strings. We will dis-
cuss the details in Part III.
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2
The World We Live in and the World in Our Eyes

The world we live in is the objective multifaceted world, the world in our eyes is the sensed 
world by each individual. We will discuss the multifaceted nature of the objective world 
from a philosophical perspective and through quantum physics. This and the brief dis-
cussion of theories of truths provide the foundation for the argument that the so-called 
objective world is not unique but individualized to the observer, as is human intelligence. 
Furthermore, intelligence also varies according to different levels of biological entities, e.g., 
a human cell versus a human. All these provide the rationale for creating individualized 
humanized artificial intelligence (HAI) agents as opposed to the big-data approach that 
would build a “superman.”

2.1 The Multifaceted World and Theories of Truth

There is a popular view of an independent objective world (e.g., McCarthy, 2006): the world 
exists independently of humans. The facts of mathematics and physical science are inde-
pendent of there being people to know them. Intelligent Martians and robots will need to 
know the same facts as humans. A robot also needs to believe that the world exists inde-
pendently of itself and that it cannot learn all about the world that there is to know.

Newton demonstrated that the eye acts as a lens and the world in our eyes (retina) is 
actually upside down. If all humans were color-blind except one who can see colors, we 
would then be so convinced that the universe is black and white (gray), and color is just a 
hallucination. From modern physics we know we cannot see dark matter, ultraviolet, or 
infrared. Imagine that some aliens have different senses of time from ours, either different 
in scale (log-scale from the birth of the universe) or in chronological order. Just like two 
people standing at different locations and hearing two different sounds from different 
locations, they could argue about which sound has occurred first.

Presuming there are superbeings who can sense beyond human beings can sense color, 
sound, smell, and beyond, even a 5th dimension of a space, then should the universe be 
5-dimensional? What if there are super superbeings, they can even sense even more than 
the superbeings? Therefore, the “objective world” can be anything as long as the being can 
“sense” it. There is no unique or independent objective world but only observer-dependent 
worlds. Our perceptions of the objective world depend on observers and intersubjective 
agreement (Figure 2.1). We can imagine that our perceived world would be very different 
if humans could only survive for 1 second, 1 hour, 1 day, or one billion years. The multifac-
eted world is consistent with the world described by quantum physics in the next section.

By saying there is a multifaceted objective world I apparently confront the conventional 
wisdom: in philosophy, objectivity is the concept of truth independent from individual 
subjectivity (bias caused by one’s perception, emotions, or imagination). In fact, there is 
objective truth and subjective truth. Objective truth is something that is true for everyone, 
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whether they agree with it or not. At one time this was simply called “truth.” Subjective 
truths, being experienced by an individual, are truthful in the sense that the individual 
experiencing these truths can be certain of them.

There are different theories of truth. Correspondence theories assume there exists an 
actual state of affairs and maintain that true beliefs and true statements correspond to 
the actual state of affairs. Correspondence theories practically operate on the assumption 
that truth is a matter of accurately copying what has been called objective reality and then 
representing it in thoughts, words, and other symbols (Bradley, 1999).

In contrast to correspondence theories, social constructivism does not believe truth 
reflects any external transcendent realities. Constructivism views all of our knowledge 
as constructed, and that truth is constructed by social processes and is historically and 
culturally specific. Perceptions of truth are viewed as contingent on convention, human 
perception, and social experience, and representations of physical and biological reality, 
including race, sexuality, and gender, are socially constructed.

Consensus theory holds that truth is whatever is agreed upon, or might come to be 
agreed upon, by some specified group. Such a group might include all human beings, or a 
subset thereof consisting of more than one person.

Pragmatic theories hold in common the principle that truth is verified and confirmed by 
the results of putting one’s concepts into practice.

Logically, a truth is what we can’t in principle prove wrong, not just what we can prove 
correct. To prove what is correct or what cannot be proved incorrect, we have to use a cer-
tain language or tool of communication. Thus, we use words to define meaning and make 
arguments; but those words are then further defined by other words, and so on. We finally 
stop either when we believe the final set of words is clear enough or when we have no time 
or energy to continue any further!

In philosophy, the phrase intersubjective agreement denotes the agreement among 
some number of conscious minds. According to Hilbe (1977), “A statement is true if, taken 
as proceeding from the objective intersubjectively agreed upon or conventional rules of 
description, it depicts or properly describes the facts to which the description applies. Facts 

FIGURE 2.1
Intersubjective agreement for truth and fact.
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represent the manner in which our form of life structures the extra-linguistic world and 
conventionally agreed upon forms of linguistic synonymities according to our socially 
conceived conceptual framework. Hence, social intersubjective agreement is the criterion 
of the concept of truth and specifies which statements are true under normal circum-
stances.” Certainly, today, our difficulties with a common social truth evince a substantial 
lack of intersubjective agreement.

The Simulated-World Hypothesis states that reality could be simulated, e.g., by quan-
tum computer simulation, to a degree indistinguishable from “true” reality. It could con-
tain conscious minds that may or may not know that they live inside a simulation. This is 
thought to be quite different from the current, technologically achievable concept of  virtual 
reality. However, we actually are not sure that the dreams we remember are the same as 
when we were dreaming. We cannot tell whether we are in genuine reality or imaginary 
reality in a dream. On one hand, if humans can make super-intelligent beings, then such 
artificial superbeings might have existed a long time ago and made us human beings. On 
the other hand, even if a man can provide compelling arguments that humans cannot 
make superbeings or HAI agents, he is probably still not sure that he is a real human, as he 
thinks, or is instead a human made by a machine that itself was made by (super) humans 
because the machine superbeings might make him think he is a real human.

The multifacetedness of the objective world motivates us to use one’s individually recog-
nized world from one’s sensory organs, attention, and experiences to construct knowledge 
(i.e., the individualized patternization of those experiences over time and one’s responses), 
instead of using commonsense knowledge shared among all human beings and AI agents.

2.2 Quantum World

Quantum mechanics is a fundamental theory in physics that provides a description of 
the physical properties of nature at the scale of atoms and subatomic particles. It is the 
foundation of all quantum physics including quantum technology and quantum infor-
mation science.

A fundamental feature of the theory is that it usually cannot predict with certainty what 
will happen, but only gives probabilities according to the Born rule, named after physicist 
Max Born. Quantum physics only asserts the multifaceted objective world, but also makes 
it possible for quantum computers to provide super-computational power for HAI.

A quantum is the minimum amount of any physical entity involved in an interaction. 
The magnitude of the physical property can take on only multiples of one quantum. A bit 
is the basic unit of information in classical mechanics, with two states (0, 1), whereas a qubit 
is the basic unit of quantum information in quantum mechanics. In classical mechanics, to 
know the status of the two bits (00, 01, 10, 11), we only need to know two values: the values 
of the first and the second bits. In quantum mechanics, the state of quantum can be in the 
four possible states at the same time with the probabilities r2 for 00, s2 for 01, t2 for 10, and u2 
for 11. Therefore, four values (probability amplitudes r, s, t, and u) are used to describe the 
status of two qubits. But only three values are necessary because the sum of probabilities 
r2 + s2 + t2 + u2 = 1. When ru = st, we say the two qubits are not entangled (see below) and 
then, as the math goes, only two values are required to determine the status of the two 
qubits, the same as for two classical bits. Entanglement, it turns out, makes it possible for 
quantum computing to be faster than classical computing.



24

Superposition is a key concept in quantum theory. A physical system (electrons, pho-
tons) can be considered to be in two different states at the same time with an associated 
probability for each of the states. The situation is commonly compared to Schrödinger’s 
cat, a feline which can be viewed as both alive and dead at the same time. At the moment 
we measure the system, however, it collapses to a single deterministic status. When a 
qubit is measured from different directions, it will give different results. This is very 
counter-intuitive, but we can think of a qubit as a bisexual person who can be male and 
female at the same time. The person’s sexual orientation can be measured, and the result 
will depend on how it’s measured: when a bisexual person meets with male or female, it 
will show the opposite sexuality. The objective world is thus multi-sexual or multifaceted 
in nature.

Entanglement is another important concept in quantum mechanics. Two particles (elec-
trons, photons, molecules, etc.) can be entangled, names, knowing the status of one implies 
instantly knowing the status of the other, no matter how far the two particles are separated 
apart. This implies that information can be “transmitted” instantly, faster than light. We 
may ask, why is that if the light of speed is limited? One possible explanation is that physi-
cal space can have a 4th dimension and two objects viewed as far apart in 3D space can  
be connected in 4D space.

Unlike the classical bits of information, quantum information in qubits can be neither 
copied (the no-cloning theorem) nor destroyed (the no-deleting theorem).

A possibility opened by entanglement is testing for “hidden variables.” Hidden vari-
ables represent hypothetical properties more fundamental than the quantities addressed 
in quantum theory itself, knowledge of which would allow more exact predictions than 
quantum theory can provide. A collection of results, most significantly Bell’s theorem (to 
be discussed soon), have demonstrated that broad classes of such hidden-variable theories 
are, in fact, incompatible with quantum physics. According to Bell’s theorem, if nature 
actually operates in accord with any theory of local hidden variables, then the results of a 
Bell test will be constrained in a particular, quantifiable way. Many Bell tests have been 
performed, using entangled particles, and they have shown results incompatible with the 
constraints imposed by local hidden variables.

Another interpretation is the so-called Parallel Worlds or Many Worlds theory 
(Figure 2.2). In contrast to superposition, when a physical system is measured, it branches 

FIGURE 2.2
Quantum descriptions of physical world.
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into two parallel worlds that never cross each other. The problem with this theory is: if 
each of them doesn’t know the other exists, which world am I living in, since I know the 
two parallel worlds?

A Bell test is a real-world physics experiment designed to test the theory of quantum 
mechanics, in relation to Albert Einstein’s hidden variable theory, to explain the behavior 
of particles like photons and electrons. To date, all Bell tests have found that the hypothesis 
of local hidden variables is inconsistent with experimental results.

To illustrate a Bell test, suppose that Alice and Bob randomly measure a stream of pairs 
of entangled qubits (meaning the configurations for Alice’s and Bob’s qubits are identical) 
in three directions, a = 0°, b = 120°, and c = 240°, the eight possible outcomes are: 000, 001, 
010, 011, 100, 101, 110, 111, where 1st, 2nd, and 3rd digits are the results from the three direc-
tions. There are nine pairs of measurement directions: (Alice, Bob) = (a, a), (a, b), (a, c), (b, a), 
(b, b), (b, c), (c, a), (c, b), and (c, c) with the probability of 1/9 for each.

In Table 2.1, (a, c) indicates Alice’s and Bob’s measured directions, whereas 001 indicates 
result 0 if measuring the qubits in direction a or b, but 1 if measured in direction c. Thus 
if Alice and Bob measure the pair of qubits in directions a and c, respectively, their results 
will be in disagreement (D).

According to the classical model, each qubit has a defined spin direction but is unknown. 
Einstein believes there is a hidden force that somewhat affects the results when qubits are 
measured. If these are true, then probability theory shows that Alice’s and Bob’s results 
will agree at least 5/9 of the time under any configuration as indicated in Table 2.1, whereas 
from quantum mechanics, Alice’s and Bob’s sequences will agree exactly or very nearly 
half the time. So far, all experiments have produced the results consistent with the quantum 
model, but do not support Albert Einstein’s hidden-variable theory.

In my view, the Bell Test results and the fact that Schrodinger’s cat can be dead and alive 
at the same time can also be explained in this way: humans can only sense 3-dimensional 
space, and we can randomize and control the variables of the experiment in 3-dimensional 
space, but we cannot control the variables in the 4th dimension. Just imagine, a cat jump-
ing into a 2-dimensional circle is an impossibility for a 2-dimensional sensible being, since 
the being only sees no cat in its 2-dimensional space: how can a cat come from nothing?

The Bell test results bolster confidence in our HAI approach using individualized evo-
lutionary knowledge nets formulated from individuated experience. Two individuals 
need not have exactly the same experiences from the same events for both to learn or 
adapt optimally.

TABLE 2.1

The Expected Results of the Bell Test from Einstein’s Hidden Force Theory

Measurements Directions (Alice’s, Bob’s)

Config. (a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
000 A A A A A A A A A
001 A A D A A D D D A
010 A D A D A D A D A
011 A D D D A A D A A
100 A D D D A A D A A
101 A D A D A D A D A
110 A A D A A D D D A
111 A A A A A A A A A
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2.3 The World of Multilevel Intelligence

In nature, we see how simple ants can collectively exhibit intelligence. In artificial swarm 
intelligence, an ant algorithm can produce some level of intelligence. Indeed, there are 
multilevel intelligences. Social intelligence is the collective intelligence of many individ-
ual intelligences, while individual human intelligence can be viewed as a collective intel-
ligence at a lower level derived from human organs or cells.

Biologists often compare different cells in terms of how intelligently they fight for sur-
vival. Cancer cells are constantly fighting for their survival by sucking in as much nutri-
tion as possible. Such intelligent behavior at the cellular level is considered unintelligent at a 
higher level (human level): a long survival time for a cancer cell may imply a shorter sur-
vival for the person in whom the cell resides. Cancer cells’ evolution may lead to human 
devolution. We can further postulate that any physical entity can be viewed as a “brain” 
that can take an input, process it, and output results based on its “understanding” of the 
input information. Intelligence is not just a characteristic of living things. The nature of 
hierarchical intelligence has made us believe, mistakenly, that a lower intelligence is not 
intelligence. Humans can sense the intelligence level of their own kind, but often fail to 
understand upper or lower levels of intelligence, just as a cell or protein cannot under-
stand a human’s intelligence or the intelligence of a non-living object. The intelligence 
of non-living things might be recognized as collective or swarm intelligence by humans. 
A researcher who studies monkeys says: to understand monkeys, think like monkeys if 
you can. This reminds us that when we are building HAI, we should often think from 
an agent’s perspective, instead of subconsciously from a human perspective. This is par-
ticularly important and leads us to determine rewards based on different changes in an 
agent’s internal “biological states.” Reward is fundamentally the driving-force in adaptive 
reinforcement learning in our HAI architecture.

The nature of multilevel intelligence implies its subjectivity. Who is more intelligent, a 
monkey or a human? A recent study shows that monkeys can do meta-thinking: think-
ing about thinking. The reason that monkeys cannot speak a sophisticated language is 
because of poor neuronal connectivity (a weak network) or, some suggest, for lack of 
desire. Suppose a being has only two possible choices: switching on and off. When his 
action matches a human’s desire at the moment, he will be happy, then whatever we do, in 
his view, there is only one question: “do you want me to switch On or Off?” and only one 
type of decision for him to make: should I turn On or turn Off. Would his life be much 
simpler and happier than that of a human being? In this sense, are we human beings a 
consequence of evolution or devolution? Also, think about why children are usually hap-
pier than adults. The multiplicity of intelligence and its non-monotonic relationship with 
happiness remind us to be cautious in simulating human intelligence.

The conviction of multilevel intelligence motivates us to adapt, in addition to agent-
level evolution, a so-called Forgetting Mechanism at the pattern level—infrequently 
used patterns will “die” or be eliminated. The survival time is related to the fitness of 
pattern frequency.

The notion of multilevel intelligence, in connection to the law of summative effects (to be 
discussed soon) used in our HAI architecture, justify the notion of pursuing local optima 
instead of a complex, time-consuming, even impossible global optimum.

Foundation, Architecture, and Prototyping of Humanized AI
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3
The World in Our Mind: Fundamental 
Laws and Principles

The World in Our Mind is the Modeled World that is simplified based on fundamental 
principles (Figure 3.1). After the multifaceted objective world passes through an observer’s 
sensory organs and attention mechanisms, it is further simplified or patternized using the 
basic principles of learning discussed in this section. Such simplification is necessary to 
efficiently store the information about the external world and oneself in one’s brain. When 
these principles are used to develop learning models, controversies are encountered. Thus, 
discussing philosophical controversies is necessary in building our humanized artificial 
intelligence (HAI) architecture.

3.1 First Principle

A First Principle is a basic proposition or assumption that cannot be deduced from any 
other proposition or assumption. In mathematics, First Principles are referred to as axioms 
or postulates.

Aristotle gave them their first definition thus: in every systematic inquiry (methods) 
where there are First Principles or causes or elements, knowledge and science result from 
acquiring knowledge of these, for we think we know something just in case we acquire 
knowledge of the primary causes, the primary First Principles, all the way to the elements. 
It is clear, then, that in the science of nature as elsewhere, we should try first to determine 
questions about the First Principles.

Utilization of First Principles is a strategic approach to complex problems by breaking 
them into the simplest fundamental concepts through logical reasoning to discover the 
most effective solution. The First Principle approach continuously questions a problem 
with “Why?” until the basic truths land. In AI, a First Principle can be arrived at by ques-
tioning each and everything in a concept until there are just facts that can’t be simplified 
any further. As an example, we can say that cigarette smoking can cause lung cancer, but, 
further looking into the cause, we find that carcinogens are the more direct cause of lung 
cancer (Figure 3.2).

The renowned physicist Albert Einstein laid out the importance of the First Principles 
and stated, “If I had an hour to solve a problem and my life depended on the solution, I 
would spend the first 55 minutes determining the proper questions to ask, for once I know 
the proper questions, I could solve the problem in less than five minutes.”

In humanized AI, the applications of First Principles are necessary since it will bring 
clarity on the root of the problems from philosophical aspects. We will use the First 
Principles approach to analyze every aspect of human beings, including thoughts, emo-
tions, consciousness, self-awareness, imitations, creativities, discoveries, imaginations, 
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recollections, collaborations, reasoning, and learning, down to the most fundamental 
mechanical level so that all the building blocks can be obtained for implementing HAI on a 
computer. The process is called mechanicalization for the sake of brevity.

3.2 Law of Summative Effects

The whole and its parts have two types of relationships: parallel parts that exist simul-
taneously and sequential parts that appear sequentially in time. In terms of effect, there 
are three scenarios: (1) antagonistic—the whole is smaller than the sum of its parts,  
(2) synergistic—the whole is greater than the sum of its parts, and (3) The Law of
Summative Effects—the whole can be practically approximated by the sum of its parts.

When the whole has parallel parts, interactions are the key to unlocking emergent and 
unintuitive properties. This occurs in many fields: reactions in biochemistry, flocking 
among birds in ecology, many-body systems in mechanics, social interactions in econom-
ics and political science, and drug interactions in pharmacology. The whole being equal 
to the sum of its parts happens in mathematics and physics, e.g., in many of the conserva-
tion laws.

According to Aristotle, “the whole is greater than the sum of its parts.” This observation 
was adopted to explain human perception by the Gestalt psychology school of thought in 
the twentieth century. In society, people can work together or against each other, resulting 
in a larger sum or a smaller sum. Understanding whether components interact in a man-
ner that enhances (synergy) or weakens (antagonism) the individual effects of the parts 
is often useful in science and engineering because the type of interaction governs the 

FIGURE 3.2
First Principle in search for a direct cause of lung cancer.

FIGURE 3.1
Roles of fundamental principles in humanized AI.
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dynamics of complex systems. For instance, in pharmacology, understanding drug inter-
actions enables the effective design of treatment strategies to combat complex diseases 
such as cancer and HIV, which increasingly rely on multidrug treatments. From game 
theory and our experience, we know that collaborative games can lead to the whole being 
greater than the sum of its parts, while non-collaborative games can lead to the whole 
being smaller than the sum of its parts.

The application of the Law of Summative Effects is significant in HAI. As with 
humans, the decision process is piecewise (stagewise) due to the fact that not all (past 
and future) facts are known at a given moment and the environment is changing con-
stantly. In other words, our decisions are often based on local optima, not global optima, 
but we believe local optima are likely to lead to the global optima approximately. This 
is another way to state the law of approximate effect sum. In HAI, we deal with a long 
sequence of events, expressed as a string of text. In the reinforcement-learning-based 
response mechanisms, an agent’s responses can be based on short-term rewards accord-
ing to the notion that the sum of the short-term responses will add up approximately to 
the global optimal reward.

The Law of Summative Effects ensures the validity of recursive patternization and asso-
ciated decision-making mechanisms in our HAI architecture.

3.3 Principle of Factor-Isolation

Experimentation is the most commonly used tool for scientific research. Agents 
are expected to be able to design and perform experiments too. The main differ-
ence between experiments and observational studies is that in observational studies 
hypotheses are tested by the collection of information from phenomena that occur 
naturally, whereas an experiment usually consists of making an event occur under 
known conditions whereas many extraneous influences as possible are eliminated and 
close observation is possible so that relationships between phenomena can be revealed. 
This is due to the universal Principle of Factor-Isolation (Law of Factor-Isolation) as 
illustrated in Figure 3.3: if factors A and B exist, fact C exists and if eliminating B, C 
disappears, then factor B is a cause of fact C (given that A always exists). Here C can be 
a composite factor.

FIGURE 3.3
Principle of Factor-Isolation.
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The Factor-Isolation Technique (FIT) is based on the principle of factor-isolation; with 
it one works to constructively isolate a few factors in order to determine association and 
causal relationship. We will frequently use the technique to effectively train HAI agents, 
and agents will constantly use the FIT to discover patterns in their observations.

3.4 Simpson’s Paradox

In probability and statistics, Simpson’s Paradox, introduced by Colin R. Blyth in 1972, 
points to apparently contradictory results between aggregate data analysis and analyses 
from data partitioning (Chang, 2012).

Suppose two drugs, A and B, are available for treating a disease. As shown in Table 3.1, 
the treatment effect (in terms of remission rate) is 520/1500 for B, better than 500/1500 for 
treatment A. Thus, we will prefer treatment B to A. However, after further looking into the 
data for males and females separately, we find that the treatment effect in males is 200/500 
with A, better than 380/1000 with B, while the treatment effect in females is 300/1000 with 
A, better than 140/500 with B. Therefore, whether female or male, we will prefer treatment 
A to B (Table 3.1). Should we take treatment A or B? In practice, such controversy can easily 
occur without notice when we conduct two gender-specific trials sequentially versus one 
trial of mixed genders.

The problem can be even more controversial. Suppose when we further look into the 
subcategories: Young Female and Old Female, and the direction of treatment effects 
switches again, i.e., treatment B has a better effect than treatment A in both subcategories, 
consistent with the treatment effect for the overall population as shown in Table 3.2. The 
question is: what prevents one from partitioning the data into arbitrary subcategories arti-
ficially constructed to yield wrong choices of treatments, and how specific is too specific? 
And should partitioning be based on gender, geography, or something else? The paradox 
can be seen in different situations, such as in democratic elections: even when both of the 
majorities in Town A and Town B voted for candidate Jonn rather than Bob, the combined 
majority in the two towns might vote for Bob. This dilemma can occur even when there 
are more than two towns.

Enlightened by the Simpson Paradox, I rediscovered (Change, 2012) the hidden Similarity 
Principle (to be discussed next) that we subconsciously use in our daily life, and in scien-
tific discovery and invention. This paradox, in conjunction with the Similarity Principle, 
illustrates that science is subjective or personal in principle, and on this basis, different 
objective methods are developed. In other words, sciences are subjective and objective at 
the same time. So is human learning. In this sense, there is no right or wrong, just different 
perspectives.

TABLE 3.1

Drug Responses in Male and Female

Drug A Drug B

Male 200/500 380/1000
Female 300/1000 140/500
Total 500/1500 520/1500
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3.5 Similarity Principles

Science aims to discover causal relationships and to predict future outcomes. So does learn-
ing (human or machine learning). All science, and learning itself, is based on a fundamen-
tal principle—the Similarity Principle (Chang, 2012, 2014, 2020). The principle asserts that 
similar things or individuals will likely behave similarly, and the more similar they are the more 
similarly they behave. For instance, people with the same (or a similar) disease, gender, and 
age will likely have similar responses to a particular drug or medical intervention. If they 
are similar in more aspects, they will have more similar responses.

To qualify as a true scientific discovery, a finding must be verifiable. Otherwise, it cannot 
be called science. However, as history is unique, no two events are identical or repeat exactly; 
even the same individual (especially a living being) will change constantly. For this reason, 
we have to group similar things together and, considering them as approximately the same, 
study their common or overall behaviors. Psychologists study a group of people with simi-
lar personalities to explain why those people behave the way they do. Pharmaceutical scien-
tists treat people with the “same” disease to study the overall effect of a drug even though 
individual responses to the drug may be different. Indeed, similarity grouping is the basis 
for scientific discovery, and the Similarity Principle is the backbone behind causality. The 
idea of a causal relationship is our human way to handle the complex world in a simple form 
with a reasonable approximation, given the limited ability of our brains.

Here are some simple examples of people using the principle for learning in their daily 
lives: all objects with wheels run fast. Objects with sharp edges can be used to cut things. 
Many people think September 11 is more likely to see a terrorist attack than other days 
of the year. Therefore, NYPD tightens security around the date. People use the Similarity 
Principle differently. For instance, some of my friends think sending their children to a 
top-rated high school will increase the probability of them entering top colleges. They buy 
a tiny apartment in the town with a first-rank public school because they think people from 
the same school have similar chances of getting into a better college than people from dif-
ferent schools. Some of my other friends think differently. They think their children are 
similarly talented to certain youngsters who were successful in a certain school that fit 
them, so the school would be suitable for their kids too. For this reason, they send their kids 
to the same or similar school even though they may not be the best-ranked high school.

The Similarity Principle says that every characteristic of an object likely contributes a 
portion of information to real-world outcomes; therefore, the more similarities between 
two objects the more likely they produce the same output when they receive the same 
input. That is, two similar objects behave similarly.

The Similarity Principle is also critical to understanding probability because similarity 
grouping (clustering) is the only way to create recurrences of events. This similarity group-
ing can be either intentional, subconscious, or due to the limited sensibility of our organs.

TABLE 3.2

Drug Responses in Young and Old Females

Drug A Drug B

Young Female 20/200 40/300
Old Female 280/800 100/200
Total 300/1000 140/500
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The Similarity Principle can also be applicable in Emotion: Why do you care more about a 
monkey’s life than a fish’s? This is because monkeys are more similar to us than fish are. Why 
do you care more about a fish’s life than a worm’s? Perhaps it’s because a fish’s size is closer to 
ours than that of a worm. And yes, because we use worms to catch fish. Why do we care about 
a dog’s life more than a pig’s? Isn’t it because we interact with dogs more physically and emo-
tionally (common activities)? Why do we care more about friends than enemies? It is because 
we have much more in common (beliefs, values) with our friends than with our enemies.

In social psychology, the Similarity Principle is often used for persuasion. One way to 
become more persuasive is to show how you are similar to others. We like people who are 
similar to us. If we find people who share similar opinions with us we like them better, 
and if we like them better we are more likely to be persuaded by them. For more informa-
tion on similarity-principle based  AI, see Chang (2020).

Similarity and association achieve each other. We make an association between two sim-
ilar things; we recognize two things as being similar because they both associate to the 
same quality or quantity in some aspects (e.g., existing in the same space or time, or being 
or having common friends).

Like all other principles in this chapter, the Similarity Principle is inherited innate 
knowledge, whereas causality models are discoveries built on the Similarity Principle. In 
our HAI architecture, the mechanisms of learning and response will enable agents to use 
the Similarity Principle as humans do. We will explain how this is done when discussing 
Zda’s architecture and prototyping.

3.6 Parsimony Principle

William of Occam was an English philosopher and theologian. His work on knowledge, 
logic, and scientific inquiry played a major role in the transition from medieval to mod-
ern thought. Occam stressed the Aristotelian principle that entities must not be multi-
plied beyond what is necessary. This principle became known as Occam’s Razor or the 
Parsimony Principle: The simplest theory that fits the facts of a problem is the one that 
should be selected. However, Occam’s Razor is not considered an irrefutable principle of 
logic, and certainly not a scientific result. According to Albert Einstein, the supreme goal 
of all theory is to make the irreducible basic elements as simple and as few as possible 
without having to surrender the adequate representation of a single datum of experience.

The Parsimony Principle is used to select from competing models that describe a scien-
tific phenomenon. Phylogeny is a study of how organisms are related through evolution-
ary time. In phylogeny, the principle of maximum parsimony is one method used to infer 
relationships between species (taxa) in the form of evolutionary trees, either cladograms 
(Figure 3.4) or phylogenetic trees. Each branch of the evolutionary tree represents descend-
ing taxa from a common ancestor. The nodes on the tree represent the common ancestors 
of the descendants. The main difference between cladogram and phylogenetic tree is that 
a cladogram is an evolutionary tree with branches with equal distances, showing the rela-
tionship between a group of clades, whereas a phylogenetic tree is an evolutionary tree 
showing an estimate of phylogeny, where the distance of each branch is proportional to the 
amount of inferred evolutionary change (Baum, 2008). In this context, the parsimony prin-
ciple states that the tree with the fewest common ancestors or the fewest number of evolu-
tionary events is the most likely. The principle can also be viewed as the minimization of 
within-group differences or the maximization of between-group differences. This might be 
where the idea of the generalized hierarchical clustering method in narrow AI comes from.

Foundation, Architecture, and Prototyping of Humanized AI



33The World in Our Mind: Fundamental Laws and Principles

The Parsimony Principle can emerge in different forms in different sciences. Entropy 
is a measure of disorder (degree of randomness) and affects all aspects of our daily lives. 
The entropy of an object measures the amount of energy which is unavailable to do work. 
The Principle of Maximum Entropy states that the probability distribution which best rep-
resents the current state of knowledge about a system is the one with the largest entropy, 
in the context of precisely stated prior data. Since the distribution with the maximum 
entropy is the one that makes the fewest assumptions about the true distribution of data, 
the principle of maximum entropy can be seen as an application of Occam’s Razor. The 
principle was first expounded by Jaynes (1957a and b), where he argued that the entropy 
of statistical mechanics and the information entropy of information theory are basically 
the same thing.

Parsimony is an important principle of cognitive development for two reasons: (1) there 
are many ways to apply pattern discovery or apply the Similarity Principle; Parsimony 
suggests we find the simplest one to be efficient and broad (applicability), and (2) applica-
tion of the Similarity Principle is a way of practicing reductionism, by grouping similar 
things or events before patternization, the basic form of learning.

The Parsimony Principle applied to machine learning includes an example wherein a 
simple trained model often performs better in prediction than a complex model that fits all 
data points in the training data set. In our HAI architecture, the principle will be used in 
different ways: probabilistically maximizing a utility function (e.g., reward or frequency 
associated with an action or pattern) in the response mechanism, minimizing the number 
of patterns or knowledge refinement in repatternization used in the learning mechanism, 
and maximizing attentivity in the attention mechanism.

3.7 Laws of Association

Laws of Association explain how we learn and remember things. They are first seen 
in Aristotle’s psychology: impressions are stored in the seat of perception, linked by 
the laws of contiguity, similarity, and contrast. In psychology, the principal laws of the 
association are contiguity, repetition, attention, pleasure-pain, and similarity. The basic 

FIGURE 3.4
Parsimony Principle in action: cladogram.
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laws were formulated by Aristotle circa 300 B.C. and by John Locke in the seventeenth 
century. Both philosophers taught that the mind at birth is a blank slate and that all 
knowledge has to be acquired by learning. These ideas still make up the backbone of 
modern learning theory.

The Law of Contiguity states that we associate things that occur close to each other in 
time and/or space. For example, if we think of thunder, we immediately think of lightning, 
since the two often occur one after the other. When an object flies toward you, you would 
probably, considering similar experiences in the past, anticipate the pain it could cause if it 
hits you. When someone talks about apples, you might think of the sweetness of an apple.

The Law of Similarity (not the Similarity Principle discussed earlier) states that when 
two things are very similar to each other, the thought of one will often trigger the thought 
of the other. For example, when you cannot reach a book on the top shelf of a bookshelf, 
you may think of asking someone taller to help you.

The Law of Contrast states that the thought of something is likely to trigger the thought 
of its direct opposite. For example, when we hear the word "good," we often think of the 
word "bad." This happens because words often exist in a relative sense, or are co-existent: 
without bad, there will be no good, and vice versa.

Association is the key for us to use to identify different objects. As one example, the fact 
that our body parts are linked together in space all the time makes us treat them as an 
entity, called the human body. The association of things observed at different moments 
underlies the desirability of predicting their states, or relationships, over time.

Associative learning is when a subject creates a relationship between stimuli or behav-
ior (both auditory or visual) and the original stimulus (auditory or visual). The higher the 
concreteness of stimulus items, the more likely they are to evoke sensory images that can 
function as mediators of associative learning and memory. The acquisition of associations 
is the basis for learning. This learning is seen in classical and operant conditioning, a pro-
cess we will discuss later.

Memory seems to operate as a sequence of associations (attention shifts): concepts, 
words, and opinions are intertwined, so that stimuli such as a person’s face will call up the 
associated name. Understanding the relationships between different items is fundamental 
to episodic memory, and damage to the hippocampal region of the brain has been found 
to hinder the learning of associations between objects.

In a general sense, learning and knowledge discovery occur on the basis of association, 
and association can be explained from biology.

In the human brain, each neuron (Figure 3.5) is typically connected to thousands of other 
neurons. A typical neuron collects signals from others through a host of fine structures 
called dendrites. The neuron sends out spikes of electrical activity through a long, thin 
strand known as an axon, which splits into thousands of branches. At the end of each 
branch, a structure called a synapse converts the activity from the axon into electrical 
effects that inhibit or excite activity in the connected neurons. When a neuron receives an 
excitatory input that is sufficiently large compared to its inhibitory input, it sends a spike 
of electrical activity down its axon. Learning occurs by changing the effectiveness of the 
synapses so that the influence of one neuron on another changes (Chang, 2010).

Hebbian theory is a neuroscientific theory claiming that an increase in synaptic efficacy 
arises from a presynaptic cell’s repeated and persistent stimulation of a postsynaptic cell. 
It is an attempt to explain synaptic plasticity, the adaptation of brain neurons during the 
learning process. This theory was introduced by Donald Hebb in The Organization of 
Behavior (Hebb, 1949). The theory is also called Hebb’s rule and is sometimes referred to 
as cell assembly theory.
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The theory is often summarized in an epigram: “Cells that fire together wire 
together.” This actually means that cell A needs to “take part in firing” cell B, and such 
causality can occur only if cell A fires just before, not exactly at the same time as, cell 
B. Hebb’s rule attempts to explain associative or Hebbian learning, in which simulta-
neous activation of cells leads to pronounced increases in synaptic strength between 
those cells. It also provides a biological basis for errorless learning methods in educa-
tion and memory rehabilitation. If two neurons consistently fire simultaneously, then 
any connection between them will become stronger. Conversely, if the two neurons 
never fire simultaneously, the connection between them will die away. The idea is that 
if two neurons both respond to something then they should be connected (Chang, 
2020). Pavlov used this idea, called classical conditioning (Section 4.11), to train his 
dogs so that when food was shown to the dogs and the bell was rung at the same time, 
the neurons for salivating over the food and hearing the bell fired simultaneously, and 
so became strongly connected. Over time, the strength of the synapse between the 
neurons that responded to hearing the bell and those that caused the salivation reflex 
was enough that just hearing the bell caused the salivation neurons to fire in sympathy 
(Marsland, 2014).

In our HAI architecture, the laws of association will be reflected in the attention mecha-
nism including determination of the attention set and attention shift. The attention set is 
the group of objects and actions that the HAI agent pays attention to at the moment and 
serves as the basis for patternization in learning and response mechanisms.

3.8 Weber-Fechner laws

The Weber-Fechner Laws (Fechner, 1860, 1966) are two equivalent but approximate laws 
in psychophysics. Both laws relate to human perception, more specifically the relation 
between the actual change in a physical stimulus and the perceived change. This includes 
stimuli to all senses: vision, hearing, taste, touch, and smell.

FIGURE 3.5
The structure of a neuron.
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The Weber’s Law states that the minimum increase of stimulus which will produce 
a perceptible increase of sensation is proportional to the pre-existent stimulus, while 
Fechner’s law is an inference from Weber’s law (with additional assumptions) which says 
that the intensity of our sensation increases as the logarithm of an increase in energy 
rather than as rapidly as the increase.

Weber found that the just noticeable difference (JND) between two weights was approxi-
mately proportional to the weights. Thus, if the weight of 105 g can (only just) be distin-
guished from that of 100 g, the JND is 5 g. If the mass is doubled, the differential threshold 
also doubles to 10  g, so that 210  g can be distinguished from 200  g. In this example, a 
weight (any weight) seems to have to increase by 5% for someone to be able to reliably 
detect the increase, and this minimum required fractional increase (of 5/100 of the origi-
nal weight) is referred to as the “Weber fraction” for detecting changes in weight. Other 
discrimination tasks, such as detecting changes in brightness, or in tone height (pure tone 
frequency), or in the length of a line shown on a screen, may have different Weber frac-
tions, but they all obey Weber’s law in that observed values need to change by at least some 
small but constant proportion of the current value to ensure human observers will reliably 
be able to detect that change.

Fechner did not conduct any experiments on how perceived heaviness increased with 
the mass of the stimulus. Instead, he assumed that all JNDs are subjectively equal, and 
argued mathematically that this would produce a logarithmic relation between the stimu-
lus intensity and the sensation.

The logarithm of the law can be explained by the tree structure of the neural network. 
Activation of neurons by sensory stimuli in many parts of the brain is modeled by a propor-
tional law: neurons change their spike rate by about 10%–30%, when a stimulus has been 
applied. However, as Scheler (2017) showed, the population distribution of the  intrinsic 
excitability or gain of a neuron is a heavy tail distribution, more precisely a  lognormal 
shape, which is equivalent to a logarithmic coding scheme.

The Weber-Fechner laws will be implemented in HAI embodiment, mainly in the vir-
tual sensory organs. Moreover, I believe the law of logarithm can be applied to measuring 
happiness and the value of money. Once these algorithms are used in constructing the 
utility function for rationalism, the controversies between rationalism and irrationalism 
can come to a similar conclusion.

3.9 Statistical Modeling of Reality

Causality is the relationship between causes and effects. The notion of causality does not 
have an agreed upon definition in the sciences. In classical physics, an effect cannot occur 
before its cause. In Einstein’s theory of special relativity, causality means that an effect 
cannot occur from a cause that is not in the back (past) light cone of that event. Similarly, 
a cause cannot have an effect outside its front (future) light cone. These restrictions are 
consistent with the grounded belief (or assumption) that causal influences cannot travel 
faster than the speed of light in time. In quantum field theory, observables of events with 
a spacelike relationship have to commute, so the order of observations or measurements of 
such observables do not impact each other.

Philosophically, determinists believe the world occurs in sequences of events in time, 
no cause, no why, no how. It is we, humans, who make causality or predictive models to 
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simplify the real world so that we can store the modeled worlds in our brains, since we 
cannot store all the information we receive in a plain form, including itself.

In classic statistics, causality and association are often not separated in the model. 
Association refers to the relationship between the change in one variable and the change 
of another variable. Association can also be applied to more than two variables. The fun-
damental difference between causality and association is that the two changes in two 
variables can necessarily occur chronologically, the earlier one is the cause and the later 
one is called effect, while variables in an associational relationship do not necessarily have 
or are indicated in chronological order. Therefore, causality is a special type of association.

Observations and measurements generally include systematic and random errors. 
Random error (RE) is unpredictable, caused by changes of some unobservable factors. For 
example, a medicine may work well for one person, but not for another person, due to dif-
ferences in genotype or phenotypes.

There are two statistical approaches to learning from data: (1) Classical Approach, which 
seeks the relationship between the outcome and the independent variables (attributes), 
and (2) Similarity Approach, which seeks the relationship between the outcomes between 
different subjects with different attributes. The Similarity Approach is constructed from 
the Similarity Principle, the foundation of causal and associative relationships.

Controversies in the interpretations of Associative or Causal Effects arise when using a 
classical statistical model, since the effects will depend on forms of attributes (independent 
variables). For instance, to study how the lower body height will affect the body weight, 
we use the initial model (Figure 3.6) that includes the attributes: upper body height (H2), 
lower body height (H3), and a random error (RE). This initial model can be mathematically 
rewritten as Model 2, and further reduced to Model 3 with attributes: the height H1 and the 
lower body height H3. We have to point out that Model 1 and Model 3 are mathematically 
equivalent. However, the interpretations of how H3 affects the weight can be very differ-
ent. Using Model 1, we would conclude: “every inch increase in the lower body will lead 
to an a3 pound increase in body weight,” while using Model 3, we would conclude: “every 
inch increase in the lower body will lead to an a3-a2 pound increase in body weight.” 
The effect of an attribute depends on the mathematical form chosen—how ridiculous this 
sounds! Again, science is not that objective at all!

The reason that different models give different interpretations of the effects of indi-
vidual attributes is because the attributes can be associated (H1 has already included H3). 
Likewise, in life sciences, we often study how phenotypes (human behaviors) depend on 
genotypes, while genotypes are associated. Such associations make the interpretation of 
attribute-effect subjective, depending on what genes or other attributes you want to be 
included in the model.

FIGURE 3.6
Controversies in modeling body weight by heights.
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In randomized experiments such as clinical trials, the medical treatments are often 
randomly assigned to patients. Therefore, in theory, there is no association between the 
treatments and other attributes in the statistical model. However, in reality, the other 
attributes are virtually always unbalanced between the treatment groups, causing some 
“observed association” between the treatments and other attributes. Thus, the effect of 
a medical treatment is dependent on the statistician’s choice among model options. In 
statistics, correlation, ranging from −1 to 1, is a quantification of linear association. The 
mutual information between y and x, defined as the difference between the entropy of 
y and the conditional entropy of y given x, reflects the amount of information shared 
between y and x.

Recognizing this controversy and the shortcoming of classical statistics is particularly 
important to those AI researchers who were initially trained in statistics or data science 
and are overconfident in their complex modeling techniques.

Alternatively, the similarity-based machine-learning approach can be used. The 
Similarity Approach focuses on the prediction of the outcome not the effect of each attri-
bute. An introduction in such an approach and its applications can be found in Appendix B, 
and the Medical AI paper and book (Chang, 2020; Hwang and Chang, 2022). The Similarity 
Approach or Similarity-Principle-based approach will be used throughout our HAI archi-
tecture, from attention and learning to response mechanisms. Moreover, classical statisti-
cal modeling, like any scientific method, can be discovered in principle, if given sufficient 
time, by using the Similarity-Principle-based approach.

3.10 Connotation of Causality

Connotation of causality, related to Determinism and Freewillism, is a matter of unresolv-
able disagreement. The Determinism vs Freewill debate may be one of the most contro-
versial in philosophy (Chang, 2012). Free will is critical in our understanding of causality 
and, consequently, the meaning of science and learning depends on our view of free will, 
the central question of which is: do we have a choice or is choice just an illusion? Having 
free will means that one has, uniquely, a choice to make. However, free-willers also believe 
that our free will is limited by physical reality and the laws of Nature. Many maintain that 
without free will there can be no morality, no right and wrong, no good and evil, and no 
creativity. Determinism, the view that free will does not exist or cannot affect events, can 
be terrifying: If everything happens for a reason, including every piece of our thoughts, 
every one of our choices, our beliefs, and emotions, every tiny movement we make or 
action we take … then humans will act just like machines.

Conversely, causal determinism holds that future events are necessitated by past and 
present events combined with the laws of Nature. According to this philosophy, every 
event is the effect of antecedent events, and these in turn are caused by events antecedent 
to them, and so on. Causal determinism is the foundation of First Principles. Human emotions 
and actions are no exception to this rule. Whether or not to commit a crime is not a choice 
and, likewise, neither is punishing criminals (Chang, 2014). Feeling freedom of choice is 
just an illusion. We are and act like, but don’t feel like machines. Scientists cannot be sat-
isfied with free will as the ultimate cause: what causes a person to make certain choices? 
Are free wills inherited from ancestors? If there is free will, then because all non-free will 
actions are predetermined, everything is ultimately determined by free will anyway! In 
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other words, the ultimate answers to all “why” questions are the same, “because of free 
will,” and causality completely misses its scientific sense. Furthermore, does the universe 
operate deterministically before the emergence of human or free will? If there is free will, 
is it inherited from our parents or a gift from God? In either case, who should be respon-
sible for our actions? What difference, if any, should there be in how we morally treat a 
person born with a cancer gene and a person born with ‘bad’ free will?

With the ultimate development of neuroscience and understanding of the human brain, 
how much space will remain for free will? Whether you believe in free will or not, causal-
ity and scientific discovery only make sense on the basis of recognizable patterning, i.e., 
similarity grouping and the Similarity Principle.

Similarly, Biologism, or Biodeterminism here, refers to the thesis that human charac-
teristics, physical and mental, are determined at conception by hereditary factors passed 
from parent to offspring. If there is any free will, it should be given by parents, and any-
thing their parents have is delivered by grandparents, and so on. Therefore, HAI can be 
made through biological approaches, such as tube baby, organ replacement (e.g., implant-
able bioartificial kidney), etc.

HAI is a determinist’s approach, meaning that the agent’s behaviors are determined by 
the environment and his architectures. This is true even if techniques like pseudorandom 
number generators are involved in the agent’s mechanisms to mimic free will, since ran-
dom numbers generated by a computer randomizer are predictable.
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4
The World to Learn: Cognition and Learning

This chapter will discuss further important aspects of humanness and HAI. For exam-
ple, when we debate whether a machine understands a concept or natural language, we 
often forget that we might have a different understanding of the connotation (mean-
ing) of understanding. The common creativity in discovery and invention is discussed 
since they are essential for HAI. We will treat imitation, analogy, and creativity under 
the same umbrella of similarity, making their implementation in HAI a straightforward 
task. We will review brain, mind, and the Language of Thought, and compare the static 
knowledge net and dynamic knowledge net that is adopted in our HAI architecture.  
With a dynamic knowledge net, knowledge is often formulated in real time and displayed 
in the agent’s responses. As with humans, AI embodiments, including sensory organs, 
play a significant role in learning and interaction with the environment. Enlightened by 
the life achievements of Helen Keller, an extremely accomplished deafblind writer and 
lecturer, we will discuss the necessity of AI embodiments. The exploration-exploitation 
trade-off, a constantly encountered issue in both human and HAI learning, is the matter 
of choosing whether to repeat the best decisions known so far (exploitation) or to make a 
novel decision (exploration) that might provide an even better solution. Abstraction, rea-
soning, and imagination are common forms of cognitive learning. Attention is the behav-
ioral and cognitive process of selectively concentrating on a discrete aspect of information 
while ignoring other perceivable information. Attention mechanisms are crucial in the 
HAI architecture, without the mechanisms, learning will stop at a very elementary level. 
Different from the existing theories in psychology or neurology, however, in our HAI the 
attention mechanism will be classified into subconscious, conscious, and associative atten-
tion types for easy implementation. We will discuss the functions of memory and dreams 
for knowledge refinement, imaginary scenario-playing in hypothesis forms, and reliving 
experiences for “emotional needs” in building our HAI. Emotions are mental states associ-
ated with thoughts, feelings, behavioral responses, and a degree of pleasure or displeasure 
and their natural language expressions. Discretization of emotional states will be used 
for virtual emotion simulations. Observations are dependent on the observer’s sensory 
organs and his attention or state of mind. Observations can be delusive; thus, experiments 
are important for humans and HAI agents to enable the discovery and verify new find-
ings. The notions of two classic experiments, Pavlov’s Dog and Skinner’s Box, are critical 
in building HAI architecture.

4.1 Connotation of Understanding

Making an agent understand human language is an important but challenging task in 
HAI. In my view (Chang, 2012, 2014), we humans have not yet understood the meaning 
of understanding. I believe “mechanical” interpretations of these concepts are essential 
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before we can implement HAI. Chang and Chang (2017) take a fresh approach to analyz-
ing the connotations of understanding by using recursive concept-mapping, and conclude 
that understanding is essentially a concept-mapping game. “One explains a concept using 
other concepts that are further explained by other concepts, and so on. Since concepts 
are limited for any individual at any time, we will eventually come to circular definitions 
(Figure 4.1).” If we connect the words or concepts used in the definitions in sequence, 
they will form a personal wordnet, called an iWordNet (Figure 4.2). Here “i” in the term 
emphasizes the ties of the network to the individual person. The authors discovered that 
an individual’s knowledge or IQ bears a relationship to the global topological properties 
of his iWordNet, while the proposed Path of Understanding, a vector characterization 
of language strings using local topological properties of iWordnet, provides the way to 
“compute” the meaning.

If the meaning of “understanding” is not what we think it is, but in a sense just a 
 concept-mapping, then any viable approach that we could take for HAI will be very differ-
ent from the current big-data approaches.

FIGURE 4.1
Circular definitions of concepts.

FIGURE 4.2
A partial iWordnet of a high school student.
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It is interesting to know how one explains the meaning of “understanding,” the mean-
ing of “meaning,” the meaning of connotation, or the connotation of meaning. The mean-
ing of thoughts, intentions, goals, purposefulness, emotion, feeling, empathy, friendship, 
hate, animus … these are elementary and critical concepts but unfortunately, they have 
not and cannot be explained well in other terms, because in some ways these concepts 
themselves are more elementary than other concepts. We cannot use higher level concepts 
to explain more elementary concepts without circular definitions. That is why we are try-
ing in vain to explain how deep-learning neural networks work in image processing using 
high-level knowledge.

For elementary concepts, we cannot explain further using other concepts. We just 
assume we have the same understanding of them, which is reflected in our own actions. 
In addition to explaining a concept in words, understanding is also judged by the per-
son’s response (action) to the words (the request or question). How often do we watch our 
pet’s behavior and explain confidently and emotionally how she thinks? Why, then, should 
we expect more or less of the rational beings we help to create? Therefore, our goal is to 
build HAI that can behaviorally demonstrate having thoughts, emotion, consciousness, and 
the capacity for collaboration, creativity, invention, discovery, and more.

The notion that we explain anything in thoughts or in natural language, recursively to 
the elementary concepts, is so enlightening. I bravely postulate that any complex concept 
or knowledge consists of hierarchical recursions of elementary concepts and any high-
level skill is hierarchical recursions of elementary movements of body parts. These ele-
mentary (atomic) concepts and movements, despite varying from individual to individual, 
are the building blocks of our HAI agents—and make it possible to build HAI using a 
small-data approach!

4.2 Discovery versus Invention

Discovery and invention are two features that an HAI agent should have. Can we make 
an HAI agent capable of scientific discoveries and inventions? To answer this question, 
we have to first clarify the difference between a discovery and an invention. Since the 
determination of a discovery or invention is dependent on whether or not it initially exists 
outside of a human (or agent) mind (Figure 4.3), it is critical to clarify the connotation and 
denotation of a human or human identity. As we have just discussed, if we cannot clearly 
define what a person is in the Identity Paradox, how can we make a clear differentiation 
between discovery and invention?

Even more fascinating, it is difficult to tell whether a discovery is based on the discov-
erer or the person who interprets the discovery. Let me use a paradox to explain what I 
mean by that. If an AI agent did generate the exact same text as Darwin’s theory of evolu-
tion but before Darwin did, would it mean that the agent had discovered the theory? And 
since a discovery is presumably made by its discoverer, would this be the agent or the human 
reader? Should we explain the text differently from Darwin’s text just because it was gen-
erated by a machine? If we explain the machine-generated text the same way as we did for 
Darwin’s text, should we call it a discovery? If we do, we in fact have created an AI that 
can carry out scientific discovery, and such an AI agent can be just a random text generator 
or a simple software package that can randomly generate English words. In theory, this 
random text generator can generate any text as long as sufficient time is given.
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It might not be so critical to differentiate discovery from intention from HAI perspective 
since they are just two human-invented terms and they both share the common nature 
of creativity. We study imitation and creativity under the same umbrella of similarity in 
HAI: an action with great similarity to another is an imitation, while an action with an 
appropriate similarity to a known experience (or a pattern) is said to represent creativity. 
In our HAI architecture, creativity is simply the manipulation of an event-string based on 
analogy, while imitation is actioner replacement in an event-string. We will elaborate in 
Part III and discuss implementation in Part IV.

4.3 Knowledge Net and Language of Thought

Mind is the term most commonly used to describe the higher functions of the human 
brain (Figure 4.4), particularly those of which humans are subjectively conscious, such as 
personality, thought, reason, memory, intelligence, and emotion. Although other species 
of animals share some of these mental capacities, the word mind is usually used only in 
relation to humans.

The brain is the part of the central nervous system situated within the skull. It includes 
two cerebral hemispheres, and its functions include muscle control and coordination, sen-
sory reception and integration, speech production, memory storage, and the elaboration of 
thought and emotion.

The Language of Thought Hypothesis (LOTH) postulates that thought and thinking take 
place in a mental language. This language consists of a system of representations that is phys-
ically realized in the brains of thinkers and has a combinatorial syntax (and semantics) such 
that operations on representations are causally sensitive only to the syntactic properties of 
representations. According to LOTH, thought is, roughly, the tokening of a representation 

FIGURE 4.3
Discovery versus intention.
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that has a syntactic (constituent) structure with appropriate semantics. Thinking thus con-
sists in syntactic operations defined over such representations. Most of the arguments for 
LOTH derive their strength from their ability to explain certain empirical phenomena, like 
productivity and systematicity of thought and thinking (stanford.edu, 2019a).

A functionalist believes, according to the token identity theory, that a particular pain is 
identical to a particular brain process. Functionalism identifies mental states and processes 
by means of their causal roles, and we know that the functional roles are possessed by 
neural states and processes. Thus it is reasonable to suspect that the way in which the brain 
represents the world might not be through language. The representation might be much 
more like a map. A map relates every feature on it to every other feature. We can think of 
beliefs as expressing the different bits of information that could be extracted from the map.

Functionalism came to be seen as an improvement on identity theory, and as inconsis-
tent with it, because of the correct assertion that a functional state can be realized by quite 
different brain states: thus a functional state might be realized as well by a silicon-based 
brain as by a carbon-based brain. According to this paradigm, it leads to the (common) 
knowledge network (Knet), in which each concept in the network connects other concepts 
in the network directly or indirectly. Thus, a knowledge-based net such as ConceptNet, 
Wordnet, or the like might be needed for building HAI.

However, such a Knet should be individualized, not commonsense-based, and dynamic 
instead of static. We have discussed the rationale for individualization; a partial justifica-
tion of dynamization is that the mind can be an activity of the human brain. Any feeling 
in the body (perhaps through sensory organs) needs a time interval. For example, tempera-
ture can be defined for any given moment in physics; however, feeling hot can be a result of 
high temperature during some time interval, no matter how small the interval is. Therefore, 
feeling hot is an average result of a high temperature during a tiny period of time, not at 
any given moment. This leads us further to conclude that knowledge and feeling or emo-
tion do not have fixed corresponding states of mind at a given moment, it is dynamically 
formulated in real time, at least HAI agents, it should be how they will display.

In our HAI agent, knowledge is reflected by dynamically formulated responses. The sto-
chastic decision network is formulated and constantly updated via experience. Thoughts 
in the HAI are existing or newly formulated paths (in Knet) that are similar-matched with 
the sequence of observed events. Comparisons of such thoughts with the associated fre-
quency and reward will determine the agent’s response based on the similarity principle. 
The stochastic network is constructed over time through hierarchical tokenization and 

FIGURE 4.4
Brain and mind.

https://www.stanford.edu
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recursive patternization. Simply put, the computer chip is the brain, whereas the stochas-
tic decision network with associated attention, learning, and response mechanisms is the 
mind. The mind does not work independently, instead it interacts with the environment 
via its body and organs (to be discussed next).

4.4 Role of Embodiment and Embodied AI

Smith and Gasser (2005) proposed the Embodiment Hypothesis as the idea that intel-
ligence emerges in the interaction of an agent with an environment and as a result of the 
sensorimotor activity. They offer six lessons for developing embodied intelligent agents 
suggested by research in developmental psychology. They argue that starting life as a 
baby grounded in a physical, social, and linguistic world is crucial to the development of 
the flexible and inventive intelligence that characterizes humankind.

While the initial hypothesis comes from Psychology and Cognitive Science, the recent 
research developments of Embodied AI have come largely from Computer Vision research-
ers. Embodied AI is a growing research space. Facebook AI Research (FAIR) and Intel Labs 
have been spearheading new projects in the space of Embodied AI. “Embodied” is defined 
as “giving a tangible or visible form to an idea.” Simply put, “Embodied AI” means “AI 
for virtual robots.” More specifically, Embodied AI is the field for solving AI problems for 
virtual robots that can move, see, speak, and interact in the virtual world and with other 
virtual robots—these simulated robot solutions are then transferred to real-world robots 
(Bermudez, 2021).

As an example of Embodied AI, a robot firefighter must be capable of taking actions in 
the real world and can talk to humans with natural language. For instance, consider the 
following search and rescue scenario. The robot asks: “Is there smoke in any room?” First, 
the robot has to understand what the question is asking, including the meaning of “room” 
in this context.

The HAI discussed in this book is an imitation of a complete human being, not just 
a repeated performance of one specific task such as firefighting or driving a car. Thus, 
we are interested in the integral role of human embodiments in the agent’s learning and 
response.

It is interesting to look into the differences between the classical and behavior-based 
architectures in robotics. In the classical AI approach, the control architecture for robots 
is functional decomposition. First, information from different sensor systems is received 
and integrated into a central representation. Then, internal processing takes place in 
which an environment model (world model) is built, or updated, and planning for sub-
sequent actions occurs. The final stage is the execution of some actions. Altogether, such 
an appraisal leads to the sense-think-act cycle (Kosiński and Zaczek-Chrzanowska, 2007).

In behavior-based robotics, the main role is played by a method of decomposing a robot’s 
control system into a set of task-achieving behaviors (or competencies). This is achieved by 
the hierarchical subsumption architecture. In contrast to classical AI’s functional decom-
position, implementations of such task-achieving behaviors are called layers: higher-level 
layers are built on lower-level ones. Instead of a single information flow from the percep-
tual world, multiple paths and actions at different layers are executed in parallel. That is, 
each layer can function relatively independently. This subsumption allows the coordina-
tion of actuators and sensors directly.
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The human body and organs play critical roles in interactions with the environment. The 
body and organs are the “devices” for a human to directly sense the world. Without them 
we cannot have a sense of the external world and different sensations: hot versus cold, fra-
grant versus smelly, beautiful versus ugly, far versus near, fast versus slow, and pleasurable 
versus painful. The deaf cannot hear and the blind cannot see, a person of anosmia cannot 
smell, the dumb cannot speak. Of great value, legs give us the power to walk, hands give 
us the power to grab. Impairments of the body or organs will limit our interactions with 
the external world and communications with others. Parosmia is a change in the normal 
perception of odors, such as when something that normally smells pleasant now smells 
foul. Any such impairment and limitation will weaken our learning abilities.

Coordination and mapping among organs, or more accurately the senses of the same 
objects from different organs, is an important consequence of an agent interacting with 
the external world and a part of himself. For instance, a baby can quickly establish the link 
(mapping) between what a ball looks like and how it feels when he touches it. It’s such 
mappings that allow us to learn and communicate efficiently. Imagine, during lunch, if you 
ask me to pass the cheese to you, I search, see, grab, and pass it to you. Without vision and a 
hand, and without vision-hand coordination, it is much harder to accomplish the mission.

According to Cybernetics, the process of accomplishing the mission can be described 
in detail for robot-building. The process is itself akin to the use of any negative feedback 
mechanism which I employ every day. Suppose I try to reach for a pen. I constantly make 
small adjustments to my hand based on its location relative to the pen and the moving 
direction of my hand until I reach it. Perhaps less smoothly, but just as surely, our agent 
will get built.

We know the importance of embodiment in physical and emotional experiences and the 
learning of knowledge, but how much does human intelligence depend on embodiment? 
If most human beings had no eyes, our world would be very different. However, if just a 
small number of people live with organ impairments, the situation will be different.

Helen Keller’s story is very enlightening. Helen Adams Keller was an American author, 
political activist, and lecturer (Figure 4.5). She was the first deaf and blind person to earn 

FIGURE 4.5
Helen Keller with her teacher, Anne Sullivan.
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a Bachelor of Arts degree. Helen was viewed as isolated but was very in touch with the 
outside world. She was able to enjoy music by feeling the beat and she was able to have a 
strong connection with animals through touch. She was delayed in picking up language, 
but that did not stop her from having a voice. Her first teacher and life-long companion, 
Anne Sullivan, taught her language, including reading and writing. Sullivan’s first lessons 
involved spelling words on Keller’s hand to show her the names of objects around her. 
She also learned how to speak and to understand other people’s speech using the Tadoma 
method. She attended Radcliffe College of Harvard University and became the first deaf-
blind person to earn a Bachelor of Arts degree. She worked for the American Foundation 
for the Blind from 1924 until 1968, during which she toured the United States and traveled 
to 35 countries around the globe advocating for those with vision loss. Keller was a prolific 
author, writing 14 books and hundreds of speeches and essays.

We know that the impairment of one organ can provide better training opportunities for 
other organs. Vision-impaired people often have sharp ears. A hearing-impaired person 
can hear music via a device that transfers sound waves to light waves so that the person 
can produce a similar sensation by looking at motion pictures when the music is played. 
This confirms our earlier statement of truth as a matter of inter-subject agreement. The fun-
damental role of inter-subject agreement has also been discussed in the connotation of 
understanding.

When microscopes and telescopes were discovered, they extended humans’ sensory 
organs, and since then we have a different view and understanding of the universe. 
Likewise, GPS completely changes our eyes’ ability to detect (remote) object location. In 
the future, we will be able to extend our memory using external devices that will be able to 
directly communicate with our brains. You may say that we have already used the Internet 
to extend our memory. All these virtual embodiments will change the way humans view 
and interact with the world and change the view of machine races in our future society.

My final point is that for a robot, its body and sensory organs can be made of classic and 
new types of materials, biological or non-biological materials. A robot uses these to detect 
the world, and the world is unidimensionalized as text strings in our HAI architecture. 
An AI agent on the computer detects the virtual world that is already in text strings. For 
a robot, a response in text-strings will be converted to corresponding physical actions, 
while for the HAI agent, the response is linked to the corresponding animations. We will 
develop virtual embodiment in Parts III and IV.

4.5 Exploration to Exploitation

Exploration may refer to the discovery of new things, knowledge, and opportunities, and 
it is associated with radical changes and learning through experimentation. Exploitation 
may refer to the refinement of existing products, resources, and knowledge, and is associ-
ated with incremental changes. The unknown needs to be discovered or explored, and 
the known needs to be exploited for refinement. The exploration-exploitation trade-off is a 
critical issue in reinforcement learning (RL), occurring in scenarios where an agent has to 
repeatedly make a choice with uncertain payoffs. In essence, the dilemma for a decision-
making system that only has incomplete knowledge of the world is whether to repeat deci-
sions that have worked well so far (exploit) or to make novel decisions, hoping to gain even 
greater rewards (explore). A related question is: should we search over the whole sample 
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space to find the best solution in the knowledge base or only quickly search the promising 
areas? In our AI architecture, an agent can ask creative questions and generate creative 
responses or actions through (quasi-)genetic operations in his mind with a recursive deci-
sion network.

Learning often occurs in exploratory and confirmatory stages. As we make observa-
tions, our minds make hypotheses, either to fit them into the existing laws in our minds or 
to otherwise make a hypothesis. The latter is called exploratory stage learning. The truth-
ness of the hypothesis involves uncertainties. In our HAI architecture, those hypotheses 
are stored in one area of the brain, called the Imagine net, waiting to be tested. After the 
hypothesis is tested through more observations or other means, such as reading books or 
learning in a class, the hypothesis will become a law stored in another area of the brain, 
called a Knowledge net. But until then the mind is put on hold for this issue, and the associ-
ated brain resources can be used for something else.

The exploration-exploitation trade-off is facilitated using an innate creativity attribute in 
our HAI response mechanism. With this parameter, a creative agent often asks his teacher 
closed (yes/no) questions, wishing that the teacher (a knowledgeable person) will give 
either a positive or a negative answer. Here, the questions are the hypotheses. An HAI 
agent will actively ask (create) questions in wishing humans or pear to answer. The ques-
tions are formulated through imitation or through the genetic operations of mutation and 
crossover of patterns in Knet.

4.6 Abstraction, Reasoning, and Imagination

Thought encompasses an aim-oriented flow of ideas and associations that can lead to 
a reality-oriented conclusion. To reason is to make sense of things by applying logic and 
adapting or justifying practices, institutions, and beliefs based on new or existing infor-
mation. Reasoning may be subdivided into forms of logical reasoning, such as deductive, 
inductive, and abductive forms. Aristotle drew a distinction between logical discursive 
reasoning (reasoning proper) and intuitive reasoning, in which the reasoning process is 
aided by intuition. Humans can meta-think, i.e., think about thinking; however, because 
memory and time are limited, we cannot think about thinking about thinking … indefi-
nitely. This self-referential paradox suggests that Aristotle’s Logic may not be conducive to 
thinking about thinking.

Abstraction in philosophy is the process of forming a concept by identifying common 
features among a group of individuals, or by ignoring unique aspects of these individuals. 
In other words, abstraction is the process of generalization by reducing the information 
content of a concept or an observable phenomenon, typically in order to retain only infor-
mation which is relevant for a particular purpose. For example, abstracting “happiness” 
to an “emotional state” reduces the amount of information conveyed about the emotional 
state. In a sense, abstraction is similarity grouping. The philosophical definition will be 
used in our HAI architecture. We will discuss how to easily implement inductive reason-
ing using “desensitization” and deductive reasoning using “sensitization.”

Imagination is a speculative mental state that allows us to consider situations apart from 
here and now. In aesthetics, interest in imagination derives in large part from its role in our 
engagement with works of art, music, and literature. Imagination enables us to understand 
the mental states of others. It plays a central role in thought experimentation and has been 
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invoked to explain our ability to engage in counterfactual reasoning. Imagination is often 
a source of creativity.

In our HAI architecture, thinking is considered a walk (or path) in one’s knowledge 
net (Knet) or imaginary net (Inet). Self-inclusion, a characteristic of a recursive Knet, is the 
basis for an agent’s self-awareness and consciousness. Thinking about thinking is an intra-
inspection into the node of the agent in the Knet. Imagination is what is considered as 
scenario- play out in HAI’s Inet, all for the purpose of optimal decision-making.

4.7 Imitation, Analogy, and Creativity

To imitate is to mimic someone or something. Learning starts with imitation. Imitation is 
the foundation of creativity and innovation, since all of our knowledge and wisdom is a 
synthesis of things that have been created by other people. We never create something out 
of nothing. Imitation allows us to learn the central ideas for creativity and master basic 
skills needed for innovation. Broadly speaking, imitation, in various social settings, cre-
ates social norms for a society, while our culture is the collective wisdom of all generations.

A creative idea often originates from inspiration drawn from someone or something. 
That is, creativity usually implies similarities between the new and the original, a partial 
imitation, or more precisely, an analogy.

An analogy is a comparison between two objects, systems or situations that highlights 
respects in which they are thought to be similar. Analogical Reasoning is any type of 
thinking that relies upon an analogy. An analogical argument is an explicit representation 
of a form of analogical reasoning that cites accepted similarities between two systems to 
support the conclusion that some further similarity exists. The foundation allowing ana-
logical reasoning to work is the Similarity Principle.

Analogy, as a form of logic, is an inference or an argument from one particular similarity 
to another particular similarity. It is different from deduction, induction, and abduction, 
where at least one of the premises or the conclusion is general. Analogy plays a signifi-
cant role in problem solving, decision-making, perception, memory, creativity, emotion, 
explanation, and communication. Analogy is at the core of cognition. Specific analogi-
cal language comprises exemplification, comparisons, metaphors, similes, allegories, and 
parables. Analogy is important not only in ordinary language and common sense but 
also in science, philosophy, and the humanities. Therefore, it’s an important aspect of the 
agents we are creating.

Holyoak and Thagard (1989, 1995) identify three characteristics of a good analogy:

1. Similarity: The source of the analogy and the target must share some common
properties.

2. Structure: Each element of the source domain should correspond to one element
of the target domain, and there should be an overall correspondence in structure.

3. Purpose: The creation of analogies is guided by the problem-solvers goals.
Analogies are not fixed forever; instead, they can be modified as new information
comes in.

Creativity is related to imagination and new ideas, while innovation is related to its 
implementation. Creativity is the ability to conceive something unpredicted, original, and 
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unique. Innovation, closely tied to creativity, involves putting creative ideas into action. A 
better and smarter way of doing anything is a form of innovation.

An innovation often comes from clever analogies or smart ideas by borrowing across 
different disciplines. It is done so cleverly that it has to be called creative or inventive.

Imitation, analogy, and innovation have the common element of likeness, but on differ-
ent scales: extreme likeness is mimicking, some likeness is analogy, and a few key similari-
ties in principle is innovation. What do we call that which is more dissimilar than creative 
or innovative? It is called “crazy,” “illogical,” or “nonsense”!

Learning can occur when an agent observes and mimics others in an individual or team 
setting. It can also occur through actively asking curiosity-driven questions that can be achieved 
by using some event-string replacement. We will discuss this kind of learning in Part III.

In our HAI architecture, imitation, analogy, and creativity are important forms of learn-
ing. They will be treated under the same similarity umbrella and realized using token-
replacements in event-strings or patterns.

4.8 Attention in Learning

Attention is the behavioral and cognitive process of selectively concentrating on a discrete 
aspect of information while ignoring other perceivable information. It is a state of arousal. 
Attention is necessary for an efficient allocation of limited cognitive processing resources. 
Attention is manifested by an attentional bottleneck, in terms of the amount of data the 
brain can process each second. For instance, in human vision, only less than 1% of the 
visual input data (at around one megabyte per second) can enter the bottleneck, leading to 
inattentional blindness (Chabris and Simons, 2010). Research shows that when multitask-
ing, people make more mistakes or perform their tasks more slowly (Matlin, 2013) because 
attention must be divided among all of the component tasks to be performed.

Attention is often related to covert orientation. Overt orienting is the act of selectively 
attending to an item over others by moving the eyes to point in that direction. Covert 
orienting is the act of mentally shifting one’s focus without moving one’s eyes. Orienting 
attention is vital and can be controlled through external (exogenous) or internal (endog-
enous) processes.

The working brain can be represented by three co-active processes: attention, memory, 
and activation. In psychology, there are five levels of attention: Focused, Sustained, Selective, 
Alternating, and Divided.

1. Focused Attention: The ability to respond discretely to particular visual, auditory, 
or tactile stimuli. Sometimes called “orienting” to stimuli. It is the lowest level of 
attention or alertness.

2. Sustained Attention: The ability to sustain a steady response during continuous 
attention. On average, adults have an attention span of about 15–20 minutes.

3. Selective Attention: The ability to maintain attention in the face of distracting or 
competing stimuli.

4. Alternating Attention: The capacity for mental flexibility that allows the shift of 
focus between tasks.

5. Divided Attention: The ability to respond simultaneously to multiple tasks or to 
engage in more than one activity at a time.
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All five levels of attention are reflected in subconscious, conscious, and associative atten-
tion mechanisms in our HAI architecture.

In computer vision, efforts have been made to model the mechanism of human attention, 
such as its semantic significance in classification of video contents (Wang et al, 2018; Zang 
et al., 2018). Both spatial attention and temporal attention have been incorporated in such 
classification efforts.

Attention lets us focus on a small number of important things we can handle effectively. 
Therefore, a cognitive agent must have an attention mechanism for effective learning. 
For making humanized agents, we will divide attention into subconscious and conscious 
attention. Subconscious attention originates from reflections, whereas conscious atten-
tion originates from an agent’s time-dependent interests. Subconscious attention happens 
when the self-awareness switch is off, whereas conscious attention predominates when the 
self-awareness switch is on. Of course, an agent’s attention is related to many factors, some 
of which we now describe.

For subconscious attention: intensity of source (sound, light, odor, and temperature), 
closeness, and motion increase attention. Closeness is likely associated with more positive 
or negative interactions. Speed (change in distance, brightness, soundness, odor, tempera-
ture, and tactility) and acceleration are related to future closeness.

Conscious attention: Our agent Zda purposely pays attention to certain things and 
knows he is paying attention to those things. Conscious attention will be increased by the 
urgency and importance of events, as well as by the intensity of one’s interest in (or need 
for) particular subjects, e.g., mathematics, technology, and science.

Later, we will discuss associative attention and attention shifting. The attention mecha-
nisms in our HAI architecture will be explored in Chapter 12.

4.9 Memory and Dreams

Memory is a label for a diverse set of cognitive capacities by which humans, and perhaps 
other animals, retain information and approximately reconstruct past experiences. Our 
particular abilities to conjure up long-gone episodes of our lives are both familiar and 
puzzling to psychologists. Memory seems to be a source of knowledge, or more precisely, 
retained knowledge. It is the place where reasoning takes place. Recollections also take 
place in memory and are often suffused with emotion. Much of our moral life depends on 
the peculiar ways in which we are embedded in time. It’s worthwhile to know that past 
events are different from the recollection of past events. Pain at the moment of being cut is dif-
ferent when the person recalls it.

Ben Goertzel (2016, p.189–192) divides memory into working memory and long-term 
memory in his AGI architecture. In our HAI architecture, we divide (computer) memory 
into 11 different areas for data storage (knowledge) and processing. These divisions of 
memory are in the interest of computational efficiency and easy collaboration with the 
attention, learning, and response mechanism.

Memory provides the source for dreams. Everyone dreams every day. Dreams are fas-
cinating. They are characterized by successions of images, ideas, emotions, and sensa-
tions that occur involuntarily in the mind during certain stages of sleep. The content and 
purpose of dreams have been a topic of scientific speculation, philosophical intrigue, and 
religious interest. Dreaming can be used for pattern-refinement, complexity-reduction, 
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and information-reorganization. A dream may NOT be equal to the recalled dream. The illogi-
calness of a dream when it is remembered might be quite logical at the time of dreaming. 
Therefore, there is an enclosable gap between dreams and dreams as remembered, just 
like the difference between the two worlds of life and death. What we think to be reality 
might be embedded in a bigger dream (Chang, 2012). The period of a dream (agent receives 
no input) is considered to be a useful time for an agent to enhance, pick and choose, recog-
nize, and repatternize what he learns or experienced in the “daytime.” A dream can also 
be a creative process for a human when the mind is at great relaxation (Figure 4.6). The 
same applies to agents.

The obvious utility of dreams for humans is that they help us to store important memo-
ries and things learned, get rid of unimportant memories, and sort through complicated 
thoughts and feelings. Recent research (2019) indicates that dream experience represents 
a fascinating condition linked to emotional processes and the human inner world. Dream 
experience can defuse emotional traumatic memories when the emotional regulation and 
the fear extinction mechanisms are compromised by traumatic and frightening events. 
Finally, dreams could represent a sort of simulation of reality.

What do dreams mean for HAI? How does an agent use the dream mechanism to better 
organize information and discover new knowledge? What mechanisms in our own brains 
enable us to differentiate dreams from reality, and might replicating them in our agents be 
of use? We consider these important questions in Part III, but briefly dreaming is used for 
repatternization or refining patterns in Knet, while reality and dreams are identified using 
separate Knet and Inet storages in our HAI architecture.

4.10 Emotion and Language

Emotions are mental states associated with thoughts, feelings, behavioral responses, 
and a degree of pleasure or displeasure. There is currently no scientific consensus on 
a definition. Emotions are often intertwined with mood, temperament, personality, 
disposition, or creativity. Current areas of research on emotion include the develop-
ment of materials that stimulate and elicit emotion, often in connection with brain 
scan technologies.

FIGURE 4.6
Dreams play roles in information refinement, knowledge discovery, and emotional needs.
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In psychology and philosophy, emotion typically includes a subjective, conscious expe-
rience characterized primarily by psychophysiological expressions, biological reactions, 
and mental states. The original role of emotions was to motivate adaptive behaviors that 
in the past would have contributed to the passing on of genes through survival, reproduc-
tion, and kin selection. In HAI, we recognize an agent’s emotion by his displayed emotion.

Paul Ekman views that emotions are discrete, measurable, and physiologically distinct. 
He found that certain emotions appeared to be universally recognized, even in cultures 
that were preliterate and could not have learned associations for facial expressions through 
media. Ekman’s facial-expression research (Shiota, 2016) examined six basic emotions: 
anger, disgust, fear, happiness, sadness, and surprise.

Plutchik (2002) developed his wheel of emotions (similar to Figure 4.7), suggesting eight 
primary emotions grouped on a positive or negative basis: joy versus sadness; anger ver-
sus fear; trust versus disgust; and surprise versus anticipation (Lutz and White, 1986). The 
complex emotions could arise from cultural conditioning or association combined with 
the basic emotions.

FIGURE 4.7
An example of emotion wheel.
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Panksepp and Biven (2012) carved out seven biologically inherited primary affective 
systems called Seeking (expectancy), Fear (anxiety), Rage (anger), Lust (sexual excitement), 
Care (nurturance), Panic/Grief (sadness), and Play (social joy).

Statistical methods (Schacter, 2011) have been used to map emotion-related responses 
and found that the first two dimensions are valence (how negative or positive the experi-
ence feels) and arousal (how energized or enervated the experience feels). Using statistical 
analyses, Cowen and Keltner (2017) identified 27 varieties of emotional experience: admi-
ration, adoration, aesthetic appreciation, amusement, anger, anxiety, awe, awkwardness, 
boredom, calmness, confusion, craving, disgust, empathic pain, entrancement, excitement, 
fear, horror, interest, joy, nostalgia, relief, romance, sadness, satisfaction, sexual desire, 
and surprise.

Emotion is the other side of reasoning: if reasoning fails emotion arises; reasoning is to 
generalize an observation, making it reasonable or fit to a law of human nature, e.g., she 
yelled at me because she was getting so upset like everyone else in the situation.

Language (Natural and Body Language) is an external representation of knowledge and 
emotion. An utterance is a natural unit of speech bounded by breaths or pauses. Knowledge 
and emotion are patterns recognized in terms of a stochastic decision network within our 
brains. Natural Language is an essential tool for communication, while communication is 
a key instrument in cognition, learning, and emotional expression.

Like other attributes, the discretization of emotion is necessary for HAI architectures but 
fixing its number of categories is not necessary. According to Ben Goertzel (2016, p. 211), 
AGI will have emotions and other conscious experiences roughly as people do, though 
their emotions will have a different flavor, rooted in different forms of embodiment and 
mental algorithms.

From the perspective of both knowledge and emotion, the influence exerted between 
humans and agents is a two-way interaction. A human creates and teaches or “raises” an 
agent. At the same time, the agent can change a human’s behavior, just as the Internet and 
social media did.

We will code different emotional states using discrete values and the agent will map 
them to appropriate situations through his social experiences (interaction with others). 
The specific value for the emotional state will trigger the corresponding action of the robot 
or the animation of the HAI agent. Thus the emotion is displayed. Again, we assert that 
displayed emotion is emotion for HAI agents.

4.11 Experimentation

Experiments, including thought experiments, are observations under artificial settings to 
minimize the so-called confounders, often combined with the Factor-Isolation Technique. 
Experimentation is an important learning tool for humans and HAI. We will discuss 
two classic experiments: Pavlov’s Dog and Skinner’s Box, and the thought experiment of 
Galileo’s Leaning Tower of Pisa as well.

Ivan Pavlov won the Nobel Prize for Physiology or Medicine in 1904. Pavlov’s prin-
ciples of classical conditioning have been found to operate across a variety of clinical 
settings and education. Pavlov first discovered that the reflex of salivation and the 
secretion of gastric juices in a dog occur not only when food is placed in the dog’s 
mouth, but also when the dog sees the food. He became interested in this phenomenon 
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and conducted an experiment (Figure 4.8): when food was placed in a dog’s mouth, 
salivation occurred, and it occurred every time when food was given to the hungry 
dog. Since salivation is a natural, reflexive, non-learned response to the stimulus 
(food), he referred to it as an unconditioned response (UR). Next, Pavlov rang a bell 
close to the dog but, as was expected, no salivation occurred. The sound of the bell 
is a neutral stimulus (NS). Later, Pavlov rang a bell before putting food in the dog’s 
mouth. Salivation occurred. After a number of instances of hearing a bell paired with 
food, Pavlov again rang the bell, but he did not give food to the dog. Salivation still 
occurred. In this situation, salivation was elicited by the sound stimulus, which he 
called a conditional stimulus (CS). This phenomenon is called a conditioned response 
(CR). The newly established relationship between the sound of the bell and salivation 
is a consequence of the learned association between two stimuli (the bell and the food). 
According to the information theory of classical conditioning, an organism learns a 
relationship between two stimuli when the occurrence of one stimulus predicts the 
occurrence of another. People use classical conditioning in their daily lives, e.g., farm-
ers call poultry before feeding them.

The second influential experiment in learning theory is research on Operant 
Conditioning. Skinner, motivated by Thorndike’s ideas, conducted the following so-
called Skinner-Box experiment (Figure 4.9): a hungry pigeon is placed in a Skinner 
box, where there are green-lighted and red-lighted windows. When the green one 
is pecked, food will fall for the pigeon, however, if the red one is pecked, the pigeon 
will get an electric shock. In the beginning, the pigeon walks around in the box, peck-
ing here and there. Eventually, the pigeon pecks against the green-lighted window 
and food falls into the bowl. Similarly, there are also times when the pigeon pecked 
against the red-lighted window and received electric shocks. Skinner found that the 
likelihood of pecking against a green-lighted window increased and the chance of 
pecking the red-lighted window reduced over time. By pecking against the lighted 
windows, the pigeon “operated” on its environment. Therefore, this response is called 

FIGURE 4.8
Pavlov’s dogs: classical conditioning.
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an operant response. The food is a reward or reinforcer, which reinforces the appro-
priate response and increases the likelihood that a pigeon will perform that behav-
ior in the future. On the contrary, the electric shock is a punishment or inhibitor, 
which inhibits the undesirable response and decreases the likelihood that a pigeon 
will perform that behavior in the future. Operant Conditioning can be viewed as a 
reinforcement learning method following the principle of reinforcement: behaviors 
(goal-directed) by positive consequences are strengthened, while behaviors followed 
by negative consequences are weakened. This reinforcement learning method was 
recently used in clinical trials under a different name: response-adaptive randomiza-
tion trial (Chang, 2007).

In addition to real experiments, Thought Experiments also play an important role in 
learning through reasoning for building learning mechanisms in HAI architecture. Any 
new piece of experience can only become new knowledge through some sort of logical rea-
soning, be it simple or complex. Any new knowledge obtained through logical reasoning 
has to be based on some sort of old or new experience.

Galileo’s Leaning Tower of Pisa experiment is a thought experiment that was used for 
rebuttal of Aristotelian Gravity. Galileo showed that all bodies fall at the same speed with 
a brilliant thought experiment (Figure 4.10) that started by destroying the then reigning 

FIGURE 4.9
Skinner-box experiment for Operant Conditioning.

FIGURE 4.10
Real versus thought experiments of falling balls.
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Aristotelian account. The latter holds that heavy bodies fall faster than light ones (vH > vL). 
But consider this: when a heavy cannon ball (H) and a light musket ball (L) are attached 
together to form a compound object (H + L), the latter must fall faster than the cannonball 
alone. Yet the compound object must also fall more slowly since the light part will act as a 
drag on the heavy part. Now we have a contradiction: vH + L > vH and vH > vH + L. That’s the 
end of Aristotle’s theory. But there is a bonus, since the right account is now obvious: they 
all fall at the same speed (vH = vL = v H + L).

The HAI agent has the capability of using thought experiments in performing inductive, 
deductive, and abductive reasoning, and this will be elaborated in Parts III and IV.

Foundation, Architecture, and Prototyping of Humanized AI
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Part II

Humanized AI and Its Approaches

We will review briefly the history of artificial intelligence (AI) and discuss the four waves 
in AI development. Philosophically, we classify existing HAI into five different approaches: 
Neurologism, Symbolism, Connectionism, Behaviorism, and Constructivism. We ana-
lyze the advantages and disadvantages of each approach and propose a new Synthetic 
Approach (new Constructivist Approach) by combining the constructivist and behaviorist 
approaches, which serves as the philosophical foundation for HAI architecture in Part III.
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5
A Brief History of AI and Machine-
Learning Methods

5.1 A Brief History of AI

Before the term artificial intelligence (AI) was coined by John McCarthy, Marvin Minsky, 
Nathaniel Rochester, and Claude Shannon in 1955, AI research had been going on for a 
while. In his 1948 paper “Intelligent Machinery,” Alan Turing describes what we today 
call computers, as well as human-level AI. Two years later, Alan Turing published the 
paper “Computing Machinery and Intelligence,” introducing the “imitation game,” a 
test of a machine’s ability to exhibit intelligent behavior which became known as the 
“Turing test.” Warren S. McCulloch and Walter Pitts published (1943) “A Logical Calculus 
of the Ideas Immanent in Nervous Activity” to mimic the brain. The authors discussed 
networks of simplified artificial “neurons” and how they might perform simple logical 
functions. Eight years later, Marvin Minsky and Dean Edmunds built SNARC (Stochastic 
Neural Analog Reinforcement Calculator), the first artificial neural network, using 3000 
vacuum tubes to simulate a network of 40 neurons. In 1957, Frank Rosenblatt developed 
the Perceptron, an early artificial neural network enabling pattern recognition based on 
a two-layer computer-learning network. More than a decade later, Arthur Bryson and 
Yu-Chi Ho (1969) described a backpropagation learning algorithm for multi-layer arti-
ficial neural networks. This was an important precursor to the success of deep learn-
ing in the 2010s when big data became available and computing power was sufficiently 
advanced to accommodate the training of large networks. In a similar vein, Minsky’s 
Society of Mind (1986) posited that minds are mental agents, each one made of many 
smaller processes. The mental agent by itself can only do some simple thing that needs 
no mind or thought at all. Yet when we join these agents in societies, there results social, 
or swarm, intelligence.

AI development may be characterized by different periods (Russell and Norvig, 2003). 
During an era that may be named Early Enthusiasm (1952–1969), significant progress 
was already being made, such as John McCarthy’s program for LISP, Advice Taker. (It 
was McCarthy who gave us the term artificial intelligence.) Other early works include 
Marvin Minsky’s on Microworlds (IQ-Tests, Blocks World), Arthur Samuel’s on the 
game of checkers, Newell and Simons’ on the General Problem Solver, Widrow’s neu-
ral network, Adeline, and Rosenblatt’s convergence theorem on perceptrons. A Dose of 
Reality (1966–1973) was required as difficulties with early systems arose, such as (1) pro-
grams containing little or no knowledge of their subject matter and (2) the intractability 
of many of the addressed problems. Thus, comes the age of Knowledge-based Systems 
(1969–1979), such as the first knowledge-intensive system, DENDRAL for chemical analy-
sis, and expert systems, e.g., MYCIN for medical diagnosis. These are rule-based systems 
with uncertainty factors. AI  Becomes an Industry (1980–1988) was the initial broadly 
based period of entrepreneurialism. R1 became the first commercially successful expert 
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system. The AI industry boomed from a few million dollars in 1980 to billions of dol-
lars in 1988. However, because of the amount of work needed to identify and code the 
relevant rules required for expert systems, disillusionment became inevitable. The AI 
winter (1989–1995) squeezed funding for research after companies failed to deliver on 
the extravagant promises of AI. After 10 years’ of this fallow period, big data started to 
become available, first in genomics and the biomedical field, and later on for personal 
daily activities, such as purchasing behavior, facial imaging, and sentiment data. Huge 
successes followed with deep learning artificial neural networks (ANNs), enthusiasm 
and optimism for AI were resurgent, and we arrive at the present via Big-Data and 
Applications to Daily Life (1996–2025). Three highlights of this fertile period are noted 
here. AT&T Bell Labs successfully applied backpropagation in ANN to enable machines 
to recognize handwritten ZIP codes, though it took 3 days to train the network given the 
hardware limitations at the time. In 2006, Geoffrey Hinton published “Learning Multiple 
Layers of Representation,” summarizing the ideas that have led to “multilayer neural 
networks that contain top-down connections and training them to generate sensory data 
rather than to classify it,” i.e., a new approach to deep learning. In March 2016, Google 
DeepMind’s AlphaGo defeated Go champion Lee Sedol. Looking ahead, my prediction is 
that, after 2030, research into and applications of Humanized AI and Human-level AI will 
be the new focus, and the combination of the constructivist approach with  minimalist 
and behaviorist approaches will be the mainstream.

In computational linguistics, research effectively originated with efforts in the United 
States in the 1950s to use computers to automatically translate texts from foreign lan-
guages, particularly Russian scientific journals, into English (Hutchins, 1999). To trans-
late one language into another, one has to understand the grammar of both languages, 
including morphology (the grammar of word forms), syntax (the grammar of sentence 
structure), semantics, the lexicon (or “vocabulary”), and even something of the prag-
matics of language use. Thus, what started as an effort to translate between languages 
evolved into an entire discipline devoted to understanding how to represent and pro-
cess natural languages using computers. Long before modern computational linguistics, 
Joseph Weizenbaum developed ELIZA in 1965, an interactive program that carries on 
a dialogue in the English language on any topic. ELIZA surprised many people who 
attributed human-like feelings to the computer program. In 1988, Rollo Carpenter devel-
oped the chatbot Jabberwacky to “simulate natural human chat in an interesting, enter-
taining and humorous manner.” It is an early attempt at creating AI through human 
interaction. In 1988, IBM’s Watson Research Center published “A Statistical Approach 
to Language Translation,” heralding the shift from rule-based to probabilistic methods 
of machine translation. This marks a broader shift from a deterministic approach to a 
statistical approach in machine learning (ML). In 1995, inspired by Joseph Weizenbaum’s 
ELIZA program, Richard Wallace developed the chatbot A.L.I.C.E. (Artificial Linguistic 
Internet Computer Entity) with natural language sample data collection at an unprec-
edented scale, enabled by the advent of the Web. In 2011, a convolutional neural network 
won the German Traffic Sign Recognition competition with 99.46% accuracy (vs. humans 
at 99.22%). In the same year, Watson, a natural language question-answering com-
puter developed by IBM, competed on Jeopardy and defeated two former champions. 
In 2009, computer scientists at the Intelligent Information Laboratory at Northwestern 
University developed Stats Monkey, a program that writes sports news stories without 
human intervention.

Substantial efforts and great progress are being made today in Medical AI under the 
names of bioinformatics and ML. Some of the areas are prescription drug discovery, 



63A Brief History of AI and Machine-Learning Methods

molecular design, drug development, disease diagnosis and prognosis, pharmacovigilance, 
and healthcare. These are described in the book Artificial Intelligence for Drug Development, 
Precision Medicine and Healthcare (Chang, 2020). The advances are exemplified by the AI 
systems AlphaFold and AlphaFold 2, among many others. Most recently, MIT devel-
oped  “liquid neural networks” for use in time-sensitive tasks like pacemaker monitor-
ing, weather forecasting, investment forecasting, or autonomous vehicle navigation. By 
numerically solving the differential equations of the system, the bottleneck problem is 
that scaling up these systems has become prohibitively expensive, computation-wise. This 
problem has been resolved when MIT solves the differential equations analytically in 2021. 
By solving this equation at the neuron level, the team is hopeful that they’ll be able to 
construct models of the human brain that measure the millions of neural connections, 
something not possible today (Tarantola, 2022).

In robotics, Nikola Tesla (1898) made a demonstration of the world’s first radio- 
controlled (“a borrowed mind” as Tesla described) vessel, an embryonic form of a robot. 
Czech writer Karel Capek (1921) introduced the word robot, a Czech word meaning 
forced work, in his play Rossum’s Universal Robots. This brought automation to a new 
level in the minds of the science-minded public. Amazingly, just four years later, a radio-
controlled driverless car was released, traveling the streets of New York City. In 1929, 
Makoto Nishimura designed the first robot built in Japan, which could change its facial 
expression and move its head and hands by using an air pressure mechanism. The first 
industrial robot, Unimate, started working on an assembly line in a General Motors plant 
in New Jersey in 1961. In 1986, Bundeswehr University built the first driverless car, which 
drives up to 55 mph on empty streets. In 2000 Honda’s ASIMO robot, an artificially intel-
ligent humanoid robot, was able to walk as fast as a human, delivering trays to customers 
in a restaurant setting. In 2009 Google started developing, in secret, a driverless car. In 
2014, it became the first to pass, in Nevada, a U.S. state self-driving test. Now, driverless 
cars have become a reality, thanks to Tesla, Nvidia Waymo, Zoox, and others. In the near 
future, if the liquid neural network is adopted, driverless cars will become smarter. With 
the liquid neural network, only 19 neurons plus a small perception module could make 
key decisions in driving a car.

For overview of recent development of AI, Artificial Intelligence Index (Annual) Report 
by Stanford University Human-Centered Artificial Intelligence (2022) provides an excel-
lent resource.

5.2 Types of Machine Learning Methods

It is helpful to learn common methods (see Appendix) of narrow AI before we build the 
HAI architecture. Commonly used NAI or ML methods can be classified into five gen-
eral categories: supervised, unsupervised, reinforcement, evolutionary, and swarm intel-
ligence learning methods (Figure 5.1).

A typical task for supervised learning is classification, e.g., noting when there is dis-
ease or no disease. In supervised learning, the learner will give a response y based on 
an input x and will be able to compare his response y to the target (correct) response. In 
other words, the “learner” presents an answer y for each x in the training sample, and 
the supervisor provides either the correct answer or an error associated with the learner’s 
answer. The term learning here refers to the learner (a model) adjusting its parameters to 
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reduce the error by using the training dataset. The trained AI model can be used for future 
predictions. Supervised learning has been used in disease diagnosis, drug safety signal 
detection, and other medical fields.

Two typical tasks of unsupervised learning are document clustering and information 
retrieval. In unsupervised learning, the learner receives no feedback from the supervi-
sor at all. Instead, the learner’s task is to re-represent the inputs in a more efficient way, 
for instance, as clusters or with a reduced set of dimensions. Unsupervised learning is 
based on the similarities and differences among input patterns. The goal is to find hidden 
structures in unlabeled data without the help of a supervisor providing a correct answer. 
In drug development, unsupervised learning is often used for data preprocessing before 
adopting supervised learning.

An application of reinforcement learning (RL) is iRobot, a popular robot vacuum cleaner. 
With RL, an iRobot is able to learn the environment and find the optimal routine to clean 
the room. RL concerns how a learner should take actions in an environment so as to maxi-
mize some notion of long-term reward. RL gets feedback from real-world experiences; its 
algorithms attempt to find a policy (or a set of action rules) that maps states of the world 
to the actions the learner should take in those states. Unlike supervised learning, in RL 
the correct input-output pairs are never presented. Furthermore, there is a focus on online 
performance, which involves finding a balance between exploration of uncharted territory 
and exploitation of one’s current knowledge. RL is widely studied in the field of robotics. 
RL has also been suggested for drug development programs (Chang, 2020).

Biological evolution can be viewed as a learning process: how biological organisms 
have offspring and adapt to their environment can improve the probability of the spe-
cies’ survival and success. Inspired by such biological evolutionary mechanisms, genetic 
 programming (GP) was developed (Forsyth, 1981), demonstrating the successful evolu-
tion of small programs in performing the classification of crime scene evidence. In GP, 

FIGURE 5.1
Types of machine learning approaches.
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computer programs are encoded as a set of genes that are then modified (evolved) using 
an evolutionary algorithm. The methods used to encode a computer program in an artifi-
cial chromosome and to evaluate its fitness with respect to the predefined task are central 
in the GP technique. GP has been used in many aspects of drug development (Ghaheri 
et al., 2015).

Systems in which organized behavior arises without a centralized controller or leader 
are called self-organized systems. The intelligence possessed by a self-organized system is 
called Swarm Intelligence (SI) or Collective Intelligence. Artificial SI is an emerging field 
of biologically inspired AI characterized by micro motives and macro behavior. A good 
example of Swarm Intelligence is that of ant colonies which optimally and adaptively for-
age for food. Ants are able to determine the shortest path leading to a food source, simply 
by following pheromones. This works only because the shortest path will have more ant 
traffic and stronger pheromone scents than other paths.
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6
Waves of AI Development

DARPA, a well-known AI research agency in the United States, has recently characterized 
AI development using three waves (Figure 6.1). It’s dedicated to funding “crazy” projects, 
ideas that are completely outside the accepted norms and paradigms. It has made contri-
butions to the establishment of the early internet and the Global Positioning System (GPS), 
as well as a flurry of other bizarre concepts, such as legged robots, prediction markets, 
and self-assembling work tools (Tzezana, 2017). To DARPA’s three waves, a fourth wave 
is added in this book to cover Humanized AI.

6.1 First Wave: Logic-Based Handcrafted Knowledge

In the first wave of AI, domain experts devised algorithms and software according to 
available knowledge. This approach led to the creation of chess-playing computers and of 
delivery optimization software. Weizenbaum’s 1965 ELIZA, an AI agent that can carry on 
grammatically correct conversations with a human, was a logical rule-based agent. Even 
most of the software in use today is based on AI of this kind—think of robots in assembly 
lines and early Google Maps. In this wave, AI systems are usually based on clear and logical 
rules or decision trees. Systems examine the most important parameters in every situation 
they encounter and reach a conclusion about the most appropriate action to take in each 
case, without any involvement of probability theory. As a result, when the tasks involve too 
many parameters, many uncertainties, hidden parameters or confounders affect the out-
comes, and it is very difficult for first-wave systems to deal with the complexity appropri-
ately. Determining drug effects in humans and making disease diagnoses and  prognoses 
are examples of such complex biological systems that first-wave AI cannot handle well.

In summary, first-wave AI systems are capable of implementing logical rules for well-
defined problems but are incapable of learning and are not able to deal with problems with 
large underlying uncertainty.

6.2 Second Wave: Statistical Machine Learning

Over nearly two decades, the emphasis in AI has shifted from logic to probabilities, or 
more accurately, to mixing logic and probabilities. For this change, we can thank the avail-
ability of “big data,” viable computer power, and the involvement of statisticians. Much 
of the impressive ongoing AI effort in both industrial applications and academic research 
falls into this category. And now comes the second wave of AI. It is so statistics-focused 
that Thomas J. Sargent, winner of the 2011 Nobel Prize in Economics, recently told the 
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World Science and Technology Innovation Forum that artificial intelligence is actually sta-
tistics, but in a very gorgeous phrase, “it is statistics.” Many formulas are very old, but all 
AI uses statistics to solve problems.

To deal with complex systems with great uncertainties, probability and statistics are 
naturally effective tools. However, it cannot be the exact same statistical methods we have 
used in classical settings. As Leo Breiman (2001) pointed out in his Statistical Modeling: 
“There are two cultures in the use of statistical modeling to reach conclusions from data. 
One assumes that the data are generated by a given stochastic data model. The other uses 
algorithmic models and treats the data mechanism as unknown. The statistical commu-
nity has been committed to the almost exclusive use of data models. This commitment has 
led to irrelevant theory, questionable conclusions, and has kept statisticians from working 
on a large range of interesting current problems. Algorithmic modeling, both in theory 
and practice, has developed rapidly in fields outside statistics. It can be used both on large 
complex datasets and as a more accurate and informative alternative to data modeling on 
smaller datasets. If our goal as a field is to use data to solve problems, then we need to move 
away from exclusive dependence on data models and adopt a more diverse set of tools.”

Statistical machine learning systems are highly successful at understanding the world: 
they can distinguish between two different people or between different vowels. They can 
learn and adapt themselves to different situations if they’re properly trained. However, 
unlike first-wave systems, they are limited in their logical capacity: they don’t rely on precise 
rules, but instead they go for solutions that “work well enough, usually” (Tzezana, 2017).

The poster boys of second-wave systems are the conceptualizers of artificial neu-
ral networks (ANNs) and their great successes in the fields of Deep Learning, includ-
ing voice- recognition and image-recognition. Starting in the early 2010s, huge amounts 
of training data together with massive computational power prompted a reevaluation of 

FIGURE 6.1
Four waves in AI research.
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some particular 30-year-old neural network algorithms. To the surprise of many research-
ers, the combination of big data, incredible computer power, and ANNs, aided by new 
innovations such as deep-learning convolutional networks, has resulted in astonishing 
achievements in speech and image recognition as well as in most categorization tasks. For 
example, Johnson and Johnson’s Sedasys system has been approved by the FDA to deliver 
anesthesia automatically for standard procedures such as colonoscopies. The machine can 
reduce cost since a doctor supervises several machines at the same time, often making 
the presence of a dedicated human anesthesiologist unnecessary. Speech-based interactive 
systems such as Siri of Apple’s IOS, Google Assistant, and driverless cars are well-known 
achievements of deep learning. Deep Learning algorithms include multiple-layer percep-
trons, convolutional neural networks, long short-term memory networks, and Deep Belief 
Networks. All these deep learning networks have been used to great effect in drug discov-
ery, health data processing, and disease diagnosis and prognosis.

Researchers try, often unsuccessfully, to explain why the artificial neural network 
(ANN) works well, even though it is not totally a black box. We are incapable of consis-
tently explaining the why because we can only use simpler or more fundamental con-
cepts to explain more complex or higher level concepts, but not the other way around. 
This Achilles heel of second-wave systems, that nobody is certain why they’re working so 
well, might actually be an indication that in some respects they are indeed much like our 
brains: we can throw a ball into the air and predict where it’s going to fall, even without 
calculating Newton’s equations of motion.

6.3 Third Wave: Contextual Adaptation

Adaptive behavior requires finding, and adjusting, an optimal tradeoff between focusing 
on a current task-set (cognitive stability) and updating that task-set when the environment 
changes (cognitive flexibility). A contextual adaptation–enabled AI can deal with novel-
ties, adapting to work under certain conditions which were not initially predicted by their 
developers. The adaptive system recognizes the concept of “person-in-environment” and 
has the skill to dynamically alter their behavior while running, depending on the chang-
ing conditions of the environment, i.e., context-dependent, dynamic mapping between the 
interfaces of the components being adapted, overcoming some of the limitations of the 
static mappings.

Third-wave AI systems with the ability for contextual adaptation are a giant leap from 
today’s “black box” systems. They understand context and meaning and are able to adapt 
accordingly. The AI systems themselves will construct models that will explain how the 
world works and discover by themselves the logical rules which shape their decision- 
making process. Third-wave systems would also be able to take information from several 
different sources to reach nuanced and well-explained conclusions.

An example of third-wave AI is driverless cars that must adapt to an environment that 
includes constantly changing visual and vocal elements.

Another example of third-wave AI is Aigo, the Chatbot with a Brain. Aigo is built on 
Integrated Cognitive Architecture that functions somewhat more like a human mind as it 
continues to evolve with common sense knowledge and cognitive skills. As the company 
claims, “Aigo creates engaging experiences for customers and employees alike by offering 
highly intelligent and hyper-personalized digital assistants at scale for a given application 
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in any industry.” Aigo’s Core Brain continues to grow & evolve its commonsense knowl-
edge about people, places, concepts of the world, and application-specific knowledge is 
provided to Aigo. Over time this interactive intelligent adaptive assistant becomes increas-
ingly personalized, powerful, and natural.

Bearing similarities, the database Wordnet and semantic network Conceptnet were 
devised initially to support AI in the discovery of knowledge and for a contextual under-
standing of language and concepts. Because in their present forms they lack true brains, it 
is questionable how much further such approaches alone can go in advancing knowledge 
discovery or learning for HAI agents.

A good example of efforts toward the third wave would be genetic programming (GP). 
GP is essentially the creation of self-evolving programs, a patented invention from 1988 
by John Koza. The series of four books by Koza (1992, 1994) and Koza et al. (1999, 2003) 
fundamentally established GP and included a vast number of GP results and examples of 
human-competitive inventions and reinventions in different fields. Subsequently, there was 
an enormous expansion in the number of publications within the Genetic Programming 
Bibliography, surpassing 10,000 entries (Kaza, 2010). At the same time, industrial uptake 
has been significant in several areas, including finance, the chemical industry, bioinfor-
matics (Langdon and Buxton, 2004), and the steel industry.

In terms of intelligence capabilities, overall machine intelligence increased over time 
from the first wave to the third wave. The increasing trend is almost true for all four 
aspects of intelligence, too, as summarized in Table 6.1.

6.4 The Fourth Wave: Humanized Artificial Intelligence

It is said: in the first AI wave you had to be a programmer, in the second AI wave you had 
to be a data scientist, and in the third AI wave you had to be morally better. However, 
third-wave AI is still nowhere near human intelligence in terms of general cognitive abil-
ity and creativity, nor is it generally capable of discovering new knowledge, identifying 
commonsense rules, or displaying emotional intelligence. Such full human-capability 
intelligence is called HAI. HAI requires a human-like appearance and embodiment with 
competent “sensory organs,” because knowledge acquisition depends on those sensory 
organs. A “strong” brain equipped in a “weak” body can only make the brain weaker and 
less capable. HAI is a small-data-based approach. The agent will look, think, and behave 
like a human. Growing from a baby, it will learn only basic things at first, but be able to 
grow into complex learning with a simple but credible cognitive ability and minimum 

TABLE 6.1

Characteristics of the First Three AI Waves

Capabilities First Wave Second Wave Third Wave

Perceiving

Abstracting

Learning

Reasoning
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inherited knowledge (data). There will be no need for any built-in languages. HAI is not a 
digital slave and will not be treated as such: how an agent is treated determines what he/
she will become. HAI agents will not only be capable of what humans are capable of, but 
also will do what humans cannot do.

So far, there is limited research on HAI and AGI beyond the philosophical aspects 
(Goertzel, 2016, 2020; Jackson, P.C., 2019). Goertzel (2020) considers OpenCog, a project 
with the goal of building a Synthetic Complex Adaptive System. The System is to have gen-
eral intelligence a bit beyond the human level while demonstrating a reasonably beneficial 
attitude toward humans and other sentient beings.

Goertzel looked at the mind as being composed of patterns and concerned with rec-
ognizing patterns in its environment and itself. He formally defines a “pattern” in some 
entity X as a program for computing X, which was sufficiently shorter or smaller than X 
that it provided some “information compression.” The AI system includes a network with 
Nodes representing concepts, objects, numbers, or mathematical functions, Links repre-
senting different kinds of relationships between Nodes, and Maps (clusters of nodes and 
links) forming the building blocks of knowledge.

OpenCog is an open-source software project founded in 2008 (Goertzel, 2016), aimed at 
directly confronting the AGI challenge by using mathematical and biological inspiration 
and professional software engineering techniques. Just as the human brain consists of 
a host of subsystems carrying out particular tasks, OpenCog is a diverse assemblage of 
cognitive algorithms, each embodying their own innovations, but what makes the overall 
architecture powerful is its careful adherence to the principle of cognitive synergy. The 
OpenCog design aims to capture the spirit of the brain’s architecture and dynamics with-
out imitating the details (which are largely unknown), via:

1. integrating together a carefully selected combination of cognitive algorithms 
 acting on different kinds of knowledge

2. in a scalable, robust, and flexible C++ software architecture
3. in a manner specifically designed:

a. to cooperate together with “cognitive synergy” for the scope of tasks charac-
teristic of human intelligence.

b. to give rise to the emergence of an effectively functioning knowledge network 
in the AI system’s mind, as it interacts with the world, including a self- updating 
hierarchical/heterarchical ontology and models of itself and others.

OpenAI is a research laboratory focused on artificial intelligence, and its mission is to 
ensure that artificial general intelligence (AGI) benefits all of humanity. It consists of the 
for-profit corporation OpenAI LP and its parent company, the non-profit OpenAI Inc. 
The organization was founded in San Francisco in late 2015 by Sam Altman, Elon Musk, 
and others. Musk resigned from the board in February 2018 due to a potential conflict 
of interest. In 2019, OpenAI LP received a US$1 billion investment from Microsoft and 
Matthew Brown Companies.

In 2020, OpenAI announced GPT-3, a language model trained on trillions of words 
from the Internet. It also announced that an associated API, named simply “the API,” 
would form the heart of its first commercial product. GPT-3 is aimed at natural language 
answering of questions, but it can also translate between languages and coherently gen-
erate improvised text. In 2021, OpenAI introduced DALL-E. One year later, their newest 
system, DALL·E 2, generates more realistic and accurate images with 4x greater resolution. 
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In 2022, OpenAI released a preview of ChatGPT, which interacts using conversation, to 
the general public.

The product guides include:

1. Text completion for generating or editing text using our models
2. Code completionLimited beta for generating, editing, or explaining code
3. Image generation Beta for generating or editing images
4. Fine-tuning for training a model for your use case
5. Embeddings for searching, classifying, and comparing text

For example, when I type: Tell me something about humanized AI. The responses I 
received are:

Humanized AI refers to the development and design of artificial intelligence systems that exhibit 
qualities or behaviors that are associated with human intelligence and cognition. This can include 
the ability to learn and adapt, to communicate and interact with humans in a natural and intui-
tive way, and to understand and respond to complex and varied situations.

One approach to creating humanized AI is to build systems that can mimic or replicate certain 
aspects of human intelligence, such as natural language processing, problem solving, and deci-
sion making. Another approach is to design AI systems that can learn from and interact with 
humans in a way that is similar to how humans learn from and interact with one another.

There are many potential applications for humanized AI, including customer service, educa-
tion, healthcare, and entertainment. However, the development of humanized AI also raises 
ethical and philosophical questions about the relationship between humans and technology, 
and the potential consequences of creating artificial intelligence that is too closely aligned with 
human behavior.

Of course, this definition of Humanized AI is a narrow AI, different from the HAI dis-
cussed in this book—an AGI with the general human capabilities and characteristics.

OpenAI is just a language model and poor in dealing with novelties and has a long way 
to go in reaching human-level intelligence or Humanized AI.

Foundation, Architecture, and Prototyping of Humanized AI
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7
Existing Approaches to Humanized AI

We will discuss the main existing approaches to HAI or AGI, which adhere to the follow-
ing theories and schools of thought.

1. Neurologism. One simulates the structural characteristics of the biological neural 
networks in the human brain.

2. Functionalism (symbolism, logicism). One simulates the functional processes of 
logical thinking in the human mind.

3. Connectionism. The approach is based on the notion that humans’ intellectual 
abilities can be mimicked using artificial neural networks (ANN).

4. Behaviorism. The aim is to mimic the behavioral relationship in solving problems 
by some intelligent beings, either humans or animals.

5. Constructivism. Emphasis is on active construction by the individual. Constructivism 
assumes minimal innate knowledge as opposed to the large commonsense 
knowledge base required by the behavioristic approach. Constructivists believe 
that learning occurs through processes called construction, reconstruction, and 
deconstruction, and the same learning mechanism is used at all ages.

These may relate to but not the same as the five primary learning theories in pedagogy: 
(1) Behaviorism—as simple Psychology would have it, Behaviorism is only concerned with 
observable stimulus-response behaviors, as they can be studied in a systematic and observ-
able manner. (2) Cognitivism—learning relies on both external factors and the internal 
thought process. (3) Constructivism—the learner builds upon his or her previous experi-
ence and understanding to “construct” a new understanding. (4) Humanism—learning 
focuses on the learner’s potential rather than the method or materials. (5) Connectivism—
informed by the digital age, connectivism departs from constructivism by identifying and 
remediating gaps in knowledge (Fairbanks, 2021).

7.1 Neurologism: Whole Brain Emulation

Whole brain emulation (WBE), or mind uploading, is the hypothetical futuristic process of 
scanning a physical structure of the brain accurately enough to create an emulator of the 
mental state (including self) of a particular brain substrate, and then copying it to a com-
puter in a digital form. The goal is that the artificial brain would be similar enough to the 
original to be able to respond in essentially the same way and experience having a sentient 
conscious mind (Goertzel and Ikle, 2012).

The human brain has a huge number of synapses. Each of one hundred billion  neurons 
has on average 7,000 synaptic connections (synapses) to other neurons. It has been 
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estimated that the number of synapses in adult brains ranges from 100 to 500 trillion. An 
estimate of the brain’s processing power, based on a simple switch model for neuron activ-
ity, is around 100 trillion synaptic updates per second (SUPS) (Russell and Norvig, 2003). 
A brain simulation would likely have to capture the detailed cellular behavior of biologi-
cal neurons, presently understood only in the broadest of outlines. The overhead intro-
duced by full modeling of the biological, chemical, and physical details of neural behavior 
would require an extraordinarily powerful computer. Quantum computers might provide 
a future solution.

The Blue Brain Project is a Swiss brain research initiative that aims to create a digital 
reconstruction of rodent (and eventually human) brains by reverse-engineering mamma-
lian brain circuitry. The project, founded in May 2005, attempts to use biologically detailed 
digital reconstructions and simulations of the mammalian brain to identify the funda-
mental principles of brain structure and function. According to the Blue Brain Project 2019 
report, “Brain in the computer: what did I learn from simulating the brain?,” the full recon-
struction of a mouse’s cerebral cortex was completed, with virtual EEG experiments to 
begin soon (SEGEV, 2019).

The actual complexity of modeling biological neurons has also been explored in the 
OpenWorm Project, whose aim was to completely simulate a worm brain. The brain has 
only 302 neurons in its neural network with about 1,000 cells. Despite the small number, 
worms appear able to make genuinely complex decisions.

There are several challenges to the mind-up approach: (1) How to deal with innate 
knowledge, which is essential for survival and learning, at least for earlier stages, but has 
not been addressed, and (2) Embodiment is necessary for learning and emotion. When 
a person is equipped with artificial hands, his mind wouldn’t feel that the hands are his 
until long afterward. If our mind has a completely new body, we won’t know immediately 
how the body works. Yet, how artificial organs neurologically will connect to organs such 
as the eyes seems very challenging.

7.2 Symbolism (Logicism)

Symbolism represents the notion of all methods in artificial intelligence (AI) research that 
are based on human-readable symbolic representations of problems, logic, and search. 
Symbolic AI was the dominant paradigm of AI research from the mid-1950s until the 
late 1980s. John Haugeland (1985) gave the name GOFAI (“Good Old-Fashioned Artificial 
Intelligence”) to symbolic AI and analogously GOFR (“Good Old-Fashioned Robotics”) in 
robotics. Since symbolism is based on the assumption that many aspects of intelligence 
can be achieved by the manipulation of logical symbols using propositional and predicate 
calculus, its synonyms include logicism, logical positivism, logical empiricism, neopositiv-
ism, and functionalism.

Weizenbaum’s (1966) Eliza computer program is an early attempt at such an approach. 
Eliza could interact with humans via text messages and simulate a psychotherapist. We 
can type simple English sentences as input to Eliza, and Eliza will generate English sen-
tences  in response, using simple parsing and substitution of key words into standard 
phrases. Users who didn’t know how Eliza worked sometimes thought the program was 
a therapist (Figure 7.1). Here is an example I tried on the website This javascript version of 
ELIZA was originally written by Wallace and Dunlop (1999).
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The key to Symbolism was the verification principle. This theory of knowledge asserted 
that only statements verifiable through direct observation or logical proof are meaning-
ful. Brooks (1991) maintained that all main AI’s ideas concerning thinking, logic, and 
problem solving are based on assumptions that come from our own introspection, from 
how we see ourselves. The validity of the approach is based on the so-called Universal 
expressiveness of logic.

The universal expressiveness of logic is a proposition analogous to the Turing thesis 
that Turing machines are computationally universal, i.e., anything that can be computed 
by any machine can be computed by a Turing machine. The expressiveness thesis states 
that anything that can be expressed in first-order logic with a suitable collection of func-
tions and predicates. However, this can be challenged: can we logically express a person 
who believes God is capable of everything including creating a stone that he himself can-
not raise (Chang, 2014, p. 37; 2012, p. 7)? To a good believer, deductive reasoning can be 
wrong if it conflicts with his belief. Thus, symbolism cannot artificialize such a person and 
cannot be the sole method for humanized AI.

One main achievement of symbolism AI is the expert system, a computer system that emu-
lates the decision-making ability of a human expert. Expert systems are designed to solve 
complex problems by reasoning through a supported knowledge base, characterized mainly 
as simple if–then rules rather than through conventional procedural code. The first expert 
systems were created in the 1970s and then proliferated in the 1980s. An expert system can 
include two subsystems: the inference engine and the knowledge base. The knowledge base 
represents facts and rules. The inference engine applies the rules to the known facts to deduce 
new facts. Inference engines may also include explanation and debugging capabilities.

Symbolic AI was intended to produce general, humanized agents, whereas most modern 
research is directed at specific sub-problems or weak AI. Symbolic AI may not be a viable 
approach to humanized AI but can remain a very important component of AI. Noticeable 
efforts in this direction include the Neuro-Symbolic Concept Learner (NSCL), a hybrid AI 
system developed by the MIT-IBM Watson AI Lab. NSCL uses both rule-based programs 
and neural networks to solve visual question-answering problems. As opposed to pure 
neural network–based models, this hybrid AI can learn new tasks with less data and is 
explainable (Mao et al., 2019).

FIGURE 7.1
The interface of Weizenbaum’s ELIZA computer program.
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7.3 Connectionism (Structuralism)

Connectionism, an approach to AI that developed out of attempts to understand how the 
human brain works at the neural level and, in particular, how people learn and remember. 
For that reason, this approach is sometimes referred to as neuronlike computing (Copeland, 
2022). Connectionism can also refer to an approach in Cognitive Science that hopes to 
explain mental phenomena using ANN. Connectionism presents a cognitive theory based 
on simultaneously occurring, distributed signal activity via connections that can be rep-
resented numerically, where learning occurs by modifying connection strengths based on 
experience (Smolensky, 1999).

Connectionism is the notion that a human’s cognition and intellectual abilities can 
be modeled using ANNs. An ANN model includes the input layer, one or more hid-
den layers, and the output layer. Each layer contains input and output nodes, weights, 
and activation functions. The layers are connected together with weights that mea-
sure the strength of connections between the units. These weights model the effects of 
the synapses that link one neuron to another. Learning is essentially the updating of 
the weights.

The foundation for ANNs was laid in the 1940s by Warren McCulloch and Walter Pitts’ 
(1943) invention of artificial neurons, later variants of which were called perceptrons. The 
authors were motivated by cell assembly theory, sometimes referred to as Hebb’s rule 
(Hebb, 1949). Hebbian theory claims that an increase in synaptic efficacy arises from a 
presynaptic cell’s repeated and persistent stimulation of a postsynaptic cell. It is an attempt 
to explain synaptic plasticity, the adaptation of brain neurons during the learning process.

Deep Learning ANNs, consisting of many layers of neurons, have achieved great suc-
cesses in many fields. Deep learning ANN architectures include (1) Feedforward Neural 
Networks (FNNs) for general classification and regression, (2) Convolution Neural 
Networks (CNNs) for image recognition, (3) Recurrent Neural Networks (RNNs) for 
speech recognition and natural language processing, and (4) Deep Belief Networks (DBNs) 
for disease diagnosis and prognosis. Two other popular neural networks are Generative 
Adversarial Networks (GANs) for classification problems and Autoassociative Networks 
(Autoencoders) for dimension reduction.

Connectionist models provide a new paradigm for understanding how information 
might be represented in the brain. A seductive but naive idea is that single neurons (or 
tiny neural bundles) might be devoted to the representation of each thing the brain needs 
to record. Imagine that there is a grandmother neuron that fires when we think about our 
grandmother. However, such local representation is not likely. There is good evidence that 
our grandmother thought involves complex patterns of activity distributed across rela-
tively large parts of the cortex (stanford.edu, 2019b).

Despite the great success in applications of ANN as narrow AI, most neural network 
research abstracts away from many interesting and possibly important features of the 
brain. Connectionists usually do not attempt to explicitly model the various kinds of 
brain neurons, and explain that the backpropagation algorithm is actually what happens 
in human learning. Like support vector machines, random forests, and other statistically 
motivated algorithms, ANNs do neither reflect nor yield the structures and strategies 
of human thinking. Today’s neurological understanding of human learning is still very 
remote as far as mimicking the mechanics using ANNs. In the foreseeable future, I can-
not imagine connectionists can be sure that the ANNs they create will represent a human 
brain and not a monkey brain.

Foundation, Architecture, and Prototyping of Humanized AI
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7.4 Behaviorism

Behaviorism can be viewed as a response to the Cartesian philosophical tradition in which 
behavior, actions, and what is done by persons was seen as the outward expression of what 
goes on in the mind. Many of those who were involved in AI were following in behavior-
ism’s footsteps in that they believed that if a computer (or robot) behaved as if it had intel-
ligence, then it must actually be a mind (Murphy, 2020).

AI Behaviorists are essentially influenced by behaviorism in psychology. Its key assump-
tion is the objective, scientific analysis of observable behaviors to the exclusion of consider-
ation of unobservable mental processes. In contrast, social cognitive learning theory uses 
unobservable matters, such as thoughts, expectations, and motivations, in its explanation 
of behavior. Behaviorists emphasize the importance of agent-environment interaction in 
learning and developing human behavior. According to behaviorists, learning is based 
on the association between a stimulus (S) and the response (R) to it.

Two approaches in the study of learning have been used, associative learning and cogni-
tive learning. In the associative approach to learning, stimuli and responses are units on 
which the analysis of behavioral changes is based. The aim is to establish what the rela-
tionship is between a stimulus (S) and the human or animal organism’s response (R) to it. 
We discussed this earlier with respect to classical conditioning and operant conditioning. 
(Kosiński and Zaczek-Chrzanowska, 2007).

The AI behaviorism approach implements the learning mechanism by using rein-
forcement and repetition to shape the behavior of learners. Skinner found that behav-
iors could be shaped when the reinforcement was applied: desired behavior brings 
reward while undesired behavior is not rewarded or punished. Although there is no 
notable distinction between human and non-human behavior, a more complex version 
in respect to the behavior displayed by other species can be explained by Darwin’s 
theory of evolution.

Sloman (1978) wrote that, to achieve AI comparable to an adult human, it would be nec-
essary to produce a baby mind with the ability to absorb a culture through years of interac-
tion with others. Minsky (2007) discusses Turing’s idea of the ‘child machine’ approach. He 
notes that to date this idea has been unsuccessful, having encountered problems related to 
knowledge representation. That is, a baby machine needs to be able to develop new ways 
of representing knowledge, because it cannot learn what it cannot represent. What we may 
draw from this is that this approach to learning has not yet been adequately explored, 
and that more attention needs to be given to the architecture and design of a child or baby 
machine, and in particular to the representation of thought and knowledge (Jackson, 2019). 
McCarthy (2008) asserts that grammar is secondary, that the language of thought for an 
AI system should be based on logic, and gives objections to using natural language as a 
language of thought. He believes a baby-machine needs to have an initial set of concepts 
corresponding to innate knowledge about the world. He listed several kinds of innate con-
ceptual knowledge the system should have.

The statement “because it cannot learn what it cannot represent” appears to be correct, 
but actually can be misleading. It suggests we need to build a huge concept network 
or  commonsense knowledge base in the child machine. Such a static representation 
of  knowledge is not a viable solution in my view. Instead, in my approach, the concepts or 
knowledge are produced (not simple retrieval) dynamically in real time. A symbol repre-
senting a concept cannot hold any actual meaning until the agent retrieves a part of the 
action string that reflects a real situation, likewise, a string of thoughts.
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Here is a similar story supporting my argument: when a scientist claimed his invention 
of an omnipotent solvent that can dissolve every substance in the world, Edison asked: 
“what will you store it in if it dissolves everything?” Did Edison make a good logical argu-
ment? At first thought, we may think that Edison made a very smart logical argument and 
proved that there is no such omnipotent solvent. However, anyone who has a little knowl-
edge of chemistry would have a different answer, because there are many possible ways 
to store the solvent before we use it, for instance, storing at low temperature or in the dark.

As another example, we can produce various sounds (language, songs, etc.), but that 
does not mean we have some internal representation of each possible song. We have vocal 
cords that can vibrate. Such vibrations in the presence of air produce sound waves, and 
finally, a nearby person who has a hearing capability can hear the song. Thus, to have a 
song, we need the combination of at least three conditions: vocal cords, air (environment), 
and at least one person of hearing ability (receiver).

Experiments have shown that a hearing-impaired person can “hear” a song if we convert 
sound frequency to light frequency: a melody produces a color painting in the person’s head, 
and vice versa. Similarly, we can convert ultrasound that a dog produces into sound by means 
of external instruments. Conversely, people who don’t have normal vocal cords can sing songs 
by painting pictures. Such conversions can be accomplished by an external machine.

A language of thoughts is a key in TalaMind, a human-level AI model. However, creat-
ing a comprehensive Tala syntax such as English is not a prerequisite for the success of 
the TalaMind approach. It is only necessary that Tala include sufficient syntax to enable 
representing the general, extensible semantics of English, and to support an intelligence 
kernel’s implementation of higher level mentalities (Jackson, 2019).

Jackson’s TalaMind model is summarized by three hypotheses:

1. Intelligent systems can be designed as “intelligence kernels,” i.e., systems of
concepts that can create and modify concepts to behave intelligently within an
environment.

2. The concepts of an intelligence kernel may be expressed in an open, extensible
conceptual language, providing a representation of natural language semantics
based very largely on the syntax of a particular natural language such as English,
which serves as a language of thought for the system.

3. Methods from cognitive linguistics may be used for multiple levels of mental
 representation and computation. These include constructions, mental spaces,
 conceptual blends, and other methods.

TalaMind has built-in concepts such as nouns, verbs, propositions, pronouns, determin-
ers, adjectives, adverbs, logic conjunction, disjunction, and conditional conjunction, which 
are used in English grammar. However, the language of thoughts, or even language itself, 
doesn’t need these concepts. In other words, a grammar system is a pattern of language 
and such a system is not unique. Most concepts in parts of speech and concepts of logic 
such as when, where, why, while, until, if then, else, and grammatical rules, e.g., enforced 
subject-verb agreement, can be learned through an agent’s interaction with the environ-
ment, and need not knowledge that an agent is born with. I will demonstrate how we can 
accomplish this in a humanized agent based on minimalism.

Behaviorists try to build a comprehensive knowledge base so that agents can behave like 
humans. However, this will not be a viable approach to humanized AI for the following 
reasons: (1) it’s very difficult to build such an encyclopedia, the quantity of knowledge 
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being already too great, (2) the dynamics or constant expansion of mankind’s knowl-
edge cannot be ignored, and (3) even when we can have such a knowledge base built and 
uploaded to the agent’s brain, such an agent will be a God-like, not a human-like being.

7.5 Constructivism

The term Constructivism, coined by Piaget (1954), denotes the thesis that knowledge can-
not be a passive reflection of reality but has to be more of an active construction by the indi-
vidual. The characterization from psychology is this: “Humans actively construct their 
own knowledge and reality is determined by our experiences as learners.” In other words, 
there is no such thing as a human-independent reality (Reich, 2009). Moreover, the models 
of causality that our brains invent to navigate the world are a consequence of our progres-
sive development in the world we live in (Carlos E. Perez, 2021).

There is considerable controversy over the claims Piaget has made, particularly when it 
comes to what knowledge is innate or learned. Constructivism assumes minimal innate 
knowledge as opposed to the large commonsense knowledge base required by behaviorism. 
Extremely, radical constructivism believes that the only knowledge we ever have is so con-
structed. Piaget’s theory hypothesizes that the same learning mechanism is used at all ages.

As summarized by Schmid (2019): modern education is dominated by the ideas of con-
structivism and constructivist learning (Fox, 2001). At its heart, this approach is based on 
the assumption that humans acquire knowledge and competencies actively and individu-
ally through processes called construction, reconstruction, and deconstruction (Duffy and 
Jonassen, 1992). Construction is associated with creation, innovation, and production, and 
implies searching for variations, combinations, or transfers of knowledge. Analogously, 
reconstruction is associated with application, repetition, or imitation, and implies search-
ing for order, patterns, or models (Reich 2004, p. 145). Deconstruction is, in the context 
of constructivism, associated with reconsideration, doubt, and modification, and implies 
searching for omissions, additions, and defective parts of acquired knowledge. A con-
struction process in the constructivist sense may be matched by unsupervised learning. A 
reconstruction process in the constructivist sense may be matched by supervised learning. 
The constructivist approach has also been successfully used in cybernetics.

Constructivist agents mimic the human cognitive and emotional development process 
in that they (1) build necessary connections between mind and body (organs), and (2) pro-
vide the way for emotional and social development in any environment without specify-
ing any societal norms, but the agent acts as a member of the society to influence and be 
influenced by its other members.

The principles of constructivism include:

• Knowledge is constructed, meaning that knowledge is built upon other knowledge.
• Agents learn to learn, assimilating the general concepts as they learn a sequence 

of individual events.
• Learning is an active process, involving sensory input to construct meaning. 

However, physical involvement alone is not enough, motivation for being actively 
engaged is critical.

• Learning is a social activity involving active interaction with others.
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• Learning is contextual, not isolated from facts.
• Knowledge is personal. Each person will have his or her own prior knowledge and 

experience as a backdrop for forming updated knowledge.

There are three types of constructivism: cognitive, social, and radical.

• Cognitive constructivism focuses on the idea that learning should be related to
the learner’s stage of cognitive development.

• Social constructivism focuses on the collaborative nature of learning.
• Radical constructivism is very different from cognitive and social constructiv-

ism. Its central idea is that learners and the knowledge the learner constructs tell
us nothing real, they only help us to function in our environment; knowledge is
invented, not discovered. Knowledge is only interpretations, not explanations of
the world.

Constructivism has been taken up as a bottom-up approach by AI researchers. Some 
believe that instead of specifying architecture in detail from a priori considerations, the 
mechanisms and cognition of agents should be developed using methods including self-
organizational and evolutionary mechanisms as far as possible.

However, there are very challenging issues to confront before we can implement the 
constructivist’s approach in HAI. Let’s look into Piaget’s “behavior of the stick”: an infant 
seeks to take possession of an object which is located out of arm’s reach; he/she uses a 
stick as a tool to draw the object into the range of his arms, and then takes possession of it. 
But an infant typically becomes capable of using such a tool effectively between the ages 
of 12 and 18 months (Piaget’s fifth sensorimotor substage). Guerin (2008) compares two 
possible approaches to implementing the behavior of the stick in an AI system: a non-con-
structivist approach which makes use of prior knowledge, and a constructivist approach 
where the infant must construct the relevant knowledge.

While the behaviorist could employ a reinforcement-learning algorithm with common-
sense knowledge built inside the agent’s brain, the constructivist approach would try to 
avoid giving the infant any prior knowledge beyond that which is absolutely necessary 
to bootstrap the learning process and allow the infant to learn in a reasonable time span. 
Apart from this minimal innate knowledge, the constructivist approach aims to allow the 
infant to create the required knowledge for itself. For example, innate knowledge might 
include the ability to grab that which touches the hand, the ability to suck that which 
touches the mouth, the ability to make random arm movements, etc. By bootstrapping 
from these initial abilities, the infant must learn how to suck the thumb, how to grab and 
suck objects, and how to interact with other objects in more complex ways. Through this 
interaction the infant must somehow learn higher level knowledge about the world, gain-
ing knowledge of space and objects and how to manipulate them. This would eventually 
lead to the desired behavior with the stick (Guerin, 2008).

However, in the above example, constructivists will find it extremely difficult to imple-
ment reinforcement learning because there are virtually an infinite number of actions the 
child might have to try before accomplishing a goal. (He could even just sit there and 
cry all day long or do things that have nothing to do with the goal!) But an action can be 
subdivided into many smaller actions that can be beneficial if one has a plan. Thus, to 
accomplish a complex task in a reasonable time with constructivism, an agent must have 
the ability to reason. How an agent can learn reasoning is a challenging issue.

Foundation, Architecture, and Prototyping of Humanized AI
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8
New Approach to Humanized AI

8.1 Challenges in Constructivism

Before we decide upon the AI approach to be used for our HAI, we need to look into the 
challenges different methods have to face.

Neurologism: Whole Brain Emulation approach must meet two challenges: 
(1) Learning enough of the details of human neural networks, which may not hap-
pen in the foreseeable future, (2) How to embody the machine after knowledge 
is uploaded; important because some knowledge becomes knowledge only with 
associated embodiment. This can be virtual and/or accomplished through some 
kind of nervous system. Now, having an athlete’s brain will not make the lame run 
fast. Imagine what would happen if you uploaded knowledge of color to a color-
blind person.

Logicism: Not all knowledge can be expressed in logic. Most commonsense 
knowledge probably is not logically expressive. Emotions cannot usually 
be expressed by mathematical or logical reasoning. We cannot use logic to 
express a situation where we purposely speak the opposite of the fact for the 
purpose of amusement. We make irrational choices or feel happy by some 
feat of our imagination, these are beyond what logicism can accomplish. 
A human becomes human not only because of his intelligence but also his 
unintelligence.

Behaviorism: Here the agent’s action is mainly a commonsense-based and 
goal-driven one. The challenges are: (1) How to build a comprehensive com-
monsense knowledge base for uploading that can grow constantly and still 
ensure quick responses. Even when such a knowledge base is available and 
loaded into the agent’s brain, we are making a God-like person, not a human.  
(2) The same embodiment issues as in the approach of neurologism: embodi-
ment requirements, (3) How an agent can identify goals, even when he is 
in uncharted territory. This is achievable in our HAI architecture, as we’ll  
show later.

Constructivism: This approach has difficulties in the following aspects: (1) Deter-
mining the smallest units of actions, say, one inch of movement, the fabrication of 
a 0.1- second-long sound, etc. (2) How an agent determines the list of action options 
the agent can take in real time. (3) How an agent can learn complex concepts and 
responses within a reasonable amount of time.

We may look into how the symbolist, connectionist, behaviorist, and constructivist accom-
plish the following task differently. Suppose a hungry baby tries to find food to eat, but 
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the familiar milk bottle is six steps away (Figure 8.1). The following are different types of 
agents in the same task, getting the milk bottle.

1. Symbolist: Using deduction to get the milk bottle, the agent has to move closer to
his/her gradually, to be closer to the bottle, the agent needs to move either left to
up, but not too far left or up, until I reach the bottle. This strategy must be pre-
sented in formal reasoning using propositional and predicate calculus.

2. Connectionist: Good for simple classifications, not for such a goal-driven task.
Very difficult to train a general-purpose neural net to accomplish the task. It is
difficult to interpret the meaning of the weights in relation to accomplishing
the task.

3. Behaviorist: Break the task into goals or subtasks such as: (1) crawl toward the
bottle, (2) get close to it, (3) reach out an arm, and (4) grab the bottle. It is not
feasible for humans to specify subtasks for each task and implement them in an
agent. Despite the inflexibility of the behaviorist approach, once such subtasks are
well-defined, the execution of such a task is relatively fast.

4. Constructivist: The baby crawls randomly until he reaches the bottle. Requires a
huge number of trials to get the bottle. According to stochastic theory, the aver-
age number of steps needed to reach an N-step distant bottle is approximately N2.
During the process the baby can be distracted and do something else, making the
time required to accomplish the mission even longer.

Some obvious reasons why constructivism is that a child has limited innate knowl-
edge, the majority of its knowledge is learned after birth, and the knowledge is per-
sonal and embodiment-dependent. Georgeon et al. (2015) further noticed that biological 
beings couldn’t be adequately modeled using a Markov Process, since they generally 
cannot recognize rewarding Markov states of their environment either. Therefore, 
one should implement a non-Markov Reinforcement Learning algorithm based on 
historical sequences and Q-learning. Along with theoretical arguments, these results 
support the constructivist paradigm for modeling biological age. However, the main 
challenge in implementing the constructivist approach is its computational slow-
ness, despite its flexibility in learning. The behaviorist approach has the advantage 
of being computationally fast but its inflexibility and the requirements for a larger 
commonsense knowledge base neutralize its speed advantage. This motivates us 
to refine the constructivist and behaviorist approaches by combining them. This is a  
synthetic approach.

FIGURE 8.1
A hungry baby tries to get the milk bottle.
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8.2 Synthetism: New Constructivism

We use an approach in our HAI architecture that synthesizes the constructivist and 
behaviorist approaches. Synthetism is characterized by progressive learning from simple 
to complex. Over time, Synthetist Learning transitions from the constructivist approach 
to the behaviorist approach. Human organ developments support such a learning para-
digm: low sensory organ sensitivity only allows a baby to see the world in a very simple 
form, while the baby’s limited motor abilities help progressive learning. The simplified 
world allows the baby to learn using a constructivist approach. As the baby grows, his 
perceptual world becomes gradually more complex, but at the same time his knowledge is 
increasing accordingly; thus, he can increase knowledge in perceiving the world and keep 
the interpretation as simple as possible.

Like constructivism, synthetism emphasizes activeness and individuality in learning, 
requiring minimal innate knowledge instead of the large built-in commonsense knowl-
edge base required by behaviorism. At the early learning stage, as with constructivism, 
synthetism’s learning occurs through construction, reconstruction, and deconstruc-
tion that are enabled by adaptive reinforcement learning. However, at the later stages, 
when knowledge accumulates and learning ability develops, learning gradually shifts 
to the behaviorist approach featuring the developed abilities of perceiving, abstracting, 
goal-setting, reasoning, and acting for efficiency. Like the constructivist approach, our 
 synthetic approach uses the same learning mechanisms at all ages, but the mechanisms 
are supported by evolving data, experiences, knowledge, and abilities. The individuality 
is reflected in unique parameters for each agent and the unique experiences of the agent.

HAI agents develop their abilities physically, cognitively, mentally, and socially over time. 
They do so by controlling their own actions and interactions with humans, other agents, 
and their environment. Whether an agent has a certain characteristic, such as conscious-
ness, is a judgment based on the agent’s behavior, not his internal structure. The autono-
mous agent (self-sufficient, adaptive, equipped with the appropriate learning mechanism 
and its own history), acquires information about its environment only through its sensory 
organs, and interacts with the world on its own. The association mechanism enables the 
coordination of perceptions from different sensory organs and the agent’s actions.

Commonsense knowledge is crucial to efficient learning and communication. However, 
unlike behaviorists, in our HAI architecture commonsense knowledge is learned, not 
built into agents by humans. Likewise, humor, feeling and emotional expression, mental-
ity, morals, values, animus, friendship, and partnership are learned from social interac-
tions. Furthermore, high-level learning skills involving sciences, mathematics, and game 
strategies are results of learning instead of built-in algorithms. At a later stage, as with 
a behavioristic approach, learning is often goal-driven. However, unlike a behavioristic 
approach, the goal is not pre-coded by humans but rather the agent sets up the goals for 
himself through his own learning.

The gradual shift from constructivist to behaviorist approach, implemented automati-
cally in our synthetist approach, matches well with the stagewise development of human 
bodies, including our sensory organs. Here are some examples.

Infant Vision Development
At birth, babies can’t see as well as older children or adults. Their visual system gradually 
improves during the first few months of life. At birth, babies’ vision is abuzz with all kinds 
of visual stimulation. Babies have not yet developed the ability to easily tell the difference 
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between two targets or move their eyes between the two images. Their primary focus is on 
objects 8 to 10 inches from their face or at the distance to a parent’s face. During the first few 
months of life, the eyes start working together and vision rapidly improves. Eye-hand coor-
dination begins to develop as the infant starts tracking moving objects with his or her eyes 
and reaching for them. By eight weeks, babies begin to more easily focus their eyes on the 
face of a parent or other person near them. Babies should begin to follow moving objects 
with their eyes and reach for things at around 3 months of age. It is not until around the 
5th month that the eyes are capable of working together to form a three-dimensional view 
of the world and begin to see in-depth. Babies have good color vision by 5 months of age.

Development of Fetal Sense of Smell
Although a baby is surrounded by amniotic fluid, her sense of smell is already up and run-
ning well before birth. A days-old newborn baby will be able to recognize her mom simply 
by the smell of Mom’s skin. What’s more, the foods that Mom eats while she is expecting 
not only affect the developing baby’s sense of taste but they also impact its sense of smell. 
What you eat, your baby “smells.” Your newborn recognizes you by smell.

A baby’s sense of smell starts developing at a relatively early age. Between 6 and 
7 weeks of pregnancy, olfactory neurons, which help your baby’s brain to process odors, 
develop. By 7–8 weeks, the two symmetrical nasal cavities that are the foundation of your 
baby’s nose have formed. By weeks 10–12, olfactory smell receptors form in the nose. 
Between weeks 11 and 19, those receptors’ neurons connect with the olfactory bulb in the 
brain. Together, these structures enable the scents a baby inhales to communicate with 
her brain. By late in the second trimester, your baby’s little nose is ready to detect odors.

Fetal Sense of Hearing
Around 18 weeks of pregnancy, babies hear their very first sound, perhaps the beating 
heart, air moving in and out of lungs, a growling stomach, or even the sound of blood mov-
ing through the umbilical cord. By 24 weeks, those little ears are rapidly developing. Your 
baby’s sensitivity to sound will improve even more as the weeks pass.

Baby’s Motor Skill Development
Most babies start crawling at about 8 months old, which helps further develop eye-hand-
foot-body coordination. At around 9 months of age, babies begin to pull themselves up to a 
standing position. By 10 months of age, a baby should be able to grasp objects with thumb 
and forefinger. By 12 months of age, most babies will be crawling and trying to walk.

In our HAI architecture, we will overcome the challenge of infinite action options using 
the mechanism of attention to eliminate the majority of futile options. We want to imple-
ment the mechanism that, like a healthy human’s, our agent’s abilities will grow over time. 
We also implement hierarchical tokenization, based on the fact that understanding of 
complex concepts is built on the basis of simpler concepts the agent has already learned. 
Attention, the similarity principle, innate knowledge learned before birth, and recursive 
patternization are four keys that allow us to improve constructivist learning.

Let me reiterate the challenges using the naïve constructivist approach in HAI and, in 
parallel, provide solutions to resolve them.

1. Challenge: The real world is infinitely detailed. There are just too many things in
the environment for an agent to deal with at any moment.
Solutions: Organ-Insensitivity will help an AI child to learn quickly. As he
grows, his perceptual world becomes more complicated due to increases in
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sensitivity. But at the same time, his knowledge increases, and he will use 
concepts learned to simplify the more complex perceived world. Similarity-
Grouping is another intended way to simplify the agent’s perceptual world, 
and it happens when similar things are grouped together without differentiat-
ing them. The third tool is the Attention Mechanism that allows an agent to 
focus on a few important things needed for survival, safety, or whatever is most 
rewarding at any given moment.

2. Challenge: There are infinite numbers of paths, some toward the goal; others 
are not. Identifying such a short path to the goal using reinforcement learning is 
 computationally challenging.
Solutions: Identify a small set of initial elementary actions for an AI child with 
unequal associated probabilities, so that favorite actions are likely to be per-
formed, and combine with the adaptive reinforcement learning with probabilis-
tic response mechanisms. The associated probability is modifiable by the agent 
according to the constantly learned experiences or patterns, as seen in the simple 
examples given of Pavlov’s conditioned response (reflex) and Thorndike-Skinner’s 
operant conditioning.

3. Challenge: Constructivists do not need a larger Commonsense Knowledge Base, 
but an agent must have some basic concepts and abilities to start with. Such would 
include the concepts of space and time and the abilities to produce sound, move 
arms, hear, and see, these being necessary in order to acquire more complex 
knowledge, skills, and procedures.
Solutions: A small set of fundamental concepts, abilities, habits, and biological 
clocks are built into each agent with personalized inherited parameters. The HAI 
architecture engined with the mechanisms of attention, learning, and response 
and backed up by these innate attributes empowers agents to learn more complex 
knowledge and skills, even develop new attributes such as “friend,” “enemy,” and 
“teacher,” to (appropriately) classify others with whom the agent interacts.

4. Challenge: An agent must understand the concept of a goal. Then, understanding 
what the present goal is, the agent needs to be able to divide a complex mission 
into several subgoals so that, with limited steps, he(she) can accomplish the mis-
sion within a reasonable time.
Solutions: The recursive knowledge net (Knet) of an agent contains its patternized 
experiences. A node with a large reward in Knet can be considered as a goal, 
and nodes along the path from his current position to the goal node can be con-
sidered as subgoals associated with the goal. In this way, the agent can determine 
goals by himself, and then use a more efficient behavioristic approach for learning 
and response. This is a feature of HAI distinct from any narrow AI: for an NAI 
agent, a specific goal is set by humans, such as to win at chess.

5. Challenge: In addition to the concept of a goal, an agent must also learn many 
other complex concepts and natural languages through contextual learning.
Solutions: Learning mechanisms involve hierarchical tokenization and recursive 
patternization so that understanding complex concepts will be established on 
the basis of simpler, known concepts. When the same token (representing com-
plex concepts) has different meanings, the token will appear on several different 
patterns or paths on the Knet, mirroring its placements in different contextual 
environments. Thus contextual learning naturally occurs, with no exception of 
natural languages.
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6. Challenge: Embodiments play an important role in learning and response. How
does one go about embodying an agent?
Solutions: A robot involves a physical body that includes arms, legs, a vocal sys-
tem, and sensory organs. We focus on agents on a computer at this moment. An
agent only involves virtual embodiment with virtual sensory organs. Different
organs coordinate with each other through association mechanisms in order to
enhance learning and help produce meaningful responses. The virtual  sensory
organs allow an agent to sense elements of the environment without cheat-
ing (using computer-coded names to detect them). The association mechanism
ensures that two things that happen closely in space and/or time will likely be in
an agent’s attention at a given moment.

7. Challenge: How to make an agent have self-awareness and consciousness.
Solutions: An agent’s knowledge net, in its mind, is self-inclusive, i.e, it includes
the agent itself. Like a human, the HAI agent lives in its own mind. Thus self-
awareness is given, whereas consciousness is the product of self-awareness and
social interactions.

8. Challenge: How to make an agent express or display emotions, feelings, and a
sense of humor.
Solutions: Imitations under various social settings make an agent a social being:
he will treat people the way he was treated and display emotion, feeling, and can
even act humoredly.

9. Challenge: How to build an agent capable of active learning.
Solutions: Let the agent ask back the question he cannot answer (imitation), ask
questions displaying curiosity, and propose hypotheses. A curiosity question and
hypothesis may often help in patternizing an agent’s experiences or help the agent
to achieve some goal. These capabilities will be reflected in our HAI response
mechanisms by some relevant event-string replacements in the Knet.

10. Challenge: How to endow an HAI agent with elaboration tolerance—the abil-
ity to add information without starting over in the representation of previous
information.
Solutions: The self-goal-setting features and the evolutionary knowledge net,
with hierarchical tokenization and recursive patternization, naturally require the
preservation of previous knowledge. All knowledge is stored in Knet and other
database tables for persistence and quick retrieval.

11. Challenge: How do we enable an agent to have high-level learning skills, such as
being able to carry out logical reasoning, science, and abstract mathematics?
Solutions: Similarity-based learning, the recursion of everything, time-sensitive
utilities, genetic operations on event-strings, and effective teaching, all these allow
an agent to acquire different learning methods in different subject areas, although
such learning may take a long time. Unlike narrow AI, where one solves a problem
only from a single perspective through parameters such as ANN weights, HAI can
solve a problem from multiple angles, social or scientific perspectives. Therefore, its
intellectual capabilities might well become more advanced than we imagine now.

To sum up, Symbolism (Logicism) is the notion that all AI methods are based on human-
readable symbolic representations of problems, logic, and search. The challenge is to have 
a comprehensive list. Connectionism (Structuralism) is the notion that human cognition 
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and intellectual abilities can be explained using artificial neural networks (ANNs). The 
challenge of this black-box approach is to make sure that the ANN mirrors a human brain, 
not a low-intelligence brain; does anyone want monkey neural nets? Behaviorists believe 
actions and behaviors are reflections of what goes on in the mind. The approach is a goal-
driven approach such as is found in decision-networks. This might be efficient, but it could 
be difficult to determine the goals manually. Constructivism is based on the notion that 
knowledge cannot be a passive reflection of reality but an active construction by the indi-
vidual. The approach can be exemplified by reinforcement learning, which is flexible but 
very inefficient in learning. Synthetism is the notion that learning, including goal-setting, 
is a recursive process varying from the simple to the complex. The approach combines a 
constructivist’s flexibility and behaviorist’s efficiency.

8.3 Humanized AI Test

The Turing Test (1950) for intelligence, as a behaviorist test, is objective. But it is also subjec-
tive since intelligence is in the eyes of the observer (Brooks 1991). A behavior one observer 
calls intelligent may not be called intelligent by another observer. Since the Turing Test 
does not concern the agent’s internal organ structures, it is humanized or human-level 
AI (intelligence indistinguishable from a human’s). On the contrary, John Searle’s (1980) 
Chinese Room Argument (CRA) does concern human-identical intelligence (in a machine 
identical to a human with necessary internal organs).

According to McCarthy (2007) and Jackson (2019), problems that need to be solved by 
any approach to human-level AI include:

1. Representation of commonsense knowledge of the world, in particular the effects 
of actions and other events.

2. Epistemologically adequate languages that can be used to express what a person 
or robot can learn about the world.

3. Elaboration tolerance—the ability to add information without starting over in the 
representation of previous information.

4. Non-monotonic reasoning—the ability to reason with partial information, where 
additional information may change one’s conclusions.

5. Contexts as objects—the ability to reason about contexts “from the outside” as 
well as internally within contexts as objects—the ability to transcend the current 
context of thinking and reason about it

6. Introspection—the ability of a system to reason about its mental state and processes.
7. Action—reasoning about strategies of action, considering multiple actioners, 

 concurrent, and continuous events
8. Heuristics—the ability to give programs domain and problem-dependent heuris-

tic advice.

In my view, the most important test is the test for AI abilities of learning or knowledge 
evolution (not how much an agent can do). Also, I believe that commonsense knowledge 
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should not be innate but learned knowledge. Language is a consequence of communica-
tion and collaboration. Elaboration tolerance is a distinct feature that differentiates HAI 
from NAI. In reality, information can never be complete or we never know if it’s complete. 
Constantly updating knowledge is essential for any HAI, thus non-monotonic reasoning is 
naturally a reasonable requirement. However, too much information, noise, and fake news 
can make decisions difficult, prolong decision time, or even cause the analysis paralysis 
discussed in Section 1.1.

In our HAI architecture, everything, including a concept and context, can be consid-
ered an object, token, or pattern, from different perspectives. Self-awareness is ensured 
by the self-inclusive network formulated through hierarchical tokenization and recursive 
patternization. The self-inclusive nature of the dynamical knowledge net (Knet) allows the 
HAI agent to consider himself an entity separate from externalities and enables introspec-
tion: he can treat himself as an external world (self-aware state).

In our HAI architecture, probabilistic prediction is based on similarity mapping between 
reality and paths in the Knet, while the optimal decision-making is based on randomized 
adaptive response. This includes reasoning about decision strategies in the face of mul-
tiple actioners, together with concurrent and sequential events. Heuristics are embedded 
in the ability of imitating, analogizing, and innovating in the HAI response and learning 
mechanisms.

There is another reason that commonsense knowledge should be not innate but learned. 
Suppose we could collect all the responses to a given situation that humans have taken, 
under all conditions, throughout human history. Choosing randomly a response to be 
taken by an AI agent facing the same or a similar situation could very possibly end up 
being a wise choice, but it would not be a human’s choice; it would be a kind of digital vox 
populi, a suggestion by abstracted supermen with super-knowledge. Furthermore, history 
never completely repeats itself. There are always novelties to deal with.
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Part III

Architecture of Humanized AI

This is an elaboration of our entire HAI architecture, divided into seven chapters. We start 
from the three-world theory that describes how the multifaceted objective World We Live 
in is scaled down to the World in Our Eyes through sensory organs, and that is further 
simplified as the World in Our Mind using similarity and other principles. Taking a small-
data approach, we elaborate the architectures of the first stance including innate knowl-
edge, abilities, and mechanisms, dynamic knowledge presentation with recursive network 
of patterns, attention mechanisms and the attentive world, mechanisms for learning and 
knowledge discovery, adaptive response mechanisms, and various teaching techniques 
suitable for HAI.
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9
Three Worlds and Virtual Reality

9.1 The Three-World Theory

Before discussing the creation of the virtual world, it’s helpful to recapture the three-world 
concept we discussed in Part I: the World We Live in, the World in Our Eyes, and the World 
in Our Mind (Figure 9.1).

The World We Live in is multifaceted, an objective world of infinite detail for humans 
and robots to sense and interact with. The virtual world consists of environmental ele-
ments that are created on a computer for agents to connect with and explore.

The World in Our Eyes is the “image” of the objective world that projects on the 
 “retina” through the “eyes,” a subset of a being’s sense organs. It is a filtered world. 
Because of the limited organ-sensitivities, the filtered world becomes discrete in 
3-dimensional (3D) space and other dimensions of color, odor, taste, and temperature. 
The filtered world constantly changes over time and its exact appearance depends on 
individuals. Some may see a color world, while others may see a colorless one; for some 
it is an audible world, but others may feel it to be silent. The sense of 3 dimensions 
basically derives from tactile perception and body motion perception. The senses or 
perceptions of 3D vision and 3D sound come mainly from the coordination between 
basic (tactile and body motion) 3D sensations and visual or sound sensations. Without 
our basic 3D tactile sense, we would not experience 3D vision or sound, or at least these 
sensations will be very different.

The world, in any brief time interval, is actually registered in our memory for a short 
period before we patternize it and it becomes (fits into) a natural law in our mind. The per-
ception of what is recorded on each frame and the intervals between frames are determined 
by the person’s attention. The world in our “eye” is detailed and recorded in a sequence 
of frames, each frame including the sight, odor, taste, sound, temperature, shape, texture, 
and the observer himself. Some frames have precise timestamps, some mark time only 
approximately, yet others have no timestamps at all. But in all cases, a sequence of occur-
rences is reflected in one’s memory.

The World in Our Mind is a simplified, interpreted version of the perceived world using 
concepts that include causality and associative relationships. As described earlier, such 
relationships are established based on the Similarity Principle, even though different 
learning methods may be used in the process.

HAI involves a study of subconscious and conscious experiences. Both apperception and 
perception concern understanding and interpreting what we experience. Apperception, 
however, is more about a conscious comprehension, whereas perception is an interpreta-
tion of what one’s senses are saying. Apperception is how our mind puts new informa-
tion in context. “There’s Bob” is a perception, but “Bob is my friend” is an apperception, 
because it’s an interpretation based on past experience. “My stomach hurts” is a percep-
tion, but “I might throw up” is an apperception!

https://doi.org/10.1201/b23355-12
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Apperception is a mental process that stitches the elements of perceiving back 
together as a conscious experience. A behaviorist explains the mind through public 
behavior. A Gestalt psychologist would believe our experience is organized as a part 
of a dynamic whole. Having said that, there is not always a clear line between percep-
tion and apperception. Is “there is a table” an instance of perception or apperception? 
The concept of table is mentally formulated by integrating experiences of many differ-
ent tables. Our experience of a table is viewed as an element of the whole (the concept 
of a table).

As we discussed in the connotation of understanding, new concepts are explained 
by way of concepts acquired previously by the individual, which are further explained 
by simpler concepts the person has acquired at a still earlier time, and so on. Such hier-
archical relationships can be modeled by a recursive network with nodes represent-
ing concepts and arrows indicating the “explained by” relationship. This network is a 
dynamic representation of the individual’s knowledge structure. Here the term dynamic 
is reflected from two aspects: (1) the knowledge net (Knet) changes over time and (2) the 
knowledge is not in a static form, but instead is displayed in agent responses that are 
formulated in real time.

Speaking of the World in Our Mind, it should include the observer himself: the mind is 
self-inclusive, a recursive network characteristically possessing self-awareness.

Some sequences of concepts are used more often than others, thus a weight associated 
with a link (pattern) can be used to reflect the frequency. A node in Knet represents a 
concept (pattern) that is further explained by other simpler concepts (patterns). With such 
concept-embedding, a Knet is hierarchical and recursive. Furthermore, the node, repre-
senting sequences of actions, has an associated cost and reward. Thus, the Knet becomes 
a group of recursive stochastic decision networks. Here the term “recursive” carries the 
property of self-inclusion (self-awareness), “stochastic” models the properties of direction 

FIGURE 9.1
The three-world theory in humanized AI.
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(hierarchy) and the weights (frequency), and “decision” implies that decision-making has 
an associated reward.

9.2 Overview of Architecture of Humanized Agents

Our goal in this section is a discussion of the overall architecture of HAI (Figure 9.2). We 
will first discuss three fundamental aspects of HAI architecture, Virtual Embodiment, 
Intentional Stance, Innate Ability, and Dynamic Knowledge Representation, before we 
elaborate three key mechanisms of humanized agents: (1) An Attention Mechanism, 
which determines how Zda directs his attention, focusing on limited things or events 
to save brain resources, (2) A Learning Mechanism, including hierarchical tokenization 
and recursive patternization, which simplifies what has been observed, and in which 
the resulting patterns may be called scientific laws, language grammars, social norms, 
etc. (3) A Response Mechanism, which determines how Zda acts at every moment. Even 
though this book will focus on the architecture of humanized agents, not robots, many 
aspects of the two are the same, the only difference being tokenization. For robots, the 
extra step of tokenization converts the sensed physical world into the form of a basic 
event-string sequence, while, for agents on a computer we use a simulated world with 
all environmental elements in the form of event-strings. All these aspects are related to 
embodiment and Zda’s interactions with the environment, the topics in the chapter on 
Effective Teaching.

FIGURE 9.2
The architecture of humanized AI.
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The virtual world in an agent’s brain is expressed in form of “object.event” strings, 
 similar to object-oriented programming (OOP). Examples are:

• Zda.walk(direction = East), meaning Zda walks toward the East.
• Car.run(direction = West, speed = fast) meaning: the car runs fast toward the West.
• Zda.hand.touch(Lia.hand), meaning Zda’s hand touches Lia’s hand.
• Zda.say(Lia.say(get me a chair)), meaning Zda says “Lia says: ‘get me a chair’.”

An English-like syntax is not a must, but the computer programmer’s choice. The natural 
language Zda uses will depend on his social relationships.

The world will be scaled down twice, before patternization, by sensory organs and by 
attention mechanisms. Due to the limited sensibilities, the information passing through 
the organs becomes discrete. The number of categories is smaller for babies than adults. In 
other words, the world in a baby’s eyes is simpler than that in an adult’s eyes. That’s why 
pictures in children’s books are drawn simpler and have fewer colors.

The second scaling-down (dimension and complexity reduction) occurs when the atten-
tion takes place. For the mind to handle information efficiently, like a human, Zda will 
only focus on limited things at any given moment.

After twice downscaling, the information (a long object.event vector string) will be pat-
ternized into a “scientific law” or “grammar.” There are two major steps in the process: 
(1) using concepts in the Knet to combine small tokens (concepts) in the object.event-string
into a few bigger ones. The resulting string will usually be less than 4-token long, and is
treated as a new entity or a new concept. For more details, see the elaboration and exam-
ples in the section on recursive patternization.

A robot’s embodiment includes human-equivalent physical sensory organs that can be 
used to detect the real world, while an agent on a computer is embodied virtually, with 
virtual sensory organs to detect the virtual world. Robots would identify objects using 
their attributes or appearance, thus misidentification can happen. However, if an agent 
used the object’s name in the computer code to identify the object, he would never make a 
mistake. To be consistent and make our HAI architecture applicable to robots, we will use 
attributes to identify objects in the virtual world.

Here are the main similarities and differences between our approaches for humanized 
AI and some mainstream AGI research.

1. Goal: Achieving human-like behaviors but not necessarily scientifically correct
responses versus Maximizing robot capabilities in serving human beings.

2. Data: Zero-data-based approach versus Big-data-based approach.
3. Language: No built-in natural languages versus Built-in languages required.
4. Conceptualization: Understanding a concept as a tuning process over time for

an individual versus a concept has a fixed correct meaning, or meanings, for
everyone.

5. Principles of Learning: The Similarity Principle, etc., versus Lack of a general
principle.

6. Learning Architecture: No built-in terms for concepts in any language; learning
is a recursive process of concept-to-concept or concept-to-action mapping, mov-
ing from simplicity to complexity versus concepts are built-in terms in a chosen
 language, and learning is just command-to-action mapping.
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7. Learning Engine: Mainly through curiosity-driven and purpose-driven active 
learning: asking smart questions, proposing hypotheses, and a feedback mecha-
nism versus passive learning through “human” feed-in training data and rein-
forcement learning.

8. Learning Pathways: Learning through extensive interactions—just as we take 
some 20 years to teach someone until graduating college—through teacher- 
student and peer-peer encounters, imitation, and creative activities with adaptive 
reinforcement learning versus big data feed-in and teacher-student and peer-to-
peer relationships, with reinforcement learning.

9. Response Engine: Adaptive and proactive response rules based on a time- 
dependent maximum expected utility rule and a basic mechanism of game theory 
versus task-driven responses.

10. Knowledge Discovery, Invention, and Creativity, all through hierarchical 
 tokenization, recursive patternization, and adaptive response mechanisms versus 
data mining.

11. Consciousness: HAI agent’s Consciousness is reflected in self-awareness and imi-
tation under various social settings versus built-in fixed social morality rules.

12. Inheritance: HAI agents have over a dozen built-in innate concepts, abilities, habits, 
and the mechanisms of attention, learning, and response, all else being obtained 
through learning or interaction with the environment over time versus none.

13. Logical Reasoning: The learning of deduction and other reasoning approaches 
through the innate abilities of using induction and the Similarity Principle versus 
built-in laws of logical reasoning.

14. Advanced skills: Math and sciences can be learned by agents versus AGI has built-
in Math operations and scientific laws.

15. Sensory Organs Coordination: For learning enhancement versus for command-
to-action response.

16. Swarm Intelligence (SI): SI exists and can promote social collaboration versus the 
same SI exists and can promote social collaboration.

17. Evolution: Darwin’s laws of evolution versus the same Darwin’s laws of evolution.
18. Cloning: Any agent can be cloned at any age in its lifetime versus agents can be 

cloned at any time.

9.3 Environment Simulation

The environment is everything that an agent or animal faces and interacts with, including the 
sky, sun, moon, this room, the ground, rain, food, desks, plants, any other animals, and agents. 
Why, then, do we need to simulate virtual reality? No, we don’t if we are making humanoid 
robots, since the real world is out there for robots who are equipped with adequate organs to 
sense and experience it. However, if we want to study humanized AI agents on a computer, 
we do need to simulate the virtual world and create agents with virtual embodiment.

We will create three different types (classes) of objects in our virtual reality: (1) Thingy, 
(2) Animal, and (3) Humanized Agent.
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A Thingy, any inanimate thing, has the following attributes: appearance (color, shape, 
size), material, mass, brightness, sound, loudness, odor, odor intensity, surface texture, 
temperature, edibleness, location, and velocity. Some available shapes: shape = triangle, 
square, circle, star, pentagon, hexagon, which serves as a visual identification of a class of 
object (e.g., cars, dogs, cats). In addition, there are Color = number associated with a color 
and Size = a value indicating the size of an object.

Other properties, such as utility, can also be added; e.g., water can put out a fire, light can 
enlighten a room. All these properties have discrete values. A Thingy behaves according 
to the Laws of Physics. Examples of Thingies are desks, light bulbs, switches, water, cups, 
bread, and apples. For convenience, we can say a Thingy can have actions, such as smell 
and sound.

An Animal inherits all properties from the Thingy class and may have properties 
and behaviors such as gender, age, or feet. A simple brain with simple pre-programmed 
response-features, such as a hungry animal, can run when he sees a prey, while a Thingy 
cannot move unless an external force acts on it.

An Agent inherits all properties from the type Animal and has other properties and 
behaviors. We will discuss this class in the next section.

A Human is, any one of us, a technology user who interacts with agents and virtual 
environments through input devices such as keyboards, microphones, and video cameras.

You can create any virtual objects you like. But for the purpose of showing how we 
can make humanized agents within a relatively short time, we will greatly simplify all 
the objects in the virtual environment. Such simplification is necessary for us to demon-
strate the validity of the proposed Synthesized approach within a short time. This is because 
even if (or when) we make an agent exactly like a human baby, it will take 10–20 years to 
teach him. The level of simplification will match the agent’s sensory organ capabilities.

A moving animal or object is difficult to describe. Take an average animal as an example. 
Its head, eyes, legs, the mouse, the surrounding sounds, smells, wind, his location, his run-
ning speed, and acceleration, how should these be simulated? In our demonstrations, we 
will greatly simplify those, but what we create can be as “real” as virtual reality movies or 
high fidelity 3D computer games.

1. Appearance: A Thingy, Animal, or Agent can be represented by 2D images. A
simple version of Appearance includes the attributes: Shape, Size, and Color. The
shape of an object is a geometric shape. Size is measured with numerical values.
Color is also represented by a number for each element of our set of colors. Shape
is the primary attribute used to identify the type (class) of an object, while Size
and Color are used to differentiate objects of the same type. In other words, the
combination of shape and size are used as primary attributes in identifying a par-
ticular object. Other attributes and behaviors can be used as secondary features in
identification. Note that the size of an object may change over time.

2. An object has its brightness (light source or reflection).
3. Each sound source has an intensity (loudness). Sounds and intensities both are

represented by numerical values. Speech is a sequence of sounds.
4. An odor source has an odor with a constant intensity. Odor and its intensity both

are represented numerically.
5. An object is either eatable or not eatable and has tastes. Edible objects can give an

agent energy and pleasure.
6. An object’s surface texture is represented by a numerical value.

Foundation, Architecture, and Prototyping of Humanized AI
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7. An object has a temperature, represented by a numerical value.
8. An object has a mass, represented by a numerical value.
9. An object has a location, represented by three numerical values in order, (x, y, z).

10. An object can be either in a static or moving state. Its velocity is expressed by three 
directional speeds (numbers), vx, vy, vz, which are all zero for a static object. The 
motion of an object can be associated with one or more animated pictures.

11. Customized Thingies, such as Plants and Tools, can be growable, explosive, alive, 
or have other interesting properties.

The intensity of sound, smell, brightness, or temperature decreases as the distance d from 
the source increases:

 = / .3Intensity c d

Some common environmental objects are the most apparent: Sky, Sun, Moon, River, 
Mountain, Trees, The Wind.

9.4 Virtual Embodiment

Perception, abstracting, reasoning, and action are four common steps that robots must be 
able to take to carry out their missions. Sensory organs are the instruments robots use to 
perceive reality, the brain is home for the mind where reasoning occurs, and embodiment 
is necessary to directly interact with the world.

Much of our external information comes through the eyes, ears, nose, tongue, and skin. 
Specialized cells and tissues within these organs receive raw stimuli and translate them 
into signals the nervous system can use. Nerves relay the signals to the brain, which inter-
prets them as sight (vision), sound (hearing), smell (olfaction), taste (gustation), and touch 
(tactile perception). Embodiment also plays vital role in our learning when we feel hot, 
dizzy, fatigued, hungry, thirsty, or any other way as mediated by our senses.

In sensory perception, whereas we have made great achievements in image rec-
ognition through deep learning, we are still far away from developing human-like 
sensory- perception capabilities. In particular, we are incapable of extracting depth and 
3-dimensional information from images. We have achieved significant progress in voice 
recognition in the natural language process, but we are still far away from determining the 
spatial characteristics of an environment, understanding the background noise, and form-
ing a mental picture of where someone is when speaking to them on the phone (Berruti 
et al., 2020). Beyond vision, AI systems are not yet able to replicate this distinctly human 
perception in other human sensory abilities and motor skills.

An important question is: how do humans sense or estimate quantities such as distance, 
speed, acceleration, size, brightness, or temperature? In principle, all these are based on the 
agent’s prior knowledge and current observations from the notion of Bayesian statistical 
learning. Here, we further discuss from the perspective of physics and mechanics, which 
is necessary for building robots or agents.

The distance between objects can be sensed by the eyes and ears. An object appears 
larger when it is close by and smaller when it is far away. If we know the size of the object 
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(prior knowledge), we can get a sense of its distance from us. We also use other objects in 
the environment to estimate the distance. For example, if an apple sits on the other side 
of the table, we can estimate its distance based on our knowledge of table size. The visual 
angle of an object is a measure of the size of the object’s image on the retina. The speed is 
the change of distance over time. Thus we use the change of distance or visual angle of an 
object and the time elapsed, sensed by the biological clock, to determine the speed. Most 
of the time, we are more interested in velocity than speed. A velocity is a mathematical 
vector, which includes its magnitude (speed) and direction of the moving object. Similarly, 
the acceleration is the rate at which velocity changes.

How can ears sense distance? Well, it’s done in a way similar to the eyes but replacing 
light (waves) with sound waves. Again, there are prior knowledge and current observations 
(sound). One difference is in judging distance by the sound’s loudness. We use redshifting 
to sense the speed of a moving object. Redshifting is the phenomenon that the wavelength 
of the sound waves increases when the source object moves away from the observer and 
decreases when the source moves closer to the observer. We are not going to discuss here 
more on mechanisms that organs have to sense the world, since our focus is to build the 
brains of agents, not robots. For agents on a computer, we will simulate the environment, 
including color, odor, temperature, surface texture, and the agent senses these and other 
properties (such as distance) via similar, but simplified, mechanisms as in humans. In the 
HAI architecture, we will embody the agent with virtual eyes, nose, tongue, vocal organs, 
and skin and temperature sensing organs. But for computational efficiency, we may simply 
let the HAI agents access the features directly from computer memory instead of letting 
them detect the distance, at least for the initial prototyping of Zda.

Virtual embodiment is only needed for agents, while real embodiment is needed for 
robots. How to build a robot sensory organ will not be discussed here. Virtual or real 
embodiment is critical in learning, since it provides the opportunities for the mind to 
coordinate different parts of the body and sensory organs in the cognitive process. We 
will provide a simple version of virtual embodiment (Figure 9.3), partially due to compu-
tational limitations: we need to handle all sceneries and all animations of different agents 
virtually at the same time.

Even if a unique virtual world is given, each agent does not have same innate attributes  
nor does the agent have same knowledge, mechanisms, or perspectives of the world  
based on his active relationship with the virtual environment. The virtual embodiment of 

FIGURE 9.3
Overview of virtual embodiment.
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agents (an animal can be viewed as a simple version of agent) is summarized in Table 9.1. 
No matter how complex the world is, if Zda’s sensory organs are simple, his perceptual 
world will be simple.

Language, expression, emotion, body movement, and sense of the world are expand-
able discrete states. The world in a child’s eyes is simple, but complicated in an adult’s. 
Reflecting this fact, the initial number of Sensible Categories for each sensory organ is 
small but will grow larger as organ sensibilities increase over time. The limitation on the 
number of sensible categories for each organ can yield high frequencies of events when 
Zda is a child with limited exposure to the world. This will help Zda learn quickly when 
trial-error reinforcement learning is his basic tool. Gradually, more detailed categories 
may be developed so that the agent can deal with the world more effectively.

From the convenience of coding, we can build more categories for each sensory organ 
than the table indicates, but the initial probabilities associated with them are different, 
with high probabilities for some of the categories (innate abilities, for one). For example, we 
can let Zda have the ability to produce 10 different sounds, but much higher probabilities 
are associated with just three sounds (Ma, Ba, and crying) initially. Other sounds, most 
often used for language, have lower probabilities to produce; their associated probabilities 
can change as Zda tries to perform imitation.

9.4.1 Agent’s Innate Attributes

An agent can have all the attributes of a Thingy and has the following additional embodi-
ment attributes:

Vocal Cords: Zda, like humans, can learn to speak any language (a string of text) but 
in a constant intensity (no tone or intonation) at this moment. Zda can initially 
only produce three different sounds (Ba, Ma, and crying). Additional types of 
sound can be learned or built in with different associated initial probabilities.

Face: Zda’s face is a 3×3-grid 2-color 2D image, to be used as identification with the 
color only for expression. Therefore, Zda can at most identify 23×3  =  512 differ-
ent objects. The simplified version uses geometric shapes for different types of 
objects. The facial image can only have 2 colors chosen from 4 colors (red, green, 
yellow, blue), a total of 12 possible combinations (expressions), with initially 3 of 

TABLE 9.1

Prototype for Virtual Embodiment

Virtual Organ Intrinsic Function Initial No. of Sensible Levels

Eyes Vision 视觉 3
Ears Auditory (hearing) 听觉 3
Nose Olfaction 嗅觉 3
Tongue Tastiness 味觉 2
Skin Tactile (hepatics) 触觉 3
Body Thermoreception 热觉 3
Vocal cord Voice & words 3
Face Emotion expression 3
Skeleton Pose & Motion 6
Brain Knowledge & learning Innate concepts & abilities
Heart Emotion 10
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the most common expressions. That is, the color of the face is used to indicate an 
agent’s facial expression.

Skeleton: Zda has initially limited possible poses and actions (standing, sitting, 
 eating, grape, walking, turning, dropping, looking, smiling, crying, speaking), 
but can do more through imitation and other forms of learning. Skeletal poses are 
often associated with facial emotions, whether such an association is an inner or 
developed ability.

Brain: Zda’s brain is the place to store his knowledge and mechanisms of action 
(learning and responding). Knowledge net (Knet) is a recursive network of pat-
ternized experiences. The mechanisms of actions include attention, learning, and 
response mechanisms.

Energy: Zda has a certain positive energy level at any moment when alive. When the 
energy level is at zero, he dies. Performing any action, even sleeping, will cost Zda 
energy, while eating food and rewards will boost his energy level. Naturally, Zda 
at a high energy level will be likely to perform a task that requires more energy.

9.4.2 Innate Abilities of Sensory Organs

Eyes (Vision): Zda initially uses 3×3 grids to divide the 2D appearance image to rec-
ognize objects. The simpler version recognizes the shape and color and brightness 
of an object. Zda can only see objects at the front, expanded within 180°; we expect 
Zda usually to pay more attention to an object in front of him than one at his side.

Ears (Hearing): Zda’s hearing has initially only three levels for simplicity: silent, soft, 
and loud. Therefore, his ability to use loudness to judge the distance of sound 
source is very approximate.

Nose (Olfaction): Smells are of three types: aromatic, smelly, and odorless. Aromatic 
gives a positive feeling, smelly gives a negative feeling, and odorless is neutral.

Tongue/Mouth: Zda’s tongue can initially only tell if an object is edible or not. Eating 
gives a positive feeling and boosts energy.

Skin: When touching an object, Zda can only have three possible Tactile Sensations: 
stinging, soft, or flat. Stinging gives a negative feeling, soft a positive feeling, and 
flat is neutral. Being bitten or hit by an object gives the same feeling as a sting.

Body (Temperature): Zda’s innate sense of temperature includes only three types: 
cold, warm, and hot.

Sensibilities of Sensory Organs: Each sense organ has its sensibility, ranging from 
0  to 1. A sensibility of 0 means deaf, blind, etc., while a sensibility of 1 means 
 perfect hearing, vision, etc.

Sensation of the Heart: Sensations (ranging from 0 to 1) measure Zda’s overall emo-
tional state or spirit. When Zda is at a high level of sensation, he is more likely to 
be able to perform a task that requires a high energy.

Here, the Brain holds knowledgenet (Knet) and has mechanisms such as the attention, 
learning, and response mechanisms that we discuss in the next section.

Foundation, Architecture, and Prototyping of Humanized AI
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10
First Designer Stance

10.1 Small- and Big-Data Approaches

McCarthy (2006) stated that the human brain has important innate knowledge, e.g., that 
the world includes 3-dimensional objects that usually persist even when not observed. 
The mainstream approach to AGI is a big-data approach, featuring a large commonsense 
knowledge base as characterized by John McCarthy (2006): indeed, it is worthwhile to 
build as much knowledge as possible into our robots. He elaborated: “A key problem for 
both AI and philosophy is understanding common sense knowledge and abilities. We 
treat the notion of the common sense informatic situation, the situation a person or com-
puter program is in when the knowledge available is partial both as to observation and as 
to theory, and ill-defined concepts must be used. Concepts ill-defined in general may be 
precise in specialized contexts.”

Constructivism and synthetism are contrarily on the minimalism approach. The HAI 
child has virtually an empty brain with minimal innate knowledge. The initial mind 
includes mainly mechanisms residing in the brain which allow the development of all 
sorts of intellectual things a normal baby would experience, such as consciousness, 
attention, imagination, the learning of language, math and logic, the acquisition of social 
morals, self-awareness, meta-thinking, goal-setting, and friend-making. Zda’s mental 
states will not be listed exhaustively by humans, as such an approach cannot be really 
all-inclusive and may lose individual personalities. Instead, Zda will learn everything 
through experience, including learning from teachers. Zda can develop all such aspects 
of cognition without restarting the program. Neither is it necessary to deal with each 
aspect or specific ability using a different agent as is done in narrow AI. Instead, all 
knowledge and skills are developed through experiences or interactions with the envi-
ronment and peers.

With built-in commonsense knowledge can make agents act effectively in commonsense 
situations. On the contrary, zero-data-based HAI agents can use their flexible learning and 
response mechanisms to wisely make decisions as humans would.

Our humanized agent has some intrinsic abilities in understanding concepts (not in the 
form of any natural language), such as inclusion, all, some, disjunction, implication, prefer-
ence, similarity, the past, and precedence (Chang, 2012).

Though I take the small-data approach with very limited innate concepts, I am not 
denying the usefulness of big data. Big data as the primary approach is not a viable 
solution for HAI at this moment. When we have Zda and Lia grow up as teenagers or 
adults, we can copy the big data from their minds to clone an adult in no time. Also, as 
an interim transitional approach, if people refer, small- and big-data approaches can be 
combined.

https://doi.org/10.1201/b23355-13
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10.2 Innate Knowledge

The first designer stance (i.e., intentional stance) is a term coined by philosopher Daniel 
Dennett for the level of abstraction in which we view the behavior of an entity in terms of 
mental properties. Here is how it works. First, you decide to treat the object whose behav-
ior is to be predicted as a rational agent who will figure out what beliefs that agent ought to 
have, given its place in the world and its purpose and what desires it ought to have, on the 
same considerations, and finally, you predict that this rational agent will act to further its 
goals in the light of its beliefs (Daniel Dennett, The Intentional Stance, 1987). McCarthy (2006) 
generalizes intentional stance to the designer stance that asks what kinds of knowledge, 
belief, consciousness, etc., a computer system needs in order to behave intelligently and 
how to build them into a computer program.

In my small-data approach, the first designer stance only includes a minimal set of 
innate knowledge, abilities, habits, biological clocks and desires, and the attention, learn-
ing, response, and forgetting mechanisms that are built on the fundamental principles 
and laws discussed in Part I of the book, mechanisms, while the mental states of action, 
goals, knowledge, belief, and consciousness can be achieved in an agent’s mind through 
interactions with the external environment.

Zda’s embodiment allows him to perform certain basic actions; he can pronounce and 
identify simple sounds, feel heat, see, smell, move his body parts, and so on. The innate 
concepts of Zda are the concepts he possessed before his birth and understanding any 
language, while innate mechanisms are the abilities that are inherited from ancestors. The 
innate concepts denoted by different symbols here will be mapped to words expressed in 
particular languages that Zda will learn through relationships he develops with others in 
the society. Such mapping is a Zda learning process, not man-made mapping in computer 
coding. In a sense, learning is at first a map from the innate concepts to a natural language, 
and then a process of using hierarchical definitions to learn more complex concepts using 
a familiar language. The innate concepts or knowledge include:

1. True (T): If Zda “sees” something happening, then he realizes it is the truth or is 
true to him.

2. Negation (¬): If Zda has the concept of a fair A, then he will also have the concept 
of the opposite side of A (i.e., the negation of A or ¬A). For example, if Zda sees that 
it is raining, then he also has the concept of “is not raining.” If Zda sees something 
happening, then he realizes it is the truth. At the same time, he has the concept of 
the opposite side of the truth, i.e., falseness (not happening). A thing and its nega-
tion always coexist.

3. Sameness or equivalence (≡): Like a human, Zda has the intrinsic concept of same-
ness and has some sensors to detect whether two things are the same or not. For 
instance, a person has the ability of knowing if two objects are the same, or not, 
by looking at them, by touching or/and smelling them, even if he cannot express 
the concept of sameness in terms of any language. Therefore, sameness can be 
detected by the various senses, through shape and color, and by feel, taste, temper-
ature, or smell. The concept is independent of any sensor, but the ability is depen-
dent on particular sensors, e.g., a color-blind person cannot tell if two objects have 
the same color or not. With the sensor, a person can store information about two 
objects and compare them, and then produce the feeling of “same” or “not same.” 
Such a feeling or sensation expresses the concept of sameness.



103First Designer Stance

4. Implication (→): A→ B means A is sufficient for B.
5. All (): “All” is the whole or collection of everything under consideration. Zda has 

the concept of allness but may not necessarily be able to identify the whole in any 
particular case. For example, if we say: “all math books in the world,” Zda may 
not understand what we say, not because he does not have the concept of “all,” but 
because he doesn’t understand, e.g., the terms “word,” “books,” “the world.”

6. Some (∃): Some are a part of all.
7. Count (N ): The concept of the total number of certain items.
8. Every (e): Every element of a set of affairs under consideration.
9. Intersection (∩): Zda has the concept of an intersection of two events, i.e., a part 

belonging to two things simultaneously. However, this does mean he would not 
make a mistake in judging intersections in some cases.

10. Union (∪): Zda can identify the union of two events, i.e., a thing can be made of 
two things, e.g., people ≡ men ∪ women.

11. Conjunction (∧): Zda has the concept of the conjunction of two events, i.e., walking 
∧ talking, meaning talking while walking.

12. Disjunction (∨): Zda can identify a disjunction of two events, i.e., a thing can be 
made of two things, e.g., walking ∨ talking, meaning either talking or walking.

13. Inclusion (∈): The concept of inclusion is a relationship between a part and the 
whole. For instance, a person knows a slice of pizza is part of the whole pizza. A 
door is a part of a house, and the lock is a part of the door. The part of a whole is 
independent of any language, and Zda is born with the ability to understand the 
connection. In notation, A ∈ B means A belongs to B; or is a fundamental part of B.

14. Similarity (~): The concept of “similarity” concerns a relation between two entities. 
“Are similar” means only that a part of one entity is the same as a part of another 
entity. The concept of being similar can actually be derived from the conjunction 
of other concepts (≡, ¬, ∈).

15. Probability (p): The concept of probability concerns the likelihood of a fact’s or an 
event’s occurrence. For instance, if S represents the fact that B occurs after fact C, 
the probability of S is the percentage of time of the fact occurring among a col-
lection of facts in terms of Zda’s observation. Such a collection of facts are subjec-
tive in terms of scope (observation period and conditions given). Probability is a 
learned concept before Zda’s birth, when he may sense that an event (a fact such 
as hunger) sometimes occurs and sometimes does not occur.

16. Preference (≽): Zda displays preference (e.g., likes one thing better than another). 
Preference can vary from individual to individual and from time to time, but the 
concept of preference is the same for everyone.

17. It (f): The concept of “it” refers to anything (concrete or abstract) Zda attends to at 
a particular time; most often “it” is used in a conversation or thinking process. To 
differentiate one “it” from another, we can add a subscript to f , e.g., f1 and f2.

18. Time ( ): The “biological clock” allows Zda to record event-order in time as past, 
present, and future (past experience stored in the memory, what is happening 
now, and what is imagined for the future). The circadian clock will allow Zda to 
record and organize time units: day and year (see the section on biological clock). 
Therefore, notions of time such as yesterday, today, tomorrow, last year, this year, 
and next year are considered to be innate concepts.
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19. Precedence (≫): Precedence refers to Zda’s ability to deal with a certain part, pre-
ceding others. In the linguistic agent, without assistance of other sensors, we use
and force a priority. In other words, things included in the pair of precedence oper-
ators, (and), will be dealt with first. The precedence operators work as parentheses
in an arithmetical formulation and can be used repeatedly or in a nested fashion.

20. Recursion (⟲): The concept of the recurrence of anything (events, mathematical
operations, actions, procedures) in different spaces, times, timescales, or in any
other sensory aspects or in a general sense, such as weather or environmental
change. The sense of the periodicity (unnested recursion in time) of the environ-
mental change (mainly light) allows Zda to quickly formulate, in theory, the con-
cept of “a day.” Zda has the ability to perform various recursions, but here we refer
to the concept.

21. Referring to (): The concept of mapping between a language (including signs)
and its semantics. For instance, the word “pen” refers to an object, a pen. When
the map between Zda’s  and a word in a particular language is established, com-
munications between different humans and the agent become much easier.

22. Imitation (∯  ): The concept of copying what others do, or copying natural phe-
nomena. This imitation is a concept, not one of the mechanisms of imitation to be
discussed later. The action of imitating will be denoted by ⤖ or ⬻.

23. Desire (): Desire is the concept of a goal. Zda has desires so he knows others
have them too. Here, the concept of desire is not the tendency of trying to satisfy
a desire. Like a human, Zda does not have a clearly defined life-goal; rather, his
is vaguely defined as a long and happy life. Happiness is subjective and depends
on many things, and views of happiness change over time. The trade-off between
longevity and happiness is purely personal. It goes in circularly: Your life-goal
will direct your actions and social life, and conversely your actions and social life
will reshape your life-goal.

24. Expectation (): Expectation is not desire. For example, Baby Zda wants to eat the
apple (his desire). He tried twice to grab it and failed, but in the third try he suc-
ceeded. Now, if he was expecting no more than two chances, he would get mad
upon failing the second time; however, if his expectation was to get it within three
tries, then he will not know frustration, he will only be happy.

25. Sense of the 3D world ( ): This sense includes the relative location of two objects
as measured by direction and distance. The location of an object is always relative.

26. Zda knows in order to act on an object, he needs to get sufficiently close to the
object. The fuzzy concept of “sufficiently close” will be learned or become clear
through his experiences.

When we say Zda has an innate concept B, we mean Zda has the sense of B but does not 
necessarily know how to express it in a natural language. In addition to the sense of the  
3D world, Zda has sensory organs (for vision, smell, taste, hearing, touch, temperature) 
and feelings (sadness, pain, happiness), as delineated previously.

We should not misunderstand that Zda is a rational machine just because I have used 
symbols that are similar to those used in mathematical logic for innate concepts. There 
are three networks we should know about: (1) the knowledge net (Knet), consisting of 
patternized real world experiences, (2) the imaginary net (Inet), based on imaginary and 
hypothetical events, and (3) details of recent events with associated timestamps.
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10.3 Innate Abilities

The innate abilities to be discussed in this section are beyond those of the sensory organs. 
They are an agent’s abilities to recognize and perform elementary or atomic actions 
(tokens).

Elementary Actions: Due to inheritance, as with humans, Zda has inner abilities 
to act. An elementary action is an action that Zda can perform and recognize with-
out learning. An elementary action involves some simple movement of the body. The 
movements in 3 dimensions of all joints of the agent’s body, the production of simple 
sounds, and uncomplicated facial expressions can be elementary actions. The combi-
nation of joint locations and sequences of joint movements will become a fundamental 
subset of Zda’s learned concepts and skills over time: from simple, to complex, to more 
complex.

Elementary tokens, including elementary actions, are the basic units used to build vir-
tual environments, human characters, and agents. In principle such elementary elements 
can be further broken into smaller elements (tokens) by a human or an agent; but for Zda 
in the simulated environment, we will not focus on any such decomposition.

Before Zda can take an action, he needs to decide upon a set of actions from which he 
can choose an action. The initial actionable token list at birth plays important roles in his 
earlier learning.

There are eight types of elementary actions (tokens) in the following forms:

• agent.act(name, goal, expectation, target, tool, duration, repeats, execution, Params)

• agent.say(textString)

• agent.image(eventString)—agent thinking of the event sequence represented by 
eventString and leaving traces in the imagination net (Inet).

• agent.recollect(eventString)

• agent.intend(goal, expectedProb)

• agent.compare(objects, attributes)

• agent.turnSelfawarenessSwitch(on/off)

• agent.face.act(expression)

These will be examined in detail in Part IV: Prototyping Agents.
Things in the perceptual world are grounded into a category or class, initially based 

on certain sensible attributes. Such a similarity grouping process is called desensitiza-
tion. For example, different objects with similar actions (e.g., in terms of speed) may be 
grouped into a class (may be called the class of fast-moving objects), objects of the same 
type can be grouped into a class, the same type objects with similar parameters can 
be considered as a class, and elementary actions of the same type can be grouped into 
a class based on their similarity in parameters. Synonyms in natural languages are a 
class. In a pattern structure, a token can represent a member of a class. Such a member 
of class is called a desensitisor for the sake of simplicity. The initial desensitization may 
not be perfect but can be improved through rewards and the authorization of teachers 
or humans.

An elementary token can be considered as a desensitisor of object.action(parameters) or 
object(attributes) with similar parameters or attribute values.
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Action Names for Initial Gross Motor Control Elementary Tokens include: lookAt, look-
Away, knockHead, shakeHead, turnHeadTo, grab, throw, pointTo, shake, push, pick, drop, 
hold, walkTo, walkAway, turnTo, trunAway, say, eat, cry, smile, sleep, catch, ride, dance, 
crawl, climb, pull, readIn, readOut, write, and listen.

Action Names for Fine Motor Control Elementary Tokens can be defined as the location 
and movements of body points or parts. We will explain how to implement gross and fine 
motor skills in Part IV.

Behavioral Inertia refers to the tendency to keep doing what one is already doing (to avoid 
the cost of switching energy). Behavioral inertia can be handled by assigning an association 
probability of repeating previous actions. In a similar vein but different, Repetitive Fatigue 
refers to the tendency to avoid repetitive work, which can contribute to the increase of mus-
cular fatigue by inducing mental fatigue (repetitive strain, Miller, et al., 1993). Repetitive 
fatigue is automatically reflected since, according to the multiplication rule of joint prob-
ability, the chance of repeating the same action in a long action chain will gradually reduce.

As mentioned earlier, Zda will develop gross motor control before fine motor control. We 
decompose a post/action into a limited number of body movements. For instance, a hand 
may initially have two possible actions (grip and lose an object), the head has three posi-
tions, a face has five expressions, an arm has three different possible positions, a leg has five 
different positions, and so on. Over time, fine motor skills are developed so that each body 
part has more possible positions and movements, and more possible combinations, some of 
which are not viable (e.g., leading to falling down). Other aspects, such as vocal abilities, will 
follow the same way: a process of improving precision and control from “gross” to “fine.”

Zda will gradually develop simple skills (elementary actions) and then complex skills 
(combinations of elementary actions) through imitation, necessity, and creativity. Those 
simple and complex actions with frequent occurrences will be associated with correspond-
ing words in a natural language through communication. Those with fewer occurrences 
will not have words in a natural language. Such name assignments are somewhat subjec-
tive: there is a special word for the day after tomorrow in Chinese that is probably more 
natural than using the English phrase “the day after tomorrow.”

10.4 Innate Habits

The innate habit ensures an agent does something consistently, not changing easily over 
time. Instincts are innate habits that are not the result of learning or experience. Such 
consistencies are necessary in learning and communication or language development, 
especially in an agent’s childhood. For instance, a baby always cries when hungry. If he 
sometimes cries and sometimes laughs when hungry, it will make it very difficult for peo-
ple to understand. Another example would be: Zda, facing a certain situation (e.g., seeing 
or smelling something), will produce a certain sound or have a certain facial expression or 
action (e.g., screams if scared). Now, a reflex can be considered a habit that is very difficult 
to change, whereas a habit can be seen as a reflex that could change later in life.

Some habits can change slowly over time if they are not needed anymore, or sometimes 
can even be “harmful.” On the other hand, new habits can be developed over time. A 
habit can be developed when an action or sequence of actions is repeated frequently or 
through associative learning (classical and operant conditioning). Such a habit will become 
a high-level token through hierarchical tokenization (see Section 11.5). In other words, 
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hierarchical tokenization creates habits. When a habit involves a sequence of actions, it can 
be considered to be due to association. A habit can be modeled using an n-gramton (see  
Section 11.5).

The innate habits considered here include:

1. Imitation, Zda likes to imitate others.
2. Biological Desires and Feeling (pleasure, pain, hunger, anger) cause attention to 

focus anddrive the agent’s actions. For instance, when feeling pain or hunger, baby 
Zda will cry, while feeling happy or tickling will lead him to smile or laugh.

3. Zda’s energy decreases over time. Before taking an action, the agent will check to 
see if he has enough energy. An action costs energy.

4. Baby Zda has low sensitivities to the environment, their world is simple.
5. Baby Zda is more imitative and more creative when young, and is less creative 

when getting old.
6. Baby Zda initially always tries to walk or reach for any object that has his attention.
7. Baby Zda likes to grab anything small and put it in his mouth to suck.
8. Zda likes to perform inductive reasoning (summarizing, patternization, repat-

ternization, desensitization) and deduction (justifying what happened, or search-
ing for justification). Such reasoning is an application of the similarity principle.

9. Given that everything else is the same, Zda more likely pays attention to objects’ 
attributes than the differences in attributes between the objects: differences in 
distance (proximity), velocity, size, color, brightness, sound, loudness, smell, and 
other sensible attributes.

10. Zda likes to balance his energy and physical body.
11. Zda constantly monitors the distance of the attentive objects.
12. When Zda wants to look for something in reality, he will walk around, and when 

a match is found he will walk toward it and do something with it!
13. Giving his attention to some object (or objects) means that Zda will likely act upon 

it in some way. The action might involve looking at, looking away from, talking 
to or talking about, and walking toward or walking away from; the act might be 
picking it up, punching it, grabbing it, throwing it away, or otherwise making 
some association(s) with it (or them).

Any chain of associated events, or a sequence of events with high frequency, will be con-
sidered to be a hierarchical token. The last token in a sequence is often viewed as the 
short-term goal. We can say that a sequence of events (actions) leads to a goal, or that a goal 
drives a sequence of events (actions).

10.5 Innate Mechanisms

Innate mechanisms that Zda was born with are essential in determining how Zda learns 
and responds. Zda includes the following Innate mechanisms; each key mechanism will 
be elaborated in a separate section.
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Innate Biological Desires often drive Zda’s actions. Zda may appear to always pursue 
rewards. A reward is recognized by changes in Zda’s biological states (hunger/energy or 
sensation). For instance, when hungry, eating an apple will lead to a change in hungriness. 
Sound of music may reduce sadness, a sensation change in Zda’s inner state. Zda always 
acts toward a higher sensation status and reducing hunger. In addition, Zda constantly 
takes curiosity-driven actions in his lifetime. These biological desires are the fundamental 
forces that drive Zda’s actions. Things (e.g., apples, music) that occur proximally (in space 
and time) to a positive change of biological states are recognized as rewards by Zda due to 
association, while, e.g., receiving a college degree is recognized as a reward-proxy, which 
is also due to a chain of associations.

It is difficult for Zda to judge if Lia’s action leads to her receiving a reward because Zda 
cannot see directly her inner state changes. However, Zda’s imitation habit lets him mimic 
others and if he gets a reward (or his inner state changes) through mimicking, the pattern 
associated with his action becomes a reward pattern. In this way, Zda accumulates his 
reward patterns or knowledge. Another way to accumulate reward patterns is through 
similarity-principle-based deduction: similar patterns will lead to similar rewards.

Zda will automatically classify rewards into different categories according to the change 
in different inner states: energy, sensation, or curiosity. Zda can further divide each category 
through learning (sensitization) based on the magnitude of the change within the category.

Zda’s mechanisms of innate biological desires are very basic for prototyping: (1) Zda 
becomes hungry over time with associated energy level reduction and an action costs 
energy. Zda wants to eat food when hungry to boost his energy. (2) Music and entertain-
ment can raise the sensation level. (3) Curiosity: Zda likes to learn, find out the why, how, 
and so on for things happening around him.

1. Zda’s Biological Clock is an imprecise clock built from the computer clock with
a small random variation added. Zda uses the biological clock to time and record
events happening internally and externally.

2. Self-Awareness Mechanism: Self-awareness refers to the psychological state
 (phenomenon) that one knows what he is doing. For instance, Zda has desires
and Zda knows he has desires. Such knowing is self-awareness. When the self- 
awareness on-off switch is on, Zda is aware of and can usually control every part
of the body and the body as a whole, just like us. When the switch is on, Zda
intends to do something and he is aware of his intention. When the self-awareness
switch is off (default), Zda will not be aware of what he is doing at the moment,
although he might recall it at a later time.

3. Mechanism of Counting: Counting refers to the process that determines the total
number of certain items. It will be used implicitly in the calculation of pattern
frequency.

4. Inductive Reasoning is drawing a general conclusion from a set of specific
observations.

5. Association mechanism enables the ability that Zda has to make links among
similar things or different things that happen close to each other in time or space.
The association mechanism is a key for patternization, and creates links between
different senses from different sensory organs to better identify objects.

6. Attention Mechanisms allow Zda to focus on a few important things (events,
aspects), and this makes his learning more effective. Different objects attract Zda
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in different ways and to varying degrees. Color, smell, brightness, sound, tem-
perature, and an object’s velocity all influence Zda’s attention. Importantly, things 
that are not a focus of his attention have no effect on his decisions.

7. Imitation Mechanism is fundamental to Zda’s learning. When the imitation 
switch is on, Zda can form a response by replacing the actioner in an actioner.
action string with Zda himself.

8. Creativity Mechanism is also key to Zda’s learning. When the creativity switch is 
on, Zda can form his response by replacing any tokens with other similar tokens 
in an event-string, including the empty token.

9. Recollection Mechanism: Recollection is important for Zda’s emotional growth 
and an essential tool in solving problems. To recall, or recollect, from Zda’s mem-
ory is to search a path in the Knet for a particular token or pattern. Certain things 
cause recollection in memory due to the association mechanism. An effect of rec-
ollection is to refresh the recency of the event.

10. Mechanism of Dreaming: Zda uses his dream time for repatternization or to 
organizeinformation and knowledge more efficiently, and sometimes, thus, to dis-
cover new things. Repatternization should follow the Parsimony Principle.

11. Prediction Mechanism: Prediction is key to determining Zda’s responses in dif-
ferent situations. Prediction is under a given event-string, to determine the prob-
abilities of different potential action paths and associated expected outcomes. 
Prediction may include predicting others’ intentions. Predictions in dealing with 
novel situations are based on the Similarity Principle.

12. Mechanism of Imagination: Imagination is a hypothetical execution of imitation 
and creativity on the imaginary net (Inet) in order to predict what would happen 
in a given scenario.

13. Dynamics of Knowledge Representation: Zda’s Knet is not a static knowledge 
database. Instead, it is a dynamic network that changes constantly using hierar-
chical tokenization and recursive patternization. Knowledge displayed through 
Zda’s responses is based on the Knet and innate mechanisms. If we compare 
knowledge display to pizza, then the Knet is the set of ingredients and the innate 
mechanisms are the skills of the pizzaiolo. It is not necessary that we have pizza 
ready to eat at any moment of time, but we always have the ingredients and skills 
to make one in real time.

14. Learning Mechanisms: Learning mechanisms allow Zda to learn a broad range 
of things without the pre-programming of specific knowledge. Self-learning 
 mechanisms include hierarchical tokenization and recursive patternization. 
Dealing with novel situations using the similarity principle, observing, imitating, 
analogizing, and being creative, are key components of Zda’s learning. Thinking 
logically is itself a powerful tool in knowledge discovery.

15. Recursion Mechanism: Zda has the ability to perform various recursions, virtu-
ally on everything, anything.

16. Response Mechanism: The Response Mechanism is used in Zda’s decision- 
making. Zda has to decide his actions (including doing nothing) at every moment. 
The randomized adaptive response mechanism incorporates the Knet and his 
other innate mechanisms to make decisions. In a general sense, the Response 
Mechanism includes several other mechanisms in this list.



110

17. Feeling & Emotional Mechanisms: A few feelings and associated (facial) expres-
sions are inherited, such as hunger, pain, pleasure, sadness, and anger. The inten-
sity of any feeling is proportional to the unexpectedness—the distance between
one’s expectation and what one actually receives—but expectations may be
adjusted over time. Many different feelings can be developed as consequences
of social interactions. The heart is the home for feeling, where overall feeling and
emotion is recorded numerically as sensation.

18. Evolutionary Mechanism: Unlike other innate knowledge and mechanisms, evo-
lutionary mechanisms only affect innate things across different generations. Zda’s
evolutionary mechanism is similar to Darwin’s natural selection in that it includes
reproduction, inheritance, individual variation, and competition under limited
resources.

19. Reward-Distribution Mechanism: When a reward is (in Zda’s view) associated
with a path, then the reward will be evenly distributed to each token in the path.
Because each token consists of subtokens, the distributive reward associated with
each token will be further distributed evenly among its subtokens. The reward
distribution process will continue until elementary tokens are reached at each
branch. The distributed reward to each token or subtoken will be considered as
associated with the token or subtoken.

20. Cybernetic Mechanism: Zda can sense the speed of a moving object by seeing,
touching, or sensing a loudness change or redshift. The Innate mechanism is
based on cybernetics. Thus, when Zda intends to catch a moving target, if the tar-
get is moving fast, Zda will move quickly toward it, visually and/or physically. He
will then try to catch it; if failing to catch it, he can adjust his last actions slightly
(not randomly try a long path) in the object’s direction. If he fails again, he could
retry the last action with a similar adjustment, and so repeat until succeeding.

With his embodiment, associated innate knowledge and mechanisms, Zda can acquire a 
very broad swath of knowledge and a great many skills.

10.6 Biological Desires

Innate Biological Desires often drive Zda’s actions. Are emotions like fear, anger, love, 
shame, hunger, pain, jealousy, lust and sexual attraction hardwired in the brain, or are 
they products of culture and upbringing? According to the Instinct Theory of Motivation, 
all organisms are born with innate biological tendencies that help them survive. This 
 theory suggests that instincts drive all behaviors. Instincts are innate habits that are not 
the result of learning or experience. For instance, infants have an inborn rooting reflex that 
helps them seek out a nipple and obtain nourishment, while birds have an innate need to 
migrate before winter. Neither behavior needs to be learned.

Zda’s innate biological desires are basically related to three inner attributes, energy, sen-
sation, and curiosity. The corresponding mechanisms are as follows. (1) The minimal con-
sumption of energy is Ea × time-elapsed; when the energy level < Ec, Zda will be hungry; 
actions cost energy, and food boosts energy. (2) Entertainment boosts emotion and raises 
the sensation level. (3) Curiosity is the essential force for learning-driven actions; every 
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time that curiosity is reduced (due to, e.g., questions being answered), the curiosity will 
automatically come back to a higher level shortly afterward. In addition, energy level and 
emotion (sensation) will also affect the level of curiosity.

In the Mechanism of Response, we will discuss model parameters that affect desires, 
creativity, and learning abilities.

10.7 Biological Clock

The term Biological clock may refer to: (1) the biological degradation associated with 
aging, such as longevity, fertility, and sensitivity of sense organs; (2) biological rhythms, 
repetitive biological processes. A circadian clock is a molecular mechanism that results in 
a circadian rhythm in a living organism; a circadian rhythm describes a biological process 
that displays an oscillation about every 24 hours, such as the human sleep-wake cycle (the 
“body clock”).

Zda organ’s sensitivity to the intensity changes varies over time as shown in Figure 10.1.
The fertility curve has a similar shape to the organ sensitivity curve. Ideally, Zda can 

grow, and the strength of his body can change too, but we will limit these aspects since 
this is not as critical as other aspects mentioned above.

Biological rhythms are repetitive biological processes that can range in frequency from 
microseconds to less than one repetitive event per decade. A circadian clock, or circadian 
oscillator, is a biochemical oscillator that cycles with a stable phase and is synchronized 
with solar time. Such a clock’s in vivo period is necessarily almost exactly 24 hours. In most 
living things, internally synchronized circadian clocks make it possible for the organism to 
anticipate daily environmental changes corresponding with the day–night cycle and adjust 
its biology and behavior accordingly. Circadian clocks are the central mechanisms that drive 
circadian rhythms. The clock is reset as an organism senses environmental time cues, of 
which the primary one is light. Circadian oscillators are ubiquitous in tissues of the body, 
where they are synchronized by both endogenous and external signals to regulate transcrip-
tional activity throughout the day in a tissue-specific manner. The circadian clock is inter-
twined with most cellular metabolic processes and it is affected by the aging of an organism.

FIGURE 10.1
Organ sensitivity changes over a lifespan.
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A biological clock is not as precise as a physical clock. Zda has a circadian clock using 
the timer created with a computer clock, but with a small random variation in the time for 
the realistic impreciseness. Equipped with a circadian clock, Zda will have the concepts 
of time and day (as 24 hours), and can learn the meanings of concepts such as month and 
year, yesterday and tomorrow.

The biological clock will often be used as an external object, with a ticking behavior, to 
insert into event-strings, thereby simulating time elapsed. For instance, Zda.cook(meat) 
bClock.(10 minutes) Zda.putIn(asparagus).

10.8 Self-Awareness and Consciousness

We are going to discuss how Zda can become a social being without built-in social norms.
Zda, like any person, is and is not a part of his environment. Zda can view himself as a 

person living in society. Recursive patternization makes Zda’s mind (Knet) self-inclusive, 
which is the key mechanism allowing Zda to have self-awareness, the ability of thinking 
about thinking. Self-awareness is the ability of the outside Zda “seeing” the inside Zda 
in the Knet. Self-awareness means one knowing that one’s mind controls one’s own body 
(Figure 10.2). In other words, Zda can (of course he can, just like every human) differentiate 
himself from others over which he has virtually no control at all. This is my interpretation 
of self-awareness, without further explanation of the term “knowing.” Strictly speaking, 
Zda and the Zda inside his recursive Knet are not exactly the same, because when the for-
mer thinks about thinking, the latter just thinks.

With this understanding of self-awareness, to prove that Zda can have consciousness we 
just need to prove he can display consciousness. We intentionally avoid Chalmers’s term 
“subjective experience of consciousness” (Chalmers, 1995a), because its meaning is  not 
well-defined and may involve circular definitions.

There are many examples showing that animals are social beings in a big mixed animal 
society. We can easily find such videos on social media, demonstrating the incredible abili-
ties of collaboration within the same and between different animal species.

FIGURE 10.2
The recursive knowledge net (recursive mind).
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Because Zda imitates human behavior, if we reward him when he behaves humanly and 
morally and punish him when he fails to do so, Zda will display humanity by demonstrat-
ing similar responses, acting just as humans would under various social conditions. These 
will include responses reflecting consciousness, collaboration, and other social skills such 
as being humorous. Zda can display the ability of understanding cultural conventions, eti-
quette, politeness, etc. He can display human-like emotions, and sensation and desires. All 
these can be developed via interactions within the human-machine society and Zda’s imi-
tation mechanism. This means, we humans have to treat Zda humanely if we want him to 
become a human. A mutual acceptance and recognition between human and machine are the 
foundation for Zda becoming a truly social being. The question is: can AGI have full emo-
tion without proper embodiment? I believe there will be no unique answer to this question.

Collaboration creates friends, while confrontation often makes enemies. Zda will for-
mulate the concepts of friend and enemy and treat them as developed attributes for each 
individual.

10.9 Association Mechanism

The Association Mechanism equips Zda with the ability to make connections (a) between 
different things that happen closely together in time or space, or (b) between similar 
things. The association mechanism is related biologically to the neural mechanism: “neu-
rons that link together will fire together.” Association, despite its simplicity, is one of the 
most fundamental mechanisms in learning.

John Stuart Mill’s statement (Mill, 1865) was more guarded and particular: When two 
phenomena have been very often experienced in conjunction, and have not, in any sin-
gle instance, occurred separately either in experience or in thought, there is produced 
between them what has been called inseparable, or, less correctly, indissoluble, associa-
tion; by which is not meant that the association must inevitably last to the end of life—that 
no subsequent experience or process of thought can possibly avail to dissolve it; but only 
that as long as no such experience or process of thought has taken place, the association is 
irresistible; it is impossible for us to think the one thing disjoined from the other.

Indeed, association is indisputable in every piece of our thoughts. The fact that body 
parts are linked together all the time makes us treat them as an entity, a body. The associa-
tion mechanism also makes connections between different senses and sensory organs to 
better identify objects. Such links make Zda think about other aspects when experiencing 
some of the senses again. For instance, when we see an apple we may think of its sweet-
ness and crunchiness. Association also makes links between different concepts if they 
appear at or nearly at the same time.

Any sensations A, B, C, etc., by being associated with one another a sufficient number of 
times, get such a power over the corresponding ideas a, b, c, etc., that any one of the sensa-
tions A, when impressed alone, shall be able to excite in the mind b, c, etc., the ideas of the 
rest (Chisholm, 1911).

The Three Principles of Association include contiguity in time and place, resemblance, 
and causation. David Hartley believed that contiguity is the main law of association, but 
ignored David Hume’s law of resemblance (Warren, 1921).

The law of Contiguity can be stated: actions, sensations, and states of feeling, occurring 
together or in close connection, tend to grow together, or cohere, in such a way that, when 
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any one of them is afterward presented to the mind, the others are apt to be brought up in 
idea (Bain, 1855).

When someone shows you a picture of your best friend, you naturally think of her 
because the picture resembles her. When someone mentions an object, you will think of 
the object because of the association. Zda thinks something when smelling something due 
to an association. Such an association can be a link between a concept (or name) and the 
corresponding object and can, consequently, cause Zda’s attention to shift.

In Pavlov’s experiment on Classical Conditioning, the newly established relationship 
between the sound of the bell and salivation is a consequence of the learned association 
between two stimuli (the bell and the food). Association (e.g., a stimuli–response associa-
tion) is the central mechanism among teaching and learning mechanisms. The association 
of two things at different times makes a prediction of one from the other. An association 
mechanism is generally a key for pattern recognition or scientific discovery.

Association can be enhanced through repetition. Association is transitive through 
chains of associations. For instance, if event A associates with event B, and event B associ-
ates with event C, then event A will associate with event C. Such association/correlation 
is not always held in statistics: 3-way correlation among treatment-biomarker-endpoint 
(Chang, 2007, 2014).

From the HAI perspective, a significant feature of the association mechanism will be 
discussed in later sections.

10.10 Feeling and Emotion

Feelings are experienced consciously, while emotions manifest either consciously or sub-
consciously. Desire has an associated time-dependent expectation. Whether a desire is 
met or not will affect one’s feelings and emotions. A few feelings and associated (facial) 
expressions are inherited, such as hunger, pain, pleasure, sadness, and anger. Many other 
feelings can be developed as consequences of social interactions.

Sadness may result from unmet expectations, perhaps due to nature or environmental 
causes. Anger may also be caused by an unmet expectation or may arise within us for any 
number of reasons. Pleasure comes when an expectation of something beneficial to us is 
met. Embarrassment may arise from personal behavior that does not meet his expectation 
of the moral standard (societal expectation). Certain physical pains and their causes are 
defined as innate properties, such as the fact that hard sharp objects can cause pain.

Sometimes Zda gets sad when he thinks he has no way to meet his initial expectation. 
He may adjust his expectation after feeling sadness (see the discussion on happiness in 
Part I).

Physical pain and biological pleasure are realized through embodiment. Actions initi-
ated from the heart might be considered a rational approach with a proper utility func-
tion, whereas responses originating from the heart might be thought of as irrational or 
emotional.

Zda uses quantifiable sensation to measure different physical pain, biological pleasure, 
and mental states, whereas the intensity of feeling at a given moment is considered as an 
incremental sensation. When Zda is at a high sensation level, he is more likely to perform 
a task that requires a high energy. Associated with Sensation, Facial Expression, and Body 
Expression are coordinated. For simplicity, Facial Expression will be associated with Zda’s 
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face color. There are associations between Facial Expressions and Skeletal Poses; such an 
association can be an inner or developed quantity.

Emotion is an emergent (instead of predefined) phenomenon. Emotion is displayed emo-
tion and is partially dependent on interpretation. Imitation makes Zda similar to a human 
being. The reciprocal principle (reciprocity) is the tendency of agents to exchange the two 
actions in an event-string or pattern. An action of reciprocity is an imitation, but not all imi-
tations are actions of reciprocity. The Reciprocal Principle creates scenarios wherein Zda 
treats a person in the way the person treats him. Imitation is also the way Zda becomes 
a social being. In other words, as a social being, Zda likes to imitate others in most social 
settings.

As discussed, sensation as a measure of feeling and emotion often relies on expecta-
tions: if Zda receives no less than he expected, he will be happy, otherwise, if he gets less 
than he expected, he may not be happy. Specifically,

 Incremental sensation (what received expectation)/expectation= −

How does an agent determine the expectation of a decision? It is a combination of expected 
rewards from a set of potential actions determined by the randomized adaptive reinforce-
ment learning (RARL in Section 14.12) algorithm and the expected reward from the exe-
cuted action.

In a sense, imitations lead members of a community to behave similarly in a given social 
setting, thus creating societal norms. Such an individual view of social norms sets the 
individual expectations for social behaviors. Imitation can create desired expectations and 
at the same time satisfy the desired expectations. This can be elaborated as a necessary 
outcome of RARL:

The associated rewards with patterns in a Knet determined the expectation by: the aver-
age (R) of rewards associated with the candidate action paths from RARL and the reward 
(R0) associated with the chosen action path. As an example of weighted average:

 Expectation 0.1R 0.9R0= +

Though imitation allows an agent to learn crying can get food when he is hungry, the ini-
tial ability or habit of crying for food when hungry is necessary for survival because such 
learning may take too long.

10.11 The Forgetting Mechanism

According to Davis and Zhong (2017): pioneering biological research studies, beginning 
with those using Drosophila, have identified several molecular and cellular mechanisms 
for active forgetting. The currently known mechanisms for active forgetting include 
 neurogenesis-based forgetting, interference-based forgetting, and intrinsic forgetting, 
the  latter term describing the brain’s chronic signaling systems that function to slowly 
degrade molecular and cellular memory traces. The best-characterized pathway for intrin-
sic forgetting includes “forgetting cells” that release dopamine onto engram cells, mobi-
lizing a signaling pathway that terminates in the activation of antibody (Rac1-cofilin) 
cell-signaling to effect changes in the actin cytoskeleton and neuron/synapse structure.
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Over the past 50 years, experimental psychologists have debated whether forgetting 
occurs through an active process or through passive mechanisms. The term active process 
refers to the view that forgetting is active and triggered by defined external or internal 
factors. Interference-based forgetting has been widely studied in experimental contexts 
and posits that brain activity due to new information presented prior to the learning 
event  (proactive interference) or after the learning event (retroactive interference) attenu-
ates memory expression (Figure 10.3). The term passive forgetting has often been used 
to describe the biological decay of memory traces due to constitutive molecular turnover 
(natural decay). However, the psychological viewpoint of passive forgetting does not con-
sider the brain as having the capacity to actively degrade the substrates of memory, even 
though it is widely accepted as the biological machine that forms and stores memory. 
There are different mechanisms for forgetting, some of which affect the integrity of the 
memory engram and others that disrupt retrieval of relatively intact memory engrams 
(Davis and Zhong, 2017).

In our HAI architecture, first, patternization of event-strings is carried out in order to 
simplify the representation of actual perceived events without much information loss. 
Such simplification in Knet will more or less lose some details at retrieval in comparison 
to the original events. Second, more information will delay relevant information retrieval 
and slow the decision process. Therefore, the benefits of forgetting are clear. As to what to 
keep and what to forget, this is a trade-off between response-promptness and  information 
completeness. The forgetting-mechanism we proposed is based on pattern-survival time 
or gramton survival time (GST). This is because information and knowledge are repre-
sented by patterns in Knet, and when a pattern dies it will be removed from Knet. The 
survival time for an n-gramton is intuitively positively affected by the frequency (F) of and 
the associated reward (R) with the pattern, but negatively affected by the total number of 
tokens (N) in the Knet and the number of tokens (n) in the pattern:

= ⋅ ⋅
⋅

,            ’   .GST Cg F R
N n

where constant Cg is an agent s attribute

In addition, recollection and response mechanisms discussed in later sections are related to 
frequency, reward, and recency, making low frequency tokens particularly difficult to recall.

FIGURE 10.3
Ebbinghaus forgetting curve.
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A high-frequency pattern will be assigned a token name or concept, which will be used 
in hierarchical tokenization.

10.12 Evolutionary Mechanism

The evolutionary mechanism is not an innate mechanism of an individual agent, but a 
mechanism that emerges from a society of agents over generations. Materials and mechan-
ical parts can break over time and can be replaced, just as we humans replace our body 
parts or organs when they fail. An agent can die of hunger or other causes, and his maxi-
mum longevity is given. The agent’s evolutionary mechanism is similar to that of humans.

Unlike innate knowledge and mechanisms, evolutionary mechanisms only affect innate 
things across different generations. Different generations of agents alive at the same age, 
can affect each other’s behaviors but not the innate belongings.

Darwin’s four essential conditions for the occurrence of evolution by natural selection 
are applied to the agent architecture:

1. Reproduction of individuals in the population: Male (Zda) and Female (Lia)
2. Heredity in reproduction (via crossover)
3. Variation that affects individual survival (via crossover & mutations)
4. Finite resources causing competition

Evolution will optimize the Zda’s parameters of HAI populations over different generations.
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11
Dynamic Knowledge Representation

11.1 Rich Ontology

Ontology encompasses a representation, definition of categories, as well as properties 
and relations between concepts, data, and entities. A rich ontology is essential for 
AGI agents, and involves many kinds of things: material objects, situations, proper-
ties as objects, contexts, propositions, individual concepts, wishes, and intentions. 
Even when one kind of entity, A, can be defined in terms of others, we will often 
prefer to treat A separately, because we may later want to change our ideas of its 
relation to other entities (McCarthy, 2006). The rich ontology is supported by the 
hierarchical concept learning and adaptive RL-based response mechanism in Zda’s 
architecture. In hierarchical concept learning, Zda learns complex concepts on the 
basis of previously learned simpler concepts. The hierarchical mechanism is essential 
for a rich ontology, efficient learning, memory management, and prompt response. 
Understanding a concept is an ongoing and tuning process. There is no single fixed 
meaning of a concept, even as defined by a dictionary or in some other way. The 
meaning of a concept should be a personal thing, and can well change over time, but 
the core meaning is the “common part” of understanding the concept in a community, 
which is relatively persistent or stable over time. The personalized adaptive response 
mechanism allows Zda to generate responses (so as to display different knowledge) 
in facing different situations.

One of the amazing realities is the difference between contextual meaning and objective 
truth. People can act or speak humorously (e.g., “he means the opposite of what he said”). 
How can we differentiate such assertions from truths? As an example, my statement “The 
sun rises from the west” is a joke if the following conditions are met:

1. I know it is obviously false, but intentionally say it to amuse you.
2. I know you know it’s false.
3. I know you know I know it’s false
4. I know you know I know you know.

11.2 Monotonic Reasoning and Elaboration Tolerance

Most studied formal logics have a monotonic consequence relation, meaning that adding 
a formula to a theory never produces a reduction of its set of consequences. Intuitively, 
monotonicity indicates that learning a new piece of knowledge cannot reduce the set of 
what is known. Having said that, false or outdated knowledge and useless (or the least 
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useful) information might intentionally or unintentionally be forgotten. Monotonic rea-
soning is a deterministic approach, not applicable to situations when uncertainties are 
involved (Chang, 2012). In most daily and scientific reasoning, probability is involved. 
Probabilistic reasoning is a non-monotonic logic. Non-monotonic logics are devised to 
capture and represent defeasible inferences, in which reasoners retract their conclusion(s) 
based on further evidence. Elaboration tolerance refers, in HAI reasoning, to allowing 
new information added to elaborate previous findings without starting over in the rep-
resentation of previous information. Unlike narrow AI, which can only have a particu-
lar skill (e.g., playing games, recommending products, driving cars), elaboration tolerance 
(persistence) in a general sense, enables a humanized agent to learn all manner of different 
skills (add information) over time without erasing previous information. Elaboration toler-
ance is one of Zda’s characteristics.

11.3 Representations of Perceptual World and Knowledge Net

The perceptual world in Zda’s eyes and the world in his mind (Knet) are in the forms of 
objects, object.attribute, object.action(parameters), or object.subobject.action(parameters). You can 
also add levels of subobjects. An object can be a thing such as a book, a car, a plant, a dog, a 
human, or an AI agent. A property can be a shape, size, mass, color, brightness, smell, taste, 
state of matter (gas, liquid, or solid), temperature, velocity, acceleration, etc. Behaviors can 
include walking, running, speaking, listening, watching, or any others you may define.

The basic elements of knowledge representation in memory (in an agent’s brain) can be 
OOP-alike syntax:

• Car.color

• Dog.run(speed = fast)

• Zda.read(book)

• Zda.hand.firegun()

The syntaxes are self-explanatory. The basic elements can be combined sequentially, or be 
nested, as shown in the following examples:

• Zda.hold(pen) Lia.hold(book)—Sequentially
• Zda.see(Lia.hold(book))—Nestedly

In Zda’s view, the external world is a sequence of elementary tokens. This set of elementary 
tokens comes initially from innate knowledge, abilities, and actions, but can be extended 
through experiences or learning. Just as with humans, through patternization the external 
world is simplified and becomes Zda’s Knet. Zda in this Knet is self-inclusive. As such, 
Zda treats his Knet as an internal world, inside his brain, and at the same time an external 
world that can be analyzed as he thinks about thinking. When Zda deals with novelties, 
imagination, hypothetical situations (such as in thought experiments, thinking how oth-
ers may think and act, acting on self-awareness), he treats his Knet as a part of the external 
world. This will become much clearer and more concrete after our discussion of Zda’s 
adaptive response mechanisms.
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Zda’s knowledge is not limited to static objects but also includes more dynamic events. 
That is, knowledge is often formed and displayed in Zda’s responses when facing differ-
ent situations. Similarly, a human does not exhaustively have all possible scenarios and 
associated responses preformulated in his memory. Even in the simple case of language, a 
human does not have all preformulated fixed sentences in the mind, but only has words, 
phrases, a limited number of sentences, and sufficient knowledge of the language’s gram-
mar to be able to formulate sentences in real time. Here, grammar is an engine that enables 
knowledge to be formed more efficiently.

It is convenient to store knowledge in tabular form, as shown in Relational Database, 
Table 11.1. Token ID is used for the identification of the pattern. Pattern is a sequence of 
tokens. Freq is the frequency of the pattern. Recency is the time of the most recent occur-
rence of such a pattern. Duration is the time that such an event will take with a missing 
value for no-actionable token (pattern). Time has different units: lower level patterns can 
be in seconds, hours, while higher level patterns can be in days, months, years, or decades. 
Elementary tokens or atomic tokens are always actionable, while other tokens may not 
be. Scientific laws are not actionable tokens. Reward is relayed to the pattern and will be 
discussed in Chapter 14.

11.4 Hierarchical Tokenization and Concept Embedment

Hierarchical tokenization is the act of searching segments of a target event-string that 
match some known patterns in Knet and replacing the string segments with the matched 
patterns. Such a replacement is called concept-embedment in this book.

Initial tokenization is based on elementary tokens that are directly formulated from 
innate knowledge, concepts, and elementary actions, as discussed in Section 10.3. A token 
usually consists of subtokens. When a token cannot be further expanded at a given time, 
it is called an elementary token. However, in principle, elementary tokens can be further 
broken down into more elementary tokens as Zda’s sensory organs become more sensitive 
over time. An elementary token (action) should allow some small random variations in its 
parameters, such as the variable length of walking steps.

Hierarchical tokenization is a process of dimension reduction: obtaining a shorter 
event-string representation of the world in the mind using concept-embedment. The 
idea is motivated from the Connotation of Understanding discussed in Part I. That is, 
we explain a concept by known concepts, which are further explained by other known 
concepts. For example, the event-string Zda.walk() Zda.walk() Zda.walk() may be simplified 
as Zda.walk(3 steps), given that Zda understands the meaning of three steps. Similarly, the 
event-string Zda.walk(3 steps to the left) Zda.walk(2 step to the right) Zda.walk(4 steps to the left) 
Zda.arrive(the kitchen) may be simplified as Zda.walk(to kitchen).

The English-like syntax in event-strings is not a must. In fact, the actual syntaxes or lan-
guage Zda used will depend on what is used by the people with whom he has interacted. 

TABLE 11.1

Table Form of Knowledge Net

Token ID Pattern Freq Recency Duration Reward



122

For instance, Chinese may use a word 后天 for the English phrase: “the day after tomor-
row.” Zda will learn how other people use concepts (tokens) in multilingual communities. 
A long event-string can be shortened by concept-embedments, recursively. However, the 
replaced concepts must be previously learned concepts (patterns), i.e., from Zda’s Knet.

An event-string is called a pattern if we emphasize its structure; at the same time, so 
naming such strings also implies there are variations in elements. For example, when 
we call “Zda read book” a pattern, we imply that there are variations: Zda read a math 
book, Zda read a storybook, Zda read a science book, etc. Patterning concerns the com-
mon structures and the rule of variations. An event-string can also be called a concept, 
when we want to emphasize its meaning, or a token if it is treated as concept-embedment. 
Patternization is the inference from many specific cases to a general structure or pattern. 
Tokenization is breaking a concept represented by a string into several smaller units or 
simpler concepts that Zda has learned previously. The goal of hierarchical tokenization 
is to break a string into nested n-token long substrings (usually n = 2–4) for easy pat-
ternization. When a pattern is treated as a single unit it is called a token. Zda will map the 
token name to a concept in a natural language through his interactions with others in the 
social community.

A concept is abstract, a general notion. Meaning is the connotation of the concept. For 
example, the connotation of food may be anything edible. You may have noticed that here 
we have used another concept, eatable, to explain food. The denotation (extension) of a 
concept is a collection of similar things. For example, the denotation of food equals {apple, 
breakfast, meat, rice, …}, while the denotation of meat equals {pork, beef, chicken, …}; each 
of the concepts can be further broken down into sub-concepts. Eating apples is a con-
cept, which includes eating different apples and different ways of eating apples. It is often 
impossible to exhaustively list its large number of elements.

A token contains other tokens, a concept contains other concepts, and a pattern contains 
other patterns. In short, token, concept, and pattern refer to different perspectives of the 
same thing. The letter “A” can be thought of as a token, the concept of one, and a pattern 
(rule of how it should be written or appear). Token and concept treat the corresponding 
string (e.g., a song) as a unit, while the pattern lays out the details (melody of the sound) 
of the string. A token as a concept may be embedded in a sentence or in nested sentences. 
Thus, hierarchical tokenization is simply concept embedment.

In Zda’s architecture, any concepts or patterns are treated as tokens in the stochastic 
decision network (Knet), including concepts and concepts of concepts. This dynamic nested 
network of event-strings with associated frequencies and rewards changes constantly and 
varies from individual to individual; this makes each concept (token) and response con-
text- and time-sensitive.

Strictly speaking, the decision-network consisting of events is a non-stationary stochas-
tic decision process. The reason we can use hierarchical tokenization is because long non-
stationary stochastic decision networks (paths) can be approximated by short hierarchical 
stochastic decision nets (paths), or even by a hierarchical Markov chain decision net. Just 
like language, instead of studying relationships among all the individual words in a very 
long story, or in the long sequence of all the individual words we have heard and spoken, 
we (1) break down the sequence of words into phrases, sentences, paragraphs, and articles, 
and (2) analyze word-relationships within phrases, phrase-relationships within sentences, 
sentence-relationship within paragraphs, and paragraph-relationships in chapters of the 
story, and so on. The hierarchical structure of a natural language is shown in Figure 11.1. 
The recognition of patterns at each level is conditioned by the patterns recognized at the 
levels below.

Foundation, Architecture, and Prototyping of Humanized AI
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Tokens, excepting elementary tokens, are not predetermined by a computer program in 
Zda’s architecture. Instead, they associate with learned concepts that frequently appear 
(e.g., in the top 50%, recurrence-wise). Frequency-based (not reward-based) tokenization 
is memory-wise and computationally efficient due to high token frequency, while the 
reward-based response mechanism (discussed later) makes the response more meaning-
ful. Another important fact is that communication (not necessarily verbal) will direct and 
facilitate the formulations of tokens. People with different languages would use simi-
lar but slightly different concepts; therefore, they would use different tokens (e.g., 后天, 
which means the day after tomorrow in Chinese, has no single-word token in English). 
The  cultural differences are also reflected in the different sequences of concepts in natu-
ral languages, such as the order of adjectives in a sentence. In writing mailing addresses, 
English goes with the recipient’s name, home address, city, then country, whereas Chinese 
processes with country, city, home, then recipient’s name. The difference might have some-
thing to do with the language of thoughts.

In general, there are several objects within Zda’s attention and multiple things occurring 
simultaneously. For example, Figure 11.2 shows that multiple tokens occur at times t2 and 
T1, where squares represent elementary tokens and ellipses represent high-level tokens.

Communications and interactions between community members force everyone 
involved to consistently use the same (similar) concepts and terminologies. Communication 
is using the concepts (patterns) other people have identified and letting other people use 
the concepts (patterns) you have identified. Communication makes knowledge-sharing 
possible and learning more effective. The effectiveness is reflected in Zda’s energy saving.

As in arithmetic, where the order of math operations will affect the result, patternization 
is not dependent on how the hierarchy of tokenization is chosen. The token precedence 
(order of tokens in patternization) is a collection of rules that reflect conventions about the 
sequential order of tokenization. The precedence in tokenization is based on the associated 
frequency: higher frequency tokens precede lower frequency tokens.

An important question is: should tokens (concepts) be time-dependent? I would say yes, 
at least for some of the tokens. The time scale does not have to be precise but becomes even 
less precise as time goes by. The time recorded in memory may just be an indication of the 
chronological order, not the actual time. Time-dependent tokens can be implicitly dealt 
with when the concepts used involve time-related concepts (e.g., five minutes later, yester-
day, last month). Another interesting question is how Zda represents a new word (concept) 
that has never been seen before. We will discuss this in the section Dealing With Novelty 
in learning mechanisms.

Similarity scoring is also important in pattern refinement and knowledge discovery, 
allowing Zda to know how to group similar things together, revealing new patterns. 

FIGURE 11.1
Building blocks in A story.
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Furthermore, creativity is essentially a similarity-replacement: the substitution of some 
tokens in Knet with similar tokens. The refinement of patterns is a topic of repatternization 
in learning and adaptive response mechanisms.

11.5 Precedence in Tokenization

Tokenization is mainly based on associated token frequency, for the purpose of having a 
concise “grammar” that can be used to describe the world.

An important question is how to determine a high-level token (concrete procedure in 
reality or abstract concept in language). Tokenization precedence is first based on high-
frequency occurrences, followed by long length (the number of next level subtokens). We 
illustrate with the following example. Note that patterns in Knet and Zda’s attentive world 
are represented by event-strings.

1. The circled numbers represent the different elementary tokens.
2. Assume Zda encounters an event-string: S1 = ➀➁➂➃➄➅➆➇.
3. Assume there are 4 tokens, PT2, PT3, PT5, PT6 in Zda’s Knet:

• PT2 = ➀➁, associated frequency = 10
• PT3 = ➁➂, associated frequency = 15

FIGURE 11.2
Hierarchical tokenization.
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• PT5 = ➄➅➆, associated frequency = 36
• PT6 = ➅➆, associated frequency = 36

4. Hierarchical tokenization is replacing the elementary tokens by high-level (com-
posite) tokens: S1 =➀PT3➃PT5➇.

5. The reason why PT3 is used instead of PT2 is that PT3 has a higher frequency than 
PT2 has. PT5 was randomly picked between PT5 and PT6 since they have the same 
frequency, which means the resulting setting can be ➀PT3➃➄PT6➇.

The problem with this frequency-deterministic algorithm is that it could lead to an inferior 
solution due to some initial condition (e.g., some tokens have initially high frequencies by 
chance). The solution is to use a probabilistic algorithm for precedence: the probability of 
choosing a token is proportional to its frequency. In other words, randomized Hierarchical 
Tokenization based on Token frequency in Knet uses an urn model:

 ( ) =
∑

Urn Model:      .Pr PT f
f

i
i

k

Here ( )   Pr PTi = probability of picking pattern PTi, fi = frequency of PTi, the sum is over 
all possible patterns for the hierarchical patternization. Note that every token will 
be assigned an initial frequency f0 > 1 (e.g., f0 = 5) when it occurs for the first time. 
Adding f0 will increase the stability of the results and the robustness of the algorithm 
(system).

11.6 Natural Language Structure: Knowledge Expression

English sentences may present themselves in varying patterns or arrangements of the 
elements of a sentence. From simple to complex, there are five basic sentence patterns in 
English:

1. Subject + Linking Verb + Complement
2. Subject + Intransitive Verb
3. Subject + Transitive Verb + Direct Object
4. Subject + Transitive Verb + Indirect Object + Direct Object
5. Subject + Transitive Verb + Direct Object + Object Complement

English sentences are conventionally classified into four types: Declarative, Interrogative, 
Imperative, and Exclamatory.

A declarative sentence is an informative statement: (1) I am interested in AI. (2) He wants 
to eat cookies, but he doesn’t know how to make them. (3) Steven found a new job because he enjoys 
working from home.

An interrogative sentence asks a question: (1) Why does the sun shine? (2) How much does it 
cost and why do you need it? (3) Can you call me when it’s time to go?

An imperative sentence tells someone to do something: (1) Turn left at the bridge. (2) Put 
your phone away and listen to me! (3) Hand the baby his bottle now that he’s done playing.



126

An exclamatory sentence expresses emotion: (1) Wow, he just won a gold medal! (2) My new job 
is a wonderful opportunity and it offers great benefits! (3) Call me whether you have good news or not!

To patternize language structures, we first study the parts of speech (PoS) in tradi-
tional grammar; then we use gramtons and skiptons, the two pattern types motivated by 
the notions of grams and skip-grams in the Natural Language Process (Section G in the 
Appendix), to patternize the structure. We will show that this approach is applicable to not 
only big data but also small data.

PoS is a category of words (or lexical items) that have similar grammatical properties. 
Words that are assigned to the same part of speech generally display similar syntactic 
behavior, and play similar roles within the grammatical structure of sentences. Commonly 
listed English parts of speech are nouns, verbs, adjectives (including articles), adverbs, 
 pronouns, adpositions, conjunctions, and interjections. Other Indo-European languages 
and Chinese also have essentially all these word classes; Latin and Chinese do not 
have some articles. Other terms than PoS in modern linguistic classification often make 
more precise distinctions than the traditional scheme does, including the categories of 
word class, lexical class, and lexical category.

A PoS indicates how the word functions in meaning as well as grammatically within 
sentences. An individual word can function as more than one part of speech when used 
in different circumstances.

1. Noun: Nouns are often used with an article (the, a, an), but not always. Nouns can
be singular or plural, concrete or abstract. In some languages, such as Chinese,
nouns usually do not have separate singular and plural forms.

2. Pronoun: A pronoun is usually substituted for a specific noun or antecedent.
3. Verb: A verb in a sentence expresses action or being. There is a main verb and

sometimes one or more helping verbs. (“She can sing”). Verbs also take different
forms to express tense.

4. Adjective: An adjective is a word used to modify or describe a noun or pronoun. It
usually answers the question of which one, what kind, or how many. Here adjec-
tives include articles. An article (determiner) is a word, phrase, or affix that may
indicate whether the noun is referring to a definite or indefinite element, a par-
ticular quantity or all. Common English determiners include the, a, this, my, their,
many, both, all, no, each, any, and which.

5. Adverb: An adverb describes or modifies a verb, an adjective, or another adverb,
but never a noun. It usually answers the question of when, where, how, why, under
what conditions, or to what degree.

6. Adpositions: Adpositions, including prepositions and postpositions, are a class
of words used to express a wide range of semantic relations between their com-
plement and the rest of the context. Preposition: A preposition is a word placed
before a noun or pronoun to form a phrase modifying another word in the
sentence. A prepositional phrase almost always functions as an adjective or as
an adverb.

7. Conjunction: A conjunction joins words, phrases, or clauses, and indicates the rela-
tionship between the elements joined. Coordinating conjunctions connect gram-
matically equal elements: and, but, or, nor, for, so, yet. Subordinating conjunctions
connect clauses that are not equal: because, although, while, since, etc.

8. Interjection: An interjection is a word used to express emotion.
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In the following example we use font faces and colors to show different Parts of Speech:

The young girl brought me a very long letter from her favorite teacher, and then she 
quickly disappeared. Oh my!

Adjectives describe Zda’s senses: Taste, Touch, Sound, Color, Size, Shape, Amount, 
Emotion (Sensation), Desire, Time, Age, Location, Origin, Material, Person or Personality, 
Appearance (e.g., new, impressed, clean, multicolored), Situations, Qualifiers (denoting the 
item’s type or purpose), and changes of these attributes in time and space.

The relations expressed by adpositions may be spatial (denoting location or direction 
such as in, under, toward, before) or temporal (denoting position in time, starting, end-
ing, or duration) relation or relations expressing comparison, content, agent, instrument, 
means, manner, cause, purpose, reference, etc. (such as of, for). An Adposition typically 
combines with a noun phrase, this being called its complement, or sometimes object.

As an adjunct to a noun:

• the weather in March
• cheese from France with live bacteria

As a predicative expression (complement of a copula)

• The key is under the stone.

As an adjunct to a verb:

• sleep throughout the winter
• danced atop the tables for hours

As an adjunct to an adjective:

• happy for them
• sick until recently

A conjunction connects words, phrases, or clauses that are called the conjuncts of the con-
junctions. In general, a conjunction is an invariable grammatical particle and it may or 
may not stand between the items conjoined, as illustrated in the following examples:

• They do not gamble or smoke because they are ascetics.
• They gamble and they smoke.
• They do not gamble, nor do they smoke.
• They gamble but they don’t smoke.
• Every day they gamble or they smoke.
• You either do your work or prepare for a trip to the office.
• Just as many Americans love basketball, so many Canadians love ice hockey.
• I would rather swim than surf.
• We’ll do that after you do this.
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• That’s fine as long as you agree to our conditions.
• We’ll get to that as soon as we finish this.
• There is a good chance of rain whenever there are clouds in the sky.

An initial comprehension of grammar is not necessary when learning a language. Most 
people learn their mother language without grasping the grammar. Learning grammar 
can help them to understand and use their language better when they have mastered 
certain skills of the language. But grammar is very useful for adults learning second lan-
guages. Knowing the common language structures here will be helpful in constructing 
Zda’s architectures, especially in the language-guided response and in effectively teach-
ing Zda’s learning. We will use the information discussed in this section to patternize 
the language text strings in Section 13.2, Patternization of Language. We will see in this 
chapter that conjunctions and adpositions can be taught using factor-isolation techniques. 
However, it is important to remember we are not going to build any PoS or grammar in 
HAI architecture. Instead, Zda can learn the grammar of any natural language as needed.

Grammar is important for efficient learning but more important is contextual 
understanding.

Contextual Understanding is a base for humanized AI, but it is not the whole of HAI. 
An agent can understand well but still act in ways that are not humanlike. There are many 
languages and grammar which evolve over time. Each HAI agent has his own way to 
understand any language.

One important learning is “referring to” or “mapping to.” “Referring to” can also be 
explained as “understanding.” Zda will make his own grammar (pattern structure) that 
will be very different from the grammar of any natural language. For Zda, a natural lan-
guage is one-dimensional text (verbal) string descriptions of the perceptual world. Zda’s 
Knet of recursive patterns which is coded as one-dimensional text string is a different way 
of describing his perceptual world. The mapping between a natural language and Knet 
can be established through the elements of the perceptual world. The evolutional one-
dimensional text strings also form the recursive, self-inclusive stochastic decision network 
used in the deep-thinking mode of the response mechanisms.

A green pen is a single object, we can describe it as “green pen,” “pen green,” or other 
ways using natural languages. Here, the object (pen) and its property (green) are arranged 
according to certain rules (PoS) in a 1-D natural language. Words referring to other objects 
or their static and dynamic attributes work in a similar manner. So do adverbs in English.

A cup on a table may be referred to by “cup on table,” “cup above table,” etc., using a 
natural language. Here, the accessory word “on” or “above” is introduced in order to use a 
1-D text string to indicate (map) the 3D spatial relationship between the two objects. Such
accessory words (or paired words) can be adpositions or conjunctions in English.

The term contextual understanding of a natural language is to correctly map tokens in 
the Knet patterns to the words in the natural language. We will elaborate on this process 
in Sections 13.2, 14.12, and Chapter 15.

Foundation, Architecture, and Prototyping of Humanized AI
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12
Attention Mechanism and Attentive World

12.1 Decomposition of Attention

Like humans, Zda sends off “attention pulses” to detect the world. Thus, the world consists 
of discrete frames in Zda’s view. We humans like to fill in the blanks between these frames 
with our imagination. Zda experiences and learns about the world based on his attention. 
Attention allows Zda to focus on a small number of things so that he can learn and deal 
with them effectively. Therefore, the cognitive agent must have an attention mechanism 
for learning and response. In Zda’s architecture, attention is classified into three types: 
subconscious, conscious, and associative.

Subconscious Attention is due to an effortless reflex. Subconscious-Attention relates to 
the intensity of source (sound, light, odor, temperature), closeness, and motion. Simply put, 
the intensity, closeness, and speed of an object will attract Zda’s subconscious attention. 
In general, Zda’s subconscious attention to an object will depend on characteristics of the 
object that include its closeness, size, brightness, moving velocity (inward or outwards), 
acceleration, and any change in distance, brightness, soundness, odor, temperature, and 
tactility. Acceleration is the derivative of the velocity, the speed of speed; it is related to 
the future closeness to an object. In principle, we can have an acceleration of acceleration. 
However, Zda will not deal with such higher order quantities.

Conscious attention is the attention referred to the most in daily life. It is an attention 
that is of self-awareness and requires energy. The things brought to one’s conscious atten-
tion are often determined through a rationalization that is mainly related to the goals, 
frequency, and rewards of actions to be taken. Zda has an initial (born with) set of things 
that potentially form conscious attentive objects (events or concepts).

Associative Attention is caused by associative thinking, leading to an attention shift 
from one object (event, concept) to another associated object (event, concept). For example, 
when we see a banana we may think of an apple.

An attention set is a set of objects, events, actions, and concepts that the agent pays atten-
tion to, in the form of object.attributes, object.action(), and patterns. For example, myTree.size, 
myTree.stand(), Wind.blow(), Sky.shine(), Zda.run(), and Friend.rewarded().

12.2 Subconscious Attention

Zda’s subconscious attention to an object at time t is a multiple-sense weighted attention 
given by
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where W0, W1, and W2 are weights whose initial values are considered parameters 
of innate attributes. The weights can be updated slightly over time. d(t) = the distance 
between Zda and the object at time t, ( )S t  = the speed of the object relative to the observer
(Zda), ( ) ( ) ( ), ,  ,n t h t M t  and ( )T t  are the intensities of smell, sound, temperature, and taste,
respectively. Remember, the speed of an object is relative to the agent (observer).

Zda is sensitive to voice (words) and the words heard are virtually always in the atten-
tion set. An object that an agent is pointing at or shaking will very likely become objects 
in Zda’s attention set.

A voice’s attentivity is proportional to the logarithm of its intensity, according to the 
Weber-Fechner Laws. The logarithm can be explained by the fact that signal intensity 
reduces exponentially when it travels through a multiple-layer neural network.

Zda can only observe what happens at the attention pulses; anything in between them 
is made up by his imagination, just as with humans. Attention directs the consumption of 
the internal energy resources. The attention pulse rate is proportional to the subconscious 
attentivity, like a radar. Subconscious attentivity and the subconscious attention pulse rate 
switch are low in deep thinking since the conscious attention is high.

The subconscious attention set Ω(t) at time t consists of up to 4 objects (tokens) with the 
highest subconscious attentivities but removes any objects whose subconscious attentivity 
is less than a certain percentage of the maximum of the 4 attentivities.

On the time-axis, Zda can temporarily hold subconscious attention set up to 16 time 
points, Ω(t−15), Ω(t−14), …, Ω(t−1), and Ω(t). The reason that Zda automatically holds a long 
string of subconscious attentive objects over time is due to the inertia of subconscious 
attention. This long event-string allows Zda to discover complex scientific laws.

Inertia of attention is the tendency of humans or agents to pay attention to the same 
thing paid attention to at the previous moment. The inertia attention set ΩI(t) at time t is 
equal to Ω(t) at the previous time point t−1. Inertia of attention can be explained by the 
energy cost (∆ )E  due to attention switching. For convenience, we define inertial attentivity 
as 1/∆E, the inverse of the energy cost.

Note that sensing smell, light, sound, taste, temperature, and touch, all require some tiny 
time interval. So does sensing the speed of a moving object. A biological clock (time) is usu-
ally in lower subconscious attentivity because the clock is always steadily and slowly ticking.

An important question is when to turn on self-awareness, so that Zda himself is in his 
attention set and patterns in Knet. This is a personal thing: some people practice introspec-
tion, turning the self-awareness switch on, more often than others do. At the moment, we 
use a probability of randomly turning the switch on. This probability is characterized as 
an innate attribute.

Attention to some innate concepts is often related to an action. For instance, when Zda is 
making a choice, the innate concept Preference is in his attention set. Conversely, when the 
innate concept Preference is in Zda’s attention set, he is usually making a choice. Attention 
to the innate concept can be subconscious or conscious.

12.3 Conscious Attention

Conscious attention requires the self-awareness switch to be on. The conscious attention 
set will be selected from the list of the most interesting and valuable things: things that 
are enjoyable and actions that are likely associated with high rewards. In other words, the 
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conscious attention set consists of the most frequent and rewarding patterns (things, sub-
ject fields, events, concepts, processes).

Before Zda develops his own list of interesting things for conscious attention, he will 
have been given an initial (born with) set of interesting things for his conscious attention.

12.4 Associative Attention Shift

According to the law of contiguity in Psychology, things happening close to each other in 
time or space are associated. While shaking an object to attract Zda’s subconscious atten-
tion, saying the name of the object will make Zda associate the name with the object. This 
is the initial basic approach to teaching Zda names of objects. After Zda has associated 
a name with an object (or event), then, when he hears the name, he will pay attention to 
not only the name but also the associated object (event). For example, after Zda associates 
the name “coffee” with actual coffee, when Lia says “bring me a cup of coffee,” Zda will pay 
attention to (and begin looking for) coffee. Association is the key to making links between 
senses from different sense organs (Figure 12.1), and consequently the links between dif-
ferent objects or the coordination of body parts. The association mechanics constitute one 
of Zda’s innate mechanisms.

When we shake an object and say its name, Zda will associate the name with the 
object. We then point at the same object, say its name, and Zda will “understand” the 
meaning of the action “pointing.” After that, we do not need to shake but point at an 
object to teach Zda its name. Furthermore, if we gradually move away from the object 
and “pointing at” becomes “pointing to” while saying the object’s name, we can even-
tually name a distant object by pointing to it. However, how do we refer to a non-
pointable or abstract thing, such as time? This matter will be addressed in Chapter 15, 
Effective Teaching.

FIGURE 12.1
Associations among senses from different sensory organs.
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Association can cause the attention to shift from one thing to another, leading to recol-
lection and imaginings. For instance, we might have a chain of associations: → Apple → 
Apple Pie → England, the place where apple pie originated. Such a chain of associations 
causes an attention shift from apple to England. We will have more to say about the asso-
ciative attention shift in Adaptive Response Mechanisms. The stronger the association 
is, the more likely the attention shift is to occur. Conversely, constant shifts between two 
things make the association between them even stronger.

In the most general sense, an associative attention occurs when two things (events) are 
similar (close) in some sense. For instance, an attention shift from banana to apple could 
be because of the shared property of sweetness. Associative attention also explains why 
we often cannot avoid thinking the things we don’t want to think about.

An association will be represented by a 2-gramton (attentive token and associated token) 
with high frequencies (see Part IV for details).

12.5 The Attentive World

Zda only observes what happens at the attentive time points when attention pulses are 
sent. Anything in between is unobservable and could be made up by his imagination, as 
mentioned earlier. Without imagination, Zda’s attentive world consists of discrete frames 
(Figure 12.2). Attention directs the consumption of internal energy resources.

The attention pulse rate is directly proportional to subconscious attentivity; high 
subconscious attentivity, such as when seeing an object flying toward your eyes, 
will lead to more frequent attention pulses. In other words, current subconscious 
attentivity will determine the next attentive time point. See Reflex and Fast-Thinking 
(Chapter 14).

Attention pulse rate is inversely proportional to conscious attentivity. That is, the more 
an agent is involved in thinking, the less attention (s)he is paying to the external world. 
Thus, current conscious attentivity will determine the next attentive time point. See Slow-
Thinking and Deep-Thinking (Chapter 14).

We limit that an agent can only pay attention to a maximum of 4 objects or recollec-
tive events and actions (concepts) at up to 4 time points. The recollection of events or 
actions is itself a concept since, e.g., an actual car accident and a recollection of it are 
different things.

FIGURE 12.2
Agent’s attentive world at 4 sequential time points.
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In slow-thinking, from 16 tokens at 4 consecutive attentive time points Zda will select up 
to 4 of the top attentive tokens (may include voice) to form the final attention set but will 
ignore any tokens with attention less than half of the maximum attentivity.

To investigate the patternization mechanisms, we need to understand that there are dif-
ferent levels of detail Zda may pay attention to. For instance, when a big yellow German 
Shepherd dog named Luna is running fast down a road, Zda may notice a dog running but 
doesn’t know it’s Luna, or Zda may see a big dog running but doesn’t know the breed, or 
Zda may see a big yellow dog running but doesn’t know its speed. The level of detail Zda 
attends to will determine the similarity grouping in Zda’s learning.

As we saw in our discussion of agent embodiment, Shape defines the class (type) of an 
object. The combination of Shape, Size, and Color identifies each object uniquely. Color 
also indicates the agent’s emotion, in our simplified architecture. Therefore, Zda might 
pay attention to one or another set of items, such as {Shape, Action}, {Shape, Size, Action}, 
{Shape, Size, Color, Action}, or {Appearance, Action}.

The default attention items are rooted in objects: object(appearance).action(targetObj). Up to 
4 objects at 1 to 4 time points (real time objects or recollections of objects at past times) can 
be accommodated. Thus, Zda can pay attention to {actor1.action1, actioner2.action2, actioner3.
action3, and actioner4.action4} simultaneously, or to {actioner4.action4 at the moment and 
recollections of actioner1.action1, actioner2.action2, actioner3.action3 at different times}.

Keep in mind that repetition, even recollection, will enhance the memory of an event, 
i.e., increase the frequencies or change the recency of the event.

12.6 Significance of Attentions

Based on their formations, subconscious, conscious, and associative attentivities usually do 
not change rapidly over time. This property of attention is called Attention Initia. For this rea-
son, the attention sets are often similar over the attentive time-points t1, t2, t3, and t4. This sta-
bility of the attention set helps Zda (human) to make predictions and discover scientific laws.

The predicted world is not necessarily the same as the actual world. Zda acts based on 
his predicted world, in which Zda himself may or may not be in his attention set. Zda’s 
default state is that he himself is not in his attention set. The default state is also called the 
observational state.

Sensory organs are usually sensitive to the change of a source intensity (of light, smell, 
sound, temperature, etc.). The associated reflexes can be considered as innate mechanisms 
and enhanced by learning. For example, when an object is flying fast toward you, you 
could be blinking your eyes or moving away to avoid being hit. Such a reflex is an innate 
mechanism (demonstrated after a baby develops vision) that will be enhanced by learning. 
Zda might learn that the faster an object flies, the sooner and harder it can hit him.

What are the practical implications of attention? This will mainly be a part of the topic 
of Zda’s response mechanism, but we outline some obvious implications here and leave 
details for later discussion.

1. When Zda pays attention to an object (especially a moving object), he will also pay 
attention to its neighbors in order to predict what is going to happen next so that 
he can prepare for the action. In theory, motion is relative, object A moving toward 
object B can be viewed and object B moving toward object A.
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2. Zda’s attention to object x means he will more likely walk toward x (or its nega-
tion: walk away), look at (or look away) x, grasp x (or release it), wave to, throw at,
jump on, and talk about x, recall information related to x, or do something with x.
Therefore, these should all be elementary Zda abilities or initial action options: Zda.
walk(attentive-object), Zda.look(attentive-Object), Zda.actOn(attentive Object), etc.

3. A higher attentiveness to an object means that the agent will check on the object
(examine it) more often and in more detail.

4. When an innate concept is in Zda’s attention set, the associated action with the
concept will often be in his attention set too. For instance, when Zda hears a word
(he has already learned), imitation, he will likely perform the imitation because of
the associative attentional shift.

5. Because Zda has the ability of grouping similar things into categories, math and
science as the concepts of subject fields are just two examples that Zda can learn
from grouping and communications with others. Consequently, the subject fields
may become Zda’s interest and in his attention.

Foundation, Architecture, and Prototyping of Humanized AI
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13
Learning Mechanism and Knowledge Discovery

13.1 Overview of Learning Model

The learning mechanisms (Figure 13.1) mainly include hierarchical tokenization and 
 recursive patternization. We recall how we combine words into meaningful phrases, 
phrases into sentences, sentences into paragraphs, paragraphs into chapters, and chap-
ters into a book. Hierarchical tokenization is like concept-embedment, i.e., using learned 
 concepts (high-level tokens) to replace combinations of tokens, aiming at shortening event-
strings for better understanding. Like language grammar, Patternization is the use of rules 
to describe the structural commonalities among multiple event-strings.

The recurrence of an event-string promotes the formation of a concept for effective think-
ing while naming a term for the concept makes for effective communication. Of course, 
natural language and thoughts influence each other, as we have seen.

Desensitization is the grouping of multiple tokens or event-strings into one token based 
on their similarities. For example, we group meat, bread, and milk into one category, 
food. Elements in the same category (desensitisor) are called synonyms. Sensitization 
is the reverse of desensitization, i.e., breaking a group into finer categories. Language-
guided Learning and Response is understanding the language and using the relationships 
between words and actions in one’s decision-making.

The factor-isolation technique is an effective method of learning where an agent makes 
associations between individual attentive objects or items. Curiosity learning is active 
learning driven by curiosity, which, e.g., would lead to an agent asking intelligent ques-
tions. Inductive reasoning is the fundamental method employed by humans in scientific 
discovery, and works the same way for the AI agent. Induction is realized through desen-
sitization in our HAI architecture.

Whether as humans or agents, we constantly face situations that we’ve never faced 
before. Dealing with new things is therefore unavoidable. Similarity learning, which 
includes imitation and innovation, is an effective way of dealing with novelty. To Zda, 
imitation is the replacement of the other agent in the event-string (agent.action string) with 
Zda. Similarly, to Zda, innovation is replacing a portion of the event-string (agent.action 
string) with a similar string.

Frequency and Reward are important attributes of a pattern. Any pattern will be assigned 
a token name (equivalent to a concept in natural language) to be used in hierarchical 
tokenization. The reward associated with a pattern serves as a basis for decision- making. 
Tokenization and patternization are frequency-based, while the response mechanism is 
essentially reward-based.

Hierarchical tokenization and recursive patternization are applied to both word-
strings in a natural language and event-strings in a perceptual world. Philosophically, 
the similarity principle and parsimony principle serve as the backbone of learning 
mechanisms.

https://doi.org/10.1201/b23355-16
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Zda is first interested in one-gramtons, which are single tokens either with reward or 
high frequencies. After establishing some 1-gramtons, Zda starts to learn 2-gramtons that 
carry either high frequency or reward. Similarly, 3-gramtons and 4-gramtons then follow.

Knowledge as the outcome of learning includes concept-recognition (what refers to 
what), pattern-recognition (natural laws, or what repeats after using similarity group-
ing), language understanding (the relationship between language and observed world or 
actions), methods of teaching-learning, and ways of responding.

Words can refer to an object, event, action, or an abstract concept. But understanding is 
mainly learning what refers to what. Such understanding also includes understanding 
one’s intentions or goals. Lia’s intention, in Zda’s view, is a likely result of Lia’s action, and 
is a future node on the path in Zda’s Knet. A special set of 2-gramtons is needed to record 
knowledge of what refers to what.

An agent’s response refers to an action (which may be doing nothing) in the external 
world, while patternization is the updating of his or her internal Knet. Generally speaking, 
patternization will occur as soon as a response is registered, unless there is no time before 
the next response. Patternization and repatternization can occur as long as an agent is not 
facing a safety issue requiring his immediate response. Having said that, repatternization 
always occurs at sleeping, i.e., a routine task scheduled at a certain period during every 
24 hours.

Temporality and recency point to an important issue: an (one-time) event is particular 
and has a time of occurrence and a duration, such as the American Revolutionary War 
(April 19, 1775–September 3, 1783). The statement “the United Nations was founded in 1945” 
has explicitly indicated the time of the event, but no duration; we call such an event a 
milestone. The concept, work gets paid, has neither starting time nor ending time, but can 
have the time of the concept acquisition. This concept can be expressed in English as a logi-
cal statement: “If you work, then you will get paid.” A pattern often involves multiple or 
recurring events; here there is no unique time of occurrence, but one can mark the time of 
last occurrence, its recency. “When did you play tennis last?” is specifically asking for the 
recency. An event is an instance of a pattern (class of events). There is event time but no 
class time. Understanding a particular car is always in the context of its class or desensiti-
sor. This is true for any object or event.

FIGURE 13.1
Overview of the learning mechanisms.



137Learning Mechanism and Knowledge Discovery

Just as a human only remembers important things with great physical or emotional 
impact, Zda will only remember the details of things that have very high rewards or 
 penalties at the time. A human can conclude on the importance of a thing after ratio-
nalization, but I would argue that at the time he arrives at the conclusion, there is an 
emotional impact.

13.2 Patternization of Natural Language

Natural language processing (NLP), also known as computational linguistics (CL), is a 
field of Artificial Intelligence in which we try to process human language as text or speech 
to make computers similar to humans (see Section G in the Appendix for a tutorial). In 
NLP, an n-gram (Q-gram) is a contiguous sequence of n items from a given sample of text 
or speech. The items can be phonemes, syllables, letters, or words. The n-grams typically 
are collected from a text or speech corpus. When the items are words, n-grams may also 
be called shingles. The n-grams can be used for efficient approximate matching. By con-
verting a sequence of items to a set of n-grams, it can be embedded in a vector space (see 
Section G in the Appendix), thus allowing the sequence to be compared to other sequences 
in an efficient manner.

An n-gram model predicts the next token xi based on the conditional probability

 | , , , ,1 2 1( )…− − − +P x x x xi i i i n

that is, the probability of xi at time point i, given tokens , , ,1 2 1…− − − +x x xi i i n  at the n−1 time 
points.

As the vocabulary of any language is large, it cannot be labeled by humans, and hence 
we require machine learning techniques that can enable a machine to learn the context of 
any word on its own. A k-skip n-gram is a length-n subsequence where the components 
occur at distance at most k from each other. A skip-gram model predicts an earlier token 

−xi k  and a later token +xi m based on the conditional joint probability

 , | ,( )− +P x x xi k i m i

that is, the joint probability of −xi k  at time point i-k and +xi m at time point i+m, given xi at time 
point i. A less restrict predictive model is to use two conditional probabilities |( )−P x xi k i  
and |( )+P x xi m i . The n-gram and skip-gram models can be used for predictions of or sug-
gestions for missing words or information.

As pointed out earlier, contextual understanding is more important than grammar. 
However, to promote HAI’s understanding, we need to determine how to patternize the 
underlying natural language and how to patternize the event-strings and the relationships 
between them. Contextual Understanding is a basis for humanized AI. Languages evolve 
over time. Each HAI agent has his own way to understand any language and improve his 
comprehension over time.

The patternization of natural language must serve the purpose of getting sensible 
responses from HAI agents. That is, the two pattern structures of language-strings and 
event-strings in Knet should be chosen so that the relationships between the two types 
of patterns can be easily found. Grammar only partially use the meaning of the words 
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(e.g., “above,” “between,’’ “along”), while n-gram and skip-gram models in NLP only work 
on the language-strings without considering their relationship to real-world events. For 
this reason, n-gram and skip grams cannot solve the problems inherent in contextual 
understanding.

In our HAI architecture, contextual understanding means correctly mapping tokens 
and patterns in the Knet patterns to the words in the natural language, as discussed in 
Effective Teaching (Chapter 15).

Here we want Zda to be able to discover the recursive structures or patterns in natural 
languages himself and do the mapping (contextual understanding) himself.

We can express the sentence,

Lia told me that Bob said “if it is not raining, then we can go to the movies.”

in recursive patterns, each pattern consisting of no more than n = 4 tokens.
In light of the examples in Section 11.6, Natural Language Structures, we limit the pat-

tern length to a maximum of 4 tokens (f1, f2, f3, f4). Depending on the tokens’ arrangement, 
we identify 4 different types of patterns and their generations as shown in the follow-
ing table. By recursion, each of f1 through f4 can be an elementary or a high-level token 
(a sequence of words). The recursion makes the patterns slightly different from n-grams, 
we call them n-gramtons instead of n-grams, and skiptons instead of skip-grams.

An agent will find that some gramtons are similar. That is, they have the same structure 
and some common tokens, but also different tokens. In such cases, it is efficient compu-
tationally and memory-wise to summarize those similar gramtons into a pattern (pattern 
structure with associated categories), called a skipton. A skipton is a pattern that has fixors 
and variables (more precisely, desensitisors). Fixors are fixed words, while desensitisors 
are words that are members of categories. A category is a list of word-strings (see, e.g., 
Table 13.1). In the table, f1 through f4 are invariants, called fixors. Variables d1 and d2, 

TABLE 13.1

Linguistic Pattern Types in Knet

Pattern Type Name Pattern Example Recursion Form

Gramton
GT1(f1) f1 “apple”
GT2 (f1, f2) f1 f2 “red apple” GT2(f1, GT1(f3))
GT3(f1, f2, f3) f1 f2 f3 “very tall building” GT2(f1, GT2(f5))
GT4 (f1, f2, f3, f4) f1 f2 f3 f4 “big green solid table” GT2(GT3(f1, f2, f3), f4)

Skipton
ST1(d1, f1) d1 f1 f1 = “walk”,

d1 ∈ {“they”, “we”, “you”}
ST2(f2, d2) f2 d2 F2 = “hold”,

d2 ∈ {“red pen”, “pencil”}
ST3(d1, f1, d2) d1 f1 d2 “... as soon as…”

“... if …”
ST4(f1, d1, f2) f1, d1, f2 “Pick … up”

ST5(f1, d1, f2, d2) f1 d1 f2 d2 “if …, then …”
“neither… nor…”

ST6(d1, f1, d2, f2) d1 f1 d2 f2

Foundation, Architecture, and Prototyping of Humanized AI
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called desensitisors, are members of categories and d1 and d2 are paired. By recursion, 
fixors and desensitisors can be elementary (single words) or high-level tokens (phrases or 
sentences). The symbol ∈ means “belongs to.”

In our HAI architecture, agents use short but recursive n-gramtons and skiptons instead 
of the long n-grams and skip-grams (over 100 tokens long) used in NLP. We also adopt 
recursion, due to the consideration that our approach starts with a small (virtually zero) 
instead of a big data. Each n-gramton and skipton can have an associated reward and 
recency in addition to frequency.

The patterns with up to 4 tokens in Table 13.1 cover basic sentence patterns discussed 
in Section 11.6 The patterns also cover the eight PoS (parts of speech) in English. For most 
languages the 4-token patterns should work well; in rare cases, n-token patterns might be 
more effective (n > 4).

The fixors in skiptons could be adpositions in English. As discussed in Section 11.6, 
the relations expressed by adpositions may be spatial (denoting location or direction such 
as in, under, toward, before) or temporal (denoting position in time, starting, ending, or 
duration), or may express comparison, content, agent, instrument, means, manner, cause, 
purpose, reference, etc. (such as “of” and “for”). In other words, an adposition expresses 
a relation between objects in what an agent directly sensed attributes such as distance, 
speed, relative position, loudness, color, and size (Table 13.2). An adposition typically com-
bines with a noun phrase, this being called its complement or sometimes object.

In principle, a skipton can be equivalently, but memory-wise inefficiently, presented by 
multiple gramtons (grams).

It is not necessary for Zda to know such English grammar. Instead, “understanding” 
the language comes through the association between what he hears and what his other 
sensory organs perceive at the moment. For instance, if Zda hears “green” while he sees 
green, then he will make an association between the word “green” and green, the color. 
The Effective Teaching section will discuss such associations in great detail.

A fixor can also be a conjunction in English. A conjunction connects words, phrases, or 
clauses, which are called the conjuncts of the conjunctions. Sentences with conjunctions can 
be dealt with using Zda’s innate knowledge of objects such as logical operators (∨ for logical 
OR, ∧ for logical AND, → and ← for implication), temporal relationships (⭇ and ⭉), or com-
parisons (≈ for similar, ≽ and ≼ for preference) as illustrated by the examples in Table 13.3.

TABLE 13.2

Relationships Indicated by Adpositions

Adposition Indicated Relationship

As an adjunct to a noun:
• “the weather in March” [environment] [ in ] [time]
• “cheese from France with live bacteria” [obj] [ from ] [place] [with] [obj]

As a predicative expression:
• “The key is under the stone.” [obj] [under] [obj]

As an adjunct to a verb:
• “sleep throughout the winter” [action] [throughout] [time]
• “danced atop the tables for hours” [action] [atop] [obj] [for] [time]

As an adjunct to an adjective:
• “happy for them” [feeling] [for] [people]
• “sick until recently” [status] [until] [time]
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As an illustration, “He spent $10K buying a robot because he loves AI research.” indi-
cates a logic: B (he loves AI research) is a cause of A (He spent $10K buying a robot), 
denoted by A←B in the table. However, that his interest in AI research leads him to buy an 
expensive robot does not mean that everyone interested in AI will do the same.

Because Zda does not have built-in natural language, such language-to-logic map-
ping does exist initially in Zda’s head. Instead, the mapping is gradually established 
through learning. Briefly, this is how it works: logical relationships are the agent’s 
inherited concepts (knowledge), and are constantly in his attention set. Thus, the key 
is to map the inherited concepts to different sentence structures at the time Zda hears. 
This temporal closeness between the two attentive things (logic concepts and sentence 
structures) makes Zda establish the association between them via an adaptive rein-
forcement approach. Learning is primarily establishing associations between differ-
ent things.

We can effectively teach Zda the patterns using a factor-isolation technique (FIT). 
However, language patternization solely based on language itself produces nothing but 
grammar. To contextually understand a language, Zda must be engaged in an environment 
where communication and interaction among community members occur at the same time.

A key idea in our HAI architecture for learning and responding is to view both sen-
tence-structure and event-patterns (action-rules) as functions or methods in OOP. From 
this notion, agents can use FIT to map sentence-structures to event-patterns, and param-
eters will be matched with each other too, instead of exhaustively mapping each sentence 
to each particular action or event. The language-patterns, action-patterns (event-patterns), 
and mappings between them are automatically constructed using hierarchical tokeniza-
tion and recursive patternization.

From a human development perspective, language is a necessary outcome of com-
munication and our social lives. However, the form of a particular language such 
as English or Chinese is more likely initially due to the randomness in nature. Such 

TABLE 13.3

Logical Relationships Indicated by Conjunctions

Sentence with Conjunction Logic

He spent $10K buying a robot because he loves AI research. A←B
They gamble and they smoke. A∧B
They do not gamble, nor do they smoke. ¬A∧¬B
They gamble, but they don’t smoke. A∧¬B
Every day they gamble or they smoke. A∨B
You either do your work or prepare for a trip to the office. A∨B
He is not only handsome but also brilliant. A∧B
You must decide whether you stay or you go. A∨B
Just as Americans love basketball, Canadians love ice hockey. A≈B
Football is as fast as hockey. A ≈ B
I would rather swim than surf. A≽B
We’ll do that after you do this. A⭉B
That’s fine as long as you agree to our conditions. A⭉B
We’ll get to that as soon as we finish this. A⭉B
He had left by the time you arrived. A⭇B
There is a good chance of rain whenever there are clouds. A⭉B
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randomness is also featured in the virtual environment and the adaptive response 
mechanism for HAI.

In some natural languages, the same word can represent a concept or a particular 
instance at different times. The listener judges the meaning by the context. The difference 
between a concept and an instance can be illustrated in the following example in English: 
we can say “the weight of an apple or the apple,” but we don’t say “the weight of apple.” However, 
when we describe a particular object we have to use a concept. For example, the descrip-
tion of “the green apple” has used the concepts of green and apple. Whether it is an apple 
or the apple, Zda has to understand it in context since some languages do not have the 
equivalent words of “a” and “the.”

Everyone has his perspective or understanding of a concept, even though the concept 
might be thought to be a common or shared understanding. It gives us such conflicting 
feelings. For, on one hand, individual instances are the basis for, and thus come before, the 
formulation of the corresponding concept; on the other hand, the concept is the basis for 
describing an individual instance.

As in our earlier discussion, human-machine interactions are two-way influences: 
humans and HAI learn from each other and influence each other. Humans can shift their 
language conventions so that HAI can understand better. In fact, we have already seen 
how AI-enabled applications change our shopping and other behaviors.

13.3 Patternization and Recursive Patternization

Beyond natural language grammar, a pattern can be a scientific law, a social norm, or some 
other rule. A natural law does not have to be expressed in natural mathematical language 
and taught by someone, it can be something new, found by Zda himself. However, for the 
purpose of communication, some language to express the law should have certain rules as 
pertained in a natural language.

Tokenization is the replacement of tokens in the target event-string with matched known 
pattern names in the Knet, with the aim of shortening the target string (fewer high-level 
tokens), while patternization is the discovery (often after tokenization) of new patterns 
through comparisons across multiple target event-strings (within an onsite event-string 
set or in the Knet). The discovered patterns are recorded in memory with associated fre-
quency, recency, and rewards, if any. When a pattern is formulated through hierarchical 
tokenization and recursive patternization, it has implicitly considered the effect of the time 
when the concepts were acquired, i.e., when the patterns were formulated.

The brain not only receives information but also interprets and patterns it. How does 
Zda perform patternization? A common approach is to use the Factor-Isolation Technique 
(FIT): Given a set of event sequences, in which most parts are the same, but a small (iso-
lated) part is different, we will record these event sequences in a compact form, that is, 
pattern structure and an associated category (or categories). A category is a list of different 
items. A category is also considered as a concept.

Here is an example: I eat apples; I eat rice; I eat cake. These three events can lead Zda to 
formulate a concept for the collection of {apple, rice, cake}, which may be labeled as “food” 
in English and “食物” in Chinese. Now we can think and express the eating of our three 
things in a pattern: I eat food; food = desensitisor of category {apple, rice, cake}. Note that 
“food” is a concept, “I eat food” is another concept.
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The patternization reduces memory storage (9 words to store for the three sentences 
without patternization and 6 words to store with it: 3 words for the pattern and 3 words 
for foods).

In general, patternization is looking into (structural) commonality across different event-
strings and putting the variable part as a desensitisor. A desensitisor is a member of the 
corresponding category. The sense of “Desensitisor” is that sensory organs are made less 
sensitive to objects. Some examples are as follows.

Zda read a math book.
Zda read a science book.
Zda read a storybook.

From these three events (not sentences), we can discover a pattern:

Zda read a book.

Here the concept of “book” is a collection of math books, science books, and storybooks. The 
desensitisor “book” is insensitive to the small differences among the different books. Every 
concept such as “book” is abstract; only an instance of a category, such as a particular physi-
cal book, is concrete. “Read” can be a concept since it includes fast and slow reading, etc. 
Although a concept and pattern both can be the collection of similar things, a concept 
emphasizes its meaning, not how it’s expressed or stored in memory, while a pattern often 
emphasizes its underlying structure by separating common (invariable) and variable parts.

The third example of using the Factor-Isolation Technique to separate the fixed part and 
variable part:

Bod.give(a pen) Lia.take(the pen).

Bod.say(“give me a pen”) Lia.give(a pen).

The fixed part of the pattern can be viewed as a math function and the variable part is 
viewed as independent variables of the function. In this sense, pattern is a math function 
or a function in computer programming.

Sometimes, we need to differentiate a particular object from an object type, as appearing 
in the following forms:

Bob.act(objA) Lia.act(objA)

Bob.act(objA) Lia.act(typeA)

Bob.act(typeA) Lia.act(objA)

Bob.act(typeA) Lia.act(typeA)

Here variable objA refers to a particular object of type A, while typeA is any object of 
type A. If objA = the green pen, then typeA = a green pen or even a pen. If objA = the book, 
then typeA = a book. Thus there is a pairing relationship between the variable in Bob’s 
action and the variable in Lia’s action. In fact, objA is a desensitisor of type A.

The fourth example will also use the Factor-Isolation Technique:

When Bob says: “go left”, Lia goes left.

When Bob says: “go right”, Lia goes right.
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If Zda repeatedly sees these event sequences, he may discover the pattern:

Bob.say(GT1) Lia.act(GT2)

If Lia follows Bob’s instruction, then GT1 = {“go left,” “go right”} and GT2 = {goes left, goes 
right} are paired, i.e., the ith element of GT1 associates the ith element in GT2. However, 
Lia does not have to follow Bob’s instruction, and thus GT1 and GT2 may not be paired. 
However, rewards or penalties can be used to shape Lia’s behavior in this case. This is an 
example of Language-guided action. The key is the mapping between the language struc-
ture and event-string patterns, including parameters (variables), which will be discussed 
in later sections.

A fundamental idea of a pattern is a similarity group, denoted by PT0(E0) = E0, where E0 
is a collection of similar things, such as Lia.run() = {Lia.run(slow), Lia.run(fast)}, and food = 
{bread, meat, sandwich}. Here Lia.run() is treated as one token, as is food. Treating Lia.
run(slow) and Lia.run(fast) uniformly as Lia.run() can be considered as desensitization or 
similarity grouping.

In general, a pattern requires recurrences, which are either recurrences of the same 
event-string, the sameness being due to the insensitivities of sensory organs, or are created 
through a desensitisor via similarity grouping. A desensitisor is a member of a collection 
(class) of similar objects or items.

We now discuss other types of event patterns. Assume Zda can pay attention to as 
many as n = 4 objects or tokens at any given time. The number n can increase as Zda’s age 
increases. Zda will perform patternization based on only up to 4 tokens, E1, E2, E3, and E4, 
which are the top 4 most attentive elementary tokens among the 16 tokens at 4 time points, 
as shown in Figure 13.2. Among the 4 tokens, the attentivity of the least attentive token 
must be larger than half of the maximum attentivity of the most attentive token. If there is 
a rewarding token, it must be the last token.

The sequence of tokens can be events in real time (or short-term memory) or events that 
happened a moment ago or a long time ago, recollected from Zda’s memory. Of course, 
the recollections are different from the real-time events. For example, a recollection of a 
car accident is different from the actual car accident. The latter can cause a death but the 
former would not cause a death.

FIGURE 13.2
Subconscious attentions sets at a sequence of times.
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The square elements in the figure represent subconscious attentive events (in the form 
of actioner.action or object.event) at a sequence of times. The general form of the attentive 
 gramtons is E1⊗E2⊗E3⊗E4, where ⊗ is either ∧ (occur concurrently) or ⭇ (occurs sequen-
tially) with the default precedence of ∧ and then ⭇. The events (E1 through E4) can be 
actions or something (e.g., smell or color) changing. Without loss of generality, we assume E1 
 happens no later than E2, E2 no later than E3, and E3 not later than E4. In addition, when 
occurring at the same time, E1, E2, E3, and E4 will be sorted alphabetically by their names. In 
other words, E1, E2, E3, and E4 are first sorted by time of occurrence and then alphabetically.

Given N = 1 to 4 tokens in Zda’s attention at up to 4 time points, the following lists all 15 
possible patterns (gramtons) by one-dimensional text strings.

• PT1(E1) ⧋ E1
• PT2(E1, E2) ⧋ E1 ∧ E2
• PT3(E1, E2) ⧋ E1 ⭇ E2
• PT4(E1, E2, E3) ⧋ E1 ∧ E2 ∧ E3
• PT5(E1, E2, E3) ⧋ E1 ∧ E2 ⭇ E3
• PT6(E1, E2, E3) ⧋ E1 ⭇ E2 ∧ E3
• PT7(E1, E2, E3) ⧋ E1 ⭇ E2 ⭇ E3.
• PT8(E1, E2, E3, E4) ⧋ E1 ∧ E2 ∧ E3 ∧ E4
• PT9(E1, E2, E3, E4) ⧋ E1 ∧ E2 ∧ E3 ⭇ E4
• PT10(E1, E2, E3, E4) ⧋ E1 ∧ E2 ⭇ E3 ∧ E4
• PT11(E1, E2, E3, E4) ⧋ E1 ⭇ E2 ∧ E3 ∧ E4
• PT12(E1, E2, E3, E4) ⧋ E1 ∧ E2 ⭇ E3 ⭇ E4
• PT13(E1, E2, E3, E4) ⧋ E1 ⭇ E2 ∧ E3 ⭇ E4
• PT14(E1, E2, E3, E4) ⧋ E1 ⭇ E2 ⭇ E3 ∧ E4
• PT15(E1, E2, E3, E4) ⧋ E1 ⭇ E2 ⭇ E3 ⭇ E4.

Here E1, E2, E3, and E4 can be elementary or high-level tokens, and the symbol ⧋ means 
“is defined as.” When Zda sees E1 and E2 happen at the same time (within the same time 
interval), he will code this as PT1(E1, E2) in his brain or Knet. The rest are coded in similar 
ways without needing further explanations.

In addition to parallel and sequential events, there may be some events that appear to 
be nested, e.g., Zda.saw(Lia.took(textbook)). However, the nested structures have been taken 
care of in hierarchical tokenization or recursive patternization, and the two events in the 
example are actually parallel events that happened at the same time, even though they 
appear to be nested in the coding or in a natural language.

As mentioned, a member of such a category is called a Desensitisor. For instance, Token 
E8 ∈ {PT2(E1, E3), PT3(E1, E2), PT5(E5, E2, E3)} is a Desensitisor when it is used in a pat-
tern. We call the grouping process desensitization. Conversely, the process of breaking 
one group (token) into detailed subgroups (subtokens) for more precise matching or better 
prediction is called sensitization. A desensitisor is often created by applying the factor-
isolation technique to multiple event-strings. For elementary tokens E1 through E4, the 
desensitisors can often be formed by grouping the parameters in the elementary tokens 
into categories.
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In the 15 patterns, we also allow the negation of a token, e.g., PT2(¬E1, E2) means E2 
occurs, but E1 does not occur, while PT1(E2) simply means E2 occurs and E1 may or may 
not occur. ¬E1 is considered an event different from E1. In other words, E1 through E4 can 
represent negations of events.

If we did not sort E1, E2, E3, and E4 by time of occurrence and then alphabetically in 
recursive patterns, we will have many equivalent forms or identities of gramtons through 
permutations of parallel events in the pattern and recursion:

• PT2(E1, E2) = PT2(E2, E1)
• PT4(E1, E2, E3) = PT4(E1, E3, E2) = PT4(E2, E1, E3) = PT4(E2, E3, E1) = PT4(E3, E1, E2) 

= PT4(E3, E2, E1) = PT2(PT2(E1, E2), E3) =PT2(E3, PT2(E1, E2)) = PT2(E1, PT2(E2, E3)) 
= PT2(PT2(E2, E3), E1) = PT2(E2, PT2(E1, E3)) = PT2(PT2(E1, E3), E3)

• PT5(E1, E2, E3) = PT5(E2, E1, E3) = PT3(PT2(E1, E2), E3) = PT3(PT2(E2, E1), E3)
• PT6(E1, E2, E3) = PT6(E1, E3, E2) = PT3(E1, PT2(E2, E3)) = PT3(E1, PT2(E3, E2))
• PT8(E1, E2, E3, E4) = PT8(permutation of (E1, E2, E3, E4)) = ….
• PT9(E1, E2, E3, E4) = PT9(permutation of (E1, E2, E3), E4) = ….
• PT10(E1, E2, E3, E4) = PT10(E2, E1, E3, E4) = PT10(E1, E2, E4, E3) = ….
• PT11(E1, E2, E3, E4) = PT11(E1, permutation of (E2, E3, E4) = …
• PT12(E1, E2, E3, E4) = PT12(E2, E1, E3, E4) = PT7(PT2(E1, E2), E3, E4) = PT7(PT2(E2, 

E3), E3, E4) = ….
• PT13(E1, E2, E3, E4) = PT13(E1, E3, E2, E4) = PT2(PT2(E1, E2), PT2(E3, E4)) = 

PT2(PT2(E1, E2), PT2(E4, E3)) = PT2(PT2(E2, E1), PT2(E3, E4)) = ….
= PT2(PT2(E2, E1), PT2(E4, E3)) = ….
PT14(E1, E2, E3, E4) = PT14(E1, E2, E4, E3) = ….

These identities may be useful in deep-thinking mode and repatternization (see later sec-
tions) when tokens are not sorted by time and alphabetically.

The default forms of gramtons meet the following three criteria:

1. With the least number of recursions,
2. E1, E2, E3, and E4 occur chronologically,
3. E1, E2, E3, and E4 are sorted alphabetically based on their names.

As shown above, there are many possible recursive patternizations, such as PT1(PT1(E1, 
E2), PT5(E1, E2, E3)). The graphical representation of the recursion is fractals. The best way 
to patternize is to sort the included tokens by the time of occurrence and then alphabeti-
cally so that the resulting gramtons are always in their default forms. This way, we can 
easily calculate their frequency and improve computational efficiency.

With gramtons PT1 through PT15 and their recursions, Zda maps the multidimen-
sional reality in his attention set to one-dimensional text string segments, just as humans 
describe the world using a natural language. The significant features of this mapping 
are: (1) patternization of the real world becomes the patternization of text strings in Zda’s 
brain or construction of Knet, (2) the hierarchical tokenization and recursive patternization 
simplify knowledge discovery, and (3) mapping language structures to gramtons (includ-
ing associated parameters) and further mapping to reality make it possible for Zda to 
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understand language, share and inherit knowledge, advance sciences and technologies, 
and behave virtually like a human being.

To reiterate, a concept refers to a collection of similar things, e.g., food = E1 = {bread, rice, 
meat, …}. A pattern is a structural arrangement of elements from one or more collections. A 
concept emphasizes the meaning or the collectiveness, while a pattern emphasizes its struc-
ture. PT3(E1, E2) is a pattern indicating an arrangement of their elements, that is, E1 ⭇ E2.

As discussed, patternization can improve efficiency. We can store, e.g., PT3(A, b1, B), 
PT3(A, b2, B), through PT3(A, b1000, B) in Zda’s Knet, but it will be very inefficient memory-
wise and computationally. Instead, we can store PT3(A, B, C) and B = {b1, b2, …, b100}. This 
will reduce approximately 66% memory space and increase computation efficiency.

In recursive patternization, an important thing to remember is that Zda always per-
forms language patternization first, before he patternizes the whole event-string with 
nested linguistic strings.

In general patternization, we deal with three types of events on the time-axis: (1) events at 
the moment, (2) events in short-term memory (previous event-frame) with details including 
time-stamps, and (3) events in long-term memory, which Zda can pay attention to through 
associations or recollections. All events have an associated starting time and ending time 
(recency). A pattern has recency. The recency for an event where baseball is played and the 
recency for the concept of Zda.playing(baseball) are usually different. “Working towards a 
bachelor degree” is a concept or pattern, and thus there are no starting and stopping times 
(though Zda may retain the time associated with the construction of the concept), but Zda.
act (working toward a Bachelor Degree) is an action (event) with a starting and stopping 
time. An event may have the same starting and stopping time; such an event will be called 
a milestone or state, and may depend on how finely Zda measures time. But for most of us, 
receiving a bachelor’s degree would be a milestone.

Any sequence of tokens can be used for multiple patternization. For instance, Lia eating 
a particular apple is interpreted as “Lia eats an apple” instead of as the particular apple 
eaten. This is because Lia’s apple (as any other thing) is changing constantly, and the action 
may also be further interpreted as “she is hungry” and/or “she is enjoying eating.” These 
three interpretations are examples of multiple interpretations of a single event. In prin-
ciple, there are no pure observations, any observation has to be interpreted and patternized 
by  the individual observer, but some interpretations are more certain (e.g., “eating an 
apple”—perception) than others (e.g., “enjoying eating”—apperception). Any interpretation 
of an actioner’s intention or his thinking is more uncertain than the physical action itself.

We now should see the differences between tokenization and patternization. Tokenization 
is an operation executed within a string and using known concepts (tokens) in Knet to 
divide the string into meaningful units, while patternization is an operation performed 
across multiple event-strings (perhaps broken off from a long string). Tokenization is the 
use of existing concepts (patterns) to simplify or shorten an event-string, while patterniza-
tion is often what occurs when multiple strings are summarized into one pattern that 
could be new or might already exist in Zda’s Knet.

Patternization as a characterization of causal relationships will follow the Parsimony 
Principle. That is, for a given population, if factors A and B lead to outcome C and if factor 
A alone also leads to outcome C, then the pattern (scientific law) would be: factor A predicts 
outcome C.

Tokenization and patternization go hand in hand: any pattern is treated as a token for  
the next level of patternization. Each agent has his own perceptual world, without this con-
stantly changing perceptual world he will never be able to learn. Practically, patterniza-
tion may start a pattern with a frequency of one. In other words, an event-string can be a 
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special case of a pattern. Patterns in Zda’s brain (memory) are naturally sorted by time of 
occurrence, with the most recent event at the top. Recollection will re-sort patterns based 
on the time of recalling the event (pattern) instead of the real moment in time when the 
event happens.

In this section, we discussed frequency-based patternization. In Chapter 14, we will dis-
cuss reward-based patternization.

13.4 Repatternization

We humans use part of our day—the time of sleep and dreams—to repatternize our 
brains, and so does Zda. Such repatternization is necessary for the more efficient retrieval 
of knowledge already acquired and for the discovery of new patterns, new knowledge. 
Repatternization is obviously rooted in the Parsimony Principle discussed in Part I.

In Onsite Patternization (patternization as events occur), Zda mainly uses desensiti-
sors from grouping objects or action parameters into discrete categories to make patterns. 
Desensitisors are also generated for onsite patternization by comparing multiple event-
strings using the factor isolation technique. The small set of multiple event-strings for 
onsite patternization are observed in real time. However, there are many experiences and 
patterns, generated a long time ago, stored in Zda’s Knet. Systematically looking into all 
the knowledge or patterns in Knet and further refining the patterns or discovering new 
patterns is the job of repatternization.

When Zda dreams (at “sleep mode”), repatternization begins. Some patterns might be 
stored in multiple memory locations or in different database tables where patterns are 
sorted by frequency, patternive reward, or recency for computational efficiency in learning 
and response.

Repatternization is a way to achieve pattern reduction without too much information 
loss. For instance, the three patterns: I like to read storybooks, I like to read science books, 
and I like to read technique books, can be repatternized (simplified) into one pattern: 
I like to read BOOK. Here, desensitisor, BOOK (not “a book” in English) is a desensitisor of 
books = {storybooks, science books, technique books}.

Similarly, in a natural language (e.g., English), we can repatternize the following three 
patterns,

“I like to read storybooks.”
“I like to read science books.”
“I like to read technique books.”

into one pattern (sentence): “I like to read books.” Here books = {“storybooks”, “science books”, 
“technique books”}.

In patternization, similarity grouping often depends on the perspective of the observer: 
E1 (walk 5 steps) and E2 (walk 100 steps) may not be considered as similar from a distance 
perspective, but in certain situations, they both may indicate “walk close to the target,” and 
therefore they can be considered the same or similar in terms of “getting close to the target.” 
If you are interested in similarity-based machine learning in narrow AI, please read the 
appendix for an introduction, and the works by Chang (2020) and Hwang and Chang (2022).
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For language patternization, Zda will include Gramtons GT1 through GT4 and Skiptons 
ST1 through ST6 discussed in the last section.

We should know that the fixor in a skipton is actually a desensitisor since, e.g., in the 
skipton

“if …, then …”

“if” and “then” can involve many different ways of writing, fonts, or different accents, 
but we believe the same meaning despite the differences in writing and pronunciation. 
Likewise, for an event-pattern, a fixor can also be a desensitizor,

Since most patterns consist of no more than 4 (high-level) tokens, the repatternization 
will focus on the following event patterns, where tokens such as E1 and E2 without vari-
ables are considered as fixors.

• Nine 2-gramton patterns:
• E1 E2(objA), E1 E2(typeA), E1 E2
• E1(objA) E2(objA), E1(objA) E2(typeA), E1(objA) E2
• E1(typeA) E2(objA), E1(typeA) E2(typeA), E1(typeA) E2,

• Similar for 3-gramton and 3-gramton patterns, there are 3×3×3 = 27 combinations
of objA and typeA at the three different locations.

• For a 4-gramton, there are 3×3×3×3 = 81 different combinations of null, object, and
type at the four different locations.

As mentioned earlier, given an object or event, what Zda observes is subjective and how he 
classifies it depends on his interpretation. For instance, when Zda sees Lia picking a green 
pen among several colored pens, he can interpret it as Lia picking a pen, a green pen, or 
the pen, or a lad picking a green pen, etc. Thus, it might be wise to use a default value of 
“an object” instead of “the object,” since “an” is more general than “the” and it is likely the 
case that “the object” is the only object that is in Zda’s attention; i.e., an object = the object.

In general, a 2-gramton has the form of E1(desensitisor A) E2(desensitisor B). The key in 
variables is “pairing” between the desensitisors A and B. Therefore, pattern refinement will 
record a pattern structure and the associated variable pairing, tripling, and quadrupling.

It might be efficient not to explore all the possible n-gramtons, but use a stepwise 
approach: identify one or two variables each time across patterns under investigation in 
terms of the factor-isolation technique.

Different Skiptons are presented in Table 13.4. Here, symbols * and # in the same pattern 
represent paired tokens or desensitisors. The pairing can be between an object (event) and 

TABLE 13.4

Selected Skiptons with Parameters

2-Token Pattern 3-Token Pattern 4-Token Pattern

E1 E2(*)
E1(*) E2
E1(*) E2(#)

E1 E2(*) E3
E1 E2(*) E3
E1(*) E2 E3
E1 E2(*) E3(#)
E1(*) E2 E3(#)

E1 E2 E3 E4(*)
E1 E2 E3(*) E4
E1 E2(*) E3 E4
E1(*) E2 E3 E4
E1(*) E2 E3 E4
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a desensitisor, or between an object (event, procedure) and its name. Most function param-
eters have a range and can be considered as desensitisors.

We are particularly interested in the relationship between word-pattern (WP) and cor-
responding action pattern (AP). In a WP there are words (W) that are considered to be 
desensitisors. We denote the pattern by the function form of WP(W). Similarly, in an AP 
there are actions (A) or objects (O) that are considered desensitisors. We denote the pattern 
by AP(O). In the mixed pattern: WP(W) AP(O), we derive the 2-gramton of a refer-to pat-
tern: W O. Here O is the object that the words W refers to. We elaborate with the following 
examples in the OOP-like syntax:

Lia.say(“pick pen”) Zda.pick(pen)

Lia.say(“pick pencil”) Zda.pick(pencil)

Here, the desensitisor W from {“pen,” “pencil”} and the desensitisor O from {pen, pencil} 
form the paired 2-gramton refer-to pattern. This approach can be applied to the mixed 
patterns with more than 2-tokens. The * and # within a pattern in Table 13.4 can indicate 
such a refer-to relationship. When such words-to-action mapping or refer-to pattern is 
established in Zda’s Knet, we say that he understands the words.

Similarly, the word-action mixed pattern WP(W) AP(A) can be established from the fol-
lowing example through repatternization:

Lia.say(“pick apple”) Zda.pick(apple)

Lia.say(“eat apple”) Zda.eat(apple)

The refer-to (paired desensitisors) to be established is W and A, where W from {“pick,” 
“eat”} and A from {pick, eat}.

13.5 Segmentation of Event Strings for Patternization

Onsite patternization is a real-time patternization based on a small collection of event-
strings during a very short time interval. For instance, Zda catches a human typing several 
sentences in order to teach Zda grammar, and Zda will utilize onsite patternization for 
pattern discovery.

How to determine the beginning and end of the event-string for patternization? For 
onsite patternization, a maximum of 4 elementary tokens are involved. A long idle time, a 
carriage return, and a reward can be considered as a marker of the beginning or end of a 
string segment for patternization.

The string agent.reward() is usually treated as the ending token for one pattern and the 
beginning token for another, so that patterns can link together to formulate a longer pat-
tern in the Knet. In general, the last token of the previous pattern should be the first token 
of the current pattern.

After first round patternization occurs, the recursion occurs for the second and third 
round tokenization and patternization. Tokenization is a continuous process. It continues 
as long as there are repeated events with a frequency larger than the minimum  frequency 
required for tokenization/patternization and the number of pattern recursions has reached 
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the maximum number of recursions allowed. Therefore, patternization has virtually no 
beginning and no end.

Since all event-patterns have associated times, forming a sequence of patterns over time, 
Zda can repeatedly patternize the sequence of string segments, i.e., Zda may apply recur-
sive patternization. For concept-patterns without associated recency, the associated fre-
quency and distributive reward can be used for repatternization.

Finally, each pattern often has an associated cost and distributed reward to Zda. These 
are important parameters because they will be used to determine Zda’s action with a ran-
domized adaptive response-mechanism. This topic will be discussed later.

13.6 Dealing with Novelty and Similarity-Based Learning

Finding a way to deal with new things is an unavoidable challenge in patternization and 
response mechanisms. As an agent grows, he will have to face many situations he has not 
experienced before. In this section, we just consider how to deal with novelties in learn-
ing or patternization. In a subsequent section examining response mechanisms, we will 
discuss how to deal with novelties in response.

Patternization is mainly self-learning based on experiences, but it can also be taught. 
When facing novelties, the similarity principle has to be used. In our HAI architec-
ture, hierarchical similarities will be used, such as actioner-similarity, action-similarity, 
 similarity of the target objects, attribute-similarity, as well as other types.

It is interesting to know that similarity involves circular definitions. If two entities are 
similar, then replacing one with the other in an actioner.action string will lead to a similar 
outcome. But, conversely, if the replacement leads to a similar outcome, then we consider 
the two entities to be similar. By making this replacement and comparing the resulting 
outcome against the original outcome, Zda can find when two entities are similar and 
when they are not. Indeed, we are constantly involved in circular definitions, as discussed 
in Part I, the Connotation of Understanding. However, we use the circular definition alter-
natively, and iteratively to make our understanding of the world.

Novelty can also occur due to missing or incomplete information. We are constantly fill-
ing in gaps between two frames of reality, just as we do in watching motion pictures. We 
will do the same thing when there are missing words. For natural language, the issue of 
misused or missing words can be handled using n-grams and skip grams in NLP. Similarly, 
missing critical events can be predicted using smoothing techniques borrowed directly 
from the field of cybernetics. In our HAI architecture, novelties due to missing information 
can be directly handled using similarity scores, such as cosine similarity, Jaccard indices, 
and hierarchical similarities. These will be described in Section 14.9.

In our humanized AI architecture, missing information does not have to be explicitly 
determined all the time. Instead, Zda uses the similarity principle to determine the simi-
larity between the incomplete event-string and strings in his Knet, and then determines 
the patterns with consideration of other factors such as reward, cost, and recency.

To reduce the issues of missing events and confounders in Zda’s observations when he 
performs patternization or knowledge discovery, Zda needs (like us) to obtain observa-
tions from others and to perform well-designed experiments.

Learning mainly involves patternization, and a question naturally arises regard-
ing it. Given an event-string, how does one identify the relationships within/between  
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different objects’ properties and behaviors, the relationships between different subjects’ 
behaviors, and the relationships between an actioner’s words and his or other actioners’ 
words and behaviors? The number of an object’s states (postures, smallness, tastes, facial 
expressions, tactile qualia, and temperatures) is limited and relatively stable over time, 
but the words that a human or Zda uses are rich and change constantly. Therefore, it is 
efficient to (1) learn what simple words refer to object’s attributes, actions and simple word- 
patternization, and then (2) learn the relationships between verbal-verbal, verbal-action, 
and action-action of different actioners.

To be specific, the agent’s learning in the presence of novelties is to either use a known 
desensitisor or create a new one, or else propose a hypothetical pattern based on similarity 
to see the outcome (reward), and then determine if the patternization or “referring to” is 
appropriate. The similarity discussions will be presented in Section 14.9.

Suppose Zda observes two similar events, one at an earlier time and the other is new:

Bob.pick(green pen)

Bob.pick(red pen)

Zda can use an existing or newly created desensitisor: pen = {green pen, red pen) to make 
a pattern: Bob.pick(pen) with associated desensitisor, pen. This is the main approach Zda 
has in dealing with patternization in learning. In a more complex case, Zda will use reward 
to see if he can group the multiple event-strings into a pattern. In other words, learning 
and response go hand-in-hand. You see, we have already discussed dealing with novelties 
in earlier sections about desensitisors.

In addition to novelty, Zda also needs to deal with the fuzziness of a concept or instruc-
tion. Fuzziness is a concept that appears similar but different from the concept of similarity. 
Closeness, goodness, highness, hardness, and difficulty, are examples of fuzzy concepts. 
However, it is clear that the fuzziness is due to similarities. In principle, all concepts are 
fuzzy; i.e., a collective impression of similar things. In our HAI architecture, a fuzzy con-
cept can be implemented by adding a randomness to the parameter in the definition of 
the concept.

13.7 Cognitive Learning—Logic Reasoning with Probability

Cognitive learning (CL) is another kind of learning that involves mental processes, such as 
attention and memory. CL does not necessarily involve any external rewards or require a 
person to perform any observable behaviors. Learning through thinking or logical reason-
ing is an example of cognitive learning. Organisms can learn in the absence of reinforce-
ment, such as through incidental learning or unplanned or unintended learning. For this 
reason, CL usually cannot be explained directly on the basis of reinforcing conditions. In 
this sense, repatternization including logical reasoning is a main form of cognitive learn-
ing. However, CL can be indirectly explained by adaptive reinforcement learning when a 
reward is used in repatternization (Section 14.10).

Before we discuss logical reasoning, it is helpful to discuss the concept of Negation. 
Everything and its opposite side (negation) have to coexist; without recognizing the exis-
tence of one, we will not be able to detect the existence of the other. In philosophy, the 
unity of opposites is the central category of dialectics (McGill and Parry, 1948). It defines 
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a situation in which the existence or identity of a thing (or situation) depends on the co-
existence of at least two conditions, which are opposite to each other, yet dependent on 
and presupposing each other. Sound versus silence, positive versus non-positive (or nega-
tive) are pairs of opposites. Without silence, we cannot hear anything. If it rains all the 
time, we wouldn’t have a concept of rain. If Zda has the concept of a fair A, then he will 
also have the concept of the opposite side of A. For example, if Zda sees that it is raining, 
he must also see the situation “not raining” before he recognizes rain. The situation Zda 
sees may be a specific case of not-raining, not the complete set of negation of raining. As 
we have discussed earlier, no two things are identical in the world at any time. Therefore, 
the formulation of the concept of “raining” and “not raining” (or any other concepts) are 
personalized and are modified during interactions and communications between entities.

However, the notion of the coexistence of the two sides of anything does not exist with-
out challenges. How do we completely understand the existence of the world if it is impos-
sible for us to see its non-existence (including ourselves)?

Another fundamental concept in logic is the Law of Excluded Middle, which asserts that 
between A and the negation of A, one and only one is true. However, this self-evident law 
can be challenged by the Paradox of Schrödinger’s Cat or the following the Doctor-Patient 
Paradox.

The Doctor-Patient Paradox (Chang, 2012) is another example that can impair deductive 
reasoning: if a doctor tells his patient that he will recover soon or he will recover very 
slowly, the doctor can be always right, because his statement might affect the speed of the 
patient’s recovery; thus the law of the excluded middle in deduction does not always work. 
Both A and the negation of A are correct at the same time.

We believe that we have knowledge of facts extending far beyond those we directly 
perceive. The scope of our senses is severely limited in space and time; our immediate 
perceptual knowledge does not reach to events that happened before we were born or to 
events that are happening now in certain other places or any future events (Salmon, 1967). 
Therefore, not all our knowledge comes from observations, some is derived from logical 
reasoning.

Reasoning is the ability to assess things rationally by applying logic based on new or 
existing information when making a decision or solving a problem. There are three basic 
types of reasoning methods, Induction, Deduction, and Abduction.

Induction involves reasoning from specific cases to derive a general rule. Induction is a 
critical tool for scientific discovery. The results of inductive reasoning are not always cer-
tain because observations are not exhaustive. The general from induction is probabilisti-
cally correct.

As discussed in Section 10.3, induction is an inner mechanism of learning THAT Zda 
possesses. If event A is often followed by event B, then Zda concludes that A’s occurrence 
predicts probabilistically the future occurrence of B. For instance, when the word “often” 
above is replaced with “always,” we have a mathematical implication (→):    →A B means A 
is sufficient for B. Therefore, the application of the innate concept of implication is a con-
sequence of inductive reasoning. Zda’s confidence in an induction increases as the associ-
ated number of occurrences increases. Deductive reasoning is a consequence of inductive 
reasoning. Thus, the validity of the former is constructed on the validity of the latter, as 
explained in Part I.

Induction is a method of reasoning where one’s experiences and observations, including 
what is learned from others, are synthesized to arrive at a general conclusion. Inductive 
reasoning is often described as the derivation of general principles from specific observa-
tions (arguing from the specific to the general). For instance, a dog can run and a cat can 
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run. Furthermore, dogs and cats are members of the animal class; therefore, all animals 
can run. We see in this example, dogs and cats are animals. We generalize the conclusion 
“can run” from special cases to the category “animal.” This inspires us that induction can 
be realized in HAI by replacing objects (events, humans, or agents) with a desensitisor 
in the event-string.

Indeed, in our HAI architecture, Zda can perform inductive reasoning by replacing a 
token at a certain location in a pattern with its desensitisor. If Zda observed such a replace-
ment and obtained a similar outcome, then such an induction is valid. Otherwise, it’s 
incorrect. For the purpose of learning, Zda can also actively perform such a replacement; 
if the same (similar) outcome or reward is observed, the Zda will confirm the induction. 
When Zda makes an induction, the outcome often needs confirmation from humans or 
peers using rewards or penalties.

The root of inductive reasoning is the similarity principle discussed in Part I. The fol-
lowing is an example of learning from induction based on the Similarity Principle.

Suppose Zda has formed an initial concept (token) of Food = {milk, yogurt, beef} and he 
sees a baby likes milk and yogurt. Zda reasons that the baby might like beef since beef 
is similar to milk and yogurt in the sense that they all belong to the Food category in the 
Knet. Here, Food can be viewed as a desensitisor. Using the desensitisor to replace a token 
in the pattern is inductive reasoning.

We further illustrate this using the following example. When Zda has involved the fol-
lowing two event sequences:

Bob.say(Get me apple) ⭇ Zda.get(apple) ⭇ Zda.act(pass apple to Bob)

Bob.say(Get me balls) ⭇ Zda.get(balls) ⭇ Zda.act(pass balls to Bob)

he will recognize the pattern

Bob.say(Get me ) ⭇ Zda.get() ⭇ Zda.act(pass  to Human)

where  is an existing desensitisor or a newly formed desensitisor, representing a member 
of category {apple, balls}.

As another example, we illustrate how the Law of Syllogism (if A → B and B → C, then 
A → C) is a consequence of induction:

• Zda may see the coexistence of A, B, C. and they often appear in that sequence.
• Zda patternizes the sequence in two ways: (1) A → B and B → C and (2) A → C.
• Because they are the same sequence, Zda always observes (1) and (2) at the same 

time. Collectively, such an association between individual cases (1) and (2) leads 
him to make an induction that (A → B and B → C) implies (A→ C).

• However, suppose Zda also sees a sequence of A, D, C, then he cannot, conversely, 
conclude: (A → C) implies (A → B and B → C)

In this sense, the Law of Syllogism comes from induction. Since Knet is a recursive net-
work, it can be viewed as an inference network with arrows as the inference directions. 
Therefore, in the example above the inference from node A to the node C can be viewed as 
from A to B, then to C.

However, the law of syllogism does not always hold; we saw this with the example of 
intransitive dice in Section 1.6.
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Deduction, or deductive reasoning, argues from a general conclusion to a special case. 
The result of deductive reasoning is usually thought to be logically certain.

An example of a deductive argument would be:

All men are mortal.
John is a man.
Therefore, John is mortal.

The statistical syllogism can be generally stated as: 

A proportion Q of population P has attribute B.
An individual X is a member of P.
Therefore, the probability that X has B is Q.

When Q  =  100%, the statistical syllogism becomes deduction with certainty. However, 
when the frequency is low such a certainty might be just an illusion.

To Zda, deduction is finding a pattern that includes the observed event sequence, or its 
desensitisor, and predicting the outcome based on the unobserved events with associated 
probability.

The Deduction Laws in practice can be viewed as a consequence of observations and 
derived from induction. The deduction laws come from virtually checking all events 
humans have ever experienced, and finding no exception. However, this does not mean 
deduction is absolutely correct because no exception found does not mean there are no 
exceptions. Think about how Gödel’s Incompleteness Theorem shocked everyone in the 
mathematical community: you can only choose one between completeness and consis-
tency in an axiomatic system involving arithmetic.

Thus, in our HAI architecture, deduction is valid in a probabilistic sense, and the 
general conclusion from a deduction can be changed later if later observations sug-
gest that.

Analogy is often used for new knowledge discovery. Analogy is a form of thinking that 
finds similarities between two or more things and then predicts similar characteristics in 
other aspects or outcomes. Analogy is a direct application of the similarity principle and is 
used by Zda in his patternization and decision-making. See Chapter 14.

Analogy, or analogical reasoning, can be stated as:

P and Q are similar with respect to properties A, B, and C.
Object P has been observed to further have property X.
Therefore, Q probably has property X.

Analogy may involve some “if” conditions. In such cases, a hypothesis is involved.
In our HAI architecture, Zda uses analogy (similarity-matching) to make predictions 

and take action in the response mechanisms. The outcome of such a response will deter-
mine the validity of the analogy.

Cause-Effect Reasoning is a type of thinking in which you show the linkage between 
two events that appear simultaneously or in sequence. The one that did not happen earlier 
is called the effect, and the other is the cause. Such a cause-effect relationship must be 
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verified over time through recurrence of these pairs of events. Cause-Effect Reasoning 
includes abduction and causality reasoning.

Abduction is the process of finding the best explanation from a set of observations, 
i.e., inferring cause from effect. In other words, abductive reasoning works in the reverse 
direction from deductive reasoning in which effect is inferred from cause. For instance,

If and only if A is true, then B becomes true.
B is true.
Therefore, A must be true.

Abduction often involves probability; thus we have probabilistic abduction or plausible 
reasoning, which can take many different forms. For instance,

If A is true, then B becomes more plausible.
B is true.
Therefore, A becomes more plausible.

A second formulation would be: 

If A is true, then B becomes more plausible.
A becomes more plausible.
Therefore, B becomes less plausible.

Probabilistic abduction is figuring out the most probable cause from the effect. To Zda, 
Probabilistic abduction is finding the most frequent path (pattern) to the cause node (token) 
in his Knet.

Lastly, we discuss how to apply probability to a pattern. We will try to avoid any fancy 
statistical methods since our entire HAI approach is built on the notion that complex meth-
ods are developed through simple learning methods, not the other way around. Any com-
plex method will come at the cost of sacrificing flexibility and applicability, and thus is not 
a viable solution for HAI.

In patternization there are controversies, such as those we remarked upon in Simpson’s 
paradox. For instance, in onsite patternization, E1⭇E3 and E1∧E2⭇E3 can both be treated 
as evidence of E1 causing E3: E1⭇E3. According to the Parsimony Principle, we record pat-
tern E1⭇E3. This deterministic approach may not be applicable when practically there are 
different frequencies involved in the two event sequences.

When Zda observes E1⭇E3 instead of E1∧E2⭇E3, perhaps E2 is there or just not in Zda’s 
attention. If E1∧E2⭇E3 has more frequency than E1⭇E3, then E2 is an inducer or activator for 
E3. Conversely, if E1∧E2⭇E3 has less frequency than E1⭇E3, then E2 is an inhibitor for E3. 
In either case, Zda will deal with utilizing probability. The questions are: (1) Given E1, what 
is the probability of outcome E3? and (2) Given E1 and E2, what is the probability of having 
outcome E3? To answer the questions we have to define the (target) population (often through 
similarity grouping), which defines the scope in which the modeling errors are to be collected 
(see Simpson’s Paradox in Part I). The target population is the set of all units a random process 
can pick, whereas sample space S is the set of all possible outcomes of a random variable.

There is always a conditional probability, and never such a thing called absolutely uncon-
ditional probability in the real world. The target population defines the (unconditional or 
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joint) probability distribution, whereas the target population is the condition we specify 
for the probability. In practice, we often define the target population, while in statistical 
books we often simply assume the population distribution. We use the term probability 
when the condition is not specifically defined; when the condition can be clearly defined 
for some of the random variables, we may use the term conditional probability. For exam-
ple, we may assume probability distribution f(x,y), then the conditional probability distri-
bution of y given x is f(y|x). Let’s look at the concept of conditional probability in patterns 
as shown in the following examples.

For cause-effect inference, among all patterns with cause E1, the proportion of events 
with E1⭇E3 (including E1∧E2⭇E3) among all events with E1 is the conditional probability 
of E3 given E1. Similarly, the proportion of E1∧E2⭇E3 among events with E1∧E2 is the 
conditional proportion of E3 given E1∧E2.

For effect-cause inference, among all patterns with effect E3 (e.g., E1⭇E3 and E1∧E2⭇E3), 
the proportion of events with earlier token E1∧E2 is the conditional probability of cause 
E1∧E2 given the effect, E3. Similarly, for effect-cause inference, among all patterns with 
effect E3, the proportion of events with earlier token E1 is the conditional probability of 
cause E1 given the effect, E3.

Logical reasoning, imitation, analogy, and creativity are all reflected in the patterniza-
tion, repatternization, and response mechanisms in the Zda architecture.

A pattern derived from logical reasoning does not usually have an initial reward. A 
pattern of an event-string without an associated reward can be considered to be a natural 
law for prediction. Pattern with action and reward is a basis for prediction and response.

13.8 Associative Learning

As mentioned in Section 10.9, there are three Principles of Association: (1) contiguity in 
time and place, (2) resemblance, and (3) causation. These are illustrated in the following 
examples in connection with our HAI architecture:

1. Contiguity: Things happening at or nearly at the same time are associated.
Shaking or pointing at an object in front of a child and saying the name of the
object will make him associate the name with the object. This is how to teach chil-
dren object names. Contiguity is handled by 2-gramtions with association tokens.

2. Resemblance: When someone mentions one thing, you will often think of a similar 
thing. When someone shows you a picture of your best friend, you naturally think
of her because the picture resembles her. Resemblance is modeled by 2-gramtons
with previously formulated paired similar items or dynamic formulated paired
similar items in real time.

3. Causation: If event A is a necessary or sufficient condition for event B, then the
relationship between events A and B is causality. Causation is also dealt with using
2-gramtons with paired tokens, one for cause, the other for effect. Note, though,
that a delayed effect of a cause can connect together two things that are distant
from each other in time.

Zda often associates similar things by grouping them together (e.g., synonyms); he also 
associates opposite things together (e.g., antinomies). These groupings are important for 
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efficient learning. On the other hand, we can say that association is based on some kind of 
similarity, either timewise, location-wise, concept-wise, emotion-wise, function-wise, or in 
some other aspect(s). I believe there is no clear line drawn between similarity and associa-
tion: similarity leads to an association between two things and an association in a sense 
makes two things similar.

Items or subsets in the same attention set form associations. When the same attention 
sets reoccur over time, these associations will be enhanced due to increased frequencies. 
However, recurrences are just approximations, i.e., more often similar (instead of exact) 
attention sets occur at a given time. Contrarily, the associations between uncommon 
items become weaker over time. This simple fact makes statistical/scientific discovery 
easier, and is why frequency-based patternization makes sense in many situations. In 
communication and language learning, we purposely impose words in a particular 
attention set (e.g., talking while doing) so that Zda will make an association between 
the words and the other attentive items. As time goes by, the association between the 
words and common item(s) will be enhanced, since the words are among the common 
attentive items.

As recurrences can enhance an association, the pleasure-pain impact of an event or its 
rewards can also affect the strength of an association greatly. As an old Chinese saying 
suggests: once bitten by a snake, ten years afraid of ropes. Thus, as a teaching tool, we can 
use a reward to enhance a desirable association and a penalty to weaken an undesirable 
association. The link between association and frequency not only makes scientific discov-
ery possible, but also allows auto-corrections of a false discovery over time due to missing 
information in our attention. Well-designed scientific experiments and careful observa-
tions by trained scientists can also remove some false associations.

Association is critical in communication and for accomplishing requested tasks. For 
instance, if Lia asks Zda: “get me a book,” Zda will first shift his attention from the word 
“book” to a physical book and look for it before he tries to get it. Such an attention shift is 
because of the association between the word “book” and a physical book. Associations are 
modeled by 2-gramtons with associated frequencies and rewards in the Knet. One can use 
n-gramtons to model more complicated n-way associations.

Most 2-gramtons with high frequency are formulated by taking the two sequential 
tokens, which can serve as the basis for contiguity association and association shift. For 
causation, the paired tokens must have sufficient reoccurrences and one must occur before 
the other. Timewise, the two events may not occur closely in time or space. Paired events in 
a skipton can be a causal relationship. Causation is an association, but an association is not 
necessarily causation. Tokens in similarity-based association do not have time and space 
constraints as long as they are similar in some way.

“Refers to” is an association, but association is not necessarily “refers to.” “Refers to” is a 
mapping. Using the factor-isolation technique, Zda will be able to map the static attributes 
(mainly shape) to identify different types of objects first. Once Zda understands the map-
ping between words and object types and between words and object attributes, he can 
quickly understand whole sentences of a language. Let’s illustrate this using the following 
“Green-pen Red-pen” example (Figure 13.3), where changes involve objects or their attri-
butes in a multiple object/event-string case.

Zda does not know initially that the words “green” and “red” refer to color in vision 
until he maps the variance in words to the changes in vision (color). This mapping can 
be viewed as a coordination between senses of different sensory organs, i.e., hearing 
and vision at the present. This patternization is accomplished across two (or multiple) 
event-strings at different times t1 and t2. The notion can be dissected using the principle 
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of factor-isolation: (1) change maps to change, (2) base at time t1 (“green”) maps to base 
(green), and (3) post at time t2 (“red”) maps to post (red). In this case, no reward needs to 
be involved. In addition, Zda may also make an association between the two desensitisors: 
the concept of color and the actual sense of color.

However, in addition to color, Zda may also see other unintended changes, such as the 
location of the hand and directions the pens point in. If the moving hand is also in Zda’s 
attention set, Zda might try to map the two words “green” and “red” to the two different 
locations of the hand at times t1 and t2, respectively. In such a case, a reward is needed to 
confirm which mapping is correct. Such rewards can enhance Zda’s learning. After learn-
ing what objects “green pen” and “hat” refer to, Zda can refer “green hat” to a green hat if 
one is presented. More examples will be presented in the next section, Natural Language 
Understanding.

Generally speaking, Associative Learning is the process through which organisms 
acquire information about relationships between events or entities in their environ-
ment. It is expressed as the modification of existing behaviors, or the development of 
novel behaviors, that reflects the conscious or unconscious recognition of a contingency. 
Associative learning is a form of conditioning, a theory that says behavior can be modi-
fied or learned based on a stimulus and a response. Both classical and operant condi-
tioning are forms of associative learning where associations are made between events 
that occur together. An example would be: if you put your hand on a hot stove and hurt 
yourself, you would learn to associate hot stoves with pain, and have therefore been 
conditioned not to put your hands on hot stove. Associative learning can happen in any 
of the thinking modes.

Associative learning is usually considered to be passive learning and often used in effec-
tive teaching. Classical Conditioning (Section 4.3) can be used to create reward proxies for 
effective teaching. Ivan Pavlov discovered that the reflex of salivation in a dog occurs not 
only when food is presented, but also when the dog hears the bell (the conditional stimu-
lus). If we repeatedly use some appreciative words, such as “yes” or “thank you,” or a hug 
as the conditional stimulus when we give Zda an actual reward, such as candy, then the 
stimulus substitution will gradually be established. We call such a conditional stimulus a 
reward proxy. It is often much more convenient to use a reward proxy in teaching than a 
real material reward or physical penalty. Operant conditioning is the basis for reinforce-
ment learning in AI.

In addition to cognitive learning, habituation and sensitization are the two examples of 
non-associative learning methods. Habituation refers to the phenomenon of the diminish-
ing of a physiological or emotional (innate) response to a frequently repeated stimulus. For 
instance, if you are working with a radio playing in the background, the noise will distract 
you more at first, but less as time goes by.

FIGURE 13.3
Learning object attribute names using factor-isolation technique.
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The major differences between associative and cognitive learning can now be sum-
marized. Associative learning (behavioral approach) provides means of describing 
how a person or animal learns a series of desired responses; it is a kind of learning 
which demands little more than parrot-like repetitions under reinforcing conditions. 
Cognitive learning is more advanced learning. It explains learning with understand-
ing, insights and concepts, and rules are applied to obtain new and significant patterns 
of information.

13.9 Natural Language Understanding

The notion that natural language influences thought has a long history in a variety of fields. 
More complex thoughts and languages exist in humans than in animals. The co-existence 
of language and thought can be an evidence of the influences of each on the other. The 
main use of language is to transfer thoughts and knowledge from one mind to another. 
The bits of linguistic information that enter into our minds from others’ cause us to enter-
tain new thoughts, and this can have profound effects on our world knowledge, inferenc-
ing, and subsequent behavior (Gleitman, 2005).

The natural language representations of concepts are an effective tool in communica-
tions and learning. Without such language, we humans cannot easily inherit the complex 
knowledge and skills from our ancestors. Without natural language, RL will be virtually 
only a learning approach and the vast number of potential trial-error attempts required 
would make it impossible for any individual to learn advanced knowledge or skills. With 
the assistance of a language, we can avoid many fruitless trial-error paths if we just try the 
limited paths that are likely to be successful and a few other creative paths. In other words, 
language is essential for passing knowledge from generation to generation, because no 
advanced skill can be learned or discovered by a single person without learning from 
others within a generation and across generations. Human intelligences differ from and 
are more advanced than other species’ mainly because we have advanced languages that 
other species do not have.

Language processing spans perception (comprehension) and action (speech). The low-
est levels of language hierarchy are raw data-oriented, recognizing patterns in streams of 
sounds, and generating streams of sound with the mouth and larynx. The higher levels 
focus on abstract patterns of linguistic organization (Goertzel, 2016).

To develop a natural language in a community, speakers should use the same ter-
minology for the same thing, although some differences in pronunciation might still 
exist. Only in this way, can a common language emerge eventually. So, Zda might 
initially (consistently) call a dog a “cat,” while Lia always calls a dog a “dog.” Over 
time, they find that such discrepancy in meaning is inconvenient for two people liv-
ing in the same community. Therefore, Zda might begin to use Lia’s terminology 
occasionally and find it rewarding (convenient); thus, he more often uses the word 
“dog” and eventually becomes a consistent user of the terminology. That is, common 
terminologies emerge even though using particular terminologies (nouns) might be 
completely accidental.

In learning a natural language, instead of a big-data approach, we use virtually no data 
on any language for an agent at his birth. This is because a human baby, regardless of his 
birth parents and birthplace, has no built-in language, he will learn whatever language 
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we teach him through interactions with his world. Zda’s ability to learn languages can be 
shown in two aspects: (1) displaying understanding of the languages, and (2) using the 
languages appropriately.

In natural language-guided responses, we are particularly interested in the associa-
tion between words and sensible actions to be performed. As mentioned earlier, different 
things (e.g., objects, events, actions) that are close together in space and/or time can trigger 
a chain of associations for Zda. The attention shift caused by associations from one thing 
to another is particularly useful in language-guided responses.

The string of elementary actions in Zda’s attention set is hierarchically tokenized into 
a shorter action string based on Zda’s acquired concepts. In order to learn and perform a 
complex procedure, from making a cup of coffee to manufacturing a car or launching a 
rocket, language is necessary.

For instance, consider the request “Please get dinner ready before 6 PM today, we will 
have 2 guests.” The sentence carries a lot of information about what the person needs to 
do before 6 PM: making dinner is not a simple elementary action. Another example would 
be “I need to go to school to finish my homework now, but I don’t have transportation.” 
The text indicates the person’s goal and what he needs to reach the goal. This information 
about the goal will play an important role in his decision as to what to do next.

Words can be suggestive: “Following Lia’s advice is usually an intelligent choice.” 
Words can also be used to differentiate friends from enemies. A friend’s words are often 
informative and following his/her advice is often a good choice, whereas an enemy’s 
words often mislead you. Conversely, if a person helps Zda get a reward or get things 
done, he is likely Zda’s friend; if he often tries to prevent Zda from getting a reward, he 
must be an enemy. Like humans, by formulating opinions based on peoples’ personali-
ties, Zda can respond wisely.

Words such as “mimicking” can suggest Zda does things that he has never done before. 
Language can instruct Zda to assemble a machine or encourage Zda to do things no one 
has done before through analogy.

The concepts involved in Lia’s words can refer to a physical object, procedure, or  logical 
proposition. A concept can be a hierarchical composition of simpler concepts. Thus, Zda 
needs to know all the concepts involved (i.e., the associated patterns stored in memory), 
and how to respond when facing each concept mentioned, before he can confidently 
respond to the composite concepts.

Lia may also use words such as “tree-like object.” To handle such concepts, the object’s 
appearance must reflect the truth, not the simplified 3×3 image in Zda’s current simplified 
architecture. Keep in mind that Zda identifies an object by its image or appearance, not by 
the coded name in the computer language.

Modern advanced natural languages have experienced thousands of years of develop-
ment. For Zda and Lia, if the interaction is short (within one generation), they can develop 
only simple language. But the language as they develop it will be complex if there are 
many generations in between or if they interact with us sufficiently and we can teach 
them our languages in depth. We humans can guide agents to learn better, faster because 
we have the knowledge to teach them our inherited knowledge that has been evolving 
through the power of languages over thousands of years. One of the main reasons that 
humans are more intelligent than other animals is that we have rich languages that carry 
knowledge from one generation to the next.

Humans discovered that the categorization of responses allows us to make decisions 
more efficiently. For this reason, we can teach Zda to classify the natural language as, e.g., 
(1) questions, (2) statements, (3) requests, (4) dialogue, and (5) entertainment.
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Words can be associated with objects, events, actions, procedures, stats, states, times, 
locations, emotions, attitudes, and so on. For instance, “Please pick the red pen on the 
moving table.” This suggests that identifying the universal structure of language (sen-
tences) is useful in making such associations.

Since language is a one-dimensional string used to describe the sequential and concur-
rent events of multiple-objects in a multidimensional world (3D in space, 1-D in time, plus 
many other sensory dimensions), some accessory words (such as under, of, at, as soon as, from, 
close to, intensive, heavier, and belong to in English) may be used to indicate the special, tem-
poral, and other types of relations between different objects and actions. Natural language 
serves as a tool for expressing thoughts and knowledge, the strings of words also contain 
patternization of the perceived world. What is important for Zda, as a humanoid, is to find 
out the structural relationship between speech and his sensible actions. Patternization 
involves the recurrence of events, creating the need for accessory words such as “always,” 
“if., then,” “as long as,” “probably,” “likely,” “similarly,” “under,” “above,” “between,” “before,” 
“after,” “when,” “while,” “until,” and “rather … than ….”

We have discussed the important concept “Refers to” and how to establish such a map-
ping between two items using the example of “Green-Pen Red-Pen” in the previous section.

The next example shows how to teach Zda to learn object types (Figure 13.4). The same 
factor isolation technique can be used here: (1) change maps to change, (2) base at time t1 
(“pen”) maps to base (pen), and (3) post at time t2 (“hat”) maps to post (hat).

We can use a similar method to teach or connect Zda’s innate concepts (such as “refers 
to,” “similar,” “probability,” “desire,” “past”) to corresponding words in any language. 
Thus, if Zda has learned particular words or a phrase (e.g., “refers to” in English) that 
maps to the innate concept (“refers to”), we can use the phrase “refers to” to teach Zda 
other concepts effectively. The concept of “refers to” is very likely (with a high proba-
bility) in Zda’s attention set and Zda looks for the words (voice) that map to it. Another 
innate concept Zda constantly pays attention to is “imitation,” thus teaching the words for 
these two concepts first will greatly help Zda learn other concepts later on. We can teach 
any concept using reinforcement learning (with reward) as long as the concept is in Zda’s 
attention set; it is a matter of time.

We may think that head-nodding signaling confirmation and head-shaking signaling 
disconfirmation are an instance of Universal Language. Whether true or not, this univer-
sal language can be established by using the learned word that represents the meaning of 
“refers to.” Another way to teach Zda the meaning of head-nodding and head-shaking is 
to say “yes” when you nod your head and “no” when you shake it, assuming Zda under-
stands “yes” and “no” already, of course.

Language may refer to attributes, states, actions, the difference in attributes, states and 
actions, and/or the difference of the difference if multiple objects are in the attention set. 

FIGURE 13.4
Learning object names using factor-isolation technique.
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For instance, the difference between A and B is larger than the difference between A and 
C. Another example would be the mathematical definitions of addition and multiplica-
tion: A represents a natural number, A+n refers to n times of plus-recursion of A+1; A*n is
n times of plus-recursion 0+A. The operation “+1” indicates the next number in sequence.

To summarize, externally, pointing at or shaking an object while speaking will attract 
Zda’s attention, and the internally sensed change of a property (due to a change detected 
by sensory organs) will also attract Zda’s attention. Therefore, if the externality (words) 
and internality (senses of sensory organs) happen at the same time and closely in space, 
Zda will make an association between them. This serves the basis for the factor-isolation 
technique. For effective learning or making the desired association, it is important to have 
a small attention set.

Language can be used for the following purposes:

1. For information only, a statement referring to something, making a prediction, or
explaining a cause; no action is needed in such cases.

2. For a request, knowing what refers to what and an action that may require some
skills or knowledge, e.g., answering a question and driving a car.

3. For emotional expression, knowing what refers to what and displays listening and
empathy.

4. For dialog that involves a sequence of words from different mouths (actioners).

Among these four, the key concept is “refers to.” If Zda can determine what refers to what, 
then he can learn quickly when a sentence is information, a request, an emotional expres-
sion, or suggests the speaker is looking for dialog, and can consequently determine the 
actions as necessary.

Word-tokens are denoted by W1, W2, …, Wn, and event-tokens are denoted by E1, 
E2, …, En. W1 through Wn can each be a single word or high-level token, i.e, phrases, sen-
tences, paragraphs, articles, instructions. Likewise, E1 through En can be elementary or 
high-level tokens. Furthermore, the event-string W1∧E1 represents W1 and E1 occurring 
simultaneously, while W1⭇E1 and E1⭇W1 represent two possible sequential occurrences 
of W1 and E1. In W1⭇E1, W1 can be an instruction, request, question, or prediction, while 
E1 can be an action or event. In E1⭇W1, E1 can be an action and W1 can be a reward (pen-
alty) proxy, instrumental suggestion for improvement, or a prediction; E1 can be an event 
and W1 can be a prediction, an explanation of why E1 occurs, or about knowledge learned 
from E1. For dialog, Zda will deal recursively with 2-gramtons W1⭇W2 and 3-gramtons 
W1⭇W2⭇W3 from 2 or 3 different speakers. In language-guided responses, Zda will 
always patternize a word-string from each speaker and action-string for each actioner 
before discovering the relationship between word-pattern and event-pattern (action- 
pattern). For convenience, we denote a natural language pattern by wPattern(id, wParams), 
and an event-pattern by ePattern(id, eParams), wParams, and eParams are parameters. We 
may ignore the pattern id for simplicity. For example, two sequential events can be some-
thing like this:

E1 = Lia.throw(the ball) ⭇ E2 = Zda.catch(the ball),

or like this:

W1 = Lia.say(“catch the ball”) ⭇ E2 = Zda.catch(the ball).
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From these two examples, we can learn the following general notion:

E1 = ePattern(desensitisor 1)) ⭇ E2 = ePattern(desensitisor 2)

W1 = wPattern(desensitisor-reference)) ⭇ E2 = Zda.act(ePattern(desensitisor))

Here desensitisor 1 and desensitisor 2 are paired, and desensitisor-reference and desensiti-
sor are paired. This suggests that if we include the pairing between desensitisor-reference 
and desensitisor in Table 13.4, repatternization with multiple desensitisors in Section 13.4 
will be applicable to language-guided patternization, and consequently all the response 
mechanisms (reflex and thinking models) can naturally be expanded to language-guided 
action too.

A natural language (NL) is a result of word-string patternization, while generalized 
patterns in HAI is event-string patternization. A pattern can be viewed as a string func-
tion in OOP, where desensitisors can be viewed as having similar roles as variable types 
(integer, float, string, object, event) for functions. NL can be used to record history as a 
story and specify rules for future engagement, and so do the event patterns. Patterns are 
indexed functions with fixors (constant strings) and variables (parameters or desensiti-
sors). In recursive patterns, the parameters can be general tokens (i.e., recursive functions). 
Thus, a recursive pattern often includes several pairs of parameters. Hierarchical tokens 
are equivalent to functions nested within a function. Taking the function f(x) = 3 + x as an 
example, f(x) is called a token, whereas 3 + x is called a pattern. In the recursive function 
F(f(x)) = 7 − 2f(x), F(f(x)) will be called a hierarchical token (high-level token), 7 − 2f(x) is 
called a pattern (or high-level pattern) in our HAI.

Natural language can be viewed as Natural-Language functions wPattern(fixors, 
params) mapping to event-pattern ePattern(fixors, params). For instance, Lia.speak(“please 
bring me (the pen)”) refers to actioner.Bring(the pen). In this sense, self-patternization of 
event-strings is the formulation of the so-called universal language, and HAI is a self-
programming or self-organized system.

To use Analogy (metaphor) in natural language is to say that two things are similar 
in some way(s). Examples are: “my shoes smell like garbage” and “finding my car keys 
is like finding a needle in a haystack.” From this notion of analogy, the analogy in map-
ping between wPattern(params) and ePattern(desensitisor) is processed in this way: If Zda 
understands (1) what “a green pen” refers to, (2) what “a red pen” refers to, and (3) what 
“please pick a green pen” refers to, i.e., maps to actioner.pickup(a green pen), then Zda will be 
able to make an analogy and map “please pick a red pen” to actioner.pickup(a red pen), even 
if he has never heard the sentence “please pick a red pen” before. Here we assume red pen 
and green pen belong to a known desensitisor and Zda is able to image how to perform 
the action, actioner.pickup(a red pen).

To sum up, language understanding involves two key elements: “refers to” and formula-
tion of word-event patterns. Working with these fundamental tools, an agent can respond 
appropriately, displaying his understanding.

For effective teaching-learning and sensible responding, it is helpful to know that lan-
guage is often used for the following purposes:

• Words can refer to attributes, states (moving or not), emotion (sensation level), 
desire, effort (energy costs), e.g., “the sad, running exhaustively boy.”

• A goal or an intention can be recognized through verbal articulations or judged 
by an actioner’s actions.
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• An object can be defined by its attributes or dynamic behaviors: the green mov-
ing car.

• A tool is a special object that can be defined by its attributes and utilities: the knife
used to cut beef.

• An actioner can be defined by its action described in a natural language: the person
who is walking fast.

• An action can be defined by parameters of elementary actions.

It is interesting to imagine the following two different approaches to see how the resulting 
languages will differ:

1. Zda and Lia both have not learned any language before, and through interactions
they develop their own language. Consider how it might evolve.

2. Zda has not learned any language, but Lia speaks a language, which Zda learns
from her. Discuss how the language could further develop.

13.10 Observing, Imitative, and Creative Learnings

Observational Learning is a form of learning that develops through watching and does 
not require the observer to perform any observable behavior or receive reinforcement. 
Observational learning can involve four components: acquisition, retention, performance, 
and reinforcement.

Observational learning is often not as reliable as imitative learning. For instance, Zda 
can learn the fact: he can use water to put out fire, by observing Lia using water to extinguish 
fire. However, he cannot learn the false fact: he can give birth, by observing Lia giving birth.

I found it most interesting that we can study imitation and creativity under the same 
umbrella of similarity: Imitation is an analogy dealing with great similarities, creativity is 
an analogy dealing with great novelty or minimal similarity, and analogy bridges imita-
tion to creativity (Figure 13.5). In exploitation, a great similarity makes imitation, while in 
exploration, too much novelty becomes illogical and can cause chaos.

FIGURE 13.5
Imitation, creativeness, and illogicalness with different degrees of similarity.
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Learning can occur through imitation and analogy. Being creative often starts with imi-
tation. Imitation emphasizes similarity. Analogy, or creative analogy, is somewhat moving 
away from imitation, an evolution of imitation. Analogy focuses on the commonalities 
(often at an abstract level) between two things that appear to be different. Illogicalness, 
or illogicality, is the result of making an analogy without identifying sufficient similari-
ties between two things (Figure 13.5). Creativity is based on an analogy across different 
things. One’s creativity changes over the expanse of a life. When one gets old and has more 
experiences, that person will be less adaptive to different opinions because any new thing 
can be grouped into some existing categories. In contrast, youngsters may often be more 
creative, an advantage being “lacking” experiences. The time-sensitive creativities for dif-
ferent agents are modeled by a parameter in our HAI architecture.

As an example, how could humans discover or invent the sine function? Regardless of 
what actually happened, humans might find the relationship between an angle ϑ (theta) in 
a right triangle and the ratio of opposite side over hypotenuse (longest side) on paper, and 
quantify such a relationship by a function, that we have named the sine function. Later 
people make the analogy by applying the sine function to the relationship between the 
two quantities, y = sin(ϑ), and formulate the concept of the sine function.

Analogy is also used in Recursion. How can humans learn acceleration? Perhaps, after 
humans have the concept of velocity as the derivative of a distance vector with respect to 
time, they make an analogy by applying the derivative operation again to the velocity vec-
tor, making acceleration the derivative of the derivative of the distance vector.

How does Zda learn from imitation? As discussed earlier, imitation for Zda is simply 
replacing an actioner (string) by Zda (string) in an actioner.action string (Figure 13.6). For 
example, the string “Lia.walk when Bob.waveHand” becomes “Zda.walk when Bob.waveHand” 
as Zda makes an imitation of Lia. If Zda makes some imitation and gets a reward, the 
probability of such imitations will increase; i.e., Zda is learning that walking when Bob 
waves is a good thing to do.

The Reciprocal Principle (reciprocity) is the tendency of agents to exchange the two 
actioners in an event-string or pattern. An action of reciprocity is an imitation, but not all 
imitations are actions of reciprocity. The Reciprocal principle creates the scenario wherein 
Zda treats a person in the way the person treats him.

To create or invent is to make something that does not exist, or is to make an analogy 
across different fields or problems. Creation is a mind’s internal process in working with 
the external world. For instance, applying a method of solving one problem to another 
problem in a different field is an act of creation/invention.

Inspired by the ideas of genetic programming in evolutionary machine learning, cre-
ativity and analogy in our HAI architecture are operated by replacing (or removing) some 
string from object.action strings with similar strings (Figure 13.7). More generally, learning 

FIGURE 13.6
Examples of agent’s imitations.
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can be realized in agents through genetic algorithms involving operations such as muta-
tion, crossover, appending, or removing event-strings. Every such genetic operation on 
event-strings provides a learning opportunity for Zda when there is an associated reward. 
Such genetic operations, which should be initiated by Zda, are instances of active learning 
in the cognitive learning paradigm.

13.11 Curiosity—Motivated Learning

Curiosity motivates learning. Learning often occurs through asking intelligent questions 
of one’s self or others. A simple case is when Zda does not know how to answer a question; 
he may then choose to pose the same question back to the person asking it, or to someone 
else. Here is an example:

Lia.say(“How does one make a pipe?”)

If Zda does not know the answer he can imitate Lia, asking her the same question and 
seeing how she responds:

Zda.say(“How does one make a pipe?”)

Zda may also imagine asking himself the question. If he can not find a satisfactory answer 
or he wants to verify his answer, he may ask the question of someone else.

Curiosity is driven by attention, while a curiosity-driven action leads to active learning. 
The actions are motivated by the questions, which usually start (at least in English) with 
what, why, how, or where. And the action taken is expected to lead to the answer, or one-
step closer to the answer. For Zda’s self-questioning, a why-type curiosity learning hap-
pens when he searches for an earlier token (node) in the Knet for a reason, and how-type 
curiosity learning is taking place when the search is for a future token (node) in the Knet 
for a prediction. Zda may intentionally take a new action that is not indicated by a pattern 
in Knet in order to see what is going to happen after his action. Thus, a creative action can 
be curiosity learning (how-type curiosity learning). We will discuss this more when we 
consider Zda’s response mechanisms.

When Zda’s attention set is mainly language utterance and his action set is also language 
utterance, dialogue occurs. Conversations focus on the relationships between patterns of 

FIGURE 13.7
Examples of agent’s creativities.
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words spoken by the participants, which are usually intelligent verbal exchanges. But from 
the agent side, at least for a linguistically young agent, conversations mainly are imita-
tions. Zda listens to conversations between two different parties and mimics them. Of 
course, conversations also involve novelty. How to learn and carry on conversations will 
be discussed, again in the sections highlighting response mechanisms.

13.12 Recursion on Everything

Recursion in mathematics is the use of output as input, repeatedly. That is, Y = f( f( f(… f(x)))), 
where f(·) is a function or mapping that represents a mechanism of a system. For instance, 
we define factorials by (1) the base case: for n = 1, n! = 1 and (2) the recursive step: for n > 1, 
n! = n (n−1)!

Inductive definition of the natural numbers can be stated as: a natural number is either 
1 or n+1, where n is a natural number. Some more examples of mathematical recursions: 
multiplication can be defined as a recursion of additions: e.g., 3×5 = ((5+5)+5), while addi-
tion is the recursion of the operation of adding 1, e.g., 2+4 = ((((2+1)+1)+1)+1). Binary search 
is considered to be a recursive process. Even infinity is nothing but the idea of an end-
less recursion. Beyond mathematics, when the derivative operator with respect to time is 
applied to distance, it will produce speed in physics, and when the same operator is recur-
sively applied to speed, it produces acceleration. This recursion of an operator is a creative 
analogy. In fact, it is an important form of creativity. In computer science, recursion can be 
used in data structures. A tree structure is a simple recursive data structure.

Recursion in cognitive science has been recently identified as the defining feature not 
only of natural language (Hauser et al., 2002) but also of human cognition overall (Corballis, 
2007). However, it has received less than a satisfactory characterization. More often than 
not, it has been applied to the structural complexity of some of the representations the 
human mind seems to have and use, irrespective of the mechanisms operating over these 
representations. This is in clear discrepancy with the formal sciences, where recursion 
originated (Garcia-Albea and Lobina, 2009).

In principle, Zda can possibly perform recursions on everything—actions, concepts, 
procedures, thinking, even recursion itself. In HAI architecture, the ability to apply recur-
sion on everything is a natural consequence of repeatedly applying analogy and recursion: 
from recursion of thing X to recursion of similar thing Y through analogy. In other words, 
everything can be analogized by another thing. By recursion, everything can be an anal-
ogy of an arbitrary thing x. Therefore, recursion and recursion of analogy enable recursion 
on everything.

 recursion( ) recursion(analogy( )) recursion(analogy(analogy( ))) .→ → →…x x x

Verifications of patterns from such analogical recursions will be needed before moving 
them from the Inet to the Knet.

Just like Zda’s self-awareness, the recursion of a learning method used in building Zda 
will enable Zda to discover and apply the learning method in various situations. Recursion 
on everything is one of the fundamental features of Zda’s learning. For example, RL is 
used in building Zda and by recursive utilization of RL, Zda will discover or learn the RL 
method and be capable of applying the method. That is, we use RL to learn RL.
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How can Zda invent or learn unsupervised learning methods, such as hierarchical clus-
tering? Here is a possible way: after Zda learns about Euclidean distance, he can apply the 
similarity (defined as the inverse of the distance) between objects to group them together, 
starting from the two closest to each other (the most similar pair) to form a composite 
object; then apply similarity grouping to the reduced set of objects to further identify 
the two most similar objects. This recursion is applied to the reduced set of objects each 
time, until all the objects are grouped into one composite object. This is the idea and basic 
algorithm of the hierarchical clustering method. Furthermore, Zda can make analogies 
and apply the distance definition to different types of objects, e.g., finding the distance 
between two colors, and do hierarchical clustering for objects based on color similarities.

Zda can re-invent or learn to evaluate AI algorithms such as genetic programming by 
abstraction and analogy, though the process of inventing (reinventing) may take very long. 
After all, it took more than 5,000 years for humans to invent the algorithm!

The keys to inventing and learning a new learning method are (1) a necessary set of 
prior knowledge or concepts, (2) ways to apprehend and use similarity and similarity prin-
ciples, (3) recursion, (4) analogy, and (5) rewards associated with certain approaches. With 
these keys, Zda can learn (discover, rediscover, or invent, reinvent) math, science, statistics, 
machine learning, and other methods that humans have not discovered yet.

Meta-cognition is “cognition about cognition,” a recursion of cognitive processes. With 
Zda’s hierarchical recursive Knet, meta-reasoning is encompassed. The abilities of self-
reflection and self-programming are included. Our HAI architecture is a self-organized 
adaptive system featuring hierarchical tokenization, recursive patternization, and adap-
tive reinforcement learning.

Regarding self-programming, the HAI architecture allows an agent to perform the pat-
ternization himself, including self-determined desensitisors and sensitisors. Therefore, 
desensitisor and sensitisor serve as function parameters in computer programming. 
Learning in HAI architecture is mapping reality including natural language to event pat-
terns, and such mapping is called an understanding of natural language. Language can 
be viewed as one-dimensional text that patternizes the perceptual world, including the 
natural language itself (recursion!). In this sense, HAI is the construction of a universal 
language for patterning the perceptual world that includes natural languages.
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14
Adaptive Response Mechanism

14.1 Prediction and Decision-Making

There are two sequences of event-strings at any moment t: (1) the sequence of attentive 
event-strings that Zda has observed up to time t, and (2) the sequence of future interesting 
events that Zda predicts at time t. The prediction is primarily based on similarity-match 
between patterns in Zda’s Knet and the observed patterns at the moment. Prediction can 
be viewed as an association between the current and future situations.

There is a fundamental question in our mind: is an individual’s decision dependent on 
the current state only or the historical events too? The reason we have such a question is 
because for a moving object, if a location is used to describe its state, then its location at 
the next second cannot solely be determined by its current location. However, from clas-
sical mechanics, we know that within an inertial system if we use location and velocity to 
describe an object’s state, then its state at the next second is fully determined by its current 
state. For this reason, we believe one’s decision can be based on his current state as long 
as the state includes sufficient parameters, such as one’s intention and emotion, and there-
fore one can use a Markov decision process to model it (Figure 14.1). Noticeably, concepts 
(tokens) such as “Zda has walked for 3 hours,” “Zda has wanted the storybook since he 
was 3 years old,” and “Zda got his degree after his 4 years of hard work” have already 
included some past information; thus in such cases, Markov-Decision models might be 
good as first approximations.

We can make further argument that if an individual’s decision is based on his current 
state including his intention (goal) and his past experiences, his decision will be actually 
related to his current memory of past events and current predictions of future events. 
More philosophical discussion can be found in Section 3.10: Connotation of Causality.

However, such a Markov chain model may not be feasible because it requires us to 
include many known and unknown factors in the model. Besides, Markov Chain mod-
els often do not match our experiences: we always remember a short sequence of events 
and use that as a basis for our decision-making. We also recursively use such a chain of 
sequences to make associations among events that happen far apart in time. Therefore, in 
Zda’s response model, we will use short but hierarchical and recursive chains of events to 
model our decision-making processes.

In a Markov Decision Process, Zda makes a prediction only based on the current state. In 
a non-stationary decision process such as a two-time point-based prediction, Zda makes a 
prediction based on the current and previous states (Figure 14.2). The reason we only limit 
to a maximum of time points is usually limited to n = 3 for prediction (but no limit on n for 
deep thinking) is that humans do not remember directly a long detained historical event 
chain. Instead, the long chain will be broken into pieces of big events and each big event 
includes chains of smaller chains of events; each of these smaller event chains further 
includes chains of even smaller events.

https://doi.org/10.1201/b23355-17
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Zda uses the observed tokens to predict what is going to happen based on the patterns 
in Knet. Such a reality-Knet mapping is mimicking the way humans map reality to their 
experience or knowledge when making a decision. Like humans, Zda can also make 
k-steps ahead predictions for decision-making using the long token-sequence in Knet. The 
information in the model can include other people’s actions, turning it into a model in 
game theory.

The reality-Knet mapping can be exact but more often similarity-based matching, espe-
cially when facing a novelty (a new situation Zda has not met before). The similarity- 
matching process will produce a list of similarity-matched paths from the Knet (Figure 14.3). 
The paths represent Zda’ experiences that are considered similar to the reality that Zda is 
facing at the moment and what is likely to happen if the same or similar action is taken as 
before. According to the similarity principle, similar situations and actions will lead to a 
similar outcome. Just like a human, Zda uses his past experiences and predictions to guide 
his decision using the randomized adaptive response mechanism as discussed below.

When multiple mapped paths are found, the predicted next token may or may not be 
actionable. When the predicted token is not actionable or an abstract concept, the high-
level token will be treated as the next goal and viewed as a pattern to further map to 

FIGURE 14.2
Prediction based on previous and current states.

FIGURE 14.3
Similarity-principle-based prediction.

FIGURE 14.1
One-time point-based prediction in Markov model.
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knowledge paths. As an example, “Zda goes to the kitchen” is a pattern or concept, while 
“Zda walks 5 steps to the East” is an (elementary) action according to our HAI architec-
ture. This backward recursion (reverse-engineering) continues until the concept breaks 
down into an action or maps to an elementary pattern. If the action was not taken by Zda 
but by someone else in the Knet, he can observe, imitate or take creative action.

Similar to the human brain, Knet, though it sits inside Zda’s brain, is often treated as 
an external world by Zda because of its self-inclusive property. This duality of the Knet 
in Zda’s brain: being internal and external at the same time, is critical for demonstrat-
ing self-awareness, meta-thinking (thinking about thinking), consciousness, imagination, 
pretending, thinking how others might think, acting like a game player, and taking goal-
driven actions.

One of the challenges that have not been discussed is how to determine the number of 
tokens and the timing of those tokens in forming a pattern. We have to use the attention 
mechanism: attentive time points are those when an elementary token (observable action) 
changes in actioner.action or object.event-strings. The future attentive time points are also 
related to the current attentivity, as we discussed in Attention Mechanism.

Prediction involves human-agent-environment interactions, thus understanding of 
language (body and natural language) and intentions of other parties engaged are use-
ful. Prediction and learning are two inseparable parts. In a broad sense, learning can 
include learning how to understand language and another’s intentions (what refers to 
what), how to discover patterns, how to make predictions, and how to respond (action 
on the internal world and on the external world). Learning and responding go hand in 
hand: learning from the response outcomes, and prediction and response are based on the 
knowledge learned.

So far we discuss the reality-Knet mapping is one-dimensional. However, the real 
world and the attentive world are often multi-dimensional in the sense that multiple 
things occur at the same time. We will discuss this in the randomized adaptive response 
mechanism next.

14.2 Imitation, Creativity, and Imagination

As discussed earlier, learning starts with imitation. Imitation is the foundation of cre-
ativity and innovation. A creative idea often comes from inspiration and analogy when 
applying the similarity principle between new and original cases. An analogy is a com-
parison between two objects, systems, or situations that highlights respects in which they 
are thought to be similar. Creativity is related to the imagination of a new idea, while 
innovation is related to its implementation. Imitation and Creativity are the most common 
and important approaches to learning and discovery.

To Zda, imitation is nothing but replacing an actioner (such as Lia or a human) in an 
actioner.action string with himself, i.e., actioner.action is replaced with Zda.action. For 
instance, if the event-string contains Lia.eat(apple) in Zda’s Knet, Zda.eat(apple) can be the 
string representing Zda’s imitation. A common imitation is when Zda is asked a question 
that he does not know the answer to, in which case he can ask the same question to some-
one else by using actioner-replacement. As we have discussed earlier, there is no clear line 
between imitation and creativity. For instance, “hen brood duck eggs” instead of “hen 
brood chicken eggs” can be a creative idea.
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Imitation using actoral replacement (behavioral similarity) has three types:

1. Randomly replace some or all actioners by Zda in the path forward.
2. Randomly replace one actioner (e.g., Lia) by Zda at all locations on the path forward.
3. Randomly pick n actioners at n random locations on the path forward and replace

them by Zda (n-point mutation).
Examples of imitation with a nested-actioner string (symbol ⬻ means

“replaced by”):
• Lia.say(“Bob.cry”) ⬻ Zda.say(“Bob.cry”)
• Lia.say(“Bob.cry”) ⬻ Zda.say(“Lia.cry”)
• Lia.say(“How does one make a pipe?”) ⬻ Zda.say(“How does one make a

pipe?”)

Imitation is an innate tendency, habit, and mechanism. Imitation can also be explained as 
a result of Zda reasoning: since Lia gets a reward after she brings water to Bob, if I bring 
water to Bob, I will likely get a reward too. This reasoning is based on the similarity prin-
ciple: similar actions will lead to similar outcomes.

As a social being, Zda likes to imitate others in various social settings even if there is no 
obvious reward by doing so. We can also say that Zda likes to imitate others in order to 
become a social being.

Creativity is necessary for finding better solutions than existing ones. We always 
want to use old methods to deal with old problems. Instead, we occasionally want to 
use new methods to deal with old problems in order to find a potentially better solu-
tion to the problem. Creativity means to try new things or new ways of dealing with 
old problems.

To Zda, creativity (innovation) is mainly an action-replacement, an object-replacement, 
an object’s attribute replacement, or an action’s attribute replacement, with a similar token 
(from a “synonymous list”) in the event-string. For instance, From Lia.eat(banana) to Zda.
cut(banana) or Zda.cut(apple) can be considered as creation. If the logic of such a replace-
ment cannot be well understood, we may think (subjectively) Zda acted irrationally or lost 
his mind. Creativity can also include asking good questions. Asking a question is nothing 
but replacing the subjects or events in a question-string from his Knet with similar stuff 
and “speaking” it out. Asking an old question is often an imitation, while asking a new 
question is often considered creative.

Creativity using behavioral replacement (actoral similarity) has two types:

1. Randomly pick n actions at n random locations on the path forward and replace
them by another similar action or by changing an action parameter in the same
action-function.

2. Replacement examples of creativity with a nested-actor string (the symbol ⬻
means “replaced by”):
• Lia.say(“Bob.cry”) ⬻ Lia.say(“Bob.walk”)
• Lia.say(“Bob.cry”) ⬻ Lia.saw (Bob.cry)
• Lia.say(“Bob.cry”) ⬻ Lia.say(“Bob.smile”)
• Lia.say(“Bob.cry”) ⬻ Lia.saw(Bob.smile)
• Lia.walk(to the East, for 3 hours) ⬻ Lia.walk(to the West, for 3 hours)

Foundation, Architecture, and Prototyping of Humanized AI
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However, a token might be a high-level conceptual pattern, so how can Zda make sure the 
high-level token will eventually end with a Zda action? It’s because the hierarchical struc-
ture of tokenization and recursive patternization ensure that any token will eventually 
end with actionable elementary tokens by means of reverse engineering.

We can have a list of potential examples of imitation and creativity, but that is just a 
scenario-play to predict what is possibly going to happen, and will remain imaginary 
until Zda takes a particular action. Such a scenario is called imagination in daily life. 
Unlike the imitation or creativity where token-replacement occurs in Knet, imagination is 
extracting the pattern into a separate Knet (called the imaginary net) and precedes token-
replacements in the imaginary net. Depending on the predicted result, Zda may or may 
not actually make the token-replacement in the Knet. The strategy of scenario-play that 
Zda used, in this case, is based on the notion of game theory because it involves the predic-
tion of others’ possible actions.

As far as which one will be selected for execution, this will be determined by the ran-
domized response algorithms discussed later. Each initial, imaginary, and executed pat-
tern has an associated frequency, reward (if any), energy cost, recency (time of recent 
occurrence), and actionable (if an elementary token) or not. These attributes will be used 
to determine the probability of selecting an action candidate to be executed.

In the Intent Action List, not all actions are executable at the current condition. For instance, 
Zda intends to eat an apple, but I might not be able to actually eat an apple since there might be 
no apple available at the moment. Zda can say: “John, jump into the water,” but that may not 
happen. Zda cannot ensure other people will perform certain actions as he wishes. Therefore, 
in coding an action for Zda we may need to include an executable conditions check.

Every act of imagination will leave a trace (may be patternized) on Zda’s imaginary net 
that is separated from, but also associated with, his real Knet. In other words, the imaginary 
net will be updated after the imagining. Information on the imaginary net will be only tem-
porarily maintained to keep its size small. Because the knowledge net and imaginary net are 
two physically separated memory areas, Zda will be able to separate what is real and what is 
imaginary. An imaginary net consists of scattered, highly-rewarded patterns because many 
low-predicted-rewarded patterns and old patterns are forgotten (removed) by Zda.

Zda can formulate hypotheses using imaginary imitation, analogy, innovation, and logi-
cal reasoning. The hypotheses will be held in the imaginary net for testing.

We know that our recollection of a past experience can cause sensations of enjoyment 
and pain. Likewise, imagination via the Inet can also lead to different sensations through 
association. This is shown in Figure 14.4.

How do different mechanisms such as attention, imitation, creativity, recollection, logi-
cal reasoning, and other actions work together to support the formulation of HAI? We 
have to first look into the overview of the Response Model.

FIGURE 14.4
Sensations from imagination and recollection.
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14.3 Overview of Response Model

While patternization is updating his internal Knet, an agent’s response refers to an action 
(including doing nothing) in the external world but also includes deciding which action 
of learning is appropriate and when it will be performed. Perhaps the simplest form of 
response is a reflex. In biology, a reflex is an involuntary unplanned sequence or action 
and a nearly instantaneous movement in response to a stimulus that does not receive or 
need conscious thought. A reflex is made through neural pathways or reflex arcs which 
can act on an impulse before that impulse reaches the brain.

A reflex often includes a spontaneous emotional response. A reflex is a way to deal with a 
time-sensitive situation, and such situations frequently occur. Reflexes can protect your body 
from things that can harm it. For example, if you put your hand on a hot stove, a reflex causes 
you to immediately remove it even before a “Hey, this is hot!” message gets to your brain. 
Other protective reflexes include blinking when something flies toward your eyes and raising 
your arm if a ball is thrown your way. Even coughing and sneezing are reflexes. They clear the 
airways of irritating matter. Thinking about food when hungry can also be considered a reflex.

Biological Desire and Feeling (pleasure, pain, hunger, anger) attract attention and drive 
actions. As an example, Baby Zda looks for food constantly, as he gets hungry quickly. 
Zda’s behavior will also change constantly over time, one obvious example being quitting 
his bottle-sucking habit when he grows up. Zda’s personal habits certainly help to deter-
mine his responses.

According to psychologist and economist, Daniel Kahneman, humans have two distinc-
tive cognitive systems. They can be characterized as (1) intuitive, fast, unconscious (auto-
matic and impulsive), one-step parallel, non-linguistic, emotional, habitual, using implicit 
knowledge, and (2) slow, effortful, logical, sequential, conscious, linguistic, algorithmic, 
planning, reasoning, employing explicit knowledge. In the HAI architecture, we divide 
the response system into reflex, fast-thinking, slow-thinking, and deep-thinking. Such a 
response mechanism, with four response modes, will perform better and more efficiently 
than one with only two modes.

In Zda’s architecture (Figure 14.5), the agent’s response mechanism includes mainly 
Reflex, Fast-thinking, Slow-thinking, and Deep-thinking.

1. Reflex can protect one’s body from things that can harm it. Reflex deals with one
real-time elementary token with the highest subconscious attentivity based on
reflexons. A reflexon is a pair of timewise high-associated tokens. The first token is
called stimulus and the second is an actionable elementary token, called a reflexor.

2. Fast-thinking is a response mechanism dealing in real time with up to 4 elemen-
tary tokens at 1 to 4 time points.

3. Slow-thinking is activated in situations with less time pressure, dealing with up to
16 most recent elementary tokens indirectly, by hierarchically tokenizing the long
token sequence into no more than 4 high-level tokens.

4. Deep-thinking, often used in scientific investigations, focuses on responses (logi-
cal reasoning and repatternization) using high-level conceptual tokens instead of
real-time elementary tokens.

In slow and deep thinking, Zda will judge whether his action will be able to affect an out-
come that is in his favor before taking the action.
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The response models initiate from the subconscious attentivity as described in Chapter 12:

 ( ) ( ) ( ) ( ) ( ) ( ) ( )= −  + + + exp ln  10 1 2SA t w d t w S t w n t h t M t T t

As we discussed in the section on the Attention Mechanism, the speed of an object is 
relative to the agent (observer). Zda is sensitive to voice (words), and the words heard are 
virtually always in the attention set. An object that an agent is pointing at or shaking will 
very likely also become object in Zda’s attention set. Attention to some innate concept is 
often related to an action. For instance, when Zda is making a choice, the innate concept 
Preference is in his attention set. Conversely, when the innate concept, Preference, is in 
Zda’s attention set, he is usually making a choice. Attention to an innate concept can be 
subconscious or conscious.

The maximum subconscious attentivity at the current time t is called Instant 
Subconscious Attentivity (ISA), the maximum ISA at times t−2, t−1, and t is called Fast-
Thinking Subconscious Attentivity (FTSA), and the maximum ISA at times t−14, t−13, …, 
t−2, t−1 and t is called Slow-Thinking Subconscious Attentivity (STSA). The values ISA, 
FTSA, and STSA will determine which response model is to be triggered, as shown in 
Figure 14.5. In all four response models, a probabilistic optimal decision approach, called 
the randomized adaptive response mechanism, is necessarily involved.

If ISA ≥ Cr, a critical value, the reflex mechanism will be triggered. Reflex works in 
a simple way: if a matched Reflexor, an actionable token with a high association with a 
stimulus, is found, Zda will take the action corresponding to the reflexor. If ISA < Cr or no 
reflexor is found during the search, FTSA will be calculated. If FTSA ≥ Cf, Zda will turn to 
a fast-thinking model.

ISA will also determine the next attentive time according to the formulation:

 The next attentive time starting from current time is NAT Ct/ISA.=

However, at the calculated attentive time points if Zda is in the process of completing his 
action determined at previous attentive time points, he has no time to determine the next 
response, the calculated attentive time point will be escaped. Here Cf and Ct, like Cr, is 
another critical value treated as an innate parameter.

In the fast-thinking model, a small number (e.g., 3) of elementary tokens will be consid-
ered in decision-making or response. If fask-thinking does not provide a high reward or 

FIGURE 14.5
Overview of response algorithms and mechanisms.
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if FTSA < Cf, then STSA will be calculated. If STSA ≥ Cs, slow-thinking will be triggered. 
The critical value Cs is treated as an innate parameter.

In slow-thinking, a long string of tokens (up to 16 elementary tokens from 64 tokens at 
16 time points) will be hierarchically tokenized into no more than 4 high-level tokens, and 
the decision is still based on the event-string of ≤ 4 high-level tokens. Each attentive time 
point is determined by the previous time point, up to a total of 16 time points.

If reflex, fast-thinking, and slow-thinking are not triggered (STSA < Cs), the conscious 
attention switch will be turned on and Zda will be in the deep-thinking mode.

Reflex, slow- and fast-thinking usually involve onsite patternization after a response 
acting on the external world. Deep-thinking focuses on learning-driven and goal-driven 
actions, and repatternization and new pattern discovery are its main tasks.

In dealing with very complex problems such as scientific questions and unsolved math-
ematical problems, deep-thinking is needed. It is similar to slow-thinking, but more 
focused on repatternization of the Knet and the formulation of hypotheses based on logi-
cal reasoning, analogy, and predicted rewards.

Fast-thinking can be viewed as a near-sighted approach because only 4 elementary tokens 
are involved. Slow-thinking is not as near-sighted as fast-thinking, while deep-thinking 
is a visionary approach. According to the Law of Summative Effects (see Section 3.2), each 
approach in this list is an improvement on the previous one in terms of vision and reward. 
However, there are reasons for fast-thinking: (1) slow and deep thinking requires a longer 
time and more effort (cost), (2) the reward may diminish as time goes by, and (3) due to 
Fredkin’s Paradox and Analysis Paralysis (Section 1.1), we tend to spend more time than 
necessary on choices that make virtually no difference, a poor use of time that should 
be avoided.

So far we have discussed the response mechanism without language involvement. 
However, words in Zda’s ears can provide a lot of information (or be a main factor) about 
what he should do. A simple example would be: how does Zda respond to a verbal request? 
Lia’s words may indicate the intended goal of her action. For instance, “I am going shop-
ping.” This statement indicates a sequence of actions, not just a simple elementary action. 
Knowing her intention (goal), Zda will predict better, less frequently check and update the 
attention set, and better focus on the goal, thus saving time and energy.

When words are in the attention set, the language-guided response will likely be trig-
gered. In language-guided responses, we are particularly interested in the association 
between words and the sensible actions to be performed. The subconscious attention 
mechanism and the Factor-Isolation Technique (FIT) play important roles in language-
guided learning and response.

Language not only influences thought but also plays a critical role in learning how to 
plan responses and actions. Without language, humans cannot record knowledge and pass 
it from one generation to the next, and we would not have today’s technology, iPhones, 
computers, robots, space-stations, as no single generation alone could achieve such amaz-
ing miracles. Without learning language, Zda’s learning (reinforcement learning) will be 
very slow and limited. Based on the HAI architecture, Zda will be able to develop his 
language ability and thoughts hand in hand.

Even though Zda’s response is mainly based on associated rewards, high-frequency 
responses, such as reflexes, might just be a sign that following societal conventions or 
norms works for the greater betterment of society.

Before we discuss each response model, it will be helpful to look into different types of 
actions that Zda might take according to the prediction or predicted token as shown in 
Table 14.1.
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The rewarding token(s), if any, should always be the last token(s) in a pattern. In fast-
thinking, a pattern can only have one (the first) rewarding token. Multiple rewards are 
allowed in slow and deep thinking. A multiple-rewards pattern often means collaboration.

HAI is a complex adaptive self-organized system with hierarchical tokenization, 
recursive patternization, and randomized adaptive reinforcement learning (RARL). 
Dynamic response (param), so as to map virtual reality in pattern (param), is, in fact, 
an  autoprogramming-based real-time experience. The notion of randomized reinforce-
ment learning is the imitation of a reward receiver’s action in the hope (according to the 
Similarity Principle) of receiving a similar reward. Imitation is also a necessity for coop-
erative social beings. For example, imitating others by making charitable donations may 
make Zda “feel good” in some way, and is what we think a social being should do even 
though it is not an action that maximizes a defined reward.

Agents’ behaviors or responses are influenced by inherited personalities. The personali-
ties are modeled by using various innate parameters such as a Pc, denoting the probability 
of creativeness, for modeling how creative the agent should be.

Finally, we want to point out that tokens are classified into three types in terms of con-
trollability: (1) the agent can fully control, such as his own action, (2) the agent can have 
some influence, such as with his friend’s behavior, and (3) the agent might have virtually 
no control, e.g., over the rain outside. The response mechanisms will focus on the first cat-
egory, but will also consider action in some cases of the second category.

14.4 Reflex

In Zda’s architecture, reflexes are modeled using reflexons. A reflexon is a pair of timewise 
highly-associated tokens (2-gramtons occur very closely with high frequencies). The first 
token is called stimulus and the second is called reflexor. Examples of (stimulus, reflexor) 
are (an object flying toward eyes, blinking eyes}, and (a sharp pain, scream). A habit can 
initially be considered as reflexon, but could change later in life.

TABLE 14.1

Types of Actions Based on Predictions

Expected Token Main Action to Take Explain

Zda.act() Zda.act() Reinforcement Learning

ZdaDesensitisor.act() Zda.act() Deduction

Actor.action() Zda.act() Imitation
Non-actionable token Zda.act(PreviousAction) Inertia
Non-actionable token Zda.act(Resting) energy minimization

Zda.act() Zda.act(desensitisor of ) Creativity

Obj1.act() & Obj2.act() ObjDesensitisor.act() Induction

Obj.act(1) & Obj.act(2) Obj.act(ActionDesensitisor)
Obj.attribute1 & Obj.attribute2 Obj.AttrDesensitisor
Obj.act(param1) & Obj.act(param2) Obj.act(paramDesensitisor)
Any token Zda.think(associatedItem) Attention shift
Zda.rewarded(Giver) None Zda received reward
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The Reflexon table will include fields/columns: stimulus, reflexor, frequency, reward, 
and recency. An initial list of reflexons is needed. The reflexon table will be updated after 
a reflex. Any 2-gramton with the second token being Zda’s action will be considered as a 
reflaxon if either the associated frequency, reward, or penalty to Zda becomes very high. If 
the Zda.reward() is also included as a token, some reflexons have 3 tokens or 3-gramtons.

Before determining the response, Zda will determine the attention pulse rate or next 
attentive time, calculate the subconscious attentivity, and determine the elementary tokens 
with the highest subconscious attentivity (called Instant Subconscious Attentivity, ISA) at 
the moment t as discussed in Section 12.2.

The Reflex Algorithms (if ISA ≥ Cr) are outlined as flows:

1. Search a reflexor from the Reflexon Table based on the stimulus (a desensitisor of
elementary tokens) in the attention set. If no matched reflexor is found, randomly
generate a possible action from the Elementary Action List (including action of
inertia and doing nothing).

2. Perform animations based on the action taken.
3. Update Zda’s internal state: energy, emotion, desire & determine the next attention

pulse time based on current subconscious attentivity.

Here the critical Cr is an individual innate parameter of an individual agent.
The question is how to obtain a desensitisor of the elementary tokens? We can prede-

termine the rules to group the objects and elementary events or actions with different 
parameter values. The initial list of elementary desensitisors is needed.

14.5 Fast-Thinking

In Zda’s architecture, fast-thinking responses will have a follow-up learning process or 
patternization. A response is an action on the external world based on prediction, while 
patternization is considered knowledge discovery from observations and prior knowledge. 
Patternization persistence requires follow-up updates in the internal Knet. Predictions 
are made based on mapping observations to patterns in Knet. For fast-thinking with asso-
ciated onsite decision-making, no hierarchical tokens but only elementary tokens (includ-
ing their desensitisors) are involved. The basic idea in fast-thinking is that Zda imitates the 
reward-receiver’s action in hoping to receive a similar reward according to the similarity 
principle. When there is no reward directly involved, Zda will use the pattern frequency 
or distributive reward as a proxy for reward.

After a response that acts on the external world, dependent on the outcome, onsite pat-
ternization will immediately follow, unless the computation requires a long execution 
time. In such a case, patternization can be scheduled at a later time.

A fast-thinking response is based on predictions that involve a maximum of 3 elemen-
tary tokens (in the forms of actioner.act or object.event) at 1 to 3 time points, while the follow-
up patternization involves one more token, with the last token often being the outcome or 
reward (in the form of actioner.rewarded), which may not be the same as was predicted.

Zda sends his attention pulse to detect the external world, its rate is directly proportional 
to the subconscious attentivity in reflex and fast-thinking and inversely proportional to 
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the conscious attentivity in slow-thinking and deep-thinking. Therefore, the current sub-
conscious attentivity will determine the next attentive time point. Like a human, Zda gen-
erally very much pays attention to voice and spoken language.

The Fast-thinking algorithm starts with 16 potential tokens at 4 consecutive attentive 
time points; from that, Zda will select up to 4 top attentive tokens (may include voice) to 
form the final attention set, but will ignore any tokens with less than half the maximum 
attentivity. A reward token, if any, should always be in the attention set unless it was inten-
tionally hidden from Zda. Reward is in the agent’s view regardless of its truthness.

Natural Language patternization in fast-thinking involves up to 4-tokens; an elemen-
tary token may include a simple or high-frequency elementary language-token such as a 
frequently used word or phrase. Such as a language-token may be included as a token’s 
parameter in the event-string actioner.speak(parameter).

As discussed in patternization, the general form of the attentive event-string is E1⊗E2, 
E1⊗E2⊗E3, or E1⊗E2⊗E3⊗E4, where ⊗ denotes either ∧ (occurs at same time) or ⭇ (occurs 
sequentially), with the default precedence of ∧ and then ⭇. The events (E1 through E4) 
can be actions (speaking, eating, walking, thinking) or changes of attributes (e.g., smell 
or color). Zda uses similarity-based pattern-matching (15 types) to make predictions and 
decisions (Table 14.2). The key in all thinking models is to find the similarity-based reality-
to-Knet matched paths.

Through desensitization, Zda makes E1, E2, E3, and E4, each involving just desensitisor 
of elementary a token with different parameter values, e.g., E1 = Lia.run(), regardless of the 
running direction and speed. In fact, Zda cannot observe all parameters at any given time; 
therefore, each of E1, E2, E3, and E4 is desensitisor of many similar elementary tokens with 
different parameter values. Having said that, shape and size are always observed since 
they are the key parameters in identifying an object. E1 through E4 can also be a single 
word or phrase or a simple frequently used sentence as a token in 2-gramton (elementary 
word-action, word-event, word-word) form.

TABLE 14.2

Fifteen Patterns Sorted by Matched Pattern

Scenario Matched Pattern (Skipton) in Knet Observed Pattern Expected Token

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

PT1(1) = E1
PT3(1, 2) = E1⭇E2
PT5(1, 2, 3) = E1∧E2⭇E3
PT6(1, 2, 3) = E1⭇E2∧E3
PT7(1, 2, 3) = E1⭇E2⭇E3
PT7(1, 2, 3) = E1⭇E2⭇E3
PT9(1, 2, 3, 4) = E1∧E2∧E3⭇E4
PT10(1, 2, 3, 4) = E1∧E2⭇E3∧E4
PT11(1, 2, 3, 4) = E1⭇E2∧E3∧E4
PT12(1, 2, 3, 4) = E1∧E2⭇E3⭇E4
PT12(1, 2, 3, 4) = E1∧E2⭇E3⭇E4
PT13(1, 2, 3, 4) = E1⭇E2∧E3⭇E4
PT13(1, 2, 3, 4) = E1⭇E2∧E3⭇E4
PT14(1, 2, 3, 4) = E1⭇E2⭇E3∧E4
PT14(1, 2, 3, 4) = E1⭇E2⭇E3∧E4
PT15(1, 2, 3, 4) = E1⭇E2⭇E3⭇E4
PT15(1, 2, 3, 4) = E1⭇E2⭇E3⭇E4
PT15(1, 2, 3, 4) = E1⭇E2⭇E3⭇E4

Null
E1
E1∧E2
E1
E1
E1⭇E2
E1∧E2∧E3
E1∧E2
E1
E1∧E2
E1∧E2⭇E3
E1
E1⭇E2∧E3
E1
E1⭇E2
E1
E1⭇E2
E1⭇E2⭇E3

E2
E3
{E2, E3}
{E2, wait}
E3
E4
{E3, E4}
{E2, E3, E4}
{E3,wait}
E4
{E2, E3, wait}
E4
{E2, wait}
{E3, E4}
{E2, wait}
{E3, wait}
E4

Note: PT1(1) is short for PT1(E1) and PT5(1, 2, 3) is short for PT5(E1, E2, E3), etc.
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The question is, how does one do desensitization using the elementary tokens? We can 
predetermine the rules to group the objects and elementary actions based on, e.g., sensory 
organ sensitivity: we know a newborn has very limited vision but has some good olfaction. 
For objects of the same type with similar attribute values can form a base for  elementary 
desensitisors. Elementary actions of the same type with similar parameter values can 
serve as a base for elementary desensitisors. Finally, grouping in desensitization can be 
changed by Zda automatically for memory and speed optimization over time. Specifically, 
if the rewards associated with two similar patterns are similar then they can be grouped 
into one category. We will discuss more later in Sensitization and Desensitization.

We use the following examples to illustrate Zda’s decision-making (Refer to Table 14.2).

Example 1: Suppose Zda observes E1 = Lia.run(), and in his Knet, Zda finds a match 
PT3(E1, E2), where E2 = Zda.give(water to Lia), no explicit reward specified. Zda 
could take the action E2 to imitate himself based on past experience.

Example 2: Suppose Zda is observing E1 = Zda.pick(pen) and E2 = Zda.pick(paper) at 
the same time. In his Knet, Zda finds a match PT5(E1, E2, E3), where E3 = Zda.
write(“Happy New Year”). Zda could take the action E3 based on past experience.

Example 3: Suppose Zda observes E1 = Lia.run(), and in his Knet, Zda finds a match 
PT3(E2, E3). Here E2 = agent.run(), where desensitisor, agent ∈ {Lia, Bob, Andy} in the 
Knet, and E3 = Bob.give(water to runner), where runner is the agent who runs. Therefore, 
Zda as a social being could imitate Bob’s action and give water to the runner.

Example 4: Suppose Zda observes E1 = Lia.run(), and in Zda’s Knet, Zda found a 
match PT3(E1, E2) with an expected reward of 5, where E2 = Bob.give(water to Lia). 
Zda thus makes a prediction, based on the similarity principle, that if he imitates 
Bob by giving water to Lia, he will receive 5 in reward. Here we have made the 
assumption that desensitisor of {Lia, Bob} exists in Zda’s Knet. Zda is performing 
simple analogical reasoning in this example.

Example 5: Suppose Zda observes E1 = Lia.run(), and in Zda’s Knet, Zda finds a match 
PT3(E1, E2) with a reward of 5 to Zda, where E2 = Zda.give(water to runner). Also, 
in his Knet, Zda finds another matched pattern PT3(E1, E4) with reward 8 to Zda. 
Here E4 = Zda.give(juice to runner). Therefore, Zda makes predictions that if he 
gives water to the runner, Lia, he might get 5 in reward, whereas if he gives juice to 
Lia, he might get a reward of 8 based on the similarity principle. In this case, Zda 
will make a random choice of E2 or E5 based on the similarity and reward. See 
Randomized Adaptive Reinforcement Learning later.

Example 6: Suppose Zda observes E1 = Lia.run(), and in his Knet, Zda finds a match 
PT7(E1, E2, E3) = E1⭇E2⭇E3, where E2 = Lia.walk(), E3 = Zda.give(water to Lia), no 
explicit reward specified. Zda could take action E2 to imitate Lia, or wait until Lia.
walk() and then take action E3, Zda.give(water to Lia).

In fast-thinking response, all tokens (of the matched pattern in Knet) after Zda.rewarded() 
will not be considered in response. In fact, no token after actioner.rewarded() should appear 
in elementary patterns, since reward is a natural break point in the segmentation of an 
event-string.

In Fast-Thinking, a response can be based on the n-token-ahead prediction (n = 1, 
to 3). For example, if the observed pattern is PT1(1) = E1 at the moment, and Zda finds 
PT15(1, 2, 3, 4) = E1⭇E2⭇E3⭇E4 in Knet, then Zda can do a 1-, 2-, or 3-token-ahead 
prediction.

Foundation, Architecture, and Prototyping of Humanized AI



181Adaptive Response Mechanism

In Table 14.2, the expected token (ET) is the token needed to complete the pattern in Knet.

1. In scenarios 2, 3, 6, 7, 11, 13, and 18, there is a single expected token.
2. In scenario 4, 8, 9, and 15, there is more than one token in the ET Set.
3. In scenarios 5, 10, 12, 14, 16, and 17, there is a wait option in the ET Set.

Before making a decision, Zda needs to consider the similarity between the combined 
event-string (the observed event-string + the expected token) and the pattern in the Knet. 
How do we measure similarity? In fast-thinking, token-wise matching must be exact. Thus, 
the similarity (Jaccard Similarity) between the full pattern (observed event-string appended 
the event-string for expected actions) and each candidate pattern be calculated as

                      
             

=Jaccard Index Number of identical tokens at given locations between two patterns
Total number of tokens of the two patterns

The candidate patterns are the patterns (in Knet) that contain the observed event-string.
In general, decision-making is based on the net expected reward (NER) that Zda is 

going to get. The NER will be influenced by several factors: (1) the expected rewards of 
the matched patterns in the Knet, (2) the cost for Zda to execute the action, (3) similarities 
between reality and patterns in Knet, (4) Zda’s ability to perform the intended action, (5) the 
reliability of the observed reward, measured by the frequency of the pattern, (6) transabil-
ity of reward from one actioner (reward taker) to Zda when Zda imitates the taker’s action, 
and (7) Zda’s choosing to rest for saving energy, continuing what he is doing out of inertia, 
or performing some creative action. All these will affect the expected net reward that Zda 
is going to receive. We will discuss each of them, and then integrate them in Section 14.12, 
Randomized Adaptive Reinforcement Learning.

The expected reward, if any, is one of the tokens in the pattern. The cost of an action is 
specified in an action function. Similarity was just discussed. The ability to perform the 
intended action is the executable condition-check in the action function (Table 14.2). The 
frequency of a pattern is always recorded in conjunction with the pattern. The number 6 is 
actually already reflected in Jaccard similarity.

We can see that observational, imitative, creative, and associative learning (e.g., “refer-
ring to”) are the basic learning forms in Fast-Thinking.

After Zda’s response, he has to determine the attention pulse rate or the next subcon-
scious attentive time point t, and this t now becomes the next subconscious attentive time 
point. A very low energy, a pain, or any other extreme stimulus (such as fire, being hit by an 
object, someone screaming) can interrupt the regular pulse and cause subconscious atten-
tion. At this moment, such extreme stimuli will not be considered in our HAI architecture.

In Fast-Thinking, Zda does not need to decide an active response at every attentive 
time point, since completing an action requires time (time to complete, TTC). At atten-
tive time points during TTC, Zda does not determine his response.

Algorithms for Determination of Subconscious Attention Set for Fast-Thinking (if ISA < Cr):

1. We have calculated 3 subconscious attention sets at the time points t−2, t−1, and t. 
In each attention set, there are possibly 1 to 3 objects involved, and for each atten-
tive object there are 1 to 3 attentive attributes involved.

2. Select objects with the top 3 highest attentivities from the collection of the 3 atten-
tion sets to formulate the so-called tentative subconscious attention set (TSAS), 
then remove any objects with the subconscious attentivity < ½ × the highest 
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subconscious attentivity from TSAS to formulate the final subconscious attention 
set (FTSAS) for fast-thinking. The maximum subconscious attentivity in FSAS is 
called the Fast-Thinking subconscious attentivity (FTSA).

3. Determine the next subconscious attentivity pulse or attentive time at which to
recalculate the attentivities.

If Cf ≤ FTSA, the following fast-thinking algorithms will be used:

1. Based on the observed pattern, perform Similarity Search from the pKnet (Top
3 tables with most frequent, or most reward, or most recency) to find top K > 0
matched patterns.

2. Determine candidate actions based on the observed pattern and matched patterns.
3. Choose an action/token from the list of the K expected tokens based on probability 

of action (PoA) in the randomized adaptive RL algorithms (see the later section).
4. Perform animations based on the action taken.
5. Initiate the Learning Mechanism:

a. Patternization: store a new pattern or update the frequency and reward of an
existing pattern in Knet.

b. Sensitization: if the current reward is very different from the existing distribu-
tive reward, then divide the pattern into two parallel patterns.

6. Update Zda’s Knet & internal state: energy, emotion, desire, and determine the
next attention pulse time based on current subconscious attentivity.

Here the critical value Cr > Cf is an innate parameter; updating Knet includes the new pat-
tern, reward, recency, and reward.

Since Fast-Thinking is related to not only the similarity, but also frequency, reward, and/
or recency, for computational efficiency a separate memory is reserved, a table that only 
includes a small set of top patterns with either high-frequency, high-reward, or most-recency.

Similarity search and desensitisor-replacement in patternization (desensitization) 
require a desensitisor of {x, y, z,…}. Desensitisor-replacement is viewed as Zda’s induc-
tive reasoning. Similarity-replacement (Synonyms-replacement) is making analogies and 
metaphors. Each desensitisor has an associated similarity matrix to indicate the similarity 
of each possible pair of elements.

Keep in mind that patternization does not allow similarity-matching but only exact 
matching since desensitization has already been used. However, in determining a response 
the agent will have to use similarity-matching because novelty requires exportation needed 
to search for possibly better solutions. When similarity-matching is used instead of exact-
matching, a new pattern is generated with a frequency of 1.

Zda may label a person or agent whom he has interacted with as a friend, classmate, 
stranger, enemy, or other desensitisor so that he can make more intelligent responses. 
These characteristic labels can become the extended attributes of the agent.

Reward-based patternization usually follows after a response by using an existing desensi-
tisor, such as friend = {Lia, Bob, John}, or food = {bread, milk, pork, beef}. He may also create a 
new category or desensitisor if two different patterns have similar rewards. On the other hand, 
if the current reward is different from the existing reward for the pattern, then it might be a 
good idea to break down the pattern into two parallel patterns, i.e., sensitization. Sensitization 
can be performed in fast-thinking and slow-thinking, but more often in deep-thinking.
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We now discuss further how Zda formulates desensitisors with the following examples.

Lia asks for an apple ⭇ Zda gives an apple
Lia asks for the apple ⭇ Zda gives the apple
Lia asks for the apple ⭇ Zda gives an apple
Lia asks for the apple ⭇ Zda gives a desensitisor of apple
Lia asks for an apple ⭇ Zda gives a desensitisor of apple

Zda needs to know (in his view) if Lia wants any apple or a particular apple, then he needs 
to know what is available and what to give her.

Lia asks for a banana ⭇ Zda gives a banana
Lia asks for the banana ⭇ Zda gives the banana
Lia asks for the banana ⭇ Zda gives a banana
Lia asks for the banana ⭇ Zda gives a desensitisor of banana
Lia asks for a banana ⭇ Zda gives a desensitisor of banana

These events lead to a pattern: Lia asks for fruit — Zda gives fruit. Here fruit = {apple, 
banana}. In general, the second fruit will match the first fruit as much as possible in the fol-
lowing descending order if apple is asked for: the apple to the apple, an apple to an apple, 
the apple to an apple, an apple to a banana, the apple to a banana. When Lia asks Zda for 
an apple, if no apple is in Zda’s attention, he will look for an apple.

A car arrives at a gas station ⭇ Zda pumps gas to the car
The car arrives at a gas station ⭇ Zda pumps gas to the car
A bus arrives at a gas station ⭇ Zda pumps gas to the bus
The bus arrives at a gas station ⭇ Zda pumps gas to the bus
A truck arrives at a gas station ⭇ Zda pumps gas to the truck
The truck arrives at a gas station ⭇ Zda pumps gas to the truck

Zda might summarize these 6 event-strings as a pattern: vehicle arrives at a gas station ⭇ 
Zda pumps gas to vehicle. Here vehicle = {car, bus, truck}. The second vehicle in the event-
string will match the first vehicle in the event-string as much as possible in the following 
descending order of similarity if car appears in the first place in the event-string: the car to 
the car, a car to a car, the car to a car, a car to a bus, the car to a bus, etc. When Lia asks Zda 
for a car, if no car is in Zda’s attention, he will look for a car.

In reflex and fast-thinking, a pattern allows one parameter (e.g., fruit).

14.6 Slow-Thinking

In fast-thinking, onsite patternization only formulates elementary gramtons that con-
sist of no more than 4 elementary tokens. These elementary gramtons will be stored in 
Zda’s memory (Knet) for future hierarchical tokenization and recursive patternization for 
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slow-thinking and deep-thinking. Meanwhile, Zda will temporarily remember a long 
event-string of up to 64 of the most recent elementary tokens for slow-thinking. We call 
this a long event-string LOES (long onsite event-string). Each LOES will be hierarchically 
tokenized using existing tokens in Knet, and a new hierarchical token might arise when 
a substring appears multiple times within the LOES. This hierarchically tokenized LOES 
and the associated frequency will be stored in Knet for future hierarchical tokenization 
and recursive patternization.

Like you and me, Zda uses previously learned concepts as tokens to tokenize 
event-strings for further learning. In this way, Zda can make a future prediction 
based on just a few concepts (high-level tokens). Predictions are the basis for Zda’s 
decision-making.

Slow Thinking involves up to 64 of the most recently observed elementary tokens, which 
will be hierarchically tokenized and shortened into no more than 4 high-level tokens. The 
resulting shortened string of tokens will be used for patternization, but only partial tokens 
will be used for the prediction and decision-making based on the matched path(s) in Zda’s 
Knet. The methodology is similar to fast-thinking, but slow-thinking involves the initial 
step of hierarchical tokenization for the observed elementary token strings.

It is important to make sure all patterns will recursively end with elementary tokens 
and no circular tokenization definitions; otherwise, a response may not be in an action-
able path. Such a requirement can be guaranteed using reverse engineering of hierarchical 
tokenization. That is, starting with elementary tokens, a new pattern is always constructed 
on the basis of known patterns (elementary tokens are naturally the starting tokens for a 
baby). Regardless of the language humans use in interacting with Zda, the Zda architec-
ture allows code patterns in a consistent way without any built-in natural languages, and 
thus is natural-language-independent. The mapping between these coding conventions 
(patterns) and any particular natural language is established gradually through commu-
nication and interaction.

Rewards can be used as a tool to shape Zda’s knowledge and behavior over time. The 
recursive network of patterns can be stored in a database table format in Zda’s implemen-
tation (coding).

In slow thinking, a pattern allows recursions and requires exact matching between 
patterns in its frequency and reward calculations. However, response allows similarity-
matching on the top-layer pattern, while patterns in other layers must be exactly matched, 
because all other levels have desensitized tokens as needed in hierarchical patternization. 
This similarity is caused by similar-token replacement at the top layer.

As in Fast-thinking, slow-thinking also involves a single word or phrase or a simple 
frequently used sentence as a token in 2-gramton (elementary word-action, word-event, 
word-word) form. As with Fast-Thinking, observational, imitative, creative, and associa-
tive learning are the basic learning forms in Slow-Thinking.

Algorithms for Determination of Subconscious Attention Set for Slow-Thinking (if 
Cf > FTSA):

• We have calculated 16 subconscious attention sets at the time points t-15, …, t−1,
and t.

• Select objects with the top 16 highest attentivities among the 16 attention sets to
formulate the tentative subconscious attention set. Then remove any objects with
subconscious attentivity < 1/2 of the highest subconscious attentivity to formu-
late the final subconscious attention set (STSAS) for slow-thinking. The maximum
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subconscious attentivity in FSAS is called the Slow-Thinking subconscious 
 attentivity (STSA).

• Determine the next subconscious attentivity pulse or attentive time based on 
STSA.

We can outline the slow-thinking algorithms (if Cs ≤ STSA):

1. Perform hierarchical tokenization as needed following the precedence of hierar-
chical tokenization.

2. Search for two similar event-substrings within STSAS. If similar substrings are 
found, go to the FIL Algorithms below. Otherwise, continue on to Step 3.

3. Determine candidate actions based on the observed pattern and matched patterns
4. Choose an action/token from the list of the K expected tokens based on probabil-

ity of action (PoA) in the randomized adaptive RL algorithms (see later section).
5. Perform animation as needed.
6. Initiate the Learning Mechanism with Patternization:

a. Patternization: store a new pattern or update the frequency, reward, and 
recency of an existing pattern in Knet.

b. Sensitization: if the current reward is different from the existing reward, then 
divide the pattern into two parallel patterns.

7. Update Zda’s Knet & internal state: energy, emotion, and desire, and determine the 
next attention pulse time based on current subconscious attentivity.

Here the critical value Cs is another individual agent’s attribute; updating Knet includes 
the new pattern, reward, and recency.

A hierarchical token may not be directly executable; reverse engineering will be needed 
to make the expanded form before the execution and animation. A generalized action 
can be speaking out of an abstract concept or an update of internal Knet for scientific 
discovery.

Response and learning are often inseparable. In slow-thinking, refer-to-learning also 
happens from multiple event-strings using Factor-Isolation Learning algorithms (FIL 
Algorithms), outlined as follows.

FIL Algorithms:

1. Identify fixors as common tokens among the two similar (Jaccard index) tokens.
2. Identify a desensitisor (or paired desensitisors) consisting of token variable(s).
3. Store pattern structure (fixors) and associated desensitisor or paired desensitisors.
4. If one desensitisor in the paired desensitisor is word-type, then 2-gramtons of 

refer-to-type are generated with the word-tokens referring to the other tokens. 
This is refer-to-learning.

5. Update the Knet.

As with Fast-Thinking, in Slow-Thinking, Zda only needs to decide upon an active 
response at some attentive time points. At attentive time points during TTC, Zda does not 
determine his response but is in the process of completing his action.
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14.7 Deep-Thinking

Reflex, Slow-Thinking, and Fast-Thinking involve onsite patternization after actions on the 
external world. Deep-Thinking is mainly a learning process, focusing on the internal repat-
ternization (knowledge discovery) in the recursive Knet. The actions in Deep-Thinking are 
usually learning-driven actions, or more generally goal-driven actions. Scientific research 
belongs to deep-thinking, in which the real world may be recorded as experimental or 
non-experimental data. Zda treats the data as his perceptual world and may apply math-
ematical, statistical, or AI models he has learned. Zda may use a continuous function to 
fit the observed discrete data as we do in Newton’s second law. Unlike Slow-Thinking, 
the number of final tokens after hierarchical tokenization will not be capped at 4 but ran-
domly drawn from a probability (geometric) distribution. It’s important to remember that 
language patternization occurs first, before Zda patternizes the whole event-string with 
nested linguistic strings.

So far we have discussed how Knet is viewed as a collection of patterns. However, we 
can also treat Knet as a (recursive) network if we link the tokens sequentially for any given 
pattern and join different patterns at their common tokens (Figure 14.7 in Section 14.10). 
The links are consistent with the directions of patterns (some links between two nodes are 
bidirectional), e.g., A→B→C and A→ B∧C →D. In this Knet, a path can be very long and 
can be used for n-token-ahead predictions. Here the arrow can be either a temporal (⭇) or 
logical (→) relationship (implication or cause-effect). A path in Knet with a high reward on 
each node may represent a new scientific law or a social norm that might need to be tested.

Constructivists emphasize activeness in learning, and so does our synthetic approach. 
As example, active learning is reflected in inductive and analogical reasoning. Induction is 
based on the similarity principle: similar things have similar outcomes. A conclusion from 
induction should be considered a hypothesis actively proposed by Zda, and thus needs fur-
ther verification, especially for low-frequency events or patterns. Low-frequency patterns 
can be due to random chance. The nature of actively proposing hypotheses and seeking 
verifications is driven by Zda’s curiosity. Since probabilistic induction is a direct use of the 
similarity principle, it can also be considered as an analogy. As we recall, only at one token-
level is similarity used in Fast-Thinking and Slow-Thinking, but similarity-matching might 
be based on multiple-level aggregated similarities (see section 14.9) are often required in 
Deep-Thinking. Logical reasoning and NAI learning methods can be performed using the 
data collected from scientific experiments stored in a computer or on an internet cloud.

To achieve a goal is to meet a biological, emotional, or material (rational) desire. Achieving 
a goal will bring an emotional and/or a material reward. A reward is often time- dependent. 
When hungry, food is a reward; otherwise, it is not. A reward often diminishes as time 
goes by. Material rewards (MRs) and emotional rewards (ERs) cannot always be separated 
completely. A material reward can trigger the feeling of an emotional reward.

1. When hungry (at low energy) or sexually hungry, Zda will likely search for a node
with the high responding reward (called a Bio-desirable Node).

2. A low emotional state for Zda can lead to emotional hunger and trigger an
 emotion-driven action; that is, he will then likely search for a node with a high
emotional reward (an Emotional Node) and paths to such a node.

3. Otherwise, Zda can become rational hunger, triggering a material-driven or
learning- driven action, and then Zda will likely search for a rational goal node
(called a Rational Node) based on material reward or a proxy.
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Therefore, Zda can use the reward-adaptive randomization mechanism to randomly pick a 
goal node (emotional, bio-desirable, or rational node) based on the normalized  desirability, 
and take the corresponding action.

Zda becomes hungry and energy decreases over time, and an action usually costs energy, 
thus he needs to search for food to boost his energy. Likewise, sexuality can be modeled 
by hormone level. However, hormone level is cumulative over time, while virtual sexual 
activity will generally reduce the hormone level.

If the emotional node is chosen, emotion-driven actions to be taken include imagining 
and recollections of past experience. Emotional needs can also lead to an external action, 
such as making a donation of some kind.

What can be considered emotional rewards by Zda? It can be positive interactions, such 
as parents’ hugs or tickling (innate), a friend’s kind words (developed proxy of emotional 
reward through association), or it can be something that gives Zda hope.

Emotion and sensation often rely on expectations: if Zda receives what he had expected 
or more, he will be happy; otherwise, if he gets less than he expected he may not be happy. 
Here are two examples. Zda expects a reward of 5 without Lia’s help, and when Lia helps, 
he gets a reward of 8, and he appreciates her. In the second example, Zda foresees a risk 
and no one helps; surprisingly, Lia helps him avoid the risk, and he appreciates her. Zda 
feels emotional rewards in these two situations.

A rational goal is a goal obtained through rationalization, such as “I need to find a job 
soon to support my family.” A goal can also be taught by teachers, parents, or a person you 
trust. It can also be determined from reading a book. For example, your parents may tell 
you: “Knowledge is power. Go to college to get a degree.” You may or may not believe what 
they say. To Zda, rationalization refers to finding the node with top rewards in the Knet, 
while the frequency of a pattern is often considered as a reward-proxy. A reward measures 
importance in Zda’s life.

Despite possible distractions, the long-term goal in deep-thinking cannot easily be 
changed, and Zda often continues his thinking process when he is in Deep-Thinking. 
However, while pursuing his goal (e.g., earning a college degree) after deep-thinking, Zda 
can have different fast-, slow- and even deep-thinking that may change his mind.

We can group actions into two different kinds of tasks in Deep-Thinking (when 
Cs > STSA): goal-driven, and learning-driven tasks (Figure 14.6). Curiosity is Zda’s innate 
attribute that will be affected by energy level and emotion. If there is a low curiosity (<Ce), 

FIGURE 14.6
The Deep-Thinking model.



188

perform a goal-driven task; otherwise execute a learning-driven task by randomly choos-
ing the routine learning tasks (repatternization) or cognitive learning (Figure 14.6).

A goal-driven task is to randomly choose a goal node in Knet, and then use backward-
induction to find the paths to the goal node in Knet and take action accordingly. Finding an 
existing path to the goal node is often called recollection (remembering), which may sat-
isfy the emotional need to a certain degree, no other actions are necessary, but may need 
to take further actions. The goal may be a request from others. For hunger, eating food is 
needed, so the action will be to search for food. For virtual sexual desire, a recollection or 
an action of virtual dating may be needed. A rational goal is a node with a high reward or 
its proxy.

Repatternization is the random choice of existing patterns in Knet, and the search for 
similar patterns to combine into one with newly associated (and possibly paired) desensi-
tisors, this for concise presentations, as discussed in Section 13.5.

Repatternization will be applied to word-strings, event-strings, and word-action strings. 
Hypothesization will be performed on patternized (and often hierarchically tokenized) 
event-strings, only one more level of hierarchical tokenization may be needed before 
hypothesization. The verification of a hypothesized pattern (called a proposition) can 
be done via Proof-by-Contradiction. If a hypothesized pattern is expressed in natural or 
mathematical language, the proof or verification can be done by others.

Cognitive Learning uses logical reasoning: abduction (backward-induction), induc-
tion (desensitization), deduction (sensitization), analogical reasoning based on patterns 
and events in Knet. Note that induction and deduction are also used in repatternization. 
Logical reasoning often occurs based on long event-strings by connecting the different 
patterns at the joints of common tokens. The resulting “event-strings” may be something 
not observed before, and therefore the concluding pattern will be considered a hypoth-
esis that requires further verification. Such verification will be done through updating 
the frequency and reward of the corresponding pattern. We have discussed probabilistic 
logical reasoning in Section 13.6. Other more advanced logics such as predicate calculus in 
 mathematical reasoning can be learned without pre-programming.

Proof-by-Contradiction is based on the notion that if proposition A implies the nega-
tion of A, then proposition A is not true. Proof-by-Contradiction in Knet is simply finding 
the node (token or pattern) representing the negation of proposition A. For example, if the 
proposition says “all dogs are black,” but Zda finds a negation node (token) in Knet rep-
resenting a yellow dog, then the proposition is not true. In most situations, the negation 
of a proposition is discovered through deduction (cause-effect reasoning). If two nodes 
representing A and the negation of A are connected, such a connection will be in great 
doubt, and might need to be removed. However, keep in mind that the validity of Proof-
by-Contradiction is based on the law of the excluded middle, but this law is challenged by 
Schrödinger’s cat Paradox in quantum mechanics, previously discussed.

NAI Utilization may involve software packages and data retrieval, but it is really no 
essential difference as learning and utilization of other methods or procedures such as 
calculus and rocket-making. An agent’s actions are mostly virtual on a computer, but the 
NAI utilization can be real since it is performed on a computer anyway. To perform actions 
that utilize NAI or other statistical methods, Zda must learn the necessary knowledge and 
employ an interface that allows him to retrieve data.

Deep-Thinking often includes fast-thinking and slow-thinking as its subprocesses due 
to an STSA increase at the attention pulse time. For instance, when Zda takes actions 
to accomplish a long-term goal, he may face situations that require his reflex, fast- and 
slow-thinking.
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Agents’ actions are mostly virtual, but downloading data and running AI/statistical 
analyses can be really executed because these can happen on a computer.

When Cs > STSA, Zda will be in deep-thinking. There are three Random Choice boxes in 
Figure 14.6 that need to be explained:

1. If Zda’s learning curiosity ≤ Ce (one of Zda’s innate parameters), choose a goal 
node in Knet based on Zda’s desire (“food,” “entertainment,” or “rational goal”) 
and then identify the path using backwards induction and execute the required 
tasks.

2. If curiosity > Ce, perform learning-driven tasks randomly, either repatternization 
or cognitive learning (abduction, induction, deduction, or analogy).

3. If the association search might be performed to mimic attention shift, the result-
ing token will be treated as either an effect node for abduction or as a cause node 
for deduction (inference from cause to effect), or general cognitive learning will 
be performed.

4. Update Zda’s Knet & internal state: energy, emotion, and desire.
5. Determine the next subconscious attentivity pulse or attentive time to recalculate 

the attentivities.

Updating Knet includes the new pattern, reward, recency, and distributive reward.
In Deep-Thinking, the tokens in the gramtons can be high-level tokens of mixture word-

event or word-action tokens (see Section 14.12, Randomized Adaptive Reinforcement 
Learning).

14.8 Attention Shift Due to Association

The Law of Contiguity can be stated in this way: actions, sensations, and states of feel-
ing, occurring together or in close connection, tend to grow together and cohere in such a 
way that, when any one of them is afterward presented to the mind, the others are apt to 
be brought up in an idea. Indeed, association can cause attention to shift from one thing 
to another (subconscious attention to conscious attention). For instance, when we see a 
banana, we may think of its yellow color, sweetness, an apple, or even the enjoyment of 
eating fruit. Like similarity search, such associative search is usually a recollection or 
token search in Knet. Association can be triggered by not only recollections, but also by the 
imagination. When we see a huge cake, we may imagine a spectacular birthday party that 
we never had before. Such imagining can happen to Zda too.

It is well accepted in the psychological community that recognition memory reflects the 
contribution of two separable memory retrieval processes, namely recollection and famil-
iarity. Recollection reflects the retrieval of qualitative information about a specific study 
episode, such as when or where an event took place, whereas familiarity reflects a more 
global measure of memory strength or stimulus recency (Yonelinas, et al., 2010).

Recollections are triggered by the association or similarity as similar things are asso-
ciated by their similarity. Here, familiarity is reflected in the frequency of the pattern 
(path) and the similarity. In our HAI architecture, the recollection (together with familiar-
ity) process is modeled as follows. Given the current attentive set, search a path in Zda’s 
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Knet, which matches (exactly or similarly) with the observed event-string with the high-
frequency associative 2-gramton Table. In humans, recollections can sometimes originate 
from emotional needs. This is also reflected in HAI since an agent’s recollection is based 
on association gramtons with one of tokens being sensation (emotion, feeling) or some 
other outcome. Recollections are from recency, reward and frequency tables, and similar-
ity matching.

Recollection is reliving the past, while imagination is living a speculative future, and 
both are means that can lead to different feelings and emotions. Imagination is the abil-
ity to create mental stories, and to mentally construct and simulate the ways to solve a 
problem or other need. Imagination allows us to conceive of things we do not know how 
to accomplish, and to conceive of what will happen in hypothetical situations. In our HAI 
architecture, an instance of imagination is realized by copying a part of Zda’s Knet and 
adding a new path (representing an imaginary scenario) to another network, called the 
imagine net (Inet), and predicting what would happen. The separation of Knet and Inet is 
necessary so that Zda can differentiate the imaginary from the real.

What Zda needs to do for imagination is to put different pieces (patterns or strings) 
together and replace some of the tokens. In this sense, dreams are imaginings when the 
alarm clock is off, whereas imaginings are dreams when the alarm clock is on. However, 
dreams that one remembers can be different from the actual dreams. Recollections and 
imaginings can be triggered by a chain of associations: from Banana to Apple, Fruit, Cake, 
and then to Birthday Party. In a sense, similarity search is associative search, because simi-
lar things are associated.

Associative search is finding an associated token for a given token, which requires a 
2-gramton table with high frequencies, high (positive or negative) reward, or high sensa-
tion, in Zda’s Knet.

Outline of algorithms for associative search:

a. Randomly pick a token X with probability p from the attention set.
b. Randomly pick a token Y that is associated with the token X from 2-gramton

tables, perform a chain of association search from 2-gramton tables.
c. Consider the final associated token identified as the token in the attention set and

identify another set of top K most similar rows from the entire Knet.

14.9 Similarity Matching Mechanism

As per our earlier discussion, similarity grouping makes recurrence of events and pro-
vides the possibility of discovering (or inventing) scientific laws. Without recurrence of 
events, no pattern, no scientific laws would exist. However, similarity grouping can have 
many different ways. It cannot be completely subjective or objective but instead will be 
subjective and objective at the same time. Similarity grouping is necessary not only for 
similarity-based pattern discovery but also for dealing with novelty. For this reason, simi-
larity determination plays a critical role in Zda’s cognitive development.

We have mentioned the Jaccard index, or Jaccard similarity, which is used in Fast-
thinking and Slow-Thinking. The Jaccard index cannot deal with the negation of an event 
well, i.e, it treats the negation of an event and Null the same. For Deep-Thinking, the simi-
larity calculation is more complicated, involving multiple levels of similarities.
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Elementary tokens involve different parameters, such as target, speed, direction, inten-
sity, and so on. Since a high-level token hierarchically consists of elementary tokens, it 
includes the parameters of the elementary tokens. Therefore, identifying a pattern (gram-
ton) involves not only matching token names but also the parameters. In most cases, 
token names can be exactly matched, but the parameters are difficult to exactly match. For 
instance, Lia.act(name = walk, direction = East, steps = 800) and Lia.act(name = walk, direction = 
East, steps = 810) may be considered the same, by virtue of similarity grouping, since the 
two actions may be similar enough to have the same or similar rewards. This is justified by 
our early discussions: since everything is unique, similarity grouping is necessary to make 
up event recurrence and pattern emerging.

Since different attributes (parameters) can contribute differently to the similarity score, 
the similarity between two elementary tokens can be based on weighted similarities of 
parameters of the two tokens: absolute values, differences, ratios of parameters of two 
objects. All the parameters should be grouped into categories. For instance, actioners may 
be grouped into {classmates, friends, relatives, collaborators, opponents} as learning contin-
ues; speed may be simplified as {slow, fast, very fast}, and distance as {close, distant}. Many 
concepts, such as slow and fast, close and distant are vague and vary slightly among indi-
viduals and at different times. Therefore, we can add a random variable in their definitions.

How does Zda determine the similarity between two tokens if the two actions are the 
same and the two actioners are different? For instance, Lia.act(actionName = pick, target = 
pen) and Zda.act(actionName = pick, target = pen) are two tokens with the same action but 
different actioners. Like for other parameters, Zda can group the actioners in one or more 
categories, such as {all agents}, {friends, enemies, collaborators, etc.}. Considering actioners 
as one category means that Zda does not consider the difference between the actioners at 
that moment.

Gross grouping in patternization makes few patterns and a less precise model, while 
fine grouping makes more patterns and a more precise model. If a grouping leads to a 
large variation of rewards of the pattern, then a finer grouping is needed and the pattern 
needs to be broken down into finer groups or patterns. However, fine grouping may lead 
to a low pattern-frequency and model instability in the earlier years of an agent, and to 
slow performance in his later years when the number of patterns gets large.

When the actioner in the attention set is not important in patternization or decision-
making, it means that his identity is not important. However, the identity of an actioner is 
generally important in our cognitive development. Identity retains some consistency over 
time, and thus the use of identity often makes things more predictable.

Multiple-level similarity includes similarity at the parameter level, subpattern level, and 
aggregately, at the pattern level.

At the lowest level, the elementary object-level and action-level, the exponential similar-
ity between two objects is used:

 Parameter Similarity exp ,∑= −










R d

n

n n

Here the summation ∑ is over all N parameters (n = 1,…, N), dn is the absolute difference 
(dissimilarity) in the nth parameter between two objects, and Rn is the attribute-scaling 
factor for the nth parameter. The parameter similarity score will range from 0 (completely 
different) to 1 (identical). Note that not all the attributes are in Zda’s attention set for calcu-
lating the index. At a given moment only the parameters in the attention set will be used 
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in the similarity calculation; all other unobserved (unattended) parameters are assumed 
to be the same or irrelevant.

Appearance determines an object’s identity and its static attributes. Thus, Appearance and 
Actions, including the targetObj, are the important factors in the similarity calculation. 
Dynamic attributes may or may not be important for similarity determination, dependent 
on attention.

At subtoken-levels, the commonly used Cosine-Similarity will be used. First, for a given 
location in a pattern (subpattern), we code 1 for the positive situation that token E (such as 
an actioner) must be in the location, 0 for the Null situation that E is not in the attention set, 
and −1 for the negative situation (¬E), meaning that E must not be in the location, and then 
all patterns can be expressed in vector form. Because we code 0 for Null, we make two 
unequal-length vectors equal length. Given two equal-length vectors of attributes, A and 
B, the cosine similarity, cos(θ), is represented using their dot product ⋅A B and magnitudes 

   A and B :

  cos θ( )= = ⋅Cosine similarity A B
A B

The resulting similarity ranges from −1, meaning exactly opposite, to 1, meaning exactly 
the same, 0 indicating orthogonality or decorrelation, while in-between values indicate 
intermediate similarity or dissimilarity. It is more convenient to use the normalized cosine 
similarity to the range (0, 1): (1 + cos(θ))/2.

For text matching in NLP, the attribute vectors A and B are usually the term frequency 
vectors of the documents. Cosine similarity can be seen as a method of normalizing docu-
ment length during comparison.

We now discuss aggregate similarity. Unlike the simple n-gram and skip-gram models 
without recursion in NLP, Zda adopts a recursive structure in repatternization. Therefore, 
the pattern similarity consists of the pattern structure similarity and parameter similarity. 
In other words, the similarity score between two recursive patterns is equal to the multi-
plication of similarity scores at all levels:

  ,1 2 3= …Recursive Similarity S S S SL

where Sk (k = 1, 2, 3, …, L) is the kth level similarity. Updating those attribute-scaling factors 
in the parameter similarity is considered a piece of learning.

Examples of patterns and various similarity indexes between two patterns are provided 
in Tables 14.3 and 14.4, respectively. Here the exponential similarity is based on the scaling 
attribute factors R1, R2, …, Rn = 1.

TABLE 14.3

Examples of Patterns

Location 1 2 3 4 5

Pattern 1 Not A (-1) B (1) Not C (-1) Null (0) E (1)
Pattern 2 Null (0) B (1) C (1) D (1) Null (0)
Pattern 3 A (1) Null (0) C (1) D (1) E (1)
Pattern 4 0.1 0.3 0.2 Missing 0.4
Pattern 5 0 0.2 0.5 0.2 Missing
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There seem to be many parameters in similarity calculations. Fortunately, an agent can 
only pay attention to a small number (≤ 4) of things at a time. Therefore, we only need up 
to 4 items to determine a similarity score. Determining if two objects (or situations) are 
similar can be a sequential decision process. For example, we use the first 4 parameters to 
determine the similarity, and (1) if dissimilar, stop further comparisons; otherwise, (2) pick 
up another 4 parameters to determine the similarity, and (3) repeat the same comparison 
process, (1) and (2), continuing until no more attributes need to be considered to determine 
the similarity.

For deep-thinking, which we discuss due to hierarchical or recursive structures of a 
pattern, the similarity is calculated recursively starting from the lowest level (elementary 
level) to the highest level. When formulating a pattern, only partial (attentive) parameters 
of the elementary tokens are stored in Knet.

The number of objects, the number of categories of the elementary parameters, and the 
number of levels in pattern recursions, determine the number of possible event-strings. 
Sensitization and desensitization determine the number of possible patterns based on the 
number of events. Even though the possible combinations can be very large, what an agent 
experiences will be much smaller.

For simplicity, an object type is determined by Shape in HAI prototyping. A particular 
object of a given type is determined by size; emotional expression is symbolically repre-
sented by an agent’s face color. When a particular object (including agents and humans) is 
identified using the shape, size, and color, the only things to be considered are the actions. 
Patternization will only concern the limited attributes and actions in the attention set. 
Therefore, a perceived identicalness of two objects might be just an illusion because of the 
missing attributes in the attention set. Since motions will increase the subconscious atten-
tivity, actions are more likely to be in the attention set than the static properties. Thus, the 
default event-string in the attention set is object(appearance).action(targetObj).

14.10 Patternive, Distributive, and Collaborative Rewards

An observed reward associated with an event-string (path) or a pattern is called a pat-
ternive reward (PR) or simply reward. A PR is recognized and determined by a change in 
Zda’s internal states (hunger or sensation). When the patternive reward is observed, a dis-
tributive reward (DR) can be used in determining a response. The notion of Distributive 
Reward is that each related action on the path contributes to the reward. In calculating 
the distributive reward, the actioner in the actionable tokens must be consistent with 

TABLE 14.4

Comparison
Exponential
Similarity

Cosine
Similarity

Jaccard
Index

Patterns 1 vs 2 exp(-5) 0 1/5
Patterns 1 vs 3 exp(-6) -1/(√4√4) 1/5
Patterns 2 vs 3 exp(-3) 2/(√3√4) 2/5
Patterns 4 vs 5 exp(-0.5) 0.16/(√0.14√0.16) N/A

Different Similarities Between Patterns in Table 14.3
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the patternive reward receiver. For example, from event-string: Zda.cook() Zda.serve() Lia.
eat() Zda.rewarded(2), we know that Zda received a patternive reward of 2. The patternive 
reward is distributed to the action tokens, Zda.cook() and Zda.serve(), each having a dis-
tributive reward of 1, but no distributive reward goes to Lia.

The concept of distributive reward plays a key role in Zda’s response mechanism with 
reinforcement learning when dealing with long novel event-strings in slow-thinking and 
deep-thinking. When patterns can be linked at the same nodes (tokens) to form a recur-
sive network (Knet), novel long patterns can be often formed from this recursive Knet for 
deep-thinking without any actual observations. The novel patterns do not have patternive 
rewards at time of initial formulation. In randomized adaptive reinforcement learning, 
if there is a patternive reward, use it; otherwise, a PR can be approximated by summing 
all the distributive rewards associated within the pattern. That is, use the sum of DRs to 
predict the PR.

Several patterns can share a token; the distributive reward on the token is the average 
distributive reward from multiple patterns (Figure 14.7). Since patterns form at different 
times, the DR(t) at time t is updated from DR(t−1) according to the following formula:

1 1 /
1 1

.( ) ( ) ( ) ( )
( )

= − − +
− +

DR t
DR t f t PR t N

f t

Here, PR(t) is the patternive reward received at time t, N is the number of actionable tokens 
sharing PR(t), while f(t−1) is the frequency of receiving distributive rewards up to time t−1. 
This formula is also applicable when the same pattern has different PRs at different times.

FIGURE 14.7
Illustration of distributive rewards.
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Strictly speaking, the distributive reward itself is a characteristic of the Markov deci-
sion model (past-irrelevant or memoryless), but can only be applied to a recursive Knet 
with RARL as a first approximation, according to the law of summative effects. This also 
conforms to our social practice. For instance,  we often treat a Bachelor’s degree uniformly 
regardless of how hard one works to get there—the value of a milestone achieved is 
path-independent.

From the formulation of DR, a token can appear in different patterns but only has a 
unique distributive reward. A distributive reward associated with a token tells us approxi-
mately how important the token is in contributing to the actual reward, while the associ-
ated frequency indicates how reliable the reward is. A high frequency indicates a high 
reliability, while a low frequency indicates a low-reliable reward that could be due to 
random chance. Therefore, the distributive reward determines how likely Zda will take 
the associated action, if possible. When the distributive reward increases, the expected 
reward increases. Zda can make an n-tokens-ahead prediction and associated distributive 
rewards on which to base his decision-making.

A collaborative reward is similar to a distributive reward, but a collaborative reward is 
distributed over all actionable tokens within the pattern regardless of the actioners. The 
use of collaborative rewards is based on the belief that a patternive reward is the result of 
collaborative efforts of all actioners within the pattern.

An actionable pattern becomes an actionable token at a higher hierarchical tokenization 
level. Conversely, an actionable token can consist of a pattern at a lower tokenization level, 
and thus has an associated reward. This inspires us to introduce two new concepts: reward 
propagation and reward aggregation. A reward associated with a token can propagate to 
subtokens at a lower level, conversely, rewards associated with tokens at a lower level can 
be aggregated and associated with the higher level token (Figure 14.8). For instance, token 
8 consists of tokens 1 and 2 at a lower level, so the reward at token 8 can propagate to 
tokens 1 and 2. On the other hand, the rewards at tokens 8 and 9 can be aggregated to 
token 13 at a higher level.

FIGURE 14.8
Reward propagation and aggregation.
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Reward propagation and aggregation are motivated by the same notion: In Knet, 
achieving a reward can be interpreted using either a path of actionable lower level 
tokens elaborately or higher level tokens briefly. In particular, the reward of 1 at the end 
in Figure 14.8 can be explained in three different ways: (1) due to actions (tokens) 13 and 
14, (2) due to actions 8 through 12, or (3) due to actions 1 through 7. An example in real 
life would be seen when manufacturing a modern car, which includes making (1) the 
engine, (2) the braking and electric systems, (3) the frame and body, (4) the drive train, 
(5) fuel and exhaust systems, (6) suspension and steering systems, and (7) assembly of
the entire car and testing. Each of the 7 steps (actionable tokens) can be further broken
into more detailed steps (actionable tokens). The value (reward) of making the car can be
approximated by the sum of the values (rewards) of finishing each of the steps (action-
able tokens).

To avoid over-iteration in calculations, reward distribution, propagation, and aggrega-
tion will be performed only when an actual reward is received. The reward may be a ver-
bal reward or some other reward proxy, e.g., parents telling their children how important 
their education will be. In Zda’s Knet, a reward to an agent is measured in terms of Zda’s 
view of it, not simply as what the agent actually receives. Likewise, in Lia’s Knet, a reward 
to an agent is valued by Lia herself.

It is interesting to know that when patterns can be linked at the same nodes (tokens) to 
form a recursive network (Knet), a path with a high reward on each node probably indi-
cates a potential scientific law or social norm.

14.11 Intentions and Goals in the Agent’s Mind and Eyes

For us humans, a goal is the desired outcome we wish to attain at some point in the future. 
An intention is a chosen theme that allows us to create alignment in our lives. If goals 
are about a destination, intentions are about a direction. Goal-setting focuses on outcome, 
intention emphasizes process. Goals alone can leave us feeling empty inside when we fail 
to achieve. An intention is a guiding principle for who we want to be and how we want to 
act, live, and show up in this world.

What is Zda’s goal in life, if any? How is it formulated and will it change over time? How 
are his subgoals formulated toward the life-goal?

For an agent, Zda or Lia, the goal of maximizing happiness is mainly driven by 
reward. However, this is not a traditional rationalism, because (1) a thing being a 
reward depends upon context, it is not fixed (e.g., eating food is a reward when Zda 
is hungry, but it is not when he is not hungry), (2) being a reward is not and cannot 
be a prespecified utility function, (3) a reward is time-sensitive (e.g., food is often con-
sidered a reward, but when it expires it is considered to be a penalty!), (4) there are 
many uncertainties that can influence the achievement of the goal, including incom-
plete information about a current situation, the ability to execute a chosen action, and 
uncertainty about the outcome of an action, (5) the goal will be achieved as the sum of 
short-term adaptive goals, but the latter will change constantly as information accumu-
lates, (6) Zda’s energy level and biological desire vary over time, (7) there might be some 
immediate risks that must first be mitigated, (8) children usually do not have life-goals 
in mind; the life-goal is formulated later in life (and some people even have had none 
in their entire lives).
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Last but not least, happiness is related to one’s mentality. Mentality is the character-
istic attitude of mind or way of thinking of a person. It reflects his or her expectation 
and attitude toward a situation (a positive or negative view).  In Zda’s architecture, 
mentality is the difference between what was expected and the current situation, 
as well as predictions of the future. When a goal is believed to be associated with a 
delayed reward it becomes a reward, at least he feels like at the moment he believes. 
In other words, whether it is a reward or not is sometimes dependent on one’s beliefs. 
If you think eating fish heads will make you smarter, you will be feeling rewarded 
and happy when you eat them. And this is just like what we saw in the Doctor-Patient 
Paradox of Section 13.7.

A goal can be long-term or short-term, concrete or abstract, clearly pathed or vaguely 
pathed, self-determined or given. Regardless of its complexity, Zda views a goal as a 
reward proxy. That is why we take the goals set by our parents seriously and often are 
self-motivated or under parents’ and teachers’ guidance to accomplish them. When we are 
young, our parents may help us to set the goal and point out the path forward. We may or 
may not follow it well due to the energy required, distractions, peer pressure, or other fac-
tors. What people (peers) usually do or social conventions (or the corresponding frequen-
cies) are also considered a reward proxy.

Even if we have a goal, we may not have it in our attention all the time. For this reason, 
our actions cannot always be goal-driven. In our architecture, when a goal is in Zda’s 
attention, he will treat it as a node in his Knet and use backward induction to identify pos-
sible paths to the goal node (Figure 14.9). However, such a path may not always be clear, 
and he may need knowledgeable people to guide him along on what to do; or perhaps he 
can figure it out himself along the way by identifying some subgoals (nodes in the Knet) 
and using trial and error methods (RL). According to the law of summative effects, the 
reward from achieving a long-term goal is approximately equal to the sum of rewards for 
achieving a series of connected subgoals. This situation formulates exactly the notion of a 
Markov decision process in stochastics, but for a recursive net.

For the purposes of goal-setting and prediction, Zda needs to use forward induction, 
while for actions required to achieve a goal, Zda needs to use backward induction. When a 
goal is set for him by others, including verbal directions by a human or agent such as “Get 
a college degree,” the path to that end will not be fully clear to Zda if there are no clear 
paths to the goal node in his Knet.

In summary, Zda achieves his long-term goal of happiness by pursuing short-term hap-
piness cumulatively over time. With all the factors affecting happiness as discussed above, 
the complexity of the entire goal issue suggests to us a synthetic approach: the RARL algo-
rithms for taking care of goal and intention issues and all other aspects of human nature 
as we have discussed so far in this book. This is the topic of the next section.

FIGURE 14.9
Goals in agent’s mind—illustration via paths in agent’s knowledge net.
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14.12 Randomized Adaptive Reinforcement Learning

Hierarchical tokenization models the hierarchy of concepts, and recursive patternization 
“compresses’’ rich knowledge into the Knet without substantial information loss. The effi-
ciency of the compression is ensured through frequency-based patternization and repat-
ternization. The Knet is powered by the reward-based response-engine (mechanisms) for 
an agent to decide a meaningful response according to his life goal and subgoals. An 
agent’s knowledge is judged by how the agent responds in various situations.

Like humans, Zda does not attempt to store all possible scenarios and associated 
responses that are pre-formulated in his memory. Even if such pre-formulation is possible, 
it will take Zda very long to retrieve the sensible response from a huge database in the 
memory. The efficiency of dynamic response using a response mechanism can be seen in 
a simpler case in language communications: we don’t have all pre-formulated sentences 
in our memory. Instead, we only have words, phrases, and a limited number of sentences 
in our minds. We use language-specific grammar to formulate sentences and carry on 
conversations in real time, even though the grammar and knowledge each person has may 
not be necessarily exactly the same as the official ones.

The reward-based response mechanism is essentially RARL. Hierarchical tokenization, 
recursive patternization, and the adaptive response mechanism ensure the rich ontology, 
elaboration tolerance, and computational efficiency.

In Reinforcement Learning (RL), the learner is not told which actions to take, as in most 
forms of machine learning, but instead must discover which actions yield the most reward 
by trying them. RL is learning what to do or how to map situations to actions so as to maxi-
mize a short-term or long-term expected reward. When the reward is not explicitly identi-
fied, the frequency associated with the pattern may be used as a proxy for the reward based 
on the notion that we often act toward the path associated with the maximum reward.

In the most interesting and challenging cases, actions may affect not only the immediate 
reward but also the upcoming situation and, through that, all subsequent rewards. Such 
RL is characterized by “trial-and-error search” and “delayed reward.” In traditional RL, 
the agent will take the action with the maximum expected reward (see Section F in the 
Appendix).

However, one of the challenges that arise in reinforcement learning, and may not in 
other kinds of learning, is the trade-off between exploration and exploitation. To obtain 
the maximum expected reward, Zda not only needs to consider actions that it has tried 
in the past and found to be effective in producing reward but also needs to try actions 
that it has not selected before since the uncharted territories may provide better rewards. 
On a stochastic task, each action must be tried many times to gain a reliable estimate of 
its expected reward. When an agent takes a path with the maximum reward and such a 
path has not been tried sufficiently many times, the optimal path could be just an illusion 
due to randomness caused by some hidden confounders. A solution to this problem is to 
use RARL. In this probabilistic approach, the probability of taking a path is proportional 
to the associated reward using a model such as the adaptive urn model (similar to the 
response-adaptive randomization, Chang, 2007, 2014).

Zda’s action is based on what he senses from the environment, his Knet, and his predic-
tion of future events. For this reason, different agents usually have different responses 
even when they are facing identical situations.

Zda as a humanized reinforcement agent has a life’s goal. Zda can set up subgoals that 
are associated with the life-goal in various situations at different times of his life. This is in 
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contrast with many narrow AI approaches that consider sub-problems without addressing 
how they might fit into a larger picture or life-goal. Zda with RARL can sense aspects of 
his environment, and can choose actions to influence his environment, his collaborators 
(friends), and opponents (enemies).

Zda’s actions are often based on predicting what is going to happen even at moments 
when he can have little influence on the outcome. At such times he is still learning how 
the universe works. Such predictions may sometimes be based on imaginary or hypotheti-
cal situations. Zda’s action will be based on his predicted world at that moment. In Zda’s 
architecture, a randomized-response model based on n-token-ahead distributive rewards 
will be used.

Randomized adaptive reinforcement learning (RARL) is a Trial and Error method in 
which a randomized response is used. In a randomized response, what is randomized 
is the intention of performing the preferred action among the options according to the 
associated probabilities (to be discussed soon), not the action itself. Such an intention is a 
path to Zda’s goal. Or we may say Zda wants to perform the desired action. But having the 
intent to do something does not mean Zda can do it.

In general, a simpler pattern with a higher frequency, higher reward, and occurring 
more recently will more likely be picked as an action path. To further explain other param-
eters in the probability model, we start with the probability of an action.

Probability of Action (PoA):
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1. Similarity: S is the similarity between the currently observed event-string and an 
existing pattern in the Knet. The similarity represents the suitability of the reward

2. Expected (Average) Reward: R = average net reward associated with the reward 
taker in the pattern from the Knet. An action has a parameter of energy cost. R can 
be negative or time-sensitive: as time passes, the reward may diminish. A reward 
can be viewed as a pattern enhancer. If the action is taken by and so the reward is 
given to another person, Zda can only get an estimate of the expected net reward 
if he takes the same action. Money is not a reward until Zda learns that money can 
buy things he likes or is taught by others. When Zda learns that getting a college 
degree is associated with a potentially higher paying job, he could set the college 
degree as his goal or a proxy of reward.

3. Frequency: The frequency F of the pattern measures the reliability of the reward. 
A high frequency of a pattern suggests that the association between reward and 
pattern is real, and not by random chance. Frequency is also a Reward Proxy. 
When no direct reward is associated with a pattern, then a high frequency indi-
cates a possible late reward (rewarding things keeps people doing the same thing).

Expected Reward R, similarity S, and frequency F are path-related; thus PoA is also path-
(pattern-) dependent.

From PoA formulation, the effect of the same percentage increase in frequency, in 
reward, or in similarity is the same. A high-reward pattern will have high frequency, 
thus the frequency and reward are associated. A typical PoA curve in relation to the fre-
quency is shown in Figure 14.10. The reason that the relationship is not linear as expected 
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is because of the normalization factor c in the equation. Such a non-linear relationship is 
consistent with our intuition and experiences. Similar relations hold between PoA and R, 
and between PoA and S.

Note that we can consider the 4 factors S, R, and F together to formulate PoA, or we can 
deal with them sequentially as we do in the Particle Swarm Optimization search algorithm.

Energy Consumption: ∆E = energy consumption when executing the intended action. 
Taking actions such as imagining and playing games requires energy. Zda constantly 
monitors energy levels or predicts the energy required to achieve a goal and decides if it 
is worth the effort (cost). Making predictions also carries a cost. Thus, Zda may abandon a 
prediction if he sees the cost (including opportunity loss) is more than the expected gain, 
or if his energy is low and it may be exhausted before reaching the goal. For simplicity, 
we only define the energy cost for each elementary action, and no energy cost of switch-
ing between tasks is considered. Energy costs will be reflected in the internal energy 
update. In fast-thinking, only elementary action is involved, so the cost is negligible. In 
deep-thinking, a token such as “getting a college degree” can involve years of effort and 
cost a lot.

14.13 Finding the Source

How does Zda find the location (direction and distance) of a source such as a light, sound, 
smell, or heat? He will move back and forth (and/or turn his head around) to sense the 
difference in the intensity of sound, smell, light, or distance. However, this is only appli-
cable when the source is nearby. When the source is far away, the small distance change 
caused by moving is insignificant. For a distant source, one judges the source location by 
the prior knowledge of such a sound source and by the loudness changes when turning in 
different directions. For a nearby sound source, one can also judge the source location by 
the difference in sound coming into the two ears. For a moving source, its motion effects 
are reflected in the intensity changes in the ears and the redshift phenomenon (a higher 
pitch when a source is moving closer and a lower pitch when it is moving away). As long 

FIGURE 14.10
Probability of action as a function of pattern frequency.
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as Zda is equipped with such ears, which is not difficult, Zda can identify a sound source 
as a human. Eyes work in a similar way (Figure 14.11).

14.14  Efficiency of Hierarchical Decision-Making 
and Computation Efficiency

This hierarchical decision process (Figure 14.12) is a natural consequence of hierarchical 
tokenization and recursive patternization. The innate hierarchical decision process has 
a very important feature: it reduces the decision (computation) time exponentially from 
N (the number of options) to log2N. Moreover, when fewer options are presented at each 
decision point, it is much easier to make a decision because Zda does not need to compare 
all N options each time before deciding.

You may have realized that in real life, we humans are often presented with hierarchical 
options for selecting products. For instance, clothes: Which size do you like? What color do 
you like? What kinds of materials do you prefer? What styles do you find attractive? These 
sequential questions can help us to reach the final choice exponentially faster (though 
maybe, less optimally in some cases). They appear to be similar to hierarchical concepts in 

FIGURE 14.11
An agent in searching for a source of sound.

FIGURE 14.12
Efficiency of hierarchical decision-making.
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Zda’s (or a human’s) mind, but are actually different in structure. Sequential questioning 
further breaks down the options beyond the hierarchical concepts we already have.

Because time is a factor of the utility function in optimization, the Kolmogorov com-
plexity of a string of bits is never an issue in computing (determining) a response for Zda. 
The Kolmogorov complexity (algorithm entropy) of an object, such as a piece of text, is the 
length of a shortest computer program (for a given computer language) that produces the 
object as output (Kolmogorov, 1963). It is a measure of the computational resources needed 
to specify the object. The notion of Kolmogorov complexity can be used to prove impos-
sibility results akin to Cantor’s diagonal argument, Gödel’s incompleteness theorem, and 
Turing’s halting problem.

Alan Turing demonstrated in 1936 a famous theorem known as the halting problem 
theorem. In simple terms, it states the following: a general program deciding in a finite 
time whether a program for a finite input finishes running or will run forever cannot 
exist for all possible program-input pairs. The halting problem theorem is related to Kurt 
Gödel’s incompleteness theorem in the following way. Suppose that we have a program 
that can assess the algorithmic complexity of sequences (or an input string). This program 
works in such a way that, as soon as it detects a sequence with complexity larger than n, 
it stops. The program would then have to include instructions for the evaluation of algo-
rithmic complexity, occupying k bits, plus the specification of n, occupying log2n bits. For 
sufficiently large n, the value of k+log2n is smaller than n and we arrive at a contradiction: 
a program whose length is smaller than n computes the input string of the program itself 
whose complexity exceeds n. The contradiction can only be avoided if the program never 
halts! That is, we will never be able to decide whether a sequence is algorithmically ran-
dom (Marques, 2008).

14.15 Nuts and Bolts

1. Words can refer to objects, events, actions, or abstract concepts. Understanding
is mainly learning what refers to what. Such understanding also includes under-
standing one’s intentions or goals. In Zda’s view, Lia’s intention is a likely result of
Lia’s action, and is a future node on the path in Zda’s Knet.

2. Biological Desire and Feeling (pleasure, pain, hunger, anger) cause attention and
drive actions.

3. Attention is the starting point of learning and responding, while the maximum
Subconscious Attentivity determines the response model (reflex, fast, slow, or
deep-thinking) in action.

4. For simplicity, an object type is determined by Shape in HAI prototyping. The
particular object of a given type is determined by size; emotional expression is
symbolically represented by the agent’s face color.

5. Reflex can protect one’s body from things that can harm it. Reflex deals with one
real-time elementary token with the highest subconscious attentivity based on
reflexons, a list of highly associated two tokens (2-grams, 2-gramtons, 2-skiptions
with high frequencies).

6. Fast-thinking is a response mechanism under time pressure, dealing in real time
with up to 4 elementary tokens at 1 to 4 time points.
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7. Slow-thinking is activated in situations with less time pressure, dealing with up to 
16 of the most recent elementary tokens, indirectly, through hierarchical tokeniza-
tion into no more than 4 high-level tokens.

8. Deep-thinking is often used in scientific investigations, focusing on the responses 
(logical reasoning and repatternization), using high-level conceptual tokens 
instead of real-time elementary tokens. In deep-thinking the real world may be 
recorded as data using instruments. The data may represent an agent’s perceptual 
world and statistical models may be applied to the data.

9. Language-guided response concerns how to use the information words provided 
in the natural language to facilitate the response.

10. Randomized Adaptive Response is based on Probability of Action, which depends 
on 3 normalized factors: Similarity (S), Reward (R), and Frequency (F).

11. Zda’s goal can be viewed as a proxy of a reward. When a goal is believed to be a 
reward, it becomes a reward. A subgoal is a node (milestone). According to the 
law of summative effects, the reward from achieving a long-term goal is believed to 
be approximately equal to the sum of rewards for achieving a series of connected 
subgoals.

12. To Zda, imitation is nothing but replacing an actioner (such as Lia or a human) in 
an actioner.action string with himself, such that the string becomes Zda.action. As 
a social being, Zda likes to imitate others in various social settings, even if there 
is no obvious reward for doing so. A creative action is mainly a replacement of an 
object, action, or object’s attribute with a similar token (from a “synonymous list”) 
in the event-string.

13. The similarity principle is the foundation for dealing with novelty.
14. Just like you and me, Zda has the habit of constantly performing cognitive learn-

ing (abduction, induction, deduction, and analogy).
15. Zda asks why and how to satisfy curiosity as a reward. To Zda, curiosity learn-

ing is searching an earlier token on the path in the Knet for a reason—why-type 
 curiosity-learning. Zda may intentionally change a new action that is not indi-
cated by a pattern in Knet in order to see what is going to happen after his action. 
Thus, a creative action is how-type curiosity-learning. Curiosity may also be 
shown in imitation. As an example, when Zda sees another person producing a 
certain sound that is new to Zda, the probability of Zda producing this new sound 
will be boosted.

16. Learning (patternization and referring to) occurs after a response. That is, we learn 
from each experience. Learning itself can be considered as a type of response.

17. Zda constantly monitors the distance of attentive objects.
18. When Zda wants to look for something in reality, he will walk around, and when 

a match is found he will walk toward it and do something with it.
19. Attention means that Zda will likely act on the attentive object, which may be 

looking at it, looking away, talking about it, walking toward it, walking away from 
it, picking it up, punching it, throwing it away, grabbing it, and making association 
among the attentive item.

20. A pattern can represent a two-way association between body pose and language, 
between emotion and language, or between emotion and body pose, or a 3-way 
association between Body poster, language, and emotion.
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21. What gets randomized is Zda’s intentions (wants), not directly Zda’s actions,
because not all actions are executable at the moment.

22. A name can be associated with an object in reality or a concept of performing a
certain task. A concept can refer to anything, including other concepts.

23. Zda needs to differentiate a categorical name from a name for a particular object
of the category. In other words, he needs to differentiate between a class (category)
and a desensitisor (a member of the class).

24. As far as attention is concerned, who Lia speaks to is often important.
25. A path in Knet with a high constant frequency across all nodes is a scientific law.
26. Any (directed) path in Knet with rewards is a rule in daily life or a social norm.

Any directed path of high level tokens in Knet can be a scientific law or mathemati-
cal or physical law in a statistical sense.

27. Since rewarded paths are more likely to be repeated, when rewards are not explicit, 
determining Zda’s response based on frequency will be a good alternative.

28. When the self-awareness switch is on, Zda is aware of his intention or goal.
29. As social interactions accumulate, a person/agent will be labeled with certain per-

sonalities and intention of an action at a particular time.
30. Shaking an object while calling its name brings Zda’s attention to the two things

and lets him make an association between them; this is because two things hap-
pening close together in space and time will automatically be associated.

31. Explaining (calling its name) while performing a task will bring the action to
Zda’s attention and prompt him to make an association between the procedure
and its name.

32. One can present the same object at different temperatures to Zda and say words
like cold, cool, warm, hot to teach him the meaning of these words.

33. Patterns serve as the basis for predictions, while predictions serve as the basis for
response. A pattern indicates associations between tokens and between a path
and the response.

34. It might be efficient to indicate whether a token is actionable or not in the database.
35. Association is everything. To understand the intention of peoples’ words is to make 

an association between the words and Zda’s appropriate responses. Response is
affected by an association between the observed event chains and action or out-
come, e.g., event chain A B C results in D, while A B leads to D, and A G leads to S.
PoA is a measure of the strength of such an association.

36. Zda pays attention to words, or NL, because (1) innate habits of voice-sensitive,
and (2) rewards and penalties often happen close to wording.

37. When Zda appears to be doing nothing with the external world, or observing, it
means he is likely performing cognitive learning or factor-isolation learning.

38. Zda identifies an object by its attributes, not the other way around. If Zda identi-
fies an object as a class of object, it means its basic attributes used for the identifica-
tion are similar to the class attributes.

39. When Zda compares two objects, he will often compare many of their attributes
until he finds differences, even if some of the attributes are not in his initial
attention.
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15
Effective Teaching

15.1 General Principles in Teaching

Learning through extensive interactions, just as we take some 20 years to teach someone 
until graduating college.

It is important to understand Zda’s learning and responding mechanisms, which are 
the foundation of his effective learning. In teaching Zda, we should work in ways that 
are similar to how we teach humans, from babies to adults. Here are general principles 
and tips for teaching Zda:

1. Get Zda’s attention to what you want to teach him. Shaking (quickly moving) and 
pointing at (pointing to) an object will attract his subconscious attention. Voice 
(changes of sound and silence) will also attract Zda’s attention.

2. Association is fundamental in learning, because humans (agents) tend to asso-
ciate things that happen near each other in time and/or space. A teacher should 
talk while doing so that Zda can make associations between words and the 
teacher’s event/action. This is how natural language is learned. Therefore, as 
a trainer, we should direct the agent’s attention and strategically utilize 
associations.

3. Shaking an object while calling the name brings Zda’s attention to the two things 
and lets him make an association between them: two things happening near 
each other in space and time will automatically be associated. Explaining (call-
ing the name) while doing work attracts Zda’s attention and makes an association 
between the procedure and its name. Associative Learning (classical and operant 
conditioning) is passive learning, but rewards and associative learning together 
are a powerful tool for effective teaching.

4. First things to teach: words for object names and their attributes, words for sen-
sory attributes, innate knowledge (concepts) such as “referring to.”

5. Use the factor-isolation technique (FIT) to create multiple situations (event-
strings or sentences) where only one or a few factors are different, so that Zda 
can easily see the pattern (onsite patternization). Examples in language learn-
ing would be “You read the book,” “I read the book,” and “He read the book.” 
Another example would be presenting the same object at different temperatures 
and saying words like “cold,” “cool,” “warm,” and “hot,” to teach Zda the mean-
ing of the words.

6. Following the idea of FIT, using an isolated-word change in conjunction with 
an isolated-attribute change is an effective way of making an association 
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between the word and the attribute that the word refers to. Passing food to a 
child when he is hungry, while you are saying: “Are you hungry?” will make 
him associate the word “hungry” with the sense of “hungry” or the inner 
state of hunger.

7. While talking, show how to do things (with others) to provide Zda an opportu-
nity to imitate and learn the natural language associated with the action. When 
Zda imitates a pattern or event-string, he must know all the actions associated 
with its tokens. For example, to make a chair, he already knows how to make all 
its parts.

8. For effective learning, create an environment that only allows limited action 
options that we want Zda to choose from.

9. It is critical to know what knowledge Zda has before teaching him more com-
plex concepts, so that he can perform tokenization efficiently using the concepts 
known to him.

10. Recurrent events are created on the basis of similarity grouping. A category and 
its desensitisor are discovered or created through applying the factor-isolation 
technique to multiple event-strings.

11. High-frequency patterns might reflect societal conventions, even if the reward 
reaped by following the conventions seems not directed to Zda, but is instead 
intended for the greater betterment of the society. Use Zda.favorites {…} as the 
proxy to collect all the rewards, including social rewards, to others.

12. Zda’s behaviors are somewhat consistent (e.g., he screams when facing a danger 
and cries when hungry). Such a necessary consistency on a time-axis exists either 
due to the inherited, natural, or developed tendencies (habits). The more you do, 
the more you are likely to do.

13. Learn the sequential order of attributes and comparisons of attributes between 
objects when describing an object, and learn the sequential order of dynamic 
attributes when describing an action. Such sequential order is culturally 
dependent.

14. Zda’s biological clock (time) is usually in lower subconscious attentivity because it 
is always steadily and quietly ticking.

15. Zda’s Knet is a self-inclusive network. The self-awareness switch is off by default. 
When it is off, Zda searches the current observed pattern in his Knet for decision-
making. When it is on, the Zda outside the Knet is “watching” the Zda inside the 
Knet and recording what he is doing. That is, Zda is intent on doing something, 
and he is aware of his intention. It is important to keep this in mind when we want 
to teach Zda effectively.

16. A goal is a desire, an innate concept. In Zda’s view, a goal is something that directly 
or indirectly associates with a reward. The goal can be a necessary or sufficient 
condition. An intermediate goal is often called a milestone, represented by a node 
in Zda’s recursive Knet.

17. A concept can be learned or taught in different ways, but some are more efficient 
than others.

18. In general, the way we teach Zda is virtually the same way we teach our babies 
and kids.
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15.2 Referring to Objects and Sensible Attributes

We illustrate how to teach Zda the names of persons, objects, and properties. It will be the 
same way we teach our babies and kids.

Example 1: We can point at (to) the mother while calling “Mom” and point at the 
daddy while saying “Daddy” so that the baby Zda can mimic the sounds “mom” 
and “daddy” and make the associations between the word “Mom” and his 
mom, and between the word “Daddy” and his daddy. Repeat this process so that 
the association is enhanced and becomes reliable.

Example 2: Shake a pen in front of baby Zda while calling it “pen,” so that the pen 
and the word “pen” in his attention allow him to make an association between 
the two. However, other attributes, such as color, might also be in the attention set 
and Zda may associate the color attribute with the word “pen.” Thus, we need to 
repeat the teaching process with pens of different colors. By doing so we create 
multiple event-strings. The common association between elements in the attention 
set is enhanced. In this case, the common association is between the appearance 
(combination of shape and size) of pens and the word “pens.”

Example 3: To teach the word “milk,” when Zda cries because of hunger we repeat: 
“Hungry?” and then pass a bottle of milk while repeating “milk.” Repeating the 
process every day allows Zda to make associations between “hungry” and  feeling 
hungry, and between “milk” and the bottled milk. We say “Hungry?” at the 
moment when we think Zda is feeling hungry so that he can establish the associa-
tion between the word “hungry” and the hungry feeling.

Example 4: Similarly, we can put things with different smells to Zda’s nose while say-
ing “smells good” or “smells bad,” to teach Zda the phrases.

Understanding a word is a process. Teaching Zda the same words in different situations 
can make him better understand the word, even if the word is not a polysemy.

After we teach Zda nouns for calling a class of objects using their appearances (e.g., shape 
and size), we need to teach him how to refer to particular objects using adjectives. Adjectives 
describe objects using an agent’s sensed attributes: Taste, Touch, Sound, Color, Size, Shape, 
Amount, Emotion (Sensation), Desire, Time, Age, Location, Origin, Material, Person or 
Personality, Situations, Qualifiers, and changes of these attributes in time and space.

Example 5: After Zda learns the word “pen,” put a green pen and a red pen near Zda 
and ask him to pick the red one by repeatedly saying “red pen.” In the beginning, 
he may randomly pick one of the pens. Every time he picks the red one, we give 
him a reward, such as a piece of candy or a warm hug. Otherwise, give a small 
penalty. Using this reinforcement learning, or conditioning, Zda will quickly 
learn what a red pen is.

Learning how to describe an object using its attributes includes (1) a word, or words, for 
each attribute, (2) an appropriate sequential order of words to describe the attributes in 
the phrase or sentence, (3) learning to understand what others say, and (4) being able to 
describe an object following standard conventions. The order of adjectives in a sentence 
will influence one’s thoughts. For instance, the adjective order in English is supposed to be: 
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Quantity or number, Quality or opinion, Size, Age, Shape, Color, Proper adjective (often 
nationality, other place of origin, or material), and Purpose or qualifier. As another exam-
ple, for mailing addresses in English the order is the recipient’s name, street, city, state, and 
country, while in Chinese, the order is reversed. Different orders imply which attributes 
will attract one’s attention first.

We can refer to an object using the dynamic attributes of the object, as illustrated in 
Example 6.

Example 6: (1) Present a non-moving toy car and a moving toy car. (2) Request to Zda: 
“Pick the moving car.” (3) Use reinforcement learning, i.e., if Zda picks the right 
car, a reward is given, otherwise, a penalty will be given. By repeating the process, 
Zda will learn to pick the correct one. Furthermore, by replacing the two cars with 
other two identical objects and repeating the training process, Zda will learn what 
“moving” means through repatternization.

We can refer to an object using the attribute comparisons of different objects, as illustrated 
in Example 7.

Example 7: (1) Present two identical toy cars, one moving faster than the other. 
(2) Request to Zda: “grab the faster car.” (3) Use reinforcement learning, i.e., if Zda
grabs the right car, a reward is given; otherwise, a penalty will be given. By repeat-
ing the process, Zda will learn to grab the correct one. Furthermore, by replacing
cars with other objects and repeating the training process, Zda will learn what
“faster” means.

15.3 Teaching Pronouns and Making Requests

Example 1: After Zda has learned what a pen and a book are, we set a situation where 
a pen and a book are at Zda’s reach. We either ask Zda to give us the pen or ask 
him to give us the book, randomly; if he gives you the correct item, you say “Yes,” 
otherwise you say “No.” Repeat this process using the same objects and different 
objects. Zda will eventually learn what “No” and “Yes” mean.

When Zda has learned “Yes” and “No,” we can teach him the words, “you,” “him,” and 
“me,” as illustrated in the following example.

Example 2: This takes place in a 3-person setting: Zda, Lia, and Bob. Lia says to Zda 
“you” while pointing at Zda, says “me” while pointing at Lia herself, and says 
“him” when pointing at Bob. Repeat the process many times. Then let Bob do 
the similar pointing-saying pattern, repeatedly. Over time, Zda will imitate the 
 process. If he does so incorrectly, Lia or Bob says “no,” otherwise “yes” to confirm. 
We can also hold Zda’s hand to point at a different person to assist him in learning 
the words, “you,” “me,” and “him.”

The reason Zda can learn in Examples 1 and 2 is because of the notion of association, as 
discussed in Section 13.8: Items or subsets in the same attention set form associations. 
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When the same attention set recurrences over time, these associations will be enhanced. 
However, more often there are many similar attention sets, the common items in attention 
sets gain enhanced associations because their frequencies are higher, while uncommon 
items have weaker associations due to their lower frequencies. This simple fact makes 
statistical/scientific discovery easier. That is why frequency-based patternization makes 
sense in many situations that naturally occur. In communication and language learning, 
we purposely impose words in some particular attention set (e.g., talking while doing) so 
that Zda will make an association between the words and the other attentive items. Over 
time, the association between the words and common item(s) is enhanced since the words 
are among the common  attentive items.

We elaborate the nature of the associative mechanism in the following example:
Put a key and a coin in an urn (Figure 15.1). Randomly choose the key, coin, or both key and 

coin with replacement (put the selected item(s) back into the urn). Say “key” when the key is 
picked; say “coin” when the coin is picked; say either “key” or “coin” randomly when both 
key and coin are picked. Repeat this picking-saying game, say, 300 times, in front of Zda. 
Then it is expected that Zda’s attention set includes {key, “key”} 100 times, {coin, “coin”} 100 
times, {key, coin, “key”} 50 times, {key, coin, “coin”} 50 times. When only 2 items are in the 
attention set, there is only one possible association, e.g., between key and “key” or between 
coin and “coin.” When there are 3 items (e.g., key, coin, “coin”) in the attention set, Zda could 
establish 6 possible associations, key—coin, key—”coin”, coin—”coin”, (key∧coin), etc. It is 
clear that the association between “coin” and the coin, and the association between “key” 
and the key are strongest because their frequencies are highest. We wish the attention set 
will be either {key, “key”} or {coin, “coin”}, but not other sets. However, we see that even if 
the attention sets are not perfectly as we wish, Zda can still establish the probabilistically 
correct associations according to the frequencies. This is an important association feature 
for teaching since we cannot control Zda’s attention completely.

In the key-coin urn experiment, it is critical to impose (speak) words into Zda’s atten-
tion set at the right moment. It is possible some undesirable associations may develop. 
Polysemy is a result of such multiple associations of a single word, causing ambiguities 
sometimes. Fortunately, we can use a reward to enhance a desirable association and a 

FIGURE 15.1
An associative feature shown in the key-coin experiment.
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penalty to weaken an undesirable association. Well-designed scientific experiments can 
also remove some false associations. In addition to using rewards, changing the recur-
rences of event-pair can reshape the association or even dissociate an existing association.

What does an association mean in general? It means that Zda and others will likely 
repeat the pattern in his response, and consequently means that the association could lead 
to desirable word-referring and appropriate use of the word in communications.

15.4 Classical Conditioning and Reward Proxy

Classical Conditioning (Section 1.4.3) can be used in teaching Zda. The Russian physiologist 
Ivan Pavlov discovered that the reflex of salivation and the secretion of gastric juices in a dog 
occur not only when food is placed in the dog’s mouth, but also when the dog hears the bell 
(the conditional stimulus, Section 1.4.3). Pavlov uses stimulus substitution in his explanation: 
an association forms between the conditioned stimulus and unconditioned stimulus dur-
ing training, and the conditioned stimulus is eventually substituted for the unconditioned 
stimulus. If we repeatedly use appreciative words, such as “yes” or “thank you,” or a hug, 
as the conditional stimulus when we give Zda an actual reward, such as candy, then over 
time the stimulus substitution will be established. We call such a stimulus a reward proxy.

15.5 Teaching Using Factor-Isolation Technique

The Factor Isolation Technique can be used in effective teaching as shown in the following 
examples.

Example 1: We can teach Zda the concept of “walk close to object O” using the fol-
lowing actions as we speak the phrase “walk close to object O”:

Lia.walk close to O
Bob.walk close to O

The concept of “close to object O” refers to the unchanged part: “close to O” in the three 
object.strings.

To further teach Zda the concept of “close to,” use the following actions as you speak the 
word “close to”:

Lia.walk close to the desk
Lia.run close to the kitchen
Bob.run close to the desk
Lia.walk close to the kitchen

See there are different pairings between the “words” and action strings, as in Pavlov’s dog 
conditioning experiment.

Example 2: How does one teach the concept of “Change from X to Y”?
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We can say “change x to y” when Zda sees X changing to Y (e.g., a multi-color light bulb 
changes its color), repeatedly.

Example 3: How do we teach the concept of Color?

To teach Zda the meaning of the colors red and green, show balls with the two different 
colors alternately as you speak the words “red” and “green” accordingly. That is, every-
thing else is the same, only repeating the pairings (red, “red”) and (green, “green”), similar 
to the paired events (cause, effect) and (no cause, no effect).

A complex concept is a composition of simpler concepts. There are three possible 
compositions:

1. Parallel structured, e.g., a baby keeps grabbing a bottle while walking.
2. Nested or hierarchically structured, e.g., Zda.said(Lia.say(“the new book is very 

interesting”).
3. Sequential procedure, e.g., he made a cup of coffee and brought it to me.

In goal-driven actions, backward induction is often used by Zda.

 T T T T T T          Goal1 2 3 4 5 6← ← ← ← ← ←

In a backward approach, at time point T2, Zda reasons: to achieve the goal, he needs to 
reach T6; to reach T6 he needs to reach T5; to reach T5 he needs to reach T4; to reach T4 he 
needs to reach T3. In general, the goal is a node on the predicted path in Knet.

Why-type and how-type inductions are backward inductions from effect to cause. 
Knowing this, Zda can eliminate the source of an undesirable outcome and create the 
source for a desirable outcome.

15.6 Mapping Natural Language to Innate Concepts

Zda has some 25 innate concepts: True (T), Negation (¬), Sameness or equivalence (≡), 
All (), Some (∃), Every(e), Implication (→), Intersection (∩), Union (∪), Conjunction 
(∨), Disjunction (∨), Inclusion (∈), Similarity (~), Probability (P ), Preference (≽), It (f ), 
Time ( ), Precedence (≫), Count ( ), Recursion (⟲), Referring (), Imitation (∯, ⤖ or 
⬻), Desire (), Expectation ( ), Sense of 3D world ( ) that includes the relative loca-
tion of two objects (direction and distance). The concept Difference is the negation of 
sameness.

Innate concepts are so fundamental to everyone, we subconsciously use them without 
notice. For example, we assume Zda knows the concepts of True, Negation, and sameness 
all the time. Without such assumptions, Zda cannot tell if there is a word in the text-string 
or not, if two words are the same (Sameness) or not. Likewise, we assume Zda knows the 
concept of likelihood (probability), not the mathematical definition of probability, but the 
idea that in a given situation something may or may not happen. For instance, Zda knows 
he sometimes feels hungry, sometimes not, and the likelihood changes depending on the 
time in the day.
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Zda needs to map his innate concepts or knowledge to a natural language so that he 
can effectively communicate with others and learn from humans and his peers. This can 
be done through the factor-isolation technique. To teach a word that refers to an innate 
concept, the key is to bring Zda’s attention to the innate concept while you are saying 
the word.

Example 1: Present two objects (e.g., apple and banana) for Zda to choose. If he 
chooses the apple, then we say: “you prefer apple”; if he chooses the banana 
we say: “you prefer banana.” Using various things to repeat the choice game, 
Zda will make a strong association between the word “prefer” and his innate 
 concept of preference, because when Zda is making a choice the innate concept 
of preference is in his attention set. Such association is a basic understanding of 
the word “prefer.”

A better way to teach is to teach the word/phrase (“refers to” in English) for the innate 
concept of “refers to” before teaching other innate concepts, and then teach other concepts 
through the phrase “refers to.”

As we discussed apropos subconscious attention, innate concepts will randomly attract 
a young child’s attention. Therefore, a dirty trick is to use the backdoor to teach innate con-
cepts: Let Zda automatically pop-up innate concepts on a screen and have the user enter 
the corresponding words in his language, so that the mappings (associations) between 
them will be made once and for all.

In our earlier conversations we noted that, when an innate concept is in Zda’s attention 
set, the associated action with the concept is often also in his attention set. For instance, 
when Zda hears the word imitation (a word he has already learned), he will likely perform 
an imitation, as the associative attention shifts from the word to the action.

Some concepts, such as probability, require to be quantified. The term probability is a 
quantitative sense of the Probability concept that can be learned from repeated coin- 
flipping experiments. Since no two things are identical, repeated experiments are actually 
a collection of similar experiments. This is a frequentist probability. However, the collec-
tion of similar experiments can often include similar “experiments” or experiences (called 
prior knowledge) in the Knet. In such a case, the probability is the so-called Bayesian prob-
ability. Zda will learn the frequentist probability before learning Bayesian probability, but 
the latter will be used more often in his daily life. We as non-statisticians don’t differenti-
ate the two different probability concepts but often use the same word, probability.

Even before we teach Zda to mathematically quantify a probability, he can use the prob-
ability concept and roughly quantify it upon his actions, as illustrated in Example 2.

Example 2: In Skinner’s Operant Conditioning experiment, replace the pigeon with 
Zda. We say: the probability of heads is a value x when the experiment has been 
repeated for many times.

Biological clocks are essential to humans and agents. Without such clocks, we cannot 
sense time and the alternations of day and night. As social beings, we need to synchronize 
our biological clocks and quantify time to be productive. The main reason that humans 
invented the physical clock was to synchronize peoples’ biological clocks and precisely 
define the common time. Here we discuss how to teach Zda to learn some quantified 
time-related concepts such as yesterday, today, and tomorrow before he understands the 
time clock.
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Example 3: Time-related concepts (TRCs), such as yesterday and tomorrow, can be 
taught with Zda’s biological clock (BC). To teach time, we have to direct Zda to pay 
attention to his internal biological clock, in addition to other things in the atten-
tion set.

Here is an example of how to teach the concepts of yesterday, today, and tomorrow (assume 
Zda understands how to play the game of checkers already):

1. Lia plays a game of checkers with Zda.
2. The next day Lia says to Zda: “We played the checkers game yesterday. Do you 

like it?” Lia then invites Zda to play the game again and says: “Would you like to 
play the checkers game again?” After playing checkers, Zda is invited to play the 
game again: “We will play the game tomorrow, OK?”

3. On the third day, Lia plays checkers again with Zda.
4. Zda will make an association between biological clock time and the concepts of 

yesterday, today, and tomorrow after the procedure is repeated at different times 
on different days, and if checkers are replaced by other activities, such as different 
games or sports.

To teach Zda other time-related concepts, such as slow and fast, we can use the following 
example. Lia says to Zda “slow” while she is walking slowly. Then she says “fast” while 
walking fast. Repeating the process several times, Zda will first establish the two associa-
tions: (1) the word “slow” and walking slowly, and (2) the word “fast” and walking fast. 
Because being slow and being fast are relative, it is necessary that the two actions repeat 
alternately to show the contrast.

15.7 Describing Multiple-Object Worlds and Concepts

In Language teaching, we should be aware that language is a way of mapping one-
dimensional word-strings to multidimensional worlds. Therefore, accessory words 
such as adpositions are necessary. The relations expressed by adpositions may be 
spatial or temporal relations, or relations expressing comparison, content, agent, 
instrument, means, manner, cause, purpose, reference, etc. Adpositions can be single 
invariants and paired invariants. Single invariants include in, for, until, because, and, but, 
under, above, from, with, throughout, whenever, after, during, just as, by the time, instead of, 
etc. The paired invariants include either… or, not only… but also, as… as, the more… the 
better, rather… than, etc. These words can be dealt with using Zda’s innate knowledge, 
which includes the use of logical operators (e.g., ∨ for logical OR, ∧ for logical AND, → 
and ← for implication), temporal relationships (⭇ and ⭉), or comparisons (≈ for simi-
larity, ≽ and ≼ for preference). Zda’s use of these knowledge tools is illustrated in the 
following examples.

Learning is progressive. After Zda learns what “box” refers to, we can teach him what 
“yellow box” means. After he learns “ball,” and “yellow box,” we could teach him “ball in 
the yellow box,” and then ask him to “Pick the ball from the yellow box.”

We can replace the ball with other objects or the yellow box with other containers in the 
teaching process so that Zda can learn the meaning of the word “from.”
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In teaching Zda the contextual understanding of a word, the key is to bring Zda’s atten-
tion to the right object or the concept to which the word refers.

Following this teaching principle, we can map the word “because” to the innate concept 
← (an implication), e.g., in the following sentence:

“He runs fast because he is an athlete,”

map the word “and” to the innate concept ∧, as in:

“They gamble and they smoke,”

map “or” to ∨ as in:

“Every day, they gamble or they smoke,”

map “rather… than” to the innate concept ≽ (preference) as in:

“I would rather swim than surf,”

map “as… as” to ≈ (similarity) as in:

“Football is as fast as hockey,”

and map “after” to the temporal concept ⭉ as in the following example:

“We’ll do that after you do this.”

To this end, we first need to learn to match the situation in the perceptual world to an 
innate concept.

First, learn what the sentence refers to in the real world, and then determine whether it 
is a question, a request, a way to provide information, or purposeless.

15.8 Characterizing Space, Location, and Orientation

Based upon the principle of factor-isolation, we can present multiple sentences with the 
same adpositions so that Zda can know the relative locations between the adpositions in 
the string and the sensed internal status and external object’s attributes. By doing so, Zda 
could formulate the concept of adpositions.

Learning is progressive. To teach Zda locational and directional words such as on, 
under, left, right, east, west, above, behind, forward, and backward, we can use the follow-
ing approach.

Take “on” and “under” as examples. Suppose Zda knows the words “red,” “green,” 
“apple,” and “desk” already, and you put a red apple on the desk and a green apple under 
the desk. Then point at the red apple while saying “a red apple on the desk” and point at 
the green apple while saying “a green apple under the desk.”

Next, switch the locations of the two apples, and repeat the teaching process. After that, 
Zda will form an initial understanding of the words “on” and “under.” Over time, Zda will 
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meet many situations where people use these two words, and he will get better and better 
at understanding the two words.

RL lets Zda try different options over time and remember the best option he has identified 
to date in a given situation. When the situation occurs again, he will take this best option.

Suppose that Zda and Lia met at the forest on December 1, 2020, BC for the very first 
time. Since then, they have met at the same fork in the same road every day (Figure 15.2). 
Besides them, there is also a humongous bug that might, unpredictably, appear on one 
of the two roads near the fork. Each morning, when Lia saw Zda walking towards her, 
she consistently said either “left” or “right” depending on whether the gigantic bug was 
on the left or right road. As a penalty, if Zda meets the bug on the load, the bug will bite 
him. We will see how Zda’s behaviors over time display his initial understanding of Lia’s 
words: “left” and “right.”

There are 4 possible scenarios:

• Scenario 1, when the bug is on the left road, Lia says “Right,” Zda takes the left 
road trying to get some apples from the tree, and the bug bites Zda.

• Scenario 2, when the bug is on the left road, Lia says “Right,” Zda takes the right 
road, the bug doesn’t bite Zda, and Zda gets apples.

FIGURE 15.2
Possible language emerging—Go left, Go right.
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• Scenario 3, when the bug is on the right road, Lia says “Left,” Zda takes the left
road, the bug doesn’t bite Zda, and Zda gets apples.

• Scenario 4, when the bug is on the right road, Lia says “Left,” Zda takes the right
road trying to get some apples from the tree, and the bug bites Zda.

If Zda has tried all 4 scenarios, Zda will learn via RL that the maximum reward occurs 
on the following either of the two conditions: (1) when Lia says “Left,” he will go left, and 
(2) when Lia says “Right,” he will go right. This shows that Zda understands Lia’s meaning
in saying “Left” or “Right.”

It is important to know that after this training Zda has only an initial, fuzzy understand-
ing of the concept of the words “Left” and “Right.” He does not know when the word 
“Left” means that Lia wants him to go to the left road or that the bug is on the left, or some-
thing else. Nevertheless, Zda does display his initial understanding of the words in the 
case. The meaning of the words will be better understood later by Zda when he interacts 
with others in many different situations that involve the words left and right.

However, there are at least three problems with this RL. (1) Zda does not know how 
many scenarios need to be tested, i.e., the exploration versus exploitation issue. There 
might be better options that he has not tried. (2) Zda’s attention is only to a limited num-
ber of things at each moment, and thus, the situation that is identified as a recurrence 
may not be a true recurrence, and the attention is different at the two different times. 
Furthermore, there are no two things that are truly identical; they will be different in 
some respect. (3) There might be too many options, in reality, for Zda to try out every 
possible option.

A solution is to use randomized adaptive reinforcement learning, basically the idea of 
Operant Conditioning (OC). OC is a kind of learning in which the consequences that fol-
low some behavior increase or decrease the likelihood of that behavior occurring in the 
future. In OC an agent acts (operates) on the environment in order to change the likelihood 
of the response occurring again.

We can teach other locational and orientational words, such as up, down, front, back, for-
ward, backward, inside, outside, close to, and far away, similarly as we did for the words 
“right” and “left.”

15.9 Creating Patterns for Zda to Learn

Pattern creation using factor-isolation can be illustrated with the following examples of 
language teaching. In each example, only one word or token varies.

Example 1:
I read the book.
You read the book.
He read the book.

Example 2:
I like dogs.
I like cats.
I like birds.
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To teach sentence structure: either… or…, we can use the following sentences:

He can either eat or leave.
The car is either yours or mine.
You either do your work or prepare for a trip to the office.

Similarly, to teach the phrase: as soon as, we can use the following sentences:

We’ll get to that as soon as we finish this.
We’ll win as soon as we finish this.
He will believe it as soon as we get this done.

Such pattern creation can be generalized to event-strings. For example, Lia asks Zda to 
get three different things in the same setting. In general, based on our knowledge of what 
concepts Zda has learned, we can create different patterns for Zda to learn.

15.10 Formulating Desensitisors and Sensitisors

Sensitization is a process of more precisely defining a pattern (category) by breaking it 
down into more patterns (categories), while desensitization is the reverse process: combin-
ing multiple patterns (categories) into one pattern (category). For instance, a color-blind 
person who can only see black and white becomes normal and sees colors after a treat-
ment. This can be viewed as a sensitization. Conversely, a vision-normal person becom-
ing color-blind after an accident can be viewed as desensitization. Most sensitization and 
desensitization processes occur at Zda’s repatternization.

The pattern resulting from desensitization is called a category, while a desensitisor in 
a pattern represents a member of a category. A desensitisor can also be viewed as a com-
bined pattern, while a sensitisor is a decomposed pattern.

The hierarchical structures of Zda’s embodiment are scalable, which makes sensitization 
and desensitization natural and easy. For instance, the initial structure Zda.eyes.vision.
light can be scaled up to Zda.head.eyes.leftEye.light.color or Zda.head.eyes.light.intensity. 
These hierarchical structures are useful in generating the sensitisor and desensitisor, as 
examples shown below:

Desensitisor: Obj
Sensitisor: Obj.subobj

Desensitisor: Obj.subobj
Sensitisor: Obj.subobj.subobj

Desensitiser: Obj.subobj.subobj
Sensitisor: Obj.subobj.subobj.property

Desensitisor: Obj.subobj.subobj.property
Sensitisor: Obj.subobj.subobj.property.value

More discussion of sensitization and desensitization can be found in the sections on 
repatternization.
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15.11 Imitation, Innovation, Composite Tasks, and Collaborations

To imitate a composite task (corresponding to a high-level pattern), Zda must already 
know all the actions associated with its subtasks (tokens). For example, to make a chair, he 
already knows how to make all its parts.

Example 1:

In Zda’s presence, have him watch the event sequence unfold:

Bob says: “Bring me a cup of coffee.” ⭇ Lia makes coffee and brings it to Bob.

Zda imitates Lia when Bob asks him for coffee (replacing Lia with Zda):

Bob says: “Bring me a cup of coffee.” ⭇ Zda makes coffee and brings it to Bob.

An imitation does not have to be taught. Zda can initiate (self-learning) an imitation based 
on a pattern by replacing the actioner with himself. The resulting consequence will reshape 
his behavior by updating the associated distributive reward with the pattern.

As discussed early on, innovation or creativity is a similarity replacement of tokens 
(other than replacing actioners with himself) within an event-string or pattern. Here, simi-
larity is important. If done without similarity, the replacement might be deemed a ridicu-
lous action. A replacement with some sense of similarity will often be considered to be a 
creative analogy. For example, replacing a word or thing in a pattern with another word or 
thing in the same category from the Knet can be considered as creativity.

Imitation can also be used when Zda does know how to answer a question, as when he 
asks the same question back to the questioner or of someone else.

Zda can also perform a collaborative task by imitation or through language-guided 
actions. Imitation is commonly used for getting a better understanding of a process and 
mastering skills, and thus is a foundation of creativity. The importance of imitations is also 
due to the fact that imitation makes Zda a social being, behaving the way other people do, 
i.e., morally.

Zda’s creativity is also an important way of learning. Here is a simple example of 
creativity.

Example 2:

Bob says: “Please bring me an apple.” ⭇ Zda brought him a banana.

Zda gave Bob a banana instead of an apple because no apple was available. It is also 
because in the Knet, there is a pattern:

Bob says: “Please bring me an apple.” ⭇ Zda brought him an apple.

The creativity here is the replacement of apple with banana (the desensitisor, fruit) in the 
pattern from the Knet.

Creativity can also occur when Zda asks a question he’s never heard before by similarity- 
replacement in a question found in the Knet.
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“Goal” is the innate concept of desire. In Zda’s view, a goal is something that directly 
or indirectly associates with a reward or is believed to be associated with a reward. An 
intermediate goal is often called a milestone. It is a node in Zda’s Knet. The milestone is a 
sufficient or necessary condition for a longer term goal. If all paths toward the next goal 
must pass through the milestone node in the Knet, the milestone might be a necessary 
condition; otherwise, it is not.

A goal is not an expectation. For example, the baby Zda wants to eat the apple (his 
desire); he tries twice to grab it but fails, but in the third try, he succeeds. If he was expect-
ing that he would need no more than two tries to get it, then he would get mad when he 
fails the second time; however, if his expectation is to get it within three tries, he will be 
happy (a reward in reinforcement learning).

In Example 1, Zda views making coffee as the precondition before bringing the 
coffee. Zda will view this precondition as a subgoal before accomplishing the goal 
(bringing coffee to Bob). Of course, Zda may just respond: “I am sorry, I am busy at 
the moment.”

15.12 Catching a Moving Target: Acting on Predictions

Zda has the innate concept of speed, i.e., the feel of something happening fast or slowly, 
but not the exact definition of speed. He also has the innate knowledge that to act on an 
object, he needs to know the location of and get sufficiently close to the object. This con-
cept will be enhanced and the meaning of “close” will become clear in various situations 
through practice.

The steps to catch a moving object are something like this (Figure 15.3):

1. Predict the future location of the moving object.
2. Body and hands start moving toward the predicted location.
3. Adjust the direction and speed of movement according to the location prediction.
4. Zda repeats steps (1) through (3) until he is close enough to the object, and tries to 

catch it.
5. Repeating the exercise many times, Zda will predict better and master the skill of 

catching a moving object.

FIGURE 15.3
Catch a flying ball: acting on anticipation.
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15.13 Playing Games

A board game (Figure 15.4) typically involves pieces that can be moved or placed on a 
pre-marked board (playing surface) and often includes elements of table, cards, and role-
playing. Many board games feature a competition between two or more players. Classical 
board games are divided into four categories: race games (e.g., Parchisi), space games (e.g., 
Noughts and Crosses), choice games (e.g., Hnefatafl), and games of displacement (e.g., chess).

For two-person board games, as an example, Zda starts by learning the game rules using 
natural language for legal moves and penalties for illegal moves. Natural language-guided 
response with RARL will be an effective tool for teaching game rules and improving play-
ing skills. The key is to bring Zda’s attention to the game, e.g., moving the chequers on the 
gameboard and learning how to predict the opponent’s possible moves.

A choice game involves decision-making when facing several options. The well-known 
Monty Hall Problem (Figure 15.5) was originally posed in a letter by Steve Selvin to the 
American Statistician in 1975 (Selvin 1975) and was published in Marilyn vos Savant’s 
“Ask Marilyn” column in the magazine Parade in 1990.

Suppose you’re on a game show and you’re given the choice of three doors. Behind one 
door is a car; behind the others are goats. The car and the goats were placed randomly 
behind the doors before the show. The rules of the game are as follows. After you have cho-
sen a door, the door remains closed for the time being. The game show host, Monty Hall, 
who knows what is behind the doors, now has to open one of the two remaining doors, 
and he will open a door with a goat behind it. After Monty opens a door with a goat, he 
always offers you a chance to switch to the last, remaining door. Imagine that you chose 

FIGURE 15.4
Board games.

FIGURE 15.5
The Monty Hall problem.
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Door 3 and the host opens Door 1, which has a goat. He then asks you “Do you want to 
switch to Door Number 2?” Is it to your advantage to change your choice?

Many readers refused to believe that switching is beneficial as Von Savant suggested. 
Ironically, Herbranson and Schroeder (2010) recently conducted experiments showing that 
pigeons (supposedly stupid birds) can make the right decision when facing the Monty 
Hall Dilemma. The probability of gaining reinforcement for switching and staying was 
manipulated, and the birds adjusted their probability of switching and staying to approxi-
mate the optimal strategy. This optimal strategy is exactly the RARL response algorithm 
that was implemented in our HAI.

As the player cannot be certain which of the two remaining unopened doors is the win-
ning door, most people assume that each of these doors has an equal probability of being 
that door, and conclude that switching does not matter. However, the answer may not be 
correct depending on the host’s behavior. You could increase the probability (p) of win-
ning from 1/3 to 2/3 by switching (Chang, 2014)!

A guessing-game (Figure 15.6) involves a prediction for a given set of facts. Using binary 
search to guess an integer within a given range, say from 1 to 10, is very effective. We first 
split the ten numbers into two equal sets, those less than 6 and the rest. So, we ask: “Is 
it less than 6?.” The game host answers either “Yes” or “No.” Assume he answers “No.” 
Knowing now that the integer is between 6 and 10, we divide the smaller set of numbers 
into two equal parts and ask “Is it less than 8?” Suppose he again answers “No,” so that 
the number is either 8, 9, or 10. We continue, “Less than or equal to 9?” He says: “Yes.” 
This is our fourth question: “Is it 9?” He says “No,” and finally we have the number, 8. 
But this is the worst-case scenario. We have been unlucky: if the answer to the third ques-
tion had been “No,” we would have known the number at that moment. The minimum 
number of yes/no questions required to determine with certainty a number between 1 
and N is n = log2N.

Such an advanced search method requires Zda to apply the binary split-rule to the 
resulting (remaining) integer set, and it would take a very long for Zda to rediscover the 
rule without teaching him. The feasible approach is to teach Zda a natural language and 
some math, then teach him the search method, just as we do in schools.

FIGURE 15.6
The guessing game using binary searching.
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16
Functional and Logic Specifications

This chapter can serve the primary purposes of a Functional Requirement Specification 
and Logic Specifications in HAI software development. Because of the complexity of HAI 
and limited space in this book, the document will be brief but will cover the key com-
ponents. No animation details will be discussed; our focus is the agent’s mind building 
and coordination with facial expressions and body posture (movements), while animation 
itself is computer language-specific and IDE-dependent. The information provided in this 
part can further clarify some complex points in the architecture.

A function specification is a formal document that software developers use to describe 
in detail a product’s intended capabilities, appearance, and interactions with users. The 
functional specification is a kind of guideline and continuing reference point as the devel-
opers write the programming code.

Think of HAI as something similar to virtual reality games, such as Real-Time Strategy 
(RTS) and Role-Playing (RPG) games. In RTS, players usually need to build up their inven-
tory of items, armies, etc. RTS games move in real time, and players can play simultane-
ously in the same game without taking turns. In any RPG, a player gets to act out the part 
of the main character, be the hero, etc., and make decisions that go along with the game’s 
story lines. In RTS and RPG, all characters have no brain and act according to programmed 
behaviors, partially controlled by human input or human players. However, in addition to 
these human-controlled agents (human-race agents), HAI also has machine-race humans 
(Lia and Zda) who have their own brains, allowing each to think and act independently 
and learn knowledge and skills through experiences.

In this virtual reality, human users and human-race agents can interact with any other 
agents via computer input devices (e.g., keyboard, mouse, microphone, camera), and all 
agents can interact with each other. Most importantly, all agents can learn languages or 
develop their own language in their communities. Humans such as you can use any lan-
guage to communicate with agents. Just remember: treat an agent as a baby, and patiently 
teach it, moving from simple to complex concepts.

Users (human-race agents) can create (instantiate) a machine-race baby with different 
innate attributes via Class Constructors in OOP. Users can add items (objects and agents) 
to the virtual world. Users can add attributes and abilities to machine-race agents with 
associated animations. Therefore, using a game engine for programming HAI may have 
some advantages.

Logic specification is about the structure of the programming (e.g., major groups of code 
modules that support a similar function); individual code modules and their relationships 
and the data parameters that they pass to each other may be described in a formal docu-
ment. This document, called a logic specification, describes internal interfaces and is for 
use only by the developers and testers.

Since many function and logic specifications are similar to virtual reality games, we will 
focus on the HAI agent’s sensory organs and brain (mind) with learning and thinking 
mechanisms.

https://doi.org/10.1201/b23355-20
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16.1 Conventions in Object-Oriented Programming

Most syntax conventions are self-explanatory for anyone who has the basic concepts  
of OOP. 

Logic Syntax and Conditional Statement Conventions:

         & (and), || (or), > (larger than), ≥ (larger than or equal to), 
similar for < and ≤. 

 
        If (condition) { Statements }
 
        If (condition) { 
                 Statements
        Else
                 Statements 
        }

Loop Conventions:

        For Each x In y
               Statements
        Next
 
        For i = 1 To N
               Statements
        Next
 
        Loop While (condition)
               Statements
        Endloop
 
        Do Loop
               Statements
        Until (condition)
 
        Switch (variable) {
               Case “task 1”
                    Statements
               Case “task 2”
                    Statements
               Case “task 3”
                    Statements
        }

Text after double forward in a line are comments: // comments

Build-in Math Functions:

Math.rand()   // generate a random number ranging [0, 1)

Math.ceiling()   // round up to the nearest integer

Math.round()  
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Reference to object’s attributes:

ObjectX.attributeA

ObjectX.objectY.attributeB

ObjectX.act()

ObjectX.objectY.act()

Conventions with Array or List of Objects:

ObjectsA[1].attributeB = objectsB[2].attributeB

ObjectsA() = objectsB()   // entire array assignment

ObjectsA.sortBy(objectsA.var)   // sort the objects by objectsA.var

ObjectsA.insert(recordX, 3)   // insert recordX as the 3rd record

ObjectsA.insert(recordX, -1)   // insert recordX as the last record

ObjectsA.delete(index = 2)   // delete the 2nd record

ObjectsA[index > 5]   // get all records after the 5th record

ObjectsA.find(name = “Bob”)   // get records with name = “Bob”

String and Array Object Conventions:

StringA.split(delimiter)   // get list of tokens from StringA per delimiter

StringA.find(tokenX)   // return the position of tokenX

StringA.replace(old, new)   // replace the first old with new

StringA.substring(n)   // substring consisting of the first n characters

StringA.app(StringB)   // append StringB to the end of StringA

StringA.size   // size is the number of tokens

StringA.length   // length is the number of characters

Array Class has properties and methods:

ArrayA.sum   // the sum of the numerical elements

ArrayA.ave   // the average of the numerical elements

ArrayA.size   // the number of elements in arrayA

ArrayA.add(recordB)   // add recordB as the last element

Array.delete(index = 2)   // delete the 2nd item

ArrayB[4][2]   // an element of two-dimensional array

System Function:
A naming system is necessary to automatically generate a unique name for a pattern, 

desensitisor, or sensitisor.

autoName()   // get a unique name for a pattern, token, desensitisor, or others.
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Randomly choose n integers from 1 to N without replacement 

Math.randNumsWithoutReplacement(n, N)

In OOP language Java, a container (contains other objects) or a similar thing in OOP will 
be needed for monitoring all objects. Alternatively, using ab IDE such as Xcode that has a 
game engine for programming HAI has some advantages from an animation perspective.

From a coding or patternization perspective, it might be convenient to write the elemen-
tary token Lia.say(“wordString”) as Lia.say⋁wordString.

16.2 Memories and Data Storage

To manipulate the Knet Database, the commonly used relational database language is the 
so-called SQL (structured query language). Different database servers may use slightly 
different SQLs, their syntax and processes are very similar:

• Connect to database server.
• Retrieve relevant records and upload into computer memory.
• Insert, delete, or sort records.
• Close the connection.

For database, SQL-alike (Structured Query Language) will be used:

Select * From tableX Where (condition)

Delete From tableX Where (condition)

Insert Into tableX Values (value1, value2, …)

To sort rewards in a particular order, we use the “sortBy” keyword.
Net class has a List attribute (subclass), Patterns. Patterns is a list (array) of Pattern 

objects.

Knet.size   //Number of patterns in Knet

Join two network objects netX and netY or two patterns at the common token, “node”:

NetX.link(netY, node)   

PatternX.link(PatternY, node)   

Select patterns based on different properties:

Knet.Pattern [tokenID = “myAI2022”]

Knet.desensitisor[tokenID = “food”]

Foundation, Architecture, and Prototyping of Humanized AI
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Net class (Knet) inherits String class and implements or overrides the following functions 
or methods:

Knet.Pattern.add(name, pattern, freq, reward, recency)

Knet.Pattern.update(name, pattern, freq, reward, recency)

Inet.Pattern.add(name, pattern, freq, reward, recency)

Knet.Pattern.delect(condition)

Inet.Pattern.delect(name =)

Inet.Pattern.delect(id =)

Knet.Pattern.sortBy(var)

Knet.paths(A, B, n)   //find n paths from A to B represented by a pattern

Knet.nameMaxIndex // the max index used pattern names

Knet.Pattern[1:3]   // first 3 rows or records

Knet.Pattern[rType = “food”]   // records with rType = “food”

// Language net consists of patterns with names starting with Z.

KZnet = Knet (patterns.name.substring(1) = “Z”)

ME.Knet   // Here, ME is a reserved word to indicate the current agent

Pattern class inherits from String class, and has additionally the token property. Every 
elementary token has a unique token name, i.e., Pattern.tokenID, to be used in hierarchi-
cal tokenization. A token Array contains all (1 to 4) tokens in the form of E1⊗E2⊗E3⊗E4, 
where ⊗ is either ∧ (occurs concurrently) or ⭇ (occurs sequentially), with the default pre-
cedence of ∧ and then ⭇.

Pattern.tokenID

Pattern.reward

Pattern.rType   // Reward Type = “food” or “entertainment”

Pattern.freq

Pattern.recency

Pattern[2].size   // number of tokens of Pattern[2]

Pattern.length   // number of characters

PatternA.tokens[2]   // Get to the 2nd token of PatternA

A.replaceToken(i, tokenName)  // replace the ith token with tokenName

A.union(A, B)   // intersection of tokens between patterns A and B

A.intersection(B)  // intersection of tokens between patterns A and B

Note that a pattern is a sequence of tokens (a row), whereas a desensitisor is a list of tokens 
(a column). Desensitisor and sensitisor are one-gramtons without associated frequencies. 
A regular expression (shortened as regex or regexp) is a sequence of characters that speci-
fies a search pattern in text. Available in many OOP languages, these can be useful in HAI 
pattern search in HAI development.
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17
Modularization of Humanized AI Architecture

To implement Zda, we need to modularize the overall architecture (Figure 17.1).
A multifaceted world, even with infinitely many objects in infinite detail, is greatly 

simplified via limited sensitivity of sensory organs, attention mechanisms, and similar-
ity grouping. Such a simplified world in Zda’s mind is the blueprint of his perceptual 
world, combining innate elementary knowledge, skills, and habits, allowing Zda to think, 
act, learn, and respond like a human. The four basic internal components for a human-
ized agent are: (1) innate elementary knowledge, skills, habits; (2) attention mechanisms; 
(3) learning mechanisms; and (4) response mechanisms. Two critical external factors are: 
(1) effective teaching and (2) extensive interaction with the environment.

As we discussed in Part III, understanding a concept is an ongoing and tuning process. 
The meaning of a concept should be a personal thing, and can well change over time, 
but the core meaning is the “common part” of understanding the concept in a commu-
nity, which is relatively persistent or stable over time. The personalized adaptive response 
mechanism allows Zda to generate responses in facing different situations.

Interactions create language and social norms. In interactions, Zda adheres to social norms 
through imitation and associative learning. Natural language grammars can be viewed as 
a set of recursive string functions, as are event-patterns and a response-mechanism.

Patterns are constantly undergoing evolution: less used patterns will gradually die and 
patterns with high frequencies and rewards will endure. The fitness in the algorithm is 
mainly frequency. Frequent patterns become more frequent. A pattern with a high penalty 
will also survive only a very short time, ensuring it will not be used!

17.1 Virtual World Simulation

Since we are currently dealing with agents on a computer, a virtual world needs to be cre-
ated. For robots, such a virtual world is not needed.

In OOP terms, the virtual world will consist of elements of two types (classes) of objects: 
(1) Mindlessor (or Thingy), anything that cannot think, such as lifeless objects and plants, 
and (2) Minder, anything with mind that can think, such as animals and (humanized) 
agents. Humans are also involved through input devices that connect to machine-race 
humans. In principle, all objects should follow the physical laws as enabled by many vir-
tual reality game engines.

The Thingy class, representing inanimate things, has the following attributes: name, 
Appearance(shape, size, texture), phyChem, Color(color, brightness), Sound(sound, loud-
ness), Odor(odor intensity), taste, mass, temperature, Location(x, y, z), and Velocity(vx, vy, 
vz). We will conventionally use the starting uppercase to indicate an object and a starting 
lowercase for a property. For example, Color representing a subobject and color repre-
senting a property. More properties can be added as you like. All these properties have 
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discrete values. A Thingy’s behaviors follow Laws of Physics. Examples of Thingies are 
desks, light bulbs, switches, water, cups, bread, apples.

• name = a private property not visible to agents but used for computer coding only.
• shape = triangle, square, circle, star, pentagon, hexagon, which serve as visual

identifications of a class of object (e.g., car, dog, cat).
• size = an integer to indicate the size of an object.
• texture = an integer to indicate the surface texture characteristic; may be used to

identify each object for a given class.
• color, sound, odor = a value associated with the object’s color, sound, odor.
• brightness, loudness, density = a value indicating brightness, loudness, density.

FIGURE 17.1
Modularization of humanized AI architecture.
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• phyChem = a value associated with the object’s physical or chemical property.
• taste = binary value indicating edible or not.
• temperature = a value to indicate the object’s temperature.
• utility = drivable for car, water can put out fire, light can enlighten a room, etc.
• age = elapsed time from the object’s creation.
• sex = determines sexual attraction and affect on evolution of agents.

Some special objects can be created from the Thingy class, such as Weather(four seasons, 
raining, sunny), Sky(clouds, sun, room, stars), Earth(mountain, river, road), General(desk, 
book, playcards), and Tools(car, pen, microwave). For such an object, it might be neces-
sary to add so-called “functions,” “behaviors,” or “methods” in OOP as in the following 
examples with self-explanatory meanings:

• Sky.act(actionName = “raining,” intensity = high)
• Environment.act(actionName = “sunshine,” intensity = low)
• Environment.act(actionName = “raining,” intensity = heavy)

It is important to remember: no matter how colorful the external world is, if an agent is a 
blind he will not see it. How simple the environment is, will often be determined by the 
agent’s sensory organs.

The Animals class inherits all properties from the Thingy class and may have other 
properties such as gender, age, and simple brain with simple pre-programed response-
features such as a hungry animal can run when he sees a prey, while a Thingy cannot 
move unless an external force acts on it.

The (humanized) Agent class inherits all properties from the Thingy class and has other 
properties (attributes) and methods (behaviors) to be discussed in the next section. The 
additional attributes include innate attribute state (energy, desire), and the developed attri-
butes such as friends, enemies, collaborators to indicate who they are. For simplicity, we may 
assume that an object type (class) is determined by its shape in the HAI prototyping, a partic-
ular object of a given type is determined by size, while emotional expression is symbolically 
represented by the agent’s face color. An Animal can be implemented as a degenerated Agent.

Two important types of Thingy are Food and Entertainment. The Food is a subclass of 
Thingy that has attributes type = “food” and energy = a value. These two attributes are 
critical in determining the reward for an action or pattern. Entertainment is a subclass of 
Thingy that has attributes type = “entertainment” and energy = a value. These two attri-
butes are also critical in determining the reward for an action or pattern.

A Virtual Human (VH) here is an agent whose behaviors can be controlled by the user. 
A VH is a user who interacts with agents and virtual environments through input devices 
such as keyboards, microphones, and video cameras.

17.2 Virtual Embodiment of Agents

The virtual embodiments provide an agent with innate and developed abilities. The 
list of virtual embodiments is summarized in Table 17.1. As with humans, the number 
of categories that an organ is able to sense may change through learning. When the 
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number of sensible levels becomes one, the agent is impaired with regarding the sen-
sory organ.

The virtual embodiments equip an agent with three categories of organs, with the caveat 
that such categorization does not try to match exactly the biological or psychological func-
tions of the organ systems.

The first category is sensory organs for receiving information, including: Eyes for vision, 
Ears for hearing, a Nose for olfaction, Tongue for tastiness, Skin for tactile sense, and the 
Body for thermoreception. These sensory organs provide passive sensory abilities, sub-
consciously working with the reflex mechanism.

The second category is used to directly project information or alike onto the external 
world, including Vocal cords for voice and words, a Face for expression, a Skeleton for 
posture and motion.

The third is to indicate an agent’s key internal state, the Brain for storing knowledge, 
Heart for feeling sensation, Gender for determining sexual attraction and reproductivity, 
and Age for modulating parameters for activity.

Sensory Organs: Zda can differentiate initially 3 different colors and 3 levels of inten-
sity (brightness), but can be scaled up or down via sensitization or desensitization, 
to be described later. Ears, Nose, Skin, and Body have similar sensitivities. The 
Tongue has only 2 levels: something is edible or it is not.

Vocal Cords: Zda, like humans, can learn to speak any language (a string of text) but in a 
constant intensity (yet, no intonation) at this moment. Zda can initially only produce 
3 different sounds (Ba, Ma, and a cry). Additional types of sounds can be learned 
through imitation, e.g., or be built-in with different associated probabilities initially.

Face: The Zda face is a 3×3-grid 2-color 2D image. The image is visible to agents and 
will be used as identification; at the same time, the color property will be used 
for expressions. Therefore, there could be as many as 23x3 = 512 different types of 
objects. Remember, the size property is used to represent a particular object of a 
given type (class). A simplified version uses geometric shapes for different types 
of objects. The face image can only have 2 colors picked from 4 colors (red, green, 
yellow, blue), a total of 12 possible combinations (expressions). That is, colors of the 
face are used to indicate an agent’s facial expression.

TABLE 17.1

Prototype for Virtual Embodiment

Virtual Organ Intrinsic Function Initial No. of Sensible Levels

Eyes Vision  3
Ears Auditory (hearing)  3
Nose Olfaction  3
Tongue Tastiness  2
Skin Tactile (hepatics)  3
Body Thermoreception  3
Vocal cord Voice & words  3
Face Emotion expression  3
Skeleton Pose & motion  6
Brain Knowledge & learning Innate concepts & abilities
Heart Emotion 10
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Skeleton: Zda has initially limited possible postures or actions {standing, sitting, 
eating, grasping, walking, turning, dropping, looking, smiling, crying, speak-
ing, etc.}. He can do more through learning such as mimicking. Each posture 
and action has an associated probability. Skeletal postures are often associated 
with facial emotions, whether such an association is an inner or developed ability. 
The skeleton can also perform physical actions. Some types of actions are innate 
or inherited abilities, each kind with an associated initial probability. Abilities to 
perform other advanced actions can be developed through learning, imitation, or 
creative activities.

Brain: Zda’s brain is the place to store his knowledge and mechanisms of actions. The 
knowledge consists of a small set of innate knowledge and learned knowledge and 
skills, represented by a recursive network of patternized experiences, called Knet. 
Mechanisms of actions include attention, learning, and response mechanisms.

Heart: The Heart is the virtual place to host emotions, with an initial 10 levels for 
coding 10 different emotions.

Gender Organ: Gender is used to determine agent’s sexual attraction in mak-
ing friends and virtual reproduction; using genetic evolution algorithms as an 
example.

Energy Bank: Zda has a certain energy level at any given moment when alive. 
Performing any action, even sleeping will cost him energy, while eating food and 
rewards will boost his energy level. Zda at his higher energy state will be more 
likely to perform a task that requires more energy. Energy can have 100 levels. 
When the level is zero, Zda is dead.

Other body parts of various physical sizes and shapes can be implemented: a head, arms, 
hands, fingers, legs, feet, and the rest.

17.3 Innate Concepts and Knowledge

Zda has 26 innate concepts (knowledge), which can be matched directly to any particular 
language used. This is done (1) by prompting each concept to let a human user enter the 
corresponding word, or (2) through training using association with the factor-isolation 
technique. The same two approaches can apply to the innate sense of sensory organs: 
vision, auditory, olfaction, tastiness, tactility, thermoreception, and sensations (happiness, 
pain, hunger). Zda can also recognize a list of elementary actions.

As discussed in Part III, the innate concepts or knowledge include:

1. True (T): If Zda “sees” something happening, then he realizes it is the truth, or is 
true to him.

2. Negation (¬): If Zda has the concept of a fair A, then he will also have the concept 
of the opposite side of A (i.e., the negation of A or ¬A). For example, if Zda sees that 
it is raining, then he also has the concept of “is not raining.” If Zda sees something 
happening, then he realizes it is the truth. At the same time, he has the concept of 
the opposite side of the truth, i.e., falseness (not happening). A thing and its nega-
tion always coexist.
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3. Sameness or equivalence (≡): Like a human, Zda has the intrinsic concept of same-
ness and has some sensors to detect whether two things are the same or not. For
instance, a person has the ability of knowing if two objects are the same, or not,
by looking at them, by touching or/and smelling them, even if he cannot express
the concept of sameness in terms of any language. Therefore, sameness can be
detected by the various senses, through shape and color, and by feel, taste, temper-
ature, or smell. The concept is independent of any sensor, but the ability is depen-
dent on particular sensors, e.g., a color-blind person cannot tell if two objects have
the same color or not. With the sensor, a person can store information about two
objects and compare them, and then produce the feeling of “same” or “not same.”
Such a feeling or sensation expresses the concept of sameness.

4. Implication (→): A→ B means A is sufficient for B.
5. All (). “All” is the whole or collection of everything under consideration. Zda has

the concept of allness but may not necessarily be able to identify the whole in any
particular case. For example, if we say: “all math books in the world,” Zda may
not understand what we say, not because he does not have the concept of “all,” but
because he doesn’t understand, e.g., the terms “word,” “books,” “the world.”

6. Some (∃). Some are a part of all.
7. Count ( ): The concept of the total number of certain items.
8. Every(e): Every element of a set of affairs under consideration.
9. Intersection (∩): Zda has the concept of an intersection of two events, i.e., a part

belonging to two things simultaneously. However, this does mean he would not
make a mistake in judging intersections in some cases.

10. Union (∪): Zda can identify the union of two events, i.e., a thing can be made of
two things, e.g., people ≡ men ∪ women.

11. Conjunction (∧): Zda has the concept of the conjunction of two events, i.e., walking
∧ talking, meaning talking while walking.

12. Disjunction (∨): Zda can identify a disjunction of two events, i.e., a thing can be
made of two things, e.g., walking ∨ talking, meaning either talking or walking.

13. Inclusion (∈): The concept of inclusion is a relationship between a part and the
whole. For instance, a person knows a slice of pizza is part of the whole pizza. A
door is a part of a house, and the lock is a part of the door. The part of a whole
is independent of any language, and Zda is born with the ability to understand
the connection. In notation, A ∈ B means A belongs to B; or is a fundamental
part of B.

14. Similarity (~): The concept of “similarity” concerns a relation between two entities.
“Are similar” means only that a part of one entity is the same as a part of another
entity. The concept of being similar can actually be derived from the conjunction
of other concepts (≡, ¬, ∈).

15. Probability ( ): The concept of probability concerns the likelihood of a fact’s or
an event’s occurrence. For instance, if S represents the fact that B occurs after fact
C, the probability of S is the percentage of time of the fact occurring among a col-
lection of facts in terms of Zda’s observation. Such a collection of facts are subjec-
tive in terms of scope (observation period and conditions given). Probability is a
learned concept before Zda’s birth, when he may sense that an event (a fact such
as hunger) sometimes occurs and sometimes does not occur.
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16. Preference (≽): Zda displays preference (e.g., likes one thing better than another). 
Preference can vary from individual to individual and from time to time, but the 
concept of preference is the same for everyone.

17. It (f). The concept of “it” refers to anything (concrete or abstract) Zda attends to at 
a particular time; most often “it” is used in a conversation or thinking process. To 
differentiate one “it” from another, we can add a subscript to f , e.g., 1f  and 2f .

18. Time ( ): The “biological clock” allows Zda to record event-order in time as past, 
present, and future (past experience stored in the memory, what is happening 
now, and what is imagined for the future). The circadian clock will allow Zda to 
record and organize time units: day and year (see the section on biological clock). 
Therefore, notions of time such as yesterday, today, tomorrow, last year, this year, 
and next year are considered to be innate concepts.

19. Precedence (≫): Precedence refers to Zda’s ability to deal with a certain part, pre-
ceding others. In the linguistic agent, without assistance of other sensors, we use 
and force a priority. In other words, things included in the pair of precedence oper-
ators, (and), will be dealt with first. The precedence operators work as parentheses 
in an arithmetical formulation and can be used repeatedly or in a nested fashion.

20. Recursion (⟲): The concept of the recurrence of anything (events, mathematical 
operations, actions, procedures) in different spaces, times, timescales, or in any other 
sensory aspects, or in a general sense such as weather or environmental change. The 
sense of the periodicity (unnested recursion in time) of the environmental change 
(mainly light) allows Zda to quickly formulate, in theory, the concept of “a day.” Zda 
has the ability to perform various recursions, but here we refer to the concept.

21. Referring to (): The concept of mapping between a language (including signs) 
and its semantics. For instance, the word “pen” refers to an object, a pen. When 
the map between Zda’s  and a word in a particular language is established, com-
munications between different humans and the agent become much easier.

22. Imitation (∯): The concept of copying what others do, or copying natural phe-
nomena. This imitation is a concept, not one of the mechanisms of imitation to be 
discussed later. The action of imitating will be denoted by ⤖ or ⬻.

23. Desire (): Desire is the concept of a goal. Zda has desires so he knows others have 
them too. Here, the concept of desire is not the tendency of trying to satisfy a desire. 
Like a human, Zda does not have a clearly defined life goal; rather, his is vaguely 
defined as a long and happy life. Happiness is subjective and depends on many things, 
and views of happiness change over time. The trade-off between longevity and hap-
piness is purely personal. It goes circularly: Your life goal will direct your actions and 
social life, and conversely, your actions and social life will reshape your life goal.

24. Expectation ( ): Expectation is not desire. For example, Baby Zda wants to eat the 
apple (his desire). He tried twice to grab it and failed, but in the third try he suc-
ceeded. Now, if he was expecting no more than two chances, he would get mad 
upon failing the second time; however, if his expectation was to get it within three 
tries, then he will not know frustration, he will only be happy.

25. Sense of the 3D world ( ): This sense includes the relative location of two objects 
as measured by direction and distance. The location of an object is always relative.

26. Zda knows in order to act on an object, he needs to get sufficiently close to the 
object. The fuzzy concept of “sufficiently close” will be learned or become clear 
through his experiences.
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When we make associations between these innate concepts and words in a language, Zda 
will understand the words we say. It is very helpful to understand the words represent-
ing these innate concepts when we teach Zda more complicated concepts, as discussed in 
Chapter 15, Effective Teaching. You can think of an innate concept as a common word in an 
international language that everyone understands and uses internally, in his or her mind.

These innate concepts may not appear to be important to you and you might think you 
don’t know how to use them. But as matter of fact, you will subconsciously use them in 
coding when you implement the agents. For example, you may use a comparison state-
ment in code for an agent to compare two things, to see if they are identical. In such a case, 
you have assumed the agent has the concept of “equivalence.” In record frequencies of 
patterns or any recurrences, the count concept is used implicitly. When we code a search 
function to represent an agent performing a search for an object, you have assumed the 
agent has the concepts of “True” and “Negation.” When you code a function represent-
ing an agent seeing whether two objects are overlapping, you have used the concept of 
 “conjunction.” When you code an agent’s similarity comparison ability, you would have 
assumed the agent has the concept of “similar.” We should not confuse the innate con-
cepts with the mathematical axiom system, since in the innate concepts system, some 
concepts can actually be defined by others. For example, “similar” is defined by the state 
of affairs that the two objects are the same only in “some” parts, not (“negation”) in oth-
ers. The concept of “preference” is the root of how an agent makes a choice, including the 
reinforcement learning algorithms. The “recursion” concept is the foundation of hierar-
chical tokenization and recursive patternization, and it is the key for learning complex 
concepts and procedures. The sense of “referring to” is critical in our daily interaction and 
learning. Senses of 3-dimensional space and time are prerequisite for assessing velocity 
(and speed) and identifying the chronological order of events. All of these concepts or 
assumptions would exist subconsciously in our coding even if we did not explicitly list 
their usages here.

17.4 Representation of Actions

The syntax conventions of action are closely related to hierarchical tokenization and recur-
sive patternization. The syntax conventions of actions suggested here do not have to be fol-
lowed, but provide convenience and clarity for the later discussions on the implementation 
of tokenization and patternization. There are 8 types of elementary actions: act, compare, 
say, recollect, image, intend, SelfawarenessSwitch, and a face action. We discuss each of 
the actions as follows.

The action agent.act has the following form:

• agent.act(name, goal, expectation, target, tool, duration, repeats, execution, Params)

A subobject can also have actions such as

• agent.eyes.act(params)

• agent.face.act(params)

• agent.body.act(params)
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• agent.hand.act(params)

• agent.foot.act(params)

• agent.mouth.act(params)

The parameters are listed as follows.

1. name = name of the action
2. goal = set by the intend() action to be discussed below, can be null for a “purpose-

less” action
3. target = Agent, Animal, Thingy if applicable, but can be null since, e.g., stretching 

oneself does not have a target
4. tool = tool used, a Thingy object with some utility defined, can be null
5. repeats = integer (e.g., 5 for walk 5 steps), default =1
6. Params = includes the action starting time, ending time, force, speed, and direc-

tion, as applicable
7. execution = 1 (executed) or 0 (unexecuted), involving the executable condition 

check. Condition checking will be similar to those game-engines (e.g., unreal, 
Unity. GameMaker, AppGameKit, and Amazon Open 3D Engine Lumberyard) 
provided, and might include distance, direction, collision, reachable, and pass-
able checks.

While shape is the fundamental attribute to identify an object’s type, the combination of 
shape, size, texture, color, and other observable static and dynamic characteristics can be 
used to describe the object. For example, we might say: “the boy on the moving cart”; here, 
the cart is defined by its dynamic state “moving” and the boy is defined by its location “on 
the moving cart.” Another example will be “the dog that runs the fastest among others.”

Action involves a target object that may involve action. For instance, “he is catching the 
flying dragonfly.” This creates a recursion of actions. Similarly, an agent may be defined 
by its action that may involve its parameter defined by another object that is defined by its 
action, and so on. This also creates recursions.

Appearance often is used to identify an object and then may consequently infer on its 
attributes. Thus, Appearance and Actions including the target are the important factors in 
the similarity calculation. Dynamic attributes may or may not be important for similar-
ity determination. It is important to remember that similarity judgment is based on the 
agent’s sense—not the actual object’s attributes, but the agent’s attentive attributes.

For consistency, all numerical attributes can be normalized, ranging from 0 to 1. Agents, 
actions, and their parameters can be grouped into a small number categories for effective 
learning. Such categorization can be improved over time.

We have to emphasize that when Zda sees Lia in action, he may not be aware of all her 
action parameters. In fact, he may mistakenly identify Lia as someone else.

The action agent.compare has the form of

agent.compare(objs, attrs).

The parameter objs = often the two or more objects to be compared; attrs = static and 
dynamic or developed attributes for the comparison. The developed attributes can be 
music skills, math knowledge, number of friends, wealthiness, and so on.
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The outcome of a comparison between two entities can be differences in static attri-
butes, abilities, state, location, or differences in distance, speed, and observed qualities 
such as color, and may also include such differences over time and under acceleration. We 
might observe a difference of a difference: the distance between A and B is larger than 
the distance between A and C. Results of such comparisons are critical in forming many 
concepts; e.g., the concept of “close to” refers to the sense of relative location or the distance 
between two objects. The most commonly used comparisons between paired objects are 
attributes, location, speed, and difference in location. The action “compare” is constantly 
needed for an agent to identify objects and make decisions.

The action “say” takes the form of

agent.say(textString).

The single parameter textString represents what the agent says, not necessarily in any 
natural language (though agents can learn to speak in natural languages), and can involve 
nested strings as shown in the following example:

agent.say(“Lia.say(“Zda.see(Bob.run(…))”)”)

An agent can think of what actually happened (recollect) or some hypothetical scenarios 
that may or may not happen in the future (image).

• agent.image(eventString)—agent thinking of the event sequence represented by
eventString and leaving traces in the imagination net (Inet).

• agent.recollect(eventString)—agent searches the event path represented by eventString,
i.e., extracts the event-string of eventString from the Knet.

An agent may set his short-term or long-term goal using the intend action:

• agent.intend(goal, expectedProb)

Here the parameter goal is a node with a reward in the Knet. When a goal node is identi-
fied, the associated path from current position to the node can also be identified in the Knet. 
When the goal is set, the agent will keep the goal in his attention set from time to time until 
the goal is achieved or replaced by a new goal. The parameter expectedProb is the expected 
probability of success, which is determined by the relevant path in the Knet. Expectation 
and goal are two different things. We may intend to do something with a low or high expec-
tation of its success. When the expectation is not met, an agent would display his upset.

An agent can turn his self-awareness on or off using

• agent.turnSelfawarenessSwitch(on/off).

For a subobject action, at this moment we just consider facial expression using the action

• agent.face.act(expression)

The parameter expression has 12 possible values associated with facial colors, as discussed 
in Virtual Embodiment. The value or color will represent an emotional state. The facial 
expression will automatically be back to its default state just a few seconds after the action.
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17.5 Innate Action Abilities

We have discussed the passive or subconscious sensory abilities an agent has. In this sec-
tion, we discuss the innate abilities beyond the sensory organs: abilities to recognize and 
perform the elementary actions (identified as elementary tokens).

Before an agent can take an action, he needs to decide on a set of action options. The ini-
tial action list at birth or for a very young infant plays important roles in its early learning. 
This initial list is considered a set of inherited action abilities. To create such a list, we try to 
think what a very young infant can do. As we discussed earlier, a child (Zda) develops his 
gross motor control skills first, before acquiring and tuning fine motor control skills. For 
purposes of illustration, the gross motor skills are listed in (Tables 17.2A through 17.2E).

Each initial action has an associated probability to indicate how likely the agent will 
perform the action in a given condition. We have also listed some actions that may not 
look that elementary, but will be associated with very low probabilities. Doing so will be 
convenient from a coding perspective, as the agent can just modify the probabilities for 
these actions as necessary later on.

Each initial action also has a set of initial weights that associate with its parameters. 
These weights will be used to determine similarity in learning and response mechanisms. 
The weights can be updated by himself based on Zda’s experience.

There are different ways to define fine motor control skills. One way is to decompose a 
post or action into a limited number of movements or actions of different body parts. For 
instance, a hand may initially have 2 actions (gripping and releasing an object), the head 
can have 3 positions, there are 12 expressions for a face, 3 possible positions for an arm, 

TABLE 17.2A

Suggested Initial Actions—Group A

Name
in Agent.act

Parameters with
Mandatory Values Initial Probability

Energy
Cost

lookAt
lookAway
knockHead
shakeHead
walkTo
walkAway
Sleep
Laydown
crawl
Sit
Stand

target 1/11 0.001
0.001
0.005
0.005
0.010
0.010
0.000
0.000
0.005
0.001
0.002

TABLE 17.2B

Suggested Initial Actions—Group B

Name
in Agent.act

Parameters with
Mandatory Values

Initial 
Probability

Energy
Cost

agent.face.act Expression = happy
Expression = sad
Expression = neutral

⅓
⅓
⅓

0
0
0
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5 different leg positions, and so on. Over time, fine motor skills are developed so that 
each body part has more possible positions and more possible combinations of different 
positions, even though some of them are not viable (e.g., leading to falling down). Other 
aspects, such as vocal ability, will follow the same path: from “gross” to “fine” in process.

Fine Motor Control Elements:

Head (facing): a 3-angle vector (αh, βh, θh)
Eyes: a 2-angle vector (αe, βe) in relation to the face.

TABLE 17.2C

Suggested Initial Actions—Group C

Name
in Agent.act

Parameters with
Mandatory Values

Initial 
Probability

Energy
Cost

grab
throw
pick
hold
drop
pointTo
PointAt
shake
push
pull
rideOn
catch

target 1/12 0.005
0.005
0.005
0.005
0.000
0.001
0.001
0.005
0.010
0.010
0.010
0.010

TABLE 17.2D

Suggested Initial Actions—Group D

Name
in Agent.act

Parameters with
Mandatory Values

Initial 
Probability

Energy
Cost

eat/drink
readIn
readOut
write
Count

target (content) ⅕ 0.005
0.010
0.010
0.010
0.010

TABLE 17.2E

Suggested Initial Actions—Group E

Name
in Agent.act

Parameters with
Mandatory Values

Initial 
Probability

Energy
Cost

agent.sound textString:
cry
discomfort
laugh
curiosity
want
baba
mama

0.01
0.01
0.18
0.05
0.30
0.20
0.25

0.001
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Body: a vector (B1, B2, B3, θb) defined by the 3 points on the spine and a rotational 
angle around the spine.

Left-Arm: a vector (LA1, LA2, LA3, θLA) defined by the 3 points on the left arm and a 
rotational angle around the left arm.

Right-Arm: a vector (RA1, RA2, RA3, θRA) defined by the 3 points on the right arm and 
a rotational angle around the right arm.

Left-Hand: list poses {grip, drop, a snap of the fingers, …}.
Right-Hand: list poses {grip, drop, a snap of the fingers, …}.
Left-Leg: a vector (LL1, LL2, LL3, θLL) defined by the 3 points on the left leg and a rota-

tional angle around the left leg.
Right-Leg: a vector (RL1, RL2, RL3, θRL) defined by the 3 points on the right leg and a 

rotational angle around the right leg.

The parameters in fine motor control, such as angle vector (αh, βh, θh), will be discretized 
using some minimal increments. In general, a gross motor action can be defined by a set 
of fine motor actions.

17.6 Dynamic Knowledge Presentations

Zda has separated memory areas (Relational Database Tables) to ensure his functionality and 
efficiency in learning and response. For persistence, data from all tables are retained on com-
puter disk or in cloud storages. All tables except Knet are retrieved/preloaded into computer 
memory when Zda’s power is on, because the Knet may be too large to load into memory.

• Knowledge Net (Knet): The complete patternized real-world experiences saved in 
a cloud storage or on a computer disk; used for Deep-Thinking.

• Primary Knet (pKnet): A subset of Knet that only includes patterns with top M/5 
reward, top M/5 frequency, top M/5 recency, bottom M/5 duration, and top M/5 
survival time left. Here M is a larger number and may increase as Zda accumulates 
his experiences and knowledge. This subset of Knet will be loaded in memory for 
speedy learning and fast-thinking and slow-thinking responses.

• Meta Net (Mnet): If different patterns in Knet are linked at the same tokens, a 
large recursive knowledge net (Mnet) is formulated. Mnet has the same structure 
as Knet. A path in the recursive net may or may not actually happen; it might be 
from logical reasoning or a hypothesis that should be tested. Mnet is useful in 
deep-thinking.

• Natural Language Net (Lnet): the patternized natural language based on the 
agent’s experiences, but different from the grammars we humans use in any natu-
ral language. The net structure is similar to Knet.

• Imaginary Net (Inet): It is similar to Knet structurally but formulated by hypo-
thetical scenarios that have not been executed or verified by logical reasoning 
or mathematical derivation. Such scenarios can only be kept for a short time 
unless they could lead to serious undesirable consequences. Inet is often used in 
Deep-Thinking.
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• Deep Gramtons (Dgrams): A goal-driven action requires the agent to set up his goal 
first. A short-term or long-term goal from conscious attention in Deep-Thinking
will be randomly picked from either gramtons with the shortest durations or the
top rewarding gramtons (Dgrams). Dgrams consist of the patterns from pKnet.
Therefore, Dgrams have the same attributes as the Knet.

• Reflexons: A Reflexon Class is a pair of timewise highly associated tokens
(2- gramtons) used in Reflex. The first token (event) is called stimulus and the second 
token (action) is an actionable elementary token, called a reflexor. The reflexor usu-
ally occurs immediately after the stimulus. Here, the meaning of “highly associated 
tokens” is that the conditional probability of relexor, given the simulus, is virtually
equal to 1. In other words, a stimulus has and only has a reflexor. Most habits can
also be viewed as reflex and modeled by 2-gramtons. The Reflexon includes five
attributes: tokenID, stimulus, reflexor, freq (frequency), and pReward (patternive
reward). All the information in a Reflexon is recorded in Knet. In Knet, each paired
stimulus and reflexor is recorded with the same tokenID in the Reflexon and an
associated pattern with the first token as stimulus and the second token as reflexor.

• Associative Gramtons (Agrams): A collection of 2-gramtons used for attention
shift due to the association. All 2-gramtons in the Agrams class have high con-
ditional probabilities of the associated tokens (AssToken); given the attentive
tokens (AttToken), they are high either in frequency, similarity, or reward. Such a
2-gramton may indicate an association (Refer-To) between a pattern and its name
in natural language. A refer-to association can lead to a language-guided action,
such as an action following a friend’s request. All the information in Agrams is
recorded in Knet. In Knet, the paired AttToken and AssToken are recorded with
the same tokenID as in Agrams and an associated pattern with the first token as
AttToken and the second token as AssToken.

• Desensitisors: A list of one-gramtons and corresponding elements, to be used to
determine if a token belongs to an existing desensitisor, or for a given desensitisor
to choose an element from it.

• Elementary Gramtons (Egrams): A subset of Knet that only includes high- frequency
and high-reward elementary 2-, 3-, and 4-gramtons; used for Fast-Thinking.

• Subconscious attention set (SAS) as a property of Knet: SAS is an array that has up to 
3 objects with the highest subconscious attention on their attributes. SAS includes
the following attributes: d, the distance between Zda and the object; S, the speed
of the object; and n, h, M, T the intensities of smell, sound, temperature, and taste,
respectively. ISA is shorthand for instant subconscious attentivity based on SAS.

• Recency Subconscious Attention Set (RSAS) as a property of HumanizedAI class:
RSAS up to 64 tokens at 16 time points for Slow-Thinking. The 64 tokens record
the details of recent events.

• Milestone Gramtons (Mgrams): The Mgrams class records significant historical
events in detail including the associated time and duration.

• Cause to effect net (CEnet): List of 2-gramtons, each pair having an associated
probability.

All these knowledge networks (tables) are formed and constantly updated based on Zda’s 
experiences (including what he has been taught), i.e., his past attention sets, not exactly 
what may have happened in the real world.
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The Knet and pKnet Class (database Table) has the same structure, including the fields 
(attributes): Token ID (tokenID), Pattern-Type (pType), Pattern (Path), Frequency (Freq), 
Patternive Reward (pReward), reward type (rType), Distributive Reward (dReward), 
Recency (Rec), Duration (Dur), and Name in natural language (NNL) if any. The reward, if 
any, is always for the agent of the Knet. Duration is the duration of such a composite event 
indicated by the pattern. tokenID is the token name when the pattern is viewed as a higher 
level token. rType has initially limited types including “food” and “entertainment,” NNL 
has initially no values, but will be filled in by Zda himself through learning strong asso-
ciations between tokenIDs (Patterns) and words in a natural language. pType can be one 
of the 15 possible Pattern types and 8 types of language patterns specified in Section 11.3. 
pType is useful for easy tokenization of patterns.

We must make the following clarifications:

1. All high-level tokens are presented by 5-letter tokenIDs generated from the Auto 
Naming system (Chapter 9), e.g., GFtRS. Among them, the tokenID for a pattern that 
only contains natural language elements will start with the capital letter ZFtRS.

2. The tokenID for an elementary token is a 5-letter string with “0” appended to 
the end, e.g., FDGRw0 a general pattern and ZFDsk0 for a pattern in a natural 
language.

3. A skipton can include paired or tripled desensitisors. For the purpose of hier-
archical detokenization, in naming desensitisors, a desensitisor’s tokenID is 
constructed by appending a sequential number to the tokenID of the associated 
skipton. For instance, if the tokenID for the skipton is ADShD, the desensitisor 
names will be ADShD1, ADShD2, and ADShD3, etc., depending on the number 
of desisentisors in the skipton. In this way, given a tokenID (e.g., ADShD) for a 
skipton, we can easily reconstruct the skipton. That is, we know where to find the 
relevant desensitisors.

4. Patterns are usually expressed in a sequence of tokenIDs. For example,

FtRS⭇GFtRS ⭇FDGRw0∧ZFDsk0

5. A pattern for an elementary (atomic) natural language pattern is a single word in 
natural language, e.g., “Daddy” for the pattern with tokenID = ZFDsk0.

6. A pattern (Egram) for an elementary token is the definition of the token, expressed 
(coded) somewhat like in Table 17.2 of Part IV, e.g., Zda.act(“walk”, step = 3). Egram 
might include some of the desensitisors of elementary tokens by dividing the 
parameters of actions into categories. The data structure of Egram includes attri-
butes: tokenID, action definition and its parameters, initial probability, energy 
cost, and pReward.

7. A desensitisor can be a high-level or elementary token with the auto-naming con-
ventions. The Pattern attribute for a desensitisor is a list of one-gramtons with a 
high-frequency or an associated high reward. The Egrams have the same attri-
butes as in Knet. All the information in Egrams is also recorded in Knet. The sepa-
rate OOP class for desensitisor is used for the purpose of computational efficacy, 
even though the same information has been included in Knet.

All above OOP classes have corresponding database tables with matched attributes for the 
requirement of knowledge persistence.
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17.7 Innate and Developed Habits

As we have discussed in Part III, innate habits ensure that an agent does things consis-
tently, not changing easily over time. Such consistency is needed in learning and commu-
nication. Innate associations between innate abilities, such as between facial expressions 
and body language, create habits. A habit can be inherited or developed. Habits can 
change slowly over time or go away when they are not needed anymore. From a modeling 
perspective, the tendency of taking one or a sequence of actions with a large probability 
is called a habit. Therefore, a habit can be modeled using an n-gramton or skipton with a 
high frequency or probability.

• Biological Desires and Feelings (pleasure, pain, hunger, anger) cause attention and
drive actions. For instance, when feeling pain or hunger, a baby Zda will cry, while
feeling happy or tickling will lead to him smiling or laughing.
How to implement:
(1) Create a timer to constantly monitor Zda’s sensation, (2) if sensation = pain,
trigger the “cry” sound; if sensation = tickling or happy, trigger the laugh sound,
(3) when the energy level < Ec, Zda will be hungry, and (4) create a timer for con-
stantly checking the energy level.

• Zda’s energy decreases over time. Before taking an action, the agent will check if
he has enough energy. An action costs energy.
How to Implement:
Using a time-decay function: energy = energy-Ea*time-elapsed, if the action costs
more energy than the energy that’s left, the agent would not take the action. Here
Ea is Zda’s property.

• Baby Zda has low sensitivities to the environment, his world is simple.
How to Implement:
It is implemented using limited sensitivity levels in each sensory organ, as shown
in Table 17.1, Virtual Embodiment.

• Baby Zda is more imitative, becomes more creative when young, and less creative
when getting older.
How to Implement:
Use individualized time-sensitive creativity parameters in the umbrella-shaped
creativeness in fast-thinking: Pc = Pcm*(1-(age-Ca)2), and an age timer; Pcm may be
called the maximum creativeness and Ca, the most creative age.

• Baby Zda initially tends to walk or reach to an object in his attention.
How to Implement:
Use a high initial probability of the walkTo() and Grab() actions as shown in Table
17.2: Initial Action List.

• Baby Zda likes to grab anything small and put it in his mouth to suck on it.
How to Implement:
This can be implemented using a 2-gramton with a paired parameter ObjA: Zda.
grab(ObjA) Zda.eat(ObjA). The initially associated probability is set high and the
conditional probability of the second token given the first token is also high. This
2-gramton with a parameter can be considered as a reflexon. A reflexon has a very
high conditional probability.
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• Zda likes to perform cognitive learning, which is often an application of the simi-
larity principle.
How to Implement:
See implementations in Deep-Thinking.

• Given that everything else is the same, Zda more likely pays attention to objects’ 
attributes than the differences in attributes between objects: differences in dis-
tance (close to), velocity, size, color, brightness, sound, loudness, smell, and other 
sensible attributes.
How to Implement:
It is considered in attention mechanisms and the agent.compare action.

• Zda constantly monitors the distance of the attentive objects all the time.
How to Implement:
At each attention time point, calculate the distance for each object nearby (the 
nearby is determined by the distance at the previous time point) in the scene, and 
then determine the subconscious attentivity. For a robot, such calculations may 
not be needed if the vision can determine the distance automatically.

• When Zda wants to look for something in reality, he will walk around and when 
a match is found he will walk toward it and do something with it.
How to Implement:
If Zda’s goal is to find a thing, he will recall the thing and search nearby objects for 
a match; if the thing to be searched is abstract, he may search in his Knet.

• Attention means that Zda will likely act on the attentive object, which may mean 
looking at it, looking away, talking about it, walking to it or walking away, picking 
it up, punching it, grabbing it, throwing it away, and making association(s) among 
the attentive items.
How to Implement:
This habit is reflected in the Randomized Adaptive Reinforcement Learning 
found in Part III.

• Zda likes to balance his energy and physical body.
How to Implement:
To be considered in Robots.

A habit can be developed when an action or sequence of actions is repeated very often. 
Such a habit will become a high-level token through hierarchical tokenization. When a 
habit involves a sequence of actions, it can also be considered to be due to association.

17.8 Innate Attributes and Initialization

An agent has to be initialized when he is created. The initialization is classified as, physi-
cal property, innate attributes, and Net objects’ initializations. For persistence, these data 
and new data (mainly patterns) created during interactions will be serialized and saved 
mainly as relational database tables on a computer disk or some remote cloud. The com-
puter is usually left on so that agents can work constantly without a break. If for some 
reason it has to be shut down, and turned on again, the HAI system will reload all the data 
from cloud storage back to memory via the reverse process, deserialization.
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Physical Properties of a Thingy as Discussed in Virtual World Simulations:

• name in Coding (not a name in a natural language).
• age = elapsed time from the object’s creation.
• sex = male or female
• Appearance(shape, size, texture),

• shape = triangle, square, circle, star, pentagon, hexagon, which serves as a
visual identification of a class of object.

• size = an integer to indicate the size of an object.
• texture = an integer to indicate the surface texture characteristic, may be used

to identify each object for a given class.
• phyChem = a value associated with the object’s physical or chemical property.
• Color(color, brightness), Sound(sound, loudness), Odor(odor intensity)

• color, sound, odor = a value associated with the object’s color, sound, odor.
• brightness, loudness, intensity = a value indicating brightness, loudness, intensity.
• Face default color, the facial image can only have 2 colors picked from 4 colors

(red, green, yellow, blue), a total of 12 possible combinations (expressions).
• taste = binary value indicating edible or not.
• temperature = a value to indicate the object’s temperature.
• mass = mass of the object
• Location(x, y, z) = location of the object
• Velocity(vx, vy, vz) = velocity of the object, speed is the magnitude of the velocity.
• utility = drivable for car, water can put out fire, light can enlighten a room, etc.

Innate Attributes as Discussed in Virtual Embodiment and Habits:

• W0, W1, and W2 are coded as inherited attributes and can be updated depending
on interests developed over time for subconscious attentivity.

• probability parameter p in associative search or attention shift.
• Ct, Cr, Cf, Cs, and Ce in response models.
• Ca in determining the time to the next subconscious attentive time point, t = Ca/

ISA, where ISA is Instant Subconscious Attentivity (see Dynamic Attributes below).
• Ea in energy = energy - Ea *(time-elapsed)

• Ec in energy when energy < Ec, Zda is hungry.
• The maximum creativeness, Pcm and the most creative age, Ca in umbrella-shaped

creativeness: Pc = Pcm (1 - (age - Ca)2).
• Parameter Cg in longevity of patterns, Cg Freq Reward

N n⋅ ⋅
⋅

Dynamic Attributes:
The agent’s dynamic attributes will include:

• Subconscious attentivity set, SAS(t), at the current time t consistent of 4 objects
with the top attentivities among all objects in the environment.
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• The 12 objects in SAS at time points t-2, t-1 and t will be stored in array attribute, 
SAS12. Similarly, the 60 objects from SAS at 15 time points t-14, t-13, …, t-2, t-1, and 
t, 4 objects at each time point, will be stored as array attribute, SAS60.

• The maximum activity in SAS is called Instant Subconscious Attentivity (ISA). 
The maximum ISA at time t-2, t-1, and t is called Fast-Thinking Subconscious 
Attentivity (FTSA), and the maximum ISA at times t-14, t-13, …, t-2, t-1, and t is 
called Slow-Thinking Subconscious Attentivity (STSA).

• CAS, the shortcut for Conscious Attention Set.
• NAT, Next attentive time point.

Agent Initialization:

• Limited number of categories for each sensory organ, as shown in Table 17.1.
• Initial probabilities of elementary actions: See Table 17.2.
• All actionable (elementary) tokens are assigned initially a small patternive reward 

(e.g., 0.01).
• Before Zda developed a list of interesting things for conscious attention, he had an 

initial (born with) set of interesting things for conscious attention.
• Retrieve relevant Knet database rows and create temporary Tables into corre-

sponding Net objects in the computer memory.
• Auto-naming system parameters: Knet.nameMaxIndex = initial number of initial 

elementary tokens, Knet.zNameMaxIndex = initial number of elementary words.

Initial Desensitisors:
The list of initial Desensitisors will be based on the following grouping.

• Actor = any given actioner
• Agent = any HAI agent
• Animal = any type of animal
• Food = any object with milk smell
• Action = any given action regardless of parameters
• ActionSameTarget = any given action with the same target

17.9 Innate Mechanisms

There are three main mechanisms in HAI architectures (Figure 17.2):

• Attention Mechanism: Subconscious Attention, Conscious Attention, and Associative 
Attention Shift.

• Response Mechanism: Reflex, Fast-Thinking, Slow-Thinking, and Deep-Thinking 
Mechanisms.

• Learning Mechanism: Hierarchical tokenization, Patternization, and Repatternization, 
and the forgetting mechanism.
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The simulated virtual environment, including the agents themselves, consists of ele-
mentary tokens. Thus, to Zda, observables through his sensory organs are the elemen-
tary tokens. The observed elementary tokens assemble the attention set, which may 
trigger a reflex or thinking (fast-thinking, slow-thinking, and deep-thinking). Reflex 
is based on an expandable list of 2-gramtons (not necessarily elementary tokens) with 
high frequencies or high positive rewards. Fast-thinking is mainly based on an expand-
able list of 2-gramtons and 3-gramtons with high frequencies and/or high rewards. 
In slow-thinking, the long event-string of elementary tokens are conceptualized into 
shorter (≤4) high-level tokens through hierarchical tokenization. In deep-thinking, 
repatternization of conceptual tokens may occur at “sleep time.” Goal-driven action and 
cognitive learnings also occur in Deep-Thinking. The response mechanism is discussed 
in Part III, Chapter 14, and the blueprint of the overall response mechanism is shown in 
Figure 14.5. The pattern structures in Knet and Learning Mechanism are discussed in 
Part III, Chapters 12 and 13, respectively. The components of the Learning mechanism 
are outlined in Figure 13.1.

17.10 On Simulations and Animations

If every object has a separate CPU, then “everyone” works independently (this is more 
realistic) and CPU speed reflects an individual’s abilities. However, in my demonstrations, 
only one CPU is used, and CPU time distribution is avoidable. Zda needs to monitor the 
external world defined by the attentive animal’s language (sequence of voices), expression 
(face), post, and motion (of skeleton) as listed in the Table of Zda Prototype for  virtual 
embodiment. In addition, the location and speed of attentive moving objects are also 
monitored.

To speed up the animations, the demonstrations can proceed with two steps: (1) the 
empty proxy animation functions with parameters are called initially at real time so that 
no actual animations are performed during interactions, and the sequence of those proxy 
animation function calls are recorded in a file, (2) the real animations are performed by 
reading in the file and linking the proxy functions to the corresponding actual animation 
functions. Therefore, Zda’s visual recognitions are simplified by reading the correspond-
ing attributes of the object, such as geometric shape, size, and color. In the condition of 

FIGURE 17.2
Overview of humanized AI architecture.
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virtual agents, not robots, the tactile sense is also reading from the object’s attributes, the 
same for smell, sound, and taste. Animation is generally faster using GPU. The main dif-
ference between CPU and GPU architecture is that a CPU is designed to handle a wide-
range of tasks quickly (as measured by CPU clock speed), but is limited in the concurrency 
of tasks that can be running. A GPU is designed to quickly render high-resolution images 
and video concurrently. However, newly proposed algorithms proposed by computer sci-
entists from Rice University could actually turn the tables and make CPUs much faster 
than some leading-edge GPUs.
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18
Implementations of Innate Mechanisms

We discuss functions or methods in OOP class. For each module, we will use NL descrip-
tions, mathematical formulations, and OOP conventions for clarity and conciseness.

For a robot, identifying objects is a much-needed skill, since the same object appears 
different every time. For instance, every person is changing every second. For agents in 
computers, we could simply use the agent name in the computer code to codify its identity 
so that we can focus on Zda’s language learning and thought process. Similarly, a robot 
has to be able to detect an object’s distance and speed; for Zda, we just use the coordinates 
of objects in the computer code to determine the distance and speed for the same reasons. 
The same token applies to smell, brightness, and other sensible attributes.

List of Modules (OOP methods or functions) in this section are grouped into seven cate-
gories (List 18.1). Module Inception is the startpoint of the HAI agent system. The numbers 
in the parentheses, before a semicolon indicate which modules will invoke the module, 
and the numbers indicate which modules it invokes. For example, “FastThink (8; 35, 47, 
56)” means module Inception will invoke FastThink and FastThink will invoke modules: 
ExpectedTokens, RandomizedAdaptiveRL, and Animation.

Auto Naming System
1. AutoName (27, 48; 2)
2. nameByPermutation (1;)
3. AtomicTokenID (19; 1)
4. ExtractNets (8;)

Biosystem Simulation

5. HumanizedAI (OOP Class;  
6, 7, 8)

6. Embodiment (5;)
7. AtomicActions (5;)
8. Inception(5; 9, 10, 19, 31,  

39~42)
9. BioClock (8, 10;)

10. Biodesires (8; 9)
11. Emotion
12. EmotionChanged (auto)
13. PatteniveReward
14. DistributiveReward
15. CollaborativeReward

16. Crossover (18;)
17. Mutation (18;)
18. Evolution (; 16, 17)

Attentions

19. SubconsciousAttentionSet  
(20~21; 3)

20. FastThinkingAttentionSet (19;)
21. SlowThinkingAttentionSet (19;)
22. ConsciousAttention (47; 37)

Tokenization and Patternization

23. Tokenization (24, 29, 30;)
24. HierarchicalTokenization (42; 23)
25. RandomRow (34, 49, 51, 57;)
26. Gramization (28;)
27. Patternization (28; 1)
28. Repatternization (43; 26~27)
29. RecycleTokenID (31;)
30. MetaPath (42;)
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31. Forgetting (8;)
32. FreewillRandomizer (22, 43, 46, 50;)

Response Models

33. ExpectedTokens (40, 46; 25, 34, 38)
34. JaccardSimilarity (33, 37~38;)
35. ExpSimilarity (37;)
36. CosineSimilarity (37~38;)
37. AggregateSimilarity (38; 34~35)
38. SimilaritySearch (33, 41~42; 34~37)
39. Reflex (8; 54)
40. FastThink (8; 33, 45, 53)
41. SlowThink (8, 46; 24, 33, 45, 53)
42. DeepThink (8; 28, 43~44, 52~53)
43. GoalSetting (42; 32, 49, 51)
44. CognitiveLearning (42; 22, 50, 55~59)
45. RandomizedAdaptiveRL (40~41; 32)
46. GamingPrediction (; 42, 34)

Action Types

47. Imitation (51;)
48. Creation (51; 25)
49. Recollection (; 32)
50. AttentionShift (44; 25)
51. Imagination (; 47~48)
52. GoalDrivenActions (42; 38)
53. Animation (39~42)

Cognitive Reasoning

54. Detokenization (56, 58)
55. Induction (44; 25)
56. Deduction (44; 55)
57. Analogy (44)
58. Abduction (44; 54)
59. CauseToEffect (44;)
60. RecursionOnEverything

LIST 18.1 Modules in humanized AI and their relationships.

18.1 Auto Naming System

Because Zda’s knowledge will increase through learning automatically, an auto- 
naming ability for elements (tokens, patterns, desensitisors, sensitisors) of such 
knowledge is necessary. We equip (coding behind scene) Zda with a Five-Letter 
Coding system: elementary tokens, hierarchical tokens, patterns, and words and 
word- patterns in natural languages are coded in a 5-English-letter coding system 
(a – z, A – Z), e.g., after and WagUs. In the 5-letter universal code system, all natural 
language words and their hierarchical tokens always start with capital letter Z. In 
other words, all pure natural language tokens (or pattern) and only pure natural lan-
guage tokens start with the letter Z.

Each elementary token or initial desensitisor is given a unique name statically at the 
design stage, while a pattern, desensitisor, or sensitisor is given a unique name dynami-
cally in real time. Since each name is 5-characters long, the naming system can provide 
525 = 380 millions different names, including 524 = 7 million names for coding pure lan-
guage (tokens, patterns, and desensitisors). An event-string patternization always starts 
with natural language tokenization and patternization within the event-string. Therefore, 
the auto-naming system includes auto-naming for natural language and auto-naming for 
general events. All tokens in an event-string or a pattern are represented by a sequence of 
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names (tokenID) of patterns, not in the structures of elementary tokens. This is possible 
because each elementary token also has its name. However, an elementary token has to be 
represented by its actuarial structure, e.g., elementary token BSDTY may be expressed in 
walk(step =5). The name indicates the sequence of {aaaa, aaaab, aaaac, …, aaaba, aaabb, …, 
ZZZZa, ZZZZb, …, ZZZZZ}.

In addition to a skipton (pattern) name, the associated one desensitisor or two paired 
desensitisors in a skipton will need names. The desensitisor’s name is obtained by add-
ing a sequential number to the skipton name. For example, if skipton’s name is Hahds, 
the names for the associated desensitisors will be Hahds1, Hahds2, …, depending on the 
number of desensitisors. The multiple desensitisors are always paired or tripled, etc. Each 
elementary token name or tokenID will be appended a “0” in the end.

To outline the auto naming algorithms:

1. Ensure to use a name from the recycle bin first if any.
2. Generate unique 5-letter name as tokenID for each pattern (gramton or skipton)
3. A tokenId starting with capital letter Z is reserved for a pattern of pure natural 

language.
4. If the pattern is a skipton, generate a tokenID for each desensitisor by appending 

a sequential number 1, 2, or 3 to the skipton name.
5. If the pattern is simply an elementary token, append “0” to the name to form the 

final tokenID.

The purpose of the following module is to generate a unique name to token, pattern, 
desensitisor, sensitisor for general event-strings including event-word mixtures, more 
precisely, to generate unique tokenID of patterns in different Knets (Section 17.6). Here, the 
parameter patternType should be “Event” for a general pattern or “NL” for a pure natural 
language pattern.

AutoName(patternType) {
// names of died patterns are removed from Knet and put in namaRecyleBin
If (nameRecycleBin.size > 0) { // Use a recycled name first if any
        name = nameRecycleBin[1]
        nameRecycleBin.delete(index = 1)
Else
        name = nameByPermutation(patternType)
}
TokenIDs[1] = name           // tokenId for gramton
TokenIDs[2] = name.app(“0”)  // tokenID for atomic token
TokenIDs[3] = name.app(“1”)  // tokenID for desensitisor of the skipton
TokenIDs[4] = name.app(“2”)  // for paired desensitisor of the skipton
TokenIDs[5] = name.app(“3”)  // for tripled desensitisor of the skipton
TokenIDs[6] = name.app(“4”)  // for quadrupled desensitisor of the skipton
Return TokenIDs
}

The purpose of the following module is to use permutation of letters at the 5 position to 
form a name.
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nameByPermutation() {
letters = [a, b, c, …, z, A, B, C, …, Z]
//Event-name coding system
Knet.nameMaxIndex = Knet.nameMaxIndex + 1
nIndex = Knet.nameMaxIndex    //the max index for pattern name used
index[5] = Math.mod(nIndex, 52) + 1 //Get the remainder of the division
nIndex = nIndex - index[5]
index[4] = Math.mod(nIndex, 52^2) + 1
nIndex = nIndex - index[4]*52
index[3] = Math.mod(nIndex, 52^3) + 1
nIndex = nIndex - index[3]*52*52
index[2] = Math.mod(nIndex, 52^4) + 1
index[1] =  nIndex - index[2]*52*52*52 + 1
If (type = “ NL”) { index[1] = 52}  //A word-token starts with capital letter Z.
For i = 1 To 5

name = name.app(letters[Index[i]])
Next
Return name
}

Elementary tokens. including words in natural languages. will be mapped to the standard 
5-letter auto-naming system by means of the following module:

AtomicTokenID(patternIn, patternType) {
For Each token In patternIn

If (Knet.Pattern.tokenID.find(token) < 1) {
newPattern.tokenID = AutoName(patternType)
newPattern.freq = 1
Knet.Pattern.add(newPattern)
If (patternType = “NL”) { // Also add to NL net

Knet.Pattern.add(newPattern)
}

}
Next
}

The purpose of the following module is to extract different subnets (see Section 17.6) from 
Knet. The module should be invoked periodically (e.g., daily) to keep all net information 
up to date.

ExtractNets() {
// depending your system, may use QOL to extract data from Knet
// Omitted.
}
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18.2 Biosystem Basics

18.2.1 Inception of Humanized AI

HumanizedAI() {  //the OOP Constructor, called at instantiation.
Embodiment()     // assign agent’s static features
AtomicActions()  // Elementary actionable tokens
Inception()      //Agent life begins
}

The purpose of the module Embodiment is to assign the new agent’s static attributes and 
Knet structure as discussed in Part III. Coding the module is straightforward, but tedious, 
and so is omitted here.

Embodiment()  {
// Omitted, to follow instructions in Part III
}

The purpose of the module AtomicActions is to assign the initial atomic actions (elemen-
tary tokens) and habits described in Part III.

AtomicActions()  {
// Omitted but follow instructions in Part III
}

Inception means the birth of an HAI agent. From that time on, the biological clock is tick-
ing and the system becomes alive. The module (also called OOP method, function, or pro-
cedure) Inception will do the following:

1. Invoke the Biodesire module to set up the agent’s desires.
2. Invoke the SubconsciousAttention module.
3. Instantiate AttentionClock with the next attention time (NAT).
4. At the attention pulse rate, invoke the Reflex, FastThink, SlowThink, or DeepThink 

module based on attentions.
5. Periodically remove unused (dead) patterns.
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Inception () {
Biodesires(300) // Every 5 minutes update desires
SubconsciousAttentionSet()
//The AttentionClock() should be refresh once NAT changes
AttentionClock = BioClock(ME.NAT)
// Decide the response model to invoke
AttentionClock.pulse() {
  If (ISA >= Cr) {

Reflex()
  ElseIf (FTSA >= Cf)

FastThink()
  ElseIF (STSA >= Cs)

SlowThink()
  Else

DeepThink()
  }
}
// Periodically (24 hours) remove unused patterns.
Forgetting(24*60)
// Periodically (24 hours) refresh all nets
RefreshClock = BioClock(24*60)
RefreshClock.pulse() {

ExtractNets()
}
}

18.2.2 Biological Clocks

Zda’s Biological Clock is an imprecise clock built from the computer clock with a small 
random variation added. Zda uses the biological clock to time and record events happen-
ing internally and in his surroundings. The BioClock(period) can be instantiated as many 
times as needed on timers: hourly, daily, weekly, monthly, seasonal, and yearly timers. A 
period of 24 hours indicates a day. The concepts of month and year are learned. A Bioclock 
object has an inherited BioClock.pulse event module. Statements within the pulse event 
module will be executed periodically (i.e., every period second).

The purpose of the following module is to create a timer with Period = period.

BioClock (period) {
aClock = system.timer(period) //computer cock
Return aClock
}

18.2.3 Biological Desires

As discussed in Part III Chapter 10, the biodesire mechanisms are as follows. (1) The mini-
mal consumption of energy is Ea × (time-elapsed); when the energy level < Ec, Zda will be 
hungry; actions cost energy, and food boosts energy. (2) Entertainment boosts emotion 
and raises the sensation level. (3) Curiosity can be reduced due to, e.g., a question being 
answered, but it will automatically come back to a higher level shortly afterward. In addi-
tion, energy level and emotion (sensation) will also affect the level of curiosity. See the 
following OOP-like code for details.

We create a timer to periodically adjust Zda’s energy level. The purpose of the following 
module is to determine the energy level. The procedure biodesireTimer.puls() is auto trig-
gered in every predefined time interval.
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Biodesires(pulseInterval) {
//Create a timer with pulse interval = pulseInterval
biodesireTimer = BioClock(interval = pulseInterval)
biodesireTimer.puls(){ // auto triggered every pulseInterval second
// minimal consumption of energy
ME.energy = Math.min(ME.energy - ME.Ea*pulseInterval, 0)
// Auto backup curiosity
ME.curiosity = Math.max(ME.curiosity + ME.Ea*pulseInterval, 1)
// Curiosity adjustment by energy and emotion
lessCuriosity =  (1-ME.energy) +(1-ME.heart.sensation)
ME.curiosity = ME.curiosity - lessCuriosity
If (ME.energy < ME.Ec) { //energy < Ec, Zda will be hungry.
        ME.hungry = TRUE
        ME.desire = “food”
ElseIf (ME.heart.sensation < ME.Ec)  //desires entertainment.
        ME.desire = “entertainment”
Else
        ME.desire = “curiosity”     
}
}
}

18.2.4 Emotion Simulations

The intensity of a feeling (incremental sensation) is discussed in Section 10.10.

 =Incremental sensation (what is received minus expectation)/expectation

The associated rewards with patterns in a Knet determine the expectation by: the average 
(R) of rewards associated with the candidate action paths from RARL and the reward (R0) 
associated with the chosen action path. The expectation = 0.1R+0.9R0 is an example of a 
weighted average.

The purpose of the following module is to calculate the incremental sensation and 
update sensation states. This module should be invoked within the atomic action modules 
if there is any associated cost or reward.

Emotion(actualReward, expReward) {
dSensation = actualReward/expReward -1  //Incremental sensation
//Heart is the home for feeling: a higher sensation is better.
ME.heart.sensation = ME.heart.sensation + dSensation
Return dSensational
}

Biological Desires and Feelings (pleasure, pain, hunger, anger) cause attention and drive 
actions. For instance, when feeling pain or hunger, the baby Zda will cry, while feel-
ing happy or tickling will lead him to smile or laugh. Such an instinct is determined by 
Zda’s inner state: sensation and triggered by the event-module SensationChanged() or 
EmotionChanged() automatically whenever sensation changes, instead of using separate 
reflexons.

Algorithms: (1) create a timer for constantly checking energy level, (2) If sensation = a 
low (pain), trigger the “crying” sound, (3) if sensation = a higher value (happy), trigger the 
“laughing” sound.
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A few feelings and associated (facial) expressions are inherited, such as hunger, pain, 
pleasure, sadness, and anger. This nature (instinct) characteristic can be changed and 
replaced with some nurture habits (high-frequency 2-gramtoms). More expressions can be 
developed as consequences of social interactions.

The purpose of the following module is to set the corresponding value for emotion state 
and will be triggered whenever emotion changes.

EmotionChanged () {
Switch (ME.heart.sensation) {

Case value 1  //Pain, mad, sad
ME.sound(“crying”)
ME.facialExpression[1]

Case value 2  //Defalt
ME.facialExpression[2]

Case value 3  //Happy, pleasure, tickling
ME.sound(“laughing”)
ME.facialExpression[3]

}

18.2.5 Rewards

A patternive reward (PR) is recognized by a change in Zda’s internal states (hunger or sen-
sation). External environments can affect Zda’s internal states. For instance, virtual food 
can change hunger and virtual entertaining activities can increase Zda’s sensation level. 
When a PR is recognized, it indicates the end of a string segmentation or an elementary 
pattern. The purpose of the following module is to determine the patternive reward, which 
is a subclass of Thingy with attributes of energy and type (food, entertainment). Module 
PatteniveReward should be invoked whenever an action is taken; thus, it’s better to call 
it within each action module. The reward should be relevant to the current pattern (the 
actions immediately before the reward due to the laws of association) and the new patter-
nive reward should be the frequency-weighted average of previous and current rewards.

PatteniveReward(type, value){
// It is invoked whenever an action is taken.
pReward.reward = value
pReward.type = type
If (type = “food”) {

ME.energy = ME.energy + value
}
If (type = “entertainment”) {

ME.heart.sensation = ME.heart.sensation  + value
}
// increase the reward for the current pattern by value/freq
cID = ME.Knet.crrenttokenID
freq = ME.Knet.Pattern[cID].freq
reward = ME.Knet.Pattern[cID].reward
ME.Knet.Pattern[cID].reward = (reward*freq+value)/(freq+1)
Return pReward
}

When a Patternive Reward (PR) is received, Zda needs to update the associated distribu-
tive and collaborative rewards.
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Distributive Rewards will be updated according to the following formulation:

 ( ) ( ) ( ) ( )
( )

= − − +
 

1 1 /
DR t

DR t f t PR t N
f t

for each actionable token (node) of a given pattern (path). PR(t) is the patternive reward 
received at time t, N is the number of related actionable tokens in the pattern, f(t−1) is the 
frequency of receiving distributive rewards (without future-discount) at the node (token) 
up to time t−1, and the updated frequency for the node at time t is f(t) = f(t−1)+1.

All actionable (elementary) tokens are assigned initially a small patternive reward (e.g., 
0.01). Patternive Rewards sometimes exist in the verbal form or as other reward proxies, 
such as when parents tell their children how important their education will be. In Zda’s 
Knet, a reward to an agent is measured from Zda’s viewpoint, not as what the agent actu-
ally receives. Likewise, in Lia’s Knet, a reward to an agent is assessed in terms of Lia’s view.

The purpose of the following module is to calculate the distributive reward.

DistributiveReward(stringIn, PR) {
// DR = distributive reward.
For Each pattern In Knet.Pattern
       If (pattern = stringIn) {
                N = 0  // occurrences of the receiver appear as actioners
                For Each token In pattern
                       index = token.search(“.”)  // token = actioner.act()
                       actioner = token.substring(index - 1)
                       If (actioner = ME) { N = N + 1 }
                Next
                DR =  pattern.dReward*pattern.freq + PR/N
                disReward = DR/(pattern.freq + 1)
                Knet.Pattern.dReward = disReward
                Knet.Pattern.freq = pattern.freq + 1
                Break
       }
Next
Return disReward
}

The purpose of the following module is to calculate the collaborative reward.

 
CollaborativeReward(stringIn, PR) {
// PR = patternive reward. CR = collaborative reward.
For Each pattern In Knet.Pattern
       If (pattern = stringIn) {
                CR =  pattern.CR*pattern.freq + PR/pattern.size
                coReward = CR/(pattern.freq + 1)
                Knet.Pattern.CR = coReward
                Knet.Pattern.freq = pattern.freq +1
                Break
       }
Next
Return coReward
}
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18.2.6 Evolutionary Mechanism

Evolutionary Mechanism: Unlike other innate knowledge and mechanisms, evo-
lutionary mechanisms only affect innate things across different generations. 
Zda’s evolutionary mechanism is similar to Darwin’s natural selection, includ-
ing reproduction, inheritance, individual variation, and competition under lim-
ited resources. See Section F.3 in Appendix for Genetic algorithms and Genetic 
programming.

Natural Selection: During each successive generation, a portion of the existing popu-
lation is selected in the breeding of a new generation. Individual solutions are 
selected through a fitness-based random selection process. Fitness at any moment 
is measured by the cumulative rewards that the HAI agent has received.

The “genetic make-up” is represented by HAI agent’s 6 sets innate attributes as discussed 
in Section 17.9:

1. Organ Sensitivity parameters, W0, W1, and W2 in subconscious attentivity.
2. Probability parameter p for attention shift.
3. Characteristic parameters, Ct, Cr, Cf, Cs, and Ce in response models. Ca in deter-

mining the time to the next subconscious attentive time point, Δt = Ca/ISA.
4. Energy consumption parameter Ea and the threshold Ec for hunger.
5. The creativeness parameters, Pcm and Ca.
6. Memory parameter for token longevity, Cg.

Unlike gene sequences, this simple “genetic material” is just sets of parameters that have 
no different genomic sequences.

Genetic Operators: Crossover and mutation are the main types of genetic operators. 
The mutation probability is usually smaller than the crossover probability to avoid 
chaos across generations.

The purpose of the following module is to perform genetic crossover operation.

Crossover () {
Algorithms:

1. Randomly select two agents of different genders as father and mother based on
their fitnesses from a population with top 10% fitness.

2. Randomly select some (e.g., 3) sets of the 7 sets of genetic material from the mother
and the remaining sets from the father.

3. Create an agent with this combined “genetic material” as innate attributes.
}

The purpose of the following module is to perform genetic mutation operation.
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Mutation () {
Algorithms:

1. Randomly select an agent with fitness from a population with top 10% fitness.
2. Randomly select a genetic material and randomly change its value.
3. Create an agent based on the new set of innate attributes.

}

The purpose of the following module is to generate a new baby agent using evolutionary 
algorithms. The Evolution module should be invoked at the time the HAI agent success-
fully delivers her virtual baby—instantiating a new HAI agent by some changes of innate 
parameters, as listed above.

Evolution () {
// probability Pc for crossover and Pm = 1- Pc mutation.
If (Math.rand() > Pc ) {
        Crossover()
Else
        Mutation()
}
}

18.3 Attentions

18.3.1 Subconscious Attention

The Subconscious Attention Set ΩS(t) consists of objects (events) with the highest subcon-
scious attentivities. The subconscious attentivity is calculated using

 ( ) ( ) ( ) ( ) ( ) ( ) ( )= −  + + + exp ln  10 1 2SA t W d t W S t W n t h t M t T t

where W0, W1, and W2 are coded as inherited attributes and can be updated dependent 
on interests developed over time. We define d(t) = distance between Zda and the object at 
time t, ( )S t  = the speed of the object, while ( ) ( ) ( ) ( ), ,   ,  n t h t M t T t  are the intensities of smell, 
sound, temperature, and taste, respectively.

The purpose of the following function is to determine Subconscious Attention Sets and 
track and update the 15 most recent subconscious attention sets (RSAS) with associated 
times.
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SubconsciousAttentionSet () {

Loop through all objects in the environment and determine the top n = 3 objects as the 
subconscious attention set ΩS(t) at time t.

The algorithms:

1. Determine the Instant Subconscious Attention Set, ISAS
2. Calculate ISA: Instant Subconscious Attentivity.
3. Tokenize words in the ears:

Words = AtomicTokenID(ME.ears.words, “NL”)
wordPattern = HierarchicalTokenization(Words, 4, 3, “NL”)
Replace the words heard in ISAS with wordPattern
Words = AtomicTokenID(ISAS, “Event”)

4. Update RSAS: subconscious attentivity sets written in the standard tokenID, SAS(t) 
at the 16 most recent time points using tokenized word-string.

5. Calculate Stimulus the object corresponding to ISA.
6. Calculate FTSAS and FTSA

FTSAS = FastThinkingAttentionSet(Knet.RSAS)
7. Calculate STSAS and STSA

STSAS = SlowThinkingAttentionSet(Knet.RSAS)
8. Determine NAT = Ct/ISA: the next subconscious attentive time.

ME.ISA = ISA  //Current ISA; ME is the key word for the agent.
ME.NAT = NAT  //The next subconscious attentive time
ME.FTSA = FTSA  //Fast-Think Subconscious Attentivity
ME.STSA = STSA  //Slow-Think Subconscious Attentivity

// We express various attention sets in the standard tokenIDs:
//Stimulus = the object with ISA.
ME.stimulus =  ISAS  //coded in elementary tokenID
//the instant subconscious attention set
ME.ISAS = ISAS  //coded in elementary tokenID   
//15 recent subconscious attention sets
ME.RSAS = RSAS
//Fast-think subconscious attention sets
ME.FTSAS =FTSAS
//Slow-think subconscious attention sets
ME.STSAS = STSAS
}

Module SubconsciousAttentionSet will be automatically triggered whenever any object’s 
location or appearance changes size, color, smell, etc. This is easy to do since most OOP 
languages and IDE provide the capability of change-event triggers. What we need to do is 
to put the module inside the event-change procedures.

The purpose of the following module is to determine FTSAS, the subconscious attention 
set for fast-thinking and associated times.
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FastThinkingAttentionSet(RSAS) {
tempFTSAS = RSAS[index > 13] //the objects at the 3 latest timepoints
tempFTSAS.sortBY(ISA)  //Descending sort by attentivity
FTSA = tempFTSAS[index = 1]  //The max attentivity
FTSAS =tempFTSAS(ISA  > FTSA/2)  //Remove low ISA objects
Return FTSAS
}

The purpose of the following module is to determine STSAS, the subconscious attention 
set for fast-thinking and associated times.

SlowThinkingAttentionSet(RSAS) {
tempSTSAS = RSAS
tempSTSAS.sortBY(ISA)  //Descending sort by attentivity
STSA = tempSTSAS[index = 1]  //The maximum attentivity
STSAS =tempSTSAS(ISA  > FTSA/2) //Remove low ISA objects
Return STSAS
}

18.3.2 Conscious Attention

The Conscious Attention Set (CAS) is a token that is randomly selected from the top K = 100 
most rewarding patterns (or tokens that might represent a problem, a research field, a pro-
cedure of making a product) in Knet. The random selection is based on the probabilities 
or the normalized patternive rewards or proxies associated with the top K tokens. A con-
scious set may also be determined by attention shift due to a request, such as a teacher’s 
homework assignment.

CAS is a subobject of Agent with properties: Pattern, Frequency, Attentivity (reward), 
and Recency. The corresponding relational database table structure is the same as pKnet.

The purpose of the following module is to randomly (using the freewill randomizer) 
choose the conscious attention set.

ConsciousAttention (){
probs = pKnet.Pattern.pReward/Pattern.pReward.sum
index = FreewillRandomizer(probs)
CAS = pKnet.Pattern[index]
ME.CAS = CAS
Return CAS
}

18.4 Tokenization and Patternization

18.4.1 Segmentation and Elementory Tokenization

There are various tokenization techniques. Given a sentence or paragraph, White Space 
Tokenization tokenizes into words by splitting the input whenever a white space is encoun-
tered. This is the fastest tokenization technique but will work for languages (e.g., English, 
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but not Chinese) in which the white space breaks apart the sentence into meaningful 
words. Regular Expression Tokenizer uses regular expressions to control the tokenization 
of text into tokens. Because of our smaller data approach and personalized connotation of 
understanding, big-data-based methods such as Dictionary-Based Tokenization and Penn 
TreeBank Tokenization are not applicable.

In our HAI, for language tokenization, the delimiters are carriage-returns, long-pauses 
between device inputs, or white-spaces, or unicode-based tokenization. For general 
event-string tokenization, it will include more than language tokenization, the tokeniza-
tion will depend on programming conventions, especially the structures of functions 
and our OOP conventions. Because the virtual environment is simulated using elemen-
tary tokens, stringIn occurs naturally in the form of agent.act(), agent.sound(words), or 
object.event().

Segmentation is the determination of the dynamic sequence of event-strings at the cur-
rent time, mainly based on the moving time points, t1, t2, … t16. At each time point, up to 
4 simultaneous elementary tokens. The string agent.reward() is usually treated as the end 
of a string segment. A long string may be shortened through hierarchical tokenization or 
can be broken into multiple string segments according to the similarity between them. 
Such similarity-based breakdown of a string is the basis for patternization and language 
understanding using the factor-isolation technique.

18.4.2 Hierarchical Tokenization

A high-frequency pattern will be assigned a token name or concept using the auto-naming 
system discussed earlier. The name will then be used in hierarchical tokenization.

The purpose of the following module is to perform simple patternization to shorten the 
event-string without recursion. 

Tokenization(stringIn, patternType) {
// NL words tokenization occur at attention modules
// assign tokenIDs for elementary tokens and single-word tokens
For Each token In stringIn

If (token != Knet.Pattern.tokenID) {
TokenIDs = AutoName(patternType)
stringIn.replace(tokenIDs[0])
If (patternType = “NL”) {stringIn.replace(tokenIDs[1])}

}
Next
// a substring can be multiple tokens
For Each substring In stringIn

If (substring = Knet.Pattern) {
stringIn.replace(substring, Knet.Pattern.tokenID)

}
Next
Return stringIn
}

The purpose of the following module is to perform hierarchical tokenization for stringIn 
with length ≤ maxTokens. This function is intended to be used for very long event-strings 
in repatternization. Here, stringIn is the string to be hierarchically tokenized, patternType 
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can be “NL” when stringIn is entirely a string of a natural language; otherwise pattern-
Type should be “Event”. Default values for maxTokens and loops 4 and 3, respectively.

HierarchicalTokenization(stringIn, maxTokens, loops, patternType) {
n = 0
Do Loop
       n = n + 1
       stringIn = Tokenization(stringIn, patternType)
Until (stringIn.size <= maxTokens & n >= loops)
Return stringIn
}

18.4.3 Patternization

There are 15 types of gramtons and skiptons. For onsite patternization only elementary 
tokens are involved, and no hierarchical tokenization takes place. The tokens are connected 
by symbol ^ (concurrent) or ⭇ (sequential). Concurrent tokens are written in alphabetic 
order in a pattern. The patternization function here can patternize a string set without the 
constraint of elementary tokens.

Learning in HAI architecture is the mapping of reality, including natural language, to 
event patterns; such mapping we call an understanding of natural language. Language 
can be viewed as one-dimensional text that patternizes the perceptual world, including 
the natural language itself (recursion!). In this sense, HAI is a process of constructing a 
universal language for patternizing the perceptual world that includes natural languages. 
The object or action referring can be indicated in the words. A goal can be recognized 
through verbal articulation. We are mapping language-structure(parameters) to parameters to 
object.action(parameters), object.attributes(values) or actioner.state(values). This works for 
requests, but not necessarily for questions.

The purpose of the following module is to return a random object from objectList with-
out replacement.

RandomRow(objectList) {
index = Math.ceiling(Math.rand()*objectList.size)  // round up
Return objectList(index)
}

The purpose of the following module is to discover and update 1-gramtons through 
4-gramtons.

Gramization(stringIn, Net) {  //Net = Knet, pKnet, or KZnet
For Each pattern In Net.patterns
       If  (pattern = stringIn) {Net.patterns.Pattern.freq += 1}
Next
}

The purpose of the following module is patternization based on 2 strings with equal num-
ber (≤ 4) of tokens. Here, patternA and patternB must consist of tokenIDs for elementary 
and high-level tokens. Desensitisors in Patternization are viewed as equivalent to param-
eters in similarity determination. We don’t recycle tokenIDs for patternA and patternB, 
but let them die naturally by the forgetting mechanism.
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Patternization(patternA, patternB, patternType, Net) {
// patternType = “NL” or “Event”
If (patternA.size < 2) { Return Null}
TokenIDs = autoName(patternType)  // get tokenIDs
newPattern.tokenID = TokenIDs[1]  // tokenID for the skipton
newPattern.pattern = patternA  //use patternA as pattern template
newPattern.freq = patternA.freq + patternB.freq
newPattern.recency = system.time()  //time of pattern creation
// Create desensitisors (single, paired, tripled, …), see Section 3.
For i = 1 To patternA.size  // size is the number of tokens

noOfDes = 0  // no of desensitisor
If (patternA.tokens[i] != patternB.tokens[i]) {

noOfDes = noOfDes + 1
// Append a number to desName = tokenID for desensitisor
desName = TokenIDs & noOfDes
desensitisor[noOfDes].tokenID = desName
// a desensitisor’s pattern is a list of comma-delimited items
Pattern = patternA.tokens[i] & “, ” & patternB.tokens[i]
desensitisor[noOfDes].pattern = Pattern
newPattern.Pattern.replaceToken(i, desName)

}
Next
//At least one fixor is required for a pattern.
If (noOfDes = patternA.size) {Return NULL} 
Net.Pattern.add(newPattern)  // Otherwise, store a regular pattern
For i =  To noOfDes

 // add desensitisors as patterns, but be caution at detokenization
Net.Pattern.add(desensitisor[i])

Next
// The two original patterns will die if no longer used often.
Return newPattern
}

The purpose of the following module is to choose nPairs of equal-sized recorders 
to repatternize Net. Here nPairs is the number of pairs of patterns to be retrieved for 
repatternization.

Repatternization(nPairs, Net, patternType) {
For Each patternX In Net.pattern

Gramization(patternX, Net)   //Gramton
Next
If (patternType != “NL”) {patternX = RandomRow(Net.pattern) }
If (patternType = “NL”) {patternX = RandomRow(Lnet.pattern) }
N = Knet.size  //Number of patterns in Knet
yIndexes = Math.randNumsWithoutReplacement(nPairs, N))
For Each yIndex In yIndexes

patternY = Knet.Pattern[yIndex]
If (patternX.size = patternY.size) {

Patternization(patternX, patternY, patternType, Net) 
}

Next
}
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The purpose of the following module is to delete the record with the tokenID from Knet 
and put the tokenID in the nameRecycleBin.

RecycleTokenID(tokenIDtoRecycle) {
Knet.Pattern.delect(tokenID = tokenIDtoRecycle)
nameRecycleBin.add(tokenIDtoRecycle)  // Recycle tokenID
}

18.4.4 Meta Network

Knowledge involving a large time-span requires a MetaNet (Figure 14.7) that connects 
different patterns from Knet together at common tokens (tokenIDs). The purpose of the 
following module is to form a path in such a MetaNet. The reward of the pattern (meta 
path) is the sum of rewards of all the newly connected patterns from Knet. Such a path is 
considered a secondary experience by Zda. Here, nPatterns is the maximum number of 
patterns from Knet to be connected.

MetaPath(nPatterns) {
patA = RandomRow(ME.Knet.Pattern)
For i = 1 To nPatterns
         For Each pattern In ME.Knet.Pattern
                // get the location (of the last token of patA) within pattern
                joint = pattern.find(patA.token[patA.size])  
                If (0 < joint < pattern.size) {
                         patA.app(pattern.substring[joint])
                         patA.pReward = patA.pReward + pattern.pReward
                         Break
                }
         Next
Next
patA.freq = 1
patA.recency = NULL
ME.Mnet.Pattern.add(patA)
ME.Knet.Pattern.add(patA)
Return patA
}

18.4.5 The Forgetting Mechanism

The forget-mechanism is based on gramton survival time (GST):

 = ⋅ ⋅
⋅

Freq Reward ,GST Cg
N n

where constant Cg is an agent’s attribute. Without a forgetting mechanism, a PC memory 
will easily overflow.

A 24-hour (or shorter) timer will check the Knet to remove any patterns that have age > 
GST (see updating Knet Database). Note that any increase in pattern frequency, reward, 
will increase GST, while any increase in pattern size n (in terms of number of tokens) and 
the total number of patterns (N) in Knet, will reduce GST of the pattern.
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The purpose of the following module is to periodically and automatically remove dead 
patterns using a BioClock. The tokenID of removed patterns will be put in the name recy-
cle bin for future reuse.

Forgetting(period) {
ForgetTimer = BioClock(period)
ForgetTimer.pulse {   //Statements to be executed periodically
For Each pattern In ME.Knet

GST = pattern.Cg*Freq*pattern.Reward/Knet.size/pattern.size
If (GST > system.time - pattern.recency) {

Knet.Pattern.delect()  // should also delete the desensitisors
nameRecycleBin.add(Knet.Pattern.tokenID)

}
Next
RecycleTokenID(Knet.Pattern.tokenID)
}
}

18.4.6 Freewill Randomizer

The purpose of the following module is to return an index based on Probability mass func-
tion or any set of unnormalized values, Probs.

FreewillRandomizer(Probs) {
cProbs(0) = 0   // cumulative probs
For i = 1 To Probs.size

cProbs[i] = cProbs[i-1] + Probs[i]
Next
randNum = Math.rand()
For i = 1 To Probs.size

If (cProbs[i-1] ≤ randNum < cProbs[i]) {
itemNum = i
Break

}
Next
Return  itemNum
}

18.5 Response Models

18.5.1 Similarity Mechanisms

Similarity search proceeds after tokenization. Similarity matches are needed for all think-
ing modes. Elementary tokens involve different parameters, thus a high-level token that 
consists of elementary tokens will also involve the same parameters. In fast-thinking and 
slow-thinking, we group elementary tokens by parameter-grouping, and the Jaccard index 
is used to calculate similarity between two patterns.
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The purpose of the following module is to calculate the Jaccard similarity between 
strings A and B, defined as the length of the intersection divided as the length of union.

JaccardSimilarity(patternA, patternB){
intersection = patternA.intersection(patternB)
unionLength = patternA.length +patternB.length - intersection.length
Jaccard = intersection.length/unionLength
Return Jaccard
}

In deep-thinking, similarities occur at multiple levels. At the elementary token level, 
besides Jaccard similarity, for ordinal and continuous parameters, the exponential similar-
ity (ranging from 0 to 1) between two objects may is a more precise measure, especially 
when the sensitivities of sensory organs increase:

 Exponential Similarity 1 exp ,∑= −










S R d

n

n n

Here the summation ∑ is over all N parameters in the agent’s attention; dn is the absolute 
difference (dissimilarity) in the nth parameter between two objects, and Rn is the attribute-
scaling factor for the nth parameter that can be learned by an agent. Outcomes determine 
the importance or scaling factor R of each attribute. The numerical vector Rn correspond-
ing to the parameters in each elementary actionable token is defined when we add elemen-
tary functions in Zda’s capability set.

The purpose of the following module is to calculate exponential similarity between two 
numerical vectors of parameters, A and B with scaling factor R.

ExpSimilarity(R, A, B) {
// R = vector of attribute-scaling factor
S1 = 0
For k = 1 To R.size
        S1 = S1 + R[k]*(A[k]-B[k])
Next
Return S1
}

At subtoken-levels, Cosine Similarity can be used for equal-sized vectors or patterns. For a 
given location in a pattern (A or B), we code 1 when a token is observed, 0 for not observed, 
and –1 for the case that the token must not be at the location. As a result, patterns A and B 
are expressed in vector form and cosine-similarity (ranging from −1 to 1) is calculated as

     2 cos
 

θ( )= = ⋅Cosine similarity S A B
A B

It is more convenient to use the normalized cosine similarity to the range (0, 1): (1 + cos(θ))/2. 
However, we will not implement the cosine similarity calculation as a Zda’s initial ability, 
but he should be able to learn it later.

The purpose of the following module is to calculate the normalized cosine similarity 
between two strings, A and B.
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CosineSimilarity(patternA, patternB) {
// Need triple coding -1, 0, 1 before use this function
S1 = 0; NormA = 0; NormB = 0
For k = 1 To patternA.size

NormA = NormA + patternsA.tokens[k]*patternsA.tokens[k]
NormB = NormB + patternsB.tokens[k]*patternsB.tokens[k]
S2 = S2 + patternA(k)*patternB(k)

Next
S2 = S2/NormA/NormB
S2 = (1 + S2)/2  // Normalize it to the range (0, 1)
Return S2
}

In deep-thinking, the aggregate similarity or recursive similarity may be used. The aggre-
gate similarity is calculated using the parameter similarity S1 and the pattern structure 
similarity S2 by the multiplicity rule:

=Aggregate Similarity S S  1 2

How does Zda determine the similarity between two tokens if the two actions are the 
same and the two actioners are different? As with other parameters, Zda can group the 
actioners in one or more categories, such as {all agents}, {friends, enemies, collaborators, 
etc.}.

The purpose of the following module is to calculate recursive aggregate similarity based 
on exponential and cosine similarities.

AggregateSimilarity(R, A, B, patternA, patternB) {
S1 = ExpSimilarity(R, A, B)
S2 = JaccardSimilarity(patternA, patternB)
aggS = S1*S2
Return aggS
}

To use aggregate similarity, because of the recursive structures of a high-level pattern, 
reverse-engineering by means of the Detokenization module may be needed beforehand.

We illustrate how to use the exponential similarity in two elementary tokens TA and TB. 
Assume they take the general forms of

= name target ParamsA. ( ,  ,  )TA Lia act

and

= name target ParamsB. ( ,  ,  )TB Zda act

We can use Jaccard index alone to compare these two strings, leading to similarity 
S = 2/6 = 0.33. Alternatively, we can use aggregate similarity based on the Jaccard and expo-
nential similarities: we apply exp-similarity S1 for ParamsA and ParamsB at the param-
eter level, but Jaccard index S2 at the pattern (token) level. Thus, S1 = ExpSimilarity(R, 
TA, TB) and S2 = JaccardSimilarity(ParamsA, ParamsB). Equivalently, we can use 
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AggregateSimilarity(R, TA, TB, ParmsA, ParmasB). Here the attribute scaling factors R 
are given initially when the module agent.act(name, target, ParamsA) is defined.

In addition to these similarity functions, desensitisors including function-parameter 
desensitisors are often used as similarity measures.

Before making any decision, Zda needs to know his current position in his Knet. The 
purpose of the following module is to identify a pattern (in Net) similar to the current posi-
tion according to similarity type (“Jaccard,” “exponential,” “cosine,” or “aggregate”). The 
search will stop as soon as the required similarity level is reached. The current position is 
usually defined by the current subconscious attention set.

SimilaritySearch(currentPosition, Net, similarityType, simLevelRequired) {
// currentPosition in the form of pattern string
maxSimilarity =0
For Each pattern In Net.pattern
       // this block code may need to be modified according to
       // the function template you have adopted.
       R = pattern.elementaryToken.weights
       A = pattern.elementaryToken.params
       B = currentPosition.elementaryToken.params
       //Using Jaccard or recursive similarity
       If (similarityType = “Jaccard”) {
                similarity = JaccardSimilarity(pattern, currentPosition)
       ElseIF (similarityType = “exponential”)
                similarity = ExpSimilarity(R, A, B)
       ElseIF (similarityType = “cosine”)
                similarity = CosineSimilarity(pattern, currentPosition)
       Else
                patternA = pattern
                patternB = currentPosition
                similarity = AggregateSimilarity(R, A, B, patternA, patternB)
       }
       If (similarity > maxSimilarity) {
                maxSimilarity = similarity
                currentTokenID = pattern.tokenID
                If (maxSimilarity > simLevelRequired) {Break}  
       }
Next
Return currentTokenID
}

18.5.2 Expected Action

The purpose of the following module is, based on the observed pattern, to perform 
Similarity Search from the pKnet to find the top K > 0 matched patterns using existing desen-
sitisor. If an exact search cannot find a pattern in the Net, do the similarity-based search. 
Return the next actions needed. Note that Net = Knet or pKnet, similarityType = “Jaccard” 
for fast-thinking, “Jaccard” and/or “Exponential” for slow-thinking, and “Recursive” for 
deep-thinking. The keyword “ME” is the owner of the Knet, or the OOP class where the 
module resides.
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ExpectedTokens(observedPattern, Pc, Net, similarityType, simLevel) {
// Exact search
matchedPatterns = Net.patterns.find(observedPattern)
// If no exact match, do similarity search with similarity = 0.8
If (matchedPatterns = NULL) {

SimilaritySearch(observedPattern, Net, similarityType, simLevel)
}
For Each pattern In matchedPatterns

index = pattern.find(observedPattern) + observedPattern.length
//Expected pattern = matchedPattern - observedPattern
expPattern = pattern.substring(index)
nextActions = expPattern.tokens
//determine next possible action
rn = Math.rand()
If (rn < 1 - Pc )  // imitation, Pc = probability of creation

// Might: nextActions.actioner = ME before replacement
Half = expPattern.replace(nextActions.actioner[1], ME)
fullPattern = observedPattern.app(Half)

Else
If (nextAction.actioner = ME) {  // creative action

oldAction = nextActions.actionName[1]
// Get desensitisor of old action
aDes = Knet.desensitisor[tokenID = oldAction]
newAction = RandomRow(aDes)
Half = nextActions.replace(oldAction, newAction)
fullPattern = observedPattern.app(Half)

// else, Rest or wait for the next moment
}

}
// Determine Jaccard index between expPattern and fullPattern
Similarity = JaccardSimilarity(pattern, fullPattern)
expPatterns.patteren.add(fullPattern)
expPatterns.similarity.add(similarity)
expPatterns.expActions.add(Half)

Next
Return expPatterns
}

18.5.3 Reflex Mechanism

The purpose of the following module is to return a reflexor based on stimulus (desensiti-
sor of elementary tokens).

Reflex () {
stimulusToken = ME.stimulus  //expressed in tokenIDs
For Each token In Reflexon

If (Stimulus = stimulusToken) {
Reflexor = ME.Reflexon.Reflexor
ME.Reflexon.Freq = ME.Reflexon.Freq + 1
Break

}
Next
Animations(Reflexor)
ME.NAT = ME.NAT + ME.Ca/ME.ISA  // the next attention time
}
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18.5.4 Fast-Thinking Mechanism

If ISA < Cr, FastThink() is invoked. In Fast-Thinking, Zda does not need to decide an active 
response at every attentive time point since completing an action needs time (the time to 
complete, TTC). At attentive time points during TTC, Zda does not determine his response. 
The Fast-Thinking algorithms are described in Section 14.5.

The purpose of the following module is to perform Fast-Thinking Response and 
Learning.

FastThink () {
FTSAS = ME.FTSAS  // expressed in tokenIDs
ExpPatterns = ExpectedTokens(ME.FTSAS, Pc, Net, “Jaccard”)
patternIndex = RandomizedAdaptiveRL(ExpPatterns)
actionsTaken = ExpPatterns.[patternIndex].expActions
Animations(actionsTaken)
Knet.add(actionsTaken)  // add pattern: actionToken to Knet
ME.NAT = ME.NAT + ME.Ca/ME.ISA  // The next attention time
}

18.5.5 Slow-Thinking Mechanism

Slow thinking allows similarity-matching on the top-layer pattern, while patterns 
in other layers must be exactly matched, because all other levels have desensitized 
tokens as needed in hierarchical patternization. This similarity is caused by similar- 
token replacement at the top layer. The slow-thinking algorithm is presented in  
Section 14.6.

As in Fast-Thinking, in Slow-Thinking, Zda only needs to decide an active response at 
some attentive time points. At attentive time points during TTC, Zda does not determine his 
response, but is in the process of completing his action. Multithreads and Synchronization 
in OPP can handle this issue.

The purpose of the following module is to start slow-thinking if Cs ≤ STSA).

SlowThink () {
tokenizedStr = HierarchicalTokenization(ME.STSAS, 4, 1, “Event”)
// Divide tokenizedStr into two equal length stringA and stringB
halfLength = Math.round(tokenizedStr.size/2)
stringA = tokenizedStr.substring(1, halfLength)
stringB = tokenizedStr.substring(halfLength+1)
//Check if Similar substrings are found Jaccard index > 0.5.
If (JaccardSimilarity(stringA, stringB) > 0.3) {
         Patternization(stringA, stringB, patternType, Knet)
Else
         ExpPatterns = ExpectedTokens(tokenizedStr, Pc, Net, “Jaccard”)
         patternIndex = RandomizedAdaptiveRL(ExpPatterns)
         actionsTaken = ExpPatterns[patternIndex].expActions
         Animations(actionsTaken)
}
newPattern.name = autoName(patternType = “Event”)
newPattern.freq =  1
newPattern.pattern = actionsTaken
Knet.add(newPattern)  // Add pattern: actionToken to Knet
ME.NAT = ME.NAT + ME.Ca/ME.ISA  // The next attention time
}
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18.5.6 Deep-Thinking Mechanism

If Cs > STSA, Zda will be in deep-thinking mode (Figure 17.1). In deep-thinking, if 
Zda’s learning curiosity is low (< Ce), he will perform a goal-driven task; otherwise, 
he will randomly choose either learning-routine (repatternization of Knet) or cognitive 
learning.

The purpose of the following module is to perform Deep-Thinking. The repatterniza-
tion and cognitive learning may proceed in Knet (with 0.8 probability) or in Mnet (with 
0.2 probability).

DeepThink () {
If (ME.curiosity < Ce) {

goal = GoalSetting()
currentPosition = HierarchicalTokenization(ME.ISAS, 4, 1, “Event”)
actionPath = GoalDrivenActions(currentPosition, goal, Knet)
If (actionPath = NULL) {

actionPath = GoalDrivenActions(currentPosition, goal, Mnet)
}
Animation(actionPath) // May need deTokenization first

Else
If (Math.rand() < 0.5) {

MetaPath(nPatterns = Math.round(Math.rand()*8))
Repatternization(nPairs = 10, Knet, “NL”, Lnet)
Repatternization(nPairs = 10, Knet, “NL”, Knet)
Repatternization(nPairs = 10, Knet, “Event”, Knet)
Repatternization(nPairs = 10, Mnet, “NL”, Mnet)
Repatternization(nPairs = 10, Mnet, “Event”, Mnet)

Else
If (Math.rand() < 0.8) {

CognitiveLearning(Knet)
Else

CognitiveLearning(Mnet)
}

}
}
ME.NAT = ME.NAT + ME.Ca/ME.ISA   // the next attention time
}

Before Zda can perform goal-driven actions, he needs to set a goal or find the goal 
node, from which he will find a path to it. The goal may be specified by words or may 
be determined by the following module. The purpose of the following module is to 
set the goal for a goal-driven task. Here the parameter goal is presented by tokenID 
associated with the goal node. The tokenID is generated by the auto-naming system in 
Chapter 18.1.
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GoalSetting () {
// a 10% probability for recollection and 15% probability of attention-shift
If (Math.rand() < 0.1 ) {Recollection(ME.desire, 0.15)}
// a 10% probability for imagination
If (Math.rand() < 0.1) {Imagination(ME.CAS)}
If (ME.desire = “food”) {  // find a nearby food node in pKnet
        foodPatterns = Dgrams.Pattern.soryBy(duration, ascending)
        // 3 nearest (timewise) nodes with reward type = food
        foodNearby = foodPatterns[1:3, rType = “food”]
        // pick food according to reward
        foodId = FreewillRandomizer(foodNearby.reward)
        goal = foodNearby.pattern[index = foodId].tokenID
ElseIf (ME.desire = “entertainment”)  // find a nearby entertainment node
        joyPatterns = Dgrams.Pattern.soryBy(duration,  ascending)
        joyNearby = joyPatterns[1:3, rType = “ entertainment”]
        // pick  entertainment according to reward
        joyId = FreewillRandomizer(joyNearby.reward)
        goal = joyNearby.pattern[index = joyId].tokenID
Else    // find a high reward node or more reward-sensitisors
        rwdPatterns = Dgrams.Pattern.soryBy(duration,  ascending)
        rwdNearby = rwdPatterns[1:3]
        // pick  entertainment according to reward
        rwdId = FreewillRandomizer(rwdNearby.reward)
        goal = rwdNearby.pattern[index = rwdId].tokenID
}
Return goal
}

The purpose of the following module is to perform the five types of cognitive learning 
methods (Abduction, Induction, Deduction, Analogy, and Causation).

CognitiveLearning(Net) {
// Perform Cognitive Learning
CAS = ConsciousAttention()
// Freewill choose a cause and an effect
cause  = CAS.tokens[FreewillRandomizer(CAS.tokens.freq)]
effect  = CAS.tokens[FreewillRandomizer(CAS.tokens.freq)]
// Round up the random number, ranging from 1 to 5.
iTask = Math.Ceiling(Math.rand()*5) 
Switch (iTask) {
        Case 1        //abduction
               Abduction(effect, Net)
        Case 2        //Induction
               Induction(CAS, Net)
        Case 3        //deduction
               Deduction(cause, effect, Net)
        Case 4        //analogy
               Analogy(cause, effect, Net)
        Case 5        //possible effects from a cause
               CauseToEffect(cause, Net)
}
p = 0.2//Assign probability of attention shift p =0.2, or other value.
AttentionShift(CAS, p)
Net.NAT = Ct/ISA  // the next subconscious attentive time.
}
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Deep-Thinking often includes fast-thinking and slow-thinking as its subprocesses 
due to STSA increase at the attention pulse time. For instance, when Zda takes actions 
to accomplish a long-term goal, he may face situations that need his reflex, fast- and 
slow-thinking.

The agent’s actions are mostly virtual, but downloading data and running AI/statistical 
analyses can be really executed because it can happen on a computer. In Deep-Thinking, 
the tokens in the gramtons can be high-level tokens of a mixture, word-event, or word-
action tokens (see Chapter 14, Adaptive Response Mechanisms).

18.5.7 Decision-Making

The purpose of the following module is to determine the action among all options using 
the randomized adaptive response mechanism.

RandomizedAdaptiveRL(PotentialPatterns) {
F = PotentialPatterns.freq
R = PotentialPatterns.reward
S = PotentialPatterns.similarity
SRFs = S*R*F  //SRFs is an array
c = SRFs.sum  // sum of elements of SRFs
PoAs =  SRFs/c  //Calculate the Probabilities of Action
patternIndex = FreewillRandomizer(PoAs)
Return patternIndex
}

In gaming or decision-making using game theory, Zda has to predict how the other player 
(Lia) will move. This prediction employs the same prediction method but will be carried 
out after Lia’s move.

GamingPrediction(observedPattern,  Pc, Net, similarityType, Opponent) {
// Image Competitor would play, no Knet update
Opponent.SlowThink (attentionSet)
expPatterns = expTokens(observedPattern,  Pc, Net, similarityType)
Return expPatterns
}

Based on the same notion as gaming, if the player, Lia, is replaced by a flying object (e.g., a 
ball), then it becomes a prediction of the object in catching a moving object. Therefore, this 
module can also be applied to the actions in catching moving or static objects.

18.6 Action Types

18.6.1 Imitation Mechanism

Zda can only perform imitations on the top level after all its subtokens are learned. 
Imitation is achieved by actioner-replacement in an actioner.action token, one-actioner 
replacement at a time.
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The purpose of the following module is to perform imitation.

Imitation (patternIn) {
actioner = patternIn.getActioner()
patternOut = patternIn.replace(actioner, ME)
Return patternOut
}

18.6.2 Creation Mechanism

The purpose of the following module is to perform a creative action by replacing action or 
action parameters with or without the actioner by the creator.

Creation(patternIn) {
actionToken = patternIn.getActionToken()
// Get desensitisor of action in actionIn
aDesensitisor = Knet.desensitisor.find(actionToken)
newAction = RandomRow(aDesensitisor)
patternOut = actionTokenIn.replace(actionToken, newAction)
Return patternOut
}

18.6.3 Recollection Mechanism

Recollections may bring pain and excitement similar to real experiences and/or enhance 
past experiences: the sight stirs up one’s feelings.

The purpose of the following module is to determine the recollection from a Similarity 
Search in pKnet.

Recollection(stimulus, p) {
If (Math.rand() < 0.5) {stimulus = desensitisor(stimulus)}
thingCollected = AttentionShift(stimulus, p)
// Recollection can only enjoy 5% the reward from real experience
ME.heart.sensation = ME.heart.sensation + thingCollected.reward*0.05
Return thingCollected
}

18.6.4 Associative Attention-Shift

A table of 2-gramtons of NL words and 2-gramtons of general event-strings maintains 
all the high frequent associations. The probability of picking an associative object (event, 
concept) is equal to the probability of associative attention multiplying the normalized 
frequency of association. In a chain of associative objects, the multiplication rule of prob-
abilities is applied.

The purpose of the following module is to return an associated 2-gramton based on 
TokenIn.
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AttentionShift(TokenIn, p) {
// Multiple attentionShifts by to association: TokenIn~AssToken
Loop While (Math.rand() < p)

AssTokens = pKent.Agrams[AttToken2 = TokenIn].AssToken
TokenIn = RandomRow(AssTokens)

Endloop
Return TokenIn
}

18.6.5 Imagination Mechanism

Imagine something similar to past experience but have some changes, e.g., your friend’s 
wedding party becomes your wedding party. Or imagine something that might be impos-
sible, e.g., your hands become wings and you can fly faster than a plane. Imagining may 
bring pain and excitement similar to real experiences. Such effects are modeled by small 
changes in Zda’s sensation level.

The purpose of the following module is to pretend to execute imitation and innovation 
in the Inet.

Imagination(attentionSet) {
If (Math.rand() < 0.5) {

// Imitation in the Inet and enjoy the reward or suffer the pain
patternOut  = Imitation(attentionSet)

Else
//Innovation in the Inet and enjoy the reward or suffer the pain
patternOut = Creation(attentionSet)

}
ME.Inet.Pattern.add(patternOut)
ME.heart.sensation = ME.heart.sensation + actionOut.reward*0.05

}

18.6.6 Goal-Driven Action

Belief-net (Bnet) is an extended Knet that combines the Knet and virtual net (Vnet) consist-
ing of patterns by others’ words or research papers. To Zda, goal-driven actions to find 
paths from the current position (node or similarity-matched node) to the goal in Knet or 
Bnet, unless the goal and paths are told. If the goal is new to Zda, he may not have a corre-
sponding goal node. In this case, he will choose an approximate node based on similarity, 
or he may choose another goal based on his interest or on rewards associated with the 
goals.

The purpose of the following module is to identify paths (sequences of nodes) to the 
goal. Here the input parameter goal is specified by the tokenID associated with the goal 
node in the Net; the parameter Net can be Bnet, Knet, or pKnet, and the parameter cur-
rentPosition is the current attention set (usually includes self) and is expressed by token 
id (tokenID in the pKnet). We use the standard Net.paths(A, B, n) method to find n paths 
from node A to node B; each such path is represented by a pattern consisting of a sequence 
of nodes (tokenIDs). Even though the path found is a random one, over time, Zda can find 
a better one, since better paths will be used more often (higher frequency) and more fre-
quently used paths will be more likely to be found.
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GoalDrivenActions(currentPosition, goal, Net) {
// currentPosition = subconscious attention set
// Determine currentPosition in the Net with Jaccard similarity = 0.8
SimilaritySearch(currentPosition, Net, Jaccard, 0.8)
// Find 5 paths
paths = Net.paths(currentTokenID, goal, 5)
// Select action path from paths based on distributive rewards
actionPath = paths[FreewillRandomizer(paths.dReward)]
Return actionPath
}

In animation, reverse-engineering using Detokenization(actionToken) may be needed to 
ensure all action tokens are elementary tokens.

18.7 Cognitive Reasoning

Before using the cognitive procedure in the section, we assume Zda has the concept of 
cause and effect.

18.7.1 Detokenization

When a decision is made, it may be a complex procedure or higher level tokens, not directly 
in executable form. Thus, the tokens need to expand recursively into sequences of action-
able or elementary tokens. This reverse-engineering of hierarchical tokenization is called 
detokenization (Figure 18.1).

The purpose of the following module is to expand tokenIn into a pattern with a fre-
quency associated with each token in the pattern. By using the function recursively, we 
can eventually expand any pattern into a sequence of elementary tokens.

FIGURE 18.1
Tokenization and detokenization.



282

Detokenization(tokenIn) {
// objOut with String property string and Array of probs.
myPattern = Knet.Pattern[tokenID = tokenIn]
For Each token In myPattern.tokens  // Get the token probabilities

For Each name In Knet.Pattern.tokenID 
// tokenID =  pattern name in hierarchical tokenization
If (token = name) { objOut.probs.add(Knet.Pattern.freq) }

Next
Next
objOut.probs = ojectOut.freq/ojectOut.probs.sum  // Normalization
objOut.pattern = myPattern
Return objOut
}

18.7.2 Inductive Reasoning

Inductive reasoning, or induction, is a process taking us from specific cases to a general 
conclusion. To Zda, induction is finding a pattern in Knet or pKnet which is similar to the 
observed event sequence but only one token difference at the same location. The simple 
induction is a desensitisor-replacement. More complex inductions are implemented as 
repatternization.

The purpose of the following module is to perform induction by a single desensitisor 
replacement.

Induction(patternIn, Net) {
//Randomly select a token from patternIn
iToken = RandomRow(patternIn.tokens)
//Randomly select a desensitisor of iToken from Knet
iDesensitisor = RandomRow(Net.desensitisor[tokenID = iToken])
//Induction by replacement
newPattern.tokenID = AutoName(patternType = “Event”).[1]
newPattern.pattern = patternIn.replace(iToken, iDesensitisor)
newPattern.freq = 1
Inet.addPattern(newPattern)
}

18.7.3 Deductive Reasoning

Deductive Reasoning, or deduction (Figure 18.2), is the application of general rules to an 
observation to make a conclusion. To Zda, deduction is often determining the probability 
of a cause-effect relationship. The (conditional) probability given the effect is determined 
through patterns that include the effect and the desensitisors of the cause. By recursion, 
deduction can answer very complicated how-type questions.

The purpose of the following module is to return cause-effect with the maximum prob-
ability: the conditional probability of causes given effect. Reasoning from a general case 
(desensitisor) to a special case. The function is based on the Detokenization function that 
has no involvement of desensitisors.

Foundation, Architecture, and Prototyping of Humanized AI



283Implementations of Innate Mechanisms

Deduction(cause, effect, Net){
ceObj = Detokenization(effect)
For Each cause In ceObj.Pattern.tokens
       //Check if cause has its desensitisor in ceObj.pattern
       cDesensitisor = Net.desensitisor[token = cause]
Next
prob = 0
If (cDesensitisor != NULL) { prob =1/cDesensitisor.size }
// Use string-concatenation & to form a new pattern
newPattern.pattern = cause &  effect
newPattern.tokenID = AutoName(patternType = “Event”).[1]
newPattern.freq = 1
Net.addPattern(newPattern)
Return prob
}

18.7.4 Analogical Reasoning

Analogical reasoning, i.e., analogy, is an application of the similarity principle. We use 
similarity to group things or to create a desensitisor. If the similar things in a desensiti-
sor produce similar results for a defined outcome measure (e.g., body weight or longev-
ity), then we can use the outcome measure as an (additional) attribute in future similarity 
grouping. Analogy may involve some “if conditions,” and the similarity-based prediction 
occurs in Inet. To Zda, to employ analogical reasoning is to perform similarity- replacement 
(synonyms-replacement) in a pattern and predict a similar outcome, i.e., to replace a token 
(or parameter value) with its desensitisor. Analogical reasoning is often performing 
 similarity-replacement for both the “cause” and “effect.” The following is the logic flow 
for the function Analogy(cause, effect), which implements double-desensitisor replacements 
(Figure 18.3); single-desensitisor replacement was discussed previously, in the section 
Thinking Models.

Analogy can also be performed on the data collected from scientific experiments. 
Deploying the Analogy algorithm is actually proposing a hypothesis that needs to be 
checked.

FIGURE 18.2
Deductive reasoning.
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The purpose of the following module is to perform analogical reasoning, adding a 
2-gramton of cause-effect to Inet.

Analogy(cause, effect, Net) {
//Find a desensitisor of cause in Knet
cPatterns = Net.desensitisor[name = cause]
//Find a desensitisor of cause in Knet
ePatterns = Net.desensitisor[name = effect]
// Use string-concatenation & to form a new pattern
newPattern.pattern = cPattern.tokenID & “ ” & ePattent.tokenID)
newPattern.tokenID = AutoName(patternType = “Event”).[1]
newPattern.freq = 1
//add a 2-gramton with frequency =1 in Inet
Inet.Patterns.add(newPattern)
}

18.7.5 Abductive Reasoning

Abductive Reasoning, or Abduction, is inferring cause from effect. To Zda, abduction is 
starting from a goal (or an effect) node in his Knet or pKnet and looking back to a con-
nected node with high frequency (Figure 18.4). It returns an effect-cause 2-gramton with 
associated probability + a chain of cause-effect 2-gramtons and a multiplicative probabil-
ity. Abduction can be used to answer why-type questions. With recursion, abduction can 
answer very complicated why-type questions. Abduction can also be performed on the 
data collected from scientific experiments

FIGURE 18.3
Analogy in action.
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The purpose of the following module is to return a sequence of previous nodes as pos-
sible causes: search a connected pattern based on the probability or normalized frequen-
cies of the patterns connected to the effect-node (token).

Abduction(effect, Net) {
objOut1 = Detokenization(effect)
objOut.Cause1 =objOut1.String
//probs1 is one-dimensional array of probabilities
objOut.probs1 = objOut1.probs 
For Each token In Cause1
       objOut2 = Detokenization(token)
       objOut.Cause2.add(objOut2.String)
       //probs2 is a two-dimensional array of probabilities
       objOut.probs2.add(objOut2.probs*objOut1.probs)
Next
For Each cause In objOut2
       // Use string-concatenation (&&) to form a new pattern
       newPattern.pattern = objOut2.tokenID && “ ” &&  effect)
       newPattern.tokenID = AutoName(patternType = “Event”).[1]
       newPattern.prob = 1/objOut2.size  // Number of causes
       // Add new gramton: Cause2 to effect to Knet with probability
       Net.addPattern(newPattern)
       CEnet.add(newPattern)
Next
Return objOut
}

18.7.6 Cause-to-Effect Reasoning

Cause-to-Effect Reasoning infers from cause to effect. To Zda, Cause-to-Effect Reasoning 
means starting from a node (cause) in Knet and looking forward to a connected node 
(effect) with high frequency (Figure 18.5). Returned is the string of effect nodes with 

FIGURE 18.4
Illustration of abduction.
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associated probabilities. By recursion, that is use the current effect nodes and new causes 
to drive the further effects. Recursion here means using the following CauseToEffect func-
tion (method) recursively.

The purpose of the following module is to derive possible effects for a given cause and 
associated probabilities.

CauseToEffect(cause, Net) {
myPattern = Net.pattern[tokenID = cause]
causePos =  Net.Pattern.find(cause)
effects = Net.Pattern.substring(causePos + 1)  // effects after a cause
For Each token In effects.tokens

For Each name In Net.Pattern.tokenID 
// tokenID =  pattern name in hierarchical tokenization
If (token = name) { objOut.probs.add(Net.Pattern.prob) }

Next
Next
objOut.probs = ojectOut.probs/ojectOut.probs.sum  // Normalization
// use concatenation (&&) of string to get a pattern
objOut.pattern = cause && “ “ &&  effects
objOut.tokenID = AutoName(patternType = “Event”).[1]
Net.CEnet.add(objOut)  // Add the cause-effect pair to CEnet
Return objOut
}

18.7.7 Recursion on Everything

Recursion in mathematics is the use of output as input, repeatedly, Y = f(f(f(… f(x)))). 
Recursive hierarchical patternization in Knet provides the mechanism for recursions on 
everything. Everything can be analogized by another thing. By recursion, everything 

FIGURE 18.5
Cause to effect inference.
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can be an analogy of an arbitrary thing, x. Therefore, recursion and recursion of analogy 
enable recursion on everything:

recursion(x) → recursion (analogy(x)) → recursion(analogy(analogy(x))) → ….

The purpose of the following module is to perform recursion of event (procedure) x 
through analogy depth times.

RecursionOnEverything(x, depth) {
For i = 1 To depth
        x = Analogy(x)
Next
Return x
}

However, we will not often use this module because the Analogy model, being repeatedly 
used over time, will produce the same results.
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19
Miscellaneous

19.1 Schedules for Knet and Internal Attributes Updates

When do the Knet and other internal attributes get updated (e.g., energy, patterns, fre-
quency, Inet)? Responses occur at each attentive time point, which is related to the variable 
attention pulse rate. Before a response, tokenization (hierarchical tokenization) and pat-
ternization occur. However, updating Knet and other data tables will not occur until the 
response is finished, or possibly even later. The purpose of delaying the updating of data 
tables is to improve Zda’s real time performance. Internal attributes such as energy are 
updated immediately after each response, or in real time.

1. After a reflex, update the Reflexon frequency only, unless the next attentive time 
is within a threshold Cr, likely requiring another immediate reflex. Note that a 
2-gramton is a 2-gram with the second token actionable. When the frequency of 
a 2-gramton reaches a threshold, the 2-gramton becomes a Reflexon. A 2-gram, 
2-gramton, and reflexon are associations, but the reverse is not necessarily true.

2. After a fast-thinking response, the Knet will be updated using the corresponding 
pattern:
a. Update the frequency of the exactly matched pattern in Knet, the distributive 

reward, and recency.
b. Update the frequency of the new similarity-matched pattern (desensitisor) 

with frequency one in Knet, the distributive reward, and recency.
c. Create the imitation-induced new pattern with frequency one, the distributive 

reward, and recency.
d. Create the creativity-induced new pattern with frequency one.

3. After a slow-thinking response, the hierarchical tokenization of an event-string of 
up to 16 randomly selected elementary tokens occurs before patternization, and at 
the higher token level, patternization occurs in three forms:
a. Update the frequency of the higher level tokens from hierarchical tokenization 

in Knet, the distributive reward, and recency.
b. Update the frequency of the new similarity-matched pattern (desensitisor) 

with frequency one in Knet, the distributive reward, and recency.
c. Create the imitation-induced new pattern with frequency one, the distributive 

reward, and recency.
d. Create the creativity-induced new pattern with frequency one.

4. In deep-thinking, patternization occurs before the response, including the pat-
ternization that could occur in slow-thinking, and repatternization of Knet 
(induction with desensitisors, deduction with sensitisors). Any pattern (including 

https://doi.org/10.1201/b23355-23
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high-level tokens from hierarchical tokenization) update will update frequency, 
the distributive reward, and recency. The response can be based on n-token ahead 
predictions. From deep-thinking with recursion, Zda can derive many learning 
methods, statistical models, and can create humanized agents.

Elementary and high-level tokens, including their attributes, can also be considered as 
patterns, and will always be updated in Knet and in other relevant memories for fast execu-
tion. A string of tokens if not formed a higher level token will not be updated since it does 
not sustain in Zda’s attention.

For performance efficiency, the pattern update can be in two steps: First, updates occur 
in computer memory in real time, and then the corresponding database is updated in the 
computer disk or cloud.

19.2 Tips for Implementation

Remember the following when implementing Zda:

1. Zda likes to make noise, sounds, or do other things to attract people’s attention.
2. Shaking an object while calling its name is how one can bring Zda’s attention to

the two things and have him make an association between them. This is because
two things happening close in space and time will automatically be associated by
our agent.

3. Explaining (saying the name) while doing work will get Zda’s attention and allow
him to make an association between the procedure and its name.

4. A pattern can represent a two-way association between body posture and lan-
guage, between emotion and language, or between emotion and body posture, or
a 3-way association between body posture, language, and emotion.

5. Randomize Zda’s intentions (wants) to do something; do not directly randomize
Zda’s actions.

6. A name can be associated with an object in reality or the concept of performing a
certain task. A concept can refer to anything, including another concept.

7. Zda needs to differentiate a categorical name and a name for a particular object
of the category.

8. As far as attention is concerned, whom Lia speaks to is important.
9. A path in Knet with a high constant frequency crossing all nodes is a scientific law.

10. Any directed path in Knet with distributive rewards is a rule in daily life or a
social norm. Any directed path of high-level tokens in Knet can be a scientific law
or a mathematical or physical law in a statistical sense.

11. Since rewarded paths are more likely to be repeated, when rewards are not explicit, 
determining Zda’s response based on patent frequency will be a good alternative.

12. When the self-awareness switch is on, Zda is aware of his intention or goal. As
social interactions accumulate, a person will be labeled with certain personality
traits and intentions at any particular time t, making the process indirectly a Non-
Stationary Decision Process.
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13. Use the same object in different states to teach Zda those states. For example, pres-
ent him with a dish at different temperatures and say words like cold, cool, warm, 
hot to teach Zda these words.

14. Because of the parsimony principles, people like to generalize (they use induction) 
and may question why (making deductions) to satisfy themselves or others. We all 
ask why and how in order to satisfy our natural curiosity.

19.3 Simplified Agent Sharing Model

I believe all the modules (innate mechanisms) above can be mimicked using simple elec-
tronic networks or ANNs, but these ANNs are somewhat different from the deep learning 
ANNs (see Appendix). In this sense, we can use neural nets to archive Humanized AI. 
Such a simulated ANN for HAI has a clear meaning or matched mechanism, while the 
integration of such ANNs form a live member in human-machine society. However, we 
are not going to expand upon this. Instead, we suggest exploring the following very simple 
agent model.

Agent Model:

1. Agents are born with a green appearance and a size of 1, the distributive reward 
mechanism, hierarchical tokenization.

2. Agents randomly act with reinforcement learning—responses or actions taken 
based on distributive rewards.

3. Each agent possesses some basic (inert) knowledge and skills.
4. An agent randomly shares knowledge (successfully experienced) using language 

consisting of strings of characters A, B, and C.
5. Agents are more likely to share their knowledge with their friends (other agents 

who also like to share their knowledge with them) than with their enemies 
(i.e., agents who are not willing to share their knowledge or may deceive when 
doing so). Different agents have different levels of willingness to share their 
knowledge.

6. An agent’s size gets bigger every time he gets a reward. The amount of growth 
is proportional to the rewards. When an agent’s size is doubled his original size 
he will split into two identical agents of his original size and current knowledge. 
Every time he splits, the agent gets red or bright red, visible to other agents includ-
ing himself.

7. An agent’s size is visible to all agents, including himself.
8. An agent’s ultimate goal is to grow his size as much as possible.
9. Every action has an associated cost and leads to a reduction in the agent’s size. 

When an agent’s size is smaller than his original size he dies.
10. An agent likes to imitate others. It’s important for communication and establish-

ing a common language.
11. An agent is sometimes creative.
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12. An agent is somewhat persistent (e.g., he likes consistently to say “go right” when
the tiger is on the left road). This is also important for communicating and devel-
oping language.

13. An agent likes to work with knowledgeable agents.
14. Consider: When the two babies Lia and Zda without any learned knowledge start

to interact, what will the society of the two become (an Alphazero situation)?
15. As before, if Lia has gained some knowledge and natural language already from

humans, what will the society of the two become?

Environment:

1. Food (rewards), monsters (penalties), and elements for agents to play with.
2. There are many tasks with associated but initial unknown rewards/penalties.
3. Complicated tasks are a combination of basic skills.
4. More complicated tasks usually have higher associated rewards.

How to Play:

1. Set a goal, e.g., putting object A on B and C on A.
2. What you can do in the game is to place rewards (e.g., food) at any place, any time

you like.

Outcomes to Observe:

1. How willingness of sharing affects learning.
2. How language evolves in the community.
3. The role of language in learning.
4. How this community works with another community who speaks a different

 language using strings of characters D, E, and F.
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Glossary

A
Abstraction: The process of forming a concept by identifying common features among 

a group of individuals, or by ignoring unique aspects of these individuals. 
Abstraction is similarity grouping or desensitization.

Adaptive Response Mechanisms (Randomized Adaptive Reinforcement Learning): 
Decision-making or action-taking based on the currently observed path and the 
expected reward (R), similarity (S), and frequency (F) of the past experiences 
 (patterns). Specifically, the probability of taking a path (a sequence of actions) will 
be proportional to the product of R, S, and F.

Agents: An OOP object that inherits all properties from the type Animal and has other 
properties and behaviors.

AI Waves: The four main AI waves, Logic-based handcrafted knowledge, Statistical 
machine learning, Contextual adaptation, and Humanized artificial intelligence.

Alternating Attention: The capacity for mental flexibility that allows the shift of focus 
between tasks.

Analogy: A comparison between two systems that highlights respects in which they are 
thought to be similar.

Animals: An HAI class in OOP that inherits all properties from the Thingy class and has 
a simple brain with simple pre-programmed response-features.

Antagonistic: The situation that the whole is smaller than the sum of its parts
Artificial General Intelligence (AGI): The ability of an intelligent agent to understand or 

learn any intellectual task that a human being can. AGI can also refer to a broad 
collection or integration of narrow AIs (NAIs).

Associative Attention: The attention caused by associative thinking, leading to an atten-
tion shift from one object (event, concept) to another associated object (event, 
concept).

Associative Gramtons: A collection of 2-gramtons used for attention shift due to association.
Associative Learning: A method or process wherein the learner associates a certain 

response to an object or a stimulus resulting in a positive or negative outcome.
Attention: The behavioral and cognitive process of selectively concentrating on a discrete 

aspect of information, while ignoring other perceivable information.
Attention Pulse Rate (APR): Based on the notion that attention is not continuous in time, 

but like an electric pulse, the APR is sent at a certain rate that is directly propor-
tional to subconscious attentivity.

B
Behaviorism: Theory of behavior that is only concerned with observable stimulus-

response behaviors, as can be studied in a systematic and observable manner. 
Behaviorists believe actions are reflections of what goes on in the mind, adopting 
a goal-driven approach.

Biological Clock: A general term denoting biological degradation and biological rhythms.
Biological Degradation: A biological clock associated with aging, such as longevity, fertil-

ity, and sensitivity of sense organs.
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Biological Rhythms: Repetitive biological processes. A circadian rhythm describes a 
biological process that displays an oscillation about every 24 hours, such as the 
human sleep-wake cycle.

Biologism (Biodeterminism): The thesis that human characteristics, physical and men-
tal, are determined at conception by hereditary factors passed from parent to 
offspring.

Bootstrapping: A statistical procedure that resamples a single dataset to create many sim-
ulated samples.

Braess’s Paradox: The phenomenon that increasing an option can actually make a system 
less efficient when individually motivated factors drive behavior without collabo-
ration. E.g., adding a new road can make traffic heavier.

C
Cantor’s Diagonal Argument: A proof of the existence of uncountable sets.
Causal Determinism: The thesis that every event is the effect of antecedent events, 

and these in turn are caused by events antecedent to them, and so on. Causal 
 determinism is the foundation of First Principles.

Cause to Effect Net (CEnet): List of 2-gramtons, each pair having an associated probability.
Cause-Effect Reasoning: A type of thinking where one seeks the (probabilistic) linkage 

between two events that appear in sequence.
Circadian Clock: A molecular mechanism that results in a circadian rhythm in a living 

organism.
Classical Conditioning: The type of learning process evidenced in Pavlov’s experiment: 

the newly established relationship between the sound of the bell and salivation 
is a consequence of the learned association between two stimuli (the bell and 
the food).

Classical Mechanics: Newtonian mechanics with three fundamental conservation prin-
ciples, the conservation of energy, linear momentum, and angular momentum,

Cognitive constructivism: Constructivism that focuses on the idea that learning should 
be related to the learner’s stage of cognitive development.

Cognitive Learning (CL): Another kind of learning that involves mental processes such 
as attention and memory.

Collaboration (Social Collaboration): A working practice whereby individuals work 
together to a common purpose.

Collaborative Reward: In the HAI architecture, a reward that is distributed over all 
actionable tokens within the pattern regardless of the actioners.

Collectivism: Taking group goals as the focus point; what is best for the collective group 
and personal relationships.

Commonsense Knowledge Base: Facts about the everyday world that all humans are 
expected to know. It is currently an unsolved problem in Artificial General 
Intelligence.

Computational Linguistics: The scientific and engineering discipline concerned with 
understanding written and spoken language from a computational perspective, 
and the building of artifacts that usefully process and produce language.

Conditional Probability: A measure of the probability of an event occurring, given that 
another event has already occurred.

Confounders: A variable that influences both the dependent variable and independent 
variable, causing a spurious association.

Connectionism: The notion that humans’ intellectual abilities can be mimicked using 
artificial neural networks.
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Conscious Attention: The attention referred to the most in daily life, which is of self-
awareness and requires energy to be sustained.

Consciousness: A being or an agent having some degree of awareness of self, one’s  situation 
or relation to the world, one’s perceptions, thoughts, and actions (both past and 
present), and the potential consequences of decisions. Displayed  consciousness is 
consciousness in this book.

Consensus Theory: The thesis that truth is whatever is agreed upon, or might come to be 
agreed upon, by some specified group.

Constructivism: The theory that knowledge cannot be a passive reflection of reality, but 
an active construction by the individual, from simple to complex. Constructivist 
approaches require minimal innate knowledge as opposed to the large common-
sense knowledge-base required by the behavioristic approach.

Contextual Understanding: Context is the setting within which a work of writing is situ-
ated. Context provides meaning and clarity to the intended message. As an exam-
ple, individuals can be better understood as actors within their environment or 
community.

Correspondence Theories: The thesis holding that there exists an actual state of affairs 
and maintaining that true beliefs and true statements correspond to the actual 
state of affairs.

Cosine Similarity: A similarity measure (from −1 to 1) based on two vectorized attributes 
of two objects.

Creativity: Creativity, related to imagination and new ideas, is the ability to conceive of 
something unpredicted, original, and unique. In HAI, creativity is realized by a 
replacement of an object, action, or object’s attribute with a similar token (from a 
“synonymous list”) in the event-string.

Curiosity: A strong desire to know or learn something due to its novelty.
Cybernetics: The science of communications and automatic control systems in both 

machines and living things.

D
Deep-Thinking: A response mechanism in HAI often used in scientific investigations, 

focusing on responses (logical reasoning and repatternization) using high-level 
conceptual tokens.

Desensitisor: In a pattern structure, a token can represent a member of a category such as 
food. Such a member of class is called a desensitisor.

Desensitization: The process of creating a desensitisor or performing similarity grouping.
Discovery and Invention: While both involve novelties, the determination of a discovery 

or invention is dependent on whether or not it initially exists outside of a human 
(or agent) mind.

Distributive Reward (DR): A computed reward based on the notion that each related 
action on the path contributes to the actual reward.

Divided Attention: The ability to respond simultaneously to multiple tasks or multiple 
task demands.

Doctor-Patient Paradox: A phenomenon wherein A and Not A can both be correct. In the 
situation where a doctor tells his patient that he will recover soon or he will recover 
very slowly, the doctor can be always right, because his statement might affect 
the speed of the patient’s recovery; thus, both statements A and Not A are correct.

Dreams: Successions of images, ideas, emotions, and sensations that occur involuntarily 
in the mind during certain stages of sleep. A dream may NOT be equal to the 
recalled dream.
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E
Elaboration Tolerance: Allowing new information added so as to elaborate previous find-

ings without starting over in the representation of previous information.
Elementary Tokens (Atomic Tokens): The initial basic units used to build virtual envi-

ronments, human characters, and agents. In principle, elementary tokens can be 
further broken into smaller elements (tokens) by a human or an agent later in life 
when the sensitivities of sensory organs increase.

Embodiments: Human-equivalent physical sensory organs that can be used to detect the 
real world, while an agent on a computer is embodied virtually, with virtual sen-
sory organs to detect the virtual world.

Emotions: Mental states associated with thoughts, feelings, behavioral responses, and a 
degree of pleasure or displeasure; the other side of reasoning; if reasoning fails 
emotion arises.

Entanglement: An important concept in quantum mechanics whereby two particles 
(electrons, photons, molecules, etc.) can be entangled, i.e., knowing the status of 
one implies instantly knowing the status of the other, no matter how far the two 
 particles are apart. This implies that information can be “transmitted” instantly, 
faster than light. Entanglement makes it possible for quantum computing to be 
faster than classical computing.

Entropy of Statistical Mechanics: A measure of disorder in particle disorder, equivalent 
to information entropy in information science.

Event-Patterns: Patterns that do not only contain tokens in natural language.
Event-String: A text string representing sequential and/or concurrent events.
Evolutionary Algorithm: A generic population-based metaheuristic optimization algo-

rithm inspired by biological evolution, such as reproduction, mutation, recombi-
nation, and selection.

Exploration-Exploitation Trade-Off: The matter of choosing whether to repeat the best 
decisions known so far (exploitation) or to make a novel decision (exploration) that 
might provide an even better solution.

Exponential Similarity: A similarity measure (from 0 to 1) of two patterns or objects based 
on the exponential difference between their attributes.

Experience: Patternized experiences.

F
Factor-Isolation Technique (FIT): A technique, based on the principle of factor-isolation, 

in which one works to constructively isolate a few factors in order to determine 
association and causal relationship.

Fast-Thinking: A response mechanism of HAI under time pressure, dealing in real time 
with up to 4 elementary tokens at 1 to 4 time points.

Fechner’s Law: An alternative form of Weber’s Law which says that the intensity of our 
sensation increases as the logarithm of an increase in energy.

First Designer Stance (Intentional Stance): The level of abstraction in which we view the 
behavior of an entity in terms of mental properties.

Fixors: The unchanged parts in a skipton.
Focused Attention: The ability to respond discretely to specific visual, auditory, or tactile 

stimuli.
Fredkin’s Paradox (Minsky’s Optimization Paradox): Fredkin’s observation that “the 

more equally attractive two alternatives seem, the harder it can be to choose 
between them.”
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Function Specification: A formal document that software developers use to describe in 
detail a product’s intended capabilities, appearance, and interactions with users. 
The functional specification is a kind of guideline and continuing reference point 
as the developers write the programming code.

Functionalism (Symbolism, Logicism): The thesis that one simulates the functional pro-
cesses of logical thinking in the human mind.

G
Gödel’s Incompleteness Theorem: A sufficient axiomatic system involving arithmetic 

cannot have the properties of completeness and consistency at the same time.
Gramton: A text string in the form of E1⊗E2⊗E3⊗E4, where ⊗ is either ∧ (occur concur-

rently) or ⭇ (occur sequentially).

H
Habituation: The phenomenon of the diminishing of a physiological or emotional (innate) 

response to a frequently repeated stimulus.
Hierarchical Tokenization: A process of dimension reduction, proceeding from the notion 

that complex concepts are understood based on some simpler concepts, imple-
mented in obtaining a shorter event-string representation by repeatedly replacing 
a part of the string with learned concept-strings (tokens).

Human Nature: A concept that denotes the fundamental dispositions and characteristics, 
including ways of thinking, feeling, and acting, that are natural to humans.

Humanized AI (HAI): AI aiming at creating agents (virtually—on computer—or robots) 
that look, think, and behave like humans and act as life companions, not digital 
slaves.

I
Identity Paradox: If change is a constant to everything, what persists in one’s identity?
Imaginary Net (Inet): A network similar to Knet structurally, but formulated by hypo-

thetical scenarios that have not been executed or verified by logical reasoning or 
mathematical derivation.

Imagination: A speculative mental state that allows us to consider situations apart from 
here and now. 

Imitation: Mimicking someone or something, especially as the starting point of learning 
and creativity. In HAI, imitation is realized by replacing an actioner in an actioner.
action string with the agent himself. Imitation is essential in letting an agent auto-
matically become a social being.

Individualism: A social theory favoring freedom of action for individuals over collective 
or state control.

Inductive Reasoning: Drawing a general conclusion from a set of specific observations.
Inertia of Attention: The tendency of humans or agents to pay attention to the same thing 

paid attention to at the previous moment.
Information Entropy: A measure of information disorder in information theory.
Informational Obesity: The result of a person taking on too much, or unnecessary, 

information.
Initial Tokenization: Segmentation of a string based on elementary tokens that are directly 

formulated from innate knowledge, concepts, and elementary actions.
Innate Behavior: The inherent (built-in) inclination of a living organism toward a particu-

lar complex behavior.
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Innate Biological Desires: The desires agents are born with, such as for food or energy 
when hungry, curiosity when facing novel situations, or emotional desires. Desires 
often drive Zda’s actions.

Innate Concepts or Knowledge: Inherited (built-in) concepts and knowledge.
Innate Habits: Opposite to developed habits, innate habits are inherent (built-in) regular 

tendencies that are hard to give up.
Innovation: The practical implementation of smart ideas by borrowing across different 

disciplines.
Instincts: Innate habits that are not the result of learning or experience.
Instinct Theory of Motivation: All organisms are born with innate biological tendencies 

that help them survive. This theory suggests that instincts drive all behaviors.
Instrumental Rationality: A pursuit of all means necessary to achieve a specific goal.
Intelligence: The capacity to learn from experience and adapt to one’s environment, 

including three fundamental cognitive processes, abstraction, learning, and deal-
ing with novelty.

iWordNet: An individual’s knowledge network constructed by a sequence of intercon-
nected questions. An iWordnet can be used to analyze one’s overall knowledge 
structure and understanding of concepts.

Intersubjective Agreement: The agreement among some number of conscious minds.
Intransitive Dice: A set of dice with circular winning probability, e.g., A > B > C > A.

J
Jaccard Similarity: A similarity measure (from 0 to 1) based on the ratio between the inter-

section and union of two patterns or strings.

K
Knowledge: Facts, information, and skills acquired through experience or education; the 

theoretical or practical understanding of a subject.
Knowledge Net (Knet): In this book, Knet refers to patternized real-world experiences 

saved in cloud storage or on a computer disk and used for Deep-Thinking.
Kolmogorov Complexity: The Kolmogorov complexity of an object, such as a piece of text, 

is the length of a shortest computer program (in a predetermined programming 
language) that produces the object as output.

L
Language-Guided Response: A means of using the information words provided in the 

natural language to facilitate a response.
Language of Thought Hypothesis (LOTH): The presupposition of a mental language 

where thought and thinking take place.
Law of Contiguity: A law of association stating that we associate things that occur close 

to each other in time and/or space.
Law of Contrast: A law of association stating that the thought of something is likely to 

trigger the thought of its direct opposite.
Law of Excluded Middle: In formal logic, the axiom that between A and the negation of 

A, one and only one is true.
Law of Similarity: A law of association which asserts that when two things are very simi-

lar to each other, the thought of one will often trigger the thought of the other.
Law of Summative Effects: The whole can be practically approximated by the sum of its 

parts.



299Glossary

Law of Syllogism: Suppose the following two statements are true: (1) If p, then q. (2) If q, 
then r. Then, according to the Law of Syllogism, we can derive a third true state-
ment: (3) If p, then r.

Laws of Association: Rules used to explain how we learn and remember things through 
associations.

Lia: A generic name for a female HAI agent.
Logic Specification: A document about the structure of the programming and the rela-

tionships between individual code modules and the data parameters that they 
pass to each other.

Logicism: The thesis that one can simulate the functional processes of logical thinking in 
the human mind.

M
Machine Learning (ML): A narrow AI that emphasizes learning from data, the AI field in 

which we have major achievements today. ML can be classified into five general 
categories: supervised, unsupervised, reinforcement, evolutionary, and swarm 
intelligence learning methods.

Markov Decision Process (MDP): A mathematical framework for modeling decision-
making in situations where outcomes are partly random and partly under the 
control of a decision-maker. MDPs are useful for studying optimization problems.

Meta Net (Mnet): If different patterns in Knet are linked at the same tokens, a large recur-
sive knowledge net (Mnet) is formulated. Mnet is mostly used in Deep-Thinking.

Monotonic Reasoning: In monotonic reasoning, adding knowledge does not decrease the 
set of propositions that can be derived. That is, once the conclusion is taken, it will 
remain the same even if we add some other information to existing information 
in our knowledge base.

Multilevel Intelligence: An intelligence can be considered collective intelligence from a 
lower level. Human intelligence can be viewed as the collective intelligence of 
body cells; social intelligence can be viewed as a collective intelligence of humans 
in society. Humanized AI can be the collective intelligence of its parts or the inte-
gration of its various mechanisms.

N
Narrow Artificial Intelligence (NAI): AI that focuses on a specific task or problem.
Natural Language: A language (e.g., English and Chinese) that has developed naturally in 

use, as contrasted with an artificial language or computer code. Natural Language 
is an essential tool for communication, while communication itself is a key instru-
ment in cognition, learning, and emotional expression.

Natural Language Net (Lnet): The patternized natural language based on an agent’s expe-
riences, but different from the grammar humans use in any natural language.

Natural Language Processing (NLP): A field of Artificial Intelligence in which we try to 
process human language as text or speech to make computers similar to humans.

Neurologism: The thesis that Humanized AI can be made through simulating the struc-
tural characteristics of the biological neural networks in the human brain.

Neuronal Correlates of Consciousness: The minimal neuronal mechanisms jointly suf-
ficient for any specific conscious experience.

N-gram: A contiguous sequence of n items from a given sample of text or speech.
Non-Associative Learning: Learning that includes habituation and sensitization.
Non-monotonic Reasoning: Conclusions may be invalidated if we add some more infor-

mation to our knowledge base, such as occurs in probabilistic reasoning.
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O
Objective Multifaceted World: See the world we live in.
Object-Oriented Programming (OOP): A computer programming model that orga-

nizes software design around objects, rather than functions and logic. The 
classes of objects have associated properties and behaviors (methods, functions). 
Abstraction, inheritance, encapsulation, and polymorphism are four key features 
of OOP. In HAI, the three basic built-in classes of objects are Thingy, Animal, and 
Humanized Agent.

Observational Learning: A form of learning that develops through watching and does not 
require the observer to perform any observable behavior or receive reinforcement.

Onsite Patternization: Real-time patternization based on a small collection of event-
strings during a very short time interval.

Ontology: An essential set or scheme of concepts and categories for AGI agents, encom-
passing a representation with definitions of categories, properties, and relations 
between concepts, data, and entities.

Operant Conditioning: See Reinforcement theory.

P
Parallel Worlds (Many Worlds Theory): In contrast to superposition, the thesis in quan-

tum theory is that when a physical system is measured, it branches into multiple 
parallel worlds that never cross each other.

Parsimony Principle (Occam’s Razor): The simplest theory that fits the facts of a problem 
is the one that should be selected. However, Occam’s Razor is not considered an 
irrefutable principle of logic, and certainly not a scientific result.

Particle Swarm Optimization: A collective intelligence search algorithm in Narrow AI to 
an optimum.

Path of Understanding: A vector characterization of language strings using local topo-
logical properties of iWordnet, providing a way to compute meaning.

Patternive Reward (Simple reward): An observed reward associated with an event-string 
(path) or a pattern.

Pragmatic Theories: Theories holding in common the principle that truth is verified and 
confirmed by the results of putting one’s concepts into practice.

Primary Knet (pKnet): A portion of Knet that only includes patterns with top reward, 
 frequency, top recency, bottom duration, and top survival time left.

Principle of Maximum Entropy: The probability distribution which best represents the 
current state of knowledge about a system is the one with the largest entropy, in 
the context of precisely stated prior data.

Principles of Association: Contiguity in time and place, resemblance, and causation.
Probability of Action (PoA): The product of similarity, reward, and frequency, used in the 

response mechanisms.
Proof-by-Contradiction: A form of proof that establishes the truth or the validity of a 

proposition, by showing that assuming the proposition to be false leads to a 
contradiction.

Q
Q-Learning: A model-free reinforcement learning algorithm to learn the value of an action 

in a particular state.
Quantum: The minimum amount of any physical entity involved in an interaction.
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Quantum Mechanics: Different from classical mechanics, in quantum mechanics the state 
of a quantum can be in multiple possible states at the same time, with associated 
probabilities. The key useful concepts of modern Quantum Mechanics include 
Superposition and Entanglement.

Qubits: Unlike classical bits of information, quantum information in qubits can be neither 
copied (the no-cloning theorem) nor destroyed (the no-deleting theorem). These 
two properties are very useful for the future of Cyber Security.

R
Radical constructivism: The constructivism, whose central idea is that learners and the 

knowledge the learner constructs tell us nothing real, they only help us function 
in our environment; knowledge is invented, not discovered.

Randomized Adaptive Response: Response based on Probability of Action, which depends 
on three normalized factors: Similarity (S), Reward (R), and Frequency (F).

Rationalization: Decision-making based on maximization of certain utilities or rewards. 
In HAI the frequency of a pattern is a reward-proxy.

Reciprocal Principle (Reciprocity): The tendency of agents to exchange the two actioners 
in a pattern. The Reciprocal Principle creates the scenario wherein an agent treats 
a person in the same way the person treats him.

Recursion: Recursion in mathematics is the use of output as input, repeatedly: Y = f(f(f(… 
f(x)))), where f(·) represents a function or mechanism of a system.

Recursive Patternization: Using patternized string to further patternize stings, repeatedly.
Reinforcement theory (Skinner): A theory of actions built on the assumption that behav-

ior is influenced by its consequences. Reinforcement is the process of shaping 
behavior by controlling the consequences of the behavior. Rewards are used to 
reinforce the behavior we want and punishments are used to prevent the behavior 
we do not want. These processes are called operant conditioning.

Reflex: An action that is performed as a response to a stimulus and without conscious 
thought, used to protect one’s body from things that can harm it. Reflex also refers 
to a Humanized AI response model.

Reflexons: A pair of timewise highly associated tokens (2-gramtons) used in HAI Reflex. 
The first token is called a stimulus and the second token is called a reflexor.

Reverse Engineering: The reverse process of hierarchical tokenization, used in agent 
responses and in animation.

Reward Aggregation: The aggregation of rewards from the next lower token level.
Reward Propagation: The propagation of a reward to the next lower token level.
Robotics: An interdisciplinary branch of computer science and engineering involving 

design, construction, operation, and use of robots.

S
Sample space: S is the set of all possible outcomes of a random variable.
Schrödinger’s Cat: The cat that is in both live and dead states at the same time; used to 

illustrate the concept of superposition.
Selective Attention: The ability to maintain attention in the face of distracting or compet-

ing stimuli.
Self-Awareness: The psychological state (phenomenon) that one knows what one is 

experiencing.
Self-Programming: AI system that can generate programs by itself.
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Sensitization: The reverse process of desensitization, i.e., breaking a group into finer 
categories.

Similarity Principle: The principle that (a) similar things or individuals will likely behave 
similarly, and (b) the more similar they are, the more similarly they behave. The 
Similarity Principle is the foundation for dealing with novelty.

Simpson’s Paradox: A phenomenon in which a trend appears in several groups of data but 
disappears or reverses when the groups are combined.

Simulated World Hypothesis: The thesis that reality could be simulated, e.g., by quantum 
computer simulation, and is to a degree indistinguishable from “true” reality.

Skipton: A pattern consisting of fixors and desensitisors.
Slow-Thinking: A response model in Humanized AI dealing with those situations with less 

time pressure than in Fast-Thinking and up to 16 most recent elementary tokens.
Social Being: A being that lives or prefers to live in a community rather than alone, and 

actively seeks companionship and engages in social service. Social Collaboration 
is a common characteristic for a social being.

Social Collaboration: See Collaboration.
Social Constructivism: Constructivism that views all of our knowledge as constructed, 

and that truth is constructed by social processes and is historically and culturally 
specific.

Social Justice: A fair and equitable division of resources, opportunities, and privileges in 
a society, also a consequence of social interactions.

Social Norms: The perceived informal, mostly unwritten, rules that define acceptable and 
appropriate actions within a given group or community, thus guiding human 
behavior. No prespecified rules are needed for Humanized AI, as the imitation 
mechanism will automatically lead agents to conform to social norms.

Stochastic Decision Networks: Networks that involve transitional probabilities for chang-
ing from one state to another and which have rewards associated with the network 
nodes. In Humanized AI architecture, the network is recursive and directional.

Subconscious Attention: The attention that relates to an effortless reflex.
Subsumption Architecture: The hierarchical architecture that decomposes a robot’s con-

trol system into a set of task-achieving behaviors or competencies.
Superposition: A key concept in quantum theory, where a physical system (electrons, 

 photons) can be considered to be in two different states at the same time, with 
associated probabilities.

Supervised Learning: A type of machine learning method in which the learner will give 
a response y based on an input x and will be able to compare his response to the 
target (correct) response.

Sustained Attention: The ability to sustain a steady response during continuous attention.
Swarm Intelligence (Collective Intelligence): An intelligent system in which organized 

behavior arises without a centralized controller or leader.
Synergistic: Involving a scenario in which the whole is greater than the sum of its parts.
Synthetic Approach: A new constructivist approach in humanized AI.

T
Target population: It is the set of all units a random process can pick.
Thingy: An OOP class presenting any inanimate thing with the following attributes: 

appearance (color, shape, size), material, mass, brightness, sound, loudness, odor, 
odor intensity, surface texture, temperature, edibleness, location, and velocity. A 
Thingy has these properties, but cannot move unless an external force acts on it.
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Thought Experiment: A hypothetical situation in which a hypothesis, theory, or principle 
is laid out for the purpose of thinking through its consequences. Galileo’s Leaning 
Tower of Pisa experiment and Schrödinger’s cat are two well-known thought 
experiments.

Three-World Theory: The postulation of three distinct worlds to assist in building 
Humanized AI, including the world we live in, the world in our eyes, and the 
world in our mind.

Trolley Problem: The thought experiment with a raised ethical question: should an opera-
tor divert a runaway trolley onto a side track, killing a person on the track, if doing 
so reduces the overall number of deaths?

Turing’s Halting Problem: The problem of determining whether a given set of responses 
to some input emanate from a human or a computer program. Alan Turing proved 
in 1936 that a general algorithm to solve the halting problem for all possible 
 program–input pairs cannot exist.

U
Unsupervised Learning: A type of machine learning in which the learner receives no 

feedback from the supervisor at all. Instead, the learner’s task is to re-represent 
the inputs in a more efficient way, for instance, as clusters or with a reduced set of 
dimensions.

V
Virtual Humans: Human-like characters on a computer screen, who might embody life-

like behavior, displaying eyes or other parts of an avatar body, with or without 
human control. The term Virtual Human also refers to any one of us, any tech-
nology user who interacts with agents and virtual environments through input 
devices such as keyboards, microphones, and video cameras.

Virtual Sensory Organs: Sensory organs made for robots or humanized AI agents on 
computers.

W
Weber-Fechner Laws: A law stating that the minimum increase of stimulus that will 

produce a perceptible increase of sensation is proportional to the pre-existent 
stimulus.

World We Live In: A multifaceted objective world of infinite detail for humans and 
robots to sense and interact with. The multifacetedness is asserted by quantum 
mechanics.

World In Our Eyes: The “image” of the objective world that projects on the “retina” 
through the “eyes”, a subset of a being’s sense organs. It is a filtered world.

World In Our Mind: A simplified, interpreted version of the perceived world using con-
cepts that include causality and associative relationships.

Z
Zda: A generic name for a male HAI agent.
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Appendix: Tutorial to Common Methods  
for Narrow AI

A: Overview of Modern Artificial Intelligence

A.1 Artificial Intelligence and Machine Learning

The term, artificial intelligence (AI), was coined by John McCarthy, Marvin Minsky, 
Nathaniel Rochester, and Claude Shannon in 1955 (Russell and Norvig, 2003). AI is tied to 
what we used to think of as what comprised a robot’s brain, or to the function of such a 
brain. In a general sense, AI includes robotics. The term AI often emphasizes the software 
aspects, while the term robot includes a physical body as an important part.

AIs can be divided into two general categories, weak and strong AI. A weak AI (WAI) 
aims at carrying out specific tasks, while strong AI or artificial general intelligence (AGI) 
aims at creating a mechanical brain that is capable of what the human brain can do. We will 
spend most chapters considering WAI, as our major advancements so far are only in WAI.

In the areas referred to today as machine learning (ML), data mining, pattern recogni-
tion, and expert systems, progress may be said to have started around 1960. Samuel (1959) 
coined the term machine learning, reporting on programming a computer “so that it will 
learn to play a better game of checkers than can be played by the person who wrote the 
program.” Though the terms AI and machine learning are often used interchangeably. ML 
emphasizes learning from data, whereas AI has a broader sense that can include ML and 
the implementation of software and hardware.

Bioinformatics involves ML studies in biology and drug discovery. As an interdisciplin-
ary field of science, bioinformatics combines biology, computer science, and statistics to 
analyze biological data. An example would be an identification of candidate genes and 
single nucleotide polymorphisms (SNPs) for a better understanding of the genetic basis of 
disease, unique adaptations, desirable properties, and differences between populations. 
In the field of genetics and genomics, bioinformatics aids in sequencing and annotating 
genomes and their observed mutations. Since AI methods were introduced to biotech com-
panies in the 1990s, different ML methods have contributed significantly to drug discovery.

In Part I, we discussed different types of machine learning approaches. Further clas-
sification of machine learning methods is summarized in Figure A.1. The discussions of 
different methods are provided in the following sections.

A.2 Artificial Neural Networks for Deep Learning

The recent great achievements in AI, mainly in supervised learning, are exemplified by 
deep learning (DL) for image processing, voice recognition, and natural language process-
ing. An Artificial Neural Network (ANN), mimicking the mechanism of the human neural 
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network, uses adaptive weights between the layers in the network to model very com-
plicated systems. The learning of the network is simply the adaptation (updating) of the 
weights.

To mimic the human neural network, an ANN consists of layers of nodes and weights 
(mimicking synaptic connections) that connect nodes in different layers. The part of an ANN 
within a single layer, mimicking a neuron, is called a perceptron (Figure A.2). A deep 
learning model is a multiple-layer ANN with as many as 1,000 hidden layers, modeling 
the cascade effects of neurons. Each layer takes the outputs from the previous layer as its 
inputs. The weighted sum of the inputs feeds the activation gate (function) to produce the 
output for the next layer until the last layer is reached. In such an ANN, the information 

FIGURE A.1
Classification of machine learning methods.

FIGURE A.2
A Perceptron mimicking a neuron.



307Appendix: Tutorial to Common Methods for Narrow AI 

is the weighted sum of information from the previous layer and forwarded from layer to 
layer. Thus, it is called a forward neural Network (FNN).

Learning in biological systems involves adjustments to the synaptic connections that 
exist between the neurons. The same is true for ANNs: learning for a DL network is essen-
tially updating weights in the network using training data so that the output will match 
up closely with the true output.

Deep learning has various architectures, including (1) Feedforward Neural Networks 
(FNNs) for general classification and regression, (2) Convolution Neural Networks (CNNs) 
for image recognition, (3) Recurrent Neural Networks (RNNs) for speech recognition and 
natural language processing, and (4) Deep Belief Networks (DBNs) for disease diagnosis and 
prognosis. Of course, these are only examples of DL with different networks. Different 
problems can be solved using the same type of ANN, and different ANNs can be used to 
solve the same problem.

A.3 Data Structures and Fusion

AI and ML often rely heavily on data. The kinds of random variables considered here 
are binary, categorical (nominal and ordinal), time-to-event, vectors, matrices, sensors, 
sequences, trees, sets, shapes, manifolds, and functions.

Structured data refer to information with a high degree of organization. One such 
typical dataset is a relational database, such as a spreadsheet, where all data have the 
same format, same types, same variables, and often have a similar high quality. A rela-
tional database is seamless and readily searchable by simple, straightforward search 
engine algorithms or other search operations. In contrast, unstructured data, such as 
emails, medical records, and social media data, are essentially the opposite. They often 
have mixed formats (image, text, video, sound clips), different variables, and low qual-
ity. Traditionally, classical Statistics does handle structured data, but it is very difficult 
to handle massive unstructured data efficiently without manual interventions. Machine 
learning is expected to handle structured and unstructured data better. Since the pool 
of information generally available is so large, current data mining techniques often miss 
a substantial amount of the information that’s out there, much of which could be game-
changing data if efficiently analyzed. AI technology can be used to convert unstructured 
data into structured data or develop new AI systems that can directly handle unstruc-
tured data efficiently.

Data fusion is the process of integrating multiple data sources to produce more consis-
tent, accurate, and useful information. A simple example will be combining data from 
various clinical trials and previously published clinical trial data. Such data usually are 
a mix of individual patient data and trial summary data (such as means, medians, confi-
dence intervals, standard errors, sample sizes, and p-values). Interestingly, humans con-
stantly use data fusion in comprehending the surrounding world. As humans, we rely 
heavily on our senses and physical movement. We rely on a fusion of smelling, tasting, 
and touching food to ensure that it is edible (or not). Similarly, we depend on our ability to 
see, hear, and control the movement of our body to walk or drive and to perform most of 
our daily tasks. Our brain performs fusional processing based on individual knowledge 
at instants in time, and we take the appropriate action. Such a level of data fusion is to be 
achieved by AI.
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A.4 General Steps in Applying Machine Learning

In order to use ML methods, there are common steps involved, as outlined in the following:

1. Purpose: Elaborate the problem to be solved clearly and your purposes in using 
machine learning. This will help you narrow down a small set of machine learn-
ing methods for your target.

2. Data Source: Identify data source and data format (written on paper, recorded in 
text files, spreadsheets, or stored in an relational database), then process (convert, 
merge) them into one electronic format suitable for analysis. These data will serve 
as the learning material that an ML algorithm uses to generate actionable knowl-
edge. The quality of any ML project is based largely on the quality of the data 
it uses.

3. Model Training: Unless your problem has been well studied and a trained model 
can be used as directed, you have to train the ML or determine the model param-
eters using your training data.

4. Performance Evaluation: Before you apply the ML algorithm, you need to evaluate 
its performance. Evaluation is usually done using the same training data because 
overfitting is a problem; another dataset, of so-called testing data, is needed to 
evaluate the model performance.

5. Model Optimization: Depending on model complexity, we often need to recur-
sively use training data and test data to determine the optimal ML parameters 
and make comparisons among different ML algorithms to identify the optimal 
model among several ML methods. This parameter tuning process is often called 
cross-validation.

6. Apply the optimal model with trained parameters to the intended task.

In short, select your ML algorithm according to your clearly defined goal, use training data 
to determine training model parameters, test the trained model and retrain it if necessary, 
and apply the retrained model.

B: Similarity-Based AI

B.1 The Similarity Principle

To overcome the difficulties raised in Simpson’s Paradox discussed in Part I, Section 3.4, we 
developed a similarity-based Machine Learning or SBML (Chang 2020).

Science aims to discover causal relationships and to predict future outcomes. So does 
learning (human or machine learning). All science, and learning itself, is based on a fun-
damental principle—the similarity principle (Chang, 2012, 2014). The principle can be 
stated as: similar things or individuals will likely behave similarly, and the more similar 
they are the more similarly they behave. For instance, people with the same (or a similar) 
disease, gender, and age will likely have similar responses to a particular drug or medical 
intervention. If they are similar in more aspects they will have more similar responses.
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To qualify as a true scientific discovery, a finding must be verifiable. Otherwise, it can-
not be called science. However, as history is unique, no two events are identical or repeat 
exactly, and even the same individual (especially a living being) will change constantly. 
For this reason, we have to group similar things together and, considering them as approx-
imately the same, study their common or overall behaviors. In such a way we artificially 
construct recurrences of events. For example, studying a group of people with similar 
personalities, psychologists attempt to explain why those people behave the way they do. 
Pharmaceutical scientists treat people with the “same” disease to study the overall effect 
of a drug, even though individual responses to the drug may be different.

Indeed, similarity grouping is the basis for scientific discovery, and the similarity prin-
ciple we believe in is the backbone of causality. The idea of a causal relationship is a way 
for human beings to handle the complex world in a simple form with a reasonable approxi-
mation because our brains are limited—we are not all-knowing!

The principle is unconsciously used at any moment in our daily life, at work, in all the 
sciences, in statistics, and even in mathematics. We will make the similarity principle 
operational (not just stopping at a conceptual level) so that it can be effectively used in the 
learning process.

B.2 Similarity Measures

A similarity measure or similarity function is a real-valued function that quantifies the 
similarity between two subjects (or two objects, two event sequences) in a simple form. 
Although no single definition of a similarity measure exists, usually such a measure is, 
in some sense, the inverse of the dissimilarity or distance (d) between two subjects. For 
instance, an exponential similarity function S is defined

 ( )= −expS d

We see that the similarity score reduces exponentially as the distance d increases. Here d 
ranges from zero to infinity, while the corresponding S ranges from 1 (two identical sub-
jects) to 0 (completely different subjects).

Similarity scores can be used to build a network in which the nodes represent individu-
als (persons, objects, or events) and the links represent the associated similarities. We call 
this similarity network a similarix. A similarix is a weighted network with similarity scores 
as the weights of the links. Similarixes can be used in network analysis.

B.3 Similarity-Based Learning

According to the similarity principle, to predict the outcome Y of a new person with attri-
butes X to a stimulus, we use the similarity-weighted outcomes …( ,  ,  , )1 2Y Y YN  of the N 
patients in the training set. That is,

 ∑=Y c S Y
j

j j
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For a classification problem, rounding is applied to the predicted Y. The normalization 
constant = ∑1/  c Sj and the similarity between the new person and the jth subject is

 ( )= −expS dj j

We define an attribute to be a value that measures whether, or to what extent, a certain 
property is held by a subject. An attribute vector is a sequence of attributes. Thus, the dis-
tance between attribute vector X of the new person and the attribute vector Xj for the jth 
subject is = −| ( )|d R X Xj j . Here R is a row vector. Most importantly, the attribute-scaling 
factor R we have introduced allows us to scale the distance according to the importance of 
each attribute to the outcome.

A subject is defined by the selected attributes. Therefore, for given paired subjects, a dif-
ferent selection of attributes can lead to a different similarity score. The similarity scores 
are also related to the outcome variable. For instance, gender difference has little effect 
on IQ outcome, but can be a great factor in the capability of bearing children! We use the 
attribute-scaling factors R to handle this at the training stage. In other words, learning in 
SBML is the updating of R using a training dataset.

Note that a regression model models the relationship between dependent and indepen-
dent variables directly, while SBML models the relationship indirectly through modeling 
the relationship of the dependent attributes (outcomes) among different subjects by using 
similarity scores.

B.4 Training, Validation, and Testing

An ML model is generally in need of training to determine its parameters, such as the 
attribute-scaling factors, before it can be used in a real world problem. Moreover, the 
trained model often needs to be validated or tested for its performance. Cross-validation 
is often used in variable selection and tuning the model parameters, while testing is used 
to evaluate the performances of different ML methods. Training is usually performed on 
normalized datasets, making the attributes (features or predictors) range from 0 to 1 with 
standard deviation 1, as an example. Such standardization makes the model (parameters) 
easier to generalize to other applications as long as the attributes in the corresponding 
dataset are also normalized. The commonly used methods for validation and testing are:

1. Exhaustive cross-validation methods are cross-validation methods that learn and 
test using all possible ways to divide the original sample into a training and vali-
dation set.

2. Leave-p-out cross-validation involves using p observations as the validation set 
and the remaining observations as the training set. This is repeated for all ways 
to cut the original sample into a validation set of p observations and a training set.

3. Bootstrapping is the random selection, with replacement, of m samples of size p as 
training sets and n samples of size q as test sets. This method is more appreciated 
when the sample size is small.

In general, larger attribute-scaling factors R (as the number of epochs increases) will lead 
to a smaller training error. We can always reduce the training error to near zero when 
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the R approaches infinity. However, this will lead to overfitting and increase test error 
(Figure A.3). The test error is our real concern, not the training error. Regularization is a 
commonly used technique used to overcome the overfitting problem.

Regularization

Regularization imposes a penalty on the complexity of a model in the form of a loss function 
based on the principle of Occam’s razor (Chang, 2014). In learning, if we minimize the loss 
function instead of training error, the overfitting problem can largely be circumvented. If 
the prediction accuracy is measured by the mean squared error (MSE) between the pre-
dicted and observed outcomes, then Tikhonov regularization or a ridge loss function can be 
used and the optimization problem becomes one of finding a vector R that minimizes

 = + λ 2L MSE R

Here |R| is the norm or overall size of the scaling factors. By properly selecting the tuning 
parameter λ in the penalty term through cross-validation or predetermination, the train-
ing error MSE can be controlled to avoid overfitting.

Learning

Learning is essentially the updating of the model parameters R so as to minimize the loss, 
using the Gradient Method Algorithm with the training data. The gradient method makes 
the adjustment of R in the maximum slope direction (just as we go downhill following the 
steepest but shortest path). The scaling factor at iteration t+1 from iteration t is calculated 
using the formulation

 = − α ∂
∂

( ) ( )+1R R L
R

t t

If we view gradient ∂
∂

L
R  as the direction of walking, then the constant learning rate α (e.g., 

0.125) determines the stride length. The learning rate should be small enough to have suf-
ficient precision, but large enough (e.g., 0.25) for computational efficiency.

Now we know how to use SBML to resolve the Simpson paradox and other statistical 
controversies discussed in Chapter 6. We first record the responses in all patients and col-
lect all potential relevant attributes, such as baseline disease severity, vital signs, gender, 

FIGURE A.3
Training error versus test error.
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age, genomics, and other demographics. Training data are then used to determine the 
attribute-scaling factors for the attributes. The learned scaling factors govern the relative 
importance of each attribute in the similarity score. After the scaling factors are deter-
mined, individual response is predicted using similarity-based weighting of the known 
responses. In short, to predict a patient’s response, instead of basing the response (rate) in 
a predetermined category (e.g., all patients, male patients, or young female patients), we 
will weigh the responses of patients based on the similarity.

A Case Study

Consider, e.g., cystic fibrosis (CF)—a rare, inherited, and life-threatening disorder. CF dam-
ages multiple organs and systems in the body, including respiratory, gastrointestinal, and 
reproductive systems. In CF drug development, a clinical endpoint to evaluate a drug’s effi-
cacy is the absolute improvement in lung function (measured by the percent predicted forced 
expiratory volume in one second, or ppFEV1) compared to a baseline. The attributes of interest 
include treatment, age, sex, and baseline ppFEV1. In predicting ppFEV1 results from the tri-
als, SBML shows a 22% improved precision over classic statistical optimal linear models, with 
only a small training dataset. SBML can be used in early clinical trials to predict later phase 
trial results in drug development for better trial design and planning. In precision medicine, 
SBML can also be used for predicting the treatment result for future individual patient results 
(rather than average results over all patients) to better inform the patient and doctors.

Nearest-Neighbors Method

As the scaling factors become very large the prediction using SBML will degenerate to the 
K-nearest neighbor (KNN) algorithm, but the relative scaling effects of different attributes 
are still there. When we buy a product or seek advice on some matter, we often seek out 
close neighbors or friends for their opinions, since they are similar to us (in many ways), 
and doing so is a convenient way to get helpful information. This is the basic idea behind 
the KNN. In a KNN, an object is classified by a majority vote of its neighbors, with the 
object being assigned to the class most common among its K nearest neighbors.

Despite its simplicity, KNN has been used in many classification problems, such as the 
deciphering of handwritten digits and satellite image scenes. In drug discovery and devel-
opment, KNN is used for ECG Pattern Analysis and Classification (Thomas and Mathew, 
2016) and for a three-dimensional QSAR (Nigsch et al., 2006).

There are many other similarity-based ML methods in drug development with prefixed 
similarities determined by field experts minus the attribute-scaling factors. From this 
perspective, more precisely, the SBML discussed in this book should be called similarity-
principle-based machine learning.

B.5 Summary

The similarity principle is a fundamental principle that we constantly use in our daily 
lives, causality inferences, and scientific discoveries. The principle asserts that each attri-
bute contains some information about the outcome of events and that similar things should 
have similar outcomes. This is virtually always true as long as the target population for the 
evaluation is also defined using the same set of attributes used in learning.
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Similarity in SBML is context-dependent. That is, similarity is (1) outcome-dependent, 
(2) attribute-dependent, and (3) data-scope dependent.

SBML can help doctors to predict the drug effect in individuals to better prescribe medi-
cines. It can also be used to build medical robots for personalized medicine.

SBML has a “shrinking effect” on the predicted outcome because the weighted average 
of outcomes is always between the minimum and maximum of the outcomes. However, if 
we use the derivatives of the outcome variable instead of the outcome variable, SBML can 
predict an outcome that is larger than observed outcome values.

In addition to the shrinking effect caused by the similarity weighting, the penalty term 
in SBML further shrinks the mean squared error (MSE). At the same time, the similarity 
normalization in the weights makes an unbiased adjustment in SBML. Most ML methods, 
such as ridge regression, have to make a tradeoff between biases and variance.

While most ML methods require big training data, the SBML works for small data too. 
Therefore, SBML can be used in drug development for rare diseases and for other prob-
lems even when only small amounts of data are available.

In almost all similarity-based ML methods, the similarities between subjects are usually 
determined subjectively by field experts. In SBML, the similarity scores are objectively 
determined by the training data through a limited number of scaling factors. An SBML R 
program is available from Chang’s book (2020).

Training, validation, and testing are important steps when building an AI system. Only the 
trained model can be used in prediction in the real world. The validation processes are often 
used for tuning model parameters such as the learning rate, penalty parameters, and the num-
ber of epochs. The use of a penalty is an effective tool in dealing with overfitting problems.

Recursive learning resembles the natural human way of learning. It is an efficient way to 
learn from complicated data in which the differences are often difficult to precisely define. 
For instance, two trials conducted at different times or in different countries may differ 
in medical practice, or on account of race or other unknown characteristics. The recursive 
SBML can also be used for dimension reduction (Chang, 2020).

C: Artificial Neural Network For Deep Learning

C.1 Feedforward Networks

Types of Neural Networks

Artificial neural networks (ANNs) are computing systems inspired by the biological neu-
ral networks in animal brains. ANNs take input data and output desired outcomes after 
training. The learning in an ANN refers to its ability of outputting outcomes that, through 
training, are closer and closer to the right answer over time. The adjustments of weights in 
an ANN are what make the ANN learn.

An ANN model (Figure A.4) includes the input layer, one or more hidden layers, and the 
output layer. Each layer contains input and output nodes, weights, and activation func-
tions. Deep learning ANN architectures include (1) Feedforward Neural Networks (FNNs) 
for general classification and regression, (2) Convolution Neural Networks (CNNs) for image 
recognition, (3) Recurrent Neural Networks (RNNs) for speech recognition and natural lan-
guage processing, and (4) Deep Belief Networks (DBNs) for disease diagnosis and progno-
sis. Two other popular neural networks are Generative Adversarial Networks (GANs) for 
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classification problems and Autoassociative Networks (Autoencoders) for dimension reduc-
tion. Although an autoencoder will result in a dimension reduction in an unsupervised 
manner, the training process is supervised learning.

An FNN, also known as a multilayer perceptron, has input and output layers, and hid-
den layers in between. At each layer (except the input layer), an activation function f is 
applied to the weighted sum of input data from the previous layer. The resulting outputs 
at each layer serve the input data for the next layer. For example, the output Yi for the ith 
node at the first layer is a function of input data xi,

 ∑=












.Y f w xi ij j

j

The outputs Yi will serve as the input for the (i+1)th layer, and so on. Different activation 
functions f can be used at different layers in an ANN, such as the rectifier (ReLU), sigmoid, 
and tanh functions used to mimic a biological mechanism. The neurons in the perceptron 
share the inputs, but not the weights and activation functions (Figure A.4).

Two layers in an ANN are usually fully connected by weights. As the number of lay-
ers increases, the number of weights will increase exponentially. Therefore, to reduce the 
computational burden, some links (weights) between layers can be dropped and the layers 
become more loosely connected.

Learning and Backpropagation Algorithms

The numbers of layers and nodes are usually fixed; the only things that can change are the 
weights in the network. The question is how to convert a person’s way of learning into a set 
of rules for changing the weights so that the network outputs the right answer or appropri-
ate response more often. In practice, the weight modifications are through training using 
the gradient method, more precisely, a backpropagation algorithm (BPA).

Backpropagation algorithms make deep learning ANNs computationally possible. In 
fact, a BPA for multilayer artificial neural networks was an important precursor contri-
bution to the success of deep learning in the 2010s (Bryson and Ho, 1975), once big data 
became available and computing power was sufficiently advanced to accommodate the 
training of large networks. There are several AI software packages available in R for build-
ing ANNs, including keras and kerasR.

FIGURE A.4
Feedforward neural network.
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C.2 Convolutional Neural Networks

Ideas Behind CNN

A convolutional neural network (CNN) is actually a class of deep neural networks, mainly 
applied to image analysis. CNN architectures can also be used to detect very different 
lesions or pathologies in subjects without the need of manual feature design.

A CNN architecture consists of many layers (Figure A.5), each one playing a different role. 
(1) The input layer takes the input from the source images or objects and converts it to data 
or numbers. (2) A convolution layer identifies certain features of the images by inspecting the 
image’s pieces and outputting a value dependent on the filter used. A filter is a powerful tool 
that makes it possible to discover a feature contained in the source images. To identify dif-
ferent elemental features we use filters at different convolution layers. (3) An activation layer 
decides whether the neuron fires (“spikes”) for the current inputs. (4) A pooling layer converts 
the original higher resolution images to lower resolution images, in order to reduce the size 
of  the images. (5) Although some weights connecting layers can be removed (dropped) to 
reduce the dimension for computational efficiency, the fully connected layers (dense layers) take 
the high-level filtered images and translate them into votes in classifying the source images.

Convolution Layers

The main idea of a CNN is seen at the convolution layers, where different filters are used. 
Each filter is used to identify or filter out particular features or image elements such as 
eyes, noses, lines, etc., just as when we search for particular objects from a complex picture.

The term convolution is from mathematics (calculus). It corresponds to an image inspec-
tion process through a small moving filter. A filter can be thought of as a piece of  virtual 
glass with various transparencies at different locations according to the feature being 
investigated. Let’s look into how convolutions work in CNN using Figure A.6.

Taking image X as an example, we code a value of 1 for the pixels where X is located and 
a value of −1 for all other places. The filter with a backslash is also coded using 1 and −1 
implementing the same rule.

To filter the image, we place a filter over the image, starting from the left upper corner, 
do the calculation (filtering), and then move to the next position by a stride (one or more 
pixels to the left or down) and perform filtering again. We continue until the filter covers 
all possible positions. To calculate the convolution at a position, we simply (1) put the filter 
on top of the coded image, (2) count the numbers of matches (pixels with the same code, 
−1 or 1) and mismatches, and (3) compute the proportion of net matches:

 = −Convolution (# of matches # of mismatches)/(sizeof filter in pixels)

FIGURE A.5
A sketch of deep learning architecture (CNN).
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Obviously, filtering will result in a shrunken image (fewer pixels), but, more importantly, 
the filtered image does show larger values on the diagonal of the filtered image, indicating 
that the original image has a backslash we were searching for using the filter. If there were 
no backslash in the original picture as the filter is looking for, the resulting picture would 
not have a backslash that is represented by higher values.

Pooling Layer

Pooling is a way to take large images and shrink them down while preserving the most 
important information in them. It consists of stepping a small window across an image 
and taking the maximum value from the window at each step. A window of 2 pixels on a 
side and steps of 2 pixels work well (Figure A.7). Other pooling methods exist, such as 
average pooling. A pooling layer performs pooling on a collection of images to help man-
age the computational load. The visual effect of pooling is somewhat as if one sees the 
image from a greater distance.

Hyperparameters

We now have a good picture of how a CNN works, but there is still a list of questions that 
need to be answered through training and validation:

1. How many layers of each type should there be, in what order? And how to deal 
with color images?

2. Some deep neural networks can have over a thousand layers; what is the trade-off 
among the number of layers, the size of each layer, and the complexity of filters 
or layers?

3. For convolution layers, what features or filters shall we use, and what size for each 
filter? How big should the stride be?

FIGURE A.6
Convolution produces a shrunken image.

FIGURE A.7
Maximum pool with 2×2 filters and stride 2.
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4. For each pooling layer, what window size and pooling algorithm should be used?
5. For each fully connected layer, how many hidden neurons or weights are needed?

These questions can be answered using ML software, but the topic is beyond the scope of 
this book.

CNNs for Medical Image Analysis

Medical image analysis is the science of analyzing or solving medical problems, using 
different image analysis techniques, for the effective and efficient extraction of informa-
tion. Qayyuma et al. (2018) present a state-of-the-art review of medical image analysis 
using CNNs. The application area of CNNs covers the whole spectrum of medical image 
analysis including detection, segmentation, classification, and computer-aided diagnosis. 
Farooq (2017) presented a CNN-based method for the classification of Alzheimer’s disease 
in MRI images having multiple classes and two networks.

Much other research has been done on CNNs for image analysis, including a multiscale 
CNN-based approach for automatic segmentation of MRI images for assigning voxels to 
brain tissue classes, a tri-planar CNN used for segmentation of tibial cartilage in knee 
MRI images, and segmentation of isointense brain tissue presented through a CNN using 
a multimodal MRI dataset by training the network on three patches extracted from the 
images. Other interesting studies include lung pattern classification for interstitial lung 
diseases using a deepCNN, predicting brain age with deep learning from raw imaging 
data results in a reliable and heritable biomarker, and dermatologist-level classification of 
skin cancer, again with deep neural networks.

CNNs can be used not just for images, but also to categorize other types of data. The key 
is to transform them and make them look like image data, in the form of a two- dimensional 
array or matrix. For instance, audio signals can be chopped into short time chunks, and 
then each chunk broken up into bass, midrange, treble, or finer frequency bands. This can 
be represented as a two-dimensional array where each column is a time chunk and each 
row is a frequency band. “Pixels” in this pretended picture that are close together are 
closely related. Researchers have also used CNNs to process text data for natural language 
processing and even to process chemical data for drug discovery. The rule of thumb is: if 
your data are just as useful after swapping any pair of columns, then you can’t use a CNN. 
However, if you can make your problem look like finding patterns in an image, then CNNs 
may be exactly what you need (Rohrer, 2019).

C.3 Recurrent Neural Networks

Location invariance and local compositionality are two key ideas behind CNNs that 
do not always bear fruit. They make sense for computer vision applications but not for 
natural language processing or time-series events. The location where a word lies in 
the whole sentence is critical to the meaning of the sentence. Words that are not close to 
one another in a sentence may be more connected in terms of meaning, which is quite 
contrary to pixels in a specific region of an image that may be a part of a certain object. 
Therefore, it makes sense to look for a neural network that reflects the sequence of the 
tokens, whether they are words, events, or something else with a temporal axis. One 
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such network is the recurrent neural network (RNN), which can have memories of its pre-
vious states.

The idea of the RNN came from the work of Ronald William and his colleagues in 1986. 
A RNN is a class of artificial neural networks for modeling temporal dynamic behavior. 
Unlike FNNs, RNNs can use their internal state as memory to process sequences of inputs. 
In other words, they often reuse the output or hidden outputs (internal states) as input 
again, hence their name. RNNs are useful for tasks such as unsegmented, connected hand-
writing recognition, and speech recognition. They have also been implemented for stock 
market prediction, sequence generation, test generation, voice recognition, image caption-
ing, poem-writing (after being trained on Shakespeare’s poetry), reading handwriting 
from left to right, and creating music.

A challenging issue with RNNs is the vanishing gradient problem when the RNN 
involves many layers. Traditional activation functions such as the hyperbolic tangent 
function have gradients in the range (0, 1), and backpropagation computes gradients by 
the chain rule. This has the effect of multiplying n of these small numbers to compute 
gradients of the “front” layers in an n-layer network, leading to the gradient (error signal) 
decreasing exponentially with n while the front layers train very slowly. The vanishing 
gradient will effectively prevent the weight from changing its value and can even com-
pletely stop the neural network from further training. A solution is to use a long chain 
of short-term memory units, called long short-term memory units (LSTMs) as shown in 
Figure A.8, as proposed by Hochreiter and Schmidhuber in 1997.

In 2009, a Connectionist Temporal Classification (CTC)-trained LSTM network was the 
first RNN to win pattern recognition contests for its successes in handwriting recognition. 
In 2014, the Chinese search giant Baidu used CTC-trained RNNs to break the Switchboard 
Hub 5’00 speech recognition benchmark. Google uses LSTMs for speech recognition on 
smartphones for the smart assistant Allo and Google Translate. Apple uses LSTM for 
the Quicktype function on the iPhone and for Siri. Amazon uses an LSTM for Amazon’s 

FIGURE A.8
Information flows in LSTMs.
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Alexa. In 2017, Facebook performed some 4.5 billion automatic translations every day 
using LSTMs. Using LSTMs, Microsoft reported in 2017 reaching 95.1% recognition accu-
racy on the Switchboard corpus. In 2018, bots developed by OpenAI were able  to beat 
humans in the game of Dota (Rodriguez, 2018). The bots have a 1,024-unit LSTM that 
sees the current game state and emits actions through several possible action heads. In 
2019, DeepMind’s program AlphaStar used a deep LSTM core to excel at the complex 
video game Starcraft. This was viewed as significant progress toward Artificial General 
Intelligence (Stanford, 2019).

Applications of LSTMs in Natural Language Processing

Here are some of the ways that LSTMs can be used for natural language processing (NLP):

1. Text Classification, including sentiment analysis, where class labels are used 
to represent the emotional tone of the text, usually as “positive” or “negative,” 
spam filtering (classifying email text as spam), language identification (classify-
ing the language of source text), and genre classification (classifying the genre of 
a  fictional story).

2. Language Modeling, for predicting the probabilistic relationships between words, 
enabling one to predict the next word.

3. Speech Recognition, for understanding speech, to either generate text readable by 
humans or issue commands. Examples include transcribing a speech and creating 
text captions for a movie or TV show.

4. Caption Generation, to describe the contents of a digital image or video. This lan-
guage model can be strategic, as it allows one to create searchable text for search 
engines.

5. Machine Translation, for translating source text from one particular language into 
another language.

6. Document Summarization, to create a short description about a document, such as 
creating a heading/abstract for a document or summarizing a news article.

7. Question Answering, to take a question posed in a natural language and provide 
an answer.

Applications of LSTMs in Molecular Design

In NLP, we essentially deal with sequences of words. Likewise, in drug discovery, we deal 
with gene sequences, proteins, and other molecular structures representable by a sequence 
of substructures. Therefore, LSTMs can be used for compound screening and molecular 
design. The basic ideas and how it works can be described as follows (Figure A.9).

To automatically produce a sentence or article, the key is to determine the conditional 
probability of the next word, st+1, given the previous words, s1, s2, and st. In a simple sce-
nario where the aim is just to create grammatically correct sentences, we can train the 
RNN using a collection of grammatically correct sentences. The weights of the network 
will be adjusted to minimize error between the predicted words and the actual words in 
the training sentences.

In order to use RNN for De Novo Drug Design, 3D molecular structures of chemi-
cal compounds are rearranged into 1-D according to specific rules such as the Simplified 
Molecular-Input Line-Entry System (SMILES). After compounds are coded into 1-D sequences 
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like English sentences, we can train the RNN with large ‘druggable’ ligands to design or 
generate new drug candidates. Likewise, researchers have created ChEMBL22 (www.ebi.
ac.uk/chembl) with 677,044 SMILES strings for annotated nanomolar activities for training 
purposes. Gupta et al. (2018) trained their RNN on 541,555 SMILES strings, with lengths 
from 34 to 74 SMILES characters (tokens). RNN models can be used to generate sequences 
one token at a time, as these models can output a probability distribution over all possible 
tokens at each time step.

C.4 Deep Belief Networks

There are two major challenges in current high-throughput screening drug design: (1) the 
large number of descriptors which may also have autocorrelations, and (2) proper param-
eter initialization in model prediction so as to avoid an over-fitting problem. Deep archi-
tecture structures have been recommended to predict a compound’s biological activity. 
Performance of deep neural networks is not always acceptable in quantitative structure-
activity relationship (QSAR) studies (Ghasemi et al., 2018).

A deep belief network (DBN) consists of a sequence of restricted Boltzmann machines 
(RBMs). An RBM is an algorithm useful for dimensionality reduction. RBMs are shal-
low, two-layer neural nets that constitute the building blocks of deep-belief networks. 
The first layer of the RBM is called the visible, or input layer, and the second is the hid-
den layer.

The output of a hidden layer is used as the input for the next layer. Each DBN layer 
is trained independently during the unsupervised portion, and thus all can be trained 
concurrently. After the unsupervised portion is complete, the output from the layers is 
refined with supervised logistic regression. The top logistic regression layer predicts 
probabilistically the class to which the input belongs. The purpose of the unsupervised 
training is to select better features. Supervised learning is used for classification  purposes. 
Therefore, a DBN combines unsupervised and supervised learning for the purpose of 
efficient learning.

FIGURE A.9
Sampling Nova molecules from a trained RNN.

https://www.ebi.ac.uk
https://www.ebi.ac.uk
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Applications of Deep Belief Networks

Kim et al. (2017) compared DBNs with other methods in cardiovascular risk prediction. 
The authors proposed a cardiovascular disease prediction model using the sixth Korea 
National Health and Nutrition Examination Survey (KNHANES-VI) 2013 dataset to ana-
lyze cardiovascular-related health data. First, a statistical analysis was performed to find 
variables related to cardiovascular disease using health data related to cardiovascular dis-
ease. Then, a model of cardiovascular risk prediction by learning based on the DBN was 
developed. This statistical DBN-based prediction model has an accuracy of 83.9%.

Ghasemi et al. (2018) utilized a deep belief network to evaluate the DBN’s performance 
using Kaggle datasets with fifteen targets containing more than 70k molecules. The results 
revealed that an optimization in parameter initialization could improve the ability of deep 
neural networks to provide high-quality model predictions. The mean and variance of the 
squared correlation for the proposed model and the deep neural network deployed are 
smaller than previous multilayer perceptron models.

C.5 Generative Adversarial Networks

Generative adversarial networks (GANs) are deep neural net architectures composed of two 
nets, pitting one adversarially against the other. GAN can be viewed as the combination of 
a counterfeiter and a policeman, where the counterfeiter is learning to pass false notes, and 
the cop is learning to detect them. Both are dynamic in the zero-sum game, and each side 
comes to learn the other’s methods in a constant escalation. As the discriminator changes its 
behavior, so does the generator, and vice versa. Their losses push against each other.

In drug development, imaging markers can be used for monitoring disease progression 
with or without medical intervention. Models are typically based on large amounts of 
data with annotated examples of known markers aiming at automating detection. Doppler 
et al. (2017) developed a deep convolutional generative adversarial network that can learn 
a manifold of normal anatomical variability, accompanied by a novel anomaly scoring 
scheme based on the mapping from the image space to a latent space. Applied to new 
data such as images containing retinal fluid, the model labels anomalies and scores image 
patches indicating their fit into the learned distribution.

Deep GANs are an emerging technology in drug discovery and biomarker develop-
ment. Kadurin et al. (2017) demonstrated a proof-of-concept in implementing a deep GAN 
to identify new molecular fingerprints with predefined anticancer properties. They also 
developed a new GAN model for molecular feature extraction problems, and showed that 
the model significantly enhances the capacity and efficiency of development of the new 
molecules with specific anticancer properties using the deep generative models.

Yahi et al. (2017) proposed a framework for exploring the value of GANs in the context of 
continuous laboratory time series data. The authors devised an unsupervised evaluation 
method that measures the predictive power of synthetic laboratory test time series and 
showed that when it comes to predicting the impact of drug exposure on laboratory test 
data, incorporating representation learning of the training cohorts prior to training the 
GAN models is beneficial.

Putin et al. (2018) proposed a Reinforced Adversarial Neural Computer (RANC) for the 
de novo design of novel small-molecule organic structures based on the GAN paradigm 
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and reinforcement learning. The study shows RANCs can be reasonably regarded as a 
promising starting point from which to develop novel molecules with activity against 
different biological targets or pathways. This approach allows scientists to cover a broad 
chemical space populated with novel and diverse compounds.

C.6 Autoassociative Networks

An autoassociative network (autoencoder) is a type of artificial neural network used to 
learn efficient data coding in an unsupervised manner. Autoencoders encode input data as 
vectors. They create a hidden, or compressed, representation of the raw data (Figure A.10). 
Such networks are useful in dimensionality reduction; i.e., the vector serving as a hid-
den representation compresses the raw data into a smaller number of salient dimensions. 
Autoencoders can be paired with a so-called decoder, which allows one to reconstruct 
input data based on its hidden representation. Autoencoders are especially useful for 
dimension reduction, but the training method used is supervised learning, since the cor-
rect answer is known for each input. The training goal is to minimize the error between 
the output and the input.

An autoencoder learns to compress data from the input layer into a short code, and then 
decompresses that code into something that closely matches the original data. A simple 
autoassociative network can be a multiple-layer perceptron, where the output is identical 
to the input and the middle hidden layer is smaller. This means we can use the compressed 
middle layer to generate the original image.

Kadurin et al. (2017) presented the first application of generative adversarial autoencod-
ers (AAEs) for generating novel molecular fingerprints with a defined set of parameters. 
In their model of a 7-layer AAE architecture with the latent middle layer serving as a 
discriminator, the input and output use a vector of binary fingerprints and concentration 
of the molecule. They introduce a neuron responsible for growth inhibition percentage to 
model the reduction in the number of tumor cells after the treatment. To train the AAE, the 
NCI-60 cell line assay data for 6,252 compounds, profiled on the MCF-7 cell line, are used. 

FIGURE A.10
Autoassociative network for data compression.
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The output of the AAE was used to screen 72 million compounds in PubChem and select 
candidate molecules with potential anti-cancer properties.

C.7 Summary

We have discussed five different deep learning ANNs. In an FNN, the simplest type of 
ANN, weighted information is forwarded from layer to layer. At each layer, an activation 
function is applied.

Information in a CNN is also propagating from layer to layer. However, a convolution 
operation is applied between layers. Each filter tries to identify a particular image element.

CNNs are very effective in static image processing and have been used for disease diag-
nosis. However, in motion picture and language processing, there are not only the spe-
cial attributes, but also temporal properties to be considered. For this reason, memoryless 
CNNs do not work efficiently for those problems and RNNs are developed to capture the 
temporal dimension. In RNNs, outputs at one layer are related to previous layers (not just 
the previous layer). The complex 3D structures of a chemical compound or protein are 
converted into a 1D sequence of symbols before the RNN is applied. LSTMs can effec-
tively avoid the gradient-vanishing problem; they are often used for various tasks in drug 
development.

Due to the vast number of possible structures of chemical compounds and the extreme 
complexity of protein folding structures, dimension-processing using unsupervised learn-
ing will be beneficial to problem-solving. This is the key idea of deep-belief networks.

Two other special and very useful ANNs are GANs and autoencoders. A GAN can be 
viewed as the combination of a counterfeiter and a cop, where the counterfeiter is learning 
to pass false notes, and the cop is learning to detect them. Thus a GAN generates training 
data dynamically to effectively train the networks.

An autoencoder has a hidden layer that is smaller than the input layer, while the output 
is always the same (approximately) as the inputs. After extensive training, the smaller 
input at a hidden layer can securely generate (nearly) the same input image. Therefore, 
autoencoders can be used for compressing images or data.

D: More Supervised Learning Methods

D.1 Kernel Methods

In classical statistical models for regression and classification, the form of the mapping 
y(x, w) from input x to output y is governed by a set of adaptive parameters w. During 
the learning phase, a set of training data is used either to obtain an estimate or posterior 
distribution of the parameters. The training data are then discarded, and predictions for 
new inputs are based purely on the learned parameters w. This approach is also used in 
non-linear parametric models such as neural networks, but SBML and Kernel methods 
(KMs) are memory-based approaches that involve storing an entire training set (dimen-
sion reduction is possible with modifications) in order to make future predictions. These 
methods are generally fast to train but slow at making predictions for test data points.
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A typical kernel k(x, xj), defined as a dot product, can be viewed as a similarity between 
objects that are characterized by attributes x and xj. Once the kernel is selected and weights 
wj (j = 1, … N) for the N training subjects are determined, the predicted outcome for the 
new subject with attributes x can be expressed as a weighted sum (linear combination) of 
the kernels (similarities).

 ∑ ( )= ,  . Y w k x xj j

j

Learning here is updating the weights based on the loss minimization in the same way as 
for SBML. This kernel method is extensively discussed by Schölkopf et al. (2004).

The KM appears to be similar to SBML, but they actually differ at least in two ways: 
(1) KMs use similarities to define subjects but do not apply the similarity principle as SBML 
does. (2) A KM is an over-parameterized model with N parameters, while SBML has only 
K attribute-scaling factors. (3) Similarities (kernels) in KMs are determined based on field-
experts’ judgments, while similarities in SBML are objectively determined through train-
ing the attribute-scaling factors.

Kernel methods are also used in other forms. For instance, there is the Nadaraya-Watson 
kernel-weighted method, in which the kernel is predetermined and the weight is the nor-
malization factor. Therefore, this kernel method has no learning involved. The second 
example would be the local regression with a structured kernel, in which kernels are used 
as the weights in the error minimization process (Hastie et al., 2001).

The Kernel trick is intrinsic to the KM. It can be stated in this way: any algorithm for mul-
tidimensional data that can be expressed only in terms of dot products between vectors 
can be performed implicitly in the feature space associated with any kernel, by replacing 
each dot product by a kernel evaluation.

The kernel trick has huge practical implications since it is a very convenient way of trans-
forming linear methods, such as linear discriminant analysis, into non-linear methods by simply 
replacing the classic dot product with a more general kernel, such as the Gaussian RBF kernel. 
Non-linearity via the new kernel is then obtained at no extra computational cost, as the algo-
rithm remains exactly the same. Two advantages of Kernel methods are (Schölkopf et al., 2004):

1. The representation as a square matrix does not depend on the nature of the objects 
(images, persons, DNA sequences, molecules, protein sequences, languages) to be 
analyzed. Therefore, an algorithm developed for molecules can be used for image 
or language processing. This suggests a full modularity of analysis algorithms to 
cover various problems, while algorithm design and data processing can proceed 
independently.

2. The size of the kernel matrix used to represent a dataset of n objects is always n×n, 
whatever the nature or the complexity or the number of attributes of the objects.

D.2 Support Vector Machines

Linear discriminant analysis (LDA) is based on the construction of the hyperplane that min-
imizes the misclassification error. Similarly, a support vector machine (SVM), developed in 
the mid-1960s, is a generalization of LDA for constructing hyperplanes that minimize the 
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misclassification or regression error. The SVM searches for a linear decision boundary 
that separates members of one class from the other (Figure A.11). In case such a hyper-
plane does not exist, SVM uses a non-linear mapping to transform the training data into 
a higher dimension before seeking the linear optimal separating hyperplane. With an 
appropriate non-linear mapping to a sufficiently high dimension, data from two classes 
can always be separated by a hyperplane. SVM has successfully been applied to hand-
written digit recognition, text classification, speaker identification, etc., and it is less prone 
to overfitting. In the medical field, an SVM has been used in breast cancer diagnosis 
(Akay, 2009).

The question is that in the optimization, the max-margin hyperplane and classifier are 
solely determined by a few data points xs that lie nearest to the hyperplane. These xs are 
called support vectors. In the two-dimensional case as shown in Figure A.11, the support 
vectors are determined by the 3 data points on two dotted lines. The learning here is 
determining parameters w or the solid line (location and orientation) used to maximize 
the distance between the two dotted lines. To take all the data points (not just the support 
vectors) into consideration in a classifier, we can employ the soft-margin method, which 
imposes a penalty on misclassification.

Kernel methods and SVMs have been broadly used in bioinformatics (Schölkopf 
et al., 2004), including in the following studies: Inexact Matching String Kernels for 
Protein Classification, Fast Kernels for String and Tree Matching, Local Alignment 
Kernels for Biological Sequences, Kernels for Graphs, Diffusion Kernels, A Kernel for 
Protein Secondary Structure Prediction, Heterogeneous Data Comparison and Gene 
Selection with Kernel Canonical Correlation Analysis, Kernel-Based Integration of 
Genomic Data Using Semidefinite Programming, Protein Classification via Kernel 
Matrix Completion, Accurate Splice Site Detection for Caenorhabditis elegans, Gene 
Expression Analysis: Joint Feature Selection and Classifier Design, and Gene Selection 
for Microarray Data.

FIGURE A.11
Support vector machine in action.
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D.3 Decision Tree Methods

Classification and Regression Trees

Decision tree methods (DTMs), or simply tree methods, are among the most popular methods 
in statistical machine learning. They are intuitive, as well as easy to use and interpret. As 
an example, a physician could use a decision tree like the one shown in Figure A.12 for 
classifying a patient’s risk of death within 30 days based on an initial 24 hours of data fol-
lowing a medical event or exam.

The decision rules might be something like this: the minimum systolic blood pressure 
within the initial 24 hours is checked, and if it’s 90 or lower the patient is classified as high 
risk. Otherwise, check his age; if he is no more than 60 years old, classify the patient as low 
risk. If his age is more than 60 years old, then further check for sinus tachycardia; if it is 
present, classify him as a high-risk patient, but if not present he is low risk. In this example, 
given that the low and high risks are defined, one of the key questions is how to determine 
the threshold for each of the risk factors to minimize the error or the loss function.

There are two types of trees, based on the outcome: classification and regression trees 
(CARTs). In a regression tree, the outcome is a continuous variable, while in a classifica-
tion tree the outcome is a discrete variable. For instance, in the classification tree shown 
in Figure A.12, each patient is characterized by K attributes or predictors. Each predictor 
xi (i = 1, …, K) is divided into two categories. Each end of the tree, called a leaf, has a value 
associated (e.g., 1 for high risk and 0 for low risk), presenting a classification of a patient. 
The goal of any tree method is to classify a subject based on their predictors to minimize 
the misclassification error rate. The construction of a classification tree involves three tasks.

1. Select the splits: one variable a time, xi < ci versus xi ≥ ci, where threshold ci is to be 
optimized in terms of an impurity minimization.

2. Decide when to declare a node terminal without further splitting: stopping crite-
ria tend to be myopic; instead, we can grow to a full tree and then prune it using 
cross-validation to prevent overfitting.

FIGURE A.12
Decision tree for hypertension patient classification.
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3. Assign each terminal node to a class for classification trees or associated value for 
regression trees.

The common impurity measures for binary classifications are: misclassification rate, p, 
defined as proportion of misclassification of subjects, with Gini index defined as GI = p⋅(1-p), 
and gross-entropy or deviance defined as GI = p⋅ln(p).

There are two competing factors in determining an optimal tree model: the accuracy of 
the tree method and computational efficacy.

For a given tree depth D, a commonly used approach in obtaining an optimal tree (mini-
mizing ME, GI, or GE) is the greedy algorithm: for each parameter, try different thresh-
olds. We can let the tree grow larger than what we need at the final state, then prune it.

Tree size is a tuning parameter governing the model’s complexity and should be deter-
mined based on the data. An obvious idea is to split tree nodes only when the decrease in 
sum-of-squares due to the split exceeds some threshold. This strategy is too shortsighted, 
however, since a seemingly worthless split might lead to a very good split below it. The 
preferred strategy is to grow a large tree, stopping the splitting process only when some 
minimum node size or tree depth is reached. Then this large tree is pruned using cost-
complexity pruning. The cost-complexity is a function error and the tree depth is based on 
a limited increase of the impurity allowed.

Unlike a classification tree, in a regression tree, the value V associated with each leaf is 
not predetermined, but is instead a parameter that needs to be determined (learned) in 
addition to the parameters of tree depth and split threshold c. The associated leaf value Vj 
serves as the predicted value at node j. All the parameters are learned through the minimi-
zation of the error (or loss function) between the predicted values and the observed values.

Committee Machine

A single big tree is not stable because a single error in classification can propagate to the 
leaves. To overcome this shortcoming, an ensemble method or committee Machine can 
be used. An ensemble method or committee machine involves using multiple learning algo-
rithms in order to obtain better predictive performance than could be obtained from any 
of the constituent learning algorithms (experts) alone. The committee machine might use 
a variety of algorithms to assimilate expert input into a single output, such as a decision. A 
committee machine learns by integrating the learning of experts via predetermined rules 
or through second level training. Commonly used ensemble learning methods, such as 
Bagging, Boosting, or Random Forests, can be used to remedy the instability resulting from 
error propagation.

Bootstrap aggregating (Bagging) is simply forming an average of many different trees 
that are generated from multiple training sets drawn with replacement. We illustrate why 
bagging might be a good solution to the problem of error propagation. Suppose that A, 
B, C, D, and E are the five members of a trial jury. Guilt or innocence for the defendant 
is determined by simple majority rule. There is a 5% chance that A gives the wrong ver-
dict; for B, C, and D it is 10%, and E is mistaken with a probability of 20%. When the 
five jurors vote independently, the probability of bringing the wrong verdict is about 1%. 
Paradoxically, this probability increases to 1.5% if E (who is most probably mistaken) aban-
dons his own judgment and always votes the same as A (who is least likely to be mistaken). 
Even more surprisingly, if the four jurors B, C, D, and E all follow A’s vote, then the prob-
ability of delivering the wrong verdict is 5%, five times more than that when they vote 
independently (Chang, 2012, 2014). From this example, we can conclude that a committee 
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decision can be better than individual decision. Applying this idea to the decision tree 
method leads us to the tree-averaging method, Bagging.

Similar to Bagging is Boosting. Weak classifiers Gi(x) with values of either 1 or −1 from n 
samples are those whose misclassification error rates are only slightly better than random 
guessing. The predictions from all of them are then combined through a weighted major-
ity vote to produce the final prediction:
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Here sgn is the sign function. The key is that weights w1, w2 …, wn are computed by the 
boosting algorithm in such a way that more accurate classifiers in the sequence will get 
larger weights.

A Random forest is an ensemble classifier that consists of many decision trees and out-
puts  the class that is the mode of the class’s output by individual trees. The method 
combines Breiman’s bagging idea and the random selection of features. There are many 
versions of random forest algorithms. For example, for each node of the tree, randomly 
choose m (smaller than the number of predictors) variables, based on which decision at 
that node is made. Calculate the best split based on these m variables in the training set.

D.4 Bayesian Networks

Bayesian networks can be used for molecular similarity search. A Bayesian Network (BN) is 
a simple and popular way for making probabilistic inference based on Bayes’ rule:
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A Bayesian Network is a kind of directed acyclic graph with some special properties. The 
nodes of the BN represent random variables, the parents of a node are those judged to 
be direct causes for it. The roots of the network are the nodes without parents. The links 
represent causal relationships between these variables, and the strengths of these causal 
influences are expressed by conditional probabilities.

Coronary Heart Disease with a Bayesian Network

The package bnlearn in R can be used for Bayesian Network Structure Learning, Parameter 
Learning, and Inference. This package implements constraint-based, pairwise, score-
based, and hybrid structure learning algorithms for discrete, Gaussian, and conditional 
Gaussian networks, along with many score functions and conditional independence 
tests. The Naive Bayes and the Tree-Augmented Naive Bayes (TAN) classifiers are also 
implemented. In addition, some utility functions and support for parameter estimation 
(maximum likelihood and Bayesian) and inference, conditional probability queries, and 
cross-validation are included. Figure A.13 is a BN of coronary heart disease data, a simple 
example of using the package. The factors included in the analysis are Smoking: no or yes, 
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Mental Work: strenuous or not, Physical Work: strenuous or not, Blood Pressure: Systolic 
BP <140 or not, and Proteins (Ratio of lipoproteins): < 3 or not. The conditional probabilities 
associated with the BN can be found elsewhere (Chang, 2020).

E: Unsupervised Learning

E.1 Basics of Unsupervised Learning

Unlike supervised learning, in unsupervised learning, there are no correct answers. The 
goal of unsupervised learning is to identify or simplify data structure. Unsupervised 
learning is of growing importance in a number of fields; examples are seen when a data 
scientist groups breast cancer patients by their genetic markers, shoppers by their brows-
ing and purchase histories, or movie viewers by the ratings assigned by movie viewers. 
In so doing, one may want to organize documents into different mutually exclusive or 
overlapping categories, or one only might want to visualize the data.

Unsupervised learning problems can be further divided into clustering, association, 
and anomaly detection. A clustering problem occurs when we want to discover the 
inherent groupings in the data, such as grouping customers by purchasing behavior. An 
association-rule learning problem is one where we want to discover rules that describe 
connections in large portions of our data. An example would be when people who buy 
product A may also tend to buy product B. The third type of problem, anomaly detection 
or outlier detection, involves identifying items, events, or observations that do not con-
form to an expected pattern, such as instances of bank fraud, structural defects, medical 
problems, or errors in a text. Anomalies are also referred to as outliers, novelties, noise, 
deviations, and exceptions. In particular, in the context of abuse of computer networks 
and network intrusion detection, the interesting objects are often not rare objects, but 
unexpected bursts in activity. This pattern does not adhere to the common statistical defi-
nition of an outlier as a rare object. There are various outlier detection methods (Zimek 
and Schubert, 2017).

FIGURE A.13
Bayesian network for coronary disease.
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E.2 Association or Link Analysis

In many situations, finding causal relationships is the goal. When there are a larger num-
ber of variables, this task is not trivial. However, association is a necessary condition for 
a causal relationship. Finding a set of events that correlate with many others is often the 
focus point and springboard for further research. Link-analysis provides a way to find 
the event set with high probability density, bringing us closer to our ultimate goals. For 
example, finding sale items that are highly related (or frequently purchased together) can 
be very helpful for stocking shelves, cross-marketing in sales promotions, catalog design, 
and consumer segmentation based on buying patterns.

In network theory, link analysis is a data-analysis technique used to evaluate relation-
ships (connections) between nodes. Relationships may be identified among various types of 
nodes (objects), including organizations, people, and transactions. Link analysis has been 
used in the investigation of criminal activity, computer security analysis, search engine 
optimization, market research, medical research, and even in understanding works of art.

Apriori, proposed by Agrawal and Srikant (1994), is an algorithm for finding frequently 
occurring sets of items in transactional databases. The algorithm proceeds by identifying 
the frequent individual items in the database and extending these to larger and larger sets 
of items as long as those item sets appear sufficiently often in the database. Apriori uses a 
bottom-up approach, where frequent subsets are extended one item at a time, and groups 
of candidates are tested against the data. The algorithm terminates when no further suc-
cessful extensions are found.

Apriori uses breadth-first search and a hash tree structure to count candidate itemsets effi-
ciently. It generates candidate itemsets of length k from item sets of length k−1, and then 
prunes those candidates that have an infrequent sub-pattern. According to the downward 
closure property, the candidate set contains all frequent k-length item sets.

Kuo et al. (2009) studied the suitability of the Apriori association analysis algorithm for 
the detection of adverse drug reactions (ADR) in healthcare data. The Apriori algorithm is 
used to perform association analysis on the characteristics of patients, the drugs they are 
taking, their primary diagnosis, comorbid conditions, and the ADRs they experience. The 
analysis produces association rules that indicate what combinations of medications and 
patient characteristics lead to ADRs.

E.3 Principal Component Analysis

Principal component analysis (PCA) is an important unsupervised learning tool for dimen-
sion reduction in drug design and discovery. Per Giuliani (2017), the reason that PCA is 
broadly used in the pharmaceutical industry is that it is a tool creating a statistical mechan-
ics framework for biological systems modeling without the need for strong a priori theoret-
ical assumptions. This makes PCA of the utmost importance, as it enables drug discovery 
from a systemic perspective, overcoming other too-narrow reductionist approaches.

As we discussed earlier in Section 3.9, attributes or predictors are generally correlated, 
making it difficult to interpret the effect of a predictor. Besides, the existence of associa-
tions indicates there are redundant predictors. That is, we can find a smaller set of pre-
dictors that can do the same job (prediction). The goal of PCA is to find such a smaller 
mutually independent (orthogonal) set of artificial predictors, one by one. The method is 
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related to the eigenvalue and eigenvector of a matrix in linear algebra. The eigenvectors 
are artificial predictors, a set of linear combinations of the predictors that have maximal 
variance. PCA can be used as a tool for data pre-processing before supervised techniques 
are applied. PCA produces a low-dimensional representation of a dataset.

PCA, in a typical quantitative structure-activity relationship (QSAR) study in drug 
development, analyzes an original data matrix in which molecules are described by sev-
eral correlated quantitative dependent variables (molecular descriptors). Although exten-
sively applied, there is a disparity in the literature with respect to the applications of PCA 
in QSAR studies. Shahlaei (2017) investigated the different applications of PCA in QSAR 
studies using a dataset that included CCR5 inhibitors. The conclusion was that PCA is a 
powerful technique for exploring complex datasets in QSAR studies for the identification 
of outliers and can be easily applied to the pool of calculated structural descriptors.

A related method, principal component regression (PCR), is similar to a standard lin-
ear regression model but uses PCA for estimating the unknown regression coefficients in 
the model.

E.4 K-Means Clustering

Clustering refers to a very broad set of techniques for finding subgroups, or clusters, in a 
dataset. The goal of clustering is to find a partition of the data into distinct groups so that 
the observations within each group are quite similar to each other in some sense. Such a 
sense of similarity is often a domain-specific consideration that must be made based on 
knowledge of the data being studied. Earlier, when discussing SBML, we acknowledged 
that similarity is related to the purpose or outcome variable; therefore, the similarity must 
be related to some vague outcome or possible multiple outcomes/purposes. In libraries, 
we organize the books by different categories and sub-categories, although such selections 
of categories and sub-categories are based on customers’ needs that are often not clearly 
defined. At home, we organize things into categories: clothes, shoes, kitchen utilities, and 
other categories, for convenience when we need to use them. Therefore, clustering must 
have some purposes that are difficult to clearly define.

A good clustering example in commerce would be clustering for market segmentation. 
Suppose we have access to big data (e.g., median household income, occupation, distance 
from the nearest urban area) for a large number of people who may or may not already be 
our customers. Our goal is to identify subgroups of people who might be more receptive to 
a particular form of advertising or to group them (in terms of data) according to the likeli-
hood of purchasing a particular product.

Unlike PCA, which looks for a low-dimensional representation of the observations, clus-
tering looks for homogeneous subgroups among the observations.

E.5 Hierarchical Clustering

Hierarchical clustering (HC) is another popular clustering method. In K-means clustering, 
we seek to partition the observations into a pre-specified number of clusters, while in 
hierarchical clustering we do not know in advance how many clusters we want. Instead, 
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hierarchical clustering will end up with a tree-like visual representation of the observa-
tions, called a dendrogram, that allows us to view at once the clustering obtained for each 
possible number of clusters (Figure A.14).

Hierarchical clustering seeks to build a hierarchy of clusters. Strategies for hierarchical 
clustering can be either agglomerative or divisive. An agglomerative strategy is a bottom-up 
approach, i.e., each observation starts in its own cluster, and pairs of clusters are merged 
as one moves up the hierarchy. A divisive strategy is a top-down approach, whereby all 
observations start in one cluster, and splits are performed recursively as one moves down 
the hierarchy.

Agglomerative Algorithm

1. Choose a dissimilarity measure between two subjects or clusters, e.g., the mini-
mum Euclidian distance between subjects from two clusters.

2. In the set of n subjects, identify the most similar pair of subjects (with the mini-
mum distance) and combine them into one cluster. Now there are n−1 clusters (a 
cluster can just have one subject).

3. Among the new set of n−1 clusters, identify the most similar pair of clusters with 
the smallest distance and combine them into one cluster.

4. Among the new set of n−2 clusters, identify the most similar pair of clusters based 
on the distance and combine them into one cluster.

5. This procedure continues until all n subjects have been combined into one cluster.

The R function hclust() implements hierarchical clustering in the Stats Package. In order 
to show a clear plot for the hierarchical clustering, only 30 patients from the BreastCancer 
dataset in mlBench package are used in the following analysis. The 9 different attributes 
included are cell thickness, size, shape, adhesion, etc. With the dendrogram, we can easily 
decide how many groups we want to divide patients into. For instance, if only 2 clusters 

FIGURE A.14
Hierarchical clustering of 30 breast cancer patients.
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are chosen, patients 15, 21, 2, 19, 6, and 22 will be in one cluster and the remaining patients 
will be in the other cluster. If 4 clusters are determined, patients 15, 21, 2, and 19 will be in 
cluster 1, patients 6 and 22 in cluster 2, patients 4, 13, 26, 16, and 24 in cluster 3, and the rest 
of the patients will be in cluster 4. The vertical axis presents dissimilarity between clusters. 
We can see that as the number of clusters increases, the dissimilarity decreases.

In the late 1990s, the United States National Cancer Institute conducted an anticancer 
drug discovery program in which, in successive years, approximately 10,000 compounds 
were screened in vitro against a panel of 60 human cancer cell lines from different organs 
(Shi et al., 1998). They tested approximately 62,000 compounds to collect information on 
activity patterns. Anticancer activity patterns of 112 ellipticine analogs were analyzed 
using a hierarchical clustering algorithm. A dramatic coherence between molecular struc-
tures and their activity patterns was discovered from the cluster tree: the first subgroup 
consisted principally of normal ellipticines, whereas the second subgroup consisted prin-
cipally of N2-alkyl-substituted ellipticiniums. The ellipticiniums were more potent on 
average against p53 mutant cells than against p53 wild-type cells. This study, with its 
application of unsupervised learning, provided insights into the relationship between 
activity patterns of anticancer drugs and the molecular pharmacology of cancer.

The application of established drug compounds to new therapeutic indications, known 
as drug repositioning, offers several advantages over traditional drug development, includ-
ing the reduction of both development time and costs. Sirota et al. (2011) used hierarchical 
clustering to predict novel therapeutic indications on the basis of comprehensive testing 
of molecular signatures in drug-disease pairs. Integrating gene expression measurements 
from 100 diseases and gene expression measurements on 164 drug compounds, the team 
rediscovered many known drug-disease relationships and predicted many new indica-
tions for these 164 drugs. They also experimentally validated some of the predictions.

Other applications include hierarchical clustering for large compound libraries (Böcker 
et al., 2005) and hierarchical cluster analysis in clinical research with a heterogeneous 
study population, focusing on visualization (Zhang et al., 2017).

E.6 Self-Organizing Maps

A self-organizing map (SOM) or self-organizing feature map (SOFM), is a type of artificial 
neural network (ANN) that is trained using unsupervised learning to produce a low-
dimensional, discretized representation of the input space of the training samples, called 
a map. Here, dimension is not the feature dimension, but the number of data points.

Like most artificial neural networks, SOMs operate in two modes: training and map-
ping. Training builds the map using input examples, while mapping automatically classi-
fies a new input vector. The output of an SOM can be visualized in the map space, which 
consists of components called nodes or neurons. The number of nodes (equivalent to clus-
ters) is defined beforehand, usually in a finite two-dimensional region where nodes are 
arranged in a regular hexagonal or rectangular grid. The SOMs convert N data points 
in K-feature space to a collection of nodes (neurons) organized in a 2-dimensional space, 
called the map. Each node in the map has hidden K-features.

Yan (2006) applies self-organizing maps in compound pattern recognition and combi-
natorial library design. Schneider et al. (2009) used SOMs for compound library design, 
scaffold-hopping, and repurposing. Reker et al. (2014) used an SOM for identifying the 
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macromolecular targets of de novo-designed chemical entities. Schneider and Schneider 
(2017) use an SOM for macromolecular target prediction. Researchers have also developed 
supervised SOMs for drug discovery (Xiao and Harris, 2006). Avram et al. (2014) used an 
SOM classifier for the prediction of inhibitors.

E.7 Remarks

Unsupervised learning is a critical foundation of supervised learning. Any application of 
supervised learning must involve some sort of unsupervised learning. We call this phe-
nomenon Entanglement of Supervised and Unsupervised Learning (ESUL). For instance, when 
we decide which features need to be collected for our supervised learning model, we have 
already used implicitly unsupervised learning or clustering. That is, we perform simple 
clustering based on a certain set of features, instead of any other features, and assume 
that as long as two objects have identical values for these features their outcomes will 
be the same or similar, even though they might be different in other respects. Another 
example, where clustering is implicitly performed before any supervised learning, is when 
we decide the number of digits or decimal digits to keep in a set of measurements: we 
implicitly put objects with the same values into the same cluster, even though the rest of 
the decimal digits of their measurements might be different.

A clustering problem can be formulated as an unsupervised density problem. That is, 
find a subset (clusters) of data, such that the joint probability of data points belonging to 
the corresponding clusters is high (maximized). This optimization problem can be con-
verted into a supervised problem (Chang, 2011; Hastie et al., 2001).

There are also ML problems situated between supervised and unsupervised learning, 
which can be solved via Semi-Supervised Learning. In semi-supervised learning problems, 
we have only parts of the input data labeled, and the rest are unlabeled. An example would 
be a photo archive where only some of the images (e.g., dogs, cats, persons) are labeled and 
a majority are not.

F: Reinforcement, Evolutionary, and SI Learning

F.1 Reinforcement Learning

The Concept of Reinforcement Learning

Reinforcement learning (RL) emphasizes learning through interaction with (real or virtual) 
environments. Feedback from one’s environment is essential for learning. RL can be used 
when the correct answer is difficult to define or there are too many steps for the agent to 
take to complete the task. Taking a driverless car as an example, we cannot define the road 
conditions manually.

RL can be particularly useful in attacking problems that require strong interactions with 
different environments, such as self-cleaning vacuum cleaners and rescue robots. A res-
cue robot is a robot that has been designed for the purpose of rescuing people in mining 
accidents, urban disasters, hostage situations, and after explosions. The benefits of rescue 
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robots to these operations include reduced personnel requirements, reduced fatigue, and 
access to otherwise unreachable areas. A well-known RL example is AlphaZero, a com-
puter chess, shogi, and go player trained using RL. With just 24 hours of reinforcement 
learning, AlphaZero attained a truly amazing level of skill, defeating the three world-
champion programs Stockfish Elmo, and AlphaGoZero.

Reinforcement learning can embody a model-based approach, such as a Markov deci-
sion process. The methods used to solve optimization problems include dynamic pro-
gramming with either policy-based or value-based algorithms. Model-free RL techniques 
include Bayesian Q-learning, but there are also game-theory-based formulations. Chang 
(2010) discussed all of these approaches in the field of drug development. Czibula et al. 
(2015) proposed an RL model to solve the protein-folding problem, predicting the bidimen-
sional structure of proteins in a hydrophobic-polar model.

The history of reinforcement learning has three threads. The first concerns learning by 
trial and error with roots in the psychology of animal learning. This thread runs through 
some of the earliest work in AI and led to the revival of reinforcement learning in the early 
1980s. The second concerns the problem of optimal control and its solution using value 
functions and dynamic programming. For the most part, this thread did not involve learn-
ing. A third thread concerns temporal-difference methods such as used in the tic-tac-toe 
example (Sutton and Barto, 2018).

The origins of the first thread concerning temporal-difference learning are in part in 
animal learning psychology, in particular, in the notion of secondary reinforcers. A sec-
ondary reinforcer is a stimulus that has been paired with a primary reinforcer such as 
food or pain and, as a result, has come to take on similar reinforcing properties.

The second thread, an approach to optimal control problems in engineering, was devel-
oped in the mid-1950s by Richard Bellman and others through extending a nineteenth-
century theory of Hamilton and Jacobi. The Bellman backward induction is a foundation 
for using Reinforcement Learning to solve a problem, known as dynamic programming 
(Bellman, 1957a, 1957b), and includes policy-iteration and value-iteration algorithms. In 
early AI, several researchers began to explore trial-and-error learning as an engineering 
principle. The earliest computational investigations of trial-and-error learning were per-
haps by Minsky (1954, 1963) and by Farley and Clark (1954). RL is treated as a Markov 
decision problem that is similar to a Markov Chain, but with a reward and probability 
of moving to the next state, both associated with each action taken in the current state. 
However, in humanized agents, it is not a Markov Chain decision problem (MDP) because 
(1) the process is not a Markov chain due to the recursive patternization and because of 
hierarchical tokenization that involves more than two tokens, and (2) the environment 
involves not only non-living things, such as trees, cars, food, etc., but also humans or 
agents who have brains and can change behaviors according to Zda’s actions. Therefore, 
an agent needs to determine the probability of taking each path (action) based on all par-
ties involved, and those parties’ actions and words.

As the third thread, Arthur Samuel (1959) was the first to propose and implement a 
learning method that included temporal-difference (TD) ideas as part of his celebrated 
checkers- playing program. TD learning is an unsupervised technique in which the 
learning agent learns to predict the expected value of a variable occurring at the end of 
a sequence of states. RL extends this technique by allowing the learned state-values to 
guide actions which subsequently change the state of the environment. Samuel’s inspi-
ration apparently came from Claude Shannon’s (1950) suggestion that a computer could 
be programmed to use an evaluation function to play chess, and that it might be able to 
improve its play by modifying this function online. The temporal difference and optimal 
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control threads were fully brought together in 1989 by Chris Watkins. In his work, Watkins 
extended and integrated prior work in all three threads of reinforcement learning research 
and developed Q-learning. Paul Werbos (1987) contributed to this integration by arguing 
for the convergence of trial-and-error learning and dynamic programming.

Beyond the agent and the environment, a reinforcement learning system usually involves 
four main sub-elements: a policy, a reward function, a value function, and, optionally, a 
model of the environment. A policy defines the learning agent’s way of behaving at a 
given time. A policy is a mapping from perceived states of the environment to actions to 
be taken when in those states. It corresponds to what in psychology would be called a set 
of stimulus-response rules or associations.

A reward function in RL indicates what is good in an immediate sense, whereas a value 
function specifies what is good in the long run. The value of a state is the total amount 
of reward an agent can expect to accumulate over the future, starting from that state. 
Rewards determine the immediate, intrinsic desirability of environmental states, whereas 
values indicate the long-term desirability of states after taking into account the states that 
are likely to follow, and the rewards available in those states.

The reward function defines what are the good and bad events for the agent. For Zda, 
rewards can be a positive value (e.g., pleasure, energy boosting, appreciation by others) 
or a negative value (e.g., pain, augury). Zda has defined reward types; yet can add more 
reward types over his lifespan, which associate with the initial types of rewards.

Deep reinforcement learning (DRL) methods have driven impressive advances in AI in 
recent years. DRL is a combination of RL with deep learning neural networks. However, 
the concern has been raised that deep RL may simply be too slow to provide a plausible 
model of how humans learn. In the present review, Botvinick (2019) counters this critique 
by describing recently developed techniques that allow deep RL to operate more nimbly, 
solving problems much more quickly than previous methods.

F.2 Reinforcement Learning for Drug Development

Clinical Trial Phase Transition Probability

Clinical trials are often conducted in sequences in three phases. Sufficient positive results 
from a phase set off the next phase of the trial. Promising Phase 3 results will trigger the 
company’s submission of a non-disclosure agreement to the regulatory agency for market-
ing approval. The results from earlier phases other than the immediate phase play only a 
minor role in the decision process. Such a transition process can be modeled by a Markov 
Chain (Figure A.15). The transitional probabilities (Table A.1) derived from a large data-
base are valuable in RL for drug development (Chang, 2019). Among all 3583 Phase 1 trials 
for all disease indications, 63.2% successfully moved forward to Phase 2, and only 9.6% 
obtained regulatory approval for marketing. The transitional probability from one phase 
to another is simply the product of all the probabilities in between. These phase transi-
tional probabilities are the probabilities of success on average. Different trial designs and 
many factors (actions) will change the probability of success. In fact, drug development is a 
sequence of decision processes. In each process, information and outcomes of an action are 
associated with uncertainties or probabilities. Therefore, a Markov chain is not sufficient; 
we have to use a sophisticated model that includes the action options. Stochastic modeling 
provides such a model.
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A Stochastic Decision Process (SDP) is similar to a Markov chain, but there are also a 
decision (action) and cost associated at each state, a probability of reaching the next state, 
and the gain when the next state is successfully reached. Figure A.16 is an SDP for a typi-
cal clinical development program, which includes key design elements from Phase 1 and 
Phase 2 clinical trials. The actions here can be different clinical trial designs.

The success of a pharmaceutical company depends on integrating scientific, clinical, 
regulatory, and marketing approaches to the development and commercialization of ther-
apies. Clinical development program (CDP) design offers several important benefits: (1) It 
eliminates unnecessary or redundant clinical trials used for internal decision-making; 
(2) It identifies and addresses critical path issues that could delay development timeliness; 
(3) It ensures that clinical programs focus quickly and unambiguously on key attributes 
of the compound.

The SDP provides a powerful AI framework for modeling the decision-making process 
in situations where outcomes are partly random and partly under the control of the deci-
sion-maker. Simulation-based RL is used to determine the set of actions or action rules 
(often called policy) that maximize the expected gain. A commonly used algorithm to 

FIGURE A.15
Clinical trial phase transition probabilities.

TABLE A.1

Phase Transition Probabilities of Clinical Trials

No. of Test Drugs Phase 1 to Phase 2 Phase 2 to Phase 3 Phase 3 to Approval

Hematology  86 73.3% 56.6% 63.0%
Infectious disease  247 69.5% 42.7% 64.5%
Ophthalmology  66 84.8% 44.6% 45.2%
Other  96 66.7% 39.7% 61.5%
Metabolic  95 61.1% 45.2% 55.5%
Gastroenterology  41 75.6% 35.7% 55.9%
Allergy  37 67.6% 32.5% 67.0%
Endocrine  299 58.9% 40.1% 55.9%
Respiratory  150 65.3% 29.1% 67.3%
Urology  21 57.1% 32.7% 61.2%
Autoimmune  297 65.7% 31.7% 53.5%
Neurology  462 59.1% 29.7% 47.8%
Cardiovascular  209 58.9% 24.1% 46.7%
Psychiatry  154 53.9% 23.7% 49.0%
Oncology 1222 62.8% 24.6% 33.0%
All Indications 3582 63.2% 30.7% 49.6%
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find the optimal solution is the backward induction method, when the SDP is memoryless 
or a Markov Decision Process. The backward induction algorithm is derived from Bellman’s 
optimality principle, and this is described elsewhere (Chang, 2010). Bellman’s Optimality 
Principle can be stated thus: An optimal policy has the property that, whatever the initial 
state and initial decisions are, the remaining decisions must constitute an optimal policy 
with regard to the state resulting from the first decision.

RL with Monte Carlo simulations can provide a rational basis for decision-making and 
help in optimizing a compound’s regulatory strategy and determining its position and 
value. Simulation of CDPs can increase the confidence in decision-making and help to 
define and track critical success factors and their uncertainties.

F.3 Genetic Algorithms and Genetic Programming

Genetic Algorithms

A genetic algorithm (GA), the name inspired by Darwin’s theory of evolution, is an AI 
algorithm designed to solve an optimization problem. John Holland introduced genetic 
algorithms in 1960, and his student David Goldberg extended the GA idea in 1989. A typi-
cal genetic algorithm requires: (1) a genetic representation of the solution domain, (2) a fit-
ness function to evaluate the solution domain, and (3) crossover and mutation operations.

Initialization: Generate an initial population, usually by random selection.
Natural Selection: During each successive generation, a portion of the existing population is 

selected to breed a new generation. Individual solutions are selected through a fitness-based 
random selection process. The fitness function is defined over the genetic representation and 
measures the quality of the represented solution. The fitness function is problem-dependent.

Genetic Operators: A genetic operator is an operator used in genetic algorithms to guide 
the algorithm toward a solution to a given problem. Crossover and mutation are the main 
types of genetic operators, but it is possible to use other operators, such as colonization-
extinction and migration. The mutation probability is usually smaller than the crossover 
probability. A very small mutation rate may lead to genetic drift, whereas a mutation rate 
that is too high may lead to loss of good solutions. A recombination rate that is too high 
may lead to premature convergence of the genetic algorithm.

Termination: Termination can occur if one of the following conditions is met:

1. A good-enough solution is found.
2. The maximum number of generations is reached.
3. The highest-ranking solution’s fitness has reached a plateau such that successive 

iterations cannot make significant improvements.

FIGURE A.16
Stochastic decision process for CDP.
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GAs can and have been used in medical fields. Infertility is a condition for which a 
GA can be applied to discover the most appropriate treatment. To treat infertility there 
are several options. The sequence of interventions is believed to be important, in addi-
tion to the demographic and baseline characteristics. There are many possible treatment 
courses, but randomly or exhaustively trying out the treatment sequences is inefficient 
or impossible. It is believed that if a long sequence of treatments is effective, then a par-
tial sequence will likely retain partial effectiveness. If this assumption is true, then a 
GA might be a better way to search for the best treatment sequence. The basic idea is to 
view a treatment sequence composed of T1, T2, T2, T4, and T5 as a short DNA sequence 
in the GA (Figure A.17). A death (removal) of a treatment sequence can be defined by 
treatment failure. Through natural selection, better treatment sequences will survive 
long and dominate in the population, and thus have a better chance to be selected for 
multiplying than poor treatment sequences. The best treatment sequence(s) will survive 
in the end (Chang, 2020).

Ghaheri et al. (2015) introduced the genetic algorithm and its applications in medicine. 
They reviewed applications in disease screening, diagnosis, treatment planning, phar-
macovigilance, prognosis, and health care management. Ghaheri et al. (2015) provided a 
comprehensive review of the applications of genetic algorithms in 14 areas of medicine: 
radiology, oncology, cardiology, endocrinology, obstetrics and gynecology, pediatrics, sur-
gery, infectious diseases, pulmonology, radiotherapy, rehabilitation medicine, orthope-
dics, neurology, pharmacotherapy, and health-care management.

Genetic Programming

The term genetic programming was coined by Goldberg in 1983. Genetic programming 
(GP), like GA, is inspired by our understanding of biological evolution. It is an evolution-
ary computation (EC) technique that automatically solves problems without requiring 
the user to know or specify the form or structure of the solution in advance. At the most 
abstract level, GP is a systematic, domain-independent method for getting computers to 
solve problems automatically, starting from a high-level statement of what needs to be 

FIGURE A.17
Genetic algorithm for optimal treatment sequence search.
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done (Poli et al., 2008). The idea of genetic programming is to evolve a population of 
computer programs. The aim is that, generation by generation, GP techniques will sto-
chastically transform populations of programs into new populations of programs that 
will effectively solve problems under consideration. Like evolution in nature, GP has, in 
fact, been successful at developing novel and unexpected ways of solving problems. GP 
is similar to GA, but there are differences. The main difference is that individuals in GA 
are represented by one-dimensional strings, while individuals in GP are represented by 
tree structures.

GPs have proliferated, with applications in many fields, including: code-breaking, 
hardware bug detection, robotics, mobile communications infrastructure optimization, 
mechanical engineering, work scheduling, the design of water distribution systems, 
natural language processing (NLP), the construction in forensic science of facial com-
posites of suspects by eyewitnesses, airlines revenue engagement, trading systems in 
the financial sector, software synthesis and repair, image processing, cellular encod-
ing, symbolic regression, feature selection and classification, and sound synthesis in the 
audio industry (Langdon and Buxton, 2004). The series of 4 edited books on GP applica-
tions (Koza, 2010) collected 77 results where GP was human-competitive. GP has been 
successfully used as an automatic programming tool, a machine learning tool, and an 
automatic problem-solving engine. GP is especially useful in the domains where the 
exact form of the solution is not known in advance or when an approximate solution 
is acceptable.

In drug discovery, GP has been used for RNA structure prediction, molecular structure 
optimization, and for mining DNA chip data from cancer patients. Ghosh and Jain (2005) 
assembled articles across a broad range of topics on the applications of evolutionary AI 
in drug discovery. Barmpalex et al. (2011) used symbolic regression via genetic program-
ming in the optimization of a controlled release pharmaceutical formulation and com-
pared its predictive performance to artificial neural network (ANN) models. Their results 
showed that the predictive ability of GP on an external validation set was higher than that 
of the ANNs.

F.4 Cellular Automata

A cellular automaton (CA) is used to model both temporal and spatiotemporal processes. 
CAs normally consist of large numbers of identical cells that form a lattice (like a chess-
board) with defined interaction rules.

Cellular automata, invented in the late 1940s by John von Neumann and Stanislaw Ulam, 
have been used to model a wide range of processes seen in image processing, virtual music 
creation, and physics (https://mathworld.wolfram.com/GameofLife.html). They also have 
a long history in biological modeling. Indeed, one of the first and most interesting CA 
simulations in biology is Conway’s Game of Life (Berlekamp et al., 1982). The CA is simple 
but very capable. For example, in one application, there is a finite initial state such that any 
paragraph of English prose, when properly coded as a sequence of gliders (cell patterns 
that move across the lattice), will result in a “spell-checked” paragraph of English prose, 
again coded as a sequence of gliders.

The rules of CA can be defined in many ways. Here is a simple example (Chang, 2011): 
An occupant of a cell with fewer than two neighbors will, sadly, die of loneliness; with 2 

https://mathworld.wolfram.com
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or 3 neighbors, it will continue into the next generation; with 4 or more neighbors, it will 
die of over-excitement!

The objects (cells or proteins) in a CA simulation usually do not move: they only 
appear, change properties, or disappear. Thus, objects’ properties and information are 
the only things that “move”. In a variation on the CA model known as a dynamic cel-
lular automaton (DCA), objects can exhibit motion (Wishart et al., 2005). We can apply 
random walks or other stochastic processes to DCAs. Depending on the implementation 
of the DCA algorithm, molecules can move one or more cells in a single time step. DCA 
models permit considerably more flexibility in simulating biological processes (Materi 
and Wishart, 2007).

Examples of CA applications in the pharmaceutical industry include drug release in bio-
erodible microspheres (Zygourakis and Markenscoff, 1996), lipophilic drug diffusion and 
release (Fathi et al., 2013), drug-carrying micelle formation (Kier, 1996), the progression of 
HIV/AIDS, HIV treatment strategies (Santos and Coutinho, 2001), and the simulation of 
different drug therapies or combination therapies. Some CA models have the capacity to 
model extreme time scales (days to decades) efficiently and to simulate the spatial hetero-
geneity of viral infections.

F.5 Swarm Intelligence Learning

Concept of Swarm Intelligence

Systems in which organized behavior arises without a centralized controller or leader are 
often called self-organized systems, while the intelligence possessed by the system is called 
swarm intelligence (SI) or collective intelligence. Examples of swarm intelligence in nature 
include ant colonies, bird flocking, hawks hunting, animal herding, bacterial growth, fish 
schooling, and microbial intelligence.

Let’s look into how ant colonies forage for food and find the shortest path leading to a 
food source quickly (Figure A.18). The process unfolds as follows. Several ants leave their 
nest to forage for food, randomly following different paths. Ants continue to release phero-
mones (a chemical produced by an organism that signals its presence to other members 
of the same species) during the food search process. Such pheromones on the path will 

FIGURE A.18
Swarm Intelligence: ants adapt to environmental changes.



342 Appendix: Tutorial to Common Methods for Narrow AI 

gradually disperse over time. Those ants reaching a food source along the shortest path 
are sooner to reinforce that path with pheromones, because they are sooner to come back 
to the nest with food; those that subsequently go out foraging find a higher concentration 
of pheromones on the shortest path, and therefore have a greater tendency (higher prob-
ability) to follow it. In this way, ants collectively build up and communicate information 
about locations, and this information adapts to changes in the environmental conditions! 
The SI emerges from the simple rule: follow the smell of pheromones. Mimicking the activ-
ity of ant colonies, the ant algorithm and other swarm intelligence algorithms have con-
tributed to the advancement of AI technologies.

The SI characteristics of a human network integrate two correlated perspectives on 
human behavior: cognitive space and social space. In SI, we see the evolution of collec-
tive ideas, not the evolution of people who hold ideas. Evolutionary processes have costs: 
redundancy and futile exploration. Such processes are necessary to be adaptive and cre-
ative. The system parameters of SI determine the balance of exploration and exploitation.

An SI algorithm comprises a population of individuals that interact with one another 
according to simple rules in order to solve problems. Individuals in an SI system have 
mathematical intelligence (logical thought) and social intelligence (a common social mind). 
Social interaction thus provides a powerful problem-solving algorithm in SI.

An ant is simple and (arguably) dumb, while a colony of ants is complex and intelligent. 
Likewise, neurons are simple but brains are as complex as a swarm. Competition and col-
laboration among cells lead to human intelligence; competition and collaboration among 
humans form a social intelligence, or what we might call the global brain. Nevertheless, 
such intelligence is based on a human viewpoint, and thus it lies within the limits of 
human intelligence. Views of such intelligence held by other creatures with a different 
level of intelligence could be completely different!   

SI has some similarities to ensemble intelligence (EI), but they are different in that each 
individual in SI has no intelligence, while each individual in EI is usually an expert. SI 
is necessarily the consequence of collective dumbness, a result of collaboration, while EI 
can be just the best opinion among or average opinion of the experts without any collabo-
ration at all. Another difference is that SI requires a larger population of the same type 
of individuals, while a “population” in EI populations usually only involves a small set of 
individuals obtained by different methods.

SI is also different from reinforcement learning. In reinforcement learning, an individ-
ual can improve his level of intelligence over time since, in the learning process, adapta-
tions occur. In contrast, SI is a collective intelligence from all individuals. It is a global or 
macro behavior of a system. In complex systems there are a huge number of individual 
components, each with relatively simple rules of behavior that never change. However, 
in reinforcement learning, there are not necessarily a large number of individuals; in fact, 
there can just be one individual with built-in complex algorithms or adaptation rules.

Ant Algorithm

An ant routing algorithm, introduced by Dorigo (1992), was inspired by the food-foraging 
behavior of ants hunting the shortest or fastest route. Its key algorithm can be described 
as follows:

1. Ants lay pheromones on the trail when they move food back to their nest.
2. Pheromones accumulate with multiple ants using the same path, evaporating 

when no ants pass by.
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3. Each ant always tries to choose trails having higher pheromone concentrations.
4. In a fixed time period, ant agents are launched into a network, each agent going 

from a source to a destination node.
5. The ant agent maintains a list of visited nodes and the time elapsed in getting 

there. When an ant agent arrives at its destination, it will return to the source fol-
lowing the same path by which it arrived, updating the digital pheromone value 
on the links that it passes by. The slower the link, the lower the pheromone value 
will be.

6. At each node, the ant colony will use the digital pheromone value as the transi-
tional probability for deciding the ant (data) transit route.

Particle Swarm Optimization

Particle swarm optimization (PSO), one of the bio-inspired algorithms, is a stylized repre-
sentation of the movement of organisms in a bird flock to search for a problem’s optimal 
solution. PSO is a metaheuristic, as it makes few or no assumptions about the problem 
being optimized and can search very large spaces of candidate solutions. PSO does not use 
the gradient of the problem being optimized. However, PSO does not guarantee an opti-
mal solution is ever found. Each particle’s movement is influenced by its local best known 
position, but is also guided toward the best known positions in the search-space. This is 
expected to move the swarm toward the best solutions.

A basic variant of the PSO algorithm works by having a population (called a swarm) 
of candidate solutions (called particles). These particles are moved around in the search-
space in three possible directions: (1) the personal best direction, (2) the swarm’s best-
known direction, and (3) its current direction. We can randomly decide on one of the three 
directions or take a weighted three-directional vector. The process is repeated and by 
doing so it is hoped, but not guaranteed, that a satisfactory solution will eventually be 
discovered. Figure A.19 illustrates how a three-person team climbs to a mountaintop using 
the PSO search strategy.

FIGURE A.19
A three-mountaineer team uses PSO.
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F.6 Swarm Intelligence in Drug Discovery

If you were to construct an exhaustive list of swarm intelligence-based applications, your 
list would include complex interactive virtual environment generation in the movie indus-
try, cargo arrangement in airline companies, route scheduling for delivery companies, 
packet routing in telecommunication networks, power grid optimization controls, data 
clustering and data routing in sensor networks, unmanned vehicle control in the U.S. mili-
tary, and planetary mapping and micro-satellite control as used by NASA (Chang, 2020).

In the drug development process, a central feature is the prediction of the complex struc-
ture of a small ligand with a protein, the so-called protein-ligand docking problem, used 
in virtual screening of large databases and lead optimization. Korb et al. (2006) devel-
oped a new docking algorithm called PLANTS (Protein-Ligand ANTSystem), based on 
ant colony optimization, to facilitate structure-based drug design. An artificial ant colony 
is employed to find a minimum energy conformation of the ligand in the protein’s binding 
site. The algorithm showed higher efficiency than a genetic algorithm.

Molecular docking is critically important for a ligand binding to the intended site, 
which is essential for a small molecular drug to take effect. Fu et al. (2015) studied a new 
approach for flexible molecular docking based on SI. They computed the interactions of 
23 protein-ligand complexes. The experimental results show that their approach leads to 
substantially lower docking energy and higher docking precision in comparison to the 
Lamarckian genetic algorithm and the QPSO algorithm alone. This suggests that the novel 
algorithm may be used to dock a ligand with many rotatable bonds with high accuracy.

Protein essentiality is fundamental to comprehending the function and evolution of 
genes. The prediction of protein essentiality is pivotal in identifying disease genes and 
potential drug targets. Fang et al. (2018) presented a novel feature selection called the elite 
search mechanism-based flower pollination algorithm, used to determine protein essen-
tiality. ESFPA uses an improved SI algorithm for feature selection and selects optimal 
 features for protein essentiality prediction. The first step is to collect numerous features 
with the highly predictive characteristics of essentiality. The second step is to develop 
a feature selection strategy based on a SI algorithm to obtain an optimal feature subset. 
Then, an elite search mechanism is adopted to further improve the quality of the feature 
subset. The experimental results show that this SI method is competitive with some well-
known feature selection methods.

Rajeshkumar and Kousalya (2017) presented a review of applications of SI algorithms in 
the pharmaceutical industry, including drug design, pharmacovigilance, and alignment of 
sequence. Soulami et al. (2017) used a particle swarm optimization (PSO) based algorithm 
for detection and classification of abnormalities in mammographic images by using tex-
ture features and support vector machine (SVM) classifiers.

G: Natural Language Processing

G.1 Syntax & Semantics of Language: Tokenization

Natural language processing (NLP) is an AI approach in dealing with the interactions 
between computers and human language, in particular, how one can program computers 
to process and analyze large amounts of natural language data. The applications of NLP 
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include Chatbot, sentimental analysis, information extraction, spelling correction, speech 
recognition, machine translation, and predictive testing.

The Syntax and Semantics of Language involve structure and meaning of written text. 
For some languages, this may require preprocessing such as stemming, such as changing 
words, give, gave, gives, and given to give. Similarly, lemmatization is unifying the verb 
forms, e.g., changing words, gone, going, and went to go. Stop words are those words in 
the text which do not add any meaning to the sentence and whose removal will reduce 
the dimension of the feature set. Other preprocesses include Tokenization, Normalization, 
and tagging Parts of Speech.

Tokenization is breaking the raw text into small chunks, words or sentences, called 
tokens. These tokens help in understanding the context or developing the model for 
the NLP.

There are various tokenization techniques. Given a sentence or paragraph, White Space 
Tokenization tokenizes into words by splitting the input whenever a white space is encoun-
tered. This is the fastest tokenization technique. It will work for languages (e.g., English, but 
not Chinese) in which the white space breaks apart the sentence into meaningful words. 
Dictionary Based Tokenization is based on the tokens in the dictionary. If the token is not 
found, then special rules are used to tokenize it. Regular Expression Tokenizer uses regu-
lar expressions to control the tokenization of text into tokens. Penn TreeBank Tokenization 
is based on a tree corpus bank which gives the semantic and syntactic annotation of lan-
guage. Penn Treebank is one of the largest treebanks.

G.2 Word Embeddings and Language Models

There are several different types of language models, each with their own strengths and 
weaknesses. Here are some examples of different language models:

N-gram models: These models are based on the frequency of sequences of words in 
a corpus of text. They work by counting the frequency of each n-gram (a sequence of 
n words or other units) in the corpus and using this information to predict the next word 
in a sentence.

A skip-gram model is a type of language model that is based on the idea of predicting 
context words, given a target word. It is often used in conjunction with n-gram models to 
improve the performance of language modeling.

Feedforward neural network models: These models use a feedforward neural network 
to predict the next word in a sentence based on the previous words. They work by encod-
ing the previous words as a fixed-length vector and using this vector as input to the neural 
network.

Recurrent neural network (RNN) models: These models use a recurrent neural network 
to predict the next word in a sentence based on the previous words. They work by main-
taining an internal state that represents the context of the sentence so far and using this 
state to generate the next word.

Convolutional neural network (CNN) models: These models use a convolutional neural 
network to predict the next word in a sentence based on the previous words. They work by 
treating the input sequence as an image and using convolutional filters to extract features 
from the sequence.

Transformer models: These models are based on the Transformer architecture, which 
uses a self-attention mechanism to process input sequences and capture long-range 
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dependencies between their elements. Transformer models, such as GPT (Generative Pre-
trained Transformer), have achieved state-of-the-art performance on a wide range of natu-
ral language processing tasks.

These are just a few examples of different types of language models, and there are many 
variations and hybrids of these models that have been developed. The choice of language 
model depends on the specific natural language processing task and the available data.

A distributional semantic model is a type of NLP model that represents the meaning of 
words based on their distributional properties. The underlying assumption is that words 
that appear in similar contexts tend to have similar meanings but they differ in a number 
of ways. CBOW, SkipGram, and GPT models all use word embeddings and are distribu-
tional semantic models.

Word embedding is a real-valued vector representation (encoding) of the meaning of 
words for text analysis, wherein words that are closer in the vector space are expected to be 
similar in meaning. Word embeddings can be obtained using a set of language modeling 
and feature learning techniques where words or phrases from the vocabulary are mapped 
to vectors of real numbers. Word embeddings are considered to be among a small number 
of successful applications of unsupervised learning at present. The fact that they do not 
require pricey annotation is probably their main benefit.

The term word embeddings was originally coined by Bengio et al. (2003) who trained 
them in neural language modeling. Collobert and Weston (2008) demonstrated that 
word embeddings trained on an adequately large dataset carry syntactic and semantic 
meaning and improve performance on downstream tasks. Mikolov et al. (2013) pro-
posed the Continuous Bag-of-Words (CBOW), which brought word embedding to the 
fore through the creation of word2vec, and was based on a toolkit enabling the train-
ing and use of pre-trained embeddings. Unlike a language model that can only base 
its predictions on past words, as it is assessed based on its ability to predict each next 
word in the corpus, a model that only aims to produce accurate word embeddings is 
not subject to such a restriction. The word2vec algorithm uses a neural network model 
to learn word associations from a large corpus of text. Once trained, such a model 
can detect synonymous words or suggest additional words for a partial sentence. A 
year later, Pennington et al. (2014) introduced GloVe, a competitive set of pre-trained 
embeddings, suggesting that using word embeddings was suddenly among the main-
stream. Rather than using the surrounding words to predict the center word as with 
CBOW, a skip-gram (Mikolov et al., 2013) uses the center word to predict the surround-
ing words.

Word embedding is a way to quantify the semantics. We want to represent words in 
such a manner that it captures its meaning in a way humans do—not the exact meaning 
of the word, but a contextual one. For example, when I say the word run, we know exactly 
what action, i.e., the context.

What are good quality word embeddings and how can we generate them? The simplest 
word embedding you can have is using one-hot vectors. If you have V = 10,000 words in 
your vocabulary, then you can represent each word as a 1 × 10,000 vector. In a simpler 
example, if we have 4 words,  apple,  tiger,  river, and train, in our vocabulary then we can 
represent them as follows: apple = [1, 0, 0, 0], tiger = [0, 1, 0, 0], river = [0, 0, 1, 0], train = [0, 0, 
0, 1]. If you have only 3 words (tea, tiger, train) in your vocabulary, then a one-hot coding 
system will be: tea = [1, 0, 0], tiger = [0, 1, 0], and train = [0, 0, 1]. However, such coding will 
miss the entire purpose of creating embeddings, i.e., to capture the contextual meaning 
of the words, because it fails to capture the correlation between words. There are various 
methods of learning correlations between words.
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As we discussed in Part I Section 4.1, Connotation of Understanding, understanding 
text is mapping between symbols. Thus, which symbols (words) are used is not impor-
tant, but the relative location of a word in the text determines the meaning of the word. 
Neighboring words determine a word’s meaning. This is the notion of distributional 
semantics, a research area that develops and studies theories and methods for quantifying 
and categorizing semantic similarities between linguistic items based on their distribu-
tional properties in large samples of language data. This contextual text understanding 
in distributional semantic space turns out to be essential in natural language applications 
related to text understanding, knowing the other factors such as tone and physical envi-
ronment may also play roles in determining meaning.

Both the CBOW and Skip-gram models can learn the underlying word representations 
for a word by using neural networks. In the CBOW model, the distributed representations 
of context (or surrounding words) are combined to predict the word in the middle. But in 
the Skip-gram model, the distributed representation of the input word is used to predict 
the context.

A prerequisite for any supervised neural network training is having labeled training 
data. Unlike the classification ANN to predict an object from an input image, the training 
goal in the Skip-gram model is to learn the weights of the hidden layer that are actually 
the “word vectors” that we’re trying to determine. We’ll define a neighboring word by the 
window size (hyperparameter).

Regarding the choice of the two models, Skip-gram works well with a small amount of 
the training data and represents well even for rare words or phrases, while CBOW will 
be several times faster to train than the skip-gram and have slightly better accuracy for 
frequently seen words (Figure A.20).

FIGURE A.20
CBOW and skip-gram models with window size of two.
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G.3 ChatGPT and Relevant Architecture

ChatGPT is a state-of-the-art language model architecture developed by OpenAI. It was 
first introduced in a research paper titled “Language Models are Unsupervised Multitask 
Learners” by Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever in 2018.

GPT models work on a principle called autoregressive which is similar to one used 
in RNN. It is a technique where the previous output becomes current input. The semi- 
supervised learning includes first performing unsupervised pre-training and then super-
vised fine-tuning. GPT model was based on Transformer architecture. It was made of 
decoders stacked on top of each other (12 decoders).

The architecture of ChatGPT is based on the Transformer, a neural network architec-
ture that was introduced in a research paper titled “Attention is All You Need” by Ashish 
Vaswani and his colleagues in 2017. The Transformer uses a self-attention mechanism to 
process input sequences and capture long-range dependencies between their elements.

ChatGPT extends the Transformer architecture by pre-training a large neural network 
on vast amounts of text data, using a language modeling task. This pre-training enables 
the model to capture a wide range of language patterns and generate high-quality natural 
language output. The pre-training process involves training the model on large amounts 
of text data to learn to predict the next word in a sentence, given the previous words.

The final architecture of ChatGPT includes a stack of transformer blocks, each consisting 
of a multi-head self-attention mechanism, followed by a feedforward neural network. The 
output of the final block is then fed into a linear projection layer, which is used to predict 
the next word in a sentence or generate text. GPT-3 learning corpus consists of the dataset 
that includes 45TB of textual data or most of the internet. GPT-3 is 175 Billion parameter 
models as compared to 10–100 Trillion parameters in a human brain.

ChatGPT is a versatile architecture that has been fine-tuned for a wide range of natural 
language processing tasks, such as language translation, text summarization, question-
answering, and conversational AI.

Generative ANNs differ from discriminative ANNs. Discriminative ANNs aim to clas-
sify an input into one of several predefined categories. The model is trained to find the 
boundary between the categories in the feature space and make predictions based on the 
closest boundary. Generative ANNs, on the other hand, aim to model the distribution of 
the data and generate new samples that are similar to the ones seen during training. These 
models are trained to estimate the probability of the input data given the class labels, and 
then generate new data based on this estimate. For instance, generative models can gener-
ate new data instances. They are used to generate new photos of animals that look like real 
animals, while a discriminative model could tell a dog from a cat. A generative language 
model is a probability distribution over sequences of words. It is used to generate new text 
that is similar to the training data. A discriminative model is used to classify input data 
into one of several categories.

The multi-head self-attention mechanism is a key component of the Transformer archi-
tecture, which is used in state-of-the-art natural language processing models such as GPT.

Self-attention is a way for the model to focus on different parts of the input sequence 
when processing it. In traditional recurrent neural networks (RNNs), information flows in 
one direction through a sequence of hidden states, and the model’s attention is distributed 
evenly across all the previous states. In contrast, self-attention allows the model to look 
back at any position in the input sequence and weigh the importance of each position for 
the current prediction.
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Multi-head self-attention extends the basic self-attention mechanism by allowing the 
model to attend to different subspaces of the input sequence simultaneously. The model 
projects the input sequence into multiple subspaces, and then computes self-attention for 
each subspace. This is achieved by splitting the input into multiple parallel representa-
tions, each with a different set of weights. The self-attention calculation is then performed 
separately on each representation, and the results are concatenated and fed through a 
linear layer to produce the final output.

The benefit of using multi-head self-attention is that it allows the model to attend to 
different aspects of the input sequence in parallel. This can help to capture complex and 
long-range relationships between different parts of the input and lead to improved per-
formance on a wide range of natural language processing tasks. This is different from 
Humanized Architecture in this book, where the complex, long-range relationships are 
captured through recursions of hierarchical patterns

There are several key differences between the skip-gram model and GPT:
The word’s context in the skip-gram model does not include the next word. The skip-

gram model works by taking a single word as input and predicting the words that are 
likely to appear in its context. The context of a word is defined as the words that appear 
within a fixed-size window around the word in a sentence or text corpus.

In contrast, the GPT language model is pre-trained on a language modeling task that 
involves predicting the next word in a sequence of words, given the previous words. In 
this case, the context of a word does include the previous words in the sequence as well 
as any relevant information that might come from the larger context, such as the topic or 
genre of the text.

Training data: The skip-gram model is trained on a large corpus of text, but it only learns 
to predict the context words for a given target word. In contrast, GPT is pre-trained on a 
language modeling task, which involves predicting the next word in a sentence given the 
previous words. This task requires the model to capture a wide range of language patterns 
and contexts and to generate natural-sounding text.

Model architecture: The skip-gram model is based on a simple neural network archi-
tecture, whereas GPT is based on the more complex Transformer architecture, which uses 
a self-attention mechanism to capture long-range dependencies between elements of the 
input sequence.

Application: The skip-gram model is primarily used for learning word embeddings, 
which can be used in a wide range of natural language processing tasks. GPT, on the other 
hand, is a more general-purpose language model that can be fine-tuned on a variety of 
tasks, such as language translation, text summarization, and conversational AI.

GPT and Stable Diffusion are two different generative models that are used in natural 
language processing (NLP) and other fields, but they are different.

GPT is a language model that is based on the Transformer architecture and is pre-trained 
on a large corpus of text using a language modeling task, which involves predicting the 
next word in a sentence given the previous words. GPT uses a self-attention mechanism 
to capture long-range dependencies between elements of the input sequence, and it can be 
fine-tuned on a variety of NLP tasks.

Stable Diffusion, on the other hand, is a recently proposed generative model that is based 
on the concept of diffusion, a process that describes how particles spread out over time. In 
the Stable Diffusion model, each element of the input sequence is represented as a particle 
that diffuses over time, with the diffusion process controlled by a set of parameters that are 
learned during training. The model generates new samples by starting with a noise vector 
and gradually diffusing it over time to generate a sequence of words or other output.
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Furthermore, there are several key differences between GPT and Stable Diffusion as 
elaborated below.

Model architecture: GPT is based on the Transformer architecture, which uses self- 
attention to capture long-range dependencies, while Stable Diffusion is based on a diffu-
sion process that is controlled by learned parameters.

Training data: GPT is typically pre-trained on a large corpus of text, while Stable 
Diffusion can be trained on a variety of data types, including images and sound.

Performance: While both models are capable of generating high-quality text, Stable 
Diffusion has been shown to outperform GPT on some text generation tasks, particu-
larly those that require generating longer sequences of text or more complex language 
structures.

Applicability: GPT is a more general-purpose language model that can be fine-tuned 
on a wide range of NLP tasks, while Stable Diffusion is a more flexible generative model 
that can be applied to a variety of data types beyond text, including image and audio 
generation.

When we code the language and events using parallel and sequential text strings, GPT 
can potentially be used for Humanized AI development.
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