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Preface

This book may be considered first as an introduction to differential geometry
and, in particular, to 4-dimensional manifolds, and second as an introduction
to the study of projective structure and projective relatedness in manifolds.
It arose out of collaborations in the University of Aberdeen, Scotland, UK
between the author and his PhD students, postdocs and research visitors
and from overseas visits by the author to other workers in the field, and
to conferences. Chapters 1, 2 and the first part of chapter 3 deal mainly
with the elementary aspects of set theory, linear algebra, topology, Euclidean
geometry, manifold theory and differential geometry, including the idea of a
metric and a connection on a manifold and the concept of curvature. The
second part of chapter 3 specialises in the case of 4-dimensional manifolds
and, in particular, in the positive definite case for the metric. Chapter 4 deals
with the case of Lorentz signature and chapter 5 with the so-called neutral
signature case. These chapters deal with the associated (metric) connection,
the elementary properties of the curvature and Weyl conformal tensors and
also the sectional curvature function and the close relationships between these
geometrical objects. It introduces, and makes use of, the holonomy group of
such a manifold for connections associated with metrics of each of these three
possible signatures. For this purpose, useful representations of the Lie algebras
o(4), o(1,3) and 0(2,2) in the language of bivectors (skew-symmetric second
order tensors) are constructed. A study of the algebraic properties of certain
tensors is also provided. Chapter 6 is a brief interlude on those aspects of
geometrical symmetry which are needed to understand chapter 7. Chapter 7,
the final chapter, provides a detailed description of projective relatedness, that
is, the relationship between two symmetric connections (and between their
associated metrics) which give rise to the same geodesic paths. This leads to
the introduction and description of the Weyl projective tensor. This topic is
of significant current interest and an attempt is made to show that, with the
help of holonomy theory and a certain classification of the curvature tensor,
a systematic study of this subject may be made, at least in the 4-dimensional
case.

The author wishes to put on record his special thanks to three of his former
research students Dr David Lonie, Dr Zhixiang Wang, and Dr Bahar Kirik
for many illuminating discussions and collaborations on these topics and for
several of the ideas contained in this book and, additionally to David Lonie,
for his MAPLE calculations and technical help in preparing the manuscript

ix
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and Bahar Kirik for help with the proof reading. He has also benefitted from
useful discussions with many other colleagues especially Dr John Pulham, Dr
Michael Crabb, Prof Vladimir Matveev and others too numerous to mention
here. Finally he expresses a very special gratitude to Aileen Sylvester for her
patience, guidance and understanding.



Chapter 1

Algebra, Topology and Geometry

1.1 Notation

This chapter will be devoted to a very brief summary of some topics in
set theory, algebra, topology and geometry which will be needed in what is to
follow. Only those topics which, within reasonable bounds of completeness, are
strictly needed will be discussed since they may (mostly) be found in more
detail in many standard texts. The material here is heavily conditioned by
the necessities of manifold theory. The opportunity will also be taken here to
introduce the notation required. Recommended texts for this material are [1],
[2] for algebra, [3],[4] and [5] for topology and [6], [7] and [8] for geometry.

The notation, followed will be a fairly standard one. Set membership is
denoted by €, non-membership by ¢, the empty set by () and the members of
a non-empty set will, where appropriate, sometimes be listed inside brackets
{}. The symbol = means “implies” whilst < means “implies and is implied
by” or “is equivalent to” or “if and only if”. The symbol V means “for all”
and 3 means “there exist(s)”. For sets A and B the inclusion of A as a subset
of B is denoted by A C B and this includes the possibility of equality, A = B,
which is equivalent to A C B and B C A. If AC B and A # B, A is properly
contained in B or a proper subset of B. The union and intersection of A
and B are denoted, respectively, by AU B and AN B, and, if A # () # B,
their Cartesian product, denoted by A x B, is the set {(a,b) : a € A,b € B}
where (a, b) denotes an ordered pair. (Those occasions where such a non-empty
restriction is needed will usually be taken as obvious to avoid repetition.) An
obvious extended version of this applies when a finite number > 2 of sets are
involved. The Cartesian product of n copies of a set A is denoted A™. Also
the symbol R will denote the set of all real numbers, C the set of all complex
numbers, Q the subset of R consisting of all the rational numbers, Z the set
of all integers and N is the subset of Z given by N = {1,2,....}. Thus one has
the sets R™ and C™ for n € N. The set-theoretic difference of sets A and B
is written A\ B and is {x € A: 2z ¢ B}. If A and B are sets, a function (or
map, or mapping) f from A to B is denoted by f : A — B. Such a map is
said to be onto (or surjective) if given any b € B Ja € A such that f(a) = b,
one-to-one (or injective) if f(a) = f(b) = a = b and a bijection (or bijective)
if it is both injective and surjective. If f : A — B is bijective, it gives rise to a
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unique map from B to A denoted f~! and called the inverse of f and given
for b€ Bby f~1(b) =a < f(a) =b. For sets A and B if f: A — B is a map
and C' C A and D C B, the symbol f(C) = {f(a) : a € C} is the image of C
under f whilst f~'D denotes the inverse image of D under f and is given by
f'D={ac A: f(a) € D} whilst the map i : C — A given by i(p) = p for
each p € C is called the (natural) inclusion (map) of C into A. The restriction
of the map f : A — B to the subset C' C A is denoted by f|c. If A, B and
C aresetsand f: A — B and g : B — C then the composite map go f is
the map A — C given by go f(a) = g(f(a)) for a € A (and in the previous
sentence, fic = foi:C — B). A binary relation or binary operation on a set
Xisamap X x X — X.

If X is a set and A C X, the complement of A (in X) is the set X \ A.
If X is understood, the complement of A is denoted and defined by C(A) =
{z € X,z ¢ A}. The rules for manipulating subsets A and B of an (under-
stood) set X are those of de Morgan and are (i) C(AU B) = C(A)NC(B) and
(15) C(AN B) =C(A)UC(B). If A, B, ...,C are subsets of a set X such that
the intersection of any two of them is the empty set then AU B - - - UC' is said
to be a disjoint union (of A, B, ...,C), and then if X = AUBU---UC, one
refers to this as a partition or a disjoint decomposition of X.

Let X be a set. An equivalence relation on X is a subset R C X x X such
that for z,y,z € X (i) (z,z) € R ,Vx € X, (i1) (z,y) € R = (y,z) € R and
(#30) (z,y), (y,2) € R = (x,2) € R. Then if (x,y) € R one sometimes writes
x ~ y. If, for x € X one defines the subset A, = {y € X & = ~ y} of X
the collection of all such subsets, called equivalence classes under ~, is such
that for z,2’ € X either A, = A, or A, N A, = 0 and the union of all such
equivalence classes equals X and is a partition of X. The collection of all such
equivalence classes is denoted by X/ ~ and called the quotient set arising
from X and ~ and this leads to a natural projection map p : X — X/ ~
which maps = € X to the unique equivalence class containing .

A set A is called finite if there exists a bijective map f from A to the set
{1,2,....,n} for some n € N, denumerable if there exists a bijective map from
A to N and countable if it is either finite or denumerable. If A is not finite it
is said to be infinite.

The subset S™ of R"™! given by S™ = {(21, ..., #n41) : 21+ +22 4 =1}
is called the n-sphere. The symbol 63 or d;;, for non-negative integers 1, j,
denotes the Kronecker delta and takes the value 1 if ¢ = j and zero otherwise.
The symbol = means “is equal to by definition” or “is identically equal to”.
The end of a proof will be denoted [J.

1.2 Groups

A group is a pair (G, .) where G is a non-empty set and . a binary operation
G x G — G, (a,b) = a.b, for a,b € G (called the group product) satistying
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(G1) the associative law a.(b.c) = (a.b).c,
(G2) there exists e € G such that a.e = e.a = a, Va € G,
(G3) for each a € G,3a~! € G such that a.a™' =a"l.a=e.

The member e € G is called the identity of G and is unique in satisfying
(G2) above. In (G3) the member a~! € G is called the inverse of a and, given
a, is also unique. Unless confusion may arise, the pair (G, .) is usually written
as G and a.b is usually written as ab.

If H C G is such that H with the inherited operation . from G is a group
then H is called a subgroup of G. This is written H < G and it is remarked
that the identities of G and H coincide and that if @ € H, the inverse of a is
the same whether taken in G or H. Thus a subset H of G is a subgroup of G if
and only if either a,b € H = abc H and a=' € H,or,a,bc H = ab~! € H.
The subset {e} of G is a subgroup of G called the trivial subgroup. A group
G satisfying the property that for any a,b € G, ab = ba, is called Abelian and,
generally, if a.b = b.a, a and b are said to commudte.

The set R is an Abelian group under the usual addition with identity O
and, for r € R, inverse —r, and R\ {0} is an Abelian group under the usual
multiplication with identity 1 and inverse r~!. Similar comments apply to C
and C\ {0}. The set GL(n,R) of n x n non-singular real matrices is, with
the usual identity matrix, matrix multiplication and forming of inverses, a
(non-Abelian) group.

Let (G,.) and (G, x) be groups. A map f : G — G’ is called a (group)
homomorphism if for each a,b € G, f(a.b) = f(a) x f(b) (or simply f(ab) =
f(a)f(b) if no confusion can arise). For such a map, if e is the identity of G
and a € G, f(e) is the identity of G’ and f(a~!) is the inverse of f(a) in G.
If f: G — G is a homomorphism and f is bijective, f is called a (group)
isomorphism of G onto G’ and the inverse map f~! is then necessarily an
isomorphism G’ — G . In this situation G and G’ are said to be isomorphic
groups. If f : G — G’ is a homomorphism between groups G and G’, the
subset K = {g € G : f(g) = e}, where e is the identity of G’, is easily seen to
be a subgroup of G called the kernel of f. If H < G and if g € G the subset
Hy = {g7*hg : h € H} of G is easily seen to be a subgroup of G which is
isomorphic to H under the isomorphism h — g~ 'hg. The subgroups H and
H'’ are said to be conjugate .

If S is a subset of G, the family of all finite products of those members of G
which are either the identity of GG, a member of S or the inverse of a member
of S is a subgroup of G containing S called the subgroup of G generated by
S. It is, in fact, the intersection of all of the subgroups of G containing S and
hence, in an obvious sense, is the smallest subgroup of G containing S. If S
contains only one member, the resulting subgroup of G is called cyclic. If, for
n € N, Gy, ..., G, are groups the direct product G X .... X G,, together with
the binary operation (ai,...,an).(b1,....,bn) = (a1, ..., anby) for a;,b; € G;
(1 <i<n)is a group called the product of the groups Gy, ..., Gy,



4 Four-dimensional Manifolds and Projective Structure

Let G be a group and H < G. For g € G, the subset gH = {gh : h € H}
is called a left coset of H in G. (One can similarly define a right coset.) This
gives a partition of G arising from the equivalence relation given for a,b € G
by a ~b< a"'b € H. Then a and b are in the same left coset if and only
if a='b € H or, equivalently, aHH = bH. The collection of left cosets of G
in G is denoted by L(G, H). It is remarked that right and left cosets do not
necessarily give the same partition of G, but if they do, that is, for each g € G,
gH = Hg' for some ¢’ € G, g = hg' for some h € H, and so h™'g = ¢’ and
Hg = Hg = gH. Then Hg = gH for each g € G and H is a special kind of
subgroup of G called a normal subgroup of G. It then easily follows that H is
a normal subgroup of G if and only if g 'Hg={g 'hg: h€e H} = HVg € G
and, of course, if G is Abelian, any subgroup H of G is normal. The kernel of
a homomorphism f : G — G’ between groups G and G’, which was seen above
to be a subgroup of G, is easily checked always to be a normal subgroup of
G. It is now easily shown that if H < G is normal, the collection of left cosets
of H in G forms a group according to the product relation aH.bH = a.bH,
for each a,b € G, where (aH)™! = a~'H and where the identity member is
H. This group is called the quotient group of G by H and is denoted G/H.
For H a normal subgroup of G there is a natural map f : G — G/H given by
g — gH and which is easily seen to be a homomorphism, called the natural
homomorphism, from G to G/H and its kernel is H. Slightly more generally,
if f: G — G’ is a homomorphism with kernel K, then G/K is isomorphic to
f(G), this isomorphism being given by gK — f(g) for g € G. In addition, if
f is onto, G/K and G’ are isomorphic.

1.3 Vector Spaces and Linear Transformations

A field is a triple (F,+,.) where F is a non-empty set and + and . are
binary operations on F with the properties; (i) (F,+) is an abelian group
(with identity denoted by 0), (i7) (F'\ {0}, .) is an abelian group (with identity
denoted by 1) and (#i¢) the operation . is distributive over +, that is, a.(b+c) =
a.b + a.c. The operations + and . are usually referred to as addition and
multiplication with 0 and 1 the additive and multiplicative identities. The
resulting inverses are written as —a and (for a # 0) a=!. The sets R and C
above are obvious examples and are the only ones required here. Because of
axiom (77) 1 # 0 and thus F' contains at least two distinct members.

A wvector space V over a field F' consists of an abelian group (V,®) and
a field (F,+,.) with multiplicative identity 1 and additive identity 0 together
with an operation ® of members of F' on members of V with the properties
that for a,b € Fandu,veV,a®v €V and

(VD) (a+b0)0v=(a0V)®(bOV),
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(V2) a0 (udv)=(a0u)® (a®v),
(V3) (a-b)ov=a0 (bOV),
(V4)1ov=wv.

In practice, and where no confusion may arise, one usually writes + for
each of + and @ above and omits the symbols . and ®. The members of V
are called vectors, those of F' scalars and @ scalar multiplication. Here only
vector spaces over the real field R (real vector spaces) and the complex field C
(complex vector spaces) will be needed. The identity member of V' is labelled
0 and referred to as the zero vector of V' and, using a minus sign to denote the
additive inverses in each of the groups (F+) and V, the above axioms then
easily lead to (i) a0 = 0, (ii) Ov = 0, (i%3) (—a)v = —(av) and (iv) if v# 0
then av =0 = a = 0. If V = R"™ (respectively, C") and F = R (respectively,
C) together with the standard component-wise operations one arrives at the
usual vector space structures on R™ (respectively, C"*). If W C V is such that
the naturally induced operations on W from those of V' (and F) cause W to
be a vector space over F then W is called a subspace of V. In fact, if a subset
W C V satisfies the property that for each a,b € F' and u,v € W the member
au+bv € V is also in W then W is a subspace of V. For any vector space
{0} is a subspace of it called the trivial subspace.

Let U and V be vector spaces over the same field F and let f : U — V
be a map. Then f is called linear (or a homomorphism) between the vector
spaces U and V if for each a € F and u,v € U

(L1) fu+v) = f(u) + f(v),
(L2) f(au) = af(u).

Alternatively, if for each a,b € F and u,v € U, f(au + bv) =
af(u) + bf(v) then f is linear, and conversely. If f : U — V is bijective
it is easily checked that the inverse map f~! :V — U is necessarily linear
and f is then called a vector space isomorphism between U and V and U
and V are called isomorphic vector spaces. Again if f : U — V is linear the
subset f(U) = {f(u) : u € U} is easily checked to be a subspace of V called
the range space of f, denoted rgf whilst the subset {u: f(u) = 0} is easily
checked to be a subspace of U called the kernel of f, denoted kerf. If U, V,W
are vector spaces over the field F and if f: U — V and g : V — W are linear
then the map go f : U — W is clearly linear and so isomorphism of vector
spaces is an equivalence relation.

If V is a vector space over a field F', uy,...u, € V and aq,...,a, € F for
n € N, the member Z?zl a;u; of V' is called a linear combination of uy, ..., uy,
(over F). If ) # S C V the set of all linear combinations of finite subsets
of S is a subspace of V called the span of S, denoted by Sp(S), (also called
the subspace of V' spanned by S) with S called a spanning set for Sp(S). A
non-empty subset S C V is called linearly independent (over F') if given any
Vi,..., Vi, € S the only solution of the equation Y . | a;vi = 0 (aq,...,a, € F)
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is ap = ... = a, = 0. Otherwise S is called linearly dependent (over F). It
is true that any vector space V admits a linearly independent, spanning set
and such a set is called a basis for V. In fact if S; is a linearly independent
subset of V and S5 is a spanning set for V with S; C S5 there exists a basis
S for V with S; € S C S;. A vector space V over F which admits a finite
spanning set is called finite-dimensional (and otherwise, infinite-dimensional)
and the number of members in each basis for V' is the same positive integer
n called the dimension of V, written dimV, and V is called n-dimensional.
Then any subspace of a finite-dimensional vector space V of dimension n is
finite-dimensional and any subset S of V' containing n members is a spanning
set for V' if and only if it is linearly independent (and then S constitutes a
basis for V). In such a case and given that uy,...u, € V is a basis for V, any
v € V may be written as v = Z?:l a;u; of V where the aq,...,a, € F, called
the components of v in this basis, are uniquely determined by v and the basis
Uujp,...uy. It easily follows that V' is then, in an obvious way, isomorphic to
F™ with the usual componentwise operations under an isomorphism which is
dependent on the chosen basis. For finite-dimensional vector spaces U, V' over
a field F any linear map f : U — V is uniquely determined by its action
on a basis of U by linearity. The dimensions of rgf and kerf are called the
rank and nullity of f, respectively, and it is easily checked that their sum
equals dimU. The trivial subspace has, by definition, dimension zero. If V' is
finite-dimensional over F' and U is a subspace of V with dimU = dimV then
u=V.

Let Wh,...,W,, (n € N) be subspaces of a finite-dimensional vector space V.
Suppose that each v € V' can be written in ezactly one way as v = wi+---+w,
(w; € W;). Then V is called the (internal) direct sum of Wi, ...,W,. One
could also view this construction by regarding W,...,W,, as individual finite-
dimensional vector spaces over the same field F', forming the Cartesian product
W1 X ... x W, and defining vector space addition and scalar multiplication by
members of F' in the usual component-wise fashion. This gives a vector space
isomorphic in an obvious way to the original V' and is called the (external)
direct sum of Wy, ..., Wy, denoted by W7 + ...+ W,,. Usually one uses the term
direct sum or just (vector space) sum for either of these constructions and, it
is noted, dimV =dimWj + ... + dimW,,. Slightly more generally if U C V and
W C V are subspaces of V then UNW is also a subspace of V as is Sp(UUW)
(which is the same as the subspace of V' consisting of all members of V' of the
form u+ w for u € U and w € W but is only the direct sum of U and W
if UNW = {0}). Then an easily proved standard result gives the dimension
formula

dimSp(U U W) + dim(U N W) = dimU + dimW. (1.1)

Let U and V be finite-dimensional vector spaces over a field F' with di-
mensions m and n, respectively, and let f : U — V be a linear map. Let
{w;} = {wy,...,u,} and {v;} = {v1,..., v} be respective bases for U and V.
Then one can write f(u;) = 22;1 a;;vj where the a;; € F give the m x n
matriz representation A = (a;;) of f with respect to the above bases. If
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one makes a change of basis u; — u/; = Z;anl s;xUu; in U and a change
of basis v; — v/; = Y. t;v; in V where the matrices S = (s;;) and
T = (t;1) are non-singular m X m and n X n matrices, respectively, with en-
tries in I’ the representative matrix of f with respect to the new bases is the
m X n matrix SAT~!. A special case of this occurs when U = V and dimU
(=dimV') = n. In this case one can choose the same basis {u;} in U and V
and then f(u;) = 377, a;;u; so that f is represented with respect to this
basis by the n x n matrix A = (a;;). Under a change of basis in U given by
u —u; = ZZ:1 pikuy for some non-singular n x n matrix P = (p;;), the
matrix of f in the new basis is PAP~!. Two n x n matrices A and B with
entries in F are called similar (over F) if B = PAP~! for some non-singular
n xn matrix P with entries in F’ and this relationship of similarity is an equiv-
alence relation on such matrices. Thus matrices in the same equivalence class
represent the same linear transformation on U in different bases. This allows
the search for “simple” (canonical) representations (forms) for f to be made
by seeking “convenient” bases for f in U. For all such choices of bases for
U one achieves all possible forms for the representative matrix A and so this
technique also allows for a search for canonical “forms” for an n x n matrix.
This will be exploited later.

1.4 Dual Spaces and Bilinear Forms

Let V' be an n-dimensional vector space over F'. Define the set ‘j' =L(V,F)
where L(V, F') is the set of all linear maps V' — F with F regarded as a 1-

*
dimensional vector space over F. Then V is easily checked to be a vector space

over F' with vector addition and scalar multiplication defined, for f,g € V,

a € Fand v e Vby (f+g)(v) = f(v)+glv)and (a- f)(v) = af(v)
and is called the dual (space) of V over F. Now if {v;} is a basis for V' and

if a1,...,a, € F there exists exactly one w € I*/ such that w(v;) = a; for
1 <7 < n and so there is a uniquely determined set wy...wy, € ‘*/ such that
wi(vj) = d;; for each 1 < 4, j, < n. This latter set is clearly a basis for ‘*/ called
the dual basis of {v;} and hence dim\*/ =n and V and 1*/ are each isomorphic

to F™ and hence to each other. However, the isomorphism V' — V uniquely
defined by v; — w; for each ¢ depends on the basis chosen for V' and is not
natural (in the usual mathematical sense of this word).

With V as above, one may construct in a similar fashion the dual of

V denoted V and which is isomorphic to V. In this case the hnear map
f V—>Vg1venforv€bef( Y(w) = w(v )foreachw€V1sba81s
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independent and bijective and is a natural isomorphism. The vector spaces V

and V are thus naturally isomorphic and are often identified, as will be useful
later.

Let U and V be vector spaces over F' of dimension m and n, respectively.
and define the (m + n)-dimensional vector space W =U + V over F. A map
f: W — F is called a bilinear form if for u,uy, ug € U, v,vy, vo € V and
ay,as € F one has “linearity in each argument” (bilinearity), that is,

flayug + aguz,v) = a1 f(ug, v) + az f(uz,v) (1.2)

and
f(u,a1vy + azva) = a1 f(u,v1) +azf(u,va). (1.3)

For bilinear forms f; and f, one can define the bilinear form
(a1f1 + azf2)(u,v) = a1 fi(u,v) + azfa(u,v) and so the set of all bilinear
forms on W is itself a vector space over F. Given bases {u;} for U and {v;}
for V and a matrix A = (a;;) (1 <i <m,1 < j <n) with entries in F there is
exactly one bilinear form f on W satisfying f(u;, vj) = a;; and A is referred to
as the matriz of f with respect to the bases {u;} and {v;}. Thus the bilinear
forms fpq associated, as above, with the arrays a;; = 0;,0;4 for each p, ¢ with
1<p<m,1<q<n, give a basis for the vector space of bilinear forms on
W and hence the latter has dimension mn. Thus if u = 2111 x;u; € U and
v=>Yr yvieV, flu,v)=3" 3"  a;jz;y;. Under changes of bases in
Uand V given by u; » u’; = > ;- sppugp in U and v; = v/, = > v in
V for non-singular matrices S = (s;x) and T = (¢;;), the matrix of f changes
to SATT where T denotes the transpose of T'. It is often the case that U = V/
with, say, their common dimension equal to n. A bilinear form f on V +V
is usually called a bilinear form on V and with a basis {v;} chosen for V
the matrix A = a;; for f is now given by a;; = f(vi,v;) Under a change
of basis given by v; — v'; = >°/" | t;;v; for some non-singular matrix 7' the
matrix of f changes to TATT. A bilinear form on V is then called symmetric if
flu,v) = f(v,u), Vu,v € V, equivalently, A is a symmetric matrix, and non-
degenerate if f(u,v) =0, Vv € V = u = 0, equivalently, A is non-singular,
these definitions being independent of the basis chosen for V.

A bilinear form f on an n-dimensional vector space V' over R is called a real
bilinear form. In this case the associated map f : V — R given by v — f(v,v)
is called a (real) quadratic form (on V). If A is the matrix representing f with
respect to the basis {vi} of V and v = > | z;v; € V this quadratic form
is the map v — >_* | a;;z*z’. Thus only the symmetric part of the original
bilinear form f (that is, of A) matters here. (There is a simple one-to-one
relationship between real symmetric bilinear forms on V' and real quadratic
forms on V and a given real quadratic form uniquely determines its associated
symmetric real bilinear form.) A quadratic form is then called non-degenerate
if its associated symmetric bilinear form is non-degenerate. Under a change
of basis in V given by v, — v/; = 37" | s;;v;, the matrix representing the
real quadratic form f changes according to A — SAST. One calls two real,
symmetric n x n matrices A and B congruent if A = SBST for some real



Algebra, Topology and Geometry 9

non-singular matrix S. This gives an equivalence relation on such matrices
and one is thus lead to seek conditions which characterise the equivalence
classes. This is Sylvester’s law of inertia which states that for a given real
symmetric n X n matrix A there exists a real non-singular n x n matrix S such
that

SAST = diag(1,...,1,—1,...,—1,0, ...,0) (1.4)

where, for a,b, ...,c € R, diag(a,b,...,c) denotes a diagonal matrix with zeros
everywhere except on the diagonal where the entries are a, b, ..., ¢, and where,
in (1.4), there are r entries 1, s entries —1, ¢ entries 0 and r,s,¢ are non-
negative integers with r + s +¢ = n. The right-hand side of (1.4) is called
the Sylvester canonical form or the Sylvester matriz for A, and A has rank
r 4+ s. The triple (r, s, t) characterises the equivalence class of A and is called
the signature of A. It is often written in the form (+,...,+,—1,...,—1,0,...0)
with the obvious number of each of the entries. Special cases are t = 0 (non-
degenerate), s =t = 0 (positive definite signature), r =t = 0 (negative definite
signature), t =0,s = 1,7 > 1 (or t = 0,r = 1, s > 1) (Lorentz signature) and
t =0,r = s # 0 (neutral signature).

In this book an inner product on an n-dimensional vector space V over
R is a symmetric, non-degenerate, bilinear form f : V +V — R and then
V is referred to as an inner product space. (Sometimes the definition of an
inner product, when applied to real vector spaces, requires a positive definite
signature. This condition will not be enforced here.) An inner product on
V is called a metric on V and it is either of positive (or negative) definite
signature (sometimes called Fuclidean) or it is not (and is then sometimes
called indefinite). If u,v € V, f(u,v) is called the inner product of u,v. If
u, v are non-zero vectors in V' they are called orthogonal if f(u,v) = 0. From
now on, unless explicitly stated to the contrary, f(u,v) will be written u - v.
A vector v € V is called a unit vector if v-v = +1 and a null vector if it
is not the zero vector and v - v = 0. A basis for V is called orthonormal if it
consists of mutually orthogonal unit vectors and, of course, the arrangement
of signs for the unit vectors must be consistent with the Sylvester canonical
form.

Two subspaces U,W of an inner product space V are called orthog-
onal if for any u € U and any w € W, u and w are orthogonal,
u-w = 0. For a subspace U of V one can define its orthogonal complement
Ut ={veV:v-u=0,Vue U}. For positive (or negative) definite signa-
ture U and U~ are always “complementary” in the sense that U N U+ = {0}
and the span of their union equals V' but this result can fail for indefinite sig-
natures. However, if dimV = n and dimU = m then dimU+ = n — m follows
from the theory of linear equations and it is clear that U C (U+)+. But then
dim(U1)+ =n — dimU+ = m =dimU. So (U1)+ = U always.

Now let Vi,...,V,, be finite-dimensional vector spaces over the field F
such that dimV; = n; (1 < i < m). A multilinear map (or form) f on
V=W+---4+V,isamap f : V — F which is linear in each of its ar-
guments (as for a bilinear form). The set of all such maps is then, with the
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obvious operations, a vector space over F. Then if {e;}, ..., {€]'} are bases for
Vi, ey Vi, respectively, and with corresponding dual bases {*e}}, ..., {re'}
the multilinear maps V — F denoted by *e} ® ... ®* e/ and defined by

* 1 * am(,1 my _
e ®..0" e (e, . .,e;) =

* e}(e}l)...*ey’(ezn) = 0iq---0jp (1.5)
and extended by linearity to V give a basis for the vector space of all
multilinear maps V' — F and hence this latter vector space has dimension

ning...MNym,.

1.5 Eigen-Structure, Jordan Canonical Forms and Segre
Types

Let V be an n-dimensional vector space over the field F' where F' = R or
C and let f be a linear map f : V — V. A non-zero vector v € V is called an
eigenvector of f if f(v) = Av for A € F and then ) is called the eigenvalue
of (f associated with) v. The terms characteristic vector and characteristic
value, respectively, are also sometimes used. Each non-zero member of the
1-dimensional subspace of V' spanned by v (the direction determined by v) is
then also an eigenvector with eigenvalue A and this direction is referred to as
the eigendirection determined by v. If {e;} is a basis for V, A = a;;, the matrix
representing f in this basis and v = Z?zl v;€; then the eigenvector/eigenvalue
condition above is > v;a;; = Avj, or in matrix language, vA = Av. In this
case the v; and X are called the (components of the) eigenvector and associated
eigenvalue of A. Tt follows that A € F is an eigenvalue of f (or A) if and only
if x = X satisfies the equation det(A — xI,,) = 0 where I, is the unit n x n
matrix. The left-hand side of this last equation is the characteristic polynomial
of A and is of order n with coefficients in F’ whilst the equation itself is called
the characteristic equation of A. Recalling section 1.3, it is remarked that
the above concepts are independent of any bases, that is, similar matrices
have the same characteristic polynomial. For any eigenvalue A, the number of
times the factor (x — A) appears in the characteristic equation is called the
multiplicity of X\. If X\ is an eigenvalue of f (or A) the set of all eigenvectors
of f with eigenvalue A together with the zero vector is a subspace of V' called
the A-eigenspace of f. Its dimension may not equal the multiplicity of A\ as
will be made clear later. If ker f is not trivial it is the 0—eigenspace of f and
if dimker f = m then f has rank n —m.

Now let U be a subspace of V and suppose the linear map f : V — V
satisfies f(U) C U. Then U is called an invariant subspace of (for) f. Thus
any eigendirection and any eigenspace of any linear map V' — V is invariant
for that map. However, a non-zero member of an invariant subspace of f need
not be an eigenvector of f. In fact an invariant subspace of f may not contain
any eigenvectors of f. This remark and the concept of an invariant subspace
will be important later.
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The linear map f described above is, of course, uniquely determined by
its action on a basis for V. A simple description of f can thus be achieved by
a judicious choice of such a basis. If a basis for V' consisting of eigenvectors
exists (and, in general, it does not) the matrix representing f in this basis is,
conveniently, a diagonal matrix with diagonal entries consisting of the eigen-
values of f and then f (or A) is said to be diagonalisable (over F'). Thus if the
characteristic equation of f admits n distinct solutions in F' the associated
eigenvectors are easily checked to be independent and constitute a basis of
eigenvectors for f which is then diagonalisable over F. Even if the character-
istic equation does not admit n distinct solutions but factorises over F' into n
linear factors the map f will still be diagonalisable if the dimension of each
eigenspace equals the multiplicity of its associated eigenvalue. Failing this, but
retaining the factorising of the characteristic polynomial into n linear factors
over F', one could seek some “almost” diagonal form for f as its “canonical
form”. This process leads to the Jordan (canonical) form for f and is rather
useful. It will be discussed next. However, it depends on the characteristic
polynomial of f factoring into n linear factors over F' and this can only be
guaranteed if F' is an algebraically closed field, for example, if F = C. If FF =R
such a factoring may not exist.

So suppose that V is an n-dimensional complexr vector space and
f 'V — V is linear and admits a basis of eigenvectors. The matrix rep-
resenting f in this basis is diagonal with the diagonal entries equal to the
eigenvalues of f in some order. The Jordan theorem solves the problem when
such a basis may not exist. This leads to the following generalisation (the
Jordan canonical form) for a linear map f : V — V and the algebraically
closed nature of C is crucial here. Suppose the distinct eigenvalues of f are
Aty Ar € C (1 < < n). If fis diagonalisable it can be viewed as decompos-
ing V into a direct sum of subspaces V4 + -+ V, where V; (1 < i <r) is the
A;-eigenspace of f and Y. dimV; = n. In this case the multiplicity of each
eigenvalue equals the dimension of the corresponding eigenspace. Now suppose
f is not diagonalisable. Then the characteristic polynomial of f factorises into
n linear factors over C, with distinct eigenvalues Aq,..., A, (1 < r < n) with
respective multiplicities my, ...,m, (3.,_, m; = n). It can then be shown that
V may be decomposed as V = V; +-- -+ V,. where dimV; = m; and each V; is
an invariant subspace of V under f “associated” with the eigenvalue \; which
contains, but is not necessarily equal to, the \;-eigenspace. Further, one may
choose a basis for V; on which the restriction of f has representative matrix
with A; in each diagonal position, some arrangements of zeros and ones along
the superdiagonal and zeros elsewhere. Choosing such a basis for each V; one
obtains a Jordan basis for V and a representative matrix for f of the form
(dots denote zeros)

Ay e
Ay
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(A basis scalable to a Jordan basis is still called a Jordan basis). Then, for a
particular eigenvalue A;, the matrix representing f in the above basis when
restricted to V; is A; above and is given by

Bi

O
Bi (i

where each matrix B;; is a p;; X p;; matrix with ); in each diagonal position, a
“1” in every superdiagonal place and zeros elsewhere and the order is usually
chosen so that p;1 > -+ > pire)- It is called a basic Jordan block. With an
ordering established for the eigenvalues Ay, ..., A, the canonical form for A is
uniquely determined (and m; = p;1 + - - - + pig()). This information is usually
collectively called the Jordan canonical form for f and the A is the Jordan
matriz for f. The symbol

{(p11, ~~~7P1k(1))(P21, ~~,p2k(2))~-(pr1, '“,prk(r))} (1.6)

is referred to as the Segre type, Segre symbol or Segre characteristic of f and
carries with it the information in the Jordan canonical form. The characteristic
polynomial of f is then

(—1)™(@ — A1)™ (2 — Ao)™2.n(z — Ap)™. (1.7)

It is known from the Cayley-Hamilton theorem that every n x n real or
complex matrix A satisfies its own characteristic equation. Thus there exists
a polynomial of least degree m (1 < m < n) which is satisfied by A. If it
is agreed that this polynomial is monic then it is unique and is called the
minimal polynomial of A. It can be shown that any two (similar) matrices
have the same minimal polynomial and thus one has a minimal polynomial
for the map f above. It can also be shown that for this map the minimal
polynomial is given by

(x — AP (x — A)P2r (= A )Pr? (1.8)

that is, the power to which (z — );) is raised is the largest integer amongst the
set {pi1,...Pik(iy} and thus the minimal polynomial divides the characteristic
polynomial.

For each ¢ the polynomials (x — ;)P in (1.7) are called the elementary
divisors associated with the eigenvalue \;. Recalling the above ordering on
the p;; such an elementary divisor is called simple if p;; = 1 and non-simple
of order p;; if p;; > 1. In the above Jordan form, each V; is an invariant
subspace for f with matrix A; and within this subspace each basic Jordan
block gives rise to an invariant subspace of V;.

It is useful to note here that, for example, if a 4 x 4 matrix C' is a ba-
sic Jordan block with eigenvalue A and if the Jordan basis members are
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u = (1,0,0,0), w = (0,1,0,0), r = (0,0,1,0) and v = (0,0,0,1) then the
following pattern ensues

OO O >
OO > =
S > = O
> o o

and

f(v) = v, flr)=Ar+v,
f(w)=Aw+r, fu) =Au+w. (1.9)

An eigenvalue A of f is called non-degenerate if the associated \-eigenspace
is 1-dimensional and otherwise degenerate. Equal eigenvalues are indicated by
enclosing the integers associated with the (equal) eigenvalues inside round
brackets in the Segre type for f. A non-degenerate eigenvalue A could be
associated with a simple or a non-simple elementary divisor.

It is remarked that the above Jordan theory demanded that the character-
istic polynomial factorised into n linear factors over the appropriate field and
that this was satisfied since a vector space over C was considered. If one is
really interested in a vector space over R techniques are available for this (for
example, the so-called rational canonical form). This book will be mainly con-
cerned with real vector spaces but a more direct approach to its eigenstructure
will now be described.

So let V' be an n-dimensional real vector space V. One can now describe
a technique relating V' to an associated complex vector space and usually
referred to as “complexifying” V. Then the above theory for complex vector
spaces may be used. This construction will allow for scalar multiplication of
members of V' by members of C. Starting from the real vector space V, first
construct the real vector space V+V and for u, v € V define a linear map on
V+V byec:(u,v) = (—v,u) so that co ¢ is the negative of the identity map
on V 4+ V (thought of as “multiplication by 7”). Then one can think of V +V
as a complex vector space (the complexification of V') with multiplication by
members of C defined for a,b € R and u,v € V by

(a+ib)(u,v) = a(u,v) + be(u,v) = a(u,v) + b(—v,u) = (au — bv,av + bu)
(1.10)
as is easily checked. Thus V', which was an n-dimensional vector space over
R, is converted to a vector space over C. One thinks of (u,v) as u+ i¢v. Then
if e; (1 <4 < n)is a basis for V' the members (e;,0) constitute a basis for
V + V when the latter is taken over the field C and so the complex vector
space V + V is also n-dimensional. This follows since if (u,v) € V + V with
u= ZZL:I u;e; and v = Z?:I v;e; for u;, v; € R then from the above definition
of complex multiplication for V'
(w,v) = (u; +iv;)(es, 0). (1.11)

i=1
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Now let f: V — V be a linear map on V and extend it to a linear map on
V +V by defining f: (V +V) = (V +V) by f((u,v)) = (f(u), f(v)). Then
if f(es) = > 1, aijej, f(ei,0) = a;;(e;,0) and so the map f: V — V has the
same (real) representative matrix (a;;) as the extended map fo(v+ V) —
(V 4+V) for any such basis. Then if f(v) = Av so that v is an eigenvector of f
with eigenvalue A € R, f(v.0) = (Av,0) and (v,0) is an eigenvector of f with
(real) eigenvalue A. However, if (u,v) is an eigenvector of f with cigenvalue
a+ib (a,b € R,b #0), f(u,v) = (a+ib)(u,v) and so f(u) = au — bv and
f(v) = av+bu. Similarly f(u, —v) = (au—bv, —av—bu) = (a—ib)(u—v) and
so (u, —v) is an eigenvector of ‘]?With eigenvalue a — ¢b. Thus the eigenvectors
and eigenvalues for fcome, as expected (since the a;; are real and hence the
characteristic polynomial has real coefficients), in complex conjugate pairs.
It follows that the “real” and “imaginary” parts, (u and v), of a complex
eigenvector (u,v) of f span a 2-dimensional invariant subspace (for f) of
V' and which, for b # 0, contains no eigenvectors of f. This result will be
important later. One thinks of the above results, informally, as the statement
that u+iv is a “complex” eigenvector of f with “complex” eigenvalue a + ib.
The reference to the map f will usually be dropped and one will speak of
“complex” eigenvectors and “complex” eigenvalues of f. This summary of
the eigenstructure of f on V and f on V 4 V is all that is required for this
book. It is noted (and easily checked) here for future use that any (real)
invariant 2—space of the real linear map f : V' — V either contains one or two
independent real eigenvectors or a conjugate pair of complex eigenvectors (in
the above sense).

An important classical result arises at this point. Let V be an n-
dimensional real vector space, let f : V' — V be a linear map on V and
h:V +V — R a positive definite metric on V. Suppose that f is self-adjoint
(with respect to h), that is, h(u, f(v)) = h(f(u),v) for each u,v € V. Then in
any basis {u;} the product matrix AH is symmetric, where A and H are the
matrices representing f and h in this basis. Let P be a real non-singular matrix
effecting the transformation from the above basis to the basis in which h takes
its Sylvester canonical form I,,. The matrix representing f in this new basis
is then Q = PAP~! and can be checked to be symmetric (and conversely, the
symmetry of @ implies the symmetry of AH). A well-known classical result
now says that the characteristic polynomial of the real symmetric matriz Q
factorises into n real factors and that f admits a basis of eigenvectors which
may be chosen orthonormal with respect to the metric represented by the
matrix (d;;) in this basis (the Sylvester form for i on this basis). This result,
that f is diagonalisable, is usually referred to as the principal axes theorem
for a real symmetric matrix . However, it should be noted that, given the self-
adjoint assumption on f, this result depends on the positive definite nature
of h. It fails if this is not the case since the characteristic equation may admit
non-real solutions and/or there may not exist a basis of eigenvectors for f.
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In this book the following convention will be made when writing a Segre
symbol {abc...}. If the entry a, say, refers to a real eigenvalue it will be written
as a positive integer and which gives the order of the associated elementary
divisor. If an entry refers to a complex eigenvalue arising from a simple ele-
mentary divisor it will be written as z and since this book is mostly concerned
only with maps whose characteristic polynomials have real coefficients z will
also occur in the Segre symbol. If an eigenvalue is complex and arises from
a non-simple elementary divisor it will be written as an integer (> 2) equal
to the order of the elementary divisor and the fact that it is complex will be
specified separately. As stated earlier, equal eigenvalues are enclosed inside
round brackets in the Segre symbol.

1.6 Lie Algebras

Let V be a vector space over F' (F' = R or C). One wishes to impose a type
of multiplication between members of V. Suppose there is a binary operation
on V represented by (u,v) — uv where, for u,v € V, uv represents this
product, and which satisfies for u,v,w € V and a € F

+Vv)w =uw + vw,

v+ w) =uv + uw,

uv) = (au)v = u(av),

(uv) = —(vu),

u(vw) + v(wu) + w(uv)={0}.

Then V' with this operation (the Lie product) is called a Lie algebra over F'.
The last condition above is the Jacobi identity and it follows from the fourth
that uu = 0 for each u € V. If U and V are Lie algebras and f : U — V a
vector space homomorphism (respectively, an isomorphism) such that, in an
obvious notation, f(uv) = f(u)f(v) then f is a Lie algebra homomorphism
(respectively, isomorphism) and then U and V are Lie algebra homomorphic
(respectively, isomorphic). If V' is a Lie algebra and U C V is a subspace of
V such that U, with the induced Lie product from V', is a Lie algebra, then
U is called a Lie subalgebra of V. For each w € V, Ow = 0 from LA1 (put
v=—u).If f:U — V is a Lie algebra homomorphism, as above, the range
space f(U) of f is a subalgebra of V' and the kernel of f is a subalgebra of U,
as is easily checked. If uv = 0, u and v are said to commute and if uv = 0
for any u,v € V, V is called Abelian. If V and W are Lie algebras the vector
space direct sum V 4+ W may be given the following structure of a Lie algebra.
Let v,v/ € V and w,w’ € W and using the products in V and W, define the
Lie product on V + W given by (v,w)(v/,w') = (vv/,ww’). Then V + W
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is a Lie algebra (the product algebra of V and W) and any member of the
subspace V + {0} of V + W (which is Lie isomorphic to V') commutes with
any member of the subspace {0} + W of V + W (which is Lie isomorphic to
W) since (v,0)(0,w’) = (0,0). The projection maps from V+W to V and W
are easily checked to be Lie algebra homomorphisms. The set M, R of all real
n X n matrices is an n?-dimensional real vector space and if A, B € M,R the
product operation which sends (A, B) - AB — BA gives M,R the structure
of a Lie algebra.

1.7 Topology

Let X be any set. The idea here is to put a structure on X which allows
one to make sense of concepts such as “nearness”, “limit”, “convergence”,
“continuity”, etc. Most geometrical intuition relies on such concepts and pre-
cise proofs regarding these concepts require such a structure to be laid down
axiomatically. This leads to the idea of a topological structure for X. Thus
with X arbitrary let 7 be a family of subsets of X satisfying the following
conditions:

T1 The empty set () is a member of T,
T2 X is a member of T,

T3 The union of an arbitrary family of members of 7T is itself a member of

T, and

T4 The intersection of a finite family of members of T is itself a member of

T.

The pair (X, 7)) is then called a topological space, T is called a topology for
X and the members of T are called open (sub)sets of (or in) X (or said to be
members of, or open in, T) . It is easily checked that in T4, if one replaces
the finite family of members by any two members, the resulting axioms are
equivalent to the originals. A subset F' C X is called closed (in X) if its
complement X \ F in X is open, that is, if X \ FF € 7. Thus @ and X
are closed subsets. Also it is easily checked from de Morgan’s laws that any
arbitrary intersection, and any finite union, of closed subsets of X is closed in
X. One may easily write the above four axioms in an equivalent way in terms
of closed subsets of X by using the de Morgan laws.

The set R has a standard topology in which a subset U C R is open if, for
any p € U, there is an open interval I = (a,b) of R (a,b € R,a < b) such
that p € I C U. It follows that such intervals (a, ) are open subsets of R and
the intervals of the form [a, b] are closed subsets of R. This topology on R will
always be understood. For any set X, if 7 is defined to be the collection of
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all subsets of X, then T is a topology for X called the discrete topology for
X whilst if X and @ are the only members of 7 again 7 is a topology for X
called the indiscrete topology for X. More examples can be given after a little
more topology is described.

Let (X,7) be a topological space and let p € X. A subset N C X con-
taining p is called a neighbourhood of p if there exists U € T withp € U C N.
Thus any open set containing p is a neighbourhood of p but a neighbourhood
N of p need not be open (and is open if and only if it is a neighbourhood of
each of its points). If A C X, define the interior of A, denoted intA, as the set
of points (of A) for which A is a neighbourhood. Then intA is an open set and
is the largest open subset of A in the sense that if U is open and U C A then
U C intA . Further for A C X, a point p € X is a limit point of A if every open
subset containing p intersects A in some point other than (possibly) p. Then
A is closed if and only if it contains each of its limit points. If one defines the
closure A of A to be the union of A with the set of all of its limit points then
A is closed and, in the sense given above, is the smallest closed set containing
A. Tt follows from these definitions that A is open if and only if A =intA and
that A is closed if and only if A = A. A point p € X is a boundary point of a
subset A C X if for any open neighbourhood U of p, UN A and UN (X \ A)
are not empty. Then the boundary §(A) of A is the collection of all boundary
points of A. It is easily checked that, for any A C X, §(A) = AN (X \ A) and
is thus a closed subset of X, that 6(4) = §(X \ A) and that a subset of X is
closed if and only if it contains all its boundary points.

A sense of topological “size” (large and small) will be required later and
this can be described now. A subset A C X is called dense in X if X = A
and nowhere dense in X if intA = (). The statement intA = (} is equivalent to
the statement that A contains no non-empty open subsets. One can think of
a subset A of X as being “topologically large” in X if it is open and dense
in X and “topological small” in X if it is closed and nowhere dense in X.
Now A is dense if and only if its complement in X has empty interior and
so the complement of an open dense subset is closed and nowhere dense, and
vice versa. Any finite subset of R is closed and nowhere dense in R whilst the
subset Q of R, which is neither open nor closed, is dense in R as also is its
complement R\ Q of irrational numbers. It can be checked that a finite union
of closed, nowhere dense subsets of X is closed and nowhere dense in X and
hence that the intersection of finitely many open dense subsets of X is itself
open and dense in X. To see this, let I and I’ be closed and nowhere dense
in X and let § # U C FUF’ be open in X so that U C F and U C F'
are each false. Then U N (X \ F) is an open subset of F’ and is hence empty.
Similarly, U N (X \ F’) is empty and so one achieves the contradiction U = .
An induction argument completes the proof. The second part follows from de
Morgan’s laws.

Let (X,7T) and (Y, T") be topological spaces and let f : X — Y be a map.
Then f is said to be continuous at p € X if f~1(N) is a neighbourhood of
p (in T) whenever N is a neighbourhood of f(p) (in 7). The map f is then
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said to be continuous if it is continuous at each p € X and this is equivalent
to the statement that the inverse image under f of any open set in 7’ is open
in 7. (X,T), (Y,T') and (Z, T") are topological spaces and f : X — Y and
g :Y — Z are continuous then go f : X — Z is continuous. If, in the above, f
is continuous, a bijection and is such that f~! : Y — X is continuous, then f is
called a homeomorphism and (X, T) and (Y, 7T") are said to be homeomorphic
topological spaces.

In the actual construction of a topology for a set the following technique is
sometimes useful. Let (X, T) be a topological space and let B be a subset of
T such that each U € T is a union of members of B. Then B is called a base
(or basis) for T and T is said to be generated by B. Thus B is a base for T
if and only if for each p € X and open set U containing p there exists B € B
with p € B C U. On the other hand let B be a family of subsets of X. Under
what conditions on B does it become a base for some topology on X7 If X
equals the union of the members of B and if when By, By € B and p € B1N By
there exists B € B and p € B C B; N By then B is a base for some topology
on X. The idea of a basis for a topology can be simplified even further. Let
X be any set and B’ be a collection of subsets of X whose union equals X.
Let B be the set of all finite intersections of members of B’. Then B is a basis
for some topology T on X. The collection B’ is called a subbase (or subbasis)
for T and is said to generate 7. For a topological space (X,7), let p € X and
let D be a family of open sets each containing p such that for any open set
U in X with p € U, there exists D € D and p € D C U. Then D is called a
local base (or local basis) at p. In fact these concepts are easily related since a
collection of subsets B of X is a basis for 7 if and only if for each p € X the
family B, = {B € B: p € B} is a local basis at p. The concepts of basis and
local basis simplify the idea of continuity because it is easily checked that a
map f: X — Y between topological spaces X,Y is continuous if and only if
the inverse image under f of each member of a base (or subbase) of Y is open
in X.

For the set R and a,b € R,a < b, the intervals of the form (a,b) give a
base for the standard topology whilst the intervals of the form (—oo,a) and
(a,0) for each a € R together constitute a subbase for this topology.

Let (X,T) be a topological space and let A C X be any subset of X.
Then A inherits a natural topology from the topology 7 on X as follows.
Define a collection T of subsets of Aby T ={U' C A:U' =ANU,U € T}.
Then T is easily checked to be a topology for A called the subspace or relative
or inherited topology on A from (X,T), and (A, T) is called a topological
subspace of (X, T). The usual inclusion map 7 : A — X is then continuous
with respect to 7 and 7. Of course, if A and B are subsets of X with A ¢ B
then B inherits a topology from X and A inherits a topology from X and
also one from the topology inherited by B from X. Fortunately these are the
same topology. Thus the open subsets of (4,7) are the intersections with
A of the open subsets of X (and it is easily checked that this statement is
true if “open” is replaced by “closed”). If (X,7) and (Y, 7’) are topological
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spaces and f : X — Y is a continuous map then, in the above notation, the
restriction fj4 : A — Y is continuous as a map from (A4,7) to (Y,7”). One
may also show that the continuity of f : X — Y above is equivalent to the
continuity of the map f : X — f(X) defined by f(p) = f(p) when f(X) has
subspace topology from (Y, 7).

Let (X1,71), ..., (X, Tn) be a finite collection of topological spaces and let
X = X x...x X,,. Consider the family of subsets of X of the form Uy x ... xU,
where each U; € 7T;. It is easily checked that this is a base for a topology 7 on
X called the product topology for X (and then (X, T) is referred to simply as
the product of the above topological spaces). It then follows that the projection
maps p; : X — X; given by (1, ...,z,) — x; are continuous. Only such finite
products will be considered here. Using the set R (with its standard topology
given earlier) one can construct the set R™ for n € N and give it the product
topology as above to get the standard topology on R™. Further, identifying the
set of complex numbers C as R? in the usual way, one can get the standard
topology on C and then the standard topology on C™. These will always be
understood. It easily follows that the collection of all finite products of open
intervals in R give a base for the above standard topology on R™. A very slight
modification of this argument gives a base for the standard topology on C™.

A topological space X is called first countable (or said to satisfy the first
aziom of countability) if X admits a countable local base at each of its points.
A topological space X is called second countable (or said to satisfy the second
aziom of countability) if X admits a countable base for its topology. Since
those members of a base for X, containing p € X, is a local base at p for X,
every second countable space is first countable, but not conversely. Since it
is easily checked that the open intervals of R of the form (a,b) with a,b € Q
and hence with centre point in Q form a base for R, this latter topological
space is second and hence first countable (since it is known that Q and Q™ are
denumerable for any positive integer n). It follows by taking finite products of
these intervals, as described above, that R™ (and by a similar argument C™)
are first and second countable.

Let (X, T) be a topological space and let ~ be an equivalence relation on
X with quotient set X/ ~ and natural projection p: X — X/ ~. The family
{U C X/ ~: u=*U € T can easily be shown to be a topology on X/ ~ called
the quotient topology for X/ ~ (and the resultant topological space is the
quotient space of X by ~) and with this topology the map u is continuous.
Thus, for example, let X = [0,1] with [0,1] having the subspace topology
inherited from the usual topology on R and let X/ ~ consist of the all the
subsets {z} for x € (0,1) together with the subset {0,1}. Then the resulting
quotient topology on X/ ~ is that of the unit circle in R? inherited from the
usual topology on R%. Another example arises as follows. Define an equivalence
relation ~ on the non-zero members of R™ by u ~ v if and only if u = av
for 0 # a € R. The resulting quotient space of the non-zero members of R™
is denoted by P" 'R and called the real projective space of dimension n — 1.
Let X be a topological space, ~ an equivalence relation on X with natural
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projection p: X — X/ ~and f : X — Y a map from X to a topological
space Y. Then f is said to respect ~ if it is constant on each equivalence class
under ~. In this case there is a continuous map f’' : X/ ~— Y such that
f=1Ffop.

Let (X,7T) be a topological space and B a collection of subsets of X. If
the union of the members of B equals X, B is called a covering of X and if,
in addition, each member of B is an open subset of X, B is called an open
covering. If some subfamily B’ of a covering B of X is also a covering of
X it is called a subcovering of B . Another form of “topological smallness”
can now be described. A topological space (X, T) is called compact if every
open covering of X contains a finite subcovering. A subspace of (X,T) is
called compact if it is compact with its subspace topology. The topological
spaces R, R™, C and C" with their standard topologies are not compact but
P™R is compact. A subspace of a compact space is not necessarily compact
(for example, the closed interval [a,b] of R can be shown to be compact but
the open interval (a,b) is not) but any closed subspace of a compact topo-
logical space is compact. Two important results can be given here. First,
suppose (X,7) and (Y, T’) are topological spaces with (X, 7T) compact and
let f: X — Y be continuous. Then f(X) is a compact subspace of (Y, 7).
Second, if (X,7T) is compact and f : X — R is continuous (when R has its
standard topology) then the function f is bounded (that is, f(X) is a bounded
(and compact) subset of R) and attains its bounds (that is, Jy,z € X such
that f(y) = sup[f(X)] and f(z) = inf[f(X)]. If, in addition, f is a positive
function (that is, f(z) > 0,Vx € X) then f is bounded away from zero (that
is, Je € R,e > 0 such that f(z) > eVx € X). It is true that the (finite) prod-
uct of non-empty topological spaces is compact if and only if the individual
topological spaces are compact. [The continuity of the projection maps and a
remark above easily give part of the proof of this result.]

Some special types of topological spaces can now be described. A topo-
logical space (X,T) is called Hausdorff if given any two distinct members
z,y € X,3 disjoint open subsets U,V of X (that is, U NV = () with
x € U,y € V. Thus R" and C" are Hausdorfl. [In fact, all the topological
spaces encountered in this book will be Hausdorff.] Standard results state
that a subspace of a Hausdorff space is Hausdorff (in the subspace topology)
and that a compact subspace of a Hausdorff space is closed. There is also a
topological method of deciding if a topological space is all in “one piece”. A
topological space (X, T) is called connected if whenever U,V are open subsets
of X satisfying UUV = X and UNV = @ then one of U,V is empty. In other
words X is not the union of two disjoint non-empty open subsets. Otherwise
it is called disconnected. A subspace of a topological space is connected (re-
spectively, disconnected) if it is connected (respectively, disconnected) in the
subspace topology. Thus R™ and C™ are connected as is any interval (a, b) or
[a, b] of R. The subspaces Q and (0,1)U (2, 3) of R are clearly disconnected. A
subspace C C X is called a component of X if it is “maximally connected”,
that is, C' is connected and if D is connected and C' C D then C' = D . It can
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then be shown to follow that any component of a topological space (X, T) is
a closed (but not necessarily open) subset and that X can be written as a
disjoint union of its components. If (X, 7) and (Y,7’) are topological spaces
with (X,7) connected and with f : X — Y continuous then f(X) is a con-
nected subspace of (Y, 7”). Also the topological product of a finite number of
non-empty topological spaces is connected if and only if the individual topo-
logical spaces are connected. Thus R™ and C™ are connected. There is another
concept of connectedness for a topological space X. A path (or curve) in X is
a continuous map ¢ from some closed interval [a, b] of R (with subspace topol-
ogy from R) to X. The points c(a) and ¢(b) are, respectively, the initial (or
starting, or beginning) and final (or end) points of ¢ and c is sometimes said
to be from c(a) to c¢(b). A topological space is called path-connected if given
any two distinct points x,y € X there exists a path ¢ in X from x to y. As a
consequence one may introduce the idea of a path component of X. Although
it is easy to show that a path-connected topological space is necessarily con-
nected, the converse is false. There is a special class of topological spaces for
which connectedness and path-connectedness are equivalent. Suppose X is lo-
cally path-connected, that is, for each z € X and neighbourhood V' of x there
exists an open subset U in M, with x € U C V, which is path-connected in its
subspace topology (thus X admits a base of path connected subsets). Then
for such a topological space connectedness is equivalent to path-connectedness
and the decomposition of X into components described above is also a decom-
position of X into path components and each of these components is open and
closed in X. [It is remarked at this point that most of this text deals with man-
ifolds and these will be introduced in the next chapter. A manifold will be seen
to have a “natural” topology which is locally path-connected and hence, for
manifolds, connectedness and path-connectedness are equivalent conditions.]

Let p,qg € X and let ¢; and ¢y be paths from p to ¢ so that, with a,b as
above, ¢1(a) = cz(a) = p and ¢1(b) = c2(b) = ¢q. Then ¢; and ¢y are called
homotopic if there exists a continuous (homotopy) map G : [a,b] X [a,b] —
X such that G(t,a) = c1(t), G(t,b) = ca(t), G(a,t) = c1(a)(= c2(a)) and
G(b,t) = c1(b)(= ca(b)) for each t € [a,b]. The relation of being homotopic
for paths from p to ¢ can be checked to be an equivalence relation. A path
c is called closed at p if its initial and final points are equal (to p). A path
c is called a constant or a null path at © € X if ¢(t) = = for each ¢t. Finally
if every closed path in X is homotopic to a constant path (sometimes said
to be homotopic to zero) X is called simply-connected. If each p € X admits
an open neighbourhood U such that, with its induced topology, U is simply
connected and X is called locally simply connected.

Now suppose that X and X’ are Hausdorff, connected, locally simply con-
nected and locally path connected (hence path connected) topological spaces
and let 7' : X’ — X be continuous and surjective. Then X" is called a covering
space for X with covering map = if for each p € X there exists a connected
open neighbourhood U of p such that each component of 7/~'U is homeo-
morphic to U under the appropriate restriction of #’. It turns out that if X
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is a topological space with the above restrictions, it must admit a covering
space X' which is simply connected. Such a covering space X’ for X is called
a universal covering space for X and is unique in the sense that if X is
another universal covering space for X with covering map 7" there exists a
homeomorphism f : X’ — X" such that 7" o f = 7'.

Here it is convenient to make some remarks on what might be called the
“rank theorems”. Such theorems occur in many guises and a few can be de-
scribed here. First, if (X, 7)) is a topological space and f : X — R is continuous
and is such that f(z) # 0 for some x € X, then 3 an open neighbourhood
U of z in X such that f(y) # 0 for each y € U. Second let M, R denote
the set of all real n x n matrices This can be given a natural topology in
the following way. The set M,,R may be put into a natural bijective corre-
spondence with R by enumerating the entries of such a matrix A = (a;;)
aS 4115 .-+, Aln, 421, -y ---Gpp- Then one can put the standard topology on R™
and hence on M,R. Then, for example, the determinant function M,R — R
is a continuous map and thus, from the above result, the subset GL(n,R) of
all non-singular members of M,R is an open subset of M,R. More generally
let X be a topological space and f : X — M,R a continuous map. If zyp € X
and f(xo) is a matrix of rank p < n then there exists an open subset U C X
containing xo such that f(x) has rank > p for each x € U. Another exam-
ple, which is a corollary of this one, is that if X is a topological space and
f: X = R®x .. -xR"™ (m times) is a continuous map then if g € X and
f(xo) consists of m vectors in R™ spanning a p-dimensional subspace of R”
then there exists an open subset U of X containing zy such that for x € U,
the members of f(x) span a subspace of R™ of dimension > p.

1.8 Euclidean Geometry

In this final section a brief digression will be made in order to introduce
Euclidean geometry in a modern setting. Although not strictly needed it is a
useful foil for what is to come. The original “Elements” of Euclid were given
about 2,300 years ago and collected together the works of many people. Apart
from giving rise to the study of geometry, it initiated the axiomatic method in
mathematics encouraging the laying down of certain primitive (unquestioned)
“features” of the study and then imposing conditions, also unquestioned, on
them (axioms). One then proceeds strictly logically with no further input from
intuition. Euclid did not always stick to his own rules but the clarity and power
of his method laid the basis of modern mathematics. David Hilbert [8] joined
in the spirit of Euclid and set down his procedures in a precise axiomatic
form. It is worth discussing this briefly (without proofs) to appreciate its
beauty and to point out the difference between Euclidean geometry and the
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differential geometry to be described later. Although Hilbert’s original work
was concerned with 3-dimensional geometry it is sufficient for present purposes
to reduce this to 2-dimensions to simplify the situation.

Hilbert starts with three undefined (primitive) non-empty sets, P (thought
of as “points”), £ (thought of as “lines”) and an incidence relation T C P x L
with (p, L) € Z thought of as “p is incident with L” or “p is on L”. More will
be needed later. If (p, L) € Z one writes po L. If p,q,r € P and 3L € L with
polL,qoL and ro L, the set {p,q,r} is called collinear. These are controlled
by five groups of axioms: (1) axioms of incidence, (2) axioms of betweenness,
(3) axioms of congruence (length and angle), (4) the completeness axiom and
finally (5) the parallel axiom.

There are three axioms of incidence and which are fairly explicit.

I(1) For each distinct pair p,q € P,3 a unique L € £ such that po L and
go L. One can thus write L = pq.

1(2) For each L € £,3 at least two distinct p,q € P with po L and go L.

I(3) There exists a subset {p, q,r} of P which is not collinear.

It is easily checked that one can (and will) uniquely identify a member
L € £ with those members of P incident with it.

Next there are four azioms of betweenness and they are based on another
primitive set B C P x P x P. If (p,q,7) € B one writes p — ¢ — r and says “q
is between p and r”.

B(1) If p — ¢ — r then p,q,r are distinct, collinear members of P and
r—q—op.

B(2) given distinct b,d € P, Ja,c,e € P such that a —b—d, b—c—d and
b—d — e hold.

B(3) if a, b, c € P are distinct and collinear then ezactly one of these points
is between the other two.

For the final axiom of betweenness some further definitions are needed.
The segment [a,b] ={p € P:p=aorp=2>ora—p—b}. The points a,b
are called its endpoints. The ray ab = [a,b] U {p : a — b — p} and this ray is
said_t)o emanate from a. If a — b — ¢ the ray bc is said to be opposite to the
ray ba. It then follows from the betweenness axioms that ba is opposite to bc,
that [a,b] C ab, that ab # ba, that ba # be, that b ba = [ab] and that

%U ;L = ab. Now let L € £ and let a,b € P such that neither a nor b is on L.
Then a, b are said to be on the same side of L if either a = b or [ab] N L = 0.
Otherwise a,b are said to be on opposite sides of L. The final betweenness
axiom comes in two parts and is given by

B(4) (The plane separation axiom.) For any line L and points a,b, ¢ not
on L:

(a) if a,b are on the same side of L and b, ¢ are on the same side of L then
a, c are on the same side of L,

(b) if a,b are on opposite sides of L and b, ¢ are on opposite sides of L then
a,c are on the same side of L.
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One can now define a triangle as follows: Let a, b, ¢ € P be non-collinear. Then
the triangle Agpe = [ab]U[bc]U[cal]. One can then prove Pasch’s theorem which
is: If Agpe s any triangle and L any line distinct from ab but intersecting [ab]
in a point d between a and b then L also intersects [ac] or [be]. If ¢ ¢ L then
L does not intersect both [ac] and [bc].

In fact, given the axioms I(1)...1(3), B(1)...B(3), axiom B(4) is equivalent
to the statement of Pasch’s theorem and the latter is sometimes given as an
alternative axiom to B(4). The betweenness axioms force plane separation
onto the model and remove “circular” lines from it.

Next there are three axioms of length congruence:

C(1) The collection of all segments admits an equivalence relation, denoted
by ~ and if a,b,¢,d € P and [ab] ~ [cd] one says that [ab] and [cd] are
congruent.

C(2) If a,b are distinct members of P and if a’ € P then on any ray ema-
nating from o', 3 a unique b’ € P such that [ab] ~ [a'D].

C(3) If a,b,e,ad', b/, € P witha—b—cand o/ —b — ¢ and if [ab] ~ [a'D]
and [bc] ~ [b/''] then [ac] ~ [dc].

One can now introduce a concept of length into the geometry. Let a,b, c,d € P
and write [ab] < [cd] if Je € P such that ¢ — e —d and [ab] ~ [ce]. Then it can
be shown that if a,b,c,d, ¢, f € P,

(i) exactly one of the following holds; [ab] < [ed], [ab] ~ [cd] or [ed] < [ab],

[ab
(#91) [ab] < [cd] and [ab] ~ [ef] imply [ef] < [cd],
(iv) [ab

Thus one can introduce the idea of a free segment as an equivalence class
of segments as given above. If A and B are free segments, one writes A < B
if 3[ab] € A and [cd] € B such that [ab] < [cd] (which makes sense by (i) and
(7i1) above). Also if A, B,C are free segments one can define an addition on
them by writing A+ B = C' if 3[cd] € C and e € P with c—e—d and [ce] € A
and [ed] € B. A multiplication on free segments can be defined, inductively,
by 1A= A and nA = (n—1)A+ A (n € N). From this one can show that if
[ab] is a segment 3 a unique ¢ € P such that a — ¢ — b and [ac] = [cb]. Then
¢ is the midpoint of [ab] and so for any free segment A, 3 a free segment B
such that A = B + B and so one may write B = 3A. Thus given a segment
one may “multiply” it by numbers of the form %, with m,n in the set of
positive integers N. Thus a concept of length requires only the choice of a
“unit segment”. The numbers of the form i with m,n € N are called dyadic
numbers and satisfy the condition that they constitute a subset of Q and are
denumerable.

(it | < [cd] and [ed] ~ [ef] imply [ab] < [ef],

)
)
)
)

| < [ed] and [ed] < [ef] imply [ab] < [ef].
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One can now introduce (briefly) angles and congruence axioms for angles.
Let a,b,c € P be distinct and giving non-opposite rays ab and de emanating
from a. An angle is such a point a together with the rays ab and d¢ and it is
denoted by bac or cab (showing that one intends the order in which the rays
are given to be irrelevant).

There are three congruence axioms for angles.

C(4) The collectlon of all angles admlts an equivalence relation, also denoted
by ~. If abe ~ Zyz say that abe and 75z TYyZz are congruent.

C(5) Given any angle a/b\c, any b € P and any ray b/a’ emanating from ¥/,
3 a unique ray b'c’ emanating from b’ on a given side of the line a't’
(that is the points b’¢’ \ {b'} are on that side of the line a’d’) such that

abe ~ a’b' ¢!

C(6) Let Aabc and ANgrprer be any two triangles with [ab] ~ [ '], lac] ~ [d'c]
and bac ~ Va’'d’. Then [bc] ~ [V ], abe ~ a'b'd and ach ~ a'c'Vl.

One can then define a concept of addition for angles, the idea of a free angle
as an equivalence class under the relation ~ and a measure of free angles.

The next axiom concerns a type of “completeness” of the lines in £, that
is, the requirement that such lines have “no points missing”. For L € £ and
distinct 0, a € £ consider the ray o4 and let p,q € od4. Say p < q if [op] < [oq]
and define o < r, Vr € 04 \ {0}. The Completeness Aziom states that for any
ray o¢ on any line oc, if o¢ = AUB with A 40, B# 0, AN B = () and for
cach p € A and ¢ € B, p < ¢, there exists 2 € o such that if « € A, and
b€ B and a # x # b then a < x < b. The point z is necessarily unique. It can
now be shown that each L € L is essentially a copy of the real line.

The axioms laid down so far are I(1),...I(3), B(1),...B(4), C(1),...C(6)
and the completeness axiom. They define what is sometimes called Neutral or
Absolute (Plane) Geometry. It can be shown from these axioms that if p € P
and if L € £ with p not on L, there exists a line L' € £ such that p is on L’
and LN L' = (), that is, L and L’ are parallel. The final axiom is the so-called
parallel aziom. It states that if p € P and if L € £ with p not on L, there
exists a unique line I/ € £ such that pis on I’ and L and L' are parallel.

With these axioms it may be shown that one may define distance (up to a
unit of length) between two members of P and also a measure of angle (again
up to units) and, in particular, the concept of a right angle. Then one may set
up Cartesian-type coordinates on P to put it into a bijective correspondence
with the set R2, the set £ becoming the usual collection of straight lines in R2.
Thus this model is just the “usual” Euclidean plane, and is the only model
which satisfies these axioms, that is, this axiom system is categorical. [If one
does not choose the parallel axiom as above it, in fact, follows that there are
infinitely many choices for the line L’ through p parallel to L and this gives
rise to another single model which is the (non-Euclidean, plane) geometry of
Lobachevsky and Bolyai.]
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A salient point here is that Euclidean geometry is “homogeneous” in that
it is “the same” everywhere. [One can, with a little effort, express this in terms
of global bijective “symmetry” maps on P, a flavour of which is given in chap-
ter 6]. It also allows “movement without change” within P in that one may
move regions of P about without change of “shape” or “size” (rigid motions)
and, using the concept of parallel lines, make statements like “this direction at
p is the same as that direction at ¢” for any p,q € P (parallel displacement).
Further the whole of P can also be described in the single coordinate system
R?. In the study of more general geometries none of these luxuries is neces-
sarily present. In these latter structures the geometry is allowed to “change”
from region to region (given, that is, that “change” makes sense) and may not
be coordinatisable, globally, as Euclid’s is. Measurement of length will turn
out to require a geometrical structure called a metric to be postulated at the
outset and preservation of “direction” requires a structure called a connec-
tion. The “natural” idea of “moving” a segment of a line in Euclid’s geometry
“without changing its direction or its length” suggests imposing the structure
of a compatible metric and connection pair. The concepts of metric, connec-
tion and compatible metric-connection pair will be very important in what
is to follow and have a natural setting in a mathematical structure called a
manifold. Such objects are covered in the next two chapters.



Chapter 2

Manifold Theory

2.1 DManifolds

A manifold M is a mathematical construction which endows a set M # ()
with local coordinates, that is, each point of M is contained in a subset of M
which “looks like” R™ for some n € N, that is, the subset looks like a local
coordinate system. There is no requirement that the whole of M should look
like R™, that is, this feature is local. In addition, should two of these coordinate
systems overlap and hence lead to a coordinate change on their intersection,
some degree of differentiability is imposed on this coordinate change. Some
authors prefer to start by declaring M to be a certain type of topological
space and then proceed to impose the local coordinate structure. This has
the advantage that (topological) continuity is available from the outset but
the disadvantage that more topological conditions may be assumed than is
necessary. In this book M will be initially assumed to be nothing more than a
bare set upon which only the important features of the local coordinates are
imposed together with the differentiability (in R™) requirements mentioned
above. A natural topology will then be shown to arise from this. Thus some
knowledge of calculus on R™ will be assumed with, of course, the standard
topology on R"™ being given. As mentioned earlier only a brief resume of the
subject is given but, it is hoped, with all the salient points included and
definitions given since manifold theory is discussed in many books of which
[9, 10, 11] are recommended and [12, 13, 14, 15] give useful summaries.

Starting from the non-empty set M a bijective map = from some subset
U C M onto an open subset of R” is called an (n-dimensional) chart of
M (and thus M is an infinite set). The projection maps p; : R® — R then
allow the ith coordinate functions x* = p; ox : U — R to be defined. The
set U is then called the chart or coordinate domain of x and if p € U the
n—tuple (x'(p),...,a2™(p)) is referred to as the coordinates of p in the chart
U. The set U is also referred to as a coordinate neighbourhood of any of its
points. A chart is called global if its domain is M. A collection A of charts of
M whose domains form a covering of M is called a (smooth) atlas for M if
for any two charts = and y in A with respective domains U and V such that
UNV # 0, z(UNV) and y(UNV) are open subsets of R” and the bijective map
yoxr t:x(UNV) — y(UNV) and its inverse z oy~! are smooth (C°°) maps
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(coordinate transformations) between open subsets of R™. Thus a smooth atlas
gives a local coordinatisation on the whole of M together with the associated
smooth coordinate transformations. Extra charts (and their domains) could
be added, of course, but only subject to the above restrictions so that the
original and added charts together still constitute a smooth atlas for M and
two smooth atlasses are called equivalent if their union (in an obvious sense)
is also a smooth atlas for M. One could thus define a complete (smooth) atlas
for M as one which is not properly contained in any other smooth atlas and
this latter atlas is then unique. Any smooth atlas is then said to determine a
smooth, n-dimensional structure on M and with this structure M is called an
n-dimensional smooth manifold and one writes dimM = n.
Some useful examples of manifolds are now given.

(7) Consider the set R™. Here the identity map immediately gives a global
chart (the identity chart) for the standard n-dimensional smooth mani-
fold structure on R™.

(#4) Let V be an n-dimensional real vector space and let {e;} (1 < i < n)bea
basis for V. Any v € V may be written uniquely as a linear combination
of the members of {e;} with components v;. The map x : v — (v1,...,v,,)
is a global chart for V' and hence V becomes an n-dimensional smooth
manifold. If a different basis is used, the work in chapter 1 shows that
the coordinate transformations resulting from any two bases are smooth
and hence different bases give rise to equivalent atlases.

(iii) The set M,R can be given an n?-dimensional manifold structure by
constructing an n2-dimensional global chart x whose action maps
A = (a;;) € M,R to the n’tuple (ai1,...,a1n,a21, ) Q2ny ooy A )-
Similarly the subsets S(n,R) (symmetric real matrices) and Sk(n,R)
(skew-symmetric real matrices) of M,R can, by using the global
charts « : (ai;) = (@11, ..., G1n, @22, .o, G2y ooy Q) a0Dd Y © (a35) —
(alg, ceey A1y 23, «oey A2myy - vny
A(n—1)n), be given the structure of £n(n+1)- and $n(n—1)-dimensional
smooth manifolds, respectively.

(iv) If My and My are smooth manifolds of dimensions n; and ng, respec-
tively, the set M7 x My can be given the structure of a smooth (nq +mns)-
dimensional manifold by constructing an atlas of charts on M; x M5 con-
sisting of maps of the form z; X x5 where x; and x5 are charts belonging
to atlases for M; and Ms with domains U; and Uy, respectively, where
x1 X xy 2 Uy x Uy — RMF72) g the map (p,q) — (21(p), z2(q)). The
smoothness of the resulting coordinate transformations is easily checked
and the resulting manifold M; x M is called the manifold product of M
and Ms. This construction easily extends to finitely many manifolds.

(v) The subset S™ of R"*! (n > 1) may also be shown to be an n-
dimensional smooth manifold. This manifold does not possess a global
chart for topological reasons.
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Let M and M’ be smooth manifolds with dimM = n and dimM’ = n’/ and let
f: M — M’ be a map. One first needs to make sense of the differentiability or
otherwise of f. Suppose p € M and choose charts z in M and z’ in M’ whose
domains contain p and f(p), respectively. Then the function F = 2’0o fox™!,
called the coordinate representative of f with respect to the charts z and x’,
has domain an open subset of R™ and range in R™ . Thus one has succeeded
in representing f by a function F' on some open subset of R™ by use of the
chart maps on M and M’. It may be thought that a degree of differentiability
for f may be defined by assuming it to be that of F' (since such a notion
is well-defined for F' on open subsets of R™) but it must be checked that
this is independent of the charts x and 2’ chosen. This is easily verified by
noting that, if different charts y and y’ are chosen containing p and f(p),
respectively, the coordinate representative for f is now F' =y’ o foy~!. But
then F’ restricts to the map (y'oz’~1)oFo(xoy~!) on the obvious intersection
of domains and which is an open subset of R". Consider the assumption that
F is smooth. Then so is F’ and one may unambiguously define f to be smooth
if, say, F' is, since the coordinate transformations are smooth . The coordinate
functions 2 are then, from this approach, easily seen to be smooth functions
from their coordinate domains to R. It is noted that if a function f is not
defined on the whole of M it is assumed that it is defined at least on some
chart domain of M and so the representative I is defined on some open subset
of R™ from which one may make sense of the smoothness of F' and hence that
of f on its domain. If f : M — M’ is smooth and M" is another smooth
manifold with g : M’ — M" smooth then the map go f : M — M" is smooth.
If M and M’ are smooth manifolds of dimension n and n’, respectively, and
f: M — M’ is a bijective map such that f and f~! are smooth then f and
F~1 are called diffeomorphisms and M and M’ are said to be diffeomorphic.
Here, since the coordinate representatives of f and f~! give rise to smooth,
bijective maps between open subsets of R and R"/, these representatives are
continuous maps (since continuity makes sense for maps between these open
sets). Thus these open subsets of R™ and R’ are homeomorphic and this can
be shown to imply n = n’. So if M and M’ are diffeomorphic, dimM=dimM’.
[Here it is remarked, first, that one requires the smoothness of both f and f~!
and second that the concept of continuity for maps between manifolds has not
yet been defined since no topology for a manifold has yet been specified.]

2.2 The Manifold Topology

Let M be a smooth manifold with dimM = n and let B be the set of
all chart domains of a complete atlas for M. Then if x is a chart of M with
domain U and if V' C U is such that z(V) is open in R™ then the restriction
of x to V is also a chart of M with domain V. Also if x and y are charts of M



30 Four-dimensional Manifolds and Projective Structure

with domains U and V, respectively, and with UNV # @, then 2(UNV) is an
open subset of R™ and so the intersection of two chart domains of M is a chart
domain of M. It now follows that B is a base for a topology on M and this
topology is called the manifold topology for M. Thus any chart x of M with
domain U is then a homeomorphism from U to an open subset of R™ where
each has subspace topology in an obvious way and then for manifolds M and
M’ a smooth map f: M — M’ is now necessarily continuous with respect to
the manifold topologies. The same applies if f is defined only on some open
subset of M. In example (iv) above the manifold topology on M; x My is now
easily seen to coincide with the product topology from the manifold topologies
on M; and M5 and the projection maps are seen to be smooth and continuous.
It may be expected that, since a manifold is “locally like” R"™, some topo-
logical properties of a manifold arise directly from the topological properties
of R™ (but some do not). Thus it can be shown that (i) a manifold is first
countable but is second countable if and only if it admits a countable atlas,
(7i) a manifold is not necessarily Hausdorff, (ii7) a manifold is locally path-
connected and is hence connected if and only if it is path-connected (and note
that a path here is a continuous map in the manifold topology [see chapter
1]) and (év) every component of a manifold M is open and closed in M. The
first of these points reveals that the discussions of limit points, convergence
and continuity can be achieved using sequences and does not require the use
of nets or filters (see, for example, [3]). The third point requires a little ex-
planation before proceeding. Path-connectedness has been defined in terms
of continuous paths between points. However, it is true that, for a manifold,
this definition is equivalent to a similar definition in terms of smooth paths.
More precisely, for p,q € M, a (continuous) path between p and ¢ has been
defined as a continuous map ¢ : [a,b] — M with a,b € R and a < b, ¢(a) =p
and ¢(b) = ¢. A smooth path from p to ¢ is a smooth map ¢ : I — M where
I is an open interval of R and where Ja,b € I with a < b, ¢(a) = p and
c(b) = q. A piecewise-smooth path in M from p to ¢ is then a map ¢’ on [a, b]
into M with a,b € R and a < b and with ¢/(a) = p and ¢/(b) = ¢ such that
one may divide [a, b] into finitely many closed (sub)intervals [a, 1], [s1, $2]...
[$m—1,b] with a < 81 < ... < $;—1 < b on each one of which ¢’ agrees with a
smooth map from an open interval in R containing that subinterval. It is then
easily shown that a piecewise-smooth path is continuous and for p,q € M
the relation p ~ ¢ < there exists a piecewise-smooth path from p to ¢ is
an equivalence relation on M whose equivalence classes are open and closed
in M and hence, if M is connected in the manifold topology, there is only
one equivalence class, equal to M. Thus if one can find a continuous path
between any two points of M (that is, if M is path-connected) then M is
connected (chapter 1) and one can also find a piecewise-smooth path between
them. The converse to this also follows and so one may state the concept of
path connectedness in terms of either continuous paths or piecewise-smooth
paths. But since M is a manifold, its system of charts shows that it is lo-
cally path-connected and hence connectedness and path-connectedness are
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equivalent statements for M (see chapter 1). Finally it can be shown that
if one can find a piecewise-smooth path between p and ¢ one can also find a
smooth path from p to ¢ (and clearly conversely). Thus, for a manifold, (topo-
logical) path-connectedness can be equivalently defined in terms of smooth
paths. This means that a “natural manifold” approach to connectedness us-
ing smooth paths is sufficient. This is especially useful in the applications of
manifold theory to general relativity theory where an observer’s link to the
rest of the universe and hence to physical observations is (usually) interpreted
in terms of information transmitted along certain types of paths.

In this book, all manifolds will henceforth be assumed smooth, connected,
Hausdorff and second countable. The assumption of connectedness will be
seen to be convenient and natural whilst the Hausdorff and second countable
restrictions are made for technical reasons.

2.3 Vectors, Tensors and Their Associated Bundles

Let M be an n-dimensional manifold. At each p € M there is a certain
finite-dimensional vector space of fundamental importance. This will now be
defined, and from it the concepts of vectors and tensors at p will follow.
However, for a real-valued smooth map g whose domain is some open subset
of M (and using the identity chart for R) one must first define a derivative
of g. Now let x be a chart of M whose domain U includes p and is contained
in the domain of g and let G be the representative for g in this chart so that,
using the identity chart in R, g = G ox. Then G is a smooth map from some
open subset of R” to R. So one can define the functions g , (sometimes written

6819«1 and called the partial derivatives of g in this chart) by
0G
9o =gz ot (I<a<n). (2.1)

Now let F'(p) denote the family of all smooth real-valued functions whose
(open) domains each include p. A derivation on M is a map L : F(p) = R
satisfying the two conditions

L(af +bg) = aL(f) +bL(9),  L(fg) = fL(g) + gL(f),  (2.2)

where a,b € R, f,g € F(p) and with the sum and product of members of F(p)
defined on the obvious (non-empty and open) domain intersections. Now in
the above chart the n maps (B‘Za )(p) : F(p) — R given by g — g,(p) are then
derivations on F'(p). The family of all derivations on F(p) can be shown to be
an n-dimensional real vector space for which the (8%)(17) form a basis and this
vector space (attached to p € M) is called the tangent space to M at p, denoted
by T, M. Its members are called tangent vectors (or just vectors) at p and could
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be thought of as “vector arrows” at p. For 0 # v € T, M the 1-dimensional
subspace of T, M spanned by v is called the direction determined (or spanned)
by v. Thus if v € T,M one may write in this chart v = >.""_ v* aiu (p),
(v* € R) and v(g) is interpreted as the “directional derivative of g in the
direction v”. The v* are the components of v at p in the chart x and are
uniquely determined by v, p and x. Thus regarding v as a derivation at p and
since the coordinate functions are in F(p), v(xz®) = v®. If y is another chart

of M at p with domain V containing p one has v = >"_ v/* 8;’ (p) where

the v’ € R are the components of v in the chart y. From this one may easily
calculate the relationship between the v® and the v/ as

n

V=) = Y ) = S (Gt (2.3
b=1

b=

—

which gives the transformation law for the components of v in the charts x
(v*) and y (v'*).

The collection of all tangent vectors at all points of M is denoted by

TM, called the tangent bundle of M and is defined by TM = |J T, M. This

peM

leads to the useful map = : TM — M defined by n(v) = pif v € T,M
and which attaches tangent vectors in TM to the point of M from whence
they came and so 7~ '{p} = T,M. The set TM can be given a manifold
structure by noting that TM is the union of sets of the form 7~'U where
U is some chart domain of M with chart x. The write each v € 771U as
v =3"_ v%(3%), where m(v) = p to get an injective map 71U — R?"
given by v — (21(p),...,2"(p),v!,...,v™) whose range is the open subset of
x(U) x R™ of R?", This gives a chart for TM for each chart of M and the
collection of all such charts is easily shown to be an atlas for TM giving
the latter a smooth manifold structure of dimension 2n and for which = is a
smooth map T'M — M. The collection of the zero vectors in T,,M for each
p € M is a subset of TM called the zero section of T M.

For manifolds M and M’ and with p € M and p’ € M’ consider the
product manifold M x M’ and the point (p,p’) € M x M’. The tangent space
to M x M’ at (p,p’) can, as intuitively expected, be shown to be isomorphic,
as a vector space, to the vector space sum of T, M and T,y M’ [9].

Now consider the dual space T\,M of T,M and let x be a chart of M
whose domain contains p so that {88 ( )} is a basis for T,M. Let {dz®},

denote the correspondlng dual basis in T M so that (dz®), (—) = 0y. Then

each w € TPM may be written as w = Y.'_ w,(dz®), where the w, € R
are the components of w in the basis (dz®)(p) of the chart z. The real n-

dimensional vector space T, M is called the cotangent space to M at p. Its
members are called cotangent vectors (or just covectors or 1 forms) at p. One

can similarly construct the cotangent bundle T M= U T M which may
peM
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be given the structure of a 2n-dimensional smooth manifold with obvious
smooth projection TM — M also denoted by 7. Just as for tangent vectors,
*

if z and y are charts whose domains contain p and w € T, M, then one has,
at p, w =3 1" we(da®), = >0 wh(dy®),. Now from the previous part one

has (%) = Ag(a%b)p (A’ € R) and applying to the functions 3 one sees
that (52 ), = (2%:)1,( (%b)p. Then one derives the transformation law for the

components of w with respect to the charts x and y as

w, = ax“ Z opa b (2.4)
=1

Members of T, M are sometimes called contravariant vectors and members

* *
of T, M covariant vectors. Although T, M and T, M are each isomorphic to
R™ as vector spaces, there is no natural isomorphism between them unless
some other structure on M can provide it. This will appear later in the form
of a metric.

The above notions may be generalised by con81der1ng the vector space of all

multilinear maps on V TyM+---+T, M+T M+ +T M with s copies of

T,M and r copies of TpM for non-negative integers r, s. This real vector space
of dimension n"** is called the vector space of tensors of type (r, s) at p, and is
denoted by T M, where the slight deviation from the above terminology is for
notational ease. Such tensors are said to be of order r+s. One then proceeds

*
as above. The tensor space of type (0,1) corresponds to T',M whereas type

(1,0) corresponds to the dual of T, M which is, in a natural way, T,M under
the isomorphism which associates with (%)p a member e, in the dual of

*
T,M satistying, at p, ea(dz’), = (dz®),(3%), = 0% (see section 1.4). One
normally also uses the symbol (52;), for e, giving (5% )p(dz), = &¢, at p.
One can, just as before, form the bundle of tensors of type (r, s) on M, denoted
by T"M and this can be given the structure of an (n"™* 4+ n)— dimensional
smooth manifold by following procedures similar to those for the tangent and
cotangent bundles and then the projection map onto M (denoted also by )
is smooth. If ¢ € T{ M,, it may be written in the above basis as

~ - ) d
t= Z Uy b, (dxbl)p ®---Q (dxbs)p ® (axal )p®: - ® (%)p (2.5)
al,‘.wbS:l

where the t‘“ S’” are the components of ¢ in the above chart x and are given
by
ooy 0 o

bro by = t((%)pv' iy (%)pv (dz)p, - -+, (dx7)p). (2.6)
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For any other chart y, the coordinates of ¢ are t:ff; dCT and are given by

_— —~ 9y dyr . dxh 9z o
till...d: = Z ( )p T ( )p(aydl )p T (@)ptblmb:- (2-7)

Oz Oxor
ai,...,bs=1

Addition of tensors of the same type is carried out within their vector space
structure by adding their associated components given in the same coordinate
system. Scalar multiplication of a tensor by a real number is similarly done.
Sometimes an index in the upper position is referred to as a contravariant
index and one in the lower position as a covariant index.

A tensor T at p € M of type (0,2) (of order 2) is called symmetric
(respectively, skew-symmetric) if for each u,v € T,M, T(u,v) = T(v,u)
(respectively, T(u,v) = —T(v,u)). Thus, in any chart domain, Ty, = Tp,
(respectively, Top = —Tpa). Similar comments apply to tensors of type (2,0).

2.4 Vector and Tensor Fields

A wvector field on M is the attachment to each point of M of a member
of T,M, that is, it is a map X : M — TM such that X(p) € T, M for each
p € M. Such a map is called a section of T M. One usually requires such
vector fields to be smooth and so a smooth vector field on M is a vector field
such that the map X : M — TM, which is a map between manifolds, is
a smooth section of T'M. It is easily checked that this is equivalent to the
statement that for each p € M and chart « with chart domain U containing
p the components of X in this chart are smooth functions U — R. Another
equivalent statement is that if V' C M is an open subset and f : V — R is
smooth, the function X f : V — R given for p € V by X f(p) = X(p)(f) is
smooth. A vector field defined on the whole of M is called global. However
a vector field may only be defined on some open subset of M and the above
definitions of smoothness are easily modified in this case. It follows that the
coordinate vector fields 82‘1 defined on the chart domain U by aia (p) = (%)p
(p € U) are smooth vector fields (on U). Recalling the above remarks about
addition and scalar multiplication in T, M one can add global, smooth vector
fields together and scalar multiply them by real numbers so that the set of all
global, smooth vector fields becomes a vector space over R. The vector space
of such vector fields is denoted by F. One can similarly draw these conclusions
about smooth vector fields on a given open subset U C M. It is remarked that
independent members of F, when evaluated at p € M, do not necessarily give
independent members of T,M (for example the vector fields on the manifold
R? with components X = (z,1) and Y = (1,y) in the usual global chart with
coordinates x,y on R? are independent in F but give dependent vectors in
T(171)R2.
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The concept of a smooth covector field (or smooth 1-form field) on M
or on some open subset U C M, that is, a smooth section of the cotangent

bundle T'M restricted to U, can be defined in a similar way to that for vector
fields. Thus a 1-form (covector) field w on U is smooth if and only if for
any open subset V' C U and any smooth vector field X defined on V the
map w(X) : V. — R given by p — w(p)(X(p)) (p € V) is smooth. Then
this process is easily extended to smooth tensor fields (smooth sections of the
tensor bundles T7 M) either on M or restricted to some open subset of M with
the idea of smooth components in each chart of M being the most useful one
for this book. Tensor fields defined on the whole of M are called global. One
remark may be useful here. Let f : M — R be smooth and construct a smooth
covector field df on M (not to be confused with another use of the symbol “d”
above) by its action on any smooth vector field on M (or some open subset of
M) and defined by df (X) = X (f). Then on some chart  with domain U one
has df = wgdz® on U and then an apphcatlon of this to the smooth vector
fields % on U reveals that w, = a a and so, on U, df = ( = )dx?®. Thus one
sees the origin of the (traditional) use of the symbol “d” earher.

If t and ¢’ are two smooth tensor fields of type (r, s) and (p, q), respectively,
on M or on some open subset U C M one may define their tensor product
t ®t' as that (smooth) tensor field of type (r + p,s + ¢) on M (or U) such
that its (smooth) components in any chart x are given by

ai...a, ryl0r ar
tet), :‘” =ty tbéﬁl bﬁ:p. (2.8)
If t is a smooth type, (r, s) (rs # 0) tensor on M (or some open subset U C M)
the contraction of t over the indices a, and b, is the type (r — 1, s — 1) tensor
t with components

E‘Zl “Ap—1Qp41-- Zt ap tkapia... b . (29)

1-bg—1bgt1.. bg—1kbgt1..

One can similarly contract one tensor field ¢ with another ¢’ over a pair of
specified indices by forming the tensor product t ®t’ and contacting according
o (2.9) over those indices. A smooth, real-valued function on M is, in this
sense, sometimes regarded as a smooth tensor on M of type (0,0).

Given smooth vector fields X and Y on M (or some open subset U C M)
one may construct another smooth vector field [X,Y] called the Lie bracket
of X and Y and defined by its action on a smooth function f defined on some
appropriate open subset of M by

(X, Y](f) = X(Y(f)) = Y(X(£)- (2.10)

If X and Y have components X% and Y* in some chart = of M then the

components of [X,Y] are Y p_ (Y, X" — X2,Y?), where a comma denotes

the usual partial derivative, Y, = %Y,,, in the chart coordinates. It is

easily checked that for smooth, global vector fields X,Y,Z on M (or on
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some open subset of M), [X,Y] = —[Y,X] and that the Jacobi identity
(X, Y, Z]| + [Y,[Z,X]] + [Z,[X,Y]] = 0 holds and so the set of all smooth,
global vector fields on M (or on some open subset of M) is a Lie algebra under
the binary operation of the Lie bracket.

At this point it is convenient to introduce the Einstein summation con-
vention which says that a twice repeated index, one contravariant and one
covariant, is automatically summed over its range without the necessity of us-
ing the summation symbol. It will always be stated clearly if this convention
is to be temporarily suspended.

2.5 Derived Maps and Pullbacks

Let M and M’ be manifolds, ¢ : M — M’ be a smooth map and let p € M
and p’ = ¢(p). For v € T,M define ¢,,v € Ty M’ by ¢.,v(f) = v(f o ¢) for
any smooth real-valued function f defined on some open neighbourhood V
of p’ (and so the domain of f o ¢ includes the open neighbourhood ¢~V of
p). The map ¢, is thus a linear map T,M — T, M’ between vector spaces.
Choosing charts = about p and y about p’, and noting that ¢., is completely
determined by its action on a basis of T, M, one finds for this action (and
recalling the Einstein summation convention)
0 A(y? o 0
G = (L2, (0,

.. (2.11)

The matrix (%)p is the Jacobian of the coordinate representative
yopox ! of ¢ at p and its rank, which is clearly independent of the charts x and
Yy, is called the rank of ¢ at p. The map ¢.,, is called the derived linear function
of ¢ or the differential of ¢, at p. Thus as ¢ “moves” p — p/, ¢, “moves”
T,M — T,y M'.If M" is another smooth manifold and ¢ : M’ — M" a smooth
map, then o ¢ : M — M" is smooth and one finds () © @)up = Yupr © Gup.
The map ¢ also leads to the natural smooth map ¢, : TM — TM' between
tangent bundles, called the differential of ¢ and given by v = ¢.v = ¢,V
for v € T,M and then (¢ 0 ¢). = ¥, o ¢,. Also if ¢t is a type (0, s) tensor at
p" = ¢(p) one may define a type (0, s) tensor ¢yt at p, called the pullback of ¢
under ¢ by

Opt(V1, s V) = Hap(V1), --Pup(Vs)) (2.12)
for vi,...,vs € T, M. Recalling the earlier definition of a tensor this construc-
tion allows one to generalise the above differential ¢., of ¢ by defining, for

*
any w € Ty M" and v € T,M, ¢.,v(w) = v(¢yw). This is equivalent to the
original definition but has the advantage that it may be generalised in order
to move type (r,0) tensors at p to type (r,0) tensors at p’. Thus if ¢ is a type
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(r,0) tensor at p one defines the pushforward ¢.,t of t (under ¢) at p’ by
¢*pt(wla [aS) W'r’) = t(¢;W13 EES) ¢;WT) (213)

for wy, ..., w, € T,y M'. It should be noted here that the above differential and
pushforward maps each map type (r,0) tensors at p € M to type (r,0) tensors
at p’ € M’'. They cannot, in general, map vector or type (r,0) tensor fields on
M to vector or type (r,0) fields on M’. For example, if X is a vector field on
M one cannot necessarily map it to a vector field on M’ by operating with
¢« on each X (p) € T, M since there may exist p,q € M with ¢(p) = ¢(q) but
D4p(X(p)) # ¢+q(X(q)). Similar problems arise for general “pushforwards”.
However, the pullback can be used to map (that is, to “pullback”) tensor
fields of type (0,s) on M’ to similar tensor fields on M. This is clear from the
definitions above (naively, since although a function between manifolds may
not be injective, it is always, by definition, “single valued”). If, on the other
hand, ¢ : M — M’ is a smooth diffeomorphism one can achieve more since
one may utilise the smooth diffeomorphism ¢~! : M’ — M in addition to ¢.
Let ¢ be any smooth tensor field on M’ of type (r,s). Then one can define a
smooth type (r,s) tensor field ¢*t on M, called the pullback of t under ¢, by

(b*t(p)(vla ey Vg, W1,y WT) = t(p/)((bp*vla ceey ¢p*vs7 ¢;’1*W15 ceey ¢;’1*W’F)

for vq,...,vs € T,M and wy,...,w, € T)M and p’ = ¢(p). Also if X is a
global, smooth vector field on M one may define a global, smooth vector field
on M’ by attaching the vector ¢,,(X(p)) to ¢(p) € M'.

2.6 Integral Curves of Vector Fields

Let M be an n-dimensional manifold. As given earlier a (smooth) path or
curve in M is a smooth map c¢: I — M where [ is an open interval in R. Let
t be the identity chart on I (from R) and suppose p € M and « a chart for
M whose domain contains p and which intersects the range of ¢ non-trivially.
Let ¢® = x% o ¢ be the coordinate representative of ¢ in x whose domain is
some open subset of I and let % be the vector field corresponding to the
chart ¢ on R. Define the map ¢ = ¢, 0 % so that ¢: I — T'M is a path in TM
which associates with each tg € I a vector at ¢(tp) in M, that is, a member of
T,y M. The function ¢ is usually called the parameter of ¢ (and {c(t) : t € I'}
the set of points of M “on the path ¢”) and this latter vector at ¢(tg) is the
classical tangent vector (or is said to be tangent) to the path c at c(tg) (or at
to) since

élto) = (evo ) i) = ea() = (A2 (D (219)
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Now suppose that X is a vector field on M. A path ¢ in M is called an
integral curve of X if its tangent vector at any point of the path equals the
value of X there, that is, if for each ¢y in the domain of ¢, ¢(tg) = X(c(to))
or, equivalently, ¢ = X oc. If the domain of ¢ contains 0 € R, c¢ is said to start
from p = ¢(0). Thus, if within a chart domain of M, X = X*-2_ for smooth

oz
component functions X of X, ¢ is an integral curve of X if
d a d a a n
Sl 0)] = S elt)] = XA et), " e(0)). (215)

If f:J — I is a bijective map with J, another open interval of R, with f
and f~! smooth and f having nowhere zero derivative, then ¢/ = co f is
also a path (with the same range in M as ¢ but different parameter) called
a reparametrisation of c. The tangent vectors to ¢ and ¢’ at the same point
p = c(to) = (t}) differ only by a non-zero scaling, as is easily checked. One
may relate the pushforward of a vector field and an integral curve as follows. If
M and M’ are smooth manifolds, f : M — M’ a smooth map and c: I — M
a smooth path in M then foc: I — M’ is a smooth path in M’ and if
v € T, M is tangent to c at p € M, fi,v is tangent to foc at f(p) € M’. This
follows since (f o ¢)(tg) = f*c(to)(c*(%)to).

Let X be a smooth vector field on M and let ¢; and ¢ be integral curves
of X with domains I; and Is, respectively, each of which includes the member
0 and which both start from the same point p € M. Since M is assumed to be
Hausdorff, ¢; and ¢z can be shown to coincide on I N 15 [9]. Thus the union of
the domains of all the integral curves of X starting from p is an open interval
of R containing 0 and on which is defined an integral curve of X called the
maximal integral curve of X starting from p. If the domain of this maximal
integral curve through any p € M is R, X is called complete.

There is a very important result regarding integral curves of a smooth
vector field. Let X be a smooth vector field on M. Then given any p’ € M there
exists an open neighbourhood U of p’ and an open interval I of R containing
0 such that there is an integral curve of X with domain I starting from any
p € U. Any other integral curve of X starting from p coincides with this curve
on some neighbourhood of 0.

2.7 Submanifolds and Quotient Manifolds

Let M and M be manifolds and let f : M — M be a smooth map. Then
f is called an immersion if at each p € M f has rank equal to the dimension
of M. Thus f,, is injective at each p € M and so dimM <dimM. Now let
M be an n-dimensional smooth manifold, let M’ C M and let ¢ : M’ — M
be the natural inclusion map. Then M’ is a submanifold of M if M’ can
be given a smooth manifold structure such that the map ¢ is an immersion.
Intuitively, one insists on a smooth manifold structure on M’ such that it
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is “contained in” M (through 7) in a smooth way. This definition is not as
strong as might be thought. In fact, for a given manifold M, different (that is
non-diffeomorphic) manifold structures may be imposed on M’ consistent with
the above definition and these distinct structures may have different dimen-
sions. Another problem arises from the following observation. The manifold
structure given on M’ will lead to a natural (manifold) topology on M’ (sec-
tion 2.2). But another topology emerges on M’, this time when M’ is regarded
as a subspace of M when the latter has its manifold topology (section 1.7).
The two topologies may differ [but the smoothness, hence continuity, of the
map ¢ ensures that the subspace topology on M’ (from M), viewed in the
usual way as a collection of subsets of M’ is contained in the manifold topol-
ogy on M']. A submanifold M’ of M for which these two topologies coincide is
called a regular submanifold of M. This notation is taken from [9] and is not
universal. Other authors use the terms immersed and embedded submanifolds
for what here are called submanifolds and regular submanifolds, respectively.
Any topological property ascribed to a submanifold will always refer to its
manifold topology.

Any non-empty open subset of an n-dimensional manifold M may be given
a natural submanifold structure directly from that of M by restricting charts
of M in an obvious way and is then called an open submanifold of M. It is
necessarily a regular submanifold of M and has the same dimension as M.
In fact, any submanifold of M whose manifold structure is n-dimensional is
an open submanifold of M [9]. If U and V are open submanifolds of M and
f: U = V is a smooth bijection between U and V with f~! also smooth, f
is called a local diffeomorphism of, or on, M. An open submanifold of M,R
arises from those matrices with non-zero determinant, that is, GL(n,R). Also
the subsets S(n,R) and Sk(n,R) of symmetric and skew-symmetric matrices
in M,R with the manifold structures given to them earlier can be checked to
be regular submanifolds of M,R. If V is an n-dimensional real vector space
and W an m-dimensional subspace of V' each with their manifold structures of
dimension n and m, respectively, given earlier, then W is a regular submanifold
of V. More interestingly, if a subset M’ of a smooth manifold M admits the
structure of a regular submanifold of M of dimension n’ then M’ admits no
other (non-diffeomorphic) submanifold structures of this dimension and no
other (non-diffeomorphic) regular submanifold structures of any dimension.

A potential problem arises here. Suppose M; and My are smooth mani-
folds with submanifolds M and M}, respectively, and let f : My — My be
smooth. Then the restriction of f to Mj is a smooth map M| — M> as is seen
by composing with the (smooth) inclusion map. But if the range f(M;) is
contained in M} then the consequent map f : My — M) may not be smooth
(but is smooth if M is a regular submanifold of Ms).

A submanifold (respectively, regular submanifold) of a submanifold (re-
spectively, regular submanifold) is a submanifold (respectively, regular sub-
manifold) and further if M’ C M is a regular submanifold of M and M"” C M
is a submanifold of M with M" C M’ then M" is a submanifold of M’ [9].
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It is noted here that, in the above notation, any smooth tensor of type
(0,7) on M may be pulled back to a similar one on M’ using the inclusion
map 4. If M’ is an m-dimensional submanifold of M, with natural inclusion
tand if p € M’, iyp : T,M' — T,M is an injective map whose range is an
m-dimensional subspace of T,,M called the subspace of T,M tangent to M’
and its members are said to be tangent to M’ at p.

Let M and M’ be smooth manifolds of dimension n and n’, respectively,
(n>n')and f: M — M’ asmooth map such that f has rank n’ at each point
of the subset f~Hp'Y ={pe M: f(p) =p'} =M C M for p’ € M'. Then
M can be given the structure of a regular submanifold of M of dimension
n—n' and M is a closed subset of M. The special case of this when M’ =R
turns out to be useful and in this case M is sometimes referred to as an
(n — 1)-dimensional hypersurface of M (or a level surface of f in M).

Let M and M’ be smooth manifolds of dimension n and n’, respectively,
and f: M — M’ be a smooth map. Then f is called a submersion if at each
p € M the rank of f equals dimM’. Thus dimM’ <dimM and f,, is surjective
for each p € M. As an example note that when R™ and R have their usual
manifold structures the projection maps p; : R™ — R are submersions. Next
let ~ be an equivalence relation on M with M/ ~ denoting the associated
quotient set and p : M — M/ ~ the natural projection. If M/ ~ can be given
the structure of a smooth manifold such that u is a submersion then M/ ~
is called a quotient manifold of M. The manifold topology on M/ ~ is the
same as the quotient topology on M/ ~ (chapter 1) arising from the manifold
topology on M and if M/ ~ admits the structure of a quotient manifold of
M it does so in only one way. If M and M’ are smooth manifolds, ~ an
equivalence relation on M such that M/ ~ is a quotient manifold of M, u
the natural projection and f : M — M’ a smooth map which respects ~ then
there exists a map f’ : M/ ~— M’ such that f = f’ o u and where f’ is
smooth. Further, the rank of f at p € M equals the rank of f” at u(p) [9]. As
an example the real projective space P" 'R of dimension n — 1 discussed in
chapter 1 is an (n—1)-dimensional quotient manifold of the non-zero members
of R™ its members being directions (in R™).

As another example of this define an m-frame in R" (m,n € N,m < n)
as an ordered set of m independent members of R™. The collection of all such
m-frames in R™ is denoted by V(m,R") and is in bijective correspondence
with the open subset of the set M, «,»R™ of n x m real matrices of rank m
and is hence an open submanifold of the mn-dimensional manifold M, «,,R".
The set V(m,R"™) is thus a manifold called the Stiefel manifold of m-frames
in R™. If one then maps each m-frame onto to the m-dimensional subspace
of R™ spanned by its members (and denoting the collection of all such sub-
spaces by G(m,R™)) one gets a surjective map f : V(m,R™) — G(m,R").
The set G(m,R™) can be shown to have a natural manifold structure of di-
mension m(n — m) and is called a Grassmann manifold. (More details of
this, in the important special case when n = 4, m = 2, will be given in the
next chapter.) Further, the map f can then be shown to be a submersion.
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Now, for m-frames p and ¢ define an equivalence relation ~ on V(m,R™)
by p ~ ¢ & f(p) = f(g). The map f respects ~ and thus G(m,R") is
diffeomorphic to a quotient manifold of V(m,R™). The manifold G(m,R™)
can be shown to be Hausdorff, second countable, compact and diffeomorphic
to G(n —m,R™). [Second countability follows since a quotient manifold of a
second countable manifold is necessarily second countable, and since V' (m, R™)
is second countable (because M, xR is).]

2.8 Distributions

There is a generalisation of the idea of an integral curve for a smooth vec-
tor field. Suppose M is an n-dimensional manifold and m € N is fixed with
m < n and that for each p € M there is allocated an m-dimensional subspace
D,, of T,M. Suppose also that for any p’ € M there exists an open neigh-
bourhood U of p’ and m smooth vector fields X1, ..., X,,, defined on U such
that X1(p), ..., Xm(p) span D, for each p € U. Then the map D : p — D,
is called an m-dimensional (smooth) distribution on M. Since the integer m
is fixed, this distribution is sometimes said to be “in the sense of Frobe-
nius” to distinguish it from more general distributions where the dimension
of D, (that is, m) may vary over M. One might ask if, for distributions,
there are analogues of the integral curves encountered for smooth vector fields,
that is, are there “local submanifolds” to which the above local vector fields
X1, ..., X;, are tangent. To answer this question let D be a distribution on M
and call a submanifold M’ of M an integral manifold of D if the inclusion
(immersion) map @ : M’ — M has the property that the range of the map
ipe : TyM' — T, M is exactly D, for each p € M, that is, D(p) is the subspace
of T,M tangent to M’. If such an M’ exists it is necessarily m-dimensional
since ¢ is an immersion. The distribution D is then called integrable if each
p € M is contained in an integral manifold of D. A smooth vector field X de-
fined on some non-empty open subset of M is said to belong to D if X(p) € D,
for each p in the domain of X. An important theorem due to Frobenius then
states that, under the above conditions, D is integrable if and only if [ X, Y] be-
longs to D whenever X and Y belong to D, where X and Y are any smooth
vector fields defined on some non-empty open subset of M (the involutive
condition for D). A 1-dimensional distribution is sometimes referred to as a
direction field on M and is necessarily integrable. It should not be confused
with the term “direction”.

A generalised distribution on M can now be defined and this will be done
in terms of a family of smooth vector fields on M and which is sufficient for
present purposes. Let S be a non-trivial, real, finite-dimensional Lie algebra
of global, smooth vector fields on M under the usual addition and scalar
multiplication of vector fields, and under the Lie bracket operation. For each



42 Four-dimensional Manifolds and Projective Structure

p € M, define the subspace S, = {X(p) : X € S} of T,M and then consider
the map p — S, on M.

This map is called the generalised distribution on M determined by S. It
is not necessarily a distribution in the sense of Frobenius since dim5), may not
be constant over M. However, starting with the family of smooth vector fields
S ensures that a “smoothness” is built into such a generalised distribution. A
submanifold M’ of M is called an integral manifold of S (or of the generalised
distribution determined by S) if for each p’ € M’ the subspace of T}y M tangent
to M’ equals S,,. Further such an integral manifold M’ is called a mazimal
integral manifold of S if it is a connected integral manifold of S which is not
properly contained in any other connected integral manifold of S. It can then
be shown [23], [24], [25] that there exists a unique maximal integral manifold
of S through any p € M for which dimS, > 1.

2.9 Linear Connections and Curvature

A very important concept in differential geometry is the idea of a connec-
tion on an n-dimensional manifold M. Not all manifolds admit a connection
but those which do are amongst the most important manifolds of study. On
a general manifold, one has no natural means of providing a link between the
tensor spaces at different points of M and this a connection does in the follow-
ing way. One requires a method of “moving”, say, v € T, M along some smooth
(or piecewise smooth) path ¢ in M from p to p’ € M to a member v’ € T, M.
It is recalled that M is assumed connected and hence path-connected. Given
v € T, M and c it is required that v’ € Ty M is uniquely determined by v and
¢. Such a means of vector or tensor “transfer” is called parallel transfer (or
transport) and provides a standard of “no change” as the vector or tensor at
p is moved along the path from p to p’ although it does, in general, depend
on the path chosen. This (possible) path dependency distinguishes it from the
usual (path independent) parallel transfer familiar from Euclidean geometry
and in this lies the genesis of the curvature tensor, to be dealt with later.
This standard of no change allows a coordinate independent differentiation
using a kind of Newton quotient familiar from real analysis. Here a process
will be followed which starts with this idea of a derivative, leaving the parallel
transfer concept to follow as a “zero derivative”.

A smooth (linear) connection ¥V on M is a map which associates with
two smooth vector fields X and Y defined on open subsets U and V' of M,
respectively, a third smooth vector field denoted by VxY defined on U NV
such that for smooth real-valued functions f, g, a smooth vector field Z (each
defined on an appropriate subset of M), a,b € R and with all appropriate
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domains assumed open and non-empty, one has

Vz(aX + bY) =aVzX +bVzY (2.16)
VixygvZ = fVxZ +gVyZ
Vx(fY) = fVxY + (X(f))Y.

It is convenient to define Vx f = X (f) so that these formulae all take a Leibniz
form. One calls VxY the covariant derivative of the vector field Y along the
vector field X. This allows the development of the concept of the covariant
derivative of a vector field Y along the integral curves of the vector field X. If
x is a chart in M with domain U then using the coordinate vector fields 32a
one has, since VxY is a vector field on U,

I
dzc’ TP Pga

for smooth functions I'f, on U called the coefficients of the connection or
the connection coefficients associated with V. These coefficients are not the
components of any tensor; in fact using transformations like (2.3) one finds
that upon a change of charts x — 2, so that the coefficients of the connection

in the chart 2’ are I'}%,

Vo ( (2.17)

Ox¢ ozt Oz’ 92zt dx'°
re = —rd - = 2.18
be ™ 't x'e dxd - <F * Oz 9z Oz (2.18)
In this book only symmetric connections will be considered which means that
the condition I'}, = I'%, will be imposed at each point of M and which is easily
seen from (2.18) to be independent of the coordinates used. The condition that
V be symmetric can be expressed, using (2.16) and (2.17), in the form

VxY —VyX - [X,Y]=0. (2.19)

Let ¢: I — M be a smooth path in M with I an open interval in R such
that ¢ is injective with ¢(I) contained in some chart domain U of M. Let
X (t) = ¢(t) be the tangent vector at c(t) and let Y (t) = Y (c(t)) € To4) M be
a collection of vectors along ¢ which are smooth on ¢ in the sense that Y (¢)(f)
is a smooth function I — R for each smooth function f : I — R. Then it can
be shown that there exist smooth vector fields X and Y on U which restrict
to X (t) and Y (¢) on ¢(I) [11]. Then Y (¢) is said to be covariantly constant or
parallel along ¢ if VxY = 0 along ¢. Now VxY in the coordinates on U is,
from (2.16) and (2.17),

aye, 0
XY, + X0 ——)— 2.20
( ab + Axo )axc ( )
where X* = % and Y* are the components of Y in U and so on ¢ one gets
dye dz®
+Te, 5yt = . (2.21)

dt dt
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This involves only the values of X and Y on the path ¢ and, in fact, is inde-
pendent of the choices of X and Y on U as long as they restrict to the given
X(t) and Y (t) on c¢. Now the first-order differential equation (2.21) ensures
that if p,p’ € ¢(I) and with Y (t) = Y (c(¢)) assumed smooth on ¢, Y (p') is
uniquely determined by Y (p) and ¢ and the map T,M — T,, M which arises
is a path-dependent vector space isomorphism called the parallel transfer or
transport (of T,M) along ¢ from p to p’. If ¢(I) is not contained in a single
chart domain then, since I and hence ¢(I) are compact (chapter 1), one may
cover ¢(I) with a finite number of coordinate domains of M and perform the
above procedure on the restriction of ¢ to each of these domains. This gives
a linear isomorphism, called parallel transport or transfer between T, M and
T,y M for any p,p’ € M (see, e.g. [12]).

Now cousider the situation when Y (t) = X (¢), that is, Y (¢) is the tangent
vector to ¢ at ¢(t). Thus one is insisting that the tangent vector to ¢ is parallely
transferred along c. Then (2.21) gives VxX = 0 which is

2,.a b c

Prt | do? dat

dt? dt dt

where 2% = % o ¢. In this form ¢ is called an affinely parametrised geodesic
(for V) and t is referred to as an affine parameter for ¢ (and is determined
up to a linear transformation of ¢). Under a general parameter change (a

reparametrisation of ¢) and retaining the symbol ¢ for the new parameter
(2.22) becomes

=0 (2.22)

2..a b c a
dz* gdidi = A(t) dz
dt? ¢ dt dt dt
for some smooth function A, and reflects the fact that the parallel transport of
the tangent vector to c along c is, at each point of ¢, proportional to the tangent
vector at that point, that is, VxX = AX. In this sense (2.23) is the most
general form of the geodesic equation for c. Given (2.23) it is easily checked
that a reparametrisation of ¢ may be used to achieve an affine parameter and
(2.22). Any map c: I — M satisfying (2.23) is simply called a geodesic (and
sometimes this term is also used to denote the subset ¢(I) of M).

An affinely parametrised geodesic ¢ : I — M for some open interval I in R
is called maximal if it cannot be extended to an affinely parametrised geodesic
on an interval properly containing I and complete if I = R. If every affinely
parametrised geodesic of V on M is complete the connection V (or M, if V
is understood) is called geodesically complete (or just complete).

(2.23)

Theorem 2.1 Let M be an n-dimensional manifold with smooth, symmetric
connection V and letp € M and 0 #v € T, M.

(i) There is a unique affinely parametrised mazimal geodesic ¢ (whose do-
main contains 0) such that ¢(0) = p and ¢(0) = v.

(i3) If ¢ is an affinely parametrised geodesic satisfying ¢ (0) = p and ¢ (0) =
v then c' is defined on some open subinterval of the domain of ¢ above
and agrees with it there.
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(i9i) If ¢ is an affinely parametrised geodesic (whose domain contains 0) sat-
isfying ¢'(0) = p and ¢/(0) = Av for 0 # X\ € R then ¢’ is a reparametri-
sation of ¢ in (i) on the intersection of their domains.

These results give existence and uniqueness theorems for geodesics and
(731) shows that, roughly speaking, the range ¢(I) of a geodesic path in M is
determined by its starting point (say ¢(0)) and initial direction (that is, the
1-dimensional subspace of T,)M spanned by v(0)).

Now let X,Y, Z be smooth vector fields whose domains are open subsets
of M and define a smooth vector field on the intersection of these domains
(assumed non-empty) by

R(X,Y)Z =Vx(VyZ) - Vy(VxZ) - VixyZ(= —R(Y, X)Z).  (2.24)

The function R is called the curvature structure arising from V and is, in
an obvious sense, R-linear in its arguments (from (2.16)) and, in addition, if
f, g, h are smooth real-valued functions on the appropriate domains, satisfies

R(fX,gYV)hZ = fghR(X,Y)Z. (2.25)

It can be shown that if p € M, u,v,w € T,M and if X, Y and Z are vector
fields on some open neighbourhood of p satisfying X (p) = u, Y(p) = v and
Z(p) = w then R(X,Y)Z, on evaluation at p, is independent of X, Y and Z
providing that, on their evaluation at p, they give u, v, w, respectively. Thus
one may define a type (1,3) tensor Riem at p by

Riem(q,u7v,w) = (R(Y> Z)X)P(q) (226)
for q € T\, M. Thus, on some chart  whose domain U contains p, one has

0
Riem = Rabcda— ® dz’ @ dz¢ @ dz?. (2.27)
xa
Since R is smooth the components R%.q are smooth functions on U and are
called the (components of the) curvature tensor on U arising from the con-
nection V. The assumption that V is symmetric together with the definition
of R give ~ - -
R(X,Y)Z+R(Y,Z) X+ R(Z,X)Y =0 (2.28)
for smooth vector fields X,Y, Z and using (2.27) one then gets a condition,
equivalent to (2.28) in terms of components and which is

R%eqd + R%cap + R%qpe = 0. (2.29)

Then using (2.17) and the definitions of R and Riem one gets a useful ex-
pression for the components of R%,.4 in terms of the connection coefficients
Ige

Rea =T . —Topa+ Taplce — Teplae (2.30)



46 Four-dimensional Manifolds and Projective Structure

where a comma denotes a partial derivative. From this one immediately sees
that

R%ca = —R%de- (2.31)

Now let X,Y be smooth vector fields on some open chart domain U of M
so that one can write X = X? ag and Y =Y*¢ 88

a

and Y% on U. Then using (2.20) one finds for thze smooth vector field Vy X

on U axa P P
c b .
(G T TXNY (50 D

where X, = 25 4+ T¢ X¢. But then (X?,Y?)(p) are the components of a
vector in T, M for any p € U and any vector Y (p) € T,,M and it easily follows
after a short calculation using (2.3) and (2.4) and the arbitrariness of Y (p)
that X, are the components of a smooth, type (1, 1) tensor field on U called
the covariant derivative of the vector field X (with respect to V). It is then
convenient to define, for a real-valued function f on U, Vf = df where the
“d” operator is as given in section 2.4.

One may extend the idea of a covariant derivative to arbitrary tensor fields
defined on open subsets of M. In fact for any vector field X on an open subset
U of M there is a unique operator Vx which maps a smooth tensor field of
type (r,s) on U to a tensor field of the same type on U which coincides with
VxY above when applied to a smooth vector field Y on U and which satisfies
the following conditions for smooth tensor fields S and T on U of the same
type, for a smooth real-valued function f on U and a,b € R

Vxf=X(f)
Vx(aS+bT)=aVxS+bVxT,
Vx(S®T)=VxS®T+ S®VxT,

Vx commutes with the contraction operator,
VxS = fVxS,

VxivZ=VxZ+VyZ.

VyX = )= (X)) (232)

(2.33)

Then one extends the idea of the covariant derivative to tensor fields in a way
similar to that done above for vector fields. If T" is a smooth tensor field of
type (r,s) on U one achieves a smooth tensor field VT of type (r,s+1) on U
given by

0

0
VT =T Gy @ e @ o da®™ . @ da @ da® (2.34)

where the components 7" ;"7 of V1" are

Ta1 bagb aabTal .y +1’\CL1TCQQ ar Fathll a'r 1C
T, T — T‘“'"“"‘ L (2.3)

—1C
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If X=X aga on U the components of VxT in U are Tz:lll.::bi?bXb~ The semi-
colon symbol will always be used to denote a covariant derivative in this way.
If VI' = 0 on U one says that T is covariantly constant, or parallel, on U
and, in the case when U = M, this leads, as before, to the concept of parallel
transfer of the various tensor spaces at p € M to ¢ € M along any smooth
or piecewise-smooth path from p to ¢ and is a path-independent vector space
isomorphism between them.

The concept of covariant differentiation gives rise to a number of important
identities between the tensor concerned and the geometrical objects arising
from V. For this the notation Tg::db;ef = (Tg::;il);e)§f will be used. Thus for a
vector field X, a 1-form field w and a type (0,2) tensor field T, one has the
useful Ricci identities (recalling V is always assumed symmetric)

Xa;bc - Xa;cb - XdRadcba (236)
Wa;be — Wazeh = wdeabcy (237)
Tab;cd - Tab;dc = ebReacd + TaeRebcd~ (238)

Suppose w is a smooth 1-form (covector) field on M. Then w is called
exact (or a global gradient) if there exists a smooth function f : M — R such
that w = df and closed if for each p € M there exists an open neighbourhood
U of p and a smooth function f : U — R such that w = df on U, that is, a
closed 1-form is locally a gradient (locally exact). The 1-form w is closed if
and only if each p € M admits an open coordinate neighbourhood U on which
Wa,p = Wp,q and so, since the connection is assumed symmetric, this can be
restated in terms of covariant derivatives as wq., = Wp;q-

There is another identity involving only the curvature tensor components
and the coeflicients of the connection. It is called the Bianchi identity and is

Rabcd;e + Rabde;c + Rabec;d =0. (239)

Another important tensor which derives naturally and simply from the (global,
smooth) curvature tensor is the Ricci tensor. It is a global, smooth type (0, 2)
tensor obtained from Riem by a contraction and has coordinate components
Rap = RCqcp. Since the connection is symmetric it is easily checked that the
Ricci tensor is a symmetric tensor, that is, R,, = Rp, in any coordinate
system.

If V is such that the associated curvature tensor Riem is identically zero
on M then M is called flat and V is called a flat connection on M. For the
purposes of this book a manifold admitting a symmetric connection whose
associated curvature tensor does not vanish over any non-empty open subset
of M is called non-flat. Of course, a manifold is not flat if it does not satisfy
the flat condition and this is not the same as non-flat.
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2.10 Lie Groups and Lie Algebras

Let G be a set admitting a group structure with multiplication denoted
by . and a topological structure. These structures may be imposed quite
independently and need have no relationship to each other. But if the group
and topological structures are chosen so that, with the given topology on G
(and the product topology on G x G), the map GxG — G given by (a,b) — a.b
and the map G — G given by a — a~ !, for a,b € G, are continuous, then
G, together with its group and topological structures, is called a topological
group.

With this as a foil, again let G be a group with multiplication . and suppose
that G has the structure of a smooth n-dimensional manifold. Then G x G has
a natural product manifold structure of dimension 2n arising from that on G.
Suppose one insists as a compatibility requirement that the map G x G — G
given by (a,b) — a.b for a,b € G, is smooth (and hence continuous). It then
follows (from the manifold structure on G) that the map G — G given by
a — a~ ' is necessarily smooth (and hence continuous) and a diffeomorphism
and then G, together with its group and manifold structures, is called an
n-dimensional Lie group. It is clear that a Lie group is a topological group.
(Henceforth the . in the group operations on G will be dropped, a.b being
written as ab, unless any confusion may arise.) A standard example of a Lie
group which will be needed later is the set GL(n,R) with its standard group
and manifold structures, the latter as an n?-dimensional open submanifold of
M,R.

The manifold topology arising on a Lie group G can be shown to be Haus-
dorff and, if connected, it is necessarily second countable. If G is not connected
the component containing the identity e of G, the identity component, is de-
noted by G. and is a subgroup and an open subset of GG, hence an open
submanifold of G. Also G, is generated (section 1.2) by any open subset of
G, containing e and hence if G’ C G, is both a subgroup and an open subset
of G, G’ = G.. As another example, it is easily checked that, with the obvious
structures, R™ is a Lie group.

If G; and Gy are Lie groups and f : Gy — G is smooth and a group
homomorphism, f is called a Lie group homomorphism and if f is also bijective
and f~! is smooth f is a Lie group isomorphism and G, and G5 are said to
be Lie isomorphic. If G1,...,G,, are Lie groups, then G; X ... X G, is also Lie
group with the product group and manifold structures.

Now for a Lie group G if H is a subset of G which is a subgroup and a
submanifold of G and, in addition, with these structures (and topology derived
from its manifold structure), H is a Lie group, it is called a Lie subgroup of
G of dimension equal to that of H as a submanifold of G. There is a possible
complication here in that one may ask if the conditions that H be a subgroup
and a submanifold of G are sufficient to claim Lie subgroup status for H? The
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problem arises in the following way. The map G x G — G given by (a,b) — ab
for a,b € G, which is guaranteed to be smooth since G is a Lie group, restricts
to amap H x H — H. But this last map may not be smooth (see section 2.7).
It is, of course, smooth if H is a regular submanifold of G (section 2.7) but,
in fact, H may not be such a submanifold. However, it is, in fact, true (but
not obviously so) that if H is just a subgroup and a submanifold of G then it
is a Lie subgroup of G [22]. Thus the identity component G, of G is an open
submanifold of G and is hence a regular submanifold and a Lie subgroup of G.
A well-known theorem states that if G is a Lie group and H C G is a subgroup
of G which is a closed subset of G and does not inherit a discrete subspace
topology from G then H admits a unique structure as a regular submanifold
of G and is then a Lie subgroup of G [9].

Let M be any smooth manifold admitting a global vector field X and let
f+M — M be a smooth diffeomorphism on M. Then X is called f-invariant
if fu o X = X o f, that is, if the pushforward of X (p) with f equals X (f(p)).
If X and Y are smooth, global f-invariant vector fields on M then it can be
shown that [X,Y] is also f-invariant [9]. Now suppose G is an n-dimensional
Lie group with identity e. The maps L, and R, for each a € G defined by
L, : g — ag and R, : g — ga are smooth diffeomorphisms on G called
left translations and right translations, respectively. A global, smooth vec-
tor field X on G is called left-invariant (respectively, right-invariant) if it is
L,-invariant (respectively, R,-invariant) for each a € G. Now let v € T.G
and define a global vector field X on G by X (a) = Lg.(v) for each a € G. Tt
can be shown that X is smooth and left-invariant and that any left-invariant
global, smooth, vector field X on G arises in this way from X(e) € T.G.
Thus the collection of all left-invariant vector fields on G is a real vector space
isomorphic to T,G under the isomorphism X(e) — X and is n-dimensional.
It can also be given the structure of an n-dimensional Lie algebra under the
Lie bracket operation since if X,Y are left-invariant so is [X,Y]. Now sup-
pose u,v € T.G give rise to smooth, left-invariant vector fields X and Y
on @G, respectively, so that X(e) = u and Y(e) = v. Then if one defines
[u,v] = [X,Y](e) this Lie algebra structure is transferred to T.G. The re-
sulting Lie algebra is referred to as the Lie algebra of G and denoted by LG.
Similar remarks apply also to right-invariant vector fields but give rise to a
Lie algebra structure denoted by RG in which the bracket product differs only
in sign from that on LG.

Recalling the earlier section on distributions let D be a d-dimensional
distribution (in the sense of Frobenius) on G and call it left-invariant if for
each a,g € G, D(ag) = Lu.D(g) where L, is applied in an obvious way to
the subspace D(g). Then D uniquely determines a subspace D(e) of T.G and
every subspace U C T.G uniquely determines a left-invariant distribution D
on M according to D(a) = L. U for each a € G (and so D(e) = U). Now let U
be any subspace of T.G and let D be the associated left-invariant distribution
on G (so that D(e) = U). Then, using the Frobenius theorem, one achieves
the following important results.



50 Four-dimensional Manifolds and Projective Structure

(i) D is integrable if and only if U is a subalgebra of LG.

(ii) Let H be a Lie subgroup of G with Lie algebra LH and let i : H — G
be the smooth inclusion map. Then 4., : LH — LG is a Lie algebra
isomorphism between LH and a subalgebra of LG and H is an inte-
gral manifold of the left-invariant distribution on G determined by the
subspace iy (T H).

(7i7) Let U be a subalgebra of LG. Then there exists a unique connected Lie
subgroup H of G such that, if ¢ is the inclusion map H — G, i, is a
Lie algebra isomorphism between LH and U.

Thus there is a one-to-one relationship between the connected Lie subgroups
of G and the subalgebras of LG.

2.11 The Exponential Map

Let G be a Lie group with identity e and let X be a smooth left-invariant
vector field on G. Suppose c is an integral curve of X with domain I containing
0 and which starts at e. For a € G consider the smooth curve ¢, = L, o ¢ with
domain I starting from a € G. Then with the usual coordinate t on ¢

0
= = Ly 0¢

ot at o

=L Xoc=XoL,oc=Xocg,. (2.40)

C.a:Ca*O*:La*OC*O

So ¢, is also an integral curve of X with the same domain I as c¢. Since
a € G was arbitrary, it can be shown [9] that this is sufficient to make X
a complete vector field. Hence each left-invariant smooth vector field is com-
plete. So if v € T,G let X be the left-invariant vector field determined by v,
X(e) = v, and let ¢ be the maximal integral curve of X starting from e.
Now one can define the exponential map for G, exp : T.G — G given by
exp(v) = ¢(1). The completeness of X means that this map is defined on the
whole of T.G and is smooth when T.G has its standard manifold structure.
The name “exponential” is suggested by the easily checked property that, for
a, B € R, exp((a+p)v) = exp(av)exp(fv). Since the Lie group GL(n,R) and
certain of its subgroups will play an important role in what is to follow one
can use it as an example now. The n?-dimensional Lie group GL(n,R) can be
shown to have as its Lie algebra the vector space M,,R with the binary (Lie)
operator on it given by [A, B] = AB — BA, the commutator of A and B. The
exponential map is then given in a standard notation, for A € M, R, by [9]

exp(tA) = I, + Z QAS. (2.41)
s=1""
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If H is a Lie subgroup of G it is important to distinguish between the exponen-
tial map for H, denoted by expy with expy : T.H — H, and the above map
exp for G, restricted to H. Fortunately there is no problem since ifi : H — G
is the natural inclusion map, then expoi,. = icexpy [9] and so for v € i, T . H,
exp(tv) lies in H for each t. It is also useful to ask how efficient the exponential
for LG is at generating G from T.G. If exp : T.G — G is surjective then G is
called an ezponential Lie group (and for this to be the case G is necessarily
connected). However, this is not the case in general. But if G is a connected
Lie group it is generated by any open subset of G containing e (and the range
of the map exp is just such a set [9]) and so every g € G is the product of
finitely many members of G each of which is the exponential of some member
of LG.

2.12 Covering Manifolds

Let M be an n-dimensional manifold. Then M is locally path connected
and locally simply connected in its manifold topology. Thus it makes sense
to consider results regarding (topological) homotopy for M as a topological
space (chapter 1). Of course, one would like these to be phrased in terms of
smooth paths and it turns out that this can be done without much essential
change. It is known that if ¢ is a continuous closed path at p in M there exists
a smooth closed path at p which is (continuously) homotopic to ¢ whilst if ¢;
and co are smooth closed paths at p which are continuously homotopic to each
other they are smoothly homotopic to each other (in an obvious sense from
chapter 1 by taking the homotopy map to be smooth). Then let ~ denote the
equivalence relation of being continuously homotopic for continuous, closed
paths at p € M and let =~ denote the equivalence relation of being smoothly
homotopic for smooth, closed paths at p. The M is (continuously) simply
connected if any continuous, closed path c at p satisfies ¢ ~ ¢, where ¢, is
the constant path at p and M is (smoothly) simply connected if any smooth,
closed path at p satisfies ¢ ~ ¢,. Suppose M is continuously simply connected
and let ¢ be a smooth, closed path at p. Then c is continuous and ¢ ~ ¢,. But
¢p is smooth and the earlier remarks show that ¢ =~ ¢, so that M is smoothly
simply connected. Now suppose M is smoothly simply connected and let ¢
be a continuous, closed path at p. Then the above remarks reveal a smooth,
closed path ¢’ at p satisfying ¢’ ~ c. But then the initial assumption on M
gives ¢’ &~ ¢p. So ¢ ~ ¢, and M is continuously simply connected.

Now let M be the manifold above with its manifold topology and let M’
be a topological space. Suppose 7’ : M’ — M is a topological covering map
(chapter 1) so that M’ is a (topological) covering space of the (topological)
space M . Then, on remembering that M has a manifold structure it turns
out [26] that there exists a unique manifold structure for M’ whose associated
topology equals the original given topology for M’ and for which the map 7’ is
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smooth and is such that each p € M admits a connected open neighbourhood
U such that each component of 7/~1U is, with its open submanifold structure,
diffeomorphic to the open submanifold U under the appropriate restriction of
7’. Thus the dimensions of M and M’ and the rank of 7’ at any p € M’
are equal. This gives the definition of a smooth covering n’ : M’ — M and
M’ is called a covering manifold of M. If M’ is simply connected (in either
the continuous or smooth sense from the previous paragraph) it is called a
universal covering (manifold) of M. Every manifold such as M admits a
universal covering and the latter is unique in the sense that if M" is also a
universal covering of M with smooth covering "/ there exists a diffeomorphism
f: M — M" such that 7" o f = «’.

2.13 Holonomy Theory

The theory of holonomy groups is, in essence, a closer inspection of the
connection on a manifold and a direct link to the curvature tensor. It will, of
course, be more fruitful later when metrics are introduced. The work in this
section is largely taken from [10].

Let M be an n-dimensional manifold (recalling that M is always assumed
connected and hence path-connected) admitting a smooth, symmetric connec-
tion V, let p € M and let C,, denote the set of all piecewise-smooth (closed)
paths starting and ending at p. If ¢ € C), there is an associated vector space
isomorphism 7, on T, M obtained by parallely transporting (section 2.9) each
member of T, M around c. Using a standard notation for combining and in-
verting paths one has for ¢1,c2 € Cp, To-1 = 7,1 and e, 00, = Tey - Te,- Then
the set {7, : ¢ € Cp} of all such isomorphisms is a subgroup of the group
GL(T,M) of all isomorphisms of T, M onto itself and called the holonomy
group of M at p, denoted by ®,. Now since M is connected, and hence path
connected, given any p,p’ € M there exists a smooth curve from p to p’ and
then, using this curve to transfer closed curves at p to closed curves at p’, in a
standard way, one can easily see that the holonomy groups at each p € M are
conjugate and hence isomorphic. Thus one can drop the reference to the point
of M in ®, and refer to the holonomy group of M denoted by ®. Repeating
these operations but now using only paths which are homotopic to zero one
similarly obtains the restricted holonomy group of M denoted by ®°. Thus ®
and ®° are subgroups of GL(T,M) = GL(n,R) and are equal if M is simply
connected.

It turns out that ® and ®° are Lie subgroups of GL(n,R) and that ®°
is connected. In addition, ®° is the identity component of ® and so dim® =
dim®°. If M is simply connected, ® = ®° and then ® is connected. The Lie
algebras of ® and ®° are equal and isomorphic to a subalgebra of the Lie
algebra of GL(n,R) denoted by ¢ and called the holonomy algebra of M (of
course, with respect to V).
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Suppose p € M and let x be a chart whose domain contains p. In the coor-
dinates £ on U, and recalling the use of a semi-colon as a covariant derivative,
one can compute the curvature tensor Riem and its covariant derivatives at
p and then for any X,Y, Z,... € T,M compute the following matrices

R%ea XYY, Rpea.e XYZE .. (2.42)

It can then be shown that this set of matrices, for all X,Y,Z,... € T,M
(and under matrix commutation), spans a subalgebra of the Lie algebra ¢
and hence only finitely many terms are required in the list (2.42). Recall-
ing the symmetry properties of Riem the family (2.42) may be rewritten as
R%y.qF?, R“bcd;eHCde,... where F', H,... are arbitrary tensors at p satisfying
Fab = —ba pabe — _pybac  The subalgebra spanned by (2.42) is called the
infinitesimal holonomy algebra at p, denoted by (/);, and is a subalgebra of ¢.
The unique connected Lie subgroup of GL(n,R) that ¢;, gives rise to is called
the infinitesimal holonomy group (of M) at p and denoted by ®;. In general,
¢;, depends on p. If dim®}, is constant on M then &, = ®° for each p € M.
Clearly V is flat (& Riem = 0 on M) & @, is trivial for each p € M < ®°
is trivial.

Let p € M and let V be a non-trivial subspace of T, M. Suppose that V'
is carried into itself by parallel transport of its members with any member of
Cp. Then V is said to be holonomy invariant. Clearly the intersection of any
finite number of holonomy invariant subspaces of T, M is holonomy invariant.
It then follows that if V' C T, M is holonomy invariant and p’ € M the parallel
transport of V along a piecewise-smooth path ¢ from p to p’ gives rise to a
subspace V' C T,y M of the same dimension as V' and which is independent of
the choice of ¢ and is also holonomy invariant. The association of the subspace
V' with p’ at each p’ € M can be shown to give rise to a distribution (in
the sense of Frobenius) on M which is, in fact, integrable and is called the
holonomy invariant distribution generated by V [10].

The infinitesimal holonomy deals locally with the curvature (and V). For
example if U C M is an open subset of M on which Riem vanishes then
<I>;, is trivial for each p € U but ® and ®° may not be since they can detect
curvature elsewhere on M \ U. There is a theorem which links the values of
Riem at each point of M with ¢. [20]

Theorem 2.2 (Ambrose-Singer) Let M be an n-dimensional manifold with
smooth, symmetric connection V, associated curvature structure R and let
p € M. For any other p' € M, any piecewise-smooth curve ¢ from p to p' and
any X,Y,7Z € T,M define a linear map f from T, M to itself by

F(Z) = 771 (R(1e(X), 7e(Y))e(2)). (2.43)

Then the set of all such linear maps for all choices of p’, ¢, X and Y when
represented in matriz form with respect to some basis of T,M spans the holon-
omy algebra ¢ in matrix representation when the holonomy group ® of M is
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described as a matriz Lie subgroup of G = GL(n,R) with respect to this basis
of T,M.

In other words fix p and choose p’ and ¢ and then compute all tensors of the
form R%.qX'“Y'® at p’ (X', Y’ € T,y M) and then parallel transport them to p
along ¢ and repeat this for all such p’ and ¢ to get a matrix representation the
members of which span ¢. Thus if Riem is known the Ambrose-Singer theorem
gives information about ®° and hence about ® if M is simply connected.



Chapter 3

Four-Dimensional Manifolds

3.1 Metrics on 4-dimensional Manifolds

In this chapter the manifolds considered will, as mentioned earlier, be
assumed to be smooth, connected, second countable and Hausdorff. General
references for much of this chapter are [9, 10, 13].

Let M be a manifold as above of dimension n > 3. A smooth metric g on
M is a global, smooth, symmetric tensor field of type (0,2) on M denoted by ¢
such that, at each p € M, g, = g(p) is an inner product, that is, a symmetric,
non-degenerate bilinear form, on 7, M. This structure is denoted by the pair
(M, g). Thus, for p € M and chart  whose domain U contains p, g may be
written at p as

0= 02y (@) 0= 00 (5 ) =g (31)

and this gives rise to smooth real-valued functions g, on U with det(gqp) # 0.
From the theory of the Sylvester canonical form, it is noted that upon a change
of coordinates from charts x to «’ the matrices g = gqp (in the chart x) and
¢ = g}, (in the chart z’) are related by the tensor transformation laws which
are ¢ = STgS where S is the matrix g;”,l and so, as matrices, g and ¢’
are congruent. Thus a basis of T, M always exists where the components gqs
of g, take the Sylvester form appropriate to the signature of g,. There are
several possibilities for the signature of g,. If the Sylvester matrix (up to a
multiplicative sign, which will be ignored here) is (+,+, ..., +) g(p) is said to
be of positive definite signature and if it is (—, +,+, ..., +) g(p) is said to be
of Lorentz signature (or to be Lorentzian). If g(p) has the same signature at
each p € M, g is said to be of that signature. It will be seen later that since
M is assumed connected g has the same signature at each p € M. A positive
definite metric g on M is called Riemannian by some authors but this term
will not be used here since it does not seem to be universally accepted. For
the purposes of this book, if dimM = 4 and if M admits a metric such that,
at p € M, g(p) has signature (4, +,—, —) (again up to a multiplicative sign)
then the metric is said to be of neutral signature.

For u,v € T, M, and if ¢ is understood (and recalling the Einstein summa-
tion convention), the real number g, (u,v) = gapu®v®, which is independent of
the coordinate system chosen, is denoted u-v and called the inner product of u
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and v. (Henceforth, ordinary symbols rather than bold symbols will be used to
denote vectors in T, M.) Then v is called spacelike if | u |= w-u > 0, timelike
if|u|<Oand nullifu#0and |u|=0.Tfu#0#vand u-v=0, uand v
are called orthogonal. If | u |= £1, then w is called a unit vector. A collection
consisting of n unit, orthogonal vectors is necessarily a basis for T, M and is
called orthonormal. If U and V are subspaces of T, M and if for any v € U
and any v € V, u-v =0, U and V are called orthogonal subspaces. For any
subspace U C T, M, the collection of vectors {v € T,M :v-u=0,YVu € U} is
a subspace of T, M called the orthogonal complement of U and denoted U L
It is noted that U and V may not be “complementary” in the usual sense, in
that, Sp(UUV) may not equal T, M. It is noted here that if h and h’ are inner
products at p neither of which is positive definite then if they agree as to their
null vectors they are proportional. A simple proof proceeds by choosing one
of them in its Sylvester form.

At each p € U and for each chart x whose dornain contains p one may
construct the matrix 1nverse t0 Gab denoted by ¢% and from this the bilinear

form g¢° (8%) ® (8xb) on T M + T M which is easily checked to be a type
(2,0) tensor at p and to give rise to a smooth tensor field on M denoted by
g~ 1. Sometimes (3.1) is referred to as the covariant form for g and this latter

one the contravariant form for g. At any p € M and in any chart, g,.g® = 6°.

%
Thus g gives rise to a vector space isomorphism f, : T, M — T',M according
to v = fy,(v) where f, (v)(u) = gp(v,u) for u,v € T,M. Thus if in some
chart = one has v = v%(52;),, then it follows that f,, (v) = (gapv?)(dz?®),. This
leads to the standard definition (for a given g) that f,, (v) = vq(dz®), where
Va = gapv?. Thus gp is said to lower indices at each p € M. It is straightforward
to show that one may use a similar map from the contravariant form for g

*
to raise indices and thus, at each p € M, an isomorphism T, M — T,M
and which is the inverse operation to raising indices since g,.g®°® = 6°. Thus
the existence of the metric g, gives a “canonical isomorphism” between T, M

%
and T, M, v* = v,, and this will always be understood. It follows that these
procedures allow one to convert a smooth vector field defined on some open
subset U of M into a smooth covector field on U. In addition, one may raise
and lower indices of arbitrary tensors at p € M or on M. Thus a type (1,3)
tensor at p € M with chart components 7%,y may be turned into a type
(0,4) tensor at p € M with components Toped = Jael “bed and similarly for
smooth tensor fields. The use of the same symbol (in this case T') will be
understood throughout. It follows from the above that an object § at p € M
with components §° in every coordinate system is a type (1,1) tensor at p
(the Kronecker symbol or Kronecker delta).

Consider the pair (M, g) and let M’ be a submanifold of M with natural
inclusion map i : M’ — M. Then the pullback i*g is a type (0,2) symmetric
tensor on M’ but may not be a metric on M’ since it may fail to be non-
degenerate on M’. However, if g is positive definite i*¢g is easily seen to be
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always non-degenerate (in fact, positive definite) on M’ but this is not nec-
essarily the case if g is not of positive definite signature since then i*g, if
non-degenerate, may take any of the Sylvester forms permitted by dimM’. If
1*g is a metric on M’ it is called the induced metric on M’ (from g on M).

If (M,g) and (M’,g’) are two manifold-metric pairs, as above, and
M M x M’ is the product manifold with natural (Smooth) projections

: M — M and J: M — M’ then M admits a metric g = g x ¢’ defined in an
obv1ous way (see section 2.3) by g x ¢’ = i*g + j*¢’ and called the product of
g and ¢'. Then (M, g % ¢') is called the metric product of (M, g) and (M’,g").

In a chart £ on M with chart domain U one may always construct a local
smooth metric of any signature by choosing an appropriate (constant) non-
singular matrix at each point of U to represent the metric components on
U in the chart . However, the existence of a smooth global metric on M
is a little different and requires further restrictions on M which can now be
discussed. Since the manifold M has been assumed to be connected, Hausdorff
and second countable, it follows that it is paracompact (for a definition see
[9]). It can be shown in this case that a useful collection of (local) functions
called a partition of unity exists on M and from this that a global, positive
definite metric on M necessarily exists. The converse is also true since a global,
smooth, positive definite metric on a smooth, connected, Hausdorff manifold
M leads naturally to a topological metric (distance function) on M whose
(natural metric) topology equals the manifold topology and which, from a well-
known theorem of Stone, is paracompact and from which, under the present
assumptions, second countability follows. However, such a manifold need not
admit a Lorentz metric but does so if and only if M admits a 1-dimensional
distribution [27] (see also, for example, [15, 13]). The usual construction of
such a metric on M relies on its admitting a positive definite metric. For the
restriction on a manifold needed for it to admit a metric of neutral signature
see [28].

3.2 The Connection, the Curvature and Associated
Tensors

Let M be a manifold and g a metric of arbitrary signature on M and sup-
pose V is a symmetric connection on M. Of course, g and V may be prescribed
independently but suppose one links them by the following compatibility con-
dition. Let p € M, let ¢ be any smooth path in M passing through p and
let v be any member of T,M. Then insist that the parallel transport v(t) of
v along ¢ with respect to V is such that the function g(v(t),v(t)) = |v(t)]
is constant for all such p, v and ¢. Thus, in components, g.,v®0® is constant
along ¢ and so, since v(t) undergoes parallel transport along ¢ and if T'(¢) is
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the tangent vector to ¢ at the point with parameter ¢, one has Vv = 0 or,
in components, v%,,7% = 0 on c. Thus the constancy of g.,v?v® along c gives
V1 (gapv®v®) = 0 for all such p, v and ¢ and which becomes Vg = 0 for any
such T. Hence Vg = 0 on M, or in components, gap.c = 0 (with a semi-colon
denoting a V-covariant derivative) in any coordinate domain on M.

It then follows from Vg = 0 (chapter 2) that, in any coordinate domain,

99ab

ozx¢
On rewriting (3.2) after the index permuting ¢ — b — ¢ — a and again after
another such permuting and subtracting these last two equations from (3.2)
one finds

—T¢, 94 — T%9aa = 0. (3.2)

be =99 Vope T ozb T 9l
Then (3.3) = (3.2) and so, given g, such a symmetric connection necessarily
exists. These connection coefficients I'f, arising from g are usually referred
to as Christoffel symbols and they (and hence the symmetric connection V)
are uniquely determined by g. The symmetric connection V defined here is
called the Levi-Civita connection associated with g. The above compatibility
condition Vg = 0 is usually expressed by saying that V is a metric connection
(compatible with g) (and it is remarked that, in general, a connection may not
be a metric connection for any metric). It is also easily checked that for the
tensors d and ¢! defined earlier V6 = Vg~! = 0. The connection V preserves
inner products along any such path in that if u,v € T, M undergo parallel
transport along ¢, giving vectors u(t) and v(t) in terms of the parameter ¢ on
¢, then u(t) - v(t) is constant along ¢ as follows from the fact that |u(t) + v(t)]
is constant along c. It is easily seen that the establishment of the connection
V on M compatible with g shows that if M is connected (and hence path-
connected) the signature of g is constant on M. This follows since the signature
at p € M can be characterised by an appropriately chosen orthonormal basis
at p reflecting the signature of g(p) and then parallel transporting it to any
other point of M.
As shown earlier, V gives rise to a type (1,3) curvature tensor Riem on
M with components R%.qy. This tensor requires only a connection for its
existence. However, because of the existence of the metric g, one has the
(smooth) type (0,4) curvature tensor with components Raped = JaeRpea and
which has the important index symmetry conditions obtainable from chapter
2

o 1 ad(agdb 09dc 5gbc)' (3.3)

)

Raped = —Rapde = _Rbacch Rapea = Rcdabv
Rabcd + Racdb + Radbc =0. (34)
One can then contract to get the important, second order, type (0, 2), smooth,

symmetric Ricci tensor denoted by Ricc, with components R, and the as-
sociated smooth Ricci scalar denoted by R, and given by

Rab = ngRcadb = Rcacb = Rbav R= Rabgab' (35)
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The symmetry of Ry in the indices a and b follows easily from its definition
and the second equation in (3.4). One also has the (differential) Bianchi iden-
tity satisfied by Riem with a semi-colon denoting a covariant derivative as in
chapter 2,

Rabcd;e + Rabde‘c + Rabec;d = 0 (36)

which after a contraction with g¢g®® gives (R, — 7(5‘1) = 0 (the twice
contracted Bianchi identity). If (M, g) is such that at each p € M Ricc is
proportional to g, (M, g) is called an Einstein space. Then (3.5) shows that
the proportionality function is % and so, in components, Ry, = %gab and
the twice contracted Bianchi identity then shows that, since n # 2, R is
constant on M. If R # 0, (M, g) is called a (proper) FEinstein space and if
R = 0, Ricc = 0 and (M, g) is called Ricci flat. (In the case of Lorentz
signature, (M, g) is called a vacuum if Ricc = 0 for reasons related to its use
in Einstein’s general relativity theory) It is also useful to define the smooth,

symmetric, tmcefree Ricci tensor Rice with components Rab = Ry — %gab

(Rcc = 0). Thus Ricc = 0 on M if and only the Einstein space condition
holds on M. If (M, g) is flat, so that Riemn = 0 on M, it can be shown that,
given p € M, there exists a chart x with domain U containing p such that
the metric g has constant tensor components g, on U which may be selected
as the appropriate Sylvester matrix for the signature of g. A metric whose
Levi-Civita connection leads to an identically zero tensor Riem is sometimes
referred to as a flat metric and V is then a flat connection.

If g and ¢’ are two (global) smooth metrics on M satisfying ¢’ = ¢g for
some smooth ¢ : M — M, g and ¢’ are said to be conformally related with
conformal factor ¢. For this situation there is an important, smooth, type
(1,3) tensor, the Weyl conformal tensor, denoted by C' and with components
C%peq in any coordinate domain given by [84, 30]

1
Cbea = Rea + —— (0% R — 0%Ra + goc R — gralt*c)

+(n_1)}§n_2)(5acgbd — 6%agbe)- (3.7)

It is noted that the Weyl conformal tensor requires a metric for its existence.
It was introduced by Weyl for the reason that if ¢ and ¢’ are two confor-
mally related metrics on M their Weyl conformal tensors C and C' are equal.
This tensor has the important property of being tracefree, in the sense that
Cuer = 0. The Weyl tensor can be written as a smooth, type (0,4) tensor,
with components Cyupeq = GaeCCheq- This latter tensor is very useful but it
obviously does not have the above “conformally invariant” property enjoyed
by C. One can now write down a useful expression which tidies up (3.7) by
introducing a smooth type (0,4) tensor E on M,

R
Rac :Cac Eac — ~ Yac — Yadfcb ), 3.8
bed bed t bd+n(n_1)(9 9db — YadJeb) (3.8)
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where

1 ~ ~ ~
Eabcd = m(Racgdb - Radgcb + Rbdgac - Rbcgad)~ (39)

The tensor E, referred to here simply as the E tensor, has the index symmetry
properties given by

Eabcd = _Ebacd = _Eabda Eabcd = Ecdab7

Eabcd + Eacdb + Eadbc = 07 Ecacb = Rab Eabab =0. (310)

Thus for p € M, E(p) = 0 if and only if R;Ec(p) = 0 if and only if the Einstein
space condition holds at p. The Weyl conformal type (0,4) tensor has the
properties

Oabcd = _Cbacd = —ULabdes Cabcd = C(cdaba
Cabcd + Cacdb + Cadbc =0, Ccacb = 0. (311)

In the event that C = 0 on M, (M, g) is called conformally flat and it can
then be shown that each p € M admits an open neighbourhood U such that
the metric g, restricted to U, is conformally related to a flat metric on U.
Conversely if these latter conditions hold, (M, g) is conformally flat.

3.3 Algebraic Remarks, Bivectors and Duals

For the rest of this chapter, it is assumed that, in addition to the other
properties forced upon M, one now has dimM = 4. There are thus three
possibilities for the signature of g on M (up to multiplicative signs, as before);
(+,+,+, +) (positive definite signature), (—, +, +, +) (Lorentz signature) and
(+,+,—, —) (neutral signature). A few remarks can now be made regarding
tensor classification on such manifolds. Before making them a few important
comments will be given and which involve the identification of tensors of
different types but which are related by the metric. The concept of raising
and lowering indices, using the metric, gives isomorphisms between tensor
spaces and as long as M admits a metric and this metric is specified the
identification of these spaces will be assumed. For example, if W is a tensor
of type (0,2) with components Wy, it uniquely determines a tensor of type
(1,1) with components W%, = ¢g*“W, a type (1,1) tensor with components
Wob = ¢g*W,. and a type (2,0) tensor with components W = g4g*dW .
These tensors (taking care with the position of the indices) will sometimes be
used interchangeably. This is usually assumed but there are places in this book
where care is needed because of the potential existence of another metric on M.
It is remarked here that, on occasions, a contraction will be needed between
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complez tensors. This will be accomplished naively by multiplying out the
products in the contraction. Thus, for example, if p,q,r, s € T, M and p + iq
and r+1is are members of the complexification of T, M then, with an abuse of
notation, g(p+iq,r+1is) = g(p,r)—9g(q,s)+i(g(p, s)+g(q,r)). It is convenient
to keep the inner product notation and to write this as (p+iq) - (r +is) (and
similarly to write (p+iq)-(p+iq) as [p+ig|). It is also convenient, if |[p+ig| =0
but p 4 iq # 0, to refer to p + iq as “null”.

Let (M, g) be as before with g of any signature and let S be a symmetric
type (0,2) tensor at p € M so that in any chart « whose domain contains
p, S has components Sy, = Sp,. So S may be regarded as a linear map on
T,M given by v — S%v® for v € T,M (and recalling the remark above,
S% = g*°Sep). This will be referred to as the linear map on T, M associated
with S. Then the classification theory discussed in chapter 1 may be applied
to S(p) (but noting that the index contracted in this expression for eigenvec-
tors has been changed from the first, as in chapter 1, to the second index for
convenience. Since S is symmetric this makes no difference). Thus a (real or
complex) vector w is called an eigenvector of S and A € C its corresponding
eigenvalue (with respect to g) if one has S%w® = Aw® = Adfw®. This is equiv-
alent to Syw® = Aggpw?. It is important to note that in the first of these 5%,
is, in general, no longer symmetric whilst in the second, although Sg; is sym-
metric, the signature of g, must be taken into account (cf the work in section
1.5). The subspace Sp(w) spanned by w is the eigendirection determined by
w. Also suppose w,w’ are independent (real or complex) eigenvectors with
respective eigenvalues i, v € C, Sypw® = pgapw? and S,pw’® = vgapw’®. Then
using the symmetry of S one finds (¢ — v)(w - w’) = 0 and so if p # v, then
w-w' = 0. Further, if 4 = v one may always choose w and w’ within Sp(w, w’)
to be orthogonal. To see this note that if all members of Sp(w, w’) are null then
w~+w’ is null and hence w-w’ = 0. Otherwise, some such w satisfies w-w # 0
and if w - w’ # 0 there exists A € C such that w and w + Aw’ are orthogonal
eigenvectors. It is also noted here that if U C T, M is a real invariant subspace
for (the map associated with) S, then its orthogonal complement U~ is also
invariant. To see this note that, since U is invariant, for any v € U and any
r e UL, Spubr® = 0. Hence S%r® lies in UL and this completes the proof. In
fact, the map associated with S must admit an invariant 2-space. To see this
note that f must admit a (real or complex) eigenvector. If f has a complex
(non-real) eigenvector its real and imaginary parts span an invariant 2-space.
If f has all eigenvalues real then either there are at least two independent ones,
whose span is then invariant or there is only one with associated elementary
divisor non-simple. In this latter case the first two members of a Jordan basis
span an invariant 2-space (chapter 1). It is stated here that the term “com-
plex” as applied to an eigenvector means that it is not real and has a non-real
eigenvalue. This avoids the situation when, say, r and s are real eigenvectors
for some tensor each with real eigenvalue a then r + is are trivially complex
eigenvectors with real eigenvalue a. Later in this chapter this convention will
also be adopted in dealing with “complex” eigenbivectors.
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Again with g of any signature let F' be a type (0, 2) skew-symmetric tensor
at p € M so that in any chart domain containing p the components of F' satisfy
F,, = —Fy,. Henceforth such skew-symmetric tensors, sometimes called 2-
forms, will be referred to here as bivectors (and, recalling the above remarks,
the liberty will be taken on occasion of writing such a bivector as the tensor of
type (1,1) with components F®;). The 6-dimensional real vector space of all
such bivectors at p is denoted A, M. Since F' is skew-symmetric, its rank, as a
matrix, is an even integer as is known from elementary algebra, that is, 2 or 4.
If F has rank 2 it is called simple and in this case one may find two independent
members k, k' € T,M such that Fupk? = F k' = 0. Such a vector k (or k')
will be said to annihilate F'. One can then check that there exists p,q € T, M
such that Fo = p2¢® — ¢%p®. In fact, one may, in addition, choose p and ¢
orthogonal by an argument similar to one given above. Of course, p and ¢
are not uniquely determined by F but the 2-dimensional subspace (referred
to as a 2-space) of T,M spanned by p and ¢ is uniquely determined and
called the blade of F'. Sometimes one writes, somewhat informally and where
no confusion can arise, F' = p A ¢ and, indeed, the symbol p A ¢ will also
sometimes be used to denote the associated blade. For purposes of calculation,
pAq = (p®q®—q®p®). [Sometimes the blade of F' and its orthogonal complement
are referred to as the canonical blades of F' but the blade of F' will always mean
that which is given above.] If F' has rank 4 it is called non-simple (and this
rank classification is independent of the tensor type chosen for F' since the
matrix representing ¢ is non-singular). Again F' may be regarded as a linear
map on T, M given by v® — F%,0°. [Once again the contracting index has been
changed (cf chapter 1) from the first to the second, as was done above for the
tensor S. In this case a change of sign arises, but no other problems, occur.]
Again one calls w a (real or complex) eigenvector of F' with corresponding
eigenvalue A € C if F4uw® = \w® = A(Sgwb or, equivalently, Fyw® = Agapw®.
Two things are noted here from the skew-symmetry of F; if w is an eigenvector
of F with eigenvalue A a contraction with w easily shows that A(w - w) =0
and so if w is not null, A = 0, and if w,w’ € T,M are eigenvectors of F
with eigenvalues p and v then (4 + v)(w - w’) = 0 and so either = —v or
w - w' = 0. It is remarked here that for a real, skew-symmetric tensor at p
the real and imaginary parts of a complex (non-real) eigenvector span a (real)
invariant 2-space at p. Further, a similar argument to one given above in the
symmetric case shows that an invariant 2-space always exists and that if U is
an invariant subspace for (the map associated with) F then so also is U~.

*
If F € A,M its dual is the bivector I’ € A,M defined in components by

*

Fapy = 3eapcaF = 31/ | (det g) | SapeaF*® where S4peq is the usual alternating
SyInbOl and €abed = \/ | (det g) ‘ 6abcd~ ((sabcd = _5bacd = _5abdc and 5abcd -
dcdab and similarly for €,peq.) Thus * is a linear map on A, M. [It is remarked

here that F' only behaves as a tensor under a coordinate transformation with
positive Jacobian. This will be seen to cause no essential problems in what is
to follow.] It can then be shown from the properties of * (see, for example,
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[33, 14]) that the dual of F satisfies F' = £F with the plus sign applying for
signatures (+,+,+,+) and (+,+,—, —) (that is, detg > 0) and the minus
sign for (—,+,+,+) (detg < 0). Thus the linear map x has eigenvalues +1
for positive definite and neutral signatures and +i for Lorentz signature. The
following general relations hold for all signatures.

Lemma 3.1 The following conditions are equivalent for a mon-zero bivector
Fatpe M.

(i) F is simple,
(i) There exists k € T,M (k #0) satisfying Fupk® = 0,

(#i1) F is simple,

*

(iv) FapFb =0,

(v) FapF® =0,

(vi) Fapke + Fpcko + Feaky = 0 for some non-zero k € T,M. (k necessarily
lies in the blade of F'),

(vii) FapFeq + FocFap + FaaFpe = 0.

Proof By definition, (i) and (i) are equivalent and then (i) and (4i7) are
equivalent by a direct substitution of the expression given earlier for a simple

F into the expression for F' and use of the properties of the alternating symbol.
Thus (4), (i¢) and (i) are equivalent (and it is easily seen that, for simple F,
*

the blades of F' and F are orthogonal with the annihilators of F' spanning the

blade of F and vice versa). A simple calculation then shows that if F' is simple
and if k is a non-zero member of the blade of F' then (vi) holds and that if
(vi) holds a contraction with any k' € T,M satisfying k - k' # 0 shows that
F is simple and that k lies in the blade of F. Thus (¢), (i¢), (#i¢) and (vi) are

equivalent. The orthogonality of the blades of a (simple) F' and F then show
that (i) = (iv) and if (¢v) holds, and since F' # 0 means there exists k € T, M

such that F,,k® # 0, a contraction of (iv) with k. shows that F is simple. A
contraction of (vii) with this vector k then reveals (vi) and so F is simple and
if F is simple (vii) is easily shown to hold. Thus (i), (i%), (i), (iv), (vi) and
(vit) are equivalent. Finally if F' is simple, (v) easily follows from (iv) and if
(v) holds then that condition is equivalent to eqpeqF?F = 0 which, with
some manipulation of the e symbol, is equivalent to (vii). O

The following result can now be proved.

Lemma 3.2 Let V' be a subspace of ApM such that all members of V' are
simple. Then dimV < 3 and all such subspaces V. may be easily found.
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Proof The proof that dimV cannot be greater than 3 involves assuming
that dimV > 4 and then constructing a 3-dimensional subspace U of A, M
all of whose non-trivial members are non-simple [34]. Then using the for-
mula dim(U N V) =dimU+dimV —dim(U + V) gives the contradiction that
dim(U NV) > 1 and so some member of U is non-simple. The construction of
U depends on the signature of g and will be given in the appropriate place. It is
noted first that if V has the propertles 1n the statement of the lemma, then so

does the 3-dimensional subspace V {F F € V}. Suppose dimV = 1. Then
V is spanned by a simple bivector. If dimV = 2 let V be spanned by indepen-
dent F,G € A,M. Then F, G and all linear combinations F'+ AG are simple.

For this last bivector one has, from lemma 3.1, (Fp + AGap)(Fb. +AG?,) =0

and, using the fact that F' and G are simple, one finds G, F?, + Fy, G, = 0.
Now there exists 0 # k € T, M such that F,,k? = 0 and so on contracting

the previous equation with k% one finds (Ggpk®)Fb. = 0. If Gk® = 0, k
lies in the intersection of the blades of F' and G and hence the blades of F
and G have a non-zero common member. If G,,k® = kj is not zero then £’

annihilates F' and hence lies in the blade of F' (as well as that of G). Thus if
dimV = 2 then V is spanned by simple bivectors whose blades intersect in a

1-dimensional subspace of T,, M. Then, of course, the blades of F' and G also
intersect in a 1-dimensional subspace of T, M.

Now suppose dimV = 3 and let V' be spanned by simple independent
bivectors F,G and H. Consider the subspaces of V' spanned by the pairs
{F,G}, {F,H} and {G, H} and which satisfy the conditions of the previous
part of the lemma. These pairs supply, respectively, non-zero k1, ko, k3 € T, M
satisfying Fpk? = Gapk? = 0 and similarly for the other pairs. Consider
the span Sp(ki, k2, k3). If this is 1-dimensional there exists v € T, M which

annihilates each of F,G and H and hence lies in each of the blades of ]t—',
G and H. If this span is 2-dimensional say with k; and k; independent and

k3 a linear combination of them, then k; and ko span the blade of F' and
ks = ak1 + Bko ( ,B € R). Then whatever the choices for o and 8 one sees

that F G and H are not independent and hence nor are F'; G and H and
a contradiction follows. If the span of (k1, ko, k3) is 3-dimensional then k1, ko

* %
and k3 are, respectively, in the intersections of the pairs of blades of {F, G},

{F,H} and {G,H}. Thus F, G and H are proportional to k1 A k2, k1 A k3
and ko A k3, respectively, and so any 0 # k € T, M orthogonal to ki, ko and
ks is unique up to a scaling and is common to the blades of F,G and H.
Thus if dim V = 3, V = Sp(F, G, H), either the blades of F,G, H intersect

in a 1-dimensional subspace of T, M or the blades of F,G, H intersect in a
1-dimensional subspace of T}, M. O
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From the metric g on M one may define a (bivector) metric P on A,M,
where for F,G € AyM, P(F,G) = PupcaF*°G? where Pupeq = %(gacgbd -
gadgbc)(p) and s0 Puped = —Poacd = —Pavde, Pabed = Pedabs Pabed + Pacdb +
P,ape = 0 and P, = %gab. For any bivector F' one may use P to raise and
lower skew-symmetric index pairs since F,p = PupeaF? and so P(F,G) =
F,G. Usually one writes P(F,G) as F'- G and F - F is denoted |F|. It
is easily checked that if g has positive definite signature P also has positive
definite signature, if g has Lorentz signature P has signature (+, +, 4+, —, —, —)
and if g has neutral signature P has signature (+,4+,—,—,—, —). It is also
useful at this point to introduce the notation for the complete symmetrisation
and complete skew-symmetrisation of tensor indices (or a collection of tensor
indices) by enclosing them inside round or square brackets, respectively. [This
notation will not be excessively used: writing out the full expression, whilst
longer, is often more easily visualised.] Thus, for example, if T' is a type (0, 2)
tensor and W is a type (0, 3) tensor with respective components Ty, and W,
one defines

1 1
Tar) = §(Tab + Tha)s Tlap) = i(Tab —Tha) (3.12)
and
1
W(abc) = E(Wabc + Wbca + Wcab + Wbac + cha + Wacb)a (313)
1
W[abc] = E(Wabc + Wbca + Wcab - Wbac - cha - Wacb)- (314)

Thus for the curvature tensor, the third symmetry in (3.4) may be written
Rajpeq) = 0, for the tensor E in (3.10) Eqjpeq = 0, for the Weyl tensor in (3.11)
C%beq) = 0 and for the bivector metric Pyp.q) = 0 whilst conditions (vi) and
(vii) in lemma 3.1 may be written Fiak, = 0 and F,pF.q = 0. With this
notation one may establish the following result which will be useful later in
decompositions of the curvature, Weyl and E tensors.

Lemma 3.3 (i) Let F' and G be simple bivectors at p € M. Then

Fa[chd] + Ga[chd] =0 (315)

if and only if the blades of F' and G intersect non-trivially.
(ii) Let F = P+ Q and G = P — @ be bivectors at p € M with P and Q
simple. Then (3.15) holds for F and G.

Proof For (i) if F and G are proportional the result follows trivially from
lemma 3.1. So suppose that F and G are (simple and) independent and satisfy
(3.15) and let k € T,M be an annihilator of F with G,k = k) # 0, so that
k' is in the blade of G. Then a contraction of (3.15) with k* and use of lemma
3.1(vi) shows that &k’ lies in the blades of F' (and G). Conversely, if the blades
of F' and G intersect non-trivially then H = F'+G is simple and a substitution
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into lemma 3.1(viz) and use of the fact that F' and G are simple reveals (3.15).
For part (i), substitute = P+ @Q and G = P — @ into the left hand side of
(3.15) and after some obvious cancellations and by using the fact that P and
@ are simple (lemma 3.1) one achieves zero. [It is remarked here that (3.15)
could hold with F' simple and G not. For example and for a basis p, q,r, s at
p, F=pAsand G = pAq+rAs,as is clear from the first part of this lemmal]
(I

The 6-dimensional real vector space ApM of bivectors at p can be given
the structure of the 6-dimensional manifold R. Consider the 6-dimensional
open (hence regular) submanifold Aj, M C A, M of all non-zero bivectors and
let ~ be the equivalence relation on A7 M given, for F,G € Aj,M, by ' ~ G if
and only if F' = vG for 0 # v € R (see, e.g., [31]). Then A} M/ ~ is a quotient
manifold of A}, M diffeomorphic to the projective space PR® with associated
smooth submersion p : Aj,M — A M/ ~ and whose members are sometimes
referred to as projective bivectors. The advantage of this construction arises
from the fact that simple bivectors at p € M determine their blades uniquely
but a 2-space in T,M only determines an equivalence class (in the above
sense) of simple bivectors. To introduce the set of simple bivectors consider

the smooth map f : A;M — R given by F — F,, F** = %eabch“bFCd. Choose
a basis x,y, z,t for T,M (with the basis members being mutually orthogonal
unit vectors so that it applies to any of the three signatures) and then a
(bivector) basis z Ay, x A z,y A z,x At,y At,z At of A,M so that the first
three members of this latter basis are, up to signs, the duals of the last three.
Then it follows that, for 0 # F € A,M, f(F) is quadratic in the components
of F' in the bivector basis. The simple members of A,M constitute the set
f71{0} (lemma 3.1(v)) and using the above bases, f may be checked to have
rank equal to 1 on f~1{0} whatever the signature of g. Thus the set of all
simple bivectors at p constitute a 5—dimensional regular submanifold of A;M
and hence of A, M (chapter 2). Now A, M is connected, Hausdorff and second
countable and hence admits a positive definite metric, say . So consider the
smooth map h : A)M — R given by F' — ,y{l(wF})
so leads to a smooth map A’ : A M/ ~— R where h = h’ o i (chapter 2) and
where h'~1{0} is the set of projective simple bivectors. Now since f has rank
1 on the set of all simple bivectors at p, f~1{0}, it can be checked that h has
rank 1 on the set h'~1{0} of all projective simple bivectors. It follows that,
since h = h/ o u with p a submersion, h’ also has rank 1 on the set A'~1{0}
of all projective simple bivectors and hence that this latter set can be given
the structure of a 4-dimensional regular submanifold of the manifold of all
projective bivectors (section 2.7). Useful information for rank calculations for
such maps can be found in [9].

To complete this argument consider the set of all 2-spaces of T}, M. This set
is in bijective correspondence with the manifold of projective simple bivectors
above. Then such a 2-space U is determined by 2 independent vectors at p
thought of as column vectors of a 4 X 2 matrix of rank 2 in some basis of T, M.

This map respects ~ and
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Suppose that the first two rows of this matrix are independent. Then U de-
termines exactly one such matrix whose columns are (1,0, ,y) and (0,1, a,b).
So the subset of the set of 2-spaces to which this applies is in bijective cor-
respondence with R* by associating each member with (z,y, a,b) and one is
lead to a chart for this set of 2-spaces at p. This can then be extended to
give a smooth 4-dimensional manifold structure to the set of all 2-spaces of
T,M called the Grassmann manifold of all 2-spaces of T, M and is denoted
by G(2,R*) (cf section 2.7). Any two independent members of such a 2-space
with components say X* = (1,0,z,y) and Y* = (0,1, a,b) then give rise to
the simple bivector F?% = X°Y? — Y2X? with coordinates (in R®) in some
pre-chosen order (1, a,b, —z, —y, b — ya) and so the coordinates of the corre-
sponding projective bivector (in PR®) may be given by (a, b, —x, —y, 1b — ya).
Since G(2,R*) and the set of projective simple bivectors at p are in a bijec-
tive correspondence, with the latter a regular submanifold of the manifold of
projective bivectors PR® at p, one may identify G(2,R*) as a subset of PR®
and then the map (z,y,a,b) = (a,b, —x, —y,xb — ya) is a smooth coordinate
representative of the inclusion map G(2,R*) into PR®. This map is of rank 4
and shows that G(2,R?) is a 4-dimensional submanifold of PR®. Thus the set
G(2,R*) and the set of projective simple bivectors can be identified and each
has the structure of a 4-dimensional submanifold of PR® with the latter reg-
ular. It follows (section 2.7) that these manifolds are diffeomorphic. Thus one
may regard projective simple bivectors as the Grassmann manifold G(2,R*).
It is remarked here that G(2,R?*) is Hausdorff, compact, second countable and
connected [9] and is a closed subset of PR®. The work in the last two para-
graphs made no use of a metric on M and hence applies to each of the three
signatures to be considered for M.

The 6-dimensional vector space A,M of bivectors at p can be given
the structure of a Lie algebra in the following way (and which involves,
as explained earlier, the identification of F,, with F%, = ¢%F, or with
F,> = g®F,.). For F,G € A,M define in one (and hence any) coordinate
system the product [F, G] = F,.G — G 4. F¢, which is clearly skew-symmetric
in the indices a and b. This product, sometimes referred to as the commutator
of F and G (in matrix language it is F'G — GF), can be checked to satisfy
the conditions required of a Lie algebra given in chapter 1. The symbol A, M
will still be used to denote this Lie algebra. Its subalgebras will turn out to
be important.

One can extend the dual operator to the type (0,4) tensors E and C but
noting that because of the existence of two pairs of skew symmetric indices
one has two duals, right and left, indicated by the positional placing of the
duality operator symbol, for each of these tensors and which are given by (see,

e.g. [14])

1 1
>kC’abcd = 5\/(det‘g|)5abefoefcda :bcd = 5\/(det|g|)cabef(scdef (316)
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and with analogous expressions for the tensor E. Thus the type (0,4) tensors
C*, *C, E* and *F are skew-symmetric in the first and also in the second
pair of indices. One may then apply a useful formulae, known as the Lanczos
identity (see, e.g.[14], page 51, but care should be taken since the definition of
the tensor E there differs from that used here), to get, in an obvious notation,

C=C", C* = eC, *E=—-FE", *E* = —¢E, (3.17)
where ¢ = 1 for positive definite and neutral signatures and ¢ = —1 for
Lorentz signature. It is easily checked that the first two equations in (3.17) are

equivalent, as are the last two (cf the expression F' = ¢F for these signatures
given earlier this section). It should be noted that some of the above relations
are independent of signature and so do not depend on €. It is also noted that
from the first of (3.17) that

*Cabcd = C;bcd = %Cabmnemncd = %Cmnabemncd =" Ccdab- (318)
Thus the type (0,4) tensor *C' (and hence the type (0,4) tensor C*) are
symmetric with respect to the interchange of the first two indices with the
last two indices. This result is false for the tensor E where a change of sign
is involved, *E pca = —"Feqap. It can also be checked that the condition
Capea) = 0 (see (3.11)) is equivalent to *Cp = 0 and hence to C*4ep = 0
and that C = 0 (see (3.11)) is equivalent to *Cyppeqp = 0 and thus to
C;[bcd] = 0. Also *Ecp = E*®4ep = 0 and (see (3.10)) Ee = I/%; It is
also remarked for future use that the bivector metric P satisfies the following
conditions (with the definition of € and shorthand notation as above) [14]

*P*=¢P, *P=P" (3.19)

Equations (3.17) and (3.19) allow the computation of the duals * Riem, Riem*
and *Riem™ for each signature.

Lemma 3.4 For any bivectors F,G and H,
(i) F-|G,H =G -|H,F]=H - [F,G],
(i4) F-[F,G]=G - [F,G] =0,

(i) F-G=F-G,  F-G=cF-G (=|F|=dF).

Proof For (i) one computes directly, in indices, as follows. F - [G, H| =
Fba(Gachb - Hachb) = Gac(Fbchb - FCbea) = Gac(chFba -
Fe,H®,) = G - [H, F], etc. For part (ii) one simply puts F = H into the
result of part (¢) [67]. The proof of the first result in part (iéi) consists simply
of transferring the dual across. The final part then follows. g
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3.4 The Positive Definite Case and Tensor Classification

Now suppose that g has signature (+,+,+,+) on M. If z,y,z,w is an
orthonormal basis at p € M, one has the completeness relation relating this
basis with the metric at p given by gap = oy + Yalp + 2a2p + wawp at p.

*

Conversely this last relation for z,y,z,w € T, M is easily checked to imply
that x,y, z, w give rise to an orthonormal basis at p. To see this suppose the

last relation holds at p for x,y,2,w € T, M which are then clearly linearly
independent. A contraction with z° gives 2, = (z-2)xq + (2 y)ya + (z-2) 24 +
(r-w)wg and so x-x =1, -y = -2 = 2-w = 0. Similar contractions with 3,
2? and w® complete the proof. If S is a symmetric tensor at p € M and if one
chooses a chart x whose domain contains p and in which the components g,
of g at p take the Sylvester form §,, =diag(1,1,1,1), as one always can, the
eigenvector-eigenvalue problem for S discussed at the beginning of the last
section gives for an eigenvector v and corresponding eigenvalue A of S at p,
Sapv? = Noapv?. It follows from section 1.5 that, since S is symmetric, it is
diagonalisable over R and of Segre type {1111} or one of its degeneracies. This
classification thus applies to the tensors Ricc and Rice (and their Segre types

are necessarily the same, including degeneracies, from the definition of Ricc).
It is remarked (and easily checked) that in this case any invariant 2-space of
S contains two independent (real) eigenvectors which may be chosen to be
orthogonal.

If F is a simple bivector at p € M one may always write

%
Fup = auguy — vaup) for real associated w,v € T,M with | u |=| v |= 1
and a € R. One may always choose u and v to be orthogonal and then
Fod = au®, FYub = —av® and if r,s € T,M with the 2-space r A s or-
thogonal to the 2-space u A v (and choosing r and s unit and orthogonal),
Fort = F%s® = 0. Thus u,v,r,s constitute an orthonormal tetrad and
Foy(ub £ iv®) = fia(u® £ iv?) so that F is diagonalisable over C with eigen-
values ia, —ia, 0,0 and this is designated by the Segre symbol {zz11} with
the symbol “z2Z” denoting a complex conjugate pair of (non-real) eigenvalues.

In the above language, F' is proportional to r A s and its blade is the zero-
eigenspace of F'. Thus in this case F' uniquely determines the 2-spaces p A g
and r A s. [It is noted here that in the positive definite case a subspace of T, M
together with its orthogonal complement, as defined earlier, are orthogonal
complements in the usual sense of the word, that is, their span is T),M ]
Now suppose that F' is a non-simple bivector at p. Then the non-simple
condition shows that all its eigenvalues are non-zero. Results in section 3.3
above show first that, since g is positive definite, any real eigenvector of F
(which cannot be null) must have a zero eigenvalue and this contradiction

reveals that all eigenvalues are (non-zero and) complex. Second if k and k
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are a complex conjugate pair of (complex) eigenvectors, Fk® = Ak, and
Fak® = Mkg, A\ € C and k = x + iy for z,y € Tp,M then A+ A =0or
k -k = 0. The latter gives the contradiction |z| + |y| = 0 and so A = ia for
0 # « € R. Then, since a # 0, the condition that = 4 iy are null, |z +iy| = 0,
shows that |z| = |y| and = -y = 0 and so x and y are orthogonal. So = Ay
is a (real) invariant 2-space for F and its orthogonal complement, which is
also invariant, is easily seen to yield another conjugate pair of eigenvectors
z & iw with eigenvalues £if and with z,w € T,M and 0 # § € R. If o # 0
the Segre type of F is {zZww} and one has (z £ iy) - (¢ &+ iw) = 0, that is,
z-z=x-w=y-z=y-w=_0. Thus in this case the eigenvectors are each
determined up to a complex scaling and so the 2-spaces x A y and z A w are
uniquely determined by F and orthogonal and are referred to as the canonical
blades of F. The vectors x,y, z, w, after scalings, form an orthonormal tetrad
at p and

Fop = a(xqyp — Yaxp) + B(zawp — wazp). (3.20)

Now suppose F' is non-simple but the eigenvalues above are equal, say,
a = [ (the case & = —f is similar). The Segre type of F' is then written
{(22)(2z)} and the eigenvectors of F' may be taken as x + iy and z + iw
(eigenvalue ia) and = — iy and z — iw (eigenvalue —ia). However, the 2-
spaces z Ay and z A w are not now uniquely determined by F'. To see this let
2’ y’, 2/, w' be another orthonormal basis at p, let F/ = a(z’ Ay’ + 2/ Aw')
and suppose F' = F’. Then 2’ + iy’ is an eigenvector of F' = F and thus lies
in the ia— eigenspace of F' spanned by z + iy and z + w. Assuming that F’
is not obtained from F' by the trivial switch 2’ Ay’ = 2z A w, one can write

¥ +iy = K(z+iy) + (c+id)(z +iw), 2 + 1w’ = K'(z +iw) + (m+in)(z +iy)

(3.21)
where K, K',c,d,m,n € R with K > 0 < K’. Here, complex scalings have
been used to make K and K’ real and positive and correspond to ignoring
rotations of z,y in x Ay and similarly z,w in z A w (which would not change
the 2-spaces x Ay and z Aw). Applying the usual orthonormality condition on
the basis 2/, 9, 2/, w’ then shows that F' may be written either as proportional
to a(x Ay+zAw) or to a(z’ Ay + 2/ Aw') provided that (after normalising)

¥ =K(x+cz—dw), y =Ky+dz+cw), 2 =K(z-cx—dy),
w=Kw—cy+dz), (K=1+A3+d?)"2). (3.22)

In this case any such pair of blades 2’ Ay’ and 2z’ Aw’ (and including the pair
x Ay and z A w) will be referred to as a canonical blade pair for F.

Thus, algebraically, a bivector at p may be either simple, non-simple of
Segre type {zzZww} with no degeneracies or non-simple and of Segre type
{(22)(2z)}. These remarks essentially complete the classification of bivectors
for positive definite signature.
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This argument regarding the ambiguity in the above tetrad for F' may be
viewed in another important way (see, e.g. [32, 34]). Define two 3-dimensional

+ —
subspaces S, and S, of A,M by
+ * — *
Sp={Fe€AM:F=F}, Sp={F €A,M:F=—F}. (3.23)

+ —
The subspaces S, and S}, are sometimes referred to as the subspaces of self
+ —
dual and anti-self dual bivectors at p, respectively. Then clearly S, NS, = {0}
and since any F' € A, M may be written as §(F + F) 4+ §(F — F), that is, as

+ —
the sum of a member of S, and a member of S, and clearly in a unique way,
one sees that A, M is a direct sum

+ —
AM =S, + S, (3.24)

+ — *
Thus a bivector G is in S, (respectively, in Sp) if and only if G = F + F
(respectively, G = F — F') for some bivector F'. By viewing the dual operation

as a linear map on A, M it follows, since € = 1 for this signature, that F' = F,
and so this map has only the eigenvalues £1 and the decomposition (3.23)

shows that the corresponding eigenspaces are 5”; and gp, respectively. It is
clear that if F is simple it is independent (in A,M) of ;—' As a consequence of
this and for any F' € A,M, F' and ]t_' are independent if and only if either F' is
simple, or F' is non-simple and F' ¢ :S'; where :S'; = §p U §p. It follows that all

non-trivial members of S’; are non-simple [and érp or S, give convenient exam-
ples required for the completion of the proof of lemma 3.2 for this signature
(private communication from Z Wang)]. In fact if one chooses an orthonormal
tetrad z,y,z,w at p and arranges its orientation so that (z A y)* = z A w,

+
(x A2)* =wAyand (z Aw)* = y Az then S, has a basis consisting of

(xAy+zAw),(xAz+wAy) and (x Aw+ y A z) whilst a basis for §p is
(xANy—zAw),(zAz—wAy)and (x Aw —y A 2z). In fact, the non-simple
bivector (3.20) is in S, if and only if & = . The following results now hold.

+ —
Lemma 3.5 (i) If F € S, and G € S, then F -G = 0 and [F,G] = 0. For
QR e MM, [Q, R = [Q,R] = [Q, R]" and [Q, R] = [Q, R].
+

(13) If A,B,C denote, respectively, the basis members above for S, then
|[Al=|B|=1|Cl=4and A-B=A-C = B-C =0 and using the com-
mutator operator, [A,B] = —=2C, [A,C] = 2B and [B,C] = —2A. Writing
24" = —A, 2B’ = —B and 2C' = —C one gets the more usual form
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[A,B'] = C', [B',C'] = A’ and [C',A'] = B’ for the algebra product and

+ +
with A, B',C" an orthonormal basis for S,. Thus S, is a Lie subalgebra of
A, M and, in fact, is isomorphic to the Lie algebra o(3) (see,e.g. [83]). Similar

—_ + —
comments apply to the subspace S,. Thus S, and S, are isomorphic. Neither
+
has a 2-dimensional subalgebra. Thus if A, B € S, are independent, [A, B] # 0,

and similarly for b:p.

(43¢) Suppose 0 # A € ApM \ S,. Then for X € A,M, [X,A|=0= X is

* +
a linear combination of A and A. If A € S, and [X,A] =0, then X = AA+Q
where A € R and Q € §p and similarly for A € gp.
+ —

(iv) Let F € S, and G € S, with |F| = a(> 0) and |G| = B(> 0). Then
there exists a unique pair of simple bivectors in the span Sp(F,G) and which
are duals of each other and given by H = F + kG and H = F — kG where

K= (%) . Thus 2F = H+ H and 26G = H — H. It thus follows from lemma
3.3(i1) that one has FypGeq) + GapFeq) = 0.

S

+
(v) If F,G € S, are non-zero and have a common canonical blade amongst
their collective canonical blade pairs then they have a common canonical blade

pair and are proportional. Similar comments apply to §p.

+ —
(vi) If F,G,H € S, or F,G,H € S, the relations |[F,G]| = |F||G| —
(F-G)? and [F,|G,H]| = (F - H)G — (F - G)H hold.

(vii) If f is a Lie algebra isomorphism from any of §p and S; to any of
g'p and S_p then for F € §p (or §p), |F| = |f(F)]|.

Proof The first result in part (i) follows from lemma 3.4(4i7) whilst the
second result in part (7) follows from a direct calculation from the above bases
for 5’; and 5;. For the rest of part (i) one writes Q@ = F'+ G with F € SJ'; and
Ge §p and similarly for R and uses the previous result. The fact that g’p and
STp are subalgebras is important here.

The first of part (#¢) requires a calculation from the above bases for SJ’rp and

Sp. For the last part of (i7), let G, H span a 2-dimensional subalgebra of SJ’;,.
Then it is clear that, by taking judicious linear combinations one can arrange
that, in terms of the basis A, B,C, G = A+aB, H = C, or that G = A+ 0C,
H = B+ ¢C for a,b,c € R. Then setting [G, H| = uG + vH (u,v € R) no

solutions for the real pair (u,v) are possible. Similar comments apply to Sp,.
The final statement in (i4) is clear.
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For part (i7i) write X = )+(+)_C and A = Z—i—/_l for ;(,jzl € 5’; and )_(,;1 €
S’;. Then one has [)JE + )}, jl + ;1] = 0 and so, since §p and STp are subalgebras
with only trivial intersection, parts (i) and (i7) give [)Jr( , Il] = [)} , ;1} = 0. Thus
iftAe ApM\g;, jé_l and A are each non-zero and since neither S—i, nor §p has a

Jr —
2-dimensional subalgebra, X and X are multiples, possible zero, respectively,
+ - + -
of A and A and the result follows. If A € S, so that A = 0, one similarly gets

+ + _
[X,A] = 0 and X is a multiple of A (possibly zero) and X is unrestricted).
The result follows. .
For part (iv) let F € S, and G € S, with |F| =a > 0and |G| = > 0and

1

consider F'+ kG for x € R. This bivector is simple if and only if k = +(5)2

(lemma 3.1(v)) and so F and G fix a unique pair of simple bivectors in their
span in A,M given by H = F'+ kG and H = F — kG with orthogonal blades,
say, * Ay and z A w which are a pair of canonical blades for ' and G since

2F = H+ H and 2xkG = H — H. [It is remarked that if one fixes F' and varies

G one achieves the blade pair ambiguity mentioned earlier for F' € g’p.] The
rest of part (iv) is clear.

For part (v) if F and G have a common canonical blade represented by
(some multiple) of a simple bivector A, one may write ' = AA + B and

G = pA + C where B and C are simple bivectors with 1*3 = A\A and 5 = puA
(A, ¢ € R with each non-zero). It follows that B = %C and so F = %G.

+
[Curiously, if F' € S, with F' = A+ B for simple bivectors A and B it does not
follow that A = B. For example, in the above basis for T,M, F' = tAy+zAw €

§p and so FF = (zAy+axAw)+ (zAw—xAw). Then 2 Ay + z A w and
z ANw —x A w are non-zero and simple but not a dual pair. This example was
suggested to the author by Z. Wang.|

Part (vi) is readily checked to be the case by expanding out F, G and H
in terms of the basis A’, B, C' given in part (i) and computing.

+ —
For part (vii) consider the case f : S, — S, (the others are similar)
+
and choose the orthonormal basis A’, B’,C" above for S,. Then A” = f(A"),

B" = f(B') and C" = f(C’) give a basis for S,. Now since f is a Lie
algebra isomorphism [A”,B"”] = f([A",B']) = f(C') = C”, etc and so,
from lemma 3.4(i7), A”, B” and C” are mutually orthogonal. Then the first
part of (vi) above shows that |C”| = |[A”,B"]| = |A”||B"| and similarly
|A”| = |[B",C"]| = |B"||C"| and |B"| = |[C", A"]| = |C"||A”| from which
it follows from the positive definite nature of the bivector metric P that
|A”| = |B"| = |C"| = 1. The result now follows by linearity. O
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Thus g’_p and S, are each isomorphic to o(3) and (3.24) and lemma 3.5(¢)
show that A,M together with the commutator product is the product Lie
algebra o(3) + o(3). Parts (vi) and (vii) were suggested to the author by Z
Wang [67].

Now let F' be a bivector at p, regarded now as a type (1,1) tensor with
components F'%, and let h be a symmetric type (0, 2) tensor at p. Then consider
the type (0,2) tensor hF at p with components h,.F¢, [13]. If one equates
h with the metric g, the tensor hF' is skew-symmetric with components Fj;
but, otherwise, this is not necessarily true. But suppose h is such that hF is
skew-symmetric [13, 34] and cf [85].

Lemma 3.6 Suppose that h is a non-zero, symmetric tensor and F a bivector
at p € M such that the above tensor hF' is skew-symmetric, that is,

haeF% + hyeFq = 0. (3.25)

(2) If U is a (real) eigenspace of F it is an invariant subspace for h. Thus
if U is 1-dimensional, it gives an eigendirection for h.

(id) If F is simple, its blade is an eigenspace of h with respect to g, that
is, if u,v € T,M span the blade of F, haptt? = Agapub = Aug and similarly
hapv® = Avg, A € R. .

(19¢) If F is not simple and not a member of S, the (unique pair of)
canonical blades of F' are each eigenspaces of h.

(v) If F € S, then any solution of (3.25) for h, excluding multiples of g,
has a pair of 2-dimensional eigenspaces which coincide with a canonical pair
of blades for F. Each representation (and canonical pair of blades) for F, as
in (3.20) and (3.22), gives rise to a distinct solution for h whose eigenspaces
are these canonical blades.

(v) If F and G satisfy (3.25), then [F,G] also satisfies (3.25). Thus for a
fized h, the solutions F of (8.25) form a subalgebra of A, M.

Proof For part (i) suppose k is an eigenvector of F with eigenvalue a.
Then a contraction of (3.25) with kb reveals that hq,k® is an eigenvector of F
with eigenvalue o and hence lies in the a-eigenspace of F'. Thus any eigenspace
of F' is an invariant space of h.

For part (i) the blade of F is the 0-eigenspace of F' and hence is invariant

for h by part (7). Thus the blade of F', being orthogonal to that of F is invariant
for h and hence h admits two independent eigenvectors in this 2-space since
the latter has a positive definite induced metric. Writing F = p®¢® — ¢%p°
for p,q € T, M chosen so that p-p =¢q-q =1 and p- ¢ = 0 contractions of
(3.25) with p®p® and ¢%p" show that happ®q® = 0 and h.pp®p® = hapq®q® and
then the fact that the blade of F' is invariant for A shows that p and ¢ are
eigenvectors of h with the same eigenvalue.

For part (4ii) one writes out F' = (pq® — ¢*p®) + pu(r®s® — s (u # £1)
for some orthonormal tetrad p,q,r, s € T,M. Since F ¢ 5’; the 2-spaces p A q
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and r A s are uniquely determined by F', and p+iq and r 4-¢s are eigenvectors
of F with, collectively, four distinct (complex) eigenvalues. Thus p + iq and
r £ is are eigenvectors for h and hence p A ¢ and r A s are invariant for h. So
each of p, ¢, r, s may be chosen as eigenvectors of h. A back substitution into
(3.25) then reveals that p A g and r A s are eigenspaces for h.

For part (iv), and with F' € S, fixed, note that h # 0 is symmetric
and the metric g is positive definite. Thus h is diagonalisable over R. Let
x € T,M be an eigenvector for h, hapx? = /\gabscb = Az, with A € R. Then
a contraction of (3.25) with % shows that y® = F%z® (which is non-zero
since F' is non-simple) is also an eigenvector of h with the same eigenvalue A
and is independent of, and orthogonal to, x. Since h is diagonalisable, one can
choose another eigenvector z € T, M for h, hap2® = vz4, (v € R) in the 2-space
orthogonal to A y and then another, w € T, M follows, as above, given by
w? = F%z # 0 with heyw® = vw,. By choice, -y = -2 = y-2 = z-w = 0 and
a contraction of (3.25) with £%2° shows that z-w = 0. To see that z,y, z, w are
independent let ax+by+cz+dw = 0 (a, b, ¢, d € R) and contract, respectively,
with z and z to get a = ¢ = 0 and so by + dw = 0. But this last equation is
Fop (b + dz*) = 0 from which b = d = 0 follows since F is non-simple. Thus
x,Y, z,w are independent members of T, M. Now, if A = v, h is a multiple
of the metric g(p) and this is clearly a solution of (3.25). If A # v then the
eigenspaces ¢ Ay and z A w are orthogonal and so, after scalings, x,y, z, w
form an orthonormal basis at p. Next write I’ as a linear combination of the
basis bivectors x A y,x A z, ...,z Aw and use the definitions of y and w above
to reduce F' to a linear combination of Ay, 2 A w and y A w. Finally the
condition that F' € S, shows that F' is a linear combination of z A y and
z Aw only and, in fact, a multiple of A y + 2 A w (depending on whether

F e S’er or Sp). Further, hop = ANZa®p + Yap) + V(202 + wowsp), (A # v).
Thus the 2-spaces x Ay and z A w are an orthogonal pair of eigenspaces for
h and a canonical blade pair for F. Of course each representation of F' € S,
and associated canonical blade pair satisfies (3.25) for h with these blades as
eigenspaces for h.

Part (v) is easy to prove directly from the definition of the commutator by
rearranging indices. Thus one writes hq.(F¢4G% — G4F %) 4+ hye(FqG4y —
G°qF?,), expands this out using (3.25) and then shows that the first and
fourth terms cancel as do the second and third. |

3.5 The Curvature and Weyl Conformal Tensors

For the manifold (M,g) with g a positive definite metric on M one
has a bivector metric P on the 6-dimensional vector space of bivectors
A, M of (positive definite) signature denoted, as above for F,G € A,M, by
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P(F,G) = F - G. One can now define the linear curvature map f from A,M
to the vector space of all type (1,1) tensors at p in terms of the curvature
tensor Riem by [13]

f:F% = R qF. (3.26)

The range space of f is denoted by rgf(p) and is a subspace of the vector
space of all type (1,1) tensors at p consisting precisely of tensors of the form
R%.qG? for some G € A, M. Of course, if the metric g is specified, this map
may (and will), with an abuse of notation and index positioning, be regarded
as the linear map on A, M given by F 5 R _;F°? In either case the map f
has the same rank and this rank, written rankf,, is called the curvature rank
of (M, g) (or of Riem) at p [13]. Of course the associated type (0,4) curvature
tensor may be written as a sum of symmetrised product of members of rg f(p).
The curvature map, considered as the map F® — R ,F°? is self-adjoint
with respect to the bivector metric P because of the symmetries of Riem
and so the eigenvalues of this version of the curvature map f are all real and
diagonalisability over R follows. In this form one is essentially treating the
tensor with components Rgpeq (or R%.q) as a 6 x 6 matrix Rap (or R4 p)
where the “block” index A represents the (skew-symmetric) index pair ab and
B the skew-symmetric pair cd. Block indices are raised and lowered using the
bivector metric P, written in the obvious form Psp, and Psp and Ryp are
symmetric.

Now let 7gf(p) denote the smallest subalgebra of A, M containing rgf(p),
that is, the intersection of all the subalgebras of A, M containing rgf(p) [35].
It is convenient to classify the map f at p into five mutually disjoint and
exhaustive curvature classes A, B,C, D and O with O meaning that f is the
zero map, that is, the curvature tensor vanishes at p, Riem(p) = 0. These
curvature classes are [13, 55, 85];

Class D. This arises when dimrg f(p) = 1 with rgf(p) being spanned by a
(necessarily) simple bivector. In this case rgf(p) = rgf(p).

Class C. This arises when there exists a unique (up to scaling) 0 # k €
T, M which annihilates every member of rgf(p). Thus dimrgf(p) equals 2 or
3 (cf lemma 3.2).

ClassB. This arises when rgf(p) = Sp(P, Q) where P and Q are indepen-
dent members of A, M with no common annihilator and with [P, @] = 0. Thus

rgf(p) =rgf(p) and has dimension 2.

Class A. This arises when rgf(p) is not of class B, C, D or O and then
dimrgf(p) = 2.

As described here this classification into curvature classes is independent
of signature. It will be developed in the sequel for each signature separately.

It is remarked that, for class D, the curvature tensor must take the form
Raved = FupFeq at p where F spans rgf(p) and then it follows from (3.4)
that Fp,Feq = 0 and then from lemma 3.1(vii) that F' is necessarily simple.

+ —_

Also for class B one may write, for the positive definite case, P = P + P
+ 4+ - - + —

with P € S, and P € S, and similarly for Q). Then since S, and S}, are Lie
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algebras [P,Q] =0 = []45,(,5} + [1_3, C_Q] =0= []45,(5} = []B,é] = 0. Thus, since
0(3) contains no 2-dimensional subalgebras, lemma 3.5(i%i) shows that Z) and
;5 are proportional as are P and C} If jS #0 # ]37 then rgf(p) = Sp(]g7 ;’)
and similarly if é #0 # C_Q, rgf(p) = Sp(é,c_g). Otherwise, since P and @
are independent, one must have ]JS = C_Q = 0 leading to rgf(p) = Sp(é7 ;’), or
pP= Z) = 0 in which case rgf(p) = Sp(jg, 62) Thus for class B one may span

rgf(p) with two members, one from each of g'—p and Sp. Then lemma 3.5(iv)
shows that the bivectors whose span is rg f(p) may be chosen to be a dual pair
of simple bivectors which necessarily have no common annihilator.

It is easy to check that this decomposition into curvature classes is mu-
tually disjoint and exhaustive. To see this note that if dimrgf(p) = 0
(respectively 1) then the curvature class at p is O (respectively, D). If
rgf(p) = Sp(F,G) is 2-dimensional with a (unique up to scaling) common
annihilator, the curvature class at p is C' whilst if no such annihilator exists
either [F,G] = 0 or [F,G] # 0, (these conditions being easily checked to be
independent of the choice of F,G) and so the curvature class at p is B or A,
respectively. If dimrgf(p) = 3, the curvature class is C if a common annihila-
tor exists and otherwise it is A. If dimrgf(p) > 3, lemma 3.2 shows that the
curvature class at p is A. It is remarked here that if the curvature class at p
is A, each member of rgf(p) could be simple (and then dimrgf(p) = 3) as
the proof of lemma 3.2 shows. If, however, the curvature class at p is A and
dimrgf(p) = 2, rgf(p) must contain a non-simple member. These remarks
are independent of signature.

If one now also uses the symbol A to denote the subset of precisely those
points of M at which the curvature class is A, and similarly for B,C, D and
O, any two distinct members of the set of subsets {4, B, C, D, O} have empty
intersection. Further the union of these subsets equals M and so M = AUBU
CUDUO, is a disjoint decomposition of M. A final remark is that, because of
the symmetries of Riem, the curvature tensor at p may be decomposed into
symmetrised products of the (independent) bivectors in rgf(p) and so it is
easily seen [13, 34] that the equation

R%eqk? =0 (3.27)

has a non-trivial solution for £ only at those points p € M where k annihilates
each member of rgf(p) that is, at all points in the subset C U D U O of
M and has only trivial solutions for k at those points in the subset A U B
of M. However, for later purposes, one needs to be able to do calculus on
these subsets and hence a more refined decomposition is needed [13, 35]. If
0 # k € T, M satisfies (3.27) it will be said to annihilate Riem at p.
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Theorem 3.1 Let (M, g) be a 4-dimensional manifold with positive definite
metric g. Then one may disjointly decompose M as

M =intAUintB U intC UintD UintO U Z (3.28)

where the interior operator in M is used and Z is the subset of M uniquely
defined by the disjointness of the decomposition and is closed with intZ = ().
The subsets A, AUB, AUBUC and AUBUCUD are open in M and so
int A= A. Since M is connected Z = () if and only if the curvature class is
the same at each p € M.

Proof That M may be decomposed into this disjoint decomposition is
clear and then M \ Z is open in M and so Z is closed. To continue the proof
define for p € M the subspace U, C T, M to be the span of the union of all the
blades of all members of rgf(p) (the blades of each simple member of rgf(p)
together with each of the canonical blade pair(s) for non-simple members of
rgf(p)). So for p € O (respectively, D, C, B and A) dim U, = 0 (respectively,
2, 3, 4 and 4) and dimrgf(p) = 0 (respectively, 1, 2 or 3, 2, > 2). A rank
theorem (chapter 1) and the smoothness of Riem then shows that if dimU,, = k
(0 < k < 4) there exists an open neighbourhood V' of p such that dimU, > k
for each p’ € V, whilst if dimrgf(p) = k there exists an open neighbourhood
W of p such that dimrgf(p’) > k for each p’ € W. Now suppose p € A so that
dimrgf(p) > 2 and dimU, = 4. Then there exists an open neighbourhood V’
of p such that dimU, =4 for p’ € V’/ and so V' € AU B. If dimrgf(p) > 3,
however, there exists an open neighbourhood W’ of p such that dimrgf(p’) > 3
for p’ € W'. Thus V'NW' C A. If dimrgf(p) = 2, r¢gf(p) must contain a non-
simple bivector F' and another independent member F’. Thus the members of
rgf(p) have no common annihilator (since F' has no annihilators) and since
p & B, [F, F'] # 0 at p. By continuity there exists an open neighbourhood V"
of p and smooth bivectors G, G/, H and H' on V" such that Gap = Rapea H
and G, = RapeaH'® and with G(p) = F and G'(p) = F’ and V" may be
chosen so that G is non-simple and [G, G’] # 0 and so dimU,s =4 on V". But
then G(p’) and G'(p’) are in rgf(p’) for each p’ € V" and so VN B = ) and
hence V" C A. Tt follows that A is open in M. If p € B then rgf(p) contains
a non-simple member which, as above, may be extended to a smooth, non-
simple member on some open neighbourhood V'’ of p and which is in rgf(p’)
for each p’ € V. Thus V' ¢ AU B and so AU B is open in M.

Another consideration of (the) rank (of rgf) then shows that AUBUC
is open in M, being the set of points where rank(rgf) > 2 and similarly
AUBUCUD is open in M. Finally suppose Z # () and let U C Z be open.
Then by the disjointness of the decomposition of M and the fact that intA = A
one sees that UN A = . Now U N B(= U N (AU B) is open, since AU B is
open, and if non-empty, contradicts ANintB = () since then U N B CintB. So
UNB=0.NowUNC(=UN(AUBUC) is open in M and, if non-empty,
contradicts UNintC' = . It follows that U N C = (). Similarly one shows that
UND=UNO=0. Thus U = () and intZ = () which completes the proof the
last sentence of the theorem being clear. |
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This theorem may be restated by saying that M \ Z, which is clearly
non-empty, is open and dense in M and then any point in M \ Z admits a
neighbourhood on which the curvature class is constant.

Now consider the Weyl conformal tensor C' described in (3.7) and (3.11).
From (3.16) and (3.17) one has € = 1 for positive definite signature, *C' = C*

and *C* = C (cf the condition F F for a bivector for this signature).
The symmetries of C' show that, at p, one can write out Cypeq as a sum
of symmetrised product of members of a basis for A,M. Just as for the
tensor Riem one can introduce a linear map fc from A,M to the vector
space of type (1,1) tensors at p given by fo : F® — C%qF called the
Weyl map at p [32] and whose rank is referred to as the Weyl rank at p.
As before, since g is given, one may introduce the related map (also denoted
by fc) given by F® — CupeqF® and then in an obvious shorthand way
(using the identifications arising from the metric g) as fo : F — CF. Then

(feF)* = (CF)* = (*C)F = (C*)F = CF and thus fc maps the subspaces

+ —
Sp and S, of A,M into themselves, that is, they are invariant subspaces of
fo. It also follows that if F' € rgfc( ) then, at p, F' = CG for some G € A,M

and then F =* CG = C*G = CG which shows that F is also in rgfc(p) (not
necessarily independent of F'). Since the bivector metric is positive definite, the
“symmetric” map fo may be diagonalised over R and thus trivially classified
by the degeneracies of the Segre type {111111}.

One can decompose the type (0,4) Weyl tensor as

+ = + 1
C=W+W, W= (C+C), W=gC-0), (3.29)

DO =

where the type (0,4) tensors VJ[F/ and W are the self dual and anti-self dual
parts of C, respectively, and satisfy VIJ/r* = *ﬁ/ Ijlr/ and W* = *I_/V — W,
It also follows (see (3. 11) (3.17) and (3.18)) that Wabcd = chab, that
ﬁ/ afpedq) = 0 and that W acb = 0 and Slmllarly for W. The tensors W and

W give rise, in an obvious way, to maps fc and fc constructed from them as

+ +

fc was from C with fc a linear map on the 3-dimensional real vector space S,
— — — +

(acting trivially on Sp,) and fc a linear map on S, (acting trivially on S,) and

with fo = f+c + fc and then Vj[L/F = L(CF +CF) and WF = £(CF — CF).
Thus fo may be (equivalently) classified by the individual Segre types of these
two (independent) maps.

Let g and ¢’ be two smooth positive definite metrics on M which are
conformally related. As remarked earlier it can then be checked that the type
(1,3) Weyl conformal tensor C given in (3.7) is the same whether computed
with g or with ¢’ [84, 30]. One can ask whether there is a converse to this
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theorem and, after a precise formulation of such a converse, it will be shown
that for this dimension and signature a converse exists [32]. The question to be
considered is the following. Suppose (M, g) is a 4-dimensional manifold with
smooth positive definite metric g and Weyl type (1,3) conformal tensor C.
Suppose also that M admits another smooth metric ¢’ of arbitrary signature
whose type (1,3) Weyl conformal tensor C’ equals C on M and that C' (and
hence C') is nowhere zero over some open dense subset of M. Are g and ¢’
necessarily conformally related? To consider this problem, g will be regarded
as the metric on M and will be used to raise and lower tensor indices whilst
¢’ will simply be another (non-degenerate) symmetric tensor on M. Consider
the type (0,4) Weyl tensor with components Cuped = GaeCbed. If C is also the
type (1,3) Weyl tensor for ¢’, then the analogous type (0,4) tensor obtained
from C and ¢’ with components C’, ., = ¢4,.C°cq must, like that from C' and

a
g, satisfy the usual symmetries of such a tensor. Thus at any p € M where

Clp) #0
gaecebcd + gbeceacd =0, g/aeCede + gl/;eCeaCd =0. (330)

Then for each type (1,1) tensor G € V where V = rgfc(p), so that G%, =
C%cqaBc for some B € A, M, one sees that

gachb + gchCa = 0; gz/chcb + gl/;cha = O» (331)

that is, recalling remarks before lemma 3.6, the tensor ¢'G is skew-symmetric
for each G € V. Now if dimV = 1 with V spanned by F' € V then, at p, C%.q
is a multiple of F%,H.q for H € A,M and 50 Caped(= gaeCcd) = AFapFed
(for 0 # X € R and Fup = gacF%) by the symmetries of Cypeq. But then from
(3.11), Cyppeq) = 0 and hence F,pFq = 0 which, from lemma 3.1(vii), shows
that F is simple, say Fup = Paqs — ¢aPb, for 1-forms p, ¢ which may be chosen
to be (g—)orthogonal. But then it is easily checked that C% # 0 which
contradicts the last equation in (3.11). [Alternatively, one could note from

a remark above that once F' has been proved simple, F' is an independent
member of V' and a contradiction follows from a remark above since then
dimV > 2. Yet another proof follows from the fact that if dimV =1, rgfc(=

+ - + -
rg(fo + fe)) is easily seen to lie in S, or S, and so Cupeq = AFapFeq (0 #

+ —
A € R) with F € S, or F € S,. But then F' is not simple and the relation
Capeq) = 0 is contradicted.]
So dimV > 2. Now, identifying V' with the corresponding subspace of

—~ + _
ApM, if V C S, then either V' C Sy, or V' C S). If the former then there exists

independent F}, Fy € g’p which satisfy the second equation in (3.31) and so,
from lemma 3.6(iv), since g is positive definite and if ¢’ is not proportional to
g at p, ¢’ admits a pair of 2-dimensional eigenspaces and which are a canonical
pair of blades for each of F; and Fy. These eigenspace pairs must, since g’ is
not proportional to g, then be the same pair and hence the canonical blade
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+
pairs for 7 and F» are the same. Since F1, F» € S, they must be proportional

(lemma 3.5(v)) and a contradiction is achieved. One similarly handles S » and
50 V' is not a subset of S,. In this case choose F' € V with F ¢ S, so that

F ¢ S is independent of F' and F € V by a result above. Then either F' and
F are simple, or F' is non-simple with F' ¢ Sp, in Wthh case one can choose
simple, independent, linear combinations of F' and F which form a dual pair

(and label them also as F' and F'). In either case and if ¢’ is not proportional
to g at p, one achieves an orthogonal pair of 2-dimensional eigenspaces of g’
at p from lemma 3.6(i7). If dimV = 2 then V can be taken as spanned by

*
simple F' and F' and one achieves

Capbed = aFypFeg + BE pFeq + 'Y(Fachd + Fachd) (332)

at p with a, 8,7 € R. Now the condition C¢, = 0 and lemma 3.1(iv) show
that o = 8 = 0 and the condition Cycq = 0 together with lemma 3.3(i) and

the fact that the blades of F' and F', being orthogonal, intersect trivially, show
that v = 0 and the contradiction that C' = 0 is obtained. Finally suppose V'
is not a subset of S, and dimV" > 3. One can still achieve the above, simple

F and F which lead to ¢'(p), again assumed not proportional to g(p) at p,
having an orthogonal pair of eigenspaces together with an independent J € V/
which may be chosen not to be in S, and J also gives rise to a 2-dimensional
eigenspace or a pair of such eigenspaces of ¢'(p). If ¢’(p) is not a multiple
of g(p) this latter eigenspace, or pair of eigenspaces, must coincide with one

or both of those from F' and F and so J is a linear combination of F' and

F which contradicts the independence of J. Thus if U C M is such that
p €U < C(p) # 0 with U open in M and int(M \ U) = () (so that U is open
and dense in M) ¢’ and g are proportional on U.

If p € M\U and ¢’ and g are not proportional at p there exists independent
w,v € T, M such that, at p, g(u,u) = g(v,v) =1 and ¢'(u,u) # ¢'(v,v). Then
there exists a chart x containing p with domain V' and smooth vector fields
v and v’ on V whose components in x are, respectively, identical to the
components of u,v € T,M in = and thus «/(p) = v and v'(p) = v. Then the
vector fields v/ = g(u/,u')"2u’ and v’ = g(v/,v')" 20 on V are such that
there exists an open neighbourhood W of p, W C V, at each point of which
glu”,;u") = g(v",v") =1 but ¢'(u’,u") # ¢'(v",v"”). Thus g and ¢’ are not
proportional on W. Since U is open and dense in M, WNU # @, contradicting
the fact that g and ¢’ are proportional on U. Thus g and ¢’ are proportional
on M. So g’ = ¢g on M with ¢ : M — R. A contraction of this last equation
with ¢% shows that ¢ is smooth and so ¢ and ¢’ are conformally related on
M. Thus the following result has been proved [32].
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Theorem 3.2 Let M be a smooth 4-dimensional manifold admitting a smooth
positive definite metric g whose Weyl conformal tensor is nowhere zero over
some open dense subset of M. If ¢’ is another smooth metric of any signature
on M whose type (1,3) Weyl tensor equals that of g on M, then g and ¢’ are
conformally related on M (and so ¢’ is positive definite).

It is remarked that, under similar restrictions, such a result fails for
dimM > 5 with metric g of any signature [32]. It similarly also fails for
dimM = 4 if the original metric g is of Lorentz or neutral signature and this
will be established later. [Of course the Weyl tensor is identically zero for
dimension 3 and is not defined for dimensions 1 and 2.]

As a final comment it is noted that M may be decomposed along similar
lines with respect to the Weyl tensor to that given above in terms of curvature
class for the curvature tensor (the Weyl classes). However, in this case the
tracefree condition C¢,., = 0 means that (see above proof) classes D and B
are impossible at any point. A similar argument shows that class C' is also
impossible at any point p because if one chooses a tetrad x,y, z,w at p with
x the common annihilator, the Weyl conformal tensor at p is spanned by two
or three of the bivectors y A z, y Aw and z A w and then on writing out Cypeq
in terms of symmetrised products of these bivectors, the condition C¢,q = 0
is easily checked to force C' to vanish at p. Thus if at p € M C(p) # 0, it is of
class A. It follows that if C(p) # 0 there are only trivial solutions for k of the
equation C%.qgk? = 0. If 0 # k € T, M satisfies this latter equation it is said
to annihilate C at p.

3.6 The Lie Algebra o(4)

In this section the well-known Lie algebra o(4) will be described in terms
of bivectors and which turns out to be a useful representation of it for present
purposes. It is based on work in [34, 67].

Let M be a manifold of any dimension n admitting a metric g of any
signature, and for p € M and z,y € T, M let G be set of linear transformations
on T, M which preserve the inner product represented by the metric g in the
sense that if f € G then for each z,y € T,M

g(f(x), f(y)) = g(z,y). (3.33)

From this one finds g(f(z), f(z)) = g(x, ) and conversely, replacing = by x+y
in this latter formula, one can easily recover (3.33). Thus this last equation is
equivalent to (3.33). Also if y € T, M and f(y) = 0 then for any = € T,M,
(3.33) shows that g(z,y) = 0 for each = and so since g is a metric, y = 0.
Thus each f € G is injective (and since they are linear maps on T, M ecach
member of G is bijective and the corresponding inverse maps are also in G
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since g(f~'(x), ' (y)) = g(f(f~'(2), f(f ' (y)) = g(z,y)). The set G is
then easily checked to be a group under the usual composition of maps, called
the orthogonal group in n-dimensions for (the signature of ) g. For n = 4 and
with g positive definite, one chooses a basis {e, } for T, M in which the matrix
representing ¢ is I =diag(1,1,1,1). Then if the matrix representing f € G is
A = (agp) and if z = 2%, and y = y®e, then f(x) = awpzep, f(y) = aapy®esn
and (3.33) is equivalent to ap,2’acqy°ad = TPy e (repeated indices summed)
for each z,y € T, M, and hence to

AAT =TI (3.34)

It follows that detA = 1. More generally, if a different basis for T,M is
chosen, related to the original by a non-singular matrix 7" and which leads to
the matrix h representing g(p), a repeat of the above argument shows that
the matrix A representing f € G satisfies AhAT = h and an isomorphic rep-
resentation of this group is obtained. Of course, G is a subgroup of GL(4,R),
with the latter being a Lie group (chapter 2). Also, for fixed h, the map
d:GL(4,R) — MR given by A — AhAT — h is a smooth map with respect
to the natural manifold topologies and d~1{O} = G where {O} represents
the zero matrix in MyR. Thus G is a closed (non-discrete) subgroup of the
Lie group GL(4,R) and can thus be given a unique structure as a regular
submanifold of GL(4,R) and is hence a Lie subgroup of it (section 2.7). The
Lie algebra of GL(4,R) is M4R (under the operation of matrix commutation
(see, e.g.[9]). These results, appropriately modified, apply to all signatures.
Returning to the positive definite case the Lie group G is not connected, be-
ing split by the condition detA = £1. Those members with detA = 1 form
a connected Lie group, denoted by G, which is the identity component of G.
The Lie algebra of G (and of Gy) is denoted by o(4) and is a subalgebra of
MyR. In fact, it can be shown (see, e.g.[9]) that the Lie algebra o(4) is the
6-dimensional Lie algebra given by

o(4) = {B € MyR : Bh+ (Bh)" = 0}. (3.35)

Regarding B as a type (1,1) tensor this equation is just the condition that
when the metric in question, h = g(p), is used for lowering indices, B be-
comes a type (0,2) skew-symmetric tensor (bivector) at p and so, with g(p)
understood, o(4) can be regarded as the subalgebra of all such bivectors under
matrix commutation.

Now one must seek all subalgebras of o(4) (c.f. [34]). This will be done
by taking p € M with positive definite metric g(p) and taking o(4) as the

Lie algebra A,M under matrix commutation. Certainly SJ';, and S; are 3-
dimensional subalgebras of o(4) = S+p + §p (and will be labelled simply as
,JSF' and S with :Si, now labelled §) and the projections m : A,M — E and
m t ApM — S are easily checked to be Lie algebra homomorphisms with

kernels S and S, respectively. Also, as shown earlier, S and S are isomorphic
to 0(3) and have no 2-dimensional subalgebras.



84 Four-dimensional Manifolds and Projective Structure

The trivial subalgebra of 0(4) is labelled Sy. The 1-dimensional subalgebras
are just of the form Sp(F') for some bivector F and may be subclassified
according to whether F is simple (labelled S7) or non-simple and, for the latter

+ —
case, whether F' € S, F' € S, or neither and these are labelled, respectively,
+ - NS
Sl, Sl and S 1-
Now let A be a subalgebra of 0(4) so that 71(A) and 72(A) are subalge-
+ —
bras of S and S, respectively, of dimension 0, 1 or 3. Also, with an obvious

+ - + -
abuse of notation, A NS and A N S are subalgebras of S and S, respec-
tively. Then if dimA = 2, neither m1(A) nor ma(A) is trivial otherwise the
other is 2-dimensional and a contradiction arises. So m1(A) and m2(A) are

+ —
necessarily 1-dimensional subalgebras of S and S, respectively, and writing

+ —
m1(A) = Sp(F) and ma(A) = Sp(G) for F € S and G € S, A is the prod-
uct Sp(F) + Sp(G)=Sp(F,G). Then, from lemma 3.5(iv), one may choose
an orthonormal tetrad z,y, z,w with A = Sp(z Ay,z A w) and this type is

denoted by Ss. If dlmA = 3 two possibilities are A = S and A = S and
these are denoted by 53 and 53. Otherwise m1(A) and m3(A) are non-trivial
subalgebras of g’ and 3’, respectively, and, since A C m1(A4) + m2(A), either
m(4) = g‘ or my(A) = 5’, or both. Suppose 71(A) = g’ so that m is a Lie

+
algebra isomorphism from A to S. If dimmy(A4) = 1 the kernel of (the re-
striction to A of) my would be a 2-dimensional subalgebra of A and hence

+ —
of S and a contradiction follows. So m3(A4) = S and 7o is an isomorphism

- -+
between A and S and 71 o7y ! is an isomorphism S — S which preserves the
inner product P on A,M (lemma 3.5(vii)). Thus if H € A and m(H) = F,

m(H) =G for F € er’ and G € S then m o7y '(G) = F. So |F| = |G/, that is,
0=(F+G)-(F-G)=(F+G) - (F+G)" and then H = F + G is simple
(lemma 3.5(iv)). So all members of A are simple and since dimA = 3 and A
is a subalgebra (as opposed to just a subspace) it follows easily from lemma
3.2 that A is spanned by three bivectors the blades of whose duals intersect
in a 1-dimensional subspace of T, M (the alternative solution from lemma 3.2
fails to be a subalgebra). One can then easily check that one may choose these
duals as w Az, wAy and wA z where w-x = w-y = w-z = 0 for independent
z,Y,2,w € T,M and, by an adjustment of z,y, 2z, one may take x,y,z,w as
an orthonormal basis for T,M. Then A = Sp(z Ay,x Az,y A z) and this type
will be denoted by S3.

+
For the case when dimA = 4, one has the products A = Sp(S,G) and
A Sp(F, S) with G € S and F € S as possibilities and these are denoted by
5'4 and 54, respectively. Otherwise one must have m(A4) = S and ma(A) = S
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and (the restriction to A of) 71 and 7 have non-trivial kernels. Since dimA =
+ —

4, a consideration of the subspaces A, S and S and use of the dimension
+ - +

formula (chapter 1) shows that dimA NS > 1 < dimA NS and so AN S and

— +
ANS are not trivial. So take 0 # H € ANS. Then denoting the subset formed
by taking the bracket of H with each member of some subset B of A,M by
[H, B] one gets [H, A] = [H,71(A)] (since H commutes with each member of

g’) and then [H, 7 (A4)] = [H, g”] and so [H, 4] = [H, g’] But since :SL’ has no
2-dimensional subalgebras the set [H, E] contains two independent members
a, b which, from lemma 3.4(ii), satisfy H -a = H - b = 0 and so Sp(H, [H, E])
is a 3-dimensional subspace of :Sr’ Thus g’ =Sp(H, [H, g‘]) C A. Similarly one
shows that S C A and this gives the contradiction that dimA = 6. So the
4-dimensional subalgebras 54 = Sp(§7 G) and Sy = Sp(F, 3’), with G € S and
Fe :g' are the only possible ones. If dimA = 5 the dimension formula shows

that dimA ﬂg’ > 2 and hence dimA ﬂg' = 3 (and similarly dimA NS = 3)
and so a contradiction follows as in the last case. This completes the list of
all subalgebras of o(4).

It is noted that by taking linear combinations and choosing some appro-
priate orthonormal basis z,y, z, w, lemma 3.5(iv) shows that the Lie algebra

+ +
S4 may be written as Sp(A, B,z Ay,z A w) where A, B € S, and similarly

for S4. Subalgebra S5 is easily seen to be isomorphic to o(3) and subalgebra
S is the product algebra o(2) + o(2). The complete list of proper subalge-
bras may be summarised as in Table 3.1 in which z,y, z,w is a basis of the
usual form, noting that the subscript on the symbol S is the dimension of the

subalgebra.
+ - NS
The 1-dimensional cases Si, S; and S ; cannot be holonomy algebras

for metric connections since they are spans of a non-simple bivector. This is
explained below. Thus they will not be required any further in this book.

The corresponding transformations are generated by exponentiation from
Go as described in chapter 2. Thus, for example, S; gives rise to rotations in
the blade of the simple bivector F'.

3.7 The Holonomy Structure of (), g)

Most of this chapter has dealt with a smooth, 4-dimensional, connected,
second countable manifold M admitting a smooth, positive definite metric
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TABLE 3.1: Lie subalgebras for (+,+,+, +).

Type | Dimension Basis
S1 1 T Ay
+
S1 1 see text
5’1 1 see text
NS
S 1 see text
So 2 TAY, z\Nw
S3 3 TANY, TNz, YAz
+ +
S'3 3 Sp
Ss 3 S,
+ + -
Sy 4 Sy, G (GeS,)
- - +
Sy 4 F, Sp, (F S Sp)
Sg 6 o(4)

g and the last section explored the orthogonal algebra for T),M with inner
product g(p) and listed all the proper subalgebras of 0(4). For such a manifold
it is now possible to describe all its possible holonomy algebras. Returning to
the description of holonomy groups given in chapter 2 one starts with p € M
together with the set of all closed (piecewise-smooth) curves C), starting and
ending at p and the group (a subgroup of GL(T,M)) of all isomorphisms 7.
for ¢ € C) arising as a result of parallel transport of T, M from p back to
p along ¢ using the Levi-Civita connection V compatible with g called the
holonomy group of M at p. Since it is isomorphic to the holonomy group of
M at any other p’ € M (chapter 2), one may drop the reference to p € M
and refer to the holonomy group ® of M. This latter is a Lie group and a Lie
subgroup of GL(T,,M) [10]. However, with the additional information that the
connection V is compatible with g, each linear transformation 7., now must
preserve the inner product arising on each copy of T, M from ¢(p) in the sense
that for u,v € T, M and upon parallel transport of v and v around c, the real
number g(u,v) is constant at each point of ¢. Thus @ consists of g-orthogonal
transformations and is clearly a subgroup of G. But G is a Lie subgroup (and
a regular submanifold) of GL(T,M) and ® C G and so ® is a submanifold
of G since G is regular (section 2.7). It follows that ® is a Lie subgroup of G
(section 2.10). Thus the holonomy algebra ¢ is a subalgebra of o(4). It can
be checked that dimG = 6. This argument also applies when the metric g has
Lorentz or neutral signature (see e.g. [13]).

In chapter 2 the infinitesimal holonomy algebra (;5;) at p € M was intro-
duced and is a subalgebra of ¢ for each p, and hence a subalgebra of o(4).
Now suppose that (M, g) has a 1-dimensional holonomy group so that, in par-
ticular, (M, g) is not flat and ¢ is spanned by a single bivector F. Then there
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exists p € M at which Riem(p) # 0 and so, since (b; is a subalgebra of ¢, one
must have an expression for Riem(p) like Rapeq = aFapFeq where 0 #£ o € R.
The last equation in (3.4) then shows that F,;F.q = 0 and so, from lemma
3.1(vii), F is a simple bivector. It follows that, up to isomorphism, the only
1-dimensional subalgebra of o(4) in the above discussion which could be the
holonomy algebra of a Levi-Civita connection on M is that labelled S7. For
those other 1-dimensional subalgebras of o(4), if they are holonomy algebras,
they can only be such for connections which are not metric.

More information on holonomy will be given in chapter 7 where the uni-
versal covering manifold of M will be needed. Here it is sufficient to mention
that if (M, ¢g) has holonomy group ® with associated holonomy algebra ¢ then
¢ is a subalgebra of 0(4) and is hence one of the subalgebras given in the last
section (with the 1-dimensional exclusions mentioned above) and with ¢/, a
subalgebra, and rgf(p) a subspace, of ¢. Each member F of the bivector rep-
resentation of ¢ satisfies (3.25) for h = ¢ in lemma 3.6. These results apply,
suitably modified for signature, in all the 4-dimensional cases.

3.8 Curvature and Metric

Suppose now that g and ¢’ are smooth metrics on M with ¢ positive
definite. Suppose that their corresponding (tensor type (1,3)) curvature ten-
sors Riem and Riem’' are equal everywhere on M, that is, in any chart do-
main, R%.q = R'*p.q. Then for p € M a consideration of the symmetries
of the curvature tensor shows that, at p, g, R bca + 9. R €aca = 0 and so
GueRbca + 9. R°aca = 0 and hence that (3.25) holds with h = ¢’ for each F
in rgf(p) arising from Riem. Thus, from lemma 3.6(v), (3.25) holds for the
subalgebra rgf(p) of o(4) (section 3.5). Now consider the (necessarily) open
subset A C M where the curvature class is A. If p € A and rg¢f(p), which now
has dimension > 2, contains only simple members then it has dimension < 3
from lemma 3.2 and this lemma then shows that either dimrgf(p) = 2 with
curvature class C' at p (and a contradiction) or dimrgf(p) = 3. In this latter
case lemma 3.2 leads either to rgf(p) being spanned by three simple bivec-
tors whose blades have a common non-trivial annihilator and hence one again
achieves curvature class C' and a contradiction, or by three simple bivectors
whose blades have a common non-trivial member. In this latter case, lemma
3.6(¢7) immediately shows that T),M is an eigenspace of ¢’(p) and hence that
g = ng at p for 0 # u € R. So suppose rgf(p) contains a non-simple member,
say G. Then h admits two 2-dimensional eigenspaces from lemma 3.6(7ii), (iv)
and the same lemma shows that any additional independent member(s) of
rgf(p) will either lead to the curvature class B at p (and a contradiction) or
to another eigenvector of h not in the eigenspaces already established, again
forcing ¢’ (p) to be a multiple of g(p). It follows that ¢’ is necessarily a multiple
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of g at each point of A. Thus ¢’ = Ag on A for some smooth, nowhere-zero
function A : A — R, that is, g and ¢’ are conformally related on A. Now,
loosely speaking, A is the most general curvature class (and A is open in M)
and if M \ A, which is a closed subset of M, has empty interior, then A is
open and dense in M and, as earlier, ¢’ and g are conformally related on M,
that is, ¢ = Ag on M, with A : M — R smooth.

Now let V and V'’ denote the Levi-Civita connections associated with g
and ¢’ = Mg, respectively, and consider the Bianchi identities for Riem for
each of V and V' given in chapter 2 and after a contraction over the indices a
and e (and using a semi-colon and a vertical stroke for a covariant derivative
with respect to V and V', respectively, and a comma for a partial derivative)
one finds

R%ycdg;a — Rodse + Rpesa = 0, R%cdja — Rpaje + Rpeja = 0 (3.36)

where the Ricci tensor components Rq, = R¢. = R/°4ep have been intro-
duced. The component relations between the Christoffel symbols I'j. for g
and I')% for ¢’ are easily calculated and are

1
a — 1la a __
Pbc: be 9)

c be T 9y (A,cag + /\,b(;g - Xlgbc) (337)

where A* = X ;g% (and P should not be confused with the bivector metric).
If one subtracts the equations in (3.36) to remove the partial derivatives, one
achieves

Rebcdpéla - Raecdplfa - Rabedpcea - Rabcepga
+Rpe Py, + ReaPy, — Rec Pyy — Rpe Py = 0. (3.38)

A substitution of (3.37) into (3.38) using the last equation in (3.4) then gives
_Rcdbe)\e + Rec)‘egbd - Red)‘egbc =0. (339)

A further contraction of this last equation with ¢°® gives Ray A’ = 0 and finally
one gets R%.q\? = 0. Previous results show that, on the subset A, (3.27) has
only trivial solutions and hence A , = 0. Thus A is constant on each component
of the subset A and so the smooth 1-form dA on M with components A , on
each chart of M vanishes on A and hence on M if A is open and dense in
M. In this case V' = V and since M is connected, A is constant on M. The
following theorem has been proved.

Theorem 3.3 Let M be a 4-dimensional manifold admitting a smooth, posi-
tive definite metric g and another arbitrary, smooth metric g’ whose curvature
tensors Riem agree on M. Then, if A# 0, ¢ =cg (0# c€R) on each com-
ponent of A (with ¢ possibly being component dependent). If A is (open and)
dense in M, g =cg 0#£c€eR) on M and V=V' on M.
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The first part of the proof of this theorem together with the remarks
about the Weyl map following theorem 3.2 gives another proof of theorem
3.2. The techniques used here can be put in a more general setting. One
is sometimes required to solve (3.25) for a symmetric (not necessarily non-
degenerate) symmetric tensor h and for a certain subset of bivectors F' which
may be assumed to be a subalgebra of A, (lemma 3.6(v)). Clearly h = g is
always a solution of (3.25) for all F' and to seek other solutions for h one may
use the results in lemma 3.6. Thus if (3.25) holds for h and the simple bivectors
in Sp(x Ay) with x,y, z, w constituting an orthonormal basis at p (subalgebra
type S1) then z A y is an eigenspace for h and the use of the completeness
relation (section 3.4) and using ¢ to manipulate indices one finds, at p,

hab = agap + bzazp + cwowy + d(zqwp + wazp) (3.40)

for a,b,c,d € R. If, on the other hand, (3.25) holds for h and for each F in
a 2-dimensional subalgebra of the form Sp(z Ay, z A w) (type S2) then z Ay
and z A w are eigenspaces of h and one similarly finds using the completeness
relation at p,

hab = agap + b(za2p + wawp) (3.41)

for a,b € R. If (3.25) holds for h and the 3-dimensional subalgebra of bivectors
Sp(z Ay, x A z,y A z) (type S3) with common annihilator w then, at p,

hab = agap + bwawy (3.42)

for a,b € R. If h is a metric on M, the signatures of ¢ and h may differ. If g
and h above are metrics with the same tensor Riem then the previous three
equations would apply if the curvature class at p was class D (respectively,
class B and class C).

Now suppose now that g and ¢’ are smooth metrics on M with g positive
definite and which give rise to the same Levi-Civita connection, that is, V = V'
on M. Then the holonomy algebras of V and V'’ are equal and (3.25) holds
for h = g and for h = ¢’ and for each member F of this common holonomy
algebra. The equality V = V' also means that Riem = Riem’' and so the
previous theorem holds for g and ¢’. But in that theorem V and V’ were not
assumed equal (and need not be—see [13]).

Theorem 3.4 Let M be a 4-dimensional manifold admitting a smooth posi-

tive definite metric g and another arbitrary, smooth metric ¢’ whose connec-

+ -+ =

tions V and V' agree on M. If the holonomy algebra of V is S, S3, S4, Sy
or o(4) then g’ = cg where ¢ € R.

Proof The proof involves using lemma 3.6 to show that if h = ¢’ satisfies

(3.25) for each F in each of the listed subalgebras then g and ¢’ are propor-
+
tional at each p € M. Thus if p € M choose F' € S3 to see (lemma 3.6(iv))
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that ¢’ admits a pair of 2-dimensional eigenspaces at p and which, if g and ¢’
are not proportional at p, contain all the eigenvectors of g’. Now choose an-

other I’ € 5’3 independent of F' and apply (3.25) at p to obtain another pair
of eigenspaces of ¢’ at p each of which is different from either of the previous
two. (lemma 3.5(v)). This contradiction shows that g and ¢’ are proportional
at each p € M. Thus ¢’ = A\g on M for a smooth function A : M — R. Then
Vg = Vg’ = 0 shows that d\ vanishes on M and since M is connected \ is a

non-zero constant. The same proof applies to §3 and then to the other listed
Jr —
subalgebras since each contains S3 or S35 as a subalgebra. ]

Tt is remarked here that if k is any global, smooth, type (0, 2), symmetric,
tensor on M satisfying VE = 0 but with k possibly degenerate and which is
not proportional to g at some p € M then it is not proportional to g at any
point of M because if g(p) = bk(p), p € M, b € R, then V(g — bk) = 0 on
M and g — bk vanishes at p and hence on M. Also, since g is non-degenerate
there exists, by an elementary continuity (rank-type) argument, 0 # a € R
such that g + ak is non-degenerate at p. But then V(g + ak) = 0 and so
g + ak is non-degenerate on M. Thus the global tensor g + ak is a metric
on M compatible with V but not conformally related to g at any point of
M. In other words any global, smooth, symmetric, type (0,2) tensor k on M
satisfying Vk = 0 which is not proportional to g at some p € M gives rise to
a metric on M which is not conformally related to g at any point of M and
which is compatible with V. With regard to theorems 3.3 and 3.4, it is possible
for two metrics of different signature to lead to the same tensor Riem or to
the same Levi-Civita connection V. For example, suppose that M admits a
global smooth 1-form field ¢ satisfying V¢ = 0. Then, in the above calculation,
choose k =t ®t so that for appropriately chosen 0 # a € R, g+ ak is a metric
on M of a different signature from g.

3.9 Sectional Curvature

In section 3.3, it was shown how the Grassmann manifold of 2-spaces at
p € M, now denoted for simplicity by G, may be identified with the manifold
of projective simple bivectors at p as a 4-dimensional manifold. In this section
it is geometrically convenient to think of G, as a collection of 2-spaces but to
analyse it using its (projective) bivector manifold structure.

Let p € M and consider the smooth, real-valued map o, on G,, given for
a non-zero, simple bivector F' at p which represents a member of G}, by

Rabchachd RabchabFCd

- _ 4
op(F) 2Py FabFed 2|F] (3.43)
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where P is the bivector metric. Since P has positive definite signature, o,
is defined for each member of G, that is, for each non-zero, simple F. It is
also clear that o, respects the equivalence relation ~ on the set of non-zero
bivectors A;M given in section 3.3 and so o0}, is a smooth map on G,. The
function o, is called the sectional curvature function at p and seems to be
essentially the kind of “curvature” that Riemann originally had in mind [36].
Since G, is compact, o, is a bounded function on G,, (chapter 1) and since G,
is connected the range space of o, is a closed, bounded interval of R. It can
be interpreted in terms of the usual Gauss curvature of a (positive definite)
2-space as follows. One can show the existence of an open neighbourhood U of
p such that the subset N C U consisting of all points on those geodesics in U
starting from p whose tangent vector at p lies in the 2-space at p represented
by the blade of F is a 2-dimensional submanifold of U (and hence of M). If
¢’ is the metric induced on N by the metric g on M, the Gauss curvature of
(N, ¢') at p equals o, (F'). [It is remarked here that if g has Lorentz or neutral
signature the situation is a little more complicated since it turns out that o,
is, in general, not defined on the whole of G,. This will be explored later.]
One can extend this definition to get the sectional curvature function o on
M defined for any simple bivector F' at some point p € M by o(F) = o, (F).
Thus o is a function on the Grassmann bundle UpeM G,. If 0} is a constant

function at p, one has either Riem(p) = 0 or (Raped — 26 Papea) FPF = 0
for some constant x # 0 and for each simple F' € A,M. On choosing an
orthonormal basis 2! = z, 22 = y, 23 = 2 and 2% = w in T,M and then a
basis (of simple bivectors) F1 = x Ay, Fo =ax ANz, Fs =z Aw, Fy =y A z,
Fs = yANwand Fs = z Aw in A,M one can write the above equation as
QapeaFPF = 0 for all simple bivectors F € ApM with Qupecd = Rabed —
2K P,peq- The basis bivectors have components F? = —F21 = 1,.. F3* =
—F§® = 1 with all other components zero and hence, with the pairing of
skew-symmetric tensor index pairs with block bivector indices 1,2,3,4,5,6
given by 12 < 1, 13 < 2, 14 < 3, 23 < 4, 24 < 5 and 34 < 6, one
gets F; = (1,0,0,0,0,0),..., Fs = (0,0,0,0,0,1). From the symmetries for
Rapeq and Pypeq and using capital Latin letters for the block indices 1,...,6
one may consider () as a 6 X 6 symmetric matrix @ 4p. Then, for example,
Q214 = QupeaF$PF?. The above condition QupeqF®PF? = 0 for each simple
F then shows that Qaa = 0 (A = 1,2,...,6) and since the bivectors with
components (1, 1,0,0,0,0),...,(1,0,0,0, 1,0), etc, are also simple, Q12 = Q13 =
Q14 = Q15 = Q23 = Q21 = Q26 = Q35 = W36 = Qus = Qa6 = @56 = 0. Thus
all components of @ are zero except possibly Q16, Q25 and @34. But then
the condition Qgpeq) = 0 shows that Q16 — Q25 + @34 = 0 and noting that
(x+y) A (z+w) and (z + 2) A (y + w) are also simple bivectors one finds
Q25 + Q314 = Q16 — Q34 = 0. Thus Q16 = Q25 = @34 = 0 and so Q = 0. Thus
if o, is a constant function at p,

R R
Rabcd - gPabcd = ﬁ(gacgbd - gadgbc) (344)
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(k= %) holds at p, and conversely, and Riem is said to satisfy the constant
curvature condition at p (and the Einstein space condition Ry, = % Gap is then
easily seen to hold at p). In fact, if (3.44) holds over some open, (connected)
coordinate domain U C M, it is easily checked from the Bianchi identity (3.6)
(contracted to (R, — £4%),, = 0) and the previous Einstein space condition
that R is constant on U. This is Schur’s lemma (see, for example, [37]). Then
if (3.44) is true for each p in some open dense subset of M, (3.44) holds on M
(by an argument similar to one given before), R is constant on M (since M
is connected) and (M, g) is said to be of constant curvature (and (M, g) is an
Einstein space).

Some years ago Kulkarni solved the following problem [38]. Suppose M is
a 4-dimensional manifold admitting positive definite metrics g and ¢’ whose
sectional curvatures o and ¢’ are such that (i) o,, o/, are identical functions

J2
on Gy, for each p € M and (i7) the subset of M on which o, (and hence o7)

is not a constant function on G}, (which is necessarily open in M) is dense fn
M. What can one say about the metrics g and ¢’? The remarkable result is
that g = ¢’. [Actually Kulkarni proved more than this since he proved it for
dimM > 4 and considered also the case of dimM = 3.]

It is first noted that under the suppositions given above, g and ¢’ can
be shown to be conformally related [38]. To see this, briefly, note that the
assumption that o, and o}, are not constant functions means from (3.43) that
their equality can be written as the equality of two polynomial expressions in
the coordinates of G, and this is true for each p in some open dense subset of
M. Equating coefficients then leads, after some calculation, to the fact that
¢ and g are conformally related on this open dense subset of M and hence,
by a proof given earlier, on M. Thus ¢’ = ¢g on M for some real-valued,
nowhere-zero, smooth, function ¢ on M. The tensors arising from g’ will be
distinguished from those of g by the use of a prime and C and C’ will then
denote their respective type (1,3) Weyl conformal tensors.

Lemma 3.7 Under the assumptions above one has on M
(i) ¢ = g, (4)Rlpoqg = #*Rabed, (ii1) R'eq = pRped,
(tv) Rl = ¢Rap, (v) R =R, (vi) C" = ¢C.

Proof Part (i) has already been given. Next let X C M be precisely the
(closed) subset of M on which o, (and hence o},) are constant functions, so
that M\ X is open and dense in M (since intX = (). Then if p € X, it follows
from (3.7) and (3.44) after a simple calculation using the fact that (M, g) and
(M, ¢') each satisfy the Einstein space condition at p, that C'(p) = C’'(p) = 0.
Also if for p € M Riem(p) = 0, then o, (and hence o,,) is a constant function
(the zero function) on G, and so p € X (and Riem/(p) = 0 by a similar
argument to that given above for the tensor Q). So those points where Riem’
and Riem vanish are thus included in X. Now from (3.43) and part (i) it
follows that for each p € M and with Wapeq = (RLy.q — 9> Rabed),

WapeaFPF? = (R yoq — 0* Raped) F*PF4 =0 (3.45)
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for every simple bivector F. Another argument identical to one given above
then shows that W = 0 and so result (i) is proved. The results (i), (iv) and
(v) then follow since ¢’ = ¢~ 1g%. When these results are substituted into
(3.7) the final result (vi) follows. [It is important to note here that since ¢’
and g are conformally related, ¢’ = C on M but C' (and hence C’) may be
zero. Result (vi) holds in all cases.]O

A slightly different, more direct approach from [38] will now be followed.
Let U denote the open subset of M on which C (and hence C’, since ¢’ and g
are conformally related on M) are non-zero and let V' denote the open subset
of M on which the 1-form d¢ does not vanish. Then, from lemma 3.7(vi), ¢ = 1
on U and so U NV = (). Also ¢ is a non-zero constant on each component of
int(M \ V) and, since g and ¢ are related by a constant conformal factor on
(each component of) int(M \ V), Riem’ = Riem on int(M \ V). Thus since
Riem and Riem’ do not vanish on the open subset M’ = M\ X, ¢ =1 on
M'Nint(M \ V) from (ii7) above. Let Y be the closed subset of all points of
M at which ¢ =1,sothat U C Y.

This allows a disjoint decomposition of M as M = VUintY U K (since
if intY # 0 # V, (intY) NV = () and where K is a closed subset of M
defined by the disjointness of the decomposition. Now the subset K satisfies
int K = (). This follows because any non-empty open subset U’ C K would
satisfy U’ NV = ) (because of the disjointness of the decomposition) and so
U’ C (M\V) and hence, since U’ is open, U’ Cint(M \ V). Thus ¢ is constant
on each component of U’. Further, since intX = @, U’ is not contained in
X and Riem and Riem’' are equal and non-zero and ¢ = 1 (lemma 3.7) at
each point of the non-empty open subset U’ N (M \ X) of U’, this latter
set then being contained in Y and hence in intY. From this it follows that
U'N(intY") # () contradicting the disjointness of the above decomposition and
so U’ = . In summary, M = VUintY U K is a disjoint decomposition with
¢ =1and ¢ =g on intY and with V an open subset on which d¢ is nowhere
zero. Since U NV = () the open subset V is conformally flat for ¢’ and g. The
subset K is closed with empty interior.

The open subset V' can now be explored further, assuming it is not empty.
(if V=0, ¢=10on M\ K and hence on M and so ¢ = g on M.) On V,
C = C’ =0 and so, from the first of these and equations (3.8) and (3.9),

Rabcd = %(Racgbd - Radgbc + Rbdgac - Rbcgad) + %Pabcw (346)
Next consider the Bianchi identities in the conformally flat case, one for each
of the connections V and V’, for g and ¢’, respectively, with the symbols ; and
| denoting covariant derivatives with respect to V and V', respectively. These
identities can be obtained from (3.6) and (3.46) after a somewhat tedious but
straightforward calculation, recalling the identities 2R%,, = R (and hence

41?3%;@ = R ;) and a contraction with g®¢. One finds using a prime to denote
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quantities formed from ¢’

Reap — Reba = %(gacR,b - gch,a)7 /calb - R/cb\a = %(g:wR:b o gébR:II)'

(3.47)
One can now substitute results (iv) and (v) of lemma 3.7 into the second of
(3.47) and subtract from it ¢ times the first of (3.47) to remove the partial
derivatives, Then the differences between the Christoffel symbols arising from
V' and V give rise to the tensor P in (3.37) (not to be confused with the
bivector metric) and on substituting all this into (3.47) one finds

¢,bRac - d),aRbc = ¢RaePbec - ¢RbeP§c = Rbe¢egac - Rae¢egbc (348)

where ¢¢ = g%°¢ ... If one contracts (3.48) with g% one sees that 4R.,¢* = R,
and hence that the tracefree Ricci tensor satisfies Eabqﬁb = 0. Substituting this
back into (3.48) gives Rucdp — Rpcho = 0 from which one finds Ry = Yo dp
for some smooth real-valued function ¢ on V. It follows that ¥ (¢.¢%) = 0
on V. Now suppose that p € V and (¢,¢%)(p) # 0. Then ¢,¢* is non-zero
over some non-empty open subset W of M contained in V' and 1 vanishes on
W. But then Ricc vanishes on W and so, from (3.9), E vanishes on W and
so from (3.8) it follows that (3.44) holds on W showing that W C X. Since
X has empty interior W must be empty and then ¢,¢* = 0 on V. Since, by
definition of the set V', d¢ is nowhere zero on V this gives a contradiction to
the signature of g and so, in the positive definite case, V = () and M =intY UK
is a disjoint decomposition with ¢ =1 and ¢’ = g on intY. Since K is closed
with empty interior ¢ = 1 on M and so ¢’ = g on M. [It is remarked at this
point that the initial assumption that g’ was also of positive definite signature
can actually be removed. This is because since g is positive definite, o, is
defined on the whole of G}, for each p € M. Thus it is implicitly assumed that
o, is also so defined. As will be seen in the next two chapters, this (and the
conditions of the theorem) force ¢’ to be positive definite.
The following result is thus proved.

Theorem 3.5 (Kulkarni, 1970 [38])

Suppose M is a 4-dimensional manifold admitting a smooth, positive defi-
nite metric g and another smooth metric g’ of arbitrary signature and whose
sectional curvatures o and o' are such that (i) o, and o), are identical func-
tions on G, for each p € M and (ii) o, (and hence o,) are not constant
functions on G, for each p in an open dense subset of M. Then g’ = g on M.

The necessity of assuming that the interior of that subset of M of points
at which o, and U; are constant functions, that is, those points of “constant
curvature”, is empty was stressed and exemplified by Kulkarni [38]. It is also

*

remarked that if F' and F are dual simple bivectors representing a pair of
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orthogonal 2-spaces at p one has from (3.8), (3.17) and (3.19) and noting that
|F| = |F| (lemma 3.4(iii))

* RabchabFCd — RabchabFCd
7(F) = oplF) = 2Pypeg Fb Fod (3.49)
— (* Zbcd — Rabcd)FabFCd . _EabchabFCd (3 50)
© 2Pgeal el PypegFebFed :

which shows that if (M, g) satisfies the Einstein space condition at p, so that
*

E(p) =0, o(F) = o(F) for each such F. A similar argument to that given
above for the tensor W gives the converse of this result (cf, [64]).

Theorems 3.2 to 3.5 reveal strong relations between the metric, the Levi-
Civita connection, the curvature tensor, the sectional curvature function, the
holonomy group and the Weyl conformal tensor for 4-dimensional manifolds
admitting a positive definite metric. It will be seen later that similar, but
slightly less strong, results apply in the cases of Lorentz and neutral signature.

3.10 The Ricci Flat Case

Now consider the situation when the 4-dimensional manifold with smooth,
positive definite metric, (M, g), is Ricci flat, that is, when the Ricci tensor
is identically zero on M. In this case the Ricci scalar and the tensor E are
identically zero on M, R =0 and E =0 on M, and then (3.8) shows that the
Riemann tensor and Weyl tensor are equal, C' = Riem, on M. It now follows

+ —_
from section 3.5 that, at each p € M, S, and S, are invariant subspaces of
the curvature map f (and are orthogonal with respect to the bivector metric

+ —_
P). Thus, choosing a basis F; for S, and a basis G; for S, (i = 1,2,3), one
may write out Riem(p) in this bivector basis using the abbreviated form used

earlier as
3

Riem(p) = Z (aijFiFj + ﬂ”GlGJ) (351)
ij=1

where o;; and 3;; are symmetric arrays of real numbers. Thus the range space
rgf(p) of the curvature map at p admits a basis consisting of members of 3;.
[Of course, this result applies also to the Weyl tensor in all cases, not just the
Ricci flat case—see section 3.5.] It also follows from section 3.5 that if (M, g)
is Ricci flat and p € M the curvature class at p is either O or A. A study of
the curvature map f reveals the following results.

Theorem 3.6 Let (M,g) be a 4-dimensional, positive definite, Ricci-flat
manifold with Levi-Civita connection V and let p € M.
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(1) Suppose (M, g) is not flat. Then if Riem(p) # 0, rankf, > 2, the holon-
omy algebra ¢ cannot be of type S1, So or Ss and V determines the
metric up to a constant conformal factor.

(i) If (M,g) is non-flat, Riem determines g up to a constant conformal
factor and determines V uniquely.

Proof For (i) if Riem(p) # 0 the curvature class at p is, from a remark
above, class A and hence dimrgf(p) > 2. But rgf(p) is a non-trivial subspace
of the infinitesimal holonomy algebra at p, and hence of ¢, and so this curva-
ture class restriction shows that ¢ cannot be of type S1, Sy or S3. Thus the

holonomy algebra at p is of type §3, Ss, §4, Sy or Sg(= 0(4)) and theorem 3.4
completes the proof.

For part (i4) one notes that if g and ¢’ are smooth metrics on M with
the same tensor Riem and with g positive definite then, since g is Ricci flat
and non-flat, ¢’ is also Ricci-flat and non-flat and so from (3.8) g and ¢’ have
the same Weyl conformal tensor which does not vanish over any non-empty,
open subset of M (by the non-flat condition). Theorem 3.2 then shows that
g and ¢’ are conformally related, ¢ = Ag, for some smooth, real function A
on M. Then the argument leading to theorem 3.3 shows that RgpegA? = 0
(A% = g%\ ) holds on M and it follows that A , vanishes over the open dense
subset of M where Riem = C' is not zero. Since M is connected, A is thus
constant on M and the proof is complete. O

It is remarked here that if the pair (M,g) is non-flat and Ricci-flat,
C = Riem on M and if the open, dense subset of points of M at which
Riem (and hence C) is non-zero is labelled U the sectional curvature function
op is nowhere a constant function on U since, from (3.44), such a condition
would force the contradiction Riem = 0 at each point of U (since R = 0 on
M). Thus one has from the work of section 3.9 the much tidier result in the
Ricci-flat case.

Theorem 3.7 If M is a 4-dimensional manifold with smooth, positive definite
metric g which is non-flat and Ricci-flat and if M admits another smooth
metric g’ of arbitrary signature and with the same sectional curvature function
as g at each p € M, then ¢’ = g.

There is another straightforward result which is, in a sense, a trivial variant
of a theorem due to Brinkmann [39].

Theorem 3.8 If M is a 4-dimensional manifold which admits conformally
related, smooth, positive definite metrics g and g’ each of which is Ricci flat
and non-flat. Then ¢’ = Mg for some constant \.

Proof Write ¢ = \g for some smooth function A : M — R. Then the
respective type (1,3) Weyl conformal tensors C and C’ for g and ¢’ are equal,
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C' = C, on M (which, by the non-flat and Ricci-flat conditions, are each non-
zero on some open, dense subset U C M). The Ricci-flat condition then shows
that the respective curvature tensors are equal, Riem’ = Riem. The work
leading to theorem 3.3 above then shows that in any chart domain Rgpeqk® = 0
where k, = A 4, and hence, again from the Ricci flat condition, Cabeak® = 0.
The result now follows. O
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Chapter 4

Four-Dimensional Lorentz Manifolds

4.1 Lorentz Tangent Space Geometry

This chapter will be devoted to the study of the geometry of a 4-
dimensional Lorentz manifold, (M, g), with metric g of signature (—, +, 4+, +)
and with M being smooth, connected, Hausdorff and second countable and g
smooth. Let p € M with tangent space T, M at p. As before, for u,v € T,M,
the inner product g(u, v) is denoted by u-v and |u| = g(u, u). For this signature
one has spacelike, timelike and null vectors in 7,, M. Timelike and spacelike
vectors are sometimes collectively referred to as non-null and a non-null vec-
tor u satisfying |u| = =1 is called a unit vector. For a non-zero u € T,M
the 1-dimensional subspace of T,,M (direction) spanned by u is called space-
like (respectively, timelike or null) if u is spacelike (respectively, timelike or
null). Of course one may choose a basis in T, M such that the metric at p
takes the Sylvester canonical form diag(—1,1,1,1). This is referred to as a
Minkowski basis and enables a quick proof of the facts that two timelike vec-
tors, a timelike and a null vector, or two independent null vectors can never
be orthogonal. For the first of these let u,v € T, M be timelike and choose
a Minkowski basis for which « (assumed unit) satisfies v = (1,0,0,0) and
v = (a,b,c,d) with a,b,c,d € R with a? > b? + ¢2 + d?, Then u - v = 0 gives
a = 0 and so b = ¢ = d = 0 and hence the contradiction v = 0. For the
second and third, choose v with components as above and k € T, M null with
k=(1,1,0,0). Thenv-k =0=a = b = |v| > 0 and so either v is spacelike or
a multiple of k. Two useful bases for T,,M are a (pseudo-)orthonormal tetrad
of unit vectors ¢,x,y,z € T,M with |z| = |y| = |2| = —|t| = 1 and all other
inner products between these basis members zero, and a (real) null tetrad
In,z,y € T,M with [ and n null vectors satisfying - n =1, |z| = |y| =1
and all other inner products between basis members zero. Two such bases are
said to correspond if V22 =1+ n and 2t = [ — n. The collection of all null
vectors in T, M is called the null cone at p. From the above, one has useful
completeness relations relating a basis and the metric at any point and given
by gab = —taty + TaTp + Yo + 2026 = lanp + Naly + TaTp + Yayp. Conversely
these last two relations imply that the collections (¢, x,y, z) and (I, n, z,y) are,
respectively, an orthonormal and a null basis (see section 3.4).
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If a 2-dimensional subspace (2-space) U of T,M is such that each of its
non-zero members is spacelike it is called spacelike, if U contains exactly two
distinct null directions it is called timelike and if U contains a unique null
direction it is called null. [If U contains three distinct null directions spanned
by null vectors u, v, w € T, M, one of u,v, w must be a non-trivial linear com-
bination of the other two. The null condition then forces the contradiction
that these other two are orthogonal.] It follows that these are the only possi-
bilities for U. Then it is easily checked that if U is spacelike it may be spanned
by an orthogonal pair of spacelike vectors. If U is timelike it contains non-
orthogonal (independent) null vectors { and n which may be scaled so that
l-n=1and U also contains the (orthogonal) spacelike and timelike members
l£n. The only orthogonal pairs of independent vectors of a timelike U consist
of a spacelike and a timelike vector (all other possibilities are easily checked to
forbid the presence of timelike vectors in U) and the null directions spanned
by [ and n are unique up to interchange and referred to as the principal null
directions of U. If U is null it contains a null vector ! unique up to a scaling
(and called the principal null direction of U) and all other non-zero members
of U are either proportional to [ or spacelike and orthogonal to I. To see
this let U be spanned by [,k € T,M. Then k is not null and if [ -k # 0
one can find 0 # A € R such that k 4+ Al is null and a contradiction follows.
This completes the proof. Thus if u,v are an orthogonal pair of independent
members of a null 2-space U exactly one of them is a multiple of [ otherwise
each member of the 2-space would be spacelike. The orthogonal complement
UL of a timelike 2-space U is spacelike, and vice versa and the members of
U and U™ collectively span Tp,M. For p € M and a subspace U C T,M of
dimension < 3 the metric g(p) naturally induces a mapping U + U — R given
for u,v € U by (u,v) = g(p)(u,v). This need not be an inner product on U
(it may not be non-degenerate) but if it is, it is called the induced metric on
U. The induced metric on a spacelike 2-space is Euclidean whilst the metric
induced on a timelike 2-space is Lorentzian. There is no induced metric on a
null 2-space. The orthogonal complement U+ of a null 2-space U is also null
and the principal null directions of U and U+ coincide. To see this let | be
null and z spacelike with [ -2 = 0 and U = I A z. Then clearly U+ = [ Ay
with -y = 2 -y = 0. So y is spacelike and U+ null. The span of U and U+ is
3—dimensional. This completes the classification of 2-spaces of T, M. In fact,
for each type one may choose a real null tetrad [, n,z,y such that U can be
represented as [ Az (null), x Ay (spacelike) and [ An (timelike) and conversely
any 2-space of one of these forms is of the indicated type.

Let U is a 3—dimensional subspace (a 3—space) of T, M. Then U is called
spacelike if all its non-zero members are spacelike (and then its 1-dimensional
orthogonal complement, or normal, is, from the Lorentz signature, a timelike
direction). U is called timelike if it contains infinitely many null directions
(and then it contains also timelike and spacelike members and its orthogonal
complement (normal) is a spacelike direction). U is called null if it contains a
unique null direction (and then all its other non-zero members are spacelike
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and orthogonal to it and its orthogonal complement (normal) is the same null
direction). This null direction is sometimes referred to as its principal null
direction. The metric induced on a spacelike (respectively timelike) 3—space
is positive definite (respectively, Lorentz). There is no metric induced on a
null 3—space. This completes the classification of 3—spaces of T, M. In the
tetrads used so far typical examples of 3—spaces are Sp(z,y,z) (spacelike),
Sp(z,y,t) (timelike) and Sp(l, z,y) (null).

It is stressed here that if U is a spacelike or timelike 2-space at p then
U and U+t are complementary in the sense that the span of U U U+ equals
T,M. However, if U is a null 2-space then the span of U U U+t gives a null
3—space of T, M whose principal null direction equals the (common) principal
null direction of U and U-.

4.2 Classification of Second Order Tensors

It is important to know the algebraic structure of the main tensors which
can occur in Lorentzian geometry. In this section, the classification of second
order symmetric and skew-symmetric tensors will be considered. In addition
to the algebraic and geometrical aspects of such classifications they have also
been found very useful in the physics of Einstein’s general relativity theory.
First it is convenient to gather together some general elementary results on
the algebraic theory of symmetric tensors (recalling the convention adopted
for “complex” eigen structures in section 3.3).

Lemma 4.1 Let (M, g) be a 4-dimensional manifold admitting a Lorentz met-
ric g and let S be a real, non-zero, symmetric, type (0,2) tensor at p € M
with associated linear map f.

(i) The map f must admit an invariant 2-space whose orthogonal comple-
ment is then also invariant. If U C T,M 1is an invariant 2-space for f then
if U is spacelike it contains two independent (real) spacelike eigenvectors of f
(or S). If U is null the principal null direction of U is an eigendirection of f.
There may or may not be another eigendirection of f in U. If U is timelike
with principal null directions spanned by null vectors I and n, then either |
and n span eigendirections of f with equal eigenvalues, or U contains two in-
dependent real, orthogonal, non-null eigendirections with distinct eigenvalues,
or U gives rise to a conjugate pair of complex eigendirections (which may,
after an appropriate choice of I and n, be taken as spanned by | £+ in), or ex-
actly one of I and n spans the only eigendirection of f. If f admits a complex
eigenvector the invariant 2-space spanned by its real and imaginary parts is
timelike. Thus f admits (up to complex scalings) at most one conjugate pair
of (complez) eigendirections and must admit a real eigenvector.



102 Four-dimensional Manifolds and Projective Structure

(i) Any null eigenvector of f is necessarily real and any eigenvector of
f corresponding to a non-simple elementary divisor is null (and hence real).
Thus non-null eigenvectors of f correspond to simple elementary divisors.
Conversely any (real) null eigenvector corresponds either to a non-simple ele-
mentary divisor or arises from an eigenvalue degeneracy (that is, the associ-
ated eigenspace has dimension > 2).

Proof The proof of the first part of (i) was given in chapter 3. The next
part of (¢) follows from the principal axes theorem since f restricts to a linear
map U — U and the metric g, restricted to U, is positive definite. If U is
null then U and U~ are invariant and have a common principal null direction
which then becomes an eigendirection of f. If U is timelike and spanned by
null vectors I,n € T, M with [ -n = 1 then, since Sopl®nb = S,pn2lb one has
f() =al+bn and f(n) = cl 4+ an (a,b,c € R). Suppose n is an eigenvector
of f so that ¢ =0 and f(n) = an. Then either n is the only real independent
eigenvector in U or any other real independent eigenvector in U is of the form
I+ An (A € R) and satisfies f(I + M) = pu(l + M) (¢ € R). Thus a = p
and b+ Aa = pA which leads to b = 0 and to [ also being an eigenvector
with the same eigenvalue a as n. If neither [ nor n is an eigenvector, A # 0,
b # 0 # c and the above calculation leads to A% = % and hence to a pair of
independent eigenvectors which, depending in the sign of %, are either real
with distinct eigenvalues and hence orthogonal (section 3.3) and non-null or
complex conjugates. If they are complex conjugates they can be taken as [+ivn
(veR,v>0and v2 = —X2) and then as v~ 2 (I & ivn). Thus they may be
taken as I £in/ with I’ = v=2l and n’ = v3n and so ' -n/ = 1. The next part
follows since if r £ is are complex eigenvectors (0 # r, s € T, M) with distinct
eigenvalues a & b, b # 0, then (r + is) - (r — is) = 0 implies that |r| +|s| =0
and so the span of r and s is timelike. Since f admits either a null invariant
2-space or an orthogonal timelike/spacelike pair of invariant 2-spaces the rest
of part (i) follows easily by a simple counting of real eigenvalues of f.

Some parts of this proof were mentioned in [49] but with few details given.
Here a full proof will be given. If r + is is a complex null eigenvector of f,
(r,s € T,M), with eigenvalue a + ib (a,b, € R,b # 0) then so is r — is with
eigenvalue a —ib (which is different from a+ b since b # 0). Hence |r +is| =0
and (r+is)-(r—is) =0. So |r| = |s| = 0 and r-s = 0 which is a contradiction
for Lorentz signature. So b = 0 and any null eigenvector must be real. Now
suppose that k is a real or complex eigenvector of f at p corresponding to
a non-simple elementary divisor. Then selecting a Jordan basis (chapter 1)
one has vectors k and k¥’ satisfying f(k) = ak and f(k') = ok’ + k (a € C).
The symmetry of S then shows that k- f(k') = k' - f(k) and so k is null
(and hence real). Now suppose that k is a real null eigenvector of f at p with
f(k) = ak (o € R) such that « is associated with a simple elementary divisor
and is not degenerate. Then clearly k is, by non-degeneracy, orthogonal to
each eigenvector of f (including itself) and hence the eigenvectors of f cannot
form a basis for (the complexification of) T, M. It follows that f admits a
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non-simple elementary divisor whose associated eigenvalue v # « and whose
associated eigenvector u is null, and hence real, from the previous argument,
and satisfies k- u = 0. Thus k and u are real, orthogonal, independent null
vectors contradicting Lorentz signature. O

One can now complete the classification of symmetric tensors of second-
order in the 4-dimensional case of Lorentz signature. For this it is convenient
to prove the following lemma for the 3—dimensional Lorentz case where the
notation and definitions are carried forward in a consistent manner from the
4-dimensional situation and where the signature is (—, +,+). The definitions
of spacelike, timelike and null 2-spaces are as in the 4-dimensional case. The
orthogonal complement of such a 2-space is a direction. In the expression for a
Segre symbol a positive integer entry always refers to a real eigenvalue whilst
a complex conjugate pair of eigenvalues is denoted by the pair entry zZz. (This
rule will be slightly modified in the case of neutral signature in chapter 5.)

Lemma 4.2 Let M be a 3—dimensional manifold on which there is a Lorentz
metric g of signature (—,+,+). Let S be a non-zero second-order symmetric
tensor at p € M with associated linear map f. The only possibilities for the
Jordan/Segre type of S are {111}, {2z1}, {21} and {3} together with their
(possible) degeneracies and each can occur.

Proof Quite generally f either admits a real eigenvector together with
a complex conjugate pair of complex eigenvectors whose real and imaginary
parts span a timelike 2-space (and hence its spacelike orthogonal complement
is invariant and gives rise to a (real) eigendirection), or three independent
real eigenvectors associated with simple elementary divisors, or a real null
eigenvector associated with a non-simple elementary divisor. That this latter
case must result in a real null eigenvector and that the invariant 2-space in
the first possibility is timelike follow as in the 4-dimensional case above. The
first of these possibilities leads to a possible Segre type {zz1}. The second
leads to the possibility {111} or some degeneracy of this type whilst the third
leads to the possibilities {21} or {3}. Now suppose p € M and (using the
obvious notation from the 4-dimensional case) that ¢,x, z € T, M is a pseudo-
orthonormal basis at p with |z| = |z| = —[¢t| = 1 and I,n,z is a null basis
at p with V2l =z+tand Vo2n =2 —t null, /- n = 1 and all other inner
products between them being zero. Using these one can construct general
canonical forms for the four types claimed in the lemma as follows, where

plaanp37AaueRWith)‘7§07§M'

p1(lamy + naly) + p2(laly £ nenp) + p3zas, (4.1)
p1(lamp + nalp) + Aaly + pozaxy, (4.2)
p1(lanp + naly) + p(laws + xaly) + p12o18- (4.3)

In (4.1) with the 4 option the eigenvectors are [+n with eigenvalues p; £ po
and x with eigenvalue p3 and the Segre type is {111} or some degeneracy of
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this type, and with the — option they are [ & in with eigenvalues p; £ip2 and
x with eigenvalue p3 and the Segre type is {zz1}. In (4.2) the eigenvectors
are | with eigenvalue p; and x with eigenvalue py and Segre type {21} or its
degeneracy and in (4.3) the eigenvector is | with eigenvalue p;. In (4.2) one
may scale | (with a compensating scaling of n) so that A = £1 and in (4.3)
one may similarly scale [ so that = 1. In the Segre type {111} case one may
write it conveniently in terms of the orthonormal triad ¢, x,y as

(p2 = p1)tats + (p2 + p1)2azp + P3TaTp- (4.4)
This completes the proof.[]

Theorem 4.1 Let M be a 4-dimensional manifold on which there is a Lorentz
metric g of signature (—,+,+,4). Let S be a non-zero second order symmetric
tensor at p € M with associated linear map f. The only possibilities for the
Jordan/Segre type of S are {1111}, {2211}, {211} and {31} together with each
of their degeneracies, and all of these types can occur. It follows that a real
etgenvector is always admitted.

Proof From lemma 4.1 if f admits a complex eigenvector it is non-null
with real and imaginary parts spanning a timelike, invariant 2-space U for
f and then U® is invariant and spacelike. Then the action of f on U™ is
diagonalisable over R and the Segre type of f is {zz11}. or its degeneracy.
Otherwise all eigenvectors of f are real (and at least one exists from lemma
4.1(3)). If f admits a timelike eigenvector k, the 3—dimensional orthogonal
complement V' of k is spacelike and invariant for f and the action of f on
V is diagonalisable over R. The resulting Segre type of f is {1111} or some
degeneracy of this type (and conversely). If f admits a spacelike eigenvec-
tor k, the 3—dimensional orthogonal complement V of k is invariant for f
and the metric induced on V is Lorentz. It follows from lemma 4.2 that the
Segre type of f restricted to V is as given there. Thus the Segre type of f
is {1111}, {zz11}, {211} or {31} or some degeneracy of one of these types.
Finally suppose all eigenvectors of f are (real and) null. If there are at least
two independent such eigenvectors, [ and n then, because of the Lorentz sig-
nature, one has [ -n # 0 and the 2-space U they span is a timelike eigenspace
giving rise to a contradiction since non-null eigenvectors arise in U~+. So sup-
pose there exists exactly one real null eigenvector k so that the Segre type of
fis {4}. In a Jordan basis k,r, s, q at p one then has (chapter 1) f(k) = ak,
fir)y =ar+k, f(s) = as+r and f(q) = ag + s and using the symmetry
relations k- f(q) = q- f(k), k- f(s) =s- f(k) and r- f(s) = s- f(r) gives k,r
null and k- r = 0 and a contradiction. The general canonical forms for each
type can be obtained directly from (4.1), (4.2) and (4.3) in terms of a null
basis [,n,z,y and are

p1(lany + naly) + pa(laly £ nany) + p3szas + payals, (4.5)

P1 (lanb + nalb) + Maly + P2LaTb + P3YaYb, (46)
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p1(lany + naly) + p(lazy + aly) + preazy + p2yals- (4.7)

In (4.5) with the + option the Segre type is {1111} or one of its degenera-
cies with eigenvectors | £ n (eigenvalues p; £ p2), « (p3) and y (p4) and with
the — option it is {zZ11} or its degeneracy with eigenvectors [+in (eigenvalues
p1Eip2), x (p3) and y (psa). In (4.6) the Segre type is {211} with eigenvectors
1 (p1), = (p2) and y (p3) and in (4.7) it is {31} with eigenvectors I (p;) and
y (p2) or, in each case, one of its degeneracies. Again one can scale [ so that
A= =+11in (4.6) and g = 1 in (4.7). In the corresponding orthonormal basis
t,x,y, z one then gets for the general Segre type {1111} above

(p2 = p1)taty + (P2 + P1)2a2b + P3Ta + PaYaly- (4.8)
O

There are a number of other ways of achieving such a classification but it
seems that the above is perhaps the simplest and quickest. One can achieve
the same results using techniques of algebraic geometry [41], spinors [42], a
direct computation in a null basis at p [17] or by use of the tensor denoted by
E introduced in chapter 3 [13, 44]. Another more general approach is discussed
in [49] (see also [45]) and a summary of such methods may be found in [13].
The idea of using invariant 2-spaces for this end was first raised in [43] and
developed in a different direction in [13].

Turning attention now to skew-symmetric second order tensors, let 0
F € ApM be a bivector at p. Then F is either simple or non-simple (chapter
3). If F is simple then F is called spacelike, timelike or null if its blade is,
respectively, spacelike, timelike or null and any null direction in the blade of
F is referred to as a principal null direction of F. If F is spacelike one may
then choose an orthonormal basis t,z,y, z at p such that F = 2% — y%a®
(sometimes written z A y) and if F is timelike a similar choice reveals F* =
2% — 29% (tAz) or, in a corresponding null basis, F = [%n® —n%®, (IAn).
If F is null a null basis may be chosen at p such that Fo = [%ab — z9]°,
(I Ax). Thus for the spacelike F' above, F' admits a complex conjugate pair of
complex eigenvectors x + 1y with eigenvalues +4 and a 0—eigenspace spanned
by z,t and thus has Segre type {zZ(11)}. For the timelike F' one has null
eigenvectors [,n with respective eigenvalues 1 and —1 and a O—eigenspace
spanned by z and y. The Segre type is thus {11(11)}. If F' is null and, in a
null basis z, v, [, n, represented by F® = [®zb — 2[’ it is easily checked that
Fo b =0, Fozb =1, Fonb = —zb and F“byb = 0. The obvious Jordan basis
here shows the Segre type to be {(31)} with zero eigenvalue. This exhausts
the possibilities if F' is simple.

Now suppose that F' is non-simple. Then all its eigenvalues (real or com-
plex) are non-zero and all eigenvectors (real or complex) are null (section 3.3).
Suppose all eigenvalues are real. Since F°, = 0 their sum is zero. So there ex-
ists eigenvalues a,b € R with a # b and F%k? = ak® F%q® = bg® with
k,q € T,M independent and both null (and since k- g # 0, b = —a). Then
k A q is a timelike invariant 2-space for F' and its orthogonal complement is
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also invariant and spacelike. It then follows by an identical argument to that
given in section 3.4 that F' necessarily admits a conjugate pair of complex
eigenvalues. Thus the case of all the eigenvalues being real is forbidden. So
F admits a complex eigenvalue a + ib with z & iy the corresponding (null)
eigenvector with z,y € T, M independent. Then |(z +iy)| = 0 and so |z| = |y|
and z - y = 0. This means that the 2-space x A y, which is an invariant 2-
space for F', is spacelike. Hence its timelike orthogonal complement U is also
invariant and if spanned by null vectors I and n (with, say, [-n = 1) one
gets F%I° = cl® 4+ dn® (c,d € R). It follows, since F is skew-symmetric, that
Fplelb = 0, hence d = 0 and so Falb = ¢e (and similarly Foynb = —cl®
since F' is skew-symmetric) with ¢ # 0. Thus [ and n are real eigenvectors of
F with eigenvalues differing only in sign. The condition F°. = 0 then shows
that a = 0. With the scaling |z| = |y| = 1, [, n, z,y form a null tetrad and one
achieves a canonical form for a non-simple bivector

F = ¢(10° — n®1%) + b(xy® — y*a?) (4.9)

with Segre type {2Z11}. In this case the null directions spanned by ! and n
are referred to as principal null directions of F' and the uniquely determined
pair of 2-spaces [ An and x A y are called the canonical blades of F. This
completes the classification for bivectors in Lorentz signature. Dealing with
the non-simple case is usually achieved after introducing complex bivectors
[40] but the above proof removes the necessity for this and is, in any case,
more direct. These results are summarised in the following theorem.

Theorem 4.2 Let M be a 4-dimensional manifold on which there is a Lorentz
metric g of signature (—,+,+,+). Let F be a non-zero, second order, skew-
symmetric tensor at p € M. The only possibilities for the Jordan/Segre type
of F' are (for F simple) {11(11)}, {22(11)} and {(31)}, with no further de-
generacies permitted, and {zz11} (for F non-simple) and again no further
degeneracies are permitted.

4.3 Bivectors in Lorentz Signature

It is convenient in this section to develop further the theory of bivectors in
Lorentz signature. For this signature the dual of a bivector F' satisfies F =-F
and one has the property that F' and Z" are always independent (that is, the

+ —
subspaces S, and S, of A,M defined in the last chapter are trivial). The
process of “transferring” the duality operation then shows that for bivectors

F,G, one has F-G = F-G and also FF-G = F-G = —F - G and then
|F| = —|F|. Further, F is simple < F' is simple (chapter 3) and the blades of
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F and F are orthogonal. Thus if F is spacelike (respectively, timelike) then its

dual F is timelike (respectively, spacelike) whilst if F' is null F' is null. More
precisely, one may start from the bases [,n,x,y, and t,x,y, z, and choose a
basis for A, M of the form [ An, x Ay, IANz, LNy, n Az and n Ay, or of the
form z Ay, t Az, y ANz, xAt, y At and z At. The members here are sometimes
referred to as basis bivectors (for the corresponding basis) of A, M. Then one
may assume the orientation chosen so that (I Az)* = -l Ay, (Ay)* =1Az,
(An)*=zAy, (xAy)*=—lAn, (nAz)* =nAyand (nAy)" = -nAx
from which it follows that (z A t)*(= —(l An)*) = —x A y. A simple bivector
F is spacelike (respectively, timelike, null) if |F| > 0 (respectively, |F| < 0,
|F| =0 ). Noting that lemma 3.1 holds for all signatures one may add to the
results of that lemma the following results for Lorentz signature.

Lemma 4.3 For a non-trivial bivector F € A,M, |F| = 0 if and only if either
F is null or F is non-simple and satisfies (4.9) with b = +c. In addition, the
following conditions are equivalent.

(i) F is null,

(13) There exists 0 # k € T,M such that Fp kb = Fopk® = 0. The direction
spanned by k is necessarily unique and null, being the principal null direction
of F and F,

(iii) |F| = F - F =0 (that is, F;3F% = F, F®* =0).

Proof The first part is straightforward. For the remainder, if (i) holds F
is null (and hence simple) and from the above |F| = 0 since |F| = 0 and F
is simple since F' is. Thus from the first part F' is null and the orthogonality

of their blades shows that F' has the same principal null direction as F' which
is the intersection of their blades. So (i¢) clearly holds with k spanning the

common principal null direction of F and F. It is also clear that (i) implies

that F' and F' are simple with blades intersecting in the direction spanned by
k. Thus k is null and so () holds. Then if (¢) (or (i7)) is true, F' is null and
simple and hence (4i7) holds, and conversely, (ii7) implies F' is simple and null
and so (¢) holds. O

+ —
In the last chapter the subsets S, and S, for p € M proved useful in
positive definite signature. However, since for a (real) bivector F' the bivec-

*
tors F' and F' are independent in Lorentz signature, these corresponding sub-

sets now are trivial. This is because the linear duality map on A, M satisfies
sk
F = —F and so its only eigenvalues are +i. One can explore this further by

first extending A, M to its complexification, thought of as the 6—dimensional
complex vector space A, M of all complex bivectors at p. Then extend the du-
ality operator * to A,M by defining for W = F +iG € A,M (F,G € A,M),
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* * * + — o~
W = F +4G. Then define subsets S, and S, of A,M by

+ * - *
S, ={W:W=—iW}, S,={W:W=iW}, (4.10)

referred to, respectively, as the subsets of self dual and anti-self dual complex
bivectors at p. It is clear that g’p N ép = {0}. Further, any complex bivector
W may be written as W = 1[(W + zﬁ/) +(W— ZVI*/)} with W 4+ W e ,JSr'p and
W—iW € g’p and this decomposition of W into a sum of members of er’p and

+ —
S, is unique. Thus, as vector spaces, A, M is isomorphic to S), + S,. So any

+ * —
member of S, may be written as F'+7F and any member of S}, may be written

*
as G—iG for unique, (real) F, G € A, M. Then starting from a (real) null basis
l,n,z,y for T,M as above define a conjugate pair of complex vectors m,m
by vV2m = z + iy and v2m = x — iy. So m and m are complex null vectors
and [,n,m,m form a basis for the complexification of T, M called a complex
null tetrad at p. In fact, the only non-vanishing inner products between the
members of this complex null tetrad are [-n = m-m = 1. It is noted here that
since complex null vectors are involved, independent (complex) null vectors
may be orthogonal, for example, [-m = [-m = n-m = n-m = 0. Now consider

the three complex bivectors given by F'+iF for the successive choices F' = [Az,

+
F=nAxand F =1 An. These lead to a basis for S, with members

Vap = 2l[amb], Uab = 2n(gmy), Myp = 2l[anb] + 2m my). (4.11)

o _ - + -
Their conjugates V, U and M then yield a basis for S,. Thus S, and S}, are
3—dimensional subspaces of A, M and, in fact, subalgebras of the Lie algebra

m (when the latter has the obvious “complexified” Lie product from A, M)
since it is easily checked that [V,U] = —M, [V, M] = =2V and [U, M| = 2U
and, by conjugation, [V,U] = —M, [V,M] = —2V and [U,M] = 2U. The
basis members also satisfy the following conditions using an obvious extension
of the bivector metric P to complex bivectors,

Ul=V|=V-M=U-M=0, U-V=2  M-M=-4, (412)

and similarly, by conjugation, for V, U and M. It is also easily checked that if
+ — —
AeS,and Be€ S, then A- B=0 and [A, B] = 0. Thus A, M is Lie algebra

isomorphic to g’p + Sp. It is also remarked here for later use that if A, B € g’p
are independent then [A, B] # 0. To see this let A = aU + bV + cM and
B=dU+VV + M for a,b,c,a’,b',¢/ € C. Then [A,B] =0 < ab — ba' =
ac’ — ca’ = c¢b' — b’ = 0 These equations can be solved by noting their
symmetry in the unknowns a,b,c,a’,b’,c’. Thusif a=0#a’, thenb=c =0
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and a contradiction arises. Then if a = 0 = d/, either b, ¢, V', ¢ are all non-zero
/ !
and so % = < which makes A and B proportional and gives a contradiction,

or (say) b = 0 which forces ¥’ = 0 and another contradiction. Thus each of

’ ’ ’
a,...,c’ is non-zero and % = % = < and again A and B are proportional.

Similar comments apply to S’p.

The next result collects together some further results about real bivectors
in Lorentz signature.
Lemma 4.4 For real bivectors F, G and H,

(i) H*Fy. — F*°Hy,. = %(F -H)op,

(i1) [F,G] = —[F,G] and [F,G] = [F,G]| = [F,G|* (= [F,F]=0),

(#it) For a fized bivector F # 0, if a bivector X satisfies [X,F] = 0, then

X =aF + bF fora,beR,
(v) If {0} # W C ApM is a subspace with the “dual invariant” property
that A € W & A € W (equivalently, W admits a basis the duals of whose

members constitute a basis for W) then W is even-dimensional.

Proof For part (i), on writing out the left hand side using the definition of
the duality operator and using standard formulae for handling the alternating
symbol products for Lorentz signature [33] one easily achieves the desired
result.

For part (i7) let X = F+il§ € g'p and Y = G—iG € g'p so that, with a bar
denoting conjugation, 2F = X +X and 22']? = X — X and similarly 2G = Y +Y
and 21‘(*; =Y — Y. Then a remark above gives [X,Y] = 0 and expanding this
gives []?751’] = —[F,G] and [F, C*?] = [Z?,G]. Then one computes [F, G|, [F, G]*
and [Z?,G] using the results of this paragraph, noting that [X,Y] € g‘p and
[X,Y] € ,g'p, to get []t_', G] = [F, G]*. The final part of (i7) follows by putting
F = G in an appropriate previous result.

For part (i¢i) Suppose [X, F] = 0. Then from part (i7) [}*7,)?] = [F, )*(} =
[I?,X] = 0 and so with G = F—l—ilf" € g'p and H = X—i—i)*( € er’p one
computes that [G, H] = 0. A remark above shows that G and H are (complex)
proportional and so X is a linear combination of F' and }*7 .

For part (iv) let A € W. Then since A and A are independent dimW > 2.
Now suppose A4, ;1 and B are independent members of W and consider the
equation aA + b:zl +cB + dé = 0 for a,b,c,d € R not all zero. Taking the
dual of this gives ajzl —bA + cé — dB = 0 and so, by independence of A,Zl
and B, ¢ # 0 # d. Eliminating é from these equations gives the contradiction
that ¢® +d? = 0. Thus A, ;1, B and B are independent and dimW > 4. Then



110 Four-dimensional Manifolds and Projective Structure

if AJA, B,B and C are independent members of W a consideration of the
equation aA+bA+cB+dB+6C+fC’ = 0 for a,b, cde  f 6 R not all

zero and a similar argument to the above shows that A, A B, B C and C
are independent and the proof is complete. [It is remarked that if W is dual
invariant and dimW = 2 or dimW = 6, W is a subalgebra of A,M (lemma
4.4) but this is not necessarily true if dimW = 4. To see this consider, for a
l,n,z,y, the dual invariant subspace W =Sp(I A z,l Ay,n A z,n Ay) which is
not a subalgebra of A,M since [ Az,n Ax.] =—lAn.] O

A little more can be said about the 6—dimensional complex vector space
of all complex bivectors at p € M, A,M, and, in particular, about its sub-

spaces gp and Sp,. For members of m the terms simple and non-simple will
be used as they were for real bivectors, noting that the blades are now, in
general, spanned by complex vectors. For simple such bivectors one can say
more and for this another definition is needed. A simple member of A,M is
called totally null if each member of its blade is null (and hence, by taking
obvious linear combinations, any two of its blade members are orthogonal).
Thus the bivectors V' and U in (4.11) are totally null. The following result
can then be proved [46].

Lemma 4.5 If Q is a non-zero, complex (not proportional over C to a real)

+ —_
bivector then @Q is a simple member of S, or Sy if and only if Q is totally
null. If Q is totally null its blade admits a unique (up to a complex scaling),
real, necessarily null member.

+ —_
Proof Suppose @ is a simple member of S, or S;,. Then Q = (z+iy)A(r+
is) for x,y,r,s € T, M. Since Q is simple so is its dual, @, which is +i@Q), and

hence this has the same blade as ). But the blades of Q and @ are orthogonal
and it follows that each member of the blade of @ is null and so @ is totally

null. Conversely, if @ 1s totally null, it is simple and the blades of @ and Q
are the same and so Q =A@ (A € C). But then the result Q = —( shows

that A = £¢ and so @ is a simple member of Sp or Sp.

If @ is totally null and if its blade contains at least two real (up to complex
scalings) members they are null and orthogonal and a contradiction to the
Lorentz signature arises. Thus there is at most one such member in its blade.
So assume that in the expression for @ above z,y,r and s are each non-zero
with = + iy and 7 + ¢s null and orthogonal and with z and y independent
to avoid = + iy being complex proportional to a real vector (and similarly

r and s independent). This gives || = |y|, |7| = |s], x -y = r-s = 0 and
z-r—y-s=0=ux-s+y-r. Because of the Lorentz signature the conditions
|x] = |y| and -y = 0 force x, y to be spacelike and similarly r, s are spacelike.

Now consider the condition z-r—y-s = 0 = z-s+y-r. The numbers z-r and x-s
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cannot both be zero since then y-r = y-s = 0 and then z,y, r, s are mutually
orthogonal and hence independent and yield the contradiction of a basis for
T, M consisting of four orthogonal spacelike vectors. If neither - r nor x - s
is zero one can easily replace r, s by independent linear combinations r’, s’ of
r, s still satisfying |r'| = |¢’| and v’ - s’ = 0 and with 2 -’ = 0. Thus, dropping
primes, one has |z| = |y|, |r| =|s|, z-y=r-s=0,z-r=y-s=0and z-s =
—y-r = a # 0. If the collection of vectors given, fora = 1, ...,4, by e,=x,y, 1, s
is independent (and with |z| = |y| = u > 0 and |r| = |s| = v > 0) and hence
a basis for T,M at p the corresponding metric coefficients g, = g(eq, ep)
at p are easily checked to have determinant (a? — uv)? which is positive,
contradicting Lorentz signature. Thus the collection x,y,r, s is a dependent
set of vectors in T), M. It follows that there exists a, b, c,d € R not all zero such
that bz +ay +dr + cs = 0 and so the member (a+1b)(x +iy) + (c+1id)(r +is)
is a real member of the blade of @) and since @ is totally null this real vector
is null. The uniqueness follows. O

A totally null bivector Q whose blade contains the real null vector [ can be
written as @ = [Az for a complex null vector z orthogonal to [. Extending [ to a
complex null tetrad [, n, m, m, it is easily checked that z is a linear combination
of I,m and m and so, since z is null and m - m # 0, Q) is either a multiple

of V € g'p in (4.11) or its conjugate V € S,. Such totally null bivectors are
usually called complex null bivectors. Thus for any complex null bivector V
there exists a unique (up to a scaling) real null vector I satisfying V;1® = 0.
The null direction spanned by [ is called the principal null direction of V. The
only complex null bivectors whose principal null direction is (spanned by—these
words will sometimes be understood) [ are, up to (complex) multiples, the
bivectors V and V in (4.11). If, however, @ and @’ are independent complex
null bivectors with respective (distinct) principal null directions [ and n one
may form a complex null tetrad I, n, m, m to see that @ is a (complex) multiple

— + +

of Inm e S, or IANm € Sp, and that Q' is a (complex) multiple of n Am € S,
— +

or n Am € Sp. It follows from this that if @ and Q" are either both in S, or

both in g’p their blades intersect only in the trivial subspace (since [, n,m,m

are an independent set) whereas if Q € gp and Q' € Sy, or vice versa, their
blades intersect in a null vector which may be real or complex and is real if
and only if the two complex null bivectors are conjugates, sharing the same
principal null direction.

Lemma 4.5 leads to the following decomposition of a complex null bivector

+ *
Q =A+iBatp, (A, B e A,M). IfQ € S, the condition Q) = —iQ) immediately

gives B = A and so @ = A+ iA. If [ is the real null vector in the blade
of @, Q@ = I Az for a complex null vector z = r +is, r,s € T,M with
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|r| = |s|,r-s =1-r =1-s = 0. Again r and s are spacelike and it is easily checked
that, with an appropriate orientation in the rAs plane, Q = (IAr)+i(IAs) with

(I A1) =1Ns. Clearly the real bivectors [ Ar and [ A s are null with common
principal null direction spanned by [ which is the principal null direction of Q.

Similar comments apply if @ € ép. Conversely any complex bivector A + iB
where A and B are real null bivectors with common principal null direction
spanned by [ and satisfying A = IAr, B =IAs, |r| = |s|and l-r = -s = r-s =0,

+ = + -
is a complex null bivector in S, or S,. It is noted that if X € S, (S, is similar)
with X = F + iF (F € A,M) then |X| = 2|F| + 2iF - F and so F is simple
if and only if | X| € R and (from lemma 4.3) F is null if and only if |X| = 0.

Thus X € j_qp is a complex null bivector if and only if | X| = 0.

There is a result which is analogous to the triple vector product in
3—dimensional vector analysis. It was given without proof in [47] and will
here be proved. One notes that the definition of bivector inner product in [47]
differs by a factor 2 from that given here and this explains the factor 2 (rather
than 4) in the equation below.

Lemma 4.6 Let F,G and H be (real) bivectors. Then

2[F,|G,H])]=(F-H)G—-(F-G)H - (F-H)G+ (F-G)H. (4.13)
Proof Starting from a real null basis [, n, x, y construct the basis bivectors
Fi=IAz=1%" 24" F=nAz, F3=1An F=—(IAy), b =nAy

and F3 = 2 Ay. One notes that Fy - Fy = —Fy - F = 2, |F3| = —|F3| = -2
whilst [Fth] = —Fg, [Fl,Fg} = —F1 and [FQ,F?,] = FQ. (thU.S the collection

F1, Fy, F3 constitute a subalgebra of A, M, but the collection F'yi, Fa, F'3 do
not—see lemma 4.4(¢7)). One can now show that (4.13) holds when F, G and
H are any combinations of Fy, Fy and Fj. Use of lemma 4.4(ii) and the

result P Q =—P-Q can then be used to check the result when F G, H are
any combination of Fy, Fy,... F3 For example, [ [G H]] [ ,[G, H) =
=[P (G, )" and [F,[G, H)) = [P [G, H]") = ~[F,[G. H])

Then writing out each bivector in (4.13) in terms of the basis bivectors Fy,
..., }*7'3 and using linearity gives the desired result. (|

For future use it is convenient at this point to consider the Lorentz equiv-
alent of lemma 3.6.

Lemma 4.7 Suppose that h is a non-zero, symmetric tensor and F' a bivector
at p € M which satisfy
haeFy + hpeF€q = 0. (4.14)

(2) If F is simple then the blade of F is an eigenspace of h (with respect to

9);
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(i4) If F is non-simple its canonical blades are eigenspaces of h but with the
resulting eigenvalues possibly distinct,

(t3i) For given h if (4.14) holds for bivectors F' and G it holds for [F,G].

Proof For part (i) one could proceed as in the analogous lemma in the

*
last chapter. In each case the blade of F' is the 0—eigenspace of F' and hence
invariant for h, as is its orthogonal complement, that is, the blade of F. If F'is
spacelike choose a null tetrad I, n,z,y so that F' = x Ay. It follows that x Ay
is an invariant 2-space of h and has an induced positive definite metric. Hence
x and y may be chosen as orthogonal eigenvectors of h with real eigenvalues.
A back substitution then shows that the eigenvalues of x and y are equal. If
F is null, say F' = [ Az one similarly sees that [ Az and [ Ay are invariant for
h and hence that [ is an eigenvector of h. Again a back substitution completes
the proof. For F timelike, say F' = [ A n, and for F non-simple (part (ii)),
say F'=a(l An)+b(x Ay), similar ideas give the desired result. For (i) the
proof is as in chapter 3 and so for a given h the solutions of (4.14) for F form
a subalgebra of A, M. O

4.4 The Lorentz Algebra o(1,3) and Lorentz Group

Let M be a 4-dimensional manifold admitting a Lorentz metric g, let
p € M and let £ denote the collection of all linear maps f : T,M — T,M
which preserve the metric g(p), that is, g(p)(f(u), f(v)) = g(p)(u,v) for each
u,v € T, M. The work in chapter 3 on the Lie algebra o(4), is easily modified
to show that L is a group under the usual composition of maps and, in fact, a
6—dimensional Lie group called the Lorentz group. Its Lie algebra, o(1, 3), the
Lorentz algebra, is denoted by L and is isomorphic to the 6—dimensional Lie
algebra, under the bracket operation, of all bivectors at p. Each member of L is
a bijective map and the above definition of £ may be replaced by the equivalent
one g(p)(f(u), f(uw)) = g(p)(u,u) for each u € T,M. Of course, one may
always choose coordinates in some neighbourhood of p so that the components
of g(p) take the Sylvester form n with components 7,,=diag(—1,1,1,1). In
such coordinates at p, called Minkowski coordinates at p, the resulting pair
T,M (= R*) together with n with components 7y, is referred to as Minkowski
space and 74p as the Minkowski metric on T, M. From section 3.6 one sees
that the matrix A representing a Lorentz transformation satisfies AnA” = n
and hence that detA = +1.

For p € M consider the 4-dimensional subset S C T,,M \ {0} of all spacelike
vectors at p. This is an open and hence regular, 4-dimensional submanifold
of T, M and it is connected. To see this let u,v be spacelike vectors at p and
choose Minkowski coordinates so that v = (0,1,0,0) and v = (d, a, b, ¢) with
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—d?+a?+b?+c? > 0. Then construct obvious smooth paths from (0, 1,0, 0) to
(0,a,b,c) and from (0, a,b,c) to (d,a,b,c) which pass only through spacelike
vectors. Thus S is path connected and hence connected.

Next consider the subset T' C T,,M \ {0} of all timelike vectors at p rep-
resented in Minkowski coordinates there. This is an open (hence regular) 4-
dimensional submanifold of T}, M and so gets subspace topology from 7}, M but
it is not connected. To see this let 7" (respectively, T”) denote the subset of
T whose members are such that their first (“time”) component in this coordi-
nate system, which is necessarily non-zero, is positive (respectively, negative).
Then one can easily construct a smooth path between any two members of
T’ (respectively, T") which passes only through members of T” (respectively,
T"). Thus 77 and T" are connected. However, T is not connected since any
path connecting a member of 7" to a member of 7" must pass through one
with zero time component and is then not in 7. It follows that 7" has two
components 7" and T” and which are then open submanifolds of T,M \ {0}.
Hence the product manifold T' x T has four components T x T', T" x T",
T x T" and T” x T'. Now consider the smooth map ¢ : T x T — R\ {0}
given by o(u,v) = n(u,v) whose range does not include 0 (since two timelike
vectors can never be orthogonal) but which clearly takes any positive or neg-
ative value. Further, u € 7" = —u € T" (and vice versa). So ¢ maps T' x T’
and T” x T" to the negative real numbers and 77 x T” and T x T" to the
positive reals. Then the relation ~ on T given by u ~ v < n(u,v) < 0 can be
shown to be an equivalence relation with precisely two equivalence classes T”
and T".

Again using Minkowski coordinates consider the smooth real-valued map
on T,M \ {0} given by f: (d,a,b,c) — —d* + a® 4+ b + ¢?. Arguments similar
to ones given previously (see also chapter 2) then show that the set of all
null vectors (the null cone) N at p is the 3—dimensional regular submanifold
f71{0} of the manifold T,M \ {0}. Each member of this submanifold has
d # 0. A similar argument to that above shows that N with its subspace
topology from T, M \ {0} is not connected but has two components N’ and
N" and a continuity argument shows that this labelling may be chosen such
that k € N < n(u, k) <0 foreach uw € 7" and k € N” < n(u, k) < 0 for each
u € T”. Thus the set C = T U N may be partitioned as C = C" U C” where
C'" =T UN' and C” = T"” U N”. The members of one of these partitions
are called future pointing and the other past pointing. If f € L then f is a
continuous map on T,M and from the definition of £, either f maps each of
C’" and C” into itself or it maps C’ into C” and vice versa. In the first case
f is called future preserving and in the second, future reversing. Thus £ may
be decomposed into four disjoint subsets £ = L’L U ,Ci uct Lt wheret (1)
refer to the future preserving (reversing) properties and =+ to the sign of det A.
Of these the most important subset is ﬁl, which is actually a Lie subgroup
of L, and is labelled Ly and referred to as the proper Lorentz group.

As in the positive definite case, it can be shown (for details see [13]) that
L is a closed (not open and non-discrete) subgroup of GL(4,R) and hence
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admits the structure of a regular submanifold, and hence of a Lie subgroup,
of GL(4,R) of dimension 6 with Lie algebra L. It can also be checked that
Ly is a connected, open Lie subgroup of £ which contains the identity and is
thus (chapter 2) the identity component of £ and has Lie algebra L. Its cosets
in £ are Ly, Eer, £ and £t.

In this section the subalgebras of o(1, 3) will be computed. There are many
ways of doing this. One interesting method is to work almost entirely with
complex algebras as is done in [47]. However, this approach will not be fol-
lowed here but rather a direct method involving only real Lie algebras will be
considered. (However, it is acknowledged that what is to follow is influenced
and guided by [47]). The notation used in the classifying of these subalgebras
is taken from [48] and the full list will be tabulated. The work on bivectors in
the last section and also in chapter 3 will be useful in what is to follow.

Let V' C L be a subalgebra of L. If dimL = 0 (the trivial case) the resulting
subalgebra is denoted by R;. If dimL = 1 then L is of the form Sp(F') where
F is a bivector. Thus one has four possibilities; when F' is timelike, null,
spacelike or non-simple. These subalgebra types are labelled, respectively, Ra,
R3, Ry and Rs. The case R; cannot occur for the holonomy algebra of a
metric connection since it is the span of a non-simple bivector (as explained
in section 3.7).

Now suppose that dimV = 2 and that V = Sp(A, B) for bivectors A, B.
If V is Abelian, [A, B] = 0 and so, from lemma 4.4(ii7) above, B is a linear

combination of A and A and so V = Sp(A, A). Thus there are only two
possibilities here (up to isomorphism—this will always be understood); when

A is spacelike (and A timelike) and when A (and hence A) is null. (The
case when A is non-simple is the same as for A spacelike, from (4.9)). Thus
for some real null tetrad I,n,x,y, the possibilities are V' = Sp(l A n,z A y)
(labelled R;) and V = Sp(I Ax,lAy), labelled Rg. Now suppose that V' is not
Abelian so that [A, B] = C # 0. Then since V is a subalgebra, C = aA + bB
for a,b € R. If a # 0 # b, V is spanned by A and C and [A,C] = bC.
It follows that one may always choose A, B such that V = Sp(A, B) with
[A,B] = uB (0 # p € R). Then from lemma 3.4(i7), |B| = A- B = 0. Also,

from lemma 4.4(ii), [A,B] = —[A,B] = —uB and so B- B = 0, that is, B
is null from lemma 4.3. Thus one must have V = Sp(A, B), [A,B] = uB
and B null. So choose a real null tetrad I,n,x,y so that B = [ A x. Then
in matrix language AB — BA = uB and a contraction first with [ and then
with y gives, using the same notation, B(Al) = B(Ay) = 0. It follows that

Al and Ay annihilate B and so lie in the blade of B = —I A y. Now write
out A in terms of the basis bivectors from this real null tetrad to see that
A=aNz+bAy+cAn (a,bc€R). Thus V =Sp(lAz,bl Ay+clAn)
with the non-Abelian condition giving ¢ # 0. Now change the real null tetrad
l,n,x,y to the (easily checked to be a) real null tetrad I, n’, 2, y' where I’ = [,



116 Four-dimensional Manifolds and Projective Structure
r=x9y =y %l, n = n—l—gy— 202l Then V = Sp(l' Az',I' An'). This
subalgebra is labelled Rg.

Now suppose dimV = 3, let V be the span of the duals of the members
of V (so that V is a 3— dlmensmnal subbpace of L) and conblder VAV, I
O#AGVﬂVthenAGV(éAGV)andAEV(éA BBEV;»
A =—-BeV). So A and A are members of VN V and hence, since A and
A are independent, it follows from lemma 4.4(iv) that dlm(V N V) is 2 or
0 (and that, although V may not be a subalgebra Vn V is an (Abelian)
subalgebra from lemma 4.4(i4)). If dim(V N V) = 2 one can, from the above
argument, choose V' N V = Sp(C, 6) for some non-zero bivector C' and hence
V = Sp(C’,é’,D) for some bivector D independent of C' and 5 It follows

that V' admits a 2-dimensional Abelian subalgebra, Sp(C,C). From the 2-
dimensional cases above this subalgebra must be of type R; or Rg. Next one
has

ID,C] = aD +bC +¢C,  [D,C]=dD +eC+ fC,  (4.15)

for a,b,c,d,e, f € R. Lemma 4.4(i) then gives [D,é’] = [D,C]* and so, from
(4.15),a =d=0,b= f and e = —c¢ (because D and D are independent of
C and C—see the proof of lemma 4.4(iv)). If Sp(C, é’) is of type R; a null
tetrad may be chosen so that C' = [ A n and C=zA y. But then (4.15)

with a =d =0, b = f and e = —c shows that [D,C] and [D, C] are linear
combinations of only [An and x Ay and it is easily checked by computing some
straightforward Lie brackets that D must also be a linear combination of [ An

and z A y and the independence of D, C' and é’ is contradicted. If Sp(C, é’)

is of type Rg a null tetrad may be chosen so that is C =l Az and C =1 Ay
and a similar argument shows that D is a linear combination of [ A z, I Ay,
I An and z A y. Thus by taking linear combinations of the basis members for
V one may take D = a(IAn)+b(zAy) (a,b € R,a?+b? # 0). There are three
choices given by a =0 # b, a # 0 = b and a # 0 # b. The first two of these
give rise to the (non-isomorphic) types labelled R1; (V = Sp(IAx, Ay, zAy))
and Rg (V = Sp(I Az,l Ay,l An)) whilst the third gives rise to an infinite
collection of non-isomorphic types labelled collectively as Ris and which are
distinguished by the non-zero ratio w = & (V = Sp(IAz, I Ay, IAn+w(zAy)).

Now suppose that vn V = {O} and let V = Sp(P Q, R) for blvectorb P,Q
and R, so that V= Sp(P Q R) Then dim (V + V) d1mV—|—d1mV =6 and
so P,Q, R, P Q and R are independent. If X|Y € V lemma 4.6 shows that

* *

2N, [X, Y]] = (X - V)X — |X|Y — (X - V)X + (X - X)V. (4.16)
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Since [X,[X,Y]] € V it follows that, since VNV ={0}, X - X =X -Y =0
for each X, Y € V and so every member of V is simple (lemma 3.1 and any

member of V' is orthogonal to any member of V', that is V and V' are orthogonal
complements in A, M. Since dimV = 3 and each member of V' is simple, lemma

3.2 shows that either the blades of P,Q and R, or those of P, @ and R, have a
single common direction, say, k. In the latter case (the former case is similar),
k is orthogonal to the blades of P, Q) and R and hence these blades collectively
span a 3—space W C T, M with normal k. If k£ is null it lies in W and, further,
W contains two independent orthogonal spacelike unit vectors, say, x and vy,
orthogonal to k and hence V contains the dual pair £k A z and k£ A y which

contradicts VNV = {0}. So k is either spacelike or timelike. For these cases
one may choose an orthonormal tetrad ¢, x, ¥y, z such that k =z or k =t and

(up to isomorphism) V is either Sp(x Ay, Az, At) or Sp(x At,y At,zAt).

These lead to V = Sp(y A z,y At,zAt) and V = Sp(x Ay, z Az, y A z). These

are the types labelled R1g and R;3, respectively, with the latter isomorphic to
*

0(3) (and it is noted that in each of these cases V' is not a subalgebra). This
completes the case when dimV = 3.

Now suppose dimV = 4 and again introduce 1*/ From equation (1.1) ap-
plied to V' and ‘*/ as subspaces of A,M one finds 2 <dim(V N ‘*/) and so
2 <dim(V N {;) < 4. Also dim(V N {;) must be even from Lemma 4. 4(w) So
suppose dim(V N V) = 2 which implies that dlmSp(V V) — 6. Now VNV is

an (Abelian) subalgebra of V' of the form Sp(C, C) for some bivector C' and
so is of the type R; or Rg. Thus, in the first case one may choose a real null
tetrad I, n,x,y and erte V= Sp(A B,l An,z Ay) for bivectors A, B and,

since dimSp(V, V) =6, A and B are not in V. Now
[A,IANn] =aA+bB+c(lAn)+dxzAy) (4.17)
and [A, Il An] = —[A,(z Ay)*] = —[4,2 A y]* by lemma 4.4(i7). It follows

that [A,l An]* € V and then, since A and B are not in V, that a = b =0
and hence that [A,1l A n] is a linear combination of [ An and z A y. But A is
a linear combination of the bivector basis members generated by the above
null tetrad and a short computation then shows that this linear combination
cannot depend on [Ax, Ay, nAz or nAx. Similar comments apply to B. Thus
A and B are linear combinations of [An and x Ay and a contradiction follows.

Now suppose Sp(C,C) is of the type Rg. A similar calculation shows that A
and B are each linear combinations of [Ax, [Ay, IAn and x Ay and so, since

dimV =4,V = Sp(IAz, I Ay, I An,x Ay). This 1mphes dlm(VﬂV) = 4 and a
contradiction follows Now suppose that dlm(VﬂV) =4, thatis, V = V Then
V = Sp(A, B, A7 B) for independent bivectors A and B. Suppose [A, B] = 0.
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Use of lemma 4.4 then shows that V' is Abelian and V, now a subalgebra, is

also Abelian. It follows that A + 1;1 and B + zé are independent members of

+

S, and have zero bracket and this is a contradiction (see section 4.3 following
(4.15)). So [A,B] # 0. Use of lemma 4.4 again shows that the set of all
commutators of all members of V' is a 2-dimensional subalgebra Z of V of the

form Sp(C,C) with C = [A, B] and that C- A= C-A=C-B=C-B =0
and similarly with C replaced by C. Thus Z € V+ and hence Z C V N VL
and it follows that C' - C = C - 5 = 0 and hence, from lemma 4.3, that C
(and 6) are null bivectors. Choosing a null tetrad I,n,z,y with C = [ A x

and C = —l Ay one finds, since C-A=C-A=C-B=C-B =0, that
V=8Sp(lANz,IANy,l An,xz Ay), which is labelled R14.

Finally suppose that dimV = 5. Let O be a 3—dimensional Lie subalgebra
of the Lorentz algebra L of type R;3 and isomorphic to o(3), discussed earlier.
If O is not a subalgebra of V, dim(V 4+ O) = 6 and (1.1) applied to V and O
shows that dim(V N O) = 2. Since there are no 2-dimensional subalgebras of
O, it follows that each such subalgebra O is contained in V. Since any simple,
spacelike bivector is a member of a subalgebra like O and since one may
form a basis for A,M consisting of simple, spacelike bivectors, [for example,
Ay =+ %x/\t, rAz+E %z/\t, y/\z:t%y/\t], at least one of which is not in
V', this gives a contradiction. Thus there are no 5—dimensional subalgebras
of L. This completes the classification of the subalgebras of L. One has 13
proper subalgebras, labelled Ro—R14, the trivial subalgebra R; and the full
Lorentz algebra L, sometimes labelled Ry5. These are summarised in Table
4.1 in which I, n,z,y and x,y, z,¢ are the usual bases and 0 # w € R. (This
table is taken from [48, 13].) As explained earlier the 1-dimensional type Rs
cannot arise for the holonomy algebra of a metric connection since it is the
span of a non-simple bivector (see chapter 3).

All the connected Lie subgroups of £y can now be found by exponentiation,
as described in chapter 2. [In fact Lo is an exponential Lie group [47] in that
each f € Ly is the exponential of some bivector in L. However, not all of its
subgroups are exponential.] From the above classification of the subalgebras
of L one can write down a typical member of a connected subgroup H C L by
noting (chapter 2) that A corresponds to a unique subalgebra H C L and that
each member of H is then a finite product of exponentials of members of H. If
F € L is spacelike, say F' = z Ay in some null tetrad [, n, z,y, exponentiation
yields a transformation f = exp(tF') € Ly given by

I'=1, n' =n, z' = costr — sinty, y = costy +sintx. (4.18)
If F =1 An is timelike one gets

' = €'l n' =e 'n, =z, y =y. (4.19)
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TABLE 4.1: Lie subalgebras for (—, +,+, +).

Type | Dimension Basis
Ry 0 0
Ry 1 AN
R3 1 ANz
Ry 1 TAY
Rs 1 INn+w(zAy)
Rg 2 IANn, INx
R; 2 IAn, z Ay
Rg 2 Nz, Iy
Ry 3 IAn, LNz, LAY
Rio 3 IAn, INz,nNzx
R 3 INz, INYy, TNy
R 3 IN, INy, LAn+w(zAy)
Ris 3 TANY, YNz, x ANz
Ryy 4 INz, INy, IAn, Ay
Rys 6 L

If F =1Ay is null one has

=1, n =n—ty— 1t2l, =z, y =y -+t (4.20)

2

where in each case t € R and satisfies 0 < ¢t < 27 in (4.18). If F = [An4w(zAy)
is non-simple one gets a combination of (4.18) and (4.19). Transformations
like (4.18) are just rotations in the x A y plane whilst those in (4.19) are
usually referred to as boosts in the I A n plane. The transformation in (4.20)
is a null rotation (about [). The transformations generated by a non-simple
bivector are called screw motions. The Lie algebra Ry3 is just o(3) (fixing the
timelike vector t), Rjo can be checked to be the Lie algebra o(1,2), Ry; is
the Lie algebra which leads to those members of £y which fix the null vector
l and R4 is the important null rotation subgroup—the members of Ly which
fix the direction spanned by [. The transformations arising from R34 can be
represented elegantly in terms of a complex null tetrad I, n, m,m by [40]

I'=e, m' = e (m — e*Bl), (4.21)
n' = e *n+ Bm + Bm — e B,

where \,0 € R,0 < 6 < 27 and B € C. The condition e* > 0 reflects the fact
that these transformations are future preserving. Judicious choices of A, 8 and
B in (4.21) can be used to recover transformations arising from the subalgebras
Rs— Ry, R11 and Rj3. The transformations (4.21) all fix the direction spanned
by [ and (4.21) with A = 0 are those transformations which fix {. If ny and
ne span distinct null directions, neither of which is that spanned by [, they
may be mapped onto each other using some member of (4.21). To see this
construct a null basis I, n1, m, m and let ny = al+bni+Bm+ Bm for a,b € R
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and B € C. Since ny is null one finds ab = —|B|? with ab # 0 since ny spans
a direction distinct from those spanned by [ and n;. Then ns is as the last
equation in (4.21) with b= e~

Since Ly is exponential and since any non-zero bivector admits at least
one and at most two independent null eigenvectors, any f € Ly which is not
the identity map fixes at least one, and at most two, null directions. Each of
these may be false if f is taken from £\ Lo [13].

4.5 The Curvature and Weyl Conformal Tensors

For the curvature tensor Riem one may, as in the last chapter, construct
the linear curvature map f on bivectors (and taking advantage of the existence
of the metric to “abuse” indices according to f : F% — R“bchCd). In this
case, however, the bivector metric P is not positive definite and diagonalisation
of f does not follow. Once again one may classify Riem(p) for p € M into the
five classes based on rgf(p) and given in the last chapter. They are defined
as in the positive definite case but with the following caveats. Class D may
be subdivided into the classes when the necessarily simple bivector spanning
rgf(p) is spacelike, timelike or null. (That it must be simple was explained in
the last chapter and is due to the curvature symmetry R,pcq = 0). Class C
may be subdivided into the cases when the unique (up to scaling) annihilating
vector is spacelike, timelike or null. In class B the spanning bivectors for rg f (p)
form a 2-dimensional Abelian subalgebra with no common annihilator and this
fixes a subalgebra of type R7 from the last section. If the curvature class is C'
and rgf(p) is a subalgebra, it is necessarily of the type Rg or Rig (spacelike
annihilator), Ry3 (timelike annihilator) or Rg or Ry (null annihilator). That
the classification thus achieved is disjoint and exhaustive is proved in exactly
the same way as in the positive definite case (this was the reason for the
general, metric-independent way of phrasing the curvature class definitions).
Again one allows the symbols A, B,C, D and O to denote also those subsets
of M where the curvature is of that class to get the disjoint decomposition of
Mas M =AUBUCUDUO. As in the positive definite case one can show
using an almost identical proof that A and A U B are open in M. The same
argument as before then shows that AU BUC and AU BUC U D are also
open in M and that the decomposition of theorem 3.1 holds with intZ = 0.
The equation R%.qgk% =0 for k € T,M has non-trivial solutions for k at p if
and only if pe CUDUO.

Now consider the Weyl conformal tensor C' on M. For Lorentz signature

one has € = —1 in the appropriate equations of chapter 3 and so for C' (and
also for the tensor E) one has
C=Cr, O = —-C, *E=—-FE", *E* =F. (4.22)

Again one can write out the type (0,4) tensor Cypeq as a sum of symmetrised
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products of members of a basis for A,M (as one can for the tensor Rgpcq)
and then one can introduce the Weyl map fo as before and given by fo :
F — 0%.qF°? (or by the usual abuse of notation and retaining the same
symbol for the map fc : F®* — C% 4F°?). These maps are self-adjoint (since
Clabed = Cedap) and have the same rank, the latter being called the Weyl rank
at p. Thus one is considering, just as for the curvature tensor in chapter 3, the
Weyl tensor in the 6 x 6 matrix form C4p as a real, symmetric 6 X 6 matrix. It
follows that the rank of fo (or of the matrix C4p) is, when non-zero, an even
integer. To see this note that there exists non-zero bivectors F' and A such that

fo(F) = A = CupeaF® and hence fo(F) = A (since CyupeaF®d = Cy g F?

=* CopeaF°? = (CopeaF°?)* = Agp with A and A independent. Thus rank fo >
2. If rankfc > 3 there exists a non-zero bivector H with fo(H) = B (and

*

hence fo(H) = B) for some bivector B which is independent of A and A. It
then follows, as in the proof of lemma 4.4(iv) that A, A, B, B are independent

bivectors. So rankfo # 3. A similar argument shows that rank fo # 5 and so
the rank of fo is even (and rgfc has the “dual invariant property”).

+ —
In order to construct the sets S, and S, in the Lorentz case one had
to go to the vector space of all complex bivectors A,M at p from which

they emerged as 3—dimensional complex subspaces of m . This leads to a
different method for decomposing the Weyl tensor. First one has the following
relations (in addition to those already found) and which can be computed
from [14]. They are C, ., = C¥.ps C;[bcd] =0 and C*,. = 0 and instead of
the real decomposition of C' as in the positive definite case one may perform
a complex decomposition of C' which emerged out of the original research of
Petrov [49, 50]. This work, inspired by its potential importance in Einstein’s
general relativity theory, led to a classification of C' in the case of Lorentz
signature, known as the Petrov classification and developed in [49, 50, 86, 40,
51, 52, 64, 87] amongst many others (and summaries may be found in [16, 13]).
This classification is more complicated than in the positive definite case mainly
because of the fact that the bivector metric P is no longer positive definite
and also because of the existence of null vectors and bivectors. However, the
latter objects add a richness to the classification and the complexification of
C simplifies the situation.

To achieve this classification one first constructs the complex Weyl tensor
+ + +
C at p with components Cupcq and defined by Cupeq = Coped + 1Cp.q- This

has the easily checked properties
+ + + + + + +
Caved = —Craca = —Cabdc, Cabed = Cedab, Ca[bcd] =0, C%e =0, (423)
+ +
and it also has the “self dual” property *C = —iC'. It is clear that C(p) =
Jr
0 & C(p) = 0. Essentially the algebraic classification of C is just the
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algebraic eigenvector/eigenvalue problem for the linear map fo at p. A con-
venient method of effecting this classification starts with the idea of an eigen-
bivector (and in this respect the work in section 4.3 above is important). It
is first recalled that the Weyl tensor requires the metric g for its existence
and so one has the bivector metric P and which may be used to raise and
lower skew-symmetric pairs on real bivectors, a procedure which may (and

will) be extended to complex bivectors. Then a bivector F € m is called

+
an eigenbivector of C(p) (respectively, of C(p)) if the first (respectively, the
second) equation below holds for A, u € C

d d p d d
C’abcd-FC = )\Pabchc = )\Faba Cabchc = llf‘Pabcd»Fc = MFaln (424)
and then A (respectively, u) is the associated eigenvalue. Thus if F' € K;J\//[
then, using the shorthand notation given in chapter 3, one has *(C'F)
* + - +
=* CF = C*F = CF and so if F' € 5, (respectively S,), CF € S, (re-
spectively S'p). Thus decomposing C' as

1 1
O =3(C+i07) + 5(C —iC") = C1 + Ca, (4.25)

one sees that the obvious self-adjoint maps fc, and fc, associated with C
+ —
and Cs (just as fo was with C) are such that fo, maps S, into itself and S,
- +
to the zero bivector whilst fc, maps S, into itself and S, to the zero bivector

+
and that fo = fo, + fc,. The complex tensor C] is just half the original C' and

+
2C} is sometimes denoted by C' (and equals the conjugate of C). Also if F, G

+ _ _ _ —
and H form a basis for S), the conjugates F', G and H form a basis for S, and
CiF =CF,CiF =0, CoF =0 and CoF = CF = CF, ete. It follows that

+
the Jordan forms of C; (as a linear map on S,) and Cs (as a linear map on

g’p) are the same (with eigenvalues differing only by conjugation) and hence
all the algebraic information about C' is contained in the action of Cy (that

+ +
is, the restriction of C') on S,.
+
Since S, is a 3—dimensional vector space over C there are three possible

Jordan forms for (the restrictions to g“p) of C (or E’) represented in Segre
notation by {111}, {21} and {3}. These are the respective Petrov types I, II
and ITI. The degeneracy {(11)1} is Petrov type D and the degeneracy {(21)}
is Petrov type N. (Historically, the symbol D refers to the degeneracy in the
Segre type and the N stands for “null” since this type was associated with
possible null radiation fields.) It is noted that the tracefree condition in (4.23)
shows that the sum of the eigenvalues in each case is zero. Thus in types IT1
and N all eigenvalues are zero. Petrov type O refers to the vanishing of C' at
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+
p. A consideration of the tracefree condition on C' shows that the map f, on
C

g’p has rank 2 or 3 for type I, rank 3 for type II and D, rank 2 for type III,
rank 1 for type N and rank 0 for type O. Lemma 4.1(i¢) also applies to the
complex situation here and so the (complex) eigenbivector F' corresponding to
the non-simple elementary divisor in types IT, N or III satisfies |F| = 0 and
is hence a complex null bivector (see after lemma 4.5). The eigenvalues arising
from this classification are sometime referred to as Petrov or Weyl invariants.

+ + +
Since C' is, in essence, the restriction to S, of C' one may decompose C' as a
sum of symmetrised products of the basis members U, V and M given in (4.11).

+ +
Then one applies one of the equivalent conditions Cpeq) = 0 and Cep = 0
to get, after a straightforward calculation at p, the elegant expression [40]

+
Caved = C VapVea + C* (Vs Mg + MapVea) + C2 (VapUea + UapVea + MapMeq)
+ C'(UapMea + MapUscd) + C*UabUcq (4.26)

for C*,...,C® € C. Then, for example, if the Petrov type at p is N the eigen-
bivector corresponding to the non-simple elementary divisor must be complex
null (and its eigenvalue zero). Choosing it as V, (4.26) gives C® = C* =
C® = 0. Similar remarks apply if the Petrov type at p is III. These two cases
can be distinguished by noting that for type IN, another complex eigenbivec-

Jr
tor @ € S, must exist with zero eigenvalue. Writing @ = aU + 0V + cM

+
(a,b,c € C) the equation CQ = 0 then gives aC! — 2¢cC? = 0 = aC?. One
cannot have a = ¢ = 0 and so a = 0 = C? = 0, whilst a # 0 = C? =

(= C' = 0 and the contradiction E = 0.) Thus C? = 0 for type N (and
C? # 0 for type IIT). If the Petrov type at p is IT again the eigenbivector
corresponding to the non-simple elementary divisor is complex null (and cho-
sen to be V) but the eigenvalue is non-zero. One gets C* = C® = 0 and the
above eigenvalue is 2C3.whilst the other eigenvalue is —4C3. It will be shown
below that one may choose the basis I,n,m,m at p so that C? = 0. If the
Petrov type at p is D one has two complex eigenbivectors R and S with equal
(non-zero) eigenvalues « and one complex eigenbivector @) with (non-zero)
eigenvalue —2a. If |R| # 0 # |S| one may choose independent linear combi-
nations R’ and S’ of them within the a—eigenspace such that |R'| = |S’| = 0.
If|Rl =0#|S|thenif R-S=0onehas R-S=R-Q=5-Q=0
(the latter two since a@ # —2a). But then R,S,Q form a basis for g’p with
R-S=R-Q = R-R =0 which is a contradiction. So R-S # 0 and again one
may find a linear combination S’ of R and S, independent of R and satisfying
|S’] = 0. It follows that the a—eigenspace may be spanned by two complex

+
null bivectors R, S € S, satisfying R - S # 0 and hence they may be taken as
V and U above (section 4.3). Then @ is uniquely determined up to a complex
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scaling since it is (bivector-) orthogonal to V' and U and hence may be taken
as M above. Thus, from (4.26), C! = C? = C* = C% = 0. So for the Petrov
types N, III, IT and D one may choose a complex null tetrad [,n, m,m at p

+
so that C takes the respective canonical forms
ps 1
Cabea = C " VapVea, (N) (4.27)

+

Cabed = C Vo Vea + C*(VapMeg + Moy Veq),  (III) (4.28)
+
Caped = C 'V Vea + C* (Voo Ueq 4 Uap Ve + MapM_q), (I1) (4.29)

+
C'(;Lbcd = Cg(VabUcd + Uachd + Machd)7 (D) (430)

where, in each case, C', 02, C® € C. Conversely, each of the expressions above
are of the required algebraic Petrov type. Next, the general equation for a
change of complex null tetrad from I, n,m,m to I',n’,m’,m’ given in (4.21)

can be used to see how such a change affects a basis change for g'p from V, U, M
to V', U’, M’" where V', U’ and M’ are given in terms of the new basis I’, n’, m’
and m’ as V,U and M were in terms of the original basis. This gives, after a
calculation,

V' =ere YV, M =2 BV + M, (4.31)
U' = B2V + Be'? M + e U

Finally one may substitute this last equation into (4.26) (written with primes
on the bivector basis members and coefficients) to see how the coefficients in
(4.26) are affected by this change. A lengthy but straightforward calculation
gives

Ol = 2 e=2i000 | 422 Be=10072 | 62X B2(3

42N B30 0N 4 23 B o210 5 ( )

CQ _ e}xe—iGOIQ + 36)\Bcl3 + 36)\32619614 4 eAB362i0015’ ( )

03 — C/3 + 2Bei90/4 + 3262100157 (434)

C* = e 0O 4 e B0, ( )

05 _ 672)\6%00/5. ( )

From this equation, and considering Petrov type N as in (4.27), so that C? =

C3 = C* = 0% = 0, one may make a basis change (4.21) with A = 1 and with

an appropriate choice of § to make C! real in (4.27). For Petrov type ITI one

may first change basis and choose 6 to make C? real and then (keeping C?

real) choose B to set C' = 0. For Petrov type II one may arrange that C! is
real.

The Petrov classification can be described in another way by following the
penetrating observations initiated by Bel [52] and others [53, 54, 40, 51]. They
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discovered that the Petrov type at p can be characterised by a certain number
of real null directions at p which lie in a special way with respect to the Weyl
tensor. The geometrical relations controlling this phenomenon are referred to
as the Bel criteria. To see how this works suppose that C(p) # 0, consider the
following two equations (which are easily shown to be equivalent).

pa by.c pa br.c
k[eca]bc[dkf]k k¢ = 0, Cabcdk k¢ = kan + Qakdu (437)

for a (non-zero, real) k € T,M and a complex 1—form ¢ at p. If ¢ # 0

+
the condition g“dCade = 0 shows that k- ¢ = 0 and then a contraction of
(the second of) (4.37) with k* shows that k is necessarily null. Also it was

shown above that é’abchCd =0 (since V. =1Am € Sp) and so, choosing
a complex null tetrad [,n,m,m with k£ = [ and using this last relation in
(4.37), one sees by contracting the second of (4.37) with m? that ¢-m = 0
and so ¢ is a linear combination of [ and m and hence null. On the other
hand, if ¢ = 0, one has Cupeqk®k? =* Cupeak®k® = 0. The second of these is
(GCdTSCabrs)kbk’c = 0 which imphes GCdrsTarsc = 0 where Tarsc = abrskbkc~ It
follows that €"5°?T},, .. = 0 and hence that Tajrse = 0, that is, kbCab[ka] =0.
A contraction of this equation with k¢ and use of the first equation above
shows that either Cypegk® = 0 or k is null. If Cypegk® = 0 then *Clpegk® = 0,
that is, C’;‘bcdkd = 0 and so €°°Cyp,skq = 0 and hence Caplcake) = 0 and
a contraction of this equation with k° again shows that k is null. Thus the
equivalent conditions (4.37) force k to be null and then k is said to span a

+
principal null direction (pnd) for C(p) or C(p).
Now, again with C'(p) # 0, consider the following two equations at p (again
easily checked to be equivalent).

pa b pa b
kieCajpeak®k¢ = 0, Capeak®k® = Kkoka, (4.38)

for a (non-zero, real) k € T,M and K € C. It is noted that if K # 0 a
contraction of (the second of) (4.38) with k® reveals that k is necessarily null.
This result also follows if K = 0 by the argument just given for the case ¢ =0
in (4.38). Thus the equivalent conditions (4.38) force k to be null and then &
is said to span a repeated principal null direction (repeated pnd) for C(p) or

5 (p). The term “repeated” will be explained later.

Thus a repeated pnd is a pnd, but not necessarily conversely. Let n be null
and choose a complex tetrad [, n,m,m at p. On using (4.26) and performing
some simple contractions one sees that (4.38) holds for k = n, that is, n is a
pnd of C at p, if and only if C* = 0. This allows one to count the number
of pnds which can exist for C(p) # 0 by fixing some null direction spanned
by I and using (4.21) to seek solutions of (4.38) for n by seeking solutions
for B of the equation C' = 0 in (4.26) using (4.37), each one of which will
give a solution (up to a scaling) for n. It follows that if C® # 0 one has a
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quartic equation in B from (4.37) and hence at least one and at most four
pnds exist. If C° = 0 # C* one gets a cubic equation for B, that is, for n
but then [ is another distinct pnd. Thus there is at least one and at most
four pnds in all cases. [It is noted that the solutions are counted properly
and some of them may coincide. This is the reason for the term “repeated”
pnd] If I (respectively, n) is a repeated pnd then, from (4.26), C* = C® =0
(respectively, C! = C? = 0).

For the individual Petrov types listed above, one can check that if C(p)
is of type N, [ is the only pnd and is (quadruply) repeated pnd. Similarly, if
C(p) is of type III (with C! set to zero as was explained earlier) [ is a (triply)
repeated pnd and n is a (non-repeated) pnd. If C(p) is of type I1, [ is a (doubly)
repeated pnd and it is easily checked that there are two other distinct (non-
repeated) pnds. If C(p) is of type D, I and n are each (doubly) repeated pnds
and there are no non-repeated pnds. Now from the above description of the

+ +
algebraic types for C'(p) # 0 it can be seen that if C' admits a repeated pnd,
say [, it may be reduced to one of the types N, III, IT or D and so, defining

these types to be algebraically special, one has the result that C(p) or 5 (p)
is algebraically special if and only if it admits a repeated pnd and hence it
is of Petrov type I if and only if it has four (non-repeated) pnds and is then
referred to as algebraically general.

The above Bel criteria are stated in terms of 5 However, they can be
restated, with very little change, in terms of the real tensor C. This makes
them more accessible and, in fact, one of the main reasons for expressing the
criteria in this latter form is its usefulness in calculation especially in general
relativity theory. For example, if p € M and C(p) # 0, the Petrov type at p

+
is N if and only if there exists 0 # k € T, M such that either Clapeadk® = 0,

n
or Cupeak? = 0, or >kc‘abcdkd = 0, or Cab[cdke] = 0, or Cab[cdke] =0, or
*Caplecake) = 0. The vector k is, in each case, null, unique up to scaling and
spans the quadruply repeated pnd of C(p). The other Petrov types are similar
and are discussed in [13].

Another type of study of the Weyl conformal tensor can be found in [80].

As before, using a Petrov symbol to denote precisely those points of M
where the Weyl tensor has that Petrov type, one has M =TUITUD UIITU
N U O. To describe this decomposition in more detail one must consider the

+
characteristic polynomial @ arising from C, the latter regarded as the linear
+
map f, on the 3—dimensional complex vector space S, given by F ab
c
+
CapeaF. Let P, denote the set of all polynomials with coefficients in C and

of degree < n. P, can be regarded as a manifold of dimension 2n+2 according
to the chart scheme

Q=cpz" +...+c12+co < (ap,bo, ..., an, by) (4.39)
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for @ € P, and ¢ = ay, + ibg, (ag,bp €R), (0 <k <n). If A € Cis a simple
root of @, so that Q(A) = 0 then there exists a smooth map h from some open
neighbourhood U of @ in R?"*2 to C such that h(Q) = X and that h(Q’) is a
root of Q" for each Q' € U (see, for example, [29]). Thus a simple root of @

+
depends smoothly on the polynomial coefficients. Since g, and hence C, are

+
smooth on M, the characteristic polynomial of C' gives rise to a smooth map
S :V : M — R® where V is some coordinate neighbourhood in M. Then there
exists a smooth map h from some open neighbourhood W of the characteristic

+
polynomial @’ for C at p to C such that h(Q') = A and h(Q) is a root of @
for each Q € W. Thus U; = S~'W is an open coordinate neighbourhood of p

and S(p) is the characteristic polynomial of é’ at p. Now consider the smooth
map h oS on U so that ¢ € U; = S(q) is the characteristic polynomial at ¢
and h(S(q)) = (ho S)(q) is a root of S(q) with ho S : U; — C. It follows that
the smooth complex function h o S on U; gives rise to a smooth eigenvalue

of E’ Thus if p € I, S(p) = Q" has three simple (distinct) roots in C and it
follows that @ has three simple, distinct roots in some open neighbourhood
of p. Thus I is an open subset of M.

One may then refine the decomposition of M above in terms of open
subsets of M. For this it is recalled that, to allow use of the rank theorem,
the rank of fé is 2 or 3 when restricted to I, 3 on IT or D, 2 on III, 1 on N

and zero on O. (When considered as a real tensor C' the rank of fo is twice
the above rank for each of the Petrov types; cf the earlier remark that rank
fc is even.)

Theorem 4.3 Let M be a smooth, connected 4-dimensional manifold admit-
ting a Lorentz metric. One has the following disjoint decomposition of M in

+
terms of the Petrov types of C' (or C).

M =TUintIT U intD U intIIT U intN U intO U X (4.40)

where int denotes the interior operator in the manifold topology of M and X,
which is determined by the disjointness of the decomposition, is a closed subset
of M satisfying mtX = (. The subset X is empty if and only if the Petrov
type is the same at each point of M.

Proof It was shown above that I is open in M. The above remarks on
rank show that the subsets IUITUD UIIT and TUITUD UIITUN are open
in M. In addition, the subset I UII U D is also open since I is and since the
rank of fé is equal to 3 on IT U D. It remains only to show that intX = {.

So let W C X be open so that, by disjointness, W NI = (). Now IUITUD is
open and so WN (IUITUD) =W N (IIUD) is open. If this latter subset is
non-empty it cannot be completely contained in D since, being open, it would
lead to WNintD # (), contradicting the disjointness of the decomposition. So
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WNII # () and there exists p € WNIL. Since WN(ITUD) is open one has, from
the above, the existence of a simple root of the characteristic equation at p and
hence a corresponding smooth root «y of this equation in some neighbourhood

+
V of p with V.C W N (I UD). Since the Petrov type of C at each point

+
of V is IT or D, the tracefree condition on C shows that the roots of the
characteristic polynomial on V are v and —%’y and they are smooth. Now

+ +
consider the smooth matrix function Z = (C'—~I)(C + $vI) on V where I is
the unit 3 x 3 matrix. A consideration of the minimal polynomial associated

with E’ on V shows that Z vanishes at points where the Petrov type is D
since all elementary divisors are simple for this Petrov type, but not where it
is IT since for this type ,%7 corresponds to a non-simple elementary divisor
(chapter 1). Thus Z(p) # 0 and so there exists an open neighbourhood V' of
p where Z does not vanish. It follows that W N II is non-empty and open,
contradicting WnNintII = () by disjointness of the decomposition. It follows
that W N (ITUD) = () and W is disjoint from I, IT and D. Now suppose that
W NIIL # (. Now WNIII =W N (ITUIIUDUIII) is open and immediately
one gets the contradiction WNintIII # () so that W N IIT = (. Similarly one
gets WNN = WNO = () and thus W = (). Hence intX = (. The final sentence
of the theorem follows from the fact that M is connected. O

This decomposition shows that each point of the open dense subset M \
X of M lies in an open subset of M on which the Petrov type is constant.
From this it can be shown [29] that the eigenvalues are locally smooth and

+
the eigenbivectors of C' may be chosen to be locally smooth. In practice this
is convenient and necessary for local calculations involving calculus in both
classical geometry and general relativity theory.

4.6 Curvature Structure

Again suppose that dimM = 4 and that g is a smooth Lorentz metric on
M with curvature tensor Riem. If 0 # o € R, the Lorentz metric ag on M
is also smooth and has the same curvature tensor Riem. Now suppose that
g’ is another smooth metric on M of arbitrary signature and which has the
same curvature tensor Riem as g. What can one say about ¢’? As discussed
in the last chapter, one necessarily has the conditions of lemma 4.7 satisfied
for each bivector F' € rgf(p) at each p € M, where f is the curvature map.
The structure of rgf(p) is given by the curvature class of Riem(p) as detailed
earlier this chapter. According to this classification M may be decomposed into
open subsets of fixed curvature class as M = AUint BUintCUint DUintO U Z
where A, B,C,D and O are the subsets of M where the curvature class is,
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respectively, A, B,C,D and O (with A open in M) and where Z is a closed
subset of M with empty interior. If A is open and dense in M (the “general
situation”) similar techniques to those in section 3.8 show that for p € A,
rgf(p) must have dimension > 2 and if this dimension is 2 it must contain
a non-simple member, say, F' (to avoid annihilators—see lemma 3.2), and a
member G independent of F which may, by taking linear combinations, also
be chosen non-simple and which, to avoid the contradiction that p € B, may
be chosen so that none of the canonical blades of F' coincides with either of
the canonical blades of G. Then lemma 4.7 shows that T),M is an eigenspace
for h. Similar comments apply if dimrgf(p) > 3. If dimrgf(p) = 3, rgf(p)
may contain a non-simple member (and the above argument applies again)
or it may contain only simple members (see lemma 3.2) and again T,M is
an eigenspace for h. Recalling the result that the equation R%,.qk? = 0 has
only trivial solutions for k € T}, M at points of the subset A, one thus has the
following result [13, 55] (see also [56, 18, 19])

Theorem 4.4 Let M be a 4-dimensional manifold and let g be a smooth
Lorentz metric on M with curvature tensor Riem. Suppose that A is an open
dense subset of M. Suppose also that g' is a smooth metric on M of arbitrary
stgnature which has the same curvature tensor Riem as g does on M. Then
g = h satisfies lemma 4.7 for each F € rgf(p) and for each p € A and so,
since A is dense in M, ¢’ = ag for 0 # a € R. The Levi-Civita connections
for g and g’ are the same and ¢’ has Lorentz signature.

If A is not dense in M, so that at least one of intB, intC, intD and intO
is not empty one can, omitting the case intO # (), derive expressions relating
g and ¢’ on each of these subsets in the same manner as that in section 3.8.
In these cases, g and ¢’ may have different signatures. [It is noted that lemma
4.7 still holds even if h is not non-degenerate.]

As shown earlier (chapter 3) the holonomy group ® of (M, g) is now a Lie
subgroup of £ and so the holonomy algebra ¢ is a Lie subalgebra of o(1, 3).
Since ¢ is a metric holonomy group the subalgebra ¢ is a one of the subalgebras
R; — Ry5 from Table 4.1 with R5 omitted (see section 3.7).

Theorem 4.5 Let M be a manifold admitting smooth Lorentz metrics g and
g’ with respective Levi-Civita connections V and V'. Suppose V = V'. Then
the holonomy algebras of V and V' are the same (=¢) and if ¢ is of type Ry,
Ria, Ria, or Ri5, ¢ =Xg (A €R.)

Proof The proof follows immediately from the definitions of the appro-
priate subalgebras for each type given in section 4.4, use of lemma 4.7 and the
calculations in section 3.8. O

Now consider the Weyl conformal tensor C' and associated Weyl map fc
for (M, g). As mentioned earlier, conformally related metrics on M have the
same (tensor-) type (1, 3) conformal Weyl tensor. Now with the original metric
g of Lorentz signature given suppose, conversely, that g’ is another smooth
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metric of arbitrary signature on M whose Weyl conformal (type (1,3)) tensor
(C") equals that of g on M. What can one say about the relationship between
g and ¢’? One can examine the range space of fo at p € M through the
Petrov canonical forms of C' (with respect to g) and then use lemma 4.7. It is
then recalled from the previous chapter that one may, at each p € M, find a
Weyl class for the Weyl conformal tensor at p € M in exactly the same way
as one originally found the curvature class at p. It is then clear, following a
simple consideration of the rank of fo and the tracefree condition C¢,, = 0
on C, that classes B and D are again impossible, that class C' can only arise
when the rank of fo is 2 with a null annihilator and then the Petrov type
is N (section 4.5) and that, otherwise, one has class A or O. Further, and in
an appropriately chosen real null tetrad [, n,x,y at p, the Petrov types listed
above for g show that rg fo is spanned by [Ax and [ Ay for p € N and contains
INz, INylAnand x Ay for all other Petrov types at p except type 0. Use
of lemma 4.7 with h = ¢’ shows, using the decomposition for (M, g) in terms
of its Petrov types, as in theorem 4.4, shows that at each p € M \ (N U O),
INz, I ANy, An and z Ay are eigenspaces of g’ with respect to g and hence
g = ¢g for some function ¢ on M\ (NUO) and that for p € N, Az and [ Ay
are eigenspaces for g and hence g, = agqp + Slalp for functions o and 5 on
N. The functions ¢, « and § are easily seen to be smooth. Further, since the
Petrov type is a statement between the Weyl conformal tensor and the bivector
metric constructed from the metric giving rise to it, it can be checked from
the above statements that ¢’ has Lorentz signature and the Petrov types of g
and ¢’ are identical on M \ (NUO) and also on N. Thus if int(NUQO) = (=
intN =intO = () g and ¢’ are conformally related on the open dense subset
M\ X of theorem 4.4 and hence on M, ¢’ = ¢g, with ¢ a smooth map M — R.
One has the following theorem.

Theorem 4.6 Let M be a 4-dimensional manifold and let g be a smooth
Lorentz metric on M with type (1,3) Weyl conformal tensor C. Suppose g’
is another smooth metric of arbitrary signature on M which has the same
type (1,3) Weyl conformal tensor as g on M. If, when M is decomposed with
respect to the Petrov type of g, int(NUO) = ) then g and g’ are conformally
related on M.

The clause intO = @ is obviously necessary whilst the clause intN = ()
is (less obviously) also necessary. To see this, suppose that (M, g) is such
that it is vacuum (that is, Ricc = 0 on M) with nowhere zero curvature
tensor and admits a global function w such that the covector field [, = u 4
is nowhere zero, null and parallel, I, = 0. [Such pairs (M, g) with all these
imposed conditions exist—see, for example, [13].] Then consider the metric ¢’
such that, in any local coordinate domain, g/, = gap+A(u)l4lp for some smooth
function A. The metric ¢’ is easily seen to be of Lorentz signature (since in
any real, null tetrad I,n,z,y (with respect to g) based on | at any p € M,
g, =0, ¢d(x,z) = ¢(y,y) =1 and ¢'(I,x) = ¢’(l,y) = 0). The Ricci
identity then gives for the curvature from g, Rqpeql® = 0 and, since Ricc = 0,
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this leads to Cypeql? = 0. Thus, from the Bel criteria, (M, g) is of Petrov type
N everywhere. One can now show [13] that the type (1,3) curvature tensors
of g and ¢’ are equal on M and hence ¢’ is also a vacuum metric on M. It
then easily follows that ¢’ is also of Petrov type N on M and, if X is chosen
to be nowhere zero on M, g and ¢’ are not conformally related on M. Further
the type (1,3) Weyl tensors of g and ¢ are equal on M (but, if A is not zero
at some point of M, V and V’ differ). Thus the need for clauses in the above
theorems.

4.7 Sectional Curvature

The sectional curvature function for positive definite metrics was discussed
in the last chapter. Here a study of this function will be undertaken for a 4-
dimensional manifold M admitting a Lorentz metric g. One considers the
Grassmann manifold of all 2-spaces at p € M, now denoted by G, and iden-
tified as the (diffeomorphic) manifold of projective simple bivectors at p. The
formal definition of the sectional curvature function o, : G, = R at p is

RadeFachd Rabchachd
F) = = 4.41
o) = 5p — Favped 2[F| (4.41)

where F,; is any non-zero, simple bivector whose blade is the 2-space F' in
G, and P is the bivector metric at p. The definition is clearly independent
of the representative bivector chosen for F. The problem now is that the
denominator in the above definition of ¢, may vanish and will do so if and
only if the simple bivector in the denominator satisfies |F| = 0, that is, if
and only if it is null (lemma 4.3). More formally, if one denotes the subsets of
the Grassmann manifold G, consisting of all spacelike (respectively, timelike,
null) 2-spaces at p by S7 (respectively, T2, N;) and which can be shown to
be submanifolds of G}, of dimension 4, 4 and 3, respectively [13], one has the
disjoint union G, = S2UT2 UN; with F € S2 & |F| >0, F e T < |F| <0
and F € Np2 & |F| = 0. The submanifold N is the topological boundary of
Sg and also of TZ? and is closed and not open. Thus oy, is only defined on the
4-dimensional open submanifold G, = G, \ N? = S2 UT? of G, consisting of
all non-null 2-spaces in G, and is smooth (in fact, analytic) there. Further,
G, is (open and) dense in G,,. It is clear that G, is not connected and also is
not compact (otherwise it would be a closed subspace of the Hausdorff space
G, and this would contradict the fact that Ng is not open). [This should be
compared to the situation in the last chapter when g was positive definite and
where 0, was defined on the whole of the compact, connected space G).]
Consider the situation when the map o, is a constant (continuous) function
on Gp, say mapping each member of Gp to K € R. Then one may trivially
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extend it to a constant (continuous) function on G,, mapping each member of
G, to K and one achieves the constant curvature condition at p (see section
3.9). But suppose that o, is not a constant function on G,. In this case one
may, by considering sequencies in G, which converge to a limit in Ng [57] (or
see, for example, [58, 60, 61]), show the rather useful result that if o, can be
continuously extended to any member of Np2 it can be continuously extended
to the whole of N7 and is then a constant function on G,. Thus if 0, is not a
constant function on G,, it cannot be continuously extended to any member of
N7. [This follows a weaker result in [62].] This allows the following deduction
to be made. Suppose that for (M, g) the function o, for g is given and is not
a constant function at some p € M. Then the (complement of the) domain
space of o, determines the subset Ng at p on which o, is not defined and
about which the following geometrical remarks may be made. Suppose F' and
G represent distinct members of Ng. (All bivectors will be assumed to be in
their tensor type (2,0) form to avoid any confusion when a second metric is
introduced, and will be identified with the null 2-spaces which they represent.)
There are three cases arising here. The first is when F' and G have the same
principal null direction, say, spanned by ! € T, M. Then clearly, the bivectors
F + )G for each A € R are members of Ng (with the same principal null
direction). The second is when F' and G have distinct principal null directions
but whose blades intersect (in a necessarily spacelike direction). In this case
the bivector F' 4+ AG for 0 # A € R is simple but not null since it can be
spanned by a pair of orthogonal non-null vectors (section 4.1). The third is
when F' and G have distinct principal null directions and whose blades do not
intersect. Then F' + AG for 0 # X € R is clearly non-simple and hence not
in NZ. It follows that for the bivectors F' + AG, 0 # A € R to be in N the
first case must hold and the blades of F' and G have a common principal null
direction (spanned by) I. Let Ny () denote this collection of (all) null 2-spaces
at p with principal null direction [ and which represents the collection F'+ AG
in Ng. Now suppose this metric g on M is changed to a smooth, Lorentz metric
g’ on M such that g and ¢’ have the same non-constant sectional curvature
function at p, that is, o = O’;. The equality of these non-constant functions
leads to the equality of the (complements of) their domain spaces and hence
to the same collection of 2-spaces, Ng at p and which are now null for ¢'(p).
Thus the collection N, (I) determines, by their common intersections, common
null directions for g(p) and ¢'(p). Thus the collection of null vectors for g(p)
and ¢'(p) coincide, that is, g(p) and ¢'(p) are proportional. If this is true at
each p in some open dense subset of M, g and ¢’ are conformally related on
M. [This clarifies the proof in [58] which was spoiled by typos.]

The following result now arises in a similar way to the one given in chapter
3. For o0, a constant function on @p one has QupecaF*PF¢ = 0 for Qupeq =
Rabed — HPapea and for all simple, non-null bivectors F, that is, for each
F € G,. Also if two Lorentz metrics g and ¢’ with sectional curvature functions
op and 0’;), respectively, have the same sectional curvatures, one has, from

(4.41), QupeaF®®F = 0 for Qupca = ¢*Rapea — Rly.q and all F € G,. But

/
abc
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then G, is open and dense in G, and so these equations for @ hold for each
F € G, that is, for any simple bivector. Then the argument given in chapter
3 shows that if o, is a constant function Riem takes the constant curvature
form at p, Raped = %Pabcd, and if, forp € M o, = 01’0 and with these functions
not constant, ¢2Rgped = Rflbcd. Thus the following lemma holds.

Lemma 4.8 Let M be a 4-dimensional manifold admitting smooth Lorentz
metrics g and g’ whose sectional curvature functions are equal at each point
of M but are such that this common function is not a constant function on
G, for each p in some open dense subset of M. Then at anyp € M

(7') g/ = (bg; (”) R;bcd = ¢2Rabcd7 (”7’) R/abcd = ¢Rabcd;

(iv) Ry = 6B, () R =R,  (vi) C' = 6C
for some smooth function ¢ on M.

Tt is stressed here that part (vi) above for the type (1,3) Weyl conformal
tensor is deduced from the other parts, as before. Of course, since g and ¢’
are conformally related, C/ = C, but one may have C’ = C = 0. Now using
the same notation as in section 3.9, let X C M denote the (necessarily closed)
subset of M on which the sectional curvature is a constant function (so that
M \ X is the open dense subset W of M on which the sectional curvature
function is not constant) and, using primes to denote tensors associated with
g’, let U denote the open subset of M on which C' (and hence C’) is not
zero. Also let V' denote the open subset of M on which the 1—form d¢ does
not vanish and let Y denote the closed subset of M where ¢ = 1. Thus all
points where Riem and Riem’' vanish are contained in X. One then gets the
disjoint decomposition M = VUintY U K where K is the closed subset of M
defined by the disjointness of the decomposition, so that, as before, int K = §).
In this decomposition, ¢’ = g on intY and, whereas in the positive definite
case V = (), now V is an open, possibly non-empty, subset of M where d¢
does not vanish and on which g and ¢’ are conformally related, conformally
flat Lorentz metrics. If V' = () one sees that ¢’ = g on the open dense subset
intY and hence on M. So suppose that the set V' is non-empty. This subset V'
will now be investigated following [58, 59]. It is pointed out here that similar
results were arrived at, using different techniques, independently in [63].

On V d¢, with components ¢, is nowhere zero and each of g and ¢ is
conformally flat, C = C” = 0 on V. Use of the expressions for the tensors
Riem, C(=0) and E for g from chapter 3 then give, for g

Rabcd(: gaeRebcd) = %[Racgbd - Radgbc + Rbdgac - Rbcgad] + %Pabcd (442)
and similarly for ¢’.

One has two conformally flat structures (V,g) and (V,¢’) with ¢’ = ¢g
for ¢ : V. — R nowhere zero and smooth and with V and V’ denoting the
respective Levi-Civita connections for g and ¢'. Denoting (as usual) their
respective covariant derivatives in components by a semi-colon and a stroke,
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and a partial derivative by a comma, one may write down the (conformally
flat) Bianchi identities for (V) g) and (V, g’)

Rca;b - Rcb;a = %[gacR,b - gch,a]7 R/ca|b - R;b\a = %[gtlchfb - g:bR:a]
(4.43)
Now evaluate the second in (4.43) using the previous lemma and subtract
from it ¢ times the first in (4.43). The partial derivatives disappear and terms
like P2, =T'2 —I'¢., which are given in section 3.8, can then be used to get

¢bRac - ¢aRbc = ¢RaeP;c - ¢RbeP;c = Rbe(z)egac - Rae¢egbc (444)

where ¢, = ¢, and ¢ = g™ ¢y. A contraction with ¢g¢ gives Rabgbb =0and a
back substitution into the last equation gives Rac@, —Rbc(ba =0 and so Ry, =
Y,y for some smooth function ¢ : V' — R. It follows that ¥ (¢*¢,) = 0 on
V. If at some p € V 4(p) = 0, then Rice(p) = 0 and so E(p) = 0 and, since
C(p) = 0, Riem takes the constant curvature form at p and o, is a constant
function at p. It follows, by assumption, that v cannot vanish over any non-
empty open subset of V' and thus ¢%¢, = 0, that is, since d¢ never vanishes
on V, ¢, is null on V with respect to both g and ¢g’. The earlier expression
for Py, then shows that ¢u;p = @qp, + ¢ Lpadp. Taking a further V-covariant
derivative gives

¢a;bc = (¢a\b);c - ¢72¢a¢b¢c + ¢71¢a¢b;c + ¢71¢a;c¢b (4'45)

and so, since ¢“¢qp = 0,

(Qba\b);c - (¢a|b)|c = (ba\ePbec + ¢e\bP;c = (2¢)_1[¢a|c¢b + ¢c|b¢a + 2¢a|b¢c]'
(4.46)
The last two equations then combine to give

¢a;bc - (ba;cb = (ba\bc - (ba\cb + (2¢_1)[¢a;c¢b - ¢a;b¢c]‘ (447)

Now one uses the Ricci identities for V and V' in the last equation and
contracts with ¢® to get

PaR%aped” = paR aped” = ppaR aped” (4.48)

where the fact that ¢“¢, = 0 and ¢u, = Pp,q on V means that ¢%¢gp =
¢*Pp.e = 0. Equation (4.42) and the condition ¢%¢, = 0 on V then give
Rapead®d? = —E pade, that is, Rpad. = Rpdad. and since d¢ never vanishes
onV,R=¢RonV.If Rdoes not vanish at some p € V, R does not vanish in
some open neighbourhood W C V of p and so ¢ = 1 on W. Hence d¢ vanishes
on W and this is a contradiction to the definition of V. It follows that R =0
and so Ricc = Ricc, that is, Rep = dady, on V. A substitution into (4.42)
and a contraction with ¢¢ shows that Rupcq® = 0 on V from which the Ricci
identities give @upe = @a;ep and similarly ¢upc = @i Then (4.47) gives
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GDacPb = Pande on V. This last equation shows that ¢up = apedp = do(ay)
for some smooth, real-valued function o on V' and one more application of the
Ricci identity on ¢* reveals that ag¢, is locally a gradient on V' and so in some
open neighbourhood W' of any p € V there exists a smooth function p such
that a¢, = pq. It then follows that x = e ”d¢ is a nowhere-zero, parallel,
null 1—form on W’ and of the form du for some smooth function u on (some
possibly reduced) W’. Thus ¢ and p are functions of u. Now R = 0 on W’
and (4.43) shows that Rgpc = Repe and hence that Ry, = v(u)xaxs on W’
for some function (). Thus, on some coordinate domain of the open subset
W’ one has C = R = 0 together with a nowhere-zero, parallel, null vector
field represented by the 1—form du. Any point p of the open dense subset of
V where Riem and Riem’ do not vanish admits a connected neighbourhood
on which the conditions of Walker’s non-simple K spaces are satisfied [81]
and on which one may choose coordinates u, v, z,y with v as above such that
the metric g takes the form

ds* = H(u,z,y)du® + 2dudv + dz* + dy? (4.49)

and where the conformally flat condition allows the coordinates to be chosen
so that that H(u,z,y) = 6(u)(2z? +y?) for some smooth function . Such local
manifolds as these are well-known from general relativity theory and are the
(conformally flat) plane waves. The metric ¢’ is also such a plane wave as
is easily seen from the above calculations. The Ricci tensor is of Segre type
{(211)} with zero eigenvalue and represents what is known as a null fluid in
Einstein’s theory. One thus has the following theorem.

Theorem 4.7 Let M be a 4-dimensional manifold admitting smooth Lorentz
metrics g and g'. Suppose that g and g’ have the same sectional curvature
function at each p € M and which is not a constant function at each point of
some open dense subset of M. Then one may decompose M as above according
to M = VUintY U K where intK = 0, g = ¢’ on intY and where V, if not
empty, is an open submanifold of M on which g and g’ are conformally related,
conformally flat plane waves.

For the given metric g in (4.49) the metric ¢’ = ¢g will satisfy the above
conditions on the sectional curvature if and only if the function ¢ satisfies
certain conditions which have been given and solved in [63]. Thus such metrics
g’ different from ¢ always exist.

It is remarked that, by using a similar proof to that in chapter 3, it can

be shown that if F' and F represent any dual (orthogonal) pair of space-

like /timelike 2-spaces at p € M their sectional curvatures o,(F') and o,(F)
are equal if and only if the Einstein space condition holds at p [64].



136 Four-dimensional Manifolds and Projective Structure

4.8 The Ricci Flat (Vacuum) Case

In this section the extra condition that the Ricci tensor Ricc is identi-
cally zero on M will be imposed. This is usually referred to as the Ricci-flat
condition but in the important case of a 4-dimensional manifold admitting
a Lorentz metric and its use in Einstein’s general relativity theory it will be
here be called the vacuum condition. It is noted that with this restriction, the
curvature and Weyl conformal tensors are equal on M.

The first result is easily derived from the last theorem by noting that if
one imposes the non-flat condition on M, that is, the condition that Riem
does not vanish over any non-empty open subset of M, then neither does the
Weyl tensor. Thus if U is the open dense subset of M on which Riem and
C are nowhere zero the sectional curvature is nowhere a constant function on
U; otherwise, for p € U, one would have the constant curvature condition at
p and hence, since Rice(p) = 0, the contradiction that Riem(p) = 0. Then
lemma 4.8 shows that ¢ = 1 on U and hence on M, and one has

Theorem 4.8 Let (M,g) be a 4-dimensional manifold admitting a smooth
Lorentz metric g and with the vacuum and non-flat conditions holding on
M. If ¢’ is any other smooth Lorentz metric on M with the same sectional
curvature function on M as g then ¢’ = g. Thus, in this case, the sectional
curvature uniquely determines the metric and its Levi-Civita connection and
is, in this sense, in one-to-one correspondence with non-flat, vacuum metrics
on M.

At this point it is necessary to introduce the concept of a pp-wave met-
ric. This term arose, and was described in detail, in [64] as a consequence
of the attempt to introduce a solution to Einstein’s vacuum field equations
which described a source-free idealised solution representing pure gravitational
waves. Such a solution can be defined by taking (M, g) to satisfy the vac-
uum and non-flat conditions and, in addition, to admit a global, smooth,
nowhere zero, parallel bivector field. From these assumptions it may be shown
that this bivector is necessarily null, the Petrov type is N and that locally,
(M, g) admits a non-vanishing, parallel, null vector field. From these results it
turns out that one may write down the metric g in a local coordinate system
u,v, 2,y as in (4.49) above with I, = u, a parallel null 1—form and with
O?H /02 + 0 H/dy* = 0 (to achieve the vacuum condition). One can then, if
required, add extra conditions of symmetry to get more specialised solutions
of the form (4.49). Important special cases are the (vacuum) plane waves and
in this case the above local coordinates may be chosen so that (4.49) holds
with H = a(u)(2? — y?) + c¢(u)xy. [It is here remarked that one may extend
the concept of a pp-wave to that of a generalised pp-wave and hence to a
generalised plane wave, where the Ricci tensor is permitted to take the form
of a null fluid mentioned earlier. Such metrics are, in general, of Petrov type
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N but can be conformally flat without being flat, and the (conformally flat)
plane waves of theorem 4.7 are examples of such generalised plane waves. Such
a non-vacuum, type N plane wave can be shown to be locally conformally re-
lated to a type N, vacuum plane wave (see [65] where an extended summary
of such properties may be found)]

One may now add the following theorem of Brinkmann [39] (see also [13])
which can be proved using the above techniques. Suppose that g and ¢’ are
each smooth, non-flat, conformally related, Lorentz, vacuum metrics on the
4-dimensional manifold M. So ¢’ = ¢g on M for a smooth function ¢ : M — R
and the tensor type (1,3) Weyl tensors of g and ¢’ are equal. Let V be the
open subset of M on which the 1—form d¢ is non-zero and let U be the open,
dense subset of M on which the curvature tensors of g and ¢’, which are
necessarily equal since g and ¢’ are conformally related and vacuum, are non-
zero. Finally let W = U N'V. Then by following similar arguments as for the
previous theorem [13] one has the following result which is more interesting
than the one in the positive definite case given in the last chapter.

Theorem 4.9 Let (M, g) be a 4-dimensional manifold admitting smooth, con-
formally related, vacuum, non-flat metrics g and g’ of Lorentz signature with
g = ¢g for some smooth nowhere-zero function ¢ : M — R. Then in the
above notation, there is a disjoint decomposition M = WUint(M \ V) U Z
where Z is a closed subset of M with intZ = ) and where ¢ is constant on
each component of int(M \' V) and where each point of W admits a coordinate
neighbourhood on which each of g and g’ are pp-waves.

Finally, for the important class of vacuum space-times in general relativity
one may establish an analogue of theorem 4.5 for such metrics and which
involves the Petrov types. Consider the subset V' C M defined as the subset
of all p € M at which the equation R%.4k® = 0 has a non-trivial solution for
k € T,M. If the vacuum condition holds on M the tensors Riem and C are
equal on M and so equivalent definitions are that (i) V' is the subset of points
of M at which the Petrov type is N or O, and (i7) V is the subset of points
of M at which the curvature rank is at most 2. It follows that if M\ V # ()
then at points of M \ V the curvature rank (which equals the Weyl rank and
is hence even) is at least 4 and hence of curvature class A. The next theorem
now follows.

Theorem 4.10 Let M be a space-time with smooth, vacuum Lorentz metric
g such that the subset V' above has empty interior. Then the curvature tensor
uniquely determines g up to a constant conformal factor.

Finally one has

Theorem 4.11 Let (M, g) be a 4-dimensional manifold with smooth Lorentz
metric g, which is not flat and satisfies the vacuum condition. Then the holon-
omy group of (M, g) is Rg, R14 or Rys [13]. If (M, g) is a proper Einstein space
the holonomy group of (M, g) is Ry, Ris or Rys. [114, 13]
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Proof When (M, g) is vacuum, one has Ricc = 0 and hence Riem = C
and so the curvature map has the dual invariant property since fo does.
Thus the range space of the curvature map is even-dimensional (and dual
invariant) at each p € M and by the Ambrose-Singer theorem (chapter 2) so
is the holonomy algebra ¢. Thus ¢ is of type Rz, Rg, R14 or Ri5. That it
cannot be Ry follows from the restrictions R, = 0 and Rgjpeq = 0 on Riem
and from lemma 3.3. If (M, g) is a proper Einstein space one again has the
dual invariant property and similarly obtains the above four possibilities for
the holonomy. Then the Rg type is eliminated because R # 0. |



Chapter 5

Four-Dimensional Manifolds of
Neutral Signature

5.1 Neutral Tangent Space Geometry

In this chapter a study will be made of a 4-dimensional manifold M which
admits a metric g of neutral signature (+,+,—,—) (and hence a Sylvester
basis at any p € M gives the component form diag(1,1,—1,—1) for g(p)). As
usual M is assumed smooth, connected, Hausdorff and second countable and
g is assumed smooth. At p € M, one of two choices of basis for T, M will
usually be made. The first basis, called orthonormal, consists of x,y,s,t €
T,M satisfying the metric relations ¢ - =y -y = —s-s = —t-t =1
with all other inner products between basis members zero, and the second
is an associated null basis [,n, L, N obtained from the first basis according
tovV2l=x+t, V2n=ax—t V2L =y+s, V2N =y — s, so that [ - n =
L - N = 1. Thus for a null basis one sees that [,n,L, N are null vectors
and that all other inner products between basis members, apart from the
two given, are zero. So s and ¢ are orthogonal timelike vectors and [ and n
are orthogonal null vectors as are L and N. Conversely, given independent
null vectors I,n, L, N € T,M satisfying [ -n = L - N = 1 with all other inner
products between them equal to zero, one may construct an orthonormal basis
according to the scheme v2z = l+n, V2t =l—n, /2y = L+ N, /2s = L—N.
A pair of bases x,y,s,t and I,n, L, N related as above will be referred to
as corresponding or associated bases. They lead to completeness relations
Jab = TaTh + YaUb — SaSp — taty = lanp + ngly + Lo Ny + Ny L. Conversely, as
detailed previously, either of these relations implies the independence of the
basis members and obvious contractions with these basis members reveal the
inner products specified between them. Other bases for T}, M are often useful,
for example, the “hybrid” bases I,n,y,s and x,t, L, N.

The collection of 2—spaces of T, M is quite different in this case as com-
pared to the Lorentz case and will be described here. A 2—space U C T, M at
p is called spacelike if each non-zero member of U is spacelike, or each non-
zero member of U is timelike (or, equivalently, if U contains no null members).
Thus z Ay and s At are examples of spacelike 2—spaces. A 2—space U C M is
called timelike if it contains exactly two distinct, null directions (referred to
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as the principal null directions (pnds) of U). A timelike 2—space also contains
spacelike and timelike vectors. Thus [An =t Az and LA N = s Ay are
examples of timelike 2—spaces and [ +n and L+ N are, in each case, spacelike
and timelike members of them. A 2—space U C M is called null if it contains
exactly one null direction (referred to as its principal null direction (pnd)).
The other members of a null 2—space are either all spacelike (for example,
I Ay) or all timelike (for example, I A s) and in each case the null member is
orthogonal to all other members of U (otherwise extra null members would
arise). If two members of a null 2—space are orthogonal, at least one of them
is null. To see these results let U = I Av be null at p for [,v € T,M and with {
null. Then |v| # 0 by definition of a null 2—space and if [ - v # 0 there exists a
null member I+av € U (0 # a € R) independent of I. This contradiction shows
that [ - v = 0 for each v € U. Then if w € U is independent of I, w = v + bl
(b € R), lw| = |v| and thus all such w are either spacelike or timelike. Finally,
if co+dl and ev + fl (¢,d, e, f € R) are independent orthogonal members of
U, ce = 0 and so one of them is proportional to I.

If a general 2—space U contains three or more distinct null vectors then
any one of these can be written as a non-trivial linear combination of the other
two forcing these two null vectors to be orthogonal. Thus U is spanned by two
orthogonal null vectors and as a consequence any non-zero member of U is
null. This gives the last possibility for U. A 2—space U C M is called totally
null if each non-zero member of U is null (and hence any two members of U
are orthogonal). Thus IA L, IA N, n A L and n A N are examples of totally
null 2—spaces. This completes the classification of 2—spaces at any p € M.
For a 4-dimensional manifold, totally null 2—spaces can exist only in neutral
signature since they require non-proportional, orthogonal null vectors.

Let W be a 3—space of T, M. Then if 0 # k € T, M spans the normal to
W, k is orthogonal to each member of W and the direction determined by
k is unique. Then W is called spacelike (respectively, timelike or null) if k is
spacelike (respectively timelike or null). This completes the classification of
3—spaces at any p € M and it is remarked that this labelling convention for
3—spaces is different from that used in the Lorentz case. Thus, in the above
tetrads Sp(x, s, t) is spacelike, Sp(z, y, t)=Sp(l, n,y) is timelike and Sp(l, L, N)
is null with their respective normals spanned by y, s and [. Only in the null
case is k € W. For a spacelike 2—space the metric induced on it is positive
definite whereas for a spacelike or a timelike 3—space or a timelike 2—space it
is Lorentz. There are no metrics induced on null or totally null 2—spaces or
null 3—spaces.

If U is a spacelike (respectively, timelike) 2—space its orthogonal comple-
ment U~ is spacelike (respectively, timelike). This differs from the Lorentz
situation and easily follows. In either case the span Sp(U UU") equals T, M.
If U is a null 2—space a basis [,n,y, s may be chosen for T,M so that U is
of the form [ Ay or I A s and then U~ is also null and of the form I A s or
I Ay, respectively. In either case Sp(U U Ul) is a null 3—space with normal
. If U is a totally null 2—space, U+ = U and is thus also totally null. So
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the orthogonal operator on 2—spaces preserves the type (spacelike, timelike,
null or totally null) of that 2—space. In terms of the bivector metric a simple
bivector F is spacelike (respectively, timelike, null or totally null) if its blade
is spacelike (respectively, timelike, null or totally null) and then F' is spacelike
it |F'| > 0, timelike if |F'| < 0 and either null or totally null if |F| = 0.

The collection of all spacelike members S of T,M is an open, regular,
4—submanifold of T, M, as is the collection of all timelike members 7. Each
of S and T is locally path-connected and is hence connected if and only if it
is path-connected (see chapter 1). So let u,v € S and choose an orthonor-
mal basis z,y,s,t at p such that u = (¢0,0,0) and v = (a,b,c,d) with
€,a,b,c,d € R satisfying a? + b%> > ¢ + d? and ¢ > 0. Now build obvious
smooth paths (¢,0,0,0) — (a,b,0,0) and then (a,b,0,0) — (a, b, c,d) each of
which passes only through spacelike vectors. Thus any v € S may be path-
connected to u € S and the result follows. A similar argument shows that T
is connected. However, S UT is not connected since any path from a member
of § to a member of T" must pass through a null or zero member of T,,M.
Now choose an orthonormal basis z,y,s,t for T,M so that for k € T, M,
k = ar + by + cs + dt for a,b,c,d € R and, if £ € N where N is the set of
all null members of T, M, one has a? 4+ b*> = ¢? + d? and with a, b, c,d not all
zero. Now define the smooth map f : (IT,M \ {0}) — R given in the above
orthonormal basis by f : (a,b,c,d) — a® + b*> — ¢ — d?. Then N = f~1(0)
and f has a non-zero gradient at each point of V. Thus N is a 3—dimensional
regular submanifold of T,M (chapter 2). Further, N is connected and this
will be established by showing that it is path connected, that is, by showing
that there exists [ € N and a smooth path from ! to any other member of
N which passes only through null vectors. Choose any [ € N and let k € N
be independent of I. If I - k = 0 one may choose a smooth path from [ to k
through the totally null 2—space [ A k (since the latter, as a 2—space of T, M,
has topology homeomorphic to R?) whilst if [ - k # 0, [ A k is timelike and
one may choose two independent null vectors r and s in the timelike 2—space
(INk)* (sothat l-r=1-s=k-r=k-s=0)and path-connect k to r, and
r to I by smooth paths passing only through null vectors in the totally null
2—spaces kAr and r Al. Thus N is connected. In fact, if K € N one may write
k, as was done in the above orthonormal basis, with components (a, b, ¢, d)
not all zero so that k uniquely determines the points (a,b) € R? \ {0} and
(c,d) € R?\ {0} and the positive real number a? + b% = ¢? + d2. Going to the
usual equivalence relationship of proportionality on N one easily sees that the
collection of all null directions at p is also connected since it is the continuous
image of N under the corresponding natural projection map (Chapter 1).

Clearly N U {0} is the boundary of S and of T and, since T,M \ {0} =
SUTUN is open and connected with S and 7" open and S, T and N disjoint,
N is not open and it is not closed either (since it does not contain its boundary
point 0).
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5.2 Algebra and Geometry of Bivectors

This section discusses the algebra and geometry of bivectors in neutral
signature. Some of these results were obtained in collaboration with Zhixang
Wang [66, 67] (see also [68]). As before the type of a simple bivector is the

type of its blade. One may form duals just as before and then the dual F'
of a simple bivector F' is simple and of the same type as F and the blades

of F' and F are orthogonal. One may arrange that the following results hold
for the bases x,y,s,t and [,n, L, N of T, M. First note that, in the notation
established earlier, t Ax =l An and L AN = s Ay. Then

(x Ay)" =sAt, (xAE)" =s ANy, (xAs)" =yAt. (5.1)

One may construct a basis for A,M of the form z Ay, sAt, x As, y As,
x At and y At and which is orthonormal (up to a factor 2) with respect to
the bivector metric P. It follows that the signature of P is (+,+, —, —, —, —).
As in the positive definite case (but unlike the Lorentz case) a bivector F' and

its dual need not be independent members of A M. In fact, if 1? = AF for
A € R, the result ? = F for this signature shows that A = 4+1. So label the
+1 eigenspaces of the linear duality map at p by the subspaces 5,, and §p of
Angivenbygp:{FeApM:;W:F}andS_p:{FeApM:;—':—F}
and then define, as before, S‘; = §pu§p. Thus F' and It_' are independent if and
only if F' € A, M\ 3;. One has SJ'rp N S;, = {0} and may write any F € A,M
uniquely as ' = 1? + F for }' € SJ'rp and F € gp. Thus AyM = érp + gp. It
is easily checked from (5.1) that IAN = J((x Ay +sAt) — (@ As+yAt))
is a member of 5’;7 as is n A L. Similarly one shows that [ A L,n AN € 5;.

+ —
AlsolAn—LANe€S,andlAn+ LAN €5, Since the blade of a totally
null bivector equals the blade of its orthogonal complement it follows that any
totally null bivector is a member of \S;,. Then defining

1
F]_:

RO - po| =

S-Sl

(IAn—LAN), Fy (IAN), F3 (nAL),

NS

Gi= (IAn+LAN), G (IANL),  Gs (nAN), (5.2)

Jr
one sees that Fi,F5, F3 are independent members of S, and that

- +
G1,G2,Gs are independent members of S,. Thus S,=Sp(Fi, F, F3) and
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Sp=Sp(G1,G2,G3) so that each of S, and S, is 3—dimensional. Also one
has
|F1] = [G1] = —1, |Fo| = |F3| = |G2| = |G2| =0,
F - Fh=F -F5=G,-Go=G1-G3=0, Fy -F3=Gy-G3=1 (5.3)

+ —
and a straightforward calculation shows that if /' € S, and G € S}, necessarily
F .-G = 0. It follows from this that the bivector metric on A,M, which,

as shown above has signature (+,+, —, —, —, —), restricts to Lorentz metrics
+ - +
with signatures (—, —,+) on each of S, and S,. Thus one may view S, as a

3—dimensional Lorentz space with F; “timelike” and F and F3 “null” vectors
(or, alternatively, Fy+ F3 as “spacelike” and “timelike” vectors), and similarly

for 5;. Further it is easily shown that

[F1, Fy] = Fy, [F1, F3] = —F3, [Fo, F3] = —F7,
[G1, Ga] = Go, [G1,G3] = —G3, (G2, G3] = -Gy (5.4)

and if F € §p and G € Sy, one easily computes that [F,G] = 0. To get a
more familiar picture of this consider the vector space R? with Lorentz metric
of signature (—, —,+) and let I’,n/, 2’ be a basis for R? so that, using a dot
also for this inner product, I’ and n’ are null and I’ - n/ = 1,2’ - 2/ = —1,
I’ =n' -2’ =0. Then construct a bivector basis I’ An’, I A2/, 2’ An’ for
the associated bivector space. Consider the association between this bivector
basis and the basis Fy, Fs, F3 for gp given by Fy <> ' An/, Fp < I' N2/
F3 & 2’ An/. Computing brackets for bivectors in R? in the usual way one finds
[(TAR), (VA2 =UNg, [(UAR), (@' An')] = =2’ An/ and [(I'A2'), (&' An')] =
—I' An/ and so the above association is a Lie algebra isomorphism between

+ + —
Sp and o(1,2). Thus S, (and similarly S, ) are Lie isomorphic to o(1,2). So

A, M =0(1,2) + 0(1,2) (5.5)

and the natural projections m : A,M — SJ'; and m : ApM — S, are Lie
algebra homomorphisms.

At this point one can collect together several further results on the geom-
etry of bivectors for this signature including, for convenience, those described
above. The results of lemma 3.4 hold independently of signature (with the
proviso that for this chapter one requires € = 1 in part (ii¢) of this lemma).

+ —
Lemma 5.1 (i) IfFe S, and G€ Sy then F-G =0 and [F,G] =0. For
any F € ApyM |F| = |F|.

(i) If E € g; the statements (a) E is simple, (b) E is totally null and (c)
|E| = 0 are equivalent.
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(iid)

(iv)
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+
If F,G are independent and totally null and each is in S, or each is in

S; their blades intersect trivially. Otherwise their blades intersect in a
unique null direction at p.

IfH=Fy or H= Gy, HyeH ), = Lgqp whilst if H= 3(x Ay £sAt),
|H| =1 and HyeHSy = — % gab-]

If F € A,M satisfies Fupk® = Fopk® = 0 for some 0 # k € T,M then k
is necessarily null. These conditions are equivalent to F' being either null
or totally null. If k is unique up to a scaling, F' is null. Otherwise, there
are infinitely many solutions for k no two of which are proportional and
F is totally null F is null if and only if FF = A+ B for totally null

members A € S’ and B € S

Proof

(4)
(i)

(ii)

(iv)

This was given earlier.

If E € S, is simple, E =+ and E = pA g for p,q € T,M. But then

the blades of F and E are orthogonal and so E is totally null. If E is
totally null (and hence in Sp) then clearly |E| = 0 and finally, if E € S

with |[E| =0, E - E- +|E| =0 and so (lemma 3.1), F is simple.

It F,G e 5’; are totally null they are simple and if their blades intersect
non-trivially, F' = pAq and G = pAr for p,q,r € T, M null vectors with
p-q = p-r = 0. Choosing a null basis [, n, L, N with p = [, it follows that
¢ may be chosen (up to a real scaling) to be either L or N (and similarly
for r) and then F = I AN, G =1 A L or vice versa. But then one of

+ —
them is in S, and the other in S, and a contradiction follows. Thus their

blades intersect only trivially. If F' € érp and G € S, are totally null with
F=pAgqand G=rAsforp,qnr,s€T,Malnulandp-g=r-5s=0
suppose that p,q,r, s are independent. The condition [F,G] = 0 then
givesp-r=p-s=¢q-r =¢q-s =0 and a contradiction since then any
of them is orthogonal to each member of the basis p, ¢, 7, s and hence to
each member of T, M. Thus p, q,r, s are dependent but cannot span a
2—space of T, M since F' and G are independent in A, M. Hence their
blades intersect in a single null direction. Taking this direction to be

+ —
spanned by [ one gets (see above) F =IAN €S, and G=IAL € S,
or vice versa.

The proof of this is a simple calculation.



Four-Dimensional Manifolds of Neutral Signature 145

The proof of (v) is straightforward since the given conditions force F and F
to be simple with & in each of their blades, and hence null. It is noted here
that, in the final part, the blades of A and B intersect non-trivially (in the
principal null direction of F' from part (iii)). O

It follows (part (i%)) that totally null bivectors in ’S; constitute exactly the

~ +
collection of simple members of S, and then using the fact that S, with the
induced metric from P is 3—dimensional and of Lorentz signature (—, —, +),
that the null “cone” of this geometry is the totality of totally null members

of 5’; and hence that two independent such members cannot be orthogonal.
Similarly, if A- B = 0 for bivectors A, B € jS:p with B totally null, |A| < 0.
Similar comments apply to ,§p. If F and G are independent and totally null
and if F-G = 0 then F € g'p and G € .g'p, or vice versa. Regarding part
(#i7) suppose that F,G are independent, totally null members of S+’p and P,Q

are independent, totally null members of S,,. Then, using part (ii7), one may
determine, up to scaling, four null vectors p,q,r,s € T,M by the respective
symbolic representations F NP, FNQ, GNP and GN Q. Now if p and ¢
are proportional the blades of P and () intersect non-trivially and this is a
contradiction. Thus p and ¢ are independent and similarly one sees that the
pairs (p,r), (g, s) and (r, s) are pair-wise independent and that one may write
F=pNnqg, G=rAs, P=pArand Q = gAswithp-g=r-s=p-r=¢q-s=0.
It now follows that p, g, r, s are independent. To see this suppose not and from
the above given independent pairs deduce that either ¢ is a linear combination
of p,r and s or that p is a linear combination of ¢, and s. In the first case
F = p A q is a linear combination of P and R = p A s and it follows that
q -r = 0 and this gives the contradiction that g is proportional to p. The
other possibility is similar and so p, ¢, and s are independent. The two other
remaining inner products p - s and ¢ - r must each be non-zero otherwise, say
if p- s =0, p would be orthogonal to each member of the basis p,q,r, s and a
contradiction arises. It also follows that, starting with independent, totally null

+
members F, G of S, one may choose a null basis {,n, L, N for T, M such that

+
F=alANand G=8nAL (0+# a0 €R) and if a bivector A € S, satisfies
A-F=A-G=0, Aisamultiple of Fy in (5.2). Similar comments apply to

STZ,. It follows that if U,V are totally null 2—spaces satisfying U NV = {0}
then one may choose a null basis I,n, L, N with U =l AN and V =nA L, or
U=IALand V =nAN depending on whether their respective bivectors are

Jr —
both in S, or both in S5,,. Of course, given a null vector | € T, M, there exists
exactly two independent totally null bivectors whose blades contain [ and in

+ —
a null basis I,n, L, N at p they are /AN € S, and I AL € S, (such a bivector
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must be of the form [ A P for a null P in Sp(L,N)). It is easily seen that
this result is independent of the basis chosen because if I’,n/, L', N’ is another
such null basis with I’ = Al for 0 # A € R then L' = al + bn + cL + dN with
b=0=cd and so I A L' is a multiple of I A N or [ A L, and similarly for N’'.

* *

Lemma 5.2 (i) For F,G € A,M, [F,G] = [F,G] = [F,G]* and
[F,G] = [F,G).
+
(13) The only 2-dimensional subalgebra of S, is, in the notation (5.2) and

up to isomorphism, of the form Sp(Fy, Fs) and it is non-Abelian. This
subalgebra is uniquely determined by its totally null member Fy and is

+ —
denoted, somewhat loosely, by B, (or similarly by B,). Hence for any
+ —_
two independent members F,G € Sy, [F,G] # 0, and similarly for Sp.

(7i1) Suppose 0 £ A € ApM\S;. Then for X € A,M, (X, Al =0= X
* +
is a linear combination of A and A. If A € S, and [X,A] = 0 then
X=X+ Q where \€e R and Q € S_'p and similarly for A € §p.

+ —
(iv) If F,G,H € S,, or F,G,H € S,, the relations |[F,G]| = |F||G|—(F-G)?
and [F,|G,H]| = (F - H)G — (F - G)H hold.

+ —
(v) If f is a Lie algebra isomorphism between any of S, and S, to any of

S, and S, then for F € S, (or S,), |F| = |f(F)| (cf.[67]).

Proof The proof of (i) is as in lemma 3.5. One writes F = P + Q for
+ —
P e S, and Q € S, and similarly for G and recalls lemma 5.1 and the fact
+ —
that S, and S, are subalgebras. For (i) one notes that if A, B span a non-

Abelian 2-dimensional subalgebra of SJ'rp, [A,B] = aA+bB # 0 (a,b € R).
If a # 0 # b one may redefine A as aA + bB to get for the subalgebra
[A, B] = aA. This is, of course trivially the case if exactly one of a and b
vanishes. Since [A, B] is orthogonal to A and B with respect to the bivector
metric P (lemma 3.4) one finds [A] = 0 and A- B = 0, that is, A is totally null
and B is orthogonal to it, hence |B| < 0. This, and other similar results are,
as mentioned earlier, consequences of the fact that the induced bivector inner

product on gp and S, is 3—dimensional Lorentz with signature (—,—,+).
Thus, in the basis (5.2) and using (5.3) and (5.4) one may take A = Fy
and B some linear combination of Fy and F» to get Sp(A, B) =Sp(F}, F»)
and, with a judicious choice of the above linear combination, [Fy, Fp] = Fb.

+
Given the totally null F5 the 2-dimensional subspace of S, orthogonal to
F5 and which constitutes the subalgebra is uniquely determined by F. For
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the Abelian case note that one may assume that one of |A| and |B| is < 0
because, if |A| > 0 < |B| one could find a linear combination C' of them with
|C| < 0 (because the signature is (—, —,+)). Then, say, Sp(4, B) =Sp(4, C)
and choosing C' = Fy (if |C| < 0) or C' = F; (if |C| = 0) a contradiction to
the assumed Abelian subalgebra condition for any such A is obtained from
(5.4). It follows that the non-Abelian subalgebra above is the only possible

+ —_
2-dimensional subalgebra of S, (and similarly for Sp,). The proof of (iii) is as

+ -
in lemma 3.5(4i7) but requires the extra information that S, and .S, have no
2-dimensional Abelian subalgebras. The proof of (iv) is similar to the proof
in lemma 3.5(vi); one writes out F,G and H in terms of Fy, F» and F3 and

+
computes. For part (v) choose the above basis F, F, F3 for S, so that, for,
+ —
say, an isomorphism f : S, — S,, f(F1) = F{, f(F2) = F}, f(F3) = Fj is

a basis for S,. That f is a Lie algebra isomorphism shows, from (5.4), that
[Fy, Fy) = Fy, [Fy, F§] = —F5 and [F}, F}] = —F{. Thus from lemma 3.4(i7),
|F3| = |F5] = 0and F{-Fj = F|-F} = 0, that is, Fj and F are totally null and
independent members of .S,. Thus from remarks above one may choose a null
basis I,n, L, N at p such that Fy = ol AL, F; = fn AN, F{ =y(An+LAN)
(0 # a, 8,7 € R) and so F} - F} = 2af and |F]| = —4~+2. Then the equations
[F},Fj) = —F{ and [F{,F}] = F} give a8 = v = % and so |F{| = 1 and

+
Fj - Fi = 1. It now follows that |f(F)| = |F| for each F' € S,,. O

5.3 Classification of Symmetric Second Order Tensors

This section will deal with the classification of symmetric tensors in neutral
signature. Such a classification scheme was discussed in [49] and commented
on in [79] but with few details given. In this section a direct approach will
be described in full and based on [73]. One has a 4-dimensional manifold M
with a metric g of neutral signature and S # 0 is a second order, symmetric
tensor at p € M with associated linear map f on T,M given for k € T, M by
k® — S%kb. The term “complex” when applied to eigenvalues and eigenvec-
tors will mean “complex and non-real” and attention is drawn to the conven-
tion about writing Segre symbols given in chapter 1. As in the Lorentz case
of chapter 4, f always admits an invariant 2—space but now an extra type of
2—space (the totally null type) is possible. Lemma 4.1 is now replaced by the
following series of results and which are proved by simple algebra just as for
a similar result in chapter 4.

Lemma 5.3 Let f be as above. Then f admits an invariant 2—space U and
its orthogonal complement U~ is also invariant (chapter3). If U C T,M is an
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invariant 2—space for f, then if U is spacelike it contains two orthogonal (real)
eigenvectors of f which are either both spacelike or both timelike. If U is null
the principal null direction of U is an eigendirection of f. There may or may
not be another real eigendirection of f in U. If U is timelike with principal
null directions spanned by | and n then either [ and n are eigendirections of
f with equal eigenvalues, or f admits two independent real, orthogonal, non-
null eigendirections with distinct eigenvalues or f admits a conjugate pair of
complex eigendirections (which may, after an appropriate choice of | and n,
be taken as l+in) or exactly one of I and n is the only eigendirection of f. If
U s totally null then either there are exactly one or exactly two independent
null eigenvectors in U, and in the latter case with either equal or distinct
eigenvalues, or a complex conjugate pair of compler null eigenvectors arise
for f. In the latter case, one may choose real null vectors | and L so that
these complex eigenvectors are l £1L and U =1 A L.

Lemma 5.4 (i) Suppose f admits a conjugate pair of complex eigenvectors
xtiy forz,y € T,M with respective eigenvalues atib (a,b € R with b #
0). The invariant 2—space spanned by x,y is totally null (respectively,
timelike) if one (and hence both of ) x £iy is null (respectively, not null).

(i) Any real or complex eigenvector of f corresponding to a non-simple ele-
mentary divisor is null. (Hence any real or complex non-null eigenvector
is associated with a simple elementary divisor.) If f admits a real or com-
plex null eigenvector either the corresponding eigenvalue is degenerate or
the associated elementary divisor is non-simple.

(#i1) If f admits a conjugate pair of complex, null eigenvectors x + iy with
respective eigenvalues a+ib with b # 0 then f admits no real eigenvectors
and no other complex eigenvector with eigenvalue different from a + ib,
that is, a + ib are the only eigenvalues of f and are degenerate or are
associated with a non-simple elementary divisor of order 2.

(i) If, for z,y,p,q € T,M, x £ iy and p+iq are conjugate pairs of complex
etgenvectors of f with distinct, respective eigenvalues a + ib and c + id
(so that a +ib # c¢ £ id and bd # 0) their associated invariant 2— spaces
x Ay and p A q are timelike and orthogonal and intersect only in {0}.

Proof

(7) since a+ib # a—ib, (zx+iy)-(x—iy) = 0 and so z-z+y-y = 0. Then x+iy
is null implies that z-2 —y-y=2x-y=0andsoz-x =y-y=x-y =0.
Thus x Ay is totally null and, conversely, if x Ay is totally null, clearly
x + 4y are null. If x 4+ 4y are non-null one still has z-z+y-y = 0 and at
least one of z-x —y -y # 0 and x - y # 0 holds. Whichever is the case
x Ay is not totally null and, in fact, is timelike because of the existence
of the complex eigenvectors x £ iy (lemma 5.3).
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(i) If f admits a (real or complex) eigenvector k associated with a non-
simple elementary divisor, k need not be real (as in the Lorentz case—
see lemma 4.1) but with this proviso, the proof given in this last lemma
shows that k is null. Now suppose f admits a (real or complex) null
eigenvector k, f(k) = ak (o € C) such that « is associated with a
simple elementary divisor and is not degenerate. Suppose u is another
(real or complex) eigenvector of f with eigenvalue v € C. Then, since
« is not degenerate, a # vy and so k- u = 0. Thus k is orthogonal to
every eigenvector of f (including itself) and it follows that the collection
of all such eigenvectors cannot form a basis for 7, M. Thus some such
eigenvector u, independent of k and with eigenvalue « # v (hence k-u =
0), must be associated with a non-simple elementary divisor and so
there exist members u,r,s,... of a Jordan basis such that (chapter 1)
fw) = yu, f(r) = v +u, f(s) = vs + r,... Then by the symmetry
of S, k- f(r) = r- f(k), k- f(s) = s- f(k),..., and it follows that
r-k=s-k=..=0 and so k is orthogonal to each of the independent
vectors u, 7, S, .... It is now clear that k is orthogonal to each member of
a full Jordan basis for f. This contradiction completes the proof.

(7i1) Any real eigenvector k of f has a real eigenvalue and is thus different
from a + b since b # 0. Hence k - (x £ iy) =0, that is, k- =k -y = 0.
This means that k € (x A y)T = z Ay, since x A y is totally null (from
part (i) since x % iy is null), contradicting the independence of k and
x +iy. If p £+ iq is another conjugate pair of complex eigenvectors with
eigenvalues ¢+ id (d # 0) and with a +1ib # c+id, (z +iy) - (ptig) =0
andsoz-p=x-¢q=y-p=1y-q = 0. Since x Ay is totally null, from part
() this implies that p,q € Ay and so p £ ig are easily checked to be
complex linear combinations of x + ¢y contradicting independence. The
proof now follows.

(tv) Onme has (z+y)-(ptiq) = 0 and so, as before, v-p = x-g = y-p = y-¢ = 0.
Thus x Ay and p A q are orthogonal complements. With U = x A y, if
U = U+, U is totally null and x 4 y are (complex) linear combinations
of p +iq, contradicting the inequality of the eigenvalues. If U N U~ is
1-dimensional (that is, if U is null) a real eigenvector results lying in U
and U~ and a contradiction arises. Thus U and U~ intersect only in {0}
and are each necessarily timelike (lemma 5.3). O

It is remarked that several results in this lemma (suitably reworded) can
be generalised [73]. Also the notation used in describing Segre symbols is that
positive integer entries represent real eigenvalues except for the case {22}
(where complex eigenvalues arise) and this fact is indicated after the symbol.
Again, conjugate pairs of complex eigenvalues arising from simple elementary
divisors are denoted by the pair entry {zz}.

Theorem 5.1 Let M be a 4-dimensional manifold with a smooth metric g
of neutral signature and S a non-zero, second order, symmetric tensor at
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p € M with associated linear map f on T,M. The Jordan/Segre type for f
is one of the following: {1111}, {2z11}, {zzww}, {211}, {22z}, {22} (with
real eigenvalues), {22} (with complex eigenvalues), {31} or {4}, together with
their possible degeneracies, each of which can occur.

Proof First suppose that f admits a real, non-null eigenvector k which
then has a simple elementary divisor from lemma 5.4(47). The 3—dimensional
subspace U =(Sp(k))* orthogonal to k is then invariant and has an induced
Lorentz metric from ¢g. Lemma 4.2 then applies to the action of f on U and
together with the eigenvector k gives possible Segre types {1111}, {zz11},
{211} and {31}, or their degeneracies, for f.

Next suppose that the only eigenvectors of f are either complex, or real
and null. If a complex null eigenvector exists for f lemma 5.4(i7) shows that
its eigenvalue is either degenerate or is associated with a non-simple elemen-
tary divisor. Thus the possible Segre types are {22} (complex eigenvalues) or
{(22)(zz)}. If a complex non-null eigenvector exists for f its real and imag-
inary parts give rise to a timelike invariant 2—space U for f (lemma 5.4())
whose orthogonal complement W+ is also invariant and timelike and with
UNU* = {0}. The invariant 2—space U+ may admit either a single indepen-
dent real null eigenvector, or two independent real eigenvectors, or a complex
conjugate pair of complex eigenvectors. However, the second of these possibil-
ities leads, from lemma 5.3, either directly to a real non-null eigenvector for f
or to an independent pair of null eigenvectors for f with equal eigenvalues and
hence to non-null eigenvectors in the consequent eigenspace, and a contradic-
tion. So in this case either UL contains a real null eigenvector associated with
a non-simple elementary divisor from lemma 5.4(¢7) (and necessarily of order
two) or U~ gives rise to a conjugate pair of complex eigenvectors and so the
possible Segre types for f are {22z} and {zZww} or the degeneracy of the last
type.

Finally suppose all the eigenvectors of f are real and null. If there are
at least three independent such vectors, say p, q,r then they cannot be mu-
tually orthogonal because if W =Sp(p,q,r) then dimW = 3 (and hence
dimW+ = 1). But p,q,r are independent members of W+ and a contra-
diction follows. Then if, say, p- ¢ # 0 and f(p) = ap, f(q) = B¢, (o, 8 € R),
the condition p- f(q) = ¢+ f(p) shows that « = § and hence the contradiction
that there exist real, non-null eigenvectors in p A g. So either there is only
one independent real null eigenvector (and hence the Segre type is either {4})
or there are exactly two such vectors. In the latter case the only possibilities
are {22} with real eigenvalues, and {31}. In the last of these cases the two
real null eigenvectors must have equal eigenvalues by lemma 5.4(i4), (since the
second null eigenvector corresponds to a simple elementary divisor) and must
be orthogonal otherwise extra independent non-null eigenvectors would arise
in the (timelike) eigenspace which they span. Thus this eigenspace is totally
null. One is led to the degenerate type {(31)} with eigenvalue « but, in fact,
this type cannot exist. To see this let p, g, r, s be a Jordan basis for f so that
fp) = ap, flq) = ag+p, f(r) = ar+ q and f(s) = as with p,s null and
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p-s = 0. The symmetry of S gives s- f(r) =r- f(s) and p- f(r) =r- f(p) and
so ¢-s =0 and q-p = 0 which reveal that ¢ is in the totally null blade p A s
contradicting the fact that p, g, r, s is a (Jordan) basis. It follows that the only
possibility in this case is {22} (or its degeneracy) with real eigenvalues. This
completes the proof. O

One can now find canonical forms for each (non-trivial) type in terms of
an orthonormal basis x,y, s,t or a null basis I,n, L, N at p or a hybrid basis,
for example, y, s,l,n. Each Segre symbol given is taken to include each of its
degeneracies and all Greek letters refer to real numbers.

For type {1111} one can choose an orthonormal basis x, y, s, t each member
of which is an eigenvector of f with corresponding eigenvalues «, 3,7, and a
canonical form

Sab = axa Ty + BYalp — YSaSp — Otaly. (5.6)

For type {zz11} the complex eigenvalues are associated with a timelike
2—space, say | A n (lemma 5.4(7)) and can be chosen as | + in and eigen-
values ¥+ 4 (§ # 0). The real eigenvectors lie in the orthogonal complement
y A s with eigenvalues « and 8. Thus one achieves

Sap = AQYaYp — Bsasb + ’V(lanb + nalb) + §(lalb - na”b)- (57)

For type {zZww} with distinct conjugate pairs of complex eigenvalues one
chooses the orthogonal, invariant, timelike 2—spaces as [ An and L A N and
eigenvectors [ +in and L + iN with associated eigenvalues a i and v 4 id
with 8 # 0. In the basis [, n, L, N one gets

Sap = a(lanb+nalb)+6(lalb—nanb)—i—’y(LaNb—i—NaLb)+5(LaLb—NaNb). (58)

In the event that the complex eigenvalues are equal, say, @ = < and
B8 = 6 the a + i complex eigenspace spanned by [ + in and L + iN con-
tains exactly two complex null eigendirections spanned by { F N +i(n £ L)
and this suggests changing the null basis from I, n, L, N to l’,n’, L', N’ accord-
ing to %nlz I'— N', %l :1n/ - L/, %L :f’—|—N’ and %N = nl’—&—L’7 S0
that l/ = m(?’l"‘L), n/ = E(Z—FN), L/ = Tﬁ(N—l) and N/ = ﬁ(L—n)
and then I',n’, L', N" is a null basis and using the appropriate completeness

relation the expression (5.8) becomes, after dropping primes,
Sab = agap + B(LaNp + Nolpy — ng Ly — Lanp). (5.9)

In this new basis the « + i3 eigenspace is spanned by [ +iL and n — ¢N and
the o — i eigenspace is spanned by [ — ¢L and n + ilN. The Segre type is
{(z2)(z2)}.

For the Segre type {211} there is a real null eigenvector ! with eigenvalue
« corresponding to the non-simple elementary divisor of order 2 and two other
eigenvectors with simple elementary divisors which are orthogonal to [ (see
the first part of the proof of theorem 5.1). They may be chosen as y and s
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with eigenvalues 8 and y. One may then choose a (hybrid) tetrad I, n,y, s to
get
Sap = a(lanp + naly) + Maly + BYaYs — VSaSp (5.10)

where, because of the Segre type, 0 # A € R and a scaling of [ and a com-
pensatory inverse scaling of n, which cancel out, may be used to set A = +1.
A Jordan basis, up to a scaling, is I,n,y, s. It is noted here that, unlike the
Lorentz case, spacelike and timelike eigenvectors are admitted and that further
null eigenvectors L and N are admitted if § = .

For Segre type {22z}, again [ is a real null eigenvector with associated
non-simple elementary divisor of order 2 and eigenvalue o and a conjugate
pair of complex eigenvectors L +iN with eigenvalues v +1d (6 # 0). One then
gets

Sop = a(lanb + nalb) + Mgl + 'Y(LaNb + NaLb) + 5(LaLb — NaNb) (511)

and, as before, one may scale [ so that A = +1.

For Segre type {22} with complex eigenvalues one has two independent
complex conjugate null eigenvectors associated with a totally null invariant
2—space and which may be chosen as [ A L with elementary divisors of order
2 (see lemma 5.4(¢) and (i7)) and after a (possible) adjustment of the choice
of [ and L the complex eigenvectors may be taken as [ £ L with respective
eigenvalues o + i3 (8 # 0). One can obtain a canonical form for the tensor
components Sy, at p by first writing them out as a linear combination of the
ten independent symmetrised products of a null basis I,n, L, N at p given by
lalp, MM, LMy, ---La(Npy with [ and L as given earlier, using the eigenvector
conditions S,pl® = al, — BL, and SuL? = Bl, + oL, and the completeness
relation for such a basis given in section 5.1. (Of course this could have been
used in the previous cases.) One finds

Sab = OGab + w(laLb + Lalb) + /J'lalb +vLaLy + /B(ZGNZ) + Nalb Y Lanb)
(5.12)
for w, p, v € R.If pu # v in (5.12) a change of null basis given by I’ =1, L' = L,
n' =n+azL and N' = N —zl (z € R) preserves the form (5.12) in the new
basis but with the coefficients u and v satisfying u = —v and with p?+v2 # 0.
Then (5.12) gives Syp(n® +iN®) = (a—iB)(ng +iNy) + (u+iw)(ly —iL,) with
p~+iw # 0 and so in this new basis [ +4L and n+¢N constitute, up to scaling,
a Jordan basis for f and the Segre type is {22} with complex eigenvalues. If
i = v the above basis change can be used to set pp = v = 0 in (5.12) and
again this Segre type emerges provided w # 0 but if w = 0, (5.12) reduces
to (5.9) and the Segre type is {(z2z)(2Z)}. Thus (5.12) is of Segre type {22}
with complex eigenvalues if u # v or if p = v and w # 0 and of Segre type
{(22)(22)} if p=v and w = 0.
For Segre type {22} with real eigenvalues one has orthogonal null eigenvec-
tors [ and L (lemma 5.4(i%)), say, with eigenvalues o and . The orthogonality
follows irrespective of the values of « and 3 since if [- L # 0 the 2—space [A L is
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timelike and its (timelike) orthogonal complement would produce extra (for-
bidden) eigenvectors. Thus [ A L is totally null. If one extends this to a null
tetrad I,n, L, N one achieves from the eigenvector conditions

Sop = Oé(la’flb-‘rnalb)-‘rﬁ(LaNb+NaLb)+W(laLb+Lalb)+Mlalb+l/LaLb- (5.13)

If a # B a basis change given by I’ =1, L'’ = L,n' =n+xL and N' = N —zl,
for € R, allows one to set w = 0. In this case one must insist that u # 0 # v
to avoid n and/or N being eigenvectors and then (5.13) shows that I,n, L, N
is, up to scaling, a Jordan basis for f and that the Segre type is {22} with
real eigenvalues. If & = 8 an application of the completeness relation in (5.13)
shows that

Sab = @Gab + w(lo Ly + Laly) + plaly + v L L. (5.14)

The Jordan matrix for this Segre type forces S — ag to have rank 2 and so
pr # w?. [It is noticed that if uv = w? then if 4 > 0 < v, S—ag takes the form
Sab — agap = kaky where k is the null (co)vector /ul = +/vL and if 1 < 0 > v,
the form —k,ky where k = \/—ul F v/—vL. In these cases S has Segre type
{(211)} and satisfies (5.10) with @ = 8 = ~v.] Using the freedom of choice of
l and L in the a—eigenspace one may change | — [ + aL and L — L + bl for
a,b € R provided (ab — 1) # 0 and see that, in the new basis, the coefficients
' of lyly, v/ of LoLy and o’ of (IoLy + Lalp) satisfy

W= p+2wb+vb?, V' = v+2wa+pa’, W =w+pa+vb+abw. (5.15)

Now suppose w? > pv in the original basis. Then w'? > /v’ holds in the new
basis since such basis changes preserve the Segre type of S and hence the sign
of w? — v, or by direct calculation from (5.15). The idea now is to show that
one can choose the new basis so that p/ =1’ = 0. If g = v = 0 then it is done
by choosing a = b = 0. If 4 = 0 # v then w # 0 and one may choose a so
that v + 2wa = 0 to get v = 0 and b = 0 to keep ¢/ = 0 (and ab # 1). One
proceeds similarly if v = 0 # p. If 4 # 0 # v, the condition w? > pv allows
the above quadratic expressions for ' and v’ to be set to zero and solved for a
and b, the two solutions obtained for each allowing one to ensure that ab # 1.
Thus ¢/ = v/ =0 (and w # 0). If w? < pv then uv > 0 (so that u # 0 # v)
and one can show that w may be chosen to be zero. To see this note that if
w = 0 then all is well and if w # 0 one chooses b = 0 and a such that w’ =0
in the 3rd expression of (5.15). Thus if w? > uv one may achieve (5.14) with
iw=v=0%#wandl,n,L,N is a Jordan basis for f. If w? < uv one gets
(5.14) with p # 0 # v and w = 0 and the same Jordan basis. In all cases the
Segre type is {22} (or {(22)}) with real eigenvalues.

If the Segre type is {31} one has a real null eigenvector [ corresponding to
the non-simple elementary divisor of order 3 and with eigenvalue «. From the
proof of theorem 5.1 the other eigenvector k is non-null and orthogonal to [
showing that [ A k is a null 2—space. Choose a hybrid basis [, n,y, s at p with
k = s and let the eigenvalue associated with s be . This information gives,
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at p
Sab = Mlalb + O‘(lanb + nalb) + Ayayb + B(layb + yalb> - IBSaSb (516)

for A,B,u € R. If B =0, y becomes an extra eigenvector so one must take
B#0.IfA# a1+ Agay becomes an extra eigenvector so one must take
A = a. Scalings of | and n can be used to make B = 1 and a basis change
U'=1,s=sy=y+a,n =n—ay— %l can be used to set the coefficient
of 1,1y to zero. Use of the completeness relation then gives

Sab = Qfab + (Oé - ﬁ)sasb + (layb + yalb)- (517)

No further eigenvectors can occur since now [, y,n,s give, up to a scaling, a
Jordan basis. One could have chosen the eigenvector k = y which has the
effect of switching y and s in (5.17) and some straightforward changing of
signs.

Finally suppose the Segre type is {4} with the single, necessarily null, in-
dependent eigenvector [ and real eigenvalue a. One may then choose a Jordan
basis containing [/, k € T, M such that the associated map f satisfies f(I) = ol
and f(k) = ak + 1. Then | A k is an invariant 2—space containing only one
eigendirection and is hence timelike, null or totally null. If [ A k is null one
gets (I A k)t =1AK for k' € T,M with [, k, k' independent and the 2—space
I Ak’ invariant and containing only one independent eigendirection. From this
last fact it follows that f(k') = ak’ + al for 0 # a € R, the appearance of
the eigenvalue o here being necessary to avoid extra independent eigenvec-
tors in I A k’. One may then scale k' so that f(k') = ok’ + 1 and which gives
the contradiction that k — k' is an eigenvector of f independent of I. If [ A k
is timelike its orthogonal complement leads to extra independent eigenvec-
tors and another contradiction. Thus [ A k is totally null and one can choose
a null basis I,n,L, N with k = N. Then f(I) = al, f(N) = aN + 1 and
f(L) =aL+bN +cl+dn for a,b, c,d € R. Using the fact that S is symmetric,
one has L- f(l) =1- f(L) one gets 0 = d and so f(L) = aL+bN +cl. Similarly
the condition L - f(N) = N - f(L) gives « = a. Thus f(L) = aL + bN +cl. If
b = 0 then either ¢ = 0 (which gives an extra, forbidden, independent eigen-
vector L) or ¢ # 0 in which case N —c™!L is an extra independent eigenvector.
Thus b # 0. In this null basis one then has

Sab = OGab + ,u'lalb + an.Nb + C(laNb + Nalb) + (laLb + Lalb)~ (518)

One can now perform the basis change | — |, L — L, n — n — AL and
N — N + Al, (A € R), and choose the real number A to set ¢ = 0, followed
by the basis change ] -, N - N, L — L+ Xl and n - n— XN, (X € R),
to set p = 0. Finally a scaling of N together with compensatory scalings in L
and [ may be used to set b = +1. The final result is

Sap = @gab + ON Ny + Lo Ly + Lyl (5.19)

with b = +1 and with [, N, L, n constituting, up to a scaling, a Jordan basis.
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This completes the argument for obtaining the canonical forms for S (or
f). Tt is clear, by simply equating eigenvalues, where allowable, that each
degeneracy of each Segre type is possible and that they are more complicated
than those in the case of Lorentz signature. [

It is noted that for this signature, unlike the other two, a real eigenvec-
tor need not exist (types {zzZww} and {22} with complex eigenvalues). It is
also observed that {31} admits an invariant null 2—space containing only one
eigendirection and one containing two independent eigendirections. Similarly,
one of the type {(11)11} cases admits a timelike invariant 2—space containing
two independent null eigenvectors and one admitting an independent pair of
spacelike/timelike eigenvectors whilst type {211} admits a timelike invariant
2—space admitting a single (real, null) eigendirection and type {22z} admits a
timelike invariant 2—space containing a conjugate pair of complex eigenvectors
(cf. the Lorentz case—and lemma 5.3).

5.4 Classification of Bivectors

In this section a complete classification scheme for second order, skew-
symmetric tensors (bivectors) for neutral signature will be described. Thus
for a non-zero bivector F' one considers the associated linear map f on T, M
given, for k € T,M, by k* — Fk". Thus f(k)-k = 0 for each k € T, M.
As a reminder (see chapter 3) it is recalled that if k is a non-null (real or
complex) eigenvector of f the corresponding eigenvalue is zero and that if k
and k' are eigenvectors of f with eigenvalues o and 8 then either a = —f
or k-k'" = 0. Also if U is an invariant subspace for f so is its orthogonal
complement U+ and a 2-dimensional invariant 2—space for f always exists, as
in the previous section. If f admits a spacelike invariant 2—space U spanned
by orthogonal spacelike vectors z and y, then either f acts trivially on U
or f(x) = ax + by, f(y) = cx + dy (a,b,c,d € R) and the skew-symmetry
of F shows that « = d = 0 and b = —c. Thus f(x) = by and f(y) = —bx
(0 #£ b € R) and so z + iy are complex eigenvectors for f with eigenvalues
Fib. If U is null with pnd [ then [ is a real eigenvector for f and U may or
may not contain another eigenvector. If U is timelike with pnds spanned by
null vectors [ and n with [-n = 1 then f(I) = al + bn and f(n) = ¢l + dn
and, as above, b =c =0 and a = —d # 0. Thus [ and n are real eigenvectors
for f whose eigenvalues differ only in sign. If U is totally null there are either
one or two independent real eigenvectors for f in U or a conjugate pair of
complex eigenvectors for f whose real and imaginary parts span U. All these
possibilities will be seen to occur. It is also remarked for future purposes that
if p,q,r,s € T,M are such that p A ¢ = r A s then p £ ig are each complex
linear combinations of r + is and r — is.

If F is simple it may be written in terms of some basis, as shown earlier,
(up to a real scaling) as F' = z Ay (F spacelike), F' = I An (F timelike),
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F=IAy (Fuul) and F =1 AN (F totally null). In the spacelike case a
conjugate pair of eigenvectors arise as a consequence of the 2—space = A y
whilst in the timelike case one has f(I) =1 and f(n) = —n. In the null case,
and in the above basis, one gets f(I) =0, f(y) =1, f(n) = —y and f(s) =0
whilst in the totally null case one has f(I) = 0, f(L) =1, f(N) = 0 and
f(n) = —N. Thus, spotting the obvious Jordan bases in each case, the Segre
types are, respectively, {zZ(11)}, {11(11)}, {(31)} and {(22)} with eigenvalues
zero in the last two cases. The null case reveals that a null invariant 2—space
may contain exactly one or exactly two independent eigenvectors. The totally
null case reveals a totally null invariant 2—space with two independent real
eigenvectors.

If F is a non-simple bivector each of its eigenvalues is non-zero (by non-
degeneracy) and hence each of its eigenvectors is null. Suppose F' is non-simple
with complex null eigenvectors p + iq and associated (non-zero) eigenvalues
a£if for p,q € T,M and «, 8 € R with 8 # 0. Then since p £ ig are null,
Ip| = l¢| and p - ¢ = 0 and, in addition, from a remark at the start of this
section, either (p+iq)- (p—iq) = 0 or & = 0. Thus either |p|+|¢g/ =0or a =0
which combines with the previous restriction to give either |p| = [¢| =0 =p-q
or [p| =lql, p- ¢ =0 and a = 0. It follows that p A ¢ is either spacelike or
totally null and if spacelike, « = 0, and so the eigenvalues are +i. Then if F
also admits a real (necessarily null) eigenvector k with eigenvalue 0 # v € R,
v#a+ifandsok-p==k-q=0.If pAq is spacelike so also is (p A q)*
and k € (p A q)*+ which contradicts the fact that k is null. If p A ¢ is totally
null then k£ € p A ¢ and is hence a (complex) linear combination of p + iq,
contradicting the independence of k and p + iq. Thus the eigenvalues of a
non-simple bivector are either all real or all complex. [This last result fails
for simple bivectors as was seen earlier.] One can say more here. If F' is non-
simple with all eigenvalues complex then with the exception of the degenerate
case of Segre type {(zz)(zZ)} the invariant spaces arising from its (complex)
eigenvectors are either all spacelike or all totally null. To see this let p£iq and
r=+is be independent complex eigenvectors with associated invariant 2—spaces
pAq (totally null) and r A s (spacelike) and respective eigenvalues o i3 and
+ivy (p,q,r,s € Tp,M and o, 8,7 € R) and, from the excluded degenerate case,
+iy # a+if8. Then (p+iq)-(r+is)=0andsop-r=p-s=q-r=q-s=0
which gives the contradiction r,s € p A q. That the degenerate case must be
excluded here will be seen later.

So suppose F' is non-simple and suppose the map f associated with F' has
all eigenvalues complex with p+iq being an eigenvector with eigenvalues a+ib
for p,q € T,M and a,b € R, b # 0. The subspace U = p A g associated with
p & iq is then invariant, as is U*. Now p + ig must be null and U (as shown
above) must be spacelike or totally null. Suppose U is spacelike, so that U~ is
also spacelike. Choosing a tetrad with p = x and ¢ = y one has, from remarks
above, a = 0, f(x) = —by and f(y) = bx. Similarly, applying this method to
U+ = s At for an orthonormal basis x,y, s,t gives f(t) = —ds and f(s) = dt
(0 # d € R) revealing that s + it are (complex) eigenvectors with eigenvalues
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Fid. The Segre type is {zZww} with F given by
Fap = b(xayp — YaTp) + d(sats — tasy)[= b(xz Ay) + d(s AT)]. (5.20)

Thus if b # +d each (complex) eigenvector gives rise to a spacelike invariant
2—space and it is seen that these are the only invariant 2—spaces for f.
There is a degenerate case when b = +d. In the case b = d (5.20) gives

Fop = b((xayp — Yap) + (Saty — tass))[= b((z Ay) + (s A t))] (5.21)

and the Segre type {(z2)(2Z)} arises. Similar comments apply if b = —d and it

is noted that these degenerate cases lie in S}, and S}, respectively. In this case
the tb—eigenspace is spanned by x + iy and s — it and contains the eigenvector
(z+1iy)+ (s—it). This eigenvector gives rise to a totally null invariant 2—space
(x4 8) A (y—t). These are in addition to the spacelike ones arising from x + iy
and s — it and justify an earlier remark.

Now suppose that U is totally null with associated complex eigenvectors [+
1L with complex eigenvalues a+ib and b # 0. Then f(l) = al—bL, f(L) = bl+
alL and so, extending to a null basis [,n, L, N for T,M the above expressions
for f(I) and f(L) lead (from the skew-symmetry of F using relations like
n-f(n)=..=0and n- f(L) = —L- f(n)...) to f(N) = pl + bn —aN and
f(n) = —pL — an — bN for p € R. Then in the corresponding bivector basis
INnINL INN, n AL nAN and L AN at p one has

F=a(lAn)+BIANL)+~v(IAN)+5(nAL)+punAN)+v(LAN) (5.22)

for a,...,0 e Rand thusa=v =a, f§ =p, y=39 =b and pu = 0. This gives

F=a(lAn+LAN)+bIAN+nAL)+p(IAL). (5.23)
If a # 0 a basis change I’ = I, L' = L, n’ = n+ kL and N' = N — &l
with x = —4= will (dropping primes) remove the final term in [ A L in (5.23)

(thus correcting a typo in [73]). In this case (n £ iN) are easily checked to
be eigenvectors of F' with eigenvalues —a + ib (and with associated invariant
2—spaces totally null) and F' is diagonalisable over C with Segre type {zzZww}
with no degeneracies possible since a # 0. [This case gives an example of a
totally null invariant 2—space with a conjugate pair of complex eigenvectors.]
In the case a = p = 0 in (5.23) one gets the degenerate case (5.21) since, as is
easily checked from the relationships between the basis members, INN+nAL =
x Ay + sAt, and the degenerate Segre type {(zz)(zZ)} arises.

Next suppose a = 0 # p in (5.23) so that [ & ¢L are eigenvectors with
eigenvalues +ib. Recalling the above remarks about this degenerate case and

noting that the bivector in (5.23) is now not in g’p or Sp, it is clear that any
other independent eigenvectors for F' are (complex and) null and it can be
checked that the associated eigenvalues are +ib but then a contradiction is
achieved so that the resulting Segre type is {22} with complex eigenvalues.
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However, a more direct approach is to show, from (5.23) that f(N) = bn + pl
and f(n) = —bN — pL and hence that f(N £in) = p(IFiL) Fib(N +in) and
so [ £¢L and N =+ in give, up to a scaling, a Jordan basis for f, revealing it
to have Segre type {22} with complex eigenvalues (and no degeneracy).
Finally suppose that all eigenvectors of f are real (and necessarily null).
Then there exists a null I € T, M such that f(I) = M for 0 # A € R. Choosing
a null basis containing ! one has & = A and g = § = 0 in (5.22) and then,
since F' is non-simple, v # 0 otherwise one would have the simple condition
F =1 Ap for some p € T, M. Suppose that § # 0 # v and define
P e e ey (5.24)
gl B
It follows that x = x’ = 0 is impossible since it is equivalent to v = A = 0.
So suppose that k # 0 # k' and which gives A # +v. Then L' =1 + kL and
N’ =1+ k'N are also independent real null eigenvectors for f with respective
eigenvalues v and —v and L’ - N’ = kx/. The condition F°, = 0 shows that
another real (null) eigenvector, say n’ exists with eigenvalue —X\ # 0 and so
f is diagonalisable over R. Then I, L', N',n’ is a new basis consisting of null
eigenvectors and since A # +v and A # 0, n' - L' = n’ - N’ = 0 (and so
I-n’ # 0). Thus f has Segre type {1111} with no degeneracies and, after
scalings to make I, L,” N,/n/ a null basis and then, dropping primes, one has

Fu, = )\(lanb — nalb) + V(LaNb — NaLb) (525)

which is (5.22) with 8 = v = 6 = u = 0. Retaining the conditions S # 0 # ~
suppose that x = 0 # &/, which is equivalent to A = v. In (5.22) one has
a= M\ pu=30=0and a basis change " =1, L = L, n" =n — %L and
N"=N+ 2’%\1 can be used to set 8 = 0 in (5.22). Dropping primes one gets

F,, = /\(lanb —ngly + Lg Ny — NaLb) + ’y(laNb — Nalb) (526)

and hence f(I) = M, f(N) = —=AN, f(L) = AL 4+ vl and f(n) =
—An —yN. Thus, since v # 0, [, L, N,n form a Jordan basis and the Segre
type is {22} with real eigenvalues and no degeneracy. [In this case one has an
example of totally null invariant 2—spaces with either exactly one or exactly
two independent real eigenvectors.] Similar comments apply if ¥ = 0 # k.
Thus if exactly one of k and &’ is zero, one of 8 and + may be set to zero. If
B =~ =0 one gets (5.25) and Segre type {1111} and if, additionally, A = +v,
the Segre type is {(11)(11)}. Thus, in summary, one has the following theorem.

Theorem 5.2 Let M be a 4-dimensional manifold with smooth metric g of
neutral signature and let F' be a non-zero bivector at p € M. If F' is simple
its Segre type is {zZ(11)} (blade of F spacelike), {11(11)} (timelike), {(31)}
(null) and {(22)} (totally null) with eigenvalues zero in the last two cases.
If F is non-simple its eigenvalues are either all real or all complex and the
possible Segre types are {zzZww} ((5.20) with 0 # b # £d # 0, or (5.23) with
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a#0=p), {(z2)(z2)} ((5.21), or (5.23) with a = p = 0 # b), {22} with
complex eigenvalues ((5.23) with a =0 # p and b # 0), {1111} ((5.25) with
A # tv), {(AD)AD)} ((5.25) with X = +v) and {22} with real eigenvalues
((5.26) with A # 0 # ~). No further degeneracies are possible.

As consequences one can see that if F' is non-simple then F' € S’; if and
only if its Segre type has an eigenvalue degeneracy. Also, a consideration of

the above canonical forms shows (again) that if F € 3‘;7 and |F| < 0 there
exists a basis [,n, L, N at p such that F' is a multiple of [ An — L A N with all
eigenvalues real, whilst if |F| > 0 there exists a basis x,y, s,t at p such that
F is a multiple of Ay + s At with all eigenvalues complex and if |F| =0, F'
is totally null and there exists a basis [, n, L, N at p such that F' is a multiple

of I AN (with all eigenvalues zero) with similar obvious comments if F' € S,
(cf lemma 5.5 in the next section). Incidentally the above canonical forms
show that any bivector F' may be written as a sum of two simple bivectors in
neutral signature (this result being obvious for the other two signatures).

It is remarked here that in the case of a non-simple bivector F' with |F| > 0
and F ¢ :S'; and hence Segre type {zZww} ((5.20) with b # +d) the orthogonal
pair of spacelike 2—spaces x Ay and s At are clearly uniquely determined by F
and referred to as the canonical blade pair for I'. However, in the degenerate
case when F is non-simple with |F| > 0 and F' € S, and of Segre type
{(22)(2z)} given by (5.20) with d = £b the blade pair z Ay and s At is not
uniquely determined in the sense that there exists infinitely many orthonormal

+
bases ', y/, s, with F(=b(x Ay +sAt)) =ba' Ay +s At') e S, (and
similarly for g'p) but with the 2—space x Ay (respectively, s At) distinct from
' Ny’ (respectively, s’ At') (see lemma 5.10(vi) in the next section and cf.

section 3.4). In this case each such pair (x Ay, sAt), (' Ay, s’ At') is called a
canonical blade pair for F. It is easily checked that if F' and G are non-simple

members of g'p (or Sp) with |F| > 0 < |G|, then if F and G have canonical
blade pairs with a common member then these pairs are equal as (non-ordered)
pairs and I’ and G are proportional. The proof is similar to that in lemma
3.5. Similarly if F' is non-simple with F' ¢ S, and |F| < 0 and of Segre type
{1111} ((5.25) with A # £v) the orthogonal pair of timelike 2—spaces [ An and
L AN are uniquely determined by F' and called the canonical blade pair for F'.
Again this fails in the degenerate case (Segre type {(11)(11)} and (5.25) with
A = £v) in the sense that there exists infinitely many null bases I',n’, L', N’
with F(= AlAn—LAN))=XUI'An"—L'AN') € jSF'p but with the 2—spaces
I An (respectively, L A N) distinct from I’ A n' (respectively, L’ A N’) (and

similarly for gp). Such pairs of orthogonal timelike 2—spaces are also called
Jr
canonical blade pairs for F. Again if F' and G are non-simple members of .S},

(or S‘p) with |F| < 0 > |G| and have canonical blade pairs with a common
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member these pairs agree and F' and G are proportional. One way of viewing
this lack of uniqueness in the degenerate case can be gleaned from lemma
5.5(7) below by, in the notation of that lemma, fixing F' and changing G. That
infinitely many such blade pairs exist can be inferred from section 3.4 by, for
example, in the |F'| > 0 case, concentrating on the complex 2-dimensional
1—eigenspaces admitted by F =z Ay +sAtand F/ =2’ Ay + s At given
by Sp(z + 4y, s —it) and Sp(a’ 4+ iy, s’ — it’) and which must agree if F' = F’.
The case when |F| < 0 is similar.

5.5 Lie Algebra o(2,2)

This 6—dimensional Lie algebra was considered, and its subalgebras listed,
in [74]. Here a different approach will be used to cast the list of subalgebras
into a form consistent with the approach taken in this book and is based on
the work in [66, 67]. Before embarking on this procedure another lemma is
required which was given in [66].

+ p—
Lemma 5.5 Let F € S, and G € S, and let z,y,s,t and I,n, L, N be, re-
spectively, orthonormal and null corresponding bases at p € M.

(¢) If|F| > 0 < |G| one may choose the above bases such that F is a multiple
of e ANy+sAtand G is a multiple of t Ay —sAt. If |F| < 0> |G| one
may choose the bases such that F is a multiple of IAn — L AN (and
hence of x ANt —y A s) and G a multiple of LAn+ LAN (and hence of
TAt+yAs).

(13) If |[F| > 0 (respectively < 0) and |G| < 0 (respectively > 0) one may
choose these bases such that F and G are multiples of xt Ay + s At and
IANn+ LAN (respectively, of INn—LAN and x Ny —sAt).

(#5i) If |[F| > 0O (respectively = 0) and |G| = 0 (respectively > 0) one may
choose these bases such that F' and G are multiples of x ANy + s At and
AL (respectively, UNN and x Ny — s At).

() If |F| < 0 (respectively = 0) and |G| = 0 (respectively < 0) one
may choose the null basis I,n, L, N such that F and G are multiples of
IANn—LAN andl AL (respectively, IANN and IAn+ LAN).

(v) If |F| = |G| = 0 there exists a null basis such that F and G are multiples
of LANN and I A\ L, respectively.
+ — +
(vi) If By (respectively, B,) is a 2-dimensional subalgebra of F € S, (respec-
- +
tively, F € S,) one may choose a null basis such that B, =Sp(l A N,
INn—LAN) andB_p =SpAANL,IAn+LAN).
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+ +
(vii) Let A € S, be a Lie subalgebra of Sy, of dimension 1 or 2. Then there is

+ —
no Lie algebra homomorphism from S, onto A (and similarly for S,).

+
Proof For part (i), suppose |F| > 0 < |G|. Then since F' € S, and

G e gp the bivector aF + bG is simple if and only P((aF +bG), (aF +bG)) =
a?|F| — b?|G| = 0 (lemma 3.1). Thus, although neither F nor G is simple,

H =F + kG and H = F — kG are simple for k = (%)% € R. But then

|H| > 0 < |H| and so H and H are each spacelike with orthogonal blades

and hence a basis z,y, s,t may be chosen so that H and H are (the same)
multiples of x A y and s A ¢, respectively, and the result follows. The proof
when |F'| < 0 > |G| is similar.

For part (i7) one notes first that if |F| > 0 > |G| then in some null basis
l,n, L, N, noting that the desired result is independent of any scalings applied
to F and G, one may write G =l An+ LA N (from theorem 5.2—see the
remarks following this theorem). Letting fi denote the linear isomorphism
associated with G (as in the last section and noting that it is an isomorphism
since G is non-simple) one finds fg(l) = I, fa(n) = —n, fe(L) = L and
fa(N) = =N and so I A L and n A N are totally null eigenspaces of fg

with non-zero eigenvalues differing only in sign. Since F' € §p and G € 5,
[F,G] = 0 and so, on contracting this equation successively with [, n, L and
N one easily sees that [ A L and n A N are invariant 2—spaces of the linear
isomorphism fr arising from F' on each of which fr acts as an isomorphism.
Now define L' = fr(l) which is necessarily null (since it is in the fp-invariant
space | A L) and is not proportional to ! (since, from the work of the last
section, fr has no real eigenvectors). Now N spans the unique null direction
in n A N which is orthogonal to [ and so, since fr acts as an isomorphism on
n A N, there exists a unique null direction spanned by n’ € n A N such that
the null vector N’ = fr(n’) is proportional to N (and hence orthogonal to )
and not proportional to n’. Thus I, L', n’, N’ are independent, null members
of T,M and which satisfy [ - L' =1-N' =n/-N'" =0 and also L' - n' =
fr(l)-n' =—fp(n')-1=—=N’"-1=0. Now none of the members of the basis
I,L',n’, N’ can be orthogonal to all members of this basis and so [ - n’ and
L’ - N’ are non-zero. Using the above freedom in scaling on n’ one can choose
l-n' = 1. Now define the basis z,y,s,t at pby V2z =1 +n', V2y = L' + N’,
V2s=L'— N' and V2t = — n/, the members of which are easily seen to be
mutually orthogonal. Now, from part (¢) of this lemma and lemma 5.1(iv) one

may scale F' so that F'*.F“, = —4;' and so fr o fr is minus the identity map
on T, M. Thus one has fr(z) = %fp(l—!-n') = %(L’—i—N’) =y, fry) = —u,

fr(t) = s and fr(s) = —t. This shows that x £ iy and s & it are complex,
null eigenvectors of fr with eigenvalues +¢ and Fi, respectively, and hence
that -2z =y -y and s-s = ¢ -¢. It follows that [ -n’ = L' - N'(= 1) and
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then that x,y, s,t is an orthonormal basis at p. In this basis F' is a multiple
of © Ay + s At, as required. The other parts follow similarly.

For part (7i7) note that since |F| > 0 and |G| = 0 one may choose an
orthonormal basis x,y, s,t for T, M in which, after a scaling of F', F' = x Ay +
s At and G = p A ¢ for null, orthogonal p,q € T,M. Since [F,G] = 0, obvious
contractions of this last equation with p and ¢ show that the 0—eigenspace
p A q for G is invariant for F' and hence, since fr has no real eigenvectors,
and, after a possible redefinition of p and ¢ within the 2—space p A ¢, fr has
complex eigenvectors p £ ig which must lie in the £: eigenspaces of fr. Thus
p+iqg=x+iy+ (a+ib)(s —it) = (x +as+bt) +i(y +bs —at) (a,b € R) and
the fact that p and ¢ are null reveals that a? + > = 1. Now set S = bs — at
and T =as+ bt toseethat S-S=T-T=—-1and S-T =0, that z,y,S,T
is an orthonormal basis with S AT = s At and that F is proportional to
xAy+SAT. Then G =pAq= (x+T)A(y+.5S) is proportional to I A L where
V2l = x + T and V2L = y + S. The last part is similar and this completes
the proof of (7).

For part (iv) suppose |F| < 0 = |G| and select a basis in which F is a
multiple of IAn—LAN and write G = pAgq for p, g € T, M which are null and
orthogonal. As before, since p and ¢ span the 0-eigenspace of fg, they span a
totally null invariant 2—space for fr. Now the only eigenspaces for F' are [IAN

and n A L and they are in g’p and since G' € S, the invariant 2—space p A ¢
intersects them in two independent eigendirections for F' (lemma 5.1(47)).
Since p A ¢ is not an eigenspace for F these latter (null) eigenvectors for F
have distinct real eigenvalues +1. Calling these latter eigenvectors p’ and ¢’
one has fr(p') = p’ and fr(¢’') = —¢'. Choosing a tetrad I,n, L, N with [ = p’
and L = ¢’ one finds from (5.22) that F = (IAn—LAN)+BIANL, (€R
and G is a multiple of [ A L. Since F € g’p, [ = 0 and the result follows.

For part (v), using lemma 5.1(77), the blades of F' and G intersect in a null

direction spanned by, say, the null vector . Then, up to multiples, FF =1 Ap
and G = [ A ¢ for null vectors p, q each orthogonal to . By extending [ to a

+ —_

basis {,n, L, N, p and ¢ lie in Sp({, L, N') and recalling that F' € S, and G € S,
+ —
part (v) follows. For part (vi) one has B, =Sp(P, R) and B, =Sp(Q, S) for
+ —

PR € S, and ,5 € S, and with P, totally null and R, S satisfying
|R| < 0>1S] and with P- R=@Q -S =0 (lemma 5.2(47)). The previous part
shows that one may choose a tetrad [,n, L, N with P proportional to | A N
and @ proportional to I A L. But P- R = @ - S = 0 means that R must be a
linear combination of /AN and [An — L AN and S a linear combination of

INLand I An+ L AN. The result now follows.
Part (vit) is a simple example of a more general result concerning simple

+
Lie algebras. Suppose f : S, — A is such a map and that dimA = 2. Then

+
from lemma 5.2(i7) one may choose a basis F1, Fy, F5 for S, as in (5.2)-(5.4)
so that A =Sp(F1, Fy). Writing f(F;) = a;F1 +b;F> (1 <4 < 3,a;,b; € R) one
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gets f(F1) = —f([Fy, F3]) = —[f(F»), f(F3)] etc and easily finds that each of
f(F;) is a multiple of F5 contradicting the fact that f has rank 2. If dimA4 =1
one similarly finds the contradiction that f is the trivial map. |

It is remarked here that this lemma can be used to give an alternative
proof of theorem 5.2. One writes a general bivector F' at p € M (uniquely) as

+ - + o+ - = +
F =F+F with F € S, and F € Sp. Then one pairs off the cases when |F| is
> 0,=0,< 0, with the cases when \1?"\ is > 0,=0,< 0, to get the appropriate

canonical forms and Segre types. Thus writing the case |;7| >0 < |F|as (+,+)
one appeals to lemma 5.5(7) to get (5.20), for (+, —) lemma 5.5(ii) leads to
(5.23) with a # 0 # b, p = 0, and for (—, —), lemma 5.5(7) leads to (5.25). The
case (4,0) and lemma 5.5(4i%) lead to (5.23) with a = 0 # b, the case (0, —)
and lemma 5.5(iv) lead to (5.26) and the case (0,0) and lemma 5.5(v) lead
to F' being simple and null. The simple spacelike and timelike possibilities for
F are special cases of (5.20) and (5.25) whilst the totally null case for F' is a
special case of (0,0).

Let M be a 4-dimensional manifold admitting a metric g of neutral
signature (+,+,—,—), let p € M and let N denote the collection of all
linear maps f : T,M — T,M which preserve the metric g(p), that is,
g(p)(f(u), f(v)) = g(p)(u,v) where g(p) is the metric at p € M. Then, as
in the cases of the other signatures, A/ is a 6—dimensional Lie group called
here the neutral group on T,M. Each member of A is an isomorphism on
T, M and one may choose coordinates at p so that g(p) takes the Sylvester
form w =diag(1,1,—1,—1). A matrix A representing such a transformation
satisfies AwAT = w and hence detA = £1. The group N may be split into
four components. Only the (connected) identity component Ny of N will be
needed here. The Lie algebra of A, labelled o(2,2), is represented as the

+ —
bivector algebra A,M = S, + S, under matrix commutation as described ear-

+ = + =
lier. In this section S, S, S and A are used, for convenience, to denote S, Sp,
Sp and A, M, respectively, with the first two identified with the subalgebras

§+ {0} and {0} + S of A and E and B respectively representing Ep + {0}
and {0} + Ep (lemma 5.2). It is also convenient to make some definitions
before proceeding and which are, for a subalgebra V of 0(2,2), ‘J; =Vn g’
and V = V N S with XJ; a subalgebra of V' and jSQ, and similarly for V. The

+
natural projections 71 : A — S and mo : A — S are also needed and are easily
checked to be Lie algebra homomorphisms. It is useful here to note that, from

+ - + -
(5.4), the set of commutators of S (respectively, S) spans S (respectively, S).
_ +
Since, for v € V one may always write (uniquely) v = b+ for v €S and

_ = + -
v € 8, it follows that V +V C V C m (V) + m2(V) where 71 (V) and m2(V)
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are subalgebras of g’ and S (and ‘J}O V = {0}). One also recalls the dimension
formula (chapter 1) that if W is a vector space with subspaces A and B then
dimSp(A4, B) =dimA+dimB-dim(A N B). If V is a subalgebra of 0(2,2) then
dimV = n where 0 < n < 6 and it will be seen that all dimensional possi-
bilities for V' can occur and if dimV = 6, V coincides with o(2,2). The idea
now is to find a convenient classification of the subalgebras of 0(2,2). Each
subalgebra will be labelled by an integer, which is its dimension, followed by a
letter which distinguishes the different types of subalgebra of that dimension.
The approach given here is based on joint work between the author and Dr
Zhixiang Wang [66, 67] with the notation taken largely from [66].

It is convenient to deal with the 1-dimensional cases first. So suppose
dimV = 1. Here V =Sp(F’) for some non-zero bivector F'. The different types
are then listed according to the different algebraic (Segre) types of F' using
theorem 5.2. These types are then, first for F' simple, la (for F timelike,
Segre type {11(11)}), 1b (F spacelike, {z2(11)}), 1¢ (F null, {(31)}), and 1d
(F totally null, {(22)}) with eigenvalues zero in the last two cases. For F' non-

+
simple and using the identity IAN +nAL =z Ay+sAt € S the types are: le
(F = alzAy)+B8(sAt) ¢ S, {zzww}), 1f (F = a(lAn)+8(LAN) ¢ S, {1111}),

1g (F = a(INAN+nAL)+B(IAn+LAN) = a(zAy+sAt)+B(IAn+LAN) ¢ S,
{zzww}), 1h (F = a(IAN+nAL)+B(INL) = a(zAy+sAt)+B(INL) ¢ S,

+
{22} with complex eigenvalues), 15 (F = x Ay+sAt e S, {(z2)(z2)}), 1k

(F=IAn—LAN € :57 {(11)(11)}), U (F = a(IAn—LAN)+B(INL) ¢ S, {22}
with real eigenvalues). In this list «, 5 € R and, in addition for subalgebras le
and 1f, one requires 0 # « # £ # 0 whereas for subalgebras 1¢g, 1h and 1,
af # 0. It is noted that the types 1d, 15 and 1k are the only types which lie

+ —
in S (or with the obvious changes, in S). A pattern becomes clear from the
+
1-dimensional subalgebras spanned by a non-simple bivector F' not in S nor
S in that they are a sum of non-zero bivectors F' € S and F' € S with the sign

+ —
pairs (|F|,|F|) being (+,+), (=, =), (+,—), (+,0) and (-, 0) for types le, 1f,
1g, 1h and 11, respectively. (Note that the case (0,0) is simple.) Lemma 5.5 is
useful here.

Suppose dimV = 5. An above dimension formula gives dim(V + g) =
54+ 3—dim(1+/) and so dim‘J; > 2 and similarly dimV > 2. Now ‘J; + v cVv
from above so that dim‘J; —dimV = 3 gives a contradiction and dinﬂ—; =3,
dimV = 2 leads, from lemma 5.2(i%), to the possibility that V = §+ B (and
similarly to the possibility that V = E —+ g) Otherwise, dim‘J; —dimV = 2
and ‘J}—i—{/ C V but V # X+/—|—‘7 Thus ‘J; = E and V = B and since
V C m1(V)+m2(V) one sees that either 1+/(: E) #m (V) or 17(: E) # ma (V).
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+
In the former case one sees that B is a proper subalgebra of 1 (V') and hence
+ + - + -+ + + -
that m (V) =5.Solet h = (h,h) e V withh ¢ V+V,he S\ B, h € m(V).
+ +
Then the collection of all Lie brackets of h with members of V +{0} = B+{0}
+ +

is in V and consists of members of the form [h,b], b € B each of which is in
+  + + + + o+ 0+

V = B. Hence [h,b] € V for each h € S\ B and (5.4) reveals that this is a

+ = S
contradiction. It follows that V' is the product V.= B + S (or S + B) and is
the only possibility for dimV = 5. This 5-dimensional subalgebra is labelled
type 5.

Suppose dimV = 4. If V is not a product of subalgebras of g’ and S
and since V' C m (V) + m2(V), it follows that V is a proper subalgebra of
m1(V) + m2(V) and so dim(my (V') + m2(V)) > 5. It follows that one of w1 (V)
and (V) is 3—dimensional, say dimm (V) = 3, and that dimme(V) > 2.

Applying the dimension formula used earlier to the subspaces V,,JSr' and V —I—,JSF'
gives dim‘+/ > 1 and similarly dimV > 1 and since ‘J;—I—{/ CVbutV # ‘J;—I—{/,
(and V is not a product), gives dim(‘+/ + ‘7) <3andso 1 Sdim{}, dimV < 2.
So let h = (h,h) € V with h € m(V)\V = S\ V and h € mo(V) so that
t}_le colleJcrtion of Lie braci{ets of h wi4t_h eafh I}rlember of V lies in V. Then
[h,b] € V for each b € V and each h € S\ V and this is a contradiction

+ +
whether dimV is 1 or 2. It follows that V' is a product of subalgebras of S and
- +
S and is thus either of the form S+ K where K is a 1-dimensional subalgebra

— + —
of S (types 4a, 4b and 4d) or of the form B+ B (type 4c), up to isomorphism

+ —
and a switching between S and S. They are collected together in Table 5.1
where lemma 5.5(vi) is used.

+ —
Now suppose that dimV = 3. If 71(V) = S and 72(V) = S the projection
+ —
maps are Lie algebra isomorphisms V' — S and V' — S and hence myom; lisa
+ —
Lie algebra isomorphism S — .S which, by lemma 5.2(v), preserves the bivector

metric. So if v € V, v = vy + vy with v; = m(v) € g’ and vy = ma(v) € S,
one has |v1| = |ve| and so (vy + v2) - (v1 +v2)* = (v1 +v2) - (v —v2) =0
and so v = vy + vo is simple. It follows that each non-zero member of V'
is simple and one may use lemma 3.2 to see that either the blades of the
members of V' have a common direction k£ or that the blades of the duals of
the members of V' have a common direction &’. In the first case it is easily
checked that one may choose a basis for V spanned by A = kAp, B = kAq and
C = k Ar with k, p,q,r independent vectors and, in addition, if & is not null,
k-p="k-q=k-r=0.It then follows that [4, B] ¢ V and so in this case, since
V' is a subalgebra, k must be null. Choosing a null basis I,n, L, N with k =
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TABLE 5.1: Lie subalgebras for (+,+, —, —).

Type | Dimension Basis

la 1 AN

10 1 TNy

1c 1 INyorlAs

1d 1 INL

2a 2 l/\nfL/\N,l/\N(:E)

2b 2 IAn, LAN

2c 2 INn—LAN,INL+nAN
2d 2 IAm—LAN,INL

2e 2 TNy, sNAT

2f 2 INN+nAL/INL

29 2 IANN,INL

2h 2 INN,a(lAn)+ B(LAN)

27 2 INN,a(lAn—LAN)+BIAL)
2k 2 INy,IANnorlAs, IAn

21 2 INN,alAn—LAN)+BUIANL+nAN)
3a 3 IAn, INN, LAN

30 3 INn—LAN,IANN,IANL
3c 3 TNy, cANt,yANtorzAs, xANt, s\t
3d 3 INN,INL, a(lAn)+B(LAN)
3e 3 g‘

+

3f 3 B,INL+nAN

4a 4 §,lAn+LAN

4b 4 g’,l/\L—kn/\N

4c 4 E’,Borl/\L,l/\N,l/\n,L/\N
4d 4 g,l/\L

+ —
5 5 S, B
6 6 0(2,2)

each 2—space containing [ must intersect Sp(n, L, N) in a unique direction and
so V =Sp(lAn,I AL, AN). But this is impossible since then { A L and [ AN
would then span a 2-dimensional Abelian subalgebra of V' which has been seen

to be impossible since V' is isomorphic to the subalgebra § (lemma 5.2(4i)).
It follows that the duals of the members of V' have a common direction, say
k and hence that k is orthogonal to each member of V. If k is null then with
the choice k = [ and null basis I, n, L, N one gets V =Sp(!l A L,IAN,L AN)
and a similar argument to that above gives a contradiction. Thus £ is not null
and orthonormal bases may be chosen so that V' =Sp(x A y,z At,y A t) or
V =Sp(xAs,xAt,sAt). These are isomorphic and labelled type 3c. So suppose

+ — +
that 71 (V) = S and mo(V) # S. If mo(V) is trivial, V = S and this is labelled



Four-Dimensional Manifolds of Neutral Signature 167

type 3e. If mo(V) is of dimension 2 or 1 the projection map m : V — ma(V

)
is a Lie algebra homomorphism onto a 1— or 2-dimensional subalgebra of S
and this is impossible from lemma 5.5(vi).

+ —
Finally suppose that w1 (V) # S and m3(V) # S. Then V is a subset of
71 (V) + m2(V) and it follows that either dimm; (V) = 2 and dimmy (V) = 1,
or vice versa, or dimm (V) =dimma(V') = 2. The first case(s) shows that (up

to isomorphism) V' is the product of B and a 1-dimensional subalgebra of

S. Thus, if the 1-dimensional subalgebra is spanned by F € S , |F| < 0, one
may appeal to lemma 5.5(iv) and choose a basis I,n, L, N such that the null

+ —
member of B and the bivector in S are I AN and [ An + L A N, respec-
tively. But then the general theory of section 5.2 shows that the bivector

+
IAn—LAN can be used to make B =Sp(IAN,IAn—LAN) and then, taking
obvious linear combinations, one gets V =Sp(I A N, An,L A N) (sometimes

written Sp(E,l An+ LA N). This is labelled type 3a. If the 1-dimensional
subalgebra in S is totally null a similar argument using lemma 5.5 gives
V =Sp({AN,INL,IANn—LAN) (or V :Sp(é7 I A L) and this is labelled 3b.
If the bivector F € S satisfies |F| > 0 one gets in a mixed basis or a null basis

+ +
V =Sp(B,zAy—sAt)or V =Sp(B,IAL+nAN), from lemma 5.5(¢i7). This
is labelled 3f. In the second case when dimm; (V) =dimmy(V) = 2 one has

m (V) = E and (V) = B and also V C E—l—é and hence V—i—é C E—i—é
Thus use of the dimension formula gives 4 ZdimSp(]E, V)=3+2—-dim(V N E)
and so dim(V N E) > 1, and similarly, dim(V N E) > 1. So one may write
V =Sp(u,v,w) with v = (a,0), v = (0,b) and w = (¢,d) for a,c € E and

b,d € B. If one of ¢,d is trivial one repeats the above products of types
3a, 3b and 3f. So choose ¢ # 0 # d. Then a,c are independent mem-

+
bers of B otherwise one could, by taking linear combinations of u and w
reduce the situation to one of the previous product types. Thus a,c and
similarly, b,d are 1ndependent and [a,c] # 0 # [b,d] (lemma 5.2(i7)). Fi-

nally, since a,c € B and b,d € B one can, by taking linear combina-
tions of u and w, take u = (a,0) with a totally null, and similarly take
v = (0,b) with b totally null. Then (lemma 5.5(v)) one may choose a null
basis I,n, L, N witha =1AN,b=1IAL, c eSp(l AN,lAn—LAN) and
d eSp(IANL,lAn+ LA N) and after a final taking of linear combinations of
u,v,w, one achieves V. =Sp(I A N,I A L,a(l An)+ B8(L AN)) for o, € R
with 5 # +a, the latter restriction being to avoid w € S (and hence V being
a product). This type is labelled 3d.
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Now suppose that dimV = 2. Since V' C m1(V) + m(V) it follows that
m1(V) and w2 (V) have dimension at most 2. If one of these is trivial then V'

+ —
is isomorphic to B (or B) and this type is labelled 2a. If each has dimension
1, V. =m (V) + m(V) and there are six types depending on whether 71 (V)

+
is spanned by F' € S with |F| > 0, |F| = 0 or |F| < 0—(and similarly
for m3(V')). These six types (after use of lemma 5.5) are labelled 20,...,2g. If,
however, m (V) and m2(V') are each 2-dimensional (and hence isomorphic to

+ - + -
B and B, respectively) then V' is isomorphic to B under the map m; (or B
+ —
under mp) and is a subalgebra of B + B. Then the map my o 77 ' is a Lie

algebra isomorphism lJ% — B which preserves the bivector metric (lemma
5.2(v)). Thus, as proved in the dimV = 3 case, each non-zero member of V is
a simple bivector. But dimV = 2 and so from lemma 3.2, there exists a vector
k # 0 which is contained in each of the blades of the members of V. Thus
one may write V. =Sp(A4, B) for bivectors A, B and, since V is isomorphic to

E, one may take [A,B] = A with A = k Ap and B = k A ¢ for non-zero
vectors p, ¢ (with p, ¢, k independent) from which it follows by expanding the
Lie bracket relation that %k is null and k-p = 0 # k- ¢q. It follows that A
is either a null bivector (if p is not null) or a totally null bivector (if p is
null). If p is null then A € S and so one achieves the contradiction that one
of 1 (V) and m2(V) is 1-dimensional and it follows that p is not null and B
is a null bivector. If ¢ is not null one may replace ¢ by a linear combination
of k,q which is null and labelling this vector n, taking k¥ = [ and choosing
a hybrid basis I,n, s,y in which p = y (or s) one gets V' =Sp(l A n,l A y)
(or V. =Sp(l Amn,l A s)) and this type is labelled 2k. Finally suppose that
dimm (V) = 2 and dimmy (V) = 1 (the reverse case is similar) so that V is

isomorphic to m1(V), that is, to E and so V is a subalgebra of E + ma (V).
Thus V' and E + {0} are subspaces of E + m2(V') and the dimension formula
gives dim(VﬂE) =1 and so Vﬂg = Vﬂg‘ = ‘J; =Sp(v) for some 0 # v € E
Now choose 0 # u € V which is independent of (v,0) and with v = W+
with @ € :St independent of v and 0 # u € S. Tt follows that [u,v] € V. But

+ +
[u,v] = [a,v] € S and so (lemma 5.2(i)), [ﬂ,v] is a non-zero member of V
and hence [u, v] is some non-zero multiple of (v, 0). Recalling the Lie bracket

+ —
restrictions on the subalgebras S and S and the fact that V is isomorphic
+
to B it is seen that v must be a totally null bivector. This shows that V is

~ +

spanned by (v,0) and a bivector w ¢ S to avoid contradicting dimV = 1
or reproducing one of the above Lie algebra products for V. It follows that
w = c+d with ¢ € m(V) and d € m(V) and that |c¢| < O since, together

+
with v, it forms a subalgebra isomorphic to B. Thus V =Sp(v,c + d) and
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one appeals to lemma 5.5 to get the possibilities for V in the following way.

One chooses a null basis for the pair v € g' and d € S, the choice of v then
determining the choice of ¢ up to multiples of v, which may be ignored. Thus
if |[d| > 0 a null basis I,n, L, N, with associated basis x, y, s, t, may be chosen
so that v =l AN (and hence c=1An—LAN)and d=xzAy—sAt. Then
V =Sp({AN,a(iAn—LAN)+ B(x ANy —sAt)) for non-zero o, 8 € R. This
type is labelled 2I. The others are similarly computed and are, for (|d| < 0),
V =Sp(IAN,a(lAn)+ B(LAN)), labelled 2h, and, for d totally null (|d| = 0)
V =Sp(IANN,a(lAn—LAN)+ BIAL), labelled 25. In type 2h one requires
a # £0 (to avoid reproducing one of the earlier product algebras) and in type
2j one needs a # 0 # 3. This completes the classification of the subalgebras of
0(2,2) and they are listed in Table 5.1 and which is an extension of the work
in [66]. [The author is to blame for the somewhat idiosyncratic labelling.]
A number of these cases cannot arise for the holonomy algebra of a metric
connection (see below).

Apart from the trivial subalgebra and the full subalgebra o(2,2) there are
eleven types of 1-dimensional subalgebras, 1a,...,1{, eleven 2-dimensional sub-
algebras, 2a,...,2[, six 3—dimensional subalgebras, 3a,...,3 f, four 4-dimensional
subalgebras, 4a,...,4d, and one 5-dimensional subalgebra, 5, a total of thirty
three proper subalgebras. Any two subalgebras with a different label are non-
isomorphic but it is not claimed that two subalgebras under the same label
are isomorphic.

A full list of subalgebras of 0(2,2) was given in [74] (in a different labelling
and format and using different techniques to those given above) where a brief
history of the subject can also be found. In this reference there are, apart
from the trivial subalgebra and o(2,2), thirty one proper subalgebras labelled
A1 —Asy and Ase = 0(2,2). The difference in the total numbers of subalgebras
lies in the absorbing of the types here labelled 1a and 1b inside other types
in [74]. The retaining of 1la and 1b as separate cases together with the general
bivector approach followed here are more convenient for the present needs.
The link between this labelling is implicitly given in [67]. In Table 5.1 some
types contain real parameters o and [ restricted, as described earlier and
repeated in more detail here. For the 1-dimensional subalgebra types and in
cases le and 1f, one has 0 # a # £ # 0 since the cases a« = 0 and 5 =0
repeat types la and 1b, whilst « = 43, repeat types 1j and 1k. In types
1lg, 1h and 1, a # 0 # 3, otherwise one repeats types 1j, 1k or 1d. In the
2-dimensional types 2j and 2I, one requires o # 0 # [ to avoid repeating
types 2¢, 2a and 2f. In type 2h one needs a # +f to avoid repeating types 2a
and 2d but & =0 or f = 0 (not both) is allowed. In the 3—dimensional type
3d, « =0 or 8 =0 (not both) is allowed but one requires a # £/ to avoid
repeating type 3b. For type 3f it is noted that INL+n AN =z Ay —sAt
and that in type 21, «(IAn—LAN)+ 8(z Ay — s At) is non-simple for each
a,BER, o+ B2 #£0.
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The labelling here for subalgebras of dimension > 2 correspond in a one-
to-one way with the types labelled Ajg — Agp (2-dimensional cases), Ao — Asg
(3—dimensional cases), Aay — Agp (4-dimensional cases), A3y (5-dimensional
case) and Asy (6—dimensional case) in [74]. Now for the situation where, for
(M, g), g has neutral signature, previous work shows that its holonomy group
® is a Lie subgroup of A/ and so the holonomy algebra ¢ is a subalgebra of
0(2,2). Tt is then remarked that the cases Ao (21), A1 (3€), A2g (3f) and Aag
(4d) cannot occur as the holonomy group of (M, g) since the connection V is
metric whilst it seems that A3 (25) possibly cannot occur for the same reason
([74] and references given therein). As mentioned before (section 3.7), the 1-
dimensional subalgebras can only represent a metric connection if they are
spanned by a simple bivector. Thus, in the above notation, the only relevant 1-
dimensional subalgebras here are la, 1b, 1¢ and 1d and for this reason and also
reasons of typographical convenience, these 1-dimensional non-simple cases are
omitted from Table 5.1.

5.6 Curvature Tensor

As in the positive definite and Lorentz cases one can construct the linear
curvature map f on bivectors and use it to classify Riem(p) at p € M into the
five curvature classes A, B,C, D, O as detailed in chapter 3. Regarding this
map as arising from the symmetric matrix R4 p it is not necessarily diagonalis-
able (over R or C) since the bivector metric has signature (+, 4+, —, —, —,—). In
class D dimrgf(p) = 1 with rgf(p) spanned by a simple bivector (see chapters
3 or 4) and this type may be subdivided into subclasses where this bivector is
spacelike, timelike, null or totally null. Always one has rgf(p) = rgf(p) (the
smallest subalgebra containing rgf(p)) and this subalgebra is of type la, 1,
lc or 1d. In class B one has rgf(p) =Sp(P, Q) for independent bivectors P, Q

+ —_
with no common annihilator and satisfying [P, Q] = 0. Writing P = P + P
+ o+ - =
for P € S and P € S, and similarly for @, the condition [P, Q] = 0 implies
+ + - =
[P,Q] = [P,Q] = 0. Then an almost identical proof to that in chapter 3,

+ —_
but recalling that S, and S, now have no 2-dimensional Abelian subalgebras,
shows that rgf(p) can be spanned by two independent bivectors with no com-

+ —_
mon annihilator, one in S, and one in S, (and their bracket is then necessarily

zero). Thus rgf(p) = rgf(p) and this subalgebra type is easily checked to be
either 2b, 2¢, 2d, 2e or 2f, the other 2-dimensional subalgebras either being
non-Abelian or having a common annihilator. For class C, rgf(p) is such that
its members have a unigque independent common annihilator 0 # k € T, M.
Thus all members of rgf(p) are simple and from lemma 3.2, dimrgf(p) < 3
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and if it is 3, rgf(p) = rgf(p) and it is a subalgebra. If rgf(p) is a subalgebra
it follows that it is of type 2¢g, 2h (with a8 = 0), 2k, 3¢ or 3d (with a = 0).
The curvature class O at p means that Riem(p) = 0 and if, at p, the class is
none of B, C, D or O it is of class A. In addition, allowing, as before, any of the
letters A, ...,O to denote precisely the subset of points of M where the cur-
vature class is equal to that letter one can achieve the results of theorem 3.1.
The existence of a non-trivial solution £ € T, M to the equation R%qk® =0
is again confined to p € CU D U O.

5.7 Weyl Conformal Tensor I

Now consider the Weyl conformal tensor C' and its algebraic classification.
A detailed account of this was given in [68] and later, during the preparation
of this latter paper, it was pointed out to this author that an earlier but less
detailed discussion of this problem has been given, both in the language of
spinors in [75, 76] and in tensorial notation in 77, 78, 80]. Here the discussion
will follow [68] with the analysis largely following the approach used in chapter
4 for the Petrov classification of this tensor in the case of Lorentz signature.
In this approach and following the initial derivation of the algebraic types,
Bel-type criteria will be developed as was done in the Lorentz case. It is
believed that the tensor approach followed here is simpler and more amenable
to differential geometers and is especially useful in calculations. The case of
neutral signature is a little more complicated than that in the Lorentz (Petrov)
case but exhibits a rich structure and will be arranged in such a way as
to establish clearly the close relationship between the Lorentz and neutral
signature cases.

The Weyl conformal tensor is the type (1,3) tensor denoted by C and with
components given by C%.q. Also useful will be the type (0,4) Weyl tensor
with components Cypecd = gaeCbeq Which has the index symmetries given in
chapter 3. For neutral signature one has *C' = C* and *C* = C, the double
dual for this signature being the identity map, and one can again introduce
the linear map fo from A,M to the vector space of type (1,1) tensors at p
given by fo : F® — C%.qF° called the Weyl map at p and whose rank is
referred to as the Weyl rank at p. Again, since g is given, one may introduce
the related map (also denoted by fc) given by F® — CyupegF° and then in
an obvious shorthand way (using the identifications arising from the metric

g) as fe : F — CF. Then (foF)* = (CF)* = (*C)F = (C*)F = CF and

+ —
so fc maps the subspaces S, and S, of ApM into themselves, that is, they
are invariant subspaces of fo. It also follows that if F' € rgfc(p) then, at p,

F = CG for some G € A,M and then ly:“ =*CG =C*G = C’C*vv which shows
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*
that F' (which may not be independent of F') is also in rg fc(p), that is, rg f(p)
is “dual invariant”. One can decompose the type (0,4) Weyl tensor as

+ - + 1 -1
C=W+W, W=_(C+C), W=_(C-"0) (5.27)

+ —
where the type (0,4) tensors W and W, which are uniquely determined by
C, are the self dual and anti-self dual parts of C, respectively, and satisfy

+ + + — - - +
W* =*W =W and W* = *W = —W. It also follows (chapter 3) that W
and W are skew-symmetric in their first two and also in their last two indices,

that ij/abcd = I;{/Cdab, that ij/a[bcd] = 0 and that Wghacb = 0 and similarly for
W. The tensors VJ[r/ and W give rise, in an obvious way, to linear maps ft;
and f; on A, M constructed from them as fo was from C with chc restricting
to a linear map g'p — g'p and to the trivial map on S’p. This follows since

+ + + + + o+ +
(feFE)) =(WF)*="WF =WF and so F € S, = fo(F) € S, whereas if

F e gp, }C(F) = IjIF/F = VIJ}*F = I/Jlr/}*7 = —VJ[F/F. Similarly, f. restricts to a
(linear) map ép — gp and to the trivial map on g'p. Also one has f¢ = fc—i—f_c
To achieve a classification of C' one classifies the independent maps f+c and f;.

Considering the map }C as a linear map on the 3—dimensional real vector

+
space S, to itself, the latter having Lorentz signature, one may appeal to the

+ +
work in chapter 4 (lemmas 4.1 and 4.2) and the symmetry Wapeq = Wedap to

+ —_ —
get a classification of f, and similarly for the (independent) map f on S,.
+ + +
The eigenvectors of f are then the eigenbivectors of W (p) in S,, and similarly
- - — +
for f and W (p) in Sy,. For this the bases Fy, Fy, F; for S, and G1, G2, G3 for

S, given earlier in (5.2) play exactly the role required. To see this one makes
the identification Fy <> z, F5 <> | and F3 <> n where [,n,x constitute the
basis used in lemma 4.2, noting that the signature used in this lemma was

+
(—, +, +) whereas for S, it is (—, —, +) (see (5.3)). A similar identification may

be made for S,,. Considering the map }C (the discussion of f is similar) one
sees that there are four general Jordan/Segre forms for this map which are
{111} (diagonalisable over R with three real eigenvalues), {12z} (diagonal
over C with one real eigenvalue and a pair of complex conjugate eigenvalues),
{21} (one independent, totally null eigenbivector with real eigenvalue and
associated elementary divisor of order 2 and one independent, eigenbivector
with negative square with respect to the bivector metric P and with real
eigenvalue and associated elementary divisor simple) and {3} (with a single,
necessarily totally null, independent eigenbivector with real eigenvalue and



Four-Dimensional Manifolds of Neutral Signature 173

associated elementary divisor of order 3). The basis F, Fy, F3 above will be
used but, for ease of notation, will be temporarily redefined according to
F = F,, G = F, and H = F3. Thus one has for these canonical forms at
p € M using (4.1)-(4.3)

+
Wabcd = _pBFachd + pl(GabHcd + Hachd) + pZ(Gachd + HabHcd)a (528)

+
Wabcd = pl(GabHcd + Hachd) + )\Gachd - pZFachda (529)

+

Wabcd = pl(GabHcd + Hachd) + ,Uf(Gachd + Fachd) - plFachda (530)
where p1, p2, p3 € R, where the + sign (respectively the —sign) in (5.28) gives
type {111} (respectively, type {1zz}) and where p and A are non-zero real
numbers which may be chosen, after basis rescalings, as A = +1 and p = 1.
(Change the null basis I,n, L, N to al,a"'n, L, N with 0 # a € R so that
F - F,G - aG,H — o 'H and choose o\ = £1 in (5.29) and pa = 1 in
(5.30)). In (5.28) the eigen(bi)vector/eigenvalue pairs are F' (p3) and G + H
(p1 £ p2) if the plus sign is chosen and F (p3) and G £iH (p1 £ ip2) (p2 #0)
if the minus sign is chosen, whilst in (5.29) (Segre type {21}) they are F' (p2)
and G (p1) and in (5.30) (Segre type {3}) it is G (p1). It is remarked that the
eigenvalue associated with a totally null eigenbivector is always real.

After the basis rescalings mentioned above and noting that

GCaGcb = Hcchb = GcaFcb + FCaGcb = HCaFcb + FCchb = 07
Q(GCQHCb + HCaGCb) = —4FCaFCb = Gab, (531)

+ *t +
one can apply the tracefree condition W€, = 0 (& Wpeq) = 0 & Wajpeq =
0) to these expressions which gives ps = —2p; in (5.28) (for either sign),

p2 = —2p1 in (5.29) and p; = 0 in (5.30). Then one gets for these three
canonical forms, respectively,

+
W abed = p1 (GabHcd + HopGeg + 2Fachd) + pQ(Gachd + HabHcd)a (532)

+
Wabed = p1(GavHea + HapGea + 2F o Feq) £ GapGe, (5.33)

+
Wabcd - (Gachd + Fachd)- (534)
At this point it is convenient to label these algebraic types by analogy with

the Petrov types in the Lorentz case. Thus if }C has three distinct (real or
complex) eigenvalues at p, as in (5.32), with either the + sign and eigenvalues
—2p1 and p; £ p2 (0 # £po # 3p;1) or the — sign and eigenvalues —2p; and
p1 L ipa (p2 # 0), its type will be referred to as type I (and this type can be
subdivided into type Iy if these distinct eigenvalues are all real and I¢ if two

+
of them are complex). If f is as in (5.33) with distinct eigenvalues —2p; and
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01, (p1 # 0) the type will be labelled type IT and for (5.34) (with eigenvalues
necessarily zero) the type will be labelled as type III. There is a degeneracy
in the type Ir case when two eigenvalues are equal. This can only occur if all
eigenvalues are real but can occur, geometrically, in two distinct ways. Thus
in (5.32) if the Segre type is {(11)1} consider the 2-dimensional eigenspace in

g’p which results. If this has an induced Lorentz signature one may choose the
eigenspace to be spanned by G + H and G — H, giving ps = 0, and this type
will be labelled D whilst if it is Euclidean (negative definite in this case) the
eigenspace may be chosen to be spanned by F' and G— H, giving 3p; = ps # 0
and this type will be labelled D5. Thus for type D; one has an eigenbivector F’
with eigenvalue —2p; and a p; —eigenspace which is Lorentz and spanned by G
and H whilst for type D2 one has an eigenbivector G + H with eigenvalue 4p;
and a (—2p;)—eigenspace which is Euclidean and spanned by F' and G — H.
The degenerate case Do cannot admit any totally null eigenbivectors since it
contains only eigenbivectors @ with |Q| # 0. There is also a degeneracy of
type II (Segre type {(21)}) which arises when p; = 0 and this will be labelled
type N. Thus these degenerate types are (with p; # 0)

+
Wabed = p1(GapHea + HapGea + 2FapFea), (type D1) (5.35)
+
Wabcd = p1 (GabHcd+Hachd+2Fachd)+3p1 (Gachd+HabHcd)7 (type D2)
(5.36)
+
Wabcd = iGachd- (typ@ N) (537)
A little simplification of these expressions could be achieved by using the

+ +
bivector completeness relation (restricted to Sp) given by Paped = (GapHea +

H.,Geq — FopFry). Thus JgabchCd = Gup, etc. (A similar one is available for
g’p). If one adds the type O for the case when Ij[r/(p) = 0 one has a complete
algebraic classification of Ij[_/'(p) (and similarly for V_V(p)) A simple calculation
(or a comparison with the results of lemma 4.2) shows that ﬁ/(p) admits no

+
totally null eigenbivectors if and only if it is of type I or type Da, that W (p)
admits exactly two independent totally null eigenbivectors if and only if it is
of type Dy (and then their eigenvalues are equal, non-zero and real) and that

ﬁ/(p) admits exactly one independent totally null eigenbivector if and only if
it is of type II (eigenvalue non-zero) or type III or N (eigenvalue zero). These
results will be slightly augmented in lemma 5.6 below.

It is convenient here to consider Bel-type classifications (section 4.5) of

+ —

W (p) and W(p) which can later be used to give a similar classification for
+

C(p). First one writes out the general form for W(p) in terms of the basis

+
F,G, H for Sy in a null basis I,n, L, N at p and with the tracefree condition
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applied

+
Wabcd = A(GabHcd + Hachd + 2Fachd) + BGachd + CHabHcd

+D(Gachd + Fachd) + E(Hachd + FabHcd)a (538)

for A,B,C,D,FE € R.

+
Lemma 5.6 Let p € M and suppose W (p) # 0.

(4)

(i)

(iid)

+ +
There exists 0 # k € T,M such that W apeak?® = 0 if and only if W (p)
is of type N. The vector k is necessarily null and may be any non-zero
member of the blade of the (unique up to scaling) totally null eigenbivec-

+
tor of W(p), and only these.

Suppose for a € R
+
Wabcdkbkd = akyk. (539)

for some 0 # k € T,M. Then k is necessarily null and (5.39) holds with
the same a for any mon-zero member of a certain totally null 2—space
containing k. The totally null bivector with this 2—space as its blade is

+ +
in S, and is an eigenbivector of W (p) with eigenvalue 2c.. Conversely,

+ +
if Q € S, is a totally null eigenbivector of W (p) with eigenvalue vy, each
non-zero (necessarily null) member of the blade of Q satisfies (5.39) with

+
o = 37. Further if a # 0 the type of W(p) is IL or Dy and if o = 0 the

Jr
type of W(p) is III or N. If the type is D1, two independent totally null
eigenbivectors (with equal eigenvalues) arise and the non-zero members
of their blades each satisfy (5.39) for the same «.

+
There exists 0 # k € T,M such that W abeak® = Japke for a non-zero
+
bivector J if and only if W (p) is of type I11. The bivector J is necessarily

a totally null bivector in g'p and k is necessarily null and lies in the blade
of J. One may then choose a null basis l,n, L, N so that k =1 and J a
multiple of G. Thus J is uniquely determined up to a scaling and k is
any non-zero member of the blade of J.

+ +
Proof (i) Suppose Wapegk® = 0. Then W*gpeqk? = 0 and so

+ +
€AW orska = 0 and hence €W ;,.<kq = 0 from which it follows that

+

W apfedke) = O (see a similar proof in the Lorentz case in chapter 4). A con-
traction of this last equation with k¢ shows that & is null. Choosing a null basis
I,n, L, N with [ = k a contraction of (5.38) with [¢ gives A=C =D =FE =0
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+
and then (5.37) shows that W(p) is of type N. The converse is immediate.
It is now clear that k& could be any non-zero member of the blade of the

+
eigenbivector G of W (p), and only these.
(#4) If (5.39) holds with o # 0 a contraction with k£ easily reveals that k is

+
null whereas if & = 0 one has W* 43.qk?k? = 0 and so (€,"™"kyWinnea)k? = 0
+
which, after rearranging indices, gives k“W 4pc4ke) = 0. A contraction of this

+
equation with k¢ shows that either & is null or that Wapeak® = 0, the latter
revealing also that & is null from part (7). [Another proof of the fact that & is
null in part (¢) and also in part (i7) with o = 0 arises by noting, in an obvious

+
notation, that each leads to the result PWQ = 0 at p for any simple bivectors
+ + +
P and Q at p Whose blade contains k. Then since W (p) = W*(p) = *W (p), one

gets PWQ PWQ PWQ =0 at p- NOW if ki is not null one can choose a
basis for A, M of the form Ay, Ag, A3, Al, A2 and A3 where A1, Ag and A3 are

independent simple bivectors with k in their blades and then WAl, vy WA3
are each orthogonal to each member of this basis and hence zero. Thus one

achieves the contradiction that le—/'(p) = 0 and so k is null. (It is easily checked
that no such basis exists if k is null.)]

Thus % is null and a choice of tetrad I,n, L, N with k = [ and use of (5.38)
shows that C' = F = 0 and that (5.39) holds for any non-zero member of the

+
blade [ AN of G € S, (note that this blade is an eigenspace of the bivector
F) with A = 2a. Tt then easily follows that G is a totally null eigenbivector of

Ijlr/'(p) with eigenvalue A. If Q) € g‘ » is a totally null eigenbivector of ij/(p) with
eigenvalue v one can choose a null basis I,n, L, N such that Q = G =I[IAN
and then (5.38) gives C = E = 0 and A = ~. Then (5.38) shows that (5.39)
holds with 2a. = «y for each non-zero member of the blade of G. The admission

by Ij[_/(p) of a totally null eigenbivector means, as shown earlier, that it cannot
be of type Da. Now suppose that A # 0 (< «a # 0) and change the null basis
tol';n',L/,N' where ' =|,N' = N,n  =n+ AN and L' = L -\ (A € R).
Then, since the 2—space [ A N is preserved in this new basis, one achieves an
expression like (5.38) with C' = E = 0 but now one may choose A so that

+
D = 0 and so the type of W(p) is IT or D1. If A =0 (< a = 0) one, of course,
still has C = E = 0 and a similar basis change can be used, if D # 0, to set

+
B = 0 and so the type of W(p) is III or N. If the type is D1 two independent
totally null eigenbivectors G and H arise (with equal eigenvalues) and the
non-zero members of their blades each satisfy (5.39) with the same a.

+
For part (iii) J is easily seen to necessarily be in S, and the condition

+
W apea) = 0 shows, using lemma 3.1, that J is simple (and hence totally null)
and that & lies in its blade (and is hence null). So one may choose a null
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basis I, n, L, N with k = [ and then a contraction of (5.38) with k¢ shows that
A=C=F =0 and that D # 0 and so J is a multiple of G and k may be

+
any member of its blade. It follows that W (p) is of type III since if B # 0 a
basis change of the type given in the previous part may be used to set it to
zero. The converse is immediate. |

A (necessarily null) vector k satisfying (5.39) is said to span a repeated

+
principal null direction (a repeated pnd) for W(p) (the reason for the term
“repeated” will appear later). It is straightforward to check, using the sym-

+
metry of the expression W,p.qk%k? in the indices a and ¢, that an equivalent
+
condition at p to (5.39) is k[EWa]bcdkbkjc = 0. Now consider the equations at
+
p for 0 # k € T, M given for W(p) # 0 by

+ +
ke W apperak sk = 0, W abeakk = kaga + qaka, (5.40)

where ¢ is a 1—form at p. These equations are easily checked to be equivalent,
using the symmetry immediately above, and the special case when ¢ (which

+
is uniquely determined by W, k and (5.40)) is proportional to k (possibly
zero) gives rise to the case when k spans a repeated pnd (see (5.39)). The
more general case occurs when ¢ is neither zero nor proportional to k. In this

+
situation the tracefree condition on W in the second equation in (5.40) shows
that since ¢ # 0, k - ¢ = 0 and then the second equation in (5.40) contracted
with k% reveals that k is necessarily null. So introducing a null basis I, n, L, N

+ +
with k& = I and recalling from the properties of the map f that W g R° = 0

where R=1IAL € S'p a contraction of the second equation in (5.40) with L*
shows that ¢ - L = 0 and so ¢ € [ A L and is hence also null. The vector
k in (5.40) is said to span a (non-repeated) principal null direction (a (non-

repeated) pnd) for ﬁ/(p) with ¢ as its associated 1-form (and any scaling of
k results in a similar scaling of ¢). One will generally refer to repeated and
non-repeated pnds simply as pnds.

One can say a little more about pnds and their associated 1—forms. First
construct a null basis {,n, L, N about [ at p and use (5.38) quite generally to
get

ﬁ/abcdzbzd = glalc + %LQLC - 2%(1&@ + Lal.), (5.41)
Ijl_/abcdnbnd = gnanc + gNaNc + QL\;i(naNC + Nane), (5.42)
ﬁ/abchde = ?LQLC + gzalc - %(laLc + Lal.), (5.43)
ﬁ/abchbNd = gNaNC + %nn + %(nam + Nane). (5.44)
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The condition that [ spans a pnd is easily checked, from (5.40), to be equivalent
to C' = 0 which is equivalent to N spanning a pnd. Also [ spans a repeated
pnd if and only if C = E = 0 if and only if N also spans a repeated pnd.
If [ and hence N span pnds (so that C' = 0) their associated 1—forms are
q= %l — %L and ¢’ = %N + %n, respectively, and are null and orthogonal
to [, respectively, N, the former lying in the totally null 2—space | A L and
the latter lying in the totally null 2—space n A N. Since, given [, the null basis
above is otherwise arbitrary, it follows that each of the non-zero members of

the unique (up to scaling), totally null member of gp containing [ span pnds.
Further these pnds are either all repeated or all non-repeated (depending on
whether F = 0 or F # 0) and for the non-repeated ones it is easily checked
that the associated 1—forms are “additive” in the sense that if [ and N are
non-repeated as above with associated 1—forms g and ¢’ and A € R, [ + AN
is non-repeated with associated 1—form ¢ + A¢’. It is thus seen from this and

from lemma 5.6 that, at least for the tensors I;[r/(p) (and similarly for W(p)),
attention is drawn to such totally null 2—spaces whose non-zero members
are repeated pnds (respectively, non-repeated pnds) and which will be called
repeated, principal, (totally null) 2—spaces, (respectively, principal, (totally

+ —_
null) 2—spaces), for W(p) (and for W (p)).
+
Lemma 5.6 showed that a totally null member of S, gives rise to a re-
+ +
peated principal 2—space of W(p) if and only if it is an eigenbivector of W (p)

Jr
and this reveals how to compute repeated pnds for W (p). There is a similar
characterisation of non-repeated principal 2—spaces.

Lemma 5.7 Any non-repeated principal null direction for VJ[r/(p) lies in a
2—space which is the blade of a simple bivector in g’p each non-zero member of
which is a non-repeated principal null direction for ij/'(p) (a principal 2— space
for V—[;(p)) IfQ e E'I, is totally null the blade of Q is a (non-repeated) principal

+ + +
2—space of W (p) if and only if W apea@°? = aQup + Zap (a € R) where Z € S,
is non-zero, not proportional to Q and Q - Z = 0. These equivalent conditions
are themselves equivalent to the conditions that QQ is not an eigenbivector of

+ +
W(p) and W 4pcaQQ°? = 0.
Proof The first part was given above. For the remainder choose a null
basis such that, in the present language, @@ = G is a (non-repeated) principal
+
2—space of W(p) and then using (5.38) one sees that C =0 # F and Z = EF

+ +
so that 0 # Z € S,,. Conversely, if Q) is totally null and W abead@%4 = aQap+Zap
witha € R, 0# Z, Q- Z = 0 and Z not proportional to ), choose @ = G and
use (5.38) to get C' =0 # E and Q = G is a non-repeated principal 2—space
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+
of W (p). The last part of the lemma is clear since the choice Q = G in (5.38)
is then equivalent to C'=0 # F. O

To be able to compute the number of repeated and non-repeated principal

2—spaces for ﬁ/(p) first write out ﬁ/(p) in terms of a null basis I’,n/, L', N’
as in (5.38) but with the corresponding coefficients primed, A’,..., E’. Now
perform a change of null basis to [,n, L, N which fixes the bivector [ A N up
to a scaling and hence fixes its blade. Thus I’ = al + bN, N’ = ¢N + dl with
a,b,c,d € R and ac—bd # 0. The expressions for n’ and L’ are then found from
the fact that I’,n’, L', N’ is a null basis. The result is, after some calculation,
and for p € R and A = (ac — bd) ™,

' =al +bN, N’ =c¢N +di,
n’ = Xen — dL) — p(eN +dl), L' = XaL —bn) + p(bN + al). (5.45)

One then uses (5.45) to write out the associated bivectors G’, F’ and H’
(written in terms of the basis I',n/, L', N" just as F,G,H are in terms of
the basis I,n,L,N) in terms of F,G and H. Before proceeding further, it
is remarked that the general idea is to show that using the transformations
(5.45) (fixing the blade of G = IAN) one may map H = nA L, up to a scaling,

to any other totally null bivector H' = n’ AL’ € gp except (G, that is, it maps
the blade of H to any other totally null 2—space at p except the blade of G.
It is then clear from (5.45) that the totally null 2—spaces achievable under
this transformation is not restricted by seeking (A~1n/) A (A71L’), that is, one
may simplify (5.45) by setting A = 1. Then (5.45) gives

G'=G, F =F-—+\2pG, H =H+ p*G—2pF. (5.46)

A substitution of these into (5.38) leads to a comparison of the coefficients
A’ ...E’ with A, ..., E due to this basis change. This calculation gives
AZAI-i-po/—\/épEl,
B =B +6p?A' 4 p*C' — 2v2pD’' — 2V2p°F/,

C=C,
D =D —3V2pA —2p°C" + 3p*E’,
E=FE —V2pC". (5.47)

To see that under the above basis transformations the totally null bivector H
may be transformed by (5.46) to (a multiple of) any other totally null bivector
in Ep except G note that one may write this latter totally null bivector (up
to proportionality) as H + SF + ﬁ—;G (8 € R) and then the transformation
(5.46) with —v/2p = B ((5.45) with A = 1 and —v/2p = j3) is the required one.

The method of finding (repeated and non-repeated) principal 2—spaces for

+ +
a general W (p) involves first writing out W (p) in terms of a general null basis
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U;n', L', N and associated coefficients A’,..., E’ as in (5.38). One then seeks
a transformation of the form (5.45), allied with (5.46), to a new (unprimed)

null basis I,n, L, N in which ﬁ/abcdHabHCd = 0, that is, B = 0, and which,
from lemma 5.7, gives a (repeated or non-repeated) principal 2—space which
is the blade of H. Equation (5.47) then shows that B = 0 is a polynomial
equation for p for which one needs real solutions and there are at most four of

+
them. Thus W (p) admits at most four (repeated or non-repeated) principal
2—spaces. If one specifically requires repeated principal 2—spaces one needs
real solutions for p of B = D = 0. If it should happen that G’ was a (repeated

or non-repeated) principal 2—space for ij/(p)7 and so ﬁ/abch’“bG’Cd =0, one
has C' = 0 and the above polynomial condition B = 0 becomes a cubic,
as expected. [Thus whether G is a principal 2—space or not one essentially
“anchors down” G = G’ and uses (5.45) to scan all other totally null 2—spaces
to see if any of them are principal. To this collection G is added should it be
principal.]

More specifically one first selects an algebraic type for ﬁ/(p) from the above
list, written out in the notation of (5.38) but with primes on the associated
coefficients and basis bivectors. Thus for type Ig, A’ = p1, B’ = C' = pa,
D' = FE’ =0 from (5.32) and, to avoid eigenvalue degeneracies, 3p; # tps #

0. Since ij/abch’abG’Cd = (' # 0 the 2—space represented by G’ is not a
(repeated or non-repeated) principal 2—space and the quartic equation B = 0
(actually a quadratic equation in p?) requires 9¢* — 1 > 0, (e = %), in order
for there to be real solutions for p?. The inequalities 0 # £py # 3p1, to ensure
distinct eigenvalues, then give 9¢2 — 1 # 0 and so one requires 9¢? — 1 > 0
and the real solutions for p? are distinct. Writing 2 = 9¢2 — 1 > 0 one gets
9¢2 — 2 > 0 and so (3e+ ) (3¢ — ) > 0. Thus the numbers 3¢ + p are distinct
and are either both positive or both negative and the condition B = 0 gives
the solution p? = —3e=+ p. Thus these two (distinct) solutions for p? are either
both positive or both negative. It follows that either there are four distinct
solutions for p, or there are none. The former case is the one required here and
is given by p? = —3e4 u > 0. In this case, there are four distinct non-repeated

principal 2—spaces for ﬁ/(p) since with these values for p; and ps there can
be no real solutions for p of D = 0 (otherwise one gets 3¢ = —p? and the
contradiction p = 0). Thus there are no real repeated principal 2—spaces. For
type Ic one has A’ = p1, B’ = —C' = p3, D’ = E' = 0 and a similar argument
shows that there are two distinct real and two distinct complex solutions for p
to the quartic B = 0 and none for D = 0 and hence two distinct non-repeated

+
principal 2—spaces arise for W (p). The other types are handled similarly. For
type N one has A’ = ¢’ = D' = E' = 0 and B’ = 41 and, of course,

+
G’ = I' AN N' is a repeated principal 2—space for W (p). Then there are no
other solutions of B = 0. Thus G’ is the unique principal, necessarily repeated
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+
2—space for W(p) and it is, in this sense, a quadruply repeated solution of
the quartic B = 0. For type III one has A’ =B’ =C'=FE' =0and D' =1

+
and it is known that G’ = I’ A N’ is a repeated principal 2—space for W (p).
Then the polynomial equation B = 0 is a linear equation with root p = 0 and
then D = D’ = 1. The 2—space resulting from p = 0 is thus a non-repeated

+
principal 2—space for W (p) and is, from (5.45), ' A L' = n A L. The solution

Jr
I AN is thus a triply repeated principal 2—space for W(p). For type II one
has C' = D' = E' =0, B = £1 and A’ = p; # 0 and it is known that

G’ =1' A N' is a repeated principal 2—space for ﬁ/(p) The equation B = 0
gives the quadratic 0 = 41 + 6p;p? and which reveals that the above known
solution is doubly repeated. In addition, should two complex solutions arise
from B = 0, this known solution above is the only (real) one whereas if two
real (necessarily distinct) solutions arise from B = 0, one gets D # 0 in each

+
case and these solutions are non-repeated principal 2—spaces for W(p) and
can be calculated from (5.45). If the type is Dy one has A" = p; # 0 and
B’ =(C'"=D'"=E' =0 and one already knows that G = [ A N is a repeated

+
principal 2—space for W(p). The equation B = 0 then gives the equation
p? = 0 whose repeated solutions p = 0 each give D =0and son’ AL’ =nAL

is also a repeated principal 2—space for VJ[r/(p) Thus there are two doubly
repeated principal 2—spaces ' AN’ = IAN and n’ AL’ = nA L for in this case.
If the type is Do one has A’ = p1, B =C" =3p; (p1 #0) and D' = E' =0
and the equation B = 0 gives a quartic which is actually a quadratic in p?
with two repeated roots +i and no real solutions result, as observed earlier.
This completes the survey of the algebraic types. In summary, one can, for
each (non-zero) type, append a pair (m,n) where m (respectively n,) is the
number of repeated (respectively, non-repeated,) real principal 2—spaces for
that type. These are Ig ((0,0) or (0,4)), I¢ ((0,2)), IT ((1,0) or (1,2)), III
((1,1)), D1 ((2,0)), D2 ((0,0)) and N ((1,0)). This argument justifies the use
of the term “repeated” in describing principal totally null 2—spaces.

5.8 Weyl Conformal Tensor II

+ —
The last section described the classification of W (p) and the tensor W (p)
can similarly be dealt with. This gives an algebraic classification of the Weyl
conformal tensor C(p) described by the pair (A,B) where A is one of the

+ —
above algebraic types for W (p), B is the algebraic type for W (p) and where,
in addition, A or B could be the trivial type o. The trivial case for C(p) is
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thus (O, O). For such purposes the pairs (A, B) and (B, A) will be identified,
that is, such pairs are here regarded as unordered. There are Bel-type criteria

+
for C(p) similar to those for W(p) and this will be developed now. Before
this is done it is remarked that if P and @ are bivectors in A,M one may,

+ = + o+
as described earlier, decompose them uniquely as P = P + P for P € S,

and P € S'p, and similarly for Q. Now suppose that Cupeq P = Qqp (written

++  +
briefly as CP = @) at p. Then it follows from the remarks above that WP = @

and WP = é It follows that any real eigenbivector of C(p) which is not in E;
+ + -
decomposes into an eigenbivector of W(p) in S, and an eigenbivector of W (p)

in S,, each of which is an eigenbivector of C(p) and all of these have the same
eigenvalue. [Alternatively, one could take the dual of the equation CP = AP
for A€ R and P ¢ 3; to see that CP* = AP* with P and P* independent.
Adding these leads to the same conclusion.] Thus any eigenbivector of C(p)
which is not in S; lies in an eigenspace of C(p) of dimension at least 2 and

+ —
which intersects both S, and S, and hence, in this sense, one may regard all
real eigenbivectors of C'(p) as lying in S,. In particular if P ¢ S, and CP =0

+ + —— + -
then WP =0 and WP = 0 and so each of W and W has a zero eigenvalue.

Lemma 5.8 (i) Suppose C(p) # 0. There exists 0 # k € T, such that
Coapeak® = 0 if and only if C(p) is of type (N,N) or type (N, Q). The vector
k is necessarily null and for the first of these types is unique up to a scaling
whilst for the second k may be any non-zero member of a certain totally null
2—space at p.

(i1) Suppose C(p) # 0 and let Q be a (real) null eigenbivector of C(p) with

+ —
eigenvalue A € R. Then using the above decomposition of @, @ and Q are

totally null eigenbivectors of V—‘[_/(p) and W (p), respectively, with eigenvalue X.
If X # 0, C(p) has algebraic type (A,B) where A is II or D1, and similarly
for B. If A\ =0, C(p) has type (A,B) where A is III, N or O, and similarly
for B (and, of course, type (O, O) is forbidden).

(iii) Suppose C(p) # 0 and that there exists 0 # k € T,M with Copeak® =
Qavke for some bivector Q # 0. Then Q is simple, k lies in its blade and k

— + —
is necessarily null. If Q ¢ S, it is necessarily null, Q and Q are each totally
+
null, k is unique up to a scaling and C(p) is of type (IILIIIL). If Q € S,,

Q = 0 and the type for C(p) is either (III,N) with k unique up to a scaling,
or (II1, O) with k any non-zero member of the blade of Q.

+
Proof For part (i) one has *Clveak® = 0 and so Wapeak® = 0 and

ﬁ/abcdkd = 0 and the type for C(p) follows from lemma 5.6(i) as does
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+ —_
the fact that k is null since if C(p) # 0 one of W(p) and W(p) is not

+ —
zero. The same lemma shows that if W(p) and W (p) are of type N they
may be written as aPP and BQQ, respectively, with P and @ totally null,

P c E(p) and Q € S(p) and «, 5 € R. Lemma 5.5(v) then shows that one
may construct a null basis I’,n/, L', N’ at p so that, for non-zero «, 3 € R,
C(p) = aG'G" + BH'H' with G’ =" A N' and H' = I' A L' and with the
blades of G’ and H’ intersecting in the unique null direction spanned by
I'(= k). A change of null basis to I,n, L, N with I’ = X, n’ = A\~!n, L' = uL
and N' = p~'N with p, A € R, p* = % and A2 = |3|7'u~2 then gives
Cabed = +GapGeq £ HapyHeq with G = I AN and H = [ A L. For type
(N, O) any non-zero member of the blade of the totally null eigenbivector
in lemma 5.6(¢) may be identified with k. For part (i) one has CQ = \Q

+ + + - = - + = + o+
and hence WQ = AQ and WQ = AQ with @, Q totally null and Q € S,

é € S*p (see lemma 5.1(v)). The result now follows from lemma 5.6(i¢). For
part (iii) the given condition together with Cypeq) = 0 shows that @ is sim-
ple with % in its blade, then Clp.qkk? = 0 implies that k is null and finally

CCupe = 0 implies that Qupk® = 0. Now Cupeak® = Qpke(= Quk? = 0)
+ + - — + £+

and s0 Wapeak® = Qupke and Wapeak? = Qpke with @ = Q + Q € S, and

— % — -~ + — + —

Q=Q-QeS, Thusif Q ¢ S, Q #0 # Q, Q is null, Q and Q totally

null and % is unique up to scaling (see lemma 5.1(v)). Then lemma 5.6(¢4)

+ —
shows that the type of C(p) is (III III). If, however, @ € S, with Q@ = 0,
lemma 5.6(7i¢) shows that the type of C(p) is either (III,N) with k& unique

+
up to scaling, or (IIT, O) with k any non-zero member of the blade of Q.
Tt is remarked that, with careful wording, simple converses of parts (i7) and
(791) exist and that the unqualified “and conversely” used in [68] is misleading.
O

One may now proceed to the concepts of repeated and non-repeated prin-
cipal null directions for C(p). Suppose that C(p) # 0, that 0 # k € T,M and
consider the following equations

k[eca]bc[dkf]kbkc =0, Cabcdkbkc = kaqa + qaka, (5'48)

where ¢ is a non-zero 1—form at p. It is straightforward to check that these
two equations are equivalent by a consideration of the second-order symmet-
ric tensor Capeqk?k? and the index symmetries of C. Applying the tracefree
condition g@Cypeq = 0 to the second of (5.48) gives k- ¢ = 0 and then a
contraction of the same equation with k® reveals that k is necessarily null. A
(null) vector k satisfying (5.48) is said to span a principal null direction (a
pnd) of C(p). It is remarked here that if a term Akgky, (A € R) is added to the
right hand side of the second equation of (5.48) the original form is retained
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by replacing ¢ by ¢ + %k This is useful in establishing the equivalence of the
two equations in (5.48). Now consider the equations

Cabcdkbkd = akakca k[eca]bcdkbkd =0, (549)

for 0 # k € T,M and a € R. It is again easily checked that these two equations
are equivalent. If a # 0 then a contraction of the first equation with k% shows
that k is necessarily null. However, if & = 0 this is not true since if, in a null
basis [,n, L, N, Coped = GapGeq — Gabécd with G=IANand G=IAL (this
is of type (N,N) in the above notation), Cupeqr’r® = 0, where r = L + N
is not null. This leads to the following definition; If k satisfies (5.49) and is
null, k is said to span a repeated principal null direction (a repeated pnd) of
C(p). If k satisfies (5.48) (and is hence null) but not (5.49) it is called a non-
repeated principal null direction (non-repeated pnd) of C(p). This will occur
if and only if (5.48) holds with ¢ # 0 and not proportional to k. In general
one often abuses notation by referring to repeated and non-repeated principal
null directions as principal null directions (pnds) unless problems might arise.

One now seeks a relationship between the non-repeated and the repeated

+
pnds of W(p) and those of C(p). This is provided by the following lemma
which is also taken to justify the use of the term “repeated” for pnds of C(p).

Lemma 5.9 (i) A (null) vector I € T,M spans a repeated pnd for C(p) if

+ i
and only if it spans a repeated pnd for each of W(p) and W (p).
(13) A (null) vector ! € T,M spans a non-repeated pnd for C(p) if and only

+ —
if it spans a pnd for each of W(p) and W (p) and is non-repeated for at least
one of them.

Proof First let [ span a pnd for C(p) so that (5.48) holds with ¢ pos-
+ -

sibly a multiple of {. Then write C(p) = W(p) + W(p) and choose a null
+

basis I,n, L, N with associated bivectors F,G,H € S, as given earlier and

G = %ZAL,F: ilAn+LAN)and H = %n/\N members ofg'p.

+
Then CupedG = WapeaG = V2C 10cql N and the first equation of (5.48)

+
contracted with N? gives Cupeql?l°N? = (N - q)l, and so if Vo = WpeaGY,
Vapl® = V2Capeal’l°N¢ = /2(N - q)l,. A similar argument using the tetrad

member L and the bivector G gives, for V,, = CoubedGL = W apea Gt =
V2C peal LY, Vil = \/i(L - q)lg. Tt follows that V is a linear combination of
G and F, and V of G and F. Now if [ spans a repeated pnd of C(p), ¢ is a
multiple of [ and so N -q = L-q = 0. Thus V (respectively, V) is a multiple

_ + -
of G (respectively, G) and hence [ spans a repeated pnd for W(p) and W (p),
from lemma 5.6(é¢). The converse is immediate from (5.27). If [ spans a non-
repeated pnd of C(p) then (5.48) holds with ¢ -1 = 0 but to avoid ¢ being
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proportional to [ (possibly zero), at least one of N - ¢ and L - ¢ is non-zero.
+ —_
Then the above, and lemma 5.7 show that [ is a pnd for W (p) and W (p) but
+
is non-repeated for at least one of them. Conversely, if | spans a pnd for W (p)

and ﬁ/(p) but is non-repeated for at least one of them, [ satisfies (5.48) and
is non-repeated from part (). O

To take advantage of this result one recalls that it is (repeated and non-
repeated) totally null principal 2—spaces that are important for W( ) and
W( ). But it was shown earlier that if, with an abuse of language, U € S

and U’ € Sp, with U and U’ totally null, their blades must intersect in a single
null direction spanned by, say, [ at p. It follows that the map which associates
the pair (U,U’) with the null direction U N U’ is an injective map on an

+ —
obvious subset of S, 4.5}, otherwise one would get the contradiction that two
+ —
distinct members of either S, or S, have a non-trivial intersection. Then if U

+ —
and U’ are repeated principal 2—spaces for W(p) and W (p), respectively, the
above lemma shows that [ is a repeated pnd for C(p), whereas if U and U’

+ -
are principal 2—spaces for W(p) and W (p), respectively, with at least one of
U, U’ non-repeated, [ is a non-repeated pnd for C(p). Thus the repeated and

non-repeated pnds for C(p) are easily found from those of ﬁ/(p) and W (p).
It is recalled from the Lorentz case and the Petrov classification that the
number n of (repeated and non-repeated) pnds of the (assumed non-zero) Weyl
conformal tensor satisfies 1 < n < 4. In the case of neutral signature discussed
here the situation is a little different. For example, if C(p) is of type (A, B)
with A and B each of either type D5 or that subclass of type Ig for which no
real principal 2—spaces arise, C'(p) admits no pnds. On the other hand if C(p)
is of type (A, O) for A any type except Dy and the above mentioned subclass

+
of type Ig, infinitely many pnds arise since then C(p) = W (p) (lemmas 5.6
and 5.7). In fact, only when exactly one of the type pairs for C(p) # 0 is O
can this last situation occur. As other examples consider the case when C(p)

+ —
has type (IN,N). In this case W(p) and W (p) each admit a single repeated

principal 2—space and these lie in S, and S'p, respectively. Their intersection
results in a (unique) repeated pnd for C(p) and there are no non-repeated

+
ones. This situation is written (1,0). If C(p) has type (IN,III) with W(p)

as above for the type N case and where W (p) admits exactly one repeated
and exactly one non-repeated principal 2—space, the appropriate intersections
yield exactly one repeated and exactly one non-repeated pnd for C(p), written
(1,1). A fuller list can be found in [68].



186 Four-dimensional Manifolds and Projective Structure

Another analogy between the neutral signature classification of C'(p) and
the Petrov classification in Lorentz signature arises from the following remarks.

+
In the Petrov case attention centred on the tensor C' and its expression in terms

+
of complex self-dual bivectors, that is, members of S, for that signature. The
classification could equally well have been accomplished with respect to the

— +
tensor C' (the conjugate of C) and in terms of the anti-self dual bivectors
— +
in S, which are the conjugates of those in S,. These approaches yield the

+ — + —
eigenstructure of C' and C' in terms of bivectors in S}, and S}, respectively and,
of course, lead to the same (Petrov) type. In this structure the complex null

members of g'p and S, play an important role and also figure prominently in
the calculation of the Bel criteria for the Petrov types. Now reference to lemma
4.5 reveals that these complex null bivectors are totally null and contain (up to
complex multiples) a unique real direction (which is necessarily null) called its
principal null direction. Further, the intersection of the blades of a conjugate

+ —
pair of complex null bivectors, necessarily one in each of S, and S, is, again
up to complex multiples, their common real null direction (chapter 4). Thus

the classification of é’ and C' in Lorentz signature reveals “special” conjugate
pairs of complex null bivectors whose (real null) intersections constitute the
principal null directions of C. So the classifications of the Weyl conformal
tensor in Lorentz and neutral signatures are mathematically similar but differ

+ —
in the following sense. In the Lorentz case, each of C' and C' give the same

Jr —
algebraic type (unlike W and W) with the real pnds for C' being unique real
null directions in the blades of complex null bivectors. In the case of neutral

+ —
signature W and W have, in general, different algebraic types and the real
pnds are fixed by blade intersections of principal 2— spaces for W and W [46].

Thus for neutral signature it is seen that the tensors W and W may each,
at any p € M, be classified into one of the 8 types I¢, Ig, Dy, Do, II, III,
N and O. Then the Weyl conformal tensor C may be classified into the types

+ —
(A,B) where each of A and B is one of the above types for W and W,
respectively. One can now establish a decomposition of M with respect to
the Weyl conformal tensor by first considering the decompositions of M with

+ - +
respect to W and W. First consider W and let the symbol I, denote precisely
that subset of points of M at which the algebraic type is I¢, and similarly

+
for the other algebraic types of W. Then one has the disjoint decomposition
M=IcUIxUD; UDs UITUIITUN U O from which, by taking interiors,
one gets the disjoint decomposition

M = intIc UintIg UintDq UintDo UintITUintIITUintN UintO U F (5.50)
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where, as before, int denotes the interior operator in the manifold topology of
M and F is a closed subset of M defined by the disjointness of the decompo-

+
sition. Now consider the matrix rank of the 3 x 3 matrix W(p) (equal to the

rank of the map }C) easily obtainable from the original classification. If Ijlr/(p)
is of type I¢ or I its rank is 2 or 3, if of type Dq, Do or II its rank is 3, if
of type III its rank is 2, if of type N its rank is 1 and if of type O its rank
is 0. It will now be shown that intF = (). First it is recalled (chapter 4) that

+
any simple root of the characteristic polynomial of W (p) arises from a smooth
function on some open neighbourhood U of p whose value at p is a simple root

of VJ[r/(p) on U. It follows that the subsets Ic and I = Ic UIr are open subsets
of M and hence equal to their interiors. (Clearly this may not be true for Ig).
Then using an obvious rank theorem (chapter 1) and the above rank results
one sees that the subsets A = Ic UIxUDy UDo UII, AUIIT and AUIIIUN
are also open subsets of M. Now let U C F be open and non-empty. It will
be shown that this leads to a contradiction and hence that intF' = (). The
disjointness of (5.50) and the known result I¢ =intI¢ shows that U is disjoint
from I¢ and hence that the (open) subset UNI = UNIg. If UNIg is not empty
then neither is UNintIg and this contradicts the disjointness of (5.50). Thus
UNI={. Now define the open subset U’ =UNA=UnN(D; UDy UII). If
U’ =0, U is disjoint from A. Otherwise suppose that the open subset U’ is not
empty but that U NII = (), which implies that U’ = U N (D1 UD3) and hence
that U’ € D;UD3. But U’ € Dy and U’ C D5 are each impossible, otherwise
U’ and hence U would intersect non-trivially the sets intD; or intDs, con-
tradicting the disjointness of (5.50). Thus U’ N Dy # @ and U’ N Dy # 0. Let
p’ € U'NDjy. Since the Segre type, including degeneracies, is fixed at {1(11)}
throughout U’ there exists an open neighbourhood V' C U’ of p’ at each point

of which the (locally smooth) simple eigenvalue of VJ[r/' gives rise to its associ-
ated smooth eigenbivector @ [29] satisfying |Q(p)| < 0 (since p € Dy). Thus
this algebraic type (D1) will be the same over some neighbourhood V' of p’
contained in V' and hence contained in Dy which leads to U'NintD4 # @ and
hence to UNintD; # @ which contradicts the disjointness of (5.50). It follows
that U NII # (). So choose p” € U N1II so that the characteristic polynomial

+
of W has a simple root at p” and gives rise to a smooth function v on some
open neighbourhood V' of p” with V” ¢ U’ C U and with the other root of
this polynomial being, from the tracefree condition, —%7. This gives rise to

+ +
the smooth polynomial function Z = (W — yI3)(W + 313) on V" where I3

is the unit 3 x 3 matrix. But then, the minimal polynomial structure of ﬁ/
(see chapter 1) shows that Z vanishes at those points where the type is Dy
or D3 (since these types have only simple elementary divisors) but not where
the type is IT (since then a non-elementary divisor arises). Thus Z does not
vanish over some neighbourhood of p” and hence U N II is non-empty and
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open and one achieves the contradiction that UNintIT # 0. It follows that
U’ = () and hence that U is disjoint from A. Next suppose that U N III # ().
Noting that U NIII = U N (A UIII) is open one then sees that UNintIIT # ()
and a contradiction follows. Thus U N IIT = () and one similarly shows that
UNN =UNO = () and finally gets the contradiction U = (. Thus U = () and
so intF = (). Thus the decomposition (5.50) is established and a similar one

follows for VY/

+
Now suppose one has the decomposition (5.50) for W rewritten as
M =WiU..UWgUF where W; =intlc,...,Wg =intO and write a similar de-

composition for W as M = W{U...UWgUF’" where W{ =intI,...,Wg =intO’,

where primes denote the corresponding subsets of M with respect to W and
where F' and F’ are each closed subsets of M with intF =intF’ = (). Let
E = FUF’ so that F is a closed subset of M. It then follows (chapter 1) that
intE = (). Now consider the open dense subsets M \ F and M \ F’ of M so that
M\F =;_, Wy and M\ F' = J;_, W/. Let X;; = W;nW/ (1 <i,j <8) so
that each X;; is an open subset of M. Now M\ (FUF') = (M\F)N(M\F’)
by the de Morgan laws (chapter 1) and so M \ (F U F”) is the union of the
open sets X;;. One thus has the disjoint decomposition

8
M=JX;UE (5.51)
2%}

where E is closed and intE = (). The following theorem is thus proved.

Theorem 5.3 Let M be a 4-dimensional manifold admitting a smooth metric
g of neutral signature and with associated Weyl conformal tensor C. The self

+ —_
dual and anti-self dual parts W and W of C' admit disjoint algebraic decompo-
sitions of the form (5.50) whilst C' admits a disjoint algebraic decomposition
of the form (5.51).

This gives a disjoint decomposition of open subsets of M one for each
algebraic type of the Weyl conformal tensor C' and which together comprise
an open dense subset of M, together with the closed subset E with empty
interior. This decomposition shows that each point in the open dense subset
M\ E of M lies in an open neighbourhood in which the algebraic type of
C' is constant. It follows [29] that the eigenvalues of C' are locally smooth
and that the eigenbivectors of C' may be chosen to be locally smooth. Similar

comments apply to Ijl—/ and W, from (5.50), so that in the above canonical
forms (5.32)—(5.37) the functions p; and p2 and the bivectors G, H and F are
locally smooth. It is remarked that the rank of C'(p) # 0 is not necessarily an
even integer (cf the Lorentz case) but can be any integer in the range 1 — 6.
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5.9 Curvature Structure

It is convenient to first consider the neutral signature equivalent of lemma
4.7.

Lemma 5.10 Let h be a non-zero symmetric tensor, F a bivector and
l,n,L,N and x,y, s,t null and orthonormal bases, respectively, for T, M. Sup-
pose h and F satisfy

haeF% + hyeFCq = 0. (5.52)

(@) If U is a (real) eigenspace of F, then it is an invariant space for h.
Thus if U is 1-dimensional, it gives an eigendirection for h. (This was
given and proved in chapter 3 and is stated again here for convenience.
It clearly applies also in the case when U is a complex subspace of the
complezification of T,M.)

(i) If F is simple then the blade of F is an eigenspace of h.

(wii) If F =a(lAn)+B(LAN) witha,B €Rand 0 # a#£8#0,lAn
and L NN are eigenspaces of h at p.

(i) If F = a(lAn)+ B(LAN) with a, 8 € R and o =  # 0 (respectively,
a=—-8%#0),INL and nAN (respectively, INN and nA\L) are invariant
2—spaces of h at p.

(v) If F=a(xAy)+B(sAt) witha,BER and0# a# £8#0, x Ay and
s At are eigenspaces of h at p.

(i) If F = alx ANy) + B(s At) with o, € R and a =  # 0 then the basis
x,y,s,t may be chosen so that F retains exactly the given form in the
new basis (as described in section 5.4) and x At and y A s are invariant

2—spaces for h (and similarly if o« = -8 #0).
(vid) If (5.52) holds for bivectors F' and G, it holds for the bivector [F,G].

Proof The proof of part (7) is as given in lemma 3.6.
For part (i¢) the proof can be done as in earlier chapters. Alternatively,

it follows from part (i) by noting that the blade of l*7' is the 0—eigenspace
of I and hence invariant for h. Then the blade of F', which is orthogonal to

the blade of F is also invariant for h. Writing this last piece of information
symbolically as F' = pAq and h(p) = ap+bqg and h(q) = cp+dq (a,b,¢,d € R)
and substituting into (5.52) gives b = ¢ = 0 and a = d and the result follows.

For (i7i) it is noted that when regarded as a linear map F' has eigenvector-
eigenvalues pairs [, (), n, (—a), L,(8) and N, (—p) and hence four distinct
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1-dimensional eigenspaces. Part (¢) then reveals that [,n, L and N are eigen-
vectors for h. Thus hepl® = al, and hepn® = bn, for a,b € R. Contractions
of these equations, respectively, with n® and [® and use of the symmetry of
h then show that a = b and hence [ A n is an eigenspace for h. One similarly
handles L A N and the result follows.

For the proof of part (iv), say with @ = (3, one notes that F has two
2-dimensional eigenspaces [ A L and n A N with respective eigenvalues o and
—a and which then become invariant for h, from part (7).

For the proof of part (v) note that & 4+ iy and s + it are eigenvectors for
F with (four) distinct eigenvalues +ic and Fif. Thus x & iy and s £ it are
eigenvectors for h and hence x Ay and s At are invariant 2—spaces for h. Since
2 Ay has an induced positive definite metric from g(p) one may select = and y
to be orthogonal eigenvectors for h and a contraction of (5.52) with z° reveals
that = Ay is an eigenspace for h. Similar comments apply to s A t.

For part (vi) one sees that x+iy and s—it span the i« eigenspace of F' and
hence span an invariant 2—space for h, by part (). Thus, in the usual symbolic
notation, h(z+iy) and h(s—it) are complex linear combinations of x +iy and
s —it. This leads to (real) expressions for h(z), h(y), h(s) and h(t). One then
applies the six conditions h(z,y) = h(y, z), h(z,s) = h(s,x),....h(s,t) = h(t, s)
to get, with a,b,¢,d € R,

hap® = azq + cty + dsa, habyb = ay, + csq — dtg,
haps® = bsq — cyq — dzq, hapt® = bty — cxq + dyq. (5.53)

From (5.53) it follows that (cz — dy) At and (cy + dx) A s are real invariant
2—spaces for h. Defining 2’ = K(cx — dy) and ¢y = K(cy + dx), where K =
(2 +d?)2 (so that 2’,y/, s,t is an orthonormal basis) one gets F = a(a’ A
Yy +sAt) with 2’ At and ¢y’ A s invariant 2—spaces for h. The case a = =8 £ 0
is similar.

Part (vii) follows as in the previous cases. O

Now consider the curvature tensor Riem(p) at p € M and the associated
curvature map f at p. Then each member F of the Lie algebra rgf(p), the
largest subalgebra of 0(2,2) containing the range space rgf(p) of f at p,
satisfies (5.52) for h = g. For each curvature class of Riem(p) except class A
the possibilities for rg f(p) were given in section 5.6 above and the idea now is
to use this and lemma 5.10 to gather information on g(p). In particular suppose
the curvature class of Riem(p) is the “general” class A. Then it follows from
section 5.6 that the possible subalgebra types for rgf(p) are 2a, 2h (a5 # 0),
27, 2L, 3a, 3b, 3d (8 =0 # «), 3d (af # 0), 3¢, 3f, 4a, 4b, 4¢, 4d, 5 and 0(2, 2).

So with Riem(p) of class A, that is, p € A, suppose that, in addition to
the (neutral) metric g on M giving rise to Riem on M, one also has a metric
g’ on M of arbitrary signature which gives rise to the same Riem on M.
Then, as explained earlier, (5.52) holds at p for h = g and h = ¢’ and for any
Fergf(p).Itrgf(p)isof type 2a =Sp(IAN,IAn—LAN) one sees from lemma
5.10 that [ A N is an eigenspace of ¢'(p) and, using the bivector [An— LA N,
that n A L is invariant for ¢’(p). Thus, with all indices raised and lowered by g,
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one has gt’lblb = aly, g;bNb = alN,, g;bnb = ang +bL, and ggbLb =cng +dL,
for a,a,b,c,d € R. Using the symmetry relation ¢'(I,n) = ¢'(n,l) one gets
a = a, using ¢'(L,N) = ¢'(N, L) one gets o = d, using ¢'(n,N) = ¢'(N,n)
one gets b = 0 and using ¢'(I, L) = ¢'(L,1), one gets ¢ = 0. Thus I,n, L, N
span an eigenspace of ¢’ with respect to g and hence ¢'(p) is a multiple of
g(p). The same result must also apply to the subalgebras 3a, 3b, 3e, 3f and
all subalgebras of dimension > 4 (4a, 4b, 4c, 4d, 5 and 0(2,2)) since each of
these contains a subalgebra isomorphic to 2a. Now suppose rgf(p) is of type
2h =Sp(IAN,a(lAn)+B(LAN)) for o, € R, aff # 0, # 5. Then IA N,
IAn and LAN are eigenspaces of ¢’ (lemma 5.10) and again ¢’(p) is a multiple
of g(p). For type 2j =Sp(lAN,a(lAn—LAN)+ B(IANL) (af # 0), one
first sees that [ A N is an eigenspace of ¢’ so that g/, I® = M, ¢, N* = AN,
(A € R). Then, noting that the bivector a«(l Am — L A N) + B(I A L)) has
Segre type {22} with real eigenvalues (section 5.4) whose only independent
eigenvectors are [ and L with distinct eigenvalues +a, use of lemma 5.10(¢)
shows that L is also an eigenvector of ¢’ which, since N - L = 1, has the
same eigenvalue as N (and [). It follows that (5.52) holds for the bivector
I A L separately, and hence for the bivector I An — L A N alone. Thus n A L
is invariant for ¢’. This information is then easily utilised to show that n
is also an eigenvector of ¢’ with eigenvalue A and so ¢’(p) is a multiple of
g(p). For type 21 =Sp(I A N,a(lAn—LAN)+ BIANL+nAN)) (since
xAy—sAt=IANL+nAN) with af # 0, one sees that [ A N is an eigenspace
of ¢’ and that [+i/N and n=+iL are non-degenerate eigenvectors of the bivector
a(lAnm—LAN)+B(IANL+nAN) (the latter admits four distinct complex
eigenvalues from section 5.4). Hence, by lemma 5.10(¢) they are eigenvectors
of ¢. Thus n A L is invariant for ¢’ and use of the symmetry relations for ¢’
then easily shows that n and L are eigenvectors of g’ with the same eigenvalue
as [ (and N). It again follows that ¢’(p) is a multiple of g(p). The arguments
for 3d (8 =0 # «) and 3d (a8 # 0, 8 # +«) are similar and straightforward
and so g and ¢’ are proportional on A. The argument given for theorem 3.3,
which is independent of the signature of g, then gives the following result.

Theorem 5.4 Let M be a 4-dimensional manifold and let g be a smooth met-
ric on M of neutral signature and with curvature tensor Riem. Suppose that
the subset A of points where the curvature class is A is an open dense subset
of M. Suppose also that g’ is a smooth metric on M of arbitrary signature
which has the same curvature tensor Riem as g does on M. Then g’ = ag for
0 # a € R and the Levi-Civita connections of g and g’ are the same.

For the other types for rgf(p) one can also obtain relations between g(p)
and ¢'(p) just as described following theorem 3.3.

Now consider the tensor type (1,3) Weyl tensor C' associated with g on
M. Again one may introduce the Weyl map fo on bivectors, as before, to
achieve the Weyl class at each p € M just as was done for Riem and the
curvature class. If the Weyl class is D at p then the work in sections 5.7 and
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5.8 shows that, at p, the Weyl tensor must be of type (N, O) (or (O,N)), and
conversely.

If the Weyl class at p is B, rgfc(p) =Sp(P,Q) with P € §p, Q €Sy,
[P,Q] = 0 and P and @ having no common annihilator. The Abelian subal-
gebra rgfo(p) is then easily checked to be of type 2b, 2¢, 2d, 2e or 2f. Then
one writes at p

Cabved = Pup Peg + BQapQca + ’Y(Pachd + Qachd) (554)

+ —
for o, 8,7 € R. Now, as shown in section 5.7, the subspaces S, and S, are
invariant for fc and on writing C(p) as in (5.54) one sees that v = 0. Thus,

+
at p, one may write C = aPP + Q@ and so *C = aPP — QQ and W =
aPP. If a # 0 this gives Py, P.qyg = 0 which forces P to be simple and
similarly one shows that if g # 0, @ is simple. Thus for af # 0 it follows

that P and @ are totally null members of §p, and Sp, respectively, and hence
their blades intersect non-trivially (in a null direction). This contradicts the
class B assumption at p and so a8 = 0 which again contradicts the class B
assumption. It follows that the Weyl tensor cannot be class B at any point.

If the class of C(p) is C, rgfc(p) has dimension 2 or 3 and has a common
annihilator. Thus rgf(p) is of type 2g, 2h (a8 = 0), 2k, 3¢ or 3d (a = 0).
Similar methods to those used in the last case reveal contradictions in each
case except 2¢g and thus only for this type can the Weyl tensor be of class C.
Its algebraic type is then (N, N), and conversely.

Thus the Weyl tensor at p, if it is not class A (and not zero), is either of
type (N, O) (class D) or (N,N) (class C). It follows from lemma 5.8(¢) that
these two cases are collectively characterised by the condition that C'(p) # 0
satisfies C%eqk? = 0for 0 # k € T,M and then it follows that in each case k is
necessarily null, being either a member of a certain fixed totally null 2—space
for type (N, O) or unique up to a scaling for type (N, IN). It will be seen later
that each of these special cases can occur. A similar argument to that given
for the curvature classes in chapter 3 shows that the subset of all p € M where
the Weyl class is A is open in M.

Theorem 5.5 Suppose that g is a smooth metric on M of neutral signature
and g' another smooth metric on M of arbitrary signature such that the re-
spective type (1,3) Weyl tensors C' and C’ for g and g’ are equal. Suppose also
that the subset U C M consisting of precisely those points of M at which the
(1,3) Weyl tensor C of g is either zero or has one of the above algebraic types
(N,0) (or (O,N)) or (N,N) has empty interior in M. Then g and ¢’ are
conformally related.

Proof It is first noted that on disjointly decomposing M into its Weyl
classes as was done for the curvature classes and Riem and using the above
discussion of Weyl classes, one finds M = AUCUDUO = AUU where
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U=CUDUO and since A is open and ANU = () and M is connected, U
is closed (but not open unless it is empty). From the above the set C' consists
of precisely those points where the Weyl type is (N,N) and D of precisely
those points where the Weyl types is (N, O) (or (O,N)). If intU = 0, A is
open and dense in M. [Alternatively, one can note that U = {p € M : | X| =0
for each X € rgfc(p)}. To see this it is clear from the above discussion that
all points in U satisfy this curly bracketed condition whilst for p € M \ U
dimrgfc(p) > 2 and so choosing a basis X; € A,M, (1 < ¢ < 6) with

+ ~ + -
Xq,.., X3 € Sp and Xy, .., Xg € Sp, fc(XZ) € Sp (1 <1< 3) and fC(Xz) c Sp
(4 < i < 6) and at least two of the fo(X;) must be independent. If there

+ —
are exactly two and they are such that one is in S, and one is in S}, then
they are each totally null and one immediately gets the contradiction that
p € C. It follows that whatever the dimension of rgfo(p) it contains (say) at

+
least two members F,G € S, and hence a member X with |X| # 0. Clearly
then U is closed in M.] Continuing with the argument let p € M \ U so that

+ +
dimrgf(p) > 2 and choose independent F, G € S,. Then since S, has Lorentz
signature (—, —,+) one may choose |F| < 0 and hence (lemma 5.5) a basis

I,n,L,N with F=IAn—LAN.NowlIAn—LAN,INN,nAL span St,
and so one may take G = aX + Y, (o, B € R, a? + 2 #0) with X =[ AN
and Y = n A L. So (5.52) holds for F' and G (with h = ¢’), the former
revealing that [ A N and n A L are invariant for ¢’ at p. These immediately
give ¢'(I,1) = ¢'(N,N) = ¢'(Il,N) =0 and ¢'(n,n) = ¢'(L,L) = ¢'(n,L) = 0.
Thus one may write

gzlzb = ,Uf(lanb + nalb) + V(LaNb + NaLb) + p(laLb + Lalb) + U(HQNb + Nanb).
(5.55)
Also one has, using the bivector G

Gac(a Xy + BY %) + ghe(@ X + BY %) = 0. (5.56)

If @ # 0 # B contractions of (5.56) with [%1°, n%n® and [*N® give ¢/(I, L) =
g (n,N)=0=g'(l,n) — ¢'(L, N) and when these are substituted into (5.55)
one finds p = 0 = 0 and p = v. If a5 = 0 an almost identical calculation again
reveals the same results (in these cases IAN or nAL is an eigenspace for g’ from
lemma 5.10(4¢)). Thus by the completeness relation ¢’ is a multiple of g at p.
Thus ¢’ and g are conformally related on M\U. If g and ¢’ are not conformally
related at some p € U then, by continuity, they are not conformally related on
some open subset W # () which then must be contained in U. This contradicts

the fact that U has empty interior and so g and ¢’ are conformally related on
M [88]. O

It is remarked that in the event that intC' # () it can be checked (section
5.8) that if p €intC' there exists an open coordinate neighbourhood V-C M
with p € V' C C and a smooth null vector field [ on V' which spans the repeated
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pnd for the Weyl tensor for g on V' such that any other smooth metric g’ on
V with the same Weyl tensor as g on V satisfies ¢/, = ¢gap + Mol on V
(with indices manipulated using the metric g) for smooth functions ¢ and
A on V. This common Weyl tensor is of type (N,IN) for g and ¢’. Similar
remarks apply if intD # () but in this case the potential expression for ¢’ is
more complicated.

To see that this result is “best possible” consider the following metric on
some open coordinate domain of R* with coordinates u,v, z,y

ds® = H(u,z,y)du® + 2dudv + dz* — dy? (5.57)

for some smooth function H. This metric clearly has neutral signature since it
possesses a non-trivial null vector d/0v and has positive determinant equal to
1. The only non-vanishing components of the type (0, 4) Weyl conformal tensor
are, up to index symmetries, Ci313 = Ci414 = —%(H,m + H,,) and Ci314 =
—1H,,, where a comma denotes a partial derivative. From these and (5.57)
one can calculate the components ¢%° and C%cq = g**Clpeq. It now follows
that if the function H(u,x,y) in (5.57) is replaced by a function of the form
H' (u,z,y) = H+¢(u)+ ¢ (u)z+¢" (u)y for smooth functions ¢, ¢’ and ¢” the
metric g is, in general, changed to a metric g’ not conformally related to g but
the Weyl tensor C%p.q is unchanged. The Weyl tensor of (5.57) is, in general,
of algebraic type (N, N) (class C) but for certain special choices of H it may
have algebraic type (N, Q) (class D), for example, H(u,z,y) = f(u)e*T¥ for
some smooth function f. This justifies the “best possible” remark above [88].

It is remarked here that from the discussion of the Weyl conformal tensor in
this and the previous two chapters one can state, independently of signature,
that if g and ¢’ are smooth metrics on M which have the same type (1, 3) Weyl
conformal tensor C' and if the (closed) subset U C M on which the equation
C%cqk® = 0 has a non-trivial solution for k € T, M satisfies intU = (), then
g and ¢’ are conformally related on M. [This follows in the positive definite
case since then the Weyl tensor vanishes at p if and only if p € U and is thus
non-vanishing on the open dense subset M \ U (chapter 3).]

5.10 Sectional Curvature

Sectional curvature has already been discussed for positive definite and
Lorentz metrics and now this topic can be dealt with for the case of neutral
signature. One now considers (M, g) as usual with g smooth and of neutral
signature and lets G, (equivalently, the manifold of projective simple bivectors
at p) denote the 4-dimensional Grassmann manifold of all 2—spaces at p € M
consisting of its subsets of spacelike, timelike, null and totally null 2—spaces
at p, denoted by S?, T7, N2 and TNZ, respectively, and with S?, T2 and
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S2UT? each 4-dimensional, open submanifolds of G, and N2 = N2UTN] a
closed subset of G.

The sectional curvature function o, at p € M is defined as in chapters 3 and
4 but this time on the subset G, = S2UT2 = G, \ N2 (since a representative
simple bivector F' for any of the 2—spaces in G, satisfies |F'| = 0 if and only if
the 2—space is null or totally null) and which is neither connected nor closed.
As in the Lorentz case if o, is constant on G, it is trivially (continuously)
extendible to a constant function on G, and the constant curvature condition
holds at p. If, however, o, not constant on G, it turns out that it cannot be
continuously extended to any point of ]\75 The proof of this fact is given in
[59] and is similar to the proof in the Lorentz case given in [61]. Thus the
existence of a continuous extension of o, to any member of Kfﬁ forces the
constant curvature condition at p and if o, is not constant on G, the subset
]\73 of Gy, is precisely the complement of its domain of definition.

So suppose that o, is not constant on G, and suppose further that F
and I are representative bivectors of two distinct members of Ng . Then the

bivector F'+ AF’ for some 0 # X\ € R also represents a member of Nﬁ if and
only if the blades of I and F’ intersect in a null direction and then F 4 \F’
represents a member of Ng for all such A. To see this note that if F' and

F’ represent independent members of Ng with blades intersecting in the null
direction spanned by the null vector [ then one may write F' = [ A u and
F' =1Avforu,v e T,M with{-u=1-v =0 and [,u,v independent and
clearly F'+ \F’ represents a member of ]\75 for all A € R. Conversely, suppose

F, F' and F + AF’ represent members of J\NZPQ with F and F’ independent,
F=pAgq, F'=rAsand F+ AF' =eA f for non-zero p,q,r,s,e, f € T,M
and 0 # A € R. From the general theory of bivectors for this signature one
may always choose p-p=p-gq=r-r=r-s=e-e=-e-f =0 and a contraction
of F+AF' =eA f with e gives (e-q)p— (e-p)g+ A(e-s)r — A(e-r)s = 0. This
shows that p,q,r and s are dependent members of T, M otherwise one would
get the contradiction that e is orthogonal to each member of the basis p, g, r, s
for T, M. Tt follows that the blades of F' and F” intersect in a direction spanned
by, say, k € T, M and so one may write F = k Ar" and F' =k A s for k,r’, s
independent members of T, M. If k is not null one may choose 7’ and s’ null
with each orthogonal to k. Then the conditions |F| = |F'| = |F+AF'| = 0 give
F.F" =0, then |k|r'-s’ = 0 and so 7’-s" = 0 and then 7’ A ¢’ is totally null. But
then the conditions k - r’ = k- s’ = 0 imply that k € v’ A s’ which contradicts
the fact that & is not null (or the fact that k,r’, s’ are independent). It follows
that k is null and hence F' + A\F” is null or totally null for each such A. The
conclusion is that if F', F’ and F 4+ AF’, for some 0 # X € R, each represent
members of Ng their blades intersect in a null direction at p and then all
subsets of the form F + AF’ (A € R) lie in ng and together determine the
collection of all null directions (and hence the collection of all null vectors) at
p. [Clearly not all such subsets lie in Ng as the choice (in a hybrid basis at p)
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of F=1Ayand F/ = n Ay, each being in ZVZ? and with intersecting blades,
shows.]

Now suppose that ¢’ is another smooth metric on M of neutral signature
with sectional curvature function 0;,. Suppose also that the sectional curvature
function o, is identical to a;, at each p € M but is such that this common
function is not a constant function on G;,/ on some open dense subset of M.
Then the argument of the previous paragraph shows that the sets Ng for g
and ¢’ of all null and totally null 2—spaces at p which are the complements of
the domains of 0, and oy, (= ;) are the same and hence that g and ¢’ share
the same set of null vectors at each p € U. Thus g and ¢’ are conformally
related on this open dense subset and hence on M (and hence ¢’ is also of
neutral signature). Then one has, from a similar argument to that given in
chapter 3, at each p € M and in an obvious notation using primes to denote
geometrical quantities arising from ¢/,

(i)g' = ¢g, (i6) Ropea = ¢° Rabeds (1)) R "pea = ¢R"pca  (5.58)
(iv) Ry = ¢Rap, (v)R' =R, (vi)C" = ¢C

for some smooth nowhere-zero function ¢ : M — R. Again it is noted that
since g and ¢’ are conformally related, the type (1,3) Weyl tensors are equal,
C' = Cj the last equation in (5.58) is, however, deduced from the others in
(5.58) and it is noted that one may have C’ = C' = 0 at some points.

One can now continue with the set-theoretic discussion given in chapters
3 and 4 and with the same notation [59]. Thus X C M is the closed subset on
which o, is constant and so M \ X C M is the open and dense subset of M on
which o, is not constant, V' C M the open subset on which d¢ # 0, Y C M
the subset on which ¢ =1 and U C M the open subset on which the common
value of the Weyl tensors C and C” is non-zero. All the points at which Riem
and Riem’ vanish are contained in X. Thus ¢ =1 on U (and hence U C Y))
and U NV = (. The rest of the argument is as in chapter 3 and 4 and one
achieves the disjoint decomposition M = VUintY U K where K C M is the
closed subset defined by the decomposition and with empty interior. Clearly
¢ is a non-zero constant on each component of int(M \ V) and ¢’ = g on intY.
Since U NV = () the open subset V is conformally flat for ¢’ and g.

As in the previous cases the most interesting part of this decomposition
is the open subset V', provided it is not empty. The analysis of this subset
is almost the same as that given in the Lorentz case. In fact one can show
that d¢ is a nowhere-zero null (co)vector field on V' with respect to both
metrics [59], that the Ricci tensors of each metric is either zero or of Segre
type {(211)} with null eigen(co)vector proportional to d¢ and eigenvalue zero
on V (and hence the Ricci scalars of each metric vanish on V). The Riemann
tensor satisfies R%cq¢, = 0 on V. Further each metric admits a local parallel
null (co)vector field, proportional to d¢. On the open dense subset of V' on
which Riem does not vanish the conditions of Walker’s non-simple K spaces
are satisfied [81] and so about any point p of this subset of V' there exists an
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open neighbourhood W contained in V' in which one may choose coordinates
x,1,u,v so that g takes the form (5.57) with H(u,z,y) = §(u)(2? — y?) (from
the conformally flat condition) for some smooth function § on W. Here du
is the parallel (co)vector field. This is the neutral signature analogue of a
conformally flat plane wave in general relativity.

One thus obtains the following theorem [59].

Theorem 5.6 Let M be a 4-dimensional manifold admitting smooth metrics
g and g’ of neutral signature. Suppose that g and g’ have the same sectional
curvature function at each p € M and which is not a constant function at
any point over some open dense subset of M. Then one may decompose M
as above according to M = VUintY U K where intK =0, g = ¢’ on intY and
where V' is an open subset of M on which g and ¢’ are (locally) conformally
related, conformally flat “plane waves”.

The finding of non-trivially conformally related metric pairs g and ¢, as
described above, is similar to the Lorentz case and can be found by modifying
the work in [63].

5.11 The Ricci-Flat Case

Now impose the condition that Ricc = 0 on (M, g) so that Riem = C
on M. If (M,g) is non-flat, Riem (and hence C') does not vanish over any
non-empty open subset of M. Thus the sectional curvature function is not a
constant function on any non-empty open subset of M, otherwise C' and hence
Riem would vanish on this subset. Then in the above notation U C Y with
U open and dense and ¢ = 1 on Y and so ¢ = 1 on M. Thus one has the
following theorem.

Theorem 5.7 Let g be a smooth metric of neutral signature on M. Suppose
(M, g) is Ricci flat and non-flat. If ¢’ is any other smooth metric on M of
neutral signature and with the same sectional curvature function on M as g,
then g’ = g. Thus the sectional curvature uniquely determines the metric and
its Levi-Civita connection.

One may continue in this way to obtain analogues of theorems 10 and 11
in chapter 4 and where in the former the reference to “pp-waves” is replaced
by the “neutral signature equivalent of pp-waves” By this is meant that each
point of W admits a coordinate neighbourhood in which g takes the general
form (5.57) and where the Ricci-flat condition imposes the extra constraint
0?H/0x* = 9*H/9y*. The Weyl conformal tensor satisfies C%.q¢¢ = 0 with
#* = g ¢, non-zero. Thus (section 5.8) ¢¢ is null and the algebraic type of
Cis (N,N) or (N,O) (or (O,N)).
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5.12 Algebraic Classification Revisited

By way of a brief appendix this final section shows a link between the
classification of second order symmetric tensors described in sections 4.2 and
5.3 and the classification of the Weyl tensor in sections 4.5, 5.7 and 5.8. No
proofs will be given—they can be found in [82]. Thus for the usual pair
(M, g) with dimM = 4 and g of neutral signature (the easier Lorentz case will
be described at the end of this section) let T be a second order, symmetric,
tracefree tensor with components Ty, (and T¢. = 0) and with associated linear
map f on T,M and construct the type (0,4) tensor E’ given by

1 ,
:zbcd = §{Tacgbd - Tadgbc + degac - Tbcgad}7 (:> Elcacb = Tab)- (559)

The tensor has all the index symmetries of the tensor E in (3.8), (3.9)
(3.10) and (3.17) and in the case when E’ = E, T becomes the tracefree Ricci
tensor. Given g the correspondence between E’ and T is bijective and it is
noted that T has the same Segre type, including degeneracies, of any second-
order symmetric tensor whose tracefree part is 7. One is thus led to the linear
map fg on ApM, for p € M, just as was described for the curvature and
Weyl maps in sections 3 and 4. Thus if F' is a real or complex bivector in (the
complexification of) A, M it is an eigenbivector of E’ with eigenvalue A € C if
E', qF = AF,p. The algebraic situation for E’ is expressed in the following
collection of results and 7" may then be found from (5.59) [82]:

(a) B € ApM is (real and) simple the blade of B is an invariant 2—space of
f if and only if B is a (real) simple eigenbivector of fg:. Since (chapter 3)
f always admits an invariant 2—space, it follows that fgr always admits
a real simple eigenbivector.

(b) If E' admits a real eigenbivector B with eigenvalue a(# 0) € R then B
is simple and B is (independent of B and) also a simple eigenbivector of

E’ with eigenvalue —a and the blades of B and B are invariant for f.

+ — —
(¢) The dual properties of E’ reveal that, at p € M, fg/(S,) = A C S, and
— + o+ + -
fe:(Sp) = A C S,. Further, dimA= dimA and the rank of fg equals
+ p—
dimA+ dimA. Hence the rank of fg is even.

(d) If B is a real or complex eigenbivector of E’ with |B| = 0 then either B
arises from a non-simple elementary divisor or its eigenvalue is degener-
ate. If B is a real or complex multiple of a member of 5, its eigenvalue

*
is zero. Otherwise if an eigenbivector B is such that B and B are in-
dependent and arises from a non-simple elementary divisor of order n

then so also does B.
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(e) Let B be a complex eigenbivector of E', E'B = zB, with z = a + ib for

a,b€Rand b #0.Ifa # 0, B, B, B and B are independent eigenbivec-
tors. If, however, the eigenvalues arising from f are +:b and +id with
0 # b # £d # 0, again four independent (complex) eigenbivectors occur
(but recall (a) above).

(f) From the above it can be deduced that many of the potential Segre
types for fp/, whatever the eigenvalue degeneracies, are impossible. In
fact only nine possible types remain and they are (where a positive inte-
ger n’ > 1 carrying a prime in the Segre type refers to a complex eigen-
value arising from a non-simple elementary divisor of order n): {111111},
{11112z}, {11zzww}, {2211}, {2/2'11}, {3111}, {312z}, {51} and {33}
and correspond to the nine types for 7' in theorem 5.1. The first six of
these each admit an orthogonal pair of simple timelike eigenbivectors.
This enables them to be handled together conveniently [82].

(g9) The diagonalisable over R types {111111} for fgs correspond to the di-
agonalisable over R types {1111} for f whilst the diagonalisable over C
types {11112z} and {11zZww} for fgs correspond to the diagonalisable
over C types {zz11} and {zzww} for f (from (5.59)). The other cor-
responding types are: {2211} —{211}, {2'2'11}—{2zz}, {3111}—{22},
{312z}—{2'2'}, {51}—{4} and {33}—{31}.

The Lorentz case is much easier and the above remarks still hold where
applicable (recalling that *E’ = —E"* is true for all signatures) [44, 45]. One
finds that the only possible types for E’ (excluding degeneracies) are {111111},
{11zzww}, {2211} and {33} and that these correspond to the cases for T given
by {1111}, {2z11}, {211} and {31}, respectively (chapter 4). The situation
for positive definite signature is straightforward.

It is remarked that one may also define repeated and non-repeated princi-
pal null directions for E’ for either Lorentz or neutral signature, by analogy
with those arising from the Bel criteria and the tensor C' and described ear-
lier. In particular, call k € T, M a repeated principal null direction for E' if
B! eqak®k® = akpkg for a € R. (If @ # 0 k is clearly null and if @ = 0 one must
assume k is null since it may not be.) Then this statement is equivalent to k
being a null eigenvector of T. Other similar criteria are also available [82].
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Chapter 6

A Brief Discussion of Geometrical
Symmetry

6.1 Introduction

This chapter is devoted to a brief discussion of geometrical symmetry on
an n—dimensional, smooth, connected, Hausdorff, second countable manifold
M of dimension n > 2 and which admits a smooth metric g of arbitrary sig-
nature with Levi-Civita connection V. It will be kept brief, with few proofs,
but with references to where the proofs can be found. It closely follows [13].
Such symmetries are usually, and can naturally be, described in terms of local
smooth diffeomorphisms on M, that is, smooth bijective maps f : U — V
for U and V open subsets of M (and with f= : V — U also smooth) where
the map f simulates some particular symmetry property between U and V.
For symmetries which apply to the whole of M one would require many such
local maps which would be complicated to deal with. Thus the symmetries
described here will be handled in a more convenient and conventional way in
terms of global, smooth vector fields on M. For such a vector field X it is
recalled from section 2.6 that given p’ € M there exists an open neighbour-
hood U of p’ and an open interval I C R containing 0 such that there exists
an integral curve ¢, of X with domain I starting from any p € U. Thus for
each t € I there is a map ¢ : U — ¢4(U) defined by ¢.(p) = cp(t) for each
p € U and so each point of U is “moved” a parameter distance ¢ along the
integral curve of X through that point. Each map ¢ : U — ¢:(U) is then a
smooth local diffeomorphism between the open submanifolds U and ¢.(U) of
M [22, 89]. The maps ¢; above are called the local flows of X and the idea is to
describe a symmetry on M in terms of certain vector fields on M through the
action of their local flows. Such an approach supplies local diffeomorphisms
everywhere on M and the symmetry then often gives rise to convenient dif-
ferential conditions on X which are easier to handle mathematically than the
actual local flows themselves (but the local flows are indispensable for the
geometrical interpretation of the symmetry).

To see this idea work in a particular situation let X be a global, smooth
vector field on M and T a global, smooth tensor field on M. Let f : U — V be
a local flow of X with U chosen as a coordinate domain of M with coordinates
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2 (1 <a<n)and V = f(U). Then V is also a coordinate domain of M
with coordinate functions y* = z%o f~! and one may compute (chapter 2) for
peUandqg=f(p) eV

[(0)02%), = (0/0y")q, 7 (da®)p = (dy*)q- (6.1)

Then, with T, denoting T'(q), etc,

(f*T,)p (002", ..., dx", ...) = Ty(f(0/02%)p, ..., F~H(dx?),, ...)
=T,((0/0y) g s (dy®) ¢, ). (6.2)

Thus the components of the tensor 1" at ¢ in the coordinates y® equal the
components of the pullback tensor f*T at p in the coordinates x*. Suppose
one defines f to be a “symmetry” of T if the components of T at p € U in
the coordinates x® equal those of T" at ¢ in the coordinates y* for each p € U,
that is, if f*T = T for each p € U. Thus f is a “symmetry” of T if, given
coordinates 2% and then defining coordinates y* = %o f =1 in V = f(U) using
f, the components of T are equal at points linked by f in these coordinates.
Finally suppose this is true for every local flow of X so that it is X that is
giving rise to the symmetry in some open neighbourhood of any point of M.
It will be shown in the next section that this situation gives rise to differential
relations between the components of T' and X and which are more convenient
to handle mathematically.

Of course not all symmetries may be so formulated but many can be han-
dled in this (or a similar) fashion and this chapter will describe some of the
main ones. Sometimes the above condition f*T =T for each local flow of X
will be weakened but in each case the geometrical spirit of the role of the local
flows of X is maintained.

6.2 The Lie Derivative

Let X be a global, smooth vector field on M with local flows ¢;. There is a
type of derivative arising from X and its local flows and which is reminiscent
of the Newton quotient. It applies to any smooth tensor field 7" on M and
is written L£xT and called the Lie derivative (of T along X). It is defined at
p € M by

(£xT)(p) = lim {6 T)(p) — T()]). (63)

This limit always exists (but not obviously so) [22] and gives rise to a
smooth tensor field on M of the same type as T'. It has the following properties
for smooth tensor fields S and 7" on M, smooth vector fields X and Y on M,
a,b € R and a smooth function f on M (and with the obvious modifications
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if S,...,f are only defined on open subsets of M) and where the first is to
be regarded as the definition of Lx f [10, 22, 89]. The operator Lx is clearly
R-linear.

Lxf=X(f), (6.

LxY =[X,Y], (6.
Lx(S®T)=Lx(S)®@T+S5S® Lx(T), (6.
LoxyoyT =alxT +0LyT, (6.
LixyT = Lx(LyT) — Ly (LxT), (6.
Lx(fT) = X(f)T + f(LxT). (6.

[ e e e N 2 =2
© 0~ o WU
= D = D

The operator £, commutes with the contraction operator and, if a real-valued
function is regarded as a type (0,0) tensor, the last of these follows from the
first. In any coordinate domain of M one can then find an expression for the
components of the tensor £LxT (using a comma to denote a partial derivative)
as

(ﬁxT)c .d _Tc deXe TCGCIIJX?S —CZ—‘COLde‘vaIZi
T X+ TEXE,. (6.10)

A traditional abuse of notation is often used to denote the left hand side
of (6.10) as LxT b,

Now in the previous section attention was drawn to the situation when
for a smooth tensor 7' and smooth vector field X the condition ¢*T = T
holds for each local flow ¢; of X. This can be shown [10] to be equivalent to
the condition £LxT = 0 on M and which, from (6.10), gives the differential
relations between T and X as promised.

6.3 Symmetries of the Metric Tensor

A local diffeomorphism f on M is called a (local) isometry of the metric
g on M if f*g = g on the domain of f. Suppose that X is a global, smooth
vector field on M such that each local flow ¢; of X is a local isometry of
g on M, that is, ¢;g = g for each such ¢;. Then X gives rise to a special
symmetry of g and satisfies, from the above remarks, Lxg = 0 on M. Such
a vector field X is called a Killing vector field and this latter equation is
referred to as Killing’s equation. This equation may be rewritten in either of
the following two ways, from (6.10) (and recalling the use of a semi-colon to
denote a covariant derivative with respect to V),

gab,cXc + gcbea + Gac 7cb = 07 Xa;b + Xb;a (E »CXgab) =0. (611)
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The second of these equations involves the covariant derivative with respect
to V but it is stressed that the connection on M is not required for the
definition of the Lie derivative. However, if one exists, the second equation in
(6.11) is a convenient alternative to the first one (and this alternative is easily
generalised to the equation £xT = 0 for any tensor 7).

From (6.11) it is convenient to define the Killing bivector F associated
with X, in components in any coordinate domain, by Fi, = Xq.p = —Fp,. The
Ricci identity on X then gives Xu.pe — Xa:ebh = X Raape and 50 Fup.o — Fuep =
X9Riabe- Permuting the indices in this last equation according to a — b —
¢ — a gives, after a change in sign, Fyq.c — Fpe;q = —X?Rgpea and another such
permutation (but with no change of sign) then gives Fip.q — Fegp = XRycba-
Adding these last three equations and using Rg[peq = 0 finally gives

Fab;c = Rabchd (:> Xa;bc = Rabchd). (612)

The equation (6.11), rewritten as X, = Fgp, and (6.12) give rise to
a Cauchy system of first order differential equations in the following way.
Let p € M and ¢ : I — M be a smooth path with ¢(I) lying in some
coordinate domain of M with coordinates x®, nowhere-zero tangent k® =
d/dt(z® o ¢), where t is the parameter of ¢, I an open interval of R con-
taining 0 and ¢(0) = p. A contraction of (6.11) with k® and (6.12) with
k¢ yield first order differential equations of the form dX,/dt = G, and
dF.p/dt = Ggp for smooth functions G, and G on ¢(I) determined entirely
by X.(t)(= (X4 0¢)(t)) and Fup(t)(= (Fup 0 ¢)(t)) (apart from geometrical
quantities derived from the given metric g and V). Thus if X and F are
globally defined on M and satisfy (6.11) and (6.12) on M and if X’ and F’
are similarly globally defined on M also satisfying (6.11) and (6.12) on M
and if X and X', and F and F’ agree at ty € I, that is, they agree at the
point ¢(tg) on the path ¢, they will, from the theory of first order differential
equations, agree on some open subinterval of I containing ty. On the other
hand, if this agreement fails at some ¢{, then, by continuity, it will fail on some
open subinterval of I containing t. Since I is connected and if agreement
occurs at p = ¢(0), X and X', and F and F’ agree on I, that is, on ¢(I). The
freedom of choice of smooth paths through any point of M shows that if X
and X', and if F' and F’ agree at some point of M they will agree on some
open neighbourhood of that point (and, by continuity a similar statement
holds if this agreement is replaced by a failure to agree). It easily follows that
M is a disjoint union of two open subsets of M on one of which agreement
(in the above sense) occurs and on the other disagreement occurs. Since M
is connected and given that agreement occurs at some point of M, X = X’
and F' = F’ on M. It follows that any smooth, global Killing vector field on
M is uniquely determined by the n values X,(p) and the in(n — 1) values
Fou(p), that is, by the values of X (p) and VX (p) (from which it follows that
if X vanishes on some non-empty open subset of M it vanishes on M). Since
it is clear, by definition, that the collection of global, smooth Killing vector
fields on M, denoted by K(M), is a vector space it follows that K (M) is
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finite-dimensional and dimK (M) < %n(n + 1). Finally, if X,Y € K(M), it
follows from the above that L;x y19 =0 and so [X,Y] € K(M). Thus K(M)
is a Lie algebra under the bracket operation and is called the Killing algebra
(of (M, g)). [It is remarked that if dimK (M) = n(n+1), (M, g) is necessarily
of constant curvature, that is Riem satisfies

Raped = ) (acgvd — Gadgoe) (6.13)

n(n—1
at each point of M and so the Einstein space condition R, = % Jap also holds
on M and hence, since n > 2, R is constant on M (chapter 3). Conversely if
(M, g) is of constant curvature and p € M there exists an open neighbourhood
U of p such that the smooth Killing vector fields on U arising with respect to
the restricted metric on U from g give rise to a (local) Killing algebra K (U)
of dimension in(n + 1). Proofs of these facts may be gleaned from [37].]

If X € K(M) and p € M with X(p) # 0 a standard result [9] shows that
one may always choose an open coordinate domain U of p with coordinates
2% on which X = 9/dx!, that is, X! =1, X%? = ... = X" = 0 and then (6.11)
shows that the functions g,; are independent of 2! on U. In this case z! is
referred to as an ignorable coordinate for g (on U). Conversely it is easily
checked that if, on a coordinate domain U, z! is an ignorable coordinate for
g, 0/0x" is a local Killing vector field for (the restriction of) g to U.

Another symmetry arising from g is when each local flow of the global,
smooth vector field X on M is a (local) conformal diffeomorphism of g on M,
that is, it satisfies ¢; g = f¢ for some smooth function f on the domain of ¢;.
This can be shown to be equivalent to the differential condition Lxg = 2kg
for some smooth function x on M (called the conformal function) and then
to the condition
Xap = KGap + Fap (6.14)

where F' is a smooth bivector field on M called the conformal bivector of X
and X is called a conformal vector field, on M. The collection of all global
smooth vector fields X on M satisfying (6.14) is, as in the Killing case, a Lie
algebra under the bracket operation called the conformal algebra (of (M, g))
and denoted by C'(M). It can then be checked that one is thus led to a set of
first order differential equations for the quantities X, k, dx and F" and so, by a
similar argument to the Killing case, a global conformal vector field X on M
is uniquely determined by X (p), x(p), ds(p) and F(p) at any p € M and so
dimC(M) < (n)+(1)+(n)+ (3n(n—1)) = (n+1)(n+2). The vector field X
can also be shown to be uniquely determined by the values X (p), VX (p) and
V(VX)(p) at any p € M and so if X vanishes over a non-empty open subset
of M, it vanishes on M. If dimC(M) = 1(n+1)(n+2), (M, g) is conformally
flat whilst if (M, g) is conformally flat and if p € M some open neighbourhood
of p admits a (local) conformal algebra of this maximum dimension. If g and
g’ are smooth, conformally related metrics on M it is easily checked that their
conformal algebras are equal.
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A special case of the work of the previous paragraph occurs when each
local flow of X is a (local) homothety, that is ¢;g = ag for some constant
a € R. In this case (6.14) becomes

Xab = CGab + Fap (& Lxg = 2¢cq) (6.15)

where ¢ is a real constant (the homothetic constant). Such a global smooth
vector field X is called a homothetic vector field and F is the (smooth) ho-
mothetic bivector (field) of X. An identical argument to that in the Killing
case reveals that if X is homothetic, (6.12) holds on M. A conformal vector
field which is not homothetic is called proper conformal and a homothetic
vector field with ¢ # 0 is called proper homothetic (and clearly if ¢ = 0, X
is Killing.) Again the set of homothetic vector fields is Lie algebra under
the bracket operation called the homothetic algebra and denoted by H (M)
(and so K(M) Cc H(M) Cc C(M)). The homothetic algebra gives rise to a
set of first order differential equations in the quantities X, F' and ¢ and any
such vector field is uniquely determined by X (p), F'(p) and ¢ (or by X (p) and
VX(p)) at any p € M. Hence dimH (M) <n+4in(n—1)+1=2(n+1)+1
and if this maximum is achieved (M, g) is flat. If (M,g) is flat this maxi-
mum dimension is achieved locally. A member of H(M) which vanishes over
some non-empty open subset of M vanishes on M. It is easily checked that
dimH (M) <dimK (M) + 1 because if X,Y € H(M) with Lxg = 2c;g and
Lyg = 2c2g (c1,c2 € R) then, with Z = ¢ X — 1Y, one easily finds that
Lzg =0 and so Z € K(M). Further, if X,Y € H(M), Lixyjg = 0 and so
[X,Y] e K(M).

6.4 Affine and Projective Symmetry

Another symmetry of interest arises when a global, smooth vector field X
on M satisfies the condition that each of its local flows ¢, preserves geodesics,
that is, if for any geodesic ¢ of V, ¢; o ¢ is also a geodesic for V. To examine
this possibility further one requires the definition of the Lie derivative of the
connection V associated with g [90]. This is denoted by £xV and acts on two
smooth vector fields Y and Z defined on some (any) open subset U C M and
gives rise to a smooth vector field on U as follows

LxV(Y.Z) = [X,Vy 2] = Vixy)Z = Vy [X. 7] (6.16)

and which, following techniques used in section 2.9 to establish the tensor
nature of the curvature tensor, gives rise to a type (1,2) tensor field on M
with components Dy, given by

LxV(9/02°,0/02°) = D§.0/0x*  Dif. = X5, — R*pcaX?. (6.17)



A Brief Discussion of Geometrical Symmetry 207

The condition that each local flow of X preserves geodesics is, in the above
notation [90, 91], equivalent to the existence of a global smooth 1—form field
1 on M such that for arbitrary vector fields Y and Z defined on some open
subset of M

LXV(Y,Z) = 0(Y)Z + W(Z)Y (6.18)

and which, in any coordinate domain in M, is using (6.17)
X4 = R%caX® + 620 + e (6.19)

Now if one decomposes VX in any coordinate domain in M as

1
Xa;b = ghab + Fap, (hab = EXgab = Npa, Fop = _Fba) (620)

and then substitutes into (6.19), taking the symmetric and skew-symmetric
parts with respect to the indices a, b, one gets in any coordinate domain [37]

hab;c = 29ab1/)c + gacwb + gbc¢a (621)
and 1
Fab;c - Rabchd + i(gacwb - gbc'l/}a)~ (622)

A contraction of (6.21) with g?® shows that 1, = m(gbchbc),a and hence

that the 1— form % is the global gradient of the smooth function m 9 has

on M and is a consequence of V being a metric connection (see, e. g. [98]).
This 1—form is called the projective 1-form and F the projective bivector
associated with X, and X is called a projective vector field on M. In fact it
may be checked that given the decomposition (6.20) and (6.21), the condition
(6.19) and hence (6.22) then follow (see, e.g.[13]) and so X is projective if
and only if either of the equivalent conditions (6.19) or (6.21) holds. It can
also be shown from all this that a system of first order differential equations
in the quantities X, h, F' and 1 arises on M and so, as earlier, a global,
projective vector field on M is uniquely determined by the values X (p), h(p),
F(p) and 9(p) at any p € M. The collection of all global, projective vector
fields on M then becomes a vector space (in fact a Lie algebra under the
bracket operation) called the projective algebra of M and is denoted by P(M)
and dimP(M) < n+ §(n+ 1)+ §(n — 1) +n = n(n + 2). In addition, the
quantities X, h, F and ¢ are uniquely determined on M if X, VX and V(VX)
are given at some (any) p € M and thus if X vanishes on some non-empty
open subset of M it vanishes on M (see e.g.[13]).

A special case of this arises when each local flow ¢; of X preserves not
only the geodesics of V but also their affine parameters, that is, whenever ¢
is an affinely parametrised geodesic of V so also is ¢; o ¢. This can be shown
to be equivalent to the condition £xV = 0 [90, 91, 10] and hence, from (6.17)
to the bracketed condition in (6.12) (and then to the rest of (6.12)) and from
which, after symmetrising this equation in the indices a, b, leads to (6.20) with
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Vh = 0 and so, from (6.21), to ¢ = 0 on M. Such a global vector field X is
called an affine vector field and F the affine bivector and this is equivalent
to (6.20) together with VA = 0 on M, or to the projective condition (6.19)
together with the condition v» = 0 on M. The collection of all such vector fields
is denoted by A(M) and is a Lie algebra under the bracket operation called
the affine algebra of M. Again the quantities X, h and F' give rise to a system
of first order differential equations on M and thus X, h and F are uniquely
determined on M by the values of X (p), h(p) and F(p) at any p € M. Tt follows
that dimA(M) < n+4(n+1)+5(n—1) = n(n+1) with the maximum arising
if (M, g) is flat. If (M, g) is flat this maximum is achieved only locally. Also
X, h and F are uniquely determined on M by the values of X (p) and VX (p)
at any p € M and so if X vanishes on some non-empty open subset of M,
then it vanishes on M. By definition A(M) C P(M) and since (6.12) holds for
all members of K (M) and H(M) one has K(M) C H(M) C A(M) C P(M).
The members of A(M)\ H(M) are called proper affine and the members of
P(M)\ A(M) are called proper projective.

If X € H(M) it is easily checked that £x Riem = 0 and £x Ricc = 0 whilst
if C is the type (1,3) Weyl tensor and X € C(M), LxC =0.If X € P(M)
then, with the usual abuse of notation,

LxR%cqd = 03 — g bsd, LxRap = (1 —n)Yay (6.23)

and so for X € A(M), LxRiem = 0 and LxRicc = 0 (see e.g. [13]). It is
noted that a projective vector field X satisfying (6.20) and (6.21) is affine if
and only if the projective 1—form 1 vanishes on M and thus ¥ controls the
preservation of affine parameters on the geodesics of V. Also, if M admits a
proper affine vector field it necessarily admits the global, nowhere-zero, second
order, symmetric, covariantly constant tensor field h and this seriously limits
the existence of such vector fields on M.

6.5 Orbits and Isotropy Algebras for (K (M)

Although these few remarks are here given for K (M) they may be applied
equally well for H(M), C(M), A(M) and P(M) where it is important to
note that each of these Lie algebras of smooth, global vector fields on M is
finite-dimensional [13].

The discussion of section 2.8 shows that K (M), if non-trivial, gives rise to
a generalised distribution on M and, from section 6.3, the subset W of points
p € M at which the subspace {X (p) : X € K(M)} of T, M is trivial has empty
interior. Thus through each point of the open dense subset M \ W of M a
unique maximal integral manifold of K (M) passes. Now let k be a positive
integer, let X1, ..., X}, € K(M) and let ¢}, ..., #¥ be local flows of X1, ..., X,
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respectively, and consider the local diffeomorphism between open subsets of
M (where defined) given for p € M by

p— &1, (87,0 (p) - ) (6.24)

for all choices of k, Xi,..., X} and (t1,...,tx) € R* under the usual rules
of compositions and inverses. Define an equivalence relation on M given for
p1,P2 € M by p1 ~ py if and only if some map of the form (6.24) maps p; to
p2. The resulting equivalence classes are called Killing orbits of M (associated
with K(M)) and each such orbit is a maximal integral manifold (of K(M))
[23, 24, 25]. The orbit through p € M is labelled O,.

Now define the subset K; = {X € K(M) : X(p) = 0}. Clearly K is a
subspace of K (M) and also a Lie subalgebra of K(M) since if X,Y € K,
[X,Y] € K. The subalgebra K is called the (Killing) isotropy algebra of
K (M) at p and it is noted that if X € K and ¢; a local flow of X, ¢:(p) = p
and g,(u,v) = (¢79)p(u,v) = gp(Prau, prv) so that ¢ is a member of the
identity component of the orthogonal group at p. Further, a consideration of
the linear map K (M) — T, M given for X € K (M) by X — X (p) with kernel
K} and range equal to the subspace of T),M tangent to the Killing orbit O,
through p (that is to the maximal integral manifold of K (M) through p) shows
that dimK (M) =dimK;+dimO,, for each p € O, (chapter 1).

Now consider the linear map f : K; — Q,M with Q,M the usual Lie
algebra of bivectors at p under commutation and which maps X € K into
the negative of its Killing bivector at p. Clearly f is injective since the member
of K with zero Killing bivector is the zero member of K(M). Thus f is a
vector space isomorphism from K onto its range in 2, M. Then if X, Y € K
with respective Killing bivectors F' and G at p and if Z = [X,Y], its Killing
bivector at p is easily calculated to have components G F¢ — F,.G§ (chapter
2). But the commutator of f(X)(= —F) and f(Y)(= —G) is FucG§ — GacFY
and is the negative of the Killing bivector of Z at p, that is f(Z). Thus
JX,Y]) = [f(X), f(Y)] and so f is a Lie algebra isomorphism and K, is Lie
isomorphic to a subalgebra of 2, M, that is, to a subalgebra of the appropriate
orthogonal algebra of g(p).
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Chapter 7

Projective Relatedness

7.1 Recurrence and Holonomy

In this section M is the usual n—dimensional, smooth, connected, Haus-
dorff, second countable manifold (n > 2) admitting a smooth metric g of
arbitrary signature and with Levi Civita connection V. As before, when com-
ponent notation is used, a semi-colon denotes a V-covariant derivative and a
comma a partial derivative. A smooth, real tensor field T" defined and nowhere-
zero on some non-empty, open, connected subset U of M is called recurrent (on
U)it VI' =T ®P on U for some smooth, real 1-form P on U called the recur-
rence 1-form of, or associated with, T' (see, for example, [21]). This is equiv-
alent to the statement that in any coordinate domain in U, Tc‘f::;ze =T P,
If T is recurrent on U and V C U is open and connected, T is recurrent
on V and if p : U — R is smooth and nowhere-zero, pT" is recurrent on U
with recurrence 1-form P + d(log|p|). The condition that T is recurrent on
U as described above is equivalent to the statement that if p,p’ € U and ¢
any smooth path in U from p to p/, then T'(p’) is proportional to the parallel
transport of T'(p) along ¢ at p’ with proportionality ratio depending on p, p’
and c. To see this, suppose that T' is recurrent on U and let ¢ be a smooth
path p — p’ with tangent vector 7(¢) at c(t) where ¢ is a parameter along c.
Let B(p) = z(p), ..., 2(p) be a basis for T,M and B'(p) = «'(p), ..., 2'(p) be a

basis for the cotangent space T', M. The values of T" along ¢ are denoted by
T(t) = T(c(t)) and T"(t) similarly denotes the values of the parallel transport
of T'(p) from p along ¢ to p’. Consider the components «(t) of T'(t) in the bases
B(t) and B’(t) at ¢(t) obtained from B(p) and B’(p) by parallel transport of
each of these basis members from p along ¢ to p’ (so that each of these basis
members is smooth on ¢ as in chapter 2). One gets, in any coordinate domain
in M containing p, & = @ 7¢ = a,.7¢ = a(P.7°), where a dot means d/dt and
so a(t)(= a(c(t))) = a(p)el P™° with the integral taken along the appropriate
segment of ¢. However, the components o’ (¢(t)) of the tensor T” in these paral-
lel transported bases along ¢ satisfy o/(¢(t)) = a(p). Now since the range of ¢
between p and p’ is the image under the continuous map c of a closed bounded
interval of real numbers, which is compact (chapter 1), this range space is a
compact subspace of M. Thus, covering this range with finitely many such
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coordinate domains, as one can, one finds T(t) = e/ 7=7"T"(t) along ¢ from p
to p’. Conversely, if T' is nowhere zero on U and has the above property along
any smooth path in U then, on any such path T'(¢(t)) = v(¢)T"(¢(t) for some
smooth, nowhere-zero function v on (the appropriate range of) c¢. Then, in
the above parallel transported bases, V. T' = 0 and V..T = ¥(¢)T’ where, as
described before, V is the covariant derivative along c¢. Thus in a coordinate

domain of the type used above, Tg::é’;eTe = %Tg::dh. Since p,p’ and c are

arbitrary, T is recurrent on U (cf [93]).

Suppose that p € M and that V' C T,M is a 1—dimensional subspace
of T, M which is holonomy invariant (chapter 2). (Here the holonomy group
refers to that arising from the Levi-Civita connection V of g.) Then V gives
rise to a 1—dimensional, smooth, integrable distribution on M. Thus there
exists a connected, open neighbourhood W of p and a smooth vector field X
on W which spans this distribution on W and whose “direction” is unchanged
by parallel translation in W. It follows from the above argument that X is
recurrent on W and thus if a 1—dimensional holonomy invariant distribution
arises on M each p € M admits an open neighbourhood W on which a (local)
recurrent vector field is admitted.

A special case of recurrence arises when the tensor 7' is recurrent on an
open, connected subset W but with recurrence 1-form P identically zero on
W, that is, VT = 0. In this case T is called parallel or covariantly constant on
W. [Thus the metric tensor is parallel on M.] This leads to a special type of
recurrence for 7. First recall that if 7" is recurrent on W and if v : U — R is a
nowhere zero function on W, then ¢T is also recurrent on W with recurrence
1-form P + d(log |¢|). Now suppose T is recurrent on W with recurrence 1-
form P but that there exists a nowhere zero function v : W — R such that
the scaled (recurrent) tensor T is parallel. Then P = —d(log |¢]), that is, P
is a gradient on W. Conversely, if P is a gradient on W, p = df3, for some
smooth B : W — R, then it is easily checked that e AT is parallel on W. [The
author has learned that some results in this direction were given in [94, 95]].
It is convenient to have the concept of a tensor being “properly recurrent”
on W in the sense that it does not become parallel (or could be scaled, as
above, to become parallel) on some non-empty open subset of W. To do this
one invokes the Ricci identities (chapter 2). Let X be a recurrent vector field
on W, VX = X ® P. Then clearly the covector field associated with X is
recurrent and use of the recurrence of X and the appropriate Ricci identity
gives in any coordinate domain in W

Xa;bc - Xa;cb = Xdeabc = Xa(Pb;c - Pc;b)~ (71)

If P vanishes on W, X is parallel on W. Otherwise there exists p € W and
an open coordinate domain V' C W with P nowhere zero on V. In this latter
case, if the second of the expressions in (7.1) vanishes on V, Pyp = Py on V
(and conversely) and so one may choose V such that P = di for a nowhere
zero function ¢ on V and then e™¥X is parallel on V. This leads to the
definition that X is properly recurrent on W if X is recurrent on W and if
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the open subset {p € W : X9 Ry.4.(p) # 0} is dense in W [21]. This definition
is easily extended to the concept of proper recurrence for any smooth tensor,
using the appropriate Ricci identity. Here it will just be stated for a second
order symmetric tensor h on W with components hgp. If A is recurrent on W,
Vh = h® P, the Ricci identity gives

hab;cd - hab;dc = haeRebcd + hbeReacd = hab(Pc;d - Pd;c) (72)

and the condition for proper recurrence is that the subset {p € W : (hqe R%pea+
hpe Racd)(p) # 0} is (open and) dense in W. It is remarked that proper
recurrence is not possible for any tensor if (M, g) is flat.

Some special cases may now be discussed. Consider the recurrent tensor
field 7 on W satisfying VT' = T ® P. Define the function § = 7% 2T¢d
and suppose it is nowhere zero on a coordinate domain V' C W. Then an

obvious contraction of the recurrence condition 7% > = T%?P, with T

reveals that P = dv on V where v = %log |0] and so e™¥T is parallel on V.
Further, if X is a recurrent vector field on W which is spacelike (respectively
timelike or null) at some point of W it is spacelike (respectively timelike or
null) at all points of W. Putting these last two results together one sees that
if g is positive definite and T is a recurrent tensor field on U (hence nowhere
zero on U), then § is nowhere zero on W and any p € W admits an open
neighbourhood V' on which 7' may be scaled so as to be parallel on V', that
is, it cannot be properly recurrent. If g is not positive definite and if X is a
recurrent vector field on W it can only be properly recurrent (but need not be)
if X is null on W. It is also remarked that if X and Y are properly recurrent
and null on W and if X -Y is a non-zero constant on W the recurrence 1-forms
of X and Y differ only in sign. [One may extend the concept of recurrence to a
nowhere-zero complex tensor field on M, the recurrence 1-form then becoming
complex. However, in what is to follow, all tensors will be assumed real and
if recurrence is required for a complex tensor, it will be clearly pointed out.]

Consider a (real), smooth type (0,2) symmetric tensor field T" which is
recurrent on some open, connected subset W C M with recurrence 1-form
P, so that VI' =T ® P on W. Then in any (connected) coordinate domain
V CW Tupe = TopP.. Let p,p’ € V and ¢ a smooth path from p to p’ and let
0 # k € T,M be a real or complex eigenvector of T' at p so that T%,k> = ak®
(T kb — ak® = 0) at p for o € C. Let T"(t) and k’(t) be obtained from T'(p)
and k(p) by parallel transport along ¢ to some point ¢(t) on ¢ and define a
constant function, also called «, on V which maps each p € V to a. Then
T’ k' — ak'® is parallel transported along ¢ and is hence zero at each point
¢(t) showing that k'(t) is an eigenvector of T”(t) with eigenvalue « at each
of these points. From earlier remarks it follows that k(t) is an eigenvector of
T(t) = T(c(t)) along ¢ with eigenvalue aee P27 Tt is then clear that since V is
connected, hence path-connected, the Segre type of T, including degeneracies,
is the same at each point of W (cf [93]).
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Now consider the eigenspaces of T at p with associated (finitely many)
distinct eigenvalues «, 3, ...,7 € C and suppose at least one is non-zero so
that one may order them as |a] < |8| < ... <|y| with |y] > 0 and for distinct
paths ¢ and ¢’ from p to p’ let u = ele Py and v = elo Pa™ with w,v > 0.
Suppose p # v so that one may choose v < p. Then the above shows that
the resulting eigenvalues at p’ are au, Su, ...,y (along ¢) and av, v, ..., yv
(along ¢’). But these finite collections, which must be the same since T is
defined on V, cannot be since |uy| is greater than each of |av|, |V, ..., |V
and this contradiction shows that u = v, that is, ele Pa™ ig independent of the
path from p to p’, that is, fc P,7* = 0 for any smooth, closed path ¢ at any
point of V. From this it follows from a version of the Poincaré lemma (see,
e.g. [22]) that P is a gradient on some connected, open neighbourhood U of
p and hence that T is not properly recurrent on V. Thus in order that T be
properly recurrent, all its eigenvalues vanish at each p € U. Thus again, if g is
positive definite, T cannot be properly recurrent since this would force T' to be
identically zero on V. In the the most relevant case here, where dimM = 4, if g
has Lorentz signature 7' must have Segre type {(211)} or {(31)} at each point
of V and if g has neutral signature, T' must have Segre type {(211)}, {(31)},
{(22)} or {4} at each point of U and where for each of these the eigenvalue is
zero. It is remarked that not all of these candidates can actually be properly
recurrent. In fact if T' is recurrent with recurrence 1-form P then so also is
the symmetric tensor ToeTCq.. T% (m products) with recurrence 1-form mP,
for each m > 1. This may be used to show that the Segre type {4} in neutral
signature cannot be recurrent (or parallel) [21]. However, all the other Segre
types could be. If T is parallel on W its Segre type, including degeneracies, is
the same at each point of W and its eigenvalues are constant.

Returning to the general case of dimM = n with metric g of arbitrary
signature and associated Levi-Civita connection V, one can relate the con-
cept of recurrent (including parallel) vector fields to the holonomy structure
of M. Let ® be the holonomy group of (M, g) and ®° its associated, restricted
holonomy group, each with Lie algebra ¢. Then ®Y is a connected Lie group.
Now let M denote the n—dimensional universal covering manifold of M with
smooth natural projection 7 : M — M. Then the pullback 7*g of g is a
smooth metric on M of the same signature as g and the holonomy group ® of
(M 7*g) arising from the Levi-Civita V on M, from 7*g, equals its restricted

holonomy group 30 since M is simply connected. It is also true that PO = @O
[96]. Thus $ = @ is a connected Lie group with holonomy algebra ¢ and
hence (chapter 2) each member of ® is a finite product of exponentials of
members of ¢, the members of the latter regarded as bivectors at, say, p € M.
Now if p = m(p) there exist (chapter 2) connected, open nelghbourhoods U
of p and U of p such that 7 : U — U is a smooth diffeomorphism and where
U and U have the metrics restricted from g and 7*g, respectively. Thus 7 is
an isometry between (U,7*g) and (U, g) and one may regard ¢ as consisting
of bivectors at p. Now suppose that 0 # k£ € T3 M is an eigenvector of each
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member of ¢ and ¢ is a closed path at p. Then the action of any member of 5,
that is, parallel transport of k£ around ¢, is a finite product of exponentials of
members of ¢ and is hence a non-zero multiple of k (section 2.11). It follows
that k gives rise to a 1—dimensional, smooth, holonomy invariant distribution
on M and hence to a recurrent vector field with respect to V on some con-
nected, open neighbourhood Vof p P, chosen so that V' C U. Use of the smooth
diffeomorphism 7 then reveals a smooth, recurrent vector field with respect
to V on the connected, open neighbourhood 7(V) of p in M which equals
mk at p. Further, if the original k € T} M, which is an eigenvector of each
member of ¢, is such that each of the resultmg eigenvalues zero the action of
any member of ® on k yields the same vector k € T} M and, as a consequence,

leads to a global, parallel, vector field on M. The diffeomorphism 7 then leads
to a parallel vector field on some connected, open neighbourhood of p whose
value at p is k. These remarks lead to the following lemma (which is only
needed in the special case dimM = 4).

Lemma 7.1 Let M be a 4—dimensional manifold with smooth metric g of
arbitrary signature, associated Levi-Civita connection V, holonomy group ®
and holonomy algebra ¢. Then if p € M and k € T,M is an eigenvector of
each member of ¢ there exists a connected open neighbourhood U of p and
a smooth recurrent vector field X on U such that X(p) = k. If each of the
eigenvalues for k above are zero, X may be chosen parallel on U.

It is remarked that this result also holds for a complex & (in the complexi-
fication of T, M) and leads, in an obvious sense, to a recurrent complex vector
field with complex recurrence 1-form.

Thus for p € M, the holonomy group at p, ®,, is a Lie subgroup of o(4),
0(1,3) or 0(2,2) depending on the signature of g and the associated Lie algebra
¢ is represented at any p € M as a Lie algebra of bivectors F?, under the
bracket operation in some basis of T}, M each of which satisfies

gachb + gchca =0 (73)

at p and which includes all bivectors in the range space of the curvature map
f at p. This follows since the infinitesimal holonomy algebra at p contains
rgf(p) and is a subalgebra of ¢ (section 2.13). Thus, for example, if dim¢ = 1
there exists p € M and a coordinate domain U containing p such that Riem
is nowhere zero on U and hence, on U,

Rabcd = aGachd (Gab = gachb) (74)

where o : U — R and G is a bivector field on U spanning ¢ at each p € U. It
follows that o and G may be chosen smooth on some open neighbourhood of
p. To see this choose a bivector H at p such that RgpcqH cd # 0 and extend
H to a smooth bivector (also labelled H) on some neighbourhood V' C U of
p so that RapeqH® is nowhere zero, smooth and proportional to G on V. It
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follows that G may be chosen smoothly on V' and, as a consequence of the
smoothness of Riem, « is then also smooth on V. The curvature class of Riem
is then either O or D on M and where it is D, the bivector G, as in (7.4), is
simple (chapter 3 or 4).

7.2 Projective Relatedness

In this section the general case when dimM =n > 2 and g is an arbitrary
metric on M is studied and the geodesics arising from the Levi-Civita connec-
tion V which, in turn, arise from g are considered. Such a geodesic (chapter
2) is a smooth path ¢ : I — M with I an open interval of R and if p € ¢(I)
and I is adjusted so that 0 € I and ¢(0) = p, this geodesic is said to start from
p, or to have initial point p. Choosing a coordinate domain containing p with
coordinate functions z® then on the path ¢ (that is, on ¢(I)) the coordinates
x2%(t) = x® o ¢(t) satisty the geodesic equations

d?x(t) o o dzb(t) dze(t) dx®(t)
dt2 bel®) @ @ Wg

(7.5)

where the I'f, are the Christoffel symbols arising from V (and T'§.(t) =
I'¢.(z* o c(t)) and where A is a smooth function on the appropriate domain.
The function A\ reflects the parametrisation chosen for the geodesic and may
be set to zero if affine parametrisation is required. However, the more gen-
eral (parameter-independent) parametrisation (7.5) will be retained here and
which, in the above chart domain, may be rewritten

kS pk® = \k® (7.6)

where k*(t) = dw;t(t) is the tangent vector to c. The work in section 2.9 shows,
with an abuse of notation, that the range ¢(I) of the geodesic ¢ through p is
determined by p and the direction of the (non-zero) tangent to ¢ at p.

In this chapter a situation is considered where a manifold M admits two
metrics and associated Levi-Civita connections and which are such that their
geodesics coincide. This subject has received significant coverage over the past
few years and much information, history and bibliographical detail of the
subject can be found in [97]. In particular, the early work of Eisenhart [37] and
Petrov [49] are very important. There is some overlap between [97] and parts of
this chapter but the methods and general approach used here are independent
and quite different and which, after some generalities, will concentrate on the
4—dimensional case and for each of the three possible signatures.

So suppose that g and ¢’ are smooth metrics on M with Levi-Civita con-
nections V and V' and Christoffel symbols I'f, and I')%, respectively. Suppose
also that the geodesics arising from V and V' are the same, that is, if for
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some open interval I C R, ¢: I — M is a geodesic as defined in chapter 2
satisfying (2.23) (or (7.5) or (7.6) above) with respect to V for some function
A it satisfies (2.23) (or (7.5) or (7.6)) with respect to V' for some function X'
Thus for each p € M and each 0 # v € T, M, there exists an open interval
I C R containing 0 and a smooth path ¢ : I — M starting from p and with
¢(0) = v which is geodesic for both V and V'. In this case (M, g) and (M, g’),
or V and V', or their respective metrics g and ¢’, are said to be projectively (or
geodesically) related or projectively (or geodesically) equivalent. Tt is noticed
that no restrictions are placed on the parameters of ¢ and thus, for example,
a particular parameter on ¢ could be affine for each of, exactly one of, or
neither of V and V’. Sometimes the range space ¢(I) C M is referred to as
an unparametrised geodesic (for V and/or V’). Then in coordinate language
the tangent vector k%(t) to c at c(t) satisfies k% ,k® = Ak® and k% k> = Nk*
for smooth functions A and A’ and where a semi-colon and a vertical stroke
denote, respectively, a covariant derivative with respect to V and V'. It fol-
lows that k%,kk¢ = k°,k°k® and similarly k®,k"k® = k°,k’k® hold on c([).
A subtraction of these last two equations removes the partial derivatives and
gives PLE kk® = PEkPkk®, where P2, = T2 —T'¢, = P4 . This last equation
may be rewritten to expose the tangent vector components as

(65P2 — 04 PE)Kk Kk =0 (7.7)

and is true for each initial choice of k = v € T, M and for each p € M. Thus
the bracketed term, when symmetrised over the indices b, ¢ and d, is zero and
so, since P = P§,

5§Pb(' 6dpb(' + 5b (;b (i + 66de 5aP§b = 0 (78)

and a contraction over the indices d and e finally gives in any coordinate
domain in M

Py, =Ty — T = 05¢be + 024 (7.9)
where ¢, = 5 P2, Now it is easily seen that the Py, are the components
of a global, smooth, type (1,2) tensor field on M and hence that the 1, are
the components of a global, smooth 1-form on M. Conversely, if (7.9) holds
in any coordinate domain of M and for some global, smooth 1-form field
on M then, in that domain, P2k%kk® = Pk kk® and recalling the earlier
derivation of (7.7) this shows that if the geodesic equation for k and V is
satisfied, that is, k% ,,k® is a multiple of k¢ along c, ka|bkbke = k:e|bl<:bk:“ holds
along ¢ and hence the geodesic equation for V' is satisfied, and vice versa.
Thus V and V' are projectively related if and only if (7.9) holds for each
coordinate domain in M for some global, smooth 1-form i on M. The 1-form
v, which is determined by V and V' is referred to as the projective 1-form
associated with V and V'. Since 1, = A5 P, = 25 (0, — T%,) and since V
and V'’ are the respective Levi-Civita connections for the metrics g and ¢’ on

M one may use the expression for I'g, in chapter 3 to find I‘gb (see, e.g., [37])
det g’
detg

and hence to get ¥q = 57 +1 (log | ).« so that 9 is a global gradient (an
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exact 1-form) on M. [It is remarked that if one, or both, of the symmetric
connections V and V' is not metric then, although (7.9) still holds, ¥ need
not be exact. In fact, given a smooth, symmetric metric connection V on M
and a smooth global 1-form 1 on M which is not exact, one may construct a
symmetric connection V' on M according to (7.9) which is then not metric
but shares the same unparametrised geodesics as V. Thus knowledge of all
such unparametrised geodesics on M does not disclose whether a symmetric
connection yielding those geodesics is metric or not (cf [98]).]

Equation (7.9) for connections V and V'’ gives a geometrical interpretation
of the 1-form 1. Suppose a path ¢(t) is an affinely parametrised geodesic
for V so that, in the above notation, k% ,k® = 0 along c(I). One then finds
ke pk? = p(t)k® with p = 2pok® on ¢(I). Thus 1 controls the deviation of
the parameter on ¢ from being affine for V’. (cf section 6.4 and note that if
V and V' are metric connections one has ¥ = dx for some smooth function
x: M — Randsopu= 2‘%.) If 4 is identically zero on M, V' = V, and V and
V' agree as to their affine parameters. In this case V and V’ (or g and ¢’) are
said to be affinely related or affinely equivalent on M. If v is not identically
zero on M, that is, V' # V, (M,g¢') and (M, g), or V' and V, or ¢’ and g are
said to be properly projectively related, on M.

If V and V' are smooth symmetric metric connections on M they are
projectively related if and only if their respective Christoffel symbols satisfy
(7.9) on M for some global, smooth, exact 1-form on M. This equivalence can
also be described in terms of the V-covariant derivative of the metric ¢, Vg'.
To see this one first writes out the identity V'g’ = 0 in any coordinate domain
in M and then replaces the V'’ Christoffel symbols with those from V and the
components of ¥, using (7.9), to get

g:zb;c = 29;bwc + g;cwb + glécwa' (710)

This is the desired expression for Vg’'. Conversely, if (7.10) holds in each
coordinate domain of M (and noting that the identity V¢’ = 0 is just
g;b‘c = 0) write g.. — 9;b|c = .. On any coordinate domain. The left
hand side of this equation can be written out in terms of the components g,
I'% and I'f, and the right hand side may be replaced by (7.10) to give

Gaa Pl + gha Pl = 290 0c + Gheths + Gheta- (7.11)

“ )

Regarding (7.11) as the “abc” equation, compute the equation “abc
“bea” +“cab” to get (7.9). Thus the following theorem has been established.

Theorem 7.1 Let g and g’ be smooth metrics on M with respective Levi-
Civita connections V and V'. Then the following are equivalent.

(1) V and V' (that is, g and g') are projectively related.

(i1) There exists a smooth, global, exact 1-form ¢ on M such that the
Christoffel symbols arising from V and V' satisfy (7.9) in any coor-
dinate domain.
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(i4i) There exists a smooth, global, exact 1-form v on M such that ¢’ and V
satisfy (7.10) in any coordinate domain on M.

Given that the above (equivalent) conditions hold the 1-forms % in parts
(#4) and (¢ii) are equal. [It is remarked here that if 0 # p € R, g and pg are
always projectively related (in fact, affinely related) since then V = V’.] The
condition (i¢) (equation (7.9)) above allows a neat comparison between the
curvature and Ricci tensors arising from (the projectively related) V and V'
[37]. To achieve this write the curvature tensor components R'%,.q for V’ as in
(2.30) and eliminate the terms I'}% using (7.9). A tedious but straightforward
calculation gives

R'ca = R%ca + 030pe — 02004 (7.12)

where 1, is the symmetric tensor with components o5 = Yo — Vot A
contraction over the indices a and c then relates the Ricci tensors Ricc and
Ricc from V and V', respectively, with components R,;, and R],;, as

Ry = Rap — (n— 1)thgp. (7.13)

One can then construct a smooth, global, type (1, 3) tensor W from the tensors
Riem and Ricc for V on M as

1
Wed = R%ca + m(égRbc — 02 Rpa)- (7.14)

If one computes the tensors W and W’ as in (7.14) but associated with the
projectively related connections V and V' so that equations (7.12) and (7.13)
hold, one finds that W’ = W, that is, the tensors W and W’ agree on M
if the symmetric connections V and V' are projectively related on M. In
this sense, W is a “projective invariant”. This tensor and the consequence
W' = W were discovered by Weyl [30] and W is called the Weyl projective
tensor. [It should be compared with the Weyl conformal tensor C' introduced
earlier for conformally related metrics, but not confused with it. It is noted
that C depends on a metric for its existence whereas W depends only on the
connection V (through the Ricci and curvature tensors).] It is pointed out here
that the converse of this result by Weyl (in the sense that two metrics with
equal (and nowhere zero) Weyl projective tensors are projectively related) is
not true [88]. To see this let g be the Lorentz metric given in coordinates
u,v,z,y in the general form (4.49) with the coordinate restriction u > 0 and
with the chart chosen so that Riem is nowhere zero. Choose the function H
to satisfy 9?H/dz% + 0> H/dy? = 0 which can be shown to give the vacuum
condition Ricc = 0. Such a metric g is called a pp-wave [64]. Then consider
the metric ¢’ = u~2g which is conformally related to g. In the usual notation
it can be shown that ¢’ is also vacuum and so, since the Weyl conformal
tensors C and C are equal and Ricc = Ricc’ = 0, one gets Riem = Riem’. It
follows that W’ = W and is nowhere zero. However a simple calculation from
(7.10) shows that, quite generally, two conformally related metrics cannot be
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projectively related unless the conformal factor is constant (see, e.g. [100]).
Thus g and ¢’ are not projectively related and the converse is thus false.

It should be remarked here that the computations in (7.12), (7.13) and
(7.14) depended on the symmetry of the tensor 1,p. This, in turn, relied on
the fact that V and V' were each metric and symmetric connections (and
hence their associated Ricci tensors are symmetric). In fact, if one makes no
assumptions on V and V’, one must drop the symmetry of 1, and also of Ricc
and Ricc’. However, the expression for Riem and definition of Ricc given in
chapter 2 still hold but there occur extra terms 6f (¥q;c—c;q) on the right hand
side of (7.12) and t¥p,q — Pa;p on the right hand side of (7.13). Then it easily
follows from this new version of (7.13) that if Ricc’ and Ricc are symmetric,
80 is 94 and hence also 14,,. [This latter remark was noted in [97]]. Then the
original equations (7.12), (7.13) and (7.14) hold and, further, if one assumes
that V is a symmetric (but not necessarily metric) connection, the symmetry
of Y, leads to the symmetry of ¢, and hence to the fact that v is now
a closed (but not necessarily exact) 1-form, that is, it is locally a gradient.
That ¢ may not be exact can be seen by simply choosing ¢ in (7.9) to be
closed but not exact [98]. However, even without these assumptions one may
still construct a tensor with the above projective invariant properties [97] but
this will not be done here. The remainder of this book will be concerned only
with the case when V and V' are symmetric, metric connections with metrics
g and ¢’. In this case one has the smooth type (0,4) Weyl projective tensor
with components Wapea = GaeWbea and with W%,.4 as in (7.14). However,
it is noted that the above projective invariance property applies only to the
type (1, 3) tensor W.

Lemma 7.2 Let (M, g) give rise to the smooth tensors Riem, Rice, R, E, C
and W, as in chapter 3. Then at any p € M,

(i

(ii

Wea =0, Waeh =0, Wh%ca = =W dc, W*peq) = 0.
W(p) = 0 & Riem takes the constant curvature form at p.

(#i1) W(p) = Riem(p) & Rice(p) = 0.

)
)
)
) W(p) = C(p) & E(p) = 0 & the Einstein space condition holds at
P < Wabed = —Whaea at p. If these equivalent conditions hold, Wapeq =

chab .

(v

(v) If ¢’ is another smooth metric on M which is projectively related to g,
(M, g) is of constant curvature < (M, g") is of constant curvature.

Proof Part (7) follows easily from (7.14). For (i¢) the condition W(p) =0
gives Ropeq = ﬁ(gacRbd — gadRpe) at p which, since Ryped = Redap, implies
the Einstein space condition on Ricc(p) and which, on substitution into (7.14),
gives the constant curvature condition at p, which for dimM = n is Rgpeq =

%(gacgbd— Jadgve)- Conversely, the constant curvature condition at p gives
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the Einstein space condition at p and then (7.14) reveals W (p) = 0. Part (i4i)
is immediate from (7.14). For (iv) it is convenient to define a type (0,4) tensor

Q at p by

1
Qaved = Wabed + Whaca = m(gadec — GacRoa + gpaRac — gocRad). (7.15)

Thus @ =0 = Q% =0 = Eab = 0 at p where Ricc is the tracefree Ricci
tensor at p, the latter equation here being equivalent to the Einstein space
condition at p and to the vanishing of the tensor F at p (chapter 3). It then
follows that Rgpeq = C’abcd—l—ﬁ(gacgbd— Jadgbe) at p. From this the Einstein
space condition at p follows and (7.14) reveals that W (p) = C(p). Finally the
index symmetries of C' show that if W(p) = C(p) then Q(p) = 0 and (iv) is
established. For part (v) if g and ¢’ are projectively related, W/%,.q = W%peq
on M and the result follows from part (i). O

Part (iv) appears in [88] (but is mentioned in [99]) and part (v) is given
in [37].
In the case when dimM = 4 the following results hold.

Lemma 7.3 (i) For (M,g), if there exists p € M at which Riem takes the
constant curvature form with Ricci scalar non-zero, the infinitesimal holonomy
algebra and hence the holonomy algeba is 6—dimensional and is hence o(4),
0(1,3) or o(2,2), depending on signature.

(i1) If (M,g) and (M,g') are projectively related and if each of their re-
spective holonomy algebras has dimension < 6 then Riem and Riem' agree
as to their zeros, that is, the sets {p € M : Riem(p) = 0} and {p € M :
Riem/(p) = 0} are the same.

Proof For (i) one simply notes that Rgpeq is then a multiple of the
bivector metric P (chapter 3) and so the range space of the curvature map
is 6—dimensional. For (i7) suppose Riem(p) = 0 for some p € M. Then
Rice(p) = 0 and so W(p) = 0 (lemma 7.2). Hence W/(p) = 0 and part (ii) of
the previous lemma shows that Riem’ takes the constant curvature form at p
and the first part of this lemma reveals that the associated Ricci scalar, and
hence Riem’, vanish at p. The reverse proof is identical. O

7.3 The Sinjukov Transformation

In this section dimM = n > 2. For a given geometry (M, g), where g has
Levi-Civita connection V, the formal procedure for finding another smooth
metric ¢’ on M with Levi-Civita connection V' and which is projectively
related to g is thus to solve (7.9) for V' and 1, or to solve (7.10) for ¢’ and
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1. Thus, with (M, g) given, one seeks pairs (¢’, ) satisfying (7.10). There is
a little redundancy in (7.10) which can be removed by using the following
rather neat transformation due to Sinjukov [101] and which, starting with
(M, g), instead of attempting to solve (7.10) for the pair (¢, 1) tries to find a
certain pair (a, A), where a is a non-degenerate, smooth type (0,2) symmetric
tensor on M and A a smooth 1-form on M and which are constrained by a
differential relation, the Sinjukov equation, and which corresponds to (7.10).
Having found a and A the procedure provides a means of recovering the desired
solution pair (¢’, ).

To achieve this one starts with (M, g) and a metric ¢’ and ezact 1-form
1 on M satisfying (7.10) and writes 1) = dy for some global smooth function
X : M — R. In any coordinate domain U C M one then defines a smooth,
symmetric, non-degenerate tensor a and a smooth 1-form A, on U, by

Agp = €2X9/0d9ac9bd7 Ag = _eQX'(/}bglbcgam (716)

from which it follows that A\, = —aq® where ¥ = ¢%1),. One may then
invert (7.16) to get

rab _ 672Xacdgacgbd’ 'l/)a _ 7672x/\bgbcg;c’ (717)
where the ¢’® are the contravariant components of ¢’, so that ¢’*’g) = §2.
Assuming that g and ¢’ are projectively related, so that (7.10) holds, one may
rewrite (7.10) by first noting that (¢’*%g;.).q = 0, where a semi-colon denotes
a V—covariant derivative. Expanding this result and using (7.10) gives

9 = =29 — 829" ba — 629" . (7.18)

Then using the first equation in (7.16) one finds
Gabie = 262XXcg"“ GacGoa + 62Xg;/§dgaegbd (7.19)
into which (7.18) is substituted. The result, using the second of (7.16), is then
Qabse = JacAb + GoeAa- (7.20)

This the required Sinjukov equation [101] and, given (M, g), is to be solved for
the global, smooth, symmetric, type (0,2) Sinjukov tensor a and the global,
smooth 1-form A, on M. It immediately follows by contracting (7.20) with
g® that X is exact, being the global gradient of the global smooth function
%aabg“b. Thus from the pair (¢’,) satisfying (7.10) one has computed the
pair (a, A), as in (7.16), each uniquely up to the same multiplicative, non-zero
constant which arises from the freedom in the choice of x. The pair (a, \) then
satisfies (7.20).

Now suppose (M, g) is given and one has a smooth solution pair (a, \)
to (7.20) on M with a symmetric and non-degenerate and A\ smooth (and
necessarily exact). One must then show how to construct the pair (¢, ¢) with
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g a smooth metric and v a smooth, exact 1-form, on M which, together,
satisfy (7.10). To do this define a unique, smooth, symmetric type (2, 0) tensor
b on M by stating that at any point in any coordinate domain of M the
components b?® constitute the inverse matrix to a., at that point, that is,
Anb? = 52. The b so defined is easily checked to be a tensor and to be smooth
and non-degenerate. Of course, one still raises and lowers indices associated
with a and b using the original metric g, so that bs.a®® = 6°. Now define a
global, smooth 1-form 1) on M by the component expression 1), = —bg A’
in any coordinate domain. Then index manipulation (using g) gives \, =
—ag?. To see that the 1-form 1) is exact one takes a V—covariant derivative
of the relation a,.b = 53 to get (aacb‘:b);d = 0 and which, on expansion and
use of (7.20), gives

(Jadre + Gedra)bP + aaqeb®.q = 0. (7.21)

On multiplying (7.21) by b*¢ and using some index manipulation, one gets

babNe + bg"b Ny + by =0 (7.22)
where bg® = gaqb®® and which, since 1), = —bgp A, finally gives
bab;c = bacwb + bbcq;[}a- (723)

Next define a smooth symmetric connection V" on M by taking, in any co-
ordinate domain in M, its Christoffel symbols as I')* = I'¢, — ¢*gp.. Using a
double vertical stroke for V" —covariant derivatives one finds

1nd 1nd d d
aabHc = Qab,c — a'adrbc - abdrac = Qab;c + a’ad’L/} 9bc + a/bd’(/} Gac = 0 (724)

where the final step is obtained using A\, = —a4%° and (7.20). Thus V"a = 0
and so V" is a metric connection with a as a compatible metric (chapter 3).
The definition I')¢ = ', — 1)*gpe, on contraction over the indices a and b then
gives

1 |det g
L, =10 — T = (2] a 7.25
7/} ab ab (2 0g(|deta|))’ ( )
which confirms that 1 is exact on M, being the gradient of x = £ log( Ij:ig I ),

1 = dx. Finally define a global, smooth metric ¢’ on M by ¢’ = e?Xb. It then
immediately follows from (7.23) that ¢’ and v satisfy (7.10) on M. Further,
9;b = 62Xbaba g/ab = e ?Xg" and so Aap = gacgbdaCd = gacgbdezxgmd and
—e2Xy g™ g = —ePXhpe™Xag,. = —1ppa’°ge. = Ao and one recovers the
original relations (7.16) with ¢’ determined up to a multiplicative constant.

Thus the problem of solving (7.10) for the metric g’ projectively related
to the original metric g, and the exact 1-form 1, has been expressed in the
equivalent form of solving (7.20) for a and A using (7.16) and (7.17) to con-
vert back to ¢’ and . In practice, whilst (7.10) is useful, it is usually more
convenient to deal with the Sinjukov form (7.20).
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7.4 Introduction of the Curvature Tensor

The curvature tensor may be introduced into the problem by applying the
Ricci identity (chapter 2) to the Sinjukov tensor using the Sinjukov equation
(7.20). One gets, in any coordinate system of M

GaeRpea + abeReacd(: Aab;ed — aab;dc) = gac)\bd + gbc)\ad - gad>\bc - gbd)\ac
(7.26)
where A\gp = Aaip = Ape since A is exact. On contracting (7.26) with ¢%¢ one
finds
nAbd = Ygpq + a““Reped — ape R g (7.27)

where ¥ = A7, = Ag and where the Ricci tensor is introduced. Since the left
hand side and the first two terms on the right hand side of (7.27 are symmetric
in b and d it follows that ap.R°q = ageR¢,. A V— covariant differentiation of
(7.27) then gives

nAbaf = ¥ pGpa + 0 f Reped + 0 Reved; f — Ape; fR°a — ape R (7.28)
and the V—covariant derivative of @ may be removed using (7.20) to give

NAaf = Y 1 Gbd+ A Rep fa+ A Rved+0" Repad; f —go f Red A — Rpa o —ape R q; 5.

(7.29)
Next the Ricci identity for A gives Ap.qr — Ap;ra = A°Repqr and using this in
the previous equation one finds

nApfa = W rgpa + (0 + DA Reppa + A Rypped + 0" Repad,f —
gbeed)\e — Rfd)\b — abeRed;f. (7.30)

Then a contraction of (7.30) with g®/ gives

(TL — 1)\117(1 = —2(TL + 1)Red)\e — aaeRbead;b — abeRed;b. (731)

Finally the Bianchi identity Rpe[cq;qp = 0, on contraction with g%, gives
R®cadib = Red:a — Rea;a and on substitution into (7.31) gives

(n— 1)\If7d = =2(n+ 1)Reg\® + aec(Rec;d — 2Red;c)- (7.32)

Next consider equations (7.20), (7.27) and (7.32). These give a system of
first order differential equations for the global quantities a.p, Ay and ¥ in the
sense described in the previous chapter [101, 97, 104, 102]. It follows that the
values of the members of the triple (a, A\, ¥) at each point of M are uniquely
determined by the % (n+1)(n+2) quantities a(p), A(p) and ¥(p) at any point
p € M. Thus one has the following theorem [101] (see also [97], p 150).

Theorem 7.2 Let (M, g) be an n—dimensional manifold with smooth metric
g of arbitrary signature. Then (7.20), (7.27) and (7.32) represent a first order
system of differential equations for the global objects agp, g and ¥ on M.
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7.5 Einstein Spaces

Continuing the argument of the previous sections let (M,g) be an
n—dimensional Einstein space (n > 2) (which is not flat) so that the Ricci
tensor satisfies Ricc = % g with constant Ricci scalar R and, as a consequence,
the Bianchi identity (Chapter 2) gives R%cq4;q = 0 on M. Then an obvious co-
variant differentiation of (7.26) using this last identity gives, on any coordinate
domain of M,

Age; dR be + Qpe; dR ac - gac)\b d+ gbc a d 5d}‘bcd 61; )\acd (733)
where Agpe = Agibe = Abge and this can be simplified using (7.20) to get
)\eRebca + )\eReacb - )\aRbc - )\bRac = gackb + gbcka - )\bca - )\acb (734)

where k, = A\,%y. Taking into account the symmetry R%peq) = 0, the Ricci
identity for A, Apac — Avca = A Rapace and the identity Agep = Aeas One can take
the skew part of (7.34) over the indices a and ¢ to get (see [104])

4/\6Rebca = RbcAa - Rba)\c + gbcka - gabkc~ (735)

Then use the Einstein space condition R, = % GJap tO get

1 R R
— gbc(ﬁ)\d + kq) — gbd(g)\c + k)] (7.36)

AaRabcd - 4[

followed by a contraction with ¢*¢ to find

—1) R
MRy = =D B, (7.37)
4 n
But ARy, = %/\b and so k, = S(anl)%/\ Now since (M, g) is an Einstein

space, = 0 in chapter 3 and so one achieves the following expression for the
Weyl conformal tensor,

R
Cac:Rac_i ac — Ya c)s 7.38
bed bed n(n—l)(g 9bd — JadGvc) ( )
and then (7.36) and (7.38) give the important result [103]

AClapeq = 0. (7.39)

A back substitution into (7.38) yields

)\aRabcd - ) (gbd)\c - gbc)\d)' (740)

R
nin —1
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Next use the Ricci identity for A recalling that Agpe = Agipe to get

)\bca + )\acb = )\cba + )\cab = )\cba - )\cab + 2)\cab = 2)\c;ab + )\decba~ (741)

Then using (7.40) and the above expression for k the Einstein space condition
in (7.34) gives

R
m(zgab)\c + 3gacAy + Sgbc)\a) = —Abca — Aach (742)
and use of (7.41) (and (7.40)) finally gives
/\a;bc = 2gabllc t Gacko + Goclta (743)
R

where the 1-form p = —m)\. Since these calculations hold in any coor-
dinate domain of M, (7.43) reveals, from (6.21) that, because Ag;p = Apia,
the tensor hq, = Agyp + by satisfies the conditions for the associated global,
smooth vector field A* to be a projective vector field on M with projective
1-form 24 and zero projective bivector (since Ag.p = Apiq)-

Suppose now that (M, g), in addition to being an Einstein space, (is not
flat and) is properly projectively related to (M,g’) as above (that is, X is
not identically zero on M), and define the open subset U C M by U =
{p € M : Riem(p) # 0} so that U # (). Then define the open subset V. C M
by V.= {p € M : A(p) # 0}. Since X\ is a projective vector field on M it
vanishes on M if it vanishes on some non-empty open subset of M (chapter
6). Thus the subset V is open and dense in M and U NV is non-empty and
open in M. Then for p € UNV let F* = u%?® — v*u® be a simple 2—form at
p for independent u,v € T, M. Suppose T is a symmetric tensor at p and that
ToeFy + Ty F, = 0, where F¢, = Fg,. Then, defining v’ = T%u’ and
v = T%b (and ul, = gapt'®, v, = gapv™) one finds ul, vy — v, up+upve —vju, =
0 and selecting 0 # w € T,M with w-u = 0 # w - v (as one always can
since dimM > 2 and where - denotes an inner product from g) an obvious
contraction with w® shows that u’ is a linear combination of v and v, and
similarly for v’. It follows that the 2—space Sp(u,v) is invariant for (the linear
map represented by) T (cf a similar result in the 4—dimensional case discussed
in earlier chapters). Writing (u/, =)Twpu® = au, + bv, and (v, =)Tpv° =
cuq + dv, and substituting back then easily gives b = ¢ = 0 and a = d and
so Sp(u,v) is an eigenspace of T" at p. Now, for p € U NV, extend A\*(p) to
a basis A*(p),¢{,...,q%_, for T,M and note, from (7.40) that each 2—form
F(“rz) =\, — q% \? satisfies Rabch(‘;‘fl) = n(ii}fl)F(m)ab 1<m<n—-1).A
contraction of (7.26) with F(Cr‘i) then reveals that TaeF(em)b + TbeF(em)a =0 for
each m and with Ty, = n(iilfl)aab + 24, giving the components of a global,
smooth, symmetric tensor on M and hence, from the above, that T, M is an
eigenspace of T for each p € M. It follows that, at each p e UNV, T is a
multiple of g and hence that (cf [97])

R

Aap = 0fap — ——0q 44
b = O0Gab n(n—l)ab (7.44)
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holds on UNV for some smooth function o : (UNV) — R. A back substitution
of (7.44) into (7.26) can be used to eliminate A from the latter equation and
gives

aaeRebcd + abeReacd = ) (gacabd + 9bclad — Jadlbe — gbdaac)- (745)

nin —1
Combining this with (7.38) finally gives, on U NV
aaecebcd + abeceacd =0. (746)

Now Riem, and hence C, vanish on M \ U and so (7.46) holds on (UNV)U
(M\U) and hence on V and since V' is open and dense in M, (7.46) holds on
M.

Now specialise to the case when dimM = 4 and in which (7.39) and (7.46)
will play important roles. Define the subsets P and Q of M by P={pe M :
C(p) #0} and Q@ ={p e M : C(p) =0} so that P is open and Q@ = M \ P is
closed, in M. Whichever signature is chosen, if P = () (and since (M, g) is an
Einstein space) (M, g) has constant curvature (chapter 3). So suppose (M, g)
is not of constant curvature so that the open set P # (). In the positive definite
case (7.39) shows that A = 0 on P (chapter 3) and since A is projective, one
gets the contradiction that A =0 on M (chapter 6). Hence (from (7.16)) the
1-form v vanishes on M and so V' = V.

Now suppose g has Lorentz signature and consider the subset P above. By
assumption A cannot vanish on P (otherwise it vanishes on M and V' = V).
So suppose p € P with A(p) # 0. Then there exists an open subset W C P
on which A does not vanish. Then (7.39) shows that A is null and C is of
Petrov type N on W with (repeated) pnd spanned by A (chapter 4). Thus,
on W, the range space of the Weyl map f¢ is spanned by a dual pair of null

bivectors F' and F which, writing [ for A, can be written at any p € W as
F =lIlAxz and F = —IAy with [, n, 2,y a null basis at p. Then (7.46) shows that

GaeFp+ape F¢q = 0 at p and similarly for F' and so the blades of F' and F' are
each eigenspaces of a at each p € P. It follows that a., = agay + Blalpy in any
coordinate domain in W and for smooth functions a and 8 and smooth, null
vector field I, on W. Since [,I* =0 on W, [®l5,, = 0 on W and a substitution
of this expression for @ into (7.20) and a contraction with g? gives 200, =1,
whilst a contraction with [* gives « , = [,. This contradiction leads, in turn, to
the contradiction that A = 0 on W. Thus X vanishes on M and again V' = V.

Finally suppose that g has neutral signature. A similar argument to that
given above reveals the open subset W on which A and C' are nowhere-zero
and on which (7.39) and (7.46) hold. Thus, from the classification of C' given
in chapter 5, A is null on W and the algebraic type of C' at each p € P is
either (N, N) or (N, 0) with A a pnd for C in each case. In the first case the
Weyl map fc is of rank 2 and its range is spanned by bivectors [ A N and
I A L whilst in the second case it is of rank 1 and is spanned by a bivector
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IAN' where (I,n, L, N) and (I,n/, L', N') are null bases for this signature and
with [* = A\%. Thus, in the first case [ A N and [ A L are eigenspaces for a and
in the second case | A N’ is an eigenspace of a, from (7.46). It is clear that
one may disjointly decompose W into the (open in W and M) subset Wy of
points where rank fo = 2 and the subset W; of points where the rank fo = 1.
If W5 # () the above argument in the Lorentz case gives the contradiction that
A = 0 on W5 and, as before, V' = V. If, however, Wy = (), W; = W is open
and so, dropping primes for convenience, a smooth null basis (I,n, L, N) may
be chosen locally smooth with I A N and eigenspace for a from (7.46) and one
gets

Gap = QGap + Blaly + YN Ny + (5(laNb + Nulp) (7.47)

for smooth functions «, 3,7 and § on some appropriate open neighbourhood
W' C W of any p € W (and, as before, I = X and {%l,,;, = 0). A substitution
into (7.20) followed by successive contractions with g*® and N® (noting that
NN, = 0= NN,y = 0 and 1N, = 0 = [9N,.. + N%,,. = 0) then give the
equations

20, =1,  Qc+O6Ne=0, BN =N, (7.48)

Now since A(= 1) and N are nowhere zero on W' one sees that « 4, 6 and
are nowhere zero on W’ and hence that [ and N are proportional on W’. This
contradiction leads, in turn, to the contradiction that A\ vanishes on W’. Thus,
as before, A vanishes on M and so V' = V. It is recalled that, independently
of signature (lemma 7.2), (M, ¢’) is of constant curvature if and only if (M, g)
is of constant curvature. Thus one has the following theorem which appears
to have been discovered independently in [49, 103, 104] (see also [98]).

Theorem 7.3 Let g and g' be smooth metrics of arbitrary signature on the
4—dimensional manifold M with Levi-Civita connections V and V', respec-
tively, and with (M, g) an Einstein space. If V' and V are projectively related
then either V' =V or (M, g) and (M, g’) are each of constant curvature.

Still in the 4—dimensional case and with (M, g) not of constant curvature
and projectively related to (M, g') one has V' = V and hence Riem’ = Riem
and Ricc’ = Ricc. In the case when (M, g) is Ricci-flat, that is, Ricc = 0 on
M, (M, ¢') is also Ricci-flat, Ricc’ = 0. Suppose (M, g) is of Lorentz signature
and is vacuum. The holonomy types of V and V’ are the same and are either
Rs, Ry4 or Ry5 (theorem 4.11). The general techniques of chapter 4 show that
g’ = cg for 0 # ¢ € R unless this type is Rg. In this latter case there exists an
open neighbourhood W about any p € M and a smooth vector field [ on W
such that ¢/, = agqep + blaly for a,b € R with a # 0 and with [ a smooth (g—
and ¢’—) null vector field satisfying VI = V'l = 0 on W (since V' = V). Thus
g and ¢’ are pp—waves (chapter 4). However, if (M, g) is a proper Einstein
space (R # 0) the (equal) holonomy types of (M, g) and (M,g’) are Ry, Ri4
or Ry5. This gives ¢’ = cg for 0 # ¢ € R unless this type is R; and it can be
checked that in this case, locally as above, ¢/, = agap + b(lanp + ngly) with
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I and n (V and V’) recurrent (g— and ¢’—) null vector fields on W. In this
case, (M, g') may not be an Einstein space. [103, 105] Similar remarks may
be made regarding the positive definite and neutral signature cases.

As a final remark and with dimM = 4 and (M, ¢g) an Einstein space of any
signature and which is not of constant curvature suppose X is a projective
vector field on X satisfying (6.20) and (6.21) with ¢, = x,. It has been
pointed out in [97], quite generally, that if one defines a global tensor field a
on M in component form by ag.p = hep — 2Xgep then a and the 1— form
satisfy Sinjukov’s equation (7.20) on M. Thus (M, g) is projectively related
to some manifold (M, g'). Theorem 7.3 then shows that ¢ = 0 on M and so
X is affine. Thus any projective vector field on M 1is affine. This strengthens
a result in [113, 13] where this result was shown only for Lorentz signature
and in the case when the Weyl conformal tensor was nowhere-zero over some
open dense subset of M.

7.6 Projective Relatedness and Geometrical Symmetry

Returning to the general case with dimM = n, let g and ¢’ be smooth
metrics on M with respective Levi-Civita connections V and V' and suppose
V and V' are projectively related. Let X be a projective vector field for (M, g).
Then (chapter 6) if ¢; is any local flow for X it maps a geodesic of V into a
geodesic of V and hence, since V and V'’ are projectively related, a geodesic
of V' into a geodesic of V' (and vice versa) and so X is a projective vector
field for (M, ¢’). It follows that the projective algebras of V and V’ are the
same. Further, with ¢; as above and U an open subset of M on which ¢, is
defined, it is easily seen that the metric g (restricted to U) and the metric
¢7g on U (pulled back from the metric g restricted to ¢,(U)) are projectively
related. The corresponding Weyl projective tensors W (from g restricted to
U) and the one from the metric ¢g are thus equal (section 7.2). But this
latter tensor is just the pullback ¢;W of the Weyl projective tensor from
g restricted to ¢:(U) and so ¢;W = W for each such ¢;. It follows that
LxW =0 for each projective vector field on M. Global smooth vector fields
X satisfying LxW = 0 are referred to as Weyl projective vector fields and
the collection of such vector fields on M, labelled W P(M), is a Lie algebra
under the usual bracket operation called the Weyl projective algebra. It easily
follows that P(M) C W P(M). However, one need not have equality here. To
see this, briefly, one returns to the pp—waves of general relativity (chapter 4)
which satisfy the vacuum condition Ricc = 0 and hence W = Riem (section
7.2). It is known that for such metrics the solutions of Lx Riem(= LxW) =0
give an infinite-dimensional Lie algebra [106] whereas (chapter 6) P(M) is
finite-dimensional. Hence P(M) is a proper subset of WP(M) in this case.

Staying with the general case when dimM = n > 2 and with projectively
related metrics ¢ and ¢’ on M and with respective Levi-Civita connections
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V and V', let X be a Killing vector field on M with respect to g so that
Lxg = 0 or, equivalently in any chart domain of M, X, = Fup(= —Fpqg)
where X, = g, X% F is the Killing bivector and a semi-colon means a
V—covariant derivative. The metrics g and ¢’ satisfy (7.9) and (7.10) where
the global smooth 1-form ¥ = dy for a global, smooth function x on M. Then
define a global, smooth vector field Y on M by the component relations in any
chart of M as Y@ = e?Xg/%g,. X ¢ and then define Y, = ¢/, Y’ (noting the use
of ¢’ to lower the index on Y'). Then following [107] (taking the opportunity
to correct an error in that reference) and using a vertical stroke to denote a
V' —covariant derivative one finds from (7.9)

Xap = Xap + Py Xe = Xapp + Xathp + Y Xp (7.49)
and so
(Lxg)ab = Xap + Xbsa = Xapp + Xpjo + 2(Xa¥p + Y Xp). (7.50)
Next compute
e X (e Xa) b = Xapp + € X(26X X 0 Xa) = Xapp + 2X s (7.51)

Now, from the definition of YV, Y, = ¢/, Y = e*X¢/,9'*°g.aX? = €?XX, and
so, from (7.51), € 2XY,, = X,p + 2X 4% Then using (7.50)

(LxG)ap = 672X(Ya|b + Yb|a) = 672X(£Yg/)ab. (7.52)

Thus if X is a Killing vector field for (M,g), Y is a Killing vector field for
(M, g’). Further, with the above definitions of X and Y, the map X — Y
is linear and injective and inverts to give X¢ = e=2Xg%g! Y. Hence the
Killing algebras of (M, g) and (M, g¢') are isomorphic as vector spaces and so
have the same dimension. (It has been pointed out to the author that this
result was known much earlier [92]). Thus for p € M, X(p) =0< Y(p) =0
and then, at p, the general relation Y, = €XX, and (7.49) show that the
Killing bivectors Fyp = Xo;p and Gop = Yy, for X and Y, respectively, satisfy
Gap(p) = e*X(p) Fup(p). It follows that the isotropy algebras for g and g’ are of
the same dimension at any p € M and hence so are the Killing orbits through
p for g and ¢’. The following result has been established [107].

Theorem 7.4 If g and ¢’ are projectively related on M then (M,g) and
(M, g") have the same projective algebras, their Killing algebras are isomor-
phic as vector spaces and the Killing orbits for g and g’ through any p € M
have the same dimension.

[It is noted that the above Killing vector field X for g is not necessarily
Killing for ¢’ but it is a projective vector field for ¢’. Examples of this feature
will be given later.]
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It is remarked briefly here that one may now establish theorem 7.3 in
another, shorter, way as follows. Having established the existence of the pro-
jective vector field with components A* on M as in (7.43) let X represent
this global vector field on M so that (6.20) and (6.21) hold and also, from
(7.39), CapeaX® = 0. Because of the Einstein space condition, one has W = C
from lemma 7.2 and since LxW = 0, one gets LxC =0 and Lxg = h from
(6.20) and (6.21). Now ¢4eCed+ goeCCaca = 0 and Lie differentiating this last
equation reveals hgeCecd + hpeCucqa = 0 [113]. Now suppose that dimM = 4
and that the set P of section 7.5 is non-empty. In the event that g is positive
definite one sees immediately from (7.39) that X, that is, A, vanishes on P and
hence on M. If g is of Lorentz signature (7.39) shows that if X does not vanish
on P one may choose P so that (M, g) is of Petrov type N on P (chapter 4)
whilst if g is of neutral signature the algebraic type of C is (N, N) or (N, O)
on P (chapter 5). In each case the result follows as in section 7.5 above using
(6.21) instead of 7.20.

7.7 The 1-form v

Returning to the case when dimM = 4 and with g and ¢’ projectively
related metrics on M one can further investigate the role of the curvature
tensor. Consider the vector space of bivectors F at p satisfying Rpeq F°? = 0,
that is, the kernel, kerf(p), of the curvature map f at p. Then, with F' €
kerf(p), contract (7.26) with F°¢ (noting that F%, = F%g,. = —F},%) to get

AacFC + Ao Fq = 0 (7.53)

where A\gp = A = Apg, since A is exact on M. One now sees from lemma 3.6,
lemma 4.7 and lemma 5.10 how each F satisfying (7.53) supplies information
on the algebraic structure of Ay, and, in particular, if such an F' is simple its
blade is an eigenspace of \,p,. Suppose that, at each p € M, ker f(p) supplies
sufficient information to ensure that T, M is an eigenspace of A. Then Agy(p)
is a multiple of g(p) at each p € M and one gets Agp = 0gap in any coordinate
domain of M for a smooth function ¢ : M — R. The Ricci identity on A then
gives on M

)\deabc = >\a;bc - /\a;cb = Gab0,c — JacO b (754)

and then a contraction with F*¢ any non-zero member of kerf(p) gives, on
M

9

0= F"gu0 . — F*goeop = 2F, 0. (7.55)
Further (7.26) then gives on M
aaeRebcd + abeReacd =0. (756)

(Thus far one could have stayed in the general case dimM > 2 but from
now on the imposition dimM = 4 is made). Suppose now that for p € M,
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0q(p) # 0, where 04 = 0 4. Then (7.55) shows that every bivector in ker f(p)
is simple and that they possess a common annihilator and so, from lemma 3.2,
dimker f(p) < 3 and this lemma gives the possibilities for ker f(p). These are
(i) dimker f(p) = 1, (i1) dimker f(p) = 2 with ker f(p) spanned by two simple
bivectors whose blades intersect in a 1—dimensional subspace of T, M, (iii)
dimker f(p) = 3 with ker f(p) spanned by three simple bivectors whose blades
intersect in a 1—dimensional subspace of T, M, or (iv) dimkerf(p) = 3 with
ker f(p) spanned by three simple bivectors the blades of whose duals intersect
in a 1—dimensional subspace of T, M. It is now easily checked that the condi-
tions required of ker f(p) in order to obtain VA = og are not satisfied in cases
(1), (i) and (iv) but are satisfied in case (ii7) since, in this case, the blades
of the members of kerf(p) span T, M. (For case (iv) kerf(p) =Sp(P,Q, R)
for bivectors P,Q and R the blades of whose duals intersect in Sp(k) for
0 # k € T,M. Then k annihilates each member of the blades of P,Q and R
and so the span of the union of these blades cannot be T, M.) Then (7.55)
implies that o 4(p) = 0 contradicting the assumption that o 4(p) # 0. Thus
0, vanishes on M and, since M is connected, o is constant on M, say o = ¢
for ¢ € R. Then (7.54) shows that A¢R%ap. = 0 on M. The following has been
proved [108].

Lemma 7.4 Let M be a 4—dimensional manifold and g and ¢’ projectively
related, smooth metrics on M so that the results (and notation) of section 7.3
hold. Let V be the Levi-Civita connection arising from g and f the associated
curvature map. Suppose ker f(p) is such that it forces T,M to be an eigenspace
of VA(p), as above, for each p € M. Then the following hold in any coordinate
domain of M, for c € R.

((l) )\a;b = CYab, (b) /\deabc =0, (C) AqeRbed + ape R qca = 0. (757)

Suppose now that the conditions of lemma 7.4 hold. Then the vector field
with components A® is a global, homothetic vector field on M with zero homo-
thetic bivector. [If ker f(p) is such that it forces T,M to be an eigenspace of
VA(p), as above, over some non-empty, connected, open subset U of M, then
(7.57) holds on U and A\ is homothetic on U, but may not be homothetic on
M .] Then if A can be shown to vanish over some non-empty, open subset of
M it vanishes on M, as follows from the general theory of chapter 6, and then
V = V'. [In fact one can say a little more here. If ¢ # 0, A is a proper homo-
thetic vector field on M. If (M, g) is of positive definite signature the zeros of
A= {p' € M : \X(p') = 0}) are isolated (that is, if A(p) = 0 there exists an
open neighbourhood V' of p such that A does not vanish at any point of V'\ {p}
and, further, V' may be chosen so that Riem vanishes on V' [10]. Continuing
with this case if (M, g) is of Lorentz or neutral signature the zeros of A need
not be isolated but they are in this case since the homothetic bivector of A
vanishes on M. (See [13] for the Lorentz case; the neutral case is similar).
Then, if A(p) = 0, the equations L£yRiem = 0, LyRicc = 0 and £,C = 0
for the curvature, Ricci and Weyl conformal tensor, respectively, which are
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easily seen to hold since A is homothetic, give Riem(p) = 0, Ricc(p) = 0 and
C(p) = 0. These follow from the vanishing of the homothetic bivector and
(6.10). These results can be used to get weaker conditions on A to ensure it
vanishes on M and hence that V' = V.] Continuing with the conditions of
lemma 7.4 assumed to hold, and with A and B denoting, as usual, the subsets
of M of curvature classes A and B, if the necessarily open subset AU B is non-
empty, (7.57(b)) shows that A vanishes on AU B and hence on M and again
V' =V (see section 3.5, section 4.5 and section 5.6). Finally if the range of
the curvature map f is known over M, (7.57c) can be used to to find algebraic
expressions for the Sinjukov tensor a (lemma 3.6, lemma 4.7 and lemma 5.10)
since then aqe F¢p + ape F'¢, = 0 for each F' € rgf(p) and for each p € M. On
substituting these into (7.20) one achieves information on .

Thus to study projective relatedness for dimM = 4 and for all three sig-
natures the general idea is to start with (M, g) and to assume some holonomy
group ® and algebra ¢ for (M,g). Thus with QS;, the infinitesimal holonomy
algebra at p one has rgf(p) C ¢}, C ¢. Then one makes an assumption (that
is, a choice) about the holonomy algebra for (M, g) and writes down a possible
disjoint decomposition of M into its curvature classes. From ¢ one may also
check from lemma 7.1 if any local parallel or recurrent vector fields are ad-
mitted. Some general consequences of lemma 7.4 can now be given and which
will reduce repetition in the subsequent arguments.

Lemma 7.5 Let M be a 4—dimensional manifold and g and g’ projectively
related, smooth metrics on M so that the results (and notation) of section 7.3
hold. Let V and V' be the Levi-Civita connections arising from g and g’ and
let f be the curvature map associated with (M, g). Suppose that (M, g) is not
flat.

(#) If dimrgf(p) < 2 for those p in some non-empty open subset U C M
(and note that this automatically holds for each such subset U if the
holonomy group ® of (M, g) has dimension < 2) the conditions of lemma
7.4 are satisfied on U (that is, (7.57) holds and VX = cg on U with
ceR).

(73) Suppose (M, g) satisfies the conditions of lemma 7.4 and that one may
choose a non-empty open subset U C M on which Riem is nowhere zero
and which admits a smooth, properly recurrent vector field. Then A =0
on M and V' = V.

(7i1) Suppose (M, g) satisfies the conditions of lemma 7.4 and that one may
choose a non-empty open subset U C M on which Riem is nowhere
zero and which admits a smooth, nowhere-zero, parallel vector field k.
Suppose dimrgf(p) > 2 at each point of U. Then A\ = 0 on M and so
V' =V.

(iv) Suppose (M,g), U and k are as in part (iii) and where k lies in the
blade of some simple member G of rgf(p) at each p € U. Then k is null
and A =0 on M, hence V' = V.
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(v) Suppose (M, g) satisfies the conditions of lemma 7.4 and that one may
choose a non-empty open subset U C M on which Riem is nowhere-
zero. Suppose rgf(p) is 1—dimensional and spanned by a null bivector
F at each p € U. Suppose also that there exists a parallel, nowhere-zero
and nowhere-null vector field z on U which is orthogonal to the blade of
F at each p € U. Then either V' =V or (M, g) admits a global, parallel
null vector field.

(vi) Suppose (M, g) satisfies the conditions of lemma 7.4 and that one may
choose a non-empty open subset U C M on which Riem is nowhere-zero
and which admits two independent, smooth, nowhere-zero parallel vector

fields. Then A =0 on U and hence on M and V' = V.

Proof

For part (i) one has dimrgf(p) < 2 for each p € U and so dimker f(p) > 4
for each p € U. Thus the bivectors F satisfying (7.53) constitute (at least
a) 4—dimensional subspace of the appropriate orthogonal algebra. But if G
and H are bivectors satisfying (7.53) then, as seen before, [G, H] also satisfies
(7.53) and so the solutions of (7.53) for F' constitute (at least a) 4—dimensional
subalgebra of the appropriate orthogonal algebra and it is then easily checked
from chapters 3, 4 and 5 that VA is a multiple of g at each p € U. But then
(7.55) shows that if 0 , # 0 at any p € U, ker f(p) is a 4—dimensional subspace
of simple members of A,M contradicting lemma 3.2. The result follows.

For part (i7) let k be the properly recurrent vector field on the open subset
U the latter chosen so that k.., = k,P, for a smooth 1-form field P on U.
Then (7.1) gives k?Ryape = koQpe Where Q is the 2—form Qg = P,y — Py
So assume U is chosen so that ) is nowhere zero on U (as it can be). Thus
koQpq = 0 and so Q is simple with % in its blade (chapter 3) and clearly lies
in rgf(p) at each p € U. It now follows from (7.57)(c) that k is an eigenvector
of a over U, agnk® = ak,, for smooth o : U — R. Differentiating this last
equation and using (7.20) one finds

(aapk®).c = (@ka).c = (Gacs + Goea)k® + ko P = koov e + akoPe.  (7.58)

Now (7.57)(b) shows that A%k, = 0. Then (7.58) gives Ak, = kqo on U.
Since k is properly recurrent it is null on U and if A does not vanish on U one
may choose A to be nowhere zero on U and the last equation then shows that
A is proportional to k, and hence null, on U. But A, = cgqp and A%Agp = 0
on U and so ¢ = 0 on U, that is, A is parallel on U. But this forces k to be
proportional to the parallel vector field A on U contradicting the assumption
that it is properly recurrent on U. It follows that A vanishes on U and hence
on M and V' = V.

For part (ii7) the Ricci identity gives k% Rgape = 0 and then (7.57)(b) and
the assumption on dimrgf shows that A = vk on U for smooth ~. If A is not
identically zero on U one may choose U so that A (and hence k) are nowhere
zero on U and so v is nowhere zero on U. Then Ay, = kv on U and (57)(a)
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shows that ¢ = 0. Since k and A are each parallel one may write A*> = k% on U.
Then rgf(p) is spanned by (two or three) simple bivectors having & as their
common annihilator and so k and the 3—space orthogonal to it give rise to
eigenspaces of a, from (7.57)(c). Thus, on U

Gab = Oab + 6kakb (759)
for smooth functions « and 8 on U. Then (7.20) gives (since k% = \®)
& cGab + B,ckakb = gackb + gbcka~ (760)

If k is null at any p € U it is null on U and contractions of (7.60) first with g¢°
and then with k% reveal the contradiction that £ = 0 on U. So k is non-null
on U and then a contraction of (7.60) with k% and use of the non-degeneracy
of g again gives the contradiction that £ = 0 on U. It follows that A = 0 on U
and hence on M and that V' = V.

For part (iv) since k lies in the blade of G (and G is in rgf) over U the
Ricci identity on k& immediately shows that k is null on U and one may choose
U so that G = kA r on U for a smooth, nowhere zero vector field » on U and,
from (7.57)(b), in an obvious notation, A\-k = X-r =0 on U. Then k A r is
an eigenspace of a on U and so agk? = ak, and agr® = ar, for a smooth
function . Differentiating these on U, using (7.20), one gets

Aake = kqor e (7.61)

and
AaTe + aabrl’;c =Tq0 ¢+ QTgc. (7.62)

If at some p € U r is not null, one may assume U chosen so that r,7* # 0 on
U and that r is scaled so that 7,7* =constant # 0 and hence that r%r,;, = 0
on U. A contraction of (7.62) with 7% then gives o, = 0 on U and then
(7.61) shows that A vanishes on U. Otherwise, r is null on U (and note that
(7.61) then gives (r - k)a,, = 0 on U since r - A = 0 there) and so one may
choose U so that either a, = 0 on U which, as before, leads to A = 0 on
U, or a, is nowhere zero on U, which, from (7.61), implies that k- r = 0 on
U. In this latter case G is totally null on U and one is forced into neutral
signature. Relabelling k£ by [ and r by IV one sees that G = [ A N and is an
eigenspace of a on U. Thus, extending to a smooth null basis on U (which
gives [? N, = 0 since k = [ is parallel) and using the completeness relation
for neutral signature, one finds

tab = Gap + Blaly + YNaNy + 5(1a Ny, + Nalp) (7.63)

for smooth functions «, 8,7 and § on U. Then (7.61) becomes A\l. = loc .
and a substitution of (7.63) into (7.20) and a contraction with g% gives
200, = Ay on U. Thus A, and [, are proportional and these equations can
only be consistent if A =0 on U and hence on M. It follows that V' = V.
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For part (v) one may choose U, smooth vector fields [ and = on U with !
null, z spacelike (the case = timelike, if applicable, is similar) and F = [ Az
with [-z = 0 on U. Suppose A is not identically zero on U. Then one may choose
U so that A is nowhere-zero on U and z is smooth on U. Thenl-z=2-2=10
on U and, from (7.57)(b), A-1 = X-2z = 0 on U. Also the blade of F is an
eigenspace of ¢ on U and so its orthogonal complement [ A z is invariant for a
on U. Thus, on U, a.pz° = pl, + 02, for smooth p and o and (7.20) contracted
with 2° gives

(gacAb + gb(:)\a)zb = lap,c + pla;c + Za0 c- (764)

A contraction with [® then shows that A -z = 0 on U which reveals, since [,
and z are independent at each p € U, that A = ul on U with p smooth on U.
Then [*A,.p = 0 and so from (7.57)(a), ¢ = 0. Thus VA =0 on M and either
A=0 (& V' =V)on M or \ gives rise to a global, parallel, null vector field
on M.

Finally for part (vi) let the parallel vector fields on U be r and s chosen,
as one always can, so that r - s = 0 on U with Riem nowhere zero on U.
Then the Ricci identities give Rypeqr® = 0 and Rgpeqs? = 0 on U and Riem is
clearly of curvature class D on U and Rgpecq = AQap@cq for a smooth function

A and smooth bivector @ with @ = r A s. Then from (7.57)(b) and (7.57)(c),

the blade of @ is an eigenspace of a and A, r and s lie in the blade of @,
A% = ar® + Bs%, for smooth o and 8 : U — R. Next (7.57)(a) gives

CGab = TaCb + Safp (= crg = (110, ¢S = (8- 8)B.0)- (7.65)

*
Since the blade of @ is an eigenspace of a the blade of @ is invariant for a,
that is, aepr? = Y7 + 05, and aqps® = pre + 05, for smooth functions ~, d, p
and o. A differentiation of the first of these and use of (7.20) give

(>\ : T)gac + )\aTC = Ta’y,c + saé,c~ (766)

Forpe Uand0# k € T,M withk-r = k-s =0 (= k%), = 0) a contraction of
(7.66) with k* gives A-r = 0 and similarly A-s = 0, on U. If A(p) # 0 for some
p € U one may arrange U so that A is nowhere zero on U and then A lies in the

blades of both @ and @ and is hence null. Thus in the positive definite case A
vanishes on U and so V' = V. For Lorentz or neutral signature if @ is timelike
or spacelike at some p € U it remains so in some open neighbourhood of p
(and which may be chosen as U) and again V' = V. For Lorentz signature the

*
only remaining case is when @ and @ are null on U. One may then adjust U

so that [, n, z,y form a smooth, real null basis on U with @ =lAz, Q = -l Ay
and with A proportional to [ on U. Then [ Az gives an eigenspace of a over U,
agpll = wly, agpr’ = pxq on U for smooth p: U — R and with I, = ygp =0
on U. Then using the completeness relation for this basis

aab = ftgab + aly + BYays + v(lays + Yals) (7.67)
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for a, 8,7 : U — R which are easily seen to be smooth. On substituting (7.67)
into (7.20) one finds

gac>\b + gbc>\a = W,c9ab + a,clalb + B,cyayb + V,C(layb + yalb)o (768)

Now A%, = M2, = A%, = 0 and a contraction of (7.68) with n%z® yields
An, = 0. It follows that A = 0 on U, hence on M and so V' = V. For
neutral signature one has that @ is null or totally null over U and if there

exists p € U where @ is null then @ differs from ) at p and hence on some
open neighbourhood of p which may be chosen to be U. The proof that A =0
on U then follows in a similar way to the Lorentz case. Otherwise @ is totally
null over U and one may choose a smooth null basis I,n,L, N on U with

Q=INN=Q@Q,! and N parallel and the blade of () spanning an eigenspace
of a. One then proceeds, as above, to obtain
Qab = [1Gab + lyly + BNy Ny, + ’y(laNb + Nalb) (7.69)

for smooth «, 3,7 and with A* in the blade | A N at each point of U. A
substitution of (7.69) into (7.20) and contractions with [L? and n®N? yield,

successively, A*L, = A%n, = 0 and so X vanishes on U. It follows that V' = V.
O

7.8 Projective-Relatedness in 4-dimensional Manifolds

In considering projective relatedness in a 4—dimensional manifold (M, g)
with g of arbitrary signature, a significant amount of information may be
obtained by investigating those cases where (M, g) satisfies the conditions
of lemma 7.4. This is achieved by first assuming some holonomy group ® for
(M, g) with associated holonomy algebra ¢. Then one takes the decomposition
of M into its curvature classes as in lemma 3.1 and checks for each non-empty
open subset U of constant curvature class the consistency of the inclusion
rgf(p) C (b; C ¢ for each p € U, where f is the curvature map and (b; the
infinitesimal holonomy algebra at p, recalling that ¢;, is a subalgebra of ¢.
If the resulting rgf(p) leads to kerf(p) satisfying the conditions of lemma
7.4 one can check if ® leads to locally properly recurrent or parallel vector
fields on M using lemma 7.1. Then lemma 7.5 may be used to investigate
the cases arising. This procedure will be followed for each signature using the
appropriate subalgebra tables in chapters 3, 4 and 5.

7.8.1 The positive definite case
Suppose (M, g) has positive definite signature. Then the holonomy algebra
+ - 4 =
¢ arising from @ is, from section 3.6, of type Sy, S1, S2, S3, S3, S3, S4, S
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or Sg. Now suppose ¢’ is another smooth metric on M of arbitrary signature
such that g and ¢’, with respective Levi-Civita connections V and V’, are
projectively related. If (M, g) is of constant curvature so also is (M, g’) (lemma
7.2) and so, in particular, if (M, g) is flat (holonomy type Sp), (M, g’) is either
flat or of (non-zero) constant curvature (holonomy type Sg) (lemma 7.3). Now
suppose (M, g) has holonomy type S; so that dimrgf <1 on M but for some
p € M and in some open neighbourhood U of p where Riem does not vanish,
dimrgf = 1. Then the curvature class is O where Riem vanishes and D
elsewhere. Also lemma 7.5(7) shows that the conditions of lemma 7.4 and thus
(7.57) hold on M. Then ¢ is spanned by a simple bivector F' and so, from
lemma 7.1, one may choose U so that it admits two independent, parallel

vector fields v and v spanning the blade of F' on U (Vu = 0 = Vv). Then
lemma 7.5(vi) shows that V/ = V. It follows that Riem’ = Riem on M and
that, on U, the blade of F is an eigenspace of g’ so that (section 3.8), ¢’ takes
the form

Gop = afab + bugup + cvavp + d(ugvp + vaup) (7.70)

where a, b, c and d are smooth functions on U, u, = ge.u® and v, = gqc0°.
Since Vg = Vg’ =0, a,b,c and d are constant. Judicious choices of a,b, ¢, d
with @ # 0 (and consistent with ¢’ being non-degenerate), can be used to
make ¢’ any signature on U. Equation (7.57)(c) reveals a similar expression
for a.

Now suppose (M, g) has holonomy type Ss so the conditions of lemma 7.4
are satisfied by lemma 7.5(¢). Then one sees that for p € M dimrgf(p) equals
0, 1 or 2 and where, in the 2—dimensional case, rgf(p) is spanned by two
orthogonal, simple bivectors. Thus the curvature class at p is O, D or B and
so M decomposes as M = BUintDUintO U Z, with intZ = () (theorem 3.1).
The rank theorem shows that B is open (and possibly empty). The holonomy
algebra ¢ at p € M is Sp(x Ay, zAw) where x, y, z, w is an orthonormal basis at
p. Thus x4y is a complex eigenvector of each member of ¢ at p and leads to a
local complex recurrent vector field X +47Y on some open neighbourhood U of
p for real, smooth vector fields X and Y on U (lemma 7.1). Similarly, z+iw is a
complex eigenvector of each member of ¢ and one obtains smooth vector fields
Z and W on U with Z +iW recurrent. So (X, +1Y,) s = (Xo +1Y,) (P + Qp)
for a complex recurrence 1-form P + ¢Q, and similarly for Z 4 ¢W. It then
follows from the properties of recurrent vector fields in section 7.1 that the
parallel transport of X +iY along any path is a (complex) multiple of X +14Y
at each point (and similarly for Z + W and so there exists a pair of smooth,
orthogonal, 2—dimensional, holonomy invariant distributions which, at p, are
Sp(zAy) and Sp(zAw) and in the neighbourhood U are spanned by the vector
field pairs (X, Y) and (Z, W) chosen so that | X| = |Y| = |Z| = |W| = 1. The
above recurrence relations and a simple contraction then give X%, = =Y *Q}
and Y, = X°Q, for some smooth 1-form @’. Similar results arise for Z and
W. It follows that the bivectors X AY and Z A W are parallel on U. Now if
the subset B # () there are no non-trivial solutions for A of (7.57)(b) and so
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A = 0 on B which gives V' = V. Since this gives Riem’ = Riem, the local
relationship between g and ¢’ on B can be found using techniques described
in chapter 3. If B = () then D is open and non-empty and one may choose a
non-empty open subset U C D such that rgf is spanned by a simple bivector
which is a linear combination of the holonomy spanning members X AY and
Z AW on U and so must be a multiple of one or the other, say of ZAW. Then
Z AW is an eigenspace of a at each point of U from (7.57)(c). This gives, on
U

agp = @' gap + V' Xo Xp + Y, Y, + d' (XY + Yo Xp) (7.71)
for functions a’,b’,c’,d’ which are easily seen to be smooth on U. A substi-
tution into (7.20) and contractions with Z?W?°, X?Z° and Y*Z° then show
that A- X =AY =X-Z=X-W =0 and so A vanishes on U. So V' = V.
As in the case for the set B one can relate g and ¢’ locally on D.

Next suppose (M, g) has holonomy type Ss. The holonomy structure here
shows that at each p € M there exists 0 # k € T, M which annihilates each
member of rgf(p) and hence annihilates Riem(p). Thus three independent
simple bivectors whose blades contain k lie in kerf and it easily follows that
kerf satisfies the conditions of lemma 7.4 and that, from lemma 7.1, each
p € M admits a non-empty open neighbourhood on which a non-trivial parallel
vector field exists. Thus one has the decomposition M = CUintDUintO U Z
with C' open (possibly empty) and intZ = (. It then follows from lemma
7.5(i44) that if C # () then A = 0 on M and V' = V. The situation when
C = () will be discussed in detail later.

+
If (M, g) has holonomy type S5 then for each p € M rgf(p) is a subspace
+
of the 3—dimensional subspace S3. Hence kerf(p) contains a subspace iso-

- +
morphic to the orthogonal complement S3 of S3. Similar ideas to those used
in theorem 3.4 show the conditions of lemma 7.4 are satisfied. Further since

+
no member of S3 is simple, M admits no points of curvature class B, C or D
and hence decomposes as M = A U intOUZ with A open and intZ = () and
clearly A # (0. Thus each p € A admits an open neighbourhood U C A on

which (7.57)(b) has only the solution A = 0 and so V' = V. The type S5 is
similar. Theorem 3.4 then shows that ¢’ = kg on M with 0 # x € R.

+ -
If (M,g) has holonomy type Sy (the type Sy is similar) it follows from
section 3.6 that M decomposes as M = AUB U D UO with A and AUB
open, possibly empty. That the subset C' is empty follows since in this case

+ —
the holonomy algebra ¢ =Sp(Ss,G) for G € S3 and any simple member may

+
be written as F' + oG for F' € S3 and then (F + aG) - (F — aG) = 0 from
lemma 3.1. Thus there are only two independent such simple members and
these are essentially the pair z A y and z A w in table 3.1 and these have

+ +
no common annihilator. Also since dimSy = 4, kerf contains (S4)* and has

dimension > 2 and so contains two independent members of S3. Then from
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lemmas 3.5(v) and 3.6(iv), T, M is an eigenspace of VA and so the conditions
of lemma 7.4 are satisfied on M. So if AU B # (), (7.57)(b) has only trivial
solutions for A on AU B, and so V' = V. Thus either V' = V and (see chapter
3)g =rkgon M (0 #k €R),or A= B =0 and so M = D UO. This case
will be explored later. The following has been proved.

Theorem 7.5 Suppose g and g’ are projectively related metrics on M with
respective Levi-Civita connections V and V' and with g positive definite. Sup-

+ —_
pose the holonomy type of (M,g) is S1, Sa, S3, S3, or one of the types Ss,
+ p—
Sy or Sy and for which dimrgf(p) > 2 for some p € M, then V' =V (and
+
so (M,g) and (M,q") have the same holonomy type). For the types S5 and

— +
Ss and for the types Sy and Sy with the above restrictive clause, ¢’ = kg for
0 # k € R. For the other types g and ¢’ are related as described following
theorem 3.8 and ¢’ meed not be of positive definite signature.

Theorem 7.6 Suppose (M, g) and (M,g’) are projectively related with g pos-
itive definite. Then, in the above notation,

+
(i) If (M, g) has holonomy type Sy either V' =V and ¢’ = kg for 0 £ k €

+ —
R or (M,g)" has holonomy type S¢ (and similarly with Sy replaced by S4)
(i) If (M,g) has holonomy type Ss either V' = ¥V or (M,g) satisfies
dimrgf <1 on M and then (M,g') has holonomy type S3 or Se.

+
Proof For part (i) suppose (M, g) has holonomy type Sy and V' # V.
+ —_
Then from theorem 7.5 (M, g’) cannot have holonomy type S, Ss, S3 Ss,

nor type Ss, §4 or Sy if there exists p € M with dimrgf’(p) > 2 where f’ is
the curvature map for (M,¢’) otherwise V' = V. Also (M, g’) cannot be of
type Sp since then (M, g) would have holonomy type Sy or Sg (lemma 7.3).
So if (M,g’') does not have holonomy type Sg it follows (theorem 7.5) that
either V' = V or V' # V and dimrgf < 1 >dimrgf’ over M and so the
curvature class decompositions of M with respect to Riem and Riem’ are
M = DUO = D'UO’ with D and D’ open and non-empty and (lemma
7.3) O = O’ (and so D = D’). Then for any p € M there exists r,s,7’,s" €
T,M with r and s independent and " and s’ independent and which satisfy
R%%eqr® = R%eqs® = 0 and R'%pegr’® = R'%peqs’® = 0. Then a contraction of
(7.12) with r°r'¢ gives (1pcr®r¢) 5% — (par®)r'® = 0 from which it easily follows
that p.r’r"® = 0 and then that ¢pgr® = 0 at p. Then contractions of (7.12)
with 7 and with r¢ give R'%y.qr® = 0 and finally 1., = 0, at p. Thus the tensor
with components gy = V4,6 — Yoty in any coordinate domain of M vanishes
on M and so Riem' = Riem on M. But it is assumed that V' # V and so the
global 1-form (= dy) is not identically zero on M. However, the vanishing
of the tensor 4, reveals that V(e X)) = 0 so that e X1 is a non-trivial,
global parallel 1-form on M. [In fact, (7.9) then gives (eXt))pp — (€Xtha);p =



Projective Relatedness 241

—eXt)(051hp + 051b,) and, as a consequence, V'(eXt)) = 0 on M. Thus each of
(M, g) and (M, g") admit global, non-trivial, parallel 1-forms and the obvious
associated non-trivial parallel vector fields with components e~ Xg%1, and

€Xg'®4py.] This contradicts the holonomy type §4 of (M, g) since then no such
global, parallel vector fields exist. It follows that either (M, ¢’) has holonomy
type Sg or V/ = V and then theorem 3.4 completes the proof.

For (ii) if (M, g) has holonomy type Sz the previous theorem and part ()
of this theorem show, using similar techniques, that if V' # V, (M, g’) has

holonomy type S3, §4, S, or Sg and, if 54 or Sy, one again has the curvature
decompositions M = DU O = D' U O’ with O’ = O and with D’ = D open
and non-empty and the contradiction that (M, g) admits a global, non-trivial,
parallel vector field. The result now follows. If (M, ¢') is of holonomy type S3
and V' # V the argument of part (i) reveals the stronger result that each of
(M, g) and (M, g¢') admits a non-trivial, global, parallel vector field (whereas
this holonomy type leads, in general, only to local such vector fields; see lemma
7.1). O

+ —
In the event that (M, g) has holonomy type S3 or Sy (or Ss) it need not be
the case that V/ = V and counterexamples are available. These will be given
in the next section which discusses the Lorentz situation.

7.8.2 The Lorentz case

As a preamble to this section and motivation for this chapter a brief, ele-
mentary, somewhat simplistic discussion and comparison of the principles of
equivalence in classical Newtonian physics and Einstein’s general relativity
theory is now given. Following [69] consider (any) two gravitationally attract-
ing (freely falling, spherical, uncharged, etc—such conditions will always be
assumed) particles in Newtonian theory labelled M and m. One may iden-
tify three types of mass parameter with each of them: the active gravitational
mass Mag (mag) (the power a mass has to attract another mass), the passive
gravitational mass Mpg (mpg) (the susceptability of a mass to be attracted
by another mass) and the inertial mass M;(my) (a particle’s resistance to
acceleration under the application of a force). In Newton’s theory one can use
his third law combined with his inverse square law of gravitational attraction
to write, in some reference frame,

GMAGmpGr_2 = GMmeAGT_2 (7.72)

where G is Newton’s gravitational constant and r the distance from M to m

in this frame. One immediately gets MAc¢ — MaG —an( so, since M and m
. . ]\/IPG . mPG . .

were arbitrary, one may choose units of active and gravitational mass so that

for any such particle its active and passive gravitational masses are the same

(and, say, labelled with the suffix g). Now assume that m is a “test particle”

in that it is sufficiently small that the gravitational acceleration of M due to
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m can be ignored. Then Newton’s second law gives in an inertial frame in
which M is at rest (by the test particle assumption)

GMymgr—? = mra (7.73)

where a is the acceleration of m in that frame. Then considering the gravita-
tional field of (the assumed fixed particle) M equation (7.73) above shows that
the quantity aG_l%(: %) is the same for all such particles m at a fixed
point of space and a fixed instant in time (a fixed event). In Newtonian theory
one accepts, of course, the constancy of G and, in addition, the remarkable
experimental result of E6tvos (and more recently of Dicke [70]) that a is the
same for all such particles at a fixed event in this, and hence by arbitrariness,
any gravitational field. It follows that the ratio % is particle independent
and thus on choosing appropriate units of measurement of inertial mass one
may take my = my for any such particle m and so conclude that only one
mass parameter is required for each particle. It follows that a given gravita-
tional field leads, through Newton’s second law, his inverse square law and
an elementary cancellation of this common mass parameter, to a well-defined
gravitational acceleration being prescribed to any such particle at that event,
independently of the particle and its make-up, and so, from the theory of sec-
ond order differential equations, the path of such a particle passing through
some event depends, at least locally, only on that event and its velocity at
that event. This is the conclusion of what might be called (one form of) New-
ton’s principle of equivalence. It is a consequence of the result my = my. (No
attempt will be made here to get into the thorny problem of what “freely
falling”, spherical, etc mean!)

The above work displays the indiscriminate nature of the gravitational
force in Newton’s theory in that the acceleration it imparts to a body at
some fixed event in a gravitational field is independent of that body. This
feature, unusual for a force, is shared with the indiscriminate behaviour of
the inertial acceleration imposed on bodies in a frame of reference undergoing
acceleration with respect to some inertial frame. Hence one is tempted to pos-
tulate that these two types of forces are indistinguishable. This leads, through
the well-known, so-called Finstein lift experiment [72] (at the risk of gross
oversimplification), to the main idea of Einstein’s general relativity theory.
This is that the gravitational field is a geometrical phenomenon described in
the setting of a 4—dimensional manifold M (space-time) admitting a metric
of Lorentz signature and which is restricted by certain equations (Einstein’s
field equations for the determination of this metric and which then represents
the “gravitational field”).

The (weak) principle of equivalence in Einstein’s theory then uses the
classical Newtonian result above to make the assumption about the path ¢ of
a freely falling, etc, particle passing through an event p € M to be a “natural”
path in M determined, at least locally, by the event p and the tangent vector
to ¢ at p (and ¢ is assumed timelike for reasons to do with the particle’s
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local speed not exceeding the speed of light). This is one way of arguing for
the assumption of (timelike) geodesic motion for freely falling, etc, particles
in Einstein’s theory, in that such particles are assumed to follow timelike
geodesics in the geometry of M and which are locally determined at any p € M
by p and the tangent to the path at p (see chapter 2), independently of the
particle’s make-up. The remainder of this subsection may thus be interpreted
as an attempt to find how much information on M and its metric (and its
associated Levi-Civita connection) can be achieved from the knowledge of the
geodesics of this geometry. Further details on general relativity theory may
be found in [71, 13].

In the case when (M, g) is of Lorentz signature the possible holonomy
algebras for (M, g) are Ry, Ra, Rs,...,R15 (chapter 4-and note that, because
metric connections are being dealt with, type Rj5 is excluded since it is spanned
by a single, non-simple bivector) and techniques similar to those of the last
subsection, using lemmas 7.4 and 7.5, may be used. It is noted that if (M, g)
has holonomy type Rj, that is, (M,g) is flat, then (M,g’) is of constant
curvature and is hence either flat or of non-zero constant curvature (holonomy
type Ris—see lemma 7.2(v)).

Theorem 7.7 [108] Suppose g and g’ are smooth projectively related metrics
on M with Levi-Civita connections V and V', respectively, and with g of
Lorentz signature. If the holonomy type of (M, g) is Ra, R, R4, Rs, Rz, Rs
or Rya, or if it is of holonomy type Rig, R11 or Riz and there exists p € M
with dimrgf(p) > 2 then V' = V. The signature of ¢ may not be Lorentz.

Proof If (M, g) has any of these holonomy types the conditions of lemma
7.4 are satisfied everywhere and hence (7.57) holds. For types Ra,...,Rg this
follows from lemma 7.5(¢). For holonomy type Rja, the holonomy algebra
takes the form Sp(I Az, I Ay,l An+wx Ay) for a real null basis [, n, x,y and
0 # w € R. In this case the kernel of the curvature map, kerf, contains the
bivectors [ Az, I Ay and [ An+w ™'z Ay and it easily follows from lemma 4.7
that the conditions of lemma 7.4 are satisfied on M.

If (M, g) has holonomy type Ry, R3 or Ry, one has the decomposition
M = DUO with D non-empty and open in M and for p € D, rgf(p) =Sp(G)
for a non-simple bivector G. It is now clear that lemma 7.5(vi) applies since
two independent, local, parallel vector fields are admitted (lemma 7.1) and so
V' =V.

If (M, g) has holonomy type Rg with holonomy algebra ¢ =Sp(I An,lAx)
in some real null tetrad I,n,z,y, M decomposes as M = C U D UO and M
admits, locally, a recurrent null vector field and a parallel spacelike vector
field. If C # (), then C is open and the recurrent null vector field is properly
recurrent (section 7.1) so that lemma 7.5(4i) completes the proof. If C' = (), D is
non-empty and open and if there exists p € D with rgf(p) =Sp(IAn+ pulAx)
(1 € R) this is true of some open neighbourhood U of p and again a null,
properly recurrent vector field exists on U so that lemma 7.5(i7) again applies
and V' = V. Otherwise rgf is spanned by a smooth bivector [ Az over U and
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the recurrent null vector field [ satisfies R%ql? = 0 from the Ricci identity
and so [ may be scaled so that it is parallel on U (section 7.1) and so two
independent parallel null vector fields arise on some non-empty, open subset
of M and lemma 7.5(vi) completes the proof that V/ = V.

If (M, g) has holonomy type R7 with holonomy algebra Sp(lAn,z Ay), one
has the decomposition M = BU D UO with B open in M. If B # () (7.57)(b)
shows that A = 0 on B and hence on M. If B = () # D with D necessarily
open then, on D, g f must be spanned by a simple bivector (since Rq[pcq = 0)
and so D contains either an open subset on which rgf is spanned by a timelike
bivector or an open subset where rgf is spanned by a spacelike bivector. Thus
one either has two independent, properly recurrent, null vector fields or two
parallel, null vector fields on some non-empty subset of D and lemmas 7.5(4)
and 7.5(vi) show that V' = V. If (M, g) has holonomy type Rg, M = CUDUO
then a local parallel null vector field is admitted and lemma 7.5(iv) shows that
V' = V. If the holonomy type is Rio with ¢ =Sp(I Az, I Ay, I An+w(zAy))
(0#w € R) one has M = AUCUDUO. (Here B = {) since the only simple
members of this span can be checked to be [ Az and [ Ay.) If the open subset
A # () the only solution of (7.57)(b) on Ais A=0andso V' =V.If A =10
arguments similar to those above reveal that V' = V.

If (M,g) has holonomy type Rjg, Ri; or R;3 one has, in terms of an
orthonormal basis z, y, z,t and an associated real null basis I, n, z,y at p with
V22 =1+ n, V2t = | — n, respective holonomy algebras Sp(IAz,n Az, lAn)
(=Sp(tAz,tAz,zAx)), Spl Az, I Ny, zAy) and Sp(z Ay,x Az,yAz) and in
each case a decomposition M = C U D U O. Again B = () since each of these
subalgebras has a common annihilator. The restriction rgf > 2 forces C' to be
non-empty and open. Thus a local parallel vector field is admitted in each case,
being spacelike for R1g, null for Rq; and timelike for Rq5. lemma 7.5(i%¢) then
shows that V' = V. Without this restriction on rgf the conclusion V' = V
need not follow and this will be explored later. O

In the cases of holonomy type Rip, Ri1; and R;3 and with dimrgf < 1
on M, the subset D C M is non-empty and open. Writing Dy (respectively,
Dg, Dr) for those subsets of D where rgf is spanned by a null (respectively,
spacelike or timelike) bivector one has, for Ryg, M = Dy U DgU Dy U O, for
type Ri1, M = DyUDgUO and for Ry3, M = DgUO. If intDy # ) in cases
R0 and Ry; one still gets V! = V using lemma 7.5(iv) for R;; and lemma
7.5(v) for Ryg, the last result following from the fact that no global parallel
null vector field is admitted in this case.

Now suppose (M, g) has holonomy type Ry (=Sp(Il An,l Az, Ay)) with
M decomposing as M = AU C U D U O. That the subset of curvature class
B is empty is clear since each member of the holonomy is simple with [ in
its blade. Also a local, null, recurrent (not necessarily properly recurrent)
vector field arising from [ is admitted. In this case it is straightforward to
check that the conditions required on ker f in lemma 7.4 may not be satisfied
at certain points since then kerf contains Sp(I A z,l A y,x A y). It is also
clear that given p € M, dimrgf(p) = 3 & p € A and dimrgf(p) = 2 &
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p € C. In this latter case the common annihilator of rgf(p) is either spacelike,
or null and, if null, it is proportional to the local recurrent vector field .
Write C = Cg U Cn where Cg (respectively, Cy) are those subsets where
this annihilator is spacelike (respectively, null). Similarly, using the notation
of the previous paragraph, write D = Dy U Dr since clearly Dg = (). Thus
M = AUCsUCN UDpUDyUQO. Problems arise here when A # () and
so assume that A = (. Then the conditions of lemma 7.4 are satisfied on
M from lemma 7.5(¢) and if any of intCyg, intCy, intDy and intDp is not
empty (and clearly one of them must be), A vanishes on that open subset
of M and so V' = V. This follows (briefly) for these respective interiors in
the following way. For intCs and intDp rgf is easily checked to contain a
timelike bivector whose blade contains [ and so [ gives rise to a local, properly
recurrent null vector field and the result follows from lemma 7.5(i7) and for
int C and int Dy the recurrent null vector [ annihilates Riem and hence may
be scaled to be parallel over the relevant open subset. The result then follows
from lemma 7.5 parts (¢i¢) and (iv), respectively. The situation when A # ()
will be considered later.

If (M, g) has holonomy type Rj4 with holonomy algebra ¢ =Sp(l A x,1 A
y, L An,x Ay) one gets the decomposition M = AUBUCUDUO and a
local, null, recurrent vector field arising from [ is admitted. The conditions of
lemma 7.4 are not necessarily satisfied (since problems arise if A # (}) and so
it is assumed that A = (). Then B is open and in this case the conditions of
lemma 7.4 are satisfied. To see this examine rgf over the subsets B,C and D
noting that [ spans the unique common eigendirection of the members of the
holonomy algebra. If B # () certainly kerf satisfies the conditions of lemma
7.4 over B by lemma 7.5(:) and if p € B rgf(p) = Sp(G,G) where G is a

¥
spacelike bivector. Then G is a linear combination of the members of ¢ and is

annihilated by a timelike ¢t € T}, M. Performing this contraction immediately
*
shows that G is a linear combination of I A z, [ Ay and x A y only and hence

that Gyl = 0. Thus [ lies in the blade of G' (and hence does not annihilate
Riem at p) and so gives rise to a local properly recurrent null vector field in
some neighbourhood of p. If C' # @) let p € C. If dimrgf(p) = 3 the common
annihilator of rgf(p) cannot be timelike or spacelike otherwise there would
exist an orthonormal basis a’,y’, 2/, ¢ at p with rgf(p) =Sp(z’ Ay, 2’ A2,y A
Z')or rgf(p) =Sp(y’ At',2" At',y' AZ') and in neither case could there be a
common null eigendirection for the spanning members of r¢f(p). Hence the
common annihilator is null and so [ must be a null eigenvector for each member
of rgf(p). It follows that rgf(p) =Sp(IAx,l Ay, x Ay). If Cs is the (necessarily
open) subset of such points then, for p € Cs, kerf(p) =Sp(l Az,l Ay,l An)
and the conditions of lemma 7.4 are satisfied on C3 and then they are satisfied
everywhere else on M by lemma 7.5(:). Clearly a local recurrent vector field
exists on C3 which annihilates Riem everywhere on C3 and so can be scaled
to a local parallel null vector field. On the rest of the subset C, dimrgf = 2
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and with a similar notation to that used in the previous case one decomposes
this latter set as Cy UCg since Cp = (). [This follows as before since any linear
combination @) of members of the R14 holonomy algebra which is orthogonal
to a timelike vector cannot contain a non-zero contribution from [An. But then
the remaining members have [ as an annihilator and so @ is annihilated by two
independent vectors and is thus unique up to a scaling and is, in fact, z A y.]
Similarly one decomposes D as D = Dg U D7 U Dy. So suppose A = ). One
thus has the open subset of M given by B U C3UintC'sUintC'yUint DyrUint Dy
(note: intDg is excluded here). It is then clear from the above and from parts
(44), (#9¢) and (iv) of lemma 7.5 that if this union of open subsets (equivalently,
some member of this union) is non-empty then A = 0 and V' = V. One thus
has the following theorem [102, 109].

Theorem 7.8 Suppose g and g’ are smooth projectively related metrics of M
with Levi-Civita connections V and V' and with g of Lorentz signature. If the
holonomy type of (M,g) is Ry with A =0, or Ris with A = 0 and with at
least one of B, Cs, iniCg, mtCy, intDr or intDy non-empty, V' = V.

It follows that the interesting cases arising from the previous theorems
can be encapsulated by considering holonomy types Rig when M = Dg or
M = DT, R11 when M = Ds, R13 when M = Ds, Rg when M = A and R14
when M = Aor M = Dg.

Let (M, g) have holonomy type Ry; with M = Dg [108] and for p € M let
U be an connected, open coordinate neighbourhood of p such that U admits a
smooth, parallel, null vector field [ and a smooth null vector field n satisfying
I-n = 1on U and with Rypcq = 0 FgpF.q on U for smooth nowhere-zero function
0 and smooth, nowhere-zero, spacelike bivector F', on U. Suppose also that ¢’
is a smooth metric on M projectively related to g but with V/ # V so that
one may choose U so that A is nowhere zero on U. As mentioned earlier the
conditions of lemma 7.4 are satisfied and so (7.57) holds on M and it will

*

be assumed that § and F are chosen so that ' = [ An and so [ and n are
orthogonal to the blade of F' and so annihilate Riem. Then (7.57) gives, on
U,

Ao = 0lg + png, Aazb = CYab, (ceR) (7.74)

for smooth functions ¢ and p on U and which combine to give
Pa:b + Napp + a0 p = CGab- (7.75)

One may assume U chosen so that F = x A y where x,y are smooth unit
spacelike vector fields on U satisfying x -y = 0 on U and which, together with
[ and n comprise a real null basis on U. The (7.57)(c) shows that the blade
x Ay of F is an eigenspace of a on U and so

agb = WGap + alyly + Brgny + y(lanp + naly) (7.76)
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where the functions w, a, 8 and 7 are smooth on U (since g, a and the basis
members are). Now choose a smooth vector field ¢ in the blade of F' on U
(=l-gq=n-q=X-q=0) so that ¢ - ¢ is a constant (necessarily non-zero)
on U (= ¢%¢ap = 0 on U where a semi-colon denotes a covariant derivative
with respect to V). Then (7.76) gives a.5q” = wq, and so aab;cqb + aabq;bc =
W,cqq + Wqq;c. Then, use of (7.20) together with a contraction with ¢* shows
that w is constant on U (and non-zero since a is non-degenerate). Since n is
null, l,, =0 and [ -n =1, one gets nng;p = 1“ngp = 0 and so a contraction
of (7.75) with [* and n® gives

cle = p.a, CNg = O.q, (7.77)

)

on U and then (7.75) reveals that
Plab = CT‘ab7 (Tab = Gab — lanb - nalb = Tba)7 (778)

for a nowhere-zero, symmetric tensor field 7" on U. A covariant differentiation
of (7.76) and use of (7.20) and (7.74) give

gac(alb + pnb> + gbc(Ula + pna) = a,clalb + B,Cnanb (779)
+ﬂ(na;cnb + nanb;c) + ’y,c(lanb + nalb) + ’Y(Zanb;c + na;clb)

and successive contractions of (7.79) with [21°, n®n® and [?n® reveal
2Pla = B,av 20mg = g, olg + PNa = Y,a- (780)

Finally a contraction of (7.79) first with %, then with n® and use of (7.80)
give
6na;b = pTab; YNab = JTab- (781)

Now suppose Vn = 0 on U. Then (7.78) and (7.81) show that ¢, o and p
are each zero on U. Then (7.74) gives the contradiction that A vanishes on U.
Thus one may take Vn to be nowhere-zero on U. Now consider the constant
c. If ¢ # 0 (7.77) shows that I, and n, are gradients on U whilst if ¢ = 0,
VA =0 and (7.77) shows that o and p are constant on U with p = 0 from
(7.78) and o # 0 from (7.74), so that A, is a non-zero constant multiple of
lo. Finally (7.80) reveals that [, and n, are gradients on U. (Conversely, if \,
is proportional to I, on U (7.74) shows that p vanishes on U and ¢ = 0 from
(7.78)). Thus whether ¢ = 0 or ¢ # 0 one may write l, = uq and n, = v4
for smooth functions © and v on U and then la;bnb — na;blb = —nb;alb =0 so
that [ and n have zero Lie bracket on U. Then U may be chosen so that [ and
n span a 2—dimensional distribution on U. So choosing coordinates x® and
x* on the relevant part of the 2—dimensional submanifold u = v = 0 (where
the functions v and v are assumed adjusted with additive constants to make
this possible) and the other two coordinates as parameters along the integral
curves of [ and n these parameter coordinates may be chosen as u and v and
| = 0/0v and n = 9/0u. With the coordinates u, v, z3, z* the metric g is given
by

ds® = 2dudv + gapdrdz” (7.82)
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where «, 8 = 3,4, I = (0,1,0,0) and n* = (1,0,0,0), I, = (1,0,0,0), n,
(0,1,0,0) and with summation over «, 3 = 3,4. Then (7.78) shows that gag =
Top-

If ¢ # 0 (7.77) shows that one may use the translational freedom in the
coordinate u to arrange that p = cu whilst if ¢ = 0 (7.78) and the nowhere
vanishing of Vn on U gives p = 0 on U and then (7.74) and (7.77) show that
o is a non-zero constant on U (because, since V' # V, X is not identically zero
on U). In this latter case another use of the translational freedom in u allows
one to write v = ou. Thus whether c is zero or not one has ung;, = To on U.
Next, since VI = 0, [ is a Killing vector field for g on U and so the components
gap are independent of v (chapter 6). The equation ungp = Typ then gives
UNg;3 = Top = gag and so —uI’iﬁ = gap and finally $0gap/0u = gap. It
follows that gas = u?hap for a non-degenerate 2 x 2 matrix function h which
is independent of v and v. Thus (7.82) becomes

ds? = 2dudv + u’hapdz®dz’. (7.83)

The equations (7.77) together with l, = v, and n, = v, give, after another
use of the translational freedom in u, p = cu and ¢ = cv + e; and then
(7.80) gives a = cv? + 2e1v + ez, B = cu® + e3 and 7 = cuv + eju + ey
for constants eq, e, e and e4. Finally (7.81) together with n,.5 = %agag/(“)u
implies e3 = e4 = 0 and so @ = cv? + 2e1v + eo, = cu? and v = cuv + equ
and so (7.76) gives

aap = W{gap+(cv®+2e1v+e2)l Iy +-cungnpy +(cuv+eiu) (lanp+naly) ). (7.84)

The work and notation of section 7.3 can now be introduced. First one
finds X from (7.74), then calculates v, = —bap A\t and then finds the function
X (¥ = dx). Then the required metric ¢’ is, in the above coordinates, given
by g/, = €*Xbap. This calculation is done using MAPLE and yields [108]

1
Y = dx, X =glogh,
F = k*1 4 2cuv + 2equ + (e3 — cep)u®] ™1, (7.85)
and finally for the metric ¢’ with line element ds’?

ds”? = kFg — k3 F?[(cv® + 2e1v + e3)du? + cu?dv?
+2u(cv 4 ey + (3 — cez)u)dudv] (7.86)

for k = w™! > 0. The special case ¢ = 0 implies F' = F(u), x = x(u), p =0
and ¢ =constant## 0 and so A, is a constant multiple of [,. Conversely, the
assumption that )\, is a constant multiple of [, forces p = 0 and hence ¢ = 0.
For this special case (7.85) shows that 1, = r(u)l, for some smooth function
r and then, since VI = 0, (7.9) reveals, using a vertical stroke to denote a V’
covariant derivative, that l,, = lop — lap = —lcP5 = —2r(u)lgly and hence
that I/ = €2/ is parallel with respect to V/ and from (7.86), null with
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respect to g’. Then (7.85) shows that F = xk*(1 + e;u)~2 and, restricting the
coordinate domain by 1+ eju # 0, that ¥, = x,o = —e1(1 + eju)~!l, and so
Yab = Yathp and (section 7.2) ey = VY — Yathp = 0. It follows from (7.12)
that R'%pcq = R%eq in this (restricted) coordinate domain and hence that
(M, g') has curvature rank at most 1 with I’ being ¢’—null and V’— parallel.
The metric (7.86) with ¢ # 0 can be simplified with the coordinate trans-

formation (u,v, 23, 2%) — (u/,v', 23, 2*) given by
u='(1—cuv) (7.87)

v = [ceau’ + 2cv’ — 2e; —u/(ey — cv’)?][2¢(1 — cu/v")] 7!
and becomes (up to a constant scaling)
ds? = 2du/dv’ + cu?dv" + u*hop (2, 2*)dz®daP. (7.88)
The metric (7.86) with ¢ = 0 is tidied up by the coordinate transformation

I
u= Ul(l _ 61u/)fl’ v = (’U’ + €U

Y1 —epu/)7t (7.89)

and becomes
ds = 2du/dv’ + u*hop(2?, 2t dzda”. (7.90)

It is observed that (7.90) is of the same form as the original metric (7.83) and
so, in any component of the intersection of these coordinate domains, ¢’ is
also of Lorentz signature and V’ is also of holonomy type R;;. Thus one can
find a local form for the projectively related metrics ¢ and g'.

The cases of holonomy type Rig with M = Dg or with M = Dy or for
type Ri3 with M = Dg (and also the holonomy type S3 when ¢ has positive
definite signature) are similar and will be handled together. With the notation
as above let r be a nowhere-zero, smooth, parallel vector field on U (Vr = 0
on U) and let s be another nowhere-zero, smooth vector field on U with |r|,
|s| constant, r - s = 0 and Rapeam® = Rapeas? = 0 on U. Then lemma 7.4 is
satisfied on M and so on U one has

)\a;b = CGab, >\a = 0Tq + PSa, CGab = Ta0 b + SaP,b + PSa;b (791)

and
Aab = WYab + aTaTy + B5aSp + V(raSe + 8aT), (7.92)

where, as before, rrq., = 57545 = r%sq;p = 0. To accommodate each of the
above cases one arranges r%r, = €1 and s*s, = €2 so that for Ryg (M = Dr)
and S3, €1 = ea = 1 whilst for R1g (M = Dg) €1 = 1, e = —1 (that is the
parallel vector field r is spacelike) and for Rj3, e = —1, e = 1 (so that r is
timelike).

Contractions of the last equation in (7.91) with 7* and s* give

CTrq = €104, CSaq = €204, PSap = Ty, (7.93)
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where Tyup = gab — €17aTh — €2845p. A substitution of (7.92) into (7.20) then

gives w =constant## 0 as before and contractions with rr?, s¢s?, r¢s? % and
5% give

Q= 20€1Tq, B.a = 2p€asq, €1€27,q = PEaTq + T€1Sq, (7.94)

ﬁsa;b = pTaba YSa;b = 0T ap.
Then with the assumption that A is nowhere zero on U one finds that Vs
is nowhere zero on U and that in a coordinate domain on some (possibly

reduced) U with coordinates t, z, 23, 2%) one has r = 9/0t, s = /92, r, =
€1dt, s, = eadz and the metric g is

ds® = e1dt® + exd2? + zghagdxadxﬁ (7.95)

with the h,g a non-degenerate 2 x 2 matrix whose components are independent
of t and z. Then

ap = w{gab+(ct2 +2¢1t 4 c2)rary + 22505, + (ctz4c12)(rasp+Sams)} (7.96)

for constants ¢; and co. MAPLE calculations then reveal that
1
P =dy, X=3 log F, F = k*{14-e2q2° +-€1 (ct? +2c1t+c2)} 71, (7.97)

where ¢ = ¢ + €1(cac — ¢2) and the metric ¢’ is given by

ds”? = kFqg — /-@73F2{(ct2 + 2¢1t + co + €a(cey — C%)dt2
+q2%dz? + 2e1ea(ct + c1)zdzdt}. (7.98)

A coordinate change of the form (t,z, 22, 2%) — (¢, 2/, 2%, 2*) with ¢/ = (t)
and 2z = 2/(t, z) can be used to simplify (7.98) up to a constant scaling as

ds'? = e1(1 — €9q2™)dt” + ea(1 — €2q2"*) 12" + 2*hopda®da®.  (7.99)

The holonomy type Rig requires €; = 1 and es = %1, the type Rj3 requires
€1 = —1 and e, = 1 and the positive definite type S3 requires ¢, = e = 1. It
is noted that, in (7.95) 9/0t is a Killing vector field on U.

Theorem 7.9 Suppose g and g’ are projectively related on M with V' # V.
(7) Suppose (M, g) has holonomy type R11 (respectively, Rig or Ri3). Then
either (M, g") has the same holonomy type as (M, g) or the type Rys.
(it) Suppose (M, g) has holonomy type which is one of the types Ry or Ry4.
Then (M, g') has holonomy type which is one of Ry or Ry4, or type Ris.

Proof For part (i) suppose (M, g) has type Ry1. Then (M, g’) cannot be of
type Ra, R3, R4, Rs, Ry, Rg or Ry by theorem 7.7. So assume (M, ¢') is one of
the types Ri1, R19 and R13. Then theorem 7.7 shows that, since V' # V, the
curvature maps f and f’ for g and ¢’ must satisfy dimrgf < 1 >dimrgf’ on M.
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Thus, as in the proof of theorem 7.6, M decomposes as M = DUO = D'U0O’
with D’ = D and O’ = O and with (M, g) (respectively, (M, ¢’)) admitting a
global nowhere-zero parallel vector field e X (respectively, eXty). Then any
p € D admits a connected open coordinate neighbourhood U on which g takes
the form (7.82) and in which it is easily checked that, up to a constant scaling,
the null (co)vector field u 4 is the only g-parallel covector field. Since e™X1) is
g-parallel on U, x is a function of u only in (7.85) and so ¢ = 0. But then ¢’
takes the form (7.90) on U and so (recalling (7.89)) eX¢ is ¢'—null on U and
hence on M. It follows that (M, g’) has holonomy type Rj;. Similar results
follow for the types Rip and Rj3 (using the condition ¢ = 0 instead of ¢ = 0).
The remainder of the proof of part (i) will arise after the next part of the
argument.

Now suppose that (M, g) has holonomy type Rg and that V' # V. Then
[102] from theorems 7.7 and 7.8 one has, in the decomposition of M for Riem,
that A is open and non-empty and that (M, g’) has either holonomy type
Ry (with, in an obvious notation, A’ # () for Riem’), Ry4 (with A’ and/or
intD the only non-empty open subset(s) of M), holonomy type Rig, Ri1,
or Ri3 (each with dimrgf < 1 on M) or Rj5. Choose p € A and an open
neighbourhood U of p with U C A and a smooth properly recurrent null
vector field [ on U satisfying l,, = laqs for some smooth 1-form ¢ on U
(Ia = gapl®). Tt is then easily checked that ljalg = 0. But this can be shown
to imply (after a possible reduction in U) that I, = au 4 on U for smooth
functions o and w on U. Thus by rescaling ! (but retaining the same symbol
for it) one may write I, = u , on U so that [ is a gradient and hence lo;p = lp.q
on U. Thus I, = Blly for some smooth function 8 on U. The Ricci identity
then gives (see the proof of lemma 7.5)

1gRape = 1,Ge (7.100)

for some smooth bivector G on U with U assumed chosen so that G is nowhere-
zero on U (since [ is properly recurrent). Then consider the smooth orthogonal
complement of the smooth 1—dimensional distribution on U spanned by [ and
which may be spanned by [ and smooth spacelike vector fields x and y on (a
possibly reduced) U. Then although the conditions of lemma 7.4 do not hold,
contractions of (7.26) on the indices ¢ and d with F =l Az and F/ =1 Ay
show that (7.53) holds for F' and F’ Thus the blades of F and F’ are each
eigenspaces of VA at each point of U and hence

>\a;b = pgab + Ulalb (7101)
on U for smooth functions p and ¢ A back substitution then gives
aaeRebcd + CLbe-Reacd = 0(gaclbld + gbclald — gadlblc — gbdlalc). (7102)

Now define a nowhere-zero vector field s on U by s, = aq!® and contract
(7.102) with [* using (7.100) to get

$eRpea = 56Ged- (7103)
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Contractions of (7.103) with s” and with [® reveal that s is null and (using the
symmetries of Riem) that [ and s are orthogonal. Thus [ and s are proportional
on U and it follows that aql® = kl, for some smooth, nowhere-zero (since a
is non-degenerate) function k. Then since I, = u 4, (7.20) and the equation
la;b = ﬁlalb give

(Gacr + gbera)l” = Lok e = (Nl®)gac + Nale = Lk . (7.104)

and so, by a rank argument, A\,l* = 0 on U. It then follows that A\, = &l for
some smooth function " on U (and hence p = 0 in (7.101) and then, since
Ao = —aqp? (see after (7.16)) and a is non-degenerate, 1), is proportional to
lo on U. It then follows from (7.9) that

1 — 1% = PLIC = 14, (7.105)

and so [ is recurrent on U for V' also, with recurrence 1-form ¢, +1), and since
1 is a global gradient it follows, since [ is properly recurrent for V, that it is
also properly recurrent for V' (section 7.1). Then, as above for Riem, one may
choose U so that IYR/,, = I,G}. where I/, = ¢/,1¢ and G’ is nowhere-zero
on U (and so one may choose U so that Riem’ is nowhere-zero on U.) Next
for (M, g), since v, is proportional to I, on U and since 1, is symmetric,
Yab = Yazp —Yap is proportional to I,l, on U. So if (M, ¢') has holonomy type
Rio, R11 or Ry3 with dimrgf < 1 on M in each case (recalling theorem 7.7
and the assumption V' # V) then for each p € U consider the 2—dimensional
subspace of T, M consisting of annihilators of Riem’ (since Riem' is nowhere-
zero on U and since dimrgf < 1 on M) and the 3—dimensional subspace
(Sp(1))* of T,M. They intersect in (at least a) 1—dimensional subspace of
T,M containing, say, 0 # k € T,M. A contraction of (7.12) with kb then
shows that R%.qk® = 0 and this contradicts the choice p € U C A for Riem
since no such non-zero vectors k exist at p € A. It follows that (M, ¢’) is either
of holonomy type Rg with A’ # () or type Ri4 with A'UintDY # () or Rs.

If (M,g) has holonomy type Rjy4 with A" and/or intDg the only non-
empty open subsets of M then if A’ # () similar arguments lead to the same
contradiction whilst if A’ = () #intDg then each of (M,g) and (M,g’') has
curvature rank at most one on M and the proof of theorem 7.6 reveals the
contradiction of a global, parallel vector field for (M, g). This finishes the proof
of part (i7) and completes the proof of part (). O

To obtain a metric for holonomy types Rg and Ry, is a little more compli-
cated. However, one does have the following results [102, 109], and which were
largely the work of Dr David Lonie. Suppose (M, g) is of holonomy type Ri4
and is such that there exists an open coordinate neighbourhood U C M such
that U, together with its induced metric from g on M, is also of holonomy
type Ri4. Suppose also that (M, g) is projectively related to a metric ¢’ on
U with V' # V. Suppose also that U is contained in the curvature class A
subset for (M, g). Then with a mild restriction on U one may choose it as a
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coordinate domain with coordinates u, z, x,y such that g takes the form
ds?® = 2dudz + /za(u)du® + 2>V @Y (da? + dy?) (7.106)

for an arbitrary smooth function a and smooth function w satisfying the condi-
tion that 0%w /022 +0%w/0y? is nowhere-zero on U. The metric ¢’ is such that,
after a coordinate transformation (u, z,z,y) — (v, 2/, 2',y’) with u = u(u’),
z = z(u,2), x = 2’ y = ¢/, it takes exactly the same form in terms of
u' 2 2y as g does in terms of u,z, 2,y in (7.106) and with a(u) replaced
by a function a’(v’) but with w unchanged, that is, w(z’,y") = w(x,y). So ¢
has holonomy type Ri4 on U.

If the above conditions on U are retained but with g now of holonomy type
Rg one can achieve g either in the form (7.106) but now with w harmonic on
U, 0?w/0z? + 0?w/0y* = 0 on U, or in the form

ds* = 2dudz + /zb(u)du? + udz? + (u — a)?dy? (7.107)

with « constant and b an arbitrary smooth function. The metric ¢’ is then
such that a coordinate transformation (u,z,z,y) — (v/,2',2',y') given by
u=u(u), z = z(u,2'), z = 2’ and y = % for some constant 3 casts g’ into
exactly the same form in terms of (v/, 2’,2’,y") as g was in terms of (u, z, z,y)
with b(u) replaced by a function b'(v') and « replaced by some constant «’.
Thus ¢’ has holonomy type Rg on U. In each of the above cases the 1-form 1),
is a nowhere-zero multiple of u , on U and so V' # V. It is noted that (7.107)
admits 9/0x and 9/9y as Killing vector fields on U.

To end this section a few remarks can be made regarding projective struc-
ture and symmetry. First, consider the metric (7.83) and let the coordinate
domain for which (7.83) holds be taken as M. Then (M, g) admits the global
nowhere-zero Killing (in fact, parallel) vector field X = 9/0v with com-
ponents in this chart given by X% = (0,1,0,0) and then X, = g,X° =
(1,0,0,0)(= u,4) and X4, = 0. Then consider the vector field Z = ud/dv
with components Z¢ = (0,u,0,0) and Z, = (u,0,0,0) so that Z, = uX,
and hence Z,, = X,up = uguyp. It follows that Z,,. = 0, that is, if
Zap = hap = heas hap,e = 0 and so Z is a proper affine vector field on M
(chapter 6). Then define a vector field R by R = ud/0u + vd/dv with com-
ponents R* = (u,v,0,0) and R, = (v,u,0,0). Thus R, = vu,, + uv 4 so that
Rap = uqup +0qup —ul'2, = u vy +04up + 209as/0u and s0 Rap = gab.
Hence R is a proper homothetic vector field (chapter 6). Finally define the
vector field S by S = uR with components S¢ = (u?,uv,0,0) and so S, = uR,
and one finds Sg;, = Roup + ugqp. It follows that

ACSgab = Sa;b + Sb;a = haba (hab = Rau,b + u,aRb + QUgab)a
hab;c = 2gabu,c + Gact b + Gbela (7108)

and so S is a proper projective vector field with projective 1-form u ,. The
Killing bivector field for X, the homothetic bivector field for R and the affine



254 Four-dimensional Manifolds and Projective Structure

bivector field for Z (but not the projective bivector field for S) are each zero.
No new symmetry vector fields arise from the Lie bracket operations between
X,Z,R and S.

Now return to the metric g given in (7.83) in the coordinates u,v,x® and
x* together with its projectively related metric g’ in the case when ¢ = 0
so that ¢’ is given by (7.90). Now regard U chosen so that the above co-
ordinates and their primed counterparts each make sense on U and that
U is connected and as before take M = U. Thus the projective algebras
for (M,g) and (M,g’) are equal (section 7.6) and their Killing algebras are
isomorphic as vector spaces. To elaborate a little on this last point con-
sider the Killing vector field X' = 9/0v’ for ¢’ on M arising from the ig-
norable coordinate v’ in (7.90). In coordinates u’,v’,z®, 2%, X’ has compo-
nents (0,1,0,0) whereas in the coordinates u,v,z3 2%, X’ has components
(0,0v/8v",0,0) = (0,(1 — egu/)~1,0,0) = (0,1 + e1u,0,0)) (from (7.89)) and
so X’ = (0,1,0,0) + €1(0,u,0,0) = X + e1Z and, being a linear combina-
tion of a Killing vector field X for g and a proper affine vector field Z for
g, is proper affine but not Killing for g (c.f. the remarks following theorem
7.4.) However, considering the Killing vector field X for g with components
(0,1,0,0) in coordinates (u,v, x>, z*) the associated Killing vector field Y for
¢’ (section 7.6 and using the notation of that section) has components in this
coordinate system given by Y@ = e2Xg/% g, X¢ = 2Xg'? X} = ¢2X¢/¢! Then,
choosing the arbitrary constant in y to be zero and recalling the choice ¢ = 0
in (7.85) and (7.86) one has k = 1 and €2X = F = (1 + e;u)~2 and, after a
straightforward inverting, ¢’** = (0, g75,0,0) = (0, (1 + e1u)?,0,0). Thus, up
to a constant multiple, Y* = (0,1 + eju,0,0) which, as shown above, is the
Killing vector field 9/0v" for ¢'.

As a final example in Lorentz signature let M = I x M’ where I is an open
interval in R, M’ is a 3—dimensional, smooth, connected manifold admitting a
smooth positive definite metric v of constant curvature and admitting a local
chart with coordinates r, 8, ¢. Thus M admits a Lorentz metric g given in the
obvious chart with coordinates ¢, 7,6, ¢ by

ds? = —dt* + R(t)*{dr® + f(r)?(d6? + sin*0d¢?)} (7.109)

where 7 is represented by the curly bracketed term and R is a smooth func-
tion on M (the scaling function). This metric is the well-known Friedmann-
Robertson-Walker-Lemaitre (F.R.W.L.) metric of relativistic cosmology. The
coordinate t is the cosmic time function and f(r) equals sinr, sinhr or r ac-
cording as M’ has positive, negative or zero (constant) curvature. The chart
given above will be regarded as a global chart, that is, its domain will be
taken as being equal to M. There are a number of special cases of (7.109)
which are less interesting both mathematically and physically. They are the
cases when (M,g) itself has constant curvature and which, if positive (re-
spectively, negative or zero), give (open submanifolds of) the well-known de
Sitter (respectively the anti-de Sitter and Minkowski metrics), or when R is
constant # 0 when it is an Finstein static type metric. {The Einstein static
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type metric [115] has much historical interest. It admits an extra independent,
global, Killing (in fact, parallel) vector field given by u = 9/9t and a proper
affine vector field t0/0t. There are no proper projective or proper homothetic
vector fields and so dimK (M) = 7, dimA(M) =dimP (M) = 8 and there is a
single Killing orbit equal to M. It has holonomy type R;s with dimrgf = 3
everywhere and any metric ¢’ projectively related to it satisfies V' = V with
ghy = agab+uqup (a,b € R) and is also of the Einstein static type (see theorem
7.7).}

The idea is, in some sense, to exclude these special cases by assum-
ing that (M,g) does not contain any non-empty open subsets which, with
the induced metric from g, is diffeomorphic to any of the above special
types. In this case (M, g) will be referred to as a generic F.R.W.L metric
and admits a 6—dimensional Killing algebra whose orbits are the spacelike
3—dimensional submanifolds of constant ¢ (copies of M') with positive defi-
nite metric v. The Killing vector fields are tangent to these orbits and give rise
to a 6—dimensional Killing algebra in these orbits with respect to the metric v
also. The vector field 9/0t represents a fluid (galactic) flow in the application
to cosmology. The Killing isotropy subalgebra is o(3) at each p € M and in
general (M, g) has a 6—dimensional projective algebra. There are, however,
certain special choices of the function R which lead to the admission of a sin-
gle independent proper homothetic or a single independent proper projective
vector field (but not both) and, in addition, no proper affine vector fields are
admitted [110]. Thus dimP (M) = 6 or 7. The holonomy type is Ry5 since it
is known that dimrgf(p) = 6 for each p € M.

Now suppose ¢’ is a Lorentz metric on M projectively related to g. Then
the projective algebra for ¢/, P/(M), equals that for g and it has a Killing
algebra K'(M) of dimension 6 whose orbits are 3—dimensional (theorem 7.4).
Since K (M) and K'(M) are subalgebras of P(M) and dimP (M) < 7 it follows
that either K(M) = K'(M) or K = K(M) N K'(M) is a 5—dimensional
subalgebra of K(M). In this latter case any orbit of (M, g) arising from K must
lie within a necessarily g—spacelike orbit of K (M) (and is hence g—spacelike)
and so cannot have dimension 1 or 2 since then it would have to be g—null at
each of its points [13] (Stictly speaking the theorem alluded to here applies to
the Killing algebra of M whereas here K # K (M). However K is a Lie algebra
of Killing vector fields and this is sufficient for this result to hold.) Hence the
orbits arising from K coincide with those of K(M). But then the isotropy
subalgebra arising from K would be a (5 — 3 = 2)-dimensional subalgebra of
0(3) which does not exist. It follows that K (M) = K'(M) and the isotropy at
piso(3) and if X € K(M), Lxg = 0.

Now suppose ¢; is a local flow for some member of the isotropy algebra K
arising from K(M)(= K'(M)) at p € M, so that ¢:(p) = p, then the vector
u = 90/0t in (7.109) is the unique (up to a scaling) vector in T, M satisfying
¢r«u = u and so u is both g— and ¢’— orthogonal to the subspace H, C T,M
tangent to the orbit at p. So, for any x € H, one has ¢'(z,u) = g(z,u) = 0.
Now let I, be the subset of T,M of g—unit vectors at p. If v € I,,, suppose
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g (v,v) = ag(v,v)(= «) for a € R. If v’ € I, there exists a local flow ¢, of
X € K} such that ¢..(v) = v" and so ¢/'(v/,v") = g'(¢1sv, Pv) = 07 g (v,0) =
¢'(v,v) and similarly g(v',v") = g(v,v). It follows that ¢'(v',v") = ag(v’,v")
for each v’ € I,,. Then by linearity it follows that ¢'(v,v) = ag(v,v) for each
v € Hy. Nextifz,y € Hy, ¢'(x+y,z+y) = ag(x+y,z+y) and on expanding
this out one finds that ¢'(z,y) = ag(z,y) for each z,y € H,. Then if X € H,
is fixed and k € T, M it follows from the above that by decomposing k as a
member of H,, and a multiple of u, k = puy + vu for y € H, and p,v € R, one
finds that (¢' — ag)(X, k) = 0 for any fixed X € H, and for any k € T, M.
Thus, in components and with h = ¢’ — ag, (heX?) is orthogonal to each
member of T, M and is hence zero. Thus each member of H,, is an eigenvector
of ¢’ with respect to g with the same eigenvalue «. It follows that either g’
is a multiple of g or H), is the a—eigenspace of g’ and Sp(u) its orthogonal
complement and so, in either case, u is also an eigenvector of ¢’. So, at p € M,
ghy = gap + Buguy for B € R and, since ¢’ is non-degenerate and |u| = —1,
a # B. Now, regarding « and S as functions on M and if ¢ also lies in the
Killing orbit through p, say with ¢:(p) = ¢ for some local flow of a mem-
ber of K(M), then for z,y € Hy, a(p)gp(z,y) = g,(x,y) = (979 )p(z,y) =
9q(P:, ory) = (@)9q(Pr, dray) = a(q)(79)p(x,y) = a(q)gp(z,y) for
G5, Oy € Hy, (where g, = g(p), etc) and since ¢f¢’ = ¢', ¢7g = g and
¢u = u. This, and a similar calculation for u shows that the functions o and
B are constants on the orbits and hence (smooth) functions of ¢ only. Thus

Gop = (t)gab + B(t)uaus (7.110)

where a > 0 < a— 8 for ¢’ non-degenerate and of Lorentz signature. It follows
that ¢’ is also an F.R.W.L metric whose submanifolds of constant ¢ (orbits)
are the same (constant) curvature as those for g.

One may now impose the remainder of the conditions (7.10) on the func-
tions a and B to compute the form for ¢’ up to a constant conformal factor
as [107]. The calculation was done by Dr David Lonie using MAPLE.

—dt? R3(t)

ds" = (1+eR2()2 " 1+ eR2(?)

[dr? + f2(r)(d6? + sin® d¢?)].  (7.111)

The metric ¢’ is thus controlled by the single constant e € R and the single
function 1+ eR?(t). Any metric ¢’ of the form (7.111) is projective related to
the metric (7.109). The following is thus proved [107].

Theorem 7.10 If (M,g) is a generic F.R.W.L. metric as in (7.109) and ¢’
1s also a Lorentz metric on M projectively related to g, then g’ is also a generic
F.R.W.L. metric given by (7.111) and is of the same general form as (7.109).
Any metric of the form (7.111) is projectively related to (7.109). The situation
for the Finstein static type metrics is as described earlier.

It is noted here that examples of projectively related F.R.W.L. metrics g
and ¢’ on M exist for which the common projective algebra is 7—dimensional
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and with M admitting a vector field X which is proper homothetic for g (and
hence no proper projective vector fields are admitted by (M, g)—see earlier)
and proper projective for ¢’ (but with (M, ¢’) admitting no proper homothetic
vector fields) [107]. This should be noted in connection with theorem 7.4. It
is remarked that [111] quotes a result without proof but which is attributed
to Sinjukov [112] and which can be shown to be equivalent to theorem 7.10.
Further results may be found in [107, 110, 113, 114] and the references therein.

Finally one may return briefly to the positive definite case. It turns out that
using similar techniques as above, but this time for positive definite signature,
a version of theorem 7.10 can be found (see [34]). One can also consider the

situation when (M, ¢g) has holonomy type §4. In this latter case, and with ¢’
projectively related to g, in order to get an example when V' # V one needs
dimrgf(p) <1 for each p € M (theorems 7.5 and 7.6). Consider the following
metric in a global coordinate system z,y, z, w with w > 0

ds? = w?{da? + dz* + (42? + 1)dy* + dxdydz} + dw?. (7.112)

This metric has holonomy type 5_'4 and the only non-vanishing component of
Riem (up to index symmetries) is Ri912. Thus Riem is of curvature class D
on M and g admits Killing vector fields 9/9y and 9/9z and a parallel bivector
2{0/0w A 0/0z + 0/0x N -(8/dy — 220/0z)}. The metric g is found using
the inversion procedure [34, 67] and is given up to a constant scaling by

ds’? = (14 bw?) " Hw?[dz? + dz? + dwdydz + (422 + 1)dy?] + (1 + bw?) "L dw?}

(7.113)
where b is a positive constant. It has positive definite signature and holonomy
type Sg (see theorem 7.6). It admits two Killing vector fields 0/9y and 0/0z.

7.8.3 The neutral signature case

Suppose now that dimM = 4 and that g and ¢’ are smooth metrics on M
of neutral signature. The techniques used earlier for the other signatures may
be used here also but the general situation is more complicated. The main
ideas will be presented together with references where some examples can be
found but the treatment will otherwise be brief. It is noted that since a metric
exists the holonomy type of (M, g), if 1—dimensional, must be 1la, 1b, lc or
1d and cannot be 2I, 3e, 3f or 4d (see earlier). The uncertain type 25 will be
included.

Theorem 7.11 Let dimM = 4 with g and g’ projectively related metrics of
neutral signature on M. Suppose g has holonomy algebra of dimension 1 or
2. Then in the usual notation V' = V.

Proof Let ¢ be the holonomy algebra associated with g and use the corre-
sponding bases I,n, L, N and z,y, s,t associated with this signature. Lemma
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7.5 shows that the conditions of lemma 7.4 hold in all cases and U will
be used to denote the open subset of M used in lemma 7.5 and in which
Riem is nowhere zero. If ¢ is of type la, 1b, 1c or 1d then U may be cho-
sen to admit two independent parallel vector fields and lemma 7.5(vi) applies
in each case to give A = 0 on M and hence that V' = V. For ¢ of type
2a =Sp(I AN N,IAn—LAN), (M,g) admits two independent, local, recur-
rent, null vector fields on U arising from [ and N. If one may take U so
that dimrgf(p) = 1 for each p € U then rgf is spanned by I AN on U and
R%cql® = R%qN¢ = 0 on U and so U may be chosen to admit two inde-
pendent, local, parallel vector fields (section 7.1) and lemma 7.5(vi) shows
that V' = V. Otherwise, for some p € U and hence on some open neighbour-
hood of p, chosen as U, dimrgf = 2, and for each p € U, rgf(p) contains
a non-simple member. Then (7.57)(b) gives V' = V. For holonomy types
2b =Sp(lAn,LAN) and 2d =Sp(IAn— LA N,lA L) the proof is similar. For
type 2¢ =Sp(IAn—LAN,z ANy—sAt=Sp(lAn—LANJIANL+nAN)
it is easy to check that all non-zero members of rgf(p) are non-simple. (To

+ —_
see this note that if G =lAn—LAN € Sand H=xAy—sAteS then

(G+pH) - (G+pH) = |G| —p?|H| (1 € R) is never zero since |G| < 0 < |H|.)
Then (7.57)(b) shows that A = 0 and the result follows. The case when ¢ is of
type 2e =Sp(z Ay, s At) is similar to the type S case in the positive definite
situation. For type 2f =Sp(IAN+nAL,IAL) one has local, complex recurrent
vector fields [ + 4L on U and the only simple members of ¢ are multiples of
I A L. So either one may choose U so that rgf(p) is spanned by I AL on U or
rgf(p) has a non-simple member at each p € U. In the former case, [ +iL give
rise to complex conjugate parallel vector fields on U and hence to two real null
parallel vector fields on U lying in the blade of I A L and lemma 7.5(vi) gives
A =0on U and hence on M. In the latter case rgf has a non-simple member
at each p € U and again A = 0 on U and hence M. Thus V' = V. For type
2g =Sp(IAN,IA L) there is a local null parallel vector field on U arising from
[ and one may choose U so that either dimrgf = 1 on U or dimrgf(p) = 2
on U. In these cases lemma 7.5(iv), respectively, lemma 7.5(iii), completes
the proof. If the type is 2h =Sp(I A N, a(I An) + B(L A N) (o # £f) or type
2§ =Sp(IANN,a(lAn—LAN)+B(IAL)) (af # 0) then, in each case, a local
recurrent vector field is admitted arising from [. For 2j the only simple mem-
ber in rgf (up to scaling) is IAN. (To see thislet F =IAN,G =IlAn—LAN

and H = [ A L. Putting Q = F + u(aG + BH) one finds Q - Q = p2a?|G]
and so @ is simple if and only if ;= 0.) The result now follows for this type
from lemma 7.5. For type 2h if a5 # 0 a similar argument shows that [ A N
is the only simple member and the conclusion that V/ = V follows as above.
Ifa=0%# porif a# 0= g all members of rgf are simple. If one can
choose U so that dimrgf = 2 on U a properly recurrent null vector field is
admitted. Otherwise one may choose U so that dimrgf =1 on U and either
a null parallel vector field is admitted on U which lies in the blade of the
spanning member of rgf, or a null properly recurrent vector field is admitted
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on U. In either case appropriate parts of lemma 7.5 shows that V' = V. For
type 2k =Sp(I An,lAy) or Sp(I An,lAs) the result again follows from lemma
7.5(i1) or 5(iv). This completes the proof of the theorem. O

Now suppose the holonomy type is 3a =Sp(I A N,{ An,L A N). Then M
admits two local recurrent null vector fields arising from [ and N in some open
neighbourhood of any p € M. The kernel of f consists, at any p € M, of at
least Sp(IAN,IAL,nAN) and lemma 5.10 shows that the conditions of lemma
7.4 hold. If there exists p € M where rgf(p) contains a non-simple member
(and this is necessarily the case if dimrgf(p) = 3) then this is true over some
open neighbourhood U of p and A = 0 on U. Thus V' = V. Otherwise,
suppose there exists p € M where dimrgf(p) < 2 with rgf(p) containing only
simple members. Suppose that either F,;I° # 0 or G4, N® # 0 for some (not
necessarily independent) members F, G € rgf(p). Then this supposition holds
over some open neighbourhood U of p and a properly recurrent null vector
field exists on U. Thus V' = V on M from lemma 7.5(4i). Otherwise rgf is
spanned by I A N on some open subset of M and V' =V on M from lemma
7.5(iv).

If ¢ has holonomy type 3b =Sp(IAn—LAN,IAN,IAL), then at any p € M,
ker f contains Sp(IAN,IAL,IAn+ LA N) and, recalling the proof of lemma
7.4, lemma 5.10 shows that Sp(l, N, L) forms (part of) an eigenspace of VA
whilst A L and n A N are invariant 2—spaces for VA. The invariance of n A N
and the symmetry of VA(= A,.p) then shows that n is also in this eigenspace
and thus VA is a multiple of g on M and the conditions of lemma 7.4 hold.
Also a null local recurrent vector field arises from I. If for p € M rgf(p)
contains a non-simple member (and this is necessarily the case if dimrgf = 3)
it does so in some open neighbourhood of p and A = 0 on M, that is V' = V.
Otherwise, either there exists a non-empty open subset on which dimrgf = 2
(= rgf =Sp(IAN,lA L)) or dimrgf = 1(= rgf=Sp(l A (aL + bN)) for
a,b € R). In each case lemma 7.5 shows that V' = V.

For holonomy type 3¢ =Sp(x Ay,z At,y At) or Sp(z As,x At,sAt) these
case are similar to each other and to the case Rip in Lorentz signature and
the conditions of lemma 7.4 are again satisfied. One finds that V' = V except
when dimrgf < 1 on M. In this latter case one again finds V' = V if on some
open subset U C M, rgf is null (lemma 7.5(v)), but otherwise, as in the Rjq
case, V' and V are not necessarily equal and counterexamples exist [66, 67].

For holonomy type 3d =Sp(IAN,IAL, a(IAn)+B(LAN) with o, € R and
« # 0 a local recurrent vector field arises from ! and which may be chosen
locally parallel if « = 0 (= 8 # 0). The kernel of f contains Sp(IAN,IAL, B(IA
n)—a(LAN)) and the conditions of lemma 7.4 are seen to be satisfied provided
B # 0 (lemma 5.10).For most of this type the discussion is similar to that given
above and so it will be dealt with briefly. The following breakdown of cases
simplifies the approach. First suppose a # 0 # 8 (so that the conditions if
lemma 7.4 are satisfied). Then if there exists p € M such that rgf(p) contains
a non-simple member (and this is always true if dimrgf(p) = 3) then V' = V.
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Otherwise, one considers the existence of p € M at which dimrgf(p) = 2 and
then at which dimrgf(p) = 1 with rgf(p) CSp(IAN,IA L) in each case. Each
leads to a local parallel null vector field arising from [ and lemma 7.5(iv) gives
V' = V. If a = 0 # B the conditions of lemma 7.4 are satisfied, all members
of rgf are simple at each p € M and [ gives rise to a local parallel null vector
field. One finds (lemma 7.5) V' = V except possibly when dimrgf < 1 on
M. In this case if there exists a non-empty open subset U of M on which
rgf is spanned by a null or totally null bivector one again finds V' = V from
lemma 7.5(iv). Otherwise, for such open subsets rgf is spanned by a timelike
bivector and one may achieve V' # V with g taking a form similar to (7.83)
[66, 67] and from which ¢’ may be calculated. If o # 0 = 8 the conditions of
lemma 7.4 are not satisfied and further details may be found in [66, 67].

For the holonomy type 4a :Sp(g', IAn+LAN)=Sp(IAn, LAN,IANN,nAL)
at each p € M kerf contains at least Sp(l A L,n A N) and so, from (7.54),
IANL and n AN are eigenspaces of the symmetric tensor h = V. Thus at any
pEM hypl® = aly, hayn® = Bng (o, B € R). But then h(l,n) = h(n,l) shows
that o = 8 and hence that VA is a multiple of g. It follows that the conditions
of lemma 7.4 are satisfied. Further, if there exists p € M with dimrgf(p) > 3
this will hold over some open neighbourhood U of p and then, since rgf C ¢,

rgf must intersect LJSF' in at least a 2—dimensional subspace at each such point
and which must therefore contain a non-simple member. It follows that A =0
on U and so V' = V. Now suppose there exists a non-empty open subset
U € M on which dimrgf = 2 and at no point of which admits a non-simple
member of rgf. Then for p € U and K € rgf(p), K=S+~v({An+LAN)

+ * s
for SeS,,yeERand K =5 —~(An+LAN)andso K K =S|+ 4y
To make K simple one needs either v = 0 and S totally null, or v # 0 and

|S| < 0. Thus, on U, rgf contains a totally null member of g and, using lemma
7.5(4) in chapter 5, one of I An or L AN (to avoid non-simple members since
curvature class C is needed here). Thus rgf may be taken as being spanned
by IAN and [An on U (up to obvious isomorphisms). Then (7.57) shows that
IAN and | An are eigenspaces of a and hence, on U, aqp = agqp + 8NNy for
smooth a and 3. A substitution into (7.20) and contractions with (“n® and
with N¢L? then give A = 0 and so V' = V. The only other possibility is that
dimrgf <1 on M and in this case it is possible that V' # V [34, 67].

+ +
For type 4b =Sp(S,I AL+ n A N)=Sp(S,z Ay — s At), kerf contains, at
each point of M Sp(G,H) where G =z ANt+yAsand H=xzAs—yAt

and which, together with K = x Ay — s At constitute a basis for S. But then
(7.53) holds for G and H and also for [G, H| = —2K which means it holds for

each member of S since G and H cannot span a subalgebra of S (see chapter
5). But this forces A to be a multiple of g and the conditions of lemma 7.4 are
satisfied. It can then be shown by similar arguments to the previous case that
V' =V unless dimrgf < 1 on M (the 2—dimensional case, that is, curvature
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class C, is not possible here as it was for case 4a since the blades of a totally
null and a spacelike bivector intersect only trivially). Again, examples of g
and ¢’ can be found for which V' # V [67].

For type 4¢c =Sp(IAN,IAn,INL,LAN) and ker f contains Sp(IAN,IAL)
and the conditions of lemma 7.4 are not satisfied. However, a local parallel
null vector field arises in some neighbourhood of each p € M. This case has
some similarities to the cases Rg and Ry4 in the Lorentz signature discussion
and examples can be found with V' # V [67]. One thus has the following
theorem.

Theorem 7.12 Let dimM = 4 with g and g’ projectively related metrics of
neutral signature on M. Suppose g has holonomy algebra of type 3a, 3b, 3c
(with dimrgf(p) > 2 for some p € M), type 3d (with « # 0 # ) or type 3d
(with 0 = « # 8 and with dimrgf(p) > 2 for some p € M ). Then in the usual
notation V' = V. If the holonomy type of (M, g) is 4a or 4b one again gets
V' =V except possibly when dimrgf <1 on M.

It is noted that even in the cases 3¢, 3d (with 0 = o # 3), 4a or 4b where,
in each case, the restriction dimrgf < 1 is imposed on M one again arrives at
V' = V provided the blade of the spanning member of rgf is one of certain
special types listed above on some non-empty open subset of M. In fact, over

+ —
all signatures, the types Sy, So, S3, S3 (positive definite signature), R, R,
R4, Rg, R7, Rg and Rz (Lorentz signature) and types la—1d, 2a—27, 3a, 3b
and 3d(af # 0) (neutral signature) all lead immediately to V' = V whilst the

+ —
types Ss3, Sy and Sy (positive definite), Rjg, R11 and R;3 (Lorentz) and 3c,
3d(a = 0 # ), 4a and 4b each lead to V' = V provided there exists p € M
such that dimrgf(p) > 2.
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proper, 206
homotopic, 21
to zero, 21
hypersurface, 40

identity component, 48
immersion, 38
index raising and lowering, 56
induced metric, 100
infinite-dimensional, 6
inner product, 9
space, 9
integral curve, 37
integral manifold, 42
maximal, 42
interior, 17
isometry, 203

Jacobi identity, 15

Jordan
basis, 12
block, 12
canonical form, 11
matrix, 12

kernel, 3, 5

Killing

algebra, 205
bivector, 204
equation, 203
isotropy algebra, 209
orbits, 209
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vector field, 203
Kronecker delta, 2

left-invariant, 49

Levi-Civita connection, 58

Lie
algebra, 15, 49

0(2,2), 160

algebra o(1,3), 113
algebra o(4), 82
closed subgroup, 49
derivative, 202
group, 48
homomorphism, 16
isomorphism, 16
product, 15
subalgebra, 15, 50
subgroup, 48

Lie group
homomorphism, 48
isomorphism, 48

limit point, 17

linear
combination, 5
map, 5

linearly independent, 5

local base for topology, 18

local flow, 201

Lorentz
algebra, 113
group, 113

group proper, 114
Weyl map, 121
Weyl rank, 121

m-frame, 40

manifold, 27
covering, 52
dimension, 28
Grassmann, 40

Grassmann of 2-spaces, 67

product, 28
Stiefel, 40
topology, 29
universal cover, 52

Index

mass, 241
matrix, 7
metric, 55
compatibility, 58
induced, 57
Lorentz, 55
neutral, 55
positive definite, 55
product, 57
symmetries, 203
minimal polynomial, 12
Minkowski
metric, 113
space, 113
multilinear map, 9
multiplicity, 10

neighbourhood, 17
non-degenerate, 8
non-Euclidean geometry, 25
non-flat, 47
normal subgroup, 4
nowhere dense, 17
null, 56
cone, 99
rotations, 119
nullity, 6

open
covering, 20
subset, 16

orthogonal
complement, 9, 56
subspace, 56

orthonormal, 56

paracompact, 57
parallel, 43, 212
parallel transfer, 42
partition, 2
past
pointing, 114
preserving, 114
path
piecewise-smooth, 30
smooth, 30
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topological, 21
path-connected, 21
local, 21
Petrov
classification, 121
invariant, 123
types, 122
plane wave, 135
pp-wave, 136
principal axes theorem, 14

principal null direction of I;[r/, 177
principal null direction of C'

Lorentz, 125

neutral, 183
principle of equivalence

Einstein, 242

Newton, 242
product topology, 19
projective

1-form, 207, 217

algebra, 207

bivector, 207

equivalence, 216

proper, 208

relatedness, 216

tensor, 219

vector field, 207
projective relatedness

and Ricci tensor, 219

and constant curvature, 227

and curvature tensor, 219

and Einstein spaces, 225
projective structure

and holonomy, Lorentz case, 243
and holonomy, neutral case, 257

and holonomy, positive definite
case, 237
and symmetry, 229
pullback, 36
pushforward, 36

quadratic form, 8
quotient
group, 4
manifold, 40
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space, 19
topology, 19

range space, H
rank, 6
rank theorems, 22
recurrence
1-form, 211
and Segre type, 214
recurrent
complex, 213
properly, 213
tensor field, 211
reparametrisation, 38
respects, 20
Ricci
scalar, 58
tensor, 47
tracefree tensor, 59
Ricci-flat, 59
Riemannian, 55
right-invariant, 49

second countable, 19
sectional curvature
Lorentz, 131
neutral, 194
positive definite, 90
Ricci flat, 95
Segre
characteristic, 12
symbol, 12
type, 12
self-adjoint, 14
signature
Lorentz, 55
neutral, 55
positive definite, 55
simple connectedness for manifolds,
51
simply-connected, 21
locally, 21
Sinjukov
equation, 222
tensor, 222
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transformation, 221 product, 35
skew-symmetrisation of tensors, 65 symmetry, 202
smooth, 27 type, 33

homotopy, 51 tensor field

map, 29 smooth, 35
spacelike, 56 tetrad
span, 5 complex null, 108
spanning set, 5 real, null, 99
subalgebras timelike, 56

of 0(1,3), 115 topological

of 0(2,2), 164 group, 48

of 0(4), 82 space, 16
subbase for topology, 18 topology, 16
submanifold, 38 discrete, 17

embedded, 39 indiscrete, 17

regular, 39 translations, 49

structures, 39
submersion, 40 vacuum, 59
subspace, 5 vector, 31

invariant, 10 component, 35

orthogonal, 9 transformation law, 32

topology, 18 vector field

+ bracket, 35
subspaces Sip Lorentz, 108 coordinate, 34
subspaces .S}, neutral, 142 smooth, 34
subspaces §; positive definite, 71 Vect(gaz)savcg 4

Sylvester
canonical form, 9
law of inertia, 9

dimension, 6
direct sum, 6
homomorphism, 5

matl."lx, 9 ) ) isomorphism, 5
symmetric tensor classification

Lorentz, 101 Weyl

neutral, 147 tensor complex, 121

positive definite, 61 conformal tensor, 59

using fourth order tensors, 198 invariant, 123
symmetrisation of tensors, 65 map, 79 ’

projective tensor, 219

tangent rank, 79

bundle, 32 Weyl tensor

y

space, 31 classification Lorentz, 121

vector, 31, 37 classification neutral, 171
tensc;i;niiaction - decomposition, 79

feld, 35 duals, 67

order, 33
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