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Fractals are self-similar, self-repeating and scale-invariant structures which were 
first introduced by Mandelbrot to model the “roughness” in patterns observed 
in nature, a roughness that could not be described in terms of over-idealized 
Euclidean geometry. Fractals are not only used to model complex spatial shapes 
but also time patterns.   This book is composed by an introductory chapter 
and 16 open-access articles describing various aspects of fractal analysis. It 
overviews concepts such as fractal dimension, fractal time series, symmetrical 
and asymmetrical bifurcating fractal networks. The book is divided into the 
following topics:
 • Fractal dimension, self-similarity and self-affinity:  The first chapter aims 

to introduce the reader to fundamental concepts in fractal analysis such 
as self-similarity, self-affinity, Hausdorff dimension and Hurst exponent. 
The second chapter introduces a unified definition of fractal dimension 
for self-similar and self-affine fractals. 

 • Fractal Antennas: The third chapter reviews the concepts of fractal 
dimension and its relationship with Rényi entropy, as well as describes 
the fractal structure behind Sierpinski Gasket and Hilbert antennas.  

 • Measuring the Fractal nature of observed patterns: The Chapter 5 and 6 
include a practical application of the box-counting method in determining 
the fractal nature of rings of Saturn and the occurrence of specific words 
in text. 

 • Fractal analysis applications to digital imaging: Chapters 6 and 7 describe 
two examples of  fractal analysis applications to digital imaging. Chapter 
6  introduces the reader to used of Higuchi method for determining 
the fractal properties of objects represented by digital images. Chapter 
7  evaluates colour fractal dimension and lacunarity as video quality 
metrics.

 • Fractal time series analysis: Chapters 8, 9, and 10 overview the different 
fractal time-series analysis methods. Chapter 8 summarizes the evolution 
of different methods from Mandelbrot’s similarity dimension to 
variational box-counting methods. Chapter 9 offers a tutorial to adaptive 
fractal analysis. Chapter 10 reviews the current mono- and multi-fractal, 
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as well as time- and frequency-domain time series analysis.   
 • Examples of fractal time series applications:  Chapters 11, 12, and 13 

describe three cases of fractal time series applications: the characterization 
of remotely sensed forested landscapes, the generation of natural-looking 
radar echoes on coastlines, and the study of multi-fractal behaviour of 
corroded steel surfaces.

 • L-systems as fractal models of fracture networks:  Chapters 14 and 15 
introduce the readers to Lindenmayer systems (L-systems)  which can be 
utilized to model the fractal geometry of rock and hydraulic fractures. 

 • Multi-fractal analysis and its applications to weighted complex networks: 
Chapters 16 and 17 describe multi-fractal applications to weighted 
complex networks and overviews several algorithms such as the box-
counting, edge-covering box counting, rank-driven, ball-covering, 
compact-box-burning, fixed-size box-counting and sandbox algorithm.
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Olga Moreira 

Mandelbrot introduced the idea of using self-similar shapes as the basis to 
model the regularities and capture the intricate patterns such as the coastline 
of Britain (Mandelbrot, 1967; 1983). Fractal structures are self-similar and 
scale-invariant. The same small-scale shape also appears in the large-scale 
structure. Self-similar fractals are abundant in nature such as snowflake, 
broccoli, fern leaves, bronchial and pulmonary vascular trees (e.g. Glenny 
et al., 1991). 

Fractal structures are characterized by the Hausdorff dimension (Balka et 
al., 2015) also known as the “Fractal Dimension”. A non-integer dimension 
that is essentially a measure of “roughness”. For instance, the coastline of 
Britain 1.21 while the coastline of Norway is  1.52. This means the coastline 
of Norway is more intricate (or rougher) than that of Britain. An advantage 
of the self-similarity property is that fractal dimension will remain constant 
regardless of units or scales of measure (see Chapter 2).  A fractal structure 
can be tested for self-similarity by using, for instance, box-counting method 
(e.g. Grassberger, 1993). The fractal dimension is evaluated from the slope 
of the log-log plot of the number of boxes versus scaling factor. A good 
description of the box-counting method is included in chapter 3 and example 
of applications is included in chapter 4.

Another advantage is that self-similar fractals can be computer-generated 
using a simple recursive function (e.g. Shiffman, 2012) which reduces time 
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complexity.  Examining self-similar and recursive structures such as the 
Koch snowflake (see, for instance, chapter 2 and 3), one can deduce that its 
perimeter is infinite but not the area. The area Koch snowflake will remain 
the same. This made the design of fractal antennas possible. Fractal antennas 
maximize the effective length of self-similar shape and broaden their multi-
band characteristics.

In practice, some fractal structure present a certain the degree of 
randomness. Statistical fractals do not exhibit self-similarity, only self-
affinity. Their statistical properties are repeated but are resized by independent 
quantities in the two orthogonal dimensions. Statistical self-affine fractal are 
characterized by the Hurst exponent which used as a measure of long-term 
memory of time series.  The fractal dimension is evaluated from the slope 
of the log-log plot of the variance or power spectrum. A good description 
of fractal time series is included in chapter 8, 9 and 10. Fractal time series 
analysis has important applications to main research fields including 
physiology (see Glenny, 1991; Stadnitski, 2012).

Fractal analysis is constantly evolving, broadening its range of 
applications, including the evaluation and modelling of L-systems and 
complex networks (see chapters 14 to 17).  
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ABSTRACT
Fractal behavior is scale-invariant and widely characterized by fractal 
dimension. However, the cor-respondence between them is that fractal 
behavior uniquely determines a fractal dimension while a fractal dimension 
can be related to many possible fractal behaviors. Therefore, fractal behavior 
is independent of the fractal generator and its geometries, spatial pattern, 
and statistical properties in addition to scale. To mathematically describe 
fractal behavior, we propose a novel concept of fractal topography defined 
by two scale-invariant parameters, scaling lacunarity (P) and scaling 
coverage (F). The scaling lacunarity is defined as the scale ratio between 
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two successive fractal generators, whereas the scaling coverage is defined 
as the number ratio between them. Consequently, a strictly scale-invariant 
definition for self-similar fractals can be derived as D = log F /log P. To 
reflect the direction-dependence of fractal behaviors, we introduce another 
parameter H

xy
, a general Hurst exponent, which is analytically expressed 

by H
xy

 = log P
x
/log P

y
 where P

x
 and P

y
 are the scaling lacunarities in 

the x and y directions, respectively. Thus, a unified definition of fractal 
dimension is proposed for arbitrary self-similar and self-affine fractals by 
averaging the fractal dimensions of all directions in a d-dimensional space, 

which . Our definitions provide a theoretical, 
mechanistic basis for understanding the essentials of the scale-invariant 
property that reduces the complexity of modeling fractals.

INTRODUCTION
Fractals were originally introduced by Mandelbrot1 to describe the fractal 
behaviors of similar geometries in disordered and irregular objects such as 
the natural coastlines1,2,3, phenomena in natural and artificial materials 4,5,6, 
porous media7,8,9,10, biological structures11, rough surfaces12,13,14,15, 
as well as novel application of factuality to complex networks and brain 
systems16,17,18.

The unique property of fractals is that they are independent of the unit of 
measurement 3 and follow a scaling law in the form

      (1)
where M can be the length of a line or the area of a surface or the volume of 
an object, and D is the fractal dimension. Eq. (1) implies the property of self-
similarity, which means that the value of D from Eq. (1) remains constant 
over a range of length scales l.
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Fractal dimension extends the concept of “dimension”, because it can 
be a fraction, rather than an integer as in conventional Euclidean space, 
indicating the degree of complexity of fractal behaviors. Fractal theory now 
serves as a powerful, perhaps fundamental, tool for characterizing scale-
invariance in many fields19,20,21,22,23,24,25,26,27.

In practical applications, D can be obtained by a number-size approach 
or one of its variants, as demonstrated in Eq. (2)

    (2)
where N(G(l)) is the number of similar objects of G with characteristic linear 
dimension l and c is a constant proportionality. D can be determined by the 
slope of the relationship between log l and logN(G(l))

     (3)
However, the number-size relationship is not a definition, but rather a 

method for determining the implied fractal dimension. Reexamining fractal 
theory, D is a parameter uniquely determined by the fractal behavior of a 
similar object (scaling object or fractal generator) in a fractal object, not 
a parameter that determines such behavior. Different fractal generators 
following the same fractal behavior will result in the same fractal dimension, 
while the same fractal generator with different fractal behaviors will lead to 
different fractal dimensions.

As the variants of the Sierpinski gasket in Fig. 1 show, the fractals in 
rows 1 and 2 are constructed by different fractal generators, but they share 
the same fractal dimension, log2/log3, per the number-size relationship 
(Equation (3)) because their fractal behaviors are the same. The fractal 
generators for the fractals in rows 2–4 are the same; however, they follow 
diverse fractal behaviors, resulting in different fractal dimensions (log2/
log3, log8/log3, and log5/log6, respectively).



Fractal Analysis8

Figure 1: Fractals constructed by different fractal generators with the same 
fractal behaviors or by the same fractal generators with different fractal behav-
iors.

From left to right in each row, the subfigures demonstrate the construction 
of fractals with greater detail. Left: the fractal generator is scaled to the 
characteristic dimension of a fractal object l0. Center: following a fractal 
behavior, a simple fractal is constructed. Right: based on the fractal generator 
and following the fractal behavior, a more complex fractal is obtained in a 
scale-invariant manner.

These examples imply that the definition of fractal behavior must satisfy 
three key requirements: it must be (1) independent of the fractal generator, (2) 
not constrained by the geometries, spatial patterns, or statistical properties of 
the fractal generator, and (3) scale-invariant. The number-size relationship 
does not suffice to preserve fractal behavior information, which hinders the 
essential understanding of fractal properties and strictly constrains their 
applications.
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METHODS AND DISCUSSION
To provide a theoretical, mechanistic basis for understanding the property 
of scale-invariance, we must mathematically define it per the key 
requirements we have previously laid out. The first one is what parameters 
determine fractal behavior? For convenience, we call what defines 
fractal behavior fractal topography not only because of the scale and size 
background, but also that natural structures are often hierarchical, for 
example, with a sponge-like topology28.

To demonstrate fractal topography, it suffices to exhibit structure in a 
fractal object using a variant of the Sierpinski gasket. As shown in Fig. 2, 
there are two scale-invariant parameters that determine the fractal behavior 
of fractal generator G: the ratio of the sizes of two successive scaling objects 
(l

i
/l

i+1) and the ratio of their number (N(G(l
i+1))/N(G(l

i
))).www.nature.com/scientificreports/
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topography information and defines fractal dimension in a strictly scale-invariant manner, other than what is 
implied in the number-size relationship.

To verify Eq. (9), some classic fractals, the Koch curve, Sierpinski carpet, Sierpinski gasket, and Menger 
Sponge (Fig. 3, here the Menger Sponge not demonstrated), are used to validate it and check its generality.

For a Koch curve, at the stage n =  0, N(G(l0)) =  1 (Fig. 3(a)); at the next stage, N(G(l1)) =  4 and l1 =  l0/3 
(Fig. 3(b)). Following the definitions of scaling lacunarity and scaling coverage, P =  l0/l1 =  3 and F =  N(G(l1))/N
(G(l0)) =  4. Therefore, the fractal dimension of the Koch curve D =  log4/log3 =  1.2618. The parameters defining 
and characterizing the fractal topographies of different classic fractals are listed in Table 1. The results are consist-
ent with their theoretical values3.

Eq. (9) indicates that:

(1) P and F are the intrinsic and basic properties of fractal behavior. P controls scaling behavior while F deter-
mines the degree of space filled by a fractal generator, and together they quantitatively define the topography 
of a fractal;

(2) fractal topography uniquely determines fractal dimension, while a fractal dimension can be associated with 
different fractal topographies/fractal behaviors. For example, the fractal topography with P and F of a and b 
shares the same fractal dimension with those of aβ and bβ for an arbitrary choice of β;

(3) scaling lacunarity and scaling coverage are real scale-invariant dimensionless parameters different from the 
scale l and number N(G(l)), and they are also independent of the fractal generator G(l0) and its geometries, 
spatial patterns, and statistical properties.

In Fig. 3, the maximum scaling coverages Fmax are 4 (Koch curve), 8 (Sierpinski carpet), and 3 (Sierpinski 
gasket) at the minimium scaling lacunarities Pmin of 3, 3, and 2, respectively. However, F can be fixed to be a value 
in the series  F{0, 1, , }max , and can even be a fraction in [0, Fmax]. For simplicity and without loss of generality, 
F and P are set to integers for discussion in this report. Using the Koch curve for explanation, F can be assigned to 
be 0, 1, 2, 3, and 4 while P is set to be 3. These fractal dimensions are log0/log3 →  − ∞ 29, log1/log3, log2/log3, 
log3/log3 and log4/log3, respectively. Meanwhile, the scaling lacunarity can also be chosen to be larger than Pmin. 
As the fractal in row 4 of Fig. 1, the scaling lacunarity is 6, which is greater than the minimum scaling lacunarity 
determined by the geometry of the fractal generator.

The definition of the fractal dimension by Eq. (9) is not new and ideas about topography can be found in many 
previous works4,9, and can be even tracked back to its original introduction1. For convenience of description, we 

Figure 2. A fractal and its topography for a variant of the Sierpinski gasket. 

Figure 2: A fractal and its topography for a variant of the Sierpinski gasket.

Fractal topographic information is actually implied in the number-size 
relationship. For convenience, to mathematically define fractal topography, 
we first propose two notations:
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Scaling lacunarity (P): The unit ratio between two successive fractal 
generators G(l

i
) and G(l

i+1), with the characteristic dimensions l
i
 and l

i+1 in 
a fractal object, as

       (4)
Scaling coverage (F): The numeric ratio between two successive fractal 

generators G(l
i
) and G(l

i+1) in a fractal object, yields:

      (5)
Apparently, P and F uniquely determine the fractal behavior of the 

scaling object in a fractal. These two parameters are dimensionless and 
scale-invariant, because no matter how we compress or stretch the fractal 
space, P and F will not be altered. Taking the properties independent of a 
fractal generator and its constraints together, demonstrated in Fig. 1, fractal 
topography is defined by Ω(P, F) in this report.

The above discussion answers the question of how to define fractal 
behavior, but how does fractal behavior uniquely determine fractal 
dimension?

According to Eq. (2), the number of scaling objects of characteristic 
dimension l

i
 yields

      (6)
while the number of the successive objects N(G(l

i
/P)) satisfies

     (7)
Taking Eqs (4), (5), (6) and (7) into account, we obtain the relationship 

between the scaling lacunarity and the scaling coverage

     (8)
Consequently, a scale-invariant definition of fractal dimension is 

obtained:
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       (9)
Eq. (9) indicates that the fractal dimension D is the exponent of the 

power-law relationship between P and F, a dependent parameter determined 
uniquely by P and F. Compared with Eq. (3), Eq. (9) preserves fractal 
topography information and defines fractal dimension in a strictly scale-
invariant manner, other than what is implied in the number-size relationship.

To verify Eq. (9), some classic fractals, the Koch curve, Sierpinski carpet, 
Sierpinski gasket, and Menger Sponge (Fig. 3, here the Menger Sponge not 
demonstrated), are used to validate it and check its generality.

Figure 3: Fractals to demonstrate the validity of Eq. (9).

(a–c) are the initiators of scaling objects of the Koch curve, Sierpinski carpet, 
and Sierpinski gasket, respectively. For convenience, we denote them as 
fractal generators. At the next step, each potential subpart is replaced by a 
reduced replicate of the generator and the fractals are obtained.

For a Koch curve, at the stage n = 0, N(G(l0)) = 1 (Fig. 3(a)); at the next 
stage, N(G(l1)) = 4 and l1 = l0/3 (Fig. 3(b)). Following the definitions of scaling 
lacunarity and scaling coverage, P = l0/l1 = 3 and F = N(G(l1))/N(G(l0)) = 4. 
Therefore, the fractal dimension of the Koch curve D = log4/log3 = 1.2618. 
The parameters defining and characterizing the fractal topographies of 
different classic fractals are listed in Table 1. The results are consistent with 
their theoretical values3.
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Table 1:The fractal topography information of classic fractals and their fractal 
dimensions calculated by Eq. (9)

Fractals P F D
Koch curve 3 4 1.2618
Sierpinski carpet 3 8 1.8927

Sierpinski gasket 2 3 1.5842

Menger Sponge 3 26 2.9656

Eq. (9) indicates that:
•	 P and F are the intrinsic and basic properties of fractal 

behavior. P controls scaling behavior while F determines the 
degree of space filled by a fractal generator, and together they 
quantitatively define the topography of a fractal;

• fractal topography uniquely determines fractal dimension, 
while a fractal dimension can be associated with different 
fractal topographies/fractal behaviors. For example, the fractal 
topography with P and F of a and b shares the same fractal 
dimension with those of aβ and bβ for an arbitrary choice of β;

• scaling lacunarity and scaling coverage are real scale-invariant 
dimensionless parameters different from the scale l and 
number N(G(l)), and they are also independent of the fractal 
generator G(l0) and its geometries, spatial patterns, and statistical 
properties.

In Fig. 3, the maximum scaling coverages Fmax are 4 (Koch curve), 8 
(Sierpinski carpet), and 3 (Sierpinski gasket) at the minimium scaling 
lacunarities Pmin of 3, 3, and 2, respectively. However, F can be fixed to be 
a value in the series , and can even be a fraction in [0, Fmax]. 
For simplicity and without loss of generality, F and P are set to integers 
for discussion in this report. Using the Koch curve for explanation, F can 
be assigned to be 0, 1, 2, 3, and 4 while P is set to be 3. These fractal 
dimensions are log0/log3 → −∞29, log1/log3, log2/log3, log3/log3 and log4/
log3, respectively. Meanwhile, the scaling lacunarity can also be chosen to 
be larger than Pmin. As the fractal in row 4 of Fig. 1, the scaling lacunarity is 
6, which is greater than the minimum scaling lacunarity determined by the 
geometry of the fractal generator.
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The definition of the fractal dimension by Eq. (9) is not new and ideas 
about topography can be found in many previous works4,9, and can be even 
tracked back to its original introduction1. For convenience of description, we 
call the fractal topography of Ω{Fmax, P} the fully-filling scheme, otherwise 
the partially-filling scheme, where Fmax represents the maximum scaling 
coverage at a scaling lacunarity of P.

In 1967, Mandelbrot defined fractal dimension as  with 
a number-size approach, implying the idea of fractal topography. In his 
demonstration of self-similar curves, 1/(1/4) = l0/l1 which is the scaling 
lacunarity P, and N = N(G(l1))/1 = N(G(l1))/N(G(l0)) characterizes the scaling 
coverage. If this were not the case, for example, when l0 was set to 1/3, 1/2, 
or any different scale, the calculation results would not be unique; it is only 

when the scale is “sufficiently fine” that  would tend to the limit 
of D and become independent of scale. And the description of scale-invariant 
phenomena Mandelbrot proposed is very special, because fractal behavior 
characterized by D was heavily dependent on the fractal generators, which 
means the scaling lacunarity was set to Pmin while the scaling coverage was 
set to Fmax.

In the application of fractal theory in porous media modeling, Perrier 
and Bird9 pointed out the limitations in understanding fractal behavior and 
proposed a more general filling mode, namely the partially-filling scheme 
noted before. However, the scaling lacunarity was not broken away from 
the constraint of fractal generators to be an independent parameter, which 
means that P was fixed to Pmin. Turcotte4 had proposed a calculation 
model for D, log(N

i+1/Ni
)/log(l

i
/l

i+1), which is exactly the same topographic 
definition of fractal dimension as Eq. (9). Unfortunately, the physical 
meanings of the expressions l

i
/l

i+1 and N
i+1/Ni

 were not defined and left the 
quantitative description of fractal topography elusive, obscuring an essential 
understanding of scale-invariant properties.

Based on Ω(P, F), together with the fractal generator G and its scaling 
range [lmin, lmax], a self-similar fractal object is uniquely defined as Fsim{Ω(P, 
F), G, [lmin, lmax]}, which facilitates the modeling of fractal objects, as Fig. 
4 demonstrates.
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Figure 4: Fractals sharing the same fractal generator but different fractal topog-
raphies Ω(F, P).

The scaling lacunarities of (a)–(d) are 3, 3, 6, and 6, respectively, while 
the scaling coverages are 5, 8, 17, and 32. According to Eq. (9), the fractal 
dimensions of (a–d) are log5/log3, log8/log3, log17/log6, and log32/log6, 
respectively.

However, except for the self-similarity, the scale-invariant property 
might be direction-dependent in a fractal object. Then, can we unify the 
definition of fractal dimension for arbitrary fractals?

Self-affine fractals are objects with scale-invariant and direction-
dependent properties30. In nature, vertical cross sections are often 
examples of this type13,31. A formal definition of a self-affine fractal in a 
two-dimensional xy-space is that G(ζx, ζHy) is statistically similar to G(x, 
y), where ζ is a scaling factor and H is the Hurst exponent. Based on the 
scaling lacunarity definition, G(ζx, ζHy) can be written into G(x/P

x
, y/P

y
); 

and by replacing ζ by 1/P
x
, G(ζx, ζHy) takes the form of . 

Consequently, we obtain the relationship between P
x
 and P

y
 as:

  (10)
where P

x
 and P

y
 are the scaling lacunarities in the x and y directions 

respectively. Therefore, the Hurst exponent is scale-invariantly defined by

  (11)
Eq. (11) indicates that the Hurst exponent is a scale-invariant parameter 

that characterizes the power-law relationship between scaling lacunarities in 
two different directions. However, the results of Eq. (11) are not constrained 
in the range of [0, 1]. To clarify the distinction, we call this exponent the 
general Hurst exponent and express it as H

xy
 = logP

x
/logP

y
.
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In a d-dimensional space, the fractal dimension in the ith direction is 
denoted by D

i
 for convenience. According to the additive law3,32, the fractal 

dimension D is the average of the direction-dependent fractal dimensions, 
which yields . Taking Eq. (9), (11), and the general Hurst 
exponent together, the fractal dimension of a self-affine fractal is expressed 
by

  (12)
To be consistent with the value range of the Hurst exponent, [0, 1], we 

denote the maximum scaling lacunarity in all directions of a fractal object 
by Pmax. According to Eq. (11), the Hurst exponent H

i
 in the ith direction 

yields logP
i
/logPmax. Therefore, the general definition of arbitrary fractals is 

then rearranged into

  (13)
If all P

i
 are the same, H

i
 = 1 are all satisfied. Thus, Eq. (13) is same 

as Eq. (9), which characterizes self-similar fractal behaviors. Otherwise, it 
depicts the direction-dependent fractal behavior of self-affine fractal objects. 
Obviously, Eq. (9) is only a special case of the general definition of fractal 
dimension (Equation (13)) to characterize fractal behaviors.

CONCLUSION
Based on the theoretical, mechanistic basis for understanding the nature 
of fractal behaviors, two parameters are proposed to define the fractal 
topography that uniquely determine fractal behavior and dimension. These 
two parameters, scaling lacunarity and scaling coverage, are independent 
of the fractal generator and the scale and they are intrinsic properties of 
a fractal topography. However, owing to anisotropic origins, fractal 
topography may appear direction-dependent, meaning that the scaling 
lacunarities are different in different directions. In this study, we find that 
the physical meaning of the Hurst exponent is a scale-invariant exponent 
that characterizes the power-law relationship of scaling lacunarities in two 
different directions. Consequently, a unified definition of fractal dimension 
for arbitrary fractals is proposed by averaging the fractal dimensions of all 
directions in a strictly scale-invariant manner.
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Apparently, Eq. (13) unifies the definition of fractal dimension for 
arbitrary fractals, including self-samenesses, self-similarites and self-
affinities, due to the proposal of fractal topography. In addition to that, 
fractal topography provides an essential understanding of fractal behavior 
that eases the implementation and reduces the modeling complexity of 
disordered and irregular fractal objects, as demonstrated in some cases of 
two-dimensional porous media in Fig. 5. Although our definitions are derived 
in view of regular geometries, their practical application is straightforward 
in a statistical form.www.nature.com/scientificreports/
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Apparently, Eq. (13) unifies the definition of fractal dimension for arbitrary fractals, including self-samenesses, 
self-similarites and self-affinities, due to the proposal of fractal topography. In addition to that, fractal topography 
provides an essential understanding of fractal behavior that eases the implementation and reduces the modeling 
complexity of disordered and irregular fractal objects, as demonstrated in some cases of two-dimensional porous 
media in Fig. 5. Although our definitions are derived in view of regular geometries, their practical application is 
straightforward in a statistical form.
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Figure 5: Construction of self-same, self-similar, and self-affine objects fol-
lowing different fractal topographies.

All the fractals generated from the same generator but with different 
scaling lacunarities P and scaling coverages F. When P

x
 = P

y
 = 1, the generated 

objects are self-same; while P
x
 = P

y
 ≠ 1, the generated objects are self-similar; 
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else the generated objects are self-affines. The scaling coverages F in (a)–(d) 
are 1–4, respectively. In each subfigure, as P

x
/P

y
 deviates further from 1, the 

anisotropy of the fractal increases.
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ABSTRACT
The entropies of Shannon, Rényi and Kolmogorov are analyzed and 
compared together with their main properties. The entropy of some particular 
antennas with a pre-fractal shape, also called fractal antennas, is studied. In 
particular, their entropy is linked with the fractal geometrical shape and the 
physical performance.
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INTRODUCTION
Classically, the concept of entropy arises from the analysis of physical 
problems in statistical physics and thermodynamics. Since the beginning, it 
was a measure of uncertainty in a physical system, and based on this, C.E. 
Shannon [1] proposed to extend this concept for the analysis of complexity 
in signals, thus giving rise to the emerging information theory [2]. Several 
year later than Shannon, A. Rényi showed that a valid measure of entropy 
has to be defined in accordance with a measure of diversity [3]. A step 
forward in this direction was given by A. Kolmogorov (1958), who used the 
concept of entropy to define a fundamental measure for chaotic evolution 
and loss of information in the course of time [4].

Indeed, this entropy is an extension of a known concept in information 
entropy (for time-dependent processes), which is used to characterize 
dynamical systems between regular, chaotic and purely random evolution.

Chaotic motions and, in particular, attractors can be also described by 
iterative maps, which belong to the fundamental methods of fractal geometry.

Chaos, complexity and fractals have many common features, and 
recently, they have attracted the interest of scholars for their application in 
science and engineering.

Fractal sets are abstract objects that cannot be physically implemented. 
However, some related geometries known as pre-fractals have been shown 
to be very useful in engineering and applied science [5,6]. In particular, 
some fractal models have been used to design some fractal antenna with 
very special properties: about one-tenth of a wavelength (p. 231, [7]) and a 
pre-fractal geometrical configuration.

An antenna is a complex device, characterized by different parameters 
(resonant frequency, gain, directivity, radiation pattern, etcetera), which 
define the performance of the radiator. The chaoticity of the fractal antenna 
will be studied in the following by an entropy measure based on the 
computation of the fractal dimension, according to the analysis of a radiating 
structure given by [8,9].

Since the Rényi entropy Hα and generalized fractal dimension Dα are 
connected by a well-known relation (see Equation (25)), in this paper, the 
quantity Dα was used to compute the Rényi entropy Hα of a pre-fractal 
structure and to describe the electromagnetic behavior of an antenna together 
with the corresponding performance.
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The results of Best [10,11] show how antenna geometry alone (pre-
fractal or otherwise) is not a significant factor to determine the performance 
of small antennas. Yet, this may be a good clue.

In the literature, there are only a few articles about how the self-similarity 
property of a pre-fractal radiator can influence its performance (see again 
[8,9]).

In order to investigate in this direction, the values of Rényi 
entropy Hα through Equation (25) for the classical Sierpinski gasket were 
determined. The quantity Dα was numerically estimated (see Paragraph 4.3).

CONCEPT OF ENTROPY
There are basically three definitions of entropy in this article. The Kolmogorov 
entropy K, which measures the chaoticity of a dynamical system (Chapter 6, 
[12]), can be estimated as the Rényi entropy Hα. In information theory, the 
Shannon entropy is a special case of Rényi entropy for α=1.

Definition 1  
(Shannon entropy). The Shannon entropy [1,13] of a discrete-type RV X is 
defined as:

  (1)
where N is the number of possible states and pi is the probability of the 
event {X=xi}, and it is assumed pi>0; the most common used values 
are b=2 and b=e.

This entropy may be defined in a simple way for a continuous-type RV, 
as well [13]. Yet, this is not the scope of this article. As is well known, 
Shannon entropy satisfies different properties, which will not be treated 
herein [14].

Moreover, it is possible to show that it represents the measure of 
uncertainty about a suitable partition [13].
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A first generalization of this kind of entropy is the so-called Rényi entropy 
[3,15]: it represents one family of functionals to describe the uncertainty or 
randomness of a given system.

Definition 2  
(Rényi entropy). Let α be a positive real number. The Rényi entropy of order 
α is defined as [3]:

   (2)
where X is discrete-type RV and pi>0 is the probability of the event {X=xi}, 
and the most common used values are the same as the Shannon entropy.

If the events {X=xi} are equiprobable, then Hα is maximal 

and Hα(X)=logbN for every α>0, i.e., the so-called Hartley entropy 

 [16]. It is clear that they do not depend on the probability, 

but only on the number of events with non-zero probability.

In order to understand the meaning of the last definition, it is necessary to 

observe that at α=1, the quantity:

generates the indeterminate form . By L’Hôpital’s rule [17], it is easy to 
show that:

    (3)

i.e., the Shannon entropy, so , as shown 
in Figure 1.
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Figure 1: Rényi and Shannon entropies for a binomial distribution with N = 20: 
they converge for α→1, in accord with Equation (3). The computation of both 
entropies was done for b=2.

Therefore, the Rényi entropy may be considered as a generalization of 
the Shannon entropy. It can be shown that the Rényi entropies decrease as a 
function of α [3].

Let  be the trajectory of a dynamical system on a 
strange attractor. Let the d-dimensional phase space be partitioned into 

boxes of size ld and sampled at the discrete time intervals τ. Let 
, be the joint probability that the trajectory x(t=0) is in the box i0, x(t=τ) is in 
the box i1, ..., and x(t=nτ) is in the box in [18,19]; for example:

   (4)
According to Equation (1), the quantity:

     (5)
gives the expected amount of information needed to locate the system on a 

special trajectory , i.e., if it is known a priori that our system was in 

, then  is the necessary information to predict in which 

box  this system will be included. Using the language of information 
theory, this means that  measures the loss of information for the 
system from n to n+1 (Chapter 6, [12]). Therefore:
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The definition of this new kind of entropy will be provided at this point.

Definition 3  
(Kolmogorov entropy). The Kolmogorov entropy K is defined as [19]:

   (6)
where l and τ have the same meaning as above.

From this definition, it can be seen immediately that it is nothing other 
than the average rate of loss of information. K is independent of the particular 
partition (thanks to the limit l→0). Figure 2 reveals how K represents a 
measure of chaos: indeed (Chapter 6, [12]):

   (7)
where the definition of a random system can be found in Chapter 3 of [20]. 
By describing the chaos in a dynamic system, the Kolmogorov entropy 
is expected to be strongly connected with the Lyapunov exponent λ; see 
[21]. For more information about the theoretical aspects of entropy, its 
generalizations and entropy-like measures, which can be used to measure 
the complexity of a system, see [22,23,24,25,26].
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Figure 2: Kolmogorov entropy for 1D-regular, chaotic-deterministic 
and random systems. The attractor is the classical Lorentz attractor [27] 
with σ=10, R=28, b=8/3 and initial values x(0)=z(0)=0, y(0)=1, while the ran-
dom motion is given by a 2D-random walk from −1−j to 1+j of 500 elements in 
which j is the imaginary unit.

REMARKS ON FRACTAL GEOMETRY
A fractal is characterized by the property that each enlargement of this 
set reveals further details, so it has a structure that is too irregular to be 
described by a classic mathematical theory (even if a fractal can often be 
described recursively). Furthermore:

• it is self-similar, i.e., each very small portion of it is exactly or 
approximately similar to itself (this property has to be understood 
in the statistical or approximated sense, because a random element 
can be introduced in the construction of the fractal);

• it is a space-filling curve [28].
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Hausdorff–Besicovitch and Box-Counting Dimensions
Among the different definitions of fractal dimensions in use, the Hausdorff–
Besicovitch dimension is probably the most important, even if it is not 
usually used for experimental procedures to find the fractal dimensions of 
real objects.

Fractal dimensions are very important because they provide a measure 
of the degree to which new details are revealed at different scales. 
For example, the fractal dimension of the coastline of Great Britain is 
about 1.21.2 (Chapter 2, [29]). In order to define the Hausdorff–Besicovitch 
dimension, some remarks on fractal geometry are given [5,6].

Theorem 4  

(See Figure 3). If  and A is a bounded subset of Euclidean metric 

space , then there exists a unique number DH∈[0,n], such that:

   (8)

Figure 3: Graph of the Ms(A), where A is a bounded subset of the Euclidean 
metric space . It takes only two possible values, and the Hausdorff–Besi-
covitch dimension of A is given by the value of s in which there is the jump 
from ∞ to zero.
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Proof.  
See Chapter 3 in [6]. 

Definition 5  
(Hausdorff–Besicovitch dimension). Under the hypotheses of Theorem (4), 
the correspondent real number DH present in Equation (8) is called the 
Hausdorff–Besicovitch dimension of A, and it is generally indicated 
with DH(A).

From this last definition, it follows that the Hausdorff–Besicovitch 
dimension of a bounded subset A∈  is a non-negative number DH, such 
that:

   (9)
Therefore, the Hausdorff measure of A, i.e., Ms(A), might be equal to 

zero, infinity or such that 0<Ms(A)<∞. In Figure 3, the plot of Ms(A) is 
presented as a function of s, which shows us that DH(⋅) is the critical value 
of the variable s in the jump of Ms(A) from ∞ to zero.

At this point, the definition of the fractal set can be provided. It is to 
be recalled that DT(A)≤DH(A), where DT(A) represents the topological 
dimension of the bounded subset A of  (p. 3, [30]).

Definition 6  

(Fractal set). A bounded subset A∈  is fractal (in the sense of Mandelbrot) 
if it holds that DT(A)<DH(A), where the difference DH(A)−DT(A) is called 
the fractal degree of A.

The Hausdorff–Besicovitch dimension is not particularly useful in 
engineering or applied sciences, because its calculation is not very easy, 
so another definition of the fractal dimension more suitable to compute the 
fractal dimension for problems of mathematical modeling was introduced 
[6,31].

Definition 7  
(Box-counting dimension). Let (X,d) be a metric space and A∈H(X), 
where H(X) denotes the space of non-empty compact subsets of X. 
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Let Nδ(A), ∀δ>0 be the smallest number of closed balls of radius β 
needed to cover A. The lower and upper box-counting dimensions of A, 
denoted DUB(A) and DLB(A), respectively, are defined as:

When DUB(A)=DLB(A), the following limit exists and is called the box-
counting dimension of A, denoted DB(A):

   (10)
The box-counting dimension of an object does not exactly have to be 

equal to the Hausdorff–Besicovitch dimension, even though they can be 
really close at times. This new definition of the fractal dimension is given by 
the minimum number of objects needed to cover the fractal set.

In Figure 4, it is shown how the box-counting dimension works to 
compute the length of England’s coastline: looking at the first iterations, the 
meaning of the adjective box-counting is clear.

Figure 4: Here, the first steps of the box-counting procedure about England’s 
coastline are represented.
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In general, the limit in Equation (10) might not exist; hence, the box-
counting and Hausdorff–Besicovitch dimensions are linked by the following 
relation: DH(A)≤DLB(A)≤DUB(A) (Chapter 3, [6]).

Iterated Function System and Pre-Fractals
It is to be recalled that a contraction on a metric space (X,d) is a 
transformation f:X→X, such that:

   (11)
where the number s, called the contractivity factor for f, belongs to (0,1).

The famous contraction mapping theorem states that every contraction f on 
a complete metric space (X,d) has exactly one fixed point xf∈X, and the 
sequence of iterations {fn(x)}n≥0 converges to xf, ∀x∈X (pp. 76–77, [5]).

Clearly any contraction is continuous. If the equality holds in Equation 
(11), f is called a contracting similarity, because it transforms sets into 
geometrically similar sets.

It is now time to give the definition of an important procedure concerning 
fractals.

Definition 8  
(Iterated function system). The iterated function system (IFS) is a 
couple {X,F}, where F:H(X)→H(X) is defined through a finite family of 

contractions  on the complete metric space (X,d), with m≥2, 
and H(X) denotes again the space of non-empty compact subsets of X. 
Moreover, the set A∈H(X) is called the attractor (or sometimes invariant 
set) for the IFS if:

     (12)
Technically speaking, the operator F given by Equation (12) is called the 

Hutchinson operator associated with the IFS {S1, S2,..., Sm} [5,32]. From the 
definition above, it is clear that the attractor for the IFS is also its unique fixed 
point. This is the fundamental property of an IFS, because this attractor is 
often a fractal. An IFS has a unique (non-empty compact) attractor (Chapter 
9, [6]), but its introduction brings with it two main problems: the first one 
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shows the way to represent a given set as the attractor of some IFS, while 
the second is to reconstruct the IFS starting from its attractor (p. 126, [6]).

Both of these two problems can often be solved by inspection, especially 
if F has a self-similar structure (see Figure 5).

Figure 5: Here, the von Kock curve (on the left) and the middle third Cantor set 
(on the right) are shown: A0 is the initiator of length equal to one in both cases; 
in the generator A1 for the von Kock curve, the middle third of the unit interval 
is replaced by the other two sides of an equilateral triangle, while that of the 
middle third Cantor set is obtained removing the middle third of the interval.

For the majority of the fractals suitable for an application in antenna 
theory, the thesis of the Moran–Hutchinson theorem (pp. 130–132, [6]) 
holds true, so:

        (13)
where A is the attractor of the IFS with contraction factors 

.
This theorem provides us the possibility to compute the fractal dimension 

of many self-similarity fractals. Indeed, let us consider the von Koch curve 
and the middle third Cantor set (see Figure 5): for the first one, it is:

   (14)
while for the other set, we get:
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   (15)
IFS can be applied to all self-similarity structures, especially for the 

simulation of real objects with fractal properties, like fractal antennas.
It is well known that fractals are only mathematical abstractions (because 

it is impossible to iterate indefinitely in the real word). In addition, numerical 
simulations show how the fractal modeling in antenna theory provides 
substantial advantages within a certain value of the iteration m∗m* (typically, 
for fractal antennas, it is not greater than six). Beyond this value, the 
benefits are negligible. It is clear that all self-similar structures in nature are 
nothing other than fractals arrested at a prefixed iteration, i.e., pre-fractals 
(geometrical objects characterized by a finite number of fractal iterations).

FRACTAL ANTENNAS
In order to minimize the antenna size holding a high radiation efficiency, a 
fractal approach to model its geometrical configuration can be considered.

The two fundamental properties of a fractal (i.e., self-similarity and 
space-filling) allow fractal antennas to have an efficient miniaturization and 
multiband characteristics.

The well-known log-periodic antennas, introduced by DuHamel and 
Isbell around the 1950s and closely paralleling the independent-frequency 
concept [7], might be considered the first fractal antenna of history. Another 
example of a self-similar antenna discovered in the same period is the spiral 
antenna (see Figure 6).

Figure 6: Archimedean spiral antenna (on the left) and commercial log-periodic 
dipole antenna of 16 elements (on the right) [7].
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However, their true origin may be traced back to 1988, when Nathan L. 
Cohen, a Boston University radio astronomer, published a paper about this 
new type of antenna [33].

Fractal antennas have not only a large effective length, but also a simple 
matching circuit, thanks to the contours of their geometrical shape, which 
is able to generate a capacity or an inductance. For instance, a quarter-
wavelength monopole may be transformed into a smaller antenna using the 
von Koch curve (see Figure 5).

A big part of the research on fractal antennas has been done by Fractal 
Antenna Systems Inc., an American company founded by Cohen.

Carles Puente Baliarda (Polytechnic University of Catalonia) was the 
first to treat these antennas as multiband antennas. In 1998, he won the 
award of “innovative IT products with evident market potential” due to his 
pioneering research in fractal antennas (for a total of € 200,000), while he 
and his company (Fractus S.A.) were the finalists for the European Inventor 
Award 2014, showing the great potentials of these antennas.

In 2011, 9.79.7 billion fractal-based antenna units were supplied 
worldwide (a report by BCC Research).

Sierpinski Gasket and Hilbert Antenna
The Sierpinski triangle T can be constructed from an equilateral triangle by 
the removal of inverted equilateral triangles (see Figure 7). It is a fractal and 
attractive fixed set. Considering Figure 7, it is:

   (16)

since all of the contraction factors c1, c2, c3 are equal to . Therefore:

   (17)
This fractal may be also generated by an IFS (Chapter 9, [6]).
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Figure 7: A Sierpinski triangle (on the left) and a Hilbert curve (on the right) 
are shown: as in Figure 5, A0 is the initiator, and A1 is the generator. The Sier-
pinski triangle is constructed using the iterated function system (IFS), while the 
other construction is that of David Hilbert. The two relative antennas are shown 
below with their feed points.

There exist different versions of the Sierpinski triangle. The shape can be 
modified in many ways, and they are often used in engineering and applied 
sciences.

The Sierpinski (gasket) antenna belongs to the class of multiband fractal 
antennas based on the Sierpinski triangle. The classical Sierpinski dipole is 
shown in Figure 7. It is probably a fractal antenna with more applications, 
from wireless communication systems (GSM, UMTS and WLAN) through 
RF MEMS (radio frequency microelectromechanical system) to get to space 
probe design and ANN (artificial neural network) theory [34,35].

The famous Hilbert curve is a continuous fractal space-filling curve, i.e., 
it fills the plane without leaving any gaps. Hilbert introduced it as a 
modification of the Peano curve [28].

There are important differences between these two curves. Indeed, it is 
not possible to construct the Hilbert curve H through the IFS (while for the 
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other one, this procedure is applicable). The reason is that the steps in the 
Hilbert curve’s construction are not self-similar, i.e., they are not divisible in 
a number of parts similar to the initial figure.

The original construction of the Hilbert curve is extraordinarily 
elegant: it starts with a square A0, while in the first step (see Figure 7), 
the curve A1 connects the centers of the quadrants by three line segments 
(having a size of one). In the second step, four copies (reduced by 1/2) of 
this initial stage are made and placed into the quarters (see again Figure 
7). In this way, the first copy is clockwise rotated and the last one counter-
clockwise rotated by 90 degrees. After this, the start and end points of these 
four curves are connected using three line segments (of a size of 1/2), and 
we call the resulting curve A2.

In the third iteration, the scaling is done again by 1/2, and four copies are 
placed into the quadrants of the square (as in the first step). They are again 
connected by three line segments (of a size of 1/4) obtaining A3, and so on.

In Figure 7, it can be noticed that each successive stage consists of 
four copies of the previous one, connected with additional line segments. 

Therefore, the curve is scaled down by the ratio , and four copies are 
made; so:

     (18)
hence:

   (19)
Naturally, the topological dimension of H is one, since it consists only 

of line segments. Therefore, the Hilbert curve is a fractal for all intents and 
purposes.
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An alternative procedure to IFS is that of the so-called L-systems [36].
In Figure 7, a Hilbert dipole is also shown, where the feed source point 

is placed at the point of symmetry for these two pre-fractals.
The Hilbert antenna is especially used in spatial communications, like 

RF MEMS design [37] and, generally speaking, in each (telecommunication) 
system where the space available for the antenna is limited [38].

The Results of Best and HRC Conditions
A fractal approach is not the only way to miniaturize an antenna; indeed, 
there exist few particular non-fractal modifications of the classical von 
Koch dipole that could have the same performance [10].

In addition, it is clear that fractal geometry does not uniquely translate 
the electromagnetic behavior of the antenna. The geometrical configuration 
alone (fractal or non-fractal) could not be the only significant factor that 
determines the resonant behavior of wire antennas: indeed, a fractal 
configuration does not represent alone a guarantee of the highest antenna 
efficiency [11].

The same applies to the loop antennas. It is well known that the main 
advantage of the fractal loop antennas is that they have a high radiation 
resistance on a “small” physical area. In Figure 8 (top side), three examples 
of non-fractal antennas are shown. They offer similar or, in some cases, 
improved performance over their fractal-antenna counterparts, like the 
Minkowski antenna. The reason is that the radiation resistance of an 
electrically-small loop, given by [10]:

   (20)
where λ is the working wavelength, is generally not valid for a loop antenna 
with complex geometry. However, there are few small non-fractal loop 
antennas with similar or better performance than their fractal counterparts 
(see Figure 8, top side).
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Figure 8: Examples of non-fractal antennas that offer similar performance over 
their fractal counterparts. Three different non-fractal antennas are presented 
above: they outperform their fractal counterparts, while the current distribution 
on the Sierpinski gasket antenna at the first three resonance frequencies is 
shown in the middle of the page. The modified Parany antenna (starting from 
the classical Sierpinski gasket antenna) is represented below.

In order to investigate the significance of self-similarity in determining 
the multiband behavior of the fractal antennas, Steven R. Best has presented 
a comparison of the multiband behavior of the Sierpinski gasket and several 
modified gaskets where the major portions of the self-similar structure were 
modified or eliminated [11].

His numerical simulations reveal that many of the self-similar fractal gap 
structures can be eliminated from the Sierpinski gasket, without modifying 
its multiband behavior.

Best showed how the total self-similar fractal gap structure is not the 
primary factor that determines the multiband behavior, because the Sierpinski 
gasket and modified Parany gasket antenna have the same behavior [11]. 
Therefore, for all of the Sierpinski-based antennas, the multiband behavior 
depends on the small isosceles trapezia located in the center of the modified 
Parany gasket antenna, as shown in Figure 8 (bottom side).
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It would seem that some non-fractal geometries could be a good 
substitute for their fractal counterparts, but this is manifestly untrue.

Indeed, the results obtained by Best represent only a very few special 
cases, and these antennas do not belong to a family of radiators. Furthermore, 
the so-called HCR conditions can be considered [39] (they provide a 
necessary and sufficient condition for all frequency independent antennas). 
This criterion reveals that an antenna satisfies this property if and only if the 
radiating structure is both self-similar and origin symmetric about a point. 
It is clear that some non-fractal radiators might belong to this second one, 
potentially giving them the same performance of a fractal antenna that is 
non-symmetric about a point.

The Entropy of a Fractal Antenna
In addition to the box-counting dimension, another convenient way to 
estimate the fractal dimension is the so-called generalized fractal dimension 
(or Rényi dimension) Dα, given by [40]:

    (21)
In this definition, N=N(δ) is the total number of boxes with pi>0, where 

also here, the most commonly-used values are b=2 and b=e.
Considering the definition of Rényi entropy Equation (7), it is clear that:

       (22)
As α→0,

     (23)
which is nothing but the fractal dimension. The numerator of the last equation 
is simply the Hartley entropy. It can be shown similarly, as for the definition 
of Rényi entropy, that
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Therefore, the dimension Dα is a generalization of D1, which is called the 
information dimension. Indeed, D1 characterizes the information required 
for the determination of the point location in some cell i.

According to Equation (21), it also follows that:

      (24)
This quantity is called the correlation dimension, because it is very 

useful to detect chaotic behavior.
Taking still into account Equation (21),  α is clearly a nonincreasing 

function of α, i.e., Dα≥Dα′ at α′>α: in particular, D0≥D1≥D2.
Therefore, the generalized fractal dimension Dα provides a direct 

measurement of the fractal properties of an object. Several values of the 
momentum order α correspond to well-known generalized dimensions.

Equation (22) cannot be applied practically, and it is only possible to 
get an approximation fixing a small value of δ, but strictly greater than zero. 
Therefore, in applied sciences and engineering, Equation (22) becomes:

   (25)
where Hα=Hα(δ)).

This equation shows us that the entropy of a region of size δ is a function 
of the box-counting fractal dimension ϵ=1/δ: the entropies of analyzed 
regions (with size δ) can be calculated from the three spatial dimensions 
through Equation (25) [16].

Right now, the Rényi entropy has to be computed for the geometric 
configuration of each fractal antenna. It is easy to create an algorithm for its 
computation using Equation (25). This procedure consists of the classical 
algorithm for numerical estimating DαDα of affine RIFS-invariant measures; 
see [41,42]. The Rényi entropy will be computed through Equation (25), 
considering the logarithm of the cell size (see Figure 9 below).
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Figure 9: The Rényi entropy Hα of a Sierpinski gasket (Figure 7) with α=0,1,2: 
the plot shows us that Hartley entropy H0 is an upper to both Shannon 
entropy H1 and collision entropy H2H2. The main limit of this procedure is 
clearly the precision of the triangulation.

With this procedure, it is possible to compute the entropy for a fractal 
radiator, but it must be completely modified for each class of fractal antennas.

However, the general definition of entropy for a small antenna, in order 
to better understand how the chaoticness of the structure may affect its 
performance, remains an open problem.

CONCLUSIONS
The main fractals used in antenna theory have been examined, and the 
explanation as to how the Rényi entropy can be computed through the 
generalized fractal dimension of a set has been provided. Therefore, the 
entropy of a fractal antenna can be calculated accordingly, in which the 
input data are essentially the complexity of the shape, as described in this 
article for the Sierpinski gasket antenna. The numerical estimation of the 
generalized fractal dimension Dα (see [41]) is based both on an integration 
technique over the fractal measures and a triangulation method. It yields 
good results for the range α≥0 in an efficient and robust manner. Clearly, 
the computation of Dα requires the aid of the box-counting algorithm. 
Furthermore, the developed code is general enough to be used on arbitrary 
geometrical shapes; hence, this algorithm may be applied both for other 
fractal antennas and for quantum dynamical systems in order to evaluate 
their chaoticness.
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ABSTRACT
The images recently sent by the Cassini spacecraft mission (on the 
NASA website http://saturn.jpl.nasa.gov/photos/halloffame/) show the 
complex and beautiful rings of Saturn. Over the past few decades, various 
conjectures were advanced that Saturn’s rings are Cantor-like sets, although 
no convincing fractal analysis of actual images has ever appeared. Here 
we focus on four images sent by the Cassini spacecraft mission (slide #42 
“Mapping Clumps in Saturn’s Rings”, slide #54 “Scattered Sunshine”, 
slide #66 taken two weeks before the planet’s Augus’t 200’9 equinox, and 
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slide #68 showing edge waves raised by Daphnis on the Keeler Gap) and 
one image from the Voyager 2’ mission in 1981. Using three box-counting 
methods, we determine the fractal dimension of edges of rings seen here to 
be consistently about 1.63 ~ 1.78. This clarifies in what sense Saturn’s rings 
are fractal.

BACKGROUND
The images recently sent by the Cassini spacecraft mission (available on 
the NASA website http://saturn.jpl.nasa.gov/photos/halloffame/) show the 
complex and beautiful rings of Saturn. Beginning with (Mandelbrot, 1982; 
Avron and Simon, 1981; Fridman and Gorkavyi, 1994), there have been 
conjectures that radial cross-sections of Saturn’s rings are Cantor sets, but, 
to the best of our knowledge, no convincing fractal analyses of actual images 
ever appeared. Of the 87 Cassini images, in Figure 1 (a) we reproduce slide 
#42 bearing the title “Mapping Clumps in Saturn’s Rings,” in Figure 1 (b) 
the slide #54 titled “Scattered Sunshine,” in Figure 1 (c) we reproduce 
slide #66 taken two weeks before the planet’s August 2009 equinox, and in 
Figure 1 (d) slide #68 showing edge waves raised by Daphnis on the Keeler 
Gap. The first of these is a false-color image of Saturn’s main rings made by 
combining data from multiple star occultations using the Cassini ultraviolet 
imaging spectrograph. In the second of these, Saturn’s icy rings shine in 
scattered sunlight, from about 15° above the ring plane. In the third image, 
a part of the Cassini Division, between the B and the A rings, appears at the 
top of the image, showing ringlets in the inner division, while in the fourth 
Daphnis cruises through the Keeler Gap, raising edge waves in the ring 
material as it passes. The first two photographs show the curved geometry of 
Saturn’s main rings with a low opening angle, while the latter two reflect the 
details of a part of the rings. Finally, in Figure 1 (e), we reproduce the image 
sent by ‘Voyager 2’ spacecraft in 1981 (http://solarsystem.nasa.gov/planets/
images/inset-saturn-rings-large.jpg). The selected set of images represent 
Saturn’s rings from a variety of view angles and regions.
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Figure 1: (a,b,c,d,e): The original images of the Cassini and Voyager missions.

RESULTS AND DISCUSSION
As is well known (Mandelbrot, 1982), the fractal dimension D comes from 
estimation of the slope of log(n)-log(r) in n ∝ r − D, where n is the number of 
boxes with size r needed to cover the region of interest. The local slopes of 
log(n)-log(r) are also acquired to determine optimal cut-offs of box sizes. 
The cut-offs are specified where the local slope varies strongly. The log(n)-
log(r) plots of the three box counting methods for images of Figure 1 (a), 
(d), and (e) are shown in Figures 2, 3 and 4, respectively. Since the plots 
for Figures 1 (b) and (c) are very similar to the others, they are not shown 
here in order to save space. Note that, for modified box counting, r denotes 
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the ratio of image size to box size, unlike power 2 or divider box counting, 
where r is the box size.
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Figure 2 Results of box counting method to estimate the fractal dimension of image (a) in Figure 1: (a) Modified box counting; (b)
Power 2 box counting; (c) Divider box counting.
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Figure 2: Results of box counting method to estimate the fractal dimension of 
image (a) in Figure 1 : (a) Modified box counting; (b) Power 2 box counting; 
(c) Divider box counting.
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Figure 3 Results of box counting method to estimate the fractal dimension of image (d) in Figure 1: (a) Modified box counting;
(b) Power 2 box counting; (c) Divider box counting.
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Figure 3: Results of box counting method to estimate the fractal dimension of 
image (d) in Figure 1 : (a) Modified box counting; (b) Power 2 box counting; 
(c) Divider box counting.
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Figure 4 Box counting method to estimate the fractal dimension of image (e) in Figure 1: (a) Modified box counting; (b) Power 2 box
counting; (c) Divider box counting.

Li and Ostoja-Starzewski SpringerPlus  (2015) 4:158 Page 5 of 8

Figure 4: Box counting method to estimate the fractal dimension of image (e) 
in Figure 1 : (a) Modified box counting; (b) Power 2 box counting; (c) Divider 
box counting.
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Note that these images were projections of Saturn’s rings from different 
angles and regions. Following the arguments presented in (Maggi 2008; 
Meakin 1998), given the fact that the rings’ thickness is extremely small 
compared to their radii, the projection onto the plane of the photograph 
does not affect the fractal dimension. Besides, the self-similarity of fractals 
indicates that the fractal dimension of a part is same as that of the whole. 
Overall, the box counting results of all images are given in Table 1.

Table 1: Box counting results

Image sources Modified box counting Power 2 box count-
ing

Divider box 
counting

Figure 1. (a) 1.63 1.65 1.66
Figure 1. (b) 1.64 1.65 1.71
Figure 1. (c) 1.78 1.71 1.76
Figure 1. (d) 1.64 1.74 1.66
Figure 1. (e) 1.67 1.72 1.77

CONCLUSIONS
All the images analyzed in this paper yield fractal dimensions in the range 
1.63 to 1.78. This is a consistent estimate of the fractal dimension of the 
rings’ edges, regardless of the various image sources we utilized. Indeed, the 
fact that the rings’ edges are fractal provides one more hint to developing 
models of the intricate mechanics and physics governing these structures 
of granular matter. Interestingly, somewhat related studies (Feitzinger and 
Galinski 1987; de la Fuente and de la Fuente 2006a, b) found average fractal 
dimension ~1.7 for the projected fractal dimension of the distribution of 
star-forming sites (HII regions) in a sample of 19 spiral galaxies.

METHODS
Using the box counting method, we determine the fractal dimension of edges 
of those rings. First, various edge detection methods are performed and 
compared to optimally identify ring boundaries: ‘Sobel’, ‘Robert’, ‘Laplacian 
of Gaussian’, ‘Canny’ and ‘Zero-Cross’ edge functions in the Matlab Image 
Processing Toolbox. Furthermore, the morphology operation functions of 
‘bridge’, ‘close’, ‘thicken’, ‘thin’ and ‘skel’ are employed to connect some 
isolated pixels and also remove redundant pixels on the boundaries from 
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consideration of physical reality. It was found that the option of ‘Laplacian 
of Gaussian’ edge function with ‘close’ and ‘thin’ morphology operation 
produced optimal appearance of ring boundaries. The resulting edge images 
are displayed in Figure 5 (a-e), respectively, for the five original images we 
displayed in Figure 1 (a-e).

Figure 5:(a,b,c,d,e): Images processed, respectively, from Figure 1 (a,b,c,d,e) 
to capture the ring edges.

We perform three box counting methods to estimate fractal dimensions 
of the above processed black-white images of Saturn rings, so as to take into 
account the influences of the sizes and shapes of covering boxes:

• Modified box counting using boxes with shape being self-similar 
to the global image. This method is well suited for generally 
rectangular images (Xu and Lacidogna 2011), where the boxes 
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are rectangles self-similar to the whole image. The selection of 
the ratio of image size to box size is in powers of 2 for optimal 
log(n)-log(r) regression. When the ratio does not give an integer 
box size, the box size was chosen to be the closest integer at that 
ratio.

• Power 2 box counting using boxes with sizes as powers of 2, 
possessing optimal log(n)-log(r) regression. Here the partial 
boarder effects are evident generally when the image size was 
not powers of 2. In this case the image was embedded in an empty 
image with size being powers of 2 closest to the original image 
size. The box counting was then performed on the ‘enlarged’ 
image.

• Divider box counting using boxes with sizes being the dividers of 
the image size. Subsequent box size may be too close for log(n)-
log(r) regression, while the border effects can be eliminated.

In particular the cut-offs of box sizes are considered by examining the 
local slopes of log(n)-log(r). Figure 6 shows an example of the local slope 
of log(n)-log(r) for power 2 box counting applied to Figure 1 (a) with r = 2 
to r = b/2, where b denotes the image size (after extended to powers of 2). 
The fine box size r = 2 tends to be below the average spacing of ring particles, 
whereas the very coarse box count (r = b/2) usually fails to capture structural 
details. The lower and upper cut-offs of box sizes are then 4 and b/4.

Figure 6: An example of the local slope of log(n)-log(r) for power 2 box count-
ing applied to Figure 1 (a) with r=2 to r=b/2, where b denotes the image size 
(extended to powers of 2).
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ABSTRACT
A text can be considered as a one dimensional array of words. The locations 
of each word type in this array form a fractal pattern with certain fractal 
dimension. We observe that important words responsible for conveying the 
meaning of a text have dimensions considerably different from one, while 
the fractal dimensions of unimportant words are close to one. We introduce 
an index quantifying the importance of the words in a given text using their 
fractal dimensions and then ranking them according to their importance. 
This index measures the difference between the fractal pattern of a word in 
the original text relative to a shuffled version. Because the shuffled text is 
meaningless (i.e., words have no importance), the difference between the 
original and shuffled text can be used to ascertain degree of fractality. The 
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degree of fractality may be used for automatic keyword detection. Words 
with the degree of fractality higher than a threshold value are assumed to be 
the retrieved keywords of the text. We measure the efficiency of our method 
for keywords extraction, making a comparison between our proposed method 
and two other well-known methods of automatic keyword extraction.

INTRODUCTION
Language is the human capability for communication via vocal or visual 

signs. Language can be regarded as a complex system [1], where words are 
constituents which interact with each other to form particular patterns. Such 
patterns represent human thoughts, feelings, will, and knowledge which are 
called meaning. Human language is unique among other communication 
systems, because there are a lots of words to express the immaterial and 
intellectual concepts. In addition, the existence of synonymy, polysemy and 
so on increases its complexity. Texts, as the written form of language, inherit 
its complexity. A text can be partially understood through regularities in 
spatial distribution of words and their frequencies. Research has shown that 
regularity in a text can be expressed as a power law relationship. One of the 
most well-known power laws is Zipf’s law, which shows that if we rank the 
words in a text from the most common to the least, the frequency of each 
word is inversely proportional to its rank [2]. A related law, Heaps’ law, 
shows another universal feature of texts: the number of distinct words in a 
text (i.e., number of word types), changes with the text size (i.e., the number 
of tokens) in the form of a power law [3]. Another level of regularity is 
evident only through the pattern of words throughout a text. A text is not 
just a random collection of words; we can only call this collection a text 
if it has meaning. In other words, the words in a text must be placed in a 
specific order to impart meaning. Many power laws cannot capture this fact: 
any random shuffling process drastically destroys the meaning of a text, but 
Zipf’s law remains unchanged and Heaps’ law changes only very slightly 
[4].

The particular arrangement of words in a specific order arises for two 
reasons. First, grammatical rules determine where words should be placed 
within a sentence and specify the position of verbs, nouns, adverbs, and 
other parts of speech. Grammatical rules make short range correlations 
between the sequences of words in a sentence. Secondly, a text derives 
meaning from how the words are arranged throughout. This ordering is 



The Fractal Patterns of Words in a Text: A Method for Automatic ... 59

called semantic ordering, and acts across the whole range of the text, hence 
the long-range correlation can be seen between the positions of any word. 
The broad meaning of a text also means that different word types have 
different importance in a text. We can distinguish between two kinds of 
content words in a text: those which are related to the subject of the text 
(i.e., the important words), and all others that are irrelevant to it. For a text in 
cosmology, words like universe, space, big-bang, and inflation are important 
words. Other words such as is, fact, happening, etc., are irrelevant to the 
topic of the text. Finding an index for quantifying the importance of words 
in a given text is crucial to detecting keywords automatically, and provides a 
very useful starting point for text summarization, document categorization, 
machine translation and other matters related to automatic information 
retrieval. Automating these processes is of increasing importance given the 
increasing size of available information yet limited man-power.

In the current paper, we use the concept of fractal to assign an importance 
value to every word in a given text. A fractal is a mathematical object (e.g., a 
set of points in Euclidean space) that has repeating patterns at every scales, 
it means at any magnification there is a smaller piece of the object that 
is similar to the whole; this property is called self-similarity. The fractal 
dimension shows how detail of a fractal pattern changes with scale. It is 
used as an index of complexity. The fractal dimension of a set is equal or less 
than the topological dimension of space that the set is embedded in it. We 
claim that the positions of a word type within the text array form a fractal 
pattern with a specified dimension that is a positive value less than or equal 
to one. Based on this fact, an index is presented for ranking the vocabulary 
words of a given text. The difference between the pattern of a word in the 
original text versus a randomly shuffled version shows its importance: words 
with a greater differential between the original and shuffled texts are more 
important. We compare this approach with other more well-known methods 
of keyword extraction.

In the following section we review previous research reporting a kind 
of fractal structure in texts, in order to show that our method is novel. Then 
we review some basic ideas for keyword extraction which are useful for 
understanding the different principles currently at work in the field. Finally, 
we describe our method and how it could be evaluated, and report the results 
for a sample book.
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BACKGROUND AND RELATED WORKS

Fractal Structures in Texts
In 1980 G. Altmann made a formula for quantifying of the Menzerath’s 
law [5]. Menzerath-Altmann law says there is a relation between size of a 
construct and size of its constituents. A system like a language has different 
levels or constructs, such as syllables, words, syntactic constructions, clauses, 
sentences and semantic constructs. According to Menzerath-Altmann law, 
when the size of a construct increases, the size of its constituents decreases, 
and this holds at every level. Thus, a certain kind of self-similarity exists 
for each level [6, 7]. Fractal dimension can be calculated for each level. The 
fractal dimension of a given text is the average value of fractal dimension 
of levels [8].

For quantitative calculations, texts are usually mapped into time series. 
A text can be considered as a one dimensional array where elements can 
be either characters, words or sentences. Ausloos built two time series by 
replacing each word in the text by their length or frequency [9, 10]. He 
quantified the complexity in a written text by examining the fractal pattern of 
its corresponding length and frequency time series, discovering that resulting 
fractal patterns may be used as an authorship indicator. Furthermore, these 
length and frequency time series also gave indications of the semantic 
complexity of the text.

Eftekhari worked on letters instead of words as the constituents of a text, 
finding that if letter types in a text are ranked from the most common to the 
least, the frequency of each letter type would be inversely proportional to its 
rank [11] (i.e., simillar to Zipf’s law). If frequency of letter types is plotted 
versus their ranks in a double logarithmic scale, a straight line is obtained. 
He called the slope of this line Zipf’s dimension. He also suggested a method 
for calculating fractal dimension of texts, declaring that if letter types are 
ranked in alphabetical order and frequency of letter types is plotted against 
their ranks, the slope of such a diagram would be fractal dimension of the 
literature. Nevertheless, since the data which is used is too disperse he used 
the so-defined fractal dimension. He also showed that texts exhibit changes 
in fractal dimension similar to corresponding Zipf’s dimension which vary 
according to the text’s size.
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Principles for Keyword Extraction
The first method based on Zipf’s analysis of word frequency for keyword 
extraction was proposed by Luhn [12]. He plotted the Zipf diagram of words, 
then eliminated words with high and low frequencies, and declared that the 
words remaining in the mid-range frequencies are the most important words 
of a text. There are some problems with this method; it omits some important 
words which have very low frequencies, and may also mistakenly take some 
common words with mid-range frequencies as keywords. To overcome 
this deficiency, Ortuño et al. proposed a method based on the concept that 
important words form clusters [13]. They used standard deviation of distance 
between consecutive occurrences of a particular word as a measure of word 
clustering. Words with large standard deviations tend to form clusters and so 
are more important. Carpena et al. improved this method and introduced the C 
Value for measuring the importance of words [14] based on their clustering 
distributions (we review this method in the appendix section in contrast to 
our own). Another method based on clustering was proposed by Zhou and 
Slater [15]. They used the density fluctuations of words as a measure of 
clustering. The method was useful to reduce significance of common words. 
Mihalcea and Tarau used a method based on the graph theory for detecting 
the keywords [16]. The text is regarded as a graph with word types nodes 
with edges occuring between two words where they are adjacent in the text. 
To extract keywords they introduced the concept of TextRank, calculated 
similarly to PageRank which is used in the Google search engine for ranking 
the web pages. TextRank works by counting the number and weight of links 
to a node to determine importance of the node. The more important nodes 
are likely to receive more links from other nodes. Words with higher values 
of TextRank are more important. Herrera and Pury suggested an entropic 
method for word ranking based on the relative frequency of words in each 
part of the text [17] (this method is also reviewed in the appendix in contrast 
to our own). Mehri and Darooneh used several entropic metrics to extract 
keywords [18]. In particular, they found that cumulative distribution of 
distances between consecutive occurrences of a word type follows:

    (1)
where x is distance between consecutive occurrences of a word type, β is a 
constant, and q is a positive value. They ranked words according to q value. 
The value of q in the case of important words is larger than the case of 
common words [19].
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METHODS

The Degree of Fractality
Text is a certain arrangement of words in one dimensional array that carries 
a meaning. Any random shuffling of the words across the text significantly 
reduces its meaning, hence the ordering of the words is important for 
representation of the meaning. In other words, the meaning shows a kind 
of regularity in a text. This regularity also manifests itself in pattern of 
occurrences of each word in the text array. If we consider the text array as a 
one dimensional space, the spatial pattern of occurrences of any vocabulary 
word will form a fractal set or simply a fractal. We can assign a fractal 
dimension to any word in a given text using the practical method of Box 
Counting. Using this method, the fractal dimension of a word is generally 
between 0 and 1.

In Box-Counting the space is divided into boxes. Each box that contains 
a component of the fractal set is called a filled box. The fractal law is a power 
law relationship between the number of filled boxes and the box-size [20].
To calculate the fractal dimension of a word by box-counting method, the 
text array is divided into boxes of size s, we place each s consecutive words 
in a box. The number of such boxes is Ns = N/s where N is the length of the 
text. If the considered word appears in one of the boxes, that box is a filled 
box, Nb(s) stands for the number of filled boxes. A power law relationship 
exists between the number of filled boxes and the box size s as follows,

  (2)
D is the fractal dimension of the word. Fractal dimension is obtained by 

measuring the slope of log-log plot of Nb(s) versus s. It is worth noting that 
here the box size is an integer number, and in practice, we expect to see the 
power law behavior for the large box sizes.

As we noted earlier, the fractal dimension for any word is between 0 
and 1. When all occurrences of a word are distributed uniformly across the 
text, all of the boxes have the same probability of containing a token of the 
word. Therefore, in this particular case, the number of filled boxes has the 
maximum possible value. In other cases, some of the boxes may contain 
more than one occurrence; this results in some of the other boxes remaining 
empty, and the number of filled boxes is less than this limiting value.
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In a shuffled text, all of the words are distributed uniformly. For small 
scales, when the number of boxes is greater than the frequency of a word 
type, the number of filled boxes is expected to be approximately equal to 
the frequency of the word type. By increasing the box size, the number 
of filled boxes will be decreased. In large scales, the fact that the number 
of filled boxes is maximum makes the slope of the log-log plot of Nb(s) 
versus s close to one; the upper limit for slope. The following equation 
indicates our conjecture on the number of filled boxes for a word in the 
shuffled text against the box size, consistent with the above facts.

  (3)
where M is frequency of the word ω.

The fractal dimension is the slope of the line of best fit on the log-log 
plot of the number of filled boxes against the box size. In practice, the choice 
of the fitting range is very important and definitely has influence on the value 
of the fractal dimension. Unfortunately, there is no way to automatically 
choose the most appropriate fitting range. Instead of the fractal dimension, 
we propose an index which is used to quantify the fractality of the word 
pattern in another way. The degree of fractality is defined as,

  (4)
where ω is a particular word. The degree of fractality, df, measures the 
difference between the pattern of occurrences of a word in the original and 
shuffled text. We use the logarithm in the definition of this index to avoid 
domination of the values for small box sizes. The degree of fractality is a 
suitable quantity for ranking the words of a text. In computing the degree 
of fractality, we only need to find the number of filled boxes for any scale. 
Unlike the process of computation of the fractal dimension, data regression 
is not required. Moreover, we are not faced with the problem of determining 
the fitting range for each word. The larger value for the degree of fractality 
means the distribution pattern of a word has more differences with the 
uniform distribution.

Evaluation of the Method
The degree of fractality gives an importance value for every word type in 
a given text. Using this value, we are able to list the words from greatest to 
least importance. The top-ranked words of the list are assumed as keywords.
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A comparison with a manually created list of keywords allows for an 
approximate evaluation of the efficiency of our method. It is important to 
know how the list of the relevant keywords is prepared for a given book. 
In our experience we assume that the manually created glossary of a book 
is a good candidate for providing the relevant keywords of the book. The 
glossary of a book should be prepared by author or some experts of the field 
thus it is reliable to be selected as our reference data.

The following two issues are important when we have comparison 
between the list of relevant and retrieved keywords. First, it is important to 
compute how many words are common in the two lists if both of them have 
the same size. Second, what fraction of the retrieved list should be selected 
to include all the relevant keywords? In binary classification analysis, recall 
and precision are two metrics which consider the above issues respectively. 
The recall and precision are calculated as follows according to Herrera and 
Pury’s suggestion [17]. These are well-known metrics for evaluation of 
keyword extraction methods.

  (5)

  (6)
Where Ngloss is the size of list of relevant keywords (glossary), Nc is 

the number of common keywords in two lists, which have the rank less 
than Ngloss and Nlast stands for the last position of relevant keywords in the list 
of retrieved words. It is worth noting again that these metrics cannot precisely 
determine the accuracy of the keyword detection methods. According to our 
experience, they depend on the data processed (selected book, its genre) and 
on how the list of relevant keywords is prepared.

There is another method for calculating recall and precision that is 
suggested by Mehri and Darooneh [18]. In this method words with degree of 
fractality higher than a threshold value are selected as retrieved keywords. 
The threshold value is choosen such that some percentage of ranked list of 



The Fractal Patterns of Words in a Text: A Method for Automatic ... 65

words is selected as the retrieved keywords in each step. Then, number of 
keywords which is the same between glossary and this new list is counted. 
Recall and precision are calculated as follows.

  (7)

  (8)
Again, Ngloss is the size of glossary and Nc is the number of keywords 

which are the same between glossary and selected percentage of retrieved 
list. Nret is the size of the retrieved list to the whole vocabulary size in percent.

RESULTS

Universal Properties of Texts
To explain more details, we apply our method to On The Origin of Species by 
Charles Darwin [21]. The book is about evolution of populations through a 
process of natural selection. A digital copy of this text is freely available 
on Project Gutenberg [22]. We only keep the main body of the text and 
leave the others (e.g., contents, index). No other preprocessing tasks are 
performed except deletion of the non-alphabetic characters. The book has a 
total of 191740 tokens and contains 8842 distinct word types. We examined 
two famous regularities of texts for this book, the Zipf’s and Heaps’ law. Fig 
1 shows Zipf’s law for the book; frequency of each word type is plotted 
against word rank on a double-logarithmic scale. A straight line is obtained 
with a slope of −1.01. Fig 2 shows Heap’s law for the book; size of vocabulary 
is plotted versus size of text on a double-logarithmic scale. A straight line is 
obtained with a slope of 0.73.
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Figure 1: Zipf’s law for the book The Origin of Species.

Frequency of each word is inversely proportional to its rank in form of 
power law. The Zipf curve follows a straight line with a slope of −1.01 when 
plotted on a double-logarithmic scale.
https://doi.org/10.1371/journal.pone.0130617.g001

Figure 2: Heap’s law for the book The Origin of Species.

Size of vocabulary increases as size of text increases, in form of power 
law. The Heap curve follows a straight line with a slope of 0.73 when plotted 
on a double-logarithmic scale.
https://doi.org/10.1371/journal.pone.0130617.g002
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As outlined earlier the spatial distribution or pattern of ocurrences of any 
word in a given text exhibits self-similarity. The box counting is a practical 
procedure for measuring this property. In this procedure, the text is divided 
into boxes of size s, that varies from 1 to the text size. s = 1 means each box 
contains only one word, s = 2 means each box contains two words, and so 
on. A box is called filled if it contains some instances of the considered word. 
We chose powers of 2 for our box sizes. As an example Fig 3 illustrates 
division of a small part of our sample book into boxes with size 2, 4 and 8. In 
this example the appears in 3, 3, and 2 boxes for s = 2, 4, and 8 respectively.

Figure 3: Schematic of how an instance text is devided into boxes.

The number of words that is placed in a box, is the box-size. Box-Size 
for first row is equal to 2 and for the second and third rows are 4 and 8 
respectively.
https://doi.org/10.1371/journal.pone.0130617.g003

Distribution of a word is self-similar if we see the same pattern for the 
word in all scales (in all s). In Fig 4 the distribution of hybrid, one of the 
vocabulary words in our sample book is shown in three different scales s = 
1, s = 256 and s = 1024. As is seen in this figure, distribution of hybrid is the 
same in these scales.

Figure 4: Spatial distribution of HYBRID in the book, The Origin of Spe-
cies for three different scales.
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As seen, distributions in all scales, s = 1, s = 256 and s = 1024, are statistically 
the same. They have similar clusters.

https://doi.org/10.1371/journal.pone.0130617.g004

Ranking the Words and Keyword Detection
All words have a self-similar pattern in the text, but with different fractal 
dimensions. If the word is uniformly distributed along the text its fractal 
dimension is close to one. For words which are clustered in text the fractal 
dimension is substantially less than one. Fig 5 shows distribution of two 
words of the instance book, hybrid and rarely. Both of them have the 
same frequency M = 45. Occurrences of hybrid form a cluster in the text 
while rarely has uniform distribution.

Figure 5: Spatial distribution of two words, HYBRID and RARELY, in the 
book, The Origin of Species.

According to subject of the book, hybrid is an important and the rarely is 
an irrelevant word, both of them have the same frequency equal to 45. rarely is 
distributed in the text, uniformly but,hybrid is clustered.
https://doi.org/10.1371/journal.pone.0130617.g005

In Fig 6 we compute the fractal dimension for these words. hybrid has 
dimension 0.4 and dimension of rarely is 0.8. We also plot the results for 
other pair of words, cell and actually with 28 occurrences in the book for 
both of them. cell is clustered as same as hybrid and actually has uniform 
pattern like rarely.
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Figure 6: Results of box counting for, HYBRID and RARELY.

The dashed line and dash dotted line demonstrate the power law 
regression. The fractal dimension is about 0.4 for hybrid and is close to 0.8 
for rarely. The box counting result of cell and actually is also showed. The 
fractal dimension is about 0.4 for cell and is close to 0.8 for actually.
https://doi.org/10.1371/journal.pone.0130617.g006

In the shuffled text all words are distributed more uniformly and clustered 
words do not occur. Fig 7 illustrates the result of box counting for hybrid in 
our sample book and its shuffled version. Our conjecture on the number of 
filled boxes in the shuffled text is also plotted, showing that our conjecture 
has good agreement with the shuffled data.

Figure 7: Results of box counting for distribution of HYBRID in the original 
and shuffled text.

hybrid is an important word in the book, The Origin of Species. So, there is 
a considerable difference between box-counting of this word in the original 
and shuffled text.
https://doi.org/10.1371/journal.pone.0130617.g007
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The patterns of words that have uniform distributions change only 
slightly after the shuffling process, indicating that the words uniformly 
distributed in the original text are unimportant. The difference between 
patterns of a word in the original and shuffled text can be considered an 
indication of its importance. The degree of fractality which is defined in Eq 
4 measures this difference. Fig 8 shows the degree of fractality for two 
words, hybrid and cell. It is clear from this figure that cell is more important 
than hybrid. The degree of fractality of hybrid is 8.21 and is 12.71 in the 
case of cell. Now we can rank all of the words according to the degree 
of fractality. Table 1 reports the list of twenty top-ranked words and also 
the first twenty frequent words for comparison. According to the subject of 
the book, words such as, slaves, illegitimate, saliva, and pedicellariae are 
important words. They also have higher degree of fractality in comparison 
with other words. The irrelevant words like, the, of, and, and in have lower 
degree of fractality, though they are very frequent in the book. It is useful 
to point out that function words have the lowest degree of fractality overall, 
but unimportant content words still have lower fractality than important 
keywords.

Figure 8: Area which is bounded between two curves for CELL and HYBRID 
in the box counting diagram.

The curves correspond to box counting result for these two words in the 
original and shuffled text. The area corresponds to cell is bigger than the 
case of hybrid. cell is more important than hybrid in the book The Origin of 
Species.
https://doi.org/10.1371/journal.pone.0130617.g008
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Table 1: List of the twenty top-ranked words according to degree of fractality 
(left) and the first twenty frequent words (right) from the book The Origin of 
Species

Words with high degree of fractality are important words according to 
subject of the book and common words have low degree of fractality. The 
string un which is placed in the second row of list of top-ranked words is a 
French determinant which appears four times in a single sentence. So, it is 
highly clustered and has high value of fractality. Because we do not perform 
any pre-processing to eliminate foreign words, this word appears in the list.
https://doi.org/10.1371/journal.pone.0130617.t001

For small texts, word frequency becomes increasingly important. For 
taking into account the effect of frequency, we multiply log(M) by the 
degree of fractality, causing the most changes in degree of fractality rank 
in the middle of the list, while words at the top of the list have a small 
change in their rank. Other choices may change the rank of the words in 
all parts of the list significantly. Table 2 presents another retrieved list of 
words according to this Combined Measure. Now, words like slaves, wax, 
hybrids, and instincts are placed in the top. In this new ranking list, the 
word, hybrid, changes its place from 321 to 48, the word, rarely also moves 
from 2203 rank to 1011.
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Table 2: List of the twenty top-ranked words according to Combined Measure 
from the book The Origin of Species

These words are important according to the subject of the book. The 
word, f is related to some classification of species such as f8, f10, f14, … 
and some proper names. f is kept because non-alphabetical characters are 
removed in our method.
https://doi.org/10.1371/journal.pone.0130617.t002

In addition to the degree of fractality, there exist several methods that 
assign an importance value to any word in a given text. We can list the words 
in descending order of their importance. In this list the words that are placed 
in the top ranks are assumed to be keywords. By choosing a threshold value 
we can identify the list of keywords. In the following section we evaluate 
our proposed method for the keyword detection task.

Evaluation of Our Method
The best way to evaluate the efficiency of our approach to keyword detection 
is comparing its results with other methods. We use two metrics in this 
comparison: precision and recall. These tell us to what extent the retrieved 
list of keywords conforms to the manually selected list as described in the 
previous section. In this work, we would like to compare our method with two 
efficient methods in keyword extraction, the C Value [14] and Entropy [17]. 
These methods are selected according to our experience. We found that C 
Value has the maximum amount of recall compared with other methods and 
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entropy has maximum amount of precision compared with others [18, 23] 
(these methods are reviewed in further detail in the appendix). To do the 
assessment we use the glossary written by W. S. Dallas [24]. Note that 
the choice of glossary has the potential to considerably alter the result of 
comparisons.

Two points are relevant before proceeding to the comparison. First, the 
glossary of the book contains not only words, but also some phrases. To 
deal with multi-word keywords of the glossary we separate them into single 
words. For example we convert the phrase ganoid fishes to two separate 
words ganoid and fishes in the glossary. Second, in any method, a value 
is assigned to each vocabulary word, then we can sort the words from the 
highest value to the lowest. We give rank 1 to the first word in the sorted 
list, the second word takes rank 2 and so on. Unlike in Zipfian ranking, this 
ranking process allows for rank ties; in other words, if some words have 
the same assigned value, they should have the same rank. As an example, 
in Table 3 the words forward and months have equal values. In this case we 
assign them equal rank (2128) and the next word in the list will have rank 
2130. There are two approaches for calculating recall and precision.

Table 3: List of ten words and their ranks from the book The Origin of Species

Words with equal Combined Measures take equal ranks.
https://doi.org/10.1371/journal.pone.0130617.t003

In Herrera and Puri approach [17], they do not indicate any threshold. 
After ranking words according to an importance index, the last word of the 
glossary in the ranked list is found. Then, the number of words from the 
ranked list which include all the glossary words are selected as keywords. In 
this approach, they introduce a cut-off frequency; they keep only the words 
with frequencies greater or equal to the cut-off frequency both in ranked list 
and in the glossary and omit all other words with lower frequencies. For 
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example cut-off frequency equal to 2 means only words with frequencies 
more than 1 are kept and other words are omitted. The number of words from 
ranked list and from the glossary for various choices of cut-off frequency 
are written in Table 4. In Fig 9, the recall and precision are plotted against 
the cut-off frequency. According to Fig 9, recall for Combined Measure is 
higher than other methods for cut-off frequencies greater than 5. This means 
that the proposed fractal method is superior to the others as a method for 
keyword extraction. The precision of Combined Measure is higher than C 
Value for all cut-off frequencies.

Table 4: Number of vocabulary words and number of glossary words for vari-
ous cut-off frequencies

Nv and Ng are the number of vocabulary words from the book and 
number of glossary words for each cut-off frequency, respectively.
https://doi.org/10.1371/journal.pone.0130617.t004

Figure 9: Results of calculating Recall and Precision with Herrera and Purri 
approach for the book The Origin of Species for 10 cut-off frequencies.
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The fractal method has the highest value of Recall in all frequencies and 
higher value of Precision than C Value method.
https://doi.org/10.1371/journal.pone.0130617.g009

If we rank the words according to their fractality we will find a power 
law relationship between the fractality of a word and its rank. Therefore, it 
is rational to choose the words with rank lesser than a specific value as the 
retrieved keywords list instead of using the fractality threshold. In Mehri 
and Darooneh approach [18], after ordering words due to their fractality, a 
percentage of words from the top of the ranked list are selected as keywords. 
In the first step, the top 2 percent of the ranked list are selected as keywords 
(the first 2 percent of 8842). In the next step, the top 4 percent of the list are 
selected as keywords, and so on. Also, in this approach all of the glossary 
words are selected as relevant keywords in all steps. In Fig 10, the recall and 
precision are plotted using Mehri and Darooneh approach. According to this 
figure recall for fractality for our method is higher than other methods for all 
retrieved list fractions. The precision of fractality for our method is higher 
than others for retrieved list fractions of more than 4 percent.

Figure 10: Results of calculating Recall and Precision with Mehri and Da-
rooneh approach for the book The Origin of Species.

The fractal method has the highest value of Recall and precision in all vo-
cabulary fractions.
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https://doi.org/10.1371/journal.pone.0130617.g010

The validity of our method also extends to other books. The First Three 
Minutes by Steven Weinberg [25] and A Brief History of Time by Stephen 
Hawking [26]. The value of recall for our method is higher than for C Value 
and entropy. The precision value obtained is higher than other methods for 
cut-off frequencies of more than 9 for Weinberg’s book, and more than 8 in 
the case of Hawking’s book.

CONCLUSION
The pattern of occurrences of a word in a text can be considered as a fractal 
object with dimension between 1 and 0. We found that words related to 
the subject of the text have non-uniform spatial distributions and their 
dimensions are considerably less than one. In contrast, the irrelevant words 
are distributed uniformly with a dimension close to one. We introduced 
the concept of degree of fractality which measures the difference between 
distribution pattern of a word in the original text and randomly shuffled 
version. While in the shuffled texts all of the words are uniformly distributed 
across the text, the original text exhibits clustering of important words in 
particular. We used the degree of fractality in combination with a function 
of frequency for ranking words in The Origin of Species by Charles Darwin. 
The top words in the ranked list of the words was selected as the retrieved 
keywords of the text. The retrieved list of keywords was checked against the 
glossary of the book. For this checking we used two metrics: precision and 
recall, which are defined in the context of the binary classification analysis. 
Compared with two other representative methods in this area, the Entropy 
and C Value, our approach is more effective as a method for automatic 
keyword extraction.

Future work should aim to examine the effectiveness of our method in 
keyword detection for smaller texts. This method could also be applied to 
key-phrase extraction. Finally, the general framework behind our method 
could be extended to explore the hidden secrets of genome, for instance by 
developing a way for data mining non-coding DNA.



The Fractal Patterns of Words in a Text: A Method for Automatic ... 77

APPENDIX. DESCRIPTION OF RELATED METHODS 
OF WORD RANKING

A C Value
The C Value method is based on noticing distribution of the words in a 
text and word clustering [14]. To quantify the clustering of a word the 
parameter σ (the standard deviation of the normalized distance between 
consecutive occurrence of a word) is defined by

   (9)
Where s is the normalized distance between consecutive 

occurrences, s = d/ < d >, and < d > is the average distance between 
occurrences. σ can be normalized with respect to standard deviation of 
the distance between consecutive occurrences of words in a random text, 
which has a geometrical spatial distribution of word types, 
. Where p = M/N is the probability of occurrence of a word type with 
frequency equal to M in a text with total N words,

     (10)

   (11)

Where  are the mean value of the 
normalized standard deviation and standard deviation of the distribution 
of σnor in a random text, respectively. C = 0 means the word is distributed 
randomly in a text and C > 0 means the word forms cluster.

B Entropy
Entropy is another parameter used to rank the words of a text [17]. For 
this purpose a text with N words is devided into P parts. The ith part 

contains Ni words which . So the ralative frequency of occurrence 
of the word type ω in the part i is , where Mi(ω) and M(ω) are the 
frequency of word type ω in the ith part and in the whole text, respectively, 
where . With this explanation the probability measure over the 
partitions can be defined as
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  (12)
The following relation is the Shannon’s information entropy for a 

discrete distribution pi(ω)

  (13)
There is a problem with this relation; it is zero for words with frequency 

equal to 1. To take into account the effect of frequency, the following relation 
seems to be a better choice

  (14)

where  is the entropy of the word type ω in a random text.
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ABSTRACT
There exist several methods for calculating the fractal dimension of objects 
represented as 2D digital images. For example, Box counting, Minkowski 
dilation or Fourier analysis can be employed. However, there appear to be 
some limitations. It is not possible to calculate only the fractal dimension 
of an irregular region of interest in an image or to perform the calculations 
in a particular direction along a line on an arbitrary angle through the 
image. The calculations must be made for the whole image. In this paper, 
a new method to overcome these limitations is proposed. 2D images are 
appropriately prepared in order to apply 1D signal analyses, originally 
developed to investigate nonlinear time series. The Higuchi dimension of 
these 1D signals is calculated using Higuchi’s algorithm, and it is shown 
that both regions of interests and directional dependencies can be evaluated 
independently of the whole picture. A thorough validation of the proposed 
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technique and a comparison of the new method to the Fourier dimension, a 
common two dimensional method for digital images, are given. The main 
result is that Higuchi’s algorithm allows a direction dependent as well as 
direction independent analysis. Actual values for the fractal dimensions 
are reliable and an effective treatment of regions of interests is possible. 
Moreover, the proposed method is not restricted to Higuchi’s algorithm, as 
any 1D method of analysis, can be applied.

INTRODUCTION
Digital images are increasingly utilized to represent data in all kinds of 
sciences. They can be used for visual or graphical purposes only or for a 
closer investigation of an object via image processing techniques. If the 
objects in an image are not geometrically regular—which is often the case for 
natural objects such as landscapes, animals or cells—both the interpretation 
and the classification can be important. For these tasks, determining the 
fractal dimensions of 2D digital images has been very successful in recent 
years [1]–[5]. The methods involved include the well known Box counting 
method or the Minkowski dilation method [3]. It is also possible to use gray 
value statistics [6], differential box counting [7], a variation method [8], a 
blanket method [9] or frequency analysis [10]–[12]. Despite the effectiveness 
of these methods, they have some serious limitations. Very often the object 
of interest does not fill the digital image entirely, but instead is surrounded 
by a background, e.g., a light microscopic image of a single cell surrounded 
by culture medium, an electron microscopic image of a cell nucleus 
surrounded by stroma or a histological image of a special tissue surrounded 
by neighbouring tissue. In all these cases, it would be necessary to calculate 
the properties or fractal dimensions only for the regions of interest, without 
incorporating any information from the background. Furthermore, it is not 
possible to calculate the fractal dimension of a specific line or curve through 
an image. Such a line or curve can be considered to be nothing more than a 
long region of interest without a width or with a width of one pixel.

The present work proposes a new method to overcome these limitations 
by using 1D signal analysis methods. 2D images are either projected onto 
1D signals or several image rows, columns, radial lines or spirals are 
extracted in order to gather a batch of 1D signals. Projection leads to a loss 
of information, but has the advantage of drastically decreased computational 
requirements. Extraction of rows and/or columns does not imply a loss of 
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information, and the fractal dimension of the whole image can be calculated 
very precisely.

Theoretically, an extracted 1D signal of an image is an intersection 
of the gray value surface with a two dimensional plane and therefore, the 
intersection theorem for fractals [13] can be applied:

  (1)

with  the fractal dimension of the 1D signal,  the fractal dimension of 
the gray value surface in a three dimensional Euclidian space E=3, and a plane 
with . Usually the greater than relation can be replaced by equality. 
Then, the fractal dimension range  of the surface 
yields an expected fractal dimension range of  for 
the 1D signal or profile. Projection in this context is a data reduction by 
summing up the grey values along an axis. For this sort of projection the 
projection slice theorem is valid, which is commonly applied for inverse 
problems, such as computed tomography. A single projection integrates the 
original data, unavoidably yielding a loss of high frequency components. 
Nevertheless, it is feasible to calculate quantitative parameters describing 
the data set, e.g. the fractal dimension. It turned out that projection yields in 
many cases quite similar, mainly a little lower values compared to extraction 
methods, but, in some cases, it can lead to false values, which is described 
and elaborated thoroughly in the result and discussion sections.

One dimensional data is commonly a time series of data points, which 
can be examined by a very wide range of excellent linear as well as nonlinear 
methods. While there exist a huge range of methods concerning 1D signal 
processing and signal analyses (e.g. 1D filtering algorithms), this study 
is focused on nonlinear methods studying fractal dimensions of objects. 
These 1D nonlinear analyses are mainly performed in the investigation of 
nonlinear dynamical systems [14]–[16], bifurcations [17] or even critical 
transitions [18]. The range of possible methods includes phase space 
analysis, attractor analysis, Fourier methods, the Higuchi method [19] and 
others.

Despite of the effectiveness of these 1D methods, there have been only 
very limited efforts to expand these methods to 2D in the past. There are a 
few exceptions [20]–[22], but because of their rarity, there is a very high 
potential for improving and expanding the classical 2D methods. This 
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work intends to pursue these promising approaches. The proposed methods 
include some generally applicable techniques, which can be adapted very 
easily to actual problems.

METHODS

Digital Images
Several digital gray level images were generated in order to test the 
calculations of the images’ Higuchi dimensions. The varying gray level 
surface of a 2D image can be interpreted as a 3D landscape in a three 
dimensional embedding space. The following images were constructed 
(Figure 1A): An image with constant gray value, an image with a cosine 
shaped variance of gray levels in the horizontal direction and a constant 
gray value in vertical direction, three images with varying gray levels but 
predefined fractal dimensions, and finally an image with random gray values.

Figure 1: Six sample images.

A An image with constant gray value, an image with cosine shaped 
varying gray levels in the horizontal direction and constant gray value in 
the vertical direction, three images with varying gray levels but distinct 
predefined fractal dimensions and finally an image with random gray 
values. B Same six images as in A, but with a rectangular region of interest 
(ROI). C Same six images as in A, but with an elliptical ROI.

The fractal gray level landscapes were constructed using an inverse 
Fourier method described in [23]. Briefly, an artificial, randomly distributed 
Fourier power spectrum is constructed. The value of the desired fractal 
dimension, , is taken to calculate the slope .Then, β is used 
to create a corresponding power spectrum. Applying the inverse Fourier 
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transformation with arbitrary phase values gives a gray value surface with 
the desired fractal dimension .

Two artificial regions of interest (ROI) were constructed, one rectangular 
and one elliptical, by setting all pixel values outside of the ROI to zero. 
These images can be seen in Figure 1B&C. The actual shapes of the ROIs 
were chosen with unsymmetrical distances to the image border in order to 
simulate an actual case.

All images had an identical resolution of 1300×1030 pixels, which is 
high enough for the calculations intended [24] and resemble a commonly 
used image size. The images were saved as 8 bit gray level images in tiff 
format.

The images were constructed with IDL (Interactive Data Language, ITT 
Industries Inc., Boulder, USA).

Construction of 1D Data Sequences
There is not a standard procedure for constructing 1D data point series 
out of 2D digital images. At first glance, a reduction of order seems to 
inevitably cause a loss of information. But this loss does not always occur 
without exception. The amount of lost information is strongly dependent 
on the actual reduction process. In practice, there exist a huge number of 
possibilities to extract 1D signals out of 2D images. Extractions of rows or 
columns, along radial lines, spirals or arbitrary curves or stitching together 
rows or columns, to name but a few, are possible. In fact, the proposed 
method of calculating fractal dimensions is not restricted to any special type 
of extraction and therefore, exemplarily the following extraction algorithms 
were chosen for this study:

• The gray values are projected vertically to the x-axis and 
horizontally to the y-axis. This projection resembles the summing 
up of gray values, and two 1D signals are constructed.

• Every horizontal row and every vertical column of the image is 
extracted and taken as a separate 1D signal. This approach leads 
to (n+m)-many signals, with n the number of image columns 
and m the number of image rows.

• Radial lines through the centre of the image with a subsequent 
angle difference of 1° are extracted. Therefore, 180 signals cover 
the range from 0 to 2π.
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• An Archimedean spiral starting at the centre of the image and 
turning 10 times through the image is extracted.

The evaluation time is considerably low for method (i) and only 
marginally higher for (iv). The time for (ii) is (n+m)/2 times and for (iii) 90 
times higher than the time for (i). On a standard PC (for the images with a 
resolution of 1300×1030 pixels), the calculations (including the display of 
graphical user interfaces and the display of every single regression plot) 
using method (i) took <0.15 minutes, whereas for method (ii) they took about 
200 minutes and for method (iii) about 15 minutes per image. Parallelization 
of the algorithms, especially for method (ii) and (iii) would be possible, 
because the individual 1D signals can be independently processed.

The results of the individual signals can also be grouped together by 
calculating mean values. Therefore, it is possible to get distinct mean values 
for the x- and/or y-direction or one single value for the whole image.

All the images were additionally investigated and examined with two 
different ROIs: a rectangular and an elliptical shape. Outside of the ROI, the 
gray values were set to zero, so each of the 1D signals showed both leading 
and tailing zeros. Zero gray values were interpreted as being the background. 
Obviously, the fractal dimension calculations strongly depended on these 
leading and tailing zeros, and it was not possible to neglect this influence. 
In order to examine this influence, the calculations were carried out in two 
ways. First, the calculations were straightforwardly carried out by including 
the zeros (inclusive background), and second, the calculations were carried 
out after both the leading and the tailing zeroes were excluded (exclusive 
background).

Higuchi Dimension

The Higuchi dimension, , is a measure of irregularity and is calculated 
for time series directly in the time domain [19]. The calculations are carried 
out without phase space constructions. Several lengths, , of the signal 
or curve are calculated, and a double logarithmic plot, versus , is 
used to estimate the actual dimension value. The assumption is that a fractal 
signal scales according to the following:

  (2)

The discrete data point series , with N the 
total number of data points, must consist of values or observations at regular 
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intervals. From this single data point series, d new data point series 

, with , where m is the initial time and d a time interval, 
are constructed.

  (3)

For each , the lengths  are calculated as follows.

  (4)

where m and d are integers and  denotes the floor function. The lengths 
 are the normalized sums of the differences of the values, with a 

distance of d and a starting point m. For each d, the mean  is calculated 
as follows.

  (5)
Finally, the slope of a linear regression of a double logarithmic plot of 

 and  gives the Higuchi dimension, . The maximal interval 

 was determined by plotting several regressions with subsequently 

increasing . For each individual regression, the coefficient of 
determination  was calculated. The saturation point, where  did not 
increase significantly was taken for the maximal d. Actually,  was 
calculated for , and the best linear regression (again by 
checking ) in the double logarithmic plot was gained for the range 

. This range of d resulted in the best estimations of the 
theoretical dimension values.

The values of the Higuchi dimension, , of a 1D curve S always fall 
in the closed interval [1], [2]. There is one exception, when all the data 
point values have a constant value. In that case, all the differences in the 
summation of  are all zero, resulting in  A simple curve, such 
as a sine or cosine function, has a dimension . The other extreme is 
a randomly distributed curve with . The dimension for fractals lies 
between 1 and 2.
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Fourier Dimension
Frequency analysis, and in particular the FFT (Fast Fourier Transformation), 
is widely applied in image processing, and the fractal dimension , also 
called the “Fourier dimension,” is related to the power spectrum of a 2D 
image. The power spectrum is given by:

     (6)

with  and c is a constant.

 can be examined by fitting the function in Equation (6) to the calculated 
two dimensional power spectrum. By taking the logarithm, the least squares 
approximation gives:

   (7)
with N the number of data points and i and j the indices in the horizontal and 
vertical directions respectively.

The fractal dimension, , of 2D images, having a topological dimension 
, can be estimated with the following equation:

     (8)
The range of possible values is between 2 and 3.
The calculations were carried out with IDL (Interactive Data Language, 

ITT Industries Inc., Boulder, USA).
Both dimensions, the Fourier dimension as well as the Higuchi dimension 

depend on the construction of a power law of distinct quantities. Although 
these quantities are not identical, the power law reflects the intrinsic 
nonlinear relation of these distinct quantities. Therefore, the slopes of the 
linear fits give estimates rather than exact values for the fractal dimension.
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RESULTS
The dimension values of distinct images were examined according to each 
of the individual methods. Firstly, projection, extraction of rows, columns, 
radial lines or spirals was carried out to get 1D signals for the calculation of 
the Higuchi dimension. For comparison, the images were used to calculate 
the Fourier dimension. The slopes of the linear regressions of double 
logarithmic plots were determined, and the estimated values of the fractal 
dimensions were calculated by linear regressions.

Linear Regressions
Sample double logarithmic plots and linear regressions can be seen in Figure 
2. The linear regressions of the Higuchi method of the images in Figure 
1A can be seen in Figure 2A. A close inspection shows a slight tendency 
for two linear regions, so the actual linear regression was restricted to the 
second region for values between 20 to 89. This restriction gave the best 
absolute values, e.g., a sinusoidal shape should have , while a random 
shape should have  = 2. The linear regressions fit the data very well, with 
coefficients of determination R2 higher than 0.993.

Figure 2: Double logarithmic plots of the Higuchi and Fourier dimension.
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The individual ranges of linear regressions are depicted. A The slopes of 
the Higuchi dimension show a slight tendency for two linear regions. Thus, 
the range of linear regression was limited to the second linear region in order 
to gain the best absolute dimension values. The linear regression fit the data 
very well, with coefficients of determination R2 higher than 0.993. B The 
plot data of the Fourier dimension are highly dispersed. The coefficients of 
determination R2 were about 0.332. The highest value was 0.664.

The linear regressions of the Fourier method can be seen in Figure 2B. 
Obviously, compared to the Higuchi method, the plot data is highly dispersed, 
and the linear regressions did not fit the data very well. The coefficients of 
determination R2 were worse than for the Higuchi method at approximately 
0.332. The highest value was only 0.664.

Fractal Dimensions of Fractal Shapes
As a first comparison of the Higuchi dimension analysis to the Fourier 
dimension analysis, gray value images, featuring a fractal surface and 
predefined certain fractal dimensions, were investigated. The predefined 
fractal dimensions were D = 2.2, D = 2.5 and D = 2.8, representing low, 
medium and high fractal dimensions, respectively.

Figure 3 and 4 show the results, and the abscissa values are the predefined 
fractal dimensions. For every predefined fractal dimension, 100 different 
images were investigated. The error bars depict the calculated standard 
deviations. Figure 3 shows the Higuchi dimension results for methods (i), 
(ii), (iii) and (iv), respectively. Figure 4 shows the results for the Fourier 
dimension analysis.

Figure 3: Higuchi dimensions of fractal and non-fractal images.
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Higuchi dimensions for an image with a constant gray value, an image 
with a cosine shaped gray value course in the x-direction, three images with 
predefined fractal dimensions (D = 2.2, 2.5, 2.8) and an image with random 
gray values. The legend depicts the distinct 2D to 1D methods (i)–(iv). (i) 
projection and averaging the values for the x- and y-direction. (ii) examining 
every row and column and calculations of averages. (iii) 180 radial lines 
through the centre of the image and calculations of averages and (iv) spirals 
through the image and calculations of averages.

Figure 4: Fourier dimensions of fractal and non-fractal images.

Fourier dimensions for an image with a constant gray value, an image 
with a cosine shaped gray value course in the x-direction, three images with 
predefined fractal dimensions (D = 2.2, 2.5, 2.8) and an image with random 
gray values. Inaccurate as well as erroneous values are emphasized with 
arrows.

The values of the Higuchi dimension analysis show a continuous 
increase and very low levels of errors. The values for the projection method 
(i) were slightly smaller than for method (ii). Method (ii) and (iii) yielded 
quite similar values. Again method (iv) yielded marginally smaller values 
but not so much as method (i). As mentioned in the method section, a single 
value for an image was calculated.

In contrast, the values of the Fourier dimension (Figure 4) show very 
clearly that there are some very bad estimates. The values for fractal 
dimensions from 2.5 and 2.8 are estimated quite well, but the calculation for 
the lower value of 2.2 shows a very poor estimate.
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Fractal Dimensions of Non Fractal Shapes
The results for an image with a constant gray value, an image with a cosine 
shaped gray value course in the x-direction can be seen on the left side 
of Figures 3 and 4. The result for an image with random gray values can be 
seen on the right side of Figures 3 and 4.

In accordance with the theory, the constant gray value image has an 
estimated Higuchi dimension of zero for all four methods (i), (ii), (iii) 
and (iv). Furthermore, the cosine shaped varying image in the x-direction 
and constant values in y-direction has a Higuchi dimension of one in the 
x-direction and a Higuchi dimension of zero in y-direction. The average 
value of approximately 0.5 for methods (i) and (ii) can be seen in Figure 
3. Methods (iii) and (iv) yielded a value around 1, as can be seen in Figure 
3, too. Finally, the Higuchi dimension of the random image correctly shows 
the highest values of all.

Contrary to these positive findings for the Higuchi dimension analysis, 
the Fourier dimension analysis led to quite erroneous values for the non 
fractal images, which can be seen in Figure 4. The negative values obtained 
for the constant image and the cosine image are simply incorrect. The 
Fourier dimension  of the random dimension should instead be 3 and 
is therefore far too large.

Influence of ROI
The influence of ROIs on the calculations of fractal dimensions is evident, 
because all the pixels outside of the ROI are zero, representing a black 
background. If these zeros were included in the calculations, they would 
definitely alter the results. Therefore, the exclusion of these pixels seems 
to be mandatory. Exclusion seems to be an easy way of avoiding these 
problems, but unfortunately this exclusion is not possible for every ROI. 
In fact, exclusion is only possible for a rectangular ROI, because the image 
inside the ROI can be extracted as a new image. For all other arbitrary 
shaped ROIs, there will always be some zero pixels. The influence of 
background effects was not examined for the Fourier dimension, due to 
the bad results presented so far. At this stage of development, it appears 
to be unnecessary to attempt to adapt the Fourier method to give reliable 
results, especially for ROIs. On the other hand, the Higuchi method offers 
great potential to overcome these ROI influences very easily. It is possible 
to exclude background (zeroes) prior to the dimension calculations, and the 
results thereby gained are shown in Tables 1 and 2 for projection method 
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(i) and extraction method (ii), respectively. The first two rows show the 
“correct” values without ROIs, where an exclusion of background does not 
alter the results, due to an absence of zero background values.

Table 1: ROI influences on Higuchi Dimension using projection method (i)

ROI Backgr. Const Cos D = 2.2 D = 2.5 D = 2.8 Random
- Incl. 0 0.59 1.36 1.53 1.73 2.09
- Excl. 0 0.59 1.36 1.53 1.73 2.09
Rect. Incl. 1.09h 1.14h 1.19l 1.32l 1.45l 1.26l

Rect. Excl. 0 0.59 1.40 1.68 1.90 2.16
Ellipse Incl. 1.29h 1.23h 1.37l 1.46l 1.52l 1.37l

Ellipse Excl. 0 1.48h 1.40 1.59 1.74 2.14

hvalue is too low.
lvalue is too high.

Table 2: ROI influences on Higuchi Dimension using every row and column 
extraction method (ii)

ROI Backgr. Const Cos D = 2.2 D = 2.5 D = 2.8 Random
- Incl. 0 0.59 1.58 1.80 1.99 2.10
- Excl. 0 0.59 1.58 1.80 1.99 2.10
Rect. Incl. 0.74h 0.75h 0.95l 1.11l 1.22l 1.28l

Rect. Excl. 0 0.59 1.64 1.90 2.07 2.16
Ellipse Incl. 1.14h 1.04h 1.23l 1.41l 1.55l 1.64l

Ellipse Excl. 0 0.56 1.51 1.76 1.97 2.10

hvalue is too low.
lvalue is too high.

The rectangular ROI caused following distortions in case of including 
background (third row in the tables) compared to the “correct” values (first/
second row in the tables). For the constant image, projection method (i) 
(Table 1) showed a far too high Higuchi dimension DH of approximately 1 
instead of DH = 0. Extraction method (ii) (Table 2) led to a Higuchi dimension 
value estimation of 0.74. Almost identical values were gained for the cosine 
shaped image. The values for the predefined fractal images (D = 2.2, 2.5, 
2.8) are drastically lowered, which is a clear consequence of the leading 
and tailing zeroes. Effectively, the values represent a mixture of both fractal 
dimensions (D = 2.2, 2.5, 2.8 and 0). Decreased values can also be seen for 
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the random image. Overall, the influence of a rectangular ROI is very drastic 
and cannot be neglected. On the other hand, exclusion of the background 
(fourth row in the tables) compensated the ROI effects very well. The values 
for the non-fractal images are now nearly correct. Only the values for the 
fractal images and the random image are marginally higher.

The elliptical ROI caused distortions in case of including background 
(fifth row in the tables) compared to the “correct” values (first/second row 
in the tables), which are quite similar to the rectangular case. The details are 
not really of interest, because an arbitrary ROI would lead to an arbitrary 
background, influencing the results in an individual manner. More important 
is the question of whether it is possible to restore the values by eliminating 
the background. In contrast to a rectangular ROI, the background influence 
can not be eliminated in the same manner, especially for method (i) (sixth 
row in Table 1). A data point of the projection is only zero when and where 
all image pixels along the projection direction are zero. In fact, this condition 
holds only for pixels outside the surrounding rectangle of the ellipse. The 
areas inside the corners of the surrounding rectangle have zero values, and 
therefore the projection sums include these zero values, which evidently 
alter the determinations of the Higuchi dimension. Again, the elimination of 
the background resembled, with a high degree of conformity, the “correct” 
values.

Finally, using the extracted signals according to method (ii) (sixth 
row in Table 2), it was again possible to restore the values for the Higuchi 
dimension.

DISCUSSION
There are several accepted methods for determining the fractal properties of 
objects represented by digital images. The unavoidable drawback of digital 
images is the limited resolution. A pixel of an image is the smallest element, 
while the size of the image is the largest element of an image. Nevertheless, 
fractal analysis of digital images has been very successful in the past and 
can give reliable results with a high degree of validity [24], [25]. In contrary, 
this study showed that the Fourier method, which is commonly well suited 
for gray value images, performed rather poorly if solely regions of interests 
should be evaluated. The problem of the Fourier method is that it cannot be 
restricted to regions of interests at all. The discrete Fourier transformation 
of digital images is calculated with sums of all the elements in the individual 
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rows and columns. A spatial data restriction is not compatible with discrete 
Fourier transformation.

In this study, an extension of the classical methods (e.g. Fourier 
dimension) for digital images has been proposed. This extension includes 
the use of fractal signal analysis and incorporates a time series evaluation 
method, developed for the determination and investigation of chaotic 
dynamical systems. The 2D digital images must be transformed into 1D 
signals, and the resulting gray level signal can be treated as if it were a time 
series signal.

The fractal dimensions of the 1D signals were calculated using the 
Higuchi method. Prior investigations included quite complex methods, such 
as phase space reconstructions. Especially, Mattfeld [20] proposed a method 
of stitching together 10 consecutive binary images of 510×510 pixels. The 
fraction of cells within 510 pixel long column perpendicular to the long 
axis gave the values for an 1D function. Despite the overall complexity, 
calculations were restricted to binary images. Contrary, calculations for the 
Higuchi method do not require a very high computational effort and can be 
implemented very fast for grey value images, without the need of image 
segmentation. Klonowski et al. [21] have already implemented the projection 
method according to (i) but comparisons to other extraction methods or the 
restriction to region of interests were not given.

In this study four 2D to 1D transformations have been thoroughly 
examined. The projection method (i) yields two 1D signals, which yield two 
values for the fractal dimension of one image: one for the x-axis and another 
for the y-axis. If the object in the digital image should be characterized by 
a single fractal dimension, an average of both values can be calculated. 
This average reflects the fractal dimension of the whole image, eliminating 
possible directional dependencies. For radially symmetric objects like 
fractal landscapes, both values are nearly identical. For other images, such 
as the image with a cosine shape in the x-direction and constant shape in 
y-direction, both values are different.

Therefore, the calculation of two directionally dependent fractal 
dimensions allows the distinguishing of directional dependencies, which 
cannot be resolved by classical 2D methods at all. In addition to this 
advantage, it is always possible to average the two different values and get 
a value identical to the classical methods.

The projection of the images according to method (i) naturally causes 
a reduction of information. Hence, only global characteristics of the object 
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under investigation are examined. The actual values have been slightly lower 
than the real values. If fine details cannot be ignored, it is possible to avoid 
the projection by extracting every row and/or column and by calculating the 
corresponding means, according to method (ii). The computational effort 
is higher, but every individual value of every pixel is incorporated. Again, 
the method has the advantage of calculating directional dependencies, as 
well as the possibility of getting a single average value for the whole image. 
Orientation independent analyses can be carried out by using the extraction 
method (iii) or (iv). The calculation effort is lower than for method (ii), but 
the results are quite reliable. Particularly, the spiral extraction method gives 
a rotationally independent result without the need of calculating averages.

Moreover, the proposed methods can be applied to regions of interests 
only. By eliminating the leading and tailing zeros, it has been shown that the 
proposed 1D method estimates the fractal dimension very well. For arbitrary 
shapes of the regions of interests, it turned out, that the projection method 
according to method (i) should be avoided, because there is the possibility 
of summing up some zero values that are spatially located outside the ROI, 
but inside the surrounding rectangle. In these cases, it is necessary to use the 
extraction methods according to (ii) or (iii).

Despite the effectiveness of the proposed 1D extraction method, 
especially compared to the Fourier method, the limitation is obviously the 
indirect determination of fractal dimensions of two dimensional objects. 
In principle, for any one dimensional algorithm,  could be determined 
by adding 1 to ,

  (9)
but this may not be valid for every object, fractal or 2D to 1D extraction 
method. Considering practical aspects of recalculating  from , the 
influence of ROIs, especially for the case of projection, can be investigated 
by the following generalization:

  (10)
c being an experimentally derived constant. Since a ROI is a subset of the 
whole image, the fractal dimension of a ROI image (as far as discussed in this 
study) should be equal to the fractal dimension of the whole image. If at least 
one typical test image without any ROI is available,  can be estimated 
with equation (9). If several typical test images are available (which is often 
the case), the mean could be calculated. Applying several typical ROIs on 
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this test image or these test images yields c, by using equation (10). If c is 
known, the dimension  of a single image under investigation with a ROI 
can be calculated with equation (10).

CONCLUSION
The fractal dimensions of objects in a digital image have been investigated 
by classical 2D methods, such as Box counting or Fourier methods, for a 
long time. Despite providing many reliable results, these methods have 
several restrictions, such as direction independence and the impossibility to 
restrict calculations to regions of interests. These shortcomings are especially 
problematic because the restriction to regions of interests is a very common 
task for biomedical images.

To overcome these limitations, this study proposes the transformation of 
2D image data to 1D data series and the application of time series analyzing 
methods. The Higuchi dimension was calculated, and it has been possible 
to show that the proposed method is able to overcome the aforementioned 
shortcomings of classical 2D methods. It is possible to obtain directionally 
dependent fractal dimensions and, moreover, this approach can handle 
regions of interests very well.

The transformations to 1D signals have been carried out by four 
methods, but could be extended in future studies. Moreover, there is the 
great advantage that any conceivable 1D method, initially developed for 
time series analyses, can be adapted to investigate the spatial gray level 
information of digital images. In particular, it is intended to apply this 
method, as an example, to histological images of intraepithelial neoplasia, 
where a directional examination was not possible before. Prior quantitative 
examinations included the spatial shape and structure of nuclei [26], but it 
was not possible to consider their directional distribution throughout the 
epithelium. In addition, the possibility of restriction to regions of interests 
will decrease calculation errors and improve classification results. This 
method will certainly help the pathologist solve a long time diagnosis 
problem.
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ABSTRACT
Vision is a complex process that integrates multiple aspects of an image: 
spatial frequencies, topology and colour. Unfortunately, so far, all these 
elements were independently took into consideration for the development 
of image and video quality metrics, therefore we propose an approach 
that blends together all of them. Our approach allows for the analysis of 
the complexity of colour images in the RGB colour space, based on the 
probabilistic algorithm for calculating the fractal dimension and lacunarity. 
Given that all the existing fractal approaches are defined only for gray-scale 
images, we extend them to the colour domain. We show how these two 
colour fractal features capture the multiple aspects that characterize the 
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degradation of the video signal, based on the hypothesis that the quality 
degradation perceived by the user is directly proportional to the modification 
of the fractal complexity. We claim that the two colour fractal measures can 
objectively assess the quality of the video signal and they can be used as 
metrics for the user-perceived video quality degradation and we validated 
them through experimental results obtained for an MPEG-4 video streaming 
application; finally, the results are compared against the ones given by 
unanimously-accepted metrics and subjective tests.

VIDEO QUALITY METRICS
There is a plethora of metrics for the assessment of image and video quality 
[1]. They used to be: (i) full reference or reference based, when both the 
video sequence at the transmitter and the video sequence at the receiver 
are available, then the sequence at receiver is compared to the original 
sequence at transmitter, and (ii) no reference or without reference, when the 
video sequence at the transmitter is not available; therefore, only the video 
sequence at the receiver is being analyzed. Recently a third class of metrics 
emerged: the so-called “reduced-reference” [2, 3] which are based on the 
sequence at the receiver and on some features extracted from the original 
signal at the transmitter. This is the case of the fractal measures we propose.

For the quality assessment of an image or a video sequence, the 
metrics can be also divided into subjective and objective. During the last 
decade, several quality measures, both subjective and objective, have been 
proposed, especially for the assessment of the quality of an image after lossy 
compression, image rendering on screen or for digital cinema [4]. Most of 
them use models of the human visual system to express the image perception 
as a specific pass-band filter (to be more precise, a pass-band filter for the 
achromatic vision and a low pass-filter for the chromatic one) [5]. In this paper 
we explore a well-known property of the human visual system, that is, to be 
“sensitive” to the visual complexity of the image. We use fractal features—
thus a multiscale approach—to estimate this complexity. In addition, we 
rely on the hypothesis that the fractal geometry is capable of characterizing 
the image complexity in its whole—the space—frequency complexity and 
the colour content–-thus the complexity of the image reflected in a certain 
colour space, and any of the aspects of the image degradation, like a more 
spread power spectrum and local discontinuities of the natural correlation 
of the image.
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The most complex metrics are based on models of the human visual 
system, but some of them are now classical signal fidelity metrics like the 
signal-to-noise ratio (SNR) and its variant peak SNR (PSNR), the mean-
squared error (MSE) and root MSE (RMSE) which are simply distance 
measures. These simple measures are unable to capture the degradation of 
the video signal from a user perspective [6]. On the other hand, the subjective 
video quality measurements are time consuming and must meet complex 
requirements (see the ITU-T recommendations [7–10]) regarding the 
conditions of the experiments, such as viewing distance and room lighting. 
However, the objective metrics are usually preferred, because they can be 
implemented as algorithms and are human-error free.

The Video Quality Experts Group (VQEG) (http://www.vqeg.org/) is the 
main organization dealing with the perceptual quality of the video signal and 
they reported on the existing metrics and measurement algorithms [11]. A 
survey of video-quality metrics based on models of the human vision system 
can be found in [12] and several no-reference blockiness metrics are studied 
and compared in [13]. A more recent state-of-the-art of the perceptual criteria 
for image quality evaluation can be found in [14]. OPTICOM (http://www.
opticom.de/) is the author of one metric for video quality evaluation called 
“Perceptual Evaluation of Video Quality” (PEVQ), which is a reference-
based metric used to measure the quality degradation in case of any video 
application running in mobile or IP-based networks. The PEVQ Analyzer 
[15] measures several parameters in order to characterize the degradation: 
brightness, contrast, PSNR, jerkiness, blur, blockiness, and so forth. Some 
of the first articles that proposed quality metrics inspired by the human 
perception [16, 17] drew also the attention on some of the drawbacks of 
the MSE and the importance of subjective tests. Among the unanimously 
accepted metrics for the quantification of the user-perceived degradation 
are the ones proposed by Winkler use image attributes like sharpness and 
colourfulness [18–20]. In [21], the authors propose a no-reference quality 
metric also based on the contrast, but taking into account the human 
perception, and in [22], the hue feature is exploited. Wang proposes in [23] 
a metric based on the structural similarity between the original image and 
the degraded one. The structural similarity (SSIM) unifies in its expression 
several aspects: the similarity of the local patch luminances, contrast, and 
structure. This metric was followed by a more complex one, based on 
wavelets, as an extension of SSIM to the complex wavelet domain, inspired 
by the pattern recognition capabilities of the human visual system [24]. 
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Together with Wang, Rajashekar is the author of one of the latest image 
quality metric based on an adaptive spatiochromatic signal decomposition 
[25, 26]. The method constructs a set of spatiochromatic function basis 
for the approximation of several distortions due to changes in lighting, 
imaging, and viewing conditions. Wavelets are also used by Chandler and 
Hemami to develop a visual signal-to-noise ratio (VSNR) metric [27] based 
on their recent psychophysical findings [28–30]. Related to the wavelets, a 
multiresolution model based on the natural scene statistics is used in [31].

Most of the existing metrics for the video quality are used to quantify 
the degradation introduced by the compression algorithm itself, as a 
consequence of the reduced bit rate. We are interested in objectively assessing 
the degradation in video quality caused by the packet loss at network level 
[32]. In our experiments, we identified two kinds of degradation: (i) the 
degradation that affects the sequence, that is, the temporal component of 
the signal and (ii) the degradation that affects the frames, that is, the spatial 
component. Given the way the majority of the video frames are degraded 
(see Figure 1), the most useful metric would be the blockiness, which 
objectively quantifies the impairments. To quantify the degradation of a 
single video frame, one could simply measure the affected area in number 
of pixels of number of  blocks or an appropriate perceptual metric, 
able to quantify the degradation from a human perspective. Apart from 
blockiness, the degraded frames are «dirty», that is, many blocks containing 
other information than they should. Therefore, a metric able to quantify 
the dirtiness would be useful.EURASIP Journal on Image and Video Processing 3

(a) Original video frame, CFD = 3.14 (b) Degraded video frame, CFD = 3.31 (c) Absolute difference, CFD = 3.072

Figure 1: One original video frame from the “football” video sequence (a), the corresponding degraded received video frame (b), and the
absolute difference (c).

fractals appeared to be the ones with the fractal dimension
comprised between 1.1 and 1.5. According to [35], “the
prevalence of fractals in our natural environment has
motivated a number of studies to investigate the relationship
between a pattern’s fractal character and its visual properties”,
for example, [36, 37]. The authors of [35] investigate the
visual appeal as a function of the fractal dimension, and
they establish three intervals: [1.1–1.2] low preference, [1.3–
1.5] high preference, and [1.6–1.9] low preference. Pentland
finds in this psychophysical studies [38, 39] that for the
one-dimensional fractional Brownian motion and the two-
dimensional Brodatz textures, the correlation between the
fractal dimension and the perceived roughness is more than
0.9.

Last but not least, the very essence of the word “complex”
of Latin-etymology—meaning “twisted together”, designat-
ing a system composed of closely connected components—
emphasizes the presence of multiple components that inter-
act with each other, generating an emergent property [40].

2. Fractal Analysis

The fractal geometry introduced by Mandelbrot in 1983
to describe self-similar sets called fractals [41] is generally
used to characterize natural objects that are impossible to
describe by using the classical (Euclidian) geometry. The
fractal dimension and lacunarity are the two most-known
and widely used fractal analysis tools. The fractal dimension
characterizes the complexity of a fractal set, by indicating
how much space is filled, while the lacunarity is a mass
distribution function indicating how the space is occupied
[42]. These two fractal properties are successfully used to dis-
criminate between different structures exhibiting a fractal-
like appearance [43–45], for classification and segmentation,
due to their invariance to scale, rotation, or translation. The
fractal geometry proved to be of a great interest for the digital
image processing and analysis in an extremely wide area of
applications, like finance [46], medicine [44, 47, 48], and art
[49].

There exist several different mathematical expressions
for the fractal dimension, but the box-counting is the
most popular due to the simplest algorithmic formulation,
compared to the original Hausdorff definition expressed for
continuous functions [50]. The box-counting definition of
the fractal dimension is Dbox = − logN(δ)/ log δ, where

N(δ) is the number of boxes of size δ needed to completely
cover the fractal set. The first practical approach belongs to
Mandelbrot, but that was followed by the elegant probability
measure of Voss [51, 52]. On a parallel research path, Allain
and Cloitre [53] and Plotnick et al. [54] developed their
approach as a version of the basic box-counting algorithm.
All the other approaches for the computation of the fractal
dimension, like δ-parallel body method [55] (a.k.a. covering-
blanket approach, Minkowsky sausage, or morphological
covers) or fuzzy [56] are more complex from a point of
view of implementation and more difficult to extend to a
multidimensional colour space. However, we proposed in
[57] a colour extension of the covering blanket approach
based on a probabilistic morphology. On the other hand,
despite the large number of algorithmic approaches for the
computation of the fractal dimension and lacunarity, only
few of them offer the theoretical background that links them
to the Hausdorff dimension.

However, such tools were developed long time ago
for grey-scale small-size images, but due to the evolution
of the acquisition techniques the spatial resolution signif-
icantly increased and, in addition, the world of images
became coloured. The very few existing approaches for
the computation of fractal measures for colour images are
restricted to a marginal colour analysis, or they transform
a gray-scale problem in false colour [48]. In the following
section, we briefly present our colour extension of the
existing probabilistic algorithm by Voss [51], fully described
in [58], which were validated on synthetic colour fractal
images [59] and used to characterize the colour textures
representing psoriatic lesions, in the context of a medical
application in dermatology [60]. Then, we show how the
colour fractal dimension and lacunarity can be used to
characterize the degradation of the video signal for a video
streaming application. Without loss of generality, we present
the results we obtain in the case of an MPEG-4 video-
streaming application.

3. Colour Fractal Dimension and Lacunarity

The existing approaches for the estimation of the fractal
dimension, especially the box-counting-like approaches,
consider the gray-scale image a set of points S in an Euclidian
space of dimension E. In the probabilistic algorithm defined
by Voss [51] upon the proposal from Mandelbrot [41],

Figure 1: One original video frame from the “football” video sequence (a), the 
corresponding degraded received video frame (b), and the absolute difference 
(c). 

The degradation that affects the video frames is in fact a mixture of 
several impairments, including blockiness and the sudden occurrence of 
new colours. The modifications of the image content reflect both in the 
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colour histograms—a larger spread of the histogram due to the presence 
of new colours—and the spectral representation of the luminance and 
chrominance (high frequencies due to blockiness). Given all the above 
considerations, we believe that metrics like blur, contrast, brightness, and 
even blockiness lose their meaning, and they are not able to reflect the 
degradation; therefore, they cannot be applied for such degraded video 
frames. Metrics able to capture all the aspects of the degradation that reflect 
the colour spread–-the amount of new colours occurring in the degraded 
video frames would be more appropriate. We, therefore, consider that the 
approaches based on multiscale analysis and image complexity are more 
adapted to the video-quality assessment. Fractal analysis-based approaches 
offer the possibility to synthesize into just one measure adapted to the human 
visual system, all the relevant features for the quality of an image (e.g., 
colourfulness and sharpness) instead of analyzing all image characteristics 
independently and then to find a way to combine the intermediate results. 
Due to its multiscale nature, the fractal analysis is in accordance with the 
spirit of all multiresolution wavelet-based approaches mentioned before, 
which unfortunately work only for gray-scale images. Therefore, one of the 
advantages of our approach would be the fact that it also takes into account 
the colour information. In addition, the fractal measures are invariant to any 
linear transformation like translation and rotation.

Our choice is also justified by the way that humans perceive the fractal 
complexity. In a study on human perception conducted on fractal pictures 
[33], the authors conclude that “the hypothesis on the applicability and 
fulfillment of Weber-Fechner law for the perception of time, complexity and 
subjective attractiveness was confirmed”. Their tests aimed at correlating 
the human perception of time, complexity, and aesthetic attractiveness 
with the fractal dimension and the Lyapunov exponent, based on the 
hypothesis that the perception of fractal objects may reveal insights of the 
human perceptual process. In [34], the most attractive fractals appeared 
to be the ones with the fractal dimension comprised between 1.1 and 1.5. 
According to [35], “the prevalence of fractals in our natural environment 
has motivated a number of studies to investigate the relationship between a 
pattern’s fractal character and its visual properties”, for example, [36, 37]. 
The authors of [35] investigate the visual appeal as a function of the fractal 
dimension, and they establish three intervals: [1.1–1.2] low preference, 
[1.3–1.5] high preference, and [1.6–1.9] low preference. Pentland finds in 
this psychophysical studies [38, 39] that for the one-dimensional fractional 
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Brownian motion and the two-dimensional Brodatz textures, the correlation 
between the fractal dimension and the perceived roughness is more than 0.9.

Last but not least, the very essence of the word “complex” of Latin-
etymology—meaning “twisted together”, designating a system composed 
of closely connected components—emphasizes the presence of multiple 
components that interact with each other, generating an emergent property 
[40].

FRACTAL ANALYSIS
The fractal geometry introduced by Mandelbrot in 1983 to describe self-
similar sets called fractals [41] is generally used to characterize natural 
objects that are impossible to describe by using the classical (Euclidian) 
geometry. The fractal dimension and lacunarity are the two most-known 
and widely used fractal analysis tools. The fractal dimension characterizes 
the complexity of a fractal set, by indicating how much space is filled, 
while the lacunarity is a mass distribution function indicating how the 
space is occupied [42]. These two fractal properties are successfully used to 
discriminate between different structures exhibiting a fractal-like appearance 
[43–45], for classification and segmentation, due to their invariance to scale, 
rotation, or translation. The fractal geometry proved to be of a great interest 
for the digital image processing and analysis in an extremely wide area of 
applications, like finance [46], medicine [44, 47, 48], and art [49].

There exist several different mathematical expressions for the fractal 
dimension, but the box-counting is the most popular due to the simplest 
algorithmic formulation, compared to the original Hausdorff definition 
expressed for continuous functions [50]. The box-counting definition of the 
fractal dimension is , where  is the number 
of boxes of size  needed to completely cover the fractal set. The first 
practical approach belongs to Mandelbrot, but that was followed by the 
elegant probability measure of Voss [51, 52]. On a parallel research path, 
Allain and Cloitre [53] and Plotnick et al. [54] developed their approach as a 
version of the basic box-counting algorithm. All the other approaches for the 
computation of the fractal dimension, like -parallel body method [55] (a.k.a. 
covering-blanket approach, Minkowsky sausage, or morphological covers) 
or fuzzy [56] are more complex from a point of view of implementation and 
more difficult to extend to a multidimensional colour space. However, we 
proposed in [57] a colour extension of the covering blanket approach based 
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on a probabilistic morphology. On the other hand, despite the large number 
of algorithmic approaches for the computation of the fractal dimension and 
lacunarity, only few of them offer the theoretical background that links them 
to the Hausdorff dimension.

However, such tools were developed long time ago for grey-scale small-
size images, but due to the evolution of the acquisition techniques the spatial 
resolution significantly increased and, in addition, the world of images 
became coloured. The very few existing approaches for the computation 
of fractal measures for colour images are restricted to a marginal colour 
analysis, or they transform a gray-scale problem in false colour [48]. In the 
following section, we briefly present our colour extension of the existing 
probabilistic algorithm by Voss [51], fully described in [58], which were 
validated on synthetic colour fractal images [59] and used to characterize 
the colour textures representing psoriatic lesions, in the context of a medical 
application in dermatology [60]. Then, we show how the colour fractal 
dimension and lacunarity can be used to characterize the degradation of the 
video signal for a video streaming application. Without loss of generality, 
we present the results we obtain in the case of an MPEG-4 video-streaming 
application.

COLOUR FRACTAL DIMENSION AND LACUNARITY
The existing approaches for the estimation of the fractal dimension, especially 
the box-counting-like approaches, consider the gray-scale image a set of 
points S in an Euclidian space of dimension E. In the probabilistic algorithm 
defined by Voss [51] upon the proposal from Mandelbrot [41], the spatial 
arrangement of the set is characterized by the probability matrix , the 
probability of having m points inside a cube of size  (called box), centered 
in an arbitrary point of the set S. In other words,  is the probability 
that the signal «visited» the box of size . The matrix is normalized so that 

, where N is the maximum number of 
pixels that are included in a box of size . Given the total number of points in 
the image is M, the number of boxes that contain m points is 
. Thus, the total number of boxes needed to cover the image is

  (1)
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Consequently  is proportional to , 
where D is the fractal dimension to be estimated.

If a gray-scale image is considered to be a discrete surface 
, where z is the luminance in every (x,y) point of the space, then a colour 
image is a hyper-surface in a 3-dimensional colour space. Thus, we deal with 
a 5-dimensional hyper-space where each pixel is a 5-dimensional vector. We 
use RGB for the representation of colours due to its cubical organization, 
even though it is not a Euclidian uniform space. The classical algorithm of 
Voss uses boxes of variable size  centered in the each pixel of the image 
and counts how many pixels fall inside that box. We generalize this by 
counting the pixels for which the Minkowski infinity norm distance to the 
center of the hyper-cube is smaller than . Practically, for a certain square 
of size  in the (x,y) plane, we count the number of pixels that fall inside 

a 3-dimensional RGB  cube of size 
, centered in the current pixel –-the colour of the current pixel. The 
theoretical development and validation on synthetic colour fractal images 
can be found in [58].

Even from the very beginning, when Mandelbrot introduced the fractal 
geometry, he was aware of the fact that the fractal dimension itself is not 
sufficient to fully capture the complexity of nondeterministic objects; 
therefore, he defined the lacunarity  as a complementary metric. Later 
on, Voss expressed it based on the probabilities  and using the first 
and second order moments of the measure distribution (2). Following 
the previous considerations, the lacunarity can be therefore defined and 
computed for colour images as well. See also [61] for a complete view of 
the definition and the interpretation of lacunarity for synthetic and natural 
colour fractal images

  (2)
where

  (3)
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The lacunarity characterizes the topological organisation of a fractal 
object, an image in our particular case, being a scale-dependent measure of 
spatial heterogeneity. Images with small lacunarity are more homogeneous 
with respect to the size distribution and spatial arrangement of gaps. On 
the other hand, images with larger lacunarity are more heterogeneous. In 
addition, lacunarity must be taken into consideration after inspecting the 
fractal dimension: in a similar manner with the Hue-saturation couple in 
colour image analysis, the lacunarity becomes of greater importance when 
complexity, that is, the fractal dimension, increases.

APPROACH ARGUMENTATION AND VALIDATION
In Figure 1, we present two video frames: one from the original video 
sequence and the corresponding degraded video frames from the sequence 
at the receiver, along with the pseudoimage representing the absolute 
difference between the former two. The computed colour fractal dimensions 
are 3.14, 3.31, and 3.072, respectively. One can see that the larger fractal 
dimension reflects the increased complexity of the degraded video frame. 
The increased complexity comes from the blockiness effect, as well as from 
the dirtiness and the augmented colour content (see also the 3D histograms 
in Figure 3).

The corresponding lacunarity curves are depicted in Figure 2. One can 
see that the curve for Figure 1(b) is placed highly above the curve for the 
Figure 1(a) indicating a more lacunar and heterogeneous image. Surprisingly 
enough, the difference Figure 1(c) has a very similar lacunarity to the one 
of the original image, but the difference pseudoimage is more lacunar than 
the original for small values of : –-indicating that the degradation 
mainly takes place in blocks of  pixels–-while for larger values of 

 it is less lacunar–-more uniform, clearly seen, and justified by the smaller 
variations of colours. The complexity revealed by the lacunarity curves is in 
accordance with the fractal dimension: the original unaffected video frame 
being a less lacunar image than the degraded one.



Fractal Analysis110
EURASIP Journal on Image and Video Processing 5

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

δ

Λ
(δ

)

Original
Degraded
Difference

Figure 2: Lacunarity curves for the images in Figure 1 (also for
images 10.1, 10.2, and 10.3 in Figure 10, resp.).

between the neighbour pixels. The lack of correlation is the
natural consequence of the sum of impairments that affect
the degraded frame. As shown in [59], that the co-ocurrence
matrix shape is linked to the fractal dimension of the signal
or image. These two points of view—the 3D histograms and
the co-occurrence matrices—are a first validity proof and
justification for a fractal approach.

For an even further investigation and argumentation, we
analyze the video frames from the point of view of their
spectral fluctuations. Random function or signal complexity
can be defined based on its power-density spectrum: for a
random fractal signal v(t), the power-density function varies
upon a power law in 1/ f β. So, the Fourier transform V( f ,T)
computed on T time samples of v(t) allows to express the
spectral density function SV ( f ) as

SV
(
f
)∝ T

∣∣V( f ,T
)∣∣2 as T −→ ∞. (4)

The link between the power law of β and the fractal
dimension D is defined by the relation (5) from [51], where
E is the dimension of the Euclidian space representing the
topological dimension of the signal (e.g., E = 1 for a one-
dimensional signal and E = 2 for an image) and H is the
Hurst factor, which indicates the complexity of the fractal
object. H is comprised between 0 and 1 and intimately
connected to the fractal dimension. A value of H close to
0 indicates a very complex object, while a value close to 1
indicates a “simpler” object, that is, a smoother signal

D = E + 1−H = E +
3− β

2
. (5)

Given that it is almost impossible to estimate the impact
of the artifacts in the spatial domain, without any reference
(original video signal), in the frequence domain is clearly
enough that the artifacts induce very high frequencies and

a specific modification of the spectrum which could be close
to a complexity induced by a fractal model.

In Figure 5, we show the 2D FFT of the two video
frames, for each colour plane, and in Figures 6, 7, and 8 the
horizontal and vertical slices of the spectra, corresponding
to the spatial frequencies v = 0 and u = 0, respectively.
One can clearly note that the marginal analysis (plane by
plane) is not able to reflect the entire colour degradation
that affects the video signal, but the degradation induces a
complexity fluctuation that is, well captured by the fractal
dimension. So, it is yet another proof that justifies the use of
a colour estimation of degradation by means of colour fractal
geometry.

The order of complexity of our approach, for an image of
size N2 is O(N2M), where M represents the results of the sum
32 +52 +72 +· · ·+m2

max, mmax being the maximum hypercube
size—41 in our case. Given that the sum of the squares of the
first n odd natural numbers is

12 + 32 + 52 + · · · + (2n− 1)2 = n(2n− 1)(2n + 1)
3

, (6)

then

M = n(2n− 1)(2n + 1)
3

− 1, (7)

where n = mmax/2.
In addition, due to the complexity of the colour Fourier

transform based on Quaternionic approaches, our approach
is the more suitable at this moment for a real-time imple-
mentation. For an image of size N2, the complexity of a
parallel implementation of our approach would be O(N2),
while for a 2D Fast Fourier Transform the best case is of
O(N2 logN) complexity.

In Figure 9(a), we depict the block diagram that illus-
trates the use of the colour fractal dimension and lacunarity
as video-quality metrics in a reduced reference scenario. At
the source, the two fractal measures are computed for each
video frame and sent along with the coded video frames over
the network. At destination, the same fractal measures are
computed for the received video frames and compared with
the references.

5. Experimental Results

From the plethora of IP-based video application, we chose
an MPEG-4 streaming application. Streaming applications
usually use RTP (Real-Time Protocol) over UDP; therefore,
the traffic generated by such an application is inelastic and
doesnot adapt to the network conditions. In addition, neither
UDP itself or the video streaming application implement a
retransmission mechanism. Therefore, the video streaming
applications are very sensitive to packet loss: any lost packet
in the network will cause missing bits of information in the
MPEG video stream.

Given that packet loss is the major issue for an MPEG-4
video streaming application, in our experiments the induced
packet loss percentage varied from 0% to 1.3%. Above this
threshold, the application cannot longer function (i.e., the

Figure 2: Lacunarity curves for the images in Figure 1 (also for images 10.1, 
10.2, and 10.3 in Figure 10 , resp.).
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Figure 3: The 3D histograms for the two-video frames.
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Figure 4: The overlayed co-occurrence matrices.

connection established between the client and the server
breaks), and tests cannot be performed. The test setup is
depicted in Figure 9(b): the MPEG-4 streaming server we
used was the Helix streaming server from Real Networks
(http://www.realnetworks.com/) and the MPEG-4 client was
mpeg4ip (http://mpeg4ip.sourceforge.net/). We modified
the source code of the client to record the received video
sequence as individual frames in bitmap format. We ran
the tests using three widely used video sequences: “football”,
“female”, and “train”, MPEG-4 coded. The video sequences
were 10 seconds long, with 250 frames, each of 320×240 size.
The average transmission rate was approximately 1 Mb/s,
which was a constrained from using a trial version of the
MPEG-4 video streaming server—however it represents a
realistic scenario.

The monitoring system we designed and implemented
uses two Fast Ethernet network taps to “sniff” the application
traffic on the links between two Linux PCs that run the
video streaming server and client. The traffic is further
recorded as packet descriptors by the four programmable
Alteon UTP (Unshielded Twisted Pair) and NICs (Network
Interface Card), two for each tap, in order to mirror the
full-duplex traffic. From each packet, all the information
required for the computation of the network quality of
service (QoS) parameters is extracted and stored in the local
memory as packet descriptors. The host PCs, that control the

programmable NICs, periodically collect this information
and store it in descriptor files. These traffic traces are ana-
lyzed in order to accurately quantify the quality degradation
induced by the network emulator: one-way delay, jitter, and
packet loss, as instantaneous or average values, as well as
histograms. In parallel, the video signal is recorded for the
offline processing. Since the two measurements described
above are correlated from the point of view of time, the
effects of the measured network degradation on the quality
of the video signal can be estimated by the module denoted
user-perceived quality (UPQ) meter. More results and details
about the experimental setup are to be found in [62–64].

In Figure 10, one may see three type of degradation
that occurs in our tests: important or severe degradation
(top); less-affected frames (middle) and special or green
degraded frames (bottom). The difference ΔCFD between
the colour fractal dimension of the degraded and the original
corresponding video frame will be considerable for the first
two images that exhibit an important degradation—that is,
almost the entire image is affected by severe blockiness, and
the scene cannot be understood. ΔCFD will be small, but
still positive for less affected images (the football players
may no longer be identifiable, but the rest of the scene
is unchanged). For the “green” images the colour fractal
dimension is smaller than the one of the corresponding
original frames, therefore, the ΔCFD will be negative.

Figure 3: The 3D histograms for the two-video frames. 

Because the lacunarity is a measure of how the space is occupied, we 
present in Figure 3 the 3D histograms in the RGB colour space, as a visual 
justification. One can see that the histogram of the degraded video frame is 
more spread than the one of the original video frame, indicating a more rich 
image from the point of view of its colour content.

For the quantification of the spread of the 3D histograms, we computed 
the co-occurrence matrices for the three images in Figure 1. This choice is 
justified by the fact that in the case of a random fractal the fractal dimension 
is proportional to the variance of the increments [51]. Therefore, we 
computed the co-occurrence matrices for a neighborhood distance of one 
pixel, on the horizontal direction. In this way, the computed co-occurrence 
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is a measure of the correlation between pixels. In Figure 4, for the two video 
frames we show the three overlayed co-occurrence matrices, one for each 
RGB component. The results indicate that the variance of the values is larger 
for the degraded video frames, indicating a smaller correlation between the 
neighbour pixels. The lack of correlation is the natural consequence of the 
sum of impairments that affect the degraded frame. As shown in [59], that the 
co-ocurrence matrix shape is linked to the fractal dimension of the signal or 
image. These two points of view—the 3D histograms and the co-occurrence 
matrices—are a first validity proof and justification for a fractal approach.
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connection established between the client and the server
breaks), and tests cannot be performed. The test setup is
depicted in Figure 9(b): the MPEG-4 streaming server we
used was the Helix streaming server from Real Networks
(http://www.realnetworks.com/) and the MPEG-4 client was
mpeg4ip (http://mpeg4ip.sourceforge.net/). We modified
the source code of the client to record the received video
sequence as individual frames in bitmap format. We ran
the tests using three widely used video sequences: “football”,
“female”, and “train”, MPEG-4 coded. The video sequences
were 10 seconds long, with 250 frames, each of 320×240 size.
The average transmission rate was approximately 1 Mb/s,
which was a constrained from using a trial version of the
MPEG-4 video streaming server—however it represents a
realistic scenario.

The monitoring system we designed and implemented
uses two Fast Ethernet network taps to “sniff” the application
traffic on the links between two Linux PCs that run the
video streaming server and client. The traffic is further
recorded as packet descriptors by the four programmable
Alteon UTP (Unshielded Twisted Pair) and NICs (Network
Interface Card), two for each tap, in order to mirror the
full-duplex traffic. From each packet, all the information
required for the computation of the network quality of
service (QoS) parameters is extracted and stored in the local
memory as packet descriptors. The host PCs, that control the

programmable NICs, periodically collect this information
and store it in descriptor files. These traffic traces are ana-
lyzed in order to accurately quantify the quality degradation
induced by the network emulator: one-way delay, jitter, and
packet loss, as instantaneous or average values, as well as
histograms. In parallel, the video signal is recorded for the
offline processing. Since the two measurements described
above are correlated from the point of view of time, the
effects of the measured network degradation on the quality
of the video signal can be estimated by the module denoted
user-perceived quality (UPQ) meter. More results and details
about the experimental setup are to be found in [62–64].

In Figure 10, one may see three type of degradation
that occurs in our tests: important or severe degradation
(top); less-affected frames (middle) and special or green
degraded frames (bottom). The difference ΔCFD between
the colour fractal dimension of the degraded and the original
corresponding video frame will be considerable for the first
two images that exhibit an important degradation—that is,
almost the entire image is affected by severe blockiness, and
the scene cannot be understood. ΔCFD will be small, but
still positive for less affected images (the football players
may no longer be identifiable, but the rest of the scene
is unchanged). For the “green” images the colour fractal
dimension is smaller than the one of the corresponding
original frames, therefore, the ΔCFD will be negative.

Figure 4: The overlayed co-occurrence matrices. 

For an even further investigation and argumentation, we analyze the 
video frames from the point of view of their spectral fluctuations. Random 
function or signal complexity can be defined based on its power-density 
spectrum: for a random fractal signal v(t), the power-density function varies 
upon a power law in . So, the Fourier transform  computed 
on T time samples of v(t) allows to express the spectral density function 

 as

  (4)

The link between the power law of  and the fractal dimension D is 
defined by the relation (5) from [51], where E is the dimension of the 
Euclidian space representing the topological dimension of the signal 
(e.g., E=1 for a one-dimensional signal and E=2 for an image) and H is 
the Hurst factor, which indicates the complexity of the fractal object. H is 
comprised between 0 and 1 and intimately connected to the fractal dimension. 
A value of H close to 0 indicates a very complex object, while a value close 
to 1 indicates a «simpler» object, that is, a smoother signal
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  (5)
Given that it is almost impossible to estimate the impact of the artifacts 

in the spatial domain, without any reference (original video signal), in 
the frequence domain is clearly enough that the artifacts induce very high 
frequencies and a specific modification of the spectrum which could be close 
to a complexity induced by a fractal model.

In Figure 5, we show the 2D FFT of the two video frames, for each colour 
plane, and in Figures 6, 7, and 8 the horizontal and vertical slices of the 
spectra, corresponding to the spatial frequencies v=0 and u=0, respectively. 
One can clearly note that the marginal analysis (plane by plane) is not able 
to reflect the entire colour degradation that affects the video signal, but the 
degradation induces a complexity fluctuation that is, well captured by the 
fractal dimension. So, it is yet another proof that justifies the use of a colour 
estimation of degradation by means of colour fractal geometry.EURASIP Journal on Image and Video Processing 7
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Figure 7: T(u) (top) and T(v) (bottom) for the green plane, for the original (left) and degraded (right) video frames.

The corresponding lacunarity curves are depicted in
Figure 11—the blue curve for the original video frame, the
red curve for the degraded video frame, and the black one for
the absolute difference pseudoimage. The largest lacunarity
is for the most affected video frames, as expected. From a
human perception point of view, the colour lacunarity curves
are able to reveal the correct ranking, as well as the colour
fractal dimension.

In order to analyse the degradation in time, in Figure 12
the evolution of the colour fractal dimension in time is
depicted. One can see that the original “football” sequence
is characterized by a large variation in the complexity of the
image, due to the fact that the scene changes and also due to
the high dynamicity. Therefore, the variation of the colour
fractal dimension due to degradation is almost insignificant.
In addition, due to the lost video frames, the two curves will
get more and more desynchronized in time, which makes
the analysis more difficult. However, it is possible to create a
reference-based metric by using the colour fractal dimension

(note the grey zones that indicate a slight increase of the
fractal dimension due to quality degradation).

One can note that for the original “football” video
sequence the colour lacunarity has also an important
variation (see Figure 13) from frame to frame, but its values
are comprised between 0 and 1.5. For the degraded video
sequence (b), we can see that the lacunarity skyrockets up
to 3.0 for the interval of video frames affected by important
degradation (the first interval market with grey). The less
important degradation (the next greyed intervals) can only
be detected if we take as reference the lacunarity of the orig-
inal video sequence. In order to implement a no-reference
metric, lacunarity ≥ 1.5 can indicate the severe degradation.

We analyzed two more video sequences: “female” and
“train” (Figure 14). The corresponding colour fractal dimen-
sion as a function of time are depicted in Figure 15. The
lacunarity curves are presented in Figure 16.

For the “female” and the “train” video sequences, one
may note another interesting characteristic of the lacunarity
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The corresponding lacunarity curves are depicted in
Figure 11—the blue curve for the original video frame, the
red curve for the degraded video frame, and the black one for
the absolute difference pseudoimage. The largest lacunarity
is for the most affected video frames, as expected. From a
human perception point of view, the colour lacunarity curves
are able to reveal the correct ranking, as well as the colour
fractal dimension.

In order to analyse the degradation in time, in Figure 12
the evolution of the colour fractal dimension in time is
depicted. One can see that the original “football” sequence
is characterized by a large variation in the complexity of the
image, due to the fact that the scene changes and also due to
the high dynamicity. Therefore, the variation of the colour
fractal dimension due to degradation is almost insignificant.
In addition, due to the lost video frames, the two curves will
get more and more desynchronized in time, which makes
the analysis more difficult. However, it is possible to create a
reference-based metric by using the colour fractal dimension

(note the grey zones that indicate a slight increase of the
fractal dimension due to quality degradation).

One can note that for the original “football” video
sequence the colour lacunarity has also an important
variation (see Figure 13) from frame to frame, but its values
are comprised between 0 and 1.5. For the degraded video
sequence (b), we can see that the lacunarity skyrockets up
to 3.0 for the interval of video frames affected by important
degradation (the first interval market with grey). The less
important degradation (the next greyed intervals) can only
be detected if we take as reference the lacunarity of the orig-
inal video sequence. In order to implement a no-reference
metric, lacunarity ≥ 1.5 can indicate the severe degradation.

We analyzed two more video sequences: “female” and
“train” (Figure 14). The corresponding colour fractal dimen-
sion as a function of time are depicted in Figure 15. The
lacunarity curves are presented in Figure 16.

For the “female” and the “train” video sequences, one
may note another interesting characteristic of the lacunarity

Figure 7: T(u ) (top) and T(v ) (bottom) for the green plane, for the original 
(left) and degraded (right) video frames. 
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Figure 8: T(u) (top) and T(v) (bottom) for the blue plane, for the original (left) and degraded (right) video frames.

curves, which exhibit a certain periodicity in time (see
Figure 17). The explanation is the fact that from time to time
the video signal is affected by a not-so-severe blockiness due
to the encoding mechanisms only. This is not visible on the
“train” video sequence, due to the high-complexity content
of the image scene, but it can be easily seen on the “female”
video sequence—an example is depicted in Figure 14(b).

6. Comparison

In this section, we present a comparison with some
of the metrics mentioned in the introduction: SNR,
PSNR, MSE, SSIM, and VSNR. For the computation
of the SSIM we used the Matlab code (http://www.ece
.uwaterloo.ca/∼z70wang/research/ssim/) provided by the
author of the metric proposed in [23] and for VSNR the
Matlab implementation available (http://foulard.ece.cornell
.edu/dmc27/vsnr/vsnr.html) provided by the authors of [27].
For colour images, the MSE (8), SNR (9), and PSNR (10)

metrics are often computed independently for the red, green,
and blue (RGB) colour channels and averaged together in
order to compute the final distortion. We chose to compute
these classical signal fidelity measures in the RGB colour
space, despite of the very well-known fact that the RGB
space is not perceptually uniform—to be consistent with
the definition of the colour fractal approach, which was
developed based on the RGB colour space. We are aware
of the fact that metrics like SNR and MSE could perform
better in a perceptual colour space (e.g., CIELAB) and in
addition we envisage a further development of the colour
fractal approach in Lab and HSV
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Figure 8: T(u) (top) and T(v) (bottom) for the blue plane, for the original (left) and degraded (right) video frames.

curves, which exhibit a certain periodicity in time (see
Figure 17). The explanation is the fact that from time to time
the video signal is affected by a not-so-severe blockiness due
to the encoding mechanisms only. This is not visible on the
“train” video sequence, due to the high-complexity content
of the image scene, but it can be easily seen on the “female”
video sequence—an example is depicted in Figure 14(b).

6. Comparison

In this section, we present a comparison with some
of the metrics mentioned in the introduction: SNR,
PSNR, MSE, SSIM, and VSNR. For the computation
of the SSIM we used the Matlab code (http://www.ece
.uwaterloo.ca/∼z70wang/research/ssim/) provided by the
author of the metric proposed in [23] and for VSNR the
Matlab implementation available (http://foulard.ece.cornell
.edu/dmc27/vsnr/vsnr.html) provided by the authors of [27].
For colour images, the MSE (8), SNR (9), and PSNR (10)

metrics are often computed independently for the red, green,
and blue (RGB) colour channels and averaged together in
order to compute the final distortion. We chose to compute
these classical signal fidelity measures in the RGB colour
space, despite of the very well-known fact that the RGB
space is not perceptually uniform—to be consistent with
the definition of the colour fractal approach, which was
developed based on the RGB colour space. We are aware
of the fact that metrics like SNR and MSE could perform
better in a perceptual colour space (e.g., CIELAB) and in
addition we envisage a further development of the colour
fractal approach in Lab and HSV
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Figure 8: T(u ) (top) and T(v ) (bottom) for the blue plane, for the original (left) 
and degraded (right) video frames. 

The order of complexity of our approach, for an image of 
size , where M represents the results of the sum 

 being the maximum hypercube size–-
41 in our case. Given that the sum of the squares of the first  odd natural 
numbers is

  (6)
then

     (7)

where .
In addition, due to the complexity of the colour Fourier transform based 

on Quaternionic approaches, our approach is the more suitable at this moment 
for a real-time implementation. For an image of size N2, the complexity of 
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a parallel implementation of our approach would be , while for a 2D 
Fast Fourier Transform the best case is of  complexity.

In Figure 9(a), we depict the block diagram that illustrates the use of the 
colour fractal dimension and lacunarity as video-quality metrics in a reduced 
reference scenario. At the source, the two fractal measures are computed 
for each video frame and sent along with the coded video frames over the 
network. At destination, the same fractal measures are computed for the 
received video frames and compared with the references.10 EURASIP Journal on Image and Video Processing

Network

+
−

ΔCFD
ΔΛ

Original
video frames

Add

CFDr , Λr

Colour
fractal

analysis

Received
video frames

Colour
fractal

analysis

Quality
degradation

Reduced reference
CFDo, Λo

(a) Block diagram

QoS meter

UPQ meter

Network
emulator

Tap #1 Tap #2

Descriptor
file #1

Descriptor
file #2

Host PC #1 Host PC #2

Video

server
streaming

MPEG4 video stream
MPEG4

client

QoS/UPQ monitoring system

(b) Test setup

Figure 9: The block diagram and the test setup.

where o(i, j) is the original image, d(i, j) is the degraded
image, both of them of size M ×N

PSNR = 10 log10

[
I2

max

MSE

]
, (10)

where Imax is the maximum intensity level, that is, 255 for an
image.

In Table 1, we show the results we obtain for the images
in Figure 10, when we compute the difference between the
colour fractal dimension of the degraded video frame and the
colour fractal dimension of the original video frame, along
with the various metrics mentioned above. The values of
ΔCFD are very well correlated to SNR, PSNR, and MSE, and
well correlated to VSNR, but they are not at all correlated

to SSIM. However, for the minimum visible degradation—
images 10.13 and 10.14 for which ΔCFD = 0.178 is
small—the SSIM indicates the largest similarity, as well as
PSNR, and VSNR has also a large value. For the largest
visible degradation—images 10.21, 10.22, 10.25, and 10.26—
the VSNR well captures it, while SSIM does not reach its
minimum values.

We plan to perform a further comparison between the
metrics on larger databases of test images. In addition,
we have to mention the fact that the SSIM and VSNR
were mainly used to assess the quality degradation induced
by the image compression algorithms, case in which the
image degradation is not as violent as in our experiments.
Therefore the right way to compare our method against all
the existing approaches is not straightforward and, definitely,
not amongst the goals of the current paper.

10 EURASIP Journal on Image and Video Processing
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EXPERIMENTAL RESULTS
From the plethora of IP-based video application, we chose an MPEG-4 
streaming application. Streaming applications usually use RTP (Real-Time 
Protocol) over UDP; therefore, the traffic generated by such an application 
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is inelastic and doesnot adapt to the network conditions. In addition, neither 
UDP itself or the video streaming application implement a retransmission 
mechanism. Therefore, the video streaming applications are very sensitive 
to packet loss: any lost packet in the network will cause missing bits of 
information in the MPEG video stream.

Given that packet loss is the major issue for an MPEG-4 video streaming 
application, in our experiments the induced packet loss percentage varied 
from 0% to 1.3%. Above this threshold, the application cannot longer function 
(i.e., the connection established between the client and the server breaks), 
and tests cannot be performed. The test setup is depicted in Figure 9(b): the 
MPEG-4 streaming server we used was the Helix streaming server from 
Real Networks (http://www.realnetworks.com/) and the MPEG-4 client 
was mpeg4ip (http://mpeg4ip.sourceforge.net/). We modified the source 
code of the client to record the received video sequence as individual frames 
in bitmap format. We ran the tests using three widely used video sequences: 
“football”, “female”, and “train”, MPEG-4 coded. The video sequences 
were 10 seconds long, with 250 frames, each of  size. The average 
transmission rate was approximately 1 Mb/s, which was a constrained from 
using a trial version of the MPEG-4 video streaming server–-however it 
represents a realistic scenario.

The monitoring system we designed and implemented uses two Fast 
Ethernet network taps to “sniff” the application traffic on the links between 
two Linux PCs that run the video streaming server and client. The traffic 
is further recorded as packet descriptors by the four programmable Alteon 
UTP (Unshielded Twisted Pair) and NICs (Network Interface Card), two for 
each tap, in order to mirror the full-duplex traffic. From each packet, all the 
information required for the computation of the network quality of service 
(QoS) parameters is extracted and stored in the local memory as packet 
descriptors. The host PCs, that control the programmable NICs, periodically 
collect this information and store it in descriptor files. These traffic traces 
are analyzed in order to accurately quantify the quality degradation 
induced by the network emulator: one-way delay, jitter, and packet loss, as 
instantaneous or average values, as well as histograms. In parallel, the video 
signal is recorded for the offline processing. Since the two measurements 
described above are correlated from the point of view of time, the effects of 
the measured network degradation on the quality of the video signal can be 
estimated by the module denoted user-perceived quality (UPQ) meter. More 
results and details about the experimental setup are to be found in [62–64].
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In Figure 10, one may see three type of degradation that occurs in 
our tests: important or severe degradation (top); less-affected frames 
(middle) and special or green degraded frames (bottom). The difference 

 between the colour fractal dimension of the degraded and the original 
corresponding video frame will be considerable for the first two images that 
exhibit an important degradation–-that is, almost the entire image is affected 
by severe blockiness, and the scene cannot be understood.  will be 
small, but still positive for less affected images (the football players may 
no longer be identifiable, but the rest of the scene is unchanged). For the 
«green» images the colour fractal dimension is smaller than the one of the 
corresponding original frames, therefore, the  will be negative.EURASIP Journal on Image and Video Processing 11

(10.1) CFD = 3.14 (10.2) CFD = 3.31 (10.3) CFD = 3.072 (10.4) SSIM map

(10.5) CFD = 3.038 (10.6) CFD = 3.357 (10.7) CFD = 3.125 (10.8) SSIM map

(10.9) CFD = 2.995 (10.10) CFD = 3.373 (10.11) CFD = 3.019 (10.12) SSIM map

(10.13) CFD = 2.804 (10.14) CFD = 2.983 (10.15) CFD = 2.689 (10.16) SSIM map

(10.17) CFD = 2.975 (10.18) CFD = 3.179 (10.19) CFD = 2.933 (10.20) SSIM map

(10.21) CFD = 3.216 (10.22) CFD = 2.284 (10.23) CFD = 2.973 (10.24) SSIM map

(10.25) CFD = 3.158 (10.26) CFD = 2.464 (10.27) CFD = 2.734 (10.28) SSIM map

Figure 10: Original video frames (1st column) from the “football” sequence, degraded frames exhibiting different levels of degradation (2nd
column), absolute differences (3rd column), and the SSIM map [23] (4th column).

In addition, in Table 2 we show a comparison of our
approach against the SNR, PSNR, MSE, SSIM, and VSNR
from the point of view of the required algorithmical
complexity. We are assuming an image of size N2.

The constant c for the complexity of SSIM approach is
given by the size of the window for computing the local mean

and variance—8 × 8—and the 11 × 11 circular-symmetric
Gaussian weighting function that is, used when computing
the map of local SSIM values. The maximum complexity
bounds in case of VSNR is clearly given by the complexity
of the discrete wavelet transform (DWT) that is, used. It is
known that an efficient implementation of DWT is in O(N2).

Figure 10: Original video frames (1st column) from the “football” sequence, 
degraded frames exhibiting different levels of degradation (2nd column), abso-
lute differences (3rd column), and the SSIM map [ 23 ] (4th column).
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The corresponding lacunarity curves are depicted in Figure 11–-the blue 
curve for the original video frame, the red curve for the degraded video 
frame, and the black one for the absolute difference pseudoimage. The 
largest lacunarity is for the most affected video frames, as expected. From 
a human perception point of view, the colourlacunarity curves are able to 
reveal the correct ranking, as well as the colour fractal dimension.

12 EURASIP Journal on Image and Video Processing
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Figure 11: Corresponding colour lacunarity curves for the images in Figure 10.

Figure 11: Corresponding colourlacunarity curves for the images in Figure 10.

In order to analyse the degradation in time, in Figure 12 the evolution of 
the colour fractal dimension in time is depicted. One can see that the original 
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“football” sequence is characterized by a large variation in the complexity 
of the image, due to the fact that the scene changes and also due to the high 
dynamicity. Therefore, the variation of the colour fractal dimension due to 
degradation is almost insignificant. In addition, due to the lost video frames, 
the two curves will get more and more desynchronized in time, which makes 
the analysis more difficult. However, it is possible to create a reference-
based metric by using the colour fractal dimension (note the grey zones that 
indicate a slight increase of the fractal dimension due to quality degradation).

EURASIP Journal on Image and Video Processing 13

Table 1: Comparison between the ΔCFD and SNR, PSNR, MSE, SSIM, and VSNR.

Images ΔCFD SNR [dB] PSNR [dB] MSE SSIM VSNR

10.1, 10.2 0.17 −11.9025 12.3316 0.0585 0.3907 2.1754

10.5, 10.6 0.319 −11.1911 13.0221 0.0499 0.226 1.4855

10.9, 10.10 0.378 −5.3733 18.8619 0.0130 0.5199 −1.5415

10.13, 10.14 0.178 −4.4426 19.7353 0.0106 0.6199 5.7999

10.17, 10.18 0.205 −9.8929 14.3382 0.0368 0.2868 3.8740

10.21, 10.22 −0.932 −20.0039 4.2135 0.3790 0.4158 6.4629

10.25, 10.26 −0.694 −18.9250 5.2437 0.2990 0.3717 6.2717

Table 2: Complexity of approaches.

Approach CFD SNR PSNR MSE SSIM VSNR

Complexity O(N2M) O(N2) O(N2) O(N2) O(cN2) O(N2)

0 50 100 150 200 250
2

2.5

3

3.5

Figure 12: The colour fractal dimension as a function of time, blue-
original, red-received, for the “football” video sequence.

The following relationship is evident: c < M; however, the
complexity of a parallel implementation of our approach
would be in O(N2).

7. Subjective Tests

The original hypothesis was that the quality perceived is
directly proportional to the fractal complexity of an image. In
order to validate from a subjective point of view the approach
we proposed for the assessment of the video quality, we
performed several subjective tests, on different video frames
from video sequences—sport videos of football matches, in
particular. The aim of the experiments was to prove that the
complexity of colour fractal images is in accordance with
the human perception; therefore, the colour fractal analysis-
based tools are appropriate for the development of video
quality metrics.

We ran our experiments on a set of 27 individuals,
guided by the general recommendations from [7]. In the
experiment, we used video frames—original and degraded—
from the standard test “football” video sequence. Pairs of
images were presented, thus the experiments were reference-
based. After presenting the minimum and the maximum
degradation that may affect the video frames, the individuals
were asked to grade the perceived degradation with a score
comprised between 0 and 5, according to the levels of
degradation presented in Table 3, in accordance with the
quality levels specified by the ITU.

Table 3: Levels of perceived image degradation.

0 No degradation at all

1 imperceptible

2 perceptible, but not annoying

3 slightly annoying

4 annoying

5 very annoying

For the images in Figure 10, the mean opinion score
and the standard deviation, σMOS, computed based on the
27 responses are presented in Table 4, as well as the colour
fractal dimension (CFD) and its variation, ΔCFD.

If we exclude the images 10.22 and 10.26, for which
the estimated colour fractal dimension variation is negative
because of the important degradation and lack of infor-
mation, the correlation coefficient between the MOS and
ΔCFD is 0.8523. Despite of the fact that these results must
be extended to a bigger image set, the approach creates a new
perspective on the perception of colour image complexity. If
we take into account the two images, 10.22 and 10.26, the
correlation between mean score and estimated colour fractal
complexity is 0.4857. This result, induced by the negative
value for the colour fractal complexity variation, may lead
to new developments for colour fractal measures. Clearly
enough, the perceived complexity of those images is lower
than the one of the others.

We conclude that the fractal dimension reflects the
perceived visual complexity of the degraded images, as long
as the degradation is not extreme and ΔCFD is not negative.
We plan to run more subjective experiments in order to
augment the pertinence of the results from a statistical point
of view and to propose a better colour fractal estimator to
deal with this minor numerical inconsistency.

8. Conclusions

We conclude that the colour lacunarity itself can be used as
a no-reference metric to detect the important degradation of

Figure 12: The colour fractal dimension as a function of time, blue-original, 
red-received, for the “football” video sequence.

One can note that for the original “football” video sequence the 
colourlacunarity has also an important variation (see Figure 13) from frame 
to frame, but its values are comprised between 0 and 1.5. For the degraded 
video sequence (b), we can see that the lacunarity skyrockets up to 3.0 for 
the interval of video frames affected by important degradation (the first 
interval market with grey). The less important degradation (the next greyed 
intervals) can only be detected if we take as reference the lacunarity of 
the original video sequence. In order to implement a no-reference metric, 
lacunarity  1.5 can indicate the severe degradation.14 EURASIP Journal on Image and Video Processing
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Figure 13: The colour lacunarity curves versus time for the “football” sequence.

(a) Frame 23 (b) Frame 24 (c) Frame 42 (d) Frame 185

(e) Frame 0 (f) Frame 77 (g) Frame 105 (h) Frame 192

Figure 14: Frames from “female” (top row) and “train” (bottom row) video sequence.
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Figure 15: The colour fractal dimension as a function of time (blue-original, red-received/degraded) for the “female” and “train” video seq.

Table 4: The MOS and standard deviation.

Image (10.2) (10.6) (10.10) (10.14) (10.18) (10.22) (10.26)

MOS 4.6296 4.2963 4.1852 2.2222 2.1111 5.0000 3.4444

σMOS 0.4921 0.6688 0.6815 0.6980 0.8006 0 0.8006

ΔCFD 0.17 0.319 0.378 0.178 0.205 −0.932 −0.694

CFD 3.31 3.357 3.373 2.983 3.179 2.284 2.464

Figure 13: The colourlacunarity curves versus time for the “football” se-
quence. Original video seqDegraded video seq.
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We analyzed two more video sequences: “female” and “train” 
(Figure 14). The corresponding colour fractal dimension as a function 
of time are depicted in Figure 15. The lacunarity curves are presented in 
Figure 16.

14 EURASIP Journal on Image and Video Processing
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(a) Frame 23 (b) Frame 24 (c) Frame 42 (d) Frame 185

(e) Frame 0 (f) Frame 77 (g) Frame 105 (h) Frame 192

Figure 14: Frames from “female” (top row) and “train” (bottom row) video sequence.
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Figure 15: The colour fractal dimension as a function of time (blue-original, red-received/degraded) for the “female” and “train” video seq.

Table 4: The MOS and standard deviation.

Image (10.2) (10.6) (10.10) (10.14) (10.18) (10.22) (10.26)

MOS 4.6296 4.2963 4.1852 2.2222 2.1111 5.0000 3.4444

σMOS 0.4921 0.6688 0.6815 0.6980 0.8006 0 0.8006

ΔCFD 0.17 0.319 0.378 0.178 0.205 −0.932 −0.694

CFD 3.31 3.357 3.373 2.983 3.179 2.284 2.464

Figure 14: Frames from “female” (top row) and “train” (bottom row) video 
sequence. 
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Figure 15: The colour fractal dimension as a function of time (blue-original, 
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(d) Degraded “train” video

Figure 16: The colour lacunarity curves versus time for “female” and “train”.
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Figure 17: Periodicity of the lacunarity in time for the “female” (a) and “train” (b) video sequences.

the video signal at the receiver. The colour fractal dimension
and lacunarity can be definitely used as a reference-based
metrics, but this is usually impossible in a real environment
setup when the original signal is not available at the receiver.
The colour fractal dimension is not enough to be used as a
stand-alone metric but in a reduced-reference scenario, the
fractal features we propose—the colour fractal dimension
and the colour lacunarity—can be used to objectively assess

any degradation of the received video signal and, given that
they are correlated to the human perception, they can be used
for the development of quality of experience metrics. An
important aspect, which represents an invaluable advantage,
is the robustness of the fractal measures to any modification
of the video signal during the broadcast, like translation,
rotation, mirroring or even cropping (e.g., when the image
format is changed from 6 : 9 to 3 : 4).
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Figure 16: The colour lacunarity curves versus time for “female” and “train”.
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setup when the original signal is not available at the receiver.
The colour fractal dimension is not enough to be used as a
stand-alone metric but in a reduced-reference scenario, the
fractal features we propose—the colour fractal dimension
and the colour lacunarity—can be used to objectively assess

any degradation of the received video signal and, given that
they are correlated to the human perception, they can be used
for the development of quality of experience metrics. An
important aspect, which represents an invaluable advantage,
is the robustness of the fractal measures to any modification
of the video signal during the broadcast, like translation,
rotation, mirroring or even cropping (e.g., when the image
format is changed from 6 : 9 to 3 : 4).

Figure 16: The colourlacunarity curves versus time for “female” and “train”. 

For the “female” and the “train” video sequences, one may note another 
interesting characteristic of the lacunarity curves, which exhibit a certain 
periodicity in time (see Figure 17). The explanation is the fact that from 
time to time the video signal is affected by a not-so-severe blockiness due 
to the encoding mechanisms only. This is not visible on the “train” video 
sequence, due to the high-complexity content of the image scene, but it can 
be easily seen on the “female” video sequence–-an example is depicted in 
Figure 14(b).

Figure 17: Periodicity of the lacunarity in time for the “female” (a) and “train” 
(b) video sequences.

COMPARISON
In this section, we present a comparison with some of the metrics 
mentioned in the introduction: SNR, PSNR, MSE, SSIM, and VSNR. For 
the computation of the SSIM we used the Matlab code (http://www.ece.
uwaterloo.ca/~z70wang/research/ssim/) provided by the author of the metric 
proposed in [23] and for VSNR the Matlab implementation available (http://
foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html) provided by the authors of 
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[27]. For colour images, the MSE (8), SNR (9), and PSNR (10) metrics are 
often computed independently for the red, green, and blue (RGB) colour 
channels and averaged together in order to compute the final distortion. 
We chose to compute these classical signal fidelity measures in the RGB 
colour space, despite of the very well-known fact that the RGB space is 
not perceptually uniform–-to be consistent with the definition of the colour 
fractal approach, which was developed based on the RGB colour space. We 
are aware of the fact that metrics like SNR and MSE could perform better 
in a perceptual colour space (e.g., CIELAB) and in addition we envisage a 
further development of the colour fractal approach in Lab and HSV

    (8)

   (9)

where  is the original image,  is the degraded image, both of 
them of size 

    (10)

where  is the maximum intensity level, that is, 255 for an image.
In Table 1, we show the results we obtain for the images in Figure 10, 
when we compute the difference between the colour fractal dimension of 
the degraded video frame and the colour fractal dimension of the original 
video frame, along with the various metrics mentioned above. The values 
of  are very well correlated to SNR, PSNR, and MSE, and well 
correlated to VSNR, but they are not at all correlated to SSIM. However, 
for the minimum visible degradation—images 10.13 and 10.14 for which 

 is small—the SSIM indicates the largest similarity, as 
well as PSNR, and VSNR has also a large value. For the largest visible 
degradation—images 10.21, 10.22, 10.25, and 10.26—the VSNR well 
captures it, while SSIM does not reach its minimum values.
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Table 1:Comparison between the  and SNR, PSNR, MSE, SSIM, and 
VSNR

We plan to perform a further comparison between the metrics on larger 
databases of test images. In addition, we have to mention the fact that the 
SSIM and VSNR were mainly used to assess the quality degradation induced 
by the image compression algorithms, case in which the image degradation 
is not as violent as in our experiments. Therefore the right way to compare 
our method against all the existing approaches is not straightforward and, 
definitely, not amongst the goals of the current paper.

In addition, in Table 2 we show a comparison of our approach against 
the SNR, PSNR, MSE, SSIM, and VSNR from the point of view of the 
required algorithmical complexity. We are assuming an image of size N2.

Table 2:Complexity of approaches

The constant c for the complexity of SSIM approach is given by 
the size of the window for computing the local mean and variance—

 circular-symmetric Gaussian weighting function 
that is, used when computing the map of local SSIM values. The maximum 
complexity bounds in case of VSNR is clearly given by the complexity 
of the discrete wavelet transform (DWT) that is, used. It is known that an 
efficient implementation of DWT is . The following relationship is 
evident: c<M; however, the complexity of a parallel implementation of our 
approach would be in .

SUBJECTIVE TESTS
The original hypothesis was that the quality perceived is directly proportional 
to the fractal complexity of an image. In order to validate from a subjective 
point of view the approach we proposed for the assessment of the video 
quality, we performed several subjective tests, on different video frames 
from video sequences—sport videos of football matches, in particular. The 
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aim of the experiments was to prove that the complexity of colour fractal 
images is in accordance with the human perception; therefore, the colour 
fractal analysis-based tools are appropriate for the development of video 
quality metrics.

We ran our experiments on a set of 27 individuals, guided by the general 
recommendations from [7]. In the experiment, we used video frames—
original and degraded—from the standard test “football” video sequence. 
Pairs of images were presented, thus the experiments were reference-based. 
After presenting the minimum and the maximum degradation that may 
affect the video frames, the individuals were asked to grade the perceived 
degradation with a score comprised between 0 and 5, according to the levels 
of degradation presented in Table 3, in accordance with the quality levels 
specified by the ITU.

Table 3:Levels of perceived image degradation

For the images in Figure 10, the mean opinion score and the standard 
deviation, , computed based on the 27 responses are presented in 
Table 4, as well as the colour fractal dimension (CFD) and its variation, 

.

Table 4:The MOS and standard deviation

If we exclude the images 10.22 and 10.26, for which the estimated colour 
fractal dimension variation is negative because of the important degradation 
and lack of information, the correlation coefficient between the MOS and 

 is 0.8523. Despite of the fact that these results must be extended to 
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a bigger image set, the approach creates a new perspective on the perception 
of colour image complexity. If we take into account the two images, 10.22 
and 10.26, the correlation between mean score and estimated colour fractal 
complexity is 0.4857. This result, induced by the negative value for the 
colour fractal complexity variation, may lead to new developments for 
colour fractal measures. Clearly enough, the perceived complexity of those 
images is lower than the one of the others.

We conclude that the fractal dimension reflects the perceived visual 
complexity of the degraded images, as long as the degradation is not extreme 
and  is not negative. We plan to run more subjective experiments in 
order to augment the pertinence of the results from a statistical point of 
view and to propose a better colour fractal estimator to deal with this minor 
numerical inconsistency.

CONCLUSIONS
We conclude that the colourlacunarity itself can be used as a no-reference 
metric to detect the important degradation of the video signal at the receiver. 
The colour fractal dimension and lacunarity can be definitely used as a 
reference-based metrics, but this is usually impossible in a real environment 
setup when the original signal is not available at the receiver. The colour 
fractal dimension is not enough to be used as a stand-alone metric but in 
a reduced-reference scenario, the fractal features we propose—the colour 
fractal dimension and the colourlacunarity–-can be used to objectively 
assess any degradation of the received video signal and, given that they are 
correlated to the human perception, they can be used for the development 
of quality of experience metrics. An important aspect, which represents 
an invaluable advantage, is the robustness of the fractal measures to any 
modification of the video signal during the broadcast, like translation, 
rotation, mirroring or even cropping (e.g., when the image format is changed 
from 6:9 to 3:4).

For the computation of the two metrics we propose a colour extension 
of the classical probabilistic algorithm designed by Voss. We show that our 
approach is able to capture the relative complexity of the video frames and the 
sum of aspects that characterize the degradation of an image, thus the colour 
fractal dimension and lacunarity can be used to characterize and objectively 
assess the degradation of the video signal. To support our approach and 
conclusions, we also investigated the 3D histograms, the co-occurrence 
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matrices and the power density functions of the original and degraded video 
frames. In addition, we present the results of our subjective tests. Given 
that the fractal features are well correlated to the perceived complexity by 
the human visual system, they are of great interest as objective metrics in a 
video quality analysis tool set.

Our choice of using the RGB colour space perfectly suits the probabilistic 
approach, and the extension from cubes to hypercubes was natural and 
intuitive. We are aware of the fact that the RGB colour space may not be 
the best choice when designing an image analysis algorithm from the point 
of view of the human visual system and given that a perceptual objective 
metric is desired, we plan to further develop our colour fractal metrics 
by using other colour spaces, for example, Lab or HSL, capable of better 
capturing and reflecting the human perception of colours, but with a higher 
computational cost.
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ABSTRACT
Many methods exist for quantifying the fractal characteristics of a structure 
via a fractal dimension. As a traditional example, a fractal dimension of a 
spatial fractal structure may be quantified via a box-counting fractal analysis 
that probes a manner in which the structure fills space. However, such 
spatial analyses generally are not well-suited for the analysis of so-called 
“time-series” fractals, which may exhibit exact or statistical self-affinity but 
which inherently lack well-defined spatial characteristics. In this chapter, 
we introduce and investigate a variety of fractal analysis techniques directed 
to time-series structures. We investigate the fidelity of such techniques by 
applying each technique to sets of computer-generated time-series data 
sets with well-defined fractal characteristics. Additionally, we investigate 
the inherent challenges in quantifying fractal characteristics (and indeed of 
verifying the presence of such fractal characteristics) in time-series traces 
modeled to resemble physical data sets.
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Keywords: fractal, spatial fractal, time-series fractal, fractal analysis, frac-
tal dimension, self-similarity, self-affinity, topological dimension, embed-
ding dimension, similarity dimension, box-counting dimension, covering 
dimension, variational box-counting, Hurst exponent, variance method, Du-
buc variation method, adaptive fractal analysis, power-law noise, Brownian 
motion, fractional Brownian motion

INTRODUCTION
In this chapter, we explore a species of fractals known as “time-series” 
fractals. Such structures generally may be conceived (and visualized) as 
functions of independent variables whose plots exhibit shapes and patterns 
that are evocative of the more familiar spatial fractals. However, lacking 
well-defined spatial characteristics, time-series fractals call for analytical 
tools that depart from those of the world of spatial fractals. To lay the 
foundation for a discussion of such analytical tools, we begin with an 
overview of fractal structures and traditional fractal analysis techniques. We 
then introduce time-series fractals and investigate the unique analytical tools 
necessitated by such structures. Finally, we investigate the relative fidelity 
of these analytical tools, as well as the shortcomings inherent in performing 
fractal analysis on time-series fractals of limited length and/or fine-scale 
detail.

MOTIVATING THE FRACTAL DIMENSION
Mathematician Benoit B. Mandelbrot often is credited with introducing 
the notion of a fractional, or fractal, dimension in his 1967 paper, “How 
long is the coast of Britain?” [1]. In fact, however, the curious nature of 
coastline measurements had been discussed by Lewis Fry Richardson 6 
years prior in the General Systems Yearbook [2]. Richardson, a pacifist 
and mathematician, sought to investigate the hypothesis that the likelihood 
that war would erupt between a pair of neighboring nations is related to the 
length of the nations’ shared border. As Richardson and Mandelbrot note, 
such a hypothesis is difficult to evaluate, since individual records of the 
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length of Britain’s west coast varied by up to a factor of three. Indeed, as 
the precision of such measurements increases—that is, by decreasing the 
length of the “ruler” used to trace the profile—the measured total length 
appears to increase as well. This quality reflects the fact that the outline of 
the British coastline is an example of a “self-similar” structure—that is, a 
structure that exhibits the same statistical qualities, or even the exact details, 
across a wide range of length scales. In light of this apparent fundamental 
indeterminacy, Mandelbrot posits that familiar geometrical metrics such as 
length are inadequate for describing the complexity found in nature.

Recognizing Richardson’s prior investigations, Mandelbrot notes that 
Richardson had indeed produced an empirical relation between a measured 
coast length L and the smallest unit of measurement G : L(G)=MG1−D , 
where M is a positive constant and D≥1 —but observes that “unfortunately 
it attracted no attention” [1]. In Ref. [1], building upon Richardson’s 
observations, Mandelbrot introduces the formalism of a fractional, or 
fractal1, dimension to quantify the nature of such shapes.

Following Mandelbrot’s example, to generalize the concept of a 
geometrical dimension, we may begin by examining the scaling behavior of 
such trivially self-similar objects as a line, a square, and a cube. For example, 
consider a line segment of length L , which can be separated into NN non-
overlapping subsets of length L/N , each of which is identical to the whole 
segment but for a scaling factor r(N)=1/N . Analogously, a square with 
side length L may be decomposed into N2 facsimiles of side length L/N , 
each of which is scaled down from the original by a factor r(N)=N−1/2 , 
and a cube of side length L can be decomposed into N3 facsimiles of side 
length L/N with corresponding scaling ratio r(N)=N−1/3 ; see Figure 1. To 
generalize this pattern, we may observe that the scaling ratio r(N) follows 
the relationship r(N)=N−1/D . In this relationship, D=−log(N)/log(r(N)) is 
known as the similarity dimension of the structure in question.
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Figure 1: A line, a square, and a cube are examples of trivially self-similar 
Euclidian shapes. A Euclidian shape in D dimensions may be said to contain N 
= (L / L 0)

− D exact copies of itself scaled by a factor of L / L 0 . Image provided 
by R.D. Montgomery.

Applying the concept of a similarity dimension to less trivial shapes 
is straightforward in the case of exactly self-similar structures, such as 
structures that are constructed via iteration of a generating pattern. As an 
example, consider the Koch curve, illustrated in Figure 2. The Koch curve 
is constructed as follows: Beginning with a line segment of unity length, 
replace the middle third of the segment with an equilateral triangle whose 
base has a length of 1/3 and overlies the original line segment, then remove 
this overlapping base segment. The resulting figure thus consists of four line 
segments, each of which has a length of 1/3. Iterating this process for each 
new line segment yields a sequence of figures that exhibit increasingly fine 
structure, with the limiting state of this series exhibiting exact self-similarity, 
in the sense that a nontrivial subset of the shape is exactly identical to the 
whole. This exact self-similarity is illustrated in Figure 2, which shows 
that the full Koch curve may be described as being formed from four exact 
copies of itself, each scaled down by a factor of 1/3. Thus, we can apply the 
above relation to find that the Koch curve has a similarity dimension of D=−
log(4)/log(1/3)≈1.26.
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Figure 2: The Koch curve is an example of an exact self-similar figure with a 
non-integer similarity dimension.

The similarity dimension described above represents but one example 
of a plurality of dimensions that can be defined and calculated for a given 
figure. Indeed, the utility of the similarity dimension is limited by the fact 
that it applies only to figures that exhibit exact self-similarity; by contrast, the 
complexity witnessed in natural systems such as coastlines generally exhibits 
self-similarity only in the statistical sense. As an example, Figure 3 illustrates 
a structure that exhibits statistical self-similarity. Specifically, Figure 
3 illustrates an example of a modified Koch curve formed by randomizing 
the orientations of the line segments as the structure is generated.

Figure 3: Introducing randomness into the generating algorithm of the Koch 
curve produces a statistically self-similar fractal structure.

As a tool for quantifying the nature of such fractal structures that do not 
exhibit exact self-similarity, we now turn to the (roughly self-explanatory) 
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“box-counting dimension,” also known as the “covering dimension.” Given 
a structure that extends in two dimensions2, the box-counting dimension may 
be determined as follows: First, superimpose a square grid with individual 
boxes of size ℓ×ℓ over the figure in question, and count the number of 
boxes N(ℓ) within which some portion of the figure in question is present 
(see Figure 4). Next, repeat this procedure while varying the box size ℓ and 
construct a plot of log(N(ℓ))vslog(1/ℓ) ; for a self-similar structure, the 
data should follow a linear trend with a gradient equal to the box-counting 
dimension D. Such a plot is generally known as a scaling plot.

Figure 4: Applying the box-counting method to the Koch curve. The number 
of boxes of side length ℓ occupied by some portion of the curve follows N (ℓ)∝ 
ℓ − D , where D is the box-counting dimension of the curve.

The box-counting method also may be described in more geometrically 
intuitive terms. For example, and as shown in Figure 4, one may observe that 
the set of all occupied boxes at a given length scale ℓℓ collectively serves as 
an approximation of the total structure as “observed” at the length scale ℓ . 
Stated differently, the set of ℓ×ℓ boxes that overlap some portion of the base 
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structure may be seen as representing a snapshot of the base structure as 
viewed at a resolution corresponding to the length ℓ . In general, however, 
the set of boxes covering the base structure cannot be expected to represent 
the geometric details of the structure at any length scale. For example, as 
shown in Figure 4, is evident that the incompatibility of the straight edges 
of the square boxes and the jagged boundary of the Koch curve leads to a 
markedly crude representation of the structure at all length scales, as each 
occupied box will always contain details that cannot be fully represented by 
that box.

While the box-counting method of estimating fractal dimension is 
conceptually straightforward, some care must be taken to preserve the 
utility of the method. For example, one must select an appropriate range 
of box sizes ℓℓ over which to examine the scaling trend, given that any 
observed fractal scaling trend will not persist over all possible length scales. 
That is, for any finite structure, it is possible to encompass the structure in 
a box of size L×L , for an appropriate value of L . In such a case, applying 
the box-counting method with boxes of size ℓ≥L will always return a 
value N(ℓ)=1 —only one box can be filled when the box size contains the 
entire structure—thus resulting in an apparent fractal dimension of zero. As 
another example, when considering a range of box sizes ℓ≲L , nearly all 
such boxes will be counted as filled, and the box count N(ℓ) will scale as the 
square of the inverse box size 1/ℓ . In this case, the box-counting method 
will return an apparent fractal dimension of D=2 , and we may say that the 
pattern “looks two-dimensional” when examined at this coarse scale. When 
dealing with patterns found in nature, the opposite extreme of possible 
length scales merits consideration as well. For a mathematically-generated 
fractal figure, such as a figure that exhibits structure at arbitrarily fine length 
scales, the box-counting method may be applied with arbitrarily small box 
sizes ℓ . However, naturally occurring fractal structures invariably exhibit 
a smallest length scale to which a scaling trend may extend. For example, 
while the scaling trend certainly must cease at the molecular and atomic 
scales, such fractal scaling behavior generally diverges at length scales many 
times larger than this. In such cases, applying the box-counting method at 
length scales ℓ smaller than a smallest feature size observed in the structure 
yields a number of filled boxes N(ℓ) that scales linearly with the inverse 
box size 1/ℓ ; thus, the figure “looks one-dimensional” to the box-counting 
analysis at these scales.
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Such conditions necessitate careful determination of the appropriate 
range of length scales over which to assess fractal scaling behavior. This 
determination may be made empirically, such as by observing the range of 
length scales over which the scaling plot is sufficiently linear. Alternatively, 
this determination may be made by convention, such as may be based on 
statistical arguments. In practice, it is generally not known a priori whether 
a structure under consideration should even be expected to be a fractal, and 
hence whether it should be expected to produce a scaling plot with a linear 
trend between cutoffs defined by appropriate physical and/or measurement 
limitations. Accordingly, it is preferred to adopt conventions with some 
degree of universality and that do not presuppose the existence of the fractal 
scaling behavior under investigation. More specifically, it is common to 
adopt the following conventions, noting that the ranges may be bounded by 
physical and/or measurement limitations. The coarse-scale analysis cutoff 
generally corresponds to a limit of the range of length scales measured, 
which in turn generally is related to the coarse-scale size of the structure 
itself. This limit is conventionally set at ℓ=L/5 , where L is the side length of 
the smallest square that may circumscribe the structure, thus guaranteeing 
that the grid includes no fewer than 25 boxes. Turning to the fine scale, 
the physical limit is determined by the smallest (nontrivial) feature size 
that is observed in the structure, while the fine-scale measurement limit is 
conventionally chosen to satisfy the requirement that each box contains no 
fewer than five data points. In practice, the more restrictive of these two 
limits is chosen (i.e., the larger of the physical fine-scale limit and the fine-
scale measurement limit).

As a further consideration in optimizing the performance of the box-
counting method, one must select the position and orientation of the box 
grid relative to the structure in question. To the extent that the box-counting 
method seeks to probe an inherent quality of a structure, the observed fractal 
dimension should not be affected by a spatial translation or rotation of the 
grid with respect to the structure, since the structure itself has no preferred 
orientation. However, consider the case shown in Figure 5, in which the box-
counting method is applied to a fractal profile. In the box-counting scheme 
discussed above, all boxes that contain any portion of the structure under 
examination are counted toward the total; applying this to the structure 
of Figure 5, we find that 35 boxes are filled using this box size ℓ . Suppose, 
however, that one is able to reposition the boxes semi-independently of 
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one another, by translating a set of adjacent ℓ×ℓ boxes within each column 
of width ℓ . Doing so, we find that a careful repositioning of the boxes 
within these columns results in the box count N(ℓ) dropping to 29. This 
apparent inconsistency serves to motivate a refinement of the box-counting 
analysis as described above. Specifically, the “variational box-counting 
method” includes shifting the boxes in columns as described above so as 
to minimize the number of ℓ×ℓ boxes needed to entirely cover the figure 
in question. The variational box-counting method thus serves to eliminate 
some of the apparent ambiguity of the traditional box-counting method. Of 
course, some ambiguity still remains in this amended method, given that 
the rotational orientation of the columns relative to the examined structure 
remains arbitrary. To eliminate this residual ambiguity, one may repeat the 
above-described variational method at a variety of rotational orientations of 
the grid with respect to the figure and choose the angle that minimizes N(ℓ)
for each value of ℓ . However, in practical applications, incorporating this 
additional variation does not significantly affect the measured dimensions.

Figure 5: An example of applying the variational box-counting method. When 
the boxes are constrained in a grid (left), we find a box count N (ℓ) = 50 ; how-
ever, when the ℓ × ℓ boxes are allowed to shift vertically within columns of 
width ℓ (right), the measured box count N (ℓ) drops to 47.

TIME-SERIES FRACTAL STRUCTURES
The fractal structures discussed above generally represent examples of 
spatial fractal structures—that is, structures with spatial extent and whose 
fractal characteristics are embodied in their spatial form. However, many 
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observable structures and phenomena exhibit fractal behavior while lacking 
spatial form. Another important class of structures to which fractal analysis 
may be directed is that of “time-series” structures—that is, structures that 
may be represented as a single-valued function of a single independent 
variable. As suggested by their name, a time-series structure may refer to 
some variable quantity—say, stock market prices, or atmospheric pressure—
that fluctuates in time, but for the purposes of this work we intend for the 
term to refer to any data set or plot consisting of a dependent variable that 
may be represented as a single-valued function of an independent variable.

As with the spatial structures considered above, a time-series structure 
may exhibit fractal scaling properties in either a statistical or an exact 
sense, which may be quantified using the formalism of fractal dimensions. 
Unfortunately, the box-counting methods described above for measuring a 
fractal dimension are ill-suited to time-series structures. Simply put, this 
limitation arises from the fact that box-counting methods assess the fractal 
dimension of shapes that extend in space, while the spatial “shape” of a 
time-series structure is inherently undefined. That is, since the two axes of 
a plot representing a time-series data set generally represent variables with 
distinct units, the geometric aspect ratio of such a plot is fundamentally 
undefined.

As an example, consider the data set displayed in Figure 6, which plots 
the daily closing price of a certain technology stock over a period of roughly 
16 years. Specifically, Figure 6 illustrates three representations of the same 
data set, with the respective y-axis of each illustration scaled by a distinct 
factor. In qualitative terms, one may be tempted to conclude that the data in 
the top panel appear the most linear and that the data in the bottom panel 
appear the most space-filling. Accordingly, given that a box-counting fractal 
analysis technique essentially assesses the space-filling properties of a 
structure, applying a box-counting analysis to each plot would yield distinct 
results for each plot.
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Figure 6: Daily closing prices for a single stock from December 1980 to Octo-
ber 1996. Each of the three plots displays the same data, but the y-axis of each 
plot is scaled by a distinct factor. A box-counting fractal analysis would return 
unique results for each plot, despite each plot representing the same data set.

The difficulty here lies in the fact that a box-counting fractal analysis 
necessarily treats a figure as a spatial entity whose orthogonal dimensions 
have the same units. By contrast, a time-series trace such as the one displayed 
in Figure 6 lacks this property, but may still exhibit fractal characteristics 
in the form of either statistical or exact self-affinity. As discussed above, 
exact and statistical self-similarity describe structures whose precise 
details or statistical properties (respectively) are repeated as its orthogonal 
dimensions are rescaled by a similar factor. By contrast, exact and statistical 
self-affinity refer to structures whose precise details or statistical properties 
(respectively) are repeated as its two orthogonal dimensions are resized by 
independent quantities [4].

Due to the incommensurability of the orthogonal axes defining a time-
series trace, such structures cannot exhibit self-similarity, only self-affinity. 
As an example, Figure 7 displays the data set shown in Figure 6 alongside a 
subset of the data set. When this subset is appropriately rescaled in each of 
the x- and y-axis, the resulting plot shares the general statistical properties of 
the original trace, and hence exhibits statistical self-affinity.
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Figure 7: Statistical self-affinity in a fractal time-series trace. Choosing a sub-
set of the stock price data shown in Figure 6 and rescaling the x- and y-axes 
yields a trace that shares statistical properties with the original.

It also is possible, albeit less common, for a time-series trace to 
exhibit exact self-affinity. As an example, Figure 8 illustrates three 
experimentally measured data sets in which rescaling the x- and y-axes of 
the traces by carefully chosen factors produces structures that share the 
characteristics of the original traces [5].

Figure 8: Magnetoresistance fluctuations (MCF) recorded in an electron bil-
liard device can represent examples of exact self-affinity in time-series struc-
tures. Each of the three columns in this figure represents a single MCF observed 
at a coarse scale (bottom) and a fine scale (top). From [5].



Fractal Analysis of Time-Series Data Sets: Methods and Challenges 145

FRACTAL ANALYSIS OF TIME-SERIES TRACES: BE-
YOND BOX-COUNTING
As discussed above, when applying a box-counting method to a time-series 
structure, the measured scaling properties of the structure will depend on the 
aspect ratio with which the data are presented, which is in turn an arbitrary 
choice. Accordingly, applying a box-counting method to a time-series 
trace will return a fractal dimension that is essentially arbitrary. Thus, it is 
necessary to develop fractal analysis techniques that are insensitive to such 
artificial geometric parameters. In the following, we survey a sampling of 
such techniques proposed in the literature.

Returning to the example of Figure 5, above, this figure in fact illustrates 
the variational box-counting method as applied to fractal profile in the form 
of a time-series fractal. Indeed, fractal analyses of such time-series fractal 
structures have traditionally been performed using the variational box-
counting method [6, 7], which does offer performance improvements over 
the traditional fixed-grid box-counting method. Nonetheless, the variational 
box-counting method still suffers from a fatal flaw. To see why this is so, 
consider the plots shown in Figure 9.

Figure 9: Visualizing a variational box-counting method applied to the stock 
price data of Figures 6 and 7 with a “resolution” of ℓ = 200 trading days. Dis-
playing the data with a price range of 0–100 USD yields a box count of 37. 
Displaying the data with a price range of 0–1000 USD yields a box count of 20.

Figure 9 illustrates the stock price data of Figures 6 and 7 represented in 
two plots with the price axes respectively scaled by two different factors, as 
well as a visualization of a variational box-count method applied at a “length” 
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scale ℓ=200 trading days. When the prices shown range from 0–100 USD 
(top of Figure 9), we find that a minimum of 37 boxes are needed to entirely 
cover the trace. However, when the price range is expanded to 0–1000 USD 
(effectively increasing the domain: range aspect ratio of the data; bottom 
of Figure 9), the number of boxes needed to cover the trace falls to 20. 
Indeed, the number of boxes N(ℓ) needed to cover the “compressed” plot 
will be proportional to 1/ℓ for all values of ℓℓ such that the boxes are “taller” 
than the range of values found within any of its L/ℓ columns. That is, as 
long as each box is “taller” than the vertical extent of the trace within each 
column, the trace will “look” one-dimensional.

Of course, the fundamental issue is that the concept of an ℓ×ℓ “box” 
on a time-series trace is meaningless, since the enclosed “area” has units of 
(in this case) days times dollars. While it is entirely reasonable to overlay a 
spatial figure with boxes of a well-defined area in the case of a box-counting 
analysis of a spatial fractal, the concept of a square drawn on a plot with 
incompatible and independently scalable axes is ill-defined. In some cases, 
this inadequacy is resolved by adopting conventions that eliminate such 
ambiguity. For example, a time-series trace may be normalized in its x- 
and y-axes such that the domain and range of the plot each run from 0 to 1, 
and the structure may be analyzed via a box-counting analysis that utilizes 
a square grid that just circumscribes the trace. While such a normalization 
convention may provide a consistent method for investigating the relative 
scaling properties among a set of related time-series traces, the absolute 
values of the dimensions produced by such analyses would remain essentially 
arbitrary.

Developing a fractal analysis technique that is appropriate for time-
series structures generally amounts to taking one of two approaches: (1) to 
treat the time-series structure as a geometric figure without a well-defined 
aspect ratio, or (2) to treat the time-series structure as an ordered record of 
a process that exhibits a quantifiable degree of randomness. Following the 
latter approach, Harold Edwin Hurst introduced a formalism for quantifying 
the nature of self-affine time-series structures in a 1951 paper on the long-
term storage capacity of water reservoirs [8].

In Ref. [8], Hurst introduces the concept of the “Hurst exponent” H , which 
may be understood as quantifying the character of the randomness exhibited 
in a time-series structure via an autocorrelation measurement. Specifically, 
a Hurst exponent of H=0.5 describes a process that is purely random, such 
that the value of the trace at time ti is entirely independent of the value at 
time tj , i≠j . By contrast, Hurst exponents in the range 0.5<H<1 represent 
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traces exhibiting positive autocorrelations, while Hurst exponents in the 
range 0<H<0.5 represent traces exhibiting negative autocorrelations. 
Intuitively speaking, a positive autocorrelation may be understood as 
representing a trace in which a “high” value (say, relative to the mean) is 
more likely than not to be followed by additional “high” values, while a 
negative autocorrelation may be understood as representing a trace in which 
“high” and “low” values alternate at short time scales; see Figure 10.

Figure 10: Examples of time-series traces characterized by Hurst exponents of 
(bottom to top) H = 0.25, 0.50, and 0.75. A trace with H = 0.5 represents purely 
random process, whereas traces with H = 0.25 and H = 0.75 represent processes 
whose subsequent increments are negatively and positively correlated, respec-
tively.

The Hurst exponent of a data set may be calculated by examining the 
scaling properties of a “rescaled range” of the data, as follows. Consider a data 
set {xt}(t=1,2,3,…,T), and let {xi,xi+1,…,xi+τ},τ≤T,i=1,2,3,…,T−τ represent 
any sequence of τ+1 points within the data set. The rescaled range (R/S) 
statistic is then defined as:

  (1)
where

      (2)
is the sample mean and
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   (3)
is the sample standard deviation. The quantity

      (4)

is then proportional to τH , such that the gradient of a plot of  is 
equal to the Hurst exponent H.

The Hurst exponent also may be described as a measure of long-
range correlations within a data set, such that measuring these correlations 
as a function of interval width may provide another measurement of 
the Hurst exponent. As an example of such an analysis, the “variance 
method”3 calculates the scaling properties of the trace’s autocorrelation as a 
function of time interval4 via calculation of the quantity

    (5)
for a range of values of Δt . This quantity is then related to the Hurst 
exponent as V(Δt)∝Δt2H such that a plot of log(V(Δt))vslog(Δt) is expected 
to be linear (within an appropriate range of values of Δt ) with slope. 2H. In 
practice, however, the variance method is found to produce a poor estimate 
of Hurst exponent.

As another means of quantifying the fractal properties of time-series 
traces, we now turn our attention to a method proposed by Benoit Dubuc 
in a 1989 paper [9] on the fractal dimension of profiles. Dubuc’s proposed 
“variation method”5 is conceptually similar to the variational box-counting 
method described above, but improves upon this method by resolving the 
fundamental arbitrariness of drawings boxes on a time-series trace. In 
short, Dubuc’s variation method probes the “space-filling” characteristics 
of a time-series trace through measurement of the scaling behavior of the 
amplitude of the trace within an ϵϵ neighborhood as ϵϵ is varied.

In practical terms, Dubuc’s variation method may be implemented is 
as follows: Consider a time-series data set {xt}(t=1,2,3,…,T). For a given 
value of ϵ , define the functions uϵ(t) and bϵ(t) as follows:
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     (6)
where

  (7)
That is, for a given value of ϵ and for each point ti in the trace, examine 

the set of points {xt′} within ϵ data points of ti , and let uϵ(ti) and bϵ(ti) be 
(respectively) the maximum and minimum values of xt′ found in this range. 
Thus, uϵ(t) and bϵ(t) may be understood as traces that represent (respectively) 
the upper and lower envelopes of oscillation of a trace at a particular scale 
set by ϵ. At large values of ϵ , the traces uϵ(t) and bϵ(t) will be slowly varying 
relative to the variation present in the original data set; reducing the value 
of ϵ will produce traces uϵ(t) and bϵ(t) that each resemble the original data 
set with increasing fidelity (see Figure 11).

Figure 11: Visualizing the application of Dubuc’s variation method at two dis-
tinct values of ϵ . The trace under consideration is a fractional Brownian motion 
(fBm), whose properties are discussed below.

Having constructed the traces uϵ(t) and bϵ(t) , we then define vϵ(t)=uϵ(t)−
bϵ(t) and calculate

    (8)
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Conceptually, V(ϵ) may be regarded as representing the (crucially, not 
necessarily integer) number of ϵ×ϵ “boxes” whose total “area” would be equal 
to that of the envelope bounded by uϵ(t) and bϵ(t) . Of course, the concept of 
“area” is ill-defined in this context, but this is of no concern, given that we 
have not implied a geometrical relationship between the x and y dimensions. 
In continued analogy with spatial box-counting analyses, the fractal 
dimension of the trace is then determined via the relationship V(ϵ)∝(1/ϵ)D , 
such that a plot of log(V(ϵ))vslog(1/ϵ) is expected to follow a linear trend 
(within an appropriate range of values of ϵ ) with a slope corresponding to 
the fractal dimension D.

As a final means of quantifying the fractal properties of time-series 
traces, we consider a technique known as “adaptive fractal analysis” (AFA) 
[10]. Similar to Dubuc’s variation method, AFA may be broadly described as 
investigating the geometrical properties of a time-series trace (in contrast to 
the aforementioned analyses that are best understood as probing numerical 
correlations). For example, and as discussed above, Dubuc’s variation 
method may be described as quantifying the generalized “area” needed to 
cover a time-series trace as analyzed at different characteristic time scales; 
in the case of AFA, approximations to the time-series trace are generated at 
varying resolutions, and the fidelity of such approximations is recorded as 
the resolution is varied. The AFA algorithm may be executed as follows: 
Again, consider a time-series data set x(t)(t=1,2,3,…,T). Next, choose a 
window with a width equal to an odd integer w=2n+1,w<T, and partition the 
data set into overlapping subsets of length w such that each pair of adjacent 
subsets overlap by n+1 data points. Within each window, the linear best-
fit line to the data within that window is calculated, resulting in a series 
of disconnected straight lines. That is, the series of disconnected best-fit 
lines overlap in pairs such that each index in the domain of the original data 
set is matched with respective points on each of two subset fit lines (with 
the exception of the n data points at either end of the trace). Next, these 
best-fit lines are “stitched” together to form a single, smoothly continuous 
curve in the following manner: Label the windows that span the trace with 
consecutive integers, and label the windows’ corresponding best-fit lines 
as y(j)(l)(l=1,2,…,n+1). Then, within each window j, construct the curve

  (9)
l=1,2,…,n+1 , where w1=(1−(l−1)/n) and w2=(l−1)/n. Conceptually, each 
value y(w)(l) may be thought of as representing the weighted average of 
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the values of the two best-fit lines with values at that index, weighted so 
as to be inversely proportional to the distance between that index and the 
midpoint of the window. Repeating this procedure across all windows 
produces a trace y(w)(t) that is continuous and differentiable, and that may 
be understood as representing an approximation to the trace x(t) at a length 
scale, or “resolution,” defined by w (see Figure 12).

Figure 12: Examples of applying the procedure of AFA at several values of N 
(corresponding to the window width w discussed in the text). The light blue 
trace (bottom) is a 16,384-point fractal trace with H = 0.375 , while the red 
(top), green (second from top), and purple (third from top) traces represent ap-
proximations produced by the AFA technique at N = 1000 , N = 500 , and N = 
50 , respectively. Traces are vertically offset for clarity. Note that smaller values 
of N yield approximations that are increasingly similar to the trace under con-
sideration.

As w is decreased, y(w)(t) becomes a better approximation to x(t)xt ; the 
scaling behavior of this fidelity as w is varied is used to determine the Hurst 
exponent. Specifically,

  (10)
such that a plot of log(F(w))vslog(w) will be linear (over an appropriate 
range) with slope H.

EVALUATING FRACTAL ANALYSIS TECHNIQUES
Each of the fractal analysis techniques discussed above is best understood 
as providing an estimate of the fractal dimension or Hurst exponent that 
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characterizes a given time-series data set. The sections that follow present a 
method for evaluating the fidelity of these estimates that was developed and 
applied by the authors to the fractal analysis techniques under consideration. 
To objectively and quantifiably evaluate the fidelity of each of these 
techniques, it is desirable to investigate the accuracy of each technique 
when applied to traces with known Hurst exponents/fractal dimensions. To 
introduce a method for producing such “control” traces, we begin with a 
general discussion of noise traces.

A noise trace, as an example of a time-series structure, may be described 
as a single-valued function of a single independent variable. A variety of 
methods exist for quantifying the statistical properties of noise traces. For 
example, in addition to the aforementioned measurements of space-filling 
characteristics and long-range correlations, a spectral analysis of a noise 
trace may offer a natural quantification of the trace’s statistical properties.

Power-law noise represents a significant and broad class of noise 
traces. Specifically, a power-law noise trace has a power spectral density 
given by P(f)∝1/fβ . A noise trace characterized by β=0 thus represents 
noise whose spectral power density is a constant across all frequencies, 
while β=1 corresponds to the “ 1/f noise” that characterizes many natural 
systems, and β=2 is known as “brown noise.” In principle, ββ can assume 
any value; however, we begin our investigation by considering the β=2 case.

A “brown noise” trace characterized by β=2 is so termed owing to its 
relation to Brownian motion, which describes the net motion of a particle 
whose individual steps are random and independent. Brownian motion 
generally may refer to a process extending in any number of dimensions; 
however, we restrict our attention to brown noises that may be understood 
as a time-dependent plot of the position of a particle undergoing Brownian 
motion along one dimension. (As used herein, “Brownian motion” and 
“brown noise” will be used interchangeably to describe a Brownian motion 
in one dimension.) Given that a Brownian motion may be described as the 
cumulative sum of a series of random, independent steps, it is straightforward 
to generate a Brownian motion trace as a cumulative integral of a white 
noise trace. For our purposes, we define a white noise trace as a series of 
values with zero mean taken from a normal distribution (i.e., a Gaussian 
noise trace; see Figure 13). As a result, a brown noise trace is characterized 
by a Hurst exponent of H=0.5 .
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Figure 13: The cumulative sum of Gaussian white noise results in Brownian 
motion.

Relaxing the restriction that the Gaussian noise trace consists of 
statistically independent increments permits consecutive increments to be 
positively or negatively correlated, such that the plot formed by the cumulative 
sum of the noise trace may be characterized by a Hurst exponent that 
deviates from H=0.5 . Such a trace is termed a “fractional Brownian motion” 
(fBm). Mandelbrot and Van Ness [11] provide a formalism for quantifying 
the properties of such structures as follows: Consider a conventional 
Brownian motion trace B(t,ω) , where tt denotes time and ω represents 
the particular realization of the random function that generated the 
specific Brownian motion. The data set B(t,ω) is thus a function whose 
increments B(t2,ω)−B(t1,ω) have a mean of zero and a variance of ∣t2−t1∣ , and 
whose non-overlapping increments B(t2,ω)−B(t1,ω) and B(t4,ω)−B(t3,ω) are 
statistically independent. A “reduced fractional Brownian motion” BH(t,ω) , 
then, is further characterized by the parameter H , 0<H<1 , and satisfies

  (11)
A fractional Brownian motion trace is thus self-affine in the sense that

  (12)
where

     (13)
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denotes that the two random functions X(t,ω) and Y(t,ω) have identical fi-
nite joint distribution functions [11]. Thus, on average, when an interval 
on an fBm trace is expanded by a factor of h , the difference of the values 
at the endpoints of the interval BH(t0+hτ,ω)−BH(t0,ω) increases by a fac-
tor of hH . This property represents an example of statistical self-affinity, in 
which the observed statistical properties within the intervals are preserved 
when the x and y axes are scaled by distinct factors (specifically, h and hH , 
respectively).

Quantifying self-affinity using the formalism of the Hurst exponent 
motivates drawing a parallel between the Hurst exponent and the fractal 
dimension, as follows. Following the argument of Ref. [4], consider an fBm 
trace VH(t) that extends over a total time span Δt=1 and a total vertical 
range ΔVH=1 . Dividing the time span into n increments of width 1/n , we 
expect the vertical range of the portion of the trace within each interval 
to scale as ΔtH=1/nH (see Figure 14). Accordingly, on average, the portion 
of VH(t) present in a given interval may be covered by ΔVH/Δt=(1/nH)/
(1/n)=n/nH square boxes of side length 1/n . Thus, the total number of square 
boxes of side length 1/n needed in order to cover the entire trace is expected 
to be n(n/nH)=n2−H . If we recall that the spatial box-counting method relates 
number of square boxes of side length ℓℓ needed to cover a trace to the fractal 
dimension of the trace as N(ℓ)∝(1/ℓ)DF , we may conclude that6 DF=2−H .

Figure 14: Deriving a relationship between the Hurst exponent and fractal di-
mension. A Brownian motion trace V H t ( H = 0.5 ) is normalized in both 
dimensions to be circumscribed inside a unit square, and subsequently is di-
vided into n intervals of width 1/n. The self-affinity of an fBm trace leads to an 
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estimation of the number of square boxes needed to cover the trace at a given 
length scale, motivating a relationship between H and DF. See text for details.

The relationship DF=2−H is appealing in its simplicity, and indeed is 
frequently found in the literature; however, Ref. [4] is quick to acknowledge 
the inherent difficulty in assigning a fractal dimension to a self-affine 
structure, given that such a construction is predicated upon assigning 
an arbitrary rescaling relationship between incompatible coordinates. 
Mandelbrot, too, notes the apparent relation DF=2−H [12] and clarifies that 
this relation holds in the fine-scale limit. This disparity serves to highlight 
a general distinction between the Hurst exponent and the fractal dimension 
as descriptors of a time-series trace. Specifically, the Hurst exponent may be 
understood as a descriptor of global correlations, while the fractal dimension 
may be understood as describing a trace’s local fine-scale structure [13].

RELATIONSHIP BETWEEN FRACTAL DIMENSION 
AND SPECTRAL EXPONENT
We may continue this exercise of comparing our various statistical parameters 
by considering the spectral exponent ββ as a means of quantifying the nature 
of a fractal trace. In practice, it is impractical to utilize a spectral analysis to 
evaluate the fractal properties of a time-series structure, due to the imprecision 
(relative to the aforementioned fractal analysis techniques) of applying a 
power law best-fit curve to characterize a spectral decomposition of a trace. 
Nevertheless, we may investigate the relationship that exists between the 
spectral exponent β , the fractal dimension DF , and the Hurst exponent H , 
so long as we recognize the imprecisions of these comparisons. In particular, 
the spectral exponent β typically is said to relate to the Hurst exponent 
as β=2H+1 , implying the relationship DF=(5−β)/2 . This relationship may 
be derived by observing that the two-point autocorrelation function

  (14)
for a trace V(t) is related to the quantity ⟨|V(tτ)−V(t)|2⟩ as

  (15)
comparing this result to the aforementioned relationship

    (16)
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leads to the expression β−1=2H [14]. However, systematic study [15] 
demonstrates that such a relationship is generally not very robust. Indeed, 
it is straightforward to test this robustness: In analogy to the investigation 
performed in Ref. [15], we investigated the relationship between spectral 
exponent and fractal dimension by generating a set of 20 noise traces, each 
with a length of 16,384 points and with a β value between 0 and 2. Applying 
each of the previously discussed time-series fractal analysis techniques to 
each of these traces produced a corresponding set of fractal dimensions 
(for the variational box-counting analysis and Dubuc’s variation analysis) 
or Hurst exponents (for the variance analysis); these data are shown 
in Figure 15, with the Hurst exponents “converted” to fractal dimensions 
via DF=2−H . Plotting these measured parameters as a function of the 
well-defined spectral exponent used to generate each trace, we see that the 
relationship DF=(5−β)/2 breaks down for DF close to 1 or 2.

Figure 15: Measured fractal dimensions of colored noise traces generated with 
well-defined power spectral densities β . Each data point represents the aver-
age value of D F measured with the respective fractal analysis method for the 
set of 20 traces at the corresponding value of β . Each error bar represents one 
standard deviation from the mean value of D F recorded for each set of 20 traces. 
Lines connecting the data points are provided as a guide to the eye. The dashed 
line corresponds to the relationship D F = 5 − β / 2 .
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GENERATING FRACTIONAL BROWNIAN MOTIONS 
AND CHARACTERIZING FRACTAL ANALYSIS 
TECHNIQUES
The framework of the investigation summarized in Figure 15 may be applied 
to a more thorough investigation of the fidelity of each fractal analysis 
technique discussed above. That is, if we generate afBm trace with a well-
defined Hurst exponent and subject such a trace to the analysis techniques 
under consideration, we may evaluate the robustness of each analysis 
technique. In so doing, we may evaluate not only the fidelity of each analysis 
method, but also may explore how the analysis methods (individually and/
or collectively) respond to less-idealized data sets. That is, by generating 
fBm traces with well-defined Hurst exponents and modifying the traces to 
better resemble real-world data sets, we may gain insight into how best to 
interpret our analytical results of experimentally derived data. Specifically, 
in addition to testing these analysis techniques on “full-size” 16,384-point 
fBm traces (with 16,384 arbitrarily chosen as a “sufficiently large” number), 
we additionally tested these analyses on traces of reduced length and/
or reduced spectral content, which may better represent experimentally 
measured data sets.

A variety of methods exist for generating a fractional Brownian motion 
trace that exhibits a well-defined predetermined Hurst exponent. Examples 
of such methods include random midpoint displacement, Fourier filtering 
of white noise traces, and the summation of independent jumps [14]. This 
chapter considers randomly generated fBm traces that were created using a 
MATLAB program that generates a fractional Gaussian noise trace with the 
desired Hurst exponent via a Fourier transform and subsequently computes 
the cumulative sum of the noise trace to yield a fractional Brownian motion 
trace with a specified well-defined Hurst exponent.

While such computer-generated fBm traces are accurately described 
as exhibiting a well-defined Hurst exponent, the inherently finite nature of 
these traces precludes the traces from being fully “fractal.” That is, as with 
any natural structure with finite extent, the generated fBm traces necessarily 
exhibit a fine-scale resolution limit (owing to the point-wise granularity of 
the traces) as well as a coarse-scale size limit (owing to the finite total length 
of the traces). With this in mind, we must be content to forge ahead with the 
simplifying assumption that the effects of these particular limitations on our 
estimates of the underlying fractal scaling properties are negligible when 
considering a computer-generated fBm trace whose total length exceeds 
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its step increment by several orders of magnitude. Accordingly, for the 
purposes of this analysis, we assume that an fBm trace generated with a 
predetermined Hurst exponent “ Hin ” and with a total length well in excess 
of its resolution limit is a suitable representative of a pure fractal structure 
characterized by Hin . Thus, we assume that such a trace may fairly be used 
as a control against which the fidelity of the above-mentioned analysis 
techniques may be evaluated.

The procedure for evaluating each of these analysis techniques is thus as 
follows: We first generated a set of 50 16,384-point fBm traces as well as 50 
512-point fBm traces at each of 39 input Hurst exponents Hin between 0.025 
and 0.975. In this manner, we sought to evaluate not only the fidelity of each 
fractal analysis technique in returning the expected results for the longer 
16,384-point traces, but also the effect of performing the same analyses on 
data sets of limited length. Next, we applied each analysis technique under 
consideration to each of these traces, returning either a measured Hurst 
exponent Hout or a measured fractal dimension Dout . In the case of the Dubuc 
variation analysis, which returns a measured fractal dimension, this value 
was “converted”7 to a Hurst exponent via the relation Hout=2−Dout . Having 
extracted these values of Hout for each sample fBm trace and for each analysis 
technique, we produced a plot of HoutvsHin representing all fBm traces 
analyzed with each analysis technique; these results are displayed in Figures 
16 and 17 for randomly-generated fBm traces with lengths of 16,384 points 
and 512 points, respectively. In each of Figures 16 and 17, each data point 
represents the average Hout value measured via the corresponding analysis 
method. Each corresponding logarithmic scaling plot was fit to a straight 
line between a fine-scale cutoff of five data points and a coarse-scale cutoff 
of 1/5 of the full length of the trace. Each error bar represents one standard 
deviation in the measured values averaged to yield the corresponding data 
point. The dashed black line represents the ideal relationship Hout=Hin ; that 
is, data points representing traces whose measured Hout values exactly match 
their generating Hin values would fall on this line.
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Figure 16: Plotting H out vs. H in for randomly-generated-16,384-point fBm 
traces as measured by the variational box-counting method (yellow), adaptive 
fractal analysis (green), Dubuc’s variation analysis (red), and the variance anal-
ysis (blue).

Figure 17: Plotting H out vs. H in for randomly-generated 512-point fBm trac-
es as measured by the variational box-counting method (yellow), adaptive frac-
tal analysis (green), Dubuc’s variation analysis (red), and the variance analysis 
(blue).

In the ideal case of a perfectly fractal fBm trace subjected to an analysis 
technique that produces a precise and accurate value of the Hurst exponent, 
a plot of Hout vs. Hin is expected to be linear with unity slope. Based on the 
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results of the analyses summarized in Figures 16 and 17, our results may 
be summarized as follows: the variational box-counting method tends to 
over-estimate H except in the case of high H values; the variance analysis 
tends to under-estimate H; the Dubuc variation analysis performs well only 
for H∼0.5 ; and AFA provides an accurate estimate of H throughout the range 
of H values. In the case of the shorter, 512-point traces, the deviations from 
the ideal relationship Hout vs. Hin are more pronounced. Additionally, the 
precision of the estimated H values for these shorter traces suffers as well, 
as seen in the relatively large error bars on the data points corresponding to 
the shorter traces.

We also investigated the effect on the measured H values resulting 
from another common deviation from ideal fractal behavior. Specifically, in 
experimentally measured time-series data sets, the smallest-scale measured 
features often are significantly larger than the resolution limit of the trace. 
Such is very often the case for experimentally measured data sets that are 
asserted to represent fractal behavior, in which the finest-scale features may 
exhibit a characteristic scale that is well over an order of magnitude larger than 
the point-wise resolution of the trace. To probe the effect of this limitation on 
a fractal analysis of such a trace, we repeated the above technique on a set of 
randomly-generated 512-point fBm traces that had been spectrally filtered 
via Fourier transforms to exhibit a well-defined minimum feature size (i.e., 
a well-defined maximum frequency component). Specifically, each trace 
was subjected to a Fourier filter that eliminates all frequency components 
corresponding to periods shorter than 10 data points, such that the resultant 
traces have a minimum feature size of 10 points. Figure 22 illustrates a 
characteristic result of this filtering procedure by comparing the original and 
Fourier filtered versions of an fBm trace with Hin=0.5 .

Performing a fractal analysis of time-series traces with limited spectral 
content requires a reassessment of the length scales over which one expects 
to observe the fractal scaling properties. Whereas our analysis of fBm traces 
whose spectral content extended to the resolution limit of the traces examined 
scaling properties to a minimum length scale of five data points, we now 
cannot expect to see such scaling properties at length scales smaller than our 
minimum feature size of 10 data points. Given this well-defined minimum 
feature size, it may be tempting to set our fine-scale analysis cutoff at 10 
data points and expect to observe the desired scaling properties at all length 
scales greater than this. In practice, however, the effect of such spectral 
filtering is manifest in a fractal analysis even at length scales significantly 
greater than that of the minimum feature size.
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The results of passing the 512-point Fourier filtered fBm traces through 
the fractal analysis techniques under consideration are displayed in Figures 
19 and 20, which illustrate the results obtained when applying fine-scale 
cutoffs of 10 data points (i.e., the traces’ minimum feature size) and 20 
data points, respectively. In each of Figures 19 and 20, each data point 
represents the average Hout value measured via the corresponding analysis 
technique using the aforementioned cutoffs at the fine scale limit and 1/5 
of the entire trace as the coarse scale cutoff limit. Each error bar represents 
one standard deviation in the measured values that were averaged to yield 
the corresponding data point. The dashed black line represents the ideal 
relation Hout=Hin , as discussed above.

Examples of the logarithmic scaling plots that yielded the data 
summarized in Figures 16–17 and 19–20 are provided in Figures 21–24. For 
purposes of illustration, each of these figures shows the logarithmic scaling 
plots produced by applying the corresponding fractal analysis technique to 
the specific pair of fBm traces illustrated in Figure 18. That is, each fractal 
analysis technique under consideration quantifies the fractal characteristic 
of the input trace by determining the slope of a best-fit line to a log–log 
scaling plot; Figures 21–24 provide examples of these logarithmic scaling 
plots.

Figure 18: Comparison of a 512-point fBm trace with H in = 0.5 before (red) 
and after (blue) Fourier filtering to a minimum feature size of 10 points.

In each of Figures 21–24, the vertical dashed lines indicate the cutoffs 
between which the scaling plot is fitted with a straight line whose slope is 
measured to determine Hout . For both traces in each of these figures, the 
coarse-scale analysis cutoff corresponds to the location of the line labeled 
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“1/5 of trace.” The fine-scale analysis cutoff for the raw trace (red points) 
corresponds to the location of the line labeled “5 points” (corresponding to 
the data in Figure 17), while the fine-scale analysis cutoff for the filtered 
trace (blue points) may be chosen as 10 data points (corresponding to the 
data in Figure 19) or 20 data points (corresponding to the data in Figure 20), 
as represented by respective dashed vertical lines in Figures 21–24.

Figure 19: Summarizing the fidelity of four fractal analysis methods in measur-
ing the H value for randomly-generated 512-point fBm traces with a minimum 
feature size of 10 points. The scaling properties were observed over 1.01 orders 
of magnitude in length scale.

Figure 20: Summarizing the fidelity of four fractal analysis methods in measur-
ing the H value for randomly-generated 512-point fBm traces with a minimum 
feature size of 10 points. The scaling properties were observed over 0.71 orders 
of magnitude in length scale.
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Figure 21: Comparison of scaling plots produced by the variational box-count-
ing method applied to a 512-point fBm trace with H in = 0.5 before (red) and 
after (blue) Fourier filtering to a minimum feature size of 10 points.

Figure 22: Comparison of scaling plots produced by the variance method 
applied to a 512-point fBm trace with H in = 0.5 before (red) and after (blue) 
Fourier filtering to a minimum feature size of 10 points.
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Figure 23: Comparison of scaling plots produced by the Dubuc variation meth-
od applied to a 512-point fBm trace with H in = 0.5 before (red) and after (blue) 
Fourier filtering to a minimum feature size of 10 points.

Figure 24: Comparison of scaling plots produced by the adaptive fractal analy-
sis method applied to a 512-point fBm trace with H in = 0.5 before (red) and 
after (blue) Fourier filtering to a minimum feature size of 10 points.

CONCLUSIONS
Contrasting the trends displayed in Figures 19 and 20 with those displayed 
in Figures 16 and 17 highlights the inherent challenge in assessing the fractal 
properties of time-series structures that suffer from limited total length and/
or limited resolution/spectral content. Indeed, accommodating the impact of 
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a minimum feature size that is significantly in excess of the trace’s resolution 
limit generally necessitates restricting a fractal analysis to length scales 
larger still than even this observed minimum feature size. This in turn often 
restricts an analysis of scaling properties to a consideration of relatively few 
orders of magnitude in length. For example, performing a fractal analysis 
of a 512-point Fourier filtered trace using analysis cutoffs corresponding to 
10 data points and 1/5 of the trace length corresponds to an analysis of the 
scaling behavior over barely more than one order of magnitude in length 
scale; attempting to increase the accuracy of the measurement by raising the 
fine-scale cutoff to 20 data points further reduces the scaling range to 0.71 
orders of magnitude.

Moreover, Figures 21–24 demonstrate the difficulty in identifying an 
appropriate fine-scale cutoff for fractal analysis of a time-series trace, even 
when the minimum feature size found in the trace is easily identifiable and/or 
well-defined. The examples of Figures 21–24 further highlight an important 
distinction between the application of fractal analysis techniques to spatial 
and time-series fractals. In the case of spatial fractals, it often is reasonable 
to expect to observe fractal scaling behavior between the length scales 
corresponding to physical constraints (and in particular at length scales 
sufficiently far from these cutoffs). By contrast, and as seen in Figures 21–
24, the effect of imposing (or observing) a finite minimum feature size on 
a time-series trace is evident at all scales, not just at those smaller than the 
minimum observed period. Accordingly, and as further illustrated in Figures 
21–24, this effect may impact the slope of a best-fit line to a logarithmic 
scaling plot (and, hence, the measured fractal dimension) even when this 
slope is evaluated between cutoffs that are expected to compensate for the 
fine-scale limitation.

In light of these results, one must take care when applying these 
analysis techniques to data sets limited in length or spectral content, as it 
may be difficult to make a compelling argument for the empirical presence 
of fractal behavior when examining such a narrow range of length scales. 
Nevertheless, it is instructive to examine the behavior of fractal analysis 
applied to known fractal structures such as fBm traces that have been 
artificially subjected to such constraints. For example, one may argue that an 
fBm trace that is Fourier filtered to exhibit a coarser minimum feature size 
is analogous to a natural structure or phenomenon that has been subjected to 
exterior influences such as weathering effects or measurement limits: both 
may be considered examples of structures that are legitimately generated 
via processes associated with fractal behavior, but whose true fractal nature 
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has been obfuscated by secondary considerations. In the eyes of the authors, 
such effects do not necessarily render the resulting structures “less fractal” 
than their idealized counterparts. Nevertheless, such effects demand careful 
consideration when choosing an analysis method and an acknowledgment 
of the inherent limitations thereof.
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Notes
• Though Mandelbrot discusses the concept of fractional dimension 

in this 1967 paper, he did not introduce the term “fractal” until 
1975 [3].

• While the box-counting method is typically applied to structures 
embedded in two dimensions, it is straightforward to generalize 
the technique to higher- or lower-dimensional systems.

• Not to be confused with the variational box-counting method.
• In all discussions of time-series traces, we refer to the independent 

variable as “time” as a matter of convention unless otherwise 
specified. Additionally, as a matter of convention, we refer to an 
interval of the independent variable as a “length” unless otherwise 
specified.

• Not to be confused with the variational box-counting method or 
the variance method.

• Note that this relation only applies to time-series fractals, since 
the notion of a Hurst exponent is undefined for spatial fractals.

• As discussed above, such a conversion is at best an approximation. 
Nonetheless, utilizing this conversion serves as a self-consistent 
means of evaluating the response of this analysis technique when 
applied to fBm traces of a known Hurst exponent, as well as 
deviations from this behavior.
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ABSTRACT
The authors present a tutorial description of adaptive fractal analysis (AFA). 
AFA utilizes an adaptive detrending algorithm to extract globally smooth 
trend signals from the data and then analyzes the scaling of the residuals to 
the fit as a function of the time scale at which the fit is computed. The authors 
present applications to synthetic mathematical signals to verify the accuracy 
of AFA and demonstrate the basic steps of the analysis. The authors then 
present results from applying AFA to time series from a cognitive psychology 
experiment on repeated estimation of durations of time to illustrate some of 
the complexities of real-world data. AFA shows promise in dealing with 
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many types of signals, but like any fractal analysis method there are special 
challenges and considerations to take into account, such as determining the 
presence of linear scaling regions.

Keywords: adaptive fractal analysis, time series analysis, fractal physiol-
ogy, biosignal processing, non-linear analysis

INTRODUCTION
Adaptive fractal analysis (AFA; Hu et al., 2009; Gao et al., 2010, 2011) is 
a relatively new fractal analysis method that may hold promise in dealing 
with many types of real-world data. In this paper we present a step-by-step 
tutorial approach to using AFA. We begin by reviewing some basic principles 
of fractal processes that will be helpful for our presentation of AFA. We then 
discuss AFA and provide a guide for implementing it. We conclude with an 
analysis of some synthetic signals and of some real data from an experiment 
in human cognition.

Fractal Processes
Many physiological and behavioral processes exhibit fractal dynamics. This 
means the measured patterns of change over time—the behavioral time series—
exhibit certain properties, including self-similarity and scaling (Lebovitch 
and Shehadeh, 2005). Self-similarity means that the patterns of fluctuations 
at faster time scales mimics the patterns of fluctuations at slower time 
scales. Scaling means that measures of the patterns (such as the amount 
of variability present) depend on the resolution or the time scale at which 
the measurements have been taken. Many fractal analyses, including AFA, 
focus explicitly on how a measure of variability scales with the size of a time 
window over which the measure is calculated. Gao et al. (2007) provided a 
succinct and comprehensive treatment of various fractal analysis methods.

When conducting fractal analysis of a time series it is important to 
understand the concepts of fractional Gaussian noise (fGn) and fractional 
Brownian motion (fBm), and the differences between the two. fGn is 
a stationary, long-memory process, whereas fBm is a non-stationary, 
long-memory process (Mandelbrot and van Ness, 1968; Beran, 1994; 
Mandelbrot, 1997). Roughly speaking, stationary processes fluctuate by 
a relatively constant degree around a mean value that remains relatively 
constant over time, whereas for a non-stationary process the statistical 
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moments of the process (e.g., mean and variance) are time-dependent. 
“Long-memory” means that the processes exhibit statistical dependencies 
(correlations) over very long time scales, as opposed to a process for which 
only adjacent or nearly adjacent data points are correlated with each other. 
Figure  Figure11 depicts sample time series of fBm and fGn processes.

Figure 1: Top: A time series of white noise, afGn process. Bottom: a time series 
of brown noise, afBm process. A brown noise process can be obtained by suc-
cessively summing data points in the white noise process.

fGn and fBm are, nominally, dichotomous types of signals. While 
this is true in an important sense, fGn and fBm are nonetheless related. 
The increments of afBm process (created by differencing the signal, i.e., 
subtracting each value in the time series from the prior value) form a fGn 
signal [see Eke et al. (2000), for a detailed description of the fGn-fBm 
dichotomy]. Stated differently, successively summing the data points in 
afGn time series will produce a fBm time series. As described below, fGn 
and fBm require different treatment when using fractal methods to analyze 
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their temporal structure, and the results of a fractal analysis on these two 
different types of signals will necessarily have different interpretations.

A parameter called the Hurst exponent, H, provides a way to quantify 
the “memory” or serial correlation in a time series. The exact meaning 
of H depends on whether a signal is fGn or fBm. H values indicate the 
correlation structure of afGn signal, but for a fBm signal the H values refer to 
the correlation structure of the increments obtained by differencing the time 
series (Cannon et al., 1997). It is therefore necessary to carefully classify a 
signal as fGn or fBm (or some other kind of signal) before proceeding with 
fractal analysis of the signal.

With that caveat noted, different H values indicate different types of 
long-memory. Actually, H = 0.5 indicates the absence of long-memory (i.e., 
the process is random—it possesses no memory meaning that data points are 
uncorrelated with each other) or possesses only short-memory (correlations 
across very small scales only). This can be considered a null hypothesis 
of sorts when conducting a fractal analysis; one is often interested in 
determining whether the data possess some sort of temporal structure rather 
than being just a truly random, uncorrelated process.

A finding of 0 < H < 0.5 indicates an anti-correlated or anti-
persistent process for cases of fGn and fBm, respectively. This means that 
increases in the signal (for fGn) or in the increments of the signal (for fBm) 
are likely to be followed by decreases (and decreases are likely to be followed 
by increases)—a negative long-range correlation. In contrast, 0.5 < H < 1 
indicates a correlated process for fGn or what is termed a persistent process 
for fBm. In this case, increases in the signal (for fGn) or in the increments 
of the signal (for fBm) are likely to be followed by further increases, and 
decreases are likely to be followed by decreases (i.e., a positive long-range 
correlation). Anti-persistent and persistent processes contain structure that 
distinguishes them from truly random sequences of data.

To reiterate the point made earlier, and as Eke et al. (2000) carefully 
explained, an important first step in any type of fractal analysis is to 
determine the basic type of signal one has measured, i.e., whether the signal 
is fGn or fBm (see also Cannon et al., 1997). Simply plotting the time series 
can sometimes help the user make a first-pass determination about whether 
a pre-processing stage of integrating the data is required. Integration is 
required only if the data are a stationary, noisy increment process (such as 
fGn; Figure 1). Integration is not advised if the data are a non-stationary 
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random-walk process (such as fBm; Figure 1). The consequences of this 
choice are important; H estimates can be artificially inflated by integration 
of a signal which should not be integrated, for example, whereas a lack 
of integration when it should be performed could suggest the appearance 
of multiple scaling regions separated by a cross-over point when only one 
scaling region actually exists (see Delignieìres et al., 2003).

Of course, it is often the case that a plot of the time series cannot be easily 
classified as an increment or random-walk process based on its appearance 
alone. Eke et al. (2000) presented a strategy for determining the signal type, 
termed the signal summation conversion (SSC) method, in the context of 
a broader approach to analyzing physiological signals that might exhibit 
fractal dynamics. The method essentially involves comparison of results 
obtained when the signal is integrated versus not integrated. If H values for 
the non-integrated data approach or exceed a value of 1, then integration of 
the signal is generally not recommended. H values for non-integrated and 
integrated time series generated by an ideal fBm process should differ by 
a value of 1; if the difference is considerably greater or less than 1 further 
scrutiny of the data is required, because in that case the data may not fit 
within the fBm-fGn framework (Gao et al., 2006; Kuznetsov et al., 2012).

Adaptive Fractal Analysis
AFA is similar in some regards to detrended fluctuation analysis (DFA; 
Peng et al., 1994), and many aspects of AFA will be familiar for readers 
who already understand DFA. We point out some of these similarities in 
our presentation of AFA to help those readers, although familiarity with 
DFA is not required. Because of these similarities, AFA shares many of 
the same advantages as DFA over other fractal methods, such as the fact 
that H estimated by DFA and AFA do not saturate at 1 as is the case for other 
methods (Gao et al., 2006).

But despite the similarities between the methods, there are important 
differences which provide AFA with some advantages over DFA. For 
example, AFA can deal with arbitrary, strong non-linear trends while DFA 
cannot (Hu et al., 2009; Gao et al., 2011), AFA has better resolution of 
fractal scaling behavior for short time series (Gao et al., 2012), AFA has a 
direct interpretation in terms of spectral energy while DFA does not (Gao et 
al., 2011), and there is a simple proof of why AFA yields the correct H while 
such a proof is not available for DFA [see Equations 6 and 7 in Gao et al. 
(2011)].
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It is important to note that like many other analyses used to quantify 
fractal scaling AFA cannot be used independently to assert that a process is 
or is not a fractal process. Because there are non-fractal processes that can 
falsely give the appearance of fractal scaling and long-range correlations, 
it is desirable to use other methods for this purpose (e.g., Wagenmakers et 
al., 2004; Delignieìres et al., 2005; Farrell et al., 2006; Torre et al., 2007).

The first step in AFA is to identify a globally smooth trend signal that 
is created by patching together local polynomial fits to the time series. 
This is one of the primary differences between DFA and AFA; DFA does 
not involve the creation of this globally smooth trend, and instead relies 
on discontinuous, piece-wise linear fits. Basically, creating a globally 
smooth trend signal means that one tries to recreate local features of the 
data using simple polynomial functions. An example is shown in Figure 2. 
Small segments of the time series can be approximated reasonably well by 
adjusting the parameters of a polynomial regression model.

Figure 2: An illustration of the process of identifying a globally smooth trend 
signal. Linear (Top; M = 1) or polynomial (Bottom; M = 2) trends are fit to 
pieces of the signal of length w (257 in this case). These fits are shown as black 
lines superimposed on the original data series (gray curves). The local fits are 
then stitched together (see Equation 1) to create a smooth global trend signal, 
depicted in red. Notice that when the end of the series is encountered only half 
of the data points in that window are used for the trend without smoothing.

We can now express these ideas in more precise terms [see also Tung et 
al. (2011), who provided a thorough description of the detrending scheme 
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that forms the basis of AFA]. The goal of this step of the analysis is to create 
a global trend—a synthetic time series v(i), i = 1, 2,…, N, where N is the 
length of the original time series. We denote the original time series as u(i). 
Determination of the global trend is achieved by partitioning the original 
data u(i) into windows of length w = 2n + 1, with the windows overlapping 
by n + 1 points. Since setting w (a process we describe below) determines 
the value of n [i.e., n = (w−1)/2], n is not a free parameter that must be 
chosen.

Within each window the best fitting polynomial of order M is identified. 
This is done through standard least-squares regression—the coefficients 
of the polynomial model are adjusted until the polynomial fits the data 
with the least amount of residual error. Increasing the order M can usually 
enhance the quality of the fit, but one must be cautious about over-fitting 
the data. Typically M should be 1 or 2—i.e., a linear or quadratic function. 
The goal is not to fit every squiggle or variation in u(i) with the polynomial 
model, but simply to capture any relatively global trends in the data while 
leaving enough residual variability to analyze further. Presently, there are 
no validated, objective criteria for selecting M, so careful exploration of 
different M values may be required when analyzing a given time series.

The local fits then have to be “stitched” together in such a way that they 
provide a smooth global fit to the time series. Without this stitching, the 
local polynomial fits would be disconnected with each other, as is the case 
for DFA. The stitching and the resulting smooth trend signal thus represents 
a major distinction between DFA and AFA. The fit to overlapping regions is 
created by taking a weighted combination of the fits of two adjacent regions 
to ensure that the concatenation of the local fits is smooth [mathematically, 
this means that v(i) is continuous and differentiable], according to
y(c)(l) = w1y

(i)(l + n) + w2y
(i + 1)(l),  l = 1, 2, …, n + 1  (1)

where . According to this scheme, the 
weights decrease linearly with the distance between the point and the center 
of the segment. This ensures symmetry and effectively eliminates any jumps 
or discontinuities around the boundaries of neighboring regions. In fact, the 
scheme ensures that the fitting is continuous everywhere, is smooth at the 
non-boundary points, and has the right- and left-derivatives at the boundary. 
By choosing the parameters of each local fit to maximize the goodness of fit 
in each case, and then applying Equation 1 to stitch the local fits together, 
the global fit will be the best (smoothest) fit to the overall time series. Fur-



Fractal Analysis176

thermore, this fitting scheme will work with any arbitrary signal without any 
a priori knowledge of the trends in the data.

The next step is to detrend the data by removing the global trend signal 
that was just created. We remove the trend because are interested in how 
the variance of the residuals of the fit—the more fine-grained fluctuations 
in the original time series u(i)—scale with w, as described below. This type 
of detrending is very different than simply removing a linear (or higher-
order) fit to the original time series prior to data analysis (cf. Di Matteo et 
al., 2003); the detrending method in AFA (and DFA) is done locally over 
windows of varying length w but not to the entire time series as a whole. The 
residuals of the fit of the data to the trend signal are identified by subtracting 
the global trend from the original time series—we compute u(i) − v(i). (This 
is similar to the detrending step performed in DFA, except that as noted 
for DFA the local linear fits are not smoothly stitched together to create a 
globally smooth trend signal, but rather are discontinuous with respect to 
one another.)

These steps that have been described are then repeated for a range 
of w values (i.e., for a range of time scales). Thus, one must choose a 
minimum and maximum w, as well as the size of the time steps (i.e., increases 
in w) used for the analysis. It is perhaps best to begin with the smallest and 
largest possible w values, i.e., w = 3 samples and w = N/2 samples (or N/2 
+ 1 if the time series has an even number of samples) where N is the length 
of the time series. However, as discussed by Cannon et al. (1997), exclusion 
of some of the smaller and larger window sizes can increase the reliability 
of H estimates. This may be a helpful step when analyzing signals that show 
a single scaling region over some intermediate range of time scales, and 
where issues such as measurement noise or insufficient time series length 
could cause an apparent breakdown of scaling at smaller and larger time 
scales, respectively. However, one should first ensure that the regions 
under consideration for exclusion do not themselves contain distinct types 
of fractal scaling (i.e., that the signal contains multiple scaling regions) to 
avoid loss of information about the signal. In light of such considerations, 
we used a w range of 3 to (29 + 1 =) 513 samples for the analyses reported 
here. Any further adjustments to the w range can be determined after the 
next step in the analysis, when one plots log2F(w) as a function of log2w, 
as we describe below in our analyses of sample data (and see Kuznetsov et 
al., 2012). Typically it is sufficient to use a step size of 1, although there may 
be occasions when a smaller step size is desired to obtain better resolution 
for identifying linear scaling relations in the plot. In our experience, a step 
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size of less than 0.5 typically does not provide useful new information, but 
this is an issue that should be explored for each unique data set.

The next step is to examine the relation between the variance of the 
magnitude of the residuals, F(w), and the window size, w. For a fractal 
process, the variance of the residuals scales with w (i.e., is proportional 
to w raised to the power H) according to

  (2)
Fractal scaling can be quantified through the slope (obtained using simple 

linear regression) of a linear relation in a plot of log2F(w) as a function of 
log2w (Figure 3). This slope provides an estimate of the Hurst exponent, H.

Figure 3: On the left is depicted a demonstrations of how the fits to different 
window sizes w relate to the AFA plot, shown on the right. The AFA plot is 
a plot of log2F(w) (i.e., variance of the residual to the globally smooth trend 
signal) as a function of log2w (i.e., time scale or window size). A linear relation 
in this plot captures fractal scaling, and the slope of the line of best fit provides 
an estimate of the Hurst exponent H. For visual simplicity we only depicted 
non-overlapping window edges with the dotted gray line, while the analysis 
uses overlapping windows.
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It should be noted that two qualitatively different signals (one fGn, the 
other fBm) could have the same H value. For example, a white noise signal 
(fGn, so it is integrated prior to analysis) and a brown noise signal (fBm, 
so it would not be integrated prior to analysis) would both yield H = 0.5. 
Because of this one should use caution performing statistical comparisons 
of H for signals that may differ in regard to being fGn or fBm, and it is 
partly for this reason that Eke et al. (2000) emphasize the need to report 
signal classification along with H values. For clarity, here we distinguish 
between H for these two processes using the labels HfGn and HfBm.

The above steps constitute the basic process of applying AFA. Often 
one would perform AFA on each time series in an experimental data set 
to obtain an H value(s) for each, and then submit the set of H values to 
standard statistical analyses (e.g., t-test or analysis of variance) to determine 
if H changes across experimental conditions or between groups of subjects. 
That is, H becomes a dependent variable that is analyzed to determine if it 
changes across levels of some factor.

In the next sections, we apply AFA to known, mathematical fractal 
processes and then to real-world data obtained from an experiment on 
human cognition (repeated estimation of the duration of a time interval). 
The application to known fractal signals demonstrates how AFA is capable 
of classifying signals in terms of H. The application to real-world data 
reveals the complexities and challenges of using fractal analysis methods to 
signals that are not idealized fractal processes, like most real signals in the 
biological, behavioral, and physical sciences. One of these challenges is the 
matter of deciding how to identify linear scaling regions for AFA (and this 
challenge applies to other fractal methods, including DFA).

APPLICATIONS OF AFA

Application to known Fractal Processes
Here we present applications of AFA to artificially created time series 
including some well-studied fractal processes. The advantage of doing so 
is that we can compare the results of AFA to what should be the “right” 
answers based on a priori, mathematical knowledge of the artificial time 
series. Consistent with the goal of this paper to serve as a tutorial for using 
AFA, we do not mean for this to represent a fully comprehensive test of 
the method, but rather a straightforward, minimal demonstration that the 
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method correctly identifies these simple “toy” signals. We present results of 
AFA applied to time series of random, white noise, and two idealized fractal 
processes known as pink noise and brown noise.

Synthetic Time Series Properties
The artificial time series were generated using MATLAB (The MathWorks, 
Inc.; Natick, MA). Ten time series of length N = 10,000 were generated 
for each of three categories of signals using an inverse Fourier transform 
(Lennon, 2000): White, pink, and brown noise (see Figure 4). Initially, DFA 
was used to verify that the synthetic time series we created indeed had the 
desired mathematical characteristics. The integrated white, integrated pink, 
and non-integrated brown series were found to have mean (± 1 SD) H values 
of HfGn = 0.49 ± 0.01, HfGn = 0.97 ± 0.01, and HfBm = 0.51 ± 0.01, respectively. 
The close correspondence between those results and the theoretical values 
of HfGn = 0.5, HfGn = 1.0, and HfBm = 0.5, respectively, indicates that the 
simulations produced accurate simulations of fractal processes. Based on 
our a priori knowledge of the signals, confirmed by visual inspection of 
stationarity of the time series and these preliminary checks using DFA, 
only the white and pink noise time series were integrated prior to AFA. The 
brown noise time series were not integrated.

Figure 4: Sample time series of white (top), pink (middle), and brown (bottom) 
noise.
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Data Reduction and Analysis
The AFA steps described above were implemented on the set of 30 synthetic 
time series. Parameters of window size w = 0.5 and polynomial orders 
of M = 1 and M = 2 were chosen for the analyses (AFA was performed once 
with each polynomial order). Sample AFA plots are shown in Figure 5.

Figure 5: Example log2F(w) vs. log2w plots returned by AFA for the time 
series depicted in Figure 4. The plots on the left side (panels A, C, and E) are from 
AFA using a polynomial order of M = 1 while those on the right side (panels B, 
D, and F) are from AFA using a polynomial order of M = 2. Plots A and B are for 
white noise, plots C and D are for pink noise, and plots E and F are for brown 
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noise. The respective HfGn (A, B, C, and D) and HfBm (E and F) values are shown 
for each signal.

Results
For the white noise time series, using polynomial orders of M = 1 and M = 
2, AFA returned mean H values of HfGn = 0.49 ± 0.01 and HfGn = 0.50 ± 0.01, 
respectively. The pink noise time series were also effectively categorized by 
AFA in the original time series. A mean H value of HfGn = 0.98 ± 0.01 was 
obtained using a polynomial order M = 1 and a mean value of HfGn = 0.99 ± 
0.02 was found using a polynomial order M = 2. Lastly, AFA successfully 
characterized the non-integrated synthetic brown noise time series. Using 
polynomial orders of M = 1 and M = 2, AFA returned mean HfBm values of 
0.51 ± 0.02 and 0.52 ± 0.01, respectively.

Discussion
The application of AFA to the synthetic time series indicated that AFA is 
able to characterize the types of noise with a similar accuracy as DFA. The 
obtained H values corresponded very closely to the theoretically expected 
values and to the values obtained by DFA (presented earlier). The estimates 
also exhibited high reliability (low SD values). Changing the polynomial 
order M had very small consequences for these synthetic data; M = 2 resulted 
in slightly better estimates for white and pink noise (and for this polynomial 
order AFA produced slightly more accurate estimates than did DFA), but 
slightly worse estimates for brown noise.

Application to Real-world Data from a Cognitive Psychology 
Experiment
We analyzed time series produced by a single participant who repeatedly 
performed a cognitive task (estimating the duration of a temporal interval) 
over the course of multiple experimental sessions. The task of repeated 
temporal estimation is frequently used to study the variability of human time 
estimation (Delignières and Torre, 2010) and was one of the first reported 
cases of 1/f noise in human cognitive behavior (Gilden et al., 1995).

Experimental Methods
A single female undergraduate student who gave informed consent 
participated voluntarily in the study which was approved by the Institutional 
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Review Board at the University of Cincinnati. She was paid $10 per session. 
The task required the participant to provide repeated estimates of a 1-s time 
interval. Time estimates were recorded from the presses of the spacebar of a 
millisecond-accurate keyboard (Apple A1048, Empirisoft). Response times 
were recorded using the Psychophysics Toolbox for Matlab (Brainard, 1997), 
which recorded the time of each key press during the experiment. We defined 
one time interval estimate as the time from the beginning of one space bar 
press to the next one.

At the beginning of each experimental session the participant listened to 
20 metronome beats of the 1-s interval to be estimated. The metronome was 
then turned off, and the participant then immediately began performing the 
time estimation task. A total of 1050 estimates were produced consecutively 
in each experimental session, and each session lasted approximately 20 
min. There were two experimental conditions that varied with regard to 
the presence or absence of feedback about the accuracy of the estimates. 
In the no-feedback condition the participant did not receive any explicit 
feedback about timing performance. This condition was similar to tasks 
used previously in continuation tapping experiments (Gilden et al., 1995; 
Chen et al., 2002; Wagenmakers et al., 2004; Torre and Delignières, 2008). 
In the feedback condition a computer monitor was used to present feedback 
specifying the error (in ms) of the most recent estimate on every trial. For 
example, if the participant hit the space bar 250 ms after 1 s had passed 
since the previous press, the feedback on the screen would read “250 ms 
late.” The participant first completed 10 no-feedback trials, one per day on 
consecutive days, and then completed 10 feedback trials (again one per day 
on consecutive days). For present purposes we focus on just the first and the 
last trial in each of the two feedback conditions.

Data Processing and Results
We followed the standard procedure in the literature on temporal estimation 
to remove all observations less than 300 ms and any observations falling 
beyond 3 SD from the mean. Such values are likely to originate from 
accidents such as double-tapping the space bar or not initially pressing the 
bar hard enough, and a significant number of these kinds of outlying values 
can have detrimental results. From looking at plots of the data processed in 
this way (Figure 6), it was clear that the time series of temporal estimates 
were more similar to fGn than fBm (compare to Figure 1)1. Therefore, we 
integrated our data prior to performing AFA. Then, the same basic steps for 
AFA described previously were again implemented, but with the following 
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additional considerations taken into account. We used M = 1 (given that 
using M = 2 did not show consistently better results in our analysis of the 
sample time series) and log2w step sizes of 0.5 (because we wanted to 
enhance the resolution of the AFA plots to facilitate the identification of 
linear scaling regions).

Figure 6: Trial series of continuous time estimates with and without accuracy 
feedback after removing observations faster than 300 ms and beyond 3 SD from 
the mean. The participant performed the task 10 times in each feedback condi-
tion.

When dealing with real-world data, if fractal scaling is present it may 
be limited to a range of time scales (i.e., w values). If this is not taken 
into account, it may lead to inaccuracies in the estimation of H. Before 
estimating H, then, it was important to visually inspect the plots of log2F(w) 
as a function of log2w to identify regions where linear scaling might be 
present. If fractal scaling appears limited, it may be necessary to restrict 
the range of the linear fit to the plot to exclude regions where linear scaling 
does not occur. Inclusion of regions where fractal scaling is actually absent 
can lead to inaccuracies and reduce the reliability of H estimates (Cannon 
et al., 1997), and may present an unrealistic picture of the degree to which 
fractal scaling really is a major feature of the signal being analyzed. In 
practice, it is desirable to make this process as objective and automated as 
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possible to avoid bias. Elsewhere (Kuznetsov et al., 2012) we have described 
this issue in more detail, and presented a quantitative procedure designed 
for this process. For the sake of this tutorial, however, we chose the linear 
regions visually after inspecting the AFA plots for each trial without the 
linear fits imposed to examine the possibility of linear scaling.

As often occurs with empirical data (as opposed to pure mathematical 
fractals), some of our time series yielded slightly curved log2F(w) functions 
(cf. Di Matteo et al., 2003) and had cut-off edge effects especially at larger 
time scales (w > 8 or 256 estimates). Visual inspection of the AFA plots (see 
Figure 7) suggested two distinct regions of linear scaling, one for low w (i.e., 
fast time scales) and a longer region for higher w (i.e., slower time scales), 
for both feedback conditions and for both the first and last experimental 
sessions. Such a finding was expected based on previous studies that 
revealed HfGn < 0.5 over the faster scales and HfGn > 0.5 at the slower scales 
(Lemoine et al., 2006; Delignieìres et al., 2008).

Figure 7: AFA plots for the time series of time estimates presented in Figure  
Figure66. The HfGn values are indicated for each scaling region.

In the first experimental session the fast scaling region for the no-
feedback condition spanned windows log2w from 1.58 to 3.17 (in terms 
of actual number of time estimates this corresponded to a range of 3–9). 
The HfGn value associated with this region was 0.50, indicating the presence 
of uncorrelated white noise. The slower scaling region for the no-feedback 
condition had an HfGn value of 0.91 (indicating a positive correlation at this 
scale) and spanned windows log2w from 3.17 to 9 (13–513 estimates). On 
the last trial, after a period of practice, the fast scaling region showed a 
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tendency to become slightly anti-correlated but was still very close to white 
noise (HfGn = 0.48) and its length decreased compared to the first session 
(it now spanned 1.58–2.81 log2w, or 3–7 estimates). The slow scaling 
region increased in length (it now spanned from log2w = 3.17 to 9; 9 to 513 
estimates) and became more uncorrelated because its HfGn value decreased 
to 0.77.

A similar pattern of results was found for performance in the feedback 
condition (see Figure  Figure6,6, right panel). The fast scaling region during 
the first session spanned windows from 1.58 to 3.17 log2w (in terms of 
actual number of time estimates this corresponded to a range of 3–9) and 
had a HfGn = 0.48, indicating uncorrelated white noise dynamics on this 
scale. One major difference compared to the no-feedback condition was the 
shorter length of the slow scaling region in the first session, which now 
spanned values of log2w from 3.17 to 8 (9–257 estimates). Similar to the no-
feedback condition, the dynamics at this scale exhibited positive correlation 
as indexed by HfGn = 0.87. The breakdown at larger log2w is likely due to 
an initial transient evident in the time series plot for this session—for about 
the first 100 estimates the participant consistently underestimated the 1-s 
interval, but then began to estimate it more accurately. Because this only 
happened during one part of the trial, this affected the slowest scaling region 
of the AFA plot. At trial number 10, similarly to the no-feedback condition, 
the fast scaling region showed a tendency to become slightly more anti-
correlated but was still very close to white noise (HfGn = 0.44) and its length 
decreased compared to the first session (it now spanned 1.58–2.81 log2w, or 
3–7 estimates). The slow scaling region increased in length (it now spanned 
log2w = 3.17–9; 9–513 estimates) and became less correlated because 
its HfGn value decreased to 0.79.

Discussion
Finite, real-world time series are typically more complex than the ideal 
simulated noises of mathematics. For example, as was apparent in these 
time series, experimental data can contain multiple scaling regions. Partly, 
this may be because experimental data contain both the intrinsic dynamics of 
the process that generated the signal plus the measurement noise inherent in 
any recording device. Apart from that, the intrinsic dynamics of real-world 
signals may have singular events and non-stationarities that if severe enough 
often can complicate many analyses (including AFA). Because of this it is 
very important to carefully examine the raw data and the corresponding 
scaling plots before conducing any quantitative analyses.
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With regard to the dynamics of cognitive performance in this temporal 
estimation task, these results provide preliminary evidence of the presence 
of practice effects in the continuous time estimation task. Practice led to a 
decrease in the H exponent of the slow scaling region, suggesting that the 
responses became somewhat more uncorrelated at this scale with practice. 
Of course our preliminary results have to be interpreted with caution because 
they are based on single participant and there are individual differences 
in the slow scaling region H values in this task (Torre et al., 2011). The 
differences between feedback conditions at the fast time scales were not 
expected because previous literature reported anti-correlated dynamics at 
this scale (Lemoine et al., 2006; Delignieìres et al., 2008). Feedback clearly 
resulted in an increased tendency for anti-correlated, corrective dynamics 
at faster time scales because participants were displayed their performance 
with regard to the benchmark 1 s time. They appeared to use that information 
to correct performance on a trial-by trial-basis. In the no-feedback condition, 
this information was not readily available, which led to essentially random 
performance at the fast time scales.

GENERAL DISCUSSION
We applied AFA to known fractal signals and to real-world data from an 
experiment in human cognitive psychology that involved the repeated 
reproduction of a time interval. AFA recovered the H values of the known 
mathematical signals with high accuracy. This was generally true for 
both M = 1 and M = 2. The choice of polynomial order did not have a 
very large effect, although M = 2 yielded slightly better results for the white 
and pink noise signals but slightly worse results for the brown noise signal. 
Linear scaling was well defined over a single region for these signals.

Application of AFA to the experimental data revealed some of the 
complexities in applying fractal analyses to real data, particularly the issue 
of identification of linear scaling regions. We determined the scaling regions 
visually and then fit lines to them to obtain estimates of H. Often this is 
sufficient, but it is not an objective process and it could be subject to bias 
in an experiment that involves testing a particular hypothesis or an initial 
effort to classify a previously unanalyzed type of signal. If visual selection 
of the scaling region is used, it should be done by multiple observers (so that 
inter-rater reliability can be computed) who are blind to the experimental 
conditions and study hypotheses (to avoid bias). In Kuznetsov et al. (2012) 
we present an objective, quantitative technique based on model-selection 
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methods that could be used to identify scaling regions, but more work 
remains to be done on this issue.

For the experimental time series we analyzed two linear scaling regions 
were apparent rather than one. Consistent with previous results using 
other analysis methods including spectral analysis (Lemoine et al., 2006; 
Delignieìres et al., 2008), these regions showed distinct slopes. The faster 
time scale yielded lower HfGn and were basically random white noise 
processes (especially for the no-feedback condition) with a slight tendency 
toward exhibiting anti-correlated fluctuations. The longer time scale yielded 
higher HfGn values consistent with a correlated process that was close to 
idealized pink-noise. The presence of feedback had some influence on the 
structure of the fluctuations of the repeated temporal estimates, as did the 
practice afforded by performance on consecutive experimental sessions. One 
of these effects was that linear scaling for the slower time scale broke down 
at larger w for the first session in the no-feedback condition, but spanned 
the entire upper range of w for the last session. These results show that AFA 
may be sensitive to experimental manipulations that affect the temporal 
structure of data series both with regard to the estimated H values and the 
range of w over which fractal scaling occurs.

Besides the issue of identifying linear scaling region, AFA requires 
several other choices such as the step size for the window size w. Typically 
0.5 or 1 log2w are used, with smaller values providing greater resolution in the 
AFA plot. In principle this choice should have little impact on H estimates, 
and would not seriously impact computation time except perhaps for 
extremely long time series. It could, however, have a strong impact on the 
ability to identify linear scaling regions, especially with regard to resolving 
the existence of linear scaling regions at faster time scales. The choice of 
polynomial order M for the local fits is also important, especially for signals 
that may have oscillatory or non-linear trends as higher-order polynomials 
may be more effective at extracting those trends. Typical choices of 1 or 2 
seemed to provide about the same accuracy in estimates of H for the known 
signals we analyzed.

Other factors that impact the ability to identify linear scaling include the 
sampling rate and the trial length, which, respectively, will affect the ability 
to resolve faster and slower time scales. These are important choices. A very 
high sampling rate might indicate the appearance of scaling at very fast time 
scales, but if those time scales are not physically realistic, one should be 
cautious about interpreting them. Increasing trial length may help reveal or 
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resolve scaling over very long time scales, which may be very important 
when dealing with apparently non-stationary time series.

Ideally, AFA should be used in conjunction with other methods, and 
converging results should be sought. But because AFA but has several 
advantages over similar methods such as DFA (Gao et al., 2011) the results 
may not always agree, so care should be taken in interpreting the results. Like 
all fractal analysis methods, AFA requires careful consideration of signal 
properties, parameter settings, and interpretation of results, and should not 
be applied blindly to unfamiliar signals. It is particularly important to plot 
and carefully inspect the time series and the AFA plots to ensure that the 
apparent signal properties match with the obtained results. In addition, as 
we noted previously the appearance of linear scaling regions in an AFA plot 
is not a definitive test for fractal scaling. When used carefully AFA may 
provide another useful tool for analyzing signals that may exhibit fractal 
dynamics.
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Footnotes
1Following suggestions by Cannon et al. (1997) and Eke et al. (2000), we 
performed spectral analyses on the data to provide a more objective classifi-
cation of our time series as fGn or fBm. The spectral exponents ranged from 
0.48 to 0.75, indicating the signals were consistent with fGn.
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ABSTRACT
This article will be positioned on our previous work demonstrating the 
importance of adhering to a carefully selected set of criteria when choosing 
the suitable method from those available ensuring its adequate performance 
when applied to real temporal signals, such as fMRI BOLD, to evaluate 
one important facet of their behavior, fractality. Earlier, we have reviewed 
on a range of monofractal tools and evaluated their performance. Given the 
advance in the fractal field, in this article we will discuss the most widely 
used implementations of multifractal analyses, too. Our recommended 
flowchart for the fractal characterization of spontaneous, low frequency 
fluctuations in fMRI BOLD will be used as the framework for this article 



Fractal Analysis194

to make certain that it will provide a hands-on experience for the reader 
in handling the perplexed issues of fractal analysis. The reason why this 
particular signal modality and its fractal analysis has been chosen was due to 
its high impact on today’s neuroscience given it had powerfully emerged as a 
new way of interpreting the complex functioning of the brain (see “intrinsic 
activity”). The reader will first be presented with the basic concepts of mono 
and multifractal time series analyses, followed by some of the most relevant 
implementations, characterization by numerical approaches. The notion 
of the dichotomy of fractional Gaussian noise and fractional Brownian 
motion signal classes and their impact on fractal time series analyses will 
be thoroughly discussed as the central theme of our application strategy. 
Sources of pitfalls and way how to avoid them will be identified followed by 
a demonstration on fractal studies of fMRI BOLD taken from the literature 
and that of our own in an attempt to consolidate the best practice in fractal 
analysis of empirical fMRI BOLD signals mapped throughout the brain as 
an exemplary case of potentially wide interest.

Keywords: fractals, monofractals, multifractals, time series analysis, nu-
merical testing, fMRI BOLD, brain

INTRODUCTION
Fractality (Mandelbrot, 1967, 1980, 1985; Bassingthwaighte et al., 1994; 
Gouyet, 1996; Eke et al., 2002), – in addition to deterministic chaos, 
modularity, self-organized criticality, “small word” network-connectivity – 
by now has established itself as one of the fundaments of complexity science 
(Phelan, 2001) impacting many areas including the analysis of brain imaging 
data such as fMRI BOLD (Zarahn et al., 1997; Thurner et al., 2003; Maxim 
et al., 2005; Raichle and Mintun, 2006; Fox et al., 2007; Razavi et al., 2008; 
Wink et al., 2008; Bullmore et al., 2009; Herman et al., 2009, 2011; Ciuciu 
et al., 2012).

The interest in fractal analysis accelerated the development of the new 
paradigm beyond a rate when the new – essentially mathematical or physical 
(i.e., statistical mechanics) – knowledge could be consolidated, their tools 
thoroughly evaluated and tested before being put to wide-spread use in 
various fields of science; typically beyond the frontiers of mathematics. 
The lack of an in-depth understanding of the implications of the methods 
when applied to empirical data, often generated conflicting results, but also 
prompted efforts at making up for this deficiency. Early, with the migration 
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of the fractal concept from mathematics to various fields of science like 
physiology, the groups of Bassingthwaighte (Bassingthwaighte, 1988; 
Bassingthwaighte et al., 1994) and Eke et al. (1997) realized the need to 
adopt a systematic approach in developing needed analytical and testing 
frameworks to characterize and evaluate various monofractal time series 
methods (Bassingthwaighte and Raymond, 1994, 1995; Caccia et al., 1997; 
Eke et al., 2000, 2002). Eke and coworkers demonstrated that conscious and 
precise monofractal time series analysis could only be done when one has 
an a priori concept of the nature of the observed signals. They introduced the 
dichotomous fractional Gaussian noise (fGn) /fractional Brownian motion 
(fBm) model of Mandelbrot and Ness (1968) as the basis of monofractal time 
series analysis (Eke et al., 2000, 2002) and offered a strategy for choosing 
tools according to a proven selection criteria (Eke et al., 2000). Given 
the continuing advance in the fractal field and in sync with the increasing 
awareness to avoid potential pitfalls and misinterpretation of results in 
various forms of fractal analyses (Delignieres et al., 2005; Gao et al., 2007; 
Delignieres and Torre, 2009; Marmelat and Delignieres, 2011; Ciuciu et 
al., 2012), in this article we apply our evaluation strategy to multifractal tools, 
and characterize their most widely used implementations. Our motivation in 
doing so stems from the potentials of fMRI BOLD multifractal analysis in 
revealing the physiological underpinnings of activation-related change in 
scaling properties in the brain (Shimizu et al., 2004).

fMRI BOLD (Ogawa et al., 1990, 1993b; Kwong et al., 1992; 
Bandettini, 1993) has been selected as an exemplary empirical signal in 
our demonstrations, because its impact on contemporary neuroscience (Fox 
and Raichle, 2007). The human brain represents the most complex form 
of the matter (Cramer, 1993) whose inner workings can only be revealed 
if signals reflecting on neuronal activities are recorded at high spatio-
temporal resolution. One of the most powerful methods, which can record 
spatially registered temporal signals from the brain, is magnetic resonance 
imaging (MRI; Lauterbur, 1973). The MRI scanner can non-invasively 
record a paramagnetic signal (referred to as blood oxygen level dependent, 
BOLD; Ogawa et al., 1990, 1993a) that can be interpreted as the signature 
of the functioning brain via its metabolic activity continuously modulating 
the blood content, blood flow, and oxygen level of the blood within the 
scanned tissue elements (voxels). Recently, a rapidly increasing volume of 
experimental data has demonstrated that BOLD is a complex signal, whose 
fractality – if properly evaluated – can reveal fundamental properties of the 
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brain among them the so called “intrinsic or default mode” of operation that 
appears complementing the stimulus-response paradigm in the understanding 
the brain in a powerful way (Raichle et al., 2001). We hope, our paper could 
contribute to this major effort from the angle of consolidating some relevant 
issues concerning fractal analysis of fMRI BOLD.

CONCEPT OF FRACTAL TIME SERIES ANALYSES

Monofractals
All fractals are self-similar structures (mathematical fractals in an exact, 
natural fractals in a statistical sense), with their fractal dimension falling 
between the Euclidian and topologic dimensions (Mandelbrot, 1983; Eke et 
al., 2002). When self-similarity is anisotropic, the structure is referred to as 
self-affine; a feature, which applies to fractal time series (Mandelbrot, 1985; 
Barabási and Vicsek, 1991; Eke et al., 2002), too. Statistical fractals cannot 
be described comprehensively by descriptive statistical measures, as mean 
and variance, because these do depend on the scale of observation in a power 
law fashion:

     (1)
where μ1, μ2 are descriptive statistical measures, and s1, s2 are scales within 
the scaling range where self-affinity is present, and ε is the power law scaling 
exponent. From this definition a universal scale-free measure of fractals can 
be derived:

    (2)
D is called capacity dimension (Barnsley, 1988; Liebovitch and Tóth, 1989; 
Bassingthwaighte et al., 1994), which is related but not identical to the 
Hausdorff dimension (Hausdorff, 1918; Mandelbrot, 1967), s is scale 
and N(s) is the minimum number of circles with size s needed to cover the 
fractal object to quantify its capacity on the embedding dimensional space 
(it corresponds to μ in Eq. 1). For fractal time series, the power law scaling 
exponent ε is typically calculated in the time domain as the Hurst exponent 
(H), or in the frequency domain as the spectral index (β). H and D relate 
(Bassingthwaighte et al., 1994) as:
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      (3)
Further, β can also be obtained from H as (H − 1)/2 for fGn and (H + 1)/2 

for fBm processes (Eke et al., 2000).

Multifractals
While D does not vary along a monofractal time series, it is heterogeneously 
distributed along the length of a multifractal signal.

This phenomenon gave rise to the term “singular behavior,” as self-
affinity can be expressed by differing power law scaling along a multifractal 
time series, Xi as:    
Xi+Δi - Xi ∝ |Δi|h(i),     (4)
where h is the Hölder exponent defining the degree of singularity at time 
point, i. Calculating the fractal dimension for each subsets of Xi of the 
same h, one obtains the singularity spectrum, D(h) (Mandelbrot spectrum), 
which describes the distribution of singularities (Frisch and Parisi, 1985; 
Falconer, 1990; Turiel et al., 2006).

    (5)
where hmax is the Hölder exponent corresponding to maximal fractal 
dimension, smin is the finest scale corresponding to Hölder trajectory, and 
ρ(h) is the distribution of singularities.

The singular behavior of a multifractal is a local property. Separation 
of the singularities can be difficult, given the finite sampling frequency of 
the signal of interest (Mallat, 1999). Thus, in contrast with monofractality, 
a direct evaluation of multifractality is a demanding task in terms of the 
amount of data and the computational efforts needed, which can still not 
guarantee precise results under all circumstance.

With the aid of different moments of appropriate measure, μ, a set of 
equations can be established to obtain the singularity spectrum, which is 
a common framework exploited by multifractal analysis methods referred 
to as multifractal formalism (Frisch and Parisi, 1985; Mandelbrot, 1986; 
Barabási and Vicsek, 1991; Muzy et al., 1993). Using a set of different 
moment orders, one can determine the scaling behavior of μq, yielding 
the generalized Hurst exponent, H(q) (Barunik and Kristoufek, 2010; See 
Figure 1):
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⟨μq(s)⟩ ∝ sq⋅H(q).  (6)

Figure 1: Monofractal and multifractal temporal scaling. Three kinds of frac-
tals are shown to demonstrate scale-free property of these structures: a sta-
tionary monofractal (fractional Gaussian noise), a non-stationary monofractal 
(fractional Brownian motion), and a multifractal (Devil’s staircase with weight 
factors p1 = p3 = 0.2, p2 = 0.6). Every fractal is self-similar: fGn and fBm in a 
statistical sense (as in empirical structures and processes where fractality is 
manifested in equal distributions, only) and Devil’s staircase in an exact man-
ner (as self-similar structuring in mathematical, i.e., ideal fractals is exact). For 
fractals, descriptive statistical measures [for example mean, variance, fluctua-
tion (Fq) etc.] depend on the corresponding scale in a power law fashion. Thus 
as a scale-free descriptor, the extended Hurst exponent (H′) is calculated as a 
slope of regression line between the logarithms of the scale (s) and Fq (For an 
explanation of H′, see main text). The obtained slopes for different magnifica-
tions of the time series [here with the order of q = (1, 2, 3), which is the order of 
moment of the used measure] are the same for monofractals and different for 
multifractals, demonstrating that power law scaling behavior is a global prop-
erty of monofractals, while it is a local property of multifractals. Accordingly, 
note that slopes in the bottom left and middle panel are the same, while in the 
right panel they indeed differ. For further details, see main text.
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On the right side of Eq. 4 Δi corresponds to scale, s, on the right side 
of Eq. 6. Using the partition function – introduced in context of Wavelet 
Transform Modulus Maxima (WTMM) method – singularities are analyzed 
globally for estimating the (multi)scaling exponent (Mallat, 1999):

     (7)

    (8)
where τ(q) can be also expressed from H(q) (Kantelhardt et al., 2002) as:

    (9)
where DT is the topological dimension, which equals 1 for time series.
The generalized fractal dimension can also describe the scale-free features 
of a multifractal time series:

   (10)
The singularity spectrum, D(h), can be derived from τ(q) with Legendre 

transform (Figure  (Figure2),2), via taking

      (11)
the slope of the tangent line taken at q for τ(q), and yielding

    (12)
that when evaluated gives the negative of the intercept at q = 0 for the tangent 
line (See Figure 2).
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Figure 2: Legendre transform. It is known that singularity spectrum, D(h), has 
a concave shape, and provided that τ(q) is also a concave function, they can 
be explicitly transformed into each other via the Legendre transform (Bacry et 
al., 1993). Legendre transform takes a function, in our case τ(q) and produces a 
function of a different variable, D(h). The Legendre transform is its own inverse 
and uses minimization as the basis of the transformation process according to 
Eq. 12. If minimization cannot be achieved, the transformation would fail. On 
the left a real (concave), on the right a non-concave case for τ(q) is shown. A 
simple concave function, f(x) = −x2 + 5x + 4 (shown in blue) is used for modeling 
τ(q). If f(x) is differentiable, hence a tangent line (shown in red) can be taken 
at point of P0 (q0, τ0) with a slope τ′(q), then g*(q0) is the y-intercept, (0, g*), 
and −g* is the value of the Legendre transform (See Eq. 11). Maximization at 
(q0, τ0) is valid since for any other point on the blue curve, a line drawn through 
that point with the same slope as the red line will yield a τ0-intercept below the 
point (0, g*), showing that g* is indeed obtained as a boundary value (maxi-
mum), thus the transformation for D(h) would also yield a single boundary 
value (minimum) on the green curve as D(h) = −g* = τ′(q)q−τ(q). Steps of the 
transformation process are shown (1) select q, (2) read τ(q), (3) take a tangent 
line at (q, τ) and determine its slope, h = τ′(q), (4) select h, (5) determine D(h) 
using the above equation; repeat for the set. On the right side, a non-concave 
function is shown (blue) for demonstrating a case, when due to the non-concave 
shape of τ(q) the shape of the transformed function, D(h), does not yield a re-
alistic singularity spectrum given that in this case the transform by failing on 
minimization is poorly behaved yielding ambiguous values.

Natural signals have a singularity spectrum over a bounded set of Hölder 
exponents, whose width is defined by [h−∞, h+∞] (Figure 3).
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Figure 3: Approaches to multifractal analyses. Direct approach of multifrac-
tal analysis means exploiting the local power law scaling behavior to obtain 
local Hölder exponents (Eq. 4), from which the Mandelbrot spectrum is cal-
culated with histogram method (Falconer, 1990; Eq. 5). Indirect approaches 
shown here (MF-DFA, multifractal detrended fluctuation analysis; MF-DMA, 
multifractal detrended moving average; WTMM, Wavelet Transform Modulus 
Maxima) estimates the scaling exponent, τ as a function of q. It is worth to 
note, that this is carried out differently for MF-DFA, MF-DMA (Eq. 9), and for 
WTMM (Eq. 8). From τ(q), the Mandelbrot spectrum can be obtained with the 
application of the Legendre transform, while its relation to generalized fractal 
dimension D(q) is given by Eq. 10. Singularity spectrum, D(h), is an important 
endpoint of the analysis. The spectrum is concave and has a nearly parabol-
ic shape with a maximum identified by the capacity dimension at q = 0 (Mal-
lat, 1999; Shimizu et al., 2004; Ihlen, 2012). Please note that some of its mea-
sures (FWHM, Dmax, W + , W−) can be used to calculate meaningful combined 
parameters (such as Pc, and W in Eqs 13 and 14, respectively) with potential in 
correlating with key features of fMRI BOLD time series.

A combination parameter, Pc, can be calculated (definitions on Figure 3) 
to facilitate the separation of time series characteristics (Shimizu et al., 2004), 
which can aid the exploration of the physiological underpinnings, too.

  (13)
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A similar parameter is W (Wink et al., 2008) calculated as

       (14)

IMPLEMENTATION OF FRACTAL TIME SERIES 
ANALYSES
Implementation of concepts in reliable algorithms is a critical task, as 
stationary and non-stationary signals require different methods when 
analyzed for their fractality. For a stationary signal the probability 
distribution of signal segments is independent of the (temporal) position of 
the segment and segment length, which translates into constant descriptive 
statistical measures such as mean, variance, correlation structure etc. over 
time (Eke et al., 2000, 2002).

Accordingly, signals can be seen as realizations of one of two temporal 
processes: fBm, and fGn (Eke et al., 2000). The fBm signal is non-stationary 
with stationary increments. An fBm signal, Xi, is self-similar in that its 
sampled segment Xi,n of length n is equal in distribution with a longer 
segment Xi,sn of length sn when the latter is rescaled (multiplied) by s-H. This 
means that every statistical measure, mn, of an fBm time series of length n is 
proportional to nH

       (15)

  (16)
where H is the Hurst exponent. H ranges between 0 and 1. 
Increments Yi = Xi − Xi−1 of a non-stationary fBm signal yield a stationary fGn 
signal and vice versa, cumulative summation of an fGn signal results in an 
fBm signal. Note that most methods listed below that have been developed 
to analyze statistical fractal processes share the philosophy of Eq. 15 in that 
in their own ways all attempt to capture the power law scaling in the various 
statistical measures of the evaluated time series (Eke et al., 2002).

Monofractal Methods
Here we focus on widely used monofractal methods selected from those in 
the literature.
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Time Domain Methods

Detrended fluctuation analysis
The method of Peng et al. (1994) begins with the signal summed and the 
mean subtracted

     (17)
Then the local trend Yj,n is estimated in non-overlapping windows 

of equal length n, using least-square fit on the data. For a given window 
size n the fluctuation is determined as the variance upon the local trend:

    (18)
For fBm processes of length N with non-overlapping windows of 

size n the fluctuation depends on the window size n in a power law fashion:

      (19)

      (20)
If Xi is an fGn signal then Yj will be an fBm signal. Fn then is equivalent 

to mn of Eq. 16 yielding Fn∝pnH therefore in this case α = H. If Xi is an fBm 
signal then Yj will be a summed fBm signal. Then Fn∝pnH + 1, where α = H + 1 
(Peng et al., 1994).

Signal summation conversion method
This method was first introduced by Eke et al. (2000) for enhancing signal 
classification as a variant of the scaled windowed variance (SWV) analysis 
of Mandelbrot (1985) as further developed by Peng et al. (1994).

Fluctuations of a parameter over time can be characterized by calculating 
the standard deviation
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   (21)
For fBm processes of length N when divided into non-overlapping 

windows of size n as Eq. 21 predicts the standard deviation within the 
window, sn, depends on the window size n in a power law fashion:
SDn ∝ pnH,       (22)
and

     (23)
In practice SDn’s calculated for each segment of length n of the time 

series are averaged for the signal at each window size. The standard method 
applies no trend correction. Trend in the signal seen within a given window 
can be corrected either by subtracting a linearly estimated trend (line 
detrended version) or the values of a line bridging the first and last values of 
the signal (bridge detrended version; Cannon et al., 1997). This method can 
only be applied to fBm signals or cumulatively summed fGn signals.

The signal summation conversion (SSC) method was first used for 
enhanced signal classification according to the dichotomous fGn/fBm model 
(Eke et al., 2000). There are two steps: (1) calculate from Xi its cumulative 
sum (this converts an fGn to an fBm or converts an fBm to its cumulant), 
and (2) use the bdSWV method to calculate from the cumulant series Ĥ′. 
The interpretation of Ĥ′ is that when 0 < Ĥ′ ≤ 1,  then Xi is an fGn with Ĥ′. 
Alternatively, when Ĥ′ > 1,  then the cumulant series is identified as an fBm 
signal of Ĥ = Ĥ′ - 1. As seen, in order to keep Ĥ′ scaled within the [0,1] range, 
in the original version of the method in the fBm case 1 was subtracted from 
the estimate of H. Given that the SSC method handles fGn and fBm signals 
alike, we eliminate this step and report values as 0 < Ĥ′ < 1 for fGn and 
1 < Ĥ′ < 2 for fBm signals referring Ĥ′ as the “extended” Hurst exponent. 
This way, the mere value of the Hurst exponent would reflect on signal class, 
the focus of fractal time series analysis strategy. Also the use of Ĥ′ would 
greatly facilitate reviewing the results of numerical performance analyses.

Real-time implementations of SSC and Detrended Fluctuation Analysis 
(DFA) methods have been recently reported (Hartmann et al., 2012).
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Frequency Domain Method
Fractal analysis can also be done in the frequency domain using methods 
such as the power spectral density (PSD) analysis (Fougere, 1985; 
Weitkunat, 1991; Eke et al., 2000).

Power Spectral Density Analysis (lowPSDw,e)
A time series can be represented as a sum of cosine wave components of 
different frequencies:

  (24)
where An is the amplitude and Φn is the phase of the cosine-component with 
ωn angular frequency. The commonly used sample frequency is fn = ωn/2π. 
The An(fn), Φn(fn), and A2n(fn) functions are termed amplitude, phase, and 
power spectrum of the signal, respectively. These spectra can be determined 
by an effective computational technique, the fast Fourier transform (FFT). 
The power spectrum (periodogram, PSD) of a fractal process is a power law 
relationship

  (25)
where β is termed spectral index. The power law relationship expresses 
the idea that as one doubles the frequency the power changes by the same 
fraction (2−β) regardless of the chosen frequency, i.e., the ratio is independent 
of where one is on the frequency scale.

The signal has to be preprocessed before applying the FFT (subtraction 
of mean, windowing, and endmatching, i.e., bridge detrending). Discarding 
the high power frequency estimates improves the precision of the estimates 
of β (Fougere, 1985; Eke et al., 2000). Eke et al. (2000) introduced this 
version denoted as lowPSD w,e as a fractal analytical tool.

Time-Frequency Domain Method
Fractal wavelet analysis uses a waveform of limited duration with an average 
value of zero for variable-sized windowing allowing an equally precise 
characterization of low and high frequency dynamics in the signal. The 
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wavelet analysis breaks up a signal into shifted and stretched versions of the 
original wavelet. In other words, instead of a time-frequency domain it rather 
uses a time-scale domain, which is extremely useful not only in monofractal 
but multifractal analysis, too. One such way to estimate H is by the averaged 
wavelet coefficient (AWC) method (Simonsen and Hansen, 1998). The most 
commonly used analyzing wavelet is the second derivative of a standard 
normalized Gaussian function, which is:

  (26)
The scaled and translated version of the analyzing wavelet is given by

  (27)
where the scale parameter is a, and the translation parameter b.

The wavelet transformation is essentially a convolution operation in the 
time domain:

  (28)
From Eq. 16, one can easily derive how the self-affinity of an fBm 

signal X(t) determines its continuous wavelet transform (CWT) coefficients:

  (29)
The AWC method is based on Eq. 29 (Simonsen and Hansen, 1998) and 

can be applied to fBm signals or to cumulatively summed fGn signals.

Multifractal Methods
Three analysis methods are described here; all use different statistical 
moments (termed q-th order) of the selected measure to evaluate the signal’s 
multifractality. Despite of certain inherent drawbacks, these methods are 
widely used in the literature, and can obtain reliable results if their use is 
proper with limitations considered.
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Time Domain Methods
Below, the Multifractal DFA (MF-DFA; Kantelhardt et al., 2002) and the 
recently published Multifractal Detrended Moving Average (MF-DMA; Gu 
and Zhou, 2010) will be reviewed. We will focus on MF-DMA, but since 
it is similar to MF-DFA, their differences will be pointed out, too. They 
rely on a measure of fluctuation, F, as in their monofractal variant (Peng et 
al., 1994), and differ in calculating the q-th order moments of the fluctuation 
function.

• Step 1 – calculating signal profile, Yj, by cumulative summation. 
It is essentially the same as in Eq. 17, however note that in DFA 
methods, the mean of the whole signal is subtracted before 
summation, while in DMA methods this is carried out locally in 
step 3.

• Step 2 – calculating the moving average function,Ỹj.

  (30)
For further details, see Figure 4.

Figure 4: Detrending scheme and fluctuation analysis for MF-DFA and MF-
DMA methods. The detrending strategy for MF-DFA (A) is that the signal is 
divided into a set of non-overlapping windows of different sizes, and a local 
low-order polynomial (typically linear) fit (shown in green) is removed from 
each window’s data. In contrast, MF-DMA (B) removes the moving average 
point-by-point calculated in different window sizes around the processed point 
with a position given by θ. This parameter describes the delay between the 
moving average function and the original signal. Its value is taken from [0, 
1] interval, 0 meaning only from signal values on the left (“backward,” past), 
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in contrast with 1 meaning that only signal values to the right (“forward,” fu-
ture) are used for calculating Ỹj. The centrally positioned sliding window cor-
responds to the case of θ = 0.5 balancing contributions from the past and the 
future to the reference point. The approaches of MF-DFA and MF-DMA thus 
ought to yield different detrended signals, whose calculated moments (C,D) and 
Eqs 33 and 34 obtained by the analysis should also be somewhat different.

• Step 3 – detrending by moving average: By subtracting Ỹt a 
residual signal, εt, is obtained:

     (31)
where n−[(n−1) · θ] ≤ t ≤ N−[(n−1)· θ].

This fundamental step of the DMA methods is essentially different from 
the detrending step of DFA methods (See Figure 4).

• Step 4 – calculation of fluctuation measure. The signal is split 
into Nn = [N/n − 1] number of windows (See Figure 4), ε(v), 
where v refers to the index of a given window. The fluctuating 
process is characterized by Fv(n), which is given as a function of 
window size, n:

     (32)
• Step 5 – calculation of q-th order moments of the fluctuation 

function.

    (33)
For q = 2, the algorithm reduces to the monofractal DMA method. For 

the special case q = 0, Fq(n) can be obtained as a limit value that can be 
expressed in a closed form:

    (34)
Relation of the q-th order moment of the fluctuation measure and H(q) fol-
lows a power law:

     (35)
Thus H(q) can be estimated as the slope of the least-square fitted 

regression line between log n and log [Fq(n)]. Finally, Mandelbrot spectrum 
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is obtained with subsequent application of multifractal formalism equations 
(Eqs 9–12) yielding multifractal features τ(q), D(h).

Time-Frequency Domain Methods
Wavelet analysis methods can be used to estimate the singularity spectrum 
of a multifractal signal by exploiting the multifractal formalism (Muzy et 
al., 1991, 1993, 1994; Mallat and Hwang, 1992; Bacry et al., 1993; Arneodo 
et al., 1995, 1998; Mallat, 1999; Figure 5). Wavelet transform modulus 
maxima (WTMM) has strong theoretical basis and has been widely used in 
natural sciences to assess multifractality.

Figure 5: Relations of Continuous Wavelet Transform operation, Wavelet 
Transform Modulus Maxima method, and multifractal formalism to obtain sin-
gularity spectrum of an ideal multifractal. Devil’s staircase with weight fac-
tors p1 = p3 = 0.2, p2 = 0.6 was used to model an ideal multifractal time series (A). 
The wavelet coefficient matrix (B) is obtained by continuous wavelet transform 
in the time-scale space. Modulus maxima map (C) containing the maxima lines 
across the scales defined by CWT. We call modulus maximum of the wavelet 
transform |Wψ[X](t, s0)|; any point (t0, s0), which corresponds to a local maxi-
mum of the modulus of |Wψ[X](t, s0)| is considered as a function of t. For a giv-
en scale, it means that |Wψ[X](t0, s0)| > |Wψ[X](t, s0)| for all t in the neighborhood 
right of t0, and |Wψ[X](t0, s0)| ≥ |Wψ[X](t, s0)| for all t in the neighborhood left 
of t0. Local maxima are chained, and in the subsequent calculations only maxi-
ma chains propagating to the finest scales are used (Mallat, 1999). Chaining lo-
cal maxima is important, because it is proven that their distribution along mul-
tiple scales identifies and measures local singularities, which is tightly linked 
to the singularity spectrum. The moment-based partition function (D) separates 
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singularities of various strength as coded in (B,C) as follows. Z is obtained for 
the range [smin, s] as the sum of moments of the wavelet coefficients belong-
ing to those along a set of maxima lines at s [shown as circles in (C)]. This 
definition corresponds to a “scale-adapted” partition with wavelets at different 
sizes. A moment-based set of Z are plotted in a log-log representation as shown 
in (D). Notice that these log Z(log s) functions are lines representing the power 
law behavior of the multifractal signal within the scaling range shown. There-
fore when the slope of each and every log Z(log s) lines are plotted as a function 
of moment order, q, it yields τ(q) (E). From τ(q) via Legendre transform the 
singularity spectrum, D(h) (F), is obtained (See Chapter 2, Figure 3).

• Step 1 – continuous wavelet transformation: This step is essentially 
the same as described previously in Eqs 26–28 yielding a matrix 
of wavelet coefficients (Figure 5B):

  (36)
where w(it, is) = |Wψ[X](t, s)|, is is the scaling index, where s = smin, 
…, smax and it = 1, 2, …, N, where t is the sampling time of each successive 
data point.

• Step 2 – chaining local maxima: The term modulus maxima 
describes any point (t0, s0) where |Wψ=[X](t, s)| is a local 
maximum at t = t0:

  (37)
This local maximum is strict in terms of its relation to t0 in its immediate 

vicinity. These local maxima are to be chained by interconnection to form a 
local maxima line in the space-scale plane (t, s) (See Figure 5C).

• Step 3 – calculating partition function. With the aid of partition 
function (Eq. 7, Figure  Figure5D),5D), singular behavior of the 
multifractal time series can be isolated. Wavelet coefficients 
along maxima chains are considered as μ measures.

  (38)
Summation is executed along maxima chains (ℓ), the set of all maxima 

lines is marked by L(s).
• Step 4 – calculating singularity spectra and parameters of 

multifractality. The following step is to determine the multiscaling 
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exponent, τ(q) by H(q), and then using Eqs 10–12 to give full 
quantification of the multifractal nature.

CHARACTERIZATION OF METHODS
Before the application of fractal analysis methods, their behavior should be 
thoroughly evaluated on a large set of signals with known scale-free structure 
and broad representation (Bassingthwaighte and Raymond, 1994, 1995; 
Caccia et al., 1997; Cannon et al., 1997; Eke et al., 2000, 2002; Turiel et 
al., 2006). Signal classification, estimating performance in terms of precision 
and limitations of the methods should be clarified during characterization. 
The capability of multifractal analysis to distinguish between mono- and 
multifractal processes should also be evaluated.

Stationarity of a signal is an important property for pairing with a 
compatible fractal analysis tool (see Table 2 in Eke et al., 2002). In addition, 
all methods have some degree of inherent bias and variance in their estimates 
of the scaling exponent bearing great importance due to their influence on the 
results, which can be misinterpreted as a consequence of this effect. The goal 
of performance analysis is therefore to characterize the reliability of selected 
fractal tools in estimating fractal parameters on synthesized time series. This 
should be carried out at least for a range of signal sizes and structures similar 
to the empirical dataset, so that the reliability of fractal estimates could be 
accurately determined. Extensive results obtained with our monofractal 
framework have been reported elsewhere (Eke et al., 2000, 2002), but for 
the sake of comparison it will be briefly described. Our multifractal testing 
framework is aimed to demonstrate relevant features of MF-DFA and MF-
DMA method, utilizing the equations described in Section “Implementation 
of Fractal Time Series Analyses.”

Testing Framework for Multifractal Tools on Monofractals
Monofractal signals of known autocorrelation (AC) structure can be 
synthesized based on their power law scaling. The method of Davies and 
Harte (1987) (DHM for short) produces an exact fGn signal using its special 
correlation structure, which is a consequence of the power law scaling of the 
related fBm signal in the time domain (Eq. 19). It is important, that different 
realizations can be generated with DHM at a given signal length and Hurst 
exponent, which consists of a statistical distribution of similarly structured 
and sized monofractals. The next question is how to define meaningful 
end-points for the tests? For ideal monofractals with a given length and 
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true H, Mean Square Error (MSE) is a good descriptor: it can be calculated 
for each set of series of known H and particular signal length, N (Eke et 
al., 2002). It carries a combined information about bias and variance, as 
MSE = bias2 + variance.

Interpreting the multifaceted results of numerical experiments is a 
complex task. It can be facilitated if they are plotted in a properly selected set 
of independent variable with impact shown in intensity-coded representations 
(Figure 6; Eke et al., 2002). Precision index is determined as the ratio of 
results falling in the interval of [Htrue – Hdev, Htrue + Hdev], where Hdev is an 
arbitrarily chosen value referring to the tolerable degree of deviation.

Figure 6: Precision as a function of moment order, signal length, and Hurst 
exponent. Precision of MF-DFA [left side of (A–C)] and MF-DMA [right side 
of (A–C)] as a function of q, Htrue, N. fGn and fBm signals were generated 
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by DHM with length of 28, 210, 212, 214, and Htrue increased from 0.1 to 1.9 in 
steps of 0.1, skipping Htrue = 1 (corresponding to 1/f boundary seen as the black 
horizontal line in the middle). Estimation of the generalized Hurst exponent 
should not depend on q, as monofractal’s H(q) is a theoretically constant func-
tion scattering around Htrue across different order of moments. The intensity-
coded precision index is proportional to the number of estimates of H falling 
into the range of Htrue ± 0.1, with lighter areas indicating more precise esti-
mation. Calculation of this measure is based on 20 realizations for each q, H
true, N. (A) Performance of methods for q = ± 5. (B) Performance of methods 
for q = ± 2. (C) Performance of methods for q = ± 0.5. Besides the clear depen-
dence of precision on Htrue and N, influence of moment order is also evident, 
given that the lightest areas corresponding to the most reliable estimates tend to 
increase in parallel with moment order approaching 0 [Note the trend from (A–
C)]. The lower half of the plots indicates that MF-DFA is applicable for signals 
of both types, while MF-DMA is reliable only on fGn signals. This result is 
further supported by the paper of Gao et al. (2006), who demonstrated a satura-
tion of DMA at 1 for H when the true extended Hurst exponent exceeds 1 (thus 
it is non-stationary).

In the monofractal testing framework, we used DHM-signals to evaluate 
the performance of MF-DMA (Gu and Zhou, 2010) and MF-DFA (Gu and 
Zhou, 2006), by the code obtained from http://rce.ecust.edu.cn/index.php/
en/research/129-multifractalanalysis. It was implemented in Matlab, in 
accordance with Eqs 17 and 30–35. As seen in Figure 6, precision of MF-
DFA and MF-DMA depends on N, H, and the order of moment.

In order to compare the methods in distinguishing multifractality, 
end-points should be defined reflecting the narrow or wide distribution of 
Hölder exponents. We select a valid endpoint Δh proposed by Grech and 
Pamula (2012), which is the difference of Hölder exponents corresponding 
to q = −15 and q = + 15 (Figure 7).
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Figure 7: Separating monofractals from multifractals. Δh values obtained by 
MF-DFA (as difference of Hölder exponents at q = + 15 and q = −15) are shown 
for monofractals with length of 210 (blue), 212 (green), 214 (red). It is clearly 
shown that longer signals are characterized by lower Δh, and its value below 0.2 
means that true multifractality is unlikely present (Grech and Pamula, 2012). 
Signals were created by DHM at extended Hurst exponents of 0–1.9 with a step 
of 0.1.

Testing Approaches for Multifractal Tools on Multifractals
Extending the dichotomous model of fGn/fBm signals (introduced in 
context of monofractals; Mandelbrot and Ness, 1968; Eke et al., 2000) 
toward multifractal time series is reasonable as it can account for essential 
features of natural processes exhibiting local power law scaling. Description 
of an algorithm creating multifractional Brownian motion (mBm) and 
multifractional Gaussian noise (mGn) can be found here (Hosking, 1984), 
while implementation of such code can be found on the net (URL1: http://
fraclab.saclay.inria.fr/, URL2: www.ntnu.edu/inm/geri/software). Given 
that these algorithms require Hölder trajectories as inputs, multifractality 
cannot be defined exactly on a finite set, which is a common problem of 
such synthesis methods. Selecting a set of meaningful trajectories is a 
challenging task: it should resemble those of empirical processes and meet 
the analytical criteria of the selected algorithms (such criteria are mentioned 
in Concept of Fractal Time Series Analyses).
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On the contrary, iterative cascades defined with analytic functions are 
not influenced by the perplexity of definitions associated with multifractality 
outlined in the previous paragraph, given that their value at every real point 
of the theoretical singularity spectrum is known. Due to their simplicity, 
binomial cascades (Kantelhardt et al., 2002; Makowiec et al., 2012) and 
Devil’s staircases (Mandelbrot, 1983; Faghfouri and Kinsner, 2005) are 
common examples of theoretical multifractals used for testing purposes. A 
major drawback of this approach is that these mathematical objects do not 
account for features in empirical datasets, but can still be useful in comparing 
reported results.

The most extensive test of multifractal algorithms which used a testing 
framework of signals synthesized according to the model introduced by 
Benzi et al. (1993) was reported by Turiel et al. (2006). Briefly, it is a 
wavelet-based method for constructing a signal with predefined properties 
of multifractal structuring with explicit relation to its singularity spectrum. 
Since the latter can be manipulated, the features of the resulting multifractal 
signal could be better controlled. The philosophy of this approach is very 
similar to that of Davies and Harte (1987) in that a family of multifractal 
signals of identical singularity spectra can be generated by incorporating 
predefined distributions (log-Poisson or log-Normal) giving rise to controlled 
variability of realizations. Additionally, using log-Poisson distribution 
would yield multifractals with a bounded set of Hölder exponents in that 
being similar to those of empirical multifractals. To conclude, this testing 
framework should merit further investigation.

ANALYTICAL STRATEGY
In this article we expand our previously published monofractal analytical 
strategy to incorporate some fundamental issues associated with multifractal 
analyses keeping how these can be applied to BOLD time series in focus. 
Progress along the steps of the perplexed fractal analysis should be guided 
by a consolidated – preferably model-based– view on the issues involved 
(See Figure 8).
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Figure 8: Analytical strategy for fractal time series analysis. Toward obtain-
ing a reliable (multi)fractal parameter, which is the purpose of the analysis, the 
first step to take is to collect a high definition dataset representing the temporal 
signal, X(t), ensuring adequate definition. Provided that quality-controlled, ad-
equate length of signal, Xi, was acquired at a sufficient frequency sampling X(t) 
(Eke et al., 2002), scale-free processes can be characterized in terms of either a 
single global or a distribution of many local scaling exponents, the former perti-
nent to a monofractal, the latter to a multifractal signal, respectively (Figure 1). 
A detailed flowchart of our monofractal analytical strategy has been reported 
earlier (Eke et al., 2000, 2002), hence only some of its introductory elements 
are incorporated here. The signal-to-noise ratio – as part of signal definition – is 
a source of concern in preprocessing the signal. Ensuring the domination of the 
underlying physiological processes over inherent noise is a critical issue, which 
– if not dealt with properly – will have a detrimental effect on the correlation 
structure of the signal. Endogenous filtering algorithms of the manufacturers 
of MRI scanners could be operating in potentially relevant frequency ranges 
of fractal analysis aimed at trend or noise removal (Jezzard and Song, 1996). 
In case of BOLD signals, this problem may prove hard to track as the system 
noise may cause a temporally (i.e., serially) correlated error in the measurement 
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(Zarahn et al., 1997). This may alter the autocorrelation structure of the signal 
with embedded physiological content (Herman et al., 2011). Various aspects of 
temporal smoothing have been discussed in Friston et al. (2000). To conclude, 
scale-free properties of the signal must be preserved during steps carried out be-
fore fractal analysis, otherwise the physiologically relevant internal structuring 
of the BOLD signal cannot possibly be revealed (Herman et al., 2011). Once a 
multifractal has been isolated by a class-independent method, such as MF-DFA, 
we can only assume that the multifractal structuring of the signal is due to serial 
correlation. As autocorrelation structure of the signal can reflect a broad prob-
ability distribution, surrogate analysis is needed on a shuffled signal – which de-
stroys this correlation – to ensure that the origin of the scale-invariance is due to 
genuine autocorrelation in the signal (Kantelhardt:2002]). The null-hypothesis 
(the signal is not multifractal) is rejected if multifractal measures determined for 
the raw and surrogate sets are different. This procedure is similar to verifying 
the presence of deterministic chaos (Herman:2006]). Attention should be given 
to select the scaling range properly: involving the finest and coarsest scales 
in calculating H(q) would greatly impair its estimate. The range of moments 
should be selected such that sufficient range of singularity spectrum is revealed, 
allowing for the calculation of scalar multifractal descriptors such as Pc. Next, 
one has to decide as to which path of the detailed multifractal analysis to choose 
(indirect vs. direct or time vs. time-frequency domain)? Each of these paths 
would have advantageous and disadvantageous contributions to the final results 
to consider. The methods of analysis must be selected compatible to the path 
taken. Once methods have been chosen, their performance (precision) ought to 
be evaluated. With adequate performance verified, the multifractal analyses can 
then be followed by attempts to find physiological correlates for the estimates 
of (multi)fractal parameters.

A fundamental question should be answered whether it is worthy at all 
to take on the demanding task of fractal analysis? This can only be answered 
if one characterizes the signal in details according to the guideline shown 
in Figure 8 using tools of descriptive statistics and careful testing; first for 
the presence of monofractal and later that of multifractal scale-free features. 
At this end, we present here a new tool for an instantaneous and easy-to-do 
performance analysis (called “performance vignette”), which can facilitate 
this process and does not require special knowledge needed to carry out 
detailed numerical experiments on synthesized signals (Figure 9). The latter, 
however, cannot be omitted when full documentation of any particular 
fractal tool’s performance is needed. In that the vignette has been designed 
for prompt selection, overview, and comparison of various methods; not for 
their detailed analysis.
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Figure 9: Fractal tool performance vignette. It provides a quick assessment of 
any fractal time series tool’s performance. As such can be useful as a method of 
standardization and/or comparison of various algorithms. Technically, a vignette 
is created as any given fractal time series method evaluates a volume of synthe-
sized time series for a particular fractal parameter. The results are converted to 
extended H′ as H′ = HfGn, H′ = HfBm + 1 using a conversion table between H and 
other fractal parameters (Eke et al., 2002). The signals are generated for a range 
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of length, L [Lmin, Lmax] in increments of ΔL, and for the full range of the fGn/
fBm dichotomy at β or H′ at given increments of the exponent, ΔH’ by the DHM 
method (Davies and Harte, 1987; Eke et al., 2000). The volume is created from 
these signals arranged in a square raster, which will correspond to one of four 
identical quadrants of the vignette. Once the analysis by a fractal tool has been 
carried out the results are plotted in a square array as shown in (A) such a way 
that fGn signals occupy a square created by the four identical quadrants. The 
1/f boundary separating the fGn from the fBm range can be easily identified 
as plotted with a midscale color. Warmer colors indicate over-, cooler colors 
underestimation of the scaling exponent at the particular signal length or degree 
of correlation. When applied to class-independent or dependent methods (B), 
like PSD, SSC (B, upper half) or Disp (dispersional analysis) and bdSWV 
(bridge detrended Scaled Window Variance) (B, lower half), respectively, an 
immediate conclusion on signal performance can be drawn: PSD and SSC can 
be used for fGn and fBm signals alike (except in the vicinity of the 1/f boundary) 
and SSC is more precise. Disp (Bassingthwaighte and Raymond, 1995; Eke 
et al., 2000, 2002) and bdSWV (Eke et al., 2000, 2002), two class-dependent 
methods of excellent performance (note the midscale colored area in the fGn 
and fBm domains, respectively) do show up accordingly. The vignette is ap-
plicable to indicate the performance of multifractal methods, too. The mono-
fractal H can be determined in two ways: in case of q = 2 from τ(q), and in case 
of q = 0 from hmax in the singularity spectrum.

We sustain our recommendation that proper class-dependent or class-
independent methods should be chosen.

We feel, that calculating global measures of multifractal scaling, such 
as Pc (Shimizu et al., 2004) or W (Wink et al., 2008), can help consolidating 
experimental findings in large fMRI BOLD volumes across many subjects 
and experimental paradigms. Based on our tests, we conclude that 
straightforward recommendations for multifractal analysis for the purpose 
of fMRI BOLD time series analysis needs further investigations.

PITFALLS

Sources of Error
Problems emerging from inadequate signal definition (measurement 
sensitivity, length, sampling frequency)
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Measurement sensitivity
The precondition of a reliable fMRI time series analysis is that the BOLD 
signal has adequate definition in terms of being a true-to-life representation of 
the underlying biology it samples. In particular, the fMRI BOLD measurement 
is aimed at detecting the contrast around blood filled compartments in 
magnetic susceptibility of blood and the surrounding medium in a uniform 
high field (Ogawa and Lee, 1990). A contrast develops from tissue water 
relaxation rate being affected by the paramagnetic vs. diamagnetic state of 
hemoglobin. The contrast increases with decreasing oxygenation of blood, a 
feature that renders the technique capable of detecting the combined effect 
of neuronal metabolism coupled via hemodynamics throughout the brain 
(Smith et al., 2002). As Ogawa and Lee (1990) demonstrated, the BOLD 
contrast increases with the strength of the main magnetic field, B0 (i.e., due 
to the sensitivity of the relaxation rate).

In his early paper (Lauterbur, 1973), Lauterbur gave clear evidence 
of the fact that resolution of magnetic resonance signals will strongly 
depend on B0. Newer generations of scanners with continuously improved 
performance were constructed utilizing this relation by incorporating 
magnets of increased strength (in case of human scanners from, i.e., 1.5–7T, 
in small animal scanners due to the smaller brain size with strength in the 
4–17.2T range). Bullmore et al. (2001) showed indeed, that the performance 
of some statistical method and their results depended on the magnetic 
field used (1.5 vs. 3T); calling for caution and continuous reevaluation the 
methods in the given MRI settings.

In order to confirm the impact of B0 on the sensitivity on the definition 
of the BOLD signal fluctuations, we have compared the spectral index 
(ß) of resting-state BOLD fluctuations in vivo to those post mortem and 
in a phantom in 4, 9.4, and 11.7T in anesthetized rats (Figure 10). What 
we have learned from this study was that in contrast with amplitude-wise 
optical measurements of cerebral oxygenation and hemodynamics such as 
near infrared spectroscopy (Eke et al., 2006), due to the contrast-detecting 
foundations of fMRI, signal definition cannot be characterized by comparing 
fluctuation ranges in vivo vs. post mortem. After death deoxyhemoglobin 
molecules are still present in the MRI voxels post-sacrifice and thus generate 
susceptibility-induced magnetic field gradients that would impact diffusion 
of tissue water molecules (Herman et al., 2011), a process that can generate 
fluctuating BOLD contrast without ongoing physiology. What matters 
is that in vivo the blood gets oxygenated and via the combined impact of 
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neuronal metabolism, blood flow, and blood volume, the internal structuring 
of the BOLD contrast signal will change from close to random to a more 
correlated level as indicated by β, which is in vivo significantly higher 
than post mortem. Increasing field strength enhances this effect and yields 
a more articulated topology of β throughout the brain. Conversely, low 
field measurements favor the dominance of instrument noise in addition to 
being less sensitive in detecting the BOLD contrast. The inference of these 
preliminary data is that, given the BOLD contrast (and presumably even the 
spatial resolution) of our animal imaging, a 1.5T human scanner may not be 
of sufficient sensitivity to detect BOLD fluctuations at adequate definition for 
a reliable monofractal analysis, not to mention multifractal analysis known 
to require a much higher signal definition for an optimal performance that 
can be achieved in higher field scanners (Ciuciu et al., 2012).

Figure 10: Definition of spontaneous BOLD fluctuations critically depends 
on main field strength. Exemplary coronal scans are shown obtained in anes-
thetized rat in MR scanner applying 4, 9.4, and 11.7T main external field. All 
fMRI data were collected at 5 Hz in length of 4096 (212) images with gradi-
ent echo planar imaging (EPI) sequence using 1H surface coils (Hyder et 
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al., 1995). (A) shows in vivo and post mortem maps of spectral index, β. β was 
calculated from the spectra of the voxel-wise BOLD time series by the PSD 
method for a restricted range of fluctuation frequency (0.02–0.3 Hz) found to 
exhibit inverse power law relationship [fractality; indicated by vertical dashed 
lines on the PSD plots in (B)]. In order to achieve a suitable contrast for the 
topology, β are color coded within the fGn range (from 0 to 1). Hence voxel 
data with β >  1 indicating the presence of fBm type fluctuations are displayed 
saturated (in red). β maps for water phantoms placed in the isocenter are also 
shown for comparison. Note, that the fractal pattern of internal structuring of 
the spontaneous BOLD signal cannot be captured at adequate definition at 4T as 
opposed to 11.7T, where the rate of scale-free rise of power toward low frequen-
cies are thus the highest at about the same region of interest (ROI) located in the 
brain cortex. This dependence translates into an articulate in vivo topology with 
increasing B0. Also note that in vivo 4T cannot yield a clear topology of β when 
compared to post mortem, and that the well defined topology achieved at higher 
fields vanished post mortem indicating the link between β and the underlying 
physiology.

While the use of fMRI is typically qualitative where the baseline is 
conveniently differenced away to reveal focal area(s) of interest (Shulman et 
al., 2007), this practice would not interfere with fractal time series analysis, 
given that scaling exponent is invariant to mean subtraction.

Length and Sampling Frequency
A signal is a sampled presentation of the underlying process, which generates 
it. Hence the sampling frequency must influence the extent the signal 
captures the true dynamics of the process, which is in the focus of fractal 
analysis irrespective if its analyzed in the time (in form of fluctuations) or 
in the frequency domain (in form of power distribution across the frequency 
scale). The sampling frequency should preferably be selected at least a 
magnitude higher than the highest frequency of the observed dynamics we 
would aim to capture.

The relationship between length and frequency can best be overviewed 
in the frequency domain along with the frequency components and aliasing 
artifact of the spectrum as seen in Figure 12 of Eke et al. (2002). Note, that 
the dynamics of interest can be best captured hence analyzed if the signal 
length is long; the sampling frequency is high, because it will provide a 
spectrum of many components with a weak artifactual impact of aliasing. 
Herman et al. (2011) have recently demonstrated this relationship on resting-
state BOLD time series and concluded that lower frequency dynamics are 
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better sampled by longer BOLD signals, whereas a high sampling rate is 
needed to capture dynamics in a wide bandwidth signal (See Figure 3 in 
Herman et al., 2011). In other words, inadequately low frequency is more 
detrimental to the result of fractal analysis than somewhat truncated signal.

Due to the discrete representation within the bounded temporal resolution 
of the signal, the precision of its fractal analysis increases with its length 
as demonstrated on simulated signals of known (true) fractal measures 
by the bias and variance of its estimates. The minimum length at which 
reasonable results can be expected depends not only on signal length but on 
the method of analysis and the degree of long-range correlation in the signal 
(as characterized by its H); an issue that has been explored in details for 
monofractal time series by the groups of Bassingthwaighte and Raymond 
(1994, 1995); Eke et al. (2000, 2002); Delignieres et al. (2006), and for 
multifractal methods by Turiel et al. (2006).

Multifractal analysis can be considered as an extension of monofractal 
analysis, which is explicitly true for moment-based methods: while in case 
of monofractals a scale-free measure is obtained at q = 2, the procedure for 
multifractals uses a set of different q-order moments. Think of q as a magnifier 
glass: different details of the investigated scale-free structure can be revealed 
at different magnification. However, if signal definition is poor due to short 
length or small sampling frequency, estimates of D(h) will become imprecise 
at large ±q (Figure 6). Since the order of q needed to obtain characteristic 
points of the singularity spectrum usually falls beyond q = ± 2, a longer time 
series is required to guarantee the needed resolution in this range. Hence, 
dependence of precision on signal length in case of multifractals is a more 
complicated issue, where the effect of spectral characteristics interacts with 
that of signal length (Turiel et al., 2006).

A reasonable conclusion is that the recommended minimum length for 
a reliable multifractal analysis ought to be longer than that found earlier for 
monofractal series (Eke et al., 2002; Delignieres et al., 2006).

Problem of Signal Class (fGn vs. fBm)
In fractal analysis, signal classification is a central issue (Eke et al., 2000) 
and should be regarded as a mandatory step when a tool is to be chosen from 
the class-dependent group. Living with the relative convenience of using a 
class-independent method does not render signal classification unnecessary 
given the great importance of proper interpretation of the findings that can 
be enhanced by knowing signal class.



Fractal Analysis224

Recently, Herman et al. (2011) found in the rat brain using monofractal 
analysis (PSD) that a significant population of fMRI BOLD signal fell into 
the non-stationary range of β. These non-stationary signals potentially inter-
fere with resting-state connectivity studies using spatio-temporal volumes 
of fMRI BOLD. It is even more so, if SSC is used for signal classification 
(Figure 11) and analysis (Figure 12) shifting the histogram of H′ to the right.

Figure 11: Classifying rat fMRI BOLD data. Signal classification was performed 
on the 11.7T BOLD dataset shown in Figure 10 by the PSD and SSC meth-
ods (A) previous tested in this capacity by Eke et al. (2002); misclassification 
rates for PSD and SSC are shown in the plots of (B) the lower panel. Because 
SSC is a much better classification tool, than PSD is, the classification topology 
will be drastically different for these two methods. The ROI’s corresponding to 
voxel-wise signals identified by SSC as non-stationary indeed do clearly delin-
eate the anatomical boundaries of the brain cortex, while those by the PSD only 
the spots of highest β.
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Figure 12: Fractal analyses of rat fMRI BOLD data. The 11.7T BOLD dataset 
shown in Figure 10 was analyzed monofractally (A) in the frequency domain by 
PSD, in the time domain by SSC, and multifractally (B) in the time domain by 
MF-DFA and MF-DMA methods. Estimates of spectral index were converted 
to extended Hurst exponent, H′. Our tool performance vignette is displayed 
next to the methods. Histograms of H′ computed from the fractal image data 
by SSC are shown. The vignette data reconfirms that SSC is superior over PSD 
as a monofractal tool. Due to the downward bias of PSD in the anticorrelated 
fGn range, H′ are significantly underestimated. Because SSC’s estimates are 
unbiased, the SSC topology should be considered realistic, which translates into 
a right shift of the SSC H′ histogram relative to that of PSD’s. Based on the vi-
gnette pattern, among the multifractal tools, MF-DFA works quite well on fGn 
and fBm signals, alike, while MF-DMA with fair performance in the fGn range 
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but closer to the 1/f boundary, and fails on fBm signals of the set. For reasons 
mentioned above, the estimates of SSC should be taken as precise. Given that 
most values in the fGn range fall into the range of complete uncertainty of the 
MF-DMA (See Figure 6 at q = 2) and that MF-DMA cannot handle fBm signals, 
all estimates ends up being 1.0. Differencing the signals (including those of the 
vignette) changed the situation dramatically. As seen on the vignette, the origi-
nally fBm signals would be mapped into the fGn range that can be handled by 
MF-DMA very well. Actually better than the original fGn signals where slight 
overestimation is seen. This kind of behavior of MF-DMA may have inference 
with the findings of Gao et al. (2006). Also note, that the double differenced fGn 
signals end up being overestimated. These effects are worth to investigate in or-
der to characterize the impact of the fGn/fBm dichotomy on the performance of 
these time domain multifractal tools when signals are being converted between 
the two classes. Pc – as a global multifractal measure – captures a topology 
similarly to the monofractal estimates. The corresponding singularity spectra do 
separate with the likelihood that the underlying multifractalities indeed differ.

For multifractals the problem and proposed solution is generally the 
same, but the impact of the fGn/fBm dichotomy on the multifractal measures 
is not a trivial issue. Our preliminary results reported here (Figure 12) are 
steps in this direction, but this issue calls for continuing efforts in the future. 
It seems that at least stationarity vs. non-stationarity is a valuable piece of 
information for selecting a concise model of multifractals.

Distinguishing Monofractals from Multifractals
Multifractal analysis of an exact monofractal rendered at ideal resolution 
(in infinite length, sampled at infinite frequency, at infinite sensitivity of 
detection) would yield a constant H(q), a linear dependence of τ on q and a 
point-like Mandelbrot spectrum with its Hölder exponent (hmax) equal with 
its Hurst exponent.

Due to the finite and discrete nature of the signal, the singular behavior 
of a suspected scale-free process cannot be quantified perfectly. As a 
consequence, the homogeneity of a monofractal’s singularities cannot 
be captured by a multifractal analysis. The reason being is that due to 
numerical background noise (Grech and Pamula, 2012) – resulting from 
factors mentioned above – it would always smear the point-like singularity 
spectrum into one mimicking that of a multifractal. This is confirmed by 
the apparent uncertainties associated with the estimates of H(q) obtained at 
various moments in our simulations. All in all, multifractal analyses have 
been conceived in a manner that tends to view a monofractal as a multifractal.
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In order to avoid false interpretation of the data, time series should be 
produced at the highest possible definition to ameliorate this effect and 
criteria should also be set up to distinguish the two entities in the signal 
to be analyzed. Numerical simulation has been demonstrated as a useful 
tool to work out a parameter that can be used to substantiate a monofractal/
multifractal classification (Grech and Pamula, 2012; Figure 6).

Trends and Noises
Empirical time series are typically non-linear, non-stationary and can 
be contaminated by noise and other signal components foreign to the 
fractal analysis of the system under observation. Trend is deterministic 
in its character and of typically low frequency in contrast with noise, 
which has a completely random structuring in a higher frequency range. 
Monofractal analysis methods are quite robust with respect of noise, thus 
in case of monofractals do not require preprocessing (Bassingthwaighte 
and Raymond, 1995). When uncorrelated noise is added to a multifractal 
process, the shape of its singularity spectrum will also be preserved (Figliola 
et al., 2010). However with correlated noise present, – known to impact 
fMRI BOLD time series – preprocessing should be considered (Friston et 
al., 2000), and if carried out, it should be done with an appropriate adaptive 
filter (Gao et al., 2010, 2011; Tung et al., 2011).

In case of wavelet-based methods, a polynomial trend can be removed 
based on the analyzing wavelet’s properties. However, if the trend has a 
different character (i.e., trigonometric or exponential), or it has more 
vanishing moments than that of the analyzing wavelet, the estimation of 
singularity spectrum will be impaired (See theorem 6.10 in Mallat’s book; 
Mallat, 1999).

Various detrending schemes have been developed to enhance performance 
of fluctuation analysis (FA) on detrended signals, which has been compared 
(Bashan et al., 2008). The most common trend removal is based on fitting a 
low-degree polynomial to local segments of the signal such as employed in 
DFA (Figure 4). In particular, DFA’s trend removal is credited for being very 
effective, however – as recently reported (Bryce and Sprague, 2012) – it can 
become inadequate if the trend ends up having a character different from the 
coded algorithm, which scenario cannot at all be excluded. A further problem 
is that the signal arbitrarily divided into analyzing window of different sizes 
in which trend removal is carried out based on a priori assumption (e.g., 
polynomial). This problem is exaggerated as by using partitioning of the 
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signal into a set of non-overlapping windows and performing detrending 
in a window-based manner would not guarantee that the trend in each and 
every window would be identical with the assumed one. This is especially 
true for small windows, where trend tends to deviate from that in larger 
windows. Contrary to expectations, this critical finite size effect is always 
present, thus this pitfall can only be avoided if explicit detrending is applied 
by using adaptive methods (Gao et al., 2011).

To conclude, the recently reported uncontrollable bias to the results of 
DFA (Bryce and Sprague, 2012) raised major concern as to the reliability 
of FA with this detrending scheme. Thus if DFA is to be used, it should be 
done with special care taken in the application of more adaptive detrending 
analyses.

Finally, empirical mode decomposition (EMD) is a promising adaptive 
approach, one of whose feature is the ability to estimate trend explicitly. 
It also creates an opportunity to combine EMD with other fractal analysis 
methods like those based on FA to achieve a more reliable scale-free method 
(Qian et al., 2011).

Problems of Moment-based Methods
Using moment-based methods to estimate the Mandelbrot spectrum is a 
common approach with some drawbacks. Due to the discretized nature of 
the signal under analysis, small fluctuations cannot be resolved perfectly 
and therefore the Hölder exponents become biased in the range of their 
large negative moments (corresponding to the right tail of the singularity 
spectrum; Turiel et al., 2006). All moment-based methods are influenced 
by the linearization of the right tail thus yielding biased estimates of the 
negative statistical moments of the measure, μ (Turiel et al., 2006). This type 
of error cannot be eliminated with increasing the signal’s length (Turiel et 
al., 2006). In case of large fluctuations in the signal, numerical limitations 
become problematic when calculating large positive moments.

Problems associated with moment-based methods can be summarized 
as follows. Firstly, a carefully selected set of different order (q) statistical 
moments of μ should be calculated. Selecting too large negative and positive 
moments would lead to imprecise generalized Hurst exponent [H(q)] or 
multiscaling exponent (Figure 6; Ihlen, 2012). A sufficient range of q is 
needed, however, in order to characterize the global singular behavior of 
the studied time series. This is especially important in the evaluation of the 
spectrum, but from a practical point of view, the spectrum width at half 
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maximum is sufficient to obtain Pc, or W + /W−, that are frequently used 
lumped parameters in describing multifractal fMRI BOLD signals, too 
(Shimizu et al., 2004; Wink et al., 2008). In summary, precise estimation of 
singularity strength is needed at characteristic points of the spectrum: around 
its maximum (i.e., at q ≈ 0) and at its half maximum a dense definition is 
recommended. Thus, the optimal selection depends on the signal character 
and needs to be analyzed with several sets of q. In general, estimating 
spectrum between q = −5 and q = 5 is sufficient in biomedical applications, as 
proposed by Lashermes and Abry (2004). Secondly, methods implementing 
direct estimation of singularity spectra can be applied (Figure 3). One typical 
example is the gradient modulus wavelet projection (GMWP) method, which 
turned out to be superior to all other tested methods (WTMM, too) in terms 
of precision as reported by Turiel et al. (2006). It was shown that direct 
approaches can give quite good results in spite of the numerical challenges 
imposed by calculating the Hölder exponents (h) locally and without the need 
of using statistical moments and Legendre transform (Turiel et al., 2006). 
Strategies including the latter two approaches are widely used and can be 
considered reasonably, but not exclusively reliable in terms of their handling 
the numerical difficulties associated with multifractal analysis.

Problems of Wavelet Transform Modulus Maxima Methods
In case of monofractals, the average wavelet coefficient method is the most 
effective and the easiest to implement (Simonsen and Hansen, 1998; Eke et 
al., 2002). It can be used for fBm and cumulatively summed fGn signals.

There are other issues related to this method, whose nature can be 
numerical on the one hand and theoretical on the other. For example, the 
first and last points of the signal exhibits artifactual scaling, improperly 
selected scales would impair the results considerably, etc. A well-selected 
analyzing wavelet also ensures reliable results, which is also proven for 
certain indirectly calculated partition functions (via Boltzmann weights; 
Kestener and Arneodo, 2003). The effect of the modifications addressing 
these issues is discussed in Faghfouri and Kinsner (2005) and a detailed test 
of WTMM is reported by Turiel et al. (2006).

Due to the difficulties in the reliable application of WTMM, other 
methods were developed in the field, the most promising one being the 
Wavelet Leader method (Lashermes et al., 2005; Serrano and Figliola, 2009), 
which has recently been applied to human fMRI BOLD signals (Ciuciu et 
al., 2012). As refinements of WTMM, the wavelet leader is beyond the scope 
of this review, the reader is referred to the cited references.
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Identifying the Spectral Extent of Monofractality within  
a Signal
Verifying the presence of self-similarity, as one of the fundamental properties 
of monofractals is a key element of the analytical strategy of fractal time 
series analysis (Eke et al., 2000; Figure 8). It should be present within a 
sufficiently wide scaling range. In case of exact (mathematical) fractals 
the scaling range is unbounded. In natural fractal time series however it is 
typically restricted to a set of continuous temporal scales as demonstrated 
by Eke et al. (2006) for fluctuating cerebral blood volume in humans and 
Herman et al. (2011) for resting-state fMRI BOLD signals in rat. As shown 
in the frequency domain by spectral analysis, in both species, scale-free 
structuring of the signal was present across a range of frequencies well below 
the Nyquist frequency (half of the sampling frequency). It was characterized 
by a systematically and self-similarly increasing power toward lower 
frequencies that could be modeled by Eq. 25 yielding a spectral index of 
β > 0, which is an indication of serial correlation between the temporal events 
(long-term memory). Above this range, the fluctuations were found random 
with β ≈ 0 meaning that subsequent temporal events were not correlated. The 
separation of these ranges therefore is crucial because failing to do so would 
cause a bias in the estimate of β.

For fractal time series analysis a proper scaling range should be selected 
where fluctuations are scale-invariant. Optimization of the sampling process, 
as well as the regression analysis on log-log representations of measures vs. 
scales yielding the scaling exponent is essential (Eke et al., 2002). In case 
of time domain methods such as DFA, DMA, and AFA as well introduced 
by Gao et al. (2011), optimizing the goodness-of-fit of the regression 
analysis is an example. Detailed recommendations as to how to deal with 
this problem can be found elsewhere (Peng et al., 1994; Cannon et al., 1997; 
Eke et al., 2002; Gao et al., 2006). When a signal’s spectrum contains other 
than monofractal components, it may prove difficult to select a monofractal 
scaling range even by isolating local scaling ranges and fitting local slopes 
for the spectral index. This procedure should be carefully carried out given 
that local ranges may end up containing inadequately few spectral estimates 
for a reliable fitting of the trendline. When the aim is to assess the topology 
of the measure, this criterion can be relaxed (Herman et al., 2011).

Faghfouri and Kinsner (2005) reported that improper selection of scaling 
range has a detrimental effect on the results of WTMM. Different scales 
correspond to different window sizes in MF-DFA and MF-DMA method, 
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and discarding the smallest and largest window sizes was even suggested 
by Peng et al. (1994) for the original DFA. Cannon et al. (1997) and Gao et 
al. (2006) suggested an optimization for the appropriate range of analyzing 
window sizes (i.e., scales). While this can be regarded as best practice in 
carrying out MF-DFA, some degree of bias is still introduced to the results 
arising mainly from the smallest window sizes (Bryce and Sprague, 2012).

Dualism in Multifractal Formalism
Amongst the indirect, moment-based methods, WTMM uses a different 
approach to obtain the singularity spectrum than MF-DFA and MF-
DMA. Convergence of this dualism is very unlikely, as the relationship of 
exponents in MF-DFA to the multifractal formalism is reported to be valid 
only in special cases (Yu and Qi, 2011). The seminal paper of MF-DFA 
Kantelhardt et al. (2002) established a relationship between the generalized 
Hurst exponent and multiscaling exponent. The validity of this equation 
was reported to be valid only if H = 1 (Yu and Qi, 2011), and thus another 
derivation for τ(q) was proposed. In addition, singularity spectra reported 
with MF-DFA – as it follows from the Legendre transform of τ(q) (Eq. 9) 
– always reaches their maxima at 1, while this does not hold for wavelet 
methods. In our opinion, revision of results obtained with MF-DFA may 
be necessary along with consolidating the multifractal formalism published 
in the field, using the original papers as a starting point of reinvestigation 
(Frisch and Parisi, 1985; Mandelbrot, 1986; Barabási and Vicsek, 1991; 
Muzy et al., 1993; Arneodo et al., 1998).

DEMONSTRATION
Scrutinizing relevant data in selected previous works recognized as having 
proven or potential impact on the development of the field will likely 
demonstrate some typical pitfalls.

Significance of System Noise in the Interpretation of fMRI 
BOLD Fluctuations
Zarahn et al. (1997) demonstrated early in a careful analysis on spatially 
unsmoothed empirical human fMRI BOLD data (collected under null-
hypothesis conditions) that the examined datasets showed a disproportionate 
power at lower frequencies resembling of 1/f type noise. In spite of the very 
detailed analysis, these authors treated the 1/f character as a semi-quantitative 
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feature of fMRI noise and accepted its validity over a decaying exponential 
model as the form of the frequency domain description of the observed 
intrinsic serial, or autocorrelation. The spectral index, β, however was not 
reported but can be reconstructed from the power slope by converting the 
semilog plot of power vs. frequency in their Figure 3D panel to a log-log 
plot compatible to |A(f ) |2∝1/f β model. A β value of ∼3.3 is yielded, which 
is exceedingly higher than the values of 0.6 < β < 1.2 reported recently for 
an extensive 3T dataset by He (2011). This precludes the possibility that the 
collected resting-state 1.5T BOLD dataset would have been of physiological 
origin. Our recently reported results for the rat brain with −0.5 < β < 1.5 
reconfirms this assertion (Herman et al., 2011). In fact, Zarahn et al. (1997) 
wished to determine if the 1/f component of the noise observed in human 
subjects was necessarily due to physiological cause, but had to reject this 
hypothesis because they found no evidencing data to support this hypothesis. 
Zarahn et al. (1997) felt the AC structure (in the time domain, which is 
equivalent to the inverse power law relationship in the frequency domain) 
may not be the same for datasets acquired in different magnets, not to mention 
the impact of using various fMRI scanning schemes (Zarahn et al., 1997). 
Accordingly, and in light of our rat data for magnets 4, 9.4, and 11.7T, a less 
than optimal field strength could have led to a signal definition inadequate 
to capture the 1/fβ type structuring of the BOLD signal of biological origin 
that must have been embedded in the human datasets Zarahn et al. (1997) 
but got overridden by system noise. Most recently, Herman et al. (2011) 
and He (2011) referred to the early study of Zarahn et al. (1997) as one 
demonstrating the impact of system noise on fMRI data, while Fox et al. 
(2007) and Fox and Raichle (2007) as the first demonstration of 1/f type 
BOLD noise with the implication that the 1/f pattern implied fluctuations of 
biological origin.

Significance of the General 1/fβ vs. the Strict1/f Model in the 
Interpretation of fMRI BOLD Noise Data
Fox et al. (2007) reported on the impact of intrinsic BOLD fluctuations 
within cortical systems on inter-trial variability in human behavior (response 
time). In conjecture of the notion that the variability of human behavior 
often displays a specific 1/f frequency distribution with greater power at 
lower frequencies, they remark “This observation is interesting given that 
spontaneous BOLD fluctuations also show 1/f power spectrum (Figure 
S4). While the 1/f nature of BOLD fluctuations has been noted previously 
(Zarahn et al., 1997), we show that the slope is significantly between −0.5 
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and −1.5 (i.e., 1/f ) and that this is significantly different from the frequency 
distribution of BOLD fluctuations observed in a water phantom,” and in 
their Figure S4 conclude that “the slope of the best fit regression line (red) is 
−0.74, close to the −1 slope characteristic of 1/f signals.” This interpretation 
of the findings implies that the spontaneous BOLD fluctuations can be 
adequately described by the “strict” 1/f model, where the spectral index, 
β, in 1/f β – known as the “general” inverse power law model – is treated 
as a constant of 1, not a variable carrying information on the underlying 
physiology. Incidentally, studies of Gilden and coworkers (using a non-fMRI 
approach) have indeed demonstrated (Gilden et al., 1995; Gilden, 2001; 
Gilden and Hancock, 2007) that response time exhibits variations that could 
not be modeled by a strict 1/f spectrum but by one incorporating a varying 
scaling exponent (Gilden, 2009).

Scrutinizing the data of Figure S4 can offer an alternative interpretation 
as follows. In terms of the hardware, the use of 3T magnet must have ensured 
adequate signal definition for the study. In their Figure S4, spectral slopes were 
reported in a lumped manner, in that power at each and every frequency were 
averaged for the 17 human subjects first (thus creating frequency groups), 
and then mean slopes along with their statistical variation were plotted for 
the frequency groups. The mean slope of −0.74 (of thee lumped spectrum) 
was obtained by regression analysis. This treatment of the data implies that 
the |A(f )|2 ∝ 1/f β model (Mandelbrot and Ness, 1968; Eke et al., 2000, 2002) 
was a priori rejected otherwise the slope should have been determined for 
each and every subject in the group across the range of observed frequencies 
and their associated power estimates (of the true spectrum) first, followed 
by the statistical analysis for the mean and variance within the group of 
17 subjects, for the following reasons. The spectral index is found by 
fitting a linear model of |A(f )|2 ∝ 1/f β across spectral estimates for a range 
of frequencies. In our opinion when it comes to provide the mean spectral 
index, it is indeed reasonable (Gilden and Hancock, 2007; Gilden, 2009) to 
come up with statistics on the fractal estimates for a group of time series 
data first by obtaining the estimates, proper. Averaging spectral estimates at 
any particular frequencies and assembling an average spectrum from them 
tend to abolish the fractal correlation structure for any particular time series 
and develop one for which the underlying time series is indeed missing. 
Because the transformation between the two treatments is not linear, the 
true mean slope of the scale-free analysis cannot be readily reconstructed 
from the reported slope of the means. Nevertheless, if we regard its value 
as an approximation and convert it to β, which being less than 1 warrants 
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the use of H′ = (βfGn + 1)/2, one would yield a value of β = 0.77 and H′ = 0.87, 
respectively.

A recent review by Fox and Raichle (2007) offers an impressive 
overview and insight of how to delineate cooperative areas (or systems) in 
the brain based on functional connectivity that emerges from spatial cross-
correlation maps of regional fluctuating BOLD signals in the resting brain 
(Biswal et al., 1995). These authors place the spontaneous activity of the 
brain as captured in BOLD fluctuations in spatio-temporal domains of fMRI 
data in the focus of the review emphasizing that itis a fingerprint of a newly 
recognized mode of functional operation of the brain referred to as default 
or intrinsic mode (Fox and Raichle, 2007). They argue that the ongoing 
investigation of this novel aspect of the mode of brain’s operation using 
fractal analysis of resting-state fMRI BOLD may lead to a deeper and better 
understanding of the way the brain – on the expense of very high baseline 
energy production and consumption by glucose and oxidative metabolism 
– maintains a mode capable of selecting and mobilizing these systems in 
order to respond to a task adequately (Hyder et al., 2006). One has to add 
that the default or intrinsic mode of operation has been demonstrated and 
investigated in overwhelming proportions by connectivity analyses based 
on cross-correlating BOLD voxel-wise signals as opposed on AC of single 
voxel-wise BOLD time series.

Fox and Raichle (2007) emphasize “spontaneous BOLD follows 
a 1/f distribution, meaning that there is an increasing power in the low 
frequencies.” In their furthering on the nature of this 1/f type distribution 
they refer to the studies of Zarahn et al. (1997) and Fox et al. (2007) in 
the context it was described above (Fox et al., 2007) reaching the same 
conclusion, in that the characteristic model of human spontaneous BOLD 
is the 1/f (meaning the “strict”) model. We would like to suggest that the 
notion of 1/f distribution having a regression slope of close to −1 on the log-
log PSD plot is somewhat misleading.

In an attempt to consolidate this issue, we suggest that the data be fitted 
to a model in the form of 1/fβ, where β is a variable (Eke et al., 2000, 2002) 
responding to states of physiology (Thurner et al., 2003; He, 2011) of 
characteristic topology (Thurner et al., 2003; Herman et al., 2011) in the 
brain, not a constant of 1. A potential advantage of this model is that by 
regarding β as a scaling exponent the distribution can then be described to 
be scale-free (or fractal).
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Significance of the 1/fβmodel and the dichotomous fGn/fBm analytical 
strategy in analyzing scaling laws and persistence in human brain activity

As seen above, from the modeling point of view the issue of a reliable 
description of the autoregressive signal structuring of spontaneous BOLD, 
is fundamental and critical in resting-state. If it is done properly, it can lend 
a solid basis for assessing changes in the scaling properties in response 
to changing activity of the brain. The study of Thurner et al. (2003) was 
probably the first to demonstrate that spontaneous BOLD in the brain was 
scale-free and that the scaling exponent of inactive and active voxels during 
sensory stimulation differed. At the time of the publication of their study, 
the monofractal analytical strategy of Eke et al. (2000, 2002) based on the 
dichotomous fGn/fBm model of Mandelbrot and Ness (1968) did not yet 
reached the fMRI BOLD community, hence Thurner et al. (2003) did not 
rely on it, either. In this section we will demonstrate the implications of this 
circumstance in terms of the validity and conclusions of their study. We will 
do it in a detailed, didactical manner so that our reader should gain a hands-
on experience with the perplexed nature of the issue.

Subtracting the mean from the raw fMRI signal precedes the analysis 
proper, Īx⃗ (t), yielding Ix⃗ (t) in Eq. 39,

    (39)
which step is compatible with (D)FA (Eke et al., 2000).
Subsequently, in Eq. 40, the temporal correlation function, Cx⃗ (τ), is 
calculated

  (40)
In fact in this step of the analysis the covariance was calculated given 

that a division by variance was missing. Hence, it is slightly misleading to 
regard Eq. 40 as the temporal (or auto) correlation (see Eke et al., 2000, 
Eq. 2). Only, if assumed that the signal is fGn, whose variance is known to 
be constant over time, the covariance function can be taken as equivalent to 
the AC function. Because the authors have not tested and proven the signal’s 
class was indeed fGn (Eke et al., 2000), there is no basis for the validity of 
this assertion.

In Eq. 41, the signal is summed yielding Xx⃗ n(τ), in order to eliminate 
problems in calculating the AC function due to noise, non-stationarity 
trends, etc.
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     (41)
This form of the signal is further referred to as “voxel-profile.”
Note, that the signal remains in this summed form for the rest of the 

analysis (i.e., analyzed as fBm). As a consequence, spectral analysis later in 
the study was applied to a summed – hence processed – signal and the results 
were thus reported for this and not the raw fMRI signal, which circumstance 
prevented reaching a clear conclusion.

Furthermore, the authors indicated that the temporal correlation 
function would characterize persistence. It seems the two terms (correlation 
vs. persistence) are used as synonyms of one another whereas they are not 
interchangeable terms: persistence is a property of fBm, while correlation 
is that of an fGn signal (Eke et al., 2000). Please note, as the raw signal has 
been summed, the covariance here characterized persistence that was not 
present in the raw fMRI signal.

In the next step (Eq. 42), the AC function is approximated by a power 
law function with γ as its exponent

   (42)
Based on the equation of the AC function using the Hurst exponent, H, 

γ must be proportional to 2H (Eke et al., 2000, Eq. 15).
Subsequently, as a part of a FA of the authors (cited in their Reference 

19 as unpublished results of their own), the statistics (Fx⃗ (τ), standard 
deviation) was calculated for the AC function in Eq. 43

  (43)
In the left side of Eq. 44, a general power law was applied to the 

fluctuation from Eq. 43 as Fx⃗ (τ)~τα

   (44)
(Note, as the fluctuations have not been detrended, this method is not the 

DFA of Peng et al., 1994 but strongly related to it).



Pitfalls in Fractal Time Series Analysis: fMRI BOLD as an Exemplary Case 237

Consider the scaling exponent, α, on the left side of Eq. 44. According to 
Peng et al. (1994) and Eke et al. (2002) α = H only if the raw signa l,Ix⃗ (t), is 
an fGn. However, because at this point the summed raw signal, Xx⃗ n(τ), is 
the object of the analysis, α and H should relate to each other as α = H + 1. 
Given that the signal was summed in Eq. 41 leading up to Eq. 43, and the 
values for “outside the brain” were reported as α ≈ 0.5, and for “inside the 
brain” as 0.5 < α < 1, α must have been improperly calculated because α 
cannot possibly yield a value of 0.5 for a summed signal given that H scales 
between 0 and 1 and for an fBm series α = H + 1 holds. The reported value 
of 0.5 < α < 1 can be regarded correct only for Ix⃗ (t), the raw fMRI signal, 
which therefore had to be an fGn process. On the other hand, the reported 
values 2 < β < 3 are correct for the Xx⃗ n signal, only (for reasons given later). 
Hence the reported α and β values lacking an indication of their respective 
signal class ended up being ambiguous.

Next, consider the right side of Eq. 44, which expresses α by using 
γ introduced earlier. We just pointed out that the raw fMRI signal must 
have been an fGn with α ≡ H. Consequently, α can be substituted for H in 
Eq. 44 as H = 1 − γ/2 and γ expressed as

    (45)
The authors referring to power law decays in the correlations relate the 

spectral index, β, to γ as

     (46)
and further to α as
β = 2α + 1.

Note, that these relations between β, γ, and α in principle do depend on 
signal class that was not reported.

Now, let us substitute γ as expressed in Eq. 45 into Eq. 46
β = 3 - 2 + 2H = 1 + 2H, 
then express H

     (47)
As shown by Eke et al. (2000), Figure 2; in Eke et al. (2002), Table 1, 

based on the dichotomous fGn/fBm model, Eq. 47 would have equivocally 
identified the case of an fBm signal. As pointed out earlier, the raw fMRI 
signal was summed before the actual fractal analysis. Consequently, the 
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relationship β = 3 – γ ends up holding only if the raw fMRI signal was an 
fGn process. This is therefore the second piece of evidence suggesting 
that the class of the raw fMRI signal must have been fGn. Nevertheless, 
the relationship β = 2α + 1 could not hold concomitantly for reasons that 
follow. In an earlier paper of the group (Thurner et al., 2003), the authors 
stated “The relationship is ambiguous, however, since some authors use 
the formula α = 2H + 1 for all values of α, while others use α = 2H−1 for 
α < 1 to restrict H to range (0,1). In this paper, we avoid this confusion by 
considering α directly instead of H.” The fGn/fBm model (Eke et al., 2002) 
helps resolving this issue as neither of these relationships between α 
and H holds because if α is calculated with the signal class recognized and 
determined, the relationship between α and H is equivocally α = HfGn and 
α = HfBm + 1. Based on the fGn/fBm model, the relationship between β and 
α given in Eq. 46 as β = 2α + 1 needs to be revised, too, to is correct form of 
β = 2α − 1 (See Table 1 in Eke et al., 2002).

Thurner et al. (2003) concluded: “Outside the brain and in non-active 
brain regions voxel-profile activity is well described by classical Brownian 
motion (random walk model, α ∼ 0.5 and β ∼ 2).” Recall, the “voxel-profile” 
is not the raw fMRI signal (intensity signal, Ix⃗ (t), most probably an fGn), 
but its summed form, Xx⃗ n(τ), an fBm.

Our conclusion on the above analysis by Thurner et al. (2003) is as 
follows: (i) α was improperly calculated by the authors’ FA method because 
α ∼ 0.5 cannot possibly be valid for an fBm signal given that αfBm > 1 (Peng 
et al., 1994), (ii) β ∼ 2 is only formally valid given that it was calculated 
based on Eq. 46 from an improperly calculated α and by using an arbitrary 
relationship between α and β. The subsequent and opposite effects of these 
rendered the value of β to β ∼ 2.

When the results of Thurner et al. (2003) are interpreted according to the 
analytical strategy of Eke et al. (2000) based on the dichotomous fGn/fBm 
model of Mandelbrot and Ness (1968), the reported values of Thurner et 
al. can be converted for their fMRI “voxel-profile” data Xx⃗ n to αfBm ∼ 1.5, 
βfBm ∼ 2, HfBm ∼ 0.5 or for the raw fMRI intensity signal Ix⃗ (t) to αfGn ∼ 0.5, 
βfGn ∼ 0, HfGn ∼ 0.5. This interpretation of the data reported for humans by 
Thurner et al. (2003) is fully compatible with the current findings by He 
(2011) on the human and by Herman et al. (2009, 2011) on the rat brain.
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Multifractal Analyses on Rat fMRI BOLD Data
Exemplary analysis on empirical BOLD data is presented on the 11.7T 
coronal scan shown in Figure 10 to demonstrate the inner workings of these 
methods when applied to empirical data, and point to potential artifacts, 
too (See Figure 12). For monofractal analysis, we recommend using 
monofractal SSC for it gives unbiased estimates across the full range of 
the fGn/fBm dichotomy. For this reason, the topology is well defined and 
not as noisy as on the PSD maps. MF-DFA, due to its inferior performance 
in the strongly correlated fGn range (See Figure 6 at q = 2), failed with this 
particular BOLD dataset. Also note, that the histograms obtained for the 
same datasets evaluated by these different methods do differ indicating 
that method’s performance were different. Proper interpretation of the data 
therefore assumes an in-depth understanding of the implication of method’s 
performance on the analysis. Pc and most certainly W seems a promising 
parameter to map from the BOLD temporal datasets. Their proper statistical 
analyses along with those of singularity spectra for different anatomical 
locations in the brain should be a direction of future research.

PHYSIOLOGICAL CORRELATES OF FRACTAL 
MEASURES OF FMRI BOLD TIME SERIES
Eke and colleagues suggested and demonstrated that β should be regarded 
as a variable responding to physiology (Eke et al., 1997, 2000, 2002, 2006; 
Eke and Herman, 1999; Herman and Eke, 2006; Herman et al., 2009, 2011).

Soon, Bullmore et al. (2001) suggested treating 1/f type fMRI BOLD 
time series as realizations of fBm processes for the purpose of facilitating 
their statistical analysis using pre-whitening strategies. For this reason, 
signal classification did not emerge as an issue to address. Then Thurner 
et al. (2003) demonstrated that human resting-state fMRI BOLD is not 
only a scale-free signal, but do respond to stimulation of the brain. Their 
analysis yielded this conclusion in a somewhat arbitrary manner in that 
the importance of the fGn/fBm dichotomy was not recognized at the time 
that led to flaws in the calculation of the scaling exponent as demonstrated 
above. Hu et al. (2008) and Lee et al. (2008) also reported that H obtained by 
DFA can discriminate activation from noise in fMRI BOLD signal.

In later studies dealing with the complexity of resting-state and task-
related fluctuations of fMRI BOLD, the issue of signal class has gradually 
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shifted into the focus (Maxim et al., 2005; Wink et al., 2008; Bullmore et 
al., 2009; He, 2011; Ciuciu et al., 2012).

Recently Herman et al. (2011) found in the rat brain using PSD that 
a significant population of fMRI BOLD signal fell into the non-stationary 
range of β. The inference of this finding is the potential interference of 
non-stationary signals with resting-state connectivity studies using spatio-
temporal volumes of fMRI BOLD. It is even more so, if SSC is used 
for signal classification (Figure 11) and analysis (Figure 12) shifting the 
population histogram of H′ to the right.

The β value converted from the reported human spectral slopes by 
Fox et al. (2007) (see above) fits very well within the range of human data 
reported most recently by He (2011) for the same instrument (3T Siemens 
Allegra MR scanner). He (2011) adopting the dichotomous monofractal 
analytical strategy of Eke et al. (2002) demonstrated that β of spontaneous 
BOLD obtained for multiple regions of the human brain correlates with 
brain glucose metabolism, a fundamental functional parameter offering 
grounds for the assertion that that β itself is a functional parameter. Herman 
et al. (2011) using the same analytical strategy (Eke et al., 2000, 2002) on 
resting-state rat BOLD datasets showed that β maps capture a gray vs. white 
matter topology speaking for the correlation of β and functional activity of 
the brain regions being higher in the gray than in the white matter.

With near infrared spectroscopy, – recommended by Fox and Raichle 
(2007) as a cost-effective, mobile measurement alternative of fMRI to 
capture resting-state hemodynamic fluctuations in the brain – a 1/f β temporal 
distribution of cerebral blood volume (one of the determinant of BOLD) 
was found in humans, with an age and gender dependence on β (Eke et 
al., 2006). Furthermore, β determined from heart rate variability time series 
was found to differ between healthy and unhealthy individuals (Makikallio 
et al., 2001).

The above physiological correlates seem to have opened a new 
perspective in basic and clinical neurosciences (Hausdorff et al., 1997) by 
recognizing β as an experimental variable and applying adequate tools for 
its reliable assessment (Pilgram and Kaplan, 1998; Eke et al., 2000, 2002; 
Bullmore et al., 2009; He, 2011) with multifractal analyses as a dynamically 
expanding perspective (Ciuciu et al., 2012; Ihlen, 2012), too.

We propose that the inter-regional spatial cross-correlation (connectivity) 
as a means of revealing spatial organization in the brain be supplemented by 



Pitfalls in Fractal Time Series Analysis: fMRI BOLD as an Exemplary Case 241

a temporal AC analysis of extended BOLD signal time series by mapping 
β as an index of temporal organization of the brain’s spontaneous activity.
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ABSTRACT
The characterization of forested landscapes is frequently required in civil 
engineering practice. In this study, some spatial analysis techniques are 
presented that might be employed with Landsat TM data to analyze forest 
structure characteristics. A case study is presented wherein fractal dimensions 
(FDs), along with a simple spatial autocorrelation technique (Moran’s I), 
were related to stand density parameters of the Oakmulgee National Forest 
located in the southeastern United States (Alabama). The results indicate that 
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when smaller trees do not dominate the landscape (<50%), forested areas 
can be differentiated according to breast sizes and thus important flood plain 
characteristics such as ratio of obstructed area to total area can be estimated 
from remotely sensed data using the studied indices. This would facilitate 
the estimation of hydraulic roughness coefficients for computation of flood 
profiles needed for bridge design. FD and Moran’s I remained fairly constant 
around the values of 2.7 and 0.9 (resp.) for samples with either greater than 
50% saplings or less than 50% sawtimber and with ranges of 2.7–2.9 and 
0.6–0.9 as the saplings decreased or the sawtimber increased. Those indices 
can also distinguish hardwood and softwood species facilitating forested 
landscapes mapping for preliminary environmental impact analysis.

INTRODUCTION
The characterization of forested landscapes is frequently required in 
civil engineering practice. Examples include estimation of quantities for 
clearing prior to construction projects, environmental impact analysis, and 
characterization of hydraulic roughness for flood plain studies. Increasingly, 
professionals are considering the use of remotely sensed data to aid in these 
estimations. In 2003, the Federal Highway Administration funded a project, 
conducted jointly by Mississippi State University and the University 
of Alabama in Huntsville, AL, USA. to evaluate the efficacy of using 
remotely sensed data in the planning and environmental impact analysis 
of transportation systems. Since transportation lines (both road and rails) 
frequently must traverse forested areas, one major focus of the project was 
the use of remotely sensed data to characterize these landscapes.

The specific transportation needs that directed the project were to 
characterize the hydraulic roughness of flood plains for bridge design 
and environmental impact analysis. Recent studies have confirmed the 
importance of rigid, unsubmerged vegetation in determining flow depths 
and velocities in shallow flow situations such as commonly encountered 
in wide flood plains [1–4]. The studies highlight the importance of stand 
density (ratio of obstructed area to total area) and trunk diameter. Musleh 
and Cruise [1] showed the relationship between these variables and classical 
hydraulic roughness parameters such as Manning’s n and the Darcy f factor. 
Accurate land cover and species identification are also important aspects 
of environmental impact analysis, particularly in identification of wetlands 
under the forest canopy.
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Several sources of remotely sensed data are currently available that might 
be useful for forest characterization purposes. The data can be from satellite 
or aircraft platforms and can be from either passive or active instruments. 
A large amount of research has been performed using active remotely 
sensed data, particularly airborne radar to estimate forest parameters [5–
11]. Most passive remotely sensed data are much more easily accessible 
and cost effective than are active data. A significant amount of research has 
been performed on forest biomass estimation using passive instruments, 
particularly radiometric data [12–24]. However, studies that employ passive 
radiometric data (e.g., Landsat Thematic Mapper (TM), NOAA Advanced 
Very High-Resolution Radiometer (AVHRR), or the Moderate-Resolution 
Imaging Spectroradiometer (MODIS)) usually focus on the estimation of 
indirect measurement of biomass or canopy coverage such as the Leaf Area 
Index (LAI) or Normalized Difference Vegetation Index (NDVI). Thus, it 
would be of great benefit if passive radiometer data could be employed to 
characterize forest structure such as stand density and trunk size.

In this study, some spatial analysis techniques are presented that might be 
employed with Landsat TM data to analyze forest structure characteristics. 
The spectral characteristics (7 bands) and spatial resolution (30 m) of TM 
data make it very suitable for use in the analysis of even moderate-sized 
forested areas. In an earlier paper by Al-Hamdan et al. [25], the authors 
examined the impact of spatial and spectral resolution of remotely sensed 
data on the spatial indices that might be used for landscape characterization. 
That study concluded that Landsat TM might possess the ideal attributes for 
this purpose. A case study is now presented wherein fractal dimensions, along 
with a simple spatial correlation technique, were related to stand density 
parameters of the Oakmulgee National Forest located in the southeastern 
United States (Alabama).

FRACTAL ANALYSIS AND SPATIAL AUTOCORRELA-
TION METHODS
One of the most essential issues in interpretation and analysis of remotely 
sensed data is the observation and measurement scale [26]. Scale is crucial 
to the characterization of geospatial data because many environmental 
processes and patterns are scale-dependent [27]. Recently developed spatial 
analysis approaches from a variety of science disciplines offer the possibility 
of highly efficient statistical characterization, analysis, and identification of 
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spatial data in remotely sensed images. Spatial autocorrelation and fractal 
measurement are methods that have been developed to characterize the 
scaling property of spatial data [28]. Although the fractal technique and other 
textural analyses have been applied extensively [29–42], its use as a spatial 
technique for characterizing remote sensing images needs to be evaluated 
more in terms of its utility to help characterize forest growth characteristics 
such as stand sizes [25, 26, 43, 44], as demonstrated in this study.

Fractals
Classical geometry cannot provide tools for analysis of the forms of most 
spatial patterns of nature because they are so irregular and fragmented [44]. 
Fractal geometry was developed as a mathematical basis for characterizing 
complex natural patterns [45]. In classical geometry, a point has an integer 
topological dimension of zero, a line has one dimension, an area has two 
dimensions, and a volume has three dimensions [26, 44]. However, the fractal 
dimension (FD) is a noninteger value that exceeds the Euclidean topological 
dimension [44, 45]. The FD can vary between zero and one, between one 
and two, or between two and three; for a point pattern, a curve, or a surface, 
respectively [26, 44]. As the geometrical complexity of a perfectly flat two-
dimensional surface (FD=2.0) increases so that it begins to fill a volume, the 
FD values approach 3.0 [44].

The foundation for fractal analysis is self-similarity, which can be defined 
as a property of a curve or surface where each part is indistinguishable from 
the whole [26, 44–46]. In order to define the theoretical FD, the degree of 
self-similarity is used and expressed as a self-similarity ratio [26, 44, 45]. 
Thus, the FD of a curve can be defined as [26, 44]

      (1)
where Ns is the number of similar copies and rf is the scale reduction factor.
Measuring the length of the curve using various step sizes by a procedure 
called the walking-divider method [46] is a common way to estimate the FD 
value of a curve (e.g., a coastline) [26, 44]. In the case of irregular curves, 
the length increases as the measurement interval decreases, and a linear 
regression can capture such an inverse relationship between total line length 
and step size [26, 44, 47]:
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    (2)
where L is the line length, Ss is the step size, B is the slope of the regression, 
and C is a constant. For the case of a curve, FD can then be calculated by

      (3)
For a raster-based remotely sensed image (surface), FD can be estimated 

in a similar approach using a method that is called the isarithm method [44], 
which was evolved from Goodchild [46], Shelberg et al. [48], and Lam and 
De Cola [49]. With the isarithm method, a mean FD from individual FD 
values of gray-scale contours is computed [26]. For each isarithm brightness 
value and each step size, the algorithm classifies each pixel below the 
isarithm value as white and each pixel above this value as black [26, 44]. 
Each neighboring pixel along the rows or columns is then compared to 
determine whether the pairs are both black or both white; if they are not of 
the same color, then an isarithm lies between the two neighboring pixels. The 
total number of boundary pixels is used to approximate the length of each 
isarithm line [26, 47]. A linear regression is performed using the logarithms 
of the total length of the boundary and the step size. The regression slope B is 
used to determine the FD of the isarithm line [26, 44], where

      (4)
Equation (4) differs from (3) because as a flat surface grows more 

complex, FD increases from a value of 2.0 and approaches 3.0 as the surface 
begins to fill a volume [26]. The final FD of the surface is the average of 
the FD values for those isarithms having a coefficient of determination “R2” 
greater than or equal to 0.9 [26, 44, 47, 50].

It has been shown in many previous forestry research studies [51–60] 
that there is a significant positive relationship between crown width and the 
Diameter at Breast Height (DBH) for both hardwood and softwood species. 
Thus, an increase in the stand diameter implies an increase in the crown width 
and vice versa. As illustrated in Figure 1 [25], if continuous small crown 
trees are covering two adjacent remotely sensed pixels of a similar area, the 
result is two homogenous surfaces. Thus, the integration of the brightness 
levels within each pixel (i.e., pixel value) will be similar in magnitude. If the 
pixel values do not vary significantly, the result is less complexity in terms 
of fractals (smaller FD) and more homogeneity in terms of autocorrelation 
[25]. On the other hand, if the pixels are covered with large crown trees, 
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the result is nonhomogenous adjacent pixels leading to more complexity in 
terms of fractals and less homogeneity in terms of autocorrelation [25].

(a)

(b)

Figure 1: Size class effect on remotely sensed data: (a) small crown trees and 
(b) large crown trees (courtesy of Al-Hamdan et al. [25]).
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Spatial Autocorrelation
Another index that can be used to analyze the spatial autocorrelation of 
images is Moran’s I. Moran’s I [61] is an index of spatial autocorrelation 
which reflects the differing spatial structures of the smooth and rough 
surfaces [47]. Thus, it is a potential technique in characterizing and 
estimating measures of forest-related surface roughness based on crown 
diversity. Moran’s I is a spatial correlation statistic and is calculated from 
the following formula [47]:

  (5)
where I(d) is Moran’s spatial autocorrelation at distance d,wij is weight at 
distance d, so that wijis 1 if point j is within distance d of point i, otherwise 
wij = 0, zi is deviation (i.e., zi = x − xmean for variable x). W = the sum of all 
the weights where i  j.

Moran’s I can vary from +1.0 for perfect positive autocorrelation (a 
clumped pattern) to −1.0 for perfect negative autocorrelation (a checker 
board pattern) [44]. Moran’s I is different from the FD in that the FD is 
focused on the object shape, size, and the tortuosity of the edges of these 
objects [47]. Moran’s I does not explicitly consider the shapes and sizes of 
objects once the weights, wij, in (5) are determined [47].

CASE STUDY
Oakmulgee National Forest is located in central Alabama and encompasses 
an area of 128,638 ha (317,861 acres) (Figure 2). According to the US Forest 
Service inventory analysis, there are three size classes present within the 
forest data sets, namely, sawtimber, poletimber, and saplings. This size 
classification was based on the diameter at breast height (DBH) of the tree 
trunk. The DBH values for those classes are greater than 22.86 cm (9.0 in), 
from 12.7 cm (5.0 in) to 22.6 cm (8.9 in), and from 2.54 cm (1.0 in) to 12.45 cm 
(4.9 in), respectively. Forest species includes softwood and hardwood 
trees. Longleaf-slash pine, shortleaf-loblolly, and cypress are examples of 
softwood trees (Figure 3(a)). White oak, red oak, hickory, sweetgum, ash, 
and yellow-poplar are examples of hardwood trees (Figure 3(b)). The forest 
database included digital maps linked to attribute tables containing the stand 
characteristics (i.e., tree types, sizes, and species) of the forest.
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Figure 2: Location map of study area.

Figure 3: Examples of (a) Softwood trees and (b) Hardwood trees.

Other spatial data were also collected to characterize the region for 
geoidentification and location purposes. These data included state and 
county maps, roads, streams, and topographic images (digital line graph 
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data) that were useful in providing visual locations of points within the forest 
area. The sources of these data were the Environmental Systems Research 
Institute (ESRI) and the US Bureau of the Census Topologically Integrated 
Geographic Encoding and Referencing System (TIGER).

The remote sensing data consisted of Landsat TM images of the forest 
area taken in summer 1999. The TM instrument records energy reflected in 
seven bandwidths as shown in Table 1. As shown in the table, the spatial 
resolution of the Landsat TM images is 30 meters except for band 6 which 
is 120 meters. For consistency purposes, the data recorded in Band 6 were 
excluded from these analyses. The source for the Landsat TM images was 
the EROS Data Center of the United States Geological Survey (USGS). 
This study focused on a comparison of samples identified from the same 
Landsat TM scene. Thus, the authors believed that it was not necessary to 
atmospherically correct the satellite data because any atmospheric effects 
would prevail for all of the study sites; that is, all samples would have 
similar atmospheric effects. Additionally, previous work employing spatial 
statistical techniques in the Image Characterization and Modeling System 
(ICAMS), particularly fractal analysis of remote sensing data, has implied 
that there is little influence of atmospheric effects on the overall statistical 
analysis results [26, 43, 62].

Table 1: Landsat Thematic Mapper (TM)

Bands Wavelength (micrometers) Resolution (meters)
Band 1 0.45–0.52 30
Band 2 0.52–0.60 30
Band 3 0.63–0.69 30
Band 4 0.76–0.90 30
Band 5 1.55–1.75 30
Band 6 10.40–12.50 120
Band 7 2.08–2.35 30

IMAGE CHARACTERIZATION AND MODELING 
SYSTEM (ICAMS)
ICAMS is a software module that was developed to measure, characterize, 
and model multiscale remotely sensed data [62, 63]. It contains a robust 
set of fractal measurement algorithms embedded in a GIS-type architecture. 
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It contains a number of spatial measurement methods that can be used to 
address a variety of significant issues related to scale and fractal analysis.

The main functions of ICAMS are image input, image characterization, 
specialized functions, and image display and output. The image input 
subsystem includes basic image processing functions, such as file 
transformation, georeferencing, image registration, and a variety of image 
viewing capabilities [62]. The image characterization subsystem provides 
users with an array of spatial and nonspatial measures for characterizing 
image data. The non-spatial measures include basic descriptive statistics 
measures (i.e., mean, mode, median, and variance) and histograms. The 
spatial measures include fractal analysis [49], variogram analysis [64, 65], 
spatial autocorrelation indices [66, 67], and textural measures such as local 
variance [68]. The specialized subsystem of ICAMS provides aggregation 
routines for aggregating pixels to simulate multiscaled data for scale effect 
analyses [26]. The image output subsystem contains functions to output 
original images or derived products in two-dimensional or three-dimensional 
form. ICAMS provides the ability to calculate the FD of remotely sensed 
images using the isarithm method [49], variogram [65], and triangular prism 
methods [69]. Lam et al. [70] found that the isarithm method calculates 
the FD fairly accurately and more so than the other two methods, thus the 
isarithm method was used in this study.

PROCEDURE
The procedure followed in the case study is illustrated in Figure 4. Raster and 
vector data were collected for the Oakmulgee National Forest as described 
previously. The raster data (TM images) were then imported into the ER 
Mapper remote sensing software package in order to trim, locate, and crop 
the images of the study area and to export the data to the ARCINFO 8.2 GIS 
package. The relevant vector data (state and county lines, roads, streams, DLG 
(topographic) data, and National Forest delineations) were also imported 
into ARCINFO and overlaid onto the raster images. Figure 5 illustrates 
some attributes of the data set. Samples were collected randomly covering 
of all parts of the forest. As shown in Figures 2 and 5, the area is bisected 
by the Cahaba River, so care was taken to obtain a representative number 
of samples from both sides of the river. In addition, the elevation of the 
forest ranged from 60 m to 170 m above mean sea level with an average 
of 130 m. So, again care was taken to obtain samples representative of all 
topographic conditions so as not to bias the results. Criteria for the selection 
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of the window (number of pixels in a sample) were based on the resolution, 
minimum mapping unit size, and nature of the classes (size of the regions, 
characteristic scale, directionality, and spatial periodicity) to be identified 
[71]. It is understood that a smaller window size does not convey sufficient 
spatial or texture information to characterize land surfaces. On the other 
hand, if the window size is too large, too much information from other 
surfaces could be included and hence the algorithm might not be efficient. 
The sample size for this study was chosen to be 100 × 100 pixels based on 
the average sample size used in the research literature [28, 71]. As shown 
in Figure 5(e), a total of 52 samples were collected for Oakmulgee National 
Forest. It can be noted that the sample size in the study area was larger than 
30 and hence the distribution of the sample means can be approximated 
reasonably well by a normal distribution for statistical purposes [72].

Figure 4: Study methodology.
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Figure 5: Overlaying and sampling process for Oakmulgee National Forest: (a) 
Landsat TM image, (b) counties, roads, and city locations (c) DLGs, (d) forest 
stands, and (e) overall layers and samples.

Information was then collected for each sample including size class 
(sawtimber, poletimber, saplings), species groups (hardwood and softwood), 
age, and elevation using the national forests vector GIS data obtained from 
the Forest Service and the digital elevations GIS data obtained from the 
Earth Resources Observation Systems (EROS) Data Center. For each 
sample, the percentage of each size class and species group was determined 
using the digital map of the national forest based on the area covered by 
each size class and species group in the GIS. Also, the average elevation for 
each sample was determined using the Digital Line Graph (DLG) data in the 
GIS. Table 2 shows the in situ forest data and the average elevations for all 
samples collected from all the study area. The raster (TM) data of the area 
were then imported to the GIS module, ICAMS, where the spatial analytical 
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techniques of fractals and autocorrelation were conducted and the spatial 
indices of FD and Moran’s I were found. Figure 6 shows an example of two 
subset images from TM Band 1 and their associated FD and Moran’s I. The 
FD and Moran’s I values were found for all bands of Landsat TM and for all 
52 samples. The averages of FD and Moran’s I for each sample were then 
calculated using the results of all Landsat TM bands except the thermal Band 
6. Finally, the results were analyzed in terms of the relationships between 
the image complexity indices and the forest characteristics.

Table 2: In situ forest data of Oakmulgee National Forest, AL, USA

Sample no. *Size classes Species Evaluation 
(m)Sawtimber 

(%)
poletimber 
(%)

Saplings 
(%)

Hardwood 
(%)

Softwood 
(%)

1 65 1 34 26 74 120

2 85 11 4 50 50 90

3 83 10 7 43 57 105

4 83 10 7 43 57 143

5 74 7 19 38 62 143

6 77 9 14 41 59 165

7 79 10 11 36 64 161

8 70 6 24 31 69 135

9 77 9 14 41 59 165

10 27 0 73 22 78 113

11 82 10 8 36 64 126

12 70 6 24 30 70 170

13 77 9 14 36 64 120

14 94 6 0 75 25 135

15 60 0 40 24 76 120

16 86 14 0 49 51 129

17 86 14 0 52 48 162

18 69 6 25 33 67 135

19 80 10 10 41 59 120

20 86 12 2 47 53 145

21 95 5 0 77 23 143

22 49 0 51 0 100 144

23 86 13 1 44 56 114

24 74 8 18 39 61 165
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25 88 12 0 56 44 90

26 67 3 30 33 67 165

27 14 0 86 8 92 156

28 0 0 100 23 77 140

29 67 5 28 32 68 154

30 21 0 79 0 100 150

31 86 13 1 48 52 135

32 48 0 52 21 79 144

33 42 0 58 14 86 105

34 56 0 44 26 74 120

35 77 9 14 38 62 128

36 88 12 0 50 50 98

37 34 0 66 0 100 60

38 71 7 22 39 61 150

39 64 0 36 26 74 146

40 88 12 0 73 27 123

41 70 7 23 37 63 143

42 90 10 0 52 48 105

43 47 0 53 19 81 135

44 52 0 48 28 72 110

45 57 0 43 22 78 125

46 72 7 21 32 68 115

47 82 10 8 42 58 110

48 90 10 0 74 26 126

49 65 3 32 29 7 143

50 64 0 36 27 73 114

51 76 8 16 37 63 115

52 58 0 42 25 75 120

*Sawtimber: diameter at breast height (DBH) > 9 inch, poletimber: DBH = 
5–8.9 inch, and saplings: DBH = 1–4.9 inch.
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Figure 6: Two subset images from TM Band 1 and their associated FD and 
Moran’s .

RESULTS

Analysis of Variance (ANOVA) Tests
First, the ability of the spatial complexity indices to distinguish between 
the different size classes and species groups was examined. ANOVA 
is a technique that is useful to test for the equality of several means 
simultaneously. It is a method for splitting the total variation of the data into 
meaningful components that measure different sources of variation [73]. 
One-way ANOVA is analysis of variance when there is one independent 
variable while two-way ANOVA is analysis of variance when there are two 
independent variables.

To study the effectiveness of remote sensing analytical techniques to 
distinguish between two size classes (i.e., two independent factors) and also 
between two species groups, a number of two-way ANOVA tests [73], were 
conducted using the average spatial analytical indices (i.e., FD, Moran’s I) 
as the dependent factor and the tree size classes or species groups as the 
independent factor. Rejecting the null hypothesis that the column effects are 
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equal to zero means rejecting the hypothesis that there is no difference in the 
percentages of the two size classes or the two species groups. As discussed 
previously, the average values of FD and Moran’s I were computed from the 
samples using the results of all TM bands except band 6 (thermal infrared).

Two-way ANOVA tests were conducted for two of the size classes 
at a time. The significance level was chosen to be 0.05 in order to be 
consistent with the research literature in the areas of remote sensing and land 
characterization [47, 51, 74, 75]. The first test rejected the null hypothesis of 
no difference between the percentages of sawtimber and poletimber classes 
at the 0.05 significance level using the average FD as the dependent variable. 
Similarly, ANOVA rejected the null hypothesis of the percentage of trees in 
the sawtimber and saplings size classes using the average FD. ANOVA also 
rejected the null hypothesis for the percentage of trees in the poletimber and 
saplings size classes using the average FD at the 0.05 level. Thus, it appears 
from these results that there is sufficient fidelity in the FD computed from 
the TM data that one can distinguish between timber size classes with a 
reasonable degree of statistical confidence.

The same battery of tests was also run using the average Moran’s I as 
the dependent variable with similar results. The two-way ANOVA test 
results appear to show that Moran’s I values computed from TM data can 
also be employed to distinguish between timber size classes with reasonable 
statistical confidence.

Two-way ANOVA tests were also conducted using different species (i.e., 
softwood and hardwood) as the independent factors. The tests rejected the 
null hypothesis of no difference in percentage of hardwood and softwood 
trees in the samples using both the FD and Moran’s I as dependent variables 
at the 0.05 significance level.

Regression Analyses
The FD is plotted against the percentage of forest trees in each class category 
in Figures 7 through 9. First, the figures demonstrate that the FD has definite 
boundaries depending on the percentage of trees in the larger (sawtimber) 
and smaller (saplings) classes. The maximum FD is 2.89 for a sample with 
a saplings percentage of 0% and sawtimber percentage of 90%. Conversely, 
the minimum FD was 2.67 for a sample with a sapling percentage of 66% 
and sawtimber percentage of 34%. The figures also illustrate that the FD 
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remains fairly constant around the value of 2.7 for samples with either 
greater than 50% saplings or less than 50% sawtimber. These observations 
are consistent with the reasoning outlined earlier, that is, trees with smaller 
crown widths will produce more homogeneous canopies (smaller FD) than 
will trees with larger crown widths. It appears from these results that when 
the percentage of smaller trees (saplings) within the forest becomes greater 
than 50%, then the canopy image becomes so homogeneous that the lower 
fractal bound is reached. Thus, the FD cannot be determinative for sapling 
percentages beyond 50%.

Figure 7: FD versus sawtimber.

However, in the region between the boundaries, there appears to be 
a fairly linear relationship between the FD and the percentage of class 
category. Samples with greater than 50% saplings or less than 50% 
sawtimber were excluded from the data set (a total of 10 samples) and linear 
functions were fitted to the remaining data as shown in Figures 10–12. Both 
Figures 8 and 11 show that there is considerable more scatter in the poletimber 
data than is present in the other two classifications. This observation is 
also consistent with the general concept discussed previously in that the 
poletimber represents a forest structure that is dominated by neither small 
trees nor large trees and thus these samples would demonstrate a greater 
range of image complexity (and greater variation in FD) than would the 
sawtimber or saplings samples.
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Figure 8: FD versus poletimber.

Figure 9: FD versus saplings.

Figure 10: FD versus sawtimber (bounds excluded).
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Figure 11: FD versus poletimber (bounds excluded).

Figure 12: FD versus saplings (bounds excluded).

The situation is similar in the case of Moran’s I statistic (Figures 13–15). 
Again, the statistic appears to demonstrate definite bounds with a maximum 
of about 0.9 for samples with greater than 50% saplings and a minimum of 
about 0.6 for a sawtimber percentage of 94%. Again, as in the fractals case, 
there appears to be a fairly linear relationship between Moran’s I and the 
class percentages between the boundaries (Figures 16–18). However, as in 
the case of fractals, Moran’s I cannot be considered a definitive measure of 
stand density for samples with greater than 50% saplings.
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Figure 13: Moran’s I versus sawtimber.

Figure 14: Moran’s I versus poletimber.

Figure 15: Moran’s I versus saplings.
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Figure 16: Moran’s I versus sawtimber (bounds excluded).

Figure 17: Moran’s I versus poletimber (bounds excluded).

Figure 18: Moran’s I versus saplings (bounds excluded).
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As for the species groups, there appears to be a fairly linear relationship 
between the FD and the species group percentages as well as between 
the Moran’s I and the species group percentages (Figures 19–22). All the 
regressions showed an increase (positive slopes) in FD and a decrease 
(negative slopes) in Moran’s I as the hardwood percentages increased while 
all the regressions showed a decrease (negative slopes) in FD and an increase 
(positive slopes) in Moran’s I as the softwood percentages increased. The 
explanation is the same as given for the stand sizes case because softwood 
trees (e.g., Pine trees) are mostly with small crowns, while hardwood trees 
(e.g., Oak trees) likely have large crowns. As a matter of fact, the species 
group case had even stronger correlations with the average spatial indices 
than the DBH case. This can be due to the fact that remote sensing data do 
not measure DBH directly, but they measure crown reflectivity by satellite 
sensors. So, for a given species group, the reflectance value recorded by 
satellite sensors is a function of exposed projection area (canopy closure). 
The strong relationship between the spatial indices and both types of species 
groups hardwood and softwood is very important to the potential prediction 
process of the trunk diameter from the spatial indices, because it suggests 
that whether the tree is a softwood or a hardwood would not affect the 
relationship between its trunk size and the spatial indices. In other words, 
having different species groups would not skew the potential trunk size 
predictions. Thus, potential forest tree trunk size prediction models would 
be valid for any species groups.

Figure 19: FD versus softwood.
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Figure 20: FD versus hardwood.

Figure 21: Moran’s I versus softwood.

Figure 22: Moran’s I versus hardwood.
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CONCLUSIONS
The results of the case study presented herein appear to confirm the basic 
theory pertaining to the application of fractal and spatial analyses to forest 
canopies. The relationships between image complexity and forest stand 
characteristics appear to be confirmed up to a point. However, it appears that 
as the percentage of smaller diameter trees becomes greater, and particularly 
if it exceeds 50%, then the canopy image obtained from Landsat TM data 
becomes sufficiently homogeneous so that the spatial indices reach their 
lower limits and thus are no longer determinative.

It also appears, at least for the Oakmulgee forest, that the relationships 
between the spatial indices and forest class percentages within the boundaries 
can reasonably be considered linear. The linear relationship is much more 
pronounced in the sawtimber and saplings cases than in samples dominated 
by medium sized trees (poletimber). The large variation in the poletimber 
data is consistent with the theory of image complexity of forest surfaces as 
put forth in this work.

From a civil engineering applications perspective, the results indicate 
that up to a point where smaller trees dominate the landscape, forested areas 
can be differentiated according to breast sizes and thus important flood plain 
characteristics such as ratio of obstructed area to total area can be estimated 
from remotely sensed data. This would facilitate the estimation of hydraulic 
roughness coefficients (e.g., Manning’s n) for computation of flood profiles 
needed for bridge design. Even in the case where smaller trunks do dominate, 
then the knowledge of that fact alone would also facilitate the estimation 
of the required parameters. Likewise, remotely sensed indices such as 
fractals or Moran’s I can distinguish hardwood and softwood species with 
good accuracy. Thus, forested landscapes can be mapped for preliminary 
environmental impact analysis.

These results appear to indicate that both fractal dimensions and spatial 
autocorrelation indices hold promise as means of estimating forest stand 
characteristics from remotely sensed images. However, additional work is 
needed to confirm that the boundaries identified for Oakmulgee National 
Forest and the linear nature of the relationship between image complexity 
indices and forest characteristics are generally evident in other forests. In 
addition, the effects of other parameters such as topographic relief and 
image distortion due to sun angle and cloud cover, for example, need to be 
examined.
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ABSTRACT

Background
Marine radar simulator is a useful approach endorsed by International 
Maritime Organization (IMO) to train the seafarers on how to operate 
marine radar equipment and use marine radar equipment for positioning and 
collision avoidance in laboratory. To fulfill all of the marine radar simulator 
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training requirements, a high performance simulator is necessary. However, 
imperfections with currently available marine radar simulators require 
simulator developers to make improvements.

Case description
In this study, improved fractal algorithms (random Koch curve, fractional 
Brownian motion, and Weierstrass-Mandelbrot function) are applied to 
generate natural-looking radar echoes on a marine radar simulator.

Discussion and evaluation
From the results of the simulations, we can observe that the structures of the 
coastline echoes generated by improved fractal algorithms, especially by 
fractional Brownian motion algorithm, outperform the echoes generated by 
conventional method in representing a natural coastline feature.

Conclusions
Based on evaluations from a panel of experienced mariners, we conclude 
that the coastline echoes simulated by fractal algorithms better represent a 
natural coastline feature than those generated by conventional methods.

BACKGROUND
The International Convention on Standards of Training, Certification and 
Watchkeeping for Seafarers 78/95 (STCW Convention 78/95) of International 
Maritime Organization (IMO) requires using a marine radar simulator to 
train seafarers. A marine radar simulator is the only acceptable approach in 
the laboratory for seafarers to learn how to operate radar equipment and use 
radar for positioning, navigation, and anti-collision. Upon completing all 
requirements set forth in the training, the trainee will receive certification 
for qualifications to work on board. Currently, marine radar simulators 
are widely used by the members of IMO as one of many useful tools for 
seafarer education and training (Ali 2006; Organization 2006; Teel et al. 
2009; Xiuwen et al. 2010). However, due to the limitation of the simulation 
technology, the marine radar simulators on the market are unable to replicate 
the performance of real radar equipment. Taking the simulation of coastline 
echoes as an example, the coastline echo is generated by raw data, which are 
acquired from the digitalized chart and consist of a collection of coordinate 
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points. By connecting two adjacent coordinate points, a straight line is 
generated to approximate a real coastline echo. This method works well for 
generating a coastline echo under a large radar range (say 6 nautical miles 
(NM)). However, when the radar range is adjusted to a smaller radar range 
(such as 0.25 NM), the shape of coastline echo will lose its natural structure 
and look quite artificial (Ji et al. 2015; Zhang 2007). In addition, it should 
take around three seconds for the scan line of the marine radar to rotate a 
round. By adopting a traditional generation method for the coastline echo 
under small radar range, the time for the scan line to rotate around is much 
more likely to exceed three seconds, since extra sampling coordinate points 
(if available) have to be inserted to generate a high quality coastline echo. 
Imperfections like the artificial coastline shape and slow rotation of the radar 
scan line may have negative impacts on the training effectiveness for users 
(Ji et al. 2015; Zhang 2007). In order to overcome the problems associated 
with the conventional coastline echo simulation approach, we apply fractal 
theory to the coastline echo simulation process, since fractal theory is 
widely used as a graphics tool for generating natural-looking shapes like 
coastlines, rivers, mountains, and other natural features (Pentland 1984). 
The simulation results are evaluated and scored by 30 experienced mariners 
to validate that the coastline echoes generated by fractal algorithms look 
more natural than those generated by conventional method. Furthermore, an 
improved fractal algorithm is designed to guarantee the scan line can finish 
a round of rotation within three seconds, which is difficult to be achieved 
using the conventional method, especially under a larger radar range.

LITERATURE REVIEW
The STCW Convention provides required components for seafarer training, 
which use the radar simulator as a tool of training and assessment. These 
highlights include (Ali 2006; Organization 2006; Teel et al. 2009): factors 
affecting performance and accuracy; detection of misrepresentation 
of information, including false echoes and sea returns; setting up and 
maintaining displays; range and bearing; plotting techniques and relative 
motion concepts; identification of critical echoes; course and speed of other 
ships; time and distance of the closest approach to crossing, meeting or 
overtaking ships; detecting course and speed changes of other ships; effects 
on the changes of the own ship’s course or speed or both; and application of 
the International Regulations for Preventing Collisions at Sea. To fulfill all 
of these training requirements, a high performance marine radar simulator is 
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needed. In the current marine radar simulator market, the major developing 
teams include Nautical Software (2016), Bridge Command (2016), Kongsberg 
Maritime (2016), Landfall (2016), and Dalian Maritime University Institute 
of Navigational Technology (2016). In addition, some previous research 
investigates methods to improve the marine radar simulator. For example, 
Arnold-Bos et al. developed a versatile bistatic and polarimetric marine 
radar simulator. In their simulator, realistic sea surfaces are generated using 
the two-scale model on a semi-deterministic basis, so as to incorporate the 
presence of ship wakes in the simulation (Arnold-Bos et al. 2006). Yin et 
al. designed a radar simulator using a PC to generate radar echoes and a 
radar interface board to generate radar signals. Their simulator has a more 
flexible and realistic operation interface than other simulators (Yin et al. 
2007). Zhang et al. put forward a coastline echo intensity algorithm based on 
RGB and HIS color models and applied this algorithm on the marine radar 
simulator. The simulation results from this model are consistent with the 
electronic chart (Zhang et al. 2010).

In this study, we incorporate fractal theory, a branch of non-linear 
mathematics, to improve coastline echo simulation. The research targets 
of fractal theory are irregular objects and non-linear systems in the nature. 
The term “fractal”? was first used by mathematician Benoit Mandelbrot in 
1975 to extend the concept of theoretical fractional dimensions to geometric 
patterns in nature (Mandelbrot 1983). In the 1980s, fractal theory was 
applied into the signal processing for radar because the echoes reflected into 
radar system have many fractal patterns (Ji et al. 2015; Zhang 2007). Even 
though fractal theory has been widely applied in fields such as virtual reality, 
image processing, and time series analysis, etc. (Ji et al. 2005; Zhang et 
al. 2005), there are few studies to apply it into the simulation of coastline 
echo for marine radar simulator. This research aims to close this gap. Partial 
of findings reported in this article were originally presented at the 94th 
Transportation Research Board Annual Meeting. We improved the research 
methodology in Ji et al. (2015) in this article. Especially, a full control of 
the physical parameters involved fractal function, Weierstrass-Mandelbrot 
function (WMF), is used to simulate coastline echoes. In addition, a 
quantitative validation of the simulation results is designed to assess the 
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fidelity of the simulation outcomes and comprehend possible values of the 
introduced parameters among the simulation algorithms.

METHODS
The echo reflection on radar simulator can be classified into three types (Ji 
et al. 2015; Zhang 2007). A Type I Echo is the echo reflected by artificial 
architectures such as berth and breakwater. Type I Echoes have regular shape 
and can be used for positioning because of its clear boundaries and fixed 
position. A Type II Echo is the echo reflected by rocky coast. Type II Echoes 
have a realistic pattern as well as fixed position. A Type III Echo is an echo 
reflected by flat coast such as sand coast. Type III Echoes have a large echo 
reflection zone and relatively weak reflection. Additionally, the shape and 
position of a Type III Echo will change with the motion of the waves. This 
study focuses only on simulation of Type II Coastline Echoes because of 
its natural fractal features. Three different fractal algorithms are adopted 
to simulate coastline echoes. A comparison among these three simulation 
algorithms is included.

Random Koch Curve Algorithm
The Koch curve was described by Swedish mathematician Helge von Koch 
in 1904 (Keddam and Takenouti 1988). The curve can be constructed as 
shown in Fig. 1. First, a straight line is divided into tree equal segments, 
and an equilateral triangle is raised from the middle third. The resulting line 
segments are again divided into thirds with an equilateral triangle raised 
from the middle third of each. This process is repeated through the desired 
number of iterations (Cross 1994). The length of the Koch curve can be 
infinite because the total length of the curve increases by one third with 
each iteration (Baliarda et al. 2000). The dimension of Koch curve is 1.262. 
This makes us consider Koch curve a candidate to simulate coastlines, since 
coastlines are fractal curves with dimensions ranging from 1 (very smooth) 
to 1.5 (very rough)(Aviles and Scholz 1987). From Fig. 1 we can see that the 
resulting curve is roughly similar to the natural pattern of a coastline.
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Figure 1: Construction of regular Koch curve.

However, the Koch curve generated through this theoretical approach 
is too regular and symmetric to simulate a coastline echo, since the inlets 
in real coastlines are similar to each other but not identical. Thus, we 
incorporate randomness into the regular Koch curve generation process to 
produce a more natural-looking coastline echo (Ji et al. 2015; Zhang 2007). 
In order to add randomness into the Koch curve, half of the time, we raise 
the equilateral triangle from the middle third; half of the time, we bent 
the equilateral triangle down from the middle third (Filoche and Sapoval 
2000). In Fig. 2, Koch curves generated by regular and random methods are 
compared. When comparing to a naturally forming coastline, the random 
Koch curve looks more realistic than the regular Koch curve, as the regular 
Koch curve appears too artificial to exist in a natural environment.

Figure 2: Comparison between regular and random Koch curve.

Even though the random Koch curve is an improved method for coastline 
echo simulation, application of this method without constraints may bring 
distortion into the simulation process. As long as the distance between two 
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adjacent sample points is short, the distortion from the simulation of the 
coastline echo is negligible. However, as the distance between sample points 
increases, the distortion becomes more noticeable. For example, as shown in 
Fig. 3, the trend of the simulated coastline echo in the two boxes (shown in 
Fig. 3 b) is different from the original trend of coastline echo (shown in Fig. 
3 a) (Ji et al. 2015; Zhang 2007).

Figure 3: Trend distortion from random Koch curve algorithm.

To avoid the above distortion, a control value (c) is introduced into the 
simulation process (in this study, c =15). Once the distance between two 
adjacent sample points is shorter than c, the random Koch curve is used 
directly to simulate the coastline echo between these two adjacent sample 
points. If this distance is larger than c, several random points are inserted 
between the sample points to break the original line into smaller segments. 
Then, the random Koch curve algorithm is applied between new adjacent 
sample points to simulate the coastline echo. The value c can be adjusted in 
accordance with computer’s performance. We can apply a smaller c value 
into the random Koch curve algorithm on a high performance computer. 
As shown in Fig. 4, after adopting a random Koch curve algorithm with 
a control value, the distortion of the trend of simulated coastline echo is 
negligible. Also, we notice that there is no obvious improvement between 
the simulated coastline echoes if the iteration is more than three times based 
on visual inspection. Therefore, we suggest that three iterations are sufficient 
for the simulation of the coastline echo by random Koch curve algorithm 
with control value.
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Figure 4: Coastline echoes generated by random Koch curve algorithm with 
control value under different iterations.

Fractional Brownian MotionAlgorithm
Fractional Brownian Motion (FBM) was introduced by Mandelbrot and van 
Ness in 1968 (Rostek and Schöbel 2013). We know that Brownian motion, 
which is also called Wiener process, is a random process (Falconer 2013). 
If −∞<t<∞ and w belongs to a set of values of a random function and if the 
intervals (t 1,t 2) and (t 3,t 4) do not overlap, the ordinary Brownian motion 
B(t,w) is a real random function with independent Gaussian increments. 
Therefore, B(t 2,w)−B(t 1,w) has a mean of zero and a variance |t 2−t 1|. Also, 
B(t 2,w)−B(t 1,w) is independent of B(t 4,w)−B(t 3,w). Let 0<H<1 and b 0 be 
an arbitrary real number. For t>0, the random function B 

H (t,w) below is 
called a reduced FBM with Hurst coefficient H and starting value b 0 at time 
0 (Dieker 2004; Mandelbrot and Van Ness 1968).

    (1)

where Γ represents the Gamma function: Γ(α)=  
(Mandelbrot and Van Ness 1968).
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In practice, the random midpoint displacement (RMD) method is used 
to simulate FBM. By the RMD method, the height of a midpoint between 
two other points is given by:

    (2)
where h 

random is a random offset. In our simulation, the coordinates of the 
midpoints are calculated by the formula below (Boyle et al. 2007):

     (3)

      (4)

   (5)
where σ is the standard deviation of the heights of sample points. H is Hurst 
index and G a u s s(·) is a random number generated by standard normal 
distribution which has a mean of zero and a standard deviation of one. The 
curves generated by the RMD method under different Hurst coefficients 
are shown in Fig. 5. The dimension of a fractal curve generated by RMD 
method equals to 2−H (Huang et al. 1992). As we mentioned above, the 
dimensions of coastlines range from 1 to 1.5. Therefore, we can select Hurt 
coefficient in the range of 0.5 and 1 to simulate coastline by RMD method. 
In this study, Hurst coefficient is set to 0.6.

Figure 5: The curves generated by FBM algorithm with different Hurst coef-
ficient.
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Figure 6 a is the coastline echo generated by the conventional method. 
The results shown in the other subfigures of Fig. 6 are the coastline echoes 
generated by FBM method (H=0.6) under a different number of iterations. It 
can be seen that the FBM method works better than the conventional method 
in terms of coastline echo simulation since more details are provided and the 
shape is approximate to a real coastline. In addition, we notice that there are 
no obvious differences between the coastline echoes with more than three 
iterations via visual inspection. We suggest that three iterations are sufficient 
for coastline echo simulation by the FBM method as well.

Figure 6: Coastline echoes generated by FBM algorithm under different itera-
tions (H =0.6).

Weierstrass-Mandelbrot Function Algorithm
In 1872, German mathematician Karl Weierstrass devised a function, that is 
continuous everywhere but differentiable nowhere. This function is called 
Weierstrass function. The Weierstrass function is defined as:

where 0<a<1, b is a positive odd integer, and a b>1+1.5π (Weierstrass 1967; 
Zhang et al. 2015). In 1977, Mandelbrot extended the Weierstrass function 
to the following form,which is called Weierstrass-Mandelbrot function. He 
also pointed out that the WMF is a fractal and has no smallest scale (Berry 
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and Lewis 1980; Mandelbrot 1979). WMF has been widely adopted to 
simulate various phenomena in real world (Harrouni 2008; Ma et al. 2015; 
Shanhua et al. 2015; Wang et al. 2015; Zhang et al. 2015).

where D is the fractal dimension of the graph of W(t) and 1<D<2. γ is a 
parameter larger than 1. ϕ 

n is an arbitrary phase. When ϕ 
n =0, the form of 

WMF is:

When ϕ 
n =n π, the form of WMF becomes:

Without loss of generality, we use ϕ 
n =0 to generate cosine series to 

simulate the coastline echo (Zhang et al. 2015). By inspecting the simulation 
results under various combinations of D and γ, we notice that the fractal 
dimension D has much larger impact on the fluctuation frequency of the cosine 
series than parameter γ. Additionally, in order to keep consistent with the 
fractal dimension of actual signals, parameter D should be selected between 
1 and 1.5, since the fractal dimensions of actual signals range from 1 to 1.5. 
Therefore, in this study, γ and D are set to 1.5 for both. Figure 7 presents the 
cosine series simulated in Matlab using aforementioned parameters. It can 
be seen that the cosine series generated by WMF have infinitely complex 
patterns across different scales. Based on the characteristics and previous 
applications of fractal theory (Majumdar and Tien 1990; Voss 1988; Yang et 
al.), the cosine series generated by WMF can be used to simulate the natural 
pattern of a coastline.
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Figure 7: Cosine series generated by WMF in different scales (D =1.5,γ=1.5, 
ϕ 

n =0).

Algorithm Improvement
We know that, in the process of simulating coastline echoes using fractal 
algorithms, a collection of sample or random points will be added in each 
iteration. As the number of added points increase, the simulation software 
will consume more computer resources, such as calculation ability and 
storage space, which may slow down the rotation of scan line, or even result 
in a buffer overflow. As the radar range increases, the amount of information 
included in the radar simulation also increases. Typically, increasing 
iterations and radar range produce a slower rotating scan line or can even 
result in failure of the simulation. To troubleshoot this issue, we introduce 
a threshold value (L) into the simulation process. Only when the distance 
between two adjacent sample points is larger than the threshold value L 
(in this study L =10), the fractal algorithms will be applied. Otherwise, the 
conventional simulation method will be used to generate the coastline echo. 
This is because the conventional simulation method works well enough 
under large radar ranges. Again, the value L can be adjusted in accordance 
with computer’s performance. We can set L to a smaller value or even zero 
in the improved algorithm on a high performance computer. For those who 
are using similar computers as the authors do, L =10 is a good starting point. 
Figure 8 illustrates the flow chart of improved fractal algorithms for the 
generation of coastline echo.
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Figure 8: Flow chart of improved fractal algorithm.
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RESULT AND DISCUSSION

Simulation Outcomes on Marine Radar Simulator
The simulation algorithms were implemented in the C++ language and tested 
on a laptop with an Intel(R) Core (TM) i5-2520M CPU, 2.50 GHz processor, 
2 cores, Intel HD Graphics 3000 graphic card, and 8 GB RAM (Windows 
7 64-bit). Figure 9 presents a panel of simulation outcomes of the coastline 
echoes under 0.25 NM radar range using the conventional method and 
fractal algorithms. All of the fractal algorithms uses three iterations. Figure 
9 a shows the coastline echoes generated by conventional method. It can be 
observed that the simulated coastline echoes by this method is in a regular 
straight line pattern without the natural features of coastline echoes. In Fig. 
9 b, throw in some randomness, we notice that the regularity of simulate 
coastline echoes starts to fade out. While using FBM method to generate 
coastline echoes (as shown in Fig. 9 c), the pattern of simulated coastline 
echoes looks interestingly real. The features of real coastline echoes, such 
as inlets and promontories can be observed clearly. The coastline echoes 
simulated by WMF method (as shown in Fig. 9 d) show natural features 
of coastline echoes as well; however, the natural features of simulated 
coastline echoes by WMF method are not as obvious as those generated by 
FBM method. In summary, via visual inspection, we can observe that the 
structures of the coastline echoes generated by fractal algorithms (Fig. 9 b, 
c,) outperform the echo generated by conventional method in representing a 
natural coastline feature (Fig. 9 a).

Figure 9: Simulation outcomes of coastline echo. a by conventional method, 
b by random Koch curve algorithm, c by FBM algorithm, and d by WMF 
algorithm.
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To support above conclusion from visual inspection, a survey is 
designed for a panel of 30 experienced mariners to collect their opinion 
on the patterns of simulated coastline echoes by conventional method and 
fractal algorithms. These mariners consist of 17 licensed officers on board 
(including two captains, two chief mates, three second mates, and ten third 
mates), five maritime enforcement investigators, and eight researchers 
in nautical science. The average working years of these mariners are 5.6 
years ranging from 1 to 30 years. All the mariners report that they have 
experience of using radar equipment for positioning and navigation. The 
coastline echoes generated by different methods are presented to them. 
They are required to evaluate and score these coastline echoes. To be 
specific, in the first part of the survey, we provide the mariners three pairs 
of comparison figures of simulated coastline echoes (conventional method 
v.s. random Koch curve, conventional method v.s. FBM, and conventional 
method v.s. WMF). The mariners need to select the best simulation result 
from each panel based on their own judgements. In the second part of the 
survey, the mariners are required to score the coastline echoes simulated by 
conventional methods and three fractal algorithms. Score scale is using a 
likert scale from 1 to 5, where 1 is “bad” and 5 is “excellent”. The evaluation 
results are summarized in Table 1. For example, comparing the coastline 
echo simulated by conventional method with the one by FBM, 30 % of 
the mariners consider the conventional method is better and 70 % of the 
mariners think otherwise. Regarding the evaluation scores, the median 
evaluation scores on the coastline echoes generated by conventional method 
and FBM are 3 points and 4 points respectively. In general, the results of 
the evaluation from experienced mariners validate the advantages of fractal 
algorithms in terms of simulation of coastline echoes.

Table 1:Summary of evaluations from experience mariners on the simulated 
coastline echoes by various methods

Survey Simulation method Evaluation result

Part I Conventional Method v.s. Random Koch Curve 30 % v.s. 70 %

 Conventional Method v.s. FBM 30 % v.s. 70 %

 Conventional Method v.s. WMF 33 % v.s. 67 %

Part II Conventional Method [2.00, 3.00, 4.00]

 Random Koch Curve [3.00, 3.00, 4.00]

 FBM [3.00, 4.00, 4.25]

 WMF [2.00, 3.50, 4.00]
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Note: scores in square bracket are [25 % quantile, median, 75 % quantile]

Performance Analysis of Improved Fractal Algorithms
According to the time of scan line finishing a rotation in Table 2, the improved 
fractal algorithms can guarantee the scan line to rotate around in no more 
than three seconds regardless of whether the radar range is small (say 0.25 
NM) or large (say 6 NM) or the number of iterations is many or few. By 
contrast, the unimproved fractal algorithms can result in significantly slower 
rotation of scan line or even simulation failure.

Table 2:Speed of scan line to rotate a round by different algorithms, iterations, 
and radar ranges (unit in second/round)

Algorithm Iteration Radar range (in NM)
  6 5 4 3 2 1 0.5 0.25
Random Koch 
Curve

1 3 3 3 3 3 3 3 3

 2 12 11 8 6 5 3 3 3
 3 − − − − 8 7 6 5
FBM 1 3 3 3 3 3 3 3 3
 2 3 3 3 3 3 3 3 3
 3 5 4 3 3 3 3 3 3
 4 12 11 8 6 5 5 5 3
WMF 1 3 3 3 3 3 3 3 3
 2 31 25 11 8 7 5 4 3
 3 − − − − 14 11 8 6
Improved 1 3 3 3 3 3 3 3 3
Random Koch 
Curve/

2 3 3 3 3 3 3 3 3

FBM/WMF 3 3 3 3 3 3 3 3 3
 4 3 3 3 3 3 3 3 3

Note: “ −” means the simulation failed
Moreover, the improved fractal algorithm can still keep a natural-looking 

pattern and detail of the coastline echoes. Taking an improved FBM algorithm 
with threshold value (L) as an example, the coastline echoes generated by 
improved FBM algorithm (Fig. 10 b and c) are still better representations of 
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a natural coastline echo than the echoes generated by conventional method 
(Fig. 10 a). Additionally, the natural pattern and Detail of the coastline echo 
improve as the threshold value (L) decreases.

Figure 10: Simulation outcomes of coastline echo. a by conventional method, 
b by improved FBM algorithm with L =10, and c by improved FBM algorithm 
with L =3.

Comparison of Three Fractal Algorithms
Based on calculations under the same number of iterations (i) and amount 
of original sample points of a coastline, the total number of sample points 
used by a random Koch curve algorithm in the simulation process is 2i times 
of those used by the FBM and WMF algorithm. Since the number of the 
sample points can directly affect the rotation speed of the scan line, the FBM 
and WMF algorithm performs better than the random Koch curve algorithm 
from this aspect.

In addition, the pattern of the coastline echoes generated by FBM 
algorithm can be adjusted by Hurst index H conveniently. The pattern of 
the coastline echoes simulated by WMF algorithm can be adjusted by the 
different combinations of D, γ, and ϕ 

n as well. By contrast, the pattern of 
the coastline echoes generated by a random Koch curve algorithm can be 
changed very little. According to the simulation outcomes in this study, the 
coastline echoes generated by the FBM algorithm more closely resemble 
real coastline echoes than the echoes generated by a random Koch curve and 
WMF algorithm.

CONCLUSION
In this paper, fractal algorithms are applied into the simulation of coastline 
echoes on marine radar simulator. The simulation outcomes from different 
methods are compared as well. In order to guarantee the rotating speed of 
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radar scan line, threshold value L is introduced into the simulation process. 
Based on our evaluation, the improved FBM algorithm is the best choice 
for the simulation of coastline echoes on marine radar simulators. Natural-
looking coastline echoes generated by the algorithms introduced in this study 
can improve the quality of the training significantly. The fractal algorithms 
developed in this paper are packaged into a dynamic link library (dll) with 
well documented application programmable interface (API), which means 
that the algorithms are decoupled from the simulator program. This brings 
great benefits and convenience when transplanting the algorithm to other 
simulators, as long as the simulator is able to load a dll library. Since a 
dll library is supported by most of Windows based programs, we believe 
that the adoption of our algorithms on other simulators will be effortless. 
One limitation of this study is that we only simulated Type II coastline 
echoes. Another limitation of this study is that we aim at applying the fractal 
algorithms into the simulation of the coastline echoes in radar simulator 
rather than finding the best parameters of the fractal algorithms for the 
simulation. Last but not least, since the authors are unable to collect real 
data from marine radar on board, a survey method is employed to evaluate 
the simulation results by fractal algorithm. In the future, simulation of other 
radar echo types will be considered; how to choose the parameters for the 
fractal algorithms should be investigated; and a more objective evaluation 
approach should be designed to evaluate the simulation results.
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ABSTRACT
To study multi-fractal behavior of corroded steel surface, a range of fractal 
surfaces of corroded surfaces of Q235 steel were constructed by using the 
Weierstrass-Mandelbrot method under a high total accuracy. The multi-
fractal spectrum of fractal surface of corroded steel was calculated to study 
the multi-fractal characteristics of the W-M corroded surface. Based on 
the shape feature of the multi-fractal spectrum of corroded steel surface, 
the least squares method was applied to the quadratic fitting of the multi-
fractal spectrum of corroded surface. The fitting function was quantitatively 
analyzed to simplify the calculation of multi-fractal characteristics of 
corroded surface. The results showed that the multi-fractal spectrum of 



Fractal Analysis308

corroded surface was fitted well with the method using quadratic curve 
fitting, and the evolution rules and trends were forecasted accurately. The 
findings can be applied to research on the mechanisms of corroded surface 
formation of steel and provide a new approach for the establishment of 
corrosion damage constitutive models of steel.

INTRODUCTION
A rough surface with self-similarity and scale invariance always has a 
fractal geometrical property[1–2]. Many studies have been conducted on 
the morphology characteristics of rough surfaces on the basis of fractal 
geometry theory. Many types of fractal surfaces have been established and 
have played important roles in ultra-precision industries[3–6], materials 
science[7–10], electromagnetic wave scattering[11–13], and many other 
fields. In addition, in actual projects, the morphology of rough surface 
often presents variability, i.e., anisotropic and local characteristics in spatial 
distribution[14,15], which makes the fractal geometry theory difficulty to be 
applied in practical engineering.

As a common building material, steel, because of air-borne chloride 
ions, moisture, fugitive dust, etc., is highly susceptible to corrosion damage. 
The surface of corroded steel becomes gradually roughening from the 
very beginning of a plane. It well known, the surface of corroded steel is 
mainly roughened by corrosive pitting among all corrosion results, which is 
generating considerable interest. For geometric morphology, due to a large 
number of bumps or potholes (pits) and planar regions (without pits) on 
corroded surface of steel, the rough surface attacked by the corrosive pitting 
presents larger discreteness and concave convex feature. And the existing 
experimental data show that the multi-fractal dimension of a corroded 
steel surface is between two and three. The existing research results show 
that the surface attack by corrosive damage is characterized by continuity, 
non-differentiability and self-affinity, and is of multi-fractal features with a 
certain measure[16–18]. Thus, the research for the multi-fractal features is a 
powerful tool for analyzing the randomness and discreteness of the damage 
mechanism of corroded steel. However, the difficulties in the multi-fractal 
features analysis of corroded steel surface, such as tedious calculations, 
make it too complex to be applied to practical projects. Therefore, the 
present study is trying to use a simplified method to study the multi-fractal 
characteristics of corroded steel surface.
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The Weierstrass-Mandelbrot (W-M) method is a common mathematical 
model used to construct the fractal surface in engineering. In this study, 
irregular fractal surface of the corroded steel is tried to be constructed by 
using the W-M method with specific fractal parameters, and calculate its 
multi-fractal spectrum. Then, based on the shape feature of the multi-fractal 
spectrum, the least squares method is applied to quadratic fitting of the multi-
fractal spectrum of corroded surfaces. Finally, we conduct quantitatively 
analysis on the fitting curve to obtain an exact description and accurate 
analysis of the multi-fractal characteristics of the corroded steel surface.

MATERIALS AND METHODS

Material and Specimens
The material used in this study was a Q235 steel, which is a normalized 
0.25% low-carbon steel, extensively used in industrial and civil buildings: 
the matrix consists of a ferritic–pearlitic microstructure with a 20~40μm 
ferrite grain size, as shown in Fig 1; its basic chemical composition is shown 
in Table 1. All specimens were cut out from a same steel plate.

Figure 1: Microstructure of Q235 steel material.

White part is ferrite and black part is pearlite.
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Table 1: Chemical composition of Q235 steel (wt. %)

C Si Mn P S Cr Ni Cu N
0.2 0.36 1.4 0.45 0.45 0.3 0.3 0.3 0.008

Atmospheric Corrosion Experiment
A test sited in Xi’an (latitude 39°45’ N, longitude 108°56’ E) was selected 
for the atmospheric corrosion experiment. The test setup of the atmospheric 
corrosion experiment is shown in Fig 2. During the experimental period, 
the monthly temperature(T), relative humidity(RH), annual precipitation(P), 
and rainwater acidity(PH) values were measured to identify the atmospheric 
corrosive environment. According to GB/T 19292.4–2003[19], the 
specimens for corrosion were 400 mm in length, 60 mm in width and 8 mm 
in thickness, installed at 45°in the oblique direction. Table 2 presents the 
atmospheric corrosion conditions measured depending on the test site. After 
exposed for 0.5, 1, 2 and 4 years, orderly, the specimens were immersed 
in HCL solution (12% by volume) at room temperature for removing the 
corrosion products, cleaned with water, dried with hot air, rinsed in acetone, 
and then kept in a drying oven until the 3D profile measurement[20].

Figure 2: Setup of atmospheric exposure test.
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Table 2: Atmospheric corrosion conditions on the test site

Exposed period T(K) RH(%) P(mm) PH
Mar. 2008-Apr. 2009 294 65 1755 6.3
Mar. 2009-Apr. 2010 294 61 2186 6.7
Mar. 2011-Apr. 2012 294 63 1738 6.4
Mar. 2012-Apr. 2013 295 69 2016 6.5
May 294 64 2106 6.6

T − the temperature; RH − the relative humidity; P− the annual 
precipitation; PH− the rainwater acidity.

3D Surface Profile Measurements
In order to gain the 3D morphology of the surface of corroded specimens, a 
non-contact PS50 3D profiler produced by NANOVER Company was used 
in this study. The 3D profiler was designed with leading edge white light 
axial chromatism optical pens to obtain nanometer resolution for surface 
inspection, hi-speed 3D metrology and more precise thickness mapping on a 
wider range of geometries and materials than any other profiometer[20].The 
vertical resolution was 0.28μm and the horizontal resolution was 8μm. The 
setup used for 3D surface morphology measurements is shown in Fig 3A. 
Each specimen had been detected the corroded surface at a measurement 
zone of 40 mm×30 mm(along the directions of transverse and longitude, 
respectively) approximately arranging at the central of specimen, and 
the scanning step was set to 15μm[20]. The elementary diagram of the 
measurement area is shown in Fig 3B.

Figure 3: Laser focus measurement of the atmospheric exposure test specimen.

(a) Equipment used for measurements; (b) Schematic diagram of the mea-
surement area.
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Surface Morphology and Pitting Characterization
Fig 4 clearly shows the surface morphologies of corroded specimens 
exposed for 0.5, 1, 2 and 4 years, respectively. The images were draw by 
Golden Software Surfer 8. The software is a full-function 3D visualization, 
contouring and surface modeling package that runs under Microsoft 
windows, which is used extensively for terrain modeling, bathymetric 
modeling, landscape visualization, surface analysis, contour mapping, 
watershed and 3D surface mapping, gridding, volumetric, and much more. 
In this study, the 3D surface mapping was applied to show more detail of 
the corroded surface. The profiles of the different measurement regions are 
presented in Fig 4 (S1 Table).

Figure 4: Contour of measured corroded surface images.

(a) Surface image of 0.5 year old test specimen; (b) Surface image of 1 
year old test specimen; (c) Surface image of 2 years old test specimen; (d) 
Surface image of 4 years old test specimen.

It is well known, the corrosive attack can produce a network of corrosion 
on metal surface, which may be treated as a single pit or as two or more 
adjacent pits. Corrosion damage is also related to the link up of adjacent pits 
during subsequent exposure time. As shown in Fig 4, at the initial stage of 
corrosion, a few micro-pits only occurred on some particular locations on 
the corroded surface of specimens, which made the surface slightly irregular 
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(shown in Fig 4A). And with the passage of corrosion time, large amounts 
of pits occurred on the surface and superimposed each other, which made 
the corroded surface signally irregular and uneven (shown in Fig 4D). Thus 
it can be seen that roughness and irregular of the corroded surface increased 
with the increasing exposure.

Although Fig 4 may directly reflect corrosion status of the corroded steel, 
the quantitative analysis from the angle of mathematics is hard to evaluate. 
Thus, the engineering application is in urgent need of a method, which can 
simulate the corroded surface of steel with high-precision and be convenient 
to quantitatively analyze the simulation.

RESULTS AND DISCUSSION

Construction of the Multi-fractal Spectrum of Corroded Steel 
Surface
In science and engineering, many mathematical models with different 
multi-fractal characteristics based on the Weierstrass-Mandelbrot(W-M) 
method were generally used to analyze the surface conditions[21–26]. By 
using the W-M method, here, we can obtain a fractal surface with respect to 
an arbitrary surface of corroded steel through setting some specific multi-
fractal parameters. For instance, when a fractal dimension (D) was known, 
the corresponding fractal surface can be obtained by employing the W-M 
fractal function, and the function is expressed as follows:

  (1)
Where C n is the characteristic length scale, i.e., the scaling constant; n is 

the wave number; A n and B n, which have uniform distribution in [0, 2π], are 
independent random number, respectively; D is a multi-fractal dimension 
between 2 and 3; λ is constant greater than 1.

In this study, the fractal surfaces with D value of 2.2, 2.3, 2.5, and 2.8 
were constructed by the W–M method (λ = 1.3) to simulate the surface of 
corroded steel exposed for 0.5, 1, 2 and 4 years, respectively. Fig 5 shows 
the W–M surface with different fractal dimensions which were plotted by 
the MATLAB software.
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Figure 5: Fractal surfaces based on the W–M method.

(a) Fractal surface with D = 2.2; (b) Fractal surface with D = 2.3; (c) Fractal 
surface with D = 2.5; (d) Fractal surface with D = 2.8.

From Fig 5, it reveals that the fractal surface based on the W–M method 
was similar with the corresponding surface of corroded steel (shown in Fig 
4) in roughness distribution pattern and surface fluctuation trend. Here 
we evaluated the accuracy of the constructed surface by comparing the 
measurement data and the theoretical data[27].

  (2)
where h is the measurement data of practical surface, h ’ is the theoretical 
data of simulated surface, n is the number of date. To obtain the surface 
height (h or h ’) of every point, the calculation principle was defined by using 
the method shown in Fig 6. Noted that the datum plane used to measure the 
height of the surface was obtained by least squares.

Figure 6: Surface profile (a) and the principle to obtain the surface height pa-
rameters (b), (red arrow indicates the trend of the profile).
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Blue indicates pitting depth, red indicates surface height based on the 
datum plane.

Table 3 showed the simulation precisions of fractal surfaces for corroded 
specimens with different corrosion time. And it can be found that the fractal 
surfaces with D value of 2.2, 2.3, 2.5, and 2.8 had more than 90% accuracy 
for simulating the corroded surfaces exposed for 0.5, 1, 2 and 4 years, 
respectively. That is to say, it is effective to simulate the rough surface of 
corroded steel by the W-M method.

Table 3: The simulation precisions of fractal surfaces for corroded specimens 
with different corrosion time

Dimension 2.2 2.3 2.5 2.8
Simulation precision (%) 98.9 97.2 94.8 91.5

Calculation of the Multi-fractal Spectrum
Many methods can be used to calculate fractal dimension[28–30], among 
which the multi-fractal dimension approaching to the real value can be 
obtained by the calculus of variations or the box counting method. Note that 
the box counting method, possessing the advantage of clear mathematical 
principle and simple calculation, was used in this study to calculate the 
multi-fractal parameters of corroded steel surface.

A set of boxes with size of l are used to divide the datum plane of the 
fractal surface of corroded steel[ 31], make ε = l / L, L = 512 and ε < 1, ν i(ε) 
is distribution probability of the height of corroded surface for the box(i), 
which can be calculated as follow:

    (3)
In Eq (3), h i is the height of corroded surface for the box(i), ∑(h i)j is 

the sum of the height for all boxes. When the height distribution is of multi-
fractal features, it can be described as:
vi(ε) ∼ εα  (4)
Mα(ε) ∼ ε−f(α)  (5)
where α depending upon the box(i) is the singularity of the subset of height 
probabilities, Mα(ε) refers to the number of boxes having the same height 
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distribution probability when the size of box is ε, and f(α) is the multi-
fractal dimension of subset with the α value. Generally, the value of Mα(ε) 
increases with the decreasing of ε[32]. A qth-order partition function applied 
in statistical physics, χ q(ε), can be described as[33]:
χq(ε) = ∑νi(ε)q = ετ(q)     (6)

     (7)
where q is the moment order, τ(q) is a non-linear function of q and is known 
as the mass exponent function.

The singularity strength function α and the singularity spectrum f(α) can 
be calculated through Legendre transform:

    (8)

    (9)
Theoretically, with the increasing of |q|, the values of α(q) and f(α(q)) 

are closer to their theoretical limit. But in fact, when q reaches an oversized 
value, the computational workload will be increased significantly, which 
will lead to running out of memory; when |q| stands on an undersized value, 
of which the increment can cause obvious variation of f(α). The reason can 
be considered as that f(α) calculated through undersized |q| is only part of the 
multi-fractal spectrum, but cannot completely reflect probability distribution 
of the fractal surface. In practical, it is impossible to take the value of q to 
be infinite. But generally, the saturation extent of multi-fractal spectrum 
increases with the increasing of the q[31]; thus, we determined the value 
of |q| max through that f(α) and α tend to be saturated. In this study, all of the 
multi-fractal spectrums of corroded surfaces were obtained with |q| max = 60.

Through the analysis above, we calculated f(α)~α of the fractal surfaces 
(D = 2.2, 2.3, 2.5, and 2.8) corresponding to the corroded surfaces exposed 
for 0.5, 1, 2 and 4 years.

Fig 7 plots the multi-fractal spectrums of the fractal surfaces with 
different dimensions (S2 Table). It can be seen that the shapes of all 
spectrums are inverted parabolas, but the difference of shapes among the 
spectrums is still obvious: the multi-fractal spectrum of corroded surface is 
plumping with the increasing of fractal dimension, and the spectrum span 
is also widening. It is well known value of Δα (α max − α min) determines the 
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width of the spectrum, which is the main reason to increase the local indices 
of the studied variable, i.e., the more the unevenly distributing of surface, 
the wider the spectrum, the greater the heterogeneity of distribution and vice 
versa[34]. Thus, the conclusions can also be drawn: the surface of corroded 
steel unevenly distributes with the increasing of the value of Δα.

Figure 7: Multi-fractal spectrums, f(α)~α, with D = 2.2, 2.3, 2.5 and 2.8.

The width of which along α denotes the degree of multi-fractal 
complexity.

Moreover, when the surface of corroded steel is more rough and irregular, 
the end position of the corresponding multi-fractal spectrum is lower, which 
means that the proportion of subsets referring to small probability continues 
to increase for the corroded surface.

As shown in Fig 7, the intersection point of all multi-fractal spectrums 
is (1.6, 1.6), which indicating the fractal subset with α = 1.6 (the edge of 
pits) has a largest proportion on the fractal surface. That is to say the fractal 
subset with α = 1.6 can determine the sharpness or roughness of the corroded 
steel surface, distinctly. For the Q235 steel under atmospheric corrosion 
environment, the corrosion damage mainly manifests corrosive pitting due 
to the heterogeneous microstructures and chemical composition[35, 36], 
as shown in Fig 4. Pits occur at some particular locations of the corroded 
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surface, link up with adjacent pits with the increasing of exposure, and 
eventually influence the sharpness or roughness of the corroded surface. 
Thus, it can be seen the effect of atmospheric corrosion on surface condition 
of Q235 steel can be signally reflected by the development of corrosion pits 
with the method of multi-fractal.

Fitting of the Multi-fractal Spectrum of Corroded Steel Surface
It can be known from Eq (8) and (9) that the calculation of multi-fractal 
spectrum is unable to be represented by using a specific or simple function, 
which makes the multi-fractal spectrum difficult to take quantitative analysis 
and to be applied in engineering. To simply formulate the multi-fractal 
spectrums of corroded surface, we had researched their trend and shape, and 
the following conclusion can be drawn:

Each multi-fractal spectrum (shown in Fig 7) can be decomposed into 
a left part and a right part of inverted parabolas and both of the parts are 
continuously differentiable.

Therefore, we can fit the multi-fractal spectrums of the fractal surfaces 
(with D = 2.2, 2.3, 2.5, and 2.8) corresponding to the corroded specimens 
exposed for 0.5, 1, 2 and 4 years by the method of least squares. And the left 
and right part of the multi-fractal spectrum can be respectively expressed as 
piecewise functions as follows for satisfying fitting precision in this study 
[37]:
f(α(q)) = A[(α(q)−α0(q)]2 + B[(α(q)−α0(q)] + C  (10)
where α is singularity strength by evaluating a probability of subset, α 0 is 
the singularity strength for D = D max. A, B, and C are the undetermined 
coefficients, which can be obtained by a least squares procedure. Herein the 
absolute value of A is inversely proportional to the value of Δα; the value 
of C is proportional to the maximum value of f(α).

Generally, the greater value of α can reflect a phenomenon that the 
probability of corresponding subset is smaller; the lower value of α can 
reflect a phenomenon that the probability of corresponding subset is bigger. 
The criterion reflected in multi-fractal spectrum can also be explained 
that the greater value of α can make the small probability of subset to be 
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a significant impact on multi-fractal spectrum; on the contrary, the smaller 
value of α can make the big probability of subset to be a significant impact.

f(α) is a multi-fractal singularity spectrum representing irregularity and 
complexity of the fractal surface. The extreme values in the distribution of 
height probability are associated with the low values of f(α), f(α)min and f(α)
max, in such a way the big and small probability of height subsets are related 
to the left and right part of the spectrum, respectively.

Making comprehensive analysis of above discussions, the conclusions 
can be drawn: the greater the value of C, the higher the f(α)max, and the higher 
the f(α)max, the more complex and irregular the fractal surface of corroded 
steel; on the contrary, the smaller the value of C, the lower the f(α)max, and 
the lower the f(α)max, the more unobvious the complexity and regularity of 
corroded surface.

We fit f(α) of the right and left part by employing quadratic functions 
(red and blue curves shown in Figs  Figs88–11) around α 0 with least squares 
method, respectively.

Figure 8: Left and right parts of the fitting curve of the multi-fractal spectrum 
with D = 2.2 (Eq 10).

ESS is the error sum of square; red indicates the left part of the fitting 
curve; blue indicates the right part of the fitting curve. D-value of the 
minimum and maximum value is 1.05.
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Figure 11: Left and right parts of the fitting curve of the multi-fractal spectrum 
with D = 2.8 (Eq 10).

ESS is the error sum of square; red indicates the left part of the fitting 
curve; blue indicates the right part of the fitting curve. D-value of the 
minimum and maximum value is 1.61.

Fig 8 plots the fitting curve of the multi-fractal spectrum with D = 2.2. 
The fitting functions of the right and left part curve are expressed as Eq (11) 
and Eq (12), respectively:
f(α) = −1.57(α−1.6)2 + 0.55(α − 1.6) + 1.6  (11)
f(α) = −11.0(α−1.6)2 + 0.31(α − 1.6) + 1.6  (12)
Fig 9 plots the fitting curve of the multi-fractal spectrum with D = 2.3. The 
fitting functions of the right and left part curve are expressed as Eq (13) and 
Eq (14), respectively:
f(α) = −1.4(α−1.6)2 + 0.5(α − 1.6) + 1.6  (13)
f(α) = −9.3(α−1.6)2 + 0.55(α − 1.6) + 1.6  (14)

Figure 9: Left and right parts of the fitting curve of the multi-fractal spectrum 
with D = 2.3 (Eq 10).
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ESS is the error sum of square; red indicates the left part of the fitting 
curve; blue indicates the right part of the fitting curve. D-value of the 
minimum and maximum value is 1.23.

Fig 10 plots the fitting curve of the multi-fractal spectrum with D = 2.5. 
The fitting functions of the right and left part curve are expressed as Eq (15) 
and Eq (16), respectively:
f(α) = −1.3(α−1.6)2 + 0.5(α − 1.6) + 1.6  (15)
f(α) = −8.0(α−1.6)2 + 0.6(α − 1.6) + 1.6  (16)

Figure 10: Left and right parts of the fitting curve of the multi-fractal spectrum 
with D = 2.5(Eq 10).

ESS is the error sum of square; red indicates the left part of the fitting 
curve; blue indicates the right part of the fitting curve. D-value of the 
minimum and maximum value is 1.29.

Fig 11 plots the fitting curve of the multi-fractal spectrum with D = 2.8. 
The fitting functions of the right and left part curve are expressed as Eq (17) 
and Eq (18), respectively:
f(α) = −0.7(α−1.6)2 + 0.15(α − 1.6) + 1.67  (17)
f(α) = −7.0(α−1.6)2 + 1.1(α − 1.6) + 1.6  (18)

Figs 8–11 show the fitting curves agreed well with computations 
which can meet the engineering precision requirements. According to the 
quantitative analysis of the fitting functions, we can find that the corroded 
surface of different specimen can be indeed reflected by a specific fitting 
curve of multi-fractal spectrum.

In multi-fractal spectrum, the left part determines the proportion of big 
probability subsets (the areas with obvious ups and downs) on the corroded 
surface; at this moment, the bigger the probability of subsets, the rougher 
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the corroded surface, and the rougher the corroded surface, the smaller the 
value of the corresponding α. The right part determines the proportion of 
small probability subsets (the areas with smaller ups and downs); at this 
moment, the smaller the probability of subsets, the more smooth the corroded 
surface, and the smoother the corroded surface, the greater the value of the 
corresponding α.

Making intuitive observation of each fitting curve in Figs 8–11, |A| 
of left part curve is more than that of the right part, which explains the 
phenomenon that the range of the right part of the multi-fractal spectrum is 
larger than that of the left part. As well known, the larger the range of multi-
fractal spectrum, the more the kinds of subsets described by the multi-fractal 
spectrum. Thus, it can be drawn that the subsets corresponding to the right 
part of the multi-fractal spectrum play a leading role in description of the 
multi-fractal spectrum.

Connecting with corrosion process of steel, when the steel surface is 
attacked by shallower pits in the initial stage of corrosion, |A| of the right part 
curve fitting the multi-fractal spectrum is larger and the corresponding range 
is narrower; the kinds of the subsets included in the corroded steel surface 
must also be less and the surface is almost a plane. With the increasing 
exposure time, because the pits contact the sub-surface constituent particles 
causing further corrosion and link up with adjacent pits damaging the 
corroded surface, |A| of the right part curve fitting the multi-fractal spectrum 
must be smaller and the corresponding range is wider; the kinds of the 
subsets including to the surface of corroded steel must also be more and the 
surface is more irregular and discrete.

Some parameter of the quadratic fitting is shown in Table 4. Making 
comprehensive analysis of Table 4 and Figs 4 and 5, the following 
conclusions can be made that with the increasing of Δα from 1.05 to 1.61 or 
the decreasing of |A| from 11 to 7, the surface of corroded steel is distributing 
more unevenly and irregularly; with the increasing of Δf(α) from 0.30 to 
0.83, the surface will fluctuate more obviously.

Table 4: Parameters of the multi-fractal spectrum

Dimension α min α max Δα α 0 f(α min) f(α max) f(α)max Δf(α)
2.2 1.42 2.46 1.05 1.60 1.19 0.89 1.60 0.30
2.3 1.38 2.61 1.23 1.60 1.09 0.62 1.60 0.47
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2.5 1.42 2.70 1.29 1.60 1.18 0.47 1.60 0.70
2.8 1.42 3.04 1.61 1.60 1.21 0.38 1.60 0.83

α min− the minimum value of singularity strength; α max−the maximum 
value of singularity strength; Δα–D-value of the minimum and maximum 
value; α 0– the singularity strength for D max; f(α min)–the singularity spectrum 
for α min; f(α max)− the singularity spectrum for α max; f(α)max−the maximum 
value of singularity spectrum; Δf(α)−D-value of the maximum and minimum 
spectrum.

It can be seen from the calculation formula of the multi-fractal spectrum, 
the weighting factor, q, is the slope of the multi-fractal spectrum, which 
can also be obtained using: q = ∂f(q(α)) / ∂q(α) [38]. For the multi-fractal 
spectrums mentioned above, whether the right part or the left part, an 
inequality exists as:

  (19)
According to Eq (19), it can be seen q decreases with the increasing 

of α. In the left part of the fitting curve, q is a constant positive number; q is 
a constant negative number in that of the right part. |q| continues to increase 
with α. When q tends towards the plus infinity, the maximum probability 
subset has a significant impact on the multi-fractal spectrum, i.e., the 
corresponding corroded surface is a big bumps or potholes. Whereas q tends 
towards the minus infinity, the minimum probability subset has a significant 
impact on the multi-fractal spectrum, i.e., the corresponding corroded 
surface is similar to be a plane.

According to the analysis and discussion in this study, it can be known 
which part of subsets of the corroded surface has a decisive influence on 
shape and trending of the multi-fractal spectrum through mathematical 
analysis of fitting function of the multi-fractal spectrum. In addition, the 
overall shape and local characteristics of corroded surface of steel can also 
be derived by the analysis of fitting expression.

CONCLUSIONS
In this study, we constructed the fractal surfaces of the corroded steel by 
using the W-M method and calculated the multi-fractal spectrums. Using 
the method of least squares to fit the multi-fractal spectrums of the fractal 
surfaces with D value of 2.2, 2.3, 2.5, and 2.8 corresponding to the surfaces 
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of corroded specimens exposed for 0.5, 1, 2 and 4 years. Making comparison 
analysis of the fitting curves and calculated values, the following conclusions 
can be drawn:

• f(α), between 1 and 2, was the fractal dimension of the subset 
relating to the singularity strength α, which was a measure of the 
complexity, irregularity and non-uniformity of the fractal surface. 
In physical condition, f(α) can intuitively reflect completeness of 
the fractal surface.

• Δf(α), f(α)max-f(α)min, reflected surface roughness; the higher 
the value of Δf(α), the greater the difference among the subsets 
of the fractal surface of corroded steel, and the greater the 
difference among the subsets, the more irregular the fluctuation 
and distribution of corroded surface. On the contrary, for the 
fluctuation and distribution to be uniformity, the surface tends 
towards a plane.

• C, given in the fitting function, can reflect the value of f(α)
max in the multi-fractal spectrum. The greater the value of C, the 
higher the value of f(α)max, and the higher the value of f(α)max, the 
more complex and irregular the fractal surface of corroded steel. 
Whereas, the smaller the value of C, the lower the value of f(α)
max, and the lower the value of f(α)max, the better the completeness 
of the fractal surface.

• q was constant positive number in the left part of the fitting curve 
and constant negative number in that of the right part. With the 
decreasing of q, the smaller probability subset had a significant 
impact on the multi-fractal spectrum; the description of the 
fractal surface of corroded steel is more subtle. This means that, 
with the decreasing of q, the subsets relating to the areas with 
slight ups and downs had a significant impact on the multi-fractal 
spectrum, which was conducive to represent more minutely the 
fractal surface of corroded steel and made the computed result 
much more close to the real value.
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ABSTRACT
In this paper, we introduce an L-system based on the fractal geometry to 
study complex fracture networks. Comparing with other simulation models, 
the fractal fracture could not only maintain the bifurcation of the fracture 
geometry but also represent the multi-level feature of the complex fracture 
networks according to its fractal characteristics. Since the fractal geometry 
is always connected with several controlling parameters, the factors 
affecting on the fracture propagation can be quantized. With the fractal 
fractures, further studies on the fracture geometry and the multi-leveled 
branches are carried out, and the results can be concluded as: (1) when the 
complex fracture geometry is considered, the influence of the connectivity 
and complexity of the fracture network on the well performance is hard 
to ignore, and enhancing the connectivity and complexity of the fracture 
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network will perform better than making a long but disconnected fracture 
on the shale gas development; (2) of a multi-leveled fracture network, the 
main fractures near the horizontal well contributes to the initial production, 
but the conductivity ratio (conductivity of the secondary fractures versus 
the conductivity of the main fractures) influences the decline rate, so a high 
production rate cannot be maintained without an efficient contributing area 
covered with conductive secondary fractures.

INTRODUCTION
Duo to the low permeability and porosity, economic development of the shale 
gas resources always needs a multistage hydraulic fracturing. Different from 
the traditional bi-wing hydraulic fractures, complex fracture networks are 
generated near the horizontal wells in the shale gas reservoirs, as monitored 
by microseismic events (MSE) (Fisher et al. 2002; Maxwell et al. 2002; 
Daniels et al. 2007). Mine-back experiments and some field observations 
(Huang and Kunsoo 1993; Mayerhofer 2006) suggest that hydrofractures 
do not propagate linearly; when the reservoir is rich in natural fractures 
(NFs), the hydraulic fractures (HFs) may be created multi-branched. And it 
is mentioned that the complexity of the fracture networks is the main factor 
differing from the bi-wing fractures that contributes to the well production 
(Jang et al. 2015).

Considering the complex geometry, width of the branches of the fracture 
network is smaller than a single bi-wing fracture, the proppant might not 
be able to transport to the tip of the total fracture network (Xu et al. 2009), 
and this leads to a multi-level feature of the fracture networks which has a 
significant influence on the well performance. Analytical methods such as 
rate transient analysis (RTA) and well logging both show that the critical 
zone of the stimulated reservoir is smaller than the total area monitored by 
MSE (Friedrich 2013; Rahimi et al. 2014). The complexity and connectivity 
are two key parameters of the fracture networks, they relate directly with the 
well production, and it is obvious that the complexity and connectivity of 
the fracture network near the horizontal well are higher (Jones et al. 2013; 
Chen et al. 2016).

For better studying the performance of the fracture networks, analytical 
and numerical methods are applied. Olsen et al. studied the interactions 
between HFs and NFs and introduce a method to characterize the propagation 
of the complex fracture network considering the heterogeneity of the 
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reservoir and the irregular distribution of natural fractures (Olson 2008; 
Olson and Arash 2009). Besides the analytical studies, numerical models are 
developed for further study and engineering simulation. The dual-porosity 
model, wiremesh model and unconventional fracture model (UFM) are 
three typical numerical models that can take the main characteristics of the 
fractures into consideration when simulating a complex fracture network. 
Dual-porosity model is first introduced by Warren and Root (Warren and 
Root 1963) to characterize the behavior of naturally fractured reservoirs and 
now widely applied in fracture modeling (Zimmerman et al. 1993; Du et 
al. 2010; Cipolla et al. 2010). The stimulated region is regarded as dual 
porosity or even multi-porosity, and the properties of the grids can be assigned 
independently. The wiremesh model is consisted of two perpendicular sets 
of vertical planar fractures, and it quantizes the complicated geological and 
engineering factors to the parameters controlling the propagation of the 
wiremesh network (Xu et al. 2009; Xu et al. 2010; Meyer and Lucas 2011). 
The properties of the planar fractures and their spacing are related to different 
engineering parameters even MSE, and the mechanical interactions between 
the fracturing fluid and fracture walls are its main consideration (Xu et 
al. 2010; Weng et al. 2011). However, the models above cannot display 
the fracture geometry and that is the reason UFM is developed (Weng et 
al. 2011; Weng 2015). The UFM mainly studies the interactions between 
the HFs and NFs and details the propagation of the fracture network within 
the unstructured grids. It couples the fracture geometry with the factors 
influencing the propagation such as the orientation of the NFs and the rock 
deformation.

In fact, of either wiremesh model or the UFM, the main focus is the 
description on the fracture propagation; the conceptual models mentioned 
by Jones et al. (2013), Chen et al. 2016), studying the influence of the 
fracture complexity and connectivity on the typical production curves, 
fail to consider the fracture bifurcation. So in this paper, we would like to 
introduce a method based on the fractal geometry theory to characterize the 
fracture network and to analyze the well performance. The fractal geometry 
theory was put forward by Mandelbrot (1979) and has been applied to rock 
mechanics since 1982 (Xie 1993; Wang et al. 2015a, b) utilized the iterated 
function system (IFS) to study the bifurcation performance of the fracture 
network. According to the fractal geometry theory, the fracture network we 
generated can be both bifurcated and multi-leveled, the fracture geometry 
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can be related to few fractal controlling parameters, and these lead to the 
main advantages of the model: (1) characterizing the bifurcation feature 
of the fracture geometry; (2) quantifying the connectivity and complexity 
of the fracture network for analyzing; and (3) classifying the fractures into 
different levels to differ the main fractures and secondary fractures.

FRACTAL FRACTURES BASED ON THE L-SYSTEM

Characterization of Fractal Fracture Model
L-system is a rewriting system that defines a complex object by replacing 
parts of the initial object according to rewriting rules, and it simulates 
development rules and topological structure well (Lindenmayer 1968; 
Han 2007). The system has the feature of self-adjusting when something 
bifurcates, and this feature can describe the growth of trees. However, in this 
paper, we first introduce the L-system into fracture characterization because 
a fracture also has similar development rules and topological structure as 
trees and the interaction between HFs and NFs could be regarded as a type 
of rule-adjusting procession affecting the propagation of the fracture, which 
coincides with the basement of the L-system.

Four key parameters control the generation of a fractal fracture. 
They relate closely to the fractal fracture geometry which influences the 
performance of the production wells:

• The fractal distance (d) mainly controls the extending distance 
of the fractal fractions, it relates closely to the half-length of the 
fracture obtained by MS monitoring, and the influence of the 
fractal distance is shown in Fig. 1.

Figure 1: Influence of the fractal distance (d) on the geometry of the fracture 
network.
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• The deviation angle (α) controls the orientation when the fracture 
deviates or generates a secondary branch; it relates to the area of 
the stimulated reservoir, and when cooperating with the fractal 
distance, the size of the fractal fracture network can be adjusted 
for matching. Figure 2 shows the influence of the deviation angle 
on the orientation of the branches.

Figure 2: Influence of the deviation angle (α) on the geometry of the fracture 
network.

• The number of iterations (n) controls the growth of a fractal 
fracture network. It depends on the complexity of the fracture 
network or the density of the MS events. This parameter relates 
to the multi-level feature of the fractal branches: in each iteration, 
the fractal fractures propagate from the original nodes following 
the given generating rules to construct part of the network. It is 
now considered that during the actual stimulating procession, the 
secondary fractures extend on the basis of the main fractures, 
so with this similarity, levels of the fractal fractures are also 
distinguished based on the generating orders according to the 
iteration times.

• There are rules for controlling the growth of the bifurcation. To 
account for an irregular propagation mode of a complex fracture 
network, the rules for controlling are always preset as more than 
three. In conjunction with the iteration times, the fractal fracture 
model could model numerous fracture geometries under different 
conditions. And by adjusting the combination of the growth rules, 
the value of the fractal distance and deviation angle, the fractal 
fracture model can generate the best fractal geometry matching 
the given fracture network.
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Geometry Calibration with L-system
The generating rules preset the basement to match or to generate a fracture 
pattern. It is recognized that the fracture network is generated from the 
interaction between HFs and NFs. When a hydraulic fracture interacts with 
a natural fracture, three cases are concluded to happen as shown in Fig. 3: 
crossing, terminating or offsetting (Huang et al. 2015a, b). So the generating 
rules are preset to characterize these three cases, and each case could be 
differed into different situations if a high matching accuracy is asked for.

Figure 3: Hydraulic and natural fracture interaction scenarios (Huang et 
al. 2015a, b).

To represent the cases, we may preset the generating rules as shown 
in Fig. 4. The cases “Crossing” and “Terminating” can be simplified as a 
straight line, and to represent the case “Offsetting,” at least three cases are 
necessary. The generating rules can be adjusted by changing the length or 
the deflection angle. But as we have mentioned before, presetting too much 
generating rules is not necessary since what we want is a fractal fracture 
geometry with multi-level feature and following the extending tendency of 
the fracture network.

Figure 4: Schematic view of the preset generating rules (the dashed lines show 
that the distance and the deflection angle of the rules can be adjusted).



Application of the Fractal Geometry Theory on Fracture Network ... 335

Two simple applications are carried out to illustrate the matching effect 
of the fractal fractures: Fig. 5a is a typical fracture obtained from the mine-
back experiments, the main trunk is first matched with the combination 
of the generating rules, and by increasing the iteration times, the fractal 
fractions are generated from the main trunk as shown in Fig. 5c, and the 
obtained fractal geometry not only follows the extending tendency of the 
actual fracture but also maintains the fractal characteristics.

Figure 5: Fracture obtained from mine-back experiments and its match-
ing patterns. a Comes from the experiments of Huang and Kunsoo (1993), 
and b and c are the corresponding fractal fractures obtained in this paper.

To match the fracture geometry in the shale gas reservoirs, the MSE can 
be introduced as the constraints since it is the most significant and common 
used information about the fracture network. Figure 6 shows an application 
of the fractal geometry on characterizing the fracture network according to 
the MSE, and the green signals are pointed to represent different situations. 
Taking the total distance between the MSE and the nodes of the fractal pattern 
as the final optimization object, the fractal pattern is randomly generated by 
adjusting the fractal distance, the turning angle and the combination of the 
generating rules until the error limit is reached. The results show that the 
fractal geometry could also match the propagating tendency of the fracture 
network calibrated by MSE.

Figure 6: Using fractal pattern to match the fracture network calibrated by 
MSE.
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Simulation Workflow
To convert the fractal geometry to the well performance, we put forward a 
workflow shown in Fig. 7. The fracture network geometry is generated and 
discretized into 2D grids to represent the conductive fractures contributing to 
the production. With this simulation workflow, the fractal fracture geometry 
can be converted to the conductive fracture network with any simulator, and 
in this paper, we use E300 simulator of Eclipse for numerical simulation.

Figure 7: Schematic of the fracture simulation workflow.

Well Performance Analysis based on a Case Study
The fractal fracture model (FFM) could analyze the influence of either 
individual fractures or the integral fracture geometry on the well production. 
In this part, we would like to study the influence of the multi-leveled fractures, 
fracture geometry and conductivity ratio, which are rarely analyzed before, 
on the well performance based on the fractal fracture model.

The analysis is carried out based on a case study. The simulation data and 
production data are simplified from a shale gas reservoir of China as listed 
in Table 1. The fractal controlling parameters and the fractal geometry are 
obtained by history matching under the limitation of the fracture monitoring 
data. The fractal fracture geometry of each half-wing is taken as the same, 
and the matching results are shown in Fig. 8.

Table 1:Parameters for the base model for simulation

Figure 8: Production matching (right) and the responding fractal fracture ge-
ometry (left).
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Multi-level feature of Fractal Fracture NetworkAccording to the multi-
level feature of the fractal geometry, fractal fracture network has its advantage 
on classifying the fractures into different levels. Taking the fracture network 
in Fig. 8 as an example, three more iterations have been done to generate the 
responding fractal pattern, so the network is divided into 3 levels with their 
synthesized length and covering area shown in Fig. 9, and the cumulative 
production of each pattern is also compared.

Figure 9: Multi-level fractal fracture and the responding cumulative production 
curves.

The production comparison shows that there is a great enhance on 
the well production when the fracture network on level 3 is utilized for 
simulation. However, the growth on the length and the covering area from 
level 2 to level 3 are both smaller than those from level 1 to level 2. It is 
assumed that the difference comes from the development on the connectivity 
and complexity of the fracture network. To demonstrate the assumption, we 
try to adjust the length and the covering area of other two levels to match 
level 3 and compare their production data as shown in Fig. 10.
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Figure 10: Comparison of the production of the fracture network under differ-
ent complexity and the responding daily production rate and cumulative pro-
duction curves.

According to the simulation results, daily production rate of level 1 
soon goes down and its cumulative production is far smaller than that of the 
other two. The low complexity of level 1 cannot provide a high production, 
and it also demonstrates that the bi-wing fracture is hard to fit the fracture 
modeling in shale gas reservoirs. Daily production rate of level 2 is similar 
to that of level 3, but it also soon goes down, resulting in the difference on 
their cumulative production, demonstrating that when the complexity of the 
fracture network is large enough, it will not influence the initial production 
rate, but it still influences the decline rate of the production curves.

Influence of the Fracture Geometry on the Well Production
As we have discussed, the complexity of the fracture network is critical to 
the well production; however, with the different fractal fracture geometry, 
how could we evaluate the fracture performance? We generate four fractal 
fracture networks by combining different generating rules with the same 
fractal distance and deviation angle as shown in Fig. 9 to run for simulation, 
and the patterns and the simulated results are compared in Fig. 11 (lines in 
black are the main structure of the network, and the lines in blue are their 
fractions).
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Figure 11: Fracture patterns and their production comparison.

Comparing the fracture geometry and production data of patterns (a), 
(c) and (d), the final production drops with the reduction in the fracture 
connectivity, although the synthesized length of the fracture increases. 
So when the complex geometry of the fracture network is considered, 
the fracture connectivity performs a more critical influence on the well 
performance than the facture half-length. Combined with the conclusion 
we drawn before, the efficiency of the fracture network, related to the 
complexity and connectivity, is a determining factor to the well production, 
and only considering the increase on the fracture half-length in the shale gas 
development may contribute little to the final recovery. On the other hand, 
both pattern (a) and pattern (b) are low in connectivity and production, but 
the final production of pattern (a) is higher, showing that the synthesized half-
length of the fracture network is still positive to the fracture performance.
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Influence of the Conductivity Ratio on the Well Production
In the actual production, the conductivity of the fracture network is proved 
to be different, and there are several main fractures with higher conductivity 
and secondary branches with relatively lower value. The conductivity ratio 
(conductivity of secondary branches versus the main fractures) is also an 
important factor to determine the fracture performance. To analyze the 
influence of the conductivity ratio on the well production, we take the main 
structure in Fig. 9 as the main fractures, and the fractures in level 3 as the 
secondary branches, the conductivity ratio is given as 1:1–1:100, and the 
comparison with the actual production is shown in Fig. 12.

Figure 12: Influence of the fracture conductivity ratio on the daily production.

• The initial production is almost the same. Since the pressure wave 
does not spread to the secondary branches, the main fractures of 
the network determine the early production.

• With the ratio changes and the conductivity of secondary fractures 
turns down, the decline rate of the production curves increases. 
So the decline rate, which is a key factor to maintain the high 
production rate, is connected directly with the overall effect of 
fracturing.

• The contribution of the secondary branches maintains a great 
proportion to the well production, so in the hydraulic fracture 
network simulation and in the actual fracturing design, only 
concerning the stimulated results of the main fractures without 
optimizing the secondary fractures may finally result an inefficient 
stimulated reservoir area and a low level of production.
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CONCLUSIONS
• In this paper, a novel fracture model based on the fractal geometry 

is introduced, we detail the fractal controlling parameters and 
their influence on the fracture geometry, and two simple matching 
cases present that the fractal fracture could be utilized to match 
either the rock fractures or the fracture network in the shale gas 
reservoirs.

• The factors affecting on the fracture propagation can be quantized 
into several fractal controlling parameters, the fractal fracture can 
be divided into different levels according to the iteration times, 
and these are two advantages of the fractal fracture differing from 
other normal fracture models.

• With the features of the fractal fractures, further studies on the 
influence of the fracture geometry and the conductivity ratio of 
the fracture network on the well performance are carried out, and 
we obtain the following conclusions: (1) considering the complex 
fracture geometry, the complexity and connectivity of the fracture 
network perform a obvious influence on the well production, and 
(2) the secondary fractures also contribute greatly to the fracture 
performance. The conductivity ratio mainly influences the 
decline rate, and it is not sensible to concern over the synthesized 
fracture half-length of the covering area without considering 
the contributing efficiency of the fracture network during the 
fracturing design.



Fractal Analysis342

REFERENCES
1. Chen Z, Liao X, Zhao X, Lv S, Zhu L (2016) Asemianalytical approach 

for obtaining type curves of multiple-fractured horizontal wells with 
secondary-fracture networks. Soci Pet Eng. doi:10.2118/178913-PA

2. Cipolla CL et al (2010) Reservoir modeling in shale-gas reservoirs. 
SPE ReservEvalEng 13(04):638–653

3. Daniels JL et al (2007) Contacting more of the barnett shale through 
an integration of real-time microseismic monitoring, petrophysics, and 
hydraulic fracture design. In: SPE annual technical conference and 
exhibition. Society of Petroleum Engineers

4. Du CM et al (2010) Modeling hydraulic fracturing induced fracture 
networks in shale gas reservoirs as a dual porosity system. In: 
International oil and gas conference and exhibition in China. Society 
of Petroleum Engineers

5. Fisher MK et al (2002) Integrating fracture mapping technologies to 
optimize stimulations in the Barnett Shale. In: SPE annual technical 
conference and exhibition. Society of Petroleum Engineers

6. Friedrich M (2013) Determining the contributing reservoir volume from 
hydraulically fractured horizontal wells in the Wolfcamp formation in 
the Midland Basin. Unconventional resources technology conference 
(URTEC)

7. Han J (2007) Plant simulation based on fusion of L-system and IFS. 
Computational science—ICCS 2007, pp 1091–1098

8. Huang J-I, Kunsoo K (1993) Fracture process zone development during 
hydraulic fracturing. In: International journal of rock mechanics and 
mining sciences and geomechanics abstracts, vol 30, No. 7. Pergamon

9. Huang J et al (2015a) Natural-hydraulic fracture interaction: 
microseismic observations and geomechanical predictions. 
Interpretation 3(3):SU17–SU31

10. Huang J et al (2015b) Natural-hydraulic fracture interaction: 
microseismic observations and geomechanical predictions. 
Interpretation 3(3):SU17–SU31

11. Jang Y et al (2015) Modeling multi-stage twisted hydraulic fracture 
propagation in shale reservoirs considering geomechanical factors. In: 
SPE eastern regional meeting. Society of Petroleum Engineers

12. Jones JR, Richard V, Wahju D (2013) Fracture complexity impacts 
on pressure transient responses from horizontal wells completed with 



Application of the Fractal Geometry Theory on Fracture Network ... 343

multiple hydraulic fracture stages. In: SPE unconventional resources 
conference Canada. Society of Petroleum Engineers

13. Lindenmayer A (1968) Mathematical models for cellular interaction in 
development. J TheorBiol 18:280–315

14. Mandelbrot BB (1979) Fractals: form, chance and dimension. In: 
Mandelbrot BB (ed) Fractals: form, chance and dimension. WH 
Freeman & Co., San Francisco, p 1 (16 + 365)

15. Maxwell SC et al (2002) Microseismic imaging of hydraulic fracture 
complexity in the Barnett shale. In: SPE annual technical conference 
and exhibition. Society of Petroleum Engineers

16. Mayerhofer MJ et al (2006) Integration of microseismic-fracture-
mapping results with numerical fracture network production modeling 
in the Barnett Shale. In: SPE annual technical conference and exhibition. 
Society of Petroleum Engineers

17. Meyer BR, Lucas WB (2011) A discrete fracture network model for 
hydraulically induced fractures-theory, parametric and case studies. In: 
SPE hydraulic fracturing technology conference. Society of Petroleum 
Engineers

18. Olson JE (2008) Multi-fracture propagation modeling: Applications 
to hydraulic fracturing in shales and tight gas sands. The 42nd US 
rock mechanics symposium (USRMS). American Rock Mechanics 
Association

19. Olson, JE, Arash DT (2009) Modeling simultaneous growth of multiple 
hydraulic fractures and their interaction with natural fractures. In: SPE 
hydraulic fracturing technology conference. Society of Petroleum 
Engineers

20. Rahimi ZA et al (2014) Correlation of stimulated rock volume from 
microseismicpointsets to production data-A horn river case study. In: 
SPE Western North American and Rocky Mountain joint meeting. 
Society of Petroleum Engineers

21. Wang W et al (2015a) A mathematical model considering complex 
fractures and fractal flow for pressure transient analysis of fractured 
horizontal wells in unconventional reservoirs. J Nat Gas SciEng 
23:139–147

22. Wang W, Su Y, Zhang X, Sheng G, Ren L (2015b) Analysis of the 
complex fracture flow in multiple fractured horizontal wells with the 
fractal tree-like network models. Fractals 23(2):1550014



Fractal Analysis344

23. Warren JE, Root PJ (1963) The behavior of naturally fractured 
reservoirs. Soc Petrol Eng J 3(03):245–255

24. Weng X (2015) Modeling of complex hydraulic fractures in naturally 
fractured formation. J Unconv Oil Gas Resour 9:114–135

25. Weng X, Kresse O, Cohen CE, Wu R, Gu H (2011) Modeling of 
hydraulic-fracture-network propagation in a naturally fractured 
formation. SPE Prod Oper 26(04):368–380

26. Xie H (1993) Fractals in rock mechanics. Crc Press
27. Xu W, Le Calvez JH, Thiercelin MJ (2009) Characterization 

of hydraulically-induced fracture network using treatment and 
microseismic data in a tight-gas sand formation: a geomechanical 
approach. In: SPE tight gas completions conference. Society of 
Petroleum Engineers

28. Xu W, Thiercelin MJ, Ganguly U, Weng X, Gu H, Onda H, Sun J, Le 
Calvez J (2010) Wiremesh: a novel shale fracturing simulator. Soc Pet 
Eng. doi:10.2118/132218-MS

29. Zimmerman RW et al (1993) A numerical dual-porosity model with 
semianalytical treatment of fracture/matrix flow. Water Resour Res 
29(7):2127–2137



Drained Rock Volume Around Hydraulic 
Fractures in Porous Media: Planar  
Fractures versus Fractal Networks

15

Citation:  Nandlal, K., &Weijermars, R. (2019). Drained rock volume around hydraulic 
fractures in porous media: planar fractures versus fractal networks. Petroleum Science, 
16(5), 1064-1085., DOI:  10.1007/s12182-019-0333-7.

Copyright: © This is an open access article distributed under the terms of the  Creative 
Commons Attribution 4.0 International (CC BY 4.0) License.

KiranNandlal& Ruud Weijermars

Harold Vance Department of Petroleum Engineering, Texas A&M University, 3116 
TAMU, College Station, TX 77843-3116, USA

ABSTRACT
This study applies the Lindenmayer system based on fractal theory to 
generate synthetic fracture networks in hydraulically fractured wells. The 
applied flow model is based on complex analysis methods, which can 
quantify the flow near the fractures, and being gridless, is computationally 
faster than traditional discrete volume simulations. The representation of 
hydraulic fractures as fractals is a more realistic representation than planar 
bi-wing fractures used in most reservoir models. Fluid withdrawal from 
the reservoir with evenly spaced hydraulic fractures may leave dead zones 
between planar fractures. Complex fractal networks will drain the reservoir 
matrix more effectively, due to the mitigation of stagnation flow zones. 
The flow velocities, pressure response, and drained rock volume (DRV) 
are visualized for a variety of fractal fracture networks in a single-fracture 
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treatment stage. The major advancement of this study is the improved 
representation of hydraulic fractures as complex fractals rather than 
restricting to planar fracture geometries. Our models indicate that when the 
complexity of hydraulic fracture networks increases, this will suppress the 
occurrence of dead flow zones. In order to increase the DRV and improve 
ultimate recovery, our flow models suggest that fracture treatment programs 
must find ways to create more complex fracture networks.

INTRODUCTION
The massive shift in US oil and gas production, after the Millennium turn, 
from conventional to unconventional reservoirs, has seen the hydraulic 
fracturing of production wells become a crucial aspect of completion 
engineering. The productivity of shale wells is now primarily based on 
how effectively hydraulic fractures help to provide new pathways for flow 
toward the wells from the reservoir matrix with ultra-low permeability. A 
proper understanding of the creation of hydraulic fractures and modeling 
of fluid flow near these fractures is needed for improvement in both the 
early well productivity and the ultimate recovery factor. The engineering 
of hydraulic fractures in unconventional hydrocarbon plays is a rapidly 
evolving art. Industry has moved to reduce fracture spacing from over 100 
ft in 2010, to 50 ft in 2014, and less than 20 ft in 2018. The fracture spacing 
is designed using estimations of geomechanical rock properties from pilot 
wells in combination with fracture propagation models.

The earliest attempts to compare hydraulic fracture patterns may be 
traced back to Warpinski et al. (1994), but today there is still no consensus 
regarding the relative merits of the various fracture propagation modeling 
platforms. The American Rock Mechanics Association (ARMA) has recently 
initiated seven benchmark tests for 20 participating models (Han 2017) with 
the intent to showcase recognized physics of hydraulic fracturing. Most 
platforms for modeling hydraulic fracture propagation are based on assumed 
homogeneous rock properties, which therefore uniquely favor the formation 
of planar, sub-parallel hydraulic fractures (Parsegov et al. 2018).

Although current fracture diagnostics can rarely resolve the detailed 
nature of the fractures created during fracture treatment of unconventional 
hydrocarbon wells (Grechka et al. 2017), recent empirical evidence suggests 
that deviations from planar fracture geometry may exist. Physical evidence 
from cores that were sampled from a hydraulically fractured rock volume 
indicates that the generated fracture density far exceeds the number of 
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perforation clusters (Raterman et al. 2017). The creation of fracture complexity 
in terms of deflection, offset, and branching is possible at bedding surfaces 
and other naturally occurring heterogeneities, with preexisting natural 
fractures not appearing necessary for the creation of complex, distributed 
fracture systems. In fact, this finding is not entirely new. Work by Huang 
and Kim (1993) from mineback and laboratory experiments showed that the 
common notion that hydraulic fractures are planar in nature and assumed 
to propagate linearly perpendicularly to the minimum stress in simplified 
geomechanical models is not always correct. Clearly, empirical evidence 
suggests that fracture treatment may form fracture networks with branching 
fractal dimensions initiating from the perforation points (Fig. 1b), rather 
than planar hydraulic fractures (Fig. 1a). Thus, the practice of representing 
hydraulic fractures as single-planar, bi-wing cracks in the subsurface may 
be an overly simplistic representation of what in reality are more complex, 
fractal structures.

Figure 1: a Plan view of idealized planar hydraulic fractures along a horizontal 
wellbore. b Plan view of bi-wing branched, hydraulic fracture networks.

The likelihood of complex fracture networks being created by the 
fracture treatment process (rather than mutually sub-parallel planar 
fractures) is further supported by evidence from microseismic monitoring 
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(Fisher et al. 2002; Maxwell et al. 2002). In fact, most microseismic clouds 
generated during fracturing jobs show a poor correlation with the assumed 
planar, sub-parallel fractures. Therefore, we assume that the creation of 
complex hydraulic fracture networks may be more representative for 
many fractured or treated wells, especially those that possess a network of 
natural fractures due to stress regimes varying over geological time. Such 
conditions are typical of most unconventional shale plays under exploration 
and development. Consequently, the use of planar hydraulic fractures for 
modeling reservoir depletion may not always appropriately account for 
the actual reservoir attributes. The subsequent use of such over-simplified 
planar fracture geometries in flow models leads to unreliable calculations of 
important reservoir attributes such as the drained rock volume (DRV) and 
flaws in the associated pressure response.

Current fracture representation methods that try to capture fracture 
complexity include discrete fracture network models and the unconventional 
fracture model (Weng et al. 2011; Zhou et al. 2012) and are reviewed in 
Sect. 3.1. These established fracture geometry models use block centered 
grids typically coupled with finite-difference discretization flow models, 
including compositional flow models to simulate reservoir performance 
(Yu et al. 2017). The drawback of these finite-difference schemes is that 
they can be computationally intensive due to the necessity of fine meshing, 
especially at the fracture intersections. Other methods to model flow in 
fractured porous media include semianalytical models to simulate and 
analyze the pressure change for complex well interference systems (Yu 
et al. 2016). The suitability of the dual-porosity flow model (Warren and 
Root 1963) for low permeability reservoirs has been questioned (Cai et al. 
2015). Further work has led to the development of triple porosity models 
to model flow in fractured reservoirs (Sang et al. 2016). Zhou et al. (2012) 
proposed a semianalytical solution for flow in a complex hydraulic fracture 
network model, which combined an analytical reservoir solution with a 
numerical solution on discretized fracture panels. The present study applies 
the analytical CAM flow model (Weijermars et al. 2016, 2017a, b, 2018), 
which is computationally efficient, while being able to accurately model the 
flow near fractal fractures such as those observed in field tests (Raterman et 
al. 2017).

Planar, sub-parallel hydraulic fractures with a certain spacing will 
develop dead flow zones between them where no fluid can be moved due to 
the occurrence of stagnation points surrounded by infinitely slow flow regions 
in their vicinity (Fig. 2a). Such dead zones suppress well productivity. These 



Drained Rock Volume Around Hydraulic Fractures in Porous Media... 349

may be remedied by plugging prior perforations and re-fracking into the 
dead flow zones by placing new perforations midway between the legacy 
perf zones after prior production wanes (Fig. 2b). However, the existence of 
dead zones is entirely premised upon the assumption that hydraulic fractures 
are planar and sub-parallel (Weijermars et al. 2017a, b, 2018).

Figure 2: a Time-of-flight visualizations showing drained rock volume (DRV, 
red contours) and dead zones (blue region, around flow stagnation point, red 
dot) between three parallel, planar hydraulic fractures. b Refracks will tap into 
the dead zones. Length scale in ft.

The flow analysis in this study uses branched fractals for describing the 
complex fracture networks that are present in the subsurface. A variety of 
branched fractal fracture networks are imported into a drainage model based 
on complex analysis methods (CAM) to determine the flow response and 
pressure changes in the reservoir, for a given fracture geometry and fracture 
surface area. The major effect observed due to increasing fractal nature and 
branching of the fracture network (as outlined later in this study) is that 
the extent of dead zones between hydraulic fracture stages is suppressed. 
Instead, a more diffuse network of fractures drains the matrix between 
the fracture initiation points spaced by the perforation zones. Depending 
on the geometry of hydraulic fractures, an otherwise non-fractured matrix 
with negligible spatial variation in permeability can be drained more or less 
effectively. Future work will need to determine when hydraulic fractures 
will develop as fractal networks. While the jury is still out on the prominent 
geometry of hydraulic fractures (planar vs. fractal), the models developed in 
the present study consider the effect on drained rock volume in a systematic 
investigation of hydraulic fracture geometry ranging from planar to multi-
branched, higher-order fractals. The present study breaks new ground by 
modeling the flow around fractal fracture networks in porous media. The 
results have implications for fracture treatment designs required to maximize 
the drained rock volume.
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Natural examples of hydraulic fractures
In addition to the cited examples of hydraulic fractures branching into 
closely spaced fracture networks (Raterman et al. 2017; Huang and Kim 
1993), manifestations of bifurcating fracture networks are commonly 
known from surface outcrops of hydraulic fractures formed by natural 
processes. For example, hydrothermal veins invaded and hydraulically 
fractured Proterozoic rocks from the AravalliSupergroup in the state of 
Rajasthan, India (Kilaru et al. 2013; McKenzie et al. 2013; Pradhan et al. 
2012). These hydraulic fractures formed under high fluid pressures deeper 
in the crust before being exhumed by tectonic uplift and erosion. Polished 
slabs containing the naturally created hydraulic fracture networks in Bidasar 
ophiolites are shown in Fig. 3a. These rocks are exploited as facing stones 
and quarried near the villages of Bidasar-Charwas, Churu district (Fig. 3b). 
The quarries are confined to a 0.5-km-wide and 2.5–3.5-km-long belt of open 
pits dug below the desert plain. The rock in these pits has been described as 
the Bidasar ophiolite suite (Mukhopadhyay and Bhattacharya 2009).

Figure 3: a Examples of rock slabs from Bidasar with bifurcating, hydraulic 
injection veins. Image dimensions about 1 square meter (courtesy Dewan 
Group). b Satellite image of quarry near Bidasar, Rajasthan, India (roads for 
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scale). North is down in the above image (Google Earth composite of December 
16, 2015).

The precise natural pressure responsible for the injection of the hydraulic 
veins is unknown, but the pressure has exceeded the strength of the rock 
and was large enough to open the fractures at several km burial depth, thus 
being in the order of 100 MPa. The fluid was injected into the fractures 
as well as into a pervasive system of microcracks connected to the main 
fractures. Based upon the splaying of the fractures, one may reconstruct 
the provenance of the fracture propagation (van Harmelen and Weijermars 
2018). Local heterogeneities in elastic properties may create conditions 
favoring the nucleation of fracture bifurcation points. More work is needed 
to determine the critical conditions required for creating fractal fracture 
networks in hydraulic fracture treatment programs.

Slabs like those shown in Fig. 3a may serve as a natural analog for flow 
into hydraulic fractures in shale reservoirs, with the limitation that shale 
may have different elastic moduli, different petrophysics, grain sizes and 
most crucially, the fracture aperture width from hydraulic fracturing which 
is smaller than that in our natural analog presented here. Hydraulic fracture 
apertures in shale reservoirs are thought to be in the range of 1–5 mm with 
the majority of created fracture apertures being less than 2 mm (Gale et al. 
2014; Zolfaghari et al. 2016; Arshadi et al. 2017). Natural fracture networks 
created in the rocks of Bidasar due to hydrothermal activity in the earth’s 
crust bears similarity to man-made hydraulic fracture networks that require 
the use of high pressure fluids and proppants by fleets of pumps and trucks.

We contend that the injection patterns of hydrothermal veins exposed in 
natural outcrops and in quarries (of rocks exhumed by tectonic processes and 
subsequent erosion) provide a useful analog for hydraulic fracture networks 
created when fluid injection is applied to hydrocarbon wells. Figure 4a, b 
shows an analysis of the principal hydraulic fractures in a rock slab from 
Bidasar. The corresponding flow front through the main fractures and matrix 
is modeled in Fig. 4c, d. The simulation does not account for the creation of 
the fractures, but instead assumes that these have already developed and are 
subsequently flushed by the hydrothermal injection fluid. For details, see a 
prior study from our research group (van Harmelen and Weijermars 2018).



Fractal Analysis352

Figure 4: After van Harmelen and Weijermars 2018, Fig. 10a, b.

Orthogonal photograph of polished rock slab with injection veins. a 
Filled fracture veins with interpreted directions of the original largest (σ1) and 
intermediate (σ2) principal stress axes. Major veins open first normal to σ1 
and then normal to σ2, which likely swapped with σ1 after hydraulic loading 
of the main veins. b Interpreted principal fracture network (yellow lines). c, 
d Fluids take by matrix and fractures in model assuming low permeability 
contrast (c), and high permeability contrast (d). Matrix blocks between the 
fractures in case d take less fluids than in case c. Rainbow colors give time 
of flight contours, and fluid injection is from the top. Flow lines are given by 
magenta streamlines.

FRACTURES AND FRACTAL THEORY

Prior Models of Complex Hydraulic Fractures

Fracture propagation and fracture flow models
Various attempts have been made by researchers to develop new models 
to better represent complex hydraulic fracture network systems, in 



Drained Rock Volume Around Hydraulic Fractures in Porous Media... 353

both geomechanical fracture propagation models and in production 
forecasting based on flow models in fractured reservoirs. For example, the 
geomechanical unconventional fracture model (UFM) was developed to 
simulate the propagation of complex fractures in formations with preexisting 
natural fractures (Weng et al. 2011). The UFM simulates the propagation, 
deformation, and fluid flow in a complex network of fractures. The model 
seeks to solve a system of equations governing parameters such as fracture 
deformation, height growth, fluid flow, and proppant transport, while 
considering the effect of natural fractures by using an analytical crossing 
model. The Wiremesh model consists of a fracture network with two 
orthogonal sets of parallel and uniformly spaced fractures (Xu et al. 2010; 
Meyer and Bazan 2011). Given fracture spacing, mechanical properties of 
the formation layers and pumping parameters, this shale fracturing simulator 
can be used to predict the growth of the hydraulic fracture network. Benefits 
of the Wiremesh model come in the form of increased surface area of the 
fracture network and mechanical interaction of fractures but are still only 
an approximation of the network’s complexity. Limitations of this model 
include not being able to directly link preexisting natural fractures to the 
hydraulic fracture network with regard to the fracture spacing used and 
that the network geometry is assumed to be elliptical in shape and thus 
symmetric. These assumptions do not always fit with fracture geometry 
indicated by microseismic data. Alternative modeling attempts sought to 
create a complex fracture network by finding a full solution to the coupled 
elasticity and fluid flow equations using 2D plane strain conditions (Zhang 
et al. 2007). Other studies presented a complex fracture network capable of 
predicting the interaction of hydraulic fractures with natural fractures but 
did not consider fluid flow and proppant transport (Olson and Taleghani 
2009).

Flow models of fractured reservoirs have also advanced by upscaling 
a discrete fracture network (DFN) model into a dual-porosity reservoir 
model or by enhancing the permeability of stimulated reservoir areas 
(Zhou et al. 2012). The fundamental discrete fracture network (DFN) 
solution methodology is based on satisfying continuity, mass conservation, 
constitutive relationships, and momentum equations (Meyer and Bazan 
2011). For fracture representation in this method, each fracture panel had 
to be manually input with specific fracture parameters thus requiring prior 
knowledge of hydraulic fracture orientation. The model also assumes the 
intersection of individual planar fractures to create the complex fracture 
network with drained area represented by pressure depletion plots. These 
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DFN are created using stochastic simulations based on probabilistic density 
functions of geometric parameters of fracture sets relating to fracture density, 
location, orientation and sizes based on measurements from field outcrops 
or borehole images. DFN requires an extremely fine grid at the scale of 
the fractures leading to complicated gridding and for multi-stage wells with 
large fracture numbers is very computationally expensive.

Recent advancements with DFN have now led to the embedded 
discrete fracture model (EDFM). EDFM allows for complex fractures to be 
implemented in conventionally structured matrix grids without using local 
grid refinement (Yu and Sepehrnoori 2018). EDFM can be thought of as a 
hybrid approach where the dual-porosity model is used for the smaller- and 
medium-size fractures, and the DFN is used to model larger fractures (Li 
and Lee 2008). Advantages of EDFM include the use of a structured grid 
to represent the matrix and fractures. EDFM was initially used for planar 
2D cases but has developed to model in 3D (Moinfar et al. 2014). Though 
EDFM has overcome some of the problems of the traditional DFM method, 
it can still be computationally expensive in complexly fractured reservoirs.

Fracture Geometry Models
Beyond the modeling attempts outlined above to recreate and describe 
complex fracture networks, work has been done by various authors to 
characterize the created fracture complexity based on field data. Zolfaghari 
et al. (2016) proposed the use of flowback salinity data to help characterize 
the fracture network complexity. The shape of the flowback curves is used 
to define the aperture size distribution (ASD) for a particular well. A narrow 
ASD is correlated with a simple fracture network, while a wider ASD is 
believed to match a fracture network that is more dendritic and complex 
in nature. Zolfaghari et al. (2017) looked at correlating total ions produced 
from chemical flowback to estimate fracture surface area for two wells that 
was validated against rate transient analysis (RTA) values. Based on these 
results, the authors postulated that greater production from one well was due 
to the larger fracture area calculated. This larger fracture area was attributed 
to a more complex fracture network in the subsurface, but there was no 
indication of potential fracture geometry. Another attempt to characterize 
fracture complexity utilizes tracer flowback data. Li et al. (2016) made use of 
tracer flowback data to characterize fracture morphology into three general 
categories. Based on the tracer breakthrough curve (BTC) the hydraulic 
fractures are roughly classified as microfractures, large fractures, and their 
mix. These methods allow for qualitative descriptions of the subsurface 
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fracture network but do not allow for quantitative description in terms of 
surface area of the complex fracture network in contact with the reservoir 
matrix or fracture network geometry.

The majority of fracture flow methods attempt to introduce discrete 
fractures to model explicitly the elastic fracture propagation, subsequent 
flow and evacuation of fluid from the reservoir. The importance of 
accounting for fracture network complexity is apparent from production 
and pressure transient responses (Jones et al. 2013). Properly modeling the 
complexity of the fracture network is crucial for accurate history matching 
in these reservoirs. In addition to the discrete fracture models based on 
geomechanical failure modes, another potential approach to model fracture 
complexity uses fractal geometry. Fractals have long been used to model 
naturally occurring phenomena including petroleum reservoir and subsurface 
properties and equations (Berta et al. 1994; Cossio et al. 2012). Early work 
by Katz and Thompson (1985) and Pandey et al. (1987) showed that fracture 
propagation in nature was not irregular and could be represented by various 
fractal models. Building forward on this work Al-Obaidy et al. (2014) and 
Wang et al. (2015) approached the fracture network problem by creating 
branched fractal models to capture fracture network complexity.

Fractal Theory
Fractal theory was first put forth by Mandelbrot (1979) as “a workable 
geometric middle ground between the excessive geometric order of Euclid 
and the geometric chaos of general mathematics”. A fractal was defined by 
Mandelbrot as a rough or fragmented geometric shape that can be split into 
parts each of which is a reduced-size copy of the whole. For an object to be 
termed a fractal, it must possess some non-integer (fractal) dimension (Frame 
et al. 2012). If this fractal dimension is an integer, we can obtain normal 
Euclidean geometry such as lines, triangles and regular polygons. Cossio 
et al. (2012) put into simple terms that a property of a given system can be 
termed a fractal if its seemingly chaotic, and unpredictable behavior with 
respect to time and space can be captured in a simple power-law equation. 
One of the basic principles underlying fractal geometry is the concept of 
self-similarity at various levels. If one zooms in on the represented object, a 
natural repetition of patterns and properties can be observed.

The abundance of fractals in our natural environment ranges from the 
fractal nature of coastlines to the growth and bifurcation of trees and plants. 
The use of fractals allows one to make mathematical sense from seemingly 
random and chaotic processes. Early use of fractals in petroleum engineering 
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began with the work of Katz and Thompson (1985) to represent pore spaces 
in sandstone cores. The use of fractal theory to represent the pore space 
was verified by its accurate prediction of the core porosity. We now extend 
this approach of fractals to model complex hydraulic fracture networks in a 
reservoir with assumed parameters.

One approach in the fractal theory is to create a fracture network model 
by using the fractal addition of the Lindenmayer system (Wang et al. 2017). 
The Lindenmayer system (L-system) is widely used to describe the growth 
of plants which can be seen to be bifurcating in nature as well as being fractal 
at some scale. The L-system is a rewriting system that defines a complex 
object by replacing parts of the initial object according to given rewriting 
rules which simulate development rules and topological structures well 
(Lindenmayer 1968; Han 2007). Wang et al. (2017) introduced the L-system 
into fracture characterization because a fracture has similar development 
rules to trees. Four key parameters are used to control the generation of 
the fracture network, and these parameters influence the performance of 
production wells (Wang et al. 2018):

• Fractal distance (d) controls the extending distance of the fractal 
fractions, (can be thought of as a basic repeating pattern) and 
closely relates to the half-length of the fractures created.

• Deviation angle (α) controls the orientation of the fracture 
branching once deviation from the base fracture pattern occurs 
and relates to the area of the stimulated reservoir.

• Number of iterations (i) controls the growth complexity of the 
fracture network or in other words fracture network density. This 
parameter relates to the multi-level feature of the fractal branches; 
during each iteration, the fractal fractures will branch from the 
original nodes following the given generating rules to construct 
that part of the network.

• Growth of the bifurcation of the fractures and irregular propagation 
mode of a complex fracture network are subject to fractal rules, 
which are an implicit means to account for geomechanical 
heterogeneities (Wang et al. 2015, 2017, 2018).

The branching fractal model used in our study makes use of a simple 
L-system growth rule, which along with the fractal distance parameter 
controls the branched hydraulic fracture network’s half-length, the deviation 
angle controls the branched fracture network width span, and the iteration 
number controls the branching complexity or density. Though the fracture 
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geometry created using the L-system is seemingly random, we use the 
branching of the hydraulic fracture in our models to capture and replicate 
the physical evidence seen in cores recovered from the Hydraulic Fracturing 
Test Site (HFTS). These cores show that hydraulic fractures “diverge with a 
projected line of intersection, or branch line, just out of the core” (Raterman 
et al. 2017). We acknowledge that due to uncertainty in the subsurface, there 
are infinite possibilities that can be modeled by changing parameters such 
as branching angle, fracture length, and iteration number. Our current model 
uses branching angles and other parameters (given in Table 1) that generate 
a fractal network span and half-length that matches commonly observed 
values from fracture propagation modeling and microseismic data.

Table 1:Parameters used for creation of different fracture geometries

Fracture model F length, ft G length, ft Branch-
ing angle, 
degrees

Created 
fracture half-
length xf, ft

Created 
fractal net-
work span, 
ft

Planar 400 – – 400.0 –

First-generation fractal 100 100 10 398.5 34.70

Second-generation 
fractal

40 40 10 398.2 69.04

Third-generation 
fractal

18 15 10 391.1 89.44

FLOW MODELS

Complex Analysis Method (CAM) Tool
The effect of different fracture networks on drained areas, velocity 
profiles, and pressure depletion is quantified and visualized using complex 
analysis methods. Introductions to analytical element method applications 
to subsurface flow are found in several textbooks (Muskat 1949; Strack 
1989; Sato 2015). Hydraulic fractures connected to a well act as line sinks 
(Weijermars and van Harmelen 2016). For multiple interval sources with 
time-dependent strength m

k
(t), the instantaneous velocity field at time t can 

be calculated from:

  (1)
Traditional applications of CAM in subsurface flow models make use of 
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integral solutions to model streamlines for steady state flows (Muskat 1949; 
Strack 1989; Sato 2015). A fundamental expansion of the CAM modeling 
tool is the application of Eulerian particle tracking of time-dependent flows, 
which was first explored in Weijermars (2014) and then benchmarked 
against numerical reservoir simulations in Weijermars et al. (2016).

Most current studies use numerical reservoir simulation to create 
pressure depletion plots as a proxy for the drained regions in the reservoir 
after production. CAM can determine the drained rock volume (DRV) by 
constructing time-of-flight contours to the well based on Eulerian particle 
tracking taking into account the changing velocity field (Weijermars et al. 
2017a, b). This approach provides accurate determinations of the DRV 
(Parsegov et al. 2018) with the added benefit of identifying flow stagnation 
zones. Such stagnation zones or “dead zones” are defined as regions of zero 
flow velocity (Weijermars et al. 2017a, b), which create undrained areas that 
can be targeted for refracturing (Weijermars and Alves 2018; Weijermars 
and van Harmelen 2018). Another added advantage of CAM models is their 
infinite resolution at the fracture scale due to the method being gridless 
and meshless, resulting also in faster computational times compared to 
numerical simulations. Modeling flow in fractured porous media using 
analytical solutions generated with time-stepped CAM models also allows 
the determination of pressure changes in the reservoir. Pressure depletion 
plots are calculated by evaluating the real part of the complex potential to 
quantify the pressure change at any location z at a given time t by:

     (2)
Here ϕ(z,t) is the potential function with pressure scaling based on fluid 

viscosity µ and permeability k of the reservoir. The actual pressure field 
at any given time can be computed from the following expression with P0 
accounting for the initial pressure of the reservoir:

  (3)
The basic premise of the CAM solution is placing the produced fluid 

volume back into the reservoir to determine the areas drained and the pressure 
response corresponding to this fluid placement. From replacing production 
into the reservoir based on history matching using decline curve analysis, the 
corresponding pressure depletion is obtained by simply reversing the signs 
of the values on the pressure scale from positive to negative (Weijermars 
et al. 2017b). For the pressure depletion plots later in this study, the spatial 
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pressure change ΔP(z,t) is shown.

Flux Allocation and Production Modeling
This study assumes a synthetic production well of 8000 ft horizontal length 
and 80 transverse fractures with 100-ft spacing between them. This gives 
a total distance covered by the fractures of 7900 ft, leaving an untreated 
distance of 100 ft between the heel of the well and the first hydraulic fracture 
of the treatment plan. The flow simulation starts with a single fracture, using 
a base case model with a single-planar fracture, expanded with branched 
iteration models of the fracture geometry. The fracture trees initiating from 
single perforations are then expanded to multiple fractal systems for fracture 
stages with variations in complexity to observe the impacts on the DRV, 
velocity field, and pressure field. By assuming symmetry about the wellbore, 
we initially look at only one half of the fracture (half-length xf) to determine 
the effects on the flow velocities and pressure depletion for different fracture 
geometry models.

Current fracture propagation models that use simple planar fractures 
have the ability to predict proppant placement density which due to uneven 
placement can create zones of higher fracture conductivity (Parsegov et 
al. 2018). Though work has been done on proppant placement in complex 
fracture networks (Shrivastava and Sharma 2018) as we assume infinite 
fracture conductivity in our fractal network, uneven proppant placement is 
not considered in this model.

Production data from a typical Wolfcamp well used in a companion 
study (Parsegov et al. 2018) were used to produce a history matched type 
curve based on decline curve analysis. To match the production decline, 
the Duong decline method was used and found to give a total cumulative 
production over 30 years that is in line with forecasted EUR for wells in the 
Wolfberry play, Midland Basin under which the Wolfcamp Formation falls. 
Forecasts give an ultimate per well recovery estimated at 100,000–140,000 
barrels of oil equivalent (Hamlin and Baumgardner 2012). The well used 
Duong decline parameters resulting in a cumulative production forecast of 
102,069 bbls after a productive well life of 30 years.

Flux allocation was proportional to the relative surface areas of each 
branched fracture. For each successive iteration, the next generation of 
branches of the fracture network becomes progressively shorter, thereby 
automatically being allocated less of the overall production. This allocation 
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method based on fracture length allows for the main fracture branches having 
the highest allocated flux, while the progressive iterations of the branched 
network will have less flux allocated. The flux allocation algorithm used is 
as follows:

  (4)
where Z is a conversion factor of 5.61 to convert from barrels to ft3; S is the 
prorated factor to scale the total well production, for example scaling for one 
half-length of one fracture, S=(1/80)×0.5=0.00625.

Once the flux algorithm has been properly calculated, the next step is 
the creation of the time-dependent strength value to use in the velocity and 
pressure potential equations. This strength is scaled by reservoir properties 
such as the formation volume factor (B), porosity (n) residual oil saturation 
(Ro) (Khanal and Weijermars 2019) and fracture height (H) and is given as 
follows (data used is given in Table 2):

  (5)

Table 2:Reservoir parameters used for modeling

Porosity n Permeability 
k, μD

Water–oil 
ratio (WOR)

Formation 
volume fac-
tor B

Viscosity 
µ, cP

Residual 
oil satura-
tion Ro

Fracture 
height 
H, ft

0.05 1 4.592 1.05 1 0.20 75

Drained Rock Volume (DRV)
For the determination of drainage areas, the CAM process utilizes the 
concept of flow reversal. The produced fluid is essentially placed back into 
the reservoir at the same rate as produced to determine where the fluid has 
been drained from. As such, the way in which the hydraulic fractures are 
represented will have a direct impact on the area which is drained, and the 
corresponding pressure gradient that drives the fluid flow back into the 
reservoir. The underlying assumption is that the larger the surface area of 
the hydraulic fracture the easier the flow into the matrix (and reverse), the 
narrower will be the width of the region drained around the fracture and thus 
the lower the pressure needed to achieve a given production rate. A fracture 
with smaller overall surface area (idealized planar hydraulic fracture, Fig. 5a) 
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will need to have wider drainage width, whereas for the same production, a 
greater fracture surface area in contact with the matrix will mean a narrower 
drainage width (Fig. 5b).

Figure 5: a Plan view of drainage area around a planar fracture. b Drainage area 
around a branched fracture representative of our fracture network.

Initially, we expected that a larger fractal dimension with more surface 
area would increase the injectivity of the matrix and require lower pressures 
to evacuate the reservoir fluid. Our models, however, show that once a 
constant total fluid production is used the overall pressure change remains 
the same regardless of the fracture network complexity. The models confirm 
the expectation that more complex fractal networks cause smaller lateral 
drained areas away from the fractures with greater local pressure variations. 
The reason for the localized pressure depletion peaks is that denser fracture 
networks with the same injectivity per fracture length will locally remove 
more fluid molecules from the matrix, thus resulting in larger pressure 
depletion locally.

The hydraulic fractal network is created and applied using an effective 
method of investigation by first modeling a small section of the horizontal 
wellbore. Because we use the method of fractals, a small sample of the 
well system should in fact be representative of the much larger drainage 
behavior of the well. This modeling strategy will also be beneficial in terms 
of computational and modeling time. Once the flow and pressure response 
have been determined based on individual fractal networks with increasing 
complexity, the investigation is extended to multiple fractal networks to 
investigate the possible effects of flow interference in fractured wells with 
numerous stages. Using this method both symmetrical and asymmetrical 
networks are modeled to determine changes in drained areas and flow 
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response. The impact of fractal network complexity on reduction in flow 
stagnation zones is investigated to help determine the ideal fracture geometry 
to increase overall recoveries.

Model Validation
The analytical solution to flow based on the complex analysis method has been 
validated against numerical simulators in previous work done. Weijermars et 
al. (2017a) compared the results of the analytical method for flow in planar 
fractures modeled as line sinks against a commercial simulator (ECLIPSE) 
that was augmented with a validated streamline tracing algorithm. This 
allowed for the comparison of time of flight contours as well as streamline 
patterns. This validation against the numerical simulator was achieved via 
a three-step process. Flow simulation in the commercial simulator provided 
pressure and flow rates on the six faces for each finite cell. These results 
were then imported into a streamline algorithm to obtain streamline tracing 
data, which was then imported in Petrel to visualize the actual streamlines. 
For the simple planar fracture case, the results from the numerical simulator 
matched well with the analytical complex analysis method proving validation 
of the complex analysis solution (Fig. 6). Our current model can be thought 
of as an extension of this validated case where we replace the simple planar 
fracture by our complex fractal network that comprises numerous line sinks 
acting within our reservoir. For a more detailed look at the validation, the 
reader is referred to the work by Weijermars et al. (2017a).

Figure 6: Adapted from Weijermars et al. (2017a, b).

Streamlines with drainage contours. a Analytical solutions. Streamlines 
(blue), time of flight contours (red), stagnation points (green). b Commercial 
simulator. Streamlines and time of flight contours (rainbow colors). c 
Analytical pressure field. Fractures represented as black lines.
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RESULTS

Fractal Network Creation
The Lindenmayer (L-system) rewriting system based on fractals is used 
to construct numerous branching fractal networks. This system defines a 
complex object by replacing parts of the initial object according to given 
rewriting rules. The L-system, combined with information on fractal network 
geometry, fractal distance (d), deviation angle (α), and iteration number (i), 
allows the defining of rules for creating the overall network. A systematic 
workflow to investigate the effect of fractal network complexity is laid out 
in the subsequent sections.

The network structure is defined by a simple string or axiom using 
variables ‘F’ and ‘G’. Using these variables, branching is represented by 
the use of square brackets with the ‘+’ and ‘−’ symbols denoting either 
clockwise or anticlockwise branching angles. The iteration number gives 
the replacement rules, changing the branching complexity and is referred to 
as different fractal generations. A simple fractal code written in MATLAB 
from the M2-TUM group from the TU Munich was modified for our purpose 
of fractal network generation in 2D (available at http://m2matlabdb.ma.tum.
de/author_list.jsp).

Axiom used for generation of the symmetrical fractal networks:
• Symmetrical axiom rule = ‘F [+ G] [− G] F ’.
Generated fractal networks using the above axiom and geometry 

parameters from Table 1 are shown below (Fig. 7).

Figure 7: Fractal networks created using the axiom rule and fracture geometry 
properties.
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Drainage by Single Symmetrical Fractal Networks
The first scenario investigated uses symmetrical fractal networks. The 
L-system with given fractal geometry parameters (Table 1) were incorporated 
in the CAM model to determine flow and drained rock volume responses 
for a variety of fractal geometries, ranging from a single-planar fracture to 
a third-generation symmetrical fractal network (Fig. 8). Moving from the 
planar fracture geometry towards higher fractal generations, an exponential 
increase occurs in the fracture surface area. Even a simple branching 
hydraulic fracture is shown to have a much larger surface area than the planar 
fracture. Assuming the well production rate is fixed, total drained volume 
of fluid per fractal network stage stays constant. Higher fractal generations 
cover a larger areal extent but drain narrower matrix depth, whereas the 
planar fracture drains broader distances away from the fracture (Figs. 5, 8).

Figure 8: a Fracture geometry modeled with planar fracture, first-generation 
symmetrical fractal network, second-generation, third-generation from left to 
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right. b Velocity contour plot (ft/month) after 1 month production. c Pressure 
contour plots (drawdown in psi) after 1 month production. d Drained areas after 
30 years production (drained area highlighted in red with tracked streamlines in 
yellow). Length scale in ft.

The velocity contour plots show that when the fracture geometry evolves 
from planar to successive branched iterations there is a greater variability 
of the local velocities (Fig. 8b). As the branching complexity increases, 
individual fracture segments are spatially clustered close together, leading 
to small scale interferences resulting in higher flow velocities at the fracture 
network outer extremities, which is balanced by slower velocities between 
the branching fractures. The overall pressure change is found to be similar 
even as fracture complexity increases (Table 3). Pressure change is directly 
linked to the amount of production from the reservoir which is kept constant 
for all simulations. What is observed from the pressure depletion plots is 
that the greatest local pressure response occurs in areas with the highest 
fracture density (Fig. 8c). Comparing the response from the velocity and 
pressure plots, the greatest pressure change does not correlate with where 
fluid flows fastest around the fractures. However, there is a clear correlation 
between the steepest pressure gradients (regions where the pressure contours 
are spaced tightest) and the regions of highest flow velocity.

Table 3:Comparison of various parameters for different symmetrical fracture 
geometry

Fracture model Maximum velocity, 
ft/month

Maximum pres-
sure change, psi*

Fracture surface 
area, ft2

Planar fracture 0.9477 1.3939 × 106 6.000 × 104

First-generation fractal 1.1088 1.4547 × 106 10.501 × 104

Second-generation fractal 1.0087 1.4286 × 106 20.403 × 104

Third-generation fractal 1.0979 1.5035 × 106 37.040 × 104

*The pressures of an order 106 psi are due to reservoir permeability 
assumption of 1 μD, and would be a order of 103 psi if 1 mD is assumed

Drained areas are outlined by the time-of-flight contours inferred from 
particle tracking, based on the production allocation due to the selected 
fracture strengths (Fig. 8d). Results for a planar fracture geometry show equal 
drainage around the entire fracture. As more complex fractal networks are 
simulated, the results show the total drained area stays constant (regardless 
of fracture complexity as a constant production is used). However, the 
DRV regions are not distributed equally around the fracture segments in the 
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network, leading to some small undrained areas between the branches of the 
fractal network.

Drainage by Single Asymmetrical Fractal Networks
Previous modeling (Sect. 5.2) assumed the generation of symmetrical 
fracture branches on both sides of the main branch. Due to the anisotropic 
nature of rocks, there is a strong possibility that these branches in reality may 
form asymmetrically due to changing rock properties. Using the L-system, 
different generations of branched asymmetrical fractures are modeled with 
the CAM to determine the impacts of asymmetry on flow and drained rock 
volumes (Fig. 9). The axiom rule for this asymmetrical fractal network is 
given as:

Figure 9: a Fracture geometry modeled with planar fracture, asymmetrical first-
generation asymmetrical fractal network, second generation, third generation 
from left to right. b Velocity contour plot (ft/month) after 1 month production. 
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c Pressure contour plots (drawdown in psi) after 1 month production. d Drained 
areas after 30 years production (drained area highlighted in red with tracked 
streamlines in yellow). Length scale in ft.

Axiom used for generation of the asymmetrical fractal network:
• Asymmetrical axiom rule = ‘F [− G] F’.
Asymmetric fractal networks still effectuate an increase in fracture 

surface area for successive iterations when compared to a planar fracture 
but less than for a symmetrical fracture network (Fig. 10). The velocity 
plots again show greater variability in flow velocities as the fractal network 
complexity increases with the greatest variation coinciding with the region 
where fracture density is highest (Fig. 9b). The asymmetrical fractal 
network shows similarity to the symmetrical fractal network in terms of 
overall pressure depletion and maximum/minimum flow velocities. The 
major difference with the asymmetric fractal network is the skewing of the 
highest pressure depletion contours to the area of highest fracture density 
(Fig. 9c). The premise that the steepest pressure gradients (areas where the 
pressure contours are tightest) correlate with areas of highest flow velocity is 
reinforced from these plots. Drained areas are found to conform to the areas 
of highest flow velocity (Fig. 9d) with small-scale stagnation areas found 
in between the highly branched areas as seen before in the symmetrical 
fracture network models (Fig. 8).

Figure 10: Graph of surface area versus fracture geometry type for asymmetri-
cal and symmetrical fractal networks.
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Interference Effects of Multiple Fractal Networks
Simulations in the previous section investigated the effect of moving from 
a single-planar fracture to more complex symmetrical and asymmetrical 
branching fractal networks. Modeling of a single fracture is the most logical 
point to start from but is not truly representative of modern hydraulically 
fractured wells with multiple perforations per stage and multiple stages, 
resulting in several hundred fracture initiation points at the perforations. 
The typical hydraulically fractured well completion in 2017 and beyond can 
have 50 stages or more. The spacing of the fractures may have a crucial 
impact on flow interference and thus affects drained areas and estimated 
ultimate recovery. This section seeks to determine the impact of interference 
effects on flow velocity, pressure depletion, and drained areas by simulating 
multiple fracture networks with different fractal network configurations. 
Using a base case of three planar fractures, comparisons of flow velocity, 
drained areas, and pressure depletion are made for various combinations of 
second-generation fractal networks (Fig. 11).

Figure 11: a Velocity contour plots (ft/month) after 1 month production. b 
Pressure contour plots (drawdown in psi) after 1 month production. c Drained 
areas after 30 years production. Length scale in ft.
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The base case models the flow response of three planar fractures and 
shows that with the given fracture half-length and fracture spacing, extremely 
low flow velocities occur between the central and outer fractures (Fig. 11a, 
left column). Flow stagnation zones are identified by velocity lows. These 
stagnation zones create areas in the reservoir that are left undrained due to 
the interference effect of the multiple fractures. The only way to drain these 
areas would be refracturing into the stagnation zones. The pressure depletion 
plot (Fig. 11b, left column) shows the largest pressure drop occurs between 
the fractures; however, this coincides with our lowest flow velocities and 
stagnation zones. This reinforces the idea put forward in Weijermars et al. 
2017b that the pressure plots are poor proxies to recognize the reservoir areas 
drained by the fractures. The drained region after 30 years is visualized by 
the time-of-flight contours to the fractures (Fig. 11c, left column) and shows 
the majority of the drained area is at the outer fractures where we also have 
the highest flow velocities. Flow interference between the fractures creates 
the stagnation zones that lead to undrained rock volumes.

The second scenario investigates the response to three symmetrical 
second-generation fractal networks (Fig. 11, center column). Slower 
velocities are again found between the branched fractal areas but for 
this case are confined to a smaller area. This in turn means that branched 
networks create smaller stagnation zones, than with the planar fractures and 
thus the fractal network should be conducive to drain more of the reservoir 
space effectively (Fig. 11c, center column). Better drainage coverage from 
the fractal network means less refractures are needed between the initial 
fractures. For branching fractal networks, too small a fracture spacing 
will result in draining the same reservoir areas due to overlapping fractal 
networks creating an inefficient drainage process.

A third scenario looks at a central symmetrical fractal network flanked by 
two asymmetrical fractal networks (Fig. 11, right column). Again, the areas 
of highest velocity occur at the periphery of the fractures with the slowest 
flow between the fractal networks. From the various simulations, there is a 
clear correlation between higher fractal network complexity and suppression 
in the areal extent of flow stagnation zones. Reduction in stagnation zones in 
turn means more efficient drainage of our rock and smaller undrained areas 
between fracture stages.

One interesting simulation case uses a symmetrical fractal network 
followed by two asymmetrical networks that grow away from the first 
symmetrical network (Fig. 12). This orientation is used to represent the effect 
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of stress shadowing during sequential hydraulic fracturing from toe to heel. 
Stress shadowing is the concept that fractures in the subsurface will tend to 
propagate away from the direction of already fractured rock due to changes 
in the stress regime (Nagel et al. 2013). The introduction of a poroelastic 
model to capture stress shadowing is outside of the scope of this work but 
to recreate this effect we have the first hydraulic fracture network at the toe 
being symmetrical due to no stress shadowing. The subsequent hydraulic 
fracture networks towards the heel of the well (Fig. 12) will be influenced 
by stress shadowing and this is captured by no branching of the fractal 
network in the direction of the previous hydraulic fracture at the toe leading 
to an asymmetrical fractal network. Using this fracture geometry to mimic 
stress shadowing, the area of greatest pressure depletion becomes skewed 
toward the initial fracture at the toe of the well (Fig. 12b). Comparison of 
the velocity and pressure plots in Fig. 12 shows the region with the largest 
pressure drop corresponds to the lowest flow velocities between the first 
toe fracture and the middle fracture. One would expect when the pressure 
drop is greater in a localized area, fluid velocity would be higher in that 
area of the reservoir. The physical explanation for the disparity between the 
regions with the largest flow rates and faster drainage being shifted with 
respect to the regions of highest pressure depletion as seen in our CAM 
model is as follows. Fluid moves fastest where the pressure gradients are 
steepest. The regions where fluid molecules are actively removed from the 
reservoir maintain the steepest pressure gradient. Adjacent regions with 
flow stagnation still will experience wider spacing between their fluid 
molecules leading to pressure depletion. This concept of the fundamental 
difference between pressure depletion and actual drained rock volume was 
first recognized in recent studies (Weijermars et al. 2017b; Weijermars and 
Alves 2018; Weijermars and van Harmelen 2018), using the same model 
tools outlined in the present study. Most current models use pressure plots 
to show drained areas but conclusions from this study show that velocity 
plots (rarely visualized in other models) give a better indication of actual 
drained rock volume. The fracture configuration of Fig. 12 results in a less 
effectively drained area near the initial toe fracture, whereas areas drained 
by the fractal networks at the heel side with less pressure depletion and 
higher flow velocities drain a slightly larger area, with a decrease in the size 
of the stagnation zone.
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Figure 12: a Velocity contour plot for three branched fracture networks (ft/
month) after 1 month production. b Pressure contour plots (drawdown in psi) 
after 1 month production. c Drained areas after 30 years production. Length 
scale in ft; surface area covered by symmetric/asymmetric three fracture 
networks is 4.9207 × 105 ft2.

Another configuration investigated was a single-fracture stage with five 
fractures, each made up by a second-generation symmetrical fractal network 
(Fig. 13). This simulation mimics today’s industry standard of five fracture 
clusters per stage. Typical fracture distance in horizontal wells can go as 
low as 20 ft between perforation clusters. For this model, we maintain a 
fracture cluster spacing of 100 ft as used in previous simulations for ease 
of comparison and visual resolution. Similar to our base case with three 
symmetrical second-generation fractal networks (Fig. 11, central column), 
we again find slower velocities between the branched fractal networks, 
creating narrower flow stagnation areas. The stagnation regions are smaller 
than those created by planar fractures. A crucial take away from this 
simulation is that fracture interference effects, similar to those seen in other 
models, will occur equally for narrower spaced fractal networks. However, 
the much smaller fracture spacing used in the most recent well stimulation 
programs will only increase the intensity of local flow interference. Although 
more fractures increase the contact area with the matrix, the drained rock 
volume will not increase linearly with surface area increase due to the effect 
of increasing flow interference.
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Figure 13: a Velocity contour plot for five symmetrical branched fracture 
networks (ft/month) after 1 month production. b Pressure contour plots 
(drawdown in psi) after 1 month production. c Drained areas after 30 years 
production. Length scale in ft; surface area covered by five fracture networks is 
1.0201 × 106 ft2.

Multiple Full-length Fractal Networks
The preceding results all looked at half of the total fracture network length. 
The reason for this approach was the assumption of symmetry of the 
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network on both sides of a horizontal wellbore. A final simulation looks at 
a full fracture length (2xf) for a single-fracture treatment stage with three 
perforation clusters, each generating fractal fractures (Fig. 14). Results 
show that the premise of flow symmetry about the wellbore is confirmed, 
as the velocity plots show contour patterns closely resembling those in Fig. 
9b (center column). Flow stagnation points in Fig. 14 are shifted across the 
reservoir space to a location between the three fractures close to the wellbore, 
different from those seen in Fig. 11. The overall effect of a more complex 
fracture network is to reduce the spatial spread of flow stagnation zones, 
leading to improved efficiency of the DRV near the individual fractures.

Figure 14: a Velocity contour plot for three full (2xf) branched fracture net-
works (ft/month) after 1 month production. b Pressure contour plots (drawdown 
in psi) after 1 month production. c Drained areas after 30 years production. 
Length scale in ft.

DISCUSSION
The true nature of hydraulic fracture geometries created in the subsurface 
during fracture treatment programs is still not properly resolved. Most 
fracture propagation models result in fractures that generate as simple planar 
features due to ease of modeling and the lack of inclusion of mechanical 
heterogeneity in such models. Meanwhile, numerous experimental and field 
observations show that planar fractures are too simple an assumption and 
they are more likely to exist as branching fracture networks. What is beyond 
doubt is that differences in the fracture geometry will have a distinct impact 
on the outcome of production forecasting models and history matching 
the actual production rates, drained areas and estimated ultimate recovery. 
Previous analytical solutions have looked at flow into parallel planar fracture 
arrays (Zhou et al. 2012; Yu et al. 2017) but failed to consider the effect 
on flow when fracture geometries are non-planar. Our method takes into 
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account variable fracture geometries and visualizes the flow interference 
of fractal fracture networks. High-resolution visualizations of velocity and 
DRV areas are presented, which may substantially contribute to improve 
our current understanding of the flow process in hydraulically fractured 
reservoirs. The use of pressure depletion plots as proxies for drained rock 
volume is unreliable as has been highlighted in prior studies (Weijermars 
and van Harmelen 2018; Khanal and Weijermars 2019). In low permeability 
reservoirs, there occurs a distinct mismatch between the depth of pressure 
investigation and drained rock volume growth (Weijermars and Alves 
2018), which is why the determination of the tracking of the time-of-flight 
of drained fluid to the hydraulic fractures of a well is required to delineate 
the DRV more accurately.

Interference Effects
The effect of fracture geometry on flow interference was investigated using 
a fractal fracture network description in combination with the complex 
analysis methods (CAM) to model drainage patterns and the resulting DRV 
near hydraulic fractures. Several series of simulations were conducted to 
determine the impact on drained areas and flow velocities when the fracture 
geometry varies, starting from a single-planar fracture and evolving up to 
third-generation branching fractals. For greater fractal network complexity, 
the local area drained away from each individual fracture segment becomes 
smaller as compared to the area of drained regions near a single-planar 
fracture. The difference occurs because fractals have a larger fracture 
surface area and we are putting back a constant amount of produced fluid 
(via the principle of flow reversal) in both the single and fractal models. 
Consequently, the fractal network shows more variations in flow velocities 
and pressure depletion peaks as compared to a planar fracture. These extreme 
changes in velocity lead to uneven drainage by the fracture network with 
the possibility of small undrained areas due to stagnation points occurring 
between the branches.

A planar fracture geometry based on our model’s fracture spacing and 
half-length creates stagnation surfaces leading to relatively large undrained 
areas between the fractures. In contrast, the fractal network geometry shows 
a reduction in the effect and areal extent of the stagnation zones (as seen 
from a comparison of the velocity and drained area plots, Fig. 11), due to a 
decrease in the interference effect on flow. The position of flow separation 
surfaces separating the drainage regions of individual fractures is controlled 
by the ratio of the fracture length and fracture spacing (Weijermars et al. 
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2018). When the fracture spacing is greater than a quarter of the fracture 
length, the flow stagnation points occur midway between the individual 
fractures. For complex fractal networks, each fracture branch has a smaller 
length compared to a single-planar fracture. The smaller fracture branch 
lengths mean less flow interference will occur for an otherwise constant 
fracture cluster spacing.

Pressure Depletion
Results show (Fig. 8c) that when the fracture surface area increases due to 
the more complex fractal networks, the average reservoir pressure change 
remains the same. One might expect that a greater fracture surface area to 
place fluid back into the reservoir model would result in smaller overall 
pressure changes. However, pressure peaks and lows show a larger spread 
where the fracture network complexity increases. The local variation 
in the pressure response is affected mostly by the fracture density. From 
the pressure plots (Fig. 11b), one can observe that areas with the highest 
fracture density give pressure contour depletion peaks. The current model 
uses a pre-fracture matrix permeability of 1 µD giving pressure changes in 
the magnitude of 106 psi (Fig. 14). When the permeability is changed to an 
after-fracture permeability of 1 mD, the pressure change magnitude drops 
to the range of 103 psi, which is in line with field observations. We assume 
this after-fracture permeability change is due to the creation of a network 
of microfractures in the rock that is termed the enhanced after-fracture 
permeability region.

Model Limitations
One aspect that the current model does not consider is the effect of various 
fractal iterations on fracture conductivity. Beyond the concept of fracture 
conductivity decreasing with time due to partial fracture closure following 
reservoir pressure decline (Daneshy 2005), as we create successive iterations, 
each new branch will be less conductive due to fracture width reduction and 
the lesser ability for proppant placement. In the current model, all fractures 
are given a constant flux, whereas in reality, the shorter distal fracture 
branches may have a smaller aperture and consequently less proppant 
placement, which may suppress fluid flux. The use of microproppant to 
help prop these smaller secondary and microfracture networks can retain 
fracture conductivity and is a field currently under research (Kim et al. 
2018). The impact of fracture closure with time can be looked at in future 
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work by the addition of a parameter to further decrease strength of flux into 
the fractal network. Water blockage to flow due to imbibed water during 
the fracturing job and subsequent soaking period is also not accounted 
for. Another crucial point is that the current model ensured there was no 
overlapping of fractal branches either within a stage or by multiple stages. 
This may not always be true in nature, and with very low current fracture 
spacing, there is a possibility of these fractal networks crossing. The possible 
crossing of the fractal networks from sequential fracture clusters can result 
in communication between stages that is regularly seen in the field (Barree 
and Miskimins 2015; Li et al. 2016).

Practical Implications
The impact of fractal fracture geometries on the DRV and stagnation zones 
is investigated in this study. Our models indicate that when the complexity 
of hydraulic fracture networks increases, this will suppress the occurrence 
of dead zones. In order to increase the DRV and boost the associated well 
productivity (and thus improve ultimate recovery), our models suggest that 
fracture treatment programs must find ways to create more complex fracture 
networks. The generation of such complex fracture networks is currently 
not included in concurrent fracture treatment design models, which limit 
the fracture development to mutually parallel planes. Because observational 
evidence from field experiments suggests that hydraulic fractures in 
hydrocarbon wells range from planar to multi-branched fractals (Huang and 
Kim 1993; Raterman et al. 2017), fracture treatment propagation models need 
to be modified to more realistically account for the development of complex 
fracture geometries that predictably follows from local geomechanical 
heterogeneities at the grain scale of rocks. The complex fracture geometry 
and fracture crossing provide a valid alternative explanation for the fact that 
tracer readings may overlap across fracture stages, which some commercial 
fracture propagation models presently attribute to the occurrence of 
longitudinal fractures parallel to the wellbore (Barree and Miskimins 2015).

CONCLUSIONS
The aim of this project was to more accurately represent the detailed flow 
patterns and drained rock volume (DRV) in unconventional reservoirs for a 
range of complex fractal fracture geometries. Such fractal flow models may 
help reservoir engineers to improve the hydrocarbon recovery rates. The 
simulations in this work show that the fracture geometry and complexity 
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have a significant impact on the detailed hydrocarbon migration route near 
the fractures. Major conclusions realized from our study are as follows:

• A complex fracture network enhances the drained rock volume via 
two mechanisms. The first is that with more complex networks, 
the overall fracture surface area increases resulting in larger 
access to fluid stored in the reservoir matrix rock. The second 
mechanism is the suppression of stagnant flow zones when the 
complexity of the hydraulic fracture network increases.

• Hydraulic fracture treatment programs should stimulate the 
creation of bifurcating fractures as approximated by our fractal 
model. By reducing stagnant flow regions, the DRV will more 
effectively drain the reservoir. This will lead to improved drainage 
between the fractures, which will increase the estimated ultimate 
recovery from hydrocarbon wells.

• Using CAM, we are able to visualize in high resolution the effects 
of various fractal network geometries on flow and pressure 
response in the reservoir. We highlighted the fact that pressure 
plots, commonly used as proxies for drainage patterns, are poor 
proxies for the actual DRV. The DRV can be more accurate 
predicted using streamline tracking and time-of-flight contouring, 
as shown in our study.

• For planar fractures, stagnation zones in a three-fracture cluster 
occur close to the outer fractures, typically when the fracture 
spacing is less than a quarter of the fracture length (Fig. 11, left 
panel).

• Once fracture complexity is introduced in the form of fractal 
networks, the effect of the branching fractures leads to suppression 
of the flow stagnation areas, allowing for more efficient drainage 
(Fig. 11, center panel). The velocity plots for the fractal networks 
show a larger spread in the local variation of velocity than for the 
planar fractures.

• The highest velocities are still found at the periphery of the 
fractal networks for all cases. However, for asymmetrical fractal 
networks, there is a tendency for the highest pressure and velocity 
response to skew toward the areas of highest fracture density 
(Fig. 11, right panel).

• It will be necessary to determine whether the creation of complex 
fracture networks in the subsurface is solely dependent on the 
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reservoir matrix properties (presence of natural fractures or matrix 
heterogeneities) or if fractal networks can be created by applying 
specific techniques during the hydraulic fracturing process. This 
requires the application of better diagnostic tools including the 
refinement of microseismic techniques to properly define and 
monitor created fractal network geometry.

• Improved capacity to engineer and model the propagation 
direction and control the generation of fractal geometries for 
hydraulic fractures are urgently needed in order to further increase 
the productivity of hydrocarbon wells by fracture treatment.
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ABSTRACT
Complex networks have attracted growing attention in many fields. As a 
generalization of fractal analysis, multifractal analysis (MFA) is a useful 
way to systematically describe the spatial heterogeneity of both theoretical 
and experimental fractal patterns. Some algorithms for MFA of unweighted 
complex networks have been proposed in the past a few years, including the 
sandbox (SB) algorithm recently employed by our group. In this paper, a 
modified SB algorithm (we call it SBw algorithm) is proposed for MFA of 
weighted networks. First, we use the SBw algorithm to study the multifractal 
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property of two families of weighted fractal networks (WFNs): “Sierpinski” 
WFNs and “Cantor dust” WFNs. We also discuss how the fractal dimension 
and generalized fractal dimensions change with the edge-weights of the 
WFN. From the comparison between the theoretical and numerical fractal 
dimensions of these networks, we can find that the proposed SBw algorithm 
is efficient and feasible for MFA of weighted networks. Then, we apply 
the SBw algorithm to study multifractal properties of some real weighted 
networks — collaboration networks. It is found that the multifractality exists 
in these weighted networks and is affected by their edge-weights.

INTRODUCTION
Complex networks have attracted growing attention in many fields. More 
and more research works have shown that they connect with many real 
complex systems and can be used in various fields1,2,3,4. Fundamental 
properties of complex networks, such as the small-world, the scale free and 
communities, have been studied5,6. Song et al.1 found the self-similarity 
property7,8,9 of complex networks. Gallos et al. gave a review of fractality 
and self-similarity in complex networks10. At the same time, some 
methods for fractal analysis and how to numerically calculate the fractal 
dimension of complex networks have been proposed. Especially, the box-
counting algorithm11,12 was generalized and applied to calculate the fractal 
dimension of complex networks. Subsequently, an improved algorithm was 
proposed to investigate the fractal scaling property in scale-free networks13. 
In addition, based on the edge-covering box counting, an algorithm was 
proposed to explore the self-similarity of complex cellular network14. A 
ball-covering approach and an approach defined by the scaling property of 
the volume were proposed to calculate the fractal dimension of complex 
networks15. Later on, box-covering algorithms for complex networks were 
further studied16,17.

Although fractal analysis can describe global properties of complex 
networks, it is inadequate to describe the complexity of complex networks 
by a single fractal dimension. For systematically characterizing the spatial 
heterogeneity of a fractal object, multifractal analysis (MFA) has been 
introduced18,19. MFA has been widely applied in many fields, such as 
financial modeling20,21, biological systems22,23,24,25,26,27,28,29,30,31,32, 
geophysical systems33,34,35,36,37,38,39,40 and also complex 
networks41,42,43,44,45. Lee et al.46 mentioned that MFA is the best 
tool to describe the probability distribution of the clustering coefficient 
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of a complex network. Some algorithms were proposed for MFA of 
unweighted complex networks in past a few years41,42,43,44,45. Furuya 
and Yakubo41 pointed out that a single fractal dimension is not enough to 
characterize the fractal property of a scale-free network when the network 
has a multifractal structure. They also introduced a compact-box-burning 
(CBB) algorithm for MFA of complex networks. Wang et al.42 proposed 
an improved fixed-size box-counting algorithm to study the multifractal 
behavior of complex networks. Then this algorithm was improved further 
by Li et al.43. They applied the improved fixed-size box-counting algorithm 
to study multifractal properties of a family of fractal networks proposed by 
Gallos et al.47. Recently, Liu et al.45 employed the sandbox (SB) algorithm 
proposed by Tél et al.48 for MFA of complex networks. The comparison 
between theoretical and numerical results of some networks showed that 
the SB algorithm is the most effective and feasible algorithm to study the 
multifractal behavior of unweighted networks45.

However, all the algorithms for MFA in refs 41, 42, 43, 44, 45 are 
just feasible for unweighted networks. Actually, there are many weighted 
networks in real world49,50,51, but few works have been done to study the 
fractal and multifractal properties of the weighted networks. Recently, an 
improved box-covering algorithm for weighted networks was proposed 
by Wei et al.52. They applied the box-covering algorithm for weighted 
networks (BCANw) to calculate the fractal dimension of the “Sierpinski” 
weighted fractal network (WFN)53 and some real weighted networks. 
But the BCANw algorithm was only designed for calculating the fractal 
dimension of weighted networks.

In this work, motivated by the idea of BCANw, we propose a modified 
sandbox algorithm (we call it SBw algorithm) for MFA of weighted 
networks. First, we use the SBw algorithm to study the multifractal property 
of two families of weighted fractal networks (WFNs): “Sierpinski” WFNs 
and “Cantor dust” WFNs introduced by Carletti et al.53. We also discuss 
how the fractal dimension and generalized fractal dimensions change 
with the edge-weights of the WFN. Through the comparison between the 
theoretical and numerical fractal dimensions of these networks, we check 
whether the proposed SBw algorithm is efficient and feasible for MFA of 
weighted networks. Then, we apply the SBw algorithm to study multifractal 
properties of some real weighted networks — collaboration networks54.
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RESULTS AND DISCUSSION

Multifractal Properties of Two Families of Weighted Fractal 
Networks
In order to show that the SBw algorithm for MFA of weighted network is 
effective and feasible, we apply our method to study the multifractal behavior 
of the “Sierpinski” WFNs and the “Cantor dust” WFNs53. These WFNs 
are constructed by Iterated Function Systems (IFS) 55, whose Hausdorff 
dimension is completely characterized by two main parameters: the number 
of copies s > 1 and the scaling factor 0 < f < 1 of the IFS. In this case, the 
fractal dimension of the fractal weighted network is called the similarity 
dimension and given by53:

  (1)
To construct “Sierpinski” WFNs and “Cantor dust” WFNs53, a single 

node and a triangle is set as a initial network G0 respectively. The first a few 
steps to construct them are shown in parts a) and b) of Fig. 1 respectively.

Figure 1:(a) The “Sierpinski” weighted fractal networks, s = 3, f = 1/2 and G0 is 
composed by a single node. From the left to the right, the 1th generation G1, the 
2th generation G2 and the 3th generation G3 are shown. The fractal dimension 
of the limit network is log(3)/log(2) ≈ 1.5850. (b) The “Cantor dust” weighted 
fractal networks, s = 4, f = 1/5 and G0 is a triangle. From the left to the right, the 
0th generation G0, the 1th generation G1 and the 2th generation G2 are shown. 
The fractal dimension of the limit network is log(4)/log(5) ≈ 0.8614.
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We first consider two “Sierpinski” WFNs with parameters s = 3, f = 1/2 
and s = 3, f = 1/3 respectively. Considering the limitation of the computing 
capability of our computer, we construct the 8th generation G8 of these two 
networks. There are 9841 nodes and 9837 edges in the G8 of these two networks. 
For the case s = 3, f = 1/2, the edge-weights of G8 are equal to 1, 1/2, 1/4, 1/8, 
1/16, 1/32, 1/64, 1/128, respectively; the diameter of G8 is less than 4. When we 
use the SBw algorithm for MFA of G8, radiuses r of sandboxes are set to 1/128, 
1/128 + 1/64, ···, 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128, respectively for 
this case. We can do similar analysis for G8 of network with s = 3, f = 1/3. It is 
an important step to look for an appropriate range of r (i.e., r ∈ [r

min
, r

max
]) for 

obtaining the generalized fractal dimensions D(q) (defined by equations (6) and 
(7)) and the mass exponents τ(q) (defined by equation (5)). In this paper, we set 
the range of q values from −10 to 10 with a step of 1.

When q = 0, D(0) is the fractal dimension of a complex network. Now 
we adopt the SBw algorithm to estimate the fractal dimension of two 
“Sierpinski” WFNs with parameters s = 3, f = 1/2 and s = 3, f = 1/3 respectively. 
We show the linear regression of ln(〈[M(r)]q−1〉) against (q − 1)ln(r/d) 
for q = 0 in Fig. 2. By means of the least square fit, the slope of the reference 
lines are estimated to be 1.5419 and 1.0169, with standard deviations 0.0309 
and 0.0148, respectively. It means that the numerical fractal dimension is 
1.5419 ± 0.0309 and 1.0169 ± 0.0148, respectively; they are very close to the 
theoretical similarity dimension 1.5850 and 1.0 respectively. Hence we can 
say that the numerical fractal dimension obtained by the SBw algorithm is 
very close to the theoretical similarity dimension for a “Sierpinski” WFN.

Figure 2: Examples of fractal analysis of the “Sierpinski” weighted fractal net-
works G8 with 9841 nodes.
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Here, copy factor s = 3 and the scaling factor f = 1/2, 1/3, respectively. 
By means of the least square fit, the slope of the reference lines are 
1.5419 ± 0.0309 and 1.0169 ± 0.0148 respectively. The theoretical result is 
1.5850 (for f = 1/2) and 1.0 (for f = 1/3), respectively.

To further check the validity of the SBw algorithm, let the copy 
factor s be 3 and the scaling factor f be any positive real number in the range 
0 < f < 1. From Equation (1), we can get the relationship between the fractal 
dimension and the scaling factor f of the “Sierpinski” WFN as:

  (2)
For each value of f = 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, we calculate 

fractal dimensions and their standard deviations of the 8th generation 
“Sierpinski” WFN G8 by the SBw algorithm. The results are shown in 
part a) of Fig. 3, where each error bar takes twice length to the standard 
deviation. This figure shows that the numerical fractal dimensions obtained 
by the SBw algorithm agree well with the theoretical fractal dimensions of 
these networks. This figure also shows that the fractal dimension of WFNs 
is affected by the edge-weight. This result coincides with the conclusion 
obtained by Wei et al.52.

Figure 3:(a) The fractal dimensions and their standard deviations of G8 of 
“Sierpinski” WFNs with parameter s = 3. The solid curve represents the theoret-
ical d

fract
 given by Eq. (2), circles are the numerical fractal dimensions estimated 

by the SBw algorithm. (b,c) The generalized fractal dimensions D(q) curves 
and their standard deviations of the 8th generation G8 of “Sierpinski” WFNs 
estimated by the SBw algorithm. Here, the parameter s = 3, f = 1/2, 1/3, 1/4, 1/5 
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and 1/6, 1/7, 1/8, 1/9, respectively. Each error bar takes twice length to the stan-
dard deviation for all the results.

Hence we can apply the SBw algorithm to calculate the generalized 
fractal dimensions D(q) and their standard deviations of “Sierpinski” 
WFNs. In parts b) and c) of Fig. 3, we show the generalized fractal 
dimensions D(q) of the 8th generation G8 of “Sierpinski” WFNs, with the 
parameter s = 3, f = 1/2, 1/3, 1/4, 1/5 and 1/6, 1/7, 1/8, 1/9 respectively. From 
these figures, we can see that all the 8th generation G8 of “Sierpinski” WFNs 
for different f have multifractal property and the multifractal property of 
these weighted networks is affected by their edge-weights. The result also 
shows that the generalized fractal dimension D(q) almost decreases with the 
decrease of the scaling factor f for any q.

For “Cantor dust” WFNs, we can only construct the 5th generation 
networks with s = 4 and f = 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, respectively. 
We first calculate fractal dimensions and their standard deviations of these 
WFNs by the SBw algorithm. The results are shown in part a) of Fig. 4. From 
this figure, we can see that the numerical fractal dimensions obtained by the 
SBw algorithm are very close to the theoretical fractal dimensions d

fract
 = −

log(4)/log(f) for these WFNs. Then we apply the SBw algorithm to calculate 
the generalized fractal dimensions D(q) and their standard deviations 
of these “Cantor dust” WFNs. We show the numerical results of the 5th 
generation G5 of “Cantor dust” WFNs in parts b) and c) of Fig. 4. From these 
figures, we can see that all D(q) curves are nonlinear. It indicates that all these 
weighted networks have multifractal property. Similar to “Sierpinski” WFNs, 
the multifractal property of these networks is affected by their edge-weights.

Figure 4:(a) The fractal dimensions and their standard deviations of G5 of 
“Cantor dust” WFNs with parameter s = 4. The solid curve represent the theo-
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retical d
fract

 given by Eq. (1), circles indicate the numerical fractal dimension 
estimated by the SBw algorithm. (b,c) The generalized fractal dimensions D(q) 
curves and their standard deviations of G5 of “Cantor dust” WFNs estimated by 
the SBw algorithm. Here, the parameter s = 4, f = 1/2, 1/3, 1/4, 1/5 and 1/6, 1/7, 
1/8, 1/9, respectively. Each error bar takes twice length to the standard deviation 
for all the results.

The multifractal property of “Sierpinski” WFNs and “Cantor dust” WFNs 
revealed by the SBw algorithm indicates that these model networks are very 
complicated and cannot be characterized by a single fractal dimension.

Applications: Multifractal Properties of Three Collaboration 
Networks
Now we apply the SBw algorithm to study multifractal properties of some 
real networks. We study three collaboration networks: the high-energy theory 
collaboration network54, the astrophysics collaboration network54 and the 
computational geometry collaboration network56.

HIGH-ENERGY THEORY COLLABORATION  
NETWORK
This network has 8361 nodes and 15751 edges, the edge-weights are defined 
as54:

  (3)
where n

k
 is the number of co-author in the kth paper (excluding single 

authored papers),  equals to 1 if the ith scientist is one of the co-author of 
the kth paper, otherwise it equals to 0. The data contains all components of the 
network, for a total of 8361 scientists, not just the largest component of 5835 
scientists. When two authors share many papers, the weight value is larger, 
thus the distance is less. So, in Equation(9), p had better be a negative number 
(e.g. −1 given by Newman54). For different values of p, we can calculate 
the shortest path by Equation(9) and obtain different weighted networks. 
Then we apply the SBw algorithm to calculate the generalized fractal 
dimensions D(q) and their standard deviations of the largest component of 
the network with 5835 nodes. We show the relation between the numerical 
fractal dimension of the High-energy theory collaboration networks and 
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values of p in part a) of Fig. 5. From this figure, we can see the value of 
fractal dimension decreases with the increase of the absolute value of p, the 
values of fractal dimensions are almost symmetric about the vertical axis. We 
show the numerical results on the generalized fractal dimensions D(q) of the 
High-energy theory collaboration networks for different values of p in parts 
b) and c) of Fig. 5. From these figures, we can see that all the High-energy 
theory collaboration networks for different p have multifractal property and 
the multifractal property of these weighted networks is affected by the edge-
weight. We can also see that the generalized fractal dimensions D(q) almost 
decrease with the increase of the absolute value of p.

Figure 5:(a) The relation between values of the fractal dimension of the 
High-energy theory collaboration networks and values of p. We set the range 
of the p values from −3 to 3 with a step of 0.5. (b,c) The generalized fractal 
dimensions D(q) curves and their standard deviations of the the High-energy 
theory collaboration network by using the SBw algorithm. Here, the range of 
the p values from −3 to 3 with a step of 0.5. Each error bar takes twice length to 
the standard deviation for all the results.

Astrophysics Collaboration Network
This network has 16706 nodes and 121251 edges, the edge-wights is defined 
as Equation(3). Here, the data contains all components of the network, 
for a total of 16706 scientists, not just the largest component of 14845 
scientists. When two authors share many papers, the weight value is larger, 
thus the distance is less. So, in Equation(9), p had also better be a negative 
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number (e.g. −1 given by Newman54). We calculate the shortest path by 
Equation (9) and obtain some weighted networks with different values 
of p. Then we apply the SBw algorithm to calculate the generalized fractal 
dimensions D(q) and their standard deviations of the largest component 
of the network with 14845 nodes. We show the numerical results of the 
astrophysics collaboration networks in parts a) and b) of Fig. 6. From this 
figure, we can see that these networks also have multifractal property and 
the multifractal property of these weighted networks is affected by the edge-
weight.

Figure 6: The generalized fractal dimensions D(q) curves and their standard 
deviations of (a,b) the astrophysics collaboration networks and (c) the computa-
tional geometry collaboration networks estimated by the SBw algorithm. Here, 
we set the range of the p values from −1 to 3 with a step of 0.5. Each error bar 
takes twice length to the standard deviation for all the results.

Computational Geometry Collaboration Network
The authors collaboration network in computational geometry was produced 
from the BibTeX bibliography which obtained from the Computational 
Geometry Database. This network has 7343 nodes and 11898 edges. Two 
authors are linked with an edge, if and only if they wrote a common paper or 
book, etc. The value of edge-weight is the number of common works, so the 
value is one integer, such as 1, 2, 3, ···, etc. The data contains all components 
of the network, for a total of 7343 scientists, not just the largest component 
of 3621 scientists. The data can be got from Pajek Data56. When two authors 
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share many papers, the weight value is larger, thus the distance is less. So, in 
Equation (9), p had better be a negative number. We calculate the shortest path 
by Equation (9) and obtain some weighted networks with different values 
of p. Then we apply the SBw algorithm to calculate the generalized fractal 
dimensions D(q) and their standard deviations of the largest component of 
the network with 3621 nodes. Because the way to define the weight of this 
network is different from another two real networks, we can only calculate 
the generalized fractal dimensions D(q) and their standard deviations of the 
largest component of the network with 3621 nodes for p ≥ −1. We show 
the numerical results of the computational geometry collaboration networks 
in part c) of Fig. 6. From this figure, we can also see that these networks 
have multifractal property and the multifractal property of these weighted 
networks is affected by the edge-weight (but the impact is relatively small).

CONCLUSIONS
In this paper, a modified sandbox algorithm (we call it SBw algorithm) for 
MFA of weighted networks is proposed. First, we used the SBw algorithm to 
study the multifractal property of two families of weighted fractal networks 
(WFNs): “Sierpinski” WFNs and “Cantor dust” WFNs. We also discussed 
how the fractal dimension and generalized fractal dimensions change with 
the edge-weights of the WFN. From the comparison between the theoretical 
and numerical fractal dimensions of these networks, we can find that the 
proposed SBw algorithm is efficient and feasible for MFA of weighted 
networks.

In addition, we applied the SBw algorithm to study the multifractal 
properties of some real networks — the high-energy theory collaboration 
network, the astrophysics collaboration network and the computational 
geometry collaboration network. We found that multifractality exists in 
these weighted networks and is also affected by their edge-weight. Our 
result indicates that multifractal property of weighted networks are affected 
both by their edge weight and their topology structure.

METHODS

Multifractal Analysis
The fixed-size box-counting algorithm is one of the most common and 
effective algorithms to explore multifractal properties of fractal sets19. 
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For a support set E in a metric space Ω and a normalized measure μ (i.e. 
0 ≤ μ(Ω) ≤ 1), we consider the partition sum:

     (4)
where q ∈ R and the sum runs over all different non-overlapping boxes B which 
cover the support set E with a given size ε. The mass exponents τ(q) of the 
measure μ is defined as:

      (5)
The generalized fractal dimension D(q) of the measure μ is defined as:

     (6)
where Z1,ε = ∑μ(b)≠0μ(B)lnμ(B). A numerical estimation of the generalized 
fractal dimension D(q) can be got from the linear regression of lnZε(q)/q − 1 
against lnε for q ≠ 1, Z1,ε against lnε for q = 1, respectively.

Tèl et al.48 proposed the sandbox (SB) algorithm for MFA of fractal 
sets which is an extension of the box-counting algorithm19. The generalized 
fractal dimensions D(q) are defined as48:

   (7)
where M(r) is the number of points in the sandbox with radius r, M(0) is the 
number of all points in the fractal object. It is denoted the brackets 〈⋅〉 
to take statistical average over randomly chosen centers of the sandboxes. 
From Equation (7) we can get the relation:

  (8)
From Equation (8), we can obtain an estimation of the generalized 

fractal dimension D(q) by the linear regression of ln(〈[M(r)]q−1〉) against 
(q − 1)ln(r/d). Then, we can also get the mass exponents τ(q) through 
τ(q) = (q − 1)D(q). Specifically, D(0) is the fractal dimension, D(1) is the 
information dimension, D(2) is the correlation dimension of the fractal 
object, respectively.
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A Modified Sandbox Algorithm for Multifractal Analysis of 
Weighted Networks
Recently, our group employed the SB algorithm proposed by Tél et al.48 for 
MFA of unweighted complex networks45. In the SB algorithm45, the 
radiuses r of the sandbox are set to be integers in the range from 1 to the 
diameter of the unweighted network. However, in weighted networks, the 
values of edge-weights could be any real numbers excluding zero and the 
shortest path is defined by the path between two nodes such that the sum of 
values of its edge-weights to be minimized in some way57. So, the shortest 
path between two nodes could be any real numbers excluding zero. In this 
paper, for weighted networks, we denote the length of shortest path between 
node i and node j by d

ij
 and d

ij
 is defined as52:

  (9)
where w

kh
 means the edge-weight of directly connecting node k and 

node h in a path, j
m
(m = 1, 2, ···) are IDs of nodes and p is a real number. 

In particular, when p equal to zero, the length of the shortest path given by 
Equation(9) is the same as unweighted networks57. If the edge-weight is 
only a number without obvious physical meaning, we set p equals to 1, such 
as the “Sierpinski” WFN53. In some real weighted networks, one case is 
that the bigger edge-weight of between any two nodes is, the less distance 
is, such as the collaboration networks, where p < 054; the other case is that 
the bigger edge-weight of between any two nodes is, the further distance is, 
such as the real city network and the “Sierpinski” WFN, where p > 0.

The SB algorithm is unfeasible for MFA of weighted networks because 
we cannot obtain enough numbers of boxes (even only one sandbox we can 
obtain when the diameter of the weighted network is less than one). Wei et 
al.52 proposed an improved box-covering algorithm for fractal analysis of 
weighted network (BCANw). In the present work, motivated by the idea 
of BCANw, we propose a modified sandbox algorithm (we call it SBw 
algorithm) for MFA of weighted networks. The SBw algorithm can deal 
with the multifractal property (hence can also deal with the fractal property) 
of weighted networks.

Before we apply the SBw algorithm for MFA of weighted networks, we 
need to calculate the shortest-path distance matrix D of the network and set 
the range of radiuses r of the sandboxes. The detail is given as:

• A network is mapped to an adjacent matrix W
N × N, where N is 

the total number of nodes in the network. For any given real 
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numbers p, the elements of the adjacent matrix  is the 
edge-weight between directly connecting nodes i and j, otherwise 

. According to the adjacent matrix W
N × N, we can calculate 

the shortest path distance matrix D by applying the Floyd’s 
algorithm58 of Matlab BGL toolbox59;

• For any given real numbers p, order the edge-weights 
 as w1 ≤ w2 ≤ ··· ≤ w

m
, where m is the number of edge-weights. 

From the fractal theory, we should look for an appropriate 
range of radiuses r to perform the least square linear fit and 
then obtain the generalized fractal dimensions D(q) accurately. 
We tried choosing the radius r from 0 to diameter d with equal 
(linearly or logarithmically) intervals. But we found it is hard 
to look for an appropriate range of radiuses r to perform the 
least square linear fit and then obtain the generalized fractal 
dimensions D(q) of weighted complex networks we considered 
accurately. So the radiuses r of the sandboxes are obtained by 
accumulating the value of the edge-weights until it is larger than 
the diameter d of the network. So, we can get the set of radiuses 
(denoted as R), where  and 

. Specifically, for any i, j, if w
i
 = w

j
 = 1, 

then the radius set R is the same as the SB algorithm for 
unweighted network.

In this sense, the SBw algorithm can be applied to calculate the mass 
exponents τ(q) and the generalized fractal dimensions D(q) not only for 
unweighted network but also for weighted networks. Now we propose a 
modified SB algorithm (SBw) for MFA of weighted network as:

• Initially, ensure that all nodes in the network are not covered and 
not selected as a center of a sandbox.

• Set every element in the radius set R as the radius r of the sandbox 
which will be used to cover the nodes, where R is obtained as 
above. (in the SB algorithm the radius r in the range r ∈ [1, d], 
where d is the diameter of the network).

• Rearrange the nodes of the entire network into a random order. 
Make sure the nodes of the network are randomly chosen as the 
center of a sandbox.

• According to the size N of networks, choose the first 1000 nodes 
in a random order as the center of 1000 sandboxes, then for each 
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sandbox, search all the neighbor nodes which have a distance to 
the center node within r.

• Count the number of nodes in each sandbox of radius r, denote 
the number of nodes in each sandbox of radius r as M(r).

• Calculate the statistical average 〈[M(r)]q−1〉 of [M(r)]q−1 over 
all 1000 sandboxes of radius r.

• For different values in the radius set R, repeat steps (2) to (6) to 
obtain the statistical average 〈[M(r)]q−1〉 and then use 〈[M(r)]
q−1〉 for linear regression.
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ABSTRACT
Through an elegant geometrical interpretation, the multi-fractal analysis 
quantifies the spatial and temporal irregularities of the structural and 
dynamical formation of complex networks. Despite its effectiveness in 
unweighted networks, the multi-fractal geometry of weighted complex 
networks, the role of interaction intensity, the influence of the embedding 
metric spaces and the design of reliable estimation algorithms remain open 
challenges. To address these challenges, we present a set of reliable multi-
fractal estimation algorithms for quantifying the structural complexity and 
heterogeneity of weighted complex networks. Our methodology uncovers 
that (i) the weights of complex networks and their underlying metric spaces 
play a key role in dictating the existence of multi-fractal scaling and (ii) the 
multi-fractal scaling can be localized in both space and scales. In addition, 
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this multi-fractal characterization framework enables the construction of a 
scaling-based similarity metric and the identification of community structure 
of human brain connectome. The detected communities are accurately 
aligned with the biological brain connectivity patterns. This characterization 
framework has no constraint on the target network and can thus be leveraged 
as a basis for both structural and dynamic analysis of networks in a wide 
spectrum of applications.

INTRODUCTION
Complex systems consist of heterogeneous agents mutually influenced via 
interactions of different intensities over multiple spatio-temporal scales. 
This heterogeneity encompassed in both the participating components and 
their varying interactions makes complex systems difficult to decipher. To 
understand and control these complex systems, the network theory provides 
an effective mathematical modeling framework that enables the encoding 
of the entities (nodes) of a complex system and their heterogeneous 
interactions (links) of different strength (weights) into a topological network 
configuration implicitly embedded in metric spaces, where the distance 
among nodes is decided both by the structural configuration of the system 
(topology) and the intrinsic nature of the inter-node couplings (e.g., social 
affinity, chemical bonds, traffic intensity or neural connectivity strength). In 
some cases, the properties of the inter-couplings among system components 
and the corresponding spatial embeddings even play a far more dominant role 
in regulating the overall system behaviors and dynamics. For instance, the 
atomic and molecular interactions among a chain of amino acids definitively 
dictate not only the dynamical spatial conformation of the corresponding 
protein but also its biological functionality1, 2. The disturbance of normal 
protein interactions can lead to irreversible pathological consequences known 
as proteopathies like Alzheimer’s, Parkinson’s3 and Huntington’s disease4. 
Therefore, the study of structural organization, formation and dynamics of 
the complex systems can benefit from studying their geometrical properties 
and discovering new relationships between geometrical characteristics and 
network problems (e.g., community structure identification).

Learning the geometric principles underlying the organization of 
complex systems modeled by weighted networks facilitates the identification 
of their fundamental properties. Some of complex networks have been 
found to be Small world or Ultra-small world. Small world network model 
characterizes a graph of size N for which its average path length increases 
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proportionally to the logarithm of the number of nodes ⟨d⟩∼logN⟨d⟩∼logN. 
In contrast, the Ultra-small world networks are characterized by smaller 
shortest path distances that scale as dmin∼loglogNdmin∼loglogN. Albert 
Barabasi and his colleagues found that the Erdos-Renyi random network 
model can not explain the formation of densely interconnected hubs 
or clusters in a family of real networks with degree distribution obeying 
a power-law5. In contrast to the Erdos-Renyi random network model 
that leads to a narrow normal degree distribution, the power-law degree 
distribution of these networks has such a long tail that we cannot reason 
about the interconnection density of the network given a randomly chosen 
sample, hence they are scale-free.

The discovery of small-world property led to the belief that complex 
networks are not invariant under a length-scale transformation according 
to which an exponential dependence holds between the size of the network 
and its average path length. However, it is found that a variety of real 
networks exhibit self-repeating patterns at all length scales by applying a 
renormalization procedure6, 7. This illustrates the concept of self-similarity. 
The coexistence of self-similarity and small-world property in a variety of 
complex networks is further verified8. These two contradictory properties 
call for further investigation on the appropriate mathematical model of 
complex networks and their main features. A phase transition phenomenon is 
found between the local self-similarity and the global small-world property 
by studying the stability of nodes by renormalization group theory9.

The uncovered self-similarity in complex networks connects to the 
important fractal and multi-fractal geometry domain where a family of objects 
are distinguished based on their self-repeating patterns and invariability 
under scale-length operations. Such objects are known as fractal objects. A 
mono-fractal object obeys a perfect self-repeating law at all scales. When 
embedded in Euclidean metric space and tiled by equally sized boxes at 
different scales, it becomes apparent that an important property of fractals 
is the power-law dependence between the mass distribution M(r) (e.g., the 
number of points in a box) and the scale factor r:

     (1)
In Eq. (1), D is the fractal dimension and represents a real-valued number 

in contrast to the embedded space dimension which is always an integer. 
Fractal dimension is the major tool for describing the fractal geometry and 
the heterogeneity of irregular geometric objects that the dimension of its 
embedded space fails to capture. For instance, in Euclidean geometry, a 
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straight line and a crooked line share the same geometrical dimension but 
have very distinct properties. Multi-fractals could be seen as an extension 
to fractals with increased complexity. They are invariant by translation 
although a distortion factor q needs to be considered to distinguish the details 
of different regions of the objects as a consequence of inhomogenous mass 
distribution. Intuitively, multi-fractals are not perfect self-repetitions but rich 
in localized variations of detailed geometric configurations. Consequently, 
a single fractal dimension is not sufficient to characterize the irregularity 
of the geometric shapes as the scaling factor measured across the object 
could be different. As a result, multi-fractal analysis (MFA, see Methods for 
details) is proposed to capture the localized and heterogenous self-similarity 
by learning a generalized fractal dimension D(q) under different distortion 
factors q.

MFA has been applied to investigate the underlying geometrical principles 
in a wide spectrum of applications including signal processing10,11,12,13, 
imaging processing14,15,16, genomics17, 18, geophysics19, 20, 
turbulence analysis10, 21, 22, network traffic modeling 23 and financial 
analysis24,25,26,27. Irrespective of the effectiveness of MFA in various 
domains, its application to study the self-similarity of complex networks 
is not straightforward as the Euclidean metric is not well defined in a 
topological object like the complex network. The box-covering method was 
introduced28 to calculate the fractal dimension of unweighted complex 
networks and the authors proved its reducibility to the well-known graph 
coloring problem, which is NP-hard. However, a single fractal dimension 
is not a sufficient characterization of self-similarities embedded in the 
complex network. For instance, how can we distinguish fractal networks 
that share exactly the same fractal dimension but look entirely different? 
Fig. 1 shows two fractal networks, namely, Sierpinski fractal networks 
and (u, v)-flower. Both networks have the exact same fractal dimension 
of ln(6)/ln(3) ≈ 1.631 but show distinct structural properties. Apparently, 
relying on mono-fractal analysis does not allow us to distinguish between 
these two networks. Another relevant question is how link weights affect the 
fractality/multi-fractality of the weighted complex network. Link weights 
play an important role in governing the dimension of the network as there 
exists a mapping from a weighted network to a network spatially embedded 
where weights translate to the length of links that affects its dimension29, 30. 
To address this problem, an alternative box-covering method (BCANw) 
was proposed for the numerical determination of the fractal dimension of 
weighted complex networks31. Its application has also been extended to 
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study the inhomogeneity of weighted real-world networks through multi-
fractal analysis. Following the same line, a similar study of multi-fractality 
embedded in weighted networks using the modified sandbox method (SBw) 
is reported32. However, neither of the two methods considers the impact 
imposed by the distribution of the link weights. Both algorithms are prone 
to intrinsic estimation bias as a consequence of i) ignoring the skewness 
of the link weight distribution and ii) the implicit assumption that a global 
fractal/multi-fractal scaling holds at all scales of the network. Moreover, 
there is no theoretical foundation to support the design and evaluation of 
both algorithms in order to analyze the factors that adversely impact their 
numerical accuracy. All these disadvantages leave room for an erroneous 
characterization of both the structural and dynamical features of the weighted 
complex networks.

Figure 1: Failure of single (dominant) fractal dimension to capture the hetero-
geneity in detailed configuration of fractal networks. A comparative example 
shows. (a) Sierpinski fractal network (s = 1/3, b = 6) and (b) (u, v)-flower fractal 
network (u = 3, v = 3) share the same fractal dimension (1.631) yet having dis-
tinct topological structure.

To overcome these issues, we first analytically study the multi-fractal 
structure of the Sierpinski fractal network family to set up the theoretical 
ground for evaluation and comparative analysis of our proposed algorithms. 
We find that the multi-fractality identified by SBw can be just the side effect 
of the limited size of the network considered. The analytical discussion 
of multi-fractality in Sierpinksi family  provides the theoretical basis 
on which not only we can quantitatively reason about the existence of 
multi-fractality/fractality from an asymptotic perspective that numerical 
approaches will surely fail to offer, but also we can shed some light on 
the design of numerical algorithms for reliable estimation of multi-fractal 
spectrum of the complex networks.
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To motivate the design of a reliable algorithm which eliminates the 
disadvantages of BCANw and SBw, we analyze the source of the estimation 
bias of both algorithms through a set of numerical experiments. We show 
a compatible growth rule is required to remove the bias, given weighted 
complex networks of finite resolution. The detailed quantitative error 
analysis to investigate the source of the intrinsic estimation bias of both 
algorithms can be found in our Supplementary Material Section 2.

Based on both our theoretical findings and numerical experimental 
results, we propose the finite box-covering algorithm for weighted network 
(FBCw) and the finite sandbox algorithm for weighted network (FSBw) with 
improved performance. We compare the accuracy of the estimates obtained 
by FBCw and FSBw with our analytical results of Sierpinski fractal network 
as well as with those obtained by BCANw and SBw. The comparison shows 
that the proposed algorithms are not only able to give reliable numerical 
estimates of fractality with insensitivity to the distribution of link weights, 
but also are capable of detecting the fractal scaling dependence when it 
holds within a finite range of scales (i.e., scale-localized).

More importantly, we apply the proposed algorithms to learn the multi-
fractal structure of a set of real world weighted networks. We show the link 
weights play a definitive role in governing the existence of fractality in the 
network. The investigated weighted networks exhibit a phase transition from 
self-similar networks to small-world networks when converted to binary 
networks. Furthermore, we demonstrate that the fractal and multi-fractal 
scaling behaviors can be spatially localized and co-exist in the same network. 
Learning from our observations on the locality of the scaling behavior of 
real world weighted networks, we finally propose a network characterization 
framework based on the localized scaling feature space learned by the 
construction of scaling feature vectors for each node in the network. The 
proposed characterization is general and not limited to complex networks 
that are fractal or multi-fractal. It can be easily interfaced with subsequent 
analytical tools (e.g., machine learning algorithms) to unveil the intrinsic 
properties of the weighted complex networks. To illustrate the benefits 
of our methodology, we apply our algorithms to the network community 
detection in the human brain connectome. The identified communities are 
consistent with our biological knowledge.

The following discussion is organized in three parts. In the first part, we 
present the estimation error of previous numerical algorithms. In the second 
part of discussion, we compare the performance of BCANw, SBw with the 
proposed FBCw and FSBw. Finally, we present the multi-fractal analysis 
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on a set of weighted real world complex network and propose a localized 
scaling based approach for the characterization of the weighted complex 
networks. We provide an illustrative application example in network 
community detection to show its effectiveness.

RESULTS

Analysis of Finite Resolution and Link Weight Distribution

Estimation error analysis and stairway effect
The link weights distribution of complex networks largely depend on the 
growth rule and weights allocation process. For instance, the distribution of 
link weights of Sierpinski family is shaped by the scaling factor s and growth 
rule b. Interestingly, for small scaling factor s, we prove G k approaches a 
monofractal that has no explicit dependence on weights distribution (See 
the proof in Supplementary Material Section 1). Yet this is valid only for a 
complex network that has infinite resolution in the sense that box/sandbox 
can grow by infinitely small steps (but not continuously) in a network of 
unbounded range of scales. In most of cases, this does not hold for complex 
networks and perfect fractals of limited size (e.g., Sierpinski network of 
limited size). Therefore, when it comes to numerical calculation of the limit 
in Eqs (13) and (17) using linear regression which is shared by both box-
covering and sandbox methods, we are able to show that the box/sandbox 
should grow in a regulated way that is compatible with link weights 
distribution such that the stairway effect is minimized.

The stairway effect is an immediate consequence of applying box-
covering or sandbox methods to weighted complex network of finite 
resolution to estimate the generalized fractal dimensions using linear 
regression. For a linear regression that minimizes least square error 
(LSE) ∑ (y i  − x i θ)2, stairway effect can be stated as stagnant changes 
in y i irrespective of variation of x i up to a certain range. We show a simple 
example in Fig. 2 where the output and input observations are made from 
a linear relation y = 50 − 0.4x. The solid line shows the perfect fitting when 
no staircase is introduced. The two dashed lines correspond to the case 
where a set of unchanging observations are inserted (i.e., fake observations) 
between two actual y observations at two different locations (as denoted 
by x i ), creating two pieces of “staircases” in the plot. As a consequence of 
minimization of LSE, the fitted lines in presence of staircases deviate from 
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the perfect fitting differently based on the position of the staircases in the 
plot. We can show the estimation error is proportional to the width of the 
staircase and the number of fake observations inserted. We have presented 
the detailed error analysis regarding the stairway effect in our Supplementary 
Material Section 2.

Figure 2: A case study of stairway effect. A linear relation y = 50−0.4x is observed 
on a set of input x. Two sets of unchanging y observations are manually inserted 
between two actual measurement to create “stairs”. The introduction of such 
stairs biases the linear regression and causes estimation errors.

Finite resolution and compatible growth rule
The above mentioned insertion of fake observations can be understood as an 
interpolation or oversampling process when a system with finite resolution is 
measured. For instance in a linear system, except for the case where input 
and output are decoupled in the system of interest, a staircase will be created 
in the measurement if the sampling rate is not compatible with the changing 
rate of the output, e.g., sampling rate is much greater than how the system 
actually changes its state. The changing rate of the system in this example 
intrinsically determines its “resolution”.

Similarly, a fundamental difficulty in extending the use of box-covering 
or sandbox method for determination of multi-fractality in complex network 
lies in its finite resolution. For a geometric multi-fractal/fractal object 
embedded in Euclidean space, the probability measure μ is well-defined on 
a continuous interval (0, L] where L is the length of the object. Alternatively 
stated, it is possible to grow box size continuously and retrieve the estimates 
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from a linear regression that considers all obtained measurements. However, 
the distance metric of a complex network is discrete and probability 
measure μ is not defined on a continuously spanning l horizon, i.e., for 
any l i and l i+1 ∈ (0, L], there exist an infinite subset  on 
which the probability measure μ is a constant. In other words, we can not 
distinguish between any element in this subset based on their associated 
probability measure, hence the resolution is finite.

As a consequence, we observe staircases that correspond to the 
measurements on these subsets L i if we directly apply box-covering or 
sandbox method with box size (or equivalently the radius of a sandbox, we 
use only the term “box size” for short) growing continuously. The presence 
of staircases, as we discussed earlier, introduces bias into the estimates of 
generalized fractal dimension. Obviously, we can minimize the stairway 
effect if we can aptly choose a growth strategy to scale the box size l such 
that no element in ∪L i is chosen as the size of a box. We call such strategy, 
if exists, as compatible growth rule.

For unweighted networks, a compatible growth rule can be easily found 
by increasing the box size in a discrete way, i.e., adding one each time. This 
is feasible because even though the resolution of an unweighted network 
is limited yet it is homogenous across the network, i.e., distance between 
any directly connected pair of nodes is identical. However, such property 
does not hold for a weighted complex network due to the distribution of 
link weights. Searching for a compatible growth rule for box size scaling in 
a weighted network is much more difficult and sometimes impossible. To 
give some intuition, let us look at sandbox method. Formally, for a weighted 
network G = (V, E), let us assume v i  ∈ V as the center of sandbox and v j  ∈ V as 
a random node. Denote d i,j as the shortest path length between v i and v j . 

The shortest path distribution  has a discrete support 

set  defined by G. A compatible growth 
rule of v i on G is thus a strictly ordered set 
. Therefore, the compatible sandbox growth rule L(G) on G is defined by 

 where v i is the center of the sandbox. It should be noted that 
it is always possible to find a compatible growth rule for a sandbox centered 
at a fixed point by growing its size by its unique distance to all other nodes. 
However, there is no guarantee that this growth rule is compatible for 
another sandbox centered differently. A compatible growth rule requires 
that the support of path length distribution is shared among all choices 
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of sandbox centers. Apparently, if the choice of sandbox in Eq. (17) (see 
FBCw and FSBw description in Methods section) is randomized over all 
the nodes in an unweighted graph G, L(G) = {1, 2, 3, …, d min } where d min is 
the shortest path length of the longest distance between any pair of nodes 
of G. However, it can be practically difficult to find in a weighted network 
of rich heterogeneity such L(G) that i) is shared by a sufficiently large subset 
of V to be mathematically consistent with the estimate obtained by the box-
covering method and ii) provides large set of samples of l to numerically 
calculate the limit in Eq. (17).

Such heterogeneity connects tightly to the skewness of the underlying link 
weight distribution of G that governs not only the existence of L(G) but 
also the design of a reliable algorithm to determine the multi-fractality 
of G when L(G) does not exist. For instance, the unweighted network 
corresponds to the case where the link distribution is a symmetric delta 
function, hence the existence of multi-fractality is solely determined by the 
topological properties of the network. When the link weights are uniformly 
distributed, the topology of network again determines the multi-fractality 
of the network. Since the weights are uniformly distributed, L(G) = {E[w], 
2E[w], …, d min E[w]} is a statistically compatible growth rule. In other 
cases especially when the distribution is highly skewed, a poorly designed 
algorithm without awareness of link distribution leads to significant 
estimation errors in Eqs (13) and (17), rendering the basis of multi-fractal 
analysis questionable. This estimation error can be well-explained by our 
analytical findings that the incompatible growth rule with presence of a 
skewed link weight distribution will lead to the stagnant observations in 
spite of the growing box size of l, i.e., the staircase. Wider staircases will 
produce underestimated slope, hence biased estimates of multi-fractality.

Both BCANw and SBw that are previously proposed for numerical 
determination of multi-fractality in weighted networks fall into this category 
as they both rely on an incompatible growth rule and do not consider the 
skewness of link distribution. We show in the following discussion their 
disadvantages compared to our proposed algorithms. To make fair comparison 
under the same experimental setting with priorly known ground truth about 
multi-fractality of the study object, we choose Sierpinski fractal network 
family as our target network. We conduct comparative error analysis across 
all four algorithms when applied to estimate the dominant fractal dimension 
of the target networks.
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Comparative Analysis of Estimation Methods

Intrinsic estimation bias of BCANw and SBw
To corroborate our argument, we first present two numerical experiments 
where a simple yet incompatible growth rule is applied to both box-covering 
and sandbox methods when used for determination of the dominant fractal 
dimension of Sierpinski network G5∈S with b = 3, s = 1/2 (see Supplementary 
Material Section 1 for detailed construction of G 5). The incompatible 
growth rule increases the size of the box linearly by accumulating a fixed 
step length. We show in Fig. 3 the estimated fractal dimension using a box-
covering method with this growth rule. The theoretical fractal dimension 
is ln(b)/ln(s) ≈ 1.585. As predicted, the staircases are present throughout the 
scales of l considered. To show its impact on the estimates, we plot the 
fitted line given by the linear regression on collected measurements and a 
reference line with the theoretical slope. As one notices in the figure, the 
staircases drive the estimates to deviate from the theoretical slope. We can 
make similar observations in Fig. 4 that shows the estimated dominant fractal 
dimension of the G 5 using sandbox method following the same growth rule. 
The staircases correspond to incompatible choice of box size l from the 
set ∪ L i for which the probability measure is not defined. As a result, the 
measure μ(B(l)) remains stagnant irrespective of changes in l, introducing 
estimation errors when linear regression is performed in Eqs (13) and (17) 
to determine numerically the multi-fractal spectrum.

Figure 3: Observation of staircase effect in determination of dominant frac-
tal dimension of G 4 of Sierpinski fractal network family using box-covering 
method with an incompatible linear growth rule.
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Figure 4: Observation of staircase effect in determination of dominant fractal 
dimension of G 4 of Sierpinski fractal network family using sandbox method 
with an incompatible linear growth rule.

These two simple examples verify our analytical prediction in our 
analysis of incompatible growth rule when an incompatible growth rule 
is enforced. In what follows, we show that neither BCANw nor SBw is 
immune to such incompatible growth rule. Again, we use G 5 as a case 
study to compare with our simple settings of our first set of experiments. In 
contrast to a linear growth rule, both BCANw and SBw employ a growth 
rule L <  = {w 1, w 1 + w 2, …, ∑ i w i , ∀ w i  ∈ W(G)} where W(G) = {w 1, w 2, w 3, 
…, w n } is an ordered set of all the weights of G such that w k  ≤ w k+1 for 
all choices of i. We apply the BCANw and SBw to estimate the dominant 
fractal dimension of G 5. To verify the existence of staircase effect when 
applying BCANw and SBw, we show two case studies in Figs 5 and 6. As 
one can notice, accumulating the link weights to grow either the box or 
sandbox is still not compatible with the Sierpinski fractal network G 5. We 
observe in both experiments that the staircases introduce large bias (1.375 
and 1.327 compared to 1.585) in numerical determination of limits in Eqs 
(13) and (17). The failure to accurately calculate them translates directly 
to unreliable estimation of the multi-fractal spectrum.
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Figure 5: Observation of staircase effect in determination of dominant fractal 
dimension of G 4 of Sierpinski fractal network family using BCANw.

Figure 6: Observation of staircase effect in determination of dominant fractal 
dimension of G 4 of Sierpinski fractal network family using SBw.

Moreover, we argue that the estimation errors recognized in 
Figs 5 and 6 do not come from “infrequent anomalies” of the experiments. 
Given a fixed size of the network, repeating the experiments using box-
covering or averaging the result over an increased set of sandbox centers 
does not fundamentally compensate the error introduced by BCANw and 
SBw ignoring finite resolution and link weight distribution of the target 
network. We performed BCANw with random choice of node coloring order 
and repeated the experiment by 1000 to 11,000 times with a step length of 
200 to obtain the averaged number of boxes to cover the graph to avoid the 
bias introduced by the deterministic ordering. It should be also noted that 
the reason we take the average number of boxes comes from the practical 
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consideration. It represents the average performance of the BCANw when 
it is computationally impossible to repeat the experiments indefinitely 
to obtain the minimal number of boxes given large-scale networks. We 
performed SBw with random choice of the center of sandbox from 5% to 
100% of nodes in G 5 with a step length of 1.9%. For each step, the results 
are averaged over 1000 trials. To illustrate the importance of awareness of 
the finite resolution and link weight distribution on the estimation algorithm, 
we also performed the proposed FBCw and FSBw with the same settings as 
BCANw and SBw. The results are plotted in Fig. 7.

Figure 7: Normalized estimation errors of dominant fractal dimension 
of G 5 (b = 3, s = 1/2) under different (i) numbers of the repeated trials for box-
covering-based methods (BCANw and FBCw) and (ii) utilization of nodes as 
sandbox center for sandbox-based methods (SBw and FSBw). Averaging the 
estimations over an increasing number of box-covering trials or nodes used as 
sandbox centers brings trivial improvement to the intrinsically biased estima-
tion of BCANw and SBw. The proposed FBCw and FSBw provide better ac-
curacy by addressing the finite resolution and the skewness of the link weight 
distribution of the weighted complex network.

We show the estimation errors of the four algorithms normalized 
against the theoretical dominant fractal dimension. For box-covering based 
algorithms (BCANw and FBCw, blue lines), we plot the error against 
different numbers of trials (1000 to 11000). For sandbox-based algorithms 
(SBw and FSBw, orange lines), the error is plotted against utilization of 
total number of nodes used as the candidates for the sandbox center. Several 
key observations can be made for BCANw and SBw: i) As the averaging 
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is performed over an increasing number of trials or sandbox centers, the 
estimation error is improved slightly. For BCANw, this can be understood as 
the randomization helps remove the bias of the ordering by which we check 
the nodes to assign box ID. For SBw, the improvement on estimation error is 
more significant (from 19.3% to 17%) while it eventually approaches that of 
BCANw. This is well aligned with Eq. (17) in that the randomized choice of 
sandbox is the necessary condition for the equivalency of sandbox method 
to box-covering method. ii) Even though the improvements on estimation 
accuracy are observed for both BCANw and SBw as the averaging helps 
remove the random bias, they are trivially small. The randomization is not 
able to fundamentally compensate for the estimation errors introduced by 
their incompatible growth rules. Therefore, the staircase effect from the 
case studies presented in Figs 5 and 6 is the intrinsic estimation bias of 
both algorithms. iii) In contrast, the proposed FBCw and FSBw algorithms 
consistently outperform the BCANw and SBw by a larger margin. The 
worst-case normalized estimation error of FBCw is less than 4% and that of 
FSBw is less than 7%.

The experimental results show that the state-of-the-art BCANw and SBw 
methods are not immune to errors due to the influence of finite resolution and 
link weight distribution, hence suffering from the intrinsic estimation bias. It 
should be noted that these biased estimations can be noticed only if we know 
the ground truth of multi-fractality of the interested network. Such ground 
truth can hardly be reached if i) we have no access to estimation approaches 
with optimality guarantee (e.g., optimal box-covering or sandbox methods 
with compatible growth rule) and/or ii) the underlying mechanism that 
regulates the growth of the network is unknown or changing over time (e.g., 
non-deterministic). For weighted fractal networks that extend themselves 
based on simple rules (e.g., Sierpinski fractal family), our theoretical multi-
fractal analysis (see Supplementary Material Section 1) shows that it is 
possible to develop an optimal approach based on which the ground truth 
(i.e., the theoretical multi-fractality) can be obtained. However, for most 
of real-world weighted complex networks there is no such ground truth 
against which we can compare our estimation of multi-fractality and it is 
practically very difficult to develop algorithms with optimality guarantees. 
As a consequence, the bias, which is very likely to exist when BCANw 
and SBw is used, can hardly be identified hence leading us to unreliable 
conclusions about the target networks and the urgent need for reliable 
numerical estimation approaches. As a case study, Fig. 7 already showed the 
advantage of the proposed algorithms in estimating the fractal dimension 
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of G 5. In what follows, we present a more comprehensive set of comparative 
analysis on the proposed FBCw and FSBw against BCANw and SBw.

FBCw and FSBw for weighted complex network of finite resolu-
tion
To further validate the proposed FBCw and FSBw based on the known 
ground truth about the fractality of the target network, we consider the 
Sierpinski fractal family with ranged variations in the size of the graph and 
the skewness of link weight distribution. Formally, the skewness of the 
distribution is a measure of the asymmetry of the probability distribution of 
a real-valued random variable about its mean. We introduce the Pearson’s 
moment coefficient of skewness γ as the measure of the asymmetry in link 
weight distributions as follows:

  (2)
κ t are the t-thcumulants. The probability distribution with positive skewness 
usually has a longer right tail or the mass of the distribution is concentrated 
on the left of the distribution.

We extensively measured the skewness of link weight distribution 
of the G 5 and G 8 under different copy factor (b = 2 to 8) and scaling 
factor s ranging from 0.95 to 4.5 × 10−4. We report the results in Fig. 8. We 
can observe that: i) the skewness of the link weight distribution of Sierpinski 
fractal network increases as the scaling factor decreases and the size of the 
network grows. Figure 8(a) shows the skewness of link weight distribution 
of G 5. The smaller scaling factor leads to a less asymmetric distribution. 
The large copy factor further amplifies this skewness by placing more mass 
on the left side of distribution (i.e., links with small weights). Similarly, 
Fig. 8(b) shows a significantly increased skewness in large networks 
compared to Fig. 8(a). (ii) The skewness of link weight distribution does not 
increase linearly as the scaling factor decreases. A transition phenomenon can 
be observed as the scaling factor decreases. The skewness grows much 
slower at large s and seems insensitive to the change of copy factors. This 
observation suggests some potential underlying phase transition of the 
Sierpinski fractal networks as scaling factor decreases. We show a case 
study in Supplementary Material Section 3 by associating the scaling factor 
to the free energy of a multi-fractal and study its first-order discontinuity. We 
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observe that there exists a critical scaling factor s that describes a transition 
from a mono-fractal phase to a multi-fractal phase (when considering 
networks of limited size) of Sierpinski fractal network. (iii) For the same 
copy factor, the skewness of the link weight distribution tends to converge 
as the scaling factor decreases. The copy factor b dominantly influences the 
skewness of the link distribution when the scaling factor is small.

Figure 8: Skewness of link weight distribution of Sierpinski fractal network. 
(a) The skewness of link weight distribution of G 5 as function of scaling 
factor s and copy factor b = 2, 3, 4, 5, 6, 7, 8. (b) The skewness of link weight 
distribution of G 7 as function of scaling factor s and copy factor b = 2, 3, 4, 5, 
6, 7, 8.

Figure 8 also shows that the skewness of the link distribution of Sierpinski 
fractal network is affected by the size of the graph, copy factor b and scaling 
factor s. In order to understand how this skewness has impact on the numerical 
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determination of the multi-fractality and compare our proposed FBCw and 
FSBw with BCANw and SBw, we present two comparative experiments. In 
the first experiment, we consider a set of Sierpinski family members ranging 
from G 3 (39 nodes) to G 8 (9840 nodes) given the fixed copy factor b = 3 
and scaling factor s = 1/2. The estimated fractal dimensions are reported 
in Fig. 9 for BCANw (blue line), SBw (orange line), FBCw (yellow line) 
and FSBw (magenta line), respectively. For comparison purpose, we also 
show the theoretical dominant fractal dimension of the target networks with 
the dashed line. Based on the results in Fig. 9, we can make the following 
observations:

(i) The proposed FBCw and FSBw are less sensitive to the size of 
target graph compared to BCANw and SBw. The normalized 
estimation errors of FBCw and FSBw performed on G 3 with only 
39 nodes are 5.24% (averaged estimated fractal dimension = 1.50) 
and 6.56% (averaged estimated fractal dimension = 1.48), 
respectively. In contrast, the estimation errors of BCANw and 
SBw are 25.6% (1.18) and 22.4% (1.23), respectively. This 
property of the proposed FBCw and FSBw is very important in 
practice when used as the basis of multi-fractality analysis on real 
networks for which we have neither ground truth to reason about 
the estimation error nor scaling methods to improve the accuracy. 
It is critical to have algorithms that have no strict constraint on the 
target network and deliver reliable estimates in various settings.

(ii) As the graph size grows, the accuracy of all four algorithms 
is improved as a consequence of more observations obtained 
to perform the linear regression. This is aligned with Eqs (13) 
and (17) in that the numerical calculation of the limit in both 
equations is asymptotically equal to the theoretical value given 
the linear regression performed on a network member G ∞ of 
the Sierpinski fractal network with unbounded size. However, it 
should be also noted that the BCANw and SBw still suffer from 
significant estimation errors compared to the theoretical value in 
spite of a large-scale target network (e.g., G 8). Combined with 
Fig. 8, one primary influencing factor is the increased skewness 
of link weight distribution of a larger network that will worsen 
the performance of box-covering and sandbox algorithms with 
no compatible growth rule. In contrast, FBCw and FSBw quickly 
converge to the theoretical value with very small errors.
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Figure 9: Estimated dominant fractal dimension of Sierpinski fractal network 
family (G 3 to G 8 with b = 3 and s = 1/2) using BCANw, SBw, FBCw and FSBw. 
As predicted by Eqs (13) and (17), the estimation accuracy is improved as the 
numerical calculation of the limit by the linear regression is performed over a 
growing set of observations. However, the increased skewness of link weight 
distribution prevents BCANw and SBw from approaching the theoretical value 
as quickly as the proposed FBCw and FSBw do.

To further corroborate our discussion on the adverse impact of skewed 
link weight distribution on the accuracy of BCANw and SBw, we present 
the second set of experiments. The experimental setup is motivated by the 
observation we made in Fig. 8 that the skewness of link weight distribution 
is dominantly affected by the copy factor b. Therefore, we choose a member 
network from the Sierpinski fractal network family as the seed network. We 
adopt different values for the copy factor b with a fixed scaling factor s = 1/3 to 
generate an array of fractal networks. Then BCANw, SBw and the proposed 
FBCw and FSBw are employed to estimate the dominant fractal dimensions 
of all generated networks. Due to the constraint of the computing power, we 
choose G 5 as seed network and the copy factor ranges from 2 (62 nodes) 
to 8 (37448 nodes). We report in Fig. 10 the normalized estimation error 
against the corresponding skewness of the distribution γ for BCANw (blue 
line), SBw (orange line), FBCw (yellow line) and FSBw (magenta line), 
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respectively. Figure 10 can be interpreted as follows. First, by increasing 
the copy factor one can notice a further skewed link weight distribution. 
As a result, the estimation accuracy of BCANw and SBw degrades 
accordingly. The normalized estimation error of BCANw grows from 6.79% 
(γ = 4.0103, b = 2) to 15.92% (γ = 20.2235, b = 8). Similarly, the degradation 
of estimation accuracy of SBw is worse than BCANw. The error increases 
from 10.01% to 17.2%. Second, the performance of FBCw and FSBw is 
not adversely impacted by the increased γ. Interestingly, the accuracy is 
improved as the copy factor increases. This improvement is discussed in our 
first set of experiments as a result of larger set of observations obtained for 
more reliable calculation of limit in Eqs (13) and (17).

Figure 10: Normalized estimation error of BCANw, SBw, FBCw and FSBw 
under different skewness γ of link weight distribution by changing the copy fac-
tor b of G 5 from 2 to 8. (i) The performance of BCANw and SBw degrade as 
the γ grows. (ii) BCANw and SBw tend to underestimate the dominant fractal 
dimension which is aligned with our theoretical prediction in analysis of the 
staircase effect. (iii) The proposed FBCw and FSBw tends to be insensitive to 
the change of γ and benefit from the increased size of the target network.

It is very important to note that both BCANw and SBw underestimate the 
dominant fractal dimension, which is predicted by our analytical findings 
in estimation errors analysis section. The incompatible growth rule of 
BCANw and SBw gives rise to the larger set of stagnant observations 
(i.e., wider staircase) when the skewness is positively higher. A network 
with higher positive skewness of link weight distribution has more links 
with smaller weights. SBw grows the sandbox by accumulating the link 
weights in an ascending order. In presence of highly (and positively) 
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skewed link weight distribution, it might take a large amount of iterations 
to grow from l i to l i′ such that the probability measure μ(B i (l i )) is not 
equal to μ(B i (l i′)). All the observations generated between l i and l i′ become 
stagnant observations or staircases. The more positively skewed the 
distribution is, the wider the staircases will be and SBw is more likely to 
underestimate fractal dimension of the network, which is well aligned with 
our observations in Fig. 10. For the similar reason, even though BCANw 
grows the box size by accumulating the unique distance in an ascending 
order, yet we have seen in Fig. 5 that BCANwcan not eliminate the staircase 
effect thus it is prone to underestimate the fractal dimensions as the network 
becomes more skewed in terms of the link weight distribution.

We have validated the proposed FBCw and FSBw by showing we can 
obtain fractality estimation of better accuracy over the established BCANw 
and SBw for the weighted complex networks. In the following discussion, 
we will employ the proposed FSBw and FBCw for numerical identification 
of multi-fractality in a set of real-world complex networks.

Multi-fractal Analysis of Real Networks

Vision and objectives of the multi-fractal analysis
Multi-fractality is deeply rooted in the intrinsic heterogeneity of the networks. 
More specifically, the non-uniformness of the network structure serves as a 
major source for a spectrum of distinct self-similarities embedded in different 
regions of the network at a variety of scales. This embedded heterogeneous 
self-similarities can be identified through the multi-fractal analysis. 
Intuitively, multi-fractal analysis can be understood as a microscope with 
an array of distorting filters that pick up a set of distinct scaling behaviors 
from corresponding parts of the network by changing the distortion factor q. 
A perfect geometric or topological fractal (e.g., fractal networks) shares 
the same scaling behavior (i.e., the dominant fractal dimension) that is 
immune to the changes of q, suggesting a consistent self-similarity across 
the network. Such geometric or topological consistency in self-similarity is 
usually a result of a common underlying growing rule throughout the scales 
of the network considered (e.g., Sierpinski fractal network). However, such 
well-preserved growth rule is rarely found (e.g., non-fractal networks) 
or inconsistent (e.g., coexistence of small-world and fractal properties 
with phase transitions) in the real-world networks due to the complicated 
network formation process. This generation process cradles for the intrinsic 
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heterogeneity in both the structural (e.g., network clusters, communities, 
hubs) and dynamical (e.g., network control, robustness) aspects of the real-
world networks. In the following discussion, we will focus on the structural 
aspects of a set of weighted real-world networks to answer the following 
three key research questions:

(i) Whether the multi-fractal scaling behaviors can be observed in 
the target network and how can they be exploited for betterment 
of our understanding on the structural properties of real networks?

(ii) What is the contribution of link weight to such scaling behaviors 
if verified in (i) and how will the change of link weight 
fundamentally impact the observed multi-fractality?

(iii) How can the identification of the multi-fractality be leveraged 
to supplement our characterization of the real-world complex 
networks and provide a novel perspective and a practical probe 
for unveiling their under-explored structural organization?

To study these questions, we choose two weighted real-world networks. 
The first weighted network is a scientific collaboration network in 
astrophysics with 16705 nodes and 111252 edges. Each node represents an 
author and an edge connects two nodes if they published one or more papers 
together. The weight between any pair of nodes is determined by,

  (3)
n k is the number of authors of k-th paper. δ i,k  = 1 only if author i co-authored 
the k-th paper and it is 0 otherwise. The weight quantifies how frequently and 
closely two authors collaborate. The second weighted network comes from 
the Budapest Reference Connectome v3.0 which generates the common 
edges of the connectomes of 1015 vertices, computed from the MRI of the 
477 subjects of the Human Connectome Project’s 500-subject release. For 
each edge e i,j , the weight w i,j is based on the electrical connectivity of two 
nodes and calculated by the number of fibers n divided by the average fiber 
length l.
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Space-localized multi-fractal scaling
To address the three major research questions, we consider three sets of 
experiments. In the first set of experiments, we study whether the target 
weighted networks in two different domains show any fractal or multi-
fractal scaling behaviors. Towards this goal, we applied the proposed FBCw 
to both networks in order to learn the scaling dependence as expected by Eq. 
(13) when the distorting factor q is varied within a finite range from −10 to 
10 with a step length of 0.1. A key observation on Eq. (13) is that the role 
of the distorting factor q connects primarily to the identification of the non-
uniformness of the probability measure μ(B) defined on the support of the 
weighted networks. Such non-uniformness of the measure and their distinct 
scaling dependence over the interested scales l arbitrates the existence and 
properties of the multi-fractality in the target network. If the measure μ(B) 
is otherwise uniform at all scales, Eq. (13) will not be affected by the choice 
of q, hence learning only the mono-fractality of the support.

Motivated by such observations, we first look at the weighted collaboration 
network and report in Fig. 11 the distribution of the measure μ(B(l)) over the 
partitions (i.e., boxes) of different scales (i.e., size of the box) to give an 
undistorted overview of the non-uniformness of the measure. Several key 
observations are due: i) the distribution of the measure μ(B(l)) changes from a 
near-uniform distribution to a peak shape as the scale increases. Alternatively 
stated, the probability to find any node in a given box at a specific scale l is 
also a function of the choice of that box. At almost each scale, there exists a 
partition that contains the dominant number of nodes. This scaling skewness 
of the measure strongly suggests the structural heterogeneity of the target 
network and serves as a necessary condition for the emergence of multi-
fractality. ii) The rightmost X-axis boundary of the measure distribution 
marks the minimal number of partitions of scale l required to cover the target 
network. By learning the shrinking law of these boundaries, we can have a 
straightforward way to verify the existence of fractal scaling behavior. More 
precisely, we can notice that the rightmost boundaries of the measure do 
not shrink as quickly as an exponential function but following a power law 
(which is much slower as indicated in Fig. 11). The corroboration of these 
two observations demonstrates the existence of multi-fractal behavior in the 
collaboration network.
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Figure 11: Distribution of probability measure as a function of scale of multi-
fractal analysis on collaboration network.

To further investigate the mulitfractality of the collaboration network, 
we performed the follow-up experiment to report the scaling dependence 
between ∑ μ(B)q against the normalized box size l/L in a log − log plot under 
different distorting factors q. For ease of visualization and readability, we 
construct the plots by choosing only the cases when q is integer-valued. 
The results are plotted in Fig. 12. We can observe that the logarithmic 
distorted accumulative measure log(∑ μ(B)q) has a linear dependence that is 
almost immune to the changes of negative q on the normalized scale log(l/L), 
suggesting a mono-fractal scaling behavior. However, such linear dependence 
still holds and is subject to remarkable changes as a function of positive q, 
which is an indicator of the existence of multi-fractality. To understand 
this, we need to link this observation with Eq. (13). Negative distorting 
factor q places greater weights to the partitions with smaller measures 
whereas does the opposite when positively valued. In other words, we are 
able to learn distinct scaling dependence of different regions of the measure 
distribution, which again correspond to different parts of the target network. 
In our case when q is positively valued, the observed multi-fractal scaling 
dependence corresponds to the partitions of the collaboration network 
with dominant probability measures. In contrast, the mono-fractal scaling 
behavior is strongly related to partitions with small probability measures. 
The two sets of distinct scaling behaviors not only verify the multi-fractal 
scaling dependence of target network but also suggest a co-existence of 
multi-fractality and mono-fractality in the same network while belonging 
to different parts of the network. To understand this, we need to look at how 
the partition is done to tile the target network with box-covering method. 
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Eq. (13) holds only if the covering is optimal (i.e., with minimal number 
of boxes, see Definition 5). To achieve this, each box has to be as compact 
as possible such that it covers the maximal possible number of nodes in 
a connected component. Such connected components might coincide with 
regions of the network that are highly clustered such that their scaling follows 
power-laws characterized by different exponents, hence exhibiting multi-
fractal behaviors. In contrast, the non-compact box covers nodes that failed 
to be reached by nodes in these connected components and demonstrate a 
shared mono-fractal scaling. In other words, it is the intrinsic variations of 
the network structure that contribute to the observed co-existence of distinct 
scaling dependence such that the observed multi-fractal scaling dependence 
is space-localized.

Figure 12: Coexistence of multi-fractal and mono-fractal scaling in the col-
laboration network.

The exact mathematical explanation for the coexistence of mono-
fractality and multi-fractality calls for a more sophisticated understanding 
of the underlying network formation mechanism, which is beyond the scope 
of this work and remains as a future extension.

Scale-localized inconsistent multi-fractality of weighted real net-
works
We not only observed the inconsistency of scaling behaviors in different 
regions of the network, but also we noticed that such scaling is not consistent 
over the interested scales even when the network exhibits same type of 
scaling (mono-fractal or multi-fractal) with a fixed q. More specifically, we 
observed the existence of a finite range of scales at which a localized scaling 
behavior holds. To better illustrate this, we have specifically picked cases 
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when q = −6, 0, and 6 and reported the scaling dependence in a log − log plot 
for each of them. The results are shown in Fig. 13. We use the dashed 
blue lines to show the range of scales where the fractal scaling appears 
and the red dashed lines to show outliners. Consequently, we can make 
the following two observations: (i) Fig. 13(a–c) consistently show that the 
self-similar property does not hold at all scales of networks and it might 
only show up in a finite range of scales. Phase-transition behavior can be 
observed on boundaries of this range. Moreover, such phase transition 
phenomenon also holds under a variety of distorting factor q. In other 
words, the multi-fractality of the collaboration network is scale-localized. 
This finding resonates with our claims at the beginning of this section 
that there is no common underlying growth rule for the generation of real 
networks to produce simple self-repeating structures at all scales of the real 
networks. As we observed in Figs 12 and 13, the self-similarity is neither 
spatially consistent across the network nor well-preserved at all scales of the 
network. (ii) In such cases, it is not sufficient to have an algorithm that can 
reliably estimate the scaling dependence when it exists. It is also primarily 
important for the algorithm to detect the boundary of scales between which 
such scaling dependence holds and make a localized estimation accordingly. 
We argue that BCANw ignored such localized fractal scaling by the implicit 
assumption that scaling behavior holds at all scales of the complex network. 
In contrast, our proposed FBCw is able to locate the phase-transitional 
scales based on which a reliable estimate is therefore made. To demonstrate 
this, we performed the BCANw and FBCw on the same network under 
identical experimental settings. We plotted the fitted linear functions by 
two algorithms in Fig. 13(a–c). Biased by the implicit assumption that 
fractal scaling holds at all scales, BCANw tends to average the estimates 
by considering all the observations, irrespective of their contribution to the 
fractal scaling behaviors. In comparison, the proposed FBCw detected the 
locality of multi-fractality and ignored the outliners in the observations not 
belonging to the range where fractal scaling holds and fit a linear function 
only to those within it. The difference between the two fitted lines shows the 
estimation bias of BCANw by assuming a fractal scaling held at all scales.
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Figure 13: The failure of BCANw to capture the localized fractal scaling 
of collaboration network over a finite range of network scales. In the case 
of real world networks, the self-similar property does not holds at all scales 
of networks. There might exist a finite range of scales where fractal scaling 
behavior dominates. Moreover, this phase transition phenomenon consistently 
holds under all distorting factor q, suggesting a localized multi-fractality.
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We have repeated the above experiments on the Budapest human 
connectome network and report the results in Figs 14 and 15. Figure 14 depicts 
the uniform distribution of probability measure of partitions for the Budapest 
brain network. Similar to our observations on the collaboration network, 
the distribution of measure shifts from a near-uniform distribution to a 
peak shaped non-uniform distribution, suggesting the underlying structural 
heterogeneity of the brain network, which serves as the major source of 
multi-fractality. By learning the shrinking behavior of the rightmost 
boundary of the measure distribution as the size of the box increases, one 
can observe a power-law dependence which is verified by the subfigure in 
Fig. 14 where we plot the scaling dependence between the accumulative 
measure ∑μ(B)q and the normalized scale l/L in a log − log scale. Figure 14 is 
well aligned with our findings in the collaboration network. Budapest brain 
network also exhibits a localized fractal scaling over the ranged delimited 
by a pair of dashed blue lines, suggesting an inconsistent power-law scaling 
behavior valid only over a finite range of scales. The fractal organization 
of brain network is well reported in the related literature. However, few 
prior efforts have identified the localized fractal scaling given a weighted 
brain network. To study the multi-fractality of the Budapest brain network, 
we performed the multi-fractal analysis on it and reported the scaling 
dependence under different choice of distorting factor q in Fig. 15. We can 
identify the similar co-existence of mono-fractal and multi-fractal scaling as 
we did in collaboration network. The network regions that correspond to the 
partition with small measure follow dominantly a near-invariant power-law 
scaling dependence on the scale of the box. In contrast, the collections of 
densely connected nodes (e.g., connected components) compactly covered 
by the box shows a varying power-law dependence as q positively changes. 
However, a major distinction from the collaboration network is the range of 
scales where such power-law holds. As one can notice, there exists a scale 
around −1 depicted by the grey dashed line such that the fractal scaling 
is not respected any more. No linear function could accurately explain 
the scaling dependence after this scale. This is aligned with our finding 
in Fig. 14, suggesting a scale-localized fractal scaling behavior that is not 
globally consistent.
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Figure 14: Distribution of probability measure as a function of scale of multi-
fractal analysis on Budapest connectome network.

Figure 15: Coexistence of localized multi-fractal and mono-fractal scaling in 
the Budapest connectome network.

Link weight to dictate the mulifractality
In the second set of experiments, we investigate how the link weights could 
fundamentally influence the underlying multi-fractality in both networks. 
Towards this end, we transformed both networks into binary (i.e., unweighted) 
networks by removing the link weight between any pair of connected nodes. 
From the geometrical perspective, the link weights on the graph perform 
a scale transformation to the graph by increasing or decreasing the length 
of the links when spatially embedded while keeping its topological feature 
intact. By removing the link weights, we are studying existence of the 
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multi-fractality from a pure topological perspective to understand the role of 
link weights via comparative analysis. More specifically, we measured the 
distribution of the probability measure and studied the scaling dependence 
between minimal number of boxes covering the network and the scale of 
the box. Figures 16 and 17 summarize the results for collaboration network 
and Budapest brain network, respectively. Thus, we make the following 
observations: i) The distribution of probability measure follows a similar 
changing pattern as the scale of box changes, i.e., from a near-uniform shape 
to a highly non-uniform shape. This is well aligned with our claims that 
such non-uniformness is a reflection of structural heterogeneity determined 
majorly by the topology of the network, which stays intact during our 
transformation. ii) However, the scaling dependence is fundamentally 
changed and we observed a total loss of fractal scaling behavior. Instead, 
the scaling can be well explained by an exponential law, indicating that 
both the collaboration network and the brain network behave as the well-
known small-world networks. Compared with their weighted versions, the 
role of link weight is powerful in dictating the existence of multi-fractality 
in real networks. Consequently, this finding not only calls for developing 
new algorithms for estimating reliably the multi-fractal characteristics 
of weighted complex networks, but also highlights the importance of 
understanding the structural implications of the identified multi-fractality. 
This brings us to the following discussion on the third research question of 
this work.

Figure 16: The fundamental impact of link weights on the multi-fractality of 
network. We keep the exactly same structure of the collaboration network but 
remove all its weights to transform the network into a binary network. We per-
formed the proposed box-covering method to measure the scaling dependence 
of number of boxes and the distribution of their associated measure. Figure 
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shows the loss of multi-fractality as a result of removal of link weights. Instead, 
we notice it the scaling dependence is best explained by an exponential law 
(a * exp(bx), a = 3.75 * 104, b = −11.55) suggesting the unweighted collaboration 
network becomes a “small-world” network.

Figure 17: The fundamental impact of link weights on the multi-fractality of 
Budapest connectome network. Figure shows the similar loss of multi-fractality 
by removing the weights on the links of Budapest connectome. The scaling 
behavior is best explained by an exponential law (a * exp(bx), a = 934.7, b = −
0.664) indicating that the common brain connectome is a “small-world” if no 
weights are considered.

Localized scaling based network characterization and community 
detection
In the third set of experiments, we study how the multi-fractal analysis 
framework can be employed to characterize the complexity of networks 
beyond simply reporting whether they follow a multi-fractal/fractal scaling 
as many previous works did. We use the multi-scale analysis to quantify the 
global complexity of the network from a microscopic point of view. Based 
on the analysis, we proposed a general network characterization framework 
based on the localized scaling feature space constructed by learning the 
localized scaling feature vector for each node.

We noticed in the first two sets of experiments that a real world network 
is complex in the sense that there exists no common growth rule that governs 
the evolution of the network generation process consistently in both the scale 
and space domain. Similar to our two target examples when certain variation 
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or transformation introduced into the network, the fundamental structural 
behaviors of the network are subject to remarkable mutations. No single 
model or characterization is sufficient to fully understand the structural 
variations and their resulting complexity of the network, hence calling for 
a set of expressive characterizing strategies that supplement each other to 
give an unbiased and well-quantified overview of the complex networks. 
We strongly believe that multi-fractal analysis is a powerful framework to 
learn the localized scaling behavior and quantify the structural variations of 
the complex networks.

On one hand, at the microscopic level, the complexity of the network 
is embedded in the form of different chemical environments (i.e., the outer 
environment surrounding a given node) that each node interacts at different 
scales. More intuitively, the structural variations of the network can be 
understood as distinct views that a node observes with a lens of variable 
focal length ranging from the minimal path distance of the network up to its 
diameter. If all the nodes share the identical viewing experiences with such 
lens, then the network should have no structural variations like an unweighted 
lattice which can be fully characterized by its dimension. Otherwise, such 
microscopic differences in views at a variety of scales, when integrated 
collectively, translate into the observed structural variations from a global 
perspective that require multifaceted characterizations.

On the other hand, multi-fractal analysis framework is exactly one of 
such multi-scale techniques to study and quantify the microscopic proxy of 
network complexity in terms of structural variations. From the mathematical 
point of view, Eqs (13) and (17) suggest the structural variations (i.e., 
structural heterogeneity and link weight distribution) of the networks are the 
major contributor of the observed scaling behaviors in the complex networks. 
These variations are distributed in an inhomogeneous way and repeat locally 
and imperfectly (i.e., space-localized) within a finite range of scales (i.e., 
scale-localized). Reversely, multi-fractal analysis also provides a way to 
characterize such structural variation by identifying and quantifying the 
scaling behaviors (again, not necessarily fractal and/or multi-fractal). More 
specifically, the proposed SBw method for the weighted complex network 
is one of such quantifying tools which are able to measure the microscopic 
differences of the chemical environments for a given node at varied scales 
by learning its localized scaling dependence from where it is located.

This underlying connection between the multi-fractal analysis and the 
microscopic view of the network complexity leads us to the straightforward 
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implementation of our proposed localized scaling based network 
characterization approach. More precisely, we start with a given node k of 
the network and perform the SBw centered at it with q = 0 to learn the scaling 
dependence it experiences as we increase the scale l of the sandbox up to the 
network diameter L. This results in a localized scaling feature vector of tuples 

, where s k,i  = (logN k (B(l i )), log(l i /L)).  is populated 
by the sampled logarithmic scaling dependence between the normalized 
box scale l/L and the number of nodes covered by the sandbox centered 
at k, hence localized. We repeat the process for every node of the network 
to construct a localized scaling feature space  for the 
given network G. The localized scaling feature space  is uniquely 
spanned by the localized scaling feature vectors of different network 
nodes. Its structure and properties are determined by the original network. 
Therefore,  can be leveraged to characterize the network from a 
scaling dependence perspective. To the best of our knowledge, this is the 
first time that the localized scaling behavior of network is proposed as a 
quantitative profiling approach to characterize the structural characteristics 
of the complex network.

An immediate application of this profiling approach is an easy 
integration with unsupervised machine learning algorithms to perform label-
free detection of the network communities. The basic assumption is that the 
nodes sharing the same or similar scaling dependence localized to where 
they stand in the network should reside in similar chemical environments 
therefore belonging to the same network community. As a proof of concept, 
we performed the simple yet effective unsupervised k-means clustering 
algorithm with elbow method for network community detection on the 
Budapest human connectome and visualized the result in Fig. 18. This 
community detection approach identifies seven communities (colored 
differently in Fig. 18). The detection process is totally label-free with no 
prior knowledge of the functionality and locations of brain components and 
solely based on localized scaling feature vector of each node. Several key 
observations are due: i) brain network is symmetric so are the communities 
detected by the proposed approach, which is aligned with anatomical structure 
of human brain. ii) The dominant community (purple nodes) detected 
corresponds to the densely interconnected brain functional cluster formed 
by left and right Putamen, left and right Caudate, left and right Thalamus 
together with left and right Hippocampus. This community is consistent with 
the biological facts. The Putamen and Caudate are anatomically correlated 
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to form the basal ganglia which is well known to be strongly interconnected 
with the cerebral cortex, thalamus, and brainstem to perform the control 
of voluntary motor movements and procedural learning. Thalamus is also 
manifoldly connected to the Hippocampus via the mammillo-thalamic 
tract and serves as an important relay station to propagate the sensory and 
motor signals to the cerebral cortex. This detected community serves as 
the major bridge between the two hemispheres and connectivity hubs to 
other functional entities thus sharing the similar chemical environment. iii) 
It can be noticed that the nodes belonging to the same community might 
not be necessarily immediate neighbors in contrast to the conventional 
modularity based communities. This is because the nodes are clustered 
based on their scaling dependence which is determined by the surrounding 
chemical environment at different scales. Therefore, it is possible that two 
nodes that are physically separated share the similar chemical environment 
to be labeled in the same community. For brain network, such chemical 
environment is a consequence of biological network evolution process and 
might have important functional implications that need to be explored in the 
future. In this sense, the concept of network community has been extended 
to characterize the node of the network from its relative spatial relation to the 
rest of the network. We hope the proposed localized scaling based network 
characterization and community detection can introduce a new research 
perspective for betterment of our understanding of the real world complex 
network in different domains.

Figure 18: An example application of the proposed localized scaling feature 
space for characterization of weighted complex network. Interfaced with the 
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unsupervised machine learning based clustering algorithm, the localized scal-
ing based community detection is able to identify the brain network commu-
nities consistent with the anatomical facts. The detected communities are not 
limited to neighboring nodes but based on their relative spatial relations to the 
rest of network with potential functional implications.

DISCUSSION
The multi-fractal analysis has been long established to describe physical 
phenomena and objects by studying statistical scaling laws. The major 
attraction of its application stems from its capability to characterize the 
spatial and temporal irregularities that euclidean geometry fails to capture 
in real world physical systems, by an elegant interpretation of power-law 
behaviors. Its demonstrated effectiveness in characterizing complex systems 
motivates us to extend its formalism to the analysis of complex networks. 
However, the multi-fractality of weighted complex networks, the role of 
interaction intensity, influence of the underlying metric spaces and the 
design of reliable multi-fractality estimation algorithms are rarely discussed 
and remain an open challenge.

In this paper, we provide strong theoretical and experimental evidence 
for the intrinsic estimation bias of the previously proposed algorithms 
introduced by the incompatible growth of box scales and the implicit 
assumption that fractal scaling behaviors, if exist, hold at all scales of the 
networks. To overcome these disadvantages, we proposed two algorithms 
that can reliably estimate the multi-fractality of the network based on the 
critical points that correspond to a power-law scaling such that (i) it avoids 
box scales that lead to stagnant probability measures (i.e., staircase effect) 
and (ii) identifies the range of scales where a power-law scaling holds. 
In addition, we demonstrated that the estimation bias of the previously 
proposed algorithms deteriorates as a function of link weight distribution 
skewness and can not be compensated by either repeating the experiments 
or increasing the size of the networks (irrespective of the fact that it is 
practically difficult to scale the real world networks without changing its 
properties). More importantly, our work showed that the estimation can 
hardly be trusted if it assumes the existence of a scaling law that rules the 
network formation process throughout the scales. We provide real world 
weighted network examples where the observed distribution of scaling 
behaviors is localized in both space (e.g., co-existence of mono- and multi-
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fractal scaling dependency) and scales (e.g., power-law scaling valid over a 
finite range of scales).

Localized scaling behaviors reflect the fact that the network formation 
process of these networks is neither governed by a self-repeating iteration 
function system (IFS) that produces simple mono-fractal networks (e.g., 
Sierpinski fractal networks) nor a distribution of these IFSs throughout 
the scales of the network, which leads to a multi-fractal scaling behavior 
described by Eqs (13) and (17). Moreover, the formation of real world 
complex networks corresponding to different scales are constructed at 
different time points during the network formation process. The discontinuity 
of a power-law scaling at different scales therefore suggests that the network 
formation process is dynamic governed by heterogeneous forces as opposed 
to stationary models where either a fixed linking probability is assumed 
throughout the process (e.g., random graph theory) or a static linking policy 
(e.g., preferential attachment) is governing.

Furthermore, the network formation process and the resulting 
heterogeneous characteristics of real world networks also can not be 
fully explained from a pure structural and topological perspective. It is 
necessary to understand the role of the interaction intensity among the 
network components, the associated weight assignment process over time 
(e.g., how the weights change over time) and the metric space implicitly 
implied by the nature of these interactions (e.g., affinity relations, physical 
connectivities, causal dependences). We corroborate our argument with 
strong supporting evidence. More precisely, we identified both theoretically 
and experimentally two fundamental fractality transition phases that are 
governed by the intensity of network interactions (i.e., weights) and the 
embedded metric space defined on these networks:

(i) The scaling of the weights in a network formation process 
governed by an IFS determines the fractality of the network at 
a given scale. We reported the theoretical upper bound for the 
scaling factor s that transforms the network into a mono-fractal 
network given a) an IFS that leads to a family of Sierpinski fractal 
networks of unbounded size and b) the box size of an optimal 
covering method can shrink at same rate as the network grows. 
We argue that the observed multi-fractality of Sierpinski fractal 
networks by prior works does not necessarily come from a 
distribution of fractal scaling behaviors (i.e., multi-fractality) but 
can result from any deviation from these conditions (e.g., limited 
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size and network growth rate). As a simple synthetic fractal 
network as the Sierpinski fractal network is, the weights and their 
distribution exhibit surprisingly powerful impact on the fractality 
of the networks. In a set of more realistic experiments, we further 
showed:

(ii) The weights and the metric space defined on real world networks 
arbitrate the existence of the fractality. By converting the 
collaboration network and the human brain connectome into 
binary networks, we decoupled the metric spaces defined on 
both networks from the link weights and transformed them to 
be a function of network topology alone. We demonstrated the 
removal of observed localized fractal scaling behaviors and an 
exponential scaling law (i.e., small-world property) takes place 
after the transformation of both networks. While keeping the 
topological configuration intact, the redefinition of metric space 
fundamentally altered the statistical scaling law of both networks.

This observation is not only important for the betterment of our 
understanding of the formation process of the real networks as the scaling 
behaviors reveal how the network grows. It is also a primary key to the 
network dynamics as the scaling behavior of the network plays a key role in 
governing the flows of the information across the network such as the rumor 
spreading in social networks or the protein exchange in a gene regulatory 
network. In these real world networks, the interaction intensity usually 
changes at a much more frequent pace compared to the changing rate of 
the network topology. For instance, a traffic network might stay structurally 
unchanged for a quite long time however the traffic volume (i.e., interaction 
intensity or weight) over its links varies constantly and fiercely. Given 
the fundamental role of link weights and metric space in determination of 
the scaling law, the time-varying network interactions can consequently 
impact the dynamics of the network. As a result, the failure to recognize the 
importance of link weight and metric space analysis will intrinsically limit 
our capability to characterize, predict and control the network behaviors.

Moreover, the variations of network scaling behaviors closely connect to 
the change of network properties, which leads us to solve a reverse research 
problem to characterize and quantify the heterogeneity of weighted complex 
networks by learning the scaling variations from a microscopic perspective 
of the network. We provide a general network characterization framework 
motivated by the observed locality and phase transition behaviors of the 
network scaling dependency. This characterization framework interprets the 
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weighted complex network by the construction of a scaling feature space 
spanned by the localized scaling feature vectors determined both by the 
surrounding environment of individual nodes and the underlying metric 
space defined on the network. The proposed characterization is general 
and not limited to complex networks that are fractal or multi-fractal. It can 
be easily interfaced with subsequent analytical tools to unveil the intrinsic 
properties of the weighted complex network. As an important application, 
we showed the proposed characterization framework can be employed 
to learn the network communities that are consistent with our biological 
knowledge of the human brain connectivity patterns.

A very important aspect to emphasize is that the proposed characterization 
framework actually gives a general similarity metric within and between 
networks, which can be potentially leveraged as a basis for both structural 
and dynamic analysis on networks in a wide spectrum of applications. For 
instance, it can be interfaced with brain connectivity network constructed 
from real-time EEG measurements to identify tasks that correspond to 
different sets of scaling feature vectors, or to make both diagnosis and 
predictive analysis on brain-related pathological anomalies (e.g., traumatic 
damage, epilepsy) by learning corresponding scaling feature subspace. The 
proposed characterization framework can also be employed as self-similarity 
metric that enables the detection of anomalies or attack by comparing the 
learned scaling feature space to that during its normal operation mode in real 
time. In such cases, the benefit of the proposed characterization framework 
comes from its capability to quantify the variation of interaction intensities 
(e.g., change of transmitted power between grid node or maliciously 
injected traffic to overload the server) while no significant network structure 
mutation is present. On a different direction, this proposed framework also 
enables the fine-grain similarity analysis among a set of nodes in the same 
network. Aside from the presented network community detection based on 
this fine-grain similarity analysis, it is also useful to combine with domain 
knowledge (labels and attributes of nodes, e.g., functionality of brain 
region) to drive an informed exploration (e.g., any functional similarity 
between brain regions that are topologically apart but share the same scaling 
law). These examples may only constitute a small portion of its potential 
applications which necessitate our ongoing research efforts to extend the 
presented work to broader domains.
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METHODS

Multi-fractal Analysis
Formally, let us consider a geometrical object tiled by boxes B(l) of size l. 
Let us define L, M 0 and M i (l) as the linear length of the fractal, the total 
mass and the mass of the i-th box of size l, respectively. It is possible to 
determine N(M) that corresponds to the number of boxes sharing the same 
mass M given the object tiled by B(l). The probability density function 
of mass thus could be estimated by histograms in a double logarithmic 
plot ln(N(M)) against ln(M/M 0) under different choice of box sizes l. The 
multi-fractal formalism33 states that if these histograms fall onto the same 
universal curve after rescaling both coordinates by a factor ln(l/L), the object 
is a geometrical multi-fractal34. Alternatively stated, the above property 
holds if

     (4)
and

    (5)
as the (l/L) → 0, where α is the Holder exponent which can be determined 
by,

   (6)
μ(B) is an arbitrary measure defined on the support while it is equal to 
the probability to find a point in a given box. N(α) is the number of boxes 
with holder exponent α. f(α) is the singularity or multi-fractal spectrum if 
multi-fractal formalism holds35, 36. The multi-fractal spectrum shows the 
distribution of fractal dimensions across different sets of points sharing 
the same Holder exponent. Roughly speaking, it captures the variations in 
scaling behaviors of different subcomponents of the object. Equivalently, 
this variation could be captured by generalized dimension D(q),

    (7)

     (8)
as we take the limit l/L → 0. τ(q) is called as mass exponent. Distorting 
exponent q can be arbitrarily real-valued which serves to distinguish the 
irregularity in various regions of the object by magnification of measures 
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scaled differently. The equivalence between the pair of (f(α),α) and (τ(q), q) 
is decided by the Legendre transformation,

    (9)

  (10)
For a fractal object that can be characterized by a single fractal dimension, 

Eq. (7) suggests a sufficiently minimal fluctuation in measure μ(B i (l)) across 
all boxes of different sizes l. This directly translates to a narrowly distributed 
Holder exponent α and a linear dependence between mass exponent τ(q) 
and distorting exponent q. In contrast, a multi-fractal is rich in fluctuations 
of measure μ and have a spectrum f(α) widely spanned over α horizon and 
a non-linear τ(q) as a function of q. These fluctuations are to be captured 
and magnified via different choices of distorting factor q. To give some 
intuition, when μ is a probability measure as in box covering process, bigger 
weights in the summation of Eq. (7) will be placed to smaller probabilities if 
q is negative and to greater probabilities otherwise. The generalized fractal 
analysis approach is also well known as multi-fractal analaysis (MFA) that 
has wide applications due to its power to capture the heterogeneity underlying 
the structures of the objects.

FBCw and FSBw
Box-covering and sandbox methods form the basis for MFA on weighed 
complex network with the following definitions.

Box covering method tiles the object of interest with boxes B(l) of 
different sizes l. An arbitrary measure μ(B i (l)) is defined for each box B i that 
serves as support. Eq. (7) considers the case when μ is a probability measure 
such that,

  (11)

  (12)
when the limit l → 0 is considered. Therefore, the generalized fractal 
dimension calculated by box-covering method is given by,
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  (13)
Eq. (13) determines D bc (q) asymptotically from the scaling of number 

of non-empty boxes of decreasing size l.
Sandbox method investigates the scaling of an arbitrary measure μ within 

a region embedded in a metric space, i.e., a sandbox centered at certain point, 
as a function of its radius l. Formally, let  be the support of the measure μ. 
Let  be a metric space defined on . For each xi∈ , 
we can define the following probability measure M i (l)/M 0 as the chance to 

find an element xk∈  with its distance to x i in metric space  less than l,

  (14)

Where  is the heaviside function. However, it is 
known that the relation , where D is the fractal dimension of the 
object, does not hold for all choices of sandbox centers as l → ∞ unless the 
center is the origin of the fractal34. Actually, sandbox method is equivalent 
to box covering method only if the choice of sandbox is randomized. We can 
rewrite Eq. (11) as,

   (15)
Equivalently,

   (16)
Therefore, the box-covering method can be understood as a sandbox 

method when the average is taken based on the measure distribution M i (l)/M 0. 
Alternatively stated, the sandbox is equivalent to box counting only if choice 
of sandbox is randomized such that an estimate of E[(M i (l)/M 0)

q−1] can be 
obtained. Denote 〈.〉 as the operation to take average. We have,

  (17)
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We propose the finite box-covering method (FBCw) and the finite 
sandbox covering method for weighted networks (FSBw) to address the 
intrinsic estimation bias introduced by the incompatible growth rule of the 
box in numerical determination of multi-fractality of complex network with 
finite resolution. Formally, a complex network with a finite resolution is 
defined as follows,

Definition 6 (finite resolution): For a given weighted complex network 

G = (V, E) with distance metric  . 
The resolution of G is finite if and only if the shortest path distribution 

 has a discrete support set 
.

The fundamental principle of FBCw and FSBw is to locate the 
scales of box that correspond to the compatible growth rule which 
is a function of the complex network G. For each node v i , the local 
compatible growth rule on G can be easily found by a strictly ordered set 

. However, it is usually difficult to 
find a shared compatible growth rule across the network for the sandbox 
method or to analytically derive the optimal box-covering strategy as we did 
for the Sierpinski fractal network governed by a simple generation rule. In 
this context, we propose a data driven filtering method to interface with the 
box-covering and sandbox method for FBCw and FSBw. Both algorithms 
stand as a two-step process. In the first step, the accumulative measure 
∑μ(B i (l))

q given the distorting factor q will be first obtained by growing 
the scale of the box l based on the unique path length of the network. Based 
on our discussion, this growth rule is generally incompatible. In the second 
step, we address this problem by a data-driven filtering procedure to obtain 
a subset L < of the discrete support  such that it is compatible 
with G. More precisely, FBCw and FSBw can be stated as follows:

Step 1- Collecting the accumulative measure ∑ μ(B i (l))
q :

• Given the distance metric d ij on G, calculate all pairs of distances 
and encapsulate them into a matrix D either by the Floyd Warshall 
algorithm (O(|V|3)) or the Dijkstra algorithm (O(|V|(|E| + Vlog|V|))). 
Practically, if the graph is sparse in the sense that |E|≪|V|2, it is 
recommended to use Dijkstra algorithm which outperforms Floy-
Warshall algorithm by a significant margin.
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• Given the distance matrix D, derive the strictly ordered unique 
distance sequence D <  = {d 1, d 2, d 3, …, d N } where d i  = d j if 
and only if i = j. d N is the diameter of the network. D < serves 
as the tentative growth rule which, as discussed, is usually an 
incompatible growth rule that gives rise to the staircase effect 
whereas it can be alleviated by the subsequent filtering step. 
It should be also noted that the cardinality of D < can be a 
computationally prohibitive in some cases when the number of 
unique path length is very large (e.g., |D <| of the collaboration 
network is close to 106). In such cases, a resampling function 

 will be useful to bring down the 
computational overhead to an acceptable level. The proper choice 
of the resampling function is not constrained and may be subject 
to change based on the target network. In most of cases, a linear 
resampling function should be satisfactory.

• Iterate on D < in an ascending order to perform the box-covering 
or sandbox covering procedure to obtain the accumulative 
measure M(d k ) = ∑μ(B i (d k ))

q at the scale d k  ∈ D <. No constraint 
is advised for the choice of a specific heuristic for this procedure. 
Practically, in the case that repeating the randomized box covering 
procedure for a large number of trials (to find the minimal number 
of boxes) is computationally impractical, Welsh–Powell algorithm 
usually gives satisfactory approximation after transforming the 
original network into its dual graph following the technique in 
ref. 28. Repeat the above procedure to obtain the accumulative 
measure sequence M = {M(d 1), M(d 2), …, M(d N )}.

Step 2- Data-driven filtering for critical scales: As a consequence of 
growing the scale of box based on an incompatible growth rule D < for 
complex network G of finite resolution, there exists d i and d i′ such 
that M(d i ) = M(d i′) (i.e., the staircase effect). In practice, this condition can 
usually be relaxed to |M(d i ) − M(d i ′)| ≤ ε where ε is a tuning threshold and 
conditioned on the property of the network. Therefore, for every d i  ∈ D <, the 
major task of step 2 is to filter out all the d i′ where |M(d i ) − M(d i ′)| ≤ ε holds. 
Theoretically, it is possible to find a proper choice of ε such that the filtering 
can be done by enumeratively checking the condition for all choices of d i . 
However, picking the proper ε can be tedious manual process. In this context, 
we propose a simple yet effective variance based sliding window filter to 
identify the critical d i that corresponds to a remarkable change in M(d i ). 
Formally, the sliding window filter 
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  (18)
where x = [x 1, x 2, …, x W ]

⊤ is a W-dimensional vector of observations start-
ing at t. W is the width of the sliding window. Then the data-driven filtering 
procedure can be stated as follows:

• Pick d i from D < in an ascending order and calculate 
. Repeat it for all choices of d i to obtain σ = {σ 1, σ 2, …, σ M−W+1}.

• Iterate on σ to find the index i of the peaks in σ that correspond to 
the critical scale d i .

• Perform the regression to Eqs (13) and (17) using the identified 
critical scales.

To better illustrate the efficacy of proposed data-driven filtering method, 
we plot in Fig. 19 the raw M against the scale index obtained in Step 1 by 
Welsh–Powell algorithm based box-covering strategy to Sierpinski fractal 
network G 4 with s = 1/2 and b = 3. The peaks of σ exactly correspond to the 
critical scales d i where a significant change of M(d i ) appears. These scales 
are identified and used for numerical determination of the scaling behavior 
instead of all the scales to avoid stagnant observations.

Figure 19: An example application of the proposed data-driven filtering meth-
od. By applying the filter sliding through the observations, the peaks of the 
output correspond to the critical scales where a significant change of the accu-
mulative measure ∑μ(B i (l))

q occurs.
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