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Preface

When new models of production articles are created, the basic knowledge about
these objects comes from testing their prototypes. Such knowledge is obtained by
measuring the parameters and characteristics of mechanical, thermophysical, gas
dynamic, chemical and others processes that take place in such a prototype.

Progress in the creation of new knowledge as well as in the development of
new technical and technological solutions largely depends on the accuracy of mea-
surement results. Therefore, increasing the information content of tests and the reli-
ability of their results are critical issues related to the development, manufacturing
and overhaul tests of production objects. An effective solution to these issues, as
practice has shown, is provided by the automated measurement-information sys-
tems (AMISs) with abilities to control the test object as well as the testing equip-
ment. The AMIS allows to:
– receive a large amount of detailed measurement data;
– exclude the influence of human factors on the measurement results;
– ensure the required accuracy of test results.

The metrological characteristics of measurement means (MMs) produced by a par-
ticular manufacturer are generally well known. In the documentation that accom-
panies the MM there is always information about the measurement errors. This
information can be common to the entire production series of the MM or it could be
specific to a particular sample obtained via calibration on reference equipment.
However, even for the MM with individual calibration, the measurement error may
include components that require verification under specific working conditions.

As a rule, AMISs are created from products of various manufacturers according
to technical requirements (TRs) including the requirements for measurement accu-
racy. The adequacy of system’s metrological characteristics to the TRs is confirmed
by a set of metrological studies and procedures for estimation of components of the
error arising from individual components of the measurement channel (MC) as well
as for the entire MC. In addition, some object parameters can be determined only
through indirect or aggregate measurements, that is, by processing direct measure-
ments of several physical values. In this case, it is necessary to carry out appropriate
experimental and computational studies to determine the errors of such measure-
ments. When the test object is in a non-stationary operational mode, it is also neces-
sary to investigate the inertial characteristics of theMCs.

The monograph of Dr. Karmalita is devoted to the issues related to the accuracy
of measurement results obtained using AMIS. It summarizes the author’s vast and
versatile experience in the field of AMIS design and the study of their metrology.
After graduating in 1971, Viacheslav Karmalita began his career at the Central
Institute of Aviation Motors (CIAM) as an experimental engineer for an altitude test
facility. During the last decade (1983–1993) of his work at CIAM, he headed the
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department for “Automation of Testing Aircraft Engines and their Components”. In
addition to scientific research, Dr. Karmalita was engaged in academic activities as
a post-graduate lecturer for “Statistical Methods for Processing Experimental Data”
course at CIAM. Two students under his leadership went on to obtain Ph.D. degrees.
Viacheslav Karmalita also published several monographs in English and Russian.
Currently, he is a well-known expert in the field of AMISs with a specialty in the
measurements of stationary and dynamic processes as well as statistical analysis of
their results.

Since the measurement results are always probabilistic due to the presence of ran-
dom components, the first chapter of this book is devoted to the issues of mathemati-
cal statistics. It gives a concept of probabilistic models and considers the elements of
statistical estimation related to the adaptation of those models to experimental data.

As the given methods and approaches are accompanied by specific examples
from the practice of testing gas turbine engines (GTEs), the second chapter provides
a general idea about the GTE, the structures of the MC and AMIS, and the proce-
dures for acquisition and processing of measurement results.

The third chapter describes the procedures for estimating metrological charac-
teristics of the MCs for measuring stationary parameters. An approach to evaluate
the accuracy of test results is considered as a logical prolongation of MC’s statistical
tests and it is shown how to ensure the required accuracy as well.

The last chapter provides information about deterministic and random pro-
cesses in a dynamic system that is the MC. It shows, how through dynamic calibra-
tion of the MC, the channel inertia may be presented in a formal description.
Finally, a method for eliminating the systematic errors of transient process meas-
urements is discussed.

This book is of interest to specialists involved in testing complex manufactured
objects and is useful for graduate and post-graduate students with engineering
specialties.

October, 2019 Dr. Boris Mineev
Chief Metrologist of CIAM

Moscow, Russia
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Introduction

An inalienable part of scientific and engineering activity is cognitive action. It is
realized on the basis of formulated cognitive tasks that allow to decompose a re-
search problem into sequential steps. Cognitive tasks may be classified as theoreti-
cal and empirical.

An example of a theoretical task is the creation of a mathematical model of the
studied object (phenomenon). Empirical tasks consist of disclosure, examination
and precise description of facts related to research phenomena. Solutions to empiri-
cal tasks are realized by means of such specific cognitive methods as experiment
(test) and measurement.

During testing there is a deliberate interference to operational modes of a test ob-
ject as well as to its operational conditions. Testing allows to find out object’s proper-
ties (performance) in standard and unconventional operational conditions as well as
examining, for instance, the results of changes to the object’s design.

Measurement is the cognitive method for obtaining quantified data about research
objects (phenomena). It includes two relatively independent procedures: a quantified
estimation (measurements) of physical values and an empirical verification of reliabil-
ity (impartiality) obtained measurement results. The latter issue is a matter of the ap-
plied (industrial) metrology ensuring the suitabilty of measurement means via their
calibration and quality control.

Tests are an important part of R&D stage as well as production of complex manu-
factured articles. Being a source of knowledge for real processes in the prototypes, the
R&D tests allow to attain required parametric perfection and reliability of designed
products. Experiments are a crucial part of the manufacturing cycle as well – a pro-
duct’s operation is checked and its performance is validated during acceptance tests.

The tests are carried out in dedicated test facilities containing diverse tech-
nological (fuel, oil, hydraulic, electrical, communication etc.) systems to sup-
port operation of test objects as well as test equipment (stand, object control
unit, transducers, actuators etc.). Modern test facilities are characterized by a
high level of automation that provide:
– reduction of time and efforts for preparation and implementation of tests;
– mechanization of measurements of test object parameters as well as processing

and analysis of experimental data;
– optimization of the test procedure due to its targeted implementation on the

basis of real-time information.

Automated tests relieve the test facility staff from time-consuming and routine work
for preparation and implementation of tests, thus enabling experimenters to focus
on better understanding of test results. Subsequently, the facilitation and accelera-
tion of their work inevitably leads to a qualitatively new organization of tests.
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The cornerstone of automated tests is the Automated Measurement-Information
System (AMIS). In addition to increasing the operational efficiency of tests, AMIS pro-
vides a unified environment for all informational streams and manipulations related to
the test procedures (Fig. 1).

In this particular case, the term information designates results of measurements and
their consequent processing called experimental data in the following text. The data is
represented by a set of physical values converted by different sensors/transducers into
uniform electrical signals. As a result, information about the status of the test equip-
ment as well as the test conditions and the object itself will be contained in values of
electrical currents or voltage, their oscillation frequencies, and so on. The numerical
parameter estimation of these measurement signals provides information about the
physical values in digital form.

As a rule, the object’s parameters and characteristics of power, efficiency, etc.
are the result of processing measurement data. Analysis of these parameters/charac-
teristics allows to control the test equipment/object in accordance with test procedure
requirements. Necessary adjustments of the test procedure are realized in the forms
of dedicated commands for Programmable Logic Controllers (PLCs) and equipment/
object actuators.

Development, installation and subsequent operation of AMIS requires solving nu-
merous tasks linked with different system aspects – instrumentation, hardware, soft-
ware, operating/processing algorithms, metrology, maintenance support, etc. This
book deals with metrological tasks, that is, issues related to the accuracy of test results.

There are several arguments necessitating the discussion of metrological aspects.
As it was mentioned earlier, AMIS not only creates measurement data (results of

Physical values

Test results Solutions

Control commands

Parameters & characteristics

Data operations

Measured values

Measurement results

Data streams

Test facility
&

Test object

Conversion

Acquision

Storage Conversion

AnalysisDisplaying

Processing

Fig. 1: Information streams/operations related to test procedures.
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measurements) but the system processes these results to evaluate parameters/charac-
teristics of the test objects as well. This principal distinction of AMIS from standalone
MMs requires relevant approaches to estimate accuracy of test results.

As a rule, modern manufactured objects are characterized by high parametric ex-
cellence. Hence, attaining the required performance of an object prototype cannot be
done through one solution; it is usually realized by a large number of design actions.
Each one affects an object’s performance on the order of percentage units, sometime
less than 1%. This implies that only well-known and ensued accuracy of test results
allows to make conclusions about efficiency of undertaken actions in the presence of
a statistical variation of experimental data.

In fact, AMIS is a subsystem of a complex test system including research and mea-
surement methods as well as different test equipment. Therefore, from the metrological
standpoint, the test results contain experimental and measurement errors (Fig. 2).

The experimental error is determined by a chosen method of an object’s performance
estimation and certain grade of control of tests. As a rule, the same characteristic of
the test object can be determined with different approaches. Each approach requires
a relevant test procedure and object preparation, that is, an appropriate installation
of sensors and transducers affecting the object’s working processes.

In a well-controlled test, the object’s modes and its operational conditions can be
augmented exactly as desired, and any influence of external factors is excluded. Poorly
controlled tests may lead to attributing effects of unaccounted factors to the object’s
properties, that is, to distorted data about the real properties of the test object.

The measurement errors contain methodical and instrumental components. The
first one is linked with an approach of object’s parameter evaluation. For instance,
any test object has a 3-dimential structure but parameters of the test object are esti-
mated in a few planes called measurement cross-sections. Further, in each plane,
only a finite number of sensors can be installed without significantly affecting the

Experimental
error

Test results
error

Research
method

Experiment
control

Measurement
methods

Measurement
means

Measurement
error

Fig. 2: Components of test result error.
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working process of the object. The number of cross-sections and sensors as well as
the location of sensors in the planes are sources of methodical errors interfering with
the estimates of integral parameters of the object.

The experimental and methodical measurement errors are inseparably linked
with the specifics of a test object and its working process as well as the types of
measured physical values and applied measurement methods. Due to the diversity
of these issues, experimental and methodical errors are not considered in this book.

The instrumental errors are associated only with the utilized measurement means
as well as hardware and software of a given AMIS. The following text deals with exam-
ining the instrumental errors and their influence on accuracy of test results. In particu-
lar, this work will describe the approaches and methods to evaluate instrumental
errors and their impact on test results for:
– estimating statistical variance caused by instrumental errors;
– eliminating systematic errors (biases) that occur as a consequence of inertial

properties of measurement means.

This book material is presented in a form that answers the conceptual questions in-
herent in a scientific monograph (“Why?”) and a handbook (“How?”). It is the latter
that explains the variety of examples discussed in the text. These examples confirm
the general meaning of concepts of the presented approaches as well as serve to
develop skills associated with their implementation.

4 Introduction



1 Elements of probability theory and mathematical
statistics

As a rule, the measurement of physical values is implemented via conversion of
one value to another on a basis of known physical phenomena. For example, the
temperature of a substance can be directly converted into electricity through a ther-
mocouple. This conversion uses the Seebeck effect, according to which a thermo-
couple can generate direct current (DC) voltage. To make this work, a junction of
two different conductors should be located in the temperature measurement zone,
while the other ends should be placed in the reference temperature zone. The mag-
nitude of the DC voltage is defined by the Seebeck coefficient depending on the
composition of the conductor.

In fact, the implementation of any physical conversion cannot be ideal, since it
may be accompanied by various factors which can interfere with conversion results.
In the example of a thermocouple, such a factor may be the technological toleran-
ces of conductor production. In other words, manufactured thermocouples of the
same type may have different Seebeck coefficients and will therefore generate dif-
ferent voltages at the same temperature. In addition, conductors with current resis-
tance typically have thermal noise that increases with temperature. It associates
with the chaotic movement of charge carriers resulting in voltage fluctuations at
the ends of the conductor.

In addition to factors inherent to utilized physical phenomena, the surrounding
environment can vary drastically since it is never under full control. All mentioned
circumstances lead to changes called error in the results of repeated measurements.
The error is designated in the subsequent text as Ξ and may have a constant compo-
nent (bias) as well as variable (random) one.

The bias value is determined during the calibration of the measurement means
and can be used as a correction to the measurement results. A random component
observed during the calibration procedure must accounted for to allow for its subse-
quent consideration. It necessitates the discussion of mathematical models related
to the concept of probability.

1.1 Probabilistic models

This section deals with models that are mathematical descriptions of random phe-
nomena. The following material is devoted to presentation of such models as well
as examination of their properties.

https://doi.org/10.1515/9783110666670-002
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1.1.1 Random variable

The error Ξ disperses the results of measurements of a physical value within an
area that forms a sample space A. Elements (points) of this space may be grouped
by different ways into subspaces A1, . . ., Ai, . . ., Ak referred to as events. Appearance
of an experimental result inside any subspace implies the occurrence of a specific
event. That is to say, the experiment always results in the event:

A = A1 + A2 + . . . + Ak:

A certain event Ai may be given a quantitative characteristic through the frequency
of this event’s occurrence in n experiments. Let m Aið Þ be the number of experiments
in which the event Ai was observed. Then the frequency ν Aið Þ of this event (event
frequency) can be determined by the following expression:

ν Aið Þ=m Aið Þ=n.
It is evident that the event frequency can be calculated only at the experiment’s
completion and, generally speaking, depends on the kind of experiments and their
number. Therefore, in mathematics an objective measure P Aið Þ of the event fre-
quency is postulated. The measure P Aið Þ is called the probability of the event Ai

and is independent on the results in individual experiments. It is possible to state
that:

PðAiÞ= lim
n!∞

vðAiÞ.

If the experiment result is represented by a real number Ξ called a random variable,
one may represent events in a form of conditions Ξ< ξ , where ξ is a certain number.
In other words, an event may be determined as a multitude of possible outcomes
satisfying the non-equality Ξ< ξ . The probability of such an event is a function of ξ
and is called the cumulative distribution (or just distribution) function FðξÞ of the
random variable Ξ:

FðξÞ=Pð Ξ≤ ξÞ.
It is clear that if a≤b, then

PðaÞ≤ PðbÞ; Pð−∞Þ=0; Pð+∞Þ= 1.

Any distribution function is monotonous and non-diminishing. An example of such
a function is represented in Fig. 1.1.

If the probability distribution function FðξÞ is continuous and differentiable, its
first derivative of the form

f ξð Þ= dF ξð Þ
dξ

6 1 Elements of probability theory and mathematical statistics



is termed as the probability density function (PDF) of the random variable Ξ. Note
that:

P Ξ≤ að Þ= F að Þ=
ða
−∞

f ξð Þdξ ;

P a≤Ξ≤bð Þ=
ðb
a

f ξð Þdξ = F bð Þ− F að Þ;

ð∞
−∞

f ξð Þdξ = 1.

In practice these are the parameters of the distribution function that are often used
instead of the function itself. One of these parameters is the mathematical expecta-
tion of the random variable Ξ:

μξ =M Ξ½ �=
ð∞
−∞

ξ · f ξð Þdξ .

The expectation of any real, single-valued, continuous function gðΞÞ may be expressed
in the similar way:

M g Ξð Þ½ �=
ð∞
−∞

g ξð Þ · f ξð Þdξ .

Note that mathematical expectations are not random but deterministic values.
Of particular interest are functions of the type:

gl Ξð Þ= ðΞ− μξ Þl,

whose expectations are referred to as the lth-order central moments noted as:

1.0

F(ξ)

0 ξ Fig. 1.1: A view of probability distribution function.

1.1 Probabilistic models 7



αl =M ðΞ− μξ Þl
h i

.

Specifically, the value α2 =Dξ =σξ 2 is the lowest-order moment which evaluates the
mean deviation of a random variable around its expectation. This central moment
is called variance and σξ is referred to as the root-mean-square (rms) deviation.

As an example, let us examine the probability density of random variables re-
ferred to in this text. The first example is related to a probability scheme character-
ized by maximum uncertainty of the results. It is a case when all values of variable
Ξ in the range a. . .b have the same probability. The corresponding probability den-
sity (called uniform) of such a random variable Ξ is:

f ξð Þ=
1

b− a
, a≤ ξ ≤b,

0, ξ <0, ξ >b.

8<:
A view of the uniform density probability is represented in Fig. 1.2.

The uniformly distributed variable Ξ has the expectation

μξ =
ðb
a

ξ · f ξð Þ= a+b
2

,

and variance

Dξ =
ðb
a

ξ −μξ
� �2

· f ðξÞdξ = b− að Þ2=12.

The uniform distribution has its merit when one is looking for maximum entropy of
experimental results.

Another type of probability density under examination is called the normal
(Gaussian) distribution. The distribution of the normal value is described by the
Gauss law:

0 ba

1/(b-a)

f(󰜉)

󰜉 Fig. 1.2: Uniform PDF.
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f ξð Þ= 1ffiffiffiffiffi
2π
p

·σξ
exp −

ðξ −μξ Þ2
2Dξ

" #
.

A view of the PDF of the normal random value is represented in Fig. 1.3.

Here, ξα is the α-probability value of the random variable that meets the following
condition:

P ξ ≤ ξα
� �

=
ðξα
−∞

f ξð Þdξ = α.

In other words, this value determines the PDF’s segment located to the left of ξα
whose area equals α.

The Gauss distribution function is completely defined by two moments: μξ and
Dξ . In this case the expectation is a center of grouping of random variable values,
with the variance being a measurement of their scattering around the expectation.
When the variance is small, random variable values are grouped in the neighbor-
hood of the expectation μξ , and if σξ is large, generally speaking, the values will be
more spread around the mathematical expectation. One importance of Gaussian
distribution in probability theory is based on the central limit theorem. Its engineer-
ing interpretation states that summation (action) of a large number of independent
random values (factors) with similar distributions produces a random value (result)
with a distribution tending to the normal distribution.

In technical applications, there is often a need to simultaneously consider a set
of random variables characterized the operational status of the object. In this case

–3σξ –2σξ 2σξ 3σξσξ σξξα

f(ξ)

ξ0

Fig. 1.3: The Gauss’ PDF.

1.1 Probabilistic models 9



it is more practical to use a random vector ΞT = ðΞ1, . . .,ΞnÞ instead of several random
variables Ξ1, . . . ,Ξn. Symbol “т” denotes the transposition of the vector Ξ:

Ξ=

Ξ1

.

.
Ξn

0BBBB@
1CCCCA.

When a vector variable is used, one has to deal with a multivariate distribution
function of the kind:

F ξT
� �

= F ξ 1, . . . , ξnð Þ= F Ξ1 ≤ ξ 1, . . . ,Ξn ≤ ξnð Þ.

If function FðξTÞ has partial derivatives with respect to ξ i, the joint probability den-
sity of variables Ξ1, . . . ,Ξn has the form:

f ξT
� �

= f ξ 1, . . . , ξnð Þ= ∂nF ξ 1, . . . , ξnð Þ
∂ξ 1 . . . ∂ξn

.

Probability densities of the type:

f ξ ið Þ=
ð∞
−∞

. . .

ð∞
−∞

f ξ 1, . . . , ξnð Þdξ 1 . . .dξ i− 1dξ i+ 1 . . .dξn

are referred to as marginal.
Random variables Ξ1, . . . , Ξn are called independent, if

f ðξ 1, . . . , ξnÞ = f ðξ 1Þ · . . . · f ðξnÞ.
When variables are dependent, that is, the probability of Ξi depends on the remain-
ing variables’magnitude, then:

f ðξ 1, . . ., ξnÞ = f ðξ i=ξ 1, . . . , ξ i − 1, ξ i + 1, . . ., ξnÞ
× f ðξ 1, . . . , ξ i − 1, ξ i + 1, . . . , ξnÞ.

Here f ðξ i=ξ 1, . . . , ξ i − 1, ξ i + 1, . . . , ξnÞ is a conditional probability density determin-
ing the probability of an event ξ i <Ξi ≤ ξ i +dξ i when values of remaining (n ‒ 1) var-
iables are known.

A statistical relationship between variables Ξi and Ξj is characterized by the
second-order moment called the cross-covariance (covariance):

γij =M½ðΞi − μiÞðΞj −μjÞ�=M½ðΞj −μjÞðΞi − μiÞ�.
As it follows from its definition, the covariance is positive if values Ξi >μiðΞi < μiÞ
appear most often along with values Ξj >μjðΞj <μjÞ, otherwise the covariance is

10 1 Elements of probability theory and mathematical statistics



negative. It is more convenient to quantify the relationships between variables
through the use of the normalized version of the cross-covariance called the cross-
correlation coefficient:

ρij =
γij
σiσj

,

whose values are set to within − 1 . . . + 1 range. The range limits (values ±1) corre-
spond to a linear dependence of the two variables; the correlation coefficient and
covariance are null when the variables are independent.

Statistical relationships between n random variables are described by a covari-
ance matrix of the form:

ΓΞ =
γ11 . γ1n
· · ·
γn1 · γnn

0B@
1CA.

The normalized version of the matrix Γ is a correlation matrix:

PΞ =
1 . ρ1n
· · ·

ρn1 · 1

0B@
1CA,

where ρii =
γii
σiσi

= 1. From their definition, γij = γji and ρij = ρji, so the covariance and
correlation matrices are symmetric.

For example, consider n random Gauss-distributed variables whose probability
density is given as follows:

f ξT
� �

= ð2πÞ− n=2 Hj j1=2 exp −
1
2
ðξ −μÞTH ξ −μð Þ

� �
,

where ðξ −μÞT = ðξ 1 − μ1, . . ., ξn −μnÞ; H is a matrix inverse to the covariance matrix
and is written as follows:

H= Γ− 1 = fηijg, i, j= 1, . . . , n; Hj j= Γj j− 1.

Therefore, the exponent index in the expression of the probability density f ðξTÞ may
be represented in terms of matrix H elements:

ðξ −μÞTH ξ −μð Þ=
Xn
i= 1

·
Xn
j= 1

ηijðξ i −μiÞðξ j − μjÞ.

1.1 Probabilistic models 11



In particular, for two random variables Ξ1 and Ξ2 the covariance matrix Γ and inverse
matrix H are:

Γ=
σ21 γ12
γ21 σ22

 !
; H = 1

σ21σ22 − γ212

σ22 − γ12
− γ21 σ21

 !
.

The joint probability density of two variables is written as follows:

f ξ 1, ξ 2ð Þ= 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21σ2

2 − γ212
p

× exp −
σ22ðξ 1 −μ1Þ2 +σ21ðξ 2 −μ2Þ2 − 2γ12 ξ 1 − μ1ð Þ ξ 2 −μ2ð Þ

2 σ21σ22 − γ212
� �" #

.

The joint probability density of the bivariate Gaussian distribution is conditionally
represented in Fig. 1.4.

1.1.2 Function of random variables

As rule, test results are a product of processing measurement results. Because mea-
surement results are random values, then it is logical to consider a function Ψ of
random variables Ξi with μi and σi such that:

Ψ=φðΞ1, . . . , Ξi, . . . , ΞnÞ:
Clearly, values of Ψ will be random as well. First of all, one can examine the func-
tion Ψ in the form of a linear transformation:

Ψ= a ·Ξ+b,

where a and b are constant factors. In the sample space A, such a transformation is
reduced only to the movement of subspace Ai (event) and its scaling. However, the
placement (nature) of elements (points) of the space A does not change. In other

0
μ1 μ2

ξ1

f(ξ1) f(ξ2)

ξ2

f(ξ1, ξ2)

Fig. 1.4: The PDF of the bivariate Gauss distribution.
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words, the probabilistic scheme for constructing sample space A does not change.
Therefore, the type of the distribution law of Ψ will corresponds to one that has a
variable Ξ. However, the parameters of the PDF will be different:

μψ = μξ +b; Dψ = a2Dξ .

Consider the case when the function Ψ is non-linear. The probability of occurrence
of a value ξ i in a small interval dξ can be determined as Pdξ = f ξ ið Þdξ . The corre-
sponding interval of the function Ψ will be equal to:

dψ= dψ
dξ

				 				ξ idξ .
The derivative module is used because only sizes of intervals are considered.

Since the probabilities Pdξ and Pdψ must be the same, it follows from this that:

f ðψiÞdψ= f ξ ið Þdξ ,
where ψi =φ ξ ið Þ. From the above equality it follows that the PDF of the k-valued
function Ψ is defined by the following expression:

f ψð Þ= kf ξð Þ dξ
dψ

				 				.
Now, we turn to the case when Ψ is a sum of two independent variables Ξ1 and Ξ2:

Ψ=Ξ1 +Ξ2.

The distribution function of Ψ may be found in the following way:

F ψð Þ= F Ψ≤ψð Þ=PðΞ1 +Ξ2 <ψÞ=
ðð
A

f ξ 1, ξ 2ð Þdξ 1dξ 2,

with the integration region A represented in Fig. 1.5.

Due to the independence of variables Ξ1 and Ξ2, the joint distribution density
f ξ 1, ξ 2ð Þ will be simply a product of the PDFs of these two variables:

2

2 – ψ

ψ = ξ1 + ξ2

ψ 10

1

2

A R

Ξ1

Ξ2

Fig. 1.5: The integration region A.
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f ξ 1, ξ 2ð Þ= f ξ 1ð Þ · f ξ 2ð Þ.

Hence the expression of F ψð Þ may be transformed into the following expression:

F ψð Þ=
ðð
A

f ξ 1ð Þ · f ξ 2ð Þdξ 1dξ 2.

In the case when Ξ1 and Ξ2 have uniform distribution on interval of their values
0 . . . 1, the distribution function of Ψ will be equal to:

F ψð Þ=
ðð
A

f ξ 1ð Þf ξ 2ð Þdξ 1dξ 2 =
ðð
A ∩ R

dξ 1dξ 2.

That is, it equals to the area of the intersection of the region A and square R (Fig. 1.5).
In other words, the value of F ψð Þ is an area of the zone of R located under the line
ψ= ξ 1 + ξ 2. This area can be defined as follows:

aÞ F ψð Þ=0, ψ≤0;

bÞ F ψð Þ=ψ2=2, 0<ψ≤ 1;

cÞ F ψð Þ= 1− 2−ψð Þ2=2, 1<ψ≤ 2;

dÞ F ψð Þ=0, ψ>0.

Differentiation of F ψð Þ allows to determine the PDF in the following form:

aÞ f ψð Þ=0, ψ≤0;

bÞ f ψð Þ=ψ, 0<ψ≤ 1;

cÞ f ψð Þ= 2−ψ, 1<ψ≤ 2;

dÞ f ψð Þ=0, ψ>0.

Therefore, f ψð Þ has a shape of an isosceles triangle with a base and height of 2 and
1, respectively. Such type of a distribution law is called symmetricly triangular and
has parameters μψ = 1 and Dψ = 1=6.

As it was mentioned earlier, the distribution function of a sum of two indepen-
dent random variables may be transformed to the following form:

FðψÞ=
ðð
A

f ðξ 1Þ · f ðξ 2Þdξ 1 dξ 2

=
ð∞
−∞

f ξ 1ð Þdξ 1
ðψ− ξ1

−∞

f ξ2ð Þdξ 2.
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Corresponding probability density of the function Ψ will be equal to:

f ψð Þ= dF ψð Þ
dψ

=
ð∞
−∞

f ξ 1ð Þ · f ψ− ξ 1ð Þdξ 1.

Such a type of integral is called the convolution integral which can be noted as:

f ψð Þ= f ξ 1ð Þ * f ξ 2ð Þ,
and the corresponding mathematical operation is called a convolution. As an exam-
ple, let us define the probability density of two independent variables with Gauss
law using the convolution integral:

f ψð Þ=
ð∞
−∞

f ξ 1ð Þ · f ψ− ξ 1ð Þdξ 1

= 1
2πσ1σ2

ð∞
−∞

exp −
ðξ 1 − μ1Þ2

2σ21
−
ðψ− ξ 1 − μ2Þ2

2σ22

" #
dξ 1

= 1
2πσ1σ2

ð∞
−∞

expð−Aξ 21 + 2Bξ 1 −CÞdξ 1,

where

A= ðσ
2
1 +σ22Þ
2σ1σ2

, B= μ1
2σ21

+ ψ−μ2
2σ22

, C =
μ2

1

2σ21
+ ðψ−μ2Þ2

2σ2
2

.

A solution to the integral of an exponential function is known to be as followsð∞
−∞

expð−Ax2 ± 2Bx−CÞdx=
ffiffiffiffi
π
A

r
exp −

AC+B2

A


 �
.

Taking this into account, the PDFmay be written as:

f ψð Þ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π σ21 + σ22
� �q · exp −

½ψ− μ1 +μ2ð Þ�2
2 σ2

1 +σ22
� �( )

.

Therefore, the functionΨ=Ξ1 +Ξ2 has a Gaussian distribution with the expectation:

μψ =μ1+μ2,

and the square root of the variance:

σψ =
ffiffiffiffiffiffi
Dψ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 + σ22

q
.
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If the function Ψ is equal to:

Ψ= a1Ξ1 + a2Ξ2,

its first and second moments are

μψ = a1μ1 + a2μ2; σψ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21σ21 + a22σ22

q
.

In case of dependent variables, their sum still follows the Gaussian law with the same
expectation, but the variance will include the cross-correlation of variables Ξ1 and Ξ2:

Dψ =M½ðψ−μψÞ2 =M� ½ ξ 1 + ξ 2 − μ1 −μ2Þ2
� �

=M½ðξ 1 − μ1Þ2 + ðξ 2 − μ2Þ2 + 2 ξ 1 − μ1ð Þ ξ 2 −μ2ð Þ�
=D1 +D2 + γ12 = σ21 +σ2

2 + 2ρ12σ1σ2.

If Ψ has a number of arguments n> 2 and is not a linear function, it may be linear-
ized at the point μT = ðμ1, . . .,μi, . . .,μnÞ yielding the following expression:

Ψ≈φ μ1, . . . , μnð Þ+
Xn
i= 1

aiðΞi −μiÞ

where ai = ∂ψ
∂ξ i
jμ. We proceed to consider the variable E with the probabilistic proper-

ties equal to Ψ:

E=Ψ−φðμ1, . . . , μi, . . . , μnÞ=
Xn
i= 1

aiðΞi −μiÞ=
Xn
i= 1

aiZi.

The variable Zi has parameters μζ = 0 and Di.
Commutative and associative properties of the convolution integral in the fol-

lowing forms:

f ζ 1ð Þ * f ζ 2ð Þ½ � * . . . . * f ζ nð Þ= f ζ 1ð Þ * . . . * f ζ n− 1ð Þ * f ζ nð Þ½ �
and

f ζ 1ð Þ * f ζ 2ð Þ * . . . . * f ζ nð Þ= f ζ 2ð Þ * f ζ 1ð Þ * . . . * f ζ nð Þ,
allow to determine f ψð Þ via the following step-by-step approach:

E1 = a1Z1 + a2Z2,
E2 =E1 + a3Z3,

.
E=En− 1 + anZn.

In a case where Zi is a normal variable, the function E will have the normal distribu-
tion with
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με =0;

Dε =
Xn
i= 1

a2i Di + 2
X
i≠j

aiajγij.

Accordingly, the function Ψ will have the normal distribution as well with parame-
ters μψ =φðμ1, . . . , μi, . . . , μnÞ and Dψ =Dε.

Very often, data processing may be represented as a system of linear equations:

Ψ1 =
Xn
i= 1

a1iΞi + b1,
·

Ψk =
Xn
i= 1

akiΞi +bk,

which may be written in the matrix form as:

Ψ=A ·Ξ+B,

where

Ψ=
Ψ1

·
Ψk

0B@
1CA, Ξ=

Ξ1

·
Ξn

0B@
1CA,

A=
a11 . a1n

. . .
ak1 . akn

0B@
1CA, B=

b1

·
bk

0B@
1CA.

The mathematical expectation of vector Ψ is:

M Ψ½ �=μΨ =AμΞ +B,

and its covariance matrix has the following form:

ΓΨ =
D1 . γ1k
. . .
γk1 . Dk

0B@
1CA.

The elements of the ΓΨ may be interpreted as the mathematical expectation of ijth

element being a product of vector ðΨ−μΨÞ and ðΨ−μΨÞT:

Ψ−μΨð Þ=

Ψ1 −μ1
Ψ2 −μ2

.
Ψk −μk

0BBBB@
1CCCCA.
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Such an approach allows to represent the matrix Γψ as follows:

Γψ =M


Ψ−μΨð ÞðΨ−μΨÞT

�
=M


�
AΞ+B−AμΞ −BÞðAΞ+B−AμΞ −BÞT�

=M


A · Ξ−μΞð Þ · ðΞ−μΞÞT ·AT�

=A ·M


Ξ−μΞð ÞðΞ−μΞÞT

�
·AT =AΓΞAT.

Therefore, the knowledge of the covariance matrix of variables Ξ allows to calculate
the covariance matrix of the results of processing.

1.2 Adaptation of probability models

This section deals with the elements of mathematical statistics which comprise
problems related to adaptation of probability models to experimental data. Such
data is represented by a sequence of real numbers (series) x1, . . ., xn of a variable X.
All xi are assume to be independent random values with an identical f(x), so the
series is characterized by the following probability density:

f x1, . . ., xnð Þ=
Yn
i= 1

f xið Þ.

An adaptation procedure is realized by utilizing a probability model as a working
hypothesis and its subsequent matching with experimental data. This procedure
has a random character due to utilizing a limited number of xi from an infinite pop-
ulation of random value X. Methods of mathematical statistics give instructions re-
garding better approaches to utilize experimental data as well as to evaluate
reliability of inferences pertaining to the adapted models.

1.2.1 Processing of experimental data

Processing series x1, . . ., xn and presentation of its results in a view suitable for infer-
ence making are critical issues of statistical analysis. Usually, it starts with a prelimi-
nary processing of experimental data which reduces the latter to a few statistics. Under
the name of statistic Tn is understood to be a result of processing the series x1, . . ., xn:

Tn = T x1, . . ., xnð Þ.
There are a few widely used statistics in engineering practice. Random variable Z,
called the standard normal variable, plays a basic role:
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Z = X − μxð Þ=σx,

where X is a random variable with the standard normal distribution. It is an obvious
fact that Z has the mathematical expectation μz =0 and σz = 1.

The statistic Tn in the form:

Tn =
Xn
i= 1

z2i = χ2n

is called as chi-squared variable with n degrees of freedom. In general, the degrees
of freedom of a statistic equal to the number of independent components used in its
calculation. A mathematical description of the χ2n PDF is:

f χ2n
� �

=
ðχ2nÞ

n
2 − 1 · exp − χ2nð Þ
2n=2 · Γðn=2Þ , χ2n >0,

0, otherwise

8<:
where Γ n=2ð Þ is the gamma function whose value (for integer n≥ 2) coincides with
the factorial n− 1ð Þ!; n – the number of degrees of freedom. Plots of f χ2n

� �
are repre-

sented in Fig. 1.6.

The first two moments of the χ2n distribution are μχ2n = n, and Dχ2n
= 2n.

The χ2n distribution relates to a sum of independent variables z2i with the same
variance. This distribution approaches the Gauss law approximation when n in-
creases due to the central limit theorem. In particular, if n> 30, a variable

ffiffiffiffiffiffiffi
2χ2n

p
has

a distribution similar to normal with μχ2n =
ffiffiffiffiffiffiffiffiffiffiffiffi
2n− 1
p

, and Dχ2n
= 1.

0 10 20 30

n = 16
n = 8

n = 4

n = 2

0.2

0.4

2󰜒n

2f (󰜒n )

Fig. 1.6: The PDF of the chi-squared variable.
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Statistic

Tn =
Zffiffiffiffiffiffiffiffiffiffi
χ2n=n

p = tn

is a variable with Student’s t-distribution. Its PDF is given by the following expression:

f tnð Þ=
Γ n+ 1

2

� �ffiffiffiffiffiffi
πn
p

· Γ n=2ð Þ · 1+ t2n
n


 �− n+ 1ð Þ=2
,

where n is the number of degrees of freedom (Fig. 1.7).

The characteristics of this distribution are μtn =0, and Dtn = n= n− 2ð Þ for n> 2.
Asymptotically n ! ∞ð Þ, the t-distributed variable approaches the standard nor-
mal variable Z. Actually, a good approximation can be obtained with n> 30.

The final statistic under examination is

Tn =
χ2n1 · n2
χ2n2 · n1

= Fn1 , n2 .

This statistic is called the F(Fisher-Snedecor)-statistic with n1 and n2 degrees of free-
dom. A view of its DPF described by the expression:

f Fn1 , n2
� �

=
Γ n1 + n2

2

� � n1
n2

� �n1=2 · Fn1 , n2 ðn1=2Þ− 1
Γ n1

2

� �
Γ n2

2

� �ð1+ n1
n2
Fn1 , n2Þ

ðn1 + n2Þ=2
, Fn1 , n2 ≥0,

is represented in Fig. 1.8.
Parameters of the F-statistic are:

μF =
n2

n2 − 2
, σ2F =

2n22 n1 + n2 − 2ð Þ
n1 n2 − 2ð Þ2 n2 − 4ð Þ ; n2 > 4.

Fig. 1.7: The Student’s PDF.
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Asymptotically ðn1, n2 !∞Þ, the variable F approaches the normal distribution
with μF = 1, and σ2F =

2 n1 + n2ð Þ
n1n2

. An acceptable (≈ 10%Þ approximation is achieved
with n1, n2 > 60.

1.2.2 Criterion of maximum likelihood

The task of model factor estimation can be stated as follows: there is a random variable
X with a known probability density f ðx=aÞ featuring parameters aT = ða1, . . . , akÞ.
Existing values of these parameters provided observations xT = x1, . . . , xnð Þ are un-
known although their values are fixed. It is required to estimate parameters a to con-
sider that some of their values “most likely” provide observations x.

In 1925, R.A. Fisher, a British statistician and geneticist, has formulated the
maximum likelihood criterion which holds a key position in the statistic estimation
theory. Its essence may be described in the following manner.

Before being observed, the possible values of random variable X are described
by the probability density f ðx=aÞ. Once observations x1, . . . , xn are obtained, it is ap-
propriate to proceed with considering the possible values of parameters a that pro-
vided those observations. To do this one constructs a likelihood function Lða=xÞ
which is proportional to f ðx=aÞ with observations x and unknown values of a. The
maximum likelihood estimates (MLEs) of parameters a designated as ~a provide the
maximum value of the function L(a/x):

L ea=xð Þ= maxea L a=xð Þ

In other words, theMLEs correspond to the highest probability of appearance of ob-
servations x1, . . . , xn. The likelihood function plays a fundamental role in the esti-
mation theory since it carries all information about model parameters obtainable
from experimental data [1].

Often it is more convenient to use the logarithmic likelihood function

l a=xð Þ = lnL a=xð Þ,

Fig. 1.8: The PDF of the F-statistic.
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which comprises additive constants instead of proportionality coefficients.
Furthermore, l a=xð Þ takes on a simple view for exponential forms of distribution
laws which are the most often case in technical applications.

To illustrate the principle of maximum likelihood let us take an example of esti-
mating parameters for the PDF of a normal variable X with μх and Dx. The results of
this variable measurement are considered as a vector x of independent readouts
x1, . . . , xn with the joint probability density:

f x1, . . . , xnð Þ= ð2πDxÞ− n=2 · exp −
Xn
i= 1

ðxi − μxÞ2
2Dx

( )
.

As it was mentioned previously, the likelihood function is derived from the proba-
bility density providing fixed xi and variable parameters μх and Dx. In particular,
the logarithmic likelihood function will have the form:

lðμx,Dx=xÞ= −
n
2
lnð2πDxÞ− 1

2Dx

Xn
i= 1
ðxi −μxÞ2.

The conditions of a maximum of the logarithmic likelihood function with respect to
the parameter μx will be:

∂l
∂μx

= 1
2Dx

Xn
i= 1

2 xi −μxð Þ=0,

which will result in the following expression:

~μx =
Pn

i= 1 xi
n

. (1)

Now, let’s represent the condition of a maximum of the logarithmic likelihood func-
tion with respect to the parameter Dx:

∂l
∂Dx

= −
n
2Dx

+ 1
2D2

x

Xn
i= 1

ðxi − μxÞ2 =0.

This equation leads to the following expression for caclculating the MLE of a
variance:

~Dx = ~σ2
x =
Pn

i= 1 ðxi −μxÞ2
n

.

In addition to the point estimates of the parameters of general populations, interval
estimates are also used in statistics. One of these interval estimates is the confi-
dence interval, which is obtained on a basis of statistics computed from observed
data. The confidence interval will contain the true value of the unknown estimated
parameter of the general population with a probability that is specified by a given
confidence level. Usually, a confidence level P = 0.95 is utilized. The practical

22 1 Elements of probability theory and mathematical statistics



interpretation of the confidence interval with a confidence level, say P = 0.95, is as
follows. Let us assume a very large number of independent experiments with a
similar construction of a confidence interval. Then in 95% of experiments the con-
fidence interval will contain the true value of the estimated parameter. In the re-
maining 5% of experiments the confidence interval may not contain that value.

1.2.3 Properties of maximum likelihood estimates

A wide applications of the maximum likelihood criterion is based on a property of
MLE invariance: if ~a is the MLE of parameter a, then gðeaÞ will be the MLE of any
function of parameter a (not necessarily a one-to-one function) [1].

To demonstrate that property, let us examine an injective (one-to-one) function
gðaÞ instead of parameter a. A derivative of this function may be presented in the
following form:

∂l
∂a

= ∂l
∂g að Þ ·

∂g að Þ
∂a

.

Respectively, the condition of a stationary point (extremum) of the logarithmic like-
lihood function

∂l
∂g að Þ =0

corresponds to the condition ∂l
∂a =0; if ∂g að Þ

∂a ≠0.
The invariance property of the MLE is particularly important for estimation of

model factors. This property substantially simplifies the calculation of MLEs of these
factors when the relationship between the model factors and the statistical character-
istics of the series are known. In this case, it suffices to obtain only the MLEs of these
characteristics. Subsequently, the knowledge of a functional link between the statisti-
cal characteristics and model factors allows to calculate theMLEs of the latter.

In themselves, the parameter estimates cannot be correct or incorrect because
they are somewhat arbitrary. Nevertheless, some estimates could be considered as
“better” than others. To compare them, one can make use of the mean square error
of ~a:

M½ ~a− að Þ2�=Mf ~a − M ~að Þ½ �2g + Mf M ~að Þ − a½ �2g:

The first term on the right-hand side of this expression is the estimate variance
which is a measure of a “random” fraction of the error:

D~a =Mf½~a−M ~að Þ�2g.
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The second term – square of the estimate bias – gives a systematic deviation:

b2~a =Mf½M ~að Þ− a�2g.

Depending on properties of components of the error, estimates come subdivided
into several categories.

First, if the estimate expectation equals the parameter which is to be estimated,
such as:

M ~að Þ= a,

that is, b~a =0, then the estimate is called unbiased.
Second, if the variance of the estimate â is less than that of any other estimate ~a,

that is:

Dâ < D~a;

then the estimate â is referred to as an efficient estimate.
And finally, if with the increase of the series size n the estimate draws near the

parameter a with a probability tending to 1, in other words, at any small c>0

lim
n!∞

P ~a− aj j≥ cð Þ=0,

then the estimate is called consistent. From the Chebyshev inequality of the form:

P ~a− aj j≥ cð Þ= D~a

c2
,

it follows that a sufficient (but not required) condition of consistency is:

limD~a
n!∞

=0.

In other words, the accuracy of the estimate must increase with an corresponding
increase of n. Both conditions of the estimate’s consistency are, in fact, require-
ments for the convergence in probability and the mean square.

Let us examine the properties of estimates of ~μx and ~Dx deduced in the previous
section. First of all, we’ll evaluate an estimate of a mathematical expectation of ~μx:

M ~μx½ �=
1
n

Xn
i= 1

M xi½ �= n
n
· μx = μx,

that is, this estimate is unbiased. An inherence about a consistency of estimates re-
quires evaluating their variances. A variance of the estimate ~μx may be determined as:
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D~μ =Var
Pn

i= 1 xi
n

� �
=
Pn

i= 1 Var xi½ �
n2

= nDx

n2
= Dx

n
.

A presence of the denominator n in this expression will decrease the variance D~μ

with increasing n that is, the estimate of the μx is consistent.
In the case of an unknown expectation μx, its estimates ~μx may be used for cal-

culation of the ~Dx:

~Dx =
Pn

i= 1 ðxi − ~μxÞ2
n

.

First of all, we’ll modify the numerator of the fraction:Xn
i= 1

ðxi − ~μxÞ2 = ðxi − μx + μx − ~μxÞ2

=
Xn
i= 1

ðxi −μxÞ2 − 2 ~μx −μxð Þ
Xn
i= 1

xi −μxð Þ+
Xn
i= 1
ð~μx −μxÞ2

=
Xn
i= 1

ðxi −μxÞ2 + 2ð~μx −μxÞ
Xn
i= 1

xi − nμx


 �
+ nð~μx − μxÞ2

=
Xn
i= 1

ðxi −μxÞ2 − 2ð~μx −μxÞnð~μx − μxÞ+ nð~μx −μxÞ2

=
Xn
i= 1

ðxi −μxÞ2 − nð~μx −μxÞ2.

The use of this expression allows to determe the mathematical expectation of the ~Dx

as follows:

M½~Dx�= 1
n
M
�Xn

i= 1

ðxi −μxÞ2
�
= 1
n

�
M
�Xn
i= 1

ðxi −μxÞ2
�
−M½nð~μx − μxÞ2�g

= 1
n
ðnDx − nD~μÞ= 1

n
ðnDx −DxÞ= n− 1

n
Dx.

Therefore, the unbiased estimate ~Dx has to be calculated in accordance with the fol-
lowing expression:

~Dx =
Pn

i= 1 ðxi − ~μxÞ2
n− 1

. (2)

The variance of this estimate may be represented as:

D~Dx
=Var

Pn
i= 1 ðxi − ~μxÞ2

n− 1ð Þ

" #
=
Pn

i= 1 Var ðxi − ~μxÞ2
h i

ðn− 1Þ2 .
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It is clear that the numerator of this fraction has an order of magnitude n, while the
denominator – n2. Therefore, the value of D~Dx

will decrease with increasing n, which
indicates the consistency of ~Dx.

An inference about the efficiency of the MLEs can be obtained in the following
fashion. The lower bound of the variance of an unbiased estimate of any parameter
a is determined by the Cramer-Rao inequality:

D~a ≥
1

I að Þ .

The I að Þ is called the Fisher information (or just information) contained in the series
x1, . . . , xn about an unknown parameter a. In the case of MLEs, the Fisher informa-
tion value is determined by the following expression:

I að Þ= −M
∂
2l a=ðx1, . . . , xnð Þ

∂a2

� �
= −M l′′


 �
. (3)

The efficient estimates have values corresponding to the lower bound of the Cramer-
Rao inequality:

Dâ =
1

I að Þ .

Let us consider the value of l′. Due to existence of the second derivative of the likeli-
hood function, l′ may be linearized at a point â:

l′= l′ âð Þ+ a− âð Þ · l′′+ � � � :

Taking into account that l′ âð Þ=0 for the MLE and ignoring the highest derivatives,
the following expression can be written:

l′= a− âð Þ · l′′.

Asymptotically, l′′ =
n!∞

M l′′

 �

, so taking into account (3) the above written expression
transforms to the following:

l′ =
n!∞

− a− âð Þ · I âð Þ= −
a− âð Þ
Dâ

.

An integration of this expression yields the following form of the logarithmic likeli-
hood function:

l að Þ= −
ða− âÞ2
2Dâ

+ const.

Therefore, the likelihood function will correspond to the normal distribution
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L að Þ=C · exp −
ða− âÞ2
2Dâ

" #

with the expectation â and variance Dâ = 1=I að Þ. As this conclusion was achieved
for n! ∞, allMLEs are efficient asymptotically.

1.2.4 Least-squares method

The least-squares method is referred to the works of Adrien-Marie Legendre and
Carl Gauss. Conceptually, it can be interpereted easily as follows:

“Results of n repeated and independent measurements ~xi may be represented
as a sum of an unknown value x and a measurement error ξ i, that is, ~xi = x+ ξ i.
Value x is estimated in such a way as to minimize the sum of squares of the error:Xn

i= 1

ξ 2i =
Xn
i= 1

ð~xi − xÞ2)
x
min”.

The corresponding estimate of value x is called the least squares estimate (LSE),
and it will be marked in the following text as x .̑

Let us examine the results of measurements ~xi = x+ ξ i featuring μξ =0 and Dξ .
As it was demonstrated in the previous section, asymptotically n! ∞ð Þ, the likeli-
hood function can be represented via fixed values of ~xi and an unknown variable x
in the following form:

L xð Þ=C · exp −
Xn
i= 1

ð~xi − xÞ2
2Dξ

" #
.

Therefore, the logarithmic likelihood function will be:

l xð Þ= const −
1

2Dx

Xn
i= 1

ð~xi − xÞ2.

If n!∞, the maximum of the likelihood function corresponds to the minimum of
the sum S xð Þ= Pn

i= 1 ð~xi − xÞ2:
max

x
l xð Þ ) min

x
S xð Þ.

An extreme value of S(x) is determined from a condition:

∂S xð Þ
∂x

=0,
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which leads to the following equation:

2
Xn
i= 1

~xi − xð Þ=0.

Thus, theMLE of a value x is asymptotically equal to its LSE:

x ̑=
Pn

i= 1 ~xi
n

.

The most popular applications of the least-squares method are related to approxi-
mating experimental data ~x in a form of an analytical model

x= g y, aj
� �

.

Here aj is a model factor j= 1, kð Þ, and y is an independent variable which values
are known with zero or negligible errors.

The measurement result of xi for a known value yi may be presented as:

~xi = xi + ξ i = g yi, aj
� �

+ ξ i.

In accordance with the least-squares approach, the estimates of factors aj can be
found from the following condition:

S aj
� �

=
Xn
i= 1

ξ 2i =
Xn
i= 1

½~xi − g yi, aj
� ��2)

aj
min.

Such a condition is determined as

∂S aj
� �
∂aj

=0

which leads to a system of k equations:Xn
i= 1

½~xi − gðyi, ajÞ�. ∂gðyi, ajÞ
∂aj

=0, j= 1, k.

The solution to this system provides the LSEs of each factor aj. As an example, ap-
proximating the measurements ~xi (signs “ ” in Fig. 1.9) with a straight line may be
examined.

In the linear case, the model x= g y, aj
� �

is represented by the following equation:

x= a0 + a1y.
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Therefore, a system (3) providing the estimates aj̑ is:Xn
i= 1

ð~xi − a1yi − a0Þ=0;

Xn
i= 1

~xi − a1yi − a0ð Þyi =0;

These equations may be modified to the following form:

a1
Xn
i= 1

yi + na0 =
Xn
i= 1

~xi;

a1
Xn
i= 1

y2i + a0
Xn
i= 1

yi =
Xn
i= 1

ð~xi · yiÞ.

Using Cramer’s rule provides the estimates of model factors:

a0̑ =
Pn

i= 1 y
2
i ·
Pn

i= 1 ~xi −
Pn

i= 1 yi ·
Pn

i= 1 ~xi · yið Þ
n
Pn

i= 1 y
2
i − ð

Pn
i= 1 yiÞ2

;

a1̑ =
n
Pn

i= 1 ~xi · yið Þ− Pn
i= 1 yi ·

Pn
i= 1 ~xi

n
Pn

i= 1 y
2
i − ð

Pn
i= 1 yiÞ2

.

In fact, an estimate of the residual variance D~x

D̑~x =
Xn

i− 1

ð~xi − a1̑ yi − a0̑Þ2
n− 2

,

characterizes the scattering of the measurement resul. A number of degrees of free-
dom is (n – 2) because two estimates a0̑ and a1̑ were already calculated from the reali-
zation x1, . . ., xn. Deviation of ~xi may occur due to measurement errors as well as an
absence of strictly linear relationships between variables x and y.

xi
~

0 yi y

x

Fig. 1.9: Fitting measurement results.
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1.3 Statistical inferences

In addition to estimating the parameters of distributions, statistics are also used to
infer conclusions regarding data properties [1]. Usually, a statistical inference is the
result of testing competitive hypotheses Hi that declare certain data properties.
Such a test procedure can be described in the following way:
– formulating the properties (null hypothesis H0) that need to be confirmed;
– setting the significance level α (usually, α = 0.05) for a validation of the null

hypothesis;
– calculation of statistics Tn whose value depends on source data and which is

used for an inference about the truth of the hypothesis;
– determining a critical region of these statistics where the equality

P Tn ≥T1− αð Þ= α is satisfied;
– confirmation of the null hypothesis truth: if the value of statistics T̂n is inside

(outside) of the critical region T1− α, the hypothesis is accepted (rejected).

It is noteworthy to mention that the nature of statistical inference is such that if the
hypothesis is accepted this doesn’t mean that it has been verified with a given prob-
ability. All it means that there is no reason to reject this hypothesis.

The rejection of a hypothesis is accompanied by two kinds errors:
– non-acceptance of a hypothesis even though it is true (the error of the first kind);
– acceptance of a hypothesis even though it is false (the error of the second kind).

If the hypothesis is not accepted then it is possible to predetermine the probably Pα

of the error of the first kind. If the hypothesis is accepted, one can determine the
probability Pβ of the error of the second kind (acceptance of wrong hypothesis) for
the alternative hypothesis. The probability ð1− PβÞ is also called the criterion power.

Consider a few tests that will be referred to in the following text. The first one is
the t-test applied to verify equality of the mean values of two normal series
x1i i= 1, n1ð Þ and x2j j= 1, n2ð Þ, that is, to verify the null hypothesis H0: μ1 =μ2. This test
implementation starts with calculations of mean and variance estimates of these
realizations:

μ̂x1 =
Pn1

i= 1 x1i
n1

, μ̂x2 =
Pn2

j= 1 x2j
n2

;

D̂x1 =
Pn1

i= 1 ðx1i − μ̂x1Þ
2

n1 − 1
, D̂x2 =

Pn2
j= 1 ðx2j − μ̂x2Þ

2

n2 − 1
.
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If μ̂x1> μ̂x2 the following statistic is calculated:

T̂n =
μ̂1 − μ̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D̂x1=n1 + D̂x2=n2
q = t̂n,

where the degrees of freedom n equals

n= ðD̂x1=n1 + D̂x2=n2Þ
2

ðD̂x1=n1Þ
2

n1 − 1 + ðD̂x2 =n2Þ
2

n2 − 1

.

If Dx1 =Dx2 , then n= n1 + n2 − 2.
The obtained value of t̂n is compared with the tabular t1− α, n corresponding to

the given significance level α. The null hypothesis is rejected, if t̂n > t1− α, n.
Another test is the F-test of variance homogeneity. In this case, the null hypo-

thesis declares that two normal variables X1 and X2 have the same variance
ðH0:Dx1 =Dx2Þ. If D̂x1 > D̂x2 , then statistic Tn is calculated as:

T̂n =
D̂x1

D̂x2

= F̂n1 − 1, n2 − 1.

The calculated statistic F̂n1 − 1, n2 − 1 is compared with the tabular value F1− α, n1 − 1, n2 − 1
Whenever T̂n > F1 − α, n1 − 1, n2 − 1, the null hypothesis is rejected.

The last test to be considered is used to verify hypotheses about the type of distri-
bution law of random variables. The basis of the test is Pearson’s chi-squared test
which evaluates the difference between empirical and theoretical frequencies of an
event’s occurrence. Suppose that the series xi i= 1, nð Þ is a result of observing a random
variable X. For the null hypothesis, an assumption has to be taken that the empirical
data correspond to a certain theoretical distribution. Sometimes, there is sufficient
a priori knowledge about an observed phenomenon to make such an assumption. In
its absence, a histogram of xi values is constructed. The histogram is a stepped figure
consisting of rectangles whose bases are equal to the boundaries of the intervals
x j− 1ð Þ . . . xðjÞ j= 1, kð Þ. The heights of rectangles correspond to the numbers lj or fre-
quencies vj = lj=n of the results falling into intervals. The image of the histogram
(Fig. 1.10) may help to make an assumption about the distribution law of values of xi.

The image of the histogram represented in Fig. 1.10 forms the basis of an as-
sumption of the normal distribution of the variable X for the null hypothesis.

As a next step, the estimates of parameters of the assumed law are calculated
using xi. Let us suppose that the number of unknown parameters is equal m. After
that, the range xmin . . . xmax is divided into k intervals so that on average each one
had lj ≥ 5 readouts. The obtained estimates of distribution parameters are used to
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calculate theoretical values pj which must be not insignificant. Statistic Tn is formed
as follows:

~Tn =
Xk
j= 1

ðlj − npjÞ2
npj

= n
Xk
j= 1

ðνj − pjÞ2
pj

.

According to Pearson’s theorem, this statistic has the χ2 distribution with k −m− 1ð Þ
degrees when n! ∞, that is,

Tn!∞ = χ2k −m− 1.

As before, the obtained value ~Tn is compared with the tabular value χ21− α, k −m− 1
corresponding to the given significance level α. The null hypothesis is rejected, if
~Tn > χ21− α, k −m− 1.

0.2

vj = Ij/4000

0 x Fig. 1.10: Histogram image.
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2 Metrological model of automated measurements

The approaches and methods presented in this monograph will be illustrated by exam-
ples from tests of gas turbine engines (GTEs). Therefore, it seems appropriate to provide
conceptual data about the GTE. The main components of the GTE are a multistage
compressor (designated as 1 in Fig. 2.1), a combustion chamber (2) and a turbine (3).

The compressor is a device that increases the pressure of the air entering it.
Combustion chamber adds heat to the compressed air by burning fuel. The turbine
converts part of the internal energy of hot, high-pressured gases into mechanical
work of the shaft driving the compressor. To this end, the turbine and compressor
are rigidly interconnected. If compressor increases the gas pressure, then the tur-
bine decreases the gas pressure. The remaining energy of gases can be used in dif-
ferent ways.

For example, in aviation applications the gases can be directed into a nozzle
(designated as 4 in Fig. 2.1); in this narrowing channel the potential energy of the
gas is converted into kinetic energy. As in the turbine, gas expansion occurs in the
nozzle. The emerging jet stream creates traction (thrust), which moves the plane
forward. Such an engine is called a turbojet.

In another type of engine (turboprop), the second turbine (called a free one) is
installed to utilize the remaining energy of gases. The shaft of this turbine is con-
nected to the propeller through a reduction gearbox. The final expansion of gases
exhausting from the free turbine occurs in the nozzle where their pressure drops to
atmospheric levels. The main thrust provided by turboprops is created by the air
flow accelerated by the propeller. The thrust provided by the nozzle converted to
equivalent power does not exceed 10% of the engine’s thrust power.

An example of the AMIS utilized in the GTE test facility is presented in Fig. 2.2.
The AMIS is built around a computer that communicates with the test object,

equipment and technological systems by means of a data input/output device (desig-
nated as 1 in Fig. 2.2). Its task is to accept measurement signals and to send control
commands.

1 2 3 4

Fig. 2.1: Sketch of the GTE.

https://doi.org/10.1515/9783110666670-003

https://doi.org/10.1515/9783110666670-003


Accepted measurement signals correspond to the following physical values:
– Engine thrust (R);
– Fluids (fuel, oil, hydrolic liquids) flow (G);
– Shaft rotation speed (n);
– Pressures of air, gases and fluids (P);
– Temperatures of air, gases and fluids (T);
– Linear (L) and angular (Α) displacements;
– Vibrations (V), etc.

Parameters (pressures and temperatures) of the air and gases are measured at
cross-sections corresponding to inlet and outlet of the GTE as well as to interface
points of the above engine components.

Besides acquisition of measurement signals, the data input/output device sup-
plies commands to the Engine Control Unit (ECU) as well as to PLCs and actuators
of technological systems and test equipment. Thus, the required test conditions and
operating modes of the GTE are provided.

The control panel with the engine throttle lever and operator displays (desig-
nated as 2 & 3 in Fig. 2.2) supports the interactive work of test personnel (control
and monitoring of the test object and facility systems). Appropriate peripheral
equipment of the AMIS provides hard copies of test results (test reports) as well as
storage of test results in archives.

As it was mentioned in the Introduction section, the AMIS creates a unified in-
formation environment for formatting measurement results, their processing and
storage as well as and other data manipulations. Therefore, the metrological struc-
ture of the system may be presented as shown in Fig. 2.3 [2].

Test facility

Test cell
GTE

R G P T L A Vn

3

2

1

Intake
stack

Exhaust
stack

Fig. 2.2: Sample scheme of the AMIS.
(1 – data input/output device; 2 – engine throttle lever; 3 – operator screen)
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A measurement channel is a functionally united component of the system pro-
viding estimates of measured values in digital form. The outputs of all measure-
ment channels are the result of direct measurements eXT = eX1, . . . , eXk

� �
.

Subsequent data processing realizes calculations of parameters determining op-
erational conditions as well as engine parameters and performance. This procedure
is executed by a processor that works in accordance with software written in some
programming language or commercial software products (COTS) with abilities for
data processing. Therefore, the test results eYT = ðeY1, . . . , eYmÞ are defined as results
of indirect and aggregate measurements.

2.1 Measurement channel

From the technical standpoint, the measurement channel is a kit of intercon-
nected probes/sensors, transduces, convertors, acquisition devices as well as
processor/software that implements computational functions. A typical diagram
of the MC may be represented by a channel measuring total pressure P* of an air
stream (Fig. 2.4).

Physical
values

X1 X1

Xk

Measurements Measurement
results

Measurement
channel

Measurement
channel

Data processing

Calculator

Test
results

~

Xk
~

Y1
~

Ym
~

Fig. 2.3: Metrological structure of the AMIS.

3

2

1P*

4 5
NU

P*~

Fig. 2.4: Conditional scheme of a measurement channel.
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Probe 1 localizes the measurement cross-section as well as a measurement point in
the cross-section plane.

Air pipeline 2 “supplies” a value P* to a sensor of the pressure transducer 3.
The pressure value affects a sensor (membrane) of the transducer. An array of

silicon piezo resisters combined in a bridge circuit is mounted on the membrane. Its
deformation corresponding to the value of P* yields a change of values of piezo resist-
ers. As a result, the value of P* transforms to a value of a direct current voltage U.

To be able to use signal U(t) in the AMIS, its values must be sampled at moments
in time (ti) due to the discrete nature of computers. The conversion of a continuous
signal U(t) into a sequence of numbers N is carried out by the Analog-Digital Converter
(ADC). The ADC (designated as 4 in Fig. 2.4) realizes two consistent operations:
– discretization of signal U(t) in time which results in readouts ui =U tið Þ;
– digitizing of values of ui in numbers Ni.

From a mathematical standpoint, digitization deals with value ui round off accord-
ing to specified rules. Let values of ui be inside a range 0 . . .Umax. Within this range,
one can fix M values u 1ð Þ, uð2Þ, . . . , uðMÞ called quantization levels. The digitization
procedure consists of pairing the value of ui with one of the quantization levels. A
commonly used practice is an identification of the value of ui with nearest low
quantization level uj. As it is known, for digital techniques the binary system is usu-
ally used, so the number of quantization levels corresponds to the base power 2,
that is, M = 2m − 1. As a result, the ADC output N is an m-bit binary code (word).

The round-off operation means that the digitized value of ui will have an error.
When values of ui are identified with the nearest low level, this quantization error
εq = ui − uðjÞ will have a value within the Δu= uðj+ 1Þ − uðjÞ range. Over a small interval
Δu actually, M > 1000ð Þ the probability density f εq

� �
may be considered constant.

It means that all values of εq have a virtually equal probability, that is, f ðεqÞ corre-
sponds to a uniform distribution (Fig. 2.5).

The assumption of the uniform distribution of quantization error εq allows to deter-
mine its mathematical expectation as:

0 Δu

1/Δu

εq

f(εq)

Fig. 2.5: The PDF of quantization error.
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μq =
ðΔu
0

εqf εq
� �

dεq = Δu=2.

The value of Δu is always known a priori, therefore, a systematic error μq =Δu=2 can
be assumed in subsequent processing.

Because of the uniform distribution of quantization error, its variance will be
equal to

Dq =
ðΔu
0
ðεq −Δu=2Þ2f εq

� �
dεq = ðΔuÞ2=12.

A modern ADC has m≥ 16 M ≥ 65535ð Þ, and a corresponding value Δu=Umax ≤
0.000015, that is, 0.0015% of a full scale (FS). It should be noted that tests of com-
plex manufactured objects are characterized by measurement error of ≥0.1%. So,
for a practical purpose the digitizing effect may be ignored.

A readout Ni is acquired via a digital interface in the computer (designated as 5
in Fig. 2.4). The latter using a calibration curve P* = g Nð Þ transforms Ni into a mea-
surement result ~P* represented as:

~P* =P* +ΞP* ,

where ΞP* is a measurement error. In common cases, a measurement channel
model is described as:

~Xi =Xi +Ξi.

2.2 Processing of measurement results

In the AMIS, measurement results are processed to evaluate parameters determined
operational conditions of a test object as well as its performance. Technically, this
procedure is executed by a computer processor working in accordance with soft-
ware that realizes appropriate processing algorithms.

Besides calculations of results of indirect measurements, data processing may in-
clude corrections of direct measurement results. For example, if a working fluid of a
test object (gas turbine, turbojet, internal-combustion engine etc.) is inlet air, its ther-
modynamic properties depend on the atmospheric conditions (pressure, temperature,
humidity). To compare results of tests for different calendar days, measurement results
are corrected to International Standards Organization (ISO) reference conditions. They
are sea level, static, standard day atmosphere conditions characterized by values of
pressure, temperature, and humidity equal 101325 N/m2, 288.15 K, 60%, accordingly.
For instance, the following formulas are used to correct results of measurements of
temperature (~T), pressure (~P), velocity (~V), mass flow (~G) and power (~R) [3]:
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~Tcor = ~T · 288.15
~Tinlet

;

~Pcor = ~P · 101325
~Pinlet

;

~Vcor = ~V ·
ffiffiffiffiffiffiffiffiffiffiffiffiffi
288.15
~Tinlet

s
;

~Gcor = ~G · 101325
~Pinlet

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Tinlet

288.15 ;

s

~Rcor = ~R · 101325
~Pinlet

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Tinlet

288.15 .

s

Therefore, a result of indirect or corrected measurements may be represented as a
function of direct measurement results:

~Yi = gið~X1, . . . , ~Xk Þ, i = 1, m.

Linearization of this function at a point of actual (true) values XT = X1, . . . ,Xkð Þ
yields the following expression:

~Yi = gi X1, . . . , Xkð Þ+
Xk
j= 1

aij · ð~Xj −XjÞ,

where aij = ∂Yi=∂XjjX. Taking into account that Yi = gi X1, . . . ,Xkð Þ and ~Xj =Xj +Ξj, a
model for an error Ei of a test result ~Yi can be represented in the following form:

Ei = ~Yi − gi X1, . . . , Xkð Þ= ~Yi −Yi =
Xk
j= 1

aij ·Ξj.

Accordingly, the errors of all test results can be described in a matrix form as:

E= Ac Ξ,

where E and Ξ are vectors of errors of measurement and test results. The matrix Ac

means a mathematical operator of calculations:

Ac =
a11 . a1k
. . .

am1 . amk

0B@
1CA.

In other words, the metrological model of the processing procedure is reduced to
just error propagation.
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3 Steady-state performance

Metrological models presented in the previous chapter may be implemented for
analysis of test result accuracy. As it was demonstrated by Fig. 2.3, test results (esti-
mates of object parameters/characteristics) are an “output” of the AMIS. The pre-
sented metrological structure of the AMIS allows to realize an accuracy analysis in
two successive steps.

The first one is a field procedure for estimating metrological characteristics of
measurement channels. It is realized without a reference to a specific test object or
a test program. Knowing metrological characteristics of measurement channels
allow to evaluate errors Ξ of measurement results ~XT = ð~X1, . . . , ~XkÞ.

The second step of metrological studies is related to estimating accuracies of
test results ~YT = ~Y1, . . . , ~Ym

� �
. This procedure has to utilize the known measure-

ment errors Ξ and operator Ac. As elements aij of the matrix Ac have to be estimated
for determined value of ~Y, test result accuracy may be done only for tested modes
of a specific test object.

Diversity of types of measurement channels and variety of processing algo-
rithms require using a universal research method for above mentioned metrology
studies. Such a method that is suitable to the random nature of errors is statistical
tests, the essence of which consists of forming realizations of random variables to
determine characteristics of their distributions.

3.1 Metrology of measurement channel

From the metrological model of the MC it follows that errors Ξ can be determined
from the known values of ~X and X:

Ξ = ~X − X.

Since errors are of a random nature, it is necessary to have a sequence of values
ξ 1, . . . , ξn to accurately describe them. This sequence can be obtained during statis-
tical tests of channels under operating (field) conditions (Fig. 3.1).

During these field tests, a reference value X is reproduced at the input of a mea-
surement channel. As this value is a standard, a distribution of random value ~X cor-
responds to distribution of errors Ξ in a working environment. Therefore, evaluating
metrological characteristics of a measurement channel is reduced to an estimation of
parameters of the PDF f ξð Þ.
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3.1.1 Statistical tests of measurement channel

First of all, a requirement for accuracy of reference values has to be formulated.
Actually, a reference value X is reproduced with an error Θ≠0 that modifies a chan-
nel model to the following view:

~X = X +Θð Þ+Ξ=X + Σ,

that is, an actual error of a measurement result will be the sum Σ=Θ+Ξ. There is a
rule which establishes a negligible influence of a random variable Θ compared to an-
other variable Ξ: if σξ ≥ 3σθ, the effect of Θ is minimized. This rule is based on the fol-
lowing considerations. In the case where σξ = 3σθ, the rms error of the sum Σ equals

σΣ = ðσ2θ + σ2ξ Þ1=2 = ðσ2θ + 9σ2
θÞ1=2 ≈ 3.16σθ.

Hence, ignoring σθ leads to the error δΣ = −0.16=3.16= −0.05 5%ð Þ in the value of
σΣ.

In the case of a normal distribution of error Ξ, the MLE of its rms deviation is
determined by the following expression:

σ̂ξ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i= 1 ðξ i −μξ Þ2

n

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i= 1 Dξz2i
n

s
=σξ ×

ffiffiffiffiffi
χ2n
n

r
= qσξ ,

where q=
ffiffiffiffiffiffiffiffiffiffi
χ2n=n

p
.

As it was mentioned in section 1.2.1, a variable ζ =
ffiffiffiffiffiffiffi
2χ2n

p
may be considered

normal with parameters:

μχ2n =
ffiffiffiffiffiffiffiffiffiffiffiffi
2n− 1
p

;

Dχ2n
= 1,

when n> 30. As a result, corresponding parameters of the variable q = ζ=
ffiffiffiffiffi
2n
p

are:

μq =
ffiffiffiffiffiffiffiffiffiffiffiffi
2n− 1
2n

r
≈ 1;

Source of
standard values

Measurement
channel

Working environment

X X~

Fig. 3.1: Statistical tests scheme.
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σq = 1=
ffiffiffiffiffi
2n
p

.

As q has a normal distribution, its confidence P=0.95ð Þ interval Δq will have the
following lower “≤ ”ð Þ and upper “≥ ”ð Þ bounds:

Δq≤ = 1−
1.96ffiffiffiffiffi
2n
p ; Δq≤ = 1+ 1.96ffiffiffiffiffi

2n
p .

Hence, the error δξ of the σ̂ξ estimates can be written as:

δξ =
1.96ffiffiffiffiffi
2n
p .

Finally, the size n of a statistical series used for the estimation of σξ can be repre-
sented as a function of δξ :

n= 1.92
δ2ξ

.

Earlier, it was demonstrated that for the case σξ = 3σθ, ignoring the σθ value leads to
error δΣ = −0.05 in estimates of σΣ. A suitable rms error δ=0.05ð Þ of σ̂ξ can be
achieved for a realization with size n> 768. During tests of measurement channels,
the number n is usually on the order of a hundred. In this case, a statistical variation
(14%) of σξ will exceed the effect of ignoring the value σθ by almost ⁓3 times. This
fact is the basis for the requirement to reproduce reference values with an accuracy
of at least three times greater than the accuracy of the tested channel.

Now, it is time to describe the channel test procedure itself. During statistical
tests the reference values xi i= 1, lð Þ vary from Xmin to Xmax (run up) and back from
Xmax to Xmin (run down). Such an approach makes it possible to reveal a systematic
change in the measurement results due to the possible phenomenon of hysteresis
in sensor materials. For example, in the pressure measurement channel described
in Section 2.1, the sensitive element is a membrane deformed under pressure.
Internal friction of membrane material may cause the energy dissipation which
leads to the appearance of an elastic hysteresis an example of which is represented
in Fig. 3.2.

Ex
te

ns
io

n

Force Fig. 3.2: Conditional presentation of elastic hysteresis.
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For reference value xi, reproduced during the run up and down, readouts Nij j= 1, nð Þ
at the output of the ADC are formed. This data is registered in computer memory.
Therefore, the statistical test of a measurement channel will result in formation of the
2l series of binary numbers Nij! and Nij . The indexes “!” and “ ” correspond to
movement from a small value of xi to a large one and back, accordingly.

Processing results of a statistical test begins with a determination of a calibra-
tion curve X = g Nð Þ. It should be noted that another name for statistical tests is
channel calibration, and the results are called calibration data.

To determine the calibration curve, the grouping centers of numbers Nij! and
Nij are calculated as:

N̂i =
Pn

j= 1ðNij! +Nij Þ
2n

.

Thus, pairs xi and N̂i describing the points of a calibration curve are formed. The ana-
lytical (formal) representation of the calibration curve can be obtained, for instance,
by the least squares method.

At this stage it is advisable to determine the size of statistical series, that is, the
value n. It was demonstrated in section 1.2.3 that a variance of estimates of a mathe-
matical expectation equals to the variance of a time series divided by its size.
Therefore, the estimate x̂i = gðN̂iÞ will have the rms error σx̂i = σξ=

ffiffiffiffiffi
2n
p

.
As it was stated in section 1.2.4, using the LSM for approximation of a certain

function requires reliable knowledge of its arguments. In other words, argument
values have to have zero or negligible errors. This condition can be formulated as
a previously mentioned rule for the ratio of reference and measurements error
−σξ ≥ 3σθ. Since the choice of this ratio is perceived as subjective, we take its value
of 3 resulting in the following expression for σθ:

σθ = 3σ~xi =
3σξffiffiffiffiffi
2n
p ≥

9σθffiffiffiffiffi
2n
p .

The modification of this inequality yields a realization size n≥ 41. Long-term prac-
tice of the author has shown that the value n= 100 provides sufficient stability of
statistical estimates and acceptable time spent for the calibration procedure as well
as processing of calibration data.

Presence of pairs of values xi and N̂i can be used to estimate factors of a polyno-
mial function which will approximate the calibration curve:

X = a0 + a1N + . . . + apNp.

Usually, the polynomial p ≤ 3, and its value is found as a result of its successive
increase from value l= 1 until obtaining the result

maxi ~Xi −Xi
		 		 < Δθ.
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Here Δθ is a confidence interval for P =0.95. In the case of a normal distribution of
Θ, Δθ = 1.96σθ.

As far as the choice of a number l and reference values xi is concerned, it is some-
what arbitrary. However, the following considerations may be the basis of such a
choice. The form of X = g Nð Þ is determined mainly by the calibration curve of the pri-
mary sensor used for the measurement channel. Therefore, the choice of the values
of l and xi can be made by taking into account the shape of a sensor calibration
curve. Usually, l≥ 10, and the placement of xi should give an idea of the features of
the curve, that is, reference values should be located with smaller intervals in areas
with significant curvature. One point should be in the middle of the measurement
range in order to detect possible hysteresis.

Another form of analytical description of a calibration curve is its piecewise lin-
ear approximation (Fig. 3.3).

In this case, transforming result Nj into a measured value starts with searching an
interval Ni ≤Nj <Ni + 1. Subsequently, the value ~xj is calculated as:

~xj = xi +
xi+ 1 − xi
Ni+ 1 −Ni

· ðNj −NiÞ.

Comparing with a polynomial function which requires the storage of factors âo, . . . , âp,
the piecewise linearization requires a storage of calibration data in a form of l pairs of
xi and Ni. The advantage of this representation of the calibration curve is in the possi-
bility of providing a small approximation error Δx by increasing the number of control
points.

After obtaining a formal description of the calibration curve, binary numbers
Nij! and Nij are converted to the series ~xij! and ~xij i= 1, l; j= 1, nð Þ. These data and
standard values xi are stored in the archives for further processing in order to ob-
tain estimates of the metrological characteristics of the channel.

The multichannel AMIS implies the repetition of calibration procedures, which
motivates automating the channel calibration. This allows to reduce the staff involved

Δx

xi

xi+1

X

0 Ni Ni+1 N Fig. 3.3: Piecewise linear approximation.
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for these tasks, to reduce the time required to carry out the procedure and to in-
crease the reliability of the data. Therefore, the system has a dedicated mode of
operation that enables AMIS to use some of its resources for an automated calibra-
tion procedure, that is, the reproduction of reference values, measurements, data
collection and storage.

3.1.2 Estimation of metrological characteristics

As it’s stated earlier, metrological performance of channels is related to parameters of
measurement error distributions. Therefore, the purpose of processing calibration
data is estimation of f ξð Þ parameters utilizing the results of the calibration procedure.

Processing at each ith point of the measurement scale begins with calculating
the grouping centers of readouts during both run up and down:

x̂i! =
Pn

j= 1 ~xij!
n

x̂i =
Pn

j= 1 ~xij 
n

.

Calibration data corresponding to a reference value xi and its processing results are
illustrated by Fig. 3.4.

The next action is estimating the channel variation v̂i:

v̂i = x̂i − x̂i!.

Following that action, the values of errors ξ ij are calculated:

ξ ij! = ~xij! − x̂i!;

ξ ij = ~xij − x̂i ,

f(ξ)
Xi

X

X̂i→ X̂i X̂i← X͂0

Fig. 3.4: Illustration of calibration data.
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which allows to estimate their rms deviations:

σ̂ξ i! =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j= 1 ξ ij!

2

n− 1

s
;

σ̂ξ i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j= 1 ξ ij 

2

n− 1

s
.

This procedure must be implemented on l points of a measurement scale.
For the point i= 1, an additional action is performed – the homogeneity test of

variances corresponded to run up and down data. Recall that from point i = 1 the
calibration procedure starts and ends at that point. The F-test is made necessary by
the need to verify that the conditions of the calibration procedure did not change or
that their changes did not have a significant effect on the MC characteristics. If
σ̂ξ i > σ̂ξ i! , then statistic Tn is calculated as:

T̂n =
σ̂ξ i 
σ̂ξ i!

= F̂n− 1, n− 1.

The obtained value of F̂n− 1, n− 1 must be compare with the tabular F0.95, n− 1, n− 1. If the
test demonstrates that the null hypothesis H0: σξ1! = σξ1 is rejected, then the cali-
bration procedure is analyzed for its qualitative performance and for detecting
causes that could lead to a trend in the values of error variances.

In the case of a positive conclusion for the null hypothesis (variances are con-
sidered equal), the above listed calculations of variations and variances are per-
formed for the next points i= 2, lð Þ of the scale.

After processing the calibration data at all points of the measurement scale, er-
rors ξ ij! and ξ ij may be combined in one set. Respectively, the channel rms error
σ̂ch may be estimated as:

σ̂ch =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
i= 1

Pn
j= 1 ξ ij!

2 + ξ ij 
2

� �
2l n− 1ð Þ

vuut =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
i= 1 σ̂ξ i! + σ̂ξ i 
� �

2l

vuut
.

Applying the pessimistic approach, an upper bound (P = 0.95) of the σ̂ch may be
estimated in the following way:

σ̂~X = 1+ 1.96ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l n− 1ð Þp !

σ̂ch.

Subsequently, the greatest value of the channel variation is determined:

v̂ch = max
i= 1, l

v̂i.
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The value of v̂ch must be tested for its equality to zero, that is, for its insignificance. In
other words, a test for the null hypothesis H0: x̂i = x̂i! has to confirm that the calcu-
lated v̂ch = x̂i − x̂i! ≠ 0 only due to statistical variability of measurement results.

Since grouping centers x̂i and x̂i! are sums of n> 40 values of variable xi, the
central limit theorem allows to speculate about the Gauss law for the estimates of
v̂ch. Therefore, the t-test can be utilized to verify the null hypothesis. Recall that rms
deviations of both grouping centers x̂i! and x̂i are:

σ̂x̂i = σ̂x̂i! = σ̂ch=
ffiffiffi
n
p

.

Therefore, the calculated statistic Tn will have the following form:

T̂n =
x̂i − x̂i!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D̂x̂i 
n +

D̂x̂i!
n

r =

v̂ch
σ̂ch

ffiffiffiffiffiffiffiffi
2=n

p = t̂2n.

The value t̂2n must be compare with the tabular t0.95, 2n. Depending on the results of
the t-test, two options are possible for calculating the accuracy indicator of the cali-
brated channel.

The first option corresponds to the situation when there is no reason to reject
the null hypothesis H0: x̂i = x̂i!, that is, the value of v̂ch =0. In this case, the distri-
bution law f(ξ) can be identified using the Pearson’s chi-squared test in order to
determine an accuracy indicator (the confidence interval Δ~X for P=0.95). If a distri-
bution low is different from the typical ones (normal, triangular, uniform etc.), a
histogram of scattering ξ ij! and ξ ij can be constructed in order to get an empirical
estimate of Δ~X.

If the null hypothesis fails then there is variation between measurements corre-
sponding to run up and run down. In this case, the following approach can be
used. For specific measurement during an object’s tests, the value of vi is uncertain
due to changing modes (run up and down) of the object as well as carrying out
measurements at different points of a measurement scale. In other words, the test
procedure randomizes values of vch. Therefore, for a particular measurement, the
variation can be considered a random variable with a uniform distribution law at
the range ∓ vch=2.

Because the variation estimate has a uniform distribution, it may be character-
ized by the rms deviation:

σ̂v =

ffiffiffiffiffiffiffiffi
v̂ch

2

12

s
.

46 3 Steady-state performance



Finally, the rms error of the measurement results ~X accompanied by variations can
be evaluated as:

σ̂~X =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂2ch + σ̂2v

q
.

As in the previous case, a histogram of scattering values ~xij! − x̂i
� �

and ð~xij − x̂iÞ
can be constructed using the parameter σ̂~X. As a result, the indicator Δ~X of channel
accuracy can be found in an empirical fashion.

The rms (standard) deviation σ̂~X and confidence interval Δ~X characterize the in-
strumental error of a single measurement. Their values are determined by:
– the resolution of a primary transducer of the measured physical value,
– characteristics of channel components and their stability,
– methods and quality of calibration procedure.

3.2 Analysis of test result accuracy

As it was mentioned earlier, a given mode of the test object is characterized by its
performance estimated by processing measurement results ~XT ~X1, . . . , ~Xk

� �
:

~Y =Ac
~X,

where ~YT = ~Y1, . . . , ~Ym
� �

are test results. The operator of calculations Ac is a matrix

Ac =
a11 . a1k
. . .

am1 . amk

0B@
1CA

with elements aij = ∂Yi
∂Xj

whose numerical value is calculated by substitution of mea-
surement results ~X1l, . . . , ~Xkl

� �
obtained for the lth object mode.

The test results are characterized by the covariance matrix Γ~Y :

Γ~Y =AcΓ~XA
T
c ,

where Γ~X is the covariance matrix of measurement results. The latter is compiled
using the known metrological characteristics of the measurement channels:

Γ~X =
σ̂2~X1 . 0

. . .
0 . σ̂2~Xk

0BB@
1CCA,

It is a diagonal matrix due to independence of results of direct measurements
~X1l, . . . , ~Xkl.
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Hence, the knowledge of the matrices Γ~X and Ac at a given mode of object oper-
ation allows to calculate the covariance matrix of test results. The main disadvan-
tage of this approach is associated with the multi-factor nature of the task. In
addition to the values of k and m being the task factors, it is need to take into ac-
count various dependencies and constants obtained experimentally with their own
uncertainties. In addition, the calculation of the object characteristics is carried out
taking into account its geometrical sizes as well as features of the object layout on
the test stand. Such complexity of the multi-factor nature of the task makes it diffi-
cult to evaluate the accuracy of test results through mathematical calculations.

3.2.1 Simulation of measurement errors

The logical continuation of the metrological studies of the MCs described in section
3.1 is the use of the method of statistical tests. Since the metrological model of data
processing is just a propagation of measurement errors, the latter have to be repro-
duced during statistical tests. This can be implemented by simulating measurement
errors with random numbers. In other words, statistical modeling of the measure-
ment phenomenon by Monte Carlo method [4] should be carried out. To utilize this
method, one can use the random number generator which is available in the pro-
cessor of modern computers. For example, in the Intel chips, such a generator
known as RdRand supplies random numbers at the request of software. As a rule,
these numbers have the uniform distribution. By virtue of the central limit theorem,
their sum gives a normal distribution. For practical purposes, it is enough to sum 12
numbers with a uniform distribution. The numbers thus formed are called pseudo-
random, since they are only approximations of true random numbers, at least due
to the fact that they have a period of repetition of their values. A generator supply-
ing such numbers is called the pseudo-random number generator (PRNG).

The essence of statistical modeling is as follows. The operator Ac can be consid-
ered a model of a certain hypothetical system with determined numbers of inputs
and outputs. In addition to the results of measurements, the inputs of the system
may be, for example, geometric sizes, constants, dependencies etc. The outputs of
the system are estimated characteristics of the test object. Statistical simulation of
the errors of the system inputs allows to obtain the realizations of its outputs. In
principle, both instrumental and methodical errors can be simulated. To do this, as
it was stated earlier, the PRNG is used to form a set of random numbers Ξ. Their
distribution type and parameters correspond to the errors ξi of the measurement re-
sult ~xi. The set of numbers Ξ are added to the values of the system inputs ~X corre-
sponding to the given mode of the test object. The obtained values ð~X +ΞjÞ are
processed by the operator Ac providing the corresponding values ~Y j (Fig. 3.5).

Repeating this procedure n times ðj= 1, nÞ allows to obtain a series of outputs
~yi1, ... ,~yin. Their statistical properties will characterize the accuracy of test results.
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The implementation of the Monte Carlo method is related to the consideration
of the choice of size n for statistical series as well as the method of modeling the
errors of the measurement results. As far as the number n is concerned, in section
3.1.1 a confidence interval P=0.95ð Þ was determined for errors of σξ estimates in the
following form:

Δσ̂ξ =
1.96ffiffiffiffiffi
2n
p .

This expression allows to determine that n= 800 provides an uncertainty for esti-
mates of σξ equals Δσ̂ξ <0.05 5%ð Þ which is quite acceptable for engineering
applications.

An approach for modeling of measurement errors may be as follows. There are
two possibilities for describing the accuracy of measurement results. The first corre-
sponds to the case set forth in section 3.1.1 when metrological characteristics result
from statistical tests of measurement channels. In this case, errors of the MCs may be
simulated by pseudo-random numbers with the Gauss distribution law and rms devi-
ation σ̂ch. With the same deviation, normal variables have the largest uncertainty in-
terval for a given value of the confidence probability P. Such an approach leads to
error estimates from the upper bound (pessimistic estimation).

Besides this case, the measurement channel may include a device that provides
the results of measuring physical values in a digital form. An example of such a
device is a dynamometer, the output of which is the torque Msh, defined as the ten-
dency of a force to rotate a shaft about its axis, and revolution speed nsh of its shaft.
As a rule, measurements of those values in physical units are supplied by the dyna-
mometer in digital form and go through the appropriate interface to the computer.
Such devices have a metrological certificate from the manufacturer, in which the
confidence interval ΔX P = 0.95ð Þ of errors is determined. Therefore, the errors of
measurement results may be simulated by pseudo-random numbers with a uniform
distribution in the range ∓ ΔX

2 . Under the same uncertainty interval, the uniform
distribution is characterized by the greatest variance, which makes it possible to ob-
tain estimates of the errors from the upper bound.

Archives Ac

PRNG

~

y1 j
~

ym j
~

x1

ξ1j ξkj
~

σx1~

σxk~

xk

Fig. 3.5: Statistical simulation of measurement errors.
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Sequences ~yi1, . . . , ~yin i= 1,mð Þ obtained as a result of statistical modeling are
subject to processing in order to get estimates of mathematical expectations of ~Yi,
their rms deviation σ̂~yi = σ̂εi and the uncertainty interval Δ~Yi

P =0.95ð Þ. To determine
a value of the latter, an identification of the distribution law of Ei must be done. If
the distribution law is not identified a priori (normal, uniform, etc.), then a histo-
gram of εi is plotted and an empirical value of the uncertainty interval Δ~Yi

is
determined.

The commonality of the Monte Carlo method makes it possible to implement
the stated procedure of statistical tests as one of the operating modes of the AMIS.
With the change of the operator Ac, only the object (software module for processing
measurement results) of statistical tests will change.

The use of such a procedure can be considered in the example of turboprop en-
gine tests. In this example, the purpose of the test was the experimental determina-
tion of its throttle response. The engine was tested according to the scheme with
the attached dynamometer, which absorbed the engine power. This structure called
a test bed (Fig. 3.6) is located in a test cell.

During the engine test a set of the following physical values was measured: Vf – vol-
ume of consumed fuel; ρf – fuel density; tf - time of consumption of the volume Vf ;
P*

inlet – the total pressure, T*
inlet – stagnation (total) temperature, and ΔPinlet – dy-

namic pressure of the inlet airflow; Pnoz – static pressure at the edge of the exhaust
nozzle; T*

EGT – total exhaust gas temperature; Msh – shaft torque; and nsh – shaft
revolution speed. Results of these measurements are used for the calculation of
equivalent power Ne and corrected fuel consumption Gfcor. The experimental data for
a sequence of given power points (designated as “�”) is represented on Fig. 3.7.

In this case, the software module which was subjected to the statistical simula-
tions, has the functional scheme represented in Fig. 3.8.

Besides Ne and Gfcor, this diagram represents the following calculated parame-
ters: fuel consumption Gf , engine airflow Gair, shaft power Nsh and its corrected
value Nshcor as well as the jet nozzle power Nnoz.

DynamometerTurboprop engine

Test bed

Fig. 3.6: Sketch of the test bed with the engine.
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Metrological characteristics of measurement results were defined by the results
of calibration procedures of a few channels as well as from metrological certificates
of the remaining channels. Therefore, the simulation of errors of ~P*

inlet, Δ~Pinlet, and
~Pnoz was done using pseudo-random numbers with a normal distribution. Other mea-
surement errors were simulated by pseudo-random numbers with a uniform distribu-
tion. The results of statistical simulations with n= 800 are illustrated in Fig. 3.9.

Ne

Gfcor Fig. 3.7: Experimental throttle characteristic.

ΔPinlet

T*inlet

P*inlet

T*EGT

Msh
nsh

Pnoz

tf

ρf

Vf

Gf

Gair

Nsh
Nshcor

Nnoz

Ne

Gfcor

Fig. 3.8: Calculation scheme for Ne and Gfcor .
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Fig. 3.9: Relative confidence intervals (P = 0.95) of test results.
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Identification of the distribution of Gfcor estimates yields the normal law. In fact, the
chi-square test gave the value of χ2115 ≈ 120, and the critical value of this statistic at a
significance level of α= 0.05 is χ20.95, 120 ≈ 147. As a result, the confidence interval
P=0.95ð Þ of ~Gfcor was determined as Δ~Gfcor

= 1.96.σ̂~Gfcor
.

The distribution law of estimates of the equivalent power was different from the
normal distribution and a histogram of scattered values ~Nej around their mathemat-
ical expectation N̂e is represented in Fig. 3.10.

The empirical value of the confidence interval P=0.95ð Þ of ~Ne was ΔNe = 2 σ̂Ne .
As a rule, the characteristics of test objects are represented by monotonous curves

without discontinuities. This fact allows to estimate errors of test results only for the
minimum and maximum values of experimental characteristics.

3.2.2 Correlations of test results

The calculation diagram shown in Fig. 3.8 clearly demonstrates the fact that all mea-
surement results used to calculate Gfcor are also involved in the calculation of Ne.
This means that the matrix Ac is not diagonal, that is, some of its elements aij ≠0.
Recall that the covariance matrix of test results is defined as:

Γ~Y =AcΓ~XA
T
c .

Although, the covariance matrix Γ~X is diagonal, the matrix Γ~Y will not be diagonal.
In other words, it will include covariances γ~Yi ~Yl ≠0 indicating statistical dependen-
cies of test results. The rate of statistical relationship between ~Yi and ~Yl is character-
ized by a value of the corresponding cross-correlation coefficient:

ρ~Yi ~Yl
=

γ~Yi ~Yl
σ~Yi

σ~Yl

.

0.15

𝜈j

0–σNe σNe 2σNe εNe–2σNe Fig. 3.10: Histogram of Ne estimates.
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Described in section 3.2.1, the approach for estimating the accuracy of test results
was accomplished with estimates σ~Ne

and σ~Gfcor
being diagonal elements of the ma-

trix Γ~Y . In other words, only marginal variances of test results were taken into ac-
count. Such a situation is applicable in cases when accuracy of a given parameter
Yi is attributed only to its value without taking into account values corresponding
to the remaining test results.

In fact, a point of an object’s characteristics is determined by a set of parameters
Y1, . . . ,Ym. This means that for each mode of the test object, the value ~Yi is accompa-
nied by known estimates of Y1, . . . ,Yi− 1,Yi+ 1, . . . ,Ym. Therefore, parameter ~Yi has to
be characterized by a conditional PDF, and its errors – by conditional variance:

σ2~yi= =σ2
~yi=~y1 , ...,~yi− 1 ,~yi+ 1 , ...,~ym = Γ~Y

		 		
σ2~yi

			 			 ,
where |Γ~Y | is the determinant of matrix Γ~Y , and

			σ2
~yi

			- the algebraic complement for

the diagonal element σ2~yi [5]. The complement is the determinant of a matrix derived

from Γ~Y by crossing out ith row and ith column as well as multiplied by (-1)i+i = 1.

The ratio of marginal and conditional variances may be demonstrated by a sam-
ple of two variables with a covariance matrix:

Γ~Y =
σ2~y1
γ~y2~y1

γ~y1~y2
σ2
~y2

 !
.

Taking into account the above expression for σ2~yi=, the conditional variance of the
estimate ~Y1 will be:

σ2
~y1=

= Γ~Y

		 		
σ2
~y1

			 			 =
σ2~y1σ

2
~y2
− γ~y2~y1γ~y1~y2
σ2~y2

=

σ2
~y1
σ2
~y2

1− ρ2~y1~y2
� �
σ2~y2

= σ2~y1 1− ρ2~y1~y2
� �

.

This implies that the value of the conditional variance is always smaller than the
marginal value σ2~y1when ρ~y1~y2 ≠0. The effect of correlation can be visually illustrated
by a sample of a characteristic represented in Fig. 3.11.

Test results corresponding to a given object mode are represented by the point
~y1,~y2ð Þ. These estimates have a joint density function f ~y1, ~y2ð Þ related, for instance, to
the bivariate normal distribution. A PDF cross-section for f ~y1,~y2ð Þ= 0.242 provides the
rms error ellipse laid inside a rectangle with the center ~y1,~y2ð Þ and sides of 2σ~y1 and
2σ~y2 . Recall that the rms ellipse limits a two-dimensional confidence ðP= 0.68Þ region
for the point ð~y1 , ~y2Þ.
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The angle α of a major axis inclination is determined by the value of the cross-
correlation coefficient:

tg2α=
2ρ~y1~y2 σ~y1 σ~y2
σ2
~y1
− σ2~y2

.

Varying ρ~y1~y2 leads to variations of the angle a as well as to a deformation of the
ellipse limited by borders of the above-mentioned rectangle. If there is a correlation
between ~y1 and ~y2 α≠0ð Þ, the value of σ~y1= is always smaller than the value of σ~y1 . In
other words, an increase in correlation increases this difference.

Therefore, in addition to diagonal elements of the matrix Γ~Y , covariances
γ~yi~yl i, l= 1,mð Þ need to be estimated using results of the simulation procedure. Its re-
sults contain the series ~yi1, ...,~yij, ...,~yin and ~yl1, ..., ~ylj, ..., ~yln that matches the bivariate
probability density f ð~yi, ~ylÞ. Due to independence of each pair ð~yij, ~yljÞ from the previ-
ous and subsequent pairs, the logarithmic likelihood function may be written as:

lðγ~yi~yl=~yij,~yljÞ = ln L
Yn

j= 1 f ~yij, ~ylj
� �h i

=Xn

j= 1
ln f ~yij, ~ylj

� �h i
, j= 1, n.

In section 1.2.3 it was shown that the likelihood function asymptotically corre-
sponds to the normal distribution law. By virtue of the fact that in the statistical
simulation the value of n= 800, the expression for the function l(γ~yi~yl=

~yij, ~ylj) can be
written in the following form:

l γ~yj~yl=
~yij, ~ylj

� �
≈
Xn
j= 1

ln½ð2πÞ− 1 Hj j12 ×

exp −
1
2

X2
i= 1

.
X2
l= 1

ηil ~yij −μ~yi
� �

~ylj − μ~yl
� �� �

.

α

Y1

y1͂

σy2

͂

͂
͂σy1

σy1/

0 Y2y2͂ Fig. 3.11: Interpretation of a test result correlation.
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Here H is a matrix inverse to the covariance matrix Γ~yl~yiwhich can be written as:

H=Γ− 1
~yl~yi

=
σ2~yi γ~yi~yl

γ~yl~yi σ2
~yl

 !− 1

=
η11 η12
η21 η22

 !
;

The determinant of this matrix is Hj j = Γj j− 1.
A maximum of the lðγ~yl~yi=~yij,~yljÞ with respect to parameters ηij corresponds to

the following condition:

∂lðγ~yl~yi=~yij,~yljÞ
∂ηil

=0,

which will result in the following equation:Xn
j= 1

1
Hj j ·

∂ Hj j
∂ηil

− ~yij −μ~yi
� �

~ylj −μ~yl
� �� �

=0. (4)

A derivative of the determinant |Η| can be defined in the following form:

∂ Hj j
∂ηil

= ∂ η11η22 − η21η12ð Þ
∂ηil

= − ηli, i≠ l.

Therefore, the expression (4) transforms to the following equality:Xn
j= 1

ηli
Hj j · ð− 1Þi+ l =

Xn
j= 1

~yij −μ~yi
� �

~ylj − μ~yl
� �

.

Bear in mind that the element ηli of the inverse matrix equals to the algebraic com-
plement Γ~yi~yl to the element γ~yi~yl divided by the determinant jΓj. In its tern, the com-
plement Γ~yi~yl is the determinant of a matrix derived from Γ~yi~ylby crossing out ith row
and lth column as well as multiplied by − 1ð Þl+ i.

As H− 1 = Γ, the algebraic complement Hil = − ηli divided by the determinant jHj
equals a corresponding element of matrix Γ:

− ηli = Hj j= γ~yi~yl .

Thus, the expression for calculating the covariance MLE of two random variables
~yi and ~yl can be determined as:

γ̂~yi ~yl =
Pn

j= 1 ~yij −μ~yi
� �

~ylj −μ~yl
� �

n
.

In fact, this expression is obtained from the condition of the maximum of the likeli-
hood function with respect to the parameter ηil. Since the elements of matrices Γ~yl~yi
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and H are functionally related, the invariance property of the MLEs allows to state
that the obtained estimates γ̂il are theMLEs.

If instead of the unknown mathematical expectations μ~yi and μ~yl their estimates
are used, then the γ̂~yi ~yl expression is transformed to the following form:

γ̂~yi ~yl =
Pn

j= 1 ~yij − μ̂i
� �

~ylj − μ̂j
� �

n− 2
.

In turn, theMLE of the cross-correlation coefficient will be:

ρ̂~yi ~yl =
γ̂~yi ~yl
σ̂~yi σ̂~yl

.

It should be noted that estimates of all parameters calculated using simulation re-
sults have some statistical uncertainty. Therefore, estimates of ρ̂~yl ~xj with small val-
ues should be verified for statistical significance. To this end, the null hypothesis is
that the values of these cross-correlations are equal to zero ðH1: ρ̂~yl ~xj ≠0Þ. The com-
peting hypothesis is written as ðH1:ρ̂~yl ~xj ≠0Þ.

Let us assume that the random variables for which the cross-correlation is esti-
mated have a normal distribution. There is known the Fisher’s Z-transformation of
estimates ρ̂ [6]:

Tn =
ffiffiffiffiffiffiffiffiffiffi
n− 3
p

2
ln

1+ ρ̂
1− ρ̂


 �
= Z.

Therefore, the critical value of statistics Tn can be determined using the upper and
lower bounds of the confidence interval for the standard normal variable Z:

zα=2 ≤
ffiffiffiffiffiffiffiffiffiffi
n− 3
p

2
ln

1+ ρ̂
1− ρ̂


 �
≤ z1− α=2.

As a result, the condition for rejecting null hypothesis can be written as:

ρ̂j j> ρ1− α =
exp 2z1− α=2=

ffiffiffiffiffiffiffiffiffiffi
n− 3
p� �

− 1

exp 2z1− α=2=
ffiffiffiffiffiffiffiffiffiffi
n− 3
p� �

+ 1
.

When this condition is met, the difference ρ̂ from zero cannot be attributed to the
statistical variability of estimates. In particular, for n = 800 and α = 0.05, the value
of ρ0.95 = 0.07.

An actual effect of test result correlation can be demonstrated by an example of
experimental estimation of characteristics of a turbojet engine. One of its character-
istics, called an altitude-speed, defines a value of an engine’s thrust R (measured in
newtons – N) as a function of a corrected fuel consumption Gfcor (measured in kg/h).
Dependence of R on Gfcor is conditioned on values of flight speed M (measured in
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dimensionless Mach numbers) and altitude H (measured in meters). A typical view of
altitude-speed characteristics for the “Maximal Rate” (MR) mode is presented in
Fig. 3.12.

Such characteristics are estimated by testing the GTE in an altitude chamber (Fig. 3.13).

Flight altitude is determined by the value of static pressure PH created by exhaust-
ing gas from the chamber. Flight speed is simulated by supplying the inlet air with
values of the stagnation (total) pressure P*, dynamic pressure ΔP, and total temper-
ature T* corresponded to the required values of M and H.

To estimate the value of thrust R, the GTE is mounted on a moving (dynamic)
platform of the thrust measurement system (TMS). The dynamic platform is con-
nected to the frame of the TMS through flexure plates, so that the thrust force FR

RMR/R0

1.0

H = 15,000

H = 10,000

H = 5,000H = 0

0 1.0 2.0 M

Fig. 3.12: Altitude-speed characteristics of the GTE.

Exhaust
gas

P*

T*
ΔP Inlet air

GTE

Ph

Fr

Fig. 3.13: GTE tests with a simulation of flight speeds and altitudes.
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applied to the dynamic platform can be measured. Results of measurements of FR,
inlet air pressures and PH are used to calculate the value of engine thrust R.

The Gfcor are calculated using measured values of fuel mass flow Gf as well as
P* and T*.

Therefore, any experimental point of the altitude-speed characteristics will be
accompanied by the following covariance matrix:

Γ~Y =

σ2~R γ~R~G γ~R~H γ~R ~M

γ~G~R σ2~G γ~G~H γ~G ~M

γ~H~R γ~H~G σ2~H γ~H ~M

γ ~M~R γ ~M~G γ ~M~H σ2~M

0BBBBB@

1CCCCCA.

The elements of this matrix can be estimated by using the results of simulating the
measurement errors as was described in section 3.1.2. Applying this procedure to
measurement results at the MR regime in given conditions M = const;H = constð Þ
yielded the following matrix Γ~Y :

Γ~Y =

47 · 102 74 − 250 −0:32

74 4:8 −0:84 − 93 · 10− 4

− 250 −0:84 93 46 · 10− 3

−0:32 − 93 · 10− 4 46 · 10− 3 48 · 10− 6

0BBBB@
1CCCCA.

The corresponding correlation matrix is

P~Y =

1 0:49 −0:39 −0:68

0:49 1 −0:04 −0:61

−0:39 −0:04 1 0:69

−0:68 −0:61 0:69 1

0BBBB@
1CCCCA.

Theoretically, there is no correlation between only two parameters Gfcor and H because
the correction values of Gf are calculated using only measurements of P* and T*. The
non zero estimate ρ̂~G~H = −0.04 simply reflects a property of the simulation procedure.

Considerable ranks (−0.39 . . . 0.69) of rest correlations will noticeably lead to a
difference of marginal and conditional variances of thrust estimates. In the exam-
ined case, the marginal rms error of R is equal to σ̂~R = 68.6N, while the conditional
error – only σ̂~R= = 49N, that is, the marginal variance is bigger the conditional one
in 1.4 times. The considered example shows that ignoring the correlations of test
results makes the real accuracy of characteristic estimates less precise. This fact
may lead to unjustified requirements to increase accuracy of measurement chan-
nels. In other words, this could translate to needless additional cost of tests.
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3.3 Ensuring of required accuracy

Estimating the errors of test results is a typical direct analysis of a system when the
characteristics of its outputs (errors of test results) are estimated from known inputs
(measurement errors). Sometimes, results of such an analysis can reveal a discrep-
ancy between the obtained errors of parameters estimates and requirements im-
posed on their accuracy. In this case, it will be necessary to solve the inverse task
(the task of synthesis). Its solution must define requirements for the accuracy of
measurement results based on the required accuracy of test results.

As a rule, synthesis seems to be a more difficult task due to its multifactor charac-
ter. Consider such a task when it comes to ensuring accuracy of a parameter Yl. In this
case, there is a possibility to obtain its required accuracy by various combinations of
errors in measurement results. In other words, this inverse task has a multivariate so-
lution. Furthermore, it is quite possible to assume that one variant among the different
combinations of measurement errors can be optimal in the sense of a certain criterion.

3.3.1 Ranking of error sources

To form requirements for measurement errors, a quantitative description of their
link with the test result errors needs to be available. Such a description is provided
by the metrological model of data processing (errors propagation) presented in the
section 2.2:

E= AcΞ,

In accordance with this model, the link between the error εl and measurement er-
rors ξi is described by the following expression:

εl =
Xk
i= 1

ali · ξ i, (5)

where ali = ∂Yl
∂Xi
j~X and ~X are estimates of measured values at a given mode of the test

object.
Let us turn to the cross-covariance γεlξ j of variables εl and ξ j:

γεlξ j =M εl · ξ j
h i

=M
Xk
i= 1

aliξ i


 �
ξ j

� �
=

M aljξ j
2

h i
+
Xk
i= 1
i≠ j

aliM½ξ i · ξ j�= alj σ2
ξ j
,
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The remaining cross-covariances M½ξ iξ j�=0 due to independence of measurement
results. Therefore, the cross-correlation ρεlξ j will be equal:

ρεlξ j =
γεlξ j
σεlσξ j

=
alj σ2

ξ j

σεlσξ j
=
alj σξ j
σεl

.

In other words, the value of ρεlξm determines the relative part of the rms error of Yl

which is due to errors of Xj. This fact justifies the use of ρεlξ j as a quantitative mea-
sure of the links between the errors of the measured and calculated values.

Another reason for the use of ρεlξ j is associated with the simplicity of its evalua-
tion. Indeed, the results of statistical simulation of measurement errors include series
of both calculated (~Y) and measured (~X) values. Therefore, the cross-correlation coef-
ficients can be estimated as:

ρ̂~yl~xj =
γ̂~yl~xj
σ̂~yl σ̂~xj

=
Pn

i= 1 ~yli − μ̂~yl
� �

~xji − μ̂~xj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i= 1 ð~yli − μ̂~ylÞ

2.
Pn

j= 1 ð~xji − μ̂~xjÞ
2

q .

The approach for ranking sources of measurement errors can be illustrated by the
example of tests of an axial compressor stage. A scheme of a corresponding test rig
is represented in Fig. 3.14.

The single axial stage has a rotating disk (work wheel) with airfoils (blades) set on
its rim. The air stream is pumped (accelerated) by the blades in the rearward direc-
tion since the work wheel is driven by an electrical motor via a gearbox. The gear-
box is used to multiply the rotation speed of the work wheel. The stage rotor is
mounted with a set of front and rear bearings that support its position.

Outlet air

Tested stage

Throttle valve

Inlet air

Gearbox Drive motor

Fig. 3.14: Scheme of a test rig for a single axial stage.
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There are two rows of stationary airfoils (guide vanes) fixed to the stage stator.
These inlet and outlet guide vanes, convert the kinetic energy of air into pressure
energy. In addition, they parry a tendency of the air flow to move together with the
rotating wheel, that is, re-direct it axially.

The characteristics of the stage is determined by the rotation speed n of its shaft
and the stage mass air flow Gair controlled by the throttle valve. The purpose of the
tests is to estimate the stage efficiency characteristics. Its experimental values are
presented in Fig. 3.15.

This chart demonstrates a plot of maximal values of the stage efficiency η* against
corrected values of Gair for given values of ncor. The stage efficiency characterizes
the transfer of mechanical energy of the blades to the compressed air. There are two
points with highest values of η* for a given value of shaft speed.

During the tests, the following values in addition to n were measured:
– balancing torque Mb of the gearbox stator by means of a moment arm acting on

a load cell;
– pressures ΔP, P*, and temperatures T*of air streams along the radii of the inlet

and outlet cross-sections of the stage;
– lubricant oil flow Goil as well as its inlet and outlet temperatures Toil

* for the
stage bearings and the gearbox.

The statistical simulation of the errors of the measurements listed above was
done at one point of ncor by pseudorandom numbers with a uniform distribution.
The relative confidence intervals P = 0.95ð Þ of measurement results had the fol-
lowing values: ΔMb=Mb =0.5% FSð Þ; for all kinds of pressures ΔP=P = 0.3% FSð Þ;
Δn=n= 0.01% FSð Þ; ΔGoil=Goil = 2.0% FSð Þ, and ΔT* = 1�C (for air and oil). The re-
sults of statistical simulation are presented in Fig. 3.16.

The presented confidence intervals (P = 0.95) correspond to marginal distribu-
tions of estimates of η* and Gaircor .

0.8
ncor = 100%

ncor = 80%

ncor = 70%
ncor = 90%

Ƞ*

0.6

8 9 10 11 12 kg/s
Gaircor,

Fig. 3.15: Line of stage efficiency maximums.
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It should be noted that more than two dozen measurement channels used for
testing the compressor stage consist of six types of channels for measurements of:
– balancing torque of the gearbox,
– pressure of the air flow,
– temperature of the air flow,
– temperature of oil,
– flow rate of oil,
– and shaft rotation n.

This fact makes it possible to abandon the consideration of the errors of the mea-
suring channels and to reduce the problem to the consideration of errors of values
Mb, P, T*, Toil

*, Goil, and n.
Taking into account (5), the following expression for the variance of the error El

can be written down as follows:

σ2εl =
Xk
i= 1

ali2σ2ξ i .

It can be modified by dividing the left and right parts of this equality by σ2εl .:

1=
Xk
i= 1

ali2σ2ξ i
σ2εl

=
Xk
i= 1

ρ2εlξ i . (6)

Therefore, correlation coefficients ρεlξ i of ki identical channels may be combined in
one ρ~Yl

~Xi
:

ρ2~Yl~Xi =
Xki
j= 1

ρ2εlξ ij .

This approach allows to reduce the number of ρ~Yl
~Xi
taken into account.

For the example under consideration, expression (6) is converted to the follow-
ing form: X6

i= 1

ρ2
~η*~Xi

= 1.

ΔGair/Gair, %ΔȠ*/Ƞ*, %

ncor,% 0.15

2.0

1.0

3.0 0.3

8100908070 9
Gaircor,

1110 kg/sec12

Fig. 3.16: Interval errors of η* and Gaircor estimates.
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Bear in mind that the sum
P6

i= 1 ki = k is a total number of measurement channels
whose readouts are used to calculate ~η *.

Analysis of the statistical simulation results demonstrates that the dominant
sources of the ~η * errors are measurements of the balancing torque and oil tempera-
ture (Fig. 3.17).

For the mode ncor = 70%, values of the cross-correlation coefficients are ρ̂~η* ~Mb
=0.71,

and ρ̂~η*~T*
oil
=0.63 . The considerable effect of the errors in measuring the temperatures

T*
oil is explained as follows. Measurements of inlet and outlet oil temperature of the

gearbox as well as stage bearings are used to estimate the energy losses due to me-
chanical friction. At n= 70%, the relative proportion of losses is large, and an error
of 1% leads to an error of estimating the value of torque on the stage shaft of more
than 1%.

The fact that ρ̂2~η* ~Mb
+ ρ̂2~η*T*

oil
≈0.5+0.4=0.9 allows to exclude from consideration

all other measurements due to their insignificant influence on the accuracy of esti-
mates ~η*.

3.3.2 Optimization of accuracy requirements

The task of ensuring the required accuracy of estimates of Yl for a given mode of the
test object can be formulated as follows. We take the relative error δl for the accu-
racy indicator of ~Yl defined as:

δl = Δ~Yl
=μ̂~Yl

.

Here Δ~Yl
is the confidence interval P =0.95ð Þ of the estimates of Yl, μ̂~Yl

=
Pn

j= 1 ~ylj=n.
It is required to determine the accuracies of measurement results that will reduce
the value of δl by Θ times.

0.8
|ρ|

0.6

0.4 ncor, %
70 80 90 100

Fig. 3.17: Dominating cross-correlation coefficients. ð“ � ” − ρ̂~η* ~Mb
, “ � ” − ρ̂

~η*~T*oil
Þ
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Earlier, a model of error propagation for the value of Yl was represented in the
following form:

σ2
~Yl
=
Xk
i= 1

a2liσ
2
~Xi
.

We assume that the distribution law of the errors does not depend on the value of
the variances. Therefore, decreasing the accuracy of δl by Θ times means decreasing
the variance σ2~Yl

by Θ2 times. As a result, to ensure the accuracy of estimates of the
parameter Yl the following equation can be used:

σ~Yl

Θ


 �2

=
Xk
i= 1

aliσ~Xi

θi


 �2

,

where θi is corresponding requirement to decrease the measurement error of ~Xi.
Dividing both sides of this equality by σ2~Yl

and taking into account that
ρ~Yl

~Xi
= aliσ~Xi

=σ~Yl
, one will get:

Xk
i= 1

ρ2
~yl

~Xi

θ2i
= 1

Θ2 . (7)

The next step is to define the criterion that allows to determine the optimal values
of θi, that is, an optimal solution of the formulated task. As a rule, the practical ac-
tivity of mankind occurs with limited resources. Therefore, the costs of achieving
the goal are looked at as a universal criterion that may be applicable to the task of
ensuring the required accuracy of the test results. Indeed, an increase in the accu-
racy is normally achieved be using more expensive but more accurate sensors, in-
creasing the number of measurement channels, and so on. All these actions are
associated with corresponding costs.

In each particular experiment, certain values of accuracy indicators are already
provided, hence the cost of their subsequent improvement may be different. In addi-
tion, the errors of measurement results make various contributions to the magnitude
of the errors of test results. Taking into account these facts, one can assume the exis-
tence of optimal (in terms of cost) requirements for measurement accuracies.

The complexity of mentioned approach is due to requirements for an available
analytical description of costs as a function of θi. If a formal description of this in-
verse task is done, one can use the methods of the calculus of variations [7] to find
an optimal solution of the task.

It should be noted that it is almost impossible to solve the task of ensuring the
highest accuracy of test results for a given budget. In particular, this is due to the
methodological difficulties of accurate calculating the cost to improve the accuracy
of measurement results. Therefore, we will consider a different formulation of the
inverse task – ensuring the required accuracy of the test results with minimal cost.
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At the same time, the quantitative link of cost with an increase in the accuracy is
replaced by a heuristic postulate: the higher the accuracy the greater the cost neces-
sary to achieve it. In this way, the optimal condition of the considered inverse task
may be written as:

Xk
i= 1

wiθi)
θi
min.

Here wi represents the weight factors defined by experts for the comparability of
cost required to improving the accuracy of heterogeneous measurements. In addi-
tion, the values of θi are related by a condition defined by expression (7). Thus, the
task of ensuring the required accuracy of estimates of parameter Yl is formulated as
a conditional (constrained) optimization task. Its solution can be found by the
method of Lagrange multipliers. A new variable λ>0 (Lagrange multiplier) is intro-
duced in order to compose the Lagrangian function L θi, λð Þ:

L θi, λð Þ=
Xk
i= 1

wiθi + λ
ρ2~Yl~Xi
θ2i

 !
)
θi
min.

A stationary point (local extremum) of this function corresponds to the first partial
derivatives that are equal zero. As the second partial derivatives of L θi, λð Þ

∂2L θi, λð Þ
∂θi2

=
6λρ2~Yl~Xi
θi4

>0,

the stationary point is a minimum.
The differentiation of the Lagrangian function yields a system of k equations:

∂L θi, λð Þ
∂θi

=wi − 2λ
ρ2~Yl~Xi
θ3i

=0.

Solving this system together with the constraint eq. (7) yields the following expres-
sion of θi:

θi =
2Θ
wi

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wi

2ρ2~Yl~Xi
4

3

s
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
j= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wj

2ρ2~Yl~Xj
4

3

svuuut .

This expression allows to calculate a required increase in measurement accuracies
that ensures a decrease of error of Yl by Θ times in an optimal way.

This approach can be illustrated by the example discussed in section 3.1.1 – tests
of an axial compressor stage. When analyzing test results, a conditional confidence
interval of the estimate ~η*was used as an accuracy indicator. Due to the known rela-
tionship between the variances of the marginal and conditional distributions, a
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requirement to increasing the accuracy of ~η* was reduced to the marginal distribu-
tions in a form of the following equality:

Δ~η*

~η*
= 1.5%, ncor = 70%.

In others words, the accuracy of estimates of stage efficiency has to be increased by
Θn = 70% = 2.7=1.5 = 1.8 times.

It was already determined that only measurement results of Mb and T*
oil need to

be taken into account because the remaining measurements have insignificant in-
fluence on the accuracy of estimates ~η*. Actually, the sum of corresponding ρ̂2~η*~Xi
evaluated from the condition (6) is:X4

i= 1

ρ̂2~η*~Xi = 1− ρ̂2~η* ~Mb
− ρ̂2

~η*~T*oil
= 1−0.9=0.1.

As a result, the inverse task is reduced to a two-factorial problem:

ρ̂~η* ~Mb

θMb

 !2

+
ρ̂
~η*~T*oil
θT*

oil

0@ 1A2

= 1
1.82

−0.1 = 1
2.22

= 1

Θ2
m

,

where Θm = 2.2 is a modified value of the parameter Θn = 70%.
The weight coefficients were defined as wMb

¼ 10 and wT*
oil
= 1. Increasing the

accuracy of measurements of the balancing torque appears more costly. In the de-
scribed test, the temperature of the oil is measured by a single thermocouple in the
inlet and outlet positions. Using their individual calibrations or replacing them
with resistor thermometers (RTDs) will provide improved accuracy in a simple way.

The above expression of θi allows to obtain the following values of θ ~Mb
and

θ~T*
oil
:

θMb
= 2 ·Θm

wMb

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

Mb
· ρ̂2~η* ~Mb

4

3

s
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

Mb
· ρ̂2~η* ~Mb

4

3

s
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
T*
oil
· ρ̂2~η*~T*

oil

4

3

vuut
vuuut =

2 · 2.2
10

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 ·0.5

4

3

s
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50
4

3

r
+

ffiffiffiffiffiffiffi
0.4
4

3

rs
= 1.7;

θT*
oil
= 2 · 2.2

1
·
ffiffiffiffiffiffiffi
0.4
4

3

r
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50
4

3

r
+

ffiffiffiffiffiffiffi
0.4
4

3

rs
= 3.4

Thus, the measurements of Mb with relative error of 0.3% (FS) and Toil
* with error of

0.3�C will provide estimates of efficiency η* with relative error of 1.5%.
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For the stage mode n= 100%, values of cross-correlation coefficients are
ρ̂~η* ~Mb

=0.77 and ρ̂
~η*~T*oil

=0.46. So, a sum of the remainder ρ̂2~η*~Xi is:X4
i= 1

ρ̂2~η*~Xi = 1−0.772 −0.462 =0.19.

The above indicated accuracy of Mb and Toil
* measurements will provide an in-

crease in the accuracy of estimates ~η*by Θn = 100% times:

Θn= 100% = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.77
1.7
� �2 + 0.46

3.4
� �2 +0.19

q ≈ 1.5.

This implies that the values of efficiency will be estimated with errors of
1.5%≤

Δ
~η*

~η*
≤0.8% for modes of the stage in the range of 70% ≤ ncor ≤ 100%.

3.3.3 Multiple measurements

Since the statistical uncertainty of the average value of n measurements decreases
by a factor of

ffiffiffi
n
p

, multiple measurements are an effective means of increasing the
accuracy of test results. Moreover, the AMIS provides practically unlimited abilities
in terms of acquisition, storing, and averaging measurement results for the imple-
mentation of this approach. Usually, n= 10...25, which ensures a reduction of the
statistical uncertainty of the measurement results by 3 to 5 times.

At the same time, using multiple measurements is based on another reason as
well. The work of modern engineering products is controlled by the automatic con-
trol systems (ACSs). They provide the stability of the object’s parameters in steady-
state modes and required dynamic characteristics of objects during their operation
in transient regimes.

In steady-state modes, the ACS offsets the action of both external disturbances
caused by the operating conditions of the test object and internal ones associated
with physical phenomena inherent in the working process of the object. The ACS
maintains the stability of one or several controlled parameters by changing a few
controlling factors (physical values) that determine the nature of the object work-
flow. Like any technical device, the ACSs perform their job with some kind of effi-
ciency. In other words, the stability of the parameters of the object is maintained
with some level of accuracy. Hence, the magnitudes of physical values measured
during tests will fluctuate within the limits determined by this accuracy. A fre-
quency of this fluctuation is determined by the so-called object time constant τ
which characterizes the inertial lag in the change of the controlled parameters after
increasing or decreasing the values of controlling factors.

Referring to the GTE, where the main parameter to be controlled is the revolution
speed of the rotor shaft. Its controlling factor is the fuel supply to the combustion
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chamber. The engine time constant τ characterizes the inertial lag in the change of
the shaft speed when the fuel supply changes. This lag is mainly due to the moment
of inertia of the rotor, in other words, depends on its mass and diametric dimensions.
The larger they are, the longer the energy must be supplied after increasing the fuel
supply in order for the rotor speed to change. Usually, fluctuations of measured val-
ues of the GTE look similar to wave oscillations with infra-low frequencies in the
range of 0.5 . . . 1.5 Hz.

It should be noted that modern measurement channels utilize the “sample &
hold” technique which provides measurement results related to the same point in
time. The period of channel sampling is irrelevant when it comes to reduction of
statistical uncertainties related instrumentation errors. Consequently, the next sam-
pling cycle can be started immediately after acquisition of preceding data.

As far as the fluctuations of measured values are concerned, the interval Δt be-
tween measurement cycles determines the time basis of averaging the oscillations.
For example, Fig. 3.18 shows the results of multiple measurements of infra-low fluc-
tuations for two values of the time interval – Δt1 and Δt2 Δt2 = 10Δt1ð Þ.

The diagram clearly demonstrates that a small value of Δt does not provide sufficient
representation in terms of the observed magnitude of oscillating values Xi. Therefore,
the choice of the interval between the measurement cycles must be correlated with
the time constants of test objects. Moreover, Δt may vary somewhat from one mea-
surement cycle to another. Such an approach will randomize sampling the fluctuat-
ing values that are considered quasi-deterministic on a limited time base.

X1

X2

Xk
t

t

Δt1 Δt2

Fig. 3.18: Time diagram of multiple measurements.
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It should be noted that the fluctuation of a controlled parameter may greatly
affect the magnitudes of the remaining measured values. For instance, reducing the
rotation speed of the GTE by 1% may lead to a decrease of engine thrust by at least
3%. The engine ACS called the Engine Control Unit (ECU) supports rotor speeds
with errors of ≤ 0.2%. It turns out that the work of the ECU may cause fluctuations
of thrust values in the range of 0.6%. At the same time, the requirements for instru-
mental errors of the thrust measurement system stipulate their values to be ≤ 0.5%.
Therefore, when a particular object is tested, the ratio of instrumental errors σchð Þ
and fluctuations σfl

� �
of the measured values should be evaluated. This allows to

verify the significance of fluctuations, that is, to verify their proportionality with re-
spect to measurement uncertainties.

In the case of fluctuations of measured values Xi, their variances can be repre-
sented in the following form:

σ2Xi = σ2chi + σ2fli .

The variance σ2
Xi

should be estimated in modes “IR” and “MR”. If σ̂~Xi
=σ̂chi > 1.15

(equivalent of 3σ̂fli < σ̂chi ), fluctuations of measured values Xi cannot be ignored. It
means that instead of σ̂chi , the value of the estimate σ̂2Xi may be used in the Monte
Carlo procedure simulating uncertainties of measurement results. However, this
issue is methodical and cannot be applied to the subject matter of this book, which
considers only instrumental errors of measurement channels. Therefore, multiple
measurements are considered in this book as effective means of increasing the ac-
curacy of test results.
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4 Transient regimes in test objects

In addition to the steady-state modes of operation, the test objects are also tested at
transient regimes: startup, transitions from one steady-state mode to another, and
shutdown. Such tests allow to estimate the dynamic properties of the test object
which determine its behavior by observing changes of the modes and conditions of
operation. According to this task, the measurement channels of the AMIS provide
not only estimates of physical values but also their changes over time. In other
words, the channels must measure dynamic processes Xi tð Þ that occur in the test
object. Therefore, in addition to the accuracy indicators discussed in the previous
chapter, the characteristics of inertial properties of the MCs should also be consid-
ered. These studies can be performed using approaches and methods of the theory
of dynamical systems.

4.1 Processes in dynamic systems

A dynamic system is any object or process whose state is defined by a set of varia-
bles at some point in time and for which there is a rule that describes the evolution
of the initial state over time. If for a given moment of time only one future state
follows from the current state, then the system is deterministic.

4.1.1 Deterministic processes

A system is called linear if, under the influence of an input process (disturbance)
xin tð Þ, its state xout tð Þ at the moment of time t is determined by the following convo-
lution equation: ðt

0

h t − τð Þxin τð Þdτ=
ðt
0

h τð Þxin t − τð Þdτ= xout tð Þ.

Here h tð Þ is a certain function, assumed to be piecewise continuous and it is called
the weight function of the system. This function h tð Þ describes the state of the sys-
tem at the moment t after exposure to Dirac’s delta (impulse) function δ t − t0ð Þ from
a state of rest. The delta function has zero width and infinite height:

δ t − t0ð Þ= +∞, t = t0

0, t ≠ t0
;

(
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its integral (area) equals 1: ð∞
−∞

δ t − t0ð Þdt = 1.

Another name for h tð Þ is the impulse-response function (IRF).
The weight function defines the influence of the system input at the moment

t − τð Þ on its output at time t. Such a linear system is called time-invariant because
the weight function is a function of the time difference. A physically realizable sys-
tem should only respond to previous values of the input x1 tð Þ, that is, the following
condition must be met:

h tð Þ = 0, t <0.

A system is said to be stable, if with any input limited in value, its output is also
limited in its value. In other words, a stable linear system must have an absolutely
integrable weight function: ð∞

−∞

h tð Þdt <∞.

In the frequency domain, a linear dynamic system can be characterized by the fre-
quency response function (FRF) H(ω). The FRF is defined as the Fourier transform
of the weight function:

H ωð Þ=
ð∞
−∞

h tð Þ · e− iωtdt,

where ω= 2πf is the angular frequency, f – the cyclic frequency, and i=
ffiffiffiffiffiffiffi
− 1
p

. So,
the FRF is a complex function that has two equivalent representations:

H ωð Þ=U ωð Þ+ i ·V ωð Þ=A ωð Þ · eiΦ ωð Þ.

U(ω) and V(ω) are its real and imaginary parts, respectively; A(ω) and Φ(ω) are the
magnitude (amplitude) and angle (phase) components of the vector representation
of the FRF. The relationships between these two forms of the H(ω) is described by
the following formulas:

A ωð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U ωð Þ2 +V ωð Þ2

q
;

Φ ωð Þ= tan− 1 V ωð Þ
U ωð Þ
� �

.

The frequency response function can be given the following physical interpretation.
Let the input of a linear system be a harmonic oscillation of the following form:

4.1 Processes in dynamic systems 71



Xin tð Þ = A1 sin ωt +φð Þ,

and its second derivative is:

d2xin tð Þ
dt2

= −ω2 · xin tð Þ.

Taking into account that:

dnxout tð Þ
dtn

=
ðt
0

h τð Þ d
nxin t − τð Þ

dtn
dτ,

one can write:

d2xout tð Þ
dt2

=
ðt
0

h τð Þ · −ω2� �
· xin t − τð Þ dτ= −ω2 · xout tð Þ.

This means that the output process of the system is also harmonic. Consequently,
the ratio of the amplitudes of the input and output processes determines the A ωð Þ
component, and the difference of their phases determines the Φ ωð Þ component.

Note that the convolution of two functions in the time domain corresponds to
the multiplication of the Fourier images of these functions. As a result, the fre-
quency spectrum of the output process of a linear system can be defined as the
product of the input spectrum and the system’s FRF.

An example of a linear system is a system described by an ordinary differential
equation with constant coefficients:

a0
dnxout tð Þ

dtn
+ a1

dn− 1xout tð Þ
dtn− 1

+ . . . + anxout tð Þ=

b0
dmxin tð Þ
dtm

+b1
dm− 1xin tð Þ
dtm− 1 + . . . +bmxin tð Þ, m< n.

One of the mathematical descriptions of the dynamic system is its transfer function
H(s). The transfer function is the ratio of the Laplace transforms of the output and
input processes of the system:

H sð Þ= xout sð Þ
xin sð Þ ,

where:

x sð Þ=
ð∞
0

x tð Þe− stdt.
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Here s= σ + iω is a complex frequency and x sð Þ is the Laplace image of the func-
tion x tð Þ. The Laplace transform may be interpreted as an operator that transforms
a function of time t to a function of complex frequency s. Being similar to the
Fourier transform, the Laplace transform is a complex function of a complex vari-
able s while the Fourier transform is a complex function of a real variable ω.

An important feature of the Laplace transform, which predetermined its wide
applications in scientific and engineering fields, is that many relations and opera-
tions on the original functions correspond to simpler operations of their Laplace im-
ages. For instance, the convolution of two functions is reduced to a multiplication
operation, and the linear differential equations become algebraic. The above differ-
ential equation in the space of Laplace images takes the following form:

a0snxout sð Þ+ a1sn− 1xout sð Þ . . . + anxout sð Þ
= a0sn + a1sn− 1 + . . . + an
� �

· xout sð Þ

= b0sm +b1sm− 1 + . . . +bm
� �

· xin sð Þ.

Thus, the transfer function equals to the following expression:

H sð Þ= xout sð Þ
xin sð Þ = b0sm + b1sm− 1 + . . . +bm

a0sn + a1sn− 1 + . . . + an
,

which is completely determined by the coefficients of the differential equation de-
scribing the system. If k linear systems are connected in series, then the transfer
function HΣ ωð Þ of this series is equal to the product of the transfer functions Hj ωð Þ
of these systems:

HΣ sð Þ=
Yk
j= 1

Hj sð Þ.

The expression for the FRF can be obtained from H(s) by simple replacement of “s”
with “iω”:

H ωð Þ= b0 iωð Þm +b1 iωð Þm− 1 + . . . + bm
a0 iωð Þn + a1 iωð Þn− 1 + . . . + an

.

As an example, consider the behavior of the GTE in steady-state mode under exter-
nal influences. Recall that such a situation was discussed in section 3.3.3, where
the engine as a dynamic system had an input in the form of fuel consumption Gf tð Þ,
and its output was the rotor speed n tð Þ. The engine as a dynamic system may be
described by the ordinary differential equation of the first order:

τn
dn tð Þ
dt

+ n tð Þ=K ·Gf tð Þ.
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Here τn is a time constant which characterizes the inertial lag in the change of n tð Þ
when Gf tð Þ is changed; K is a gain of the dynamic system in steady-state mode. Let
the fuel supply be changed at the moment t0 in a form of a step increase of its value.
Such a change may be mathematically described by the Heaviside step function:

1 t − t0ð Þ= 1, t ≥ t0

0, t < t0
.

(

The corresponding engine behavior (change of the rotor speed) is illustrated in Fig. 4.1.

A value n1 corresponds to a new steady-state mode when the transient processes in
the engine are finished.

The appropriate FRF of the engine will be:

H ωð Þ= K
1+ iωτn

= K 1− iωτnð Þ
1+ iωτnð Þ 1− iωτnð Þ

= K
1+ω2τ2n

− i · Kωτn
1+ω2τ2n

.

Correspondingly, the amplitude and phase components of the engine’s FRF have
the following forms:

A ωð Þ= Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ω2τ2n

p ;

Φ ωð Þ= tan− 1 −ωτnð Þ.

These components are usually represented in a form of the plots against the loga-
rithmic frequency axes (Fig. 4.2).

The value f = fc = 1=τn is called the cutoff frequency; a corresponding value of
Að fcÞ= − 3 dB. After fc, a roll-off rate of Aðf Þ is − 20 dB per decade. The phase com-
ponent of the FRF has a zero value almost up to a frequency of 0.02fc. Afterwards, it

n0

n1

n(t)
3τn

τn

KGf0

KGf1

0.
95

(n
1–

n 0
)

0 t0 t Fig. 4.1: Change in n(t) after increasing Gf (t).
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changes to a value of −45° at fc and asymptotically tends to −90°. The frequency
range 0...fc is called bandwidth in which most of the energy of the system output is
concentrated.

Modern GTEs have values of τn > 1 sec for majority of operational modes, that is,
the cutoff frequency is fc < 1Hz. For the IR mode, the time constant is an order of
magnitude greater ðfc <0.1HzÞ. This is due to the fact that in the IR mode the engine
has a low rate of fuel consumption. As such, a longer time lag is needed to accumu-
late energy in order to change the rotor speed.

In the AMIS, the process X tð Þ is presented by its values at moments of time ti.
Such a conversion of a continuous process X tð Þ into a set of samples X tið Þ is carried
out by the ADC described in section 2.1.

Sample X tið Þ is a readout of X tð Þ at a point in time ti =Δt · i: The interval Δt is
referred to as the sampling interval. The theoretical base of the discrete representa-
tion of the process X tð Þ is the Nyquist-Shannon-Kotelnikov theorem. Its other name
is the sampling theorem.

Particularly, Shannon has formulated it in the following terms. If a process X tð Þ
contains no frequencies higher than fm, then this process is completely determined
by giving its ordinates at a series of points spaced Δt = 1= 2fmð Þ apart. The value
fN = 2fm is called the Nyquist frequency (rate).

The theorem sets up a maximum value of interval Δt, however, for practical
purposes its value is obtained from the expression of the form:

0.01 0.1 1.0 10 100 f/fc

f = fc = 1/τ

A(f)/k, dB

ɸ(f),˚

–90

–45

0

–40

–20

–3
0

0.01 0.02 0.1 1.0 10 100 f/fc

Fig. 4.2: The amplitude and phase plots.
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Δt = 1
k · fN

,

where k> 1 is a margin coefficient whose value depends on how much a real pro-
cess is approximated by a process featuring the spectrum limit fm as well as on the
purpose of subsequent data processing.

4.1.2 Random processes

In section 2.1, the measurement channel model was established in the following form:

X
⁓
=X +Ξ.

Taking into account the time factor, one can write:

X
⁓
tð Þ=X tð Þ+Ξ tð Þ,

where X tð Þ is the measured deterministic process and Ξ tð Þ is the measurement (in-
strumental) noise.

By a random process, one implies a time function whose instantaneous val-
ues are random variables. Samples ξ 1, . . . , ξ i, . . . , ξn of the instrumental noise
at discrete moments t1, . . . , ti, . . . , tn may be viewed as a random vector
ξT = ðξ 1, . . . , ξ i, . . . , ξnÞ. Note that the order in this sequence is of importance for
a random process whereas the multivariate vector mentioned in section 1.1.1 had
indexes for notational convenience only.

The random series ξ 1, . . . , ξ i, . . . , ξn is referred to as stationary if the distribu-
tion function Fðξ i + 1, . . . , ξ i+ nÞ of any of its n values is independent of index “i”. In
this case any n consecutive variables have the same distribution regardless of their
position in the series with expectation

μξ =M ξ i½ �=
ð∞
−∞

ξ i f ξ ið Þ dξ i,

and variance

Dξ =σ2ξ =M ξ i −μξ
� �2� �

=
ð∞
−∞

ðξ i −μξ Þ2 f ξ ið Þ dξ i.

The relationship between two values ξ i and ξ i+ k of the stationary series with a lag k
is characterized by the covariance:

γk =M ξ i −μξ
� �

ξ i+ k −μξ
� �h i

= γ− k,
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as well as by the correlation:

ρk =
γk
Dξ

= ρ− k.

Sequences of process covariance and correlation are termed the covariance and cor-
relation functions, respectively.

The Fourier transformation of the covariance function of the stationary process
is called a one-sided power spectral density:

S ωð Þ= 1
π

X∞
i= −∞

γi cos ω . ið Þ, Δt = 1, 0 ≤ ω ≤ π .

The expression for covariance represented in terms of S ωð Þ is:

γk =
ðπ
0

cosðω · kÞS ωð Þdω,

and variance, in particular, is:

Dξ = γ0 =
ðπ
0

S ωð Þdω.

The power spectral density, which called the spectrum going forward, shows the distri-
bution of the random process variance (power) within a continuous frequency range
0 . . .π. Hence, the value SðωÞ . dω may be interpreted as an approximate portion of
the process variance within the frequency range ω . . . ω+dωð Þ. An example of the
spectrum S ωð Þ of instrumental noise of some measurement channel is represented in
Fig. 4.3.

A random process Ξ tð Þ with a constant value of S ωð Þ = Dξ=π in the range 0 . . . π is
called “white” noise with a finite bandwidth. The covariance function of such a pro-
cess is:

γ τð Þ=Dξ ·
sin πτð Þ

πτ
.

f/fN

S(f)

0 0.5

Fig. 4.3: Spectrum of the instrumental noise.
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In case of a discrete sequence ξ 1, . . . , ξ i, . . . , ξn, the time lag τk = Δt · k is equal to
k with Δt = 1. Since for k = 1, 2, . . ., the value of sinðπkÞ=πk= 0, there is only the
value of γ τ=0ð Þ= γo =Dξ . In other words, samples of the instrumental noise Ξ tð Þ are
uncorrelated. The value of Dξ can be estimated as σ̂2~X obtained during the static cali-
bration of the measurement channel discussed in section 3.1.2.

4.2 Dynamic calibration of measurement channel

After static calibration of the measurement channel, it can be considered as a linear
dynamic system with unity steady-state gain [8]. It means that the inertial proper-
ties of the measurement channel can be fully described by its IRF. Therefore, the
purpose of the dynamic calibration of the measurement channel is the determina-
tion of its weight function h tð Þ.

4.2.1 Calibration procedure implementation

The procedure for dynamic calibration as whole follows the scheme shown in
Fig. 3.1. The only difference is that instead of the constant magnitude of the value X,
the reference process X tð Þ must be reproduced at the channel input. If X tð Þ will be
the Dirac’s delta function δ tð Þ, the channel output ~X tð Þ will correspond to h tð Þ.

It should be noted that in practice, the delta function can be reproduced only in
the form of some approximations. Therefore, there is a methodical problem to as-
sess the conformity of the real reference process to the delta function. In [2], possi-
ble approximations of the reference process were considered in the form of a
rectangle and an isosceles triangle. It was shown that the spectra of both approxi-
mations have conformity to the spectrum of the δ tð Þ only in a limited frequency re-
gion. In other words, ~X tð Þ will correspond to the h tð Þ with some kind of error. In
addition to this methodological issue, the immediate (after the direct “step”) repro-
duction of the reverse “step” is a complex technical task in itself. Therefore, from
the standpoint of the technical implementation, it is preferable to use the Heaviside
function 1ðtÞ as the reference process. It should be noted that the methodical aspect
of non-ideality of such a reference process is greatly simplified. In reality, a source
of the reference process being a physical device will produce a certain transient pro-
cess instead of an ideal 1ðtÞ. This means that this device has some transfer function
Href sð Þ of its own. Therefore, the calibration results will describe the properties of
the calibration device and the MC. In other words, they will allow us to determine
the common transfer functions:
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HΣ sð Þ =Href sð Þ ·Hch sð Þ.

With known Href sð Þ and HΣ sð Þ, the transfer function Hch sð Þ can be found from above
expression. In practice, the source of the reference process in form of the function
1ðtÞ can be characterized by only the time constant τref . From the Fig. 4.2, it follows
that if the cutoff frequency of the calibrated channel is less than 1

50τref
, then the influ-

ence of Href sð Þ can be neglected.
As an example, Fig. 4.4 represents a scheme of a calibration device reproducing

a pressure step [2]. This device can be used to provide a pressure step at the inlet of
the pneumatic pipeline of the pressure measurement channel shown in section 2.1
(Fig. 2.4).

The main components of the device are: 1 – charging cavity; 2 – working cavity;
3 – reference pressure sensor; 4 – pipeline inlet; 5 – high-speed valve; 6 – electro-
magnet (solenoid). The valve allows a quick bypass of compressed air from the
charging cavity to the working cavity. Appropriate selection of the volume of these
two cavities and an air pressure P0 ensures the required steady-state value of the
air pressure in the pipeline.

The time constant of this device is τref ≈0.008 sec which corresponds to the cut-
off frequency 125 Hz. Therefore, the inertia of the considered device can be neglected
when it is used for the calibration of channels with cut-off frequencies ≤ 2.5 Hz.

A reference sensor having a time constant 20 times smaller than τref is used to
determine the moment to of occurrence of a pressure step in the working cavity.

As it is known, there is a one-to-one relationship between the Dirac’s delta and
Heaviside’s step functions:

δ tð Þ= d1 tð Þ
dt

.

1
6

5

42

P0

3

Fig. 4.4: A scheme of a calibration device.

4.2 Dynamic calibration of measurement channel 79



If a response x
⁓
tð Þ of the channel to the input in the form of the 1 tð Þ is available, then

the weight function may be determined by simple differentiation of the process ~x tð Þ:

~h tð Þ= d~x tð Þ
dt

.

Recall that the process ~x tð Þ is the sum of the channel response to the reference pro-
cess and the channel instrumental noise:

x
⁓
tð Þ= x tð Þ+ ξ tð Þ.

A discrete (at moments tj =Δt · j) representation of the channel output has the fol-
lowing form:

x
⁓

tj
� �

= x
⁓
j = xj + ξ j, j=0, 1, 2, . . .

First of all, we consider the determination of h tð Þ by differentiating the channel re-
sponse when its input is the Heaviside function. In the case of a presence of discrete
values xj, their derivative can be calculated using its approximation by the first-
order finite difference:

dx tð Þ
dt
jt = tj− 1

≈
xj − xj− 1

Δt .

As a result, the estimations of the derivative of the process x tð Þ at point tj− 1 can be
done by calculating the value xj − xj − 1

� �
and dividing it by the sampling interval Δt.

In section 4.1.1, it was noted that the sampling interval of the continuous process is
related to the Nyquist frequency:

Δt = 1
fN

.

From the definition of the first order derivative:

dx tð Þ
dt
jt = tj− 1

= lim
Δt!0

x tj
� �

− x tj −Δt
� �
Δt ,

it follows that with decreasing the time interval Δt the first-order difference ap-
proaches the value of the derivative. This means that the smaller the sampling in-
terval, the more accurate the estimate of the weight function.

Let’s turn to the second term of ~x tð Þ – the instrumental noise ξ tð Þ. Its derivative
can be represented in the following form:

dξ tð Þ
dt
jt = tj− 1

≈ ζ j− 1 =
ξ j − ξ j− 1

Δt .

Therefore, ζ j − 1
is a random variable with rms value related to the rms error of a

measurement channel σ̂~X:
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σ̂ζ =
ffiffiffi
2
p

Δt · σ̂~X .

Obviously, the smaller the sampling interval Δt, the greater the statistical error of
estimates of h tð Þ.

These results demonstrate the existence of two errors of estimates of the channel
weight function. One of them, being deterministic (bias), is caused by calculating the
derivative via the first-order difference. Another error, being random, is due to the
instrumental noise inherent to the MC. Both of them are influenced by a change in
the value of sampling interval in opposite ways. The analysis of the behavior of these
errors as a function of Δt can be helpful to make a choice of sampling interval for a
particular measurement channel.

Consider as an example a channel corresponding to the first-order differential
equation. This means that the channel can be modeled by a low-pass filter with a
cutoff frequency fc = 1=τch. This type of description of a dynamic measurement
channel is often used in practice. The weight function of the low-pass filter corre-
sponds to the following expression:

h tð Þ= 1
τ
e− t=τch .

If the input of this channel is affected by the function 1 tð Þ, then the output (transient)
process of the measurement channel is described by the following expression:

x tð Þ= 1− e− t=τch
� �

.

The measuring scale of the channel in the form 0 . . . 1 is adopted to simplify the fol-
lowing discussions of precision issues.

First of all, let’s consider the systematic error of estimates of the weight func-
tion caused by calculating the first difference of the transient process (Fig. 4.5).

1.0

X(t)
τch

0 tΔt Fig. 4.5: Transient process in the measurement channel.
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The sampling interval Δt can be associated with the time constant of the low-pass
filter in the following way:

Δt = τch
k

.

The theoretical value of the weight function at moment t = 0 is determined as:

h t =0ð Þ= h0 =
dx tð Þ
dt

= 1
τch

.

On the other hand, the estimate of h0, calculated through the first-order difference
of the series xi, can be represented as:

dx tð Þ
dt
jt =0 ≈

x Δtð Þ
Δt = k

τch
· 1− e−Δt=τch
� �

= k
τch

· 1− e− 1=k
� �

.

Thus, the relative bias δh of h0 estimates can be defined by the following expression:

δh =
dx tð Þ
dt jt =0 − h0

h0
=

k
τch

· 1− e− 1
k

� �
1

τch

− 1

= k · 1− e− 1
k

� �
− 1.

The value of δh <0 because for k= 1 the value of δh ≈ −0.37, that is, the value of hj is
always underestimated. It should be noted that the rate of the δh change decreases
when k increases.

As demonstrated earlier, the differentiation of the instrumental noise ξ j leads to
a statistical error whose relative value can be determined as:

δζ =
σ̂ζ
h0

=
ffiffiffi
2
p

· k · σ̂~X .

This error may be characterized by a confidence interval Δζ P =0.95ð Þ as follows:

Δζ =
ffiffiffi
2
p

· k · Δ̂~X .

where Δ̂~X is the confidential interval of the measurement channel error. The linear
dependence of Δζ on k implies a constant rate of change.

Finally, the total error of differentiating the measurements ~xj can be described
by the following expression:

δΣ = jδhj+Δζ = 1− k 1− e− 1
k

� �
+

ffiffiffi
2
p

· k · Δ̂~X .
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Recall that with increasing the value of k, the behavior of the systematic (bias) and
random components of δΣ is opposite. In particular, the value of jδhj decreases with
growing k while the value of Δζ increases. Furthermore, the rate of changing jδhj
and Δζ is different as well, and for small values of k, the bias dominates. Due to the
fact that the rate of bias change falls with increasing k and the rate of Δζ is con-
stant, the values of these errors will be equal for a certain k. Such an equality of
these errors can be written in the following form:

1− k 1− e− 1
k

� �
=

ffiffiffi
2
p

· k · Δ̂~X ,

that is, it depends only on a value of Δ̂~X. In particular, for the value
Δ̂~X =0.003 0.3%FSð Þ, the estimate of the bias of h0 compares with the statistical
error at k= 11ðjδhj=0.044 and Δζ =0.047Þ as it is shown in Fig. 4.6.

Additionally, at this point the negative rate of the value jδhj reduces to the constant
positive rate of the statistical error. This means that the first derivative of δΣ is zero
indicating the achievement of the optimum. With subsequent increases of the value
of k the positive rate of the Δζ begins to dominate because the rate of jδhj continues
to decline. Consequently, the total error δΣ acquires a growing positive rate. This
means that its second derivative is positive, that is, the optimum is the minimum.
In other words, at this point the error of estimates of h0 has a minimal value.

It should be noted that an increase of δΣ values will occur with a much lower rate
than its decrease before the minimal value. For example, when k= 20, the value
δΣ =0.11, that is, it will increase only by 1.2 times. Note that when value k is changed
from 1 to 10, the value of δΣ decreased by ≈ 4 times (from 0.372 to 0.091).

In addition to taking into account the purpose of processing calibration data, the
choice of k must ensure the Nyquist rate as well. For an adequate discrete representa-
tion of the output process of the low-pass filter, it is necessary to know its maximum
frequency fm. From Fig. 4.2 it follows that when f = 10fc, the value of the amplitude
component A fð Þ=0.1. In other words, beyond this frequency the harmonics of the

0.1

0.2

0.3

0.4

Δζ

δ

|δh|

0 5 15 20 k10 Fig. 4.6: Changing values of jδhj and Δ
ζ
.
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input process x tð Þ are attenuated by more that an order of magnitude. If the value
fm = 10fc will be assumed as the frequency bandwidth (passband), the Nyquist fre-
quency will be equal to:

fN = 2fm = 20
τch

.

This means that the interval Δt will be tied with the constant time of the channel
via the following expression:

Δt = 1
fN

= τch
20

.

If we turn to the above example with Δ̂~X =0.003, the value k= 20 leads to follows
errors of h0 estimates:

δΣ = jδhj+Δζ ≈0.025+0.085=0.11.

This example quantitatively illustrates the effect of numerically differentiating the
measurements ~xj of the transient process x tð Þ. One can see that the instrumental
error 0.3% (FS) has led to an increase in the error of estimates of h0 by a factor of 28
(up to 8.5%). It should be noted that the random error dominates exceeding the
bias by 3.4 times.

At the moment t =0, the value of jδhj is 0.025. At the points t = τch, 2τch, 3τch, the
values of biases related to h0 = 1=τch are equal to 0.009, 0.003, 0.001. This means
that they are less than the random error by more than an order of magnitude. Due to
the dominance of Δζ , a possible decrease of the error δΣ is mainly associated with a
decrease in the magnitude of Δζ . To do this, it is needed to obtain l realizations of
~x tð Þ as their averaging will decrease the value of Δζ by a factor of

ffiffi
l
p

. In addition to
the multiple calibrations, another approach to reduce the influence of the random
noise ζ j will be demonstrated in the following section.

Estimates ~hj obtained by numeric differentiation of the series ~xj will contain all
information about inertial properties of the measurement channel.

4.2.2 Approximation of frequency response

The estimates ~hj j= 1, . . . , nð Þ obtained during the channel calibration can be used to
calculate the FRF as follows:

~H ωð Þ=
Xn
j= 1

~hj · e− iω = ~U ωð Þ+ i~V ωð Þ.

The use of the FRF is preferable, since it allows one to “compress” the amount of
experimental data obtained in the time domain. The point is that the bandwidth
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of measurement channels is usually an order of magnitude larger that the fre-
quency spectrum of the processes observed in the test object. Therefore, only val-
ues of ~H ωð Þ in the frequency spectrum inherent to the test object need to be taken
into account. Moreover, the parametric (compact) description of channel inertial
properties may be done in the form of a transfer function. There is sufficient pre-
sentation [9] of methods for the identification of transfer functions of dynamic sys-
tems using experimental data. Some of them are already implemented in COTS
products.

However, for illustrative purpose consider the method presented in [2]. According
to this method, the evaluation of factors aq q= 1, nð Þ and br r = 1,mð Þ of the TF occurs
by minimizing a functional I having the following form:

I =
Xk
j= 1

				~H ωj
� �

−
Bm ωj
� �

An ωj
� � 				2

=
Xk
j= 1

				 ~H ωjð Þ − 1+b1 iωj
� �

+ . . . +bmðiωjÞm
1+ a1 iωj

� �
+ . . . + anðiωjÞn

				2 )aq , br min.

An effective solution to this task requires setting fairly close initial values of aq and
br, which often presents significant complexity. To avoid this, the initial task was
reduced to an iterative procedure to minimize the quadratic function of factors aq
and br. The lth step of that procedure is formalized in the following form:

Il =
Xk
j= 1

α2j, l− 1

		~H ωj
� �

·An ωj
� �

−Bm ωj
� �		2

=
Xk
j= 1

α2j, l− 1jβjj2 )
aq , br

min,

Here α2j, l− 1 = 1=jA l− 1ð Þ
n ωj

� �j2 is calculated using the values of factors aq obtained in
the previous l− 1ð Þth step.

Conditions of the Il minimum determined as

Xk
j= 1

α2j, l− 1

∂ jβjj2
∂aq

=0;

Xk
j= 1

α2j, l− 1

∂ jβjj2
∂br

=0

(8)

lead to a system of n+mð Þ equations with respect to aq and br. These equations are
linear because the following are linear expressions with respect to aq and br:
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∂jβjj2
∂aq

= ½~H ωj
� �

~H* ωj
� �

An ωj
� �

+ ð− 1Þq ~H ωj
� �

~H* ωj
� �

An ωj
� �

− ~H ωj
� �

Bm −ωj
� �

− ð− 1Þq ~H* ωj
� �

Bm ωj
� ��ðiωjÞq;

∂jβjj2
∂br

= ½~H* ωj
� �

An −ωj
� �

+ ð− 1Þr ~H ωj
� �

An ωj
� �

−Bm −ωj
� �

− ð− 1Þr ~H*Bm ωj
� ��ðiωjÞr.

Thus, the approximation procedure is reduced to solving the system of n+mð Þ lin-
ear algebraic equations on its lth iteration step.

The initial values of α 2
j, 0 are set on a priori information about n, m and values of

aq. The presence of this data accelerates the convergence of the procedure. If there is
no such data, then the order of the TF can be sequentially modified from
n = 1 and m = 0 to n = 2, m = 1 and so on. It should be noted that the convergence of
the procedure remains quite effective even with an arbitrary choice of aq, for instance,
aq = 0.

The iterative process of approximating the FRF ends when two conditions are
satisfied:

Il − Il− 1j j≤ δ0;Xn
q= 1

			a lð Þ
q − a l− 1ð Þ

q

			+ Xm
r = 1

			b lð Þ
r − b l− 1ð Þ

r

			≤ δ1.

Here δ0 and δ1 are given numbers characterizing the convergence of the algorithm
and accuracy of estimates, respectively.

This approach was tested using analog models of dynamic systems with trans-
fer functions up to n ≤ 4. During testing, a high rate of convergence of solutions was
demonstrated: usually, a stabilization of factor estimates in the third significant
digit occurred with l≤ 5. When the normal measurement noise with σch = 10% FSð Þ
was added to a single realization of model transient processes, the relative error in
the factor estimates did not exceed 2%. Hence, the approximation procedure re-
duces the influence of the instrumental noise in addition to the averaging of several
realizations of the transient process mentioned in section 4.1.1.

Implementation of this method may be illustrated by the example of determin-
ing the transfer function of the channel for measuring the thrust of the GTE. The
dynamic platform of the thrust measurement system (TMS) with an engine was
loaded in the direction of flight by means of a steel cable with known tensile
strength (Fig. 4.7).

The platform was preloaded to FR1 to ensure the observations of a possible “over-
shoot” in the limits of a channel measurement scale. When the tensile strength (FR2 )
was reached, the cable broke, and the platform began free movement to FR1 (Fig. 4.8).
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The steel cable was included in the electrical circuit of the platform motion de-
tector. At the moment of its rupture t0ð Þ, the electrical current through the cable
was stopped, and the detector issued a command to start measuring the transient
process FR tð Þ. This procedure was repeated several times. Averaging measurement
results made it possible to reduce the influence of the instrumental noise on the
calibration data. Subsequent processing of these data allowed to determine the esti-
mates of the FRF presented in Fig. 4.9.

To pull

Fig. 4.7: Dynamic calibration of the TMS.

Fr(t)
Frmax

Fr2

Fr1

0 t0 t Fig. 4.8: The TMS’ transient process.
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Fig. 4.9: The experimental FRF of the TMS.
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As you can see, the frequency response contains two resonant frequencies in the re-
gions of 11 Hz and 18 Hz. They are related to the flexure plates (Fig. 4.10) through
which the dynamic platform is connected to the frame of the TMS.

The oscillations arising from the free movement of the platform depend only on
properties of the material, shape and size of the plates as well as the design of their
fastening. Observed frequencies are associated with longitudinal-torsional oscilla-
tions of the flexure plates. The torsional frequencies can occur if the center of mass
of “platform + engine” is not correlated with the point of the cable attachment. An
additional reason for their appearance is the direction of the cable tension that is
not strictly parallel to the longitudinal axis of the planform.

The design of the TMS allows the movement of the planform only in the longitu-
dinal direction corresponding to the direction of the engine thrust vector. As such,
the damping of the 11 Hz frequency is less than the damping at the 18 Hz frequency.

Earlier, it was noted that the time constant of the GTE is measured in seconds and
for the IR mode, it can be an order of magnitude larger. Besides, the change of the
engine modes is carried out under the control of the ECU. This unit implements dedi-
cated algorithms that ensure stable, efficient and safe engine operation. In addition,
their implementation leads to a smooth change in engine parameters. As such, the ap-
proximate frequency width of the FRF can be limited to a range of 0 . . . 2Hz. The ap-
proximating TF of the thrust measurement channel was defined with n = 2 andm = 1.

The values of ~H ωð Þ in the above frequency range were approximated by utilizing
the system (8). The following view of the transfer function was yielded:

~H sð Þ= 1.0+0.116s
1.0+0.124s+0.0031s2 .

Fig. 4.10: The flexure plate design.
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The phase component of the corresponding FRF is represented in Fig. 4.11.

Here, the unbroken line represents the calibration data, and the line marked by
circles corresponds to the approximating frequency response. It can be seen that
there is a good match of calibration and approximation data. The term “approxima-
tion” is used instead of identification, since the obtained TF corresponds only to a
part of the frequency width of the measurement channel.

4.3 Estimation of dynamic characteristics

As it was mentioned earlier, the inertial properties of a measurement channel affect
the input process xin tð Þ. The corresponded transformation into the output process
xout tð Þ is determined by the weight function h tð Þ of the MC. The result of such a
transformation is quantitatively described by the convolution equation which re-
lates to the Fredholm integral equation of the first kind:ðt

0

h t, τð Þxin τð Þdτ= xout tð Þ.

Therefore, the knowledge of h tð Þ and xout tð Þ gives a theoretical possibility to miti-
gate the influence of channel inertia. Such a procedure to recover the measured
process can be fulfilled by solving the above integral equation for xin tð Þ.

In section 4.2.1, it was shown that the weight function h tð Þ as well as input and
output processes of the channel can be provided in discrete form:

h tj
� �

= h Δt · jð Þ= hj, j=0, m− 1ð Þ;
xin tið Þ= xin Δt · ið Þ= xin, i;

xout tið Þ= xout Δt · ið Þ= xout, i, i=0, n− 1ð Þ.

–1.5
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–0.5

0
0.5 1.0 1.5 2.0 f,Hz
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Fig. 4.11: Phase component of the FRF.
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If Δt = 1, then the convolution integral for time tk =Δt · k can be replaced by a sum
using, for instance, the formula of rectangles:Xm− 1

j=0

hk − j · xin, k = xout, k

The presence of measurement results in the form of a vector Xout
T= xout,0, ...,xout, n−1ð Þ

allows to compose a system of linear algebraic equations. In the operator form, it can
be written as follows:

Ah ·Xin =Xout. (9)

Here, Ah is a matrix approximating the function h t, τð Þ, Xout is the vector of the
source data, and Xin is the vector of the system solution. Thus, recovering the input
process of the measurement channel is reduced to solving the system (9) with re-
spect to the vector Xin

T = xin ,0, . . . , xin , n− 1ð Þ.

4.3.1 Tikhonov’s regularization method

A French mathematician Jacques Hadamard has suggested to classify the mathe-
matical task as correct (well-posed), if:
1) its solution exists;
2) this solution is unique;
3) the solution is stable, that is, small deviations in the source data lead to small

deviations in the solution.

Formally, solving the system (9) requires an inversion of matrix Ah. Bear in mind
that the ijth element of the inverse matrix Ah

− 1 equals to the algebraic complement
Aji of the element jith of the matrix Ah divided by its determinant jAhj. In principle,
the matrix Ah may be not well-conditioned, that is, its properties can approach the
properties of a singular matrix whose determinant is zero. Poorly conditioned matri-
ces can lead to arbitrarily large changes in the solution Xin for small deviations in
Xout due to division by a determinant close to zero. When considering the measure-
ment channel, m < n, that is, the square matrix Ah will have zero columns. This fact
means that its determinant is zero. In other words, the third Hadamard’s condition
may not to be satisfied.

Moreover, the weight function is determined by the results of dynamic calibra-
tion with some error δΣ as it was shown in section 4.2.1. In addition, the source data
Xout, which are the results of measurements, are accompanied by instrumental
noise. Utilising such data can lead to composing the system of incompatible equa-
tions. It means that the first Hadamard’s condition is also not satisfied. These con-
siderations allow us to classify the recovery task as an ill-posed task.
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To solve ill-posed tasks, the Tikhonov’s regularization method [10] is widely used.
Russian mathematician A.N. Tikhonov introduced the concept of an approximate solu-
tion, which is sought through a regularizing algorithm (operator) as a way to solve ill-
posed tasks.

The basis of the regularization method is the Tikhonov’s theorem which can be
represented as follows. Suppose that the matrix Ah and vector Xout satisfy the con-
ditions ensuring the compatibility of the system (9), and Xin

0 is the solution of this
system. Moreover, experimental estimates eAh and eXout with an error δ are available.

Assume that there are increasing functions ε(δ) and α(δ) tending to zero as
δ ! +0 and such that δ2 ≤ ε δð Þ · α δð Þ. Then for any ε>0, there is a positive number
δ0 such that for values δ< δ0 and 1=ε δð Þ≤ α≤ α δð Þ, the vector Xin

α delivering the
minimum to the functional

Ψ Xin, eAh, eXout

� �
= eAh ·Xin − eXout

��� ���+ α Xink k2,

satisfies the inequality jjX0
in −Xα

injj≤ ε.
In a generally understood interpretation, the essence of the Tikhonov’s theorem

can be interpreted as follows: under certain conditions, there is an approximate so-
lution to the ill-posed task with an accuracy corresponding to the accuracy of esti-
mates of eAh and eXout elements.

Functional Ψ is called a regularizing operator (algorithm) and it must ensure
that if Xin

α approaches the exact solution Xin
0 as δ ! 0, the distance between these

vectors decreases.
The term αjjXinjj2 is called the task stabilizer. It is strongly convex due to the

fact that it is quadratic. Therefore, the functional Ψ is also strongly convex, that is,
it reaches its minimum value at a single point. In fact, the ill-posed task is replaced
by the correct minimization task:

Ψ Xin, eAh, eXout

� �
)
Xαn

min.

Therefore, for small enough values of α>0, the approximate solution Xin
α can ap-

proach the exact solution Xin
0 with a given accuracy. In other words, while it is not

possible to actually solve the task, it is possible to get its approximate solution with
any desired accuracy.

The search for an approximate solution of system (9) includes forming the opera-
tor Ψ and determining the parameter α using additional information about the task.
Such a priori data is physically justified information about the properties of the test
object, such as knowledge about the smoothness of the process Xin tð Þ. The work pro-
cesses of test objects (machines and mechanical devices) are in accordance with the
basic physical laws (conservation of energy and momentum, continuity of flows of
work fluids, and so on). Therefore, a priori information can be a statement that nei-
ther the Xin tð Þ nor its derivatives can be discontinuous functions. The choice of the
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regularization parameter α is very often consistent with accuracy of experimental
data. Such additional data can significantly narrow the range of feasible solutions
simplifying the search for Xin

α tð Þ.

4.3.2 Recovery of transient processes

The regularization method has proven itself in solving a variety of ill-posed prob-
lems, including the recovery of measured processes. One approach proposed in [2]
was implemented for recovery of transient processes. According to this, the search
of the approximate solution xαin tð Þ is formulated as a minimization of the following
regularizing operator:

Ψ xαin tð Þ
 �
=
ð∞
−∞

				 ð
t

0

h t − τð Þ · xαin τð Þdτ−exout tð Þ				2dt
+
ð∞
−∞

B0 · ½xαin tð Þ�2 +
Xp
l= 1

Bl ·
dlxαin tð Þ
dtl

� �2( )
dt.

The task stabilizer αkXink2 in the following form of essentially characterizes the
smoothness of the process xin tð Þ:

α
ð∞
�∞

B0 · ½xαin tð Þ�2 þ
Xp
l¼1

Bl ·
dlxαin tð Þ
dtl

� �2( )
dt:

The concerned approach utilizes the FRF of a measurement channel, that is, the
functional Ψ is minimized in the frequency domain. Its Fourier image has the fol-
lowing form:

Ψ Xα
in ωð Þ
 �

=
ð∞
−∞

jH ωð ÞXα
in ωð Þ− eXout ωð Þj2dω

+ α
ð∞
−∞

Xp
l=0

Bl ·ω2l · jXα
in ωð Þj2dω,

where Xα
in ωð Þ and eXout ωð Þ are Fourier transforms of xαin tð Þ, and exout tð Þ, accordingly.

The solution Xα
in ωð Þ providing a minimum of the functional Ψ Xα

in ωð Þ
 �
is deter-

mined by the extremum condition:
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∂Ψ Xα
in ωð Þ
 �

∂Xα
in ωð Þ =0.

From its fulfillment, the following type of approximate solution is found:

Xα
in ωð Þ= H* ωð Þ · eXout ωð Þ

A2 ωð Þ+ α ·Bp ω2ð Þ . (10)

Here AðωÞ is the amplitude component of the channel’s FRF, and index “*” is a sign

of the conjugate, and Bp ω2ð Þ= Pp
l=0

Blω2l. From the expression (10) it follows that the

approximate solution Xα
in ωð Þ is obtained from the source data eXout ωð Þ using a recov-

ery filter with the FRF of the form:

Hα ωð Þ= H* ωð Þ
A2 ωð Þ+ α ·Bp ω2ð Þ .

It should be noted that in addition to the recovery function, this filter will suppress
the instrumental noise that accompanies the source data eXout ωð Þ. This statement is
justified by the fact that Hα ωð Þ correlates with the frequency response H ωð Þ of the
measurement channel.

Substitution of the Xα
in ωð Þ into the functional Ψ Xα

in ωð Þ
 �
transforms the latter to

a function of the parameter α:

Ψ αð Þ=
ð∞
−∞

α ·Bp ω2ð Þ · jeXout ωð Þj2
A2 ωð Þ+ α ·Bp ω2ð Þ dω.

It is clear that the recovery task is reduced to searching for a minimum of the func-
tion of only one variable α. This essentially simplifies the optimization procedure.

The procedure for finding the optimal value of α can be realized as a numerical
search (computational trials) of the minimum of the function Ψ αð Þ. The determined
value αopt is used to calculate Xα

in ωð Þ. The approximating solution xαin tð Þ will be the
reverse Fourier transform of the obtained Xα

in ωð Þ.
Computational trials require the selection of the area of possible values of α.

The upper limit of its value can be found from the condition that Hα ωð Þ of the recov-
ering filter must have a passband greater than the bandwidth of the MC. In other
words, the filter should not affect the process Xin tð Þ being recovered. Since the
channel has an amplitude frequency response A ωð Þ that decreases monotonically
as ω increases, this condition can be written as:

Aα ωð Þ= A ωð Þ
A2 ωð Þ+ α ·Bp ω2ð Þ ≥A ωð Þ.
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It follows that:

A2 ωð Þ+ α ·Bp ω2� �
≤ 1.

From this inequality, the upper limit of the possible values of α is found as:

α≤
1−A2 ωð Þ

B0 +
Pp

l= 1 B=ω2l
. (11)

Let the measurement channel have the cut-off frequency ωc = 2π=τch. The largest
gain and bandwidth has an AFR of a low-pass filter due to its AFR roll-off with a
rate of only −20 dB per decade. Hence, being the upper boundary of A2 ωð Þ, the fol-
lowing expression can be used:

A2 ωð Þ= 1
1+ τ2chω2

.

Substitution of this expression in the above inequality (11) leads to the following
expression:

α≤
τ2chω

2

1+ τ2chω2
� �

B0 +B1ω2 + Pp
l= 2 Blω2l

� � .
Decreasing the denominator by 1+ τ2chω

2� �
, B0, and

Pp
l= 2

Blω2l allows to determine the
range of exercised values of α as:

0< α< τ2ch
B1

. (12)

The reconstruction of the time domain process xαin tð Þ has its own specifics. The
transient process shows a change in the values of x tð Þ during transition from one
steady-state to another, that is, its initial and final values are different. The Fourier
transform of the measurement data exout tð Þ assumes a periodic nature of this frag-
ment obtained in the time interval 0 . . . t1. This fact leads to the appearance of a
gap (discontinuity) between the last readout of the exout tð Þ and the first readout that
corresponds to its hypothetical continuation. Therefore, in the reconstructed solu-
tion xαin tð Þ, there will be oscillations of values in the regions adjacent to t = 0 and t1
(Fig. 4.12).

Such a phenomenon of overshoot described by Henry Wilbraham in 1848 and
rediscovered by J. Willard Gibbs 50 years later bears the name of the latter.

In the method under consideration, the discontinuity in periodicity is elimi-
nated by supplementing ex tð Þ with a cubic parabola Q tð Þ (Fig. 4.13).

Q tð Þ is a polynomial of the form:

Q tð Þ = q0 + q1t + q2t2 + q3t3.
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It must satisfy the following boundary requirements:

Q t1ð Þ=ex t1ð Þ;
Q t2ð Þ=ex t =0ð Þ;
dQ t1ð Þ
dt

=0;

dQ t2ð Þ
dt

=0,

where t2 = 2t1. The equality of derivatives to zero is due to the fact that time mo-
ments t1 and t2 actually correspond to steady-state modes of the test object. The co-
efficients q0, . . . , q3 are determined definitely from these boundary requirements.

Since the derivatives of Q tð Þ of any order above third are equal to zero, the pa-
rameter p in the task stabilizer is limited to p= 3. Coefficients Bl of the stabilizer
characterize the smoothness of the solution xin tð Þ. Since the recovery of transient
processes occurs in the frequency domain, the smoothness of the channel fre-
quency response can be considered.

The FRF of the Butterworth filter is known to be as smooth as possible at pass-
band frequencies. Hence, the values of Bl can be associated with coefficients of the
Butterworth polynomial

Xin α(t)

0 t1 t

Fig. 4.12: Illustration of the Gibbs‘ phenomena.

Q(t)

XIR͂

X(t)͂

0 tcr t1 t2 t, sec

Fig. 4.13: Composition of the periodically discontinuous function.
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B sð Þ=B3 · s3 +B2 · s2 +B1 · s+B0 = s3 + 2λ · s2 + 2λ2 · s+ λ3 ·

Here, λ is a scale factor, such that a change in its magnitude leads to a change in
the time rate but does not affect the shape of the transient process. For this particu-
lar application, its value is defined as [11]:

λ= 5.95
tcr

,

where tcr is a time of crossing the value of 1.05 · eXIR after an overshoot (Fig. 4.13) or
reaching a value 0.95 · eXIR in overshoot absence. The time of 5.95 sec corresponds to
tcr for the dynamic system with the TF described by the normalized ðλ= 1Þ
Butterworth polynomial:

HB sð Þ= 1
1+ 2s+ 2s2 + s3

.

The values of the coefficients Bl l =0, 3ð Þ obtained in this fashion are used to calcu-
late the functional Ψ αð Þ. Substituting a value of the coefficient B1 into expression (12)
allows to determined the range of values of α in which the minimum of Ψ αð Þ is
sought.

4.3.3 Biases of dynamic characteristics

The effect of recovering transient processes may be illustrated by an experimental
estimation of dynamic properties of the GTE. One of its characteristics is the graphi-
cal dependence of the corrected fuel consumption Gfcor

� �
on the corrected rotation

speed ncorð Þ. This dynamic characteristic (DC) is represented as isobars of air pres-
sure Pc

*� �
behind the compressor and isotherms of the gas temperature Tg

*� �
in

front of the turbine.
The DC can be calculated from the results of measurements of the above param-

eters during the start-up of the GTE and following run up to the IR mode. Consider,
as an example, the experimental estimation of the DC of a small size GTE. The rota-
tions of its compressor shaft during start-up are represented in Fig. 4.14.

Prior to the test procedure, the dynamic calibration of the measurement chan-
nels for the abovementioned parameters was carried out. The purpose of these stud-
ies was the estimation of their FRFs and their subsequent approximations in the
form of transfer functions.

A scheme of the dynamic calibration of a channel measuring the engine’s fuel
consumption is represented in Fig. 4.15.

The transducer 1 measuring Gf was the turbine flow meter. The fuel was redir-
ected by valves 2 and 3 from the input of the engine to a spare fuel tank 4. The fuel
pressure had a value corresponding to the running engine. A jump of fuel flow from

96 4 Transient regimes in test objects



30% to 75% (FS) was created by the valve 5 τv <0.02 secð Þ installed in the bypass
pipeline leading to the tank 4.

Processing the registered response of the measurement channel provided esti-
mates of the frequency response. The plot (solid line 1) of the channel FRF is pre-
sented in Fig. 4.16.

1.0

n/nIR

0 10 20 30 t, sec Fig. 4.14: Changing the n during the engine startup.

from fuel

conditioner
to GTE

4

35

1 2

Fig. 4.15: Calibration scheme of the Gf transducer.

2

2

1.51.00.5
0

1.0

A(f)

 –60

–120

2.0 f, Hz

1

1

Φ(f), °
Fig. 4.16: Experimental and approximating
FRFs.
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The estimates in the frequency range of 0 . . . 2 Hz were used for approximating the
transfer function. Its corresponding analytical expression was obtained in the fol-
lowing form:

HGf sð Þ= 1.0
1.0+0.21s+0.023s2 .

The approximating FRF is represented by the dashed line (2) in Fig. 4.16.
The channel measuring Pc

* was calibrated by supplying pressurized air to the
inlet pipeline with a device shown in Fig. 4.4. Its TF was approximated in the follow-
ing form:

HP*c
sð Þ= 1.0+0.29s

1.0+ 2.4s+0.39s2 .

The inertial properties of the channel measuring Tg
* are completely defined by the

utilized thermocouple. The component of the MC following it is the ADC, which
does not affect the inertial properties of the measurement channel. Therefore, be-
fore installing the thermocouple into the engine, it was calibrated under laboratory
conditions. This approach was due to the inability to reproduce a reference temper-
ature process in the engine.

For thermocouple calibration, a special test rig [12] was used. A sketch of its
working area is shown in Fig. 4.17.

Here 1 – air filter, 2 – vertically mounted nozzle, 3 – calibrated thermocouple, 4 –
tubular electric heating element pulled in and pulled out of the nozzle by a pneu-
matic actuator. The out of the nozzle through the pipeline is connected with a centrif-
ugal exhaust fan. The required velocity of the air stream is provided by changing the
rotational speed of the fan. This rig provides the ability for experimental determina-
tion of transient processes of the thermocouple with the time constant τ≥0.5sec.

3

1

Air stream

4

2 Fig. 4.17: Sketch of calibration rig.
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The calibrated thermocouple was installed in the working section of the nozzle.
The depth of its immersion in the air stream and the position of the inlets and out-
lets of the air stagnation chamber must correspond to operating conditions of the
thermocouple in the engine.

To reproduce the transient process of the thermocouple, a heating element
slides over it. Afterwards, the required velocity of the air stream and thermocouple
temperature are set. When their values reach steady state, the heater is turned off
and is removed from the air stream.

On this rig, the thermocouple was calibrated for a velocity of the air stream cor-
responding to operating conditions of the GTE. Its TF was identified in the following
form:

HT*g
sð Þ= 1.0+0.31s

1.0+ 1.4s+0.0018s2 .

The compressor rotor speed n was measured by the alternating current tachogener-
ator connected to the compressor shaft through a gear with a step-up ratio (61:1).
The frequency of the gear’s output signal was estimated by measuring its period.
Therefore, the estimates of the compressor rotor speed presented in Fig. 4.14, practi-
cally, did not have any inertial distortions.

During engine tests, the changes of the above parameters were measured when
the engine was started up. Using the above FRFs of channels obtained from their
calibrations, the measurement results were subjected to the recovery procedure de-
scribed in section 4.4.2. Measured (1) and recovered (2) transient processes are pre-
sented in Fig. 4.18.

Analysis of these data unveiled considerable systematic errors (biases) of the
measurement results. For instance, the underestimations of Tg

* reached 20% of the
value corresponding to the IR mode. For estimates of Gf and Pc

*, these values were
on the order of 3%.

Presented data was corrected taking into account the atmospheric conditions at
the moment of tests. Source and recovered data were utilized for calculations of the
engine DC (Fig. 4.19).

Here the dashed and dotted lines correspond to measured data, and solid lines
are the recovered data. Figure 4.19 clearly demonstrates that measurement results
have provided biases of estimates of the engine DC. Therefore, ignoring the inertial
properties of measurement channels significantly misrepresents the engine charac-
teristics, in particular, lowering engine fuel consumption.

As it is known, improving dynamic properties (decreasing startup and accelera-
tion times) of the GTE is provided by increasing the excess of fuel supply as com-
pared to the fuel supply in steady-state modes. Therefore, knowledge of actual
values of fuel consumption during transient regimes is a crucial issue for creating
optimal control algorithms implemented in the ECU. This is due to the fact that the
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final stage of transient processes, as a rule, occur along the trajectory correspond-
ing to the isotherm Tg

*.

The proposed metrological model of the AMIS allowed us to estimate static and dy-
namic characteristics of measurement channels as well as to examine their influ-
ence on test result accuracy.

1.0

1.01.0

Gf/Gf,IR

2

2

2

1

1

1

T*
g/T*

g,IR

P*
c/P*

c,IR

0 10 20 30 40 t, sec 0 10 20 30 40 t, sec

0 10 20 30 40 t, sec

Fig. 4.18: Source and recovered data.

Gfcor

P*c3

P*c4

T*g4

T*g3

T*g2

T*g1
P*c2

P*c1

ncor

Fig. 4.19: The experimental DC of the GTE.
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Discussed approaches for evaluating instrumental errors allowed us to estimate
their impact on the test results such as:
– statistical variance caused by direct measurement errors;
– systematic errors (biases) occuring as a consequence of inertial properties of

measurement means.

In addition, a method to optimize the requirements for measurement errors to en-
sure a given accuracy of test results was discussed.
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