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Preface 

These notes originated from a series of lectures given at Waseda University in 
April–May 2021, supported by Top Global University Project of Waseda University. 
The first author expresses warm gratitude to the organizers for this opportunity, in 
particular to Prof. Tadahisa Funaki and Prof. Yoshihiro Shibata. The lectures and 
the subsequent refinements by both authors have been occasions to review classical 
ideas and techniques (mostly Chaps. 1 and 2) and present a new direction that has 
emerged in the last few years (Chaps. 3, 4, and 5). 

In spite of the existence of many texts and references devoted to stochastic fluid 
mechanics (among others, see [3, 46, 94, 112, 113, 187, 192, 193, 256]), we have 
been motivated to write an additional one by a recent idea, which emerged from 
the paper by Lucio Galeati [147], that small-scale noise suitably introduced into the 
equations in transport form may lead to an enhanced dissipation. This mathematical 
result calls the old idea, often traced back to Joseph Valentin Boussinesq in 1877 
[43] (see a discussion in [239]), sometimes called the turbulent viscosity hypothesis, 
namely that small-scale turbulence may produce an additional viscosity term in the 
equations. 

The analogy with the result of [147] motivates us to ask ourselves several side 
questions, including about the origin and form of the noise in fluid mechanics. 
Where does the noise come from and which forms does it take in the equations? 
Noise has been introduced in fluid dynamic equations for a long time, starting from 
the foundational book of Landau and Lifshitz [197], to the literature on numerical 
computation of turbulence (e.g. [254]), to investigations of theoretical physics (e.g. 
[195]); see also P.L. Chow [71], Vishik and Fursikov [256] and very many other 
works, some of them quoted in other parts of this book. Generically, it is meant to 
describe fluctuations, random external perturbations, and the proposal to include it 
into the equations is generally accepted also thanks to the fact that real observations 
of turbulent fluids show some degree of randomness. But a precise description of its 
mechanical origin is missing. 

In Chap. 5 of these notes, we describe a heuristic path from small-scale per-
turbations and turbulence to additional viscosity, through the intermediate step of 
transport noise. The chapter is full of open questions. Part of the mathematics that 

v 



vi Preface 

can be used to formalize such a heuristic path is given in Chaps. 1–4. Chapter 1 is 
limited to additive noise treated in a fully deterministic way, motivated for instance 
by perturbations arising near boundaries due to irregularity of the boundary profile, 
as described in Sect. 5.5; for a deterministic audience, this chapter may be a useful 
introduction to the subject. In Chap. 2, we move to truly stochastic analysis and 
treat stochastic Navier–Stokes equations with state-dependent noise, a motivation 
for velocity-dependent noise being described at the end of Sect. 5.5. 

Chapters 3 and 4 are devoted to transport noise. Its introduction into fluid 
equations may be motivated in different ways, quoted in Chap. 3, among which 
we stress the geometric approach of Darryl Holm [177]. Our viewpoint is that it 
describes the action of small space scales on large ones; see Chap. 5, Sect. 5.3. 
Additive noise at small scales lifts to transport noise acting on large scales, as 
described in Sect. 5.1.1. Accepted transport noise as an interesting random input, 
Chaps. 3 and 4 develop the mathematical theory of well-posedness and the link 
with deterministic equations with enhanced diffusion, precisely with enhanced 
dissipation in the case of heat-type equations (Chap. 3) and enhanced viscosity in 
the case of the Navier–Stokes equations (Chap. 4). 

More than a conclusive book on a fully developed theory, this is for us a 
starting point for a better understanding of stochasticity related to turbulence and 
its effects following the ideas of the turbulent viscosity hypothesis. This book will 
be successful if in a few years a more advanced one will be written with a more 
mature view of these topics. 

Pisa, Italy Franco Flandoli 
Eliseo Luongo 
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Chapter 1 
The Navier–Stokes Equations with 
Deterministic Rough Force 

1.1 The Deterministic Navier–Stokes Equations 

1.1.1 The Newtonian Equations 

These notes are based on the following mathematical model, called the incompress-
ible Navier–Stokes equations (see [250] for more details on the physics of fluids, just 
sketched here). We assume that D is a regular bounded connected open domain, but 
for the purpose of this introductory subsection it can be more general. In D we have 
a fluid described by means of its velocity .u = u (t, x) (a vector field) and pressure 
.p = p (t, x) (a scalar field). The equations are 

.∂tu + u · ∇u + ∇p = ν�u + f (1.1) 

div u = 0 

supplemented by boundary and initial conditions 

. u|∂D = 0

u|t=0 = u0.

The density field is assumed to be constant and, up to a normalization, equal 
to 1, hence it does not explicitly appear in the equations. Constant density is 
the consequence of two assumptions: incompressibility, imposed by the equation 
.div u = 0, and the assumption that the density is constant at time zero, hence it 
remains constant. The fluid is assumed to be viscous, namely we assume 

. ν > 0

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
F. Flandoli, E. Luongo, Stochastic Partial Differential Equations in Fluid Mechanics, 
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2 1 The Navier–Stokes Equations with Deterministic Rough Force

and this fact has, as a consequence, the no-slip boundary condition .u|∂D = 0, 
because viscous fluids must be at rest on solid boundaries. The function f is a 
body force, like gravitation. The differential equation in (1.1) is a system, u being a 
vector field. The meaning of such an equation is the second Newton law: consider a 
very small portion of fluid, identified by a point .x (t), which moves in time. Recall 
that we assume a mass density equal to one. The acceleration .x′′ (t) is equal to the 
sum of the forces. But the velocity .x′ (t) is equal to .u (t, x (t)), by definition of u. 
Hence 

. 
d

dt
u (t, x (t)) = forces.

This reads 

. ∂tu + u · ∇u = forces

along the trajectory .x (t), which is the first system of differential equations in (1.1). 
The forces are due to pressure, viscosity and the external inputs. 

We stress that the no-slip condition .u|∂D = 0 provokes large stress near the 
boundary, if u is large nearby and this stress, when the viscosity is small enough, 
may lead to instabilities and generate vortices. This is the so–called phenomenon 
of the emergence of a boundary layer: close to the boundary the fluid presents a 
turbulent behavior for .ν → 0. The thickness of the boundary layer and some control 
on the behavior of the fluid in this region are very challenging and mostly open 
questions, see [16] for a review on the topic. 

Basic is the energy balance. Assuming enough regularity to perform computa-
tions, the time derivative of the global kinetic energy is given by 

. 
d

dt

1

2

∫
D

|u (t, x)|2dx =
∫

D

u (t, x) · ∂tu (t, x) dx

= −
∫

D

u · (u · ∇u) dx −
∫

D

u · ∇pdx

+ ν

∫
D

u · �udx +
∫

D

u · f dx.

Now 

. 

∫
D

u · (u · ∇u) dx = 1

2

∫
D

u · ∇|u|2dx = −1

2

∫
D

div u · |u|2dx = 0

(we have used also .u|∂D = 0); similarly, 

.

∫
D

u · ∇pdx = −
∫

D

p div udx = 0
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and 

. 

∫
D

u · �udx = −
∫

D

|∇u|2dx.

Therefore we get 

. 
d

dt

1

2

∫
D

|u (t, x)|2dx + ν

∫
D

|∇u|2dx =
∫

D

u · f dx.

The interpretation is that the variation of kinetic energy is given by the dissipation 
into heat plus the work done by the external forces. This equation is not only very 
informative from the physical viewpoint but represents one of the main tools in the 
mathematical investigation (in dimension 3, when dealing with weak solutions, it 
must be replaced by an inequality). 

1.1.2 A Rigorous Deterministic Theorem in d = 2 

Let us recall a rigorous result about Eq. (1.1). More details on functional analytic 
aspects traced here can be found for instance in [146, 148, 199, 200, 205, 209, 247, 
248]. 

Assume D is a regular bounded connected open domain. Denote by .Hk
(
D,R2

)
, 

.k = 1, 2, . . . , the classical Sobolev spaces or vector fields and by .Hk
0

(
D,R2

)
the 

subspace of those which are zero at the boundary. Denote by H (resp. . V , . D (A)) the  
closure in .L2

(
D;R2

)
(resp. .H 1

(
D,R2

)
, .H 2

(
D,R2

)
) of smooth compact support 

fields .v ∈ C∞
c

(
D;R2

)
such that .div v = 0. 

It turns out that H is the space of .L2
(
D;R2

)
-vector fields v, divergence free, 

such that .v · n|∂D = 0 where n is the normal to .∂D (one can prove that .v · n|∂D is 
well–defined, for divergence free . L2 vector fields). Denote by P the projection of 
.L2

(
D;R2

)
on H . Moreover, V (resp. .D (A)) is the space of all . v ∈ H 1

0

(
D,R2

)
(resp. .v ∈ H 2

(
D,R2

) ∩ H 1
0

(
D,R2

)
) such that .div v = 0. 

Define the unbounded linear operator .A : D (A) ⊂ H → H by the identity 

. 〈Av,w〉 = ν 〈�v,w〉

for all .v ∈ D (A) and . w ∈ H , or as  

.Av = νP�v.
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Denote by . L4 the space .L4
(
D,R2

) ∩ H , with the usual topology of .L4
(
D,R2

)
. 

Define the trilinear form .b : L4 × V × L
4 → R as 

. b (u, v,w) =
2∑

i,j=1

∫
D

ui (x) ∂ivj (x) wj (x) dx =
∫

D

(u · ∇v) · wdx

(it is well–defined and continuous on .L
4 ×V ×L

4 by the Hölder inequality). Notice 
that 

. V ⊂ L
4

by the Sobolev embedding theorem, hence b is also defined and continuous on 
.V × V × V . Moreover, the following interpolation inequality (sometimes known 
as Ladyzhenskaya’s inequality [196]) holds true: for some constant . C > 0

.‖f ‖2
L4(D)

≤ C‖f ‖L2(D)‖f ‖H 1(D) (1.2) 

for all .f ∈ H 1 (D). It follows that 

.

∫ T

0
‖u (t)‖4

L4dt ≤ C sup
t∈[0,T ]

‖u (t)‖2
H

∫ T

0
‖u (t)‖2

V dt. (1.3) 

This implies in particular that the integral 

. 

∫ t

0
b (u (s) , φ, u (s)) ds

in the definition below is well-defined, under the regularity of u and . φ specified 
there. Note that 

. b (u, v,w) = −b (u,w, v)

if .u ∈ L
4, .v,w ∈ V . 

Sometimes we shall also use the operator 

. B : L4 × L
4 → V ′

defined by the identity 

. 〈B (u, v) , φ〉 = −b (u, φ, v) = −
∫

D

(u · ∇φ) · vdx
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for all .φ ∈ V . Thanks to the embedding .D((−A)1+ε) ↪→ W 1,∞(D,R2), ε > 0, 
the operator B can be extended to a continuous bilinear operator between . H × H

and .D((−A)−1−ε). When .v ∈ V , we may also write 

. 〈B (u, v) , φ〉 = b(u, v, φ).

Moreover, when .u · ∇v ∈ L2
(
D;R2

)
, it is explicitly given by 

. B (u, v) = P(u · ∇v).

This representation extends to several classes of pairs .(u, v) at the price of suitable 
extensions of the projection P , that we do not discuss here (see the references 
mentioned above). In the sequel we shall only use the rules explicitly given above. 

For smooth divergence free fields, equal to zero at the boundary, we have 

. 〈B (u, v) , φ〉 =
∫

D

(u · ∇v) · φdx = −
∫

D

(u · ∇φ) · vdx = −b(u, φ, v).

In the sequel we denote by . V ′ the dual of V . We may identify H with . H ′ and 
thus write .D (A) ⊂ V ⊂ H ⊂ V ′ with continuous dense embeddings. The scalar 
product .〈·, ·〉 in H “extends” to the dual pairing between V and . V ′, which will be 
denoted by the same notation. 

Definition 1.1 Given .u0 ∈ H and .f ∈ L2
(
0, T ;V ′), we say that 

. u ∈ C ([0, T ] ;H) ∩ L2 (0, T ;V )

is a weak solution of Eq. (1.1) if  

. 〈u (t) , φ〉 −
∫ t

0
b (u (s) , φ, u (s)) ds

= 〈u0, φ〉 +
∫ t

0
〈u (s) , Aφ〉 ds +

∫ t

0
〈f (s) , φ〉 ds

for every .φ ∈ D (A). 

The previous definition is a natural reformulation of Eq. (1.1). Indeed, 

. 

∫
D

φ · (u · ∇u) dx = −
∫

D

u · (u · ∇φ) dx = −b (u, φ, u)

(using also .u|∂D = 0) and similarly, 

.

∫
D

φ · �udx =
∫

D

u · �φdx.
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In fact we could avoid the integration by parts in the first case, and a single 
integration by parts is sufficient in the second case, but in this way we anticipate 
the poor regular case investigated later on. The following result is classical, see for 
instance [199, 200, 247, 248]. 

Theorem 1.2 For every .u0 ∈ H and .f ∈ L2
(
0, T ;V ′) there exists a unique weak 

solution of Eq. (1.1). It satisfies 

. ‖u (t)‖2
H + 2ν

∫ t

0
‖∇u (s)‖2

L2ds = ‖u0‖2
H + 2

∫ t

0
〈u (s) , f (s)〉 ds.

If .
(
un

0

)
n∈N is a sequence in H converging to .u0 ∈ H and .(f n)n∈N is a sequence 

in .L2
(
0, T ;V ′) converging to .f ∈ L2

(
0, T ;V ′), then the corresponding unique 

solutions .(un)n∈N converge to the corresponding solution u in .C ([0, T ] ;H) and in 
.L2 (0, T ;V ). 

We do not provide a proof but, when we give a proof for the stochastic case in 
Chap. 2, the reader may easily reconstruct one for this theorem. Since measurability 
is a consequence of continuity, we have the following result. 

Corollary 1.3 If .(�,F ,P) is a probability space and . ω 
→ (u0 (ω) , f (ω))

is a measurable map from .(�,F) to .H × L2
(
0, T ;V ′) (endowed with the 

Borel .σ -algebra) then, denoting by .u (ω) the weak solution corresponding 
to .(u0 (ω) , f (ω)), we have that .ω 
→ u (ω) is measurable from .(�,F) to 
.C ([0, T ] ;H) ∩ L2 (0, T ;V ). 

1.2 Well–Posedness of the Model with Rough Force 

Consider the equation 

. ∂tu + u · ∇u + ∇p = ν�u + ∂tW

div u = 0

when W is a function of space and time, not differentiable in time, with 

. u|∂D = 0

u|t=0 = u0.

It is a generalization of the model of the previous section, with .f = ∂tW , where we 
stress the irregularity in time of the forcing term. A justification to the introduction 
of this model is given in Chap. 5, see in particular Sect. 5.5. Let us stress that, 
although the notation W clearly alludes to a Wiener process and will do so in the
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subsequent chapters, here it is just a single function; even discontinuous, a priori, as 
in the starting examples of Sect. 5.5. 

The aim of this section is to give a rigorous definition of the solution and prove, 
in 2D, existence and uniqueness. 

The approach we follow here may look strange at first sight but (although old) 
is quite modern in style. We could learn the proof of the deterministic case and 
adapt it to the stochastic one (Galerkin approximations, compactness etc.). This has 
been done with great success in the literature and, indeed, we will investigate some 
models with such an approach in Chaps. 2 and 4. However, a different approach 
which became more and more successful recently with singular SPDEs, consists 
of two steps: a probabilistic kernel, often linear, Gaussian, followed by a nonlinear 
deterministic step. We do the same here: we solve the linear case, the so–called 
Stokes equation, with ad hoc tools, then we apply Theorem 1.2. In this chapter, 
thanks to the fact that the force is additive and not depending on the state of the 
system, we also solve the linear problem by means of deterministic tools, but in the 
next one we use probability. 

The methodology developed here, as we said, is very classical but was proved 
to be useful for several different purposes. In [25] there was a sort of primitive but 
very instructive use of this idea, where the auxiliary variable was not the solution 
of the Stokes problem but just the Brownian motion itself. The approach was 
used several times for purposes of existence, uniqueness regularity, approximation, 
random dynamical system studies, even investigation of very complex regimes, both 
in dimensions 2 and 3 and sometimes for state-dependent noise of very simple 
form which allows us to apply another kind of transformation. See for instance 
[3, 79, 80, 104, 110, 136–140], but this list is highly incomplete and the method 
is used also today in order to reduce the stochastic case to a random one and use 
advanced deterministic results of maximal regularity, e.g. [40]. 

1.2.1 The Stokes Problem 

Let us consider first the Stokes problem: 

. ∂t z + ∇q = ν�z + ∂tW

div z = 0

Let us argue heuristically in order to identify the solution, then we formalize the 
concept of the solution and the result. Thanks to the linearity of the problem, we 
may use semigroups to get an explicit formula: 

.z (t) = etAz0 +
∫ t

0
e(t−s)A∂sW (s) ds.
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Here we have denoted by .etA the analytic semigroup generated by A (cf. [225] 
for general facts about analytic semigroups and [248] for the Stokes case). But at 
this level we still have the same problem of the meaning of .∂sW . However, if we 
integrate by parts, we get 

. z (t) = etAz0 +
[
e(t−s)AW (s)

]s=t

s=0
−

∫ t

0

d

ds
e(t−s)AW (s) ds

= etAz0 + W (t) − etAW (0) +
∫ t

0
Ae(t−s)AW (s) ds,

which is an expression with only W . The problem now is that .Ae(t−s)AW (s) should 
be well–defined and integrable, in spite of the fact that A is an unbounded operator. 
The semigroup . etA, being analytic, takes values in .D (A) for every .t > 0 but with a 
singularity for .t = 0, measured by the property 

. ‖AetAh‖H ≤ C

t
‖h‖H .

The singularity . C
t

is not integrable, hence we need some property of W in order to 
have that .Ae(t−s)AW (s) is integrable on .[0, T ]. 

We solve the previous problem in the simplest possible way by assuming that 

. W ∈ L∞(0, T ;D (A)).

In the examples of Sect. 5.5 this is guaranteed by .σk ∈ D (A). Under this assumption 
we may write 

. 

∫ t

0
Ae(t−s)AW (s) ds =

∫ t

0
e(t−s)AAW (s) ds

and the integral is obviously well-defined. In the two remarks below we explain two 
other solutions under less regularity of W . 

Remark 1.4 If 

. W ∈ L∞ (
0, T ;D

(
(−A)ε

))

for some .ε > 0, then we can write 

.

∫ t

0
Ae(t−s)AW (s) ds = −

∫ t

0
(−A)1−ε e(t−s)A (−A)ε W (s) ds
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and use the inequality 

. ‖(−A)1−ε etAh‖H ≤ C

t1−ε
‖h‖H

to get the well–posedness of . z(t).

Remark 1.5 If 

. W ∈ Cε ([0, T ] ;H)

for some .ε > 0, then we can write 

. 

∫ t

0
Ae(t−s)AW (s) ds =

∫ t

0
Ae(t−s)A (W (s) − W (t)) ds +

∫ t

0
Ae(t−s)AW (t) ds

=
∫ t

0
Ae(t−s)A (W (s) − W (t)) ds − W (t) + etAW (t)

and now 

. ‖Ae(t−s)A (W (s) − W (t))‖H ≤ C

t − s
|t − s|ε,

which is integrable. Therefore .z(t) is well-defined. 

We can thus give the following definition and prove the following theorem. As 
just remarked, with some effort it can be extended to 

. W ∈ L∞ (
0, T ;D

(
(−A)ε

)) ∪ Cε ([0, T ] ;H)

for some .ε > 0. 

Definition 1.6 Given .z0 ∈ H and .W ∈ L∞ (0, T ;D (A)), we say that z is a weak 
solution of the Stokes problem if 

. z ∈ L∞ (0, T ;H)

and 

. 〈z (t) , φ〉 = 〈z0, φ〉 +
∫ t

0
〈z (s) , Aφ〉 ds + 〈W (t) , φ〉 − 〈W (0) , φ〉

for every .φ ∈ D (A).
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Theorem 1.7 If .z0 ∈ H and .W ∈ L∞ (0, T ;D (A)), then there exists one and only 
one weak solution of the Stokes problem; it is given by 

.z (t) = etAz0 + W (t) − etAW (0) +
∫ t

0
e(t−s)AAW (s) ds. (1.4) 

Proof 

Step 1 (uniqueness and explicit formula) Let z be a solution. Let 

. φ ∈ C1 ([0, T ] ;H) ∩ C ([0, T ] ;D (A))

be given. Let .0 = t0 < . . . < tn = T be a partition of .[0, T ], partition also 
denoted by . π . Then, using the identities 

. 〈z (ti+1) , φ (ti+1)〉 − 〈z (ti+1) , φ (ti)〉 =
∫ ti+1

ti

〈z (ti+1) , ∂sφ (s)〉 ds

〈W (ti+1) , φ (ti+1)〉 − 〈W (ti+1) , φ (ti)〉 =
∫ ti+1

ti

〈W (ti+1) , ∂sφ (s)〉 ds

we get 

. 〈z (ti+1) , φ (ti+1)〉 = 〈z (ti) , φ (ti)〉 +
∫ ti+1

ti

〈z (ti+1) , ∂sφ (s)〉 ds

+
∫ ti+1

ti

〈z (s) , Aφ (ti)〉 ds

+ 〈W (ti+1) , φ (ti+1)〉 − 〈W (ti) , φ (ti)〉

−
∫ ti+1

ti

〈W (ti+1) , ∂sφ (s)〉 ds.

It implies 

. 〈z (T ) , φ (T )〉=〈z0, φ (0)〉+
∫ T

0

〈
z
(
s+
π

)
, ∂sφ (s)

〉
ds+

∫ T

0

〈
z (s) , Aφ

(
s−
π

)〉
ds

+〈W (T ) , φ (T )〉−〈W (0) , φ (0)〉−
∫ T

0

〈
W

(
s+
π

)
, ∂sφ (s)

〉
ds,
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where .s−
π = ti , .s+

π = ti+1, if .s ∈ [ti , ti+1]. Taking the limit over a sequence of 
partitions .πN with size going to zero, we get 

. 〈z (T ) , φ (T )〉=〈z0, φ (0)〉+
∫ T

0
〈z (s) , ∂sφ (s)〉 ds+

∫ T

0
〈z (s) , Aφ (s)〉 ds

+〈W (T ) , φ (T )〉−〈W (0) , φ (0)〉−
∫ T

0
〈W (s) , ∂sφ (s)〉 ds

(thanks to the regularity of .z, φ and Lebesgue dominated convergence theorem). 
The argument applies to every intermediate time t in place of T , hence we have 

. 〈z (t) , φ (t)〉 = 〈z0, φ (0)〉 +
∫ t

0
〈z (s) , ∂sφ (s)〉 ds +

∫ t

0
〈z (s) , Aφ (s)〉 ds

+ 〈W (t) , φ (t)〉 − 〈W (0) , φ (0)〉 −
∫ t

0
〈W (s) , ∂sφ (s)〉 ds.

For such a value of t , take the function 

. φt (s) := e(t−s)Aψ

with .ψ ∈ D (A). This function is of class 

. φt (·) ∈ C1 ([0, t] ;H) ∩ C ([0, t] ;D (A))

hence, from the previous identity, 

. 〈z (t) , ψ〉=
〈
z0, e

tAψ
〉
−

∫ t

0

〈
z (s) , Ae(t−s)Aψ

〉
ds+

∫ t

0

〈
z (s) , Ae(t−s)Aψ

〉
ds

+〈W (t) , ψ〉−
〈
W (0) , etAψ

〉
+

∫ t

0

〈
W (s) ,Ae(t−s)Aψ

〉
ds.

Using the fact that A is selfadjoint and .W (s) ∈ D (A) we get 

. 〈z (t) , ψ〉=
〈
etAz0, ψ

〉
+〈W (t) , ψ〉−

〈
etAW (0) , ψ

〉
+

∫ t

0

〈
e(t−s)AAW (s) , ψ

〉
ds

and finally, by the arbitrary nature of . ψ , we find that z is given by the explicit 
formula (1.4). This also implies uniqueness. 

Step 2 (existence) Formula (1.4) defines a function of class .L∞ (0, T ;H). The  
function .z (t) − W (t) is given by 

.z (t) − W (t) = etA (z0 − W (0)) +
∫ t

0
e(t−s)AAW (s) ds
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and therefore, by classical results on analytic semigroups, it is differentiable for 
.t > 0 and satisfies 

. 
d

dt
(z (t) − W (t)) = Az(t).

Then it is sufficient to integrate this identity in time, taking the scalar product 
with .φ ∈ D (A) and using the fact that A is selfadjoint. 

�
When we have given the definition of the trilinear form b we have seen the role 

of the space . L4. We need to upgrade the regularity of z in order to cope with the 
nonlinearity later on. Since it is sufficient for us, we restrict to .z0 = 0. As usual, we 
state and prove the result under the abundant regularity .W ∈ L∞ (0, T ;D (A)), but  
the result is true, in this case, also when 

. W ∈ L∞ (
0, T ;D

(
(−A)

1
4 +ε

))
∪ C

1
4 +ε ([0, T ] ;H)

for some .ε > 0. 

Theorem 1.8 Let .z0 = 0. If  .W ∈ L∞ (0, T ;D (A)), then the weak solution 
of the Stokes problem satisfies .z ∈ L∞ (

0, T ;L4
)
and the map from W to z is 

linear continuous between these spaces. If .(�,F ,P) is a probability space and 
.ω 
→ W (ω) is a measurable map from .(�,F) to .L∞ (0, T ;D (A)) (endowed with 
the Borel .σ -algebra) then, denoting by .z (ω) the weak solution corresponding to 
.W (ω), we have that .ω 
→ z (ω) is measurable from .(�,F) to . C ([0, T ] ;H) ∩
L∞ (

0, T ;L4
)
. 

Proof Without optimizing the argument, let us remark that .V ⊂ L
4 by the Sobolev 

embedding theorem and 

. ‖z (t)‖V ≤ ‖W (t) − etAW (0)‖V +
∫ t

0
‖e(t−s)AAW (s)‖V ds.

Now .D (A) ⊂ V , hence .‖W (t) − etAW (0)‖V is bounded. And a well–known 
inequality for analytic semigroups gives us, for some constant . C > 0

. ‖etAw‖V ≤ C√
t
‖w‖H

for all .w ∈ V and .t ∈ (0, T ]. Hence we deduce .z ∈ L∞ (0, T ;V ) ⊂ L∞ (
0, T ;L4

)
. 

The measurability follows from the continuity, which is a consequence of linearity 
and boundedness. �

As we said above, the theorem extends to more general data. The following one 
is an example.
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Theorem 1.9 If .z0 ∈ D
(
(−A)

1
4 +ε

)
and 

. W ∈ L∞ (
0, T ;D

(
(−A)

1
4 +ε

))

for some .ε > 0 then 

. z ∈ L∞ (
0, T ;D

(
(−A)

1
4 + ε

2

))
⊂ L∞(0, T ;L4).

Proof The term .etAz0 + W (t) − etAW (0) in the explicit expression for .z (t) is 

of class .L∞
(

0, T ;D
(
(−A)

1
4 +ε

))
, directly from the assumptions. For the integral 

term .
∫ t

0 Ae(t−s)AW (s) ds we have 

. (−A)
1
4 + ε

2

∫ t

0
Ae(t−s)AW (s) ds = −

∫ t

0
(−A)1− ε

2 e(t−s)A (−A)
1
4 +ε W (s) ds.

Now .(−A)
1
4 +ε W ∈ L∞ (0, T ;H) and 

. ‖(−A)1− ε
2 e(t−s)A‖L(H,H) ≤ C

(t − s)1−ε/2 .

These two facts imply the result. �
Since our main goal is to consider a stochastic forcing term which is a Brownian 

motion, let us explain a bit better the case when W is only H valued, namely . W ∈
Cα([0, T ];H), ∀α < 1

2 , .W(0) = 0. Arguing as in Remark 1.5, we can write 

.z(t) = etAz0 + etAW(t) +
∫ t

0
Ae(t−s)A(W(s) − W(t)) ds. (1.5) 

Thus, as explained in Remark 1.5, .z(t) ∈ L∞(0, T ;H). A result completely 
analogous to Theorem 1.7 can be stated also in this framework: 

Theorem 1.10 If .z0 ∈ H and .W ∈ Cα([0, T ];H), ∀α < 1
2 , .W(0) = 0, there 

exists one and only one weak solution for the Stokes problem and it is given by the 
formula 

. z(t) = etAz0 + etAW(t) +
∫ t

0
Ae(t−s)A(W(s) − W(t)) ds.

Proof 

Step 1 (uniqueness and explicit formula) Let z be a solution. Let 

.φ ∈ C1 ([0, T ] ;H) ∩ C([0, T ] ;D (A)).
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Arguing exactly as in the proof of Theorem 1.7 we get that .z(t) satisfies 

. 〈z (t) , φ (t)〉 = 〈z0, φ (0)〉 +
∫ t

0
〈z (s) , ∂sφ (s)〉 ds +

∫ t

0
〈z (s) , Aφ (s)〉 ds

+ 〈W (t) , φ (t)〉 − 〈W (0) , φ (0)〉 −
∫ t

0
〈W (s) , ∂sφ (s)〉 ds.

For such a value of t , take the function 

. φt (s) := e(t−s)Aψ

with .ψ ∈ D (A). This function is of class 

. φt (·) ∈ C1 ([0, t] ;H) ∩ C([0, t] ;D (A)).

Using . φt defined above in the weak formulation satisfied by .z(t) we get 

. 〈z (t) , ψ〉 =
〈
z0, e

tAψ
〉
+ 〈W (t) , ψ〉 +

∫ t

0

〈
W (s) ,Ae(t−s)Aψ

〉
ds.

We add and subtract .
∫ t

0

〈
W (t) , Ae(t−s)Aψ

〉
ds in the relation above, then, 

exploiting the regularity of . φ, the semigroup and its infinitesimal generator 
commute. Thus, thanks to the fact that A is selfadjoint, we arrive at the following 
relation: 

. 〈z (t) , ψ〉 =
〈
z0, e

tAψ
〉
+ 〈W (t) , ψ〉 +

∫ t

0

〈
Ae(t−s)A(W (s) − W (t)), ψ

〉
ds

+
∫ t

0

〈
W (t) , Ae(t−s)Aψ

〉
ds

=
〈
z0, e

tAψ
〉
+

〈
etAW (t) , ψ

〉
+

〈∫ t

0
Ae(t−s)A(W (s)−W (t))ds, ψ

〉
.

From the density of .D(A) in H , the first statement follows. 
Step 2 (existence) As in the proof of Theorem 1.7, formula (1.5) defines a 

function in .L∞(0, T ;H) and the relation . z(t) − etAW(t) − ∫ t

0 Ae(t−s)A

(W(s) − W(t)) ds = etAz0 holds. Therefore, by classical results on analytic 
semigroups, we can differentiate this relation for .t > 0, obtaining 

.
d

dt

(
z(t) − etAW(t) −

∫ t

0
Ae(t−s)A (W(s) − W(t)) ds

)

= A

(
z(t) − etAW(t) −

∫ t

0
Ae(t−s)A (W(s) − W(t)) ds

)
.
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Integrating this identity in time, taking the scalar product with .φ ∈ D
(
A2

)
we 

arrive at the relation below: 

. 

〈
z(t) − z(0) − etAW(t) −

∫ t

0
Ae(t−s)A (W(s) − W(t)) ds, φ

〉

=
〈∫ t

0

(
z(s) − esAW(s) −

∫ s

0
Ae(s−r)A (W(r) − W(s)) dr

)
ds,Aφ

〉
.

Our goal is to try to rewrite better the quantity 

. 

〈
etAW(t) +

∫ t

0
Ae(t−s)A (W(s) − W(t)) , φ

〉

−
〈∫ t

0

(
esAW(s) +

∫ s

0
Ae(s−r)A (W(r) − W(s)) dr

)
ds,Aφ

〉
.

We first concentrate on the double integral. Thanks to the fact that A is selfadjoint 
and the regularity of the process .e(s−r)A (W(r) − W(s)), it can be rewritten as 

. −
〈∫ t

0
ds

∫ s

0
e(s−r)A (W(r) − W(s)) dr, A2φ

〉

= −
〈∫ t

0
ds

∫ s

0
e(s−r)AW(r) dr −

∫ t

0
ds

∫ s

0
e(s−r)AW(s) dr,A2φ

〉

= −
〈∫ t

0
dr

∫ t

r

e(s−r)AW(r) ds −
∫ t

0
ds

∫ s

0
e(s−r)AW(s) dr,A2φ

〉

=
〈∫ t

0
esAW(s) − e(t−s)AW(s) ds,Aφ

〉
.

The exchange of the order of integration is allowed thanks to the continuity of 
the integrand functions and the compactness of the integration set. Exploiting 
this relation we arrive at 

. 

〈
etAW(t) +

∫ t

0
Ae(t−s)A (W(s) − W(t)) , φ

〉

−
〈∫ t

0

(
esAW(s) +

∫ s

0
Ae(s−r)A (W(r) − W(s)) dr

)
ds,Aφ

〉

=
〈
etAW(t) −

∫ t

0
Ae(t−s)AW(t), φ

〉

= 〈W(t), φ〉.

Thus the thesis follows from the density of .D(A2) in .D(A).
�
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For the remainder of the chapter, in order to treat the nonlinearity, we will need 
.z(t) ∈ L4(0, T ;L4) and the map .ω 
→ z (ω), which is measurable from .(�,F) to 
.C ([0, T ] ;H) ∩ L4

(
0, T ;L4

)
. Recall our definition of a mild solution 

. z(t) = etAz0 + etAW(t) +
∫ t

0
Ae(t−s)A(W(s) − W(t)) ds.

We will show separately that .etAz0 and . etAW(t) + ∫ t

0 Ae(t−s)A(W(s) − W(t)) ds

have the required regularity. For the first term we will use a trick which will be 
presented in Chap. 3 in a more difficult case, so we refer to Sect. 3.2.2 for more 
details. For the second one, we will exploit, again, the Hölder regularity of the 
Brownian motion. As discussed previously, 

. 

∫ T

0
‖etAz0‖4

L4dt ≤ C

∫ T

0
‖etAz0‖2

H ‖etAz0‖2
V dt

≤ C supt∈[0,T ]‖etAz0‖2
H

∫ T

0
‖etAz0‖2

V dt

≤ C‖z0‖2
H

∫ T

0
〈−AetAz0, e

tAz0〉dt

= −C‖z0‖2
H

∫ T

0

d‖etAz0‖2
H

2dt
dt

≤ C‖z0‖2
H

2

(
‖z0‖2

H − ‖etAz0‖2
H

)
≤ C

2
‖z0‖4

H .

For the second one, taking .ε > 0 small enough, we have 

.‖etAW(t) +
∫ t

0
Ae(t−s)A(W(s) − W(t)) ds‖4

L4

≤ C‖etAW(t)‖2
H ‖etAW(t)‖2

V + C

(∫ t

0
‖Ae(t−s)A(W(s) − W(t))‖L4ds

)4

≤ C

t
‖W(t)‖4

H

+ C

(∫ t

0
‖Ae(t−s)A(W(s) − W(t))‖1/2

H ‖Ae(t−s)A(W(s) − W(t))‖1/2
V ds

)4

≤ C‖W‖4

C
1
2 −ε

(0,T ;H)
t1−4ε + C

⎛
⎜⎝

∫ t

0

‖W‖
C

1
2 −ε

(0,T ;H)
(t − s)

1
2 −ε

(t − s)
5
4

ds

⎞
⎟⎠

4

≤ C(T , ε,D)‖W‖4

C
1
2 −ε

(0,T ;H)
.
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Thus, up to introducing another different constant C depending only from .T , ε and 
the domain D, we have that 

. ‖e·AW(·)+
∫ ·

0
Ae(·−s)A(W(s)−W(·)) ds‖L4(0,T ;L4)≤C(T , ε,D)‖W‖

C
1
2 −ε

(0,T ;H)
.

Thus .z ∈ L4
(
0, T ;L4

)
. 

The measurability of the map follows for the same reasons as the case treated in 
Theorem 1.8. 

Remark 1.11 When W is a Brownian motion in a suitable Hilbert space, or also 
in the case of other special stochastic processes, using rules of stochastic calculus 
one can improve a bit on the previous results, which therefore are sub-optimal. In 
fact, when W takes values in H only, it is not possible to prove that almost surely 
.z ∈ L2(0, T ;V ) with previous deterministic tricks. However, this result is true and 
follows from the argument described in Sect. 3.2.2. The theory extends also to the 
case of Banach-valued processes. Several results can be found for instance in [90] 
and [179, 180], see also [1, 49, 253]. 

1.2.2 Auxiliary Navier–Stokes Type Equations 

Let us explain first the heuristics. Having solved the Stokes problem we introduce 
the auxiliary variable 

. v (t) = u (t) − z(t),

which satisfies 

. ∂tv + (v + z) · ∇ (v + z) + ∇ (p − q) = ν�v

div v = 0.

This equation has the form 

. ∂tv + v · ∇v + ∇π = ν�v − L (v, z)

div v = 0

with the affine function 

. L (v, z) = v · ∇z + z · ∇v + z · ∇z.

Therefore the Navier–Stokes structure is preserved, for the variable v, up to a  
remainder which is affine. It is then not surprising that the auxiliary equation for
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v is solvable similarly to the classical Navier–Stokes equations. The strategy then is 
solving the auxiliary equation and then deducing the solution of the Navier–Stokes 
equations with rough force. 

To avoid confusion with the heuristics above, let us formulate the problem from 
scratch. Consider the modified Navier–Stokes equation 

.∂tv + (v + z) · ∇ (v + z) + ∇π = ν�v + f (1.6) 

div v = 0 

with 

. v|∂D = 0

v|t=0 = v0.

Definition 1.12 Given .v0 ∈ H , .f ∈ L2
(
0, T ;V ′) and .z ∈ L4

(
0, T ;L4

)
, we say  

that 

. v ∈ C ([0, T ] ;H) ∩ L2 (0, T ;V )

is a weak solution of Eq. (1.6) if  

. 〈v (t) , φ〉 −
∫ t

0
b (v (s) + z (s) , φ, v (s) + z (s)) ds

= 〈v0, φ〉 +
∫ t

0
〈v (s) , Aφ〉 ds +

∫ t

0
〈f (s) , φ〉 ds

for every .φ ∈ D (A). 

Theorem 1.13 For every .v0 ∈ H , .f ∈ L2
(
0, T ;V ′) and .z ∈ L4

(
0, T ;L4

)
, there 

exists a unique weak solution of Eq. (1.6). It satisfies 

. ‖v (t)‖2
H + 2ν

∫ t

0
‖∇v (s)‖2

L2ds = ‖v0‖2
H + 2

∫ t

0
〈f (s) , v (s)〉 ds

+ 2
∫ t

0
(b (v, v, z) + b (z, v, z)) (s) ds.

Finally, a continuity and a measurability statement completely analogous to those 
of Theorem 1.2 and Corollary 1.3 hold here too.
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Proof 

Step 1 (uniqueness) Let .v(i) be two solutions. The function . w = v(1) − v(2)

satisfies 

. 〈w (t) , φ〉 −
∫ t

0

(
b

(
v(1) + z, φ, v(1) + z

)
− b

(
v(2) + z, φ, v(2) + z

))
ds

=
∫ t

0
〈w (s) ,Aφ〉 ds

for every .φ ∈ D (A). A simple manipulation gives us 

. b
(
v(1) + z, φ, v(1) + z

)
− b

(
v(2) + z, φ, v(2) + z

)
− b (w, φ,w)

= b
(
v(2) + z, φ,w

)
+ b

(
w,φ, v(2) + z

)

hence 

. 〈w (t) , φ〉 −
∫ t

0
b (w (s) , φ,w (s)) ds

=
∫ t

0
〈w (s) ,Aφ〉 ds +

∫ t

0

〈
f̃ (s) , φ

〉
ds

where 

. f̃ = −B
(
v(2) + z,w

)
− B

(
w, v(2) + z

)
.

By Lemma 1.14 below, .f̃ ∈ L2
(
0, T ;V ′). Then, by Theorem 1.2, 

. ‖w (t)‖2
H + 2ν

∫ t

0
‖∇w (s)‖2

L2ds = 2
∫ t

0
b

(
w,w, v(2) + z

)
(s) ds.

Again by Lemma 1.14, we have  

.|b
(
w,w, v(2) + z

)
| ≤ |b

(
w,w, v(2)

)
| + |b (w,w, z)|

≤ ε‖w‖2
V + ε‖w‖2

V + C

ε3 ‖w‖2
H ‖v(2)‖4

L4

+ ε‖w‖2
V + ε‖w‖2

V + C

ε3 ‖w‖2
H ‖z‖4

L4

= 4ε‖w‖2
V + C

ε3
‖w‖2

H

(
‖v(2)‖4

L4 + ‖z‖4
L4

)
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Summarizing, with .4ε = ν, using the fact that .‖w‖2
V = ‖∇w‖2

L2 + ‖w‖2
H , 

renaming the constant C, 

. ‖w (t)‖2
H + ν

∫ t

0
‖∇w (s)‖2

L2ds

= C

∫ t

0
‖w (s)‖2

H

(
1 + ‖v(2) (s)‖4

L4 + ‖z (s)‖4
L4

)
ds.

We conclude .w = 0 by the Gronwall lemma, using the assumption on z and 
inequality (1.3) for .v(2). 

Step 2 (existence) Define the sequence .(vn) by setting .v0 = 0 and for every . n ≥
0, given .vn ∈ C ([0, T ] ;H) ∩ L2 (0, T ;V ), let .vn+1 be the solution of Eq. (1.1) 
with initial condition . v0 and with 

. f − B
(
vn, z

) − B
(
z, vn

) − B (z, z)

in place of f . In particular 

. 

〈
vn+1 (t) , φ

〉
−

∫ t

0
b

(
vn+1 (s) , φ, vn+1 (s)

)
ds

= 〈v0, φ〉 +
∫ t

0

〈
vn+1 (s) , Aφ

〉
ds +

∫ t

0
〈f (s) , φ〉 ds

−
∫ t

0

〈(
B

(
vn, z

) + B
(
z, vn

) + B (z, z)
)
(s) , φ

〉
ds

for every .φ ∈ D (A). In order to claim that this definition is well done, we notice 
that 

. B
(
vn, z

)
, B

(
z, vn

)
, B (z, z) ∈ L2 (

0, T ;V ′)

by Lemma 1.14 below. 

Then let us investigate the convergence of .(vn). First, let us prove a bound. From 
the previous identity and Theorem 1.2 we get 

.‖vn+1 (t)‖2
H + 2ν

∫ t

0
‖∇vn+1 (s)‖2

L2ds

= ‖v0‖2
H + 2

∫ t

0

〈
f (s) , vn+1 (s)

〉
ds

+ 2
∫ t

0

(
b

(
vn, vn+1, z

)
+ b

(
z, vn+1, vn

)
+ b

(
z, vn+1, z

))
(s) ds.
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It gives us (using Lemma 1.14 below) 

. ‖vn+1 (t)‖2
H + ν

∫ t

0
‖∇vn+1 (s)‖2

L2ds

= ‖v0‖2
H + C

∫ t

0
‖f (s)‖2

V ′ds + ε

∫ t

0
‖vn (s)‖2

V ds

+ Cε

∫ t

0
‖vn (s)‖2

H

(
1 + ‖z (s)‖4

L4

)
ds + Cε

∫ t

0
‖z (s)‖4

L4ds.

By using the Gronwall lemma and a small constant . ε, one can find .R > ‖v0‖2
H and 

T small enough such that if 

. sup
t∈[0,T ]

‖vn (t)‖2
H ≤ R,

∫ T

0
‖vn (s)‖2

V ds ≤ R (1.7) 

then the same inequalities hold for .vn+1. 
Set .wn = vn − vn−1, for .n ≥ 1. From the identity above, 

. 〈wn+1 (t) , φ〉 −
∫ t

0

(
b

(
vn+1, φ, vn+1

)
− b

(
vn, φ, vn

))
(s) ds

=
∫ t

0
〈wn+1 (s) , Aφ〉 ds −

∫ t

0

〈(
B

(
vn, z

) − B
(
vn−1, z

))
(s) , φ

〉
ds

−
∫ t

0

〈(
B

(
z, vn

) − B
(
z, vn−1

))
(s) , φ

〉
ds.

Again as above, since 

. b
(
vn+1, φ, vn+1

)
− b

(
vn, φ, vn

) − b (wn+1, φ,wn+1)

= b
(
vn, φ,wn+1

) + b
(
wn+1, φ, vn

)

we may rewrite it as 

. 〈wn+1 (t) , φ〉 −
∫ t

0
b (wn+1 (s) , φ,wn+1 (s)) ds

=
∫ t

0
〈wn+1 (s) , Aφ〉 ds −

∫ t

0
〈(B (wn, z) + B (z,wn)) (s) , φ〉 ds

+
∫ t

0

(
b

(
vn, φ,wn+1

) + b
(
wn+1, φ, vn

))
(s) ds.



22 1 The Navier–Stokes Equations with Deterministic Rough Force

One can check as above the applicability of Theorem 1.2 and get 

. ‖wn+1 (t)‖2
H + 2ν

∫ t

0
‖∇wn+1 (s)‖2

L2ds

= 2
∫ t

0
(b (wn,wn+1, z) + b (z,wn+1, wn)) (s) ds

+ 2
∫ t

0
b

(
wn+1, wn+1, v

n
)
(s) ds.

As above we deduce 

. |b (
wn+1, wn+1, v

n
)| ≤ ν

2
‖wn+1‖2

V + C‖wn+1‖2
H ‖vn‖4

L4 .

But 

. |b (wn,wn+1, z) + b (z,wn+1, wn)| ≤ ν

2
‖wn+1‖2

V + 1

4
‖wn‖2

V + C‖wn‖2
H ‖z‖4

L4 .

Hence 

. ‖wn+1 (t)‖2
H + ν

∫ t

0
‖∇wn+1 (s)‖2

L2ds

≤ C

∫ t

0
‖wn+1 (s)‖2

H

(
1 + ‖vn (s)‖4

L4

)
ds

+ 1

4

∫ t

0
‖wn (s)‖2

V ds + C

∫ t

0
‖wn (s)‖2

H ‖z (s)‖4
L4ds.

Now we work under the bounds (1.7) and deduce, using the Gronwall lemma, for T 
possibly smaller than the previous one, 

. sup
t∈[0,T ]

‖wn+1 (t)‖2
H +

∫ T

0
‖wn+1 (s)‖2

V ds

≤ 1

2

(
sup

t∈[0,T ]
‖wn (t)‖2

H +
∫ T

0
‖wn (s)‖2

V ds

)
.
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It implies that the sequence .(vn) is Cauchy in .C ([0, T ] ;H) ∩ L2 (0, T ;V ). The  
limit v has the right regularity to be a weak solution and satisfies the weak 
formulation; in the identity above for .vn+1 and . vn we may prove that 

. 

∫ t

0
b

(
vn+1 (s) , φ, vn+1 (s)

)
ds →

∫ t

0
b (v (s) , φ, v (s)) ds

∫ t

0
b

(
vn (s) , φ, z (s)

)
ds →

∫ t

0
b (v (s) , φ, z (s)) ds

∫ t

0
b

(
z (s) , φ, vn (s)

)
ds →

∫ t

0
b (z (s) , φ, v (s)) ds.

All these convergences can be proved easily by recalling the definition of b. 
Similarly, we can pass to the limit in the energy identity. �
Lemma 1.14 If .u, v ∈ L4

(
0, T ;L4

)
then 

.B (u, v) ∈ L2 (
0, T ;V ′) . (1.8) 

Moreover, 

.|b (u, v,w)| ≤ ε‖v‖2
V + ε′‖u‖2

V + C

ε2ε′ ‖u‖2
H ‖w‖4

L4 (1.9) 

.|b (u, v,w)| ≤ ε‖v‖2
V + ε′‖w‖2

V + C

ε2ε′ ‖w‖2
H ‖u‖4

L4 , (1.10) 

where C is a constant independent of . ε and . ε′. 

Proof Indeed, 

. |〈B (u, v) , φ〉| = |b (u, φ, v)| ≤ ‖φ‖V ‖u‖L4‖v‖L4

‖B (u, v)‖V ′ ≤ ‖u‖L4‖v‖L4

and thus 

. 

∫ T

0
‖B (u (t) , v (t))‖2

V ′dt ≤
(∫ T

0
‖u (t)‖4

L4dt

)1/2 (∫ T

0
‖v (t)‖4

L4dt

)1/2

.

Moreover, 

.|b (u, v,w)| ≤ ‖v‖V ‖u‖L4‖w‖L4 ≤ ε‖v‖2
V + 1

4ε
‖u‖2

L4‖w‖2
L4 ,
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hence the proof of (1.9) and (1.10) is the same. Let us prove the first one. From the 
interpolation inequality (1.2), 

. |b (u, v,w)| ≤ ε‖v‖2
V + C

ε
‖u‖V ‖u‖H ‖w‖2

L4

≤ ε‖v‖2
V + ε′‖u‖2

V + C

ε2ε′ ‖u‖2
H ‖w‖4

L4 .

�

1.2.3 Final Main Result on the Equation with Rough Force 

Finally, we may define the concept of the solution and prove the well–posedness for 
the Navier–Stokes equations with rough force 

.∂tu + u · ∇u + ∇p = ν�v + f + ∂tW (1.11) 

div u = 0 

with 

. u|∂D = 0

u|t=0 = u0.

Definition 1.15 Given .u0 ∈ H , .f ∈ L2
(
0, T ;V ′) and .W ∈ L∞ (0, T ;D (A)), we  

say that 

. u ∈ C ([0, T ] ;H) ∩ L∞ (
0, T ;L4

)

+ C ([0, T ] ;H) ∩ L2 (0, T ;V )

is a weak solution of Eq. (1.11) if  

. u − z ∈ C ([0, T ] ;H) ∩ L2(0, T ;V ),

where z is defined above with .z0 = 0 and 

. 〈u (t) , φ〉 −
∫ t

0
b (u (s) , φ, u (s)) ds

= 〈u0, φ〉 +
∫ t

0
〈u (s) , Aφ〉 ds +

∫ t

0
〈f (s) , φ〉 ds + 〈W (t) , φ〉 − 〈W (0) , φ〉

for every .φ ∈ D (A).
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Theorem 1.16 Assume .u0 ∈ H , .f ∈ L2
(
0, T ;V ′) and .W ∈ L∞ (0, T ;D (A)). 

Then the Navier–Stokes equation (1.11) has a unique weak solution, given by 
the sum of the solution of the Stokes problem and the solution of the auxiliary 
problem, which satisfies the energy identity of Theorem 1.13. Finally, a continuity 
and a measurability statement completely analogous to those of Theorem 1.2 and 
Corollary 1.3 hold here too. 

Proof 

Step 1 (uniqueness) Let .u(i) be two solutions. Let .v(i) = u(i) − z; they are  
solutions of the auxiliary problem, hence they coincide, hence also .u(i) coincide. 

Step 2 (existence) Let v be a solution of the auxiliary problem. Set .u = v + z: 
then u is a solution of Eq. (1.11). 

Step 3 (measurability) Again, .u (ω) is given by 

. u (ω) = v (ω) + z(ω),

hence it inherits the measurability properties of .v (ω) and .z (ω) given by 
Theorems 1.13 and 1.8, respectively. 

�

1.3 Summary 

The main technique illustrated in this chapter is the reduction of the PDE with 
rough input to the classical PDE, by means of the solution of Stokes problem with 
rough input. Even if this approach is less flexible that the one based on probabilistic 
methods that will be described in Chap. 2, see the discussion in Sect. 2.1, it is  
quite useful and successful in a number of cases, especially in the theory of 
Random Dynamical Systems [78, 79] but also when the continuity of solution with 
respect to the input force may help, as in Large Deviation Theory, to apply the 
contraction theorem. Indeed, for these kinds of applications the pathwise approach 
leads to a final structure which is more powerful than the one based on probabilistic 
methods. Therefore, the topics described in this chapter have not only a pedagogical 
motivation, in order to introduce a little at a time to researchers with a deterministic 
background the issues related to SPDE, but also to present a methodology, not 
optimal for studying the well–posedness of stochastic partial differential equations 
with additive noise, but useful for treating other issues related to such problems. 

Fluid dynamic equations with rough inputs (time derivative of non-differentiable 
stochastic processes) have been studied by many authors. Nowadays, thanks to the 
interest of many researchers in the singular SPDE, the regularity of the rough inputs 
is being pushed to the limit. However, a main question, still widely open, is a precise 
justification of such rough inputs. In Chap. 5 we consider this problem and suggest 
a research direction related to the complexity of real irregular boundaries and the 
input they have on the fluid.



Chapter 2 
Stochastic Navier–Stokes Equations and 
State-Dependent Noise 

2.1 Introduction 

In the previous chapter the force .∂tW was a single deterministic function (more 
precisely a distribution). The theory applies to the case when W is a stochastic 
process, just by treating each realization separately, and caring about measurability 
a posteriori. 

We may thus ask ourselves whether the theory of Chap. 1 can be extended to 
rough inputs which depend on the solution, in particular of the simple form 

. ∂tu + u · ∇u + ∇p = ν�u + f + F (u) + σ (u) ∂tW

div u = 0,

where the distributional derivative .∂tW is multiplied by a function .σ (u) of the 
solution. In Sect. 5.5 we motivate this generality by examples. 

Application of the ideas of Chap. 1 to this case meets trouble. The problem is not 
just the fact that the Stokes problem 

. ∂t z + ∇q = ν�z + σ (u) ∂tW

div z = 0

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
F. Flandoli, E. Luongo, Stochastic Partial Differential Equations in Fluid Mechanics, 
Lecture Notes in Mathematics 2328, https://doi.org/10.1007/978-981-99-0385-6_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0385-6protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-981-99-0385-6_2
https://doi.org/10.1007/978-981-99-0385-6_2
https://doi.org/10.1007/978-981-99-0385-6_2
https://doi.org/10.1007/978-981-99-0385-6_2
https://doi.org/10.1007/978-981-99-0385-6_2
https://doi.org/10.1007/978-981-99-0385-6_2
https://doi.org/10.1007/978-981-99-0385-6_2
https://doi.org/10.1007/978-981-99-0385-6_2
https://doi.org/10.1007/978-981-99-0385-6_2
https://doi.org/10.1007/978-981-99-0385-6_2
https://doi.org/10.1007/978-981-99-0385-6_2


28 2 Stochastic Navier–Stokes Equations and State-Dependent Noise

depends on u: this problem in principle could be solved by an iteration. The problem 
is that we cannot apply the trick of integration by parts in the mild formula for z: 

. z (t) = etAz0 +
∫ t

0
e(t−s)Aσ (u (s)) ∂sW (s) ds

= etAz0 +
[
e(t−s)Aσ (u (s)) W (s)

]s=t

s=0
−

∫ t

0

d

ds

(
e(t−s)Aσ (u (s))

)
W (s) ds

= etAz0 + σ (u (t)) W (t) − etAσ (u (0)) W (0)

+
∫ t

0
Ae(t−s)Aσ (u (s)) W (s) ds +

∫ t

0
e(t−s)A d

ds
σ (u (s))W (s) ds

and 

. 
d

ds
σ (u (s)) = 〈Dσ (u (s)) , ∂su (s)〉

brings again into play the term .∂sW (s). 
One way to escape this problem is to use the theory of rough paths, which 

however is quite elaborated for our purposes. The most classical way is, when W is 
related to Brownian motions, to use stochastic calculus. The purpose of this chapter 
is to illustrate the technique to study the Stochastic Navier–Stokes equations by 
stochastic calculus. 

Remark 2.1 The reader has certainly noticed that we have introduced, in parallel 
to .σ (u) ∂tW , also a term .F (u). This is not for generality, which clearly is not our 
purpose in these notes. The reason is deep: if we introduce a term .σ (u) ∂tW , we  
also need to introduce a compensator .F (u), otherwise the physics is wrong. This is 
the Wong–Zakai principle: see Sects. 5.5 and 5.6. 

2.1.1 Filtered Probability Space 

Let .(�,F ,P) be a probability space. A filtration indexed by .t ≥ 0 is a fam-
ily .(Ft )t≥0 of .σ -algebras such that .Ft1 ⊂ Ft2 ⊂ F for every .t1 ≤ t2. 
We call .

(
�,F , (Ft )t≥0 ,P

)
a filtered probability space, and we abbreviate it 

to .(�,F ,Ft ,P). A stochastic process .(Xt )t≥0 on .(�,F ,Ft ,P), taking values 
in a measurable space, is adapted if .Xt is .Ft -measurable for every .t ≥ 0. 
It is progressively measurable if the map .(s, ω) �→ Xs (ω) is measurable on 
.([0, t] × �,B (0, t) ⊗ Ft ) for every .t ≥ 0 (.B (0, t) being the Borel .σ -algebra on 
.[0, t]). When the target space is metric with the Borel .σ -algebra, and the process 
is continuous, the concepts of adapted and progressively measurable are equivalent. 
When we deal with processes that, with respect to the time variable, are equivalence 
classes (with respect to zero sets for the Lebesgue measure on the time interval),
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like .L2 (0, T ;V ), we cannot use the concept of an adapted process since . Xt (given 
t) is not well-defined. In this case we always use the concept of progressively 
measurable: for every t , the restriction on .[0, t] is a well-defined equivalence class 
and the definition applies to it. 

Denote by .L2
Ft

(�,H) the space of random variables (in fact equivalence 
classes) .X : � → H that are .Ft -measurable and square integrable. We denote by 
.CF ([0, T ] ;H) the space of continuous adapted processes .(Xt )t∈[0,T ] with values 
in H such that 

. E

[
sup

t∈[0,T ]
‖Xt‖2

H

]
< ∞

and by .L2
F (0, T ;V ) the space of progressively measurable processes . (Xt )t∈[0,T ]

with values in V such that 

. E

[∫ T

0
‖Xt‖2

V dt

]
< ∞.

Of course we may use similar notations also with different spaces in place of H and 
V ; this is just the most common case in the sequel. 

A (real-valued) Brownian motion on .(�,F ,Ft ,P) is a continuous adapted 
process .(Wt )t≥0 such that .P (Wt = 0) = 1, .Wt − Ws is independent of . Fs for every 
.t ≥ s ≥ 0, and .Wt − Ws is a centered Gaussian random variable with variance 
.t − s (we write .Wt − Ws ∼ N (0, t − s)). With probability one, paths are not only 
continuous but also locally Hölder continuous with any Hölder exponent .α < 1

2 . 
A noise often used in these notes is 

.W (t, x) :=
∑
k∈K

√
λkσk (x) Wk

t , (2.1) 

where K is a finite set, .σk ∈ D (A), .
(
Wk

t

)
t≥0 are independent Brownian motions on 

some filtered probability space .(�,F ,Ft ,P). With probability one, the path . t �→
W (t, ·) is of class .C ([0, T ] ;D (A)) (also .Cα ([0, T ] ;D (A)) for every .α < 1

2 ). 
The machinery introduced here and below is strongly based on the general 

theory on Stochastic Partial Differential Equations (SPDEs), of which wide and 
fundamental accounts can be found for instance in the paper of Bensoussan and 
Temam [25], the theses of E. Pardoux [224] and M. Viot [255], the work of Krylov 
and Rozovski [191], in the books of Vishik-Fursikov [256], Metivier [215], Da Prato 
and Zabczyk [90], [91], [92] and Prevôt and Roeckner [226], among others.
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2.2 Additive Noise Under the View of Stochastic Calculus 

First, let us elaborate the result of Chap. 1 under the view of stochastic calculus. 
Consider the Itô-type equation, in .d = 2, 

.du + (u · ∇u + ∇p) dt = ν�udt +
∑
k∈K

√
λkσkdWk

t (2.2) 

div u = 0 

with 

. u|∂D = 0

u(0) = u0.

Definition 2.2 Given a filtered probability space .(�,F ,Ft ,P) and the noise 
.W (t, x) as in (2.1), given .u0 : � → H , .F0-measurable, we say that a process 
u is a solution of equation (2.2), if its paths are of class 

. u ∈ C ([0, T ] ;H) ∩ L2 (0, T ;V )

with probability one, it is adapted as a process in H , progressively measurable in V , 
and 

. 〈u (t) , φ〉 −
∫ t

0
b (u (s) , φ, u (s)) ds

= 〈u0, φ〉 +
∫ t

0
〈u (s) , Aφ〉 ds +

∑
k∈K

√
λk 〈σk, φ〉 Wk

t

for every .φ ∈ D (A). 

Theorem 2.3 There exists a unique solution. 

Proof Given two solutions, with probability one their paths are two solutions in 
the sense of the theorem of the previous chapter, hence they coincide. Path by path 
the existence of .u (ω) is given by that theorem; since W is measurable, also u is 
measurable. But the measurability result can be applied on any subinterval .[0, t], 
the process u being always the same (namely the restriction to .[0, t] of the process 
on .[0, T ]), hence we have progressive measurability, which gives also adaptedness 
in H due to continuity. ��

We want now to apply the Itô formula to compute 

.d‖u (t)‖2
H .
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Let us recall, for comparison, that when . Xt is a process in . Rd satisfying the equation 

. dXi
t = bi

t dt +
∑
k∈K

σ ik
t dWk

t

and f is a function of class .C2
(
R

d
)
, then 

. df (Xt ) =
d∑

i=1

∂if (Xt ) dXi
t + 1

2

d∑
i,j=1

∑
k∈K

∂i∂jf (Xt ) σ ik
t σ

jk
t dt,

where we have to replace .dXi
t by the equation. Rigorously, all these identities 

have to be interpreted in integral form and the stochastic processes . Xi
t , b

i
t , σ

ik
t

are assumed progressively measurable. In order to apply these facts we need a 
progressively measurable process (and this is provided by the previous theorem) 
and a finite-dimensional reduction. 

Theorem 2.4 If .E
[‖u0‖2

H

]
< ∞ then 

. u ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V )

and 

. E

[
‖u (t)‖2

H

]
+ 2ν

∫ t

0
E

[
‖∇u (s)‖2

L2

]
ds = E

[
‖u0‖2

H

]
+ t

∑
k∈K

λk‖σk‖2
H

. E

[
sup

t∈[0,T ]
‖u (t)‖2

H

]
≤ E

[
‖u0‖2

H

]

+ T
∑
k∈K

λk‖σk‖2
H + C

√√√√∑
k∈K

λkE

[∫ T

0
〈u (s) , σk〉2 ds

]
.

Proof Taking a complete orthonormal system in H , .(ei), made of eigenvectors of 
A, with eigenvalues .(−λi), called .Hn the finite-dimensional space generated by 
.e1, .., en and . πn the projection onto . Hn, called .un (t) = πnu (t), called finally 

. bn (u (s)) :=
n∑

i=1

b (u (s) , u (s) , ei) ei

we have (from the weak formulation applied to each . ei) 

.un (t) +
∫ t

0
bn (u (s)) ds = πnu0 +

∫ t

0
Aun (s) ds + πnW(t).
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Taken the function .fn (x) = ∑n
i=1 〈x, ei〉2, which has the properties . ∂ifn (x) =

2 〈x, ei〉, .∂i∂jfn (x) = 2δij , using the fact that, with .σ ik
t = √

λk 〈σk, ei〉, one has 

.
∑∞

i=1

(
σ ik

t

)2 = λk‖σk‖2
H , the classical Itô formula gives us 

. d‖un (t)‖2
H = 2 〈un (t) , dun (t)〉 +

∑
k∈K

λk‖πnσk‖2
H dt

= −2ν‖∇un (t)‖2
L2dt +

∑
k∈K

λk‖πnσk‖2
H dt

+ 2
∑
k∈K

√
λk 〈un (t) , πnσk〉 dWk

t + b (u (s) , u (s) , un (s)) dt,

where we have used  

. 〈un (s) , bn (u (s))〉 = b(u (s) , u (s) , un (s)).

This identity has to be interpreted in integral form. Using the convergence properties 
of . πn and the regularity of u, it is not difficult to pass to the limit and obtain 

.‖u (t)‖2
H + 2ν

∫ t

0
‖∇u (s)‖2

L2ds = ‖u0‖2
H + t

∑
k∈K

λk‖σk‖2
H (2.3) 

+ 2
∑
k∈K

√
λk

∫ t 

0
〈u (s) , σk〉 dWk 

s , 

where the last term is an Itô-integral. In order to take expected values we have to use 
a localization argument that we explain here, namely we omit the repetition below 
when it is used several times. For sake of simplicity of notation assume that u is a 
solution defined for all .t ≥ 0 (we can do this, T is arbitrary). . For every . R > 0, let  
. τR be the stopping time defined as 

. τR = inf {t > 0 : ‖u (t)‖H > R}

or equal to .+∞ if the set is empty. Compute the previous identity at time .s ∧ τR (it 
helps the fact that the process u is continuous in H ): 

.‖u (s ∧ τR)‖2
H + 2ν

∫ s

0
1r≤τR

‖∇u (r)‖2
L2dr = ‖u0‖2

H + (s ∧ τR)
∑
k∈K

λk‖σk‖2
H

+ 2
∑
k∈K

√
λk

∫ s

0
1r≤τR

〈u (s) , σk〉 dWk
r .
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Now .E
[∫ T

0 1r≤τR
〈u (r) , σk〉2 dr

]
< ∞ hence the Itô integrals of this identity are 

true martingales and we can apply Doob’s inequality. Therefore 

. E

[
sup

s∈[0,t]
‖u (s ∧ τR)‖2

H

]
≤ E

[
‖u0‖2

H

]
+ T

∑
k∈K

λk‖σk‖2
H

+ C

√√√√∑
k∈K

λkE

∫ t

0
〈u (r) , σk〉2 1r≤τR

dr.

Now we observe that .E
[
sups∈[0,t]‖u (s ∧ τR)‖2

H

] = E
[
sups∈[0,t]‖u (s)‖2

H 1s≤τR

]
. 

Thus, exploiting Young’s inequality, the expression above can be rewritten as 

. E

[
sup

s∈[0,t]
‖u (s)‖2

H 1s≤τR

]
≤ E

[
‖u0‖2

H

]
+ T

∑
k∈K

λk‖σk‖2
H

+ C

√∑
k∈K

λk‖σk‖2
H

√∫ t

0
E

[‖u(r)‖2
H 1r≤τR

]
dr

≤ E

[
‖u0‖2

H

]
+ 2T

∑
k∈K

λk‖σk‖2
H

+ C

∫ t

0
E

[
sups∈[0,r]‖u(s)‖2

H 1s≤τR

]
dr.

By the Gronwall lemma it follows that 

. E

[
sup

s∈[0,T ]
‖u (s)‖2

H 1s≤τR

]
≤ C,

where C is a constant independent of R. Letting .R → +∞, by the monotone 
convergence theorem we get 

. E

[
sup

s∈[0,T ]
‖u (s)‖2

H

]
≤ C.

This means, in particular, that .u ∈ CF ([0, T ];H) and . E

[∫ T

0 〈u (r) , σk〉2 dr
]

< ∞.

Therefore .
∑

k∈K

√
λk

∫ t

0 〈u (s) , σk〉 dWk
s is a true martingale and its expected value 

is equal to zero. Starting again from relation (2.3), thanks to previous computations,
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the right-hand side and .‖u(t)‖2
H have finite expected value, hence the same is true 

for the other term on the left-hand side. We get, in particular, the energy relation 

. E

[
‖u (t)‖2

H

]
+ 2νE

[∫ t

0
‖∇u (s)‖2

L2ds

]
= E

[
‖u0‖2

H

]
+ t

∑
k∈K

λk‖σk‖2
H .

From this result, which is already part of the thesis, we deduce .u ∈ L2
F (0, T ;V ). 

The last energy relation can be obtained starting again from relation (2.3) and 
exploiting Doob’s inequality similarly to what we have done before for proving 
that .E

[
sups∈[0,T ]‖u (s)‖2

H

] ≤ C. We omit the easy details. ��

2.2.1 Consequences 

The message we get from this theorem is manifold:

• The solution has integrability properties in . ω reflecting analogous properties 
assumed on the data.

• In the modeling of emergence of vortices developed in the previous section we 
have made a mistake: creating vortices from nothing we introduce energy into 
the system. Therefore we have to include an extra dissipation mechanism. There 
is a loss of energy due to the impact of the flow with the obstacle (which, let us 
remember, is not included into the boundary conditions); part of this energy is 
given back in the form of emerging vortices. We do not have a sufficiently good 
solution to this mistake, which then we leave as an open problem. A possible 
proposal is adding a friction term . −λ (x) u

. du + (u · ∇u + ∇p) dt = (ν�u − λ (x) u) dt +
∑
k∈K

√
λkσkdWk

t

with a friction coefficient possibly depending on x and localized near the 
boundary: in this way the physical idea is that energy of large scales is subtracted 
near the boundary and re-injected through the vortices . σk . The energy balance is 
now 

.E

[
‖u (t)‖2

H

]
+ 2ν

∫ t

0
E

[
‖∇u (s)‖2

L2

]
ds + 2E

[∫ t

0

∫
D

λ (x) |u (s, x)|2dxds

]

= E

[
‖u0‖2

H

]
+ t

∑
k∈K

λk‖σk‖2
H .
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But we should be able to choose .λ (x) in such a way that 

. 2E

[∫ t

0

∫
D

λ (x) |u (s, x)|2dxds

]
∼ t

∑
k∈K

λk‖σk‖2
H .

We do not know how to reach this target.
• Assume .u (t) is a statistically stationary solution; this implies that . E

[‖u (t)‖2
H

] =
E

[‖u0‖2
H

]
and .E

[
‖∇u (s)‖2

L2

]
is independent of s, which then we denote by 

.E

[
‖∇u‖2

L2

]
. Then, stressing the dependence of u on . ν, 

. ε := νE
[
‖∇uν‖2

L2

]
= 1

2

∑
k∈K

λk‖σk‖2
H .

The dissipation . ε of energy due to viscosity remains constant in the inviscid 
limit .ε → 0 (it is a statement of K41 theory), if the energy injection is constant. 
Relations like this one may be useful for investigations about turbulence and go in 
the direction opposite to the famous Kato’s criterion, e.g. [22], [26], [42], [120], 
[184], [195], [203].

• We may use a small variant of the previous result to study state-dependent noise 
by iterations, see below. 

We complete this section by listing several references, which however are just 
a minority of the existing ones (and excluding those already quoted elsewhere in 
the notes, especially in the Preface). The stochastic Navier Stokes equations with 
additive noise, or more generally with state-dependent noise (the case of transport 
noise is a particular one treated in the next chapter), has been a sort of paradigm 
of SPDEs and thus it has been investigated by many authors. To some extent it is 
possible to make a classification (but often a single work approaches several topics):

• existence, uniqueness and other foundational properties, including Markov selec-
tions, Kolmogorov equations and the difficult case of space-time white noise: 
[4], [14], [24], [33], [36], [47], [57], [87], [93], [106], [107], [119], [144], [158], 
[165], [208], [214], [229], [232], [237], [246], [261], [263], [262];

• invariant measures, stationary solutions and ergodicity: [20], [32], [48], [58], 
[102], [103], [129], [136], [156], [161], [162], [163], [164], [169], [170], [212], 
[219], [222], [231], [234];

• special properties, including large deviations, inviscid limits, existence of densi-
ties, numerical methods and optimal control: [9], [23], [30], [159], [160], [155], 
[157], [31], [34], [45], [55], [54], [56], [66], [73], [96], [105], [108], [154], [173], 
[174], [203], [211], [221], [228], [233], [243], [258].
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2.3 2D Stochastic Navier–Stokes Equations 

Consider now the equations 

.∂tu + u · ∇u + ∇p = ν�u + f + F (u) +
∑
k∈K

σk (u) ∂tW
k
t (2.4) 

div u = 0 

with 

. u|∂D = 0

u (0) = u0.

Assume 

. F ∈ Lip (H,H)

σk ∈ Lip (H,H) ∩ C (H,D (A)) , bounded in H , k ∈ K.

With some additional elements of stochastic analysis (Itô formula for . ‖u (t)‖p
H

and Burkholder–Davis–Gundy inequality) one can drop the assumption that . σk

are bounded, so it is made here only for simplicity of exposition. The assumption 
.C (H,D (A)) is also made just for simplicity, but it is clear from the estimates below 
that it is absolutely unessential. 

Definition 2.5 Given .u0 ∈ H and .f ∈ L2
(
0, T ;V ′), we say that 

. u ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V )

is a weak solution of Eq. (2.4) if  

. 〈u (t) , φ〉 −
∫ t

0
b (u (s) , φ, u (s)) ds

= 〈u0, φ〉 +
∫ t

0
〈u (s) , Aφ〉 ds +

∫ t

0
〈f (s) , φ〉 ds

+
∫ t

0
〈F (u (s)) , φ〉 ds +

∑
k∈K

∫ t

0
〈σk (u (s)) , φ〉 dWk

s

for every .φ ∈ D (A). 

Theorem 2.6 For every .u0 ∈ L2
F0

(�,H) and .f ∈ L2
F

(
0, T ;V ′) such that 

.E
[‖u0‖r

H

] + E

[∫ T

0
‖f (s)‖r

V ′ ds

]
< +∞
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for some .r > 4, there exists a unique weak solution of Eq. (2.4). It satisfies 

. E

[
‖u (t)‖2

H

]
+ 2νE

[∫ t

0
‖∇u (s)‖2

H ds

]

= E

[
‖u0‖2

H

]
+ 2E

[∫ t

0
〈u (s) , f (s) + F (u (s))〉 ds

]

+
∑
k∈K

E

[∫ t

0
‖σk (u (s))‖2

H ds

]
.

Remark 2.7 In the language of stochastic differential equations [183], the notion of 
uniqueness used here corresponds to the so-called pathwise uniqueness; the notion 
of existence to the so-called strong existence. We use the name weak solutions not 
in the probabilistic sense of stochastic equations but in the analytical sense, being 
the formulation made against test functions. 

Remark 2.8 If we take a deterministic initial condition . u0 and forcing term f , then 
Theorem 2.6 holds under the more natural assumptions .u0 ∈ H , .f ∈ L2(0, T ;V ′). 
Indeed, uniqueness holds under the natural assumption .u0 ∈ L2

F0
(�,H) and 

.f ∈ L2
F

(
0, T ;V ′). The additional integrability assumptions are required to prove 

some additional bounds in order to get existence, see Step 3 in Sect. 2.4.4 below. 
In the case of deterministic data such estimates hold without requiring this kind 
of integrability, see Remark 2.25 below. We decide to consider stochastic data 
in the statement of Theorem 2.6 for the purpose of giving the reader a complete 
understanding of the main tools and difficulties in order to prove the well-posedness 
of a nonlinear stochastic system with state-dependent noise. 

The previous theorem is, today, a sort of paradigm of the compactness method 
and its proof has served as a basis for several generalizations, not only in SPDE 
theory but also, for instance, in the framework of interacting particle systems and 
their macroscopic limit (see for instance [132] and references therein); this is why 
we give several details below, although classical, and we even extend pedagogically 
the discussion. We have decided also to present from scratch the technical but quite 
classical argument related to the realization on an auxiliary space based on the 
Skorohod theorem. Although great, we have the feeling that an alternative should be 
found, similarly to what the Gyongy–Krylov theorem does with respect to proving 
first weak existence and then applying the Yamada–Watanabe theorem. When the 
limit equation is deterministic, or in the case of additive noise, an alternative proof 
to Skorohod embedding exists and is described below for the 3D Navier–Stokes 
equations with additive noise. However, in general, we have not found a similar 
solution. 

The proof of the previous theorem owes a lot to several investigations. Among 
many others, let us mention only [255], [256], [215], [118], [238], [61], [46].
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2.3.1 Proof of Uniqueness 

Let .u(i) be two solutions. Then .w = u(1) − u(2) satisfies 

. 〈w (t) , φ〉 −
∫ t

0

(
b

(
u(1), φ, u(1)

)
− b

(
u(2), φ, u(2)

))
(s) ds

=
∫ t

0
〈w (s) ,Aφ〉 ds +

∫ t

0

〈
F

(
u(1) (s)

)
− F

(
u(2) (s)

)
, φ

〉
ds

+
∑
k∈K

∫ t

0

〈
σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
, φ

〉
dWk

s

and since 

. b
(
u(1), φ, u(1)

)
− b

(
u(2), φ, u(2)

)
− b (w, φ,w)

= b
(
u(2), φ,w

)
+ b

(
w,φ, u(2)

)

we get 

. 〈w (t) , φ〉 −
∫ t

0
(b (w (s) , φ,w (s))) ds

=
∫ t

0
〈w (s) ,Aφ〉 ds +

∫ t

0

〈
F

(
u(1) (s)

)
− F

(
u(2) (s)

)
, φ

〉
ds

+
∑

k

∫ t

0

〈
σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
, φ

〉
dWk

s

+
∫ t

0

(
b

(
u(2), φ,w

)
+ b

(
w,φ, u(2)

))
(s) ds.

We need the Itô formula to continue; it can be proved similarly to Theorem 2.4. It  
gives us 

.‖w (t)‖2
H + 2ν

∫ t

0
‖∇w (s)‖2

L2ds = 2
∫ t

0

〈
F

(
u(1) (s)

)
− F

(
u(2) (s)

)
, w (s)

〉
ds

+ 2
∫ t

0

(
b

(
u(2), w,w

)
+ b

(
w,w, u(2)

))
(s) ds

+
∑
k∈K

∫ t

0
‖σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
‖2
H ds

+ Mt
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where 

. Mt :=
∑

k

∫ t

0

〈
σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
, w (s)

〉
dWk

s .

Therefore, if .LF and . Lk are the Lipschitz constants of F and . σk respectively, using 
estimates of Chap. 1 we get 

. ‖w (t)‖2
H + ν

∫ t

0
‖∇w (s)‖2

L2ds ≤
(

2LF +
∑
k∈K

L2
k

) ∫ t

0
‖w (s)‖2

H ds

+ C

∫ t

0
‖w (s)‖2

H

(
1 + ‖u(2) (s)‖2

L4

)
ds

+ Mt.

We need now a very interesting trick that we have learned from Bjorn Schmalfuss 
[238]: introducing 

. ρt = exp

(
−C

∫ t

0

(
1 + ‖u(2) (s)‖2

L4

)
ds

)

we have, from the Itô formula again, 

. ‖w (t)‖2
H ρt + ν

∫ t

0
‖∇w (s)‖2

L2ρsds ≤
(

2LF +
∑
k∈K

L2
k

) ∫ t

0
‖w (s)‖2

H ρsds + M̃t

where 

. M̃t :=
∑
k∈K

∫ t

0

〈
σk

(
u(1) (s)

)
− σk

(
u(2) (s)

)
, w (s)

〉
ρsdWk

s .

Omitting the necessary localization argument entirely similar to the one used in 
Theorem 2.4, we get 

. E

[
‖w (t)‖2

H ρt

]
+ νE

[∫ t

0
‖∇w (s)‖2

L2ρsds

]

≤
(

2LF +
∑
k∈K

L2
k

) ∫ t

0
E

[
‖w (s)‖2

H ρs

]
ds,

which leads to .E
[‖w (t)‖2

H ρt

] = 0 by the Gronwall lemma. But, thanks to the 
regularity of .u(2), .P (ρt > 0) = 1. Hence .P (w (t) = 0) = 1. Since this is true for 
all t , the processes .u(1) and .u(2) are modifications; but they are continuous, hence 
they are indistinguishable.
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2.4 Proof of Existence 

2.4.1 Introduction 

Existence for differential equations is a wide subject with many ideas. More or less, 
all methods consist in the construction of a sequence, based on some approximation 
or iteration method which allows us to define the sequence by means of easier 
equations than the one object of investigation. Then one has to prove convergence in 
a topology which allows one to pass to the limit in the approximate equations. Linear 
terms pass to the limit under very weak convergences, hence the demanding parts 
for the limit step are the nonlinear terms. When they have suitable monotonicity 
properties, again weak convergence is sufficient, but the Navier–Stokes nonlinearity 
does not have such properties. Strong convergence in a topology like H is needed. 
Weak convergence does not suffice to take the limit in a quadratic expression; the 
weak limit of the square is not the square of the weak limit, in general. 

We have insisted on this classification of ideas because the existence of weakly 
convergent subsequences of an approximating scheme is an excellent property also 
in the stochastic case, it applies for instance to spaces like .L2 (�,B) with a Banach 
space B. But the existence of strongly convergent subsequences of an approximating 
scheme is very demanding, in the stochastic case. And for the Navier–Stokes 
equations we are faced with this demanding problem. 

Essentially there are two ways to get strong convergence: one is related to 
contraction principle arguments and consists in the proof of the Cauchy property 
of the sequence, in the strong topology, usually in expected value. This kind of 
argument is not easy to be implemented for the Navier–Stokes equations. In the 
deterministic setting we have seen an example of this technique in Chap. 1: for the  
auxiliary Navier–Stokes equations we have constructed a sequence .(vn) and proved 
it was Cauchy. In the stochastic case, performing similar proofs is very difficult 
because of the problem of closure of moments: we have to take expected values 
but the nonlinearity increases the order of the moment. Inspection into the proof 
of Chap. 1 reveals we have used uniform bounds on the iterates to close a certain 
inequality in the proof of the Cauchy property; in the deterministic case such bounds 
are deterministic; in the stochastic case they are in expected value and thus not easily 
applicable. 

The alternative strategy to have strong convergence of subsequences is by 
compactness theorems. However, here there is a structural problem: compactness in 
spaces like .L2 (�,B) is essentially impossible to prove (except for criteria based on 
Malliavin calculus, which however did not prove to be competitive, until now). Thus 
one goes to compactness of the laws, because compactness in spaces of measures is 
very well characterized. 

But then the problem becomes that we have only subsequences of laws, which 
converge in strong topologies. Namely, it is not strong convergence of the original 
stochastic processes, only of their laws. How can we identify a limit stochastic 
process and pass to the limit in the equations?
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Here there are several strategies, each one with advantages depending on a certain 
feature of the problem; or, if not advantages, it is the only one we can use.

• When we can prove the so-called pathwise uniqueness, as above in the 2D case, 
there is a brilliant criterion of Gyongy and Krylov which proves the convergence 
in probability of the approximating sequence of stochastic processes, hence 
upgrading the pure convergence in law. We shall explain this below.

• An alternative to this method, when pathwise uniqueness is known, is proving 
weak convergence of the laws; constructing a solution on an auxiliary probability 
space and then using a theorem of Yamada–Watanabe type (which requires 
pathwise uniqueness) to prove that a solution on the original probability space 
exists. This strategy looks longer than the previous one, hence we prefer to 
describe the Gyongy–Krylov approach.

• When pathwise uniqueness is not known or it is false, there is no way to 
upgrade the weak convergence of laws to some kind of stronger convergence 
of the processes. In this case the Skorohod representation theorem allows one to 
reformulate the approximating sequence on a new, auxiliary probability space, 
where it converges also almost surely, not only in law. Then one can pass to the 
limit. But the limit process lives in an auxiliary probability space. This is the same 
strategy used in the previous item, but not followed by a Yamada–Watanabe step. 
Hence the final result is just existence on an auxiliary space.

• For special noise, like the additive one, when pathwise uniqueness is not known, 
there is a trick to pass to the limit in the equation using just the weak convergence 
of the laws, without performing the Skorohod representation theorem step. The 
limit law is a solution of the equation, in a suitable sense. We shall describe this 
procedure below. It applies for instance to the 3D Navier–Stokes equations with 
additive noise. 

One may add several comments to the previous list, related for instance to the 
concept of martingale solutions, but we limit ourselves to the previous discussion 
and show some of the computations for the first and the last item. 

2.4.2 Gyongy–Krylov Convergence Criterion 

The following result is taken from [168]. We give the details for completeness. 
If .(E, d) is a metric space we denote by .

(
E2, d2

)
the product space with the 

metric .d2
(
(x, y) ,

(
x′, y′)) = d (x, y)+ d

(
x′, y′); we understand that on every one 

of these metric spaces the .σ -field is the Borel one; and we denote by D the diagonal: 

. D =
{
(x, x) ∈ E2; x ∈ E

}
.

Lemma 2.9 Let .(Xn)n∈N be a sequence of random variables from a probability 
space .(�,F ,P) to a complete separable metric space .(E, d). Assume that, for
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every pair of subsequences .((n1 (k) , n2 (k)))k∈N, with .n1 (k) ≥ n2 (k) for every 
.k ∈ N, there is a subsequence .(k (h))h∈N such that the random variables 
.
(
Xn1(k(h)), Xn2(k(h))

)
h∈N from .(�,F ,P) to .

(
E2, d2

)
converge in law to a measure . μ

on . E2 such that .μ (D) = 1. Then there exists a random variable X from . (�,F ,P)

to .(E, d) such that . Xn converges to X in probability. 

Proof It is sufficient to prove that .(Xn)n∈N is Cauchy in probability: given . ε > 0
we have to find . n0 such that for all .n,m > n0 one has 

. P (d (Xn,Xm) ≥ ε) < ε.

Let us prove this by contradiction: we assume that there exists .ε0 > 0 such that for 
every k there are .n1 (k) ≥ n2 (k) > k such that 

. P
(
d

(
Xn1(k), Xn2(k)

) ≥ ε0
) ≥ ε0.

We may perfect the construction in order to have that .n1 (k) , n2 (k) are strictly 
increasing, hence they are subsequences. But by assumption there exists a sub-
sequence .k (h) such that .

(
Xn1(k(h)), Xn2(k(h))

)
converges in law to . μ, hence its 

probability of taking values in a closed set is upper semicontinuous: 

. μ ((x, y) : d (x, y) ≥ ε0) ≥ lim supP
(
d

(
Xn1(k(h)), Xn2(k(h))

) ≥ ε0
) ≥ ε0.

This inequality is incompatible with .μ (Dc) = 0, hence we have reached a 
contradiction. ��

2.4.3 Compactness Criteria 

Deterministic Ascoli–Arzelà Theorem 

Given two Banach spaces .X ⊂ Y , we say that the embedding .X ⊂ Y is compact if 
bounded sets of X are relatively compact in Y . 

A version of the Ascoli–Arzelà theorem claims that, given two Banach spaces 

.X
compact⊂ Y , a family .F ⊂ C ([0, T ] ;Y ) with the following two properties is 

relatively compact in .C ([0, T ] ;Y ): 

(i) .{f (t) ; f ∈ F } is bounded in X; 
(ii) F is uniformly equicontinuous in .C ([0, T ] ;Y ); namely, for every .ε > 0 there 

is .δ > 0 such that .‖f (t) − f (s)‖Y ≤ ε for every .f ∈ F and .t, s ∈ [0, T ] such 
that .|t − s| ≤ δ.
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In particular: 

Proposition 2.10 If .p > 1 and .X
compact⊂ Y , then 

. W 1,p (0, T ;X)
compact⊂ C([0, T ] ;Y ).

Indeed, if .F ⊂ W 1,p (0, T ;X) is bounded, and .t ∈ [
T
2 , T

]
(similarly for . t ∈[

0, T
2

]
) 

. f (t) − f (s) =
∫ t

s

f ′ (r) dr,

. f (t) = 2

T

∫ T/2

0
f (s) ds + 2

T

∫ T/2

0

∫ t

s

f ′ (r) drds,

. ‖f (t)‖X ≤ 2

T

∫ T/2

0
‖f (s)‖Xds + 2

T

∫ T/2

0

∫ t

s

‖f ′ (r)‖Xdrds

≤ 2

T
‖f ‖L1(0,T ;X) + ‖f ′‖L1(0,T ;X) ≤ C

and 

. ‖f (t) − f (s)‖X ≤
∫ t

s

‖f ′ (r)‖Xdr ≤ ‖f ′‖Lp(0,T ;X)|t − s|1/q ≤ C|t − s|1/q,

where . 1
p

+ 1
q

= 1 and the constant C is independent of . f ∈ F . So  F satisfies the 
assumptions of Ascoli–Arzelà theorem. 

Deterministic Aubin–Lions Type Theorems 

Theorem 2.11 Let X ⊂ Y ⊂ Z be three Banach spaces, with continuous dense 
embeddings. Assume that the embedding X ⊂ Y is compact. Let p ∈ [1,∞) be 
given. Then the embedding 

. Lp (0, T ;X) ∩ W 1,1 (0, T ;Z) ⊂ Lp (0, T ;Y )

is compact. 

Remark 2.12 The previous theorem, when applied to functions spaces X ⊂ Y ⊂ Z, 
treats the problem of compactness of functions of space-time. Heuristically, one 
needs a condition of compactness for the space variable and one for the time variable 
and, a priori, one could expect the need for some sort of joint compactness in the
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two variables. By the Ascoli–Arzelà theorem, the space or real-valued functions 
W 1,2 (0, T  ; R) is compactly embedded into L2 (0, T ; R). The remarkable feature 
of the previous theorem is that the compactness in the time variable does not require 
a simultaneous compactness in the space variable: the space Z can be much larger 
than Y . Said differently, the two compactness requirements, in space and time, are 
quite decoupled. 

Remark 2.13 The consequence in examples is that the only key assumption turns 
out to be Lp (0, T ; X), the other being a technical consequence based on the 
differential equation. 

Remark 2.14 Assume p >  1 and also assume the bound is in W 1,r (0, T ; Z) with 
r >  1. The previous result means that, if we have a sequence of functions (un) 
(usually solutions of an approximate equation) such that 

. 

∫ T

0
‖un (t)‖p

Xdt +
∫ T

0
‖dun (t)

dt
‖r
Zdt ≤ C

then there exists a subsequence
(
unk

)
and a function u ∈ Lp (0, T ;Y ) such that 

. lim
n→∞

∫ T

0
‖unk (t) − u (t)‖p

Y dt = 0.

Moreover, u ∈ Lp (0, T ; X) ∩ W 1,r (0, T ; Z) and
(
unk

)
can be chosen so that it 

converges weakly to u in Lp (0, T ;X) and in W 1,r (0, T ; Z) (it is here that we 
use p, r > 1). The weak convergence in these topologies is a consequence of 
the general theory of reflexive Banach spaces; that it can be done for a unique 
subsequence is easy; that the limit in the strong topology of Lp (0, T ;Y ) and weak 
topologies of Lp (0, T ; X) and W 1,r (0, T ; Z) is the same function u requires some 
arguments that we omit (for instance: weak convergence in Lp (0, T  ; X) implies 
weak convergence in Lp (0, T ; Y ), hence the weak limit in these topologies is the 
same as the strong limit in Lp (0, T ; Y ), by uniqueness between weak and strong 
limit in Lp (0, T ;Y )). Moreover, in most examples one proves also a bound of the 
form 

. sup
t∈[0,T ]

‖un (t)‖Y ≤ C.

By the same arguments, one may have that
(
unk

)
converges also weak-star to u in 

L∞ (0, T ; Y ). Finally, If Y 
compact ⊂ Z, by Proposition 2.10 we may also add strong 

convergence of
(
unk

)
to u in C ([0, T  ] ; Z). 

Essential for the stochastic case is the following generalization (see Simon [240], 
Corollary 5):
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Theorem 2.15 If αr > 1 − r 
p (p, r ≥ 1) then 

. Lp (0, T ;X) ∩ Wα,r (0, T ;Z)
compact⊂ Lp(0, T ;Y ).

Here α ∈ (0, 1) and Wα,r (0, T ; Z) is the space of functions f ∈ Lr (0, T ; Z) 
such that 

. 

∫ T

0

∫ T

0

‖f (t) − f (s)‖r
Z

|t − s|1+αr
dsdt < ∞.

Recall also that Wα,r (0, T ; Z) ⊂ C ([0, T  ] ; Z) if αr > 1. The reason for asking 
this generalization is that we do not have true time derivatives in the stochastic case, 
but we have fractional time regularity. 

The property of continuity in time in Y of solutions sometimes follows a 
posteriori, from the (S)PDE. Alternatively, we may try to prove convergence of 
the approximating scheme in the uniform topology. Obviously, the Ascoli–Arzelà 
theorem provides uniform convergence but the assumptions are too difficult to be 
checked in (S)PDEs like those of fluid mechanics (let us remark, however, that 
the Ascoli–Arzelà theorem is at the foundation of most proofs of the compactness 
results illustrated here). To this purpose we may use the following results [240], 
Corollary 9, [118], Theorem 2.2: 

Theorem 2.16 Assume in addition (θ ∈ (0, 1)) 

. ‖v‖Y ≤ C‖v‖1−θ
X ‖v‖θ

Z θ ∈ (0, 1)

αr > 1 and p >
1 − θ

θ

r

αr − 1
(p, r ≥ 1).

Then 

. Lp (0, T ;X) ∩ Wα,r (0, T ;Z)
compact⊂ C ([0, T ] ;Y ) .

Theorem 2.17 If α ∈ (0, 1), p >  1 satisfy 

. αp > 1.

Then 

.Wα,p(0, T ;X)
compact⊂ C ([0, T ] ;Y ) .
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Stochastic Theory 

Consider now a differential equation where the solution depends also on a random 
parameter, 

. u = u(ω, t, x).

The principle that compactness can be investigated separately in the three argu-
ments, in principle, could still hold. However, the obstacle is that compactness in 
the random parameter . ω is not an easy matter. The probability space .(�,F ,P) is 
always infinite dimensional in our examples and compactness criteria in .Lp (�) are 
not natural (although something can be done by means of Malliavin calculus, see 
for instance [89]). 

The natural approach is to consider the laws of the random objects and apply 
compactness arguments to these laws. It is easier due to the following basic theorem. 
Let .(X, d) be a complete metric space and . B the Borel .σ -field. Recall we say that 
a family . G of probability measures on .(X,B) is tight if for every .ε > 0 there is a 
compact set .K ⊂ X such that 

. μ (K) ≥ 1 − ε

for all .μ ∈ G. 

Theorem 2.18 (Prohorov) A family . G of probability measures on .(X,B) is tight if 
and only if it is relatively compact. 

Corollary 2.19 Assume .(uN) is a sequence of random functions from .(�,F ,P) to 
.Lp (0, T ;Y ). Assume .αr > 1 − r

p
and that for every .ε > 0 there are . R1, R2 > 0

such that 

. P
(‖uN‖Lp(0,T ;X) ≥ R1

) ≤ ε,

P
(‖uN‖Wα,r (0,T ;Z) ≥ R2

) ≤ ε

for all .N ∈ N. Then there exists a subsequence .
(
uNk

)
which converges in law, in the 

strong topology of .Lp (0, T ;Y ), to a random function . ̃u from a probability space 
.
(
�̃, F̃ , P̃

)
to .Lp (0, T ;Y ). Moreover, if .p, r > 1, we may choose .

(
uNk

)
so that . ̃u

takes also values in .Lp (0, T ;X) and .Wα,r (0, T ;Z). 

Corollary 2.20 Assume .(uN) is a sequence of random functions from .(�,F ,P) to 
.C ([0, T ];Y ). Assume .αr > 1 and that for every .ε > 0 there are .R1 > 0 such that 

.P
(‖uN‖Wα,r (0,T ;X) ≥ R1

) ≤ ε
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for all .N ∈ N. Then there exists a subsequence .
(
uNk

)
which converges in law, in the 

strong topology of .C ([0, T ];Y ), to a random function . ̃u from a probability space 
.
(
�̃, F̃ , P̃

)
to .C ([0, T ];Y ). 

Recall that the convergence in law stated in Corollary 2.19 means 

. lim
k→∞E

[
�

(
uNk

)] = Ẽ [� (̃u)]

for every bounded continuous function .� : Lp (0, T ;Y ) → R. Here . E and . ̃E are 
the expected values on .(�,F ,P) and .

(
�̃, F̃ , P̃

)
respectively. The convergence in 

law stated in Corollary 2.20 has an analogous meaning replacing .Lp(0, T ;Y ) with 
.C([0, T ];Y ). 

Remark 2.21 Sufficient conditions for the applicability of Corollary 2.19 are 
uniform in N estimates of the form 

. E
[‖uN‖Lp(0,T ;X)

] ≤ C,

E
[‖uN‖Wα,r (0,T ;Z)

] ≤ C.

Indeed, by the Markov inequality, 

. P
(‖uN‖Lp(0,T ;X) ≥ R1

) ≤ C

R1

and similarly for the second inequality, hence given .ε > 0 we can find . R1, R2 >

0 with the required properties. Similar sufficient conditions can be stated for 
Corollary 2.20. 

Remark 2.22 The consequence of the peculiar feature of the previous corollaries 
that the process . ̃u may be defined on a new probability space .

(
�̃, F̃ , P̃

)
is the 

emergence of the concept of a “weak solution in the probabilistic sense”. This 
means that the probability space over which we find a solution is not necessarily 
prescribed a priori. If we are only interested in statistical properties, this is not bad, 
but sometimes for special investigation it is very restrictive. 

2.4.4 Application to Galerkin Approximations: 2D Case 

Estimates and Compactness 

Step 1 (Preparation) Let us use the definitions introduced in the proof of 
Theorem 2.4: .(ei) is a complete orthonormal system in H made of eigenvectors of
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A, with eigenvalues .(−λi), .Hn and . πn are consequently defined, and we introduce 
the bilinear operator .Bn : Hn × Hn → Hn defined as 

. Bn (u, v) = πnP (u · ∇v)

(we omit the verification that .u, v ∈ Hn imply .u · ∇v ∈ L2(D;R2), so that P is 
well-defined on .u · ∇v). Then we consider the finite-dimensional equation 

. dun = Aundt − Bn (un, un) dt + fn + Fn (un) +
∑

k

σ n
k (un) dWk

t ,

where .fn = πnf , .Fn (u) = πnF (u), .σn
k (un) = πnσk (un); with initial condition 

.un
0 = πnu0. It is easy to check that 

. 〈Bn (un, un) , un〉 = 0.

Step 2 (Estimates in Square Norms) Therefore, from the Itô formula (in finite 
dimensions) we get 

. ‖un (t)‖2
H + 2ν

∫ t

0
‖∇un (s)‖2

L2ds = 2
∫ t

0
〈fn (s) + Fn (un (s)) , un (s)〉 ds

+
∑
k∈K

∫ t

0
‖σn

k (un (s))‖2
H ds + Mn

t (2.5) 

where 

. Mn
t = 2

∑
k∈K

∫ t

0

〈
σn

k (un (s)) , un (s)
〉
dWk

t .

After having seen above various proofs, it is a simple exercise to deduce (see also 
Step 3 below) 

.E

[∫ T

0
‖un (s)‖2

V ds

]
≤ C, (2.6) 

E

[
sup 

t∈[0,T ]
‖un (t)‖2 

H

]
≤ C.
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Then we investigate the Wα,r
(
0, T ; V ′) norm of un. In a sense, this is the most 

technical part but the reader will recognize that the key properties are (2.6), the rest 
of the proof is technicalities. For s <  t  

. ‖un (t) − un (s)‖V ′ ≤
∫ t

s

‖Aun (r)‖V ′dr +
∫ t

s

‖Bn (un, un) (r)‖V ′dr

+
∫ t

s

‖fn (r) + Fn (un) (r)‖V ′dr

+ ‖
∑

k

∫ t

s

σ n
k (un (r)) dWk

r ‖V ′ .

We have 

. E

[∫ t

s

‖Aun (r)‖V ′dr

]
≤ √

t − s

(
E

[∫ t

s

‖Aun (r)‖2
V ′dr

])1/2

≤ C
√

t − s

by (2.6), and similarly, 

. E

[∫ t

s

‖fn (r) + Fn (un) (r)‖V ′dr

]
≤ C

√
t − s.

Moreover, 

. E

[
‖
∑

k

∫ t

s

σ n
k (un (r)) dWk

r ‖V ′

]
≤

(
E

[
‖
∑

k

∫ t

s

σ n
k (un (r)) dWk

r ‖2
V ′

])1/2

=
(
E

[∑
k

∫ t

s

‖σn
k (un (r))‖2

V ′dr

])1/2

≤ C
√

t − s

because we assume σn 
k bounded. Finally, from the usual inequalities, 

.

∫ t

s

‖Bn (un, un) (r)‖V ′dr ≤ C

∫ t

s

‖un (r)‖H ‖un (r)‖V dr

≤ C sup
r∈[0,T ]

‖un (r)‖H

∫ t

s

‖un (r)‖V dr,
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hence 

. E

[∫ t

s

‖Bn (un, un) (r)‖V ′dr

]
≤ CE

[
sup

r∈[0,T ]
‖un (r)‖2

H

]1/2

E

[(∫ t

s

‖un (r)‖V dr

)2
]1/2

≤ C
√

t − s.

Putting together all these pieces, 

. E [‖un (t) − un (s)‖V ′ ] ≤ C
√

t − s,

which implies 

. E

[∫ T

0

∫ T

0

‖un (t) − un (s)‖V ′

|t − s|1+α
dsdt

]
≤

∫ T

0

∫ T

0

C

|t − s| 1
2 +α

dsdt =: C < ∞

if α ∈
(

0, 1 
2

)
. The condition αr > 1− r 

p of Theorem 2.15 is fulfilled for 1− 1 
p < 1 

2 , 

namely for p <  2. This result is not so good for the sequel: when passing to the limit 
in the nonlinear term we have 

. 

∫ t

0
〈Bn (un (s) , un (s)) , φ〉 ds = −

∫ t

0
b (un (s) , πnφ, un (s)) ds

so, for ε >  0, taking φ ∈ D
(
(−A)1+ε

) ⊂ C1 
b (D), it is sufficient to have strong 

convergence of un in L2 (0, T ; H), but not in Lp (0, T  ; H) with p <  2. Perhaps 
there are arguments to overcome this difficulty thanks to the uniform in time bound 
of estimate (2.6), but it is interesting to show how to upgrade the integrability of 
solutions and thus let us develop this in the next step. Note that we required that the 
test function φ ∈ D(A) in the definition of a weak solution. We can move from test 
functions in D((−A)1+ε) to test functions in D(A) by density of D((−A)1+ε) in 
D(A) and exploiting the regularity of u. 

Step 3 (Estimates in Lr ) Take r >  2. Assume 

. E
[‖u0‖r

H

]
< ∞, E

[∫ t

0
‖f (s)‖r

V ′ds

]
< ∞.

Consider the function 

.f (x) = ‖x‖r
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for x ∈ Rn. We have, for x �= 0, 

. ∂if (x) = r‖x‖r−1 xi

‖x‖ = r‖x‖r−2xi,

. ∂j ∂if (x) = rxi∂j‖x‖r−2 + r‖x‖r−2δij

= r (r − 2) ‖x‖r−4xixj + r‖x‖r−2δij ,

and we may include x = 0 for  r ≥ 4. Treating rigorously the case r ∈ (2, 4), 
unnecessary for the following, requires some more details that we omit. Then from 
the Itô formula we have 

. d‖un (t)‖r
H = r‖un (t)‖r−2

H 〈un (t) , dun (t)〉

+ 1

2
r (r − 2)

∑
k∈K

‖un (t)‖r−4
H

〈
un (t) , σ n

k (un (t))
〉2

dt

+ 1

2
r‖un (t)‖r−2

H

∑
k∈K

‖σn
k (un (t))‖2

H dt,

hence 

. d‖un (t)‖r
H + rν‖un (t)‖r−2

H ‖∇un (t)‖2
L2

≤ r‖un (t)‖r−2
H 〈un (t) , fn + Fn (un)〉 dt + dM

n,r
t

+ 1

2
r (r − 1) ‖un (t)‖r−2

H

∑
k

‖σn
k (un (t))‖2

H dt,

where 

. M
n,r
t = r

∑
k∈K

∫ t

0
‖un (s)‖r−2

H

〈
σn

k (un (s)) , un (s)
〉
dWk

t .

From the usual localization argument, 

.E
[‖un (t)‖r

H

] + rνE

[∫ t

0
‖un (s)‖r−2

H ‖∇un (s)‖2
L2ds

]

≤ CrE

[∫ t

0

(‖un (s)‖r
H + 1

)
ds

]
+ CrE

[∫ t

0
‖un (s)‖r−2

H ‖f (s)‖2
V ′ds

]

+ νE

[∫ t

0
‖un (s)‖r−2

H ‖un (s)‖2
V ds

]
+ E

[‖u0‖r
H

]
.
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We need, from ab ≤ cr

(
a 

r 
r−2 + b 

r 
2

)
( r−2 

r + 2 
r = 1) 

. E

[∫ t

0
‖un (s)‖r−2

H ‖f (s)‖2
V ′ds

]
≤ E

[∫ t

0
‖un (s)‖r

H ds

]
+ E

[∫ t

0
‖f (s)‖r

V ′ds

]

hence the additional assumption on u0 and f . From the Gronwall lemma, 

. sup
t∈[0,T ]

E
[‖un (t)‖r

H

] ≤ C.

Using this preliminary estimate and Burkholder–Davis–Gundy inequality (we omit 
the details) we get 

.E

[
sup

t∈[0,T ]
‖un (t)‖r

H

]
≤ C. (2.7) 

Raising relation (2.5) to the power r 2 and exploiting the preliminary estimates above 
and the properties of the stochastic integral, 

.E

[(∫ T

0
‖∇un(t)‖2

L2dt

)r/2]
≤ C. (2.8) 

Repeating the arguments above, one can check that under previous integrability 
assumptions on u0 and f , thanks to relations (2.7), (2.8), 

. E

[
‖un (t) − un (s)‖r/2

V ′
]

≤ C (t − s)r/4 .

It follows that 

. E

[∫ T

0

∫ T

0

‖un (t) − un (s)‖r/2
V ′

|t − s|1+αr/2
dsdt

]
≤

∫ T

0

∫ T

0

C

|t − s| 2−r/2
2 +αr/2

dsdt

=: Cr < ∞

if αr < r 
2 . The condition α r 2 > 1 − r 

2p of Theorem 2.15 is fulfilled for p = 2 if  
αr > 2 − r 2 . Thus if 

.2 − r

2
< αr <

r

2
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both conditions are satisfied. For r = 2 this is impossible, as seen in the previous 

step, but for every r >  2 there exists α ∈
(

0, 1 
2

)
with such a property. Similarly, the 

condition α r 2 > 1 of Theorem 2.17 is fulfilled if 

. 2 < αr <
r

2
.

For every r >  4 there exists α ∈
(

0, 1 
2

)
with such a property. This is exactly our 

integrability assumption on the initial condition and the forcing term. 

The conclusion is: 

Theorem 2.23 There exist (α, r) with αr > 1 and C >  0 such that 

. E
[‖un‖Wα,r (0,T ;V ′)

] ≤ C.

From the previous results and the embedding D((−A)α ) 
c

↪→ D((−A)β ) if α >  
β, the corollary below follows immediately. 

Corollary 2.24 The family of laws of un is tight in L2 (0, T ; H) ∩ C ([0, T ]; 
D

(
(−A)−β

))
for each β >  1 

2 . 

Remark 2.25 From the proof above, it is completely clear that the additional 
integrability assumptions on u0 and f are needed only to complete Step 3. Here we 
want to explain how to change the proof above in order to obtain similar estimates 
in the case of deterministic data u0 ∈ H, f ∈ L2(0, T ; V ′). We restart from the 
last relation obtained without considering the additional integrability assumptions, 
namely 

.E
[‖un (t)‖r

H

] + rνE

[∫ t

0
‖un (s)‖r−2

H ‖∇un (s)‖2
L2ds

]

≤ CrE

[∫ t

0

(‖un (s)‖r
H + 1

)
ds

]
+ CrE

[∫ t

0
‖un (s)‖r−2

H ‖f (s)‖2
V ′ds

]

+ νE

[∫ t

0
‖un (s)‖r−2

H ‖un (s)‖2
V ds

]
+ ‖u0‖r

H .
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We apply in a way different from before Young’s inequality to 

E

[∫ t 
0 ‖un (s)‖r−2 

H ‖f (s)‖2 
V ′ds

]
, 

. E

[∫ t

0
‖un (s)‖r−2

H ‖f (s)‖2
V ′ds

]
= E

[∫ t

0
‖un (s)‖r−2

H ‖f (s)‖
2(r−2)

r

V ′ ‖f (s)‖
4
r

V ′ds

]

≤ Cr

(∫ t

0
E

[‖un (s)‖r
H

] ‖f (s)‖2
V ′ds

+
∫ t

0
‖f (s)‖2

V ′ds

)
.

From these relations, by the Gronwall Lemma 

. supt∈[0,T ] E
[‖un(t)‖r

H

] ≤ C.

This is the only change in the proof of Step 3 in the case of deterministic data with 
minor integrability assumptions, then the proof goes on exactly as above without 
any changes. 

Application of Gyongy–Krylov Criterion and Conclusion of the Proof of 
Existence 

Let . un be the Galerkin sequence. Assume we have a subsequence .unk
and a process 

u with the following properties: 

1. u has the regularity prescribed by the theorem; 
2. .unk

converges to u in probability in .L2 (0, T ;H); 
3. .unk

converges weakly to u in .L2
F (0, T ;V ) and weak star in .CF ([0, T ] ;H). 

Then with some work we can pass to the limit in the weak formulation of the 
equations; property 2 is needed to pass to the limit in the quadratic term. The 
existence of a subsequence with properties 1–3 comes from (2.6) (and a variant 
of the argument of Remark 2.14 to identify the limit as the same function). From 
this subsequence, from the bounds of the previous section and the compactness 
theorem, we may also extract another one such that .unk

converges in law, in the 
strong topology of .L2 (0, T ;H) ∩ C

([0, T ];D
(
(−A)−β

))
for each . β > 1

2 , to the  
law of u (again we identify the limit by a variant of the argument of Remark 2.14). 
The convergence in law implies convergence in probability, in the strong topology of 
.L2 (0, T ;H) ∩ C

([0, T ];D
(
(−A)−β

))
, by the Gyongy–Krylov criterion, which is 

applicable as shown below in this section. The tightness in .C
([0, T ];D

(
(−A)−β

))
, 

never mentioned before, is a technical requirement in order to apply the Gyongy– 
Krylov criterion. 

Hence we have to show that the Gyongy–Krylov criterion applies. We 
fix .β > 1, take any pair of subsequences .(n1 (k) , n2 (k)) and consider the
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sequence of pairs .
(
un1(k), un2(k)

)
. Since .(un) is tight in . L2 (0, T ;H) ∩ C ([0, T ];

D
(
(−A)−β

))
, it is very easy to check that also .

(
un1(k), un2(k)

)
is tight in 

.
(
L2 (0, T ;H) ∩ C

([0, T ];D
(
(−A)−β

)))2
. Let .k (h) be a subsequence such that 

.
(
un1(k(h)), un2(k(h))

)
converges in law to some . μ. We only need to prove that 

.μ (D) = 1. This is the final aim of this section. The proof of this fact will be 
split into several steps. Before this we recall a classical characterization for Wiener 
processes used several times below. We refer to [90] Chapter 4 for a detailed 
discussion on Wiener processes taking values in separable Hilbert spaces. 

Theorem 2.26 Let . U0 be a separable Hilbert space and .M(t) a square integrable 
continuous martingale with values in . U0 such that .M(0) = 0. .M(t) is a Wiener 
process with covariance Q adapted to the filtration . Ft and increments . M(t)−M(s)

independent of . Fs if and only if . 〈〈M〉〉t = tQ, t ≥ 0.

Step 1 (Notations) To shorten the notations, let us denote the subsequences 
.un1(k(h)), .un2(k(h)) simply by .un(h), um(h). We denote by W the cylindrical Wiener 
process on H ; it is a continuous stochastic process on a larger set . U0, such that 
the embedding J of H in . U0 is Hilbert–Schmidt. Under these assumptions W is a 
well-defined continuous process with values in . U0 and covariance .Q1 = JJ ∗; see  
[90] for more details on this topic. After introducing this notation, the diffusion term 
.
∑

k∈K σk(u(t))dWk
t can be rewritten as .G(u)dWt where . G ∈ Lip (H,L(H,H)) ∩

C (H,L(H,D(A))) is the operator defined by 

. G(h) =
∑
k∈K

〈ek, ·〉σk(h) ∀h ∈ H.

Thanks to this notation, applying the projector . πn on the coefficients . σk is equivalent 
to considering the operator 

. Gn(h) =
∑
k∈K

〈ek, ·〉πnσk(h) ∀h ∈ H.

Consider the quintuple .
(
un(h), um(h), u0, f,W

)
and call .Qh its law. We fix .β > 1. 

Due to Corollary 2.24, this quintuple converges weakly to a measure Q on 

. 

(
L2 (0, T ;H) ∩ C([0, T ];D

(
(−A)−β

))2 × H × L2(0, T ;V ′) × C([0, T ] ;U0).

By the Skorohod representation theorem there exist a new probability space 
.
(
�̃, F̃ , P̃

)
, random variables .

(̃
un(h), ũm(h), ũ0,h, f̃h, W̃h

)
with laws .Qh and a ran-

dom variable .
(̃
u(1), ũ(2), ũ0, f̃ , W̃

)
with law Q, such that 

.
(̃
un(h), ũm(h), ũ0,h, f̃h, W̃h

) →
(
ũ(1), ũ(2), ũ0, f̃ , W̃

)
P̃ − a.s.
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in .
(
L2 (0, T ;H) ∩ C([0, T ];D

(
(−A)−β

))2 ×H ×L2(0, T ;V ′)×C ([0, T ] ;U0). 
Moreover, by the results of [252], interesting side information, not used below, is 
that the random variables .

(̃
un(h), ũm(h), ũ0,h, f̃h, W̃h

)
can be chosen of the form 

. 
(̃
un(h), ũm(h), ũ0,h, f̃h, W̃h

) = (un(h) ◦ φh, um(h) ◦ φh, u0 ◦ φh, f ◦ φh,W ◦ φh),

where . φh are perfect maps between . � and . ̃�. Let us consider the filtrations 

. 
(
F̃h

)
t
= σ

(̃
un(h)(s), ũm(h)(s), ũ0,h, f̃h(s), W̃h(s), s ≤ t

)
,

. F̃t = σ
(
ũ(1)(s), ũ(2)(s), ũ0, f̃ (s), W̃ (s), s ≤ t

)
,

the stochastic processes 

. M̃n
h (t) = (−A)−β

(̃
un(h)(t) − πn(h)ũ0,h

) + (−A)−β

∫ t

0
Bn(h)(̃un(h)(s), ũn(h)(s))ds

− (−A)−β

∫ t

0
πn(h)f̃h(s)ds − (−A)−β

∫ t

0
πn(h)F

(̃
un(h)(s)

)
ds

− (−A)−β

∫ t

0
Aũn(h)(s) ds,

. ̃In
h (t) = (−A)−β

∫ t

0
Gn(h)

(̃
un(h)(s)

)
dW̃h,s

and similarly for .m(h). By preservation of laws and the definition of the filtration, 
we have that also .W̃h is a .Q1 Wiener process in . U0, adapted to the filtration 
.
(
F̃h

)
t
. Thus the stochastic integrals are well-defined and .W̃h is a square integrable, 

continuous martingale with values in . U0. Let us denote, for each .s ∈ [0, T ], by  

. Xs =
(
L2 (0, s;H) ∩ C

([0, s];D
(
(−A)−β

)))2×H×L2(0, s;V ′)×C ([0, s] ;U0).

Step 2 (Characterization of .W̃ (t)) The first thing we want to show is that . W̃ (t)

is a .Q1 Wiener process on .U0 with respect to the filtration . F̃t . Let us consider 
arbitrary .u, v ∈ U0 and .ψ : Xs → R continuous and bounded. By the 
integrability properties of a .Q1 Wiener process it follows immediately that the
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families .
{〈W̃h(t) − W̃h(s), u〉U0

}
h∈N, .

{
‖W̃h(t)‖2

U0

}
h∈N are uniformly integrable. 

Thus, due to the fact that .W̃h(t) is a martingale, the following relations hold: 

. tT r(Q1) = Ẽ

[
‖W̃h(t)‖2

U0

]
→ Ẽ

[
‖W̃ (t)‖2

U0

]
,

. 0 = Ẽ
[〈W̃h(t) − W̃h(s), u〉U0ψ

(̃
un(h), ũm(h), ũ0,h, f̃h, W̃h

)]

→ Ẽ

[
〈W̃ (t) − W̃ (s), u〉U0ψ

(
ũ(1), ũ(2), ũ0, f̃ , W̃

)]
,

. 0 = Ẽ
[(〈W̃h(t), u〉U0〈W̃h(t), v〉U0 − 〈W̃h(s), u〉U0〈W̃h(s), v〉U0

−(t − s)〈Q1u, v〉U0

)
ψ

(̃
un(h), ũm(h), ũ0,h, f̃h, W̃h

)]
→ Ẽ

[(〈W̃ (t), u〉U0〈W̃ (t), v〉U0 − 〈W̃ (s), u〉U0〈W̃ (s), v〉U0 − (t − s)〈Q1u, v〉U0

)

ψ
(
ũ(1), ũ(2), ũ0, f̃ , W̃

)]
.

.W̃ (0) = 0 P̃ − a.s. due to the fact that .W̃h(0) = 0 P̃ − a.s. and . W̃h → W̃ P̃ − a.s.

Therefore, due to the characterization of Wiener processes recalled before, it follows 
that . W̃ is a .Q1 Wiener process with values in . U0, adapted to . F̃t . 

Step 3 (Identification of .M̃n
h (t), M̃m

h (t), Ĩ n
h (t), Ĩm

h (t)) Now we wish to study  
.M̃n

h (t), M̃m
h (t), .Ĩ n

h (t), Ĩm
h (t). The fact that .Ĩ n

h (t), Ĩm
h (t) are H valued, square 

integrable, continuous martingales follows immediately by the definition of the 
stochastic integrals and the regularity of the operator G. Moreover, by the properties 
of the stochastic integral, we have 

. 〈〈Ĩ n
h 〉〉t =

∫ t

0
(−A)−βGn(h)

(̃
un(h)(s)

) (
Gn(h)

(̃
un(h)(s)

))∗
(−A)−β ds,

〈〈Ĩm
h 〉〉t =

∫ t

0
(−A)−βGm(h)

(̃
um(h)(s)

) (
Gm(h)

(̃
um(h)(s)

))∗
(−A)−β ds.

In order to identify .M̃n
h (t) with .Ĩ n

h (t) (analogously for .M̃m
h (t) and .Ĩm

h (t)) we need 
to show that also .M̃n

h (t) is a square integrable continuous martingale, with values in
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H and .〈〈M̃n
h − Ĩ n

h 〉〉t = 0, ∀t ∈ [0, T ]. To obtain this result we introduce another 
sequence of stochastic processes 

. Mn
h(t) = (−A)−β

(
un(h)(t) − πn(h)u0

) + (−A)−β

∫ t

0
Bn(h)(un(h)(s), un(h)(s))ds

− (−A)−β

∫ t

0
πn(h)f (s)ds − (−A)−β

∫ t

0
πn(h)F

(
un(h)(s)

)
ds

− (−A)−β

∫ t

0
Aun(h)(s) ds

= (−A)−β

∫ t

0
Gn(h)

(
un(h)(s)

)
dWs = In

h (t).

The second equality follows from the weak formulation satisfied by .un(h). From the 
properties of the stochastic integral and the regularity of G, it follows immediately 
that .Mn

h is a square integrable continuous martingale with values in H for each 
.h ∈ N and its quadratic variation is 

. 〈〈Mn
h 〉〉t =

∫ t

0
(−A)−βGn(h)

(
un(h)(s)

) (
Gn(h)

(
un(h)(s)

))∗
(−A)−β ds.

Let us consider arbitrary .u, v ∈ H and .ψ : Xs → R continuous and bounded. 
From the fact that 

. 
(̃
un(h), ũm(h), ũ0,h, f̃h, W̃h

) L= (
un(h), um(h), u0, f,W

)
,

the regularity of the coefficients . σk and the properties of the stochastic integral, see 
Theorem 4.36 in [90], we have the following relations 

. suph∈N Ẽ
[‖M̃n

h (t)‖p
H

] = suph∈N E
[‖Mn

h(t)‖p
H

] = Cp < +∞ p ≥ 2, (2.9) 

. 0 = E
[〈Mn

h(t) − Mn
h(s), u〉ψ (

un(h), um(h), u0, f,W
)]

= Ẽ
[〈M̃n

h (t) − M̃n
h (s), u〉ψ (̃

un(h), ũm(h), ũ0,h, f̃h, W̃h

)]
,

.0 = E

[(
〈Mn

h(t), u〉〈Mn
h(t), v〉 − 〈Mn

h(s), u〉〈Mn
h(s), v〉

−
〈∫ t

s

(−A)−βGn(h)
(
un(h)(r)

) (
Gn(h)

(
un(h)(r)

))∗
(−A)−βu ds, v

〉
H

)

ψ
(
un(h), um(h), u0, f,W

) ]
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= Ẽ

[(
〈M̃n 

h (t), u〉〈M̃n 
h (t), v〉 − 〈M̃n 

h (s), u〉〈M̃n 
h (s), v〉

−
〈∫ t 

s 
(−A)−β Gn(h)

(̃
un(h)(r)

) (
Gn(h)

(̃
un(h)(r)

))∗ 
(−A)−β u ds,  v

〉
H

)

ψ
(̃
un(h), ũm(h), ũ0,h, f̃h, W̃h

) ]
, 

. 0 = E

[(
〈Mn

h(t), u〉〈In
h (t), v〉 − 〈Mn

h(s), u〉〈In
h (s), v〉

−
〈∫ t

s

(−A)−βGn(h)
(
un(h)(r)

) (
Gn(h)

(
un(h)(r)

))∗
(−A)−βu dr, v

〉
H

)

ψ
(
un(h), um(h), u0, f,W

) ]

= Ẽ

[(
〈M̃n

h (t), u〉〈Ĩ n
h (t), v〉 − 〈M̃n

h (s), u〉〈Ĩ n
h (s), v〉

−
〈∫ t

s

(−A)−βGn(h)
(̃
un(h)(r)

) (
Gn(h)

(̃
un(h)(r)

))∗
(−A)−βu dr, v

〉
H

)

ψ
(̃
un(h), ũm(h), ũ0,h, f̃h, W̃h

) ]
.

Therefore .M̃n
h is a square integrable continuous martingale with values in H , 

. 〈〈M̃n
h 〉〉t = 〈〈M̃n

h , Ĩ n
h 〉〉t

=
∫ t

0
(−A)−βGn(h)

(
un(h)(s)

) (
Gn(h)

(
un(h)(s)

))∗
(−A)−β ds

and 

. 〈〈M̃n
h − Ĩ n

h 〉〉t = 〈〈M̃n
h 〉〉t + 〈〈Ĩ n

h 〉〉t − 2〈〈M̃n
h , Ĩ n

h 〉〉t = 0.

Thus we have the required identification. Relation (2.9) for .p > 2 implies that the 
families .‖M̃n

h‖2
H and .‖M̃m

h ‖2
H are uniformly integrable. This fact will be crucial in 

the next steps. 

Step 4 (Limit Processes, Preparation) Since we applied Corollary 2.19 with 
both .p, r > 1, it follows, in particular, that .̃u(1), ũ(2) have paths .̃P − a.s. in 
.L∞(0, T ;H)∩L2(0, T ;V ). From this and the regularity in . C([0, T ];D((−A)−β)),

it follows that their paths have also regularity .Cw([0, T ];H). This kind of regularity 
is enough to prove the pathwise uniqueness as in Sect. 2.3.1. Thus, in order to be 
able to apply the Gyongy–Krylov criterion and obtaining the existence of a weak
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solution, it is enough to show that both .̃u(1) and .̃u(2) satisfy a weak formulation 
with respect to the same Wiener process . W̃ . In fact this will imply that the measure 

Q restricted on .
(
L2 (0, T ;H) ∩ C

([0, T ];D((−A)−β)
))2

is concentrated on the 
diagonal. Thus for .j ∈ {1, 2} we introduce the stochastic processes 

. M̃(j)(t) = (−A)−β
(
ũ(j)(t) − ũ0

)
+ (−A)−β

∫ t

0
B(̃u(j)(s), ũ(j)(s))ds

− (−A)−β

∫ t

0
f̃ (s)ds − (−A)−β

∫ t

0
F

(
ũ(j)(s)

)
ds

− (−A)−β

∫ t

0
Aũ(j)(s) ds,

. ̃I (j)(t) = (−A)−β

∫ t

0
G

(
ũ(j)(s)

)
dW̃s.

As before, .Ĩ (j) are H valued, square integrable, continuous martingales from the 
properties of the stochastic integral and the regularity of the operator G. Moreover, 
by the properties of the stochastic integral, we have 

. 〈〈Ĩ (j)〉〉t =
∫ t

0
(−A)−βG

(
ũ(j)(s)

) (
G

(
ũ(j)(s)

))∗
(−A)−β ds.

Step 5 (Limit Processes, Analysis of .M̃(j)) In order to complete the proof we 
have to identify .M̃(j) with .Ĩ (j). Thus, as before, we need to show that also .M̃(j) is 
a square integrable continuous martingale, with values in H and . 〈〈M̃(j) − Ĩ (j)〉〉t =
0, ∀t ∈ [0, T ]. Note that, if .̃u(j) were weak solutions of the stochastic Navier 
Stokes equations they would satisfy .M̃(j) = Ĩ (j) for .β = 1. We can move from 
our condition on . β to the case .β = 1 a posteriori via a density argument due to 
the regularity of .̃u(j). We will skip the easy details related to this point. For what 
concerns the analysis of .M̃(j), we do the computations only for .j = 1, but the same 

can be done analogously for .j = 2. Obviously, .ũ0
L= u0, f̃

L= f . Easily, we get the 
convergence in H .̃P-a.s. of 

. (−A)−β
(̃
un(h)(t) − πn(h)ũ0,h

) − (−A)−β

∫ t

0
Aũn(h)(s) ds

− (−A)−β

∫ t

0
πn(h)f̃h(s)ds − (−A)−β

∫ t

0
πn(h)F

(̃
un(h)(s)

)
ds

to the corresponding terms in .M̃(1)(t) due to convergence properties of 
.(̃un(h), ũ0,h, f̃h), the Lipschitzianity of the operator F and the properties of the
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orthogonal projector .πn(h). We just show the convergence of one term as an example, 
the others being simpler. 

. 

∥∥∥∥
∫ t

0
πn(h)F

(̃
un(h)(s)

)
ds −

∫ t

0
F

(
ũ(1)(s)

)
ds

∥∥∥∥
H

≤
∫ t

0

∥∥∥πn(h)

(
F

(̃
un(h)(s)

)
ds − F

(
ũ(1)(s)

))∥∥∥
H

ds

+
∫ t

0

∥∥∥(I − πn(h))F
(
ũ(1)(s)

)∥∥∥
H

ds

≤ LF

(∫ t

0
‖ũn(h)(s) − ũ(1)(s)‖H ds +

∫ t

0
‖(I − πn(h))̃u

(1)(s)‖H ds

)

+ T ‖(I − πn(h))F (0)‖H

→ 0 P̃ − a.s.

exploiting the convergence of .̃un(h) in .L2(0, T ;H) for the first term, the properties 
of .πn(h) and dominated convergence theorem for the others. In order to obtain the 
almost sure convergence in H of .M̃n(h)(t) to .M̃(1)(t) it remains to show that 

. 

∥∥∥∥(−A)−β

∫ t

0
Bn(h)(̃un(h)(s), ũn(h)(s)) − B(̃u(1)(s), ũ(1)(s)) ds

∥∥∥∥
H

→ 0 P̃ − a.s.

The convergence of the nonlinear term is, in general, the most involved part of the 
proof. For this reason several approaches have been introduced which fit well to 
different situations. We start with the simplest one for this case, but at the end of the 
proof we will present other possibilities. Note that all the computations we did so 
far can be performed under the assumption .β = 1; this is the unique step where we 
use the assumption .β > 1. 

. 

∥∥∥∥(−A)−β

∫ t

0
Bn(h)(̃un(h)(s), ũn(h)(s)) − B(̃u(1)(s), ũ(1)(s)) ds

∥∥∥∥
H

≤
∫ t

0
‖Bn(h)(̃un(h)(s), ũn(h)(s)) − Bn(h)(̃u

(1)(s), ũ(1)(s))‖D((−A)−β) ds

+
∫ t

0
‖(I − πn(h))B(̃u(1)(s), ũ(1)(s)))‖(D(−A)−β) ds

≤ C

∫ t

0
‖ũn(h)(s)‖H ‖ũn(h)(s) − ũ(1)(s)‖H ds

+ C

∫ t

0
‖ũn(h)(s) − ũ(1)(s)‖H ‖ũ(1)(s)‖H

+
∫ t

0
‖(I − πn(h))B(̃u(1)(s), ũ(1)(s)))‖(D(−A)−β) ds. (2.10)
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The last inequality follows from the fact that .D((−A)β) ↪→ W 1,∞(D) if .β > 1. 
Therefore for each . u, v ∈ H, w ∈ D((−A)β),

. 

∣∣∣∣
∫

D

u(x) · ∇w(x)v(x)dx

∣∣∣∣ ≤ C‖u‖H ‖v‖H ‖w‖D((−A)β).

The required convergence follows from relation (2.10) due to the almost sure 
convergence of .̃un(h) to .̃u(1) in .L2(0, T ;H) for the first two terms and properties 
of the projector for the remaining one. 

Thus the family .‖M̃n
h (t)‖2

H is uniformly integrable and . ‖M̃n
h (t)‖2

H →
‖M̃(1)(t)‖2

H .̃P − a.s. Therefore 

. ̃E

[
‖M̃(1)(t)‖2

H

]
= lim

h→+∞ Ẽ

[
‖M̃n

h (t)‖2
H

]
= lim

h→+∞ Ẽ

[
‖Ĩ n

h (t)‖2
H

]
< +∞.

From the computations above it follows that .M̃(1) is a square integrable process 
with values in H . Now we want to show that .M̃(1)(t) is a martingale with quadratic 
variation equal to .〈〈Ĩ (1)〉〉t . The proof of this fact is similar to what we have done for 
the Wiener process. In fact due to the .̃P-a.s. convergence of .‖M̃n

h (t)‖2
H , the fact that 

such random variables are uniformly integrable and .M̃n
h (t) is a square integrable 

martingale with quadratic variation .〈〈M̃n
h 〉〉t , the following chain of equalities hold 

for each .u, v ∈ H, ψ : Xs → R continuous and bounded: 

. 0 = Ẽ
[〈M̃n

h (t) − M̃n
h (s), u〉ψ (̃

un(h), ũm(h), ũ0,h, f̃h, W̃h

)]

→ Ẽ

[
〈M̃(1)(t) − M̃(1)(s), u〉ψ

(
ũ(1), ũ(2), ũ0, f̃ , W̃

)]
,

.0 = Ẽ

[(
〈M̃n

h (t), u〉〈M̃n
h (t), v〉 − 〈M̃n

h (s), u〉〈M̃n
h (s), v〉

−
∫ t

s

〈(−A)−βGn(h)
(̃
un(h)(r)

) (
Gn(h)

(̃
un(h)(r)

))∗
(−A)−βu, v〉 dr

)

ψ
(̃
un(h), ũm(h), ũ0,h, f̃h, W̃h

) ]

→ Ẽ

[(
〈M̃(1)(t), u〉〈M̃(1)(t), v〉 − 〈M̃(1)(s), u〉〈M̃(1)(s), v〉

−
∫ t

s

〈(−A)−βG
(
u(1)(r)

) (
G

(
u(1)(r)

))∗
(−A)−βu, v〉H dr

)

ψ
(
ũ(1), ũ(2), ũ0, f̃ , W̃

) ]
.
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Thus .M̃(1) is a continuous square integrable martingale with values in H such that 

. 〈〈M̃(1)〉〉t = 〈〈Ĩ (1)〉〉t =
∫ t

0
〈(−A)−βG

(
ũ(1)(s)

) (
G

(
ũ(1)(s)

))∗
(−A)−β ds.

Step 6 (Limit Processes, Identification) We need to show that . 〈〈M̃(1)−Ĩ (1)〉〉t = 0
for all .t ∈ [0, T ] to conclude the proof. This claim is true, indeed 

. 〈〈Ĩ (1) − M̃(1)〉〉t = 〈〈M̃(1)〉〉t + 〈〈Ĩ (1)〉〉t − 2〈〈Ĩ (1), M̃(1)〉〉t

= 2
∫ t

0
〈(−A)−βG

(
ũ(1)(s)

) (
G

(
ũ(1)(s)

))∗
(−A)−β ds

− 2
∫ t

0
(−A)−βG

(
ũ(1)(s)

)
J−1d〈〈W̃ , M̃(1)〉〉s . (2.11) 

Thus it remains to compute .〈〈W̃ , M̃(1)〉〉t , but this can be done thanks to the 
converging properties of .W̃h to . W̃ and the fact that they are Wiener processes with 
values in .U0, therefore uniformly integrable. In conclusion, if . u ∈ U0, v ∈ H, ψ :
Xs → R continuous and bounded, then 

.0 = Ẽ

[(
〈W̃h,t , u〉U0〈M̃n

h (t), v〉 − 〈W̃h,s, u〉U0〈M̃n
h (s), v〉

−
∫ t

s

〈(−A)−βGn(h)
(̃
un(h)(r)

)
J−1Q1u, v〉 dr

)

ψ
(̃
un(h), ũm(h), ũ0,h, f̃h, W̃h

) ]

= Ẽ

[(
〈W̃h,t , u〉U0〈M̃n

h (t), v〉 − 〈W̃h,s, u〉U0〈M̃n
h (s), v〉

−
∫ t

s

〈(−A)−βGn(h)
(̃
un(h)(r)

)
J ∗u, v〉 dr

)

ψ
(̃
un(h), ũm(h), ũ0,h, f̃h, W̃h

) ]

→ Ẽ

[(
〈W̃t , u〉U0〈M̃(1)(t), v〉 − 〈W̃s, u〉U0〈M̃(1)(s), v〉

−
∫ t

s

〈(−A)−βG
(
ũ(1)(r)

)
J ∗u, v〉 dr

)
ψ

(
ũ(1), ũ(2), ũ0, f̃ , W̃

) ]
.
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Therefore 

. 〈〈M̃(1), W̃ 〉〉t =
∫ t

0
(−A)−βG(̃u(1))(s)J ∗ ds,

thus 

. 〈〈W̃ , M̃(1)〉〉t =
∫ t

0
J

(
G(̃u(1))(s)

)∗
(−A)−β ds.

Inserting this expression in relation (2.11) we can identify .M̃(1) and .Ĩ (1). Arguing 
analogously for .M̃(2) and .Ĩ (2), it follows that both .̃u(1) and .̃u(2) satisfy a weak 
formulation with respect to the same Wiener process . W̃ and this implies the thesis. 

We have adapted the previous proof from several ideas on the existence of 
martingale solutions for stochastic partial differential equations, see for example 
[46], [90], [98], [118]. 

As anticipated in Step 5, here we extend pedagogically the discussion about the 
limiting behavior .‖M̃n

h (t)‖2
H , ‖M̃m

h (t)‖2
H in order to describe other techniques to 

show the required convergences. 
First we want show a different approach to obtain the almost sure convergence 

of the non linear term 

. 

∥∥∥∥(−A)−β

∫ t

0
Bn(h)(̃un(h)(s), ũn(h)(s)) − B(̃u(1)(s), ũ(1)(s)) ds

∥∥∥∥
H

→ 0 P̃ − a.s.

The convergence above holds for . β large enough such that 

. 

∞∑
k=1

‖∇(−A)−βek‖2
L∞ < +∞,

where . ek is an orthonormal basis of H made by eigenvectors of A. In order to prove 
that under this assumption the convergence of the nonlinear term holds, we note first 
that if .n(h) ≥ k, then 

. 
〈
Bn(h)(̃un(h)(s), ũn(h)(s)), (−A)−βek

〉 = 〈
B(̃un(h)(s), ũn(h)(s)), (−A)−βek

〉
.

Therefore, if .n(h) ≥ k, 

.|
∫ t

0

〈
Bn(h)(̃un(h)(s), ũn(h)(s)) − B(̃u(1)(s), ũ(1)(s)), (−A)−βek

〉
ds|

≤
∫ t

0
|
〈
B(̃un(h)(s), ũn(h)(s)) − B(̃u(1)(s), ũ(1)(s)), (−A)−βek

〉
| ds

=
∫ t

0
|〈B(̃un(h)(s), (−A)−βek), ũn(h)(s)

〉 −
〈
B(̃u(1)(s), (−A)−βek), ũ

(1)(s)
〉
| ds
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≤
∫ t 

0 
|
〈
B(̃un(h)(s), (−A)−β ek), ũn(h)(s) − ũ(1) (s)

〉
| ds 

+
∫ t 

0 
|
〈
B(̃un(h)(s) − ũ(1) (s), (−A)−β ek), ũ

(1) (s)
〉
| ds 

≤ ‖∇(−A)−β ek‖L∞
∫ t 

0
‖ũn(h)(s) − ũ(1) (s)‖H

(
‖ũn(h)(s)‖H + ‖ũ(1) (s)‖H

)
ds. 

On the opposite side, if .n(h) < k, 

. 
〈
Bn(h)(̃un(h)(s), ũn(h)(s)), (−A)−βek

〉 = 0

therefore 

. |
∫ t

0

〈
Bn(h)(̃un(h)(s), ũn(h)(s)) − B(̃u(1)(s), ũ(1)(s)), (−A)−βek

〉
ds|

= |
∫ t

0

〈
B(̃u(1)(s), ũ(1)(s)), (−A)−βek

〉
ds|

≤ ‖∇(−A)−βek‖L∞
∫ t

0
‖ũ(1)(s)‖2

H ds.

Coming back to the convergence of the nonlinear term, we have 

.‖(−A)−β

∫ t

0
Bn(h)(̃un(h)(s), ũn(h)(s)) − B(̃u(1)(s), ũ(1)(s)) ds‖2

H

=
∞∑

k=1

〈∫ t

0
Bn(h)(̃un(h)(s), ũn(h)(s)) − B(̃u(1)(s), ũ(1)(s)) ds, (−A)−βek

〉2

=
∞∑

k=1

(∫ t

0

〈
Bn(h)(̃un(h)(s), ũn(h)(s)) − B(̃u(1)(s), ũ(1)(s)), (−A)−βek

〉
ds

)2

≤
⎛
⎝n(h)∑

k=1

‖∇(−A)−βek‖2
L∞

⎞
⎠

(∫ t

0
‖ũn(h)(s) − ũ(1)(s)‖H

(
‖ũn(h)(s)‖H + ‖ũ(1)(s)‖H

)
ds

)2

+
⎛
⎝ ∞∑

k=n(h)

‖∇(−A)−βek‖2
L∞

⎞
⎠

(∫ t

0
‖ũ(1)(s)‖2

H ds

)2

≤
( ∞∑

k=1

‖∇(−A)−βek‖2
L∞

)
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(∫ t 

0
‖ũn(h)(s) − ũ(1) (s)‖H

(
‖ũn(h)(s)‖H + ‖ũ(1) (s)‖H

)
ds

)2 

+ 

⎛ 

⎝ 
∞∑

k=n(h)

‖∇(−A)−β ek‖2 
L∞ 

⎞ 

⎠
(∫ t 

0
‖ũ(1) (s)‖2 

H ds

)2 

. 

The second factor of the first addend converges to zero a.s. and the first factor of the 
first addend is finite by assumption, hence the first addend goes to zero; the second 
one also for similar but easier reasons. 

Note that in the case of the torus with periodic boundary conditions, we have 

. 
∑

k

‖∇(−A)−βek‖2
L∞ =

∑
k∈Z2

0

1

|k|4β−2 < +∞ ⇐⇒ β > 1.

Therefore we do not expect that the condition on . β presented in this remark allows 
us to avoid the requirement of considering .β > 1. Indeed, the condition 

. 

∞∑
k=1

‖∇(−A)−βek‖2
L∞ < +∞

holds for .β > 3
2 in a general 2D domain. To get this bound on . β, we recall that if 

D is a d-dimensional smooth, bounded domain, then the eigenvalues of the Stokes 
operator with no-slip boundary conditions satisfy the asymptotic relation 

. λk ∼ Cdk2/d

where . Cd is a constant depending only from d and the volume of D, see for example 
[181]. Thanks to this relation and exploiting Sobolev embedding theorem we get the 
result easily. Indeed the following relations hold true: 

.

∞∑
k=1

‖∇(−A)−βek‖2
L∞ =

∞∑
k=1

‖(−A)−βek‖2
W 1,∞

≤ Cd

∞∑
k=1

‖(−A)−βek‖2
D((−A)1+ε )

= Cd

∞∑
k=1

‖(−A)1+ε−βek‖2

=
+∞∑
k=1

Cd

λ
2(β−1−ε)
k

.
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The last series converges, in dimension two, if and only if .2(β − 1 − ε) > 1. 
Therefore we arrive at the relation . β > 3

2 .

The argument presented in the main proof can be refined in order to obtain 
the final result without passing for the condition . β > 1. We just sketch this  
argument. Before we showed that, if we take .β = 1 and .ε > 0 such that 
.β + ε > 1 then .M̃n

h (t) → M̃(1)(t) a.s. in .D((−A)−ε) and, thanks to the 
fact that the random variables .‖M̃n

h (t)‖2
D((−A)−ε )

are uniformly integrable, also 

.E

[
‖M̃n

h (t)‖2
D((−A)−ε )

]
→ E

[
‖M̃(1)(t)‖2

D((−A)−ε )

]
. Let us introduce the functions 

. f (x) = ‖x‖2
H , fN(x) = ‖πNx‖2

H ∧ N.

The first one is continuous on H , the others are continuous and bounded on 
.D((−A)α), .∀α ∈ R. Obviously, it holds that 

. 0 ≤ fN(x) ↗ f (x) ≤ +∞, ∀x ∈ D((−A)α).

Thanks to above computations, we have 

. ̃E

[
‖πNM̃(1)(t)‖2

H ∧ N
]

= lim
h→+∞ Ẽ

[
‖πNM̃n

h(t)‖2
H ∧ N

]

= lim
h→+∞ Ẽ

[
πN‖Ĩ n

h (t)‖2
H ∧ N

]
≤ C < +∞,

where C is a constant independent of N . By monotone convergence it follows 
immediately that .M̃(1)(t) is a square integrable random variable with values in . H.

Since with this approach we did not show that .M̃n
h (t) → M̃(1)(t) almost surely in 

H we cannot take .u, v ∈ H in order to study the martingale properties of the limit 
processes, but we can only take .u, v ∈ D((−A)−ε). This regularity of u and v is 
enough to prove the required properties and conclude the proof. 

2.4.5 3D Navier–Stokes Equations with Additive Noise 

Let us add a few remarks on the 3D Navier–Stokes equations in a domain D, just  
with additive noise, which we write briefly in abstract form 

.du = Audt + B (u, u) dt + f + F (u) +
∑

k

σkdWk
t . (2.12) 

Writing the theory of 3D Navier–Stokes equations in the same detail as above is 
not consistent with the format of these notes. Therefore we shall limit ourselves to 
an outline of ideas. For more elements on the deterministic theory see for instance 
[247], [248], [200]. For a result on weak solutions not limited to additive noise see
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for instance [118] and for other results on additive noise, including a theory about 
the Kolmogorov equation and Markov selections, see [88] and [137]. For a path-by-
path approach (which provides solutions on an a priori given probability space, but 
is not proved to be progressively measurable) see for instance [139]. 

The definition of a weak solution is similar to the 2D case. However, two new 
elements are present. The first one is that we just require weak continuity in H , 
namely continuity in the weak topology of H : 

.u ∈ C ([0, T ] ;Hw) ∩ L∞ (0, T ;H) ∩ L2(0, T ;V ). (2.13) 

For every test function .φ ∈ H , the function .t �→ 〈u (t) , φ〉 is continuous. Since we 
assume .u ∈ L∞ (0, T ;H), a property like 

. u ∈ C
(
[0, T ] ;D (A)′

)

implies .u ∈ C ([0, T ] ;Hw). 
The second detail is that now we cannot prove the energy identity; and if u is 

a weak solution (in the sense of weak regularity plus the weak formulation of the 
equation), we cannot even prove an energy inequality. We have to include it in the 
definition, if we want to use it; and the existence of weak solutions satisfying the 
energy inequality can be established. Sometimes the weak solutions which have an 
energy inequality are called Leray solutions. 

The other aspect which drastically changes is the interpolation inequalities. The 
property (.b, B, P etc. are defined as in the 2D case) 

. b (u, v,w) ≤ ‖v‖V ‖u‖L4‖w‖L4

is always true, being given by the Hölder inequality. But the Ladyzhenskaya 
inequality is crucially different: 

. ‖f ‖L4
d=2≤ ‖f ‖

W
1
2 ,2 ≤ ‖f ‖1/2

L2 ‖f ‖1/2
W 1,2 ,

. ‖f ‖L4
d=3≤ ‖f ‖

W
3
4 ,2 ≤ ‖f ‖1/4

L2 ‖f ‖3/4
W 1,2 .

This is due to Sobolev embedding theorem in dimension d: .Wα,p (D) ⊂ Lq (D) if 
.
1
q

= 1
p

− α
d

. This increase of the power of .‖f ‖W 1,2 has tremendous consequences. 
In particular, from the regularity 

.u ∈ L∞ (0, T ;H) ∩ L2 (0, T ;V )
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we cannot deduce anymore .u ∈ L4
(
0, T ;L4

)
, property that we have used in 

essential way in .d = 2. Now we only have .u ∈ L8/3
(
0, T ;L4

)
: 

. 

∫ T

0
‖u (t)‖8/3

L4 dt ≤ C

∫ T

0
‖u (t)‖2/3

H ‖u (t)‖2
V dt ≤ C sup

t∈[0,T ]
‖u (t)‖2/3

H

∫ T

0
‖u (t)‖2

V dt.

The Problem of Uniqueness 

Let us illustrate the problem in the particular case .F = 0, . σk = 0. If .u(i) are two 
solutions and we set .w = u(1) − u(2), we have  

. 〈w (t) , φ〉−
∫ t

0

(
b

(
u(1), φ, u(1)

)
− b

(
u(2), φ, u(2)

))
(s) ds =

∫ t

0
〈w (s) ,Aφ〉 ds

and since 

. b
(
u(1), φ, u(1)

)
− b

(
u(2), φ, u(2)

)
− b (w, φ,w)

= b
(
u(2), φ,w

)
+ b

(
w,φ, u(2)

)

we get 

. 〈w (t) , φ〉 −
∫ t

0
(b (w (s) , φ,w (s))) ds

=
∫ t

0
〈w (s) ,Aφ〉 ds +

∫ t

0

(
b

(
u(2), φ,w

)
+ b

(
w,φ, u(2)

))
(s) ds.

Up to details (in particular the next fact requires Leray solutions), we have 

. ‖w (t)‖2
H + 2ν

∫ t

0
‖∇w (s)‖2

H ds ≤ 2
∫ t

0

(
b

(
u(2), w,w

)
+ b

(
w,w, u(2)

))
(s) ds

= 2
∫ t

0
b

(
w,w, u(2)

)
(s) ds.

But now 

.|b
(
w,w, u(2)

)
| ≤ C‖w‖V ‖w‖L4‖u(2)‖L4

≤ C‖w‖7/4
V ‖w‖1/4

H ‖u(2)‖L4 .
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We may use Young’s inequality .ab ≤ νa8/7 + Cνb
8: 

. |b
(
w,w, u(2)

)
| ≤ ν‖w‖2

V + Cν‖w‖2
H ‖u(2)‖8

L4

so that 

. ‖w (t)‖2
H + ν

∫ t

0
‖∇w (s)‖2

H ds ≤ Cν

∫ t

0
‖w (s)‖2

H

(
‖u(2) (s)‖8

L4 + 1
)

ds.

The Gronwall lemma this time does not apply because we do not know that .u(2) is 
of class .L8

(
0, T ;L4

)
; we only know .u ∈ L8/3

(
0, T ;L4

)
. 

Estimates on Galerkin and Tightness 

The definition of Galerkin approximations is the same as in 2D and the first energy 
inequalities are proved in the same way. We get the same bounds (2.6)–(2.7). With 
due work we deduce that laws of . un are tight in .L2 (0, T ;H). A little additional 
work gives tightness in 

. L2 (0, T ;H) ∩ C
(
[0, T ] ;D (A)′

)
.

Moreover, we have weak convergence in the topologies of (2.6), hence any limit 
measure of subsequences is supported on the regularity space of the definition of a 
weak solution. It remains to prove that such limit measures (which exist) correspond 
to solutions of the 3D Navier–Stokes equations. 

Definition of Solution and Convergence 

Until now a solution has been a stochastic process. However, the previous construc-
tion provides only a probability measure on certain function spaces. One can always 
introduce a stochastic process with such a measure as a law, but it is just an artefact, 
it is not defined on the original probability space where the problem was formulated. 
Therefore we give the following definition, which is called weak in a double sense: 
weak probabilistically and weak analytically. 

Definition 2.27 Let .u0 ∈ H be given. A weak solution of the 3D Navier– 
Stokes equations (2.12) with initial condition . u0 is a filtered probability space 
.(�,F ,Ft ,P), a family of independent Brownian motions . Wk

t , .k ∈ K , over
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such space, and a stochastic process u, with paths of class (2.13), progressively 
measurable (adapted in H , being weakly continuous), which satisfies 

. 〈u (t) , φ〉 −
∫ t

0
b (u (s) , φ, u (s)) ds

= 〈u0, φ〉 +
∫ t

0
〈u (s) , Aφ〉 ds +

∑
k∈K

√
λk 〈σk, φ〉 Wk

t

+
∫ t

0
〈f (s) + F (u(s)) , φ〉ds

for every .φ ∈ D (A). We also require 

. E

[
‖u (t)‖2

H

]
+ 2ν

∫ t

0
E

[
‖∇u (s)‖2

L2

]
ds ≤ ‖u0‖2

H + t
∑
k∈K

λk‖σk‖2
H

+
∫ t

0
E [〈f (s) + F (u(s)) , u(s)〉] ds.

Notice that assuming . u0 random provokes a problem: a probability space should 
be defined in advance; this is not compatible with the construction. An alternative 
then is to prescribe the law of . u0 on H . 

Let us sketch the proof of existence of such solutions. In order to simplify 
the notation, we will neglect the dependence of the time of the processes and the 
functions appearing in the integrals. Let . un be the Galerkin approximations defined 
above. In fact, consider for each n the pair 

. (un,Wn)

where .Wn (t) := ∑
k σ n

k Wk
t , which is a random variable with values in 

.L2 (0, T ;H) × C([0, T ] ;H). (2.14) 

Call .Qn its law. The family .(Qn)n∈N is tight in this space (the tightness of the second 
component follows from its convergence to .W (t) := ∑

k σkW
k
t ). Let us extract a 

subsequence .
(
Qnk

)
which weakly converges to a probability measure Q. Then, for 

every smooth compact support divergence free test vector field .φ (t, x), consider the 
functional 

.Jφ (u,w) := 1∧
∣∣∣∣
∫ T

0
〈u, (∂s + A)φ〉 ds +

∫ T

0
b (u, φ, u) ds +

∫ T

0
〈f + F (u) , φ〉

−
∫ T

0
〈w, ∂sφ〉 ds

∣∣∣∣.
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Notice that, if a sequence of functions .(un) ⊂ L2 (0, T ;H) converges strongly to 
u, and . φ is bounded, then .b (un, φ, un) converges to .b (u, φ, u). Thus the functional 
. Jφ is continuous on the product space (2.14), and bounded. Hence 

. lim
k→∞

∫
Jφ (u,w) Qnk (du, dw) =

∫
Jφ (u,w) Q(du, dw).

But 

. 

∫
J (u,w) Qnk (du, dw)

= E

[
1 ∧

∣∣∣∣
∫ T

0

〈
unk

, (∂s + A)φ
〉
ds +

∫ T

0
b

(
unk

, φ, unk

)
ds

+
∫ T

0

〈
f + F

(
unk

)
, φ

〉 −
∫ T

0

〈
Wnk

, ∂sφ
〉
ds

∣∣∣∣
]
.

The equation satisfied by .unk
may be rewritten for time-dependent test functions . φ

as we did in Chap. 1 when dealing with the Stokes problem: 

. 

∫ T

0

〈
unk

, (∂s + A) φ
〉
ds +

∫ T

0
b

(
unk

, πnk
φ, unk

)
ds +

∫ T

0

〈
f + F

(
unk

)
, πnk

φ
〉
ds

−
∫ T

0

〈
Wnk

, ∂sφ
〉
ds = 0.

Hence 

. 

∫
J (u,w) Qnk (du, dw)

= E

[
1 ∧ |

∫ T

0
b

(
unk

, φ − πnk
φ, unk

)
ds +

∫ T

0

〈
f + F

(
unk

)
, φ − πnk

φ
〉|

]
.

Let us prove it goes to zero: 

. E

[
|
∫ T

0
b

(
unk

, φ − πnk
φ, unk

)
ds|

]
≤ ‖φ − πnk

φ‖D(A)E

[∫ T

0
‖unk

‖H ‖unk
‖V ds

]

≤ ‖φ − πnk
φ‖D(A)E

[
sup

t∈[0,T ]
‖unk (t)‖H

∫ T

0
‖unk

‖V ds

]

and .‖φ − πnk
φ‖D(A) → 0 (using .φ ∈ D(A) and the commutativity of .πnk

with A), 

.E

[
sup

t∈[0,T ]
‖unk (t)‖H

∫ T

0
‖unk

‖V ds

]
≤ C
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by the bounds (2.6); and 

. E

[
|
∫ T

0

〈
f + F

(
unk

)
, φ − πnk

φ
〉
ds|

]

≤ ‖φ − πnk
φ‖V

(
E

[∫ T

0
‖f ‖V ′ds

]
+ CE

[∫ T

0

(
1 + ‖unk

‖H

)
ds

])

and the argument is similar and easier. 
It follows that Q satisfies 

. 

∫
Jφ (u,w) Q (du, dw) = 0

for every . φ. Realize Q as law of .
(̃
u, W̃

)
. The second marginal of Q is the law of 

.W := ∑
k σkdWk

t , being the weak limit of the second marginal of .Qnk
, which is the 

law of .Wn which converges a.s. to W ; hence . W̃ has the same law of W . Working a 
little bit with Gaussianity, we may check that . W̃ is represented as .

∑
k σkdW̃ k

t where 
.W̃ k

t are independent Brownian motions. 
We have 

. ̃E

[
1 ∧

∣∣∣∣
∫ T

0
〈̃u, (∂s + A)φ〉 ds +

∫ T

0
b (̃u, φ, ũ) ds

+
∫ T

0
〈f + F (̃u) , φ〉 −

∫ T

0

〈
W̃ , ∂sφ

〉
ds

∣∣∣∣
]

= 0,

hence .̃P-a.s. 

. 

∫ T

0
〈̃u, (∂s + A)φ〉 ds +

∫ T

0
b (̃u, φ, ũ) ds +

∫ T

0
〈f + F (̃u) , φ〉

−
∫ T

0

〈
W̃ , ∂sφ

〉
ds = 0

for every given . φ (the negligible set where this may not hold depends on . φ). Taking 
first a dense countable set of . φ’s, so that we can invert the quantifiers and then 
a convergence argument based on pathwise regularity, we deduce that, .̃P-a.s., we 
have 

.

∫ T

0
〈̃u, (∂s + A)φ〉 ds +

∫ T

0
b (̃u, φ, ũ) ds +

∫ T

0
〈f + F (̃u) , φ〉

−
∫ T

0

〈
W̃ , ∂sφ

〉
ds = 0
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for all . φ, which is the definition of a weak solution. 
We have adapted the previous proof from the case of convergence to a determin-

istic equation (see for instance [185], Chapter 4, for an example in the framework 
of particle systems). It does not extend, however, to state-dependent noise since the 
stochastic integral is not continuous in the noise. 

2.5 Summary 

The main techniques illustrated in this chapter are the use of the Itô formula, an 
interesting idea for uniqueness, its consequence through a criterion of Gyongy and 
Krylov, and especially the method of compactness, quite universal and useful in 
many fields. 

Similarly to the remarks in the summary of Chap. 1, a main open problem related 
to this chapter is the link between a real irregular boundary (or other mechanisms 
responsible for noise terms) and stochastic models of fluids; here the problem is 
enriched by the dependence on the flow intensity, a very realistic feature, which 
poses a new technical issue, namely the presence of the Wong–Zakai corrector in 
the limit equation, as discussed in Sects. 5.5 and 5.6. Also the case, not treated here 
for simplicity (but see [118]), of noise depending on the gradient of the solution is 
relevant, since vortex production due to instability is related to shear. We discuss 
noise depending on the gradient of the solution in the next two chapters but the 
physical origin is different and the mathematical dependence is linear, while in the 
case of shear dependence it may also be nonlinear. This issue should be investigated 
much better. 

We have also seen that noise introduces energy, on average, hence the model 
should be corrected by an energy loss.



Chapter 3 
Transport Noise in the Heat Equation 

This chapter and the following one present miscellaneous topics around the concept 
of transport noise, which came recently to the attention of researchers as an 
additional term of the Navier–Stokes equations, although relevant older works 
existed [52, 53, 145, 216, 217, 259]; its effects on passive scalars are on the contrary 
a classical subject nowadays in mathematical physics, see for instance [65, 69, 143, 
149, 198, 206, 242]. We distinguish these two directions, mathematically related but 
physically very different: 

1. the case when the transport noise affects a passive scalar (let us call this the 
exogenous case); 

2. the case when the transport noise affects the fluid equation itself (endogenous 
case). 

We devote Chap. 3 to the exogenous case and Chap. 4 to the endogenous one. 
The second level of subdivision is: 

(a) action of transport noise on scalars; 
(b) action on vector fields. 

Essentially, our present understanding is limited to case (a). We devote to it 
Sects. 3.2, 3.3, 4.1, and 4.2 considering both exogenous and endogenous actions. 

Finally, we discuss case (b) in Sects. 3.4 and 4.4 where we stress the limitations of 
our understanding. In spite of these, we hope it will be possible in the future to throw 
light, on this difficult subject. Due to the strong connections between this chapter 
and the following one we avoid adding a summary section at the end of this chapter. 
For this scope we suggest to read Sect. 4.5 and Chap. 5, which summarize not only 
the topics of Chaps. 3 and 4 but, in a sense, the meaning of these lecture notes as 
a journey from perturbations introduced by boundary roughness to regularization 
effects related to turbulence. 

Concerning the investigation of transport–type noise in Navier–Stokes, Euler 
and related equations, the so–called endogenous case, apart from the pioneering 
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works mentioned above, a great impetus has been given by two sources. One 
of them has been the variational approach given by D.D. Holm [177], see also 
[5, 6, 68, 77, 81, 82, 100, 101, 141, 150, 178] among several other works in this 
direction. Another one has been the realization that transport noise may have 
special regularizing properties, like restoring uniqueness to a PDE which has 
multiple solutions, see for instance [8, 20, 121] among many others for the case 
of scalar transport equations, [130, 131] for the transport of vector fields, and [10– 
13, 35, 122, 152] for nonlinear models, including the so–called dyadic model of 
turbulence. Some further results are summarized in [36, 113]. A new mechanism of 
regularization by noise was discovered more recently and will be presented below 
in a particular case in Sect. 4.4. Among the works in this direction let us quote 
[19, 97, 115, 117, 123, 126, 210]. 

Besides the works already quoted, several others contributed to the development 
of our present understanding of transport terms in fluid dynamics. Some of them 
are quoted below in the specific sections; let us mention in addition [15, 60, 62, 74– 
76, 81, 83, 84, 194, 201, 202, 220, 230, 244] among others. 

3.1 Introduction: Stochastic Heat Transport 

Let us oversimplify the fluid dynamics near the boundary. The following view is 
highly phenomenological and should be subject to much deeper research (see some 
progress in [135]). 

We assume that the fluid, in a region near the boundary, may be approximately 
described by the equations 

. ∂tu + ∇p = ν�u − 1

ε
u + 1

ε

∑

k∈K

σk∂tW
k,

div u = 0,

u|∂D = 0.

This is the Stokes model, strongly incorrect in itself for turbulent fluids, but 
complemented by the creation of eddies/vortices (the term . 1

ε

∑
k∈K σk∂tW

k) and 
an extra-dissipation term of friction type (.− 1

ε
u) to compensate the extra input of 

energy (in the average) due to the noise. 
We have intentionally parametrized the problem by .ε > 0, in the very precise 

way written above, because we want to explore here a special scaling limit. Physical 
motivations for this special rescaling can be found for instance in [133, 134, 207]. 
Let us also, from now on, denote u by . uε . The abstract semigroup formulation of 
this problem, with A given by the operator .νP� as in the previous chapters, is 

.uε (t) = e
t
(
A− 1

ε

)

u0 + 1

ε

∑

k∈K

∫ t

0
e
(t−s)

(
A− 1

ε

)

σkdWk
s .
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In Chap. 1, in order to avoid Itô integrals and cover rough noise sources of very 
different type, we integrated by parts and used the following formulation: 

. uε (t) = e
t
(
A− 1

ε

)

u0 + 1

ε

∑

k∈K

σkW
k
t + 1

ε

∑

k∈K

∫ t

0
e
(t−s)

(
A− 1

ε

) (
A − 1

ε

)
σkW

k
s ds.

When .Wk
s are independent Brownian motions, both formulations are meaningful 

and they are equivalent. In the following lines we shall apply a Fubini–type theorem 
to the stochastic integral: one way to justify it rigorously is precisely to use the last 
formulation which involves only Lebesgue integrals. 

Let us introduce two notations: 

. Wε (t, x) =
∫ t

0
uε (s, x) ds,

W (t, x) =
∑

k∈K

σk (x) Wk
t .

Then 

. Wε (t) = 1

ε

∑

k∈K

∫ t

0

∫ s

0
e
(s−r)

(
A− 1

ε

)

σkdWk
r ds

= 1

ε

∑

k∈K

∫ t

0

∫ t

r

e
(s−r)

(
A− 1

ε

)

σkdsdWk
r

= 1

ε

∑

k∈K

∫ t

0

(
A − 1

ε

)−1 [
e
(t−r)

(
A− 1

ε

)

− 1

]
σkdWk

r

= 1

ε

(
A − 1

ε

)−1 ∑

k∈K

∫ t

0
e
(t−r)

(
A− 1

ε

)

σkdWk
r − 1

ε

(
A − 1

ε

)−1

W (t) .

Now we use the fact (well–known in the framework of Yosida approximations of 
semigroup theory, see [225]) that 

. lim
λ→∞ λ (λ − A)−1 h = h

for all .h ∈ H ; .A−1 being compact in our example, we can easily verify this property 
using the spectral decomposition. With minor additional arguments that we leave as 
exercise, it follows that: 

Lemma 3.1 

. lim
ε→0

E

[
‖Wε (t) − W (t)‖2

H

]
= 0.
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The result is also uniform in time, with supremum inside the expected value. The 
message of this lemma is that u converges in distribution to a white noise, the time 
derivative of the space-dependent Brownian motion W . 

Why is this an interesting regime? Let us investigate this issue in the case of the 
evolution of an auxiliary quantity: heat. Assume the fluid has a variable temperature 
and is not strongly influenced by temperature, hence we do not change its equation 
of motion. But temperature, next indicated by .θ (t, x), evolves according to the 
diffusion-transport equation 

. ∂t θ + u · ∇θ = κ�θ + q,

where .κ > 0, typically small, is the heat diffusion constant and .u·∇θ is the transport 
due to the fluid motion; q is a heat source. If we take the limit .ε → 0 in the model of 
fluid above and we apply the heuristics of the Wong–Zakai result, we find the model 

. ∂t θ +
∑

k∈K

(σk · ∇θ) ◦ ∂tW
k = κ�θ + q,

where the symbol . ◦ stands for the Stratonovich operation. In Chap. 5 we explain 
why the correct Itô interpretation of this equation is 

.∂t θ +
∑

k∈K

(σk · ∇θ) ∂tW
k = (κ� + L) θ + q, (3.1) 

where the stochastic term is now understood in the classical Itô sense and . L is the 
linear differential operator 

. (Lθ) (x) = 1

2

∑

k∈K

σk (x) · ∇ (σk (x) · ∇θ (x)).

The result of this modeling step is that we end-up with model (3.1) for the heat 
diffusion under a turbulent velocity field. Taking (heuristically at this stage) the 
expectation of each term and introducing the mean temperature profile 

. 
(t, x) = E [θ (t, x)]

we get 

. ∂t
 = (κ� + L)
 + q.

If the noise has suitable properties, the elliptic operator . L strongly increases the 
dissipation of the term . κ�. Moreover, we shall prove that the random field . θ (t, x)

is close to its average .
(t, x) under suitable assumptions. This will lead to the 
statement that turbulent transport increases the original diffusion, a fact that is 
observed in experiments (it corresponds, in our daily life, to the fact that when we
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stir coffee the temperature rapidly decreases). This model has the power to explain 
a well–known experimental phenomenon, the so–called eddy diffusion. 

The results outlined in this introductory section will be developed below in some 
detail but additional information can be found in the paper that initiated this research 
[147] and in subsequent references like [116, 223]; a different scaling can be seen 
in [125]. 

3.1.1 Divergence Form of the Operator 

Let us discuss the additional term .Lθ appearing in Eq. (3.1). Componentwise we 
can write 

. (Lθ) (x) = 1

2

∑

k∈K

d∑

i,j=1

σ i
k (x) ∂i

(
σ

j
k (x) ∂j θ (x)

)
.

Since .
∑d

i=1 ∂iσ
i
k (x) = 0, we deduce also 

. (Lθ) (x) = 1

2

∑

k∈K

d∑

i,j=1

∂i

(
σ i

k (x) σ
j
k (x) ∂j θ (x)

)
.

Let us now introduce for the first time (but this doesn’t mean it is a secondary 
concept) the covariance function of the noise, covariance with respect to the space 
variable. It is defined as 

. Q(x, y) = E [W (t, x) ⊗ W (t, y)] x, y ∈ D

and it is easily found to be 

. Q(x, y) =
∑

k∈K

σk (x) ⊗ σk(y).

Therefore we have found 

. (Lθ) (x) = 1

2

d∑

i,j=1

∂i

(
Qij (x, x) ∂j θ (x)

)
.

This is an elliptic operator in divergence form. Ellipticity comes from the property 

. 

d∑

i,j=1

Qij (x, x) ξiξj = E

[
|W (t, x) · ξ |2

]
≥ 0

for all .ξ = (ξ1, . . . , ξd) ∈ R
d .
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3.2 Existence and Uniqueness for the Heat Equation with 
Transport Noise 

In this section we want to prove an existence and uniqueness result for the equation 

. ∂t θ +
∑

k∈K

(σk · ∇θ) ∂tW
k = (κ� + L) θ + q

in a bounded regular domain .D ⊂ R
d with Dirichlet boundary conditions. Other 

domains and boundary conditions can be studied as well. 
We know two very efficient methods: 

1. variational; 
2. semigroups. 

3.2.1 Variational Method 

This method has been developed by Pardoux [224] and Krylov–Rozovskii [191], in 
the more general context of SPDEs with monotone operators. We limit ourselves to 
the ideas.

• One has to introduce a sequence of approximating problems which have a unique 
solution by known results. We skip this step.

• On these approximations, one has to prove estimates independent of the approx-
imating parameter.

• We perform such a step on the true equation, in the style of a priori estimates: 
we assume that we have a smooth solution and see which estimates hold.

• Such estimates imply the existence of weakly convergent subsequences, suffi-
cient to pass to the limit, the equation being linear. We skip the details of this 
step. 

A Priori Estimates Using Stratonovich Formulation 

If we use the Stratonovich formulation 

.∂t θ +
∑

k∈K

(σk · ∇θ) ◦ ∂tW
k = κ�θ + q
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and we accept that the rules of calculus (being the limit of smooth noise) are the 
classical ones, we get (recall .div σk = 0) 

. 
d

dt
‖θ (t)‖2

L2 = −2

〈
θ,

∑

k∈K

(σk · ∇θ) ◦ ∂tW
k

〉
+ 2 〈θ, κ�θ〉 + 2 〈θ, q〉

= −2κ‖∇θ (t)‖2
L2 + 2 〈θ, q〉

because 

. 2
∫

D

〈θ, σk · ∇θ〉 = 2
∫

D

θ (x) σk (x) · ∇θ (x) dx

=
∫

D

σk (x) · ∇θ2 (x) dx = −
∫

D

div σk (x) θ2 (x) dx = 0.

Therefore 

. 
d

dt
‖θ (t)‖2

L2 + 2κ‖∇θ (t)‖2
L2 = 2 〈θ (t) , q (t)〉

leading to the a.s. (deterministic!) estimates. By easy classical steps one gets 

. sup
t∈[0,T ]

‖θ (t)‖2
L2 ≤ C

∫ T

0
‖∇θ (s)‖2

L2ds ≤ C

with C depending only on . κ , .‖θ0‖L2 , .
∫ T

0 ‖q (s)‖2
L2ds. 

A Priori Estimates Using Itô Formulation 

Obviously the final result will be the same, but let us see the computation when 
the equation contains the Ito–Stratonovich corrector; and the Itô formula is used to 
perform computations, with its correcting term. We use the Itô formulation 

.∂t θ +
∑

k∈K

(σk · ∇θ) ∂tW
k = (κ� + L) θ + q
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and we apply the Itô formula, to get 

. d‖θ (t)‖2
L2 = −2

∑

k∈K

〈θ, (σk · ∇θ)〉 dWk + 2 〈θ, (κ� + L) θ + q〉 dt

+
∑

k∈K

‖σk · ∇θ‖2
L2dt

= −2κ‖∇θ (t)‖2
L2 + 2 〈θ, q〉 − 2

1

2

∫

D

∑

ij

Q (x, x) ∂iθ∂j θdxdt

+
∑

k∈K

∫

D

∑

ij

σ i
k (x) ∂iθσ

j
k (x) ∂j θdxdt.

We obtain the same result as above. At the level of energy estimates, the Itô term 
and the corrector completely balance each other. 

Maximum Principle a Priori Estimates 

Let us also describe a side estimate of some interest. Consider the Kolmogorov 
equation 

. ∂t θ + u · ∇θ = κ�θ + q,

θ |t=0 = θ0

on a time interval .[0, T ]. Introducing .θT (t) = θ (T − t), .uT (t) = u (T − t), 
.qT (t) = q (T − t), we get 

. ∂t θT − uT · ∇θT + κ�θT + qT = 0,

θT |t=T = θ0.

Denoting by .ϕs,t (x) the flow associated to the equation 

. dϕs,t (x) = −uT

(
t, ϕs,t (x)

)
dt + √

2κdBt t ∈ [s, T ] ,

ϕs,s (x) = x,

where . Bt is an auxiliary Brownian motion, we have 

.dθT

(
t, ϕs,t (x)

) = ∂t θT dt + ∇θT · dϕs,t + κ�θT dt

= uT · ∇θT dt − κ�θT dt − qT dt

− ∇θT · uT dt + ∇θT · √
2κdBt + κ�θT dt

= −qT dt + ∇θT · √
2κdBt
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and therefore 

. E
[
θ0

(
ϕs,T (x)

)] − θT (s, x) = −
∫ T

s

E
[
qT

(
t, ϕs,t (x)

)]
dt.

Going back to the original variables we have 

. E
[
θ0

(
ϕs,T (x)

)] − θ (T − s, x) = −
∫ T

s

E
[
q

(
T − t, ϕs,t (x)

)]
dt,

namely, 

. θ (t, x) = E
[
θ0

(
ϕT −t,T (x)

)] +
∫ T

T −t

E
[
q

(
T − r, ϕT −t,r (x)

)]
dr.

We deduce in particular 

.‖θ (t)‖∞ ≤ ‖θ0‖∞ +
∫ T

0
‖q (r)‖∞dr. (3.2) 

The previous computation, performed here heuristically, can be made rigorous by 
convolution under very general assumptions. With due effort based on the theory of 
stochastic flows, it works also for the equation 

. ∂t θ +
∑

k∈K

(σk · ∇θ) ◦ ∂tW
k = κ�θ + q

in Stratonovich form, being the limit of equations with regular coefficients. The final 
result is the same, a deterministic (a.s.) inequality in the supremum norm, a kind of 
maximum principle estimate. 

3.2.2 Semigroup Method 

Opposite to the previous subsections which contain only an outline of the variational 
approach, here we give all the details of the semigroup approach. Initially, it was 
more difficult to understand how to apply semigroups to this kind of equations, 
since the regularity issues about the stochastic term are “at the limit”, so to speak. 
The breakthrough came with the papers by Da Prato [85, 86], developed further in 
the book [90]. The theory was later assessed by a series of works, see the book 
[111]. Recently, this theory has been much extended by Agresti and Veraar [1, 2], 
Hytönen et al. [179, 180].
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Consider the equation 

.∂t θ +
∑

k∈K

(σk · ∇θ) ∂tW
k = (κ� + L) θ + q. (3.3) 

Let: .H = L2 (D), .V = W
1,2
0 (D), .D (A) = W 2,2 (D) ∩ V , . A : D (A) ⊂ H → H,

. Aθ = (κ� + L) θ.

. etA, .t ≥ 0, the analytic semigroup generated by A (under minimal regularity 
assumptions on .Q(x, x), see [225, Chapter 7]). Then 

. θ (t) = etAθ0 −
∑

k∈K

∫ t

0
e(t−s)A (σk · ∇θ (s)) dWk

s +
∫ t

0
e(t−s)Aq (s) ds.

We want to solve this equation by iterations. These equations are not trivial because 
there is a gradient of . θ on the right–hand side and thus iteration requires that also 
the left–hand side accepts a gradient. 

Notions of Solution and Main Result 

Even if the definitions of .H, V, A, D(A) changed with respect to the previous 
chapters we keep the same notations. In particular, in the sequel we denote by . V ′
the dual of V . We may identify H with .H ′ and thus write . D (A) ⊂ V ⊂ H ⊂
V ′ with continuous dense embeddings. The scalar product .〈·, ·〉 in H “extends” to 
the dual pairing between V and . V ′, which will be denoted by the same notation. 
As already done in a previous chapter, let us denote by .L2

F (0, T ;V ) the space of 
progressively measurable process with values in V and by .CF ([0, T ] ;H) the space 
of continuous adapted square integrable processes. Assume . σk smooth enough, . θ0 ∈
H , .q ∈ L2 (0, T ;H). A stochastic basis .(
,F , (Ft ) ,P) is assumed to be given 
(thus we deal with strong solutions). 

Definition 3.2 A stochastic process 

. θ ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V )

is a weak solution if, for every .φ ∈ D(A), we have  

. 〈θ (t) , φ〉 = 〈θ0, φ〉 +
∫ t

0
〈θ (s) , (κ� + L) φ〉 ds

+
∫ t

0
〈q (s) , φ〉 ds +

∑

k∈K

∫ t

0
〈θ (s) , σk · ∇φ〉 dWk

t

for every .t ∈ [0, T ], .P-a.s.
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Notice that the stochastic integrals are well–defined since .σk · ∇φ ∈ H , hence 
the integrand is a continuous adapted process; the deterministic integral is obviously 
well–defined, since .s �→ 〈θ (s) , (κ� + L) φ〉 is .P-a.s. continuous. 

In the following alternative definition we use the heat semigroup . etA. 

Definition 3.3 A stochastic process 

. θ ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V )

is a mild solution if the following identity holds: 

. θ (t) = etAθ0 +
∫ t

0
e(t−s)Aq (s) ds −

∑

k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dWk

s

for every .t ∈ [0, T ], .P-a.s. 

Proposition 3.4 The two notions of solution coincide. 

The proof is not difficult and similar to one shown in Chap. 1 for the Stokes 
problem. However, it can be found in [127]. The main result proved below is: 

Theorem 3.5 For every .θ0 ∈ H and .q ∈ L2 (0, T ;H), there exists one and only 
one (weak or mild) solution. 

General Parabolic Equations with Itô–Type Transport Noise 

In order to fully appreciate certain aspects of the previous result, consider the more 
general problem: the equation 

.∂t θ +
∑

k∈K

(σk · ∇θ) ∂tW
k =

d∑

i,j=1

∂j

(
aij (x) ∂iθ

) + q, (3.4) 

where .ai,j is strongly elliptic and sufficiently regular so that the operator 

. Aθ =
d∑

i,j=1

∂j

(
ai,j (x) ∂iθ

)

generates an analytic semigroup. The notions of solutions are the same. 

Theorem 3.6 Assume the exists .η < 1 such that 

.
1

2

∑

k∈K

(σk (x) · ξ)2 ≤ η

d∑

i,j=1

aij (x) ξiξj (3.5)
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for all .ξ = (ξ1, . . . , ξd) ∈ R
d . Then, for every .θ0 ∈ H , there exists one and only 

one (weak or mild) solution. 

Auxiliary Variables and End of the Proof 

In order to study the equation 

. θ (t) = etAθ0 +
∫ t

0
e(t−s)Aq (s) ds −

∑

k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dWk

s

let us consider the auxiliary system 

. vh (t) = σh · ∇etAθ0 +
∫ t

0
σh · ∇e(t−s)Aq (s) ds

−
∑

k∈K

∫ t

0
σh · ∇e(t−s)Avk (s) dWk

s

for .h ∈ K. These two problems are equivalent (specifying correctly the function 
spaces): if .θ (t) is a solution of the first one then 

. vk (t) := σk · ∇θ(t),

v (t) := (vk (t))k∈K

is a solution of the second one; and if .v (t) := (vk (t))k∈K is a solution of the second 
one, then .θ (t) defined by 

. θ (t) = etAθ0 +
∫ t

0
σh · ∇e(t−s)Aq (s) ds −

∑

k∈K

∫ t

0
e(t−s)Avk (s) dWk

s

is a solution of the first one. Up to details related to continuity properties of 
stochastic convolutions, the key lemma to prove the theorem for the first equation is 
the following result for the second one. 

Consider the space .XT of vectors .(vk (·))k∈K such that .vk ∈ L2
F (0, T ;H) and, 

in the case when K is countable, 

. ‖v‖2
T :=

∑

h∈K

E

∫ T

0
‖vh (t)‖2

H dt < ∞.

It is a Hilbert space and .‖v‖T is the induced norm. 

Proposition 3.7 There exists a unique solution .(vk (·))k∈K ∈ XT .



3.2 Existence and Uniqueness for the Heat Equation with Transport Noise 87

Proof 

Step 1 (preparation) Notice that, by assumption (3.5), 

. 
∑

k∈K

‖σk · ∇f ‖2
L2 =

∫

D

∑

k∈K

(σk (x) · ∇f (x))2 dx

≤ 2η

∫

D

d∑

i,j=1

aij (x) ∂if (x) ∂jf (x) dx

= −2η

∫

D

(Af ) (x) f (x) dx = −2η 〈Af, f 〉

for every .f ∈ D (A). We use this fact in the inequalities below. 
Moreover, we use the following fact: 

. − 2
∫ T

0

〈
AetAθ0, e

tAθ0

〉
dt = −

∫ T

0

d

dt

〈
etAθ0, e

tAθ0

〉
dt

= −
(
‖eT Aθ0‖2

H − ‖θ0‖2
H

)
≤ ‖θ0‖2

H .

Similarly, one has 

. − 2
∫ T

0

∫ T

s

〈
Ae(t−s)Avk (s) , e(t−s)Avk (s)

〉
dtds

= −
∫ T

0

∫ T

s

d

dt

〈
e(t−s)Avk (s) , e(t−s)Avk (s)

〉
dtds

= −
∫ T

0

(
‖e(T −s)Avk (s)‖2

L2 − ‖vk (s)‖2
L2

)
ds

≤
∫ T

0
‖vk (s)‖2

L2ds.

Step 2 (fixed point) Consider the map . � defined on .XT as 

. (�v)h (t) := wh (t) +
∑

k∈K

∫ t

0
σh · ∇e(t−s)Avk (s) dWk

s

.h ∈ K , where we have set 

.wh (t) := σh · ∇etAθ0 +
∫ t

0
σh · ∇e(t−s)Aq (s) ds.
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We prove it takes values in .XT and it is a contraction; thus it has a unique fixed 
point. Notice that, opposite to many other applications of contraction mapping 
principle, we do not need to take T small. 

Using a result of the first step and similar estimates for the convolution integral, 
we get 

. 
∑

h∈K

∫ T

0
E

[
‖wh (t)‖2

L2

]
dt ≤ C1 < ∞.

Moreover, from the isometry formula and the Fubini theorem, 

. 
∑

h∈K

∫ T

0
E

[
‖
∑

k∈K

∫ t

0
σh · ∇e(t−s)Avk (s) dWk

s ‖2
L2

]
dt

=
∑

h∈K

∫ T

0

∫ T

s

E

[
∑

h∈K

‖σh · ∇e(t−s)Avk (s)‖2
L2

]
dtds

≤ 2η
∑

k∈K

∫ T

0

∫ T

s

〈
Ae(t−s)Avk (s) , e(t−s)Avk (s)

〉
dtds

≤ η‖v‖2
T ,

having used the two facts proved in Step 1. Therefore .�v ∈ XT . By the same  
computation we have 

. ‖�v′ − �v′′‖2
T ≤ η‖v′ − v′′‖2

T

and .η < 1, hence . � is a contraction. �

Super-Parabolicity Condition and Stratonovich Formulation 

We have solved the general parabolic equation (3.4) under assumption (3.5), 
sometimes called the super–parabolicity condition, very famous in the theory of 
nonlinear filtering and Zakai equations (cf. [191, 224, 235, 236]). The parabolic 
equation 

.∂t θ =
d∑

i,j=1

∂j

(
aij (x) ∂iθ

)
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is well–posed when . aij is strongly parabolic, namely when there exists .ν > 0 such 
that 

. 

d∑

i,j=1

aij (x) ξiξj ≥ ν‖ξ‖2

for all .ξ = (ξ1, . . . , ξd) ∈ R
d . The condition of the stochastic case is therefore 

much more restrictive. However, when the problem (3.4) comes from a Stratonovich 
equation of the form (3.3), we have 

. aij (x) = κδij + 1

2
Qij (x, x)

with 

. Qij (x, x) =
∑

k∈K

σ i
k (x) σ

j
k (x).

The super-parabolicity condition in this case requires us to find .η ∈ (0, 1) such that 

. 
1

2

∑

k∈K

(σk (x) · ξ)2 ≤ η

d∑

i,j=1

(
κδij + 1

2

∑

k∈K

σ i
k (x) σ

j
k (x)

)
ξiξj

= ηκ‖ξ‖2 + η

2

∑

k∈K

(σk (x) · ξ)2 ,

namely such that 

. 
∑

k∈K

(σk (x) · ξ)2 ≤ 2ηκ

1 − η
‖ξ‖2.

Under the summability conditions which guarantee to have .Q(x, y) well–defined 
and bounded, such an . η exists, sufficiently close to 1. Therefore the Stratonovich 
equation is always well–posed. 

3.2.3 The Equation for the Average 

We have immediately a result if we take the average, called as above 

. 
(t, x) := E [θ (t, x)].

We assume here that .θ0 ∈ H is deterministic.
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Proposition 3.8 If .θ (t, x) is the solution given by Theorem 3.5, then .
(t, x) is a 
(weak or mild) solution of the deterministic equation 

. ∂t
 = (κ� + L) 
 + q,


|t=0 = θ0.

Proof We take .q = 0 for brevity. Take for instance the weak formulation, for . φ ∈
D (A): 

. 〈θ (t) , φ〉 = 〈θ0, φ〉 +
∫ t

0
〈θ (s) , (κ� + L) φ〉 ds +

∑

k∈K

∫ t

0
〈θ (s) , σk · ∇φ〉 dWk

t .

The stochastic integral .
∫ t

0 〈θ (s) , σk · ∇φ〉 dWk
t is a martingale because . θ ∈

L2
F (0, T ;H) (it is much more than this). Therefore 

. 〈
(t) , φ〉 = 〈θ0, φ〉 +
∫ t

0
〈
(s) , (κ� + L) φ〉 ds.

Moreover, 

. 
 ∈ C ([0, T ] ;H) ∩ L2 (0, T ;V )

as a consequence of the property 

. θ ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V ).

Therefore it is a weak solution. The proof that it is a mild solution is similar, or it 
follows from the equivalence between the two concepts, under our regularity, in the 
deterministic case. �

3.3 When θ Is Close to �

In the previous section we have shown than the average . 
 satisfies an equation with 
enhanced dissipation; this fact is well–known, see for instance [206, Chapter 4]. 
The behavior of the stochastic process . θ may be, however, very different, a priori. 
In this section we show conditions under which . θ is close to . 
, hence producing 
the dissipative properties of . 
, in a suitable sense. When so, we may speak of eddy 
dissipation: thanks to the noise, the passive scalar has dissipative properties similar 
to those of the solution of a deterministic equation with enhanced dissipation. 
Starting from the idea of [147] (see also [125]), several results in this direction 
have been proved, [114, 115, 115–117, 201, 202].
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This research line intersects with the study of mixing properties and enhanced 
dissipation due to deterministic and stochastic vector fields. The deterministic 
literature on this subject is already too diverse for easy references; in the stochastic 
case let us mention [18, 21, 22, 99, 117, 153]. 

3.3.1 Main Assumption and Result 

Define .εQ,κ ≥ 0 as the smallest number such that 

.

∫ ∫
v (x)T Q (x, y) v (y) dxdy (3.6) 

≤ εQ,κ

∫ (
κ|v (x)|2 + 

1 

2 
v (x)T Q (x, x) v (x)

)
dx 

for all .v ∈ L2
(
D,Rd

)
. When .v (x) = f (x) ∇w (x), it gives us 

. 

∫ ∫
v (x)T Q (x, y) v (y) dxdy

≤ εQ,κ

∫
|f (x)|2

(
κ|∇w (x)|2 + 1

2
∇w (x)T Q (x, x) ∇w (x)

)
dx

≤ −εQ,κ‖f ‖2∞〈Aw,w〉.

In the next theorem we assume .θ0 ∈ L∞ (D), .q ∈ L∞ ([0, T ] × D). Call  
.C∞ (T , θ0, q) > 0 a constant such that 

. sup
s∈[0,T ]

E

[
‖θ (s)‖2∞

]
≤ C∞ (T , θ0, q).

In Sect. 3.2.1 above we have outlined one method to prove a bound of this form, in 
that case even an a.s. bound: 

. ‖θ (t)‖∞ ≤ ‖θ0‖∞ + T ‖q‖∞.

However, there are other bounds available, on the average, using regularity theory 
for . θ (t), see [127], which improve the dependence on T . 

Theorem 3.9 For every .φ ∈ L2 (D), 

.E

[
〈θ (t) − 
(t) , φ〉2

]
≤ εQ,κ‖φ‖2

L2C∞(T , θ0, q).
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Proof Recall the identity 

. θ (t) = etAθ0 +
∫ t

0
e(t−s)Aq (s) ds −

∑

k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dWk

s .

Here .etAθ0 + ∫ t

0 e(t−s)Aq (s) ds is precisely .
(t), hence 

. θ (t) − 
(t) = −
∑

k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dWk

s .

If .φ ∈ H , 

. 〈θ (t) − 
(t) , φ〉 =
∑

k∈K

∫ t

0

〈
θ (s) , σk · ∇θe(t−s)Aφ

〉
dWk

s .

Then (here we take advantage of the cancellations of Itô integrals) 

. E

[
〈θ (t) − 
(t) , φ〉2

]
=

∑

k∈K

E

[∫ t

0

〈
θ (s) , σk · ∇e(t−s)Aφ

〉2
ds

]
.

Write .φt,s := e(t−s)Aφ. Then 

. 
∑

k∈K

〈
θ (s) , σk · ∇φt,s

〉2

=
∑

k∈K

∫ ∫
θ (s, x) θ (s, y) σk (x) · ∇φt,s (x) σk (y) · ∇φt,s (y) dxdy

=
∫ ∫

θ (s, y) ∇φt,s (y)T Q (x, y) ∇φt,s (x) θ (s, x) dxdy

≤ −εQ,κ‖θ (s)‖2∞
〈
Ae(t−s)Aφ, e(t−s)Aφ

〉
.

Therefore, with the notation .C∞ (T , θ0, q), 

. E

[
〈θ (t) − 
(t) , φ〉2

]

≤ εQ,κC∞ (T , θ0, q)

∫ t

0

〈
(−A) e(t−s)Aφ, e(t−s)Aφ

〉
ds

= εQ,κC∞ (T , θ0, q)

∫ t

0

d

ds
‖e(t−s)Aφ‖2

L2ds

≤ εQ,κC∞ (T , θ0, q) ‖φ‖2
L2

after a computation already done above for .
∫ t

0
d
ds

‖e(t−s)Aφ‖2
L2ds. �
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3.3.2 When εQ,κ Is Small (and L Is Not Small) 

Inequality (3.6) is not immediately transparent. Let us discuss it in two cases, which, 
however, do not exhaust all opportunities. 

The Case When Q (x, x) Is Degenerate 

The first one neglects the second term on the right–hand side, the term with .Q(x, x), 
because in very relevant cases it is degenerate. This happens precisely in the case 
considered everywhere in these notes, namely the case of a viscous fluid in a 
bounded domain D, satisfying the no-slip boundary condition .u|∂D = 0. In this  
case .Q(x, x) = 0 for .x ∈ ∂D. We do not exclude that, in spite of this degeneracy, 
.Q (x, x) may help on the right–hand side of (3.6). But a priori it is difficult to use it. 

In this case we look for the smallest constant .εQ ≥ 0 such that 

.

∫ ∫
v (x)T Q (x, y) v (y) dxdy ≤ εQ

∫
|v (x)|2dx (3.7) 

for all .v ∈ L2
(
D,Rd

)
. Then 

. εQ,κ ≤ εQ

κ

because, if (3.7) holds, being 

. εQ

∫
|v (x)|2dx ≤ εQ

κ

∫ (
κ|v (x)|2 + 1

2
v (x)T Q (x, x) v (x)

)
dx

we have that . εQ

κ
is a constant fulfilling (3.6), hence the smallest one is less or equal 

to . εQ

κ
. We thus have: 

Corollary 3.10 

. E

[
〈θ (t) − 
(t) , φ〉2

]
≤ εQ

κ
‖φ‖2

L2(‖θ0‖∞ + T ‖q‖∞)2.

Therefore, one way to have .θ (t) close to .
(t) is to have a very small . εQ. 
However, any small noise realizes this target but then also the additional operator 
. L is small. Thus the true question is: are there noises such that . εQ is small and the 
operator . L is substantial? 

The name “substantial” may refer to different properties. We have in mind two 
of them:

• improvement of the decay rate . κ (eddy diffusion);
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• production of a significantly modified profile (turbulent boundary layer heat 
profile). 

In [116] we have constructed a noise, made of vortex structures, in simple 2D 
domains, with the following properties: given .ε, δ > 0 (small) and .σ 2 > 0 (large) 
we have 

. εQ ≤ ε

Q (x, x) ≥ σ 2I for all x ∈ D such that d (x, ∂D) ≥ δ.

The first condition guarantees that the profile of .θ (t) (smoothed by the scalar 
product .〈θ (t) , φ〉) is close to the profile of .
(t). The second condition implies that 
the deterministic equation of .
(t) has an enhanced diffusion, still effective in spite 
of the vanishing-diffusion boundary layer. In [116] we have proved the following 
dissipativity property: 

Theorem 3.11 Assume .D = B (0, 1) ⊂ R
d . Call .λD,κ,Q the first eigenvalue of . −A

(it measures the rate of decay of .
(t)). Then there exists a constant .CD,d > 0 such 
that 

. λD,κ,Q ≥ CD,d min
(
σ 2,

κ

δ

)
.

asymptotically as .δ → 0 one can take .CD,d = d/2 and one also has . λD,κ,Q ≥
κd

κ+δσ 2 σ 2. 

This result corresponds to the improvement of the decay rate . κ (eddy diffusion) 
mentioned above. Considering the other sentence, namely producing a significantly 
modified profile (diffusion boundary layer), we have the following result, in a 
modified geometry with respect to the one of these lectures (see [127] for more  
details and other results in this direction). The domain now is the infinite channel 

. D = R × [−1, 1]

with Dirichlet boundary condition for both temperature and fluid at the upper and 
bottom boundaries: 

. θ (x1,±1) = σk (x1,±1) = 0 for every x1 ∈ R, k ∈ K .

The theoretical results are similar to those above. In addition, let us consider the 
stationary deterministic profile for a given .q = q (x), element of H : we have to  
solve 

.A
st + q = 0,
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namely 

. 
st = −A−1q.

In practice, assume that in a region .x ∈ [−L,L] × [−1, 1] the function .q (x) is 
equal to a constant q, and both the stationary solution .
st (x) and .Q(x, x) depend 
only on the vertical direction .z ∈ [−1, 1] and they are symmetric with respect to 
.z = 0. The equation 

. div

((
κI + 1

2
Q(x, x)

)
∇
st (x)

)
= −q (x)

becomes 

. ∂z ((κ + Q22 (z)) ∂z
st (z)) = −q.

It gives us 

. (κ + Q22 (z)) ∂z
st (z) = −qz

without constants, since both sides of the identity should vanish at .z = 0 (the 
function .
st is symmetric with respect to .z = 0 and smooth, hence .∂z
st (0) = 0). 
Therefore we have to solve 

. ∂z
st (z) = − qz

κ + Q22 (z)


st (1) = 0.

The solution of the previous equation is 

. 
st (z) = −
∫ z

−1

qs

κ + Q22 (s)
ds.

Without noise the solution is 

. 

Q=0
st (z) = q

κ

1 − z2

2
= q

2κ
− q

2κ
z2

so the curvature . q
κ

is large (for . κ small) and also the maximum is large: 

. max 

Q=0
st = q

2κ
.

Assume 

.c2σ
21[−1+δ,1−δ] ≤ Q22 (z) ≤ c2σ

2
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with large . σ 2 and small . δ. Then 

. 
q

κ + c2σ 2

1 − z2

2
≤ 
st (z) (z) ≤ −

∫ z

−1

qs

κ + c1σ 21[−1+δ,1−δ] (s)
ds.

If .z ∈ [−1,−1 + δ] we have 

. 
st (z) (z) ≤ q

κ

1 − z2

2

like in the case without noise but, for .z ∈ [−1 + δ, 0] we have 

. 
st (z) (z) ≤ q

κ

1 − (1 − δ)2

2
+ q

κ + c1σ 2

(1 − δ)2 − z2

2

= C
(
κ, q, δ, σ 2

)
− q

κ + c1σ 2

z2

2
.

The curvature . q

κ+c1σ
2 is much smaller than . q

κ
and the maximum 

. max 
st (z) = C
(
κ, q, δ, σ 2

)
≥ q

κ + c1σ 2

(1 − δ)2

2

is very small for large . σ 2 and small . δ. 
Figure 3.1 illustrates the modification of the profile, from the standard parabolic 

one of free diffusion in a steady medium, to the case of turbulent decay. The 
reduction in heat content can be dramatic, due to turbulence, creating a fundamental 
engineering problem. 

The Case When Q (x, x) Is Non-degenerate 

In bounded domains with no-slip boundary conditions for the fluid, .Q(x, x) is 
always degenerate. However, in other geometries, like the torus or the full space, 
we may have non-degenerate .Q(x, x). 

Assume, for some .σ 2 > 0 (large), we have 

. Q(x, x) ≥ σ 2I for all x ∈ D.

Then 

.

∫ (
κ|v (x)|2 + 1

2
v (x)T Q (x, x) v (x)

)
dx

≥
(

κ + σ 2

2

)∫
|v (x)|2dx.
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Fig. 3.1 The dashed profile is the classical parabolic profile with .Q = 0. The solid-line profile is 
the one obtained by a large . σ 2 and small . δ

If (3.7) holds, being 

. εQ

∫
|v (x)|2dx ≤ εQ

κ + σ 2

2

∫ (
κ|v (x)|2 + 1

2
v (x)T Q (x, x) v (x)

)
dx

we deduce (as above) 

. εQ,κ ≤ εQ

κ + σ 2

2

.

We thus have: 

Corollary 3.12 

. E

[
〈θ (t) − 
(t) , φ〉2

]
≤ εQ

κ + σ 2

2

‖φ‖2
L2(‖θ0‖∞ + T ‖q‖∞)2.

Therefore, another way to have .θ (t) close to .
(t), different from . εQ small (or 
concurring with it) is to have . σ 2 large.
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Assume we are in full space . Rd . A famous noise satisfying the previous 
conditions (for suitable values of its parameters) is R. Kraichnan noise, [188, 189]. 
It is space-homogeneous, .Q(x, y) = Q (x − y), with the form 

. Q(z) = σ 2k
ζ
0

∫

k0≤|k|<k1

1

|k|d+ζ
eik·z

(
I − k ⊗ k

|k|2
)

dk.

This model has a meaning and an interest for both positive and negative . ζ . Assume 
.ζ > 0 (the so–called Kolmogorov 41 case is .ζ = 4/3). In this case, take .k1 = +∞. 
Assume 

. k0 = kN
0

and take .kN
0 → ∞. Then 

. Q(x, x) = Q (0) = σ 2k
ζ
0

∫

k0≤|k|<∞
1

|k|d+ζ

(
I − k ⊗ k

|k|2
)

dk

k′=k/k0= σ 2k
ζ
0

∫

1≤|k′|<∞
1

k
d+ζ
0 |k′|d+ζ

(
I − k′ ⊗ k′

|k′|2
)

kd
0 dk′

= σ 2
∫

1≤|k|<∞
1

|k|d+ζ

(
I − k ⊗ k

|k|2
)

dk

is independent of . k0 and therefore of N . This is the matrix appearing in the limit 
parabolic equation. But, concerning . εQ, we have  

. 

∫ ∫
v (x)T Q (x, y) v (y) dxdy

≤ σ 2k
ς
0

∫

k0≤|k|<∞
1

|k|d+ς
|̂v (k)|2dk

≤ σ 2k−d
0

∫

k0≤|k|<∞
|̂v (k)|2dk ≤ σ 2k−d

0 ‖v‖2
L2 .

Thus . εQ is small if .σ 2k−d
0 is small, hence if .kN

0 → ∞. 

Remark 3.13 If .−d ≤ ζ ≤ 0, .k0 = 1, .σ 2 small, and . k1 is so large that 
.σ 2

∫
1≤k≤k1

1
kζ+1 dk is large, then .Q (x, x) is large and . εQ is small. This regime is 

further investigated in [124]. 

Remark 3.14 We have seen that, in order to fulfill our conditions, the noise has to 
activate very small scales (large k) with high energy.
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3.3.3 The Result for Long Times 

The last result we want discuss in this section is an easy consequence of the 
techniques developed in this section and the estimate below proved in [127] in the  
case of an infinite channel. In this framework we can link the evolution of . θ , solution 
of problem (3.1), to . 
st , solution of the corresponding stationary problem. 

Proposition 3.15 If .θ0 ∈ L2(F0;D(A)), q(t) ≡ q ∈ D(A), then 

. sup
t∈[0,T ]

E

[
‖θ(t)‖2∞

]
≤ C(‖q‖2

D(A) + ‖θ0‖2
D(A))

for some C independent of T . 

Anyway, the argument of [127] can be extended also to regular two–dimensional 
or three–dimensional domains such that Poincaré inequality holds. Letting 
.C∞ (θ0, q) > 0 denote the right–hand side of previous proposition, namely 

. sup
t≥0

E

[
‖θ (t) ‖2∞

]
≤ C∞(θ0, q),

the result above holds. 

Theorem 3.16 For every .φ ∈ H , 

. lim sup
t→∞

E

[
〈θ (t) − 
st , φ〉2

]
≤ εQ

κ
‖φ‖2C∞(θ0, q).

Proof Recall the identity 

. θ (t) = etAθ0 +
∫ t

0
e(t−s)Aq (s) ds −

∑

k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dWk

s .

Set 

. 
(t) = etAθ0 +
∫ t

0
e(t−s)Aq (s) ds.

Then 

. θ (t) − 
(t) = −
∑

k∈K

∫ t

0
e(t−s)Aσk · ∇θ (s) dWk

s .

If .φ ∈ H , 

. 〈θ (t) − 
(t) , φ〉 =
∑

k∈K

∫ t

0

〈
θ (s) , σk · ∇θe(t−s)Aφ

〉
dWk

s .
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Then (here we take advantage of the cancellations of Itô integrals) 

. E

[
〈θ (t) − 
(t) , φ〉2

]
=

∑

k∈K

E

∫ t

0

〈
θ (s) , σk · ∇e(t−s)Aφ

〉2
ds.

Write .φt,s := e(t−s)Aφ. Then 

. 
∑

k∈K

〈
θ (s) , σk · ∇φt,s

〉2

=
∑

k∈K

∫ ∫
θ (s, x) θ (s, y) σk (x) · ∇φt,s (x) σk (y) · ∇φt,s (y) dxdy

=
∫ ∫

θ (s, y) ∇φt,s (y)T Q (x, y) ∇φt,s (x) θ (s, x) dxdy

≤ −εQ

κ
‖θ (s)‖2∞

〈
Ae(t−s)Aφ, e(t−s)Aφ

〉
.

Therefore 

. E

[
〈θ (t) − 
(t) , φ〉2

]
≤ εQ

κ
C∞ (θ0, q)

∫ t

0

〈
(−A) e(t−s)Aφ, e(t−s)Aφ

〉
ds

= εQ

κ
C∞ (θ0, q)

∫ t

0

d

ds
‖e(t−s)Aφ‖2ds

≤ εQ

κ
C∞ (θ0, q) ‖φ‖2.

Now we use the fact that 

. lim
t→∞ 〈
(t) − 
st , φ〉 = 0.

Indeed, 

. 
(t) − 
st = etA
(
θ0 + A−1q

)
.

For every .ε > 0, from the inequality .(a + b)2 ≤ (1 + ε) a2 +
(

1 + 4
ε

)
b2 we have 

. E

[
〈θ (t) − 
st , φ〉2

]

≤ (1 + ε)E
[
〈θ (t) − 
(t) , φ〉2

]
+

(
1 + 4

ε

)
E

[
〈
(t) − 
st , φ〉2

]
.

This implies the result of the theorem. �
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In order to be of interest for applications, this theorem requires two conditions:

• that . εQ is small;
• that .
st is significantly affected by the noise. 

These two conditions have already been discussed deeply in Sect. 3.3.2, here 
we just refer to [127, 128] for some numerical experiments of the fact that .
st is 
significantly affected by the noise. 

3.4 The Action of Transport Noise on Vector Fields 

Our understanding of the action on vector fields is completely different with respect 
to the case of the action on scalar fields. The reason stays in the stretching term 
which formalizes the fact that vectors are (possibly) elongated by the deformation 
tensor of the underlying Lagrangian dynamics. 

In this section we will focus our attention to the linear case (passive vector fields). 
The nonlinear one (vorticity formulation of the Navier–Stokes equations) will be the 
object of Sect. 4.4. Thus we start with the equation of a passive vector field, typically 
a magnetic field in applications. This investigation is related to the research on the 
so–called dynamo effect, see for instance [190, 260]. 

3.4.1 Passive Magnetic Field 

The equations for a magnetic field M in a fluid u are 

. ∂tM + u · ∇M = η�M + M · ∇u.

Similarly to the scalar case, we model u by a white noise, with the Stratonovich 
interpretation: 

. dM +
∑

k∈K

σk · ∇M ◦ dWk
t = η�Mdt +

∑

k∈K

M · ∇σk ◦ dWk
t .

The equation can be written as 

. dM = (η� + L) Mdt + Itô terms

for a suitable second order differential operator . L. And .M (t) := E [M] satisfies 

.∂tM = (η� + L) M.
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Thus, as above, the question arises whether .E
[〈

M (t) − M (t) , φ
〉2]

is small. 

This question is open. We shall see below that in the case of special noise (space-
homogeneous and mirror symmetric) the operator . L is the same as the one of the 
scalar case. In this situation there exists the following conjecture from Krause and 
Rädler [190, page 12]: “homogeneous isotropic mirror symmetric turbulence only 
influences the decay rate of the mean magnetic fields, which is enhanced in almost 
all cases of physical interest.” 

The Corrector 

If we define 

. BkM = M · ∇σk − σk · ∇M

then the corrector is . 12
∑

k∈K BkBkM . Thus let us compute .BkBkM . We have  

. BkBkM = (BkM) · ∇σk − σk · ∇ (BkM)

= (M · ∇σk − σk · ∇M) · ∇σk − σk · ∇ (M · ∇σk − σk · ∇M)

= (M · ∇σk) · ∇σk − (σk · ∇M) · ∇σk

− σk · ∇ (M · ∇σk) + σk · ∇(σk · ∇M).

Lemma 3.17 

. 
1

2

∑

k∈K

BkBkM = LM −
∑

k∈K

∑

i,j

σ i
k∂iMj∂jσk

+ 1

2

∑

k∈K

∑

i,j

(
∂jσ

i
k∂iσk − σ i

k∂i∂jσk

)
Mj.

Proof The term 

. 
1

2

∑

k∈K

σk · ∇ (σk · ∇M)

is equal to .LM , as in the previous sections. The term .σk · ∇ (M · ∇σk) is equal to 

. (σk · ∇M) · ∇σk +
∑

i,j

(
σ i

k∂i∂jσk

)
Mj
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hence its first addendum, .(σk · ∇M) · ∇σk , adds to another equal term in the total 
sum; they form the term 

. −
∑

k∈K

∑

i,j

σ i
k∂iMj∂jσk

in the final result. The zero order term is thus the remainder of this computation. �
Lemma 3.18 Assume the noise is space-homogeneous: 

. Q(x, y) = Q (x − y)

and .Q(x, x) = Q(0), a constant matrix. Then 

. 
1

2

∑

k∈K

∑

i,j

(
∂jσ

i
k∂iσk − σ i

k∂i∂jσk

)
Mj = 0.

Proof 

Step 1 The sum .
∑

k∈K σ i
k (x) σα

k (x) is constant, equal to .Qi,α (0), for every 
.i, α = 1, 2, 3. Thus their derivatives are equal to zero. It follows that 

. 
∑

k∈K

(
∂jσ

i
k

)
(x) σα

k (x) = −
∑

k∈K

σ i
k (x)

(
∂jσ

α
k

)
(x).

Moreover, it follows also 

. 
∑

i

∂i

∑

k∈K

σ i
k (x) σα

k (x) = 0

which implies 

. 
∑

k∈K

∑

i

σ i
k (x) ∂iσ

α
k (x) = 0

because .div σk = 0. 
Step 2 Not only the sum .

∑
k∈K σ i

k (x) σα
k (x) is constant, but also 

.
∑

k∈K

(
∂jσ

i
k

)
(x) σα

k (x). Indeed, we have 

.

∑

k∈K

(
∂jσ

i
k

)
(x) σα

k (y) = ∂xj

∑

k∈K

σ i
k (x) σα

k (y)

= ∂xj
Qi,α (x − y) = (

∂jQi,α

)
(x − y),
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which implies 

. 
∑

k∈K

(
∂jσ

i
k

)
(x) σα

k (x) = (
∂jQi,α

)
(0).

This implies 

. ∂i

∑

k∈K

(
∂jσ

i
k

)
(x) σα

k (x) = 0.

Step 3 Now, first the two terms we have to investigate are opposite one to the 
other: 

. 
∑

k∈K

∑

i

∂j σ
i
k∂iσk = ∂j

∑

k∈K

∑

i

σ i
k∂iσk −

∑

k∈K

∑

i

σ i
k∂i∂jσk

= −
∑

k∈K

∑

i

σ i
k∂i∂jσk,

where we have used the fact that .
∑

k∈K

∑
i σ i

k∂iσk is equal to zero (Step 1). 
Therefore it is sufficient to prove that 

. 
∑

k∈K

∑

i

∂j σ
i
k∂iσk = 0.

But this term can be written as 

. 
∑

i

∂i

∑

k∈K

∂jσ
i
kσk,

which is zero, because of Step 2. The identity between the previous two terms is 
due to the fact that .

∑
i ∂i∂j σ

i
k = 0, being .div σk = 0. 

�
Corollary 3.19 If the noise is space-homogeneous, then 

. 
1

2

∑

k∈K

BkBkM = LM −
∑

j

∂jQ (0) · ∇Mj

where .∂jQ (0) is the matrix with entries .
(
∂jQα,i

)
(0). In the particular case when 

.Q(−x) = Q(x)
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(mirror symmetry) then .∂jQ (0) = 0 and thus 

. 
1

2

∑

k∈K

BkBkM = LM.

Proof For the first identity it remains to show that 

. 
∑

k∈K

∑

i,j

σ i
k∂iMj∂jσ

α
k =

∑

i,j

(
∑

k∈K

σ i
k∂jσ

α
k

)
∂iMj

=
∑

j

(
∂jQα,i

)
(0) ∂iMj ,

where we have used an identity proved in Step 2 of the previous proof. 
Under mirror symmetry, .Qα,i (x) is a smooth even function, hence its derivatives 

at zero are equal to zero. �

The Difficulty 

We have shown that in the particular case of space-homogeneous noise with mirror 
symmetry the Itô form of the equation is 

. dM +
∑

k∈K

σk · ∇MdWk
t = (η� + L) Mdt +

∑

k∈K

M · ∇σkdWk
t ,

similarly to the passive scalar case. Without mirror symmetry we would have an 
additional first-order differential operator, related to the so–called . α–effect in the 
dynamo theory. 

Notice first, as a secondary detail, that we have not used the assumption of 
isotropy in the derivation of the previous subsection. If the sentence quoted above 
from [190] concerns only the mean magnetic field, then it is true and without 
isotropy. We have proved: 

Theorem 3.20 If the noise is homogeneous and mirror symmetric, then the mean 
magnetic field .M (t) := E [M] satisfies the parabolic equation 

. ∂tM = (η� + L) M,

where 

.LM =
∑

i,j

Qij (0) ∂j ∂jM.
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And we have shown in Sect. 3.3.2 that Kraichnan noise gives us .Q(0) equal to a 
large multiple of the identity, under some conditions on the parameters. 

The problem arises if we interpret the sentence of [190] for the true magnetic 
field M instead of its average. We are not able anymore to prove that M is close to 
. M . The reason stands in the estimates on M . We do not have anymore the energy 
conservation estimate, because 

. 〈σk · ∇M,M〉 = 0

hence 

. d‖M (t)‖2
L2 + 2η‖∇M (t)‖2

L2dt = 2
∑

k∈K

〈M · ∇σk,M〉 ◦ dWk
t

but .〈M · ∇σk,M〉 is not zero and contributes a lot, at least a priori. 
Similarly, the Lagrangian property should be reformulated here as 

. M (t, x) = Dϕ−t (x) M0 (ϕ−t (x))

and the Lagrangian deformation tensor .Dϕ−t (x) may have, a priori, an enormous 
effect of stretching on .M0 (ϕ−t (x)). Thus, even if we may start the computation as 
in the scalar case 

. 〈M (t) , φ〉 − 〈
M (t) , φ

〉 = +
∑

k∈K

∫ t

0

〈
M (s) , e(t−s)Aσk · ∇φ

〉
dWk

t

+
∑

k∈K

∫ t

0

〈
M (s)∇σk, e

(t−s)Aφ
〉
dWk

t ,

we do not have good estimates on .M (s) to control in mean square the stochastic 
terms. 

The Purely Transport Case 

If we consider the ideal model 

. dM +
∑

k∈K

σk · ∇M ◦ dWk
t = η�Mdt

where the noise acts only on the transport term, we get the equation 

.dM +
∑

k∈K

σk · ∇MdWk
t = (η� + L)Mdt
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which satisfies the estimates 

. ‖M (t)‖2
L2 + 2η

∫ t

0
‖∇M (s)‖2

L2ds = ‖M0‖2
L2

. ‖M (t)‖∞ ≤ ‖M0‖∞.

Therefore we may control the difference 

. 〈M (t) , φ〉 − 〈
M (t) , φ

〉 =
∑

k∈K

∫ t

0

〈
M (s) , e(t−s)Aσk · ∇φ

〉
dWk

t

exactly as in the scalar scase. 
From the physical viewpoint the stretching term .

∑
k∈K M · ∇σk ◦ dWk

t cannot 
be neglected. However, it is possible that there are regimes where its effect is small. 

Remark 3.21 In this model we should not assume .div M = 0, otherwise the model 
is incorrect, because .σk ·∇M is not divergence free in general, while the other terms 
of the equation would be divergence free (.σk · ∇M −M · ∇σk is divergence free, on 
the contrary). If we want the additional property that M is divergence free, then we 
have to consider the more difficult model 

. dM +
∑

k∈K

P (σk · ∇M) ◦ dWk
t = η�Mdt,

where P is the projector introduced in the previous chapters. The Itô–Stratonovich 
corrector now is much more complex. This difficulty is necessary in the case below 
of the Navier–Stokes equations, where the role of M is taken by the vorticity . ω, 
which is divergence free. Hence the simple ideas described in this subsection are 
more complex, for the 3D Navier–Stokes equations, in two respects: the problem 
is nonlinear, hence it is not sufficient to control .〈M (t) , φ〉 − 〈

M (t) , φ
〉
, and the 

corrector is non-local, since it contains P .



Chapter 4 
Transport Noise in the Navier–Stokes 
Equations 

Stochastic transport of passive scalars (the topic described in the previous chapter) is 
a well-known subject in the literature (see for instance [206]). On the contrary, this 
chapter introduces an analogous idea for the internal modeling of a fluid, which is 
less common and still debated. In some cases, however, it leads to results observed 
in the real world, hence it deserves to be investigated. 

Prior to the concepts described in this chapter is the concept of vorticity, 
mentioned several times in these notes but never used explicitly, also because a 
rigorous use of vorticity in bounded domains leads to troubles (the value of the 
vorticity at the boundary is not known and thus a proper initial-boundary value 
problem for the vorticity equation cannot be settled). 

Vorticity is defined as 

. ω = curl u

and in .d = 2 it is a vector perpendicular to the plane of motion, hence it can be 
described by a scalar given by the third component of .curl u, namely 

. ω
d=2= ∂1u2 − ∂2u1.

From the Navier–Stokes equations, using some vector identities, we find the 
equation 

. ∂tω + u · ∇ω + ω · ∇u = ν�ω + curl f

which has the advantage that the pressure has disappeared; but the term .ω · ∇u, 
called the vortex stretching term, provokes several troubles (it is responsible for the 
increase of intensity of the vorticity, which otherwise, for .curl f = 0, would be just 
transported by .u · ∇ω and diffused by .ν�ω). 
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In .d = 2 one can see that .ω ·∇u = 0 (indeed u lives in the plane of motion, hence 
also . ∇u, but . ω is perpendicular to such plane) and therefore the equation simplifies 
into the diffusion-transport equation 

. ∂tω + u · ∇ω
d=2= ν�ω + curl f

which is very useful in domains “without” boundary, like the torus or the full space. 
It leads to additional invariants and a priori estimates with great success. See [70, 
205, 209] for outstanding accounts of scientific and mathematical understandings 
based on vorticity. In the case .d = 2 the velocity and the vorticity are linked by the 
relation 

. u = −∇⊥(−�)−1ω,

where . ∇⊥ is the differential operator .∇⊥ψ =
[

∂2ψ

−∂1ψ

]
and .(−�)−1 is the solution 

map of the boundary value problem .−�ψ = ω with proper boundary conditions, 
.ψ = 0 where we work in a bounded domain and the velocity satisfies the no-slip 
boundary conditions, . ψ periodic where we work in the torus. In the case .d = 3 we 
can reconstruct u by . ω, but the explicit linear relation is less simple, see [209]. In 
this case, we simply write .u = Kω. 

After introducing the concept of vorticity, we can try to generalize the topic 
described in the previous chapter, stochastic transport of passive scalars, to the 
endogenous case. Before this we want to explain how transport noise appears in the 
system. Fluids, in their complex regimes that we loosely name turbulent, show the 
activation of several scales: we observe large-scale motions and small-scale ones at 
the same time, with several intermediate scales; very small vortices, larger and larger 
ones, up to motion at the scale of the full domain. Oversimplifying this multiscale 
picture, let us think that we want to split the fluid velocity into two components 

. ω (t, x) = ω (t, x) + ω′(t, x),

the first one containing most of the large scales, the second one mostly related to the 
small scales. We will return to this topic in Chap. 5 for some deeper motivations 
to this decomposition and some concrete possibilities to perform it. A precise 
subdivision is impossible, due to the multiscale nature of the problem. However, 
in some regime, a considerable degree of separation occurs [218]. 

Then we can consider the Navier–Stokes-type system 

.∂tω + (
u + u′) · ∇ω + ω · (∇u + ∇u′) = ν�u + curl f ,

∂tω
′ + (

u + u′) · ∇ω′ + ω′ · (∇u + ∇u′) = ν�ω′ + curl f ′,

u = Kω̄, u′ = Kω′,

ω (0) = ω0, ω′ (0) = ω′
0.
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This system is equivalent to the original equation 

. ∂tω + u · ∇ω + ω · ∇u = ν�ω + curl f,

u = Kω, ω (0) = ω0,

when 

. curl f = curl f + curl f ′,

ω0 = ω0 + ω′
0.

Indeed, if .
(
ω;ω′) is a solution of the system, then .ω = ω + ω′ is a solution of the 

equations; vice versa, if . ω is a solution of the equations and . ω is a solution of 

. ∂tω + u · ∇ω + ω · ∇u = ν�ω + curl f ,

then .ω′ = ω − ω is a solution of 

. ∂tω
′ + (

u + u′) · ∇ω′ + ω′ · (∇u + ∇u′) = ν�ω′ + curl f ′,

u′ = Kω′.

We may reverse the roles of . ω and . ω′ in the latter argument. 
In the system we impose the small–large-scale subdivision only on data: on the 

initial condition and on the forcing term. At least for a short time, this subdivision 
is expected to be maintained, approximately. How much it is maintained for longer 
times is a very difficult issue; certainly . ω, for longer times is corrupted by small 
scales and . ω′ by large scales; the open problem is how much. 

Now let us come to stochastic modeling: looking at real situations with a 
boundary and the vortices produced near it, we suspect that the small scales are quite 
concentrated in a region near the boundary, the large scales are active everywhere. 

Thus we replace the system above with the model 

. ∂tω + (
u + u′) · ∇ω + ω · (∇u + ∇u′) = ν�ω + curl f ,

∂tω
′ = ν�ω′ − 1

ε
ω′ + 1

ε

∑
k

curl σk∂tW
k,

u = Kω, u′ = Kω′,

ω (0) = ω0, ω′ (0) = ω′
0,

where both equations are considered in the full domain D but the second one is 
mostly active near the boundary thanks to the fact that the vector fields . σk have 
small support near the boundary. A more complete model is treated in [135].
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Let us look only at the equation of large scales 

. ∂tω + u · ∇ω + ω · ∇u = ν�ω + curl f − u′ · ∇ω − ω · ∇u′,

u = Kω.

If we take the limit .ε → 0 and argue as in the linear case of temperature diffusion, 
we get the equation 

. ∂tω + u · ∇ω = (ν�+L) ω + curl f −
∑
k∈K

(σk · ∇ω) ∂tW
k −

∑
k∈K

(∇σk · ω) ∂tW
k,

u = Kω.

This is a closed model of large scales, influenced by turbulent small scales. 
Is it useful and realistic? This difficult question is under investigation. Let us only 

mention one positive fact. Consider the associated deterministic equation 

. ∂t	 + U · ∇	 + 	 · ∇U = (ν� + L) 	 + curl f ,

U = K	, 	 (0) = ω0

(if . ω0 and .curl f are deterministic, otherwise take their expectations). This equation 
has, for suitable . L, stronger dissipativity properties that the original one with just 
. ν�. If we can prove that . ω is close to . 	, then we get that the large-scale motion . ω
reveals a stronger dissipativity, due to the presence of turbulent small scales. This 
is the observed phenomenon of eddy viscosity: turbulence improves the viscous 
properties. Mathematically, we can prove that . ω is close to . 	 only in .d = 2; in  
.d = 3 there are essential obstructions. But at least for .d = 2 we see that this model 
leads to realistic results. We will discuss some issues related to .d = 3 in Sect. 4.4. 
In 2D, the procedure above leads to the simpler stochastic equation (let us write it 
here in Stratonovich form for simplicity of notation) 

. ∂tω + u · ∇ω
d=2= ν�ω −

∑
k∈K

σk · ∇ω ◦ ∂tW
k + curl f ,

u
d=2= −∇⊥(−�)−1ω.

This is an excellent equation, similar to the one of temperature diffusion and 
transport. In particular, one can discuss when . ω is close to the deterministic solution 
of an equation with increased dissipation of the form 

.∂t	 + U · ∇	
d=2= (ν� + L)	 + curl f ,

U
d=2= −∇⊥(−�)−1	.



4.1 Well-Posedness for the Vorticity Formulation 113

In this case, as declared before, some convergence results can be stated. In Sect. 4.1 
we will prove the well-posedness of the vorticity equation with transport noise; the 
phenomenon of eddy viscosity, namely the convergence of . ω̄ to . 	, will be the main 
object of Sect. 4.2, showing some results analogous to the ones explained in Chap. 3. 
We refer to [114, 117] for a more complete treatment of the convergence of . ω to . 	. 
Some of the results outlined in this introductory section would require a chapter in 
themselves and will not be developed in this book. The reader may see some of the 
existing results in the following references: [133–135]. 

Lastly, we want point out that we may perform this argument at the level of 
velocity, instead of vorticity. They are not equivalent, and which one is better for the 
physics is still debated. 

4.1 Well-Posedness for the Vorticity Formulation 

In this section we want to show an existence and uniqueness result for the equation 

.∂tω +
∑
k∈K

(σk · ∇ω) ∂tW
k = (ν� + L) ω − u · ∇ω + q (4.1) 

in the two-dimensional torus .T2 = [0, π ]2, where .u = −∇⊥(−�)−1ω, . σk are 
divergence free, smooth, vector fields and 

. Lω =
∑
k∈K

σk · ∇(σk · ∇ω).

These are the Navier–Stokes equations in vorticity formulation with transport 
noise. Contrary, for example, to the additive noise case, considering the equations 
in vorticity formulation or in velocity formulation leads us to different results. 
We postpone to Sect. 4.3 the discussion about the differences between vorticity 
formulation and velocity formulation in the transport noise framework. In this 
section and in the next one we are only interested to show results analogous to 
the ones of Sects. 3.2–3.3 in the endogenous case. 

Contrary to Sect. 3.2, here we present only the variational method that we think 
is more suitable to treat the Navier–Stokes nonlinearity. The proof of the well-
posedness of the systems of Sects. 4.1 and 4.3 are strongly inspired by the results of 
[44], which we suggest reading also for an alternative approach to the analysis of 
the system with state-dependent noise described in Chap. 2. 

4.1.1 Variational Method: Plan of Work 

We recall the plan of work for the variational approach already described in Chap. 3.
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According to the results of Pardoux and Krylov–Rozovskii in the more general 
context of SPDEs with monotone operators [191, 224] or in a less abstract context 
[44], we will perform the following steps: 

• One has to introduce a sequence of approximating problems which have a unique 
solution by known results. We will skip the details about the local existence that 
follows from the classical theory on stochastic differential equations with locally 
Lipshitz coefficients, see for example [183, 241]. 

• On these approximations, one has to prove estimates independent of the approx-
imating parameter. 

• Such estimates imply the existence of weakly convergent subsequences which 
are, indeed, global solutions of the approximating problems. Contrary to the 
linear case, this condition is not enough to pass to the limit in the equation, due to 
the nonlinear term. We will need to obtain a stronger result about the convergence 
of the approximations in order to pass to the limit in the nonlinear term. 

4.1.2 Functional Setting and Assumptions 

Let: .H = L2
0

(
T
2
)
, .V = W 1,2

(
T
2
) ∩ H , .D (A) = W 2,2

(
T
2
) ∩ V , . A : D (A) ⊂

H → H

. Aω = �ω,

where .L2
0(T

2) is the subspace of .L2(T2) made by zero mean functions. It is well-
known that A is the infinitesimal generator of analytic semigroup of negative type 
and moreover V can be identified with .D((−A)1/2). Something more can be said 
on the fractional powers of the operator . −A. Indeed, for each . α ∈ R

. D((−A)α) = D((−�)α) = {q ∈ W 2α,2(T2) : 〈q, 1〉W 2α,2,W−2α,2 = 0},

see [225] Chapter 7 for more details. 
According to these notations, it follows immediately that 

. − ∇⊥(−�)−1 ∈ L
(
D((−A)α),W 2α+1,2(T2;R2)

)
.

The transport term, .v · ∇ξ where . ξ is a real-valued function and v is a divergence 
free vector field, is defined analogously to what we have done in Sect. 1.1.2 and 
satisfies similar skewness properties, namely 

.

∫
T2

ξ1(x)v(x) · ∇ξ2(x)dx = −
∫
T2

ξ2(x)v(x) · ∇ξ1(x)dx
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every time the integrals above are well-defined. Therefore if . ξ is zero mean, then 
also .v · ∇ξ is zero mean. 

As already done in a previous chapter, we consider the stochastic basis 
.
(
	,F , (Ft )t≥0 ,P

)
, thus we deal with strong solutions. Let us denote by 

.L
p

F (0, T ;V ) the space of p integrable, progressively measurable processes with 
values in V and by .CF ([0, T ] ;H) the space of continuous adapted square 
integrable processes. Assume . σk smooth enough (just for simplicity we assume 
.σk ∈ C∞(T2;R2), but less can be required), .ω0 ∈ L4

F0
(	,H), .q ∈ L4

F (0, T ;H). 

Definition 4.1 A stochastic process 

. ω ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V )

is a weak solution of Eq. (4.1) if, for every .φ ∈ D(A), we have  

. 〈ω (t) , φ〉 = 〈ω0, φ〉 +
∫ t

0
〈ω (s) , (ν� + L) φ〉 ds +

∫ t

0
〈ω(s), u(s) · ∇φ〉ds

+
∫ t

0
〈q (s) , φ〉 ds +

∑
k∈K

∫ t

0
〈ω (s) , σk · ∇φ〉 dWk

s

for every .t ∈ [0, T ], .P-a.s. 

The main result proved below is: 

Theorem 4.2 For every .ω0 ∈ L4
F0

(	,H) and .q ∈ L4
F (0, T ;H), there exists one 

and only one weak solution of Eq. (4.1). 

Remark 4.3 The result stated here is a bit superabundant for our scope. In Sect. 4.2, 
we will consider deterministic initial conditions and forcing terms. We prefer to state 
Theorem 4.2 in full generality in order to explain several tricks for the variational 
method. As in Sect. 2.3 the extra integrability conditions are needed in order to 
get existence, but uniqueness follows under the more natural assumptions . ω0 ∈
L2
F0

(	,H), q ∈ L2
F (0, T ;H). Moreover, the extra integrability in time of q is not 

needed in the case of deterministic forcing term. 

4.1.3 Galerkin Approximation and Limit Equations 

Let .{ei}i∈N be an orthonormal basis of H made by eigenvectors of .−� and . λi

the corresponding eigenvalues, . λi are positive and nondecreasing. Let . HN =
span{e1, . . . , eN } ⊆ H , .P N : H → H the orthogonal projector of H on .HN.
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We start looking for a finite-dimensional approximation of the solution of Eq. (4.1). 
We define 

. ωN(t) =
N∑

i=1

ci,N (t)ei(x).

The .ci,N have been chosen in order to satisfy . ∀ei, 1 ≤ i ≤ N, t ∈ [0, T ],

. 

〈
ωN (t) , ei

〉
=

〈
ωN
0 , ei

〉
+

∫ t

0

〈
ωN (s) ,

(
ν� + LN

)
ei

〉
ds

+
∫ t

0
〈ωN(s), uN(s) · ∇ei〉ds +

∫ t

0
〈q (s) , ei〉 ds

+
∑
k∈K

∫ t

0

〈
ωN (s) , σk · ∇ei

〉
dWk

s , P-a.s., (4.2) 

where .ωN
0 = P Nω0, uN(t) = −∇⊥(−�)−1ωN(t) and 

. LNφ = 1

2

∑
k∈K

P N
(
σk · ∇P N(σk · ∇φ)

)
∀φ ∈ HN.

As stated in the plan of work, local existence and uniqueness for the solution of 
this system of ordinary stochastic differential equations follows from the classical 
theory for stochastic differential equations with locally Lipshitz coefficients. For 
what concerns the global existence, it follows from the a priori estimates below. 

Lemma 4.4 The Itô formula below holds: 

.d‖ωN‖2H + 2ν‖∇ωN‖2
L2dt = 2〈q, ωN 〉dt (4.3) 

and the following energy estimates are satisfied: 

.‖ωN(t)‖2H ≤
∫ t

0
e−ν(t−s) ‖q(s)‖2H

ν
ds + e−νt‖ω0‖2H , . (4.4) 

ν

∫ t 

0
‖∇ωN (s)‖2 

L2ds ≤
∫ t 

0

‖q(s)‖2 H 
ν 

ds + ‖ω0‖2 H , . (4.5) 

E

[
supt∈[0,T ]‖ωN (t)‖2 H

]
≤ E

[∫ T 

0

‖q(s)‖2 H 
ν 

ds + ‖ω0‖2 H
]
, . (4.6) 

νE

[∫ T 

0
‖∇ωN (t)‖2 

L2 ds

]
≤ E

[∫ T 

0

‖q(s)‖2 H 
ν 

ds + ‖ω0‖2 H
]
, . (4.7)
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E

[
supt∈[0,T ]‖ωN (t)‖4 H

]
+ E

[∫ T 

0
‖ωN (s)‖2 H ‖∇ωN (s)‖2 

L2 ds

]
≤ C, . (4.8) 

E

[(∫ T 

0
‖∇ωN (s)‖2 

L2 ds

)2]
≤ C, (4.9) 

where C is a constant possibly changing its value line by line, but independent of 
N . 

Proof The Itô formula follows immediately from the finite dimensional Itô formula, 
in fact 

. d‖ωN‖2H =
N∑

i=1

dc2i,N = 2
N∑

i=1

ci,Ndci,N +
N∑

i=1

〈dci,N , dci,N 〉.

Thus, exploiting the weak formulation satisfied by . ωN , we have  

. d‖ωN‖2H = 2
(
〈ωN, ν�ωN 〉 + 〈q, ωN 〉 + 〈ωN, uN · ∇ωN 〉 + 〈ωN,LNωN 〉

)
dt

+
∑
k∈K

〈ωN, σk · ∇ωN 〉dWk
t +

N∑
i=1

∑
k∈K

〈ωN, σk · ∇ei〉2dt.

From the fact that .uN, σk are divergence free, it follows immediately that . 〈ωN, uN ·
∇ωN 〉 = 〈ωN, σk · ∇ωN 〉 = 0. Moreover, we can notice, integrating by parts and 
exploiting .div σk = 0, that 

. 

N∑
i=1

∑
k∈K

〈ωN, σk · ∇ei〉2 + 2〈ωN,LNωN 〉 =
N∑

i=1

∑
k∈K

〈σk · ∇ωN, ei〉2

+
∑
k∈K

〈P N
(
σk · ∇P N(σk · ∇ωN)

)
, ωN 〉

=
∑
k∈K

〈σk · ∇ωN, P N(σk · ∇ωN)〉

+
∑
k∈K

〈σk · ∇P N(σk · ∇ωN), ωN 〉 = 0.

Thus we arrive at the Itô formula in the statement. Starting from the Itô formula 
and applying the Poincaré inequality for zero mean functions in the torus, Cauchy– 
Schwarz, Young’s inequality properly we get 

.d‖ωN‖2H +2ν‖∇ωN‖2
L2dt ≤

(
ν‖ωN‖2H + ‖q‖2H

ν

)
dt ≤

(
ν‖∇ωN‖2

L2 + ‖q‖2H
ν

)
dt.
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Thus by the Gronwall lemma, we have the following relation: 

. ‖ωN(t)‖2H ≤
∫ t

0
e−ν(t−s) ‖q(s)‖2H

ν
ds + e−νt‖ω0‖2H ,

ν

∫ t

0
‖∇ωN(s)‖2

L2ds ≤ ‖ω0‖2H +
∫ t

0

‖q(s)‖2H
ν

ds.

These inequalities imply the first four energy relations stated and the last one. For 
what concerns the remaining one, we use the Itô formula satisfied by .‖ωN(t)‖2H and 
we apply the classical Itô formula for the function .f (x) = x2. Arguing as above, 
we get 

. d‖ωN‖4 + 4ν‖ωN‖2H ‖∇ωN‖2
L2 = 4‖ωN‖2H 〈q, ωN 〉dt

≤
(
2ν‖ωN‖2H ‖∇ωN‖2

L2 + 2‖q‖2H ‖ωN‖2H
ν

)
dt

≤
(
2ν‖ωN‖2H ‖∇ωN‖2

L2 + ‖ωN‖4H
ν2

+ ‖q‖4H
ν2

)
dt

and this relation implies the thesis by the Gronwall lemma. ��
Remark 4.5 Only relations (4.8) and (4.9) use the further integrability assumptions 
on the initial conditions and the forcing term. 

From the energy estimates on . ωN , there exists a subsequence, which we will 
denote again for simplicity by . ωN , which converges to a stochastic process . ω in the 
way described below: 

. ωN ∗
⇀ ω L4(	;L∞(0, T ;H)),

. ωN ⇀ ω L4(	;L2(0, T ;V ))

and an unknown process . B∗ such that 

. uN · ∇ωN ⇀ B∗ L2(	;L2(0, T ;V ∗)).

Moreover, thanks to the converging properties of the projector .P N for .N → +∞, 
the processes . ω and . B∗ satisfies .P-a.s. for each .i ∈ N and . t ∈ [0, T ]

. 〈ω (t) , φ〉 +
∫ t

0
〈B∗(s), ei〉V ∗,V ds = 〈ω0, ei〉 +

∫ t

0
〈ω (s) , (ν� + L) ei〉 ds

+
∫ t

0
〈q (s) , ei〉 ds

+
∑
k∈K

∫ t

0
〈ω (s) , σk · ∇ei〉 dWk

s . (4.10)
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Let us explain a bit better the part related to the convergence of the term 
.
∫ t

0 〈ωN(s),LNei〉ds. We know that for each .α ≥ 0, . x ∈ D((−A)α), ‖P Nx −
x‖D((−A)α) → 0. Thus, since for each .k ∈ K , .β ≥ 1/2, the operator . σk · (∇·) ∈
L(D((−A)β),D((−A)β−1/2)), then if .φ ∈ D((−A)β), . ‖P N(σk · ∇φ) − σk ·
∇φ‖D((−A)β−1/2) → 0. Starting from these observations it is easy to show that for 
each .φ ∈ D(A), ‖LNei −Lei‖ → 0. Then, thanks to the weak convergence of . ωN

to . ω, we have the required convergence of .
∫ t

0 〈ωN(s),LNei〉ds. 
For what concerns the continuity in H of the process . ω we can argue in the 

following way via Itô formula and Kolmogorov continuity theorem. From the weak 
formulation above we get the weak continuity in H of . ω applying the Kolmogorov 
continuity theorem for the SDE satisfied by .〈ω(t), ei〉. Applying the Itô formula to 
.‖ω(t)‖2H we get, arguing as in the proof of Lemma 4.4, 

. d‖ω‖2H = −2ν‖∇ω‖2
L2dt − 2〈B∗, ω〉V ∗,V dt + 2〈q, ω〉dt.

From this, we get the continuity of .‖ω‖2H thanks to the integrability properties of . ω. 
Weak continuity and continuity of the norm implies strong continuity, thus we have 
the strong continuity of . ω as a process taking values in H . Alternatively, the strong 
continuity in H of . ω follows from the results in [224]. 

Remark 4.6 Without the additional energy estimates it is not possible to gain a weak 
convergent subsequence for the nonlinearity. In fact we have for each . φ ∈ V

. |〈uN(s) · ∇φ,ωN(s)〉| ≤ C‖∇φ‖L2‖∇ωN(s)‖L2‖ωN(s)‖H

thus .‖uN(s) · ∇ωN(s)‖V ∗ ≤ C‖∇ωN(s)‖L2‖ωN(s)‖H and 

. supN∈N E

[∫ T

0
‖uN(s) · ∇ωN(s)‖2V ∗ ds

]

≤ C supN∈N E

[∫ T

0
‖∇ωN(s)‖2

L2‖ωN(s)‖2H ds

]
≤ C

thanks to relation (4.8). 

4.1.4 Existence, Uniqueness and Further Results 

To prove the existence of the solutions of Eq. (4.1) we need the following lemma. 
This way of proceeding is classical in stochastic analysis, see for example [44, 227]. 

Lemma 4.7 Let 

.τM = inf{t ∈ [0, T ] : ‖ω(t)‖2H ≥ M}∧inf{t ∈ [0, T ] :
∫ t

0
‖∇ω(s)‖2

L2 ds ≥ M}∧T



120 4 Transport Noise in the Navier–Stokes Equations

then 

. 1[0,τM ]
(
ωN − ω

)
→ 0, in L2(	,L2(0, T ;H)).

Proof We have to show that 

.E

[∫ T

0
1[0,τM ](s)‖ωN(s) − ω(s)‖2H ds

]
(4.11) 

converges to zero in N . Let  .ω̃N = P Nω, ũN = −∇⊥(−�)−1ω̃N . Then, by the 
triangular inequality 

. (4.11) ≤ 2E

[∫ T 

0 
1[0,τM ](s)‖ω̃N (s) − ω(s)‖2 H ds

]

+ 2E
[∫ T 

0 
1[0,τM ](s)‖ω̃N (s) − ωN (s)‖2 H ds

]
. 

Thanks to the properties of the projector .P N and dominated convergence theorem, 
it follows that .ω̃N → ω in .L2(	,L2(0, T ;V )) ∩ L2(	,C(0, T ;H)), and also in 
weaker topologies. Therefore, we are left to show the convergence of 

.E

[∫ τM

0
‖ω̃N (s) − ωN(s)‖2H ds

]
. (4.12) 

Let .BN(s) = uN(s) · ∇ωN(s), then for each .i ≤ N the following relation holds 
true: 

. 〈(ω − ωN)(t), ei〉 +
∫ t

0
〈B∗(s) − BN(s), ei〉V ∗,V ds

=
∫ t

0
ν〈(ω − ωN)(s),�ei〉 + 〈ω(s),Lei〉ds

−
∫ t

0
〈ωN(s),LNei〉 ds

+
∑
k∈K

∫ t

0
〈ω(s) − ωN(s), σk · ∇ei〉dWk

s .

Thanks to the previous relation we can compute .
1
2d‖ω̃N −ωN‖2H via the Itô formula: 

.
1

2
d‖ω̃N − ωN‖2H + ν‖∇(ω̃N − ωN)‖2

L2 dt = 〈ω,L(ω̃N − ωN)〉dt

− 〈ωN,LN(ω̃N − ωN)〉dt
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− 〈B∗ − BN , ω̃N − ωN 〉V ∗,V dt 

+
∑
k∈K

〈ω − ωN , σk · ∇(ω̃N−ωN )〉dWk 
t 

+ 
1 

2

∑
k∈K 

N∑
i=1

〈ω − ωN , σk · ∇ei〉2dt. 

(4.13) 

Next, to better understand the behavior of the terms 

. 〈ω,L(ω̃N − ωN)〉 − 〈ωN,LN(ω̃N − ωN)〉 + 1

2

∑
k∈K

N∑
i=1

〈ω − ωN, σk · ∇ei〉2,

we will first write them in an equivalent form: 

. 2〈ω,L(ω̃N − ωN)〉 − 2〈ωN,LN(ω̃N − ωN)〉
=

∑
k∈K

〈ω, σk · ∇
(
σk · ∇(ω̃N − ωN)

)
〉

−
∑
k∈K

〈ωN, σk · ∇P N
(
σk · ∇(ω̃N − ωN)

)
〉

= −
∑
k∈K

〈σk · ∇(ω̃N − ωN), σk · ∇ω〉

+
∑
k∈K

〈P N
(
σk · ∇(ω̃N − ωN)

)
, σk · ∇ωN 〉

. 
∑
k∈K

N∑
i=1

〈ω − ωN, σk · ∇ei〉2

=
∑
k∈K

〈σk · ∇ω − P N(σk · ∇ωN), P N(σk · ∇ω) − P N(σk · ∇ωN)〉.

Thus 

.2〈ω,L(ω̃N − ωN)〉 − 2〈ωN,LN(ω̃N − ωN)〉 +
∑
k∈K

N∑
i=1

〈ω − ωN, σk · ∇ei〉2

=
∑
k∈K

〈σk · ∇ω − P N(σk · ∇ωN), P N(σk · ∇ω)

− P N(σk · ∇ωN) − σk · ∇ω̃N + σk · ∇ωN 〉
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= −
∑
k∈K

〈σk · ∇ω − P N (σk · ∇ωN ), (I − P N )(σk · ∇ω)〉

+
∑
k∈K

〈σk · ∇ω − P N (σk · ∇ωN ), σk · ∇(ω − ω̃N )〉

+
∑
k∈K

〈σk · ∇ω − P N (σk · ∇ωN ), (I − P N )(σk · ∇ωN )〉

≤
∑
k∈K

‖σk · ∇ω − P N (σk · ∇ωN )‖H ‖(I − P N )(σk · ∇ω)‖H 

+
∑
k∈K 

C‖σk · ∇ω − P N (σk · ∇ωN )‖H ‖∇(ω − ω̃N )‖L2 

+
∑
k∈K 

C‖(I − P N )(σk · ∇ω)‖H ‖∇ωN‖L2 . 

We now move on to treating the nonlinear term 

. 〈uN · ∇ωN, ω̃N − ωN 〉V ∗,V = 〈(ũN − uN) · ∇(ω̃N − ωN), ω̃N 〉V ∗,V

+ 〈ũN · ∇ω̃N , ω̃N − ωN 〉V ∗,V .

Therefore, by Ladyzhenskaya’s and Young’s inequalities, 

. |〈(ũN − uN) · ∇(ω̃N − ωN), ω̃N 〉V ∗,V | ≤ ‖∇ω̃N‖L2‖ω̃N − ωN‖L4‖ũN − uN‖L4

≤ C‖∇ω‖L2‖ω̃N − ωN‖2
L4

≤ C‖∇ω‖L2‖ω̃N

− ωN‖H ‖∇(ω̃N − ωN)‖L2

≤ C‖∇ω‖2
L2‖ω̃N − ωN‖2H

+ ν

2
‖∇(ω̃N − ωN)‖2

L2 .

To remove some positive terms which corrupt our estimates we use, again, the 
trick we learnt by Bjorn Schmalfuss [238], introduced in Chap. 2 and we apply 
the classical Itô formula to . 12R(t)‖ω̃N (t) − ωN(t)‖2H , where . R(t) = exp(−η1t −
η2

∫ t

0‖∇ω(s)‖2
L2 ds). Taking the expected value for .t = τM and exploiting previous 

estimates, we arrive at 

.E

[
1

2
R(τM)‖ω̃N (τM) − ωN(τM)‖2H

]

+ νE

[∫ τM

0
dsR(s)‖∇(ω̃N (s) − ωN(s))‖2

L2

]
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≤ −η1 

2 
E

[∫ τM 

0 
R(s)‖ω̃N (s) − ωN (s)‖2 H ds

]

− 
η2 

2 
E

[∫ τM 

0 
R(s)‖∇ω(s)‖2 

L2‖ω̃N (s) − ωN (s)‖2 H ds

]

+
∣∣∣∣E

[∫ τM 

0 
R(s)〈B∗(s) − ũN (s) · ∇ω̃N (s), ω̃N (s) − ωN (s)〉V ∗,V ds

]∣∣∣∣
+ CE

[∫ τM 

0 
R(s)‖∇ω(s)‖2 

L2‖ω̃N (s) − ωN (s)‖2 H ds

]

+ 
ν 
2 
E

[∫ τM 

0 
R(s)‖∇ω̃N (s) − ∇ωN (s)‖2 

L2 ds

]

+
∑
k∈K 

E

[∫ τM 

0 
R(s)‖σk · ∇ω(s) 

−P N (σk · ∇ωN (s))‖H ‖(I − P N )(σk · ∇ω(s))‖H ds
]

+ C
∑
k∈K 

E

[∫ τM 

0 
ds R(s)‖σk · ∇ω(s) 

−P N (σk · ∇ωN (s))‖H ‖∇(ω(s) − ω̃N (s))‖L2

]

+ C
∑
k∈K 

E

[∫ τM 

0 
ds R(s)‖(I − P N )(σk · ∇ω(s))‖H ‖∇ωN (s)‖L2 ds

]
. 

(4.14) 

If we choose .η1, η2 large enough, we can remove some terms in the right-hand side. 
Let us consider the remaining terms, recalling that from the weak convergence of 

. ωN it follows that .E
[∫ T

0 ‖∇ω‖2
L2 ds

]
≤ C. Applying Cauchy–Schwarz inequality 

where it is needed, we get 

.

∑
k∈K

E

[∫ τM

0
R(s)‖σk · ∇ω(s)

−P N(σk · ∇ωN(s))‖H ‖(I − P N)(σk · ∇ω(s))‖H ds
]

+ C
∑
k∈K

E

[∫ τM

0
ds R(s)‖σk · ∇ω(s)

−P N(σk · ∇ωN(s))‖H ‖∇(ω(s) − ω̃N (s))‖L2

]
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+ C
∑
k∈K 

E

[∫ τM 

0 
ds R(s)‖(I − P N )(σk · ∇ω(s))‖H ‖∇ωN (s)‖L2 ds

]

≤ C
∑
k∈K 

E

[∫ T 

0
‖(I − P N )(σk · ∇ω(s))‖2 H ds

]1/2 

+ CE

[∫ T 

0
‖∇(ω(s) − ω̃N (s))‖2 

L2 ds

]1/2 
→ 0. 

Lastly, we have to treat . 
∣∣E [∫ τM

0 R(s)〈B∗(s)−ũN (s) · ∇ω̃N (s), ω̃N (s)−ωN(s)〉V ∗,V
ds]|. 

. 

∣∣∣∣E
[∫ τM

0
R(s)〈B∗(s) − ũN (s) · ∇ω̃N (s), ω̃N (s) − ωN(s)〉V ∗,V ds

]∣∣∣∣
≤

∣∣∣∣E
[∫ τM

0
R(s)〈B∗(s) − u(s) · ∇ω(s), ω̃N (s) − ωN(s)〉V ∗,V ds

]∣∣∣∣
+

∣∣∣∣E
[∫ τM

0
R(s)〈u(s) · ∇ω(s) − ũN (s) · ∇ω̃N (s), ω̃N (s) − ωN(s)〉V ∗,V ds

]∣∣∣∣.

Thanks to .ω̃N − ωN ⇀ 0 in .L2(	;L2(0, T ;V )) the first term converges to 0. For 
what concerns the second one 

.

∣∣∣∣E
[ ∫ τM

0
R(s)〈u(s) · ∇ω(s) − ũN (s) · ∇ω̃N (s), ω̃N (s) − ωN(s)〉V ∗,V ds

±
∫ τM

0
R(s)〈u(s) · ∇ω̃N (s), ω̃N (s) − ωN(s)〉V ∗,V ds

]∣∣∣∣
≤

∣∣∣∣E
[ ∫ τM

0
R(s)〈u(s) · (∇ω(s) − ∇ω̃N (s)), ω̃N (s) − ωN(s)〉V ∗,V ds

]∣∣∣∣
+

∣∣∣∣E
[ ∫ τM

0
R(s)〈(u(s) − ũN (s)) · ∇ω̃N (s), ω̃N (s) − ωN(s)〉V ∗,V ds

]∣∣∣∣
≤ E

[ ∫ τM

0
‖u(s)‖L4‖ω(s) − ω̃N (s)‖1/2H ‖∇(ω(s)

− ω̃N (s))‖1/2
L2 ‖∇(ω̃N (s) − ωN(s))‖L2 ds

]

+ E

[ ∫ τM

0
‖u(s) − ũN (s)‖L4‖ω̃N (s)‖1/2H ‖∇ω̃N (s)‖1/2

L2 ‖∇(ω̃N (s)

− ωN(s))‖L2 ds

]
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≤ CE

[
‖ω − ω̃N‖2 

L2(0,T ;H)

]1/4 
E

[
‖ω − ω̃N‖2 

L2(0,T ;V )

]1/4 

E

[
‖ωN − ω̃N‖2 

L2(0,T ;H)

]1/2 

+ CE

[
‖ω − ω̃N‖2 

L2(0,T ;H)

]1/4 
E

[ ∫ τM 

0
‖∇ω̃N (s)‖2 

L2 ds

]1/4 

E

[
‖ωN − ω̃N‖2 

L2(0,T ;V )

]1/2 
→ 0. 

In the last inequalities we use strongly the fact that .‖ω(s)‖2H ≤ M on .[0, τM ]. 
In conclusion, in (4.14) all the terms on the right-hand side converge to zero as 
.N → ∞, namely we have the following relation: 

. E

[
1

2
R(τM)‖ω̃N (τM) − ωN(τM)‖2H

]

+ ν

2
E

[∫ τM

0
dsR(s)‖∇(ω̃N (s) − ωN(s))‖2

L2

]
→ 0. (4.15) 

From relation (4.15), .R(t) ≥ CM > 0 ∀t ≤ τM and the properties of . P N , via  
triangular inequality the thesis follows. ��
Lemma 4.8 .B∗ = u · ∇ω in L2(	,L2(0, T ;V ∗)). 

Proof Thanks to the estimates (4.8) and (4.9) we get easily that .u·∇ωN and . uN ·∇ω

converge to .u ·∇ω weakly in .L2(	;L2(0, T ;V ∗)). We do the explicit computations 
just for one of the two, the other one being analogous. 

.E

[∫ T

0
‖u(s) · ∇ωN(s)‖2V ∗ ds

]
≤ CE

[∫ T

0
‖∇u(s)‖2

L2‖∇ωN(s)‖2
L2 ds

]

≤ CE

[
supt∈[0,T ]‖ω(t)‖2H

∫ T

0
‖∇ωN(s)‖2

L2 ds

]

≤ CE

[
supt∈[0,T ]‖ω(t)‖4H

]

+ CE

[(∫ T

0
‖∇ωN(s)‖2

L2 ds

)2]

≤ C.
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Let now .φ ∈ L∞(	;L∞(0, T ;V )), then .u ·∇φ ∈ L2(	;L2(0, T ;H)). Thus, from 
the convergence properties of . ωN , we have  

. E

[∫ T

0
〈u(s) · ∇ωN(s), φ〉V ∗,V ds

]
= −E

[∫ T

0
〈u(s) · ∇φ,ωN(s)〉ds

]

→ −E

[∫ T

0
〈u(s) · ∇φ,ω(s)〉ds

]

= E

[∫ T

0
〈u(s) · ∇ω(s), φ〉V ∗,V ds

]
.

From the density of .L∞(	;L∞(0, T ;V )) in .L2(	;L2(0, T ;V )) and the uniform 
boundedness of .u · ∇ωN in .L2(	;L2(0, T ;V ∗)) we have the required claim. For 
what concerns the convergence of the nonlinear term, first note that, arguing as 
above, the sequence .{uN ·∇ωN }N∈N is uniformly bounded in .L2(	;L2(0, T ;V ∗)). 
Moreover, we have 

. u · ∇ω − uN · ∇ωN = u · ∇(ω − ωN) + u · ∇ωN

+ uN · ∇(ω − ωN) − uN · ∇ω =: I1 + I2 + I3 + I4.

Thanks to the previous observations .I1 + I2 + I4 converges weakly to 0 in 
.L2(	;L2(0, T ;V ∗)). For what concerns . I3, let us take . φ ∈ L∞(	;L∞(0, T ;
D(A))) and . τM defined as in Lemma 4.7, then we have 

. E

[∫ τM

0
〈uN(s) · ∇(ω(s) − ωN(s)), φ〉V ∗,V ds

]

≤ CE

[∫ τM

0
‖ωN(s)‖H ‖ω(s) − ωN(s)‖H ds

]

→ 0

thanks to Holder’s inequality and Lemma 4.7. Since it holds that .τM ↗ T a.s., the 
thesis follows, thanks to Lemma 4.4. Indeed, 

.

∣∣∣∣E
[∫ T

0
〈uN(s) · ∇(ω(s) − ωN(s)), φ〉V ∗,V ds

]∣∣∣∣
≤

∣∣∣∣E
[∫ τM

0
〈uN(s) · ∇(ω(s) − ωN(s)), φ〉V ∗,V ds

]∣∣∣∣
+

∣∣∣∣E
[∫ T

τM

〈uN(s) · ∇(ω(s) − ωN(s)), φ〉V ∗,V ds

]∣∣∣∣
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≤
∣∣∣∣E

[∫ τM 

0
〈uN (s) · ∇(ω(s) − ωN (s)), φ〉V ∗,V ds

]∣∣∣∣
+ CE

[∫ T 

τM

‖ω(s)‖2 H +
∥∥∥ωN (s)

∥∥∥2 
H 

ds

]

≤
∣∣∣∣E

[∫ τM 

0
〈uN (s) · ∇(ω(s) − ωN (s)), φ〉V ∗,V ds

]∣∣∣∣
+ CE

[∫ T 

τM

(∫ T 

0
‖B∗(r)‖2 V ∗ + ‖q(r)‖2 H dr

)
ds

]
+ CE

[∫ T 

τM

‖ω0‖2 H ds

]
. 

Thus, if we fix .ε > 0 and .M > 0 such that 

. CE

[∫ T

τM

(∫ T

0
‖B∗(r)‖2V ∗ + ‖q(r)‖2H dr + ‖ω0‖2H

)
ds

]
≤ ε,

then 

. limusupN→+∞|E
[∫ T

0
〈uN(s) · ∇(ω(s) − ωN(s)), φ〉V ∗,V ds

]
| ≤ ε.

The thesis follows by the density of .L∞(	;L∞(0, T ;D(A))) in . L2(	;L2(0, T ;V))

and the uniform boundedness of .uN · ∇ωN in .L2(	;L2(0, T ;V ∗)). ��
Theorem 4.9 There is at most one weak solution of problem (4.1) in the sense of 
Definition 4.1. 

Proof Let .ω, ω̃ be two solutions and v be their difference. Let . u =
−∇⊥(−�)−1ω ũ = −∇⊥(−�)−1ω̃ be the corresponding velocities and . χ their 
difference. Thus, v and . χ satisfies .P-a.s. for each .t ∈ [0, T ] and . φ ∈ D(A)

. 〈v(t), φ〉 =
∫ t

0
〈v(s), (ν� + L)φ〉ds +

∫ t

0
〈u(s) · ∇φ,ω(s)〉ds

−
∫ t

0
〈ũ(s) · ∇φ, ω̃(s)〉ds

+
∑
k∈K

∫ t

0
〈σk · ∇φ, v(s)〉dWk

s .

Arguing as in the proof of Proposition 4.10 below, v and . χ satisfy the Itô formula 

.
d‖v‖2H

2
=

(
−ν‖∇v‖2

L2 + 〈u · ∇v, ω〉V ∗,V − 〈ũ · ∇v, ω̃〉V ∗,V
)

dt

± 〈ũ · ∇v, ω〉V ∗,V dt

= −ν‖∇v‖2
L2dt + 〈χ · ∇v, ω〉V ∗,V dt.
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We apply the Itô formula to the process .
1
2R(t)‖v(t)‖2H , where . R(t) =

exp(−η
∫ t

0‖∇ω‖2
L2 ds)

. 
d

(
R‖v‖2H

)
2

= R(−ν‖∇v‖2
L2 + 〈χ · ∇v, ω〉V ∗,V )dt − ηR

2
‖v‖2H ‖∇ω‖2

L2dt

≤ −νR‖∇v‖2
L2dt − ηR

2
‖v‖2H ‖∇ω‖2

L2dt

+ CR‖∇ω‖L2‖v‖H ‖∇v‖L2dt

≤ −νR‖∇v‖2
L2dt − ηR

2
‖v‖2H ‖∇ω‖2

L2dt

+ νR‖∇v‖2
L2

2
dt + CR‖v‖2H ‖∇ω‖2

L2dt.

Thus, taking . η large enough, we have 

. 
d

(
R‖v‖2H

)
2

+ νR‖∇v‖2
L2

2
dt ≤ 0

and the thesis follows immediately by the Gronwall lemma. ��
Lemmas 4.7, 4.8 identify the nonlinear term and together with Theorem 4.9 

conclude the proof of Theorem 4.2. Actually, thanks to some abstract results on 
stochastic processes something more can be shown, namely that the full sequence 
. ωN converges to . ω in .L2(	;L2(0, T ;V )) and, for each .t ∈ [0, T ], .ωN(t) converges 
to .ω(t) in .L2(	;H). We skip the details related to this kind of convergence, which 
are not necessary for the next sections, in order to keep this chapter self-contained. 
Some details about this kind of result and, more in general, the application of the 
variational method to other fluid dynamical models with transport noise can be 
found in [64, 204]. 

Lastly, we want to show that the Itô formula stated in Lemma 4.4 continues to 
hold for . ω, the solution of problem (4.1). For what concerns the energy estimates, 
they continue to hold immediately due to the weak convergence of .ωN to . ω, but  
they can proved independently starting from the Itô formula and repeating the same 
steps as in Lemma 4.4. 

Proposition 4.10 The Itô formula below holds: 

. d‖ω‖2H + ν‖∇ω‖2
L2dt = 2〈q, ω〉dt.

Proof Let . ω̃N be defined as in Lemma 4.7. We already know by the properties of 
the projector .P N that .ω̃N → ω ∈ L2(0, T ;V ) ∩ C(0, T ;H) P-a.s. Exploiting the
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weak formulation satisfied by . ω with test functions . ei we get 

. 〈ω (t) , ei〉 = 〈ω0, ei〉 +
∫ t

0
〈ω (s) , (ν� + L) ei〉 ds +

∫ t

0
〈ω(s), u(s) · ∇ei〉ds

+
∫ t

0
〈q (s) , ei〉 ds +

∑
k∈K

∫ t

0
〈ω (s) , σk · ∇ei〉 dWk

s P-a.s.

Multiplying each equation by . ei and summing up, we get 

. dω̃N = ν�ω̃Ndt +
N∑

i=1

〈ω, u · ∇ei〉ei dt

+
N∑

i=1

〈q, ei〉ei dt +
N∑

i=1

〈ω,Lei〉ei dt

+
∑
k∈K

N∑
i=1

〈ω, σk · ∇ei〉ei dWk
t .

Now we can apply the Itô formula to the process .
‖ω̃N (t)‖H

2

2
obtaining 

. ‖ω̃N (t)‖2H + 2ν
∫ t

0
‖∇ω̃N (s)‖2

L2 ds = ‖ωN
0 ‖2 + 2

∫ t

0
〈ω(s), u(s) · ∇ω̃N (s)〉 ds

+ 2
∫ t

0
〈q(s), ω̃N (s)〉 ds

+ 2
∫ t

0
〈ω(s),Lω̃N (s)〉 ds

+
∑
k∈K

N∑
i=1

∫ t

0
〈ω(s), σk · ∇ei〉2ds

+ 2
∑
k∈K

∫ t

0
〈ω(s), σk · ∇ω̃N 〉dWk

s .

Thanks to the properties of the projector .P N we get the Itô formula easily. The only 
thing we need to prove is that 

.

N∑
i=1

〈ω(s), σk · ∇ei〉2 + 〈ω(s), σk · ∇
(
σk · ∇ω̃N

)
〉 → 0.



130 4 Transport Noise in the Navier–Stokes Equations

The last relation is true, in fact 

. 

N∑
i=1

〈ω(s), σk · ∇ei〉2 + 〈ω(s), σk · ∇
(
σk · ∇ω̃N (s)

)
〉

= −〈ω(s), σk · ∇
(
P N(σk · ∇ω(s))

)
〉 + 〈ω(s), σk · ∇

(
σk · ∇ω̃N (s)

)
〉

= 〈σk · ∇ω(s), P N (σk · ∇ω(s))〉 − 〈σk · ∇ω(s), σk · ∇ω̃N (s)〉 → 0.

��

4.2 Eddy Viscosity for the Vorticity Equation 

Let . ω be the solution of the problem of the previous section. Due the presence of a 
non-linear term and contrary to Sect. 3.3, it is not true anymore that .E [ω(t)] solves 
the system 

.∂t ω̃ = (ν� + L) ω̃ − ũ · ω̃ + q. (4.16) 

Therefore, a fortiori, the behavior of the stochastic process . ω can be very different 
from the one of . ω̃. In this section we show conditions under which . ω is close to . ω̃, 
hence producing the dissipative properties of . ω̃, in a suitable sense. When so, we 
may speak, similarly to Sect. 3.3, of  eddy viscosity: thanks to the noise, the fluid 
has dissipative properties similar to those of the solution of a deterministic equation 
with enhanced dissipation. We will show in this section a result in this direction, 
but plenty more general results can be found in [64, 114, 115, 117] for several fluid 
dynamics models. 

We now give explicit representations of the coefficients .σk, k ∈ Z
2
0, 

. σk(x) = √
2κake

ik·x =
{√

2κθke
iκ·x k⊥

|k| if k ∈ Z
2+√

2κθke
iκ·x −k⊥

|k| if k ∈ Z
2−,

where .Z
2+, Z

2− is a partition of .Z
2
0 = Z

2 \ {(0, 0)} with .Z
2+ = −Z

2−, . θk satisfies: 

1. .
∑

k∈Z2
0
θ2k = 1. 

2. .θk = 0 if . |k| is large enough. We will denote by K the finite set of k where 
.θk �= 0. 

3. .θk = θk if .|k| = |l|.
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Lastly, we take an infinite sequence of complex standard Brownian motions such 
that .Wk = W−k . At the end, our noise is parameterized by the coefficients . κ, θk

and the set K . Under this setting, Eq. (4.1) can be rewritten as 

.dω +
∑
k∈K

(σk · ∇ω) dWk
t = ((ν + κ)�ω − u · ∇ω + q) dt. (4.17) 

The corresponding deterministic system is 

.∂t ω̃ = (ν + κ)�ω̃ − ũ · ∇ω̃ + q. (4.18) 

Due to the results of Sect. 4.1 and classical results on two-dimensional Navier– 
Stokes equations, see for example [200, 247, 248], under the assumptions . ω0 ∈
H, q ∈ L4(0, T ;H) there exists a unique weak solution . ω (resp. . ω̃) of prob-
lem (4.17) (resp. (4.18)). 

Let us introduce a notation used in this section in order to improve the readability 
of the results: if .a, b are two positive numbers, then we write .a � b if there exists 
a positive constant C such that .a ≤ Cb and .a �α b when we want to highlight the 
dependence of the constant C on a parameter . α. 

Now we can state the main result of this section. 

Theorem 4.11 Let . ω and . ω̃ be weak solutions to (4.17) and (4.18) respectively. 
Then for any .α ∈ (0, 1), there exists .C = C(α) such that for any .ε ∈ (0, α] one has 

. E

[
‖ω − ω̃‖p

C(0,T ;H−α)

]1/p

�α,p,T

√
κε‖θ‖α−ε

�∞ RT exp

(
C

(κ + ν)2

(
(T (κ + ν) + 1) R2

T

))
,

. E

[
‖ω − ω̃‖p

C(0,T ;H−α)

]1/p
�α,p,T

√
κε‖θ‖α−ε

�∞ RT exp

(
CR2

T

ν2

)
,

where the constant . RT , independent of the noise, is defined below. 

This result was originally proven in [117] and we refer to it for a more detailed 
discussion on the convergence rate of some fluid dynamical models with transport 
noise to the corresponding deterministic systems. 

4.2.1 Some Analytical Lemmas 

For the remainder of the section we need to recall some classical tools on the 
transport term, products of functions in Sobolev spaces and the heat semigroup,
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see for example [117, 225] for the proof of these statements and more details on the 
topics. 

Lemma 4.12 Given a divergence free vector field .V ∈ L2(T2;R2) the following 
bounds hold true. 

1. If .V ∈ L∞ (
T
2;R2

)
, .f ∈ L2(T2), then we have 

. ‖V · ∇f ‖H−1 � ‖V ‖L∞‖f ‖L2 .

2. Let .α ∈ (1, 2], β ∈ (0, α − 1), V ∈ Hα(T2;R2), f ∈ H−β(T2), we have 

. ‖V · ∇f ‖H−1−β �α,β ‖V ‖Hα‖f ‖H−β .

3. Let .β ∈ (0, 1), then for any .f ∈ Hβ(T2), g ∈ H 1−β(T2) it holds that 

. ‖fg‖L2 �β ‖f ‖Hβ ‖g‖H 1−β .

4. Let .β ∈ (0, 1), V ∈ H 1−β(T2;R2), f ∈ L2(T2), then one has 

. ‖V · ∇f ‖H−1−β �β ‖V ‖H 1−β ‖f ‖L2 .

The second lemma provides classical estimates on the semigroup generated by 
. �: 

Lemma 4.13 Let .q ∈ D((−�)α/2), α ∈ R. Then: 

1. for any .ρ ≥ 0, it holds that .‖et�q‖Hα+ρ ≤ Cρt−ρ/2‖q‖Hα for some constant 
increasing in . ρ; 

2. for any .ρ ∈ [0, 2], it holds that .‖(I − et�
)
q‖Hα−ρ �ρ tρ/2‖q‖Hα . 

The semigroup .eδ(t−s)� has also regularizing effects as stated in the following: 

Lemma 4.14 For any .δ > 0, α ∈ R, q ∈ L2(0, T ;D((−�)α/2)), it holds that 

. 

∥∥∥∥
∫ t

0
eδ(t−s)�q(s) ds

∥∥∥∥
2

Hα+1
� 1

δ

∫ t

0
‖q(s)‖2Hα ds ∀t ∈ [0, T ].

4.2.2 The Stochastic Convolution 

Similarly to Sect. 3.3, we will prove Theorem 4.2 introducing a mild formulation 
satisfied by . ω. Thus we will need some preliminaries about the stochastic convolu-
tion in this framework.
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Under our assumptions, we know by Lemma 4.10 that 

. supt∈[0,T ]‖ω(t)‖2H ≤
∫ T

0

‖q(s)‖2H
ν

ds + ‖ω0‖2H =: R2
T < +∞ P-a.s.

This quantity will play a crucial role in this section. Given a positive parameter 
.δ > 0, denote the stochastic integral and stochastic convolution as 

.M(t) := √
2κ

∑
k∈K

∫ t

0
ake

ik·x · ∇ωdWk
s , . (4.19) 

Z(t) := √
2κ

∑
k∈K

∫ t 

0 
eδ(t−s)�

(
ake

ik·x · ∇ω
)

dWk 
s . (4.20) 

Lemma 4.15 The processes M(t) and Z(t) defined above satisfy: 

(i) .M(t) is a continuous martingale with values in . V ∗. Moreover, it holds that 

. E

[
supt∈[0,T ]‖M(t)‖2V ∗

]
� κR2

T T .

(ii) For each . ε ∈ (0, 1/2), p ≥ 1,

.E
[
supt∈[0,T ]‖Z(t)‖p

H−ε

]1/p �ε,p,T

√
κδε−1RT , (4.21) 

.E

[
supt∈[0,T ]‖Z(t)‖p

H−1−ε

]1/p
�ε,p,T

√
κδε−1‖θ‖�∞RT . (4.22) 

(iii) For .β ∈ (0, 1] and .ε ∈ (0, β], .p ≥ 1 it holds that 

.E

[
supt∈[0,T ]‖Z(t)‖p

H−β

]1/p
�ε,p,T

√
κδε−1‖θ‖β−ε

�∞ RT . (4.23) 

Proof Up to some technicalities, the proofs of these statements are similar to some 
computations we did several times before. Therefore we simply provide the proof 
of the first statement. For a fully detailed and complete proof of all the estimates we 
suggest of reading [117]. 

The first point follows immediately by the Burkholder–Davis–Gundy inequality, 

Lemma 4.12.1. and the obvious relation .
|k⊥|
|k| ‖eik·x‖L∞ = 1. Indeed, 

.E

[
supt∈[0,T ]‖

∑
k∈K

∫ t

0
σk · ∇ω(s)dWk

s ‖2V ∗

]
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� κE

[∑
k∈K

∫ T 

0
‖ake

ik·x · ∇ω(s)‖2 V ∗ds

]

� κ
∑
k∈K

∫ T 

0 
θ2 k E

[
‖ω(s)‖2 H

]
ds � κR2 

T T .  

Now we can state the result about the mild formulation satisfied by . ω. 

Theorem 4.16 Let . ω be the weak solution of problem (4.17), then . ω satisfies the 
following integral relation .P-a.s.: 

.ω(t) = e(κ+ν)t�ω0 −
∫ t

0
e(κ+ν)(t−s)� (u(s) · ∇ω(s)) ds − Z(t). (4.24) 

The proof is not difficult and is similar to one made in Chap. 1 for the Stokes 
problem. However, it can be found in [117]. 

4.2.3 Proof of Theorem 4.11 

First we prove the following lemma about the behavior of the nonlinearity. 

Lemma 4.17 If .ω ∈ H, ω̃ ∈ V , .u = −∇⊥(−�)−1ω, ũ = −∇⊥(−�)−1ω̃, then 
for each .α ∈ (0, 1) it holds that 

. ‖u · ∇ω − ũ · ∇ω̃‖H−α−1 �α ‖ω − ω̃‖H−α (‖ω‖H + ‖ω̃‖V ).

Proof 

. ‖u · ∇ω − ũ · ∇ω̃‖H−α−1 ≤ ‖(u − ũ) · ∇ω‖H−α−1 + ‖ũ · ∇(ω − ω̃)‖H−α−1

=: I1 + I2.

By Lemma 4.12.4. with .β = α we have 

. I1 �α ‖u − ũ‖H 1−α‖ω‖H � ‖ω − ω̃‖H−α‖ω‖,

Again by Lemma 4.12.2. we have 

. I2 � ‖ũ‖D(A)‖ω − ω̃‖H−α � ‖ω̃‖V ‖ω − ω̃‖H−α .

Combining these two relations the thesis follows. ��
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Proof of Theorem 4.11 From the energy estimates we know that 

. ‖ω(t)‖2H + ν

∫ t

0
‖∇ω(s)‖2

L2 ds ≤ ‖ω0‖2H +
∫ t

0

‖q(s)‖2H
ν

ds P-a.s.,

‖ω̃(t)‖2H + (ν + κ)

∫ t

0
‖∇ω̃(s)‖2

L2 ds ≤ ‖ω0‖2H +
∫ T

0

‖q(s)‖2H
(ν + κ)

ds.

Moreover, by the results of Sect. 4.2.2 we know that both . ω and . ω̃ satisfy a mild 
formulation. Thus letting .ξ = ω − ω̃ we have 

. ξ(t) = −
∫ t

0
e(κ+ν)(t−s)� (u(s) · ∇ω(s) − ũ(s) · ∇ω̃(s)) ds − Zt .

By Lemmas 4.14 and 4.17 it follows that 

. ‖ξ(t)‖2
H−α �α ‖Z(t)‖2

H−α + 1

κ + ν

∫ t

0
‖ u(s) · ∇ω(s) − ũ(s) · ∇ω̃(s)‖2

H−α−1 ds

�α ‖Z(t)‖2
H−α + 1

κ + ν

∫ t

0
‖ξ(s)‖2

H−α (‖ω(s)‖2 + ‖ω̃(s)‖2V ) ds.

Thus by the Gronwall lemma, there exists .C = C(α) such that 

. ‖ξ(t)‖2
H−α �α

(
supt∈[0,T ]‖Z(t)‖2

H−α

)
exp

(
C

ν + κ

∫ T

0
‖ω(s)‖2H + ‖ω̃(s)‖2V ds

)
.

(4.25) 

Taking the expectation and exploiting relation (4.23) we arrive at the first relation in 
the statement. Exploiting the other estimate 

. 

∫ T

0
‖ω(s)‖2H ds ≤

∫ T

0
‖ω(s)‖2V ds ≤ 1

ν

(
‖ω0‖2H +

∫ T

0

‖q(s)‖2H
ν

ds

)

and the obvious fact that . 1
ν
+ 1

κ+ν
≤ 2

ν
, starting from (4.25) we can obtain the second 

estimate and the proof is complete. ��

4.2.4 The Result for Long Times 

The last result we want to discuss in this section is an easy corollary of Theorem 4.11 
and the convergence, for high viscosity, of the solution of the deterministic Navier– 
Stokes equations to the corresponding stationary solution in the case of . q(t) ≡
q ∈ H . Obviously, we are in the framework for having existence and uniqueness of
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the weak solution of problem (4.17). In this section we have to consider . ω a weak 
solution of problem (4.17), . ω̃ a solution of problem (4.18) and . ω̄ a weak solution of 
the following stationary problem with periodic boundary conditions: 

.(ν + κ)�ω̄ − ū · ∇ω̄ + q = 0, (4.26) 

where .ū = −∇⊥(−�)−1ω̄. By a weak solution of problem (4.26) we mean a 
function .ω̄ ∈ V such that 

. (κ + ν)〈∇ω̄,∇φ〉 + 〈ū · ∇ω̄, φ〉 = 〈q, φ〉 ∀φ ∈ V.

For the sake of completeness we state and prove the classical deterministic result 
below, see for example [247, 248] for a detailed discussion on this topic. 

Theorem 4.18 For .κ + ν large enough there exists a unique . ω̄ weak solution of 
problem (4.26), moreover .‖ω̃(t) − ω̄‖ → 0 exponentially fast as .t → +∞. 

Proof of Theorem 4.11 Existence and uniqueness for .κ + ν large enough follows 
by the contraction mapping theorem. Indeed, let us define the map . T : V → V

such that to each .v ∈ V is associated .T (v) which is the unique weak solution of the 
stationary problem below: 

.(ν + κ)�T (v) − χ · ∇T (v) + q = 0, (4.27) 

where .χ = −∇⊥(−�)−1v. The existence and uniqueness of a weak solution of 
problems (4.27) follows immediately by the Lax–Milgram lemma due the fact that 
.〈χ · ∇z, z〉 = 0 ∀z ∈ V, thus the bilinear form . a(z1, z2) = (κ + ν)〈∇z1,∇z2〉 +
〈χ · ∇z1, z2〉 is continuous and coercive for all .z1, z2 ∈ V . Moreover, again by the 
Lax–Milgram lemma, the following a priori estimate holds true: 

. ‖T (v)‖V ≤ ‖q‖H

κ + ν
.

For what concerns contractivity, let .v1, v2 ∈ V, . u1 = −∇⊥(−�)−1v1, u2 =
−∇⊥(−�)−1v2 the corresponding velocity. Then .T (v1) and .T (v2) satisfy for all 
. φ ∈ V

. (κ + ν)〈∇ (T (v1) − T (v2)) ,∇φ〉 = 〈u2 · ∇T (v2), φ〉 − 〈u1 · ∇T (v1), φ〉
= 〈u2 · ∇ (T (v2) − T (v1)) , φ〉
− 〈(u1 − u2) · ∇T (v1), φ〉.

If we take .φ = T (v1) − T (v2), we get via the Holder inequality and Sobolev 
embedding theorem 

.(κ + ν)‖T (v1) − T (v2)‖2V ≤ C‖v1 − v2‖V ‖T (v1) − T (v2)‖V ‖T (v1)‖V .
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We restrict the map T to the closed ball in V centered in 0 and with radius . 
‖q‖H

κ+ν
=:

M which we will denote by . BM . Thanks to the a priori estimate .T : BM → BM . 
Moreover, by previous computations, if .

CM
κ+ν

= C‖q‖H

(κ+ν)2
< 1 the map is a contraction 

and we have existence and uniqueness of the solution. 
For what concerns the convergence of . ω̃ to . ω̄, if we denote by .ξ = ω̃ − ω̄ and 

.χ = ũ − ū, then the following relation holds true: 

. 
d

dt
‖ξ‖2H + 2(κ + ν)‖∇ξ‖2

L2 = −2〈ũ · ∇ω̃, ξ 〉 + 2〈ū · ∇ω̄, ξ 〉
= −2〈ũ · ∇ω̃, ξ 〉 + 2〈ū · ∇ω̄, ξ 〉 ± 2〈ũ · ∇ω̄, ξ 〉
= −2〈χ · ∇ω̄, ξ 〉 ≤ C‖∇ω̄‖L2‖∇ξ‖L2‖ξ‖H

≤ C‖∇ω̄‖L2‖∇ξ‖2
L2 .

The constant appearing in the chain of inequalities is due to the Sobolev embedding 
theorem and the boundedness of the operator . ∇⊥ ∈ L(D(−�)α;H 2α−1(T2;R2))

for each .α ≥ 1/2. Thus, if .κ+ν is large enough, letting . α := 2(κ+ν)−C‖∇ω̄‖L2 ≥
2(κ + ν) − C‖q‖H

κ+ν
> 0 we have 

. 0 ≥ d

dt
‖ξ‖2H + α‖∇ξ‖2

L2 ≥ d

dt
‖ξ‖2H + α‖ξ‖2H .

Therefore by the Gronwall lemma 

. ‖ω̄ − ω̃(t)‖2H ≤ ‖ω0 − ω̄‖2H e−αt .

��
In this framework we can have .κ + ν large enough without any unrealistic 

assumption on the viscosity . ν. This is a particular property of the transport noise, 
which moreover guarantees a suitable convergence of . ω to . ω̄ for long times for a 
suitable scaling of the parameters .{θk}k∈K . This kind of convergence is described 
by the theorem below. 

Theorem 4.19 For .κ + ν large enough, for each .δ > 0 and .α ∈ (0, 1), there exists 
.T̄ = T̄ (δ) and a sequence .{θk}k∈K depending on .δ, T̄ and . α such that 

. E

[
supt∈[T ,2T̄ ]‖ω(t) − ω̄‖2

H−α

]
≤ δ.

Proof of Theorem 4.11 Let . ω̃ be the weak solution of problem (4.18). First we fix 
.δ > 0, α ∈ (0, 1). If  .(κ + ν) is large enough, by Theorem 4.18, we can find 
.T̄ = T̄ (δ) such that 

.‖ω̄ − ω̃(t)‖2H ≤ δ/4, ∀t ≥ T̄ .
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Now we use the results of Theorem 4.11 for .ε = α/2, thus we have 

. E

[
‖ω − ω̃‖2

C(0,2T̄ ;H−α)

]
�α,2T̄ κα/2‖θ‖α

�∞

(
2T̄ ‖q‖2H

ν
+ ‖ω0‖2H

)

exp

(
C

ν2

(
‖ω0‖2H + 2T̄ ‖q‖2H

2ν

))
.

If we take . θ such that the right-hand side of the previous inequality can be bounded 
by .δ/4 then the thesis follows immediately. For example, some possible choices of 
. θ can be found in [117, Example 1.3] ��

4.3 Velocity Formulation 

Contrary to the results of Sect. 4.1, here we want to discuss the well-posedness of 
the stochastic Navier–Stokes equations with transport noise, in the perhaps, more 
natural formulation: the velocity formulation. As discussed in the introduction to 
this chapter, so far, it is not clear which formulation of the Navier–Stokes equations 
with transport noise is better for the physics. We have chosen to explain all the 
computations in detail at the vorticity level because the portrait of the results is more 
clear and readable, due to the gain of regularity. For the matter of completeness, we 
want to explain what changes considering the well-posedness of velocity equations. 
We will follow again the variational method and the plan described in Sect. 4.1.1. 

We will consider the stochastic problem, already written in Itô form, 

.du +
∑
k∈K

P (σk · ∇u)dWk
t = ((νA + L)u − P(u · ∇u) + q) dt (4.28) 

in the two-dimensional torus .T2 = [0, π ]2, where . σk are smooth, divergence free 
vector fields, P and A are the projector and the Stokes operator as described in 
Chap. 1, but now with periodic boundary conditions, 

. Lu =
∑
k∈K

P (σk · ∇ (P (σk · ∇u))).

However, the argument presented in the following pages continues to be valid 
considering no-slip boundary conditions in a bounded domain. We have chosen to 
consider the case of periodic boundary conditions in order to be consistent with 
previous sections.
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4.3.1 Functional Setting and Assumptions 

Let: .H = L2
0,div

(
T
2;R2

)
, .V = W 1,2

(
T
2;R2

) ∩ H , .D (A) = W 2,2
(
T
2;R2

) ∩ V , 
. A : D (A) ⊂ H → H

. Au = P�u,

where .L2
0,div(T

2;R2) is the subspace of .L2(T2;R2)made by zero mean, divergence 
free vector fields. It is well-known that A is the infinitesimal generator of an analytic 
semigroup of negative type and moreover V can be identified with .D((−A)1/2), 
see [247, 248]. Obviously the nonlinearity of the system has the same properties 
described in Sect. 1.1.2. 

Let us consider the stochastic basis .
(
	,F , (Ft )t≥0 ,P

)
, thus we deal with strong 

solutions. As already done in a previous chapter, let us denote by .Lp

F (0, T ;V ) the 
space of p integrable, progressively measurable processes with values in V and 
by .CF ([0, T ] ;H) the space of continuous adapted square integrable processes. 
Assume . σk smooth enough (just for simplicity we assume .σk ∈ C∞(T2;R2), but  
less can be required), .u0 ∈ L4

F0
(	,H), .q ∈ L4

F (0, T ;H). 

Definition 4.20 A stochastic process 

. u ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V )

is a weak solution of Eq. (4.28) if, for every .φ ∈ D(A), we have  

. 〈u (t) , φ〉 = 〈u0, φ〉 +
∫ t

0
〈u (s) , (νA + L) φ〉 ds +

∫ t

0
b (u(s), φ, u(s)) ds

+
∫ t

0
〈q (s) , φ〉 ds +

∑
k∈K

∫ t

0
b (σk, φ, u(s)) dWk

s

for every .t ∈ [0, T ], .P-a.s. 

The main result proved below is: 

Theorem 4.21 For every .u0 ∈ L4
F0

(	,H) and .q ∈ L4
F (0, T ;H), there exists one 

and only one weak solution of Eq. (4.28). 

Remark 4.22 One can notice that the definitions given and the assumptions required 
in this section and the ones given in Sect. 4.1 are completely dual. For this reason, it 
is not surprising that the computations needed in order to get Theorem 4.21 and the 
ones needed to get Theorem 4.2 are similar. Thus, in the following, we will refer to 
Sect. 4.1 for the complete explanations of some arguments. In a certain sense, this 
section can be seen by the reader as a long exercise on the variational method for 
fluid dynamic models with transport noise. For pedagogical reasons we add almost 
all the proofs of the statements below, but we suggest that you try to prove them



140 4 Transport Noise in the Navier–Stokes Equations

by yourself. Again, as in Sect. 2.3 the extra integrability conditions are needed in 
order to get existence, but uniqueness follows under the more natural assumptions 
.u0 ∈ L2

F0
(	,H), q ∈ L2

F (0, T ;H). 

Remark 4.23 The difference between the two models is clear, noting that, at a 
formal level, taking the .curl of Eq. (4.28) we do not arrive Eq. (4.1). A different, 
perhaps more transparent, possibility to see this is considering the evolution of the 
quantity .‖(−A)1/2u‖2H by Itô formula, at least at a formal level. If the two models 
were equivalent, then we would have .d‖(−A)1/2u‖2H = d‖ω‖2

L2 . In fact in the case 
of periodic boundary conditions, integrating by parts, we have the following chain 
of equalities: 

. 

∫
T2

|ω(x)|2dx =
∫
T2

(∂1u2(x))2 + (∂2u1(x))2 − 2∂1u2(x)∂2u1(x)dx

=
∫
T2

(∂1u2(x))2 + (∂2u1(x))2 + ∂12u2(x)u1(x)+∂12u1(x)u2(x)dx

=
∫
T2

(∂1u2(x))2 + (∂2u1(x))2 − ∂11u1(x)u1(x)−∂22u2(x)u2(x)dx

=
∫
T2

(∂1u2(x))2 + (∂2u1(x))2 + (∂1u1(x))2 + (∂2u2(x))2 dx.

We already know by Lemma 4.10 that .d‖ω‖2
L2 has only a drift term. Now we 

compute .d‖(−A)1/2u‖2H = d‖∇u‖2
L2 . 

. d‖(−A)1/2u‖2H = − ν‖Au‖2H dt − 〈Lu,Au〉dt + b (u, u,Au) dt

− 〈q,Au〉dt +
∑
k∈K

b(σk, u,Au)2dt +
∑
k∈K

b(σk, u,Au)dWk
t .

While .b(u, u,Au) = 0 in the torus, see for example [192], there is no reason that 
.b(σk, u,Au) = 0, thus .d‖∇u‖2

L2 has also a diffusion term. 

4.3.2 Galerkin Approximation and Limit Equations 

Let .{ei}i∈N be an orthonormal basis of H made by eigenvectors of . −A, and the 
corresponding eigenvalues, . λi , are positive and nondecreasing thanks to our choice 
of removing the constant vector fields. Let .HN = span{e1, . . . , eN } ⊆ H , 
.P N : H → H the orthogonal projector of H on .HN. We start looking for a finite-
dimensional approximation of the solution of Eq. (4.28). We define 

.uN(t) =
N∑

i=1

ci,N (t)ei(x).
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The .ci,N have been chosen in order to satisfy . ∀ei, 1 ≤ i ≤ N, t ∈ [0, T ]

. 

〈
uN (t) , ei

〉
=

〈
uN
0 , ei

〉
+

∫ t

0

〈
uN (s) ,

(
νA + LN

)
ei

〉
ds

+
∫ t

0
b

(
uN(s), ei, u

N(s)
)

ds

+
∫ t

0
〈q (s) , ei〉 ds +

∑
k∈K

∫ t

0
b

(
σk, ei, u

N(s)
)

dWk
s , P-a.s.,

(4.29) 

where 

. LNφ = 1

2

∑
k∈K

P NP
(
σk · ∇P NP (σk · ∇φ)

)
∀φ ∈ HN.

Local existence and uniqueness of the solution of this system of ordinary stochastic 
differential equations follows from the classical theory for stochastic differential 
equations with locally Lipshitz coefficients. For what concerns the global existence, 
it follows from the a priori estimates below. 

Lemma 4.24 The Itô formula below holds: 

.d‖uN‖2H + 2ν‖∇uN‖2
L2dt = 2〈q, uN 〉dt (4.30) 

and the following energy estimates are satisfied: 

.‖uN(t)‖2H ≤
∫ t

0
e−ν(t−s) ‖q(s)‖2H

ν
ds + e−νt‖u0‖2H , . (4.31) 

ν

∫ t 

0
‖∇uN (s)‖2 

L2ds ≤
∫ t 

0

‖q(s)‖2 H 
ν 

ds + ‖u0‖2 H , . (4.32) 

E

[
supt∈[0,T ]‖uN (t)‖2 H

]
≤ E

[∫ T 

0

‖q(s)‖2 H 
ν 

ds + ‖u0‖2 H
]
, . (4.33) 

νE

[∫ T 

0
‖∇uN (t)‖2 

L2 ds

]
≤ E

[∫ T 

0

‖q(s)‖2 H 
ν 

ds + ‖u0‖2 H
]
, . (4.34) 

E

[
supt∈[0,T ]‖uN (t)‖4 H

]
+ E

[∫ T 

0
‖uN (s)‖2 H ‖∇uN (s)‖2 

L2 ds

]
≤ C, . (4.35) 

E

[(∫ T 

0
‖∇uN (s)‖2 

L2 ds

)2]
≤ C, (4.36)
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where C is a constant possibly changing its value line by line, but independent of 
N . 

Proof of Theorem 4.11 The proof of this statement is completely analogous to that 
of Lemma 4.4. We prefer to add it only for the matter of completeness, in order to 
make clear to the reader the little changes due to the presence of the Leray projector 
P . 

The Itô formula follows immediately from the finite dimensional Itô formula. In 
fact 

. d‖uN‖2H =
N∑

i=1

dc2i,N = 2
N∑

i=1

ci,Ndci,N +
N∑

i=1

〈dci,N , dci,N 〉.

Thus, exploiting the weak formulation satisfied by . uN , we have  

. d‖uN‖2H = 2
(
〈uN, νAuN 〉 + 〈q, uN 〉 + b

(
uN, uN, uN

)
+ 〈uN,LNuN 〉

)
dt

+
∑
k∈K

b(σk, u
N , uN)dWk

t +
N∑

i=1

∑
k∈K

b
(
σk, ei, u

N
)2

dt.

From the fact that .uN, σk are divergence free, it follows immediately that 
.b

(
uN, uN, uN

) = b(σk, u
N , uN) = 0. Moreover, we can notice, integrating by 

parts and exploiting .div σk = 0, that 

. 

N∑
i=1

∑
k∈K

b
(
σk, ei, u

N
)2 + 2〈uN,LNuN 〉

=
N∑

i=1

∑
k∈K

〈
σk · ∇uN, ei

〉2 +
∑
k∈K

〈P NP
(
σk · ∇P NP (σk · ∇uN)

)
, uN 〉

=
∑
k∈K

〈σk · ∇uN, P NP (σk · ∇uN)〉

+
∑
k∈K

〈σk · ∇P NP (σk · ∇uN), uN 〉 = 0.

Thus we arrive at the Itô formula in the statement. Starting from the Itô formula 
and applying the Poincaré inequality for zero mean vector fields in the torus, the 
Cauchy–Schwarz and Young’s inequality properly, we get 

.d‖uN‖2H +2ν‖∇uN‖2
L2dt ≤

(
ν‖uN‖2H + ‖q‖2H

ν

)
dt ≤

(
ν‖∇uN‖2

L2 + ‖q‖2H
ν

)
dt.



4.3 Velocity Formulation 143

Thus we obtain the following relations by the Gronwall lemma: 

. ‖uN(t)‖2H ≤
∫ t

0
e−ν(t−s) ‖q(s)‖2H

ν
ds + e−νt‖u0‖2H ,

ν

∫ t

0
‖∇uN(s)‖2

L2ds ≤ ‖u0‖2H +
∫ t

0

‖q(s)‖2H
ν

ds.

These inequalities imply the first four energy relations stated and the last one. For 
what concerns the remaining one, we use the Itô formula satisfied by .‖uN(t)‖2H and 
we apply the Itô formula for the function .f (x) = x2. Arguing as above, we get 

. d‖uN‖4H + 4ν‖uN‖2H ‖∇uN‖2
L2 = 4‖uN‖2H 〈q, uN 〉dt

≤
(
2ν‖uN‖2H ‖∇uN‖2

L2 + 2‖q‖2H ‖uN‖2H
ν

)
dt

≤
(
2ν‖uN‖2H ‖∇uN‖2

L2 + ‖uN‖4
ν2

+ ‖q‖4
ν2

)
dt

and this implies the thesis by the Gronwall lemma. ��
Remark 4.25 Only relations (4.35) and (4.36) use the further integrability assump-
tions on the initial conditions and the forcing term. 

From the energy estimates on . uN , there exists a subsequence, which we will 
denote again for simplicity by . uN , which converges to a stochastic process u in the 
way described below: 

. uN ∗
⇀ u L4(	;L∞(0, T ;H))

. uN ⇀ u L4(	;L2(0, T ;V ))

and an unknown process . B∗ such that 

. B(uN, uN) ⇀ B∗ L2(	;L2(0, T ;V ∗)).

Moreover, thanks to the converging properties of the projector .P N for .N → +∞, 
the processes u and . B∗ satisfy .P-a.s. for each .i ∈ N and .t ∈ [0, T ], 

. 〈u (t) , φ〉 +
∫ t

0
〈B∗(s), ei〉V ∗,V ds = 〈u0, ei〉 +

∫ t

0
〈u (s) , (νA + L) ei〉 ds

+
∫ t

0
〈q (s) , ei〉 ds

+
∑
k∈K

∫ t

0
b (σk, ei, u(s)) dWk

s . (4.37)
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For what concerns the convergence of .
∫ t

0 〈uN(s),LNei〉ds and the continuity of u 
as a process taking values in H , one can argue as in the vorticity framework. 

Remark 4.26 Without the additional energy estimates it is not possible to gain 
a weak convergent subsequence for the nonlinearity. In fact, we have, thanks to 
Ladyzhenskaya’s inequality, for each . φ ∈ V

. |b(uN, φ, uN)| ≤ C‖∇φ‖L2‖∇uN‖L2‖uN‖H ,

thus .‖B(uN, uN)‖V ∗ ≤ C‖∇uN‖L2‖uN‖L2 and 

. supN∈N E

[∫ T

0
‖B(uN(s), uN(s))‖2V ∗ ds

]

≤ C supN∈N E

[∫ T

0
‖∇uN(s)‖2

L2‖uN(s)‖2H ds

]
≤ C,

thanks to relation (4.35). 

4.3.3 Existence, Uniqueness and Further Results 

To prove the existence of the solutions of Eq. (4.28) we need the following lemma. 
As described before, this way of proceeding is classical in stochastic analysis, see 
for example [44, 227]. 

Lemma 4.27 Let 

. τM = inf{t ∈ [0, T ] : ‖u(t)‖2H ≥ M}∧ inf{t ∈ [0, T ] :
∫ t

0
‖∇u(s)‖2

L2 ds ≥ M}∧T

then 

. 1[0,τM ](uN − u) → 0, in L2(	,L2(0, T ;H)).

Proof of Theorem 4.11 We have to show that 

.E

[∫ T

0
1[0,τM ](s)‖uN(s) − u(s)‖2H ds

]
(4.38) 

converges to zero in N . Let .ũN = P Nu. Then, by the triangular inequality 

. (4.38) ≤ 2E
[∫ T 

0 
1[0,τM ](s)‖ũN (s) − u(s)‖2 H ds

]

+ 2E
[∫ T 

0 
1[0,τM ](s)‖ũN (s) − uN (s)‖2 H ds

]
.
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Thanks to the properties of the projector .P N and dominated convergence theorem, 
it follows that .ũN → u in .L2(	,L2(0, T ;V )) ∩ L2(	,C(0, T ;H)), and also in 
weaker topologies. Therefore, we are left to show the convergence of 

.E

[∫ τM

0
‖ũN (s) − uN(s)‖2H ds

]
. (4.39) 

Calling .BN = B(uN, uN), then for each .i ≤ N the following relation holds true: 

. 〈(u − uN)(t), ei〉 +
∫ t

0
〈B∗(s) − BN(s), ei〉V ∗,V ds

=
∫ t

0
ν〈u(s) − uN(s), Aei〉ds

+
∫ t

0
〈u(s),Lei〉 − 〈uN(s),LNei〉ds

+
∑
k∈K

∫ t

0
b

(
σk, ei, u(s) − uN(s)

)
dWk

s .

Thanks to the previous relation we can compute .
1
2d‖uN −ũN‖2H via the Itô formula: 

. 
1

2
d‖ũN − uN‖2H + ν‖∇(ũN − uN)‖2

L2 dt = 〈u,L(ũN − uN)〉dt

− 〈uN,LN(ũN − uN)〉dt

− 〈B∗ − BN, ũN − uN 〉V ∗,V dt

+
∑
k∈K

b
(
σk, ũ

N − uN, u − uN
)

dWk
t

+ 1

2

∑
k∈K

N∑
i=1

b
(
σk, ei, u − uN

)2
dt.

(4.40) 

Next, to better understand the behavior of the terms 

.〈u,L(ũN − uN)〉 − 〈uN,LN(ũN − uN)〉 + 1

2

∑
k∈K

N∑
i=1

b
(
σk, ei, u − uN

)2
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we will first write them in an equivalent form: 

. 2〈u,L(ũN − uN)〉 − 2〈uN,LN(ũN − uN)〉
=

∑
k∈K

〈u, σk · ∇
(
P

(
σk · ∇(ũN − uN)

))
〉

−
∑
k∈K

〈uN, σk · ∇
(
P NP

(
σk · ∇(ũN − uN)

))
〉

= −
∑
k∈K

b
(
σk, u, P

(
σk · ∇(ũN − uN)

))

+
∑
k∈K

b
(
σk, u

N, P NP
(
σk · ∇(ũN − uN)

))

=
∑
k∈K

〈P
(
σk · ∇(ũN − uN)

)
, P NP (σk · ∇uN)〉

−
∑
k∈K

〈P
(
σk · ∇(ũN − uN)

)
, P (σk · ∇u)〉,

∑
k∈K

N∑
i=1

b
(
σk, ei, u − uN

)2 =
∑
k∈K

〈P (σk · ∇u) , P NP
(
σk · ∇(u − uN)

)
〉

−
∑
k∈K

〈P NP
(
σk · ∇uN

)
, P NP

(
σk · ∇(u − uN)

)
〉.

Thus, by the Cauchy-Schwartz inequality we obtain 

.2〈u,L(ũN − uN)〉 − 2〈uN,LN(ũN − uN)〉 +
∑
k∈K

N∑
i=1

b
(
σk, ei, u − uN

)2

=
∑
k∈K

〈P NP (σk · ∇uN) − P (σk · ∇u) , P
(
σk · ∇(ũN − uN)

)

− P NP
(
σk · ∇(u − uN)

〉

= −
∑
k∈K

〈P (σk · ∇u) − P NP (σk · ∇uN), (I − P N)P (σk · ∇u)〉

+
∑
k∈K

〈P (σk · ∇u) − P NP (σk · ∇uN), P
(
σk · ∇(u − ũN )

)
〉

+
∑
k∈K

〈P (σk · ∇u) − P NP (σk · ∇uN), (I − P N)P (σk · ∇uN)〉
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≤
∑
k∈K

‖P (σk · ∇u) − P N P
(
σk · ∇uN

)
‖H ‖(I − P N )P (σk · ∇u)‖H 

+
∑
k∈K 

C‖P (σk · ∇u) − P N P
(
σk · ∇uN

)
‖H ‖∇(u − ũN )‖L2 

+
∑
k∈K 

C‖(I − P N )P (σk · ∇u)‖H ‖∇uN‖L2 . 

For what concerns the nonlinear term we have 

. 〈BN, ũN−uN 〉V ∗,V = 〈B(ũN−uN, ũN−uN), ũN 〉V ∗,V +〈B(ũN , ũN ), ũN−uN 〉V ∗,V

and, by Ladyzhenskaya’s and Young’s inequalities, 

. |〈B(ũN − uN, ũN − uN), ũN 〉V ∗,V | ≤ ‖∇ũN‖L2‖ũN − uN‖2
L4

≤ C‖∇u‖L2‖ũN − uN‖H ‖∇(ũN − uN)‖L2

≤ C‖∇u‖2
L2‖ũN − uN‖2H

+ ν

2
‖∇(ũN − uN)‖2

L2 .

To remove some positive terms which corrupt our estimates we use, again, the trick 
we learnt from Bjorn Schmalfuss [238], introduced in Chap. 2 and we apply the 
Itô formula to the process . 12R(t)‖ũN (t) − uN(t)‖2H , where . R(t) = exp(−η1t −
η2

∫ t

0‖∇u(s)‖2
L2 ds). We take the expected value for .t = τM and exploit previous 

estimates: 

.E

[
1

2
R(τM)‖ũN (τM) − uN(τM)‖2H

]
+ νE

[∫ τM

0
dsR(s)‖∇(ũN (s) − uN(s))‖2

L2

]

≤ −η1

2
E

[∫ τM

0
R(s)‖ũN (s) − uN(s)‖2H ds

]

− η2

2
E

[∫ τM

0
R(s)‖∇u(s)‖2

L2‖ũN (s) − uN(s)‖2H ds

]

+
∣∣∣∣E

[∫ τM

0
R(s)〈B∗(s) − B(ũN(s), ũN (s)), ũN (s) − uN(s)〉V ∗,V ds

]∣∣∣∣
+ CE

[∫ τM

0
R(s)‖∇u(s)‖2

L2‖ũN (s) − uN(s)‖2H ds

]

+ ν

2
E

[∫ τM

0
R(s)‖∇ũN (s) − ∇uN(s)‖2

L2 ds

]
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+
∑
k∈K 

E

[∫ τM 

0 
R(s)‖P (σk · ∇u(s)) 

−P N P
(
σk · ∇uN (s)

)
‖H ‖(I − P N )P (σk · ∇u(s))‖H ds

]

+ C
∑
k∈K 

E

[∫ τM 

0 
ds R(s)‖P (σk · ∇u) 

−P N P
(
σk · ∇uN (s)

)
‖H ‖∇(u(s) − ũN (s))‖L2

]

+ C
∑
k∈K 

E

[∫ τM 

0 
ds R(s)‖(I − P N )P (σk · ∇u(s))‖H ‖∇uN (s)‖L2 ds

]
. 

Taking .η1, η2 large enough we can remove some terms in the right-hand side. Let 
us consider the remaining terms, recalling that the weak convergence of . uN implies 

.E

[∫ T

0 ‖∇u(s)‖2
L2 ds

]
.≤ C. Applying the Cauchy–Schwarz inequality where it is 

needed, we get 

.

∑
k∈K

E

[∫ τM

0
R(s)‖P (σk · ∇u(s))

−P NP
(
σk · ∇uN(s)

)
‖H ‖(I − P N)P (σk · ∇u(s))‖H ds

]

+ C
∑
k∈K

E

[∫ τM

0
ds R(s)‖P (σk · ∇u(s))

−P NP
(
σk · ∇uN(s)

)
‖H ‖∇(u(s) − ũN (s))‖L2

]

+ C
∑
k∈K

E

[∫ τM

0
ds R(s)‖(I − P N)P (σk · ∇u(s))‖H ‖∇uN(s)‖L2 ds

]

≤ C
∑
k∈K

E

[∫ T

0
‖(I − P N)P (σk · ∇u(s))‖2H ds

]1/2

+ CE

[∫ T

0
‖∇(u(s) − ũN (s))‖2

L2 ds

]1/2

→ 0.
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Lastly, we have to treat . 
∣∣E [∫ τM

0 R(s)〈B∗(s)−B(ũN(s), ũN (s)), ũN (s)−uN(s)〉V ∗,V
ds]|.

. 

∣∣∣∣E
[∫ τM

0
R(s)〈B∗(s) − B(ũN(s), ũN (s)), ũN (s) − uN(s)〉V ∗,V ds

]∣∣∣∣
≤

∣∣∣∣E
[∫ τM

0
R(s)〈B∗(s) − B(u(s), u(s)), ũN (s) − uN(s)〉V ∗,V ds

]∣∣∣∣
+

∣∣∣∣E
[∫ τM

0
R(s)〈B(u(s), u(s)) − B(ũN(s), ũN (s)), ũN (s) − uN(s)〉V ∗,V ds

]∣∣∣∣.

Thanks to .ũN − uN ⇀ 0 in .L2(	;L2(0, T ;V )) the first term converges to 0. For 
what concerns the second one: 

. 

∣∣∣∣E
[ ∫ τM

0
R(s)〈B(u(s), u(s)) − B(ũN(s), ũN (s)), ũN (s) − uN(s)〉V ∗,V ds

±
∫ τM

0
R(s)〈B(u(s), ũN (s)), ũN (s) − uN(s)〉V ∗,V ds

]∣∣∣∣
≤

∣∣∣∣E
[ ∫ τM

0
R(s)〈B(u(s), u(s) − ũN (s)), ũN (s) − uN(s)〉V ∗,V ds

]∣∣∣∣
+

∣∣∣∣E
[ ∫ τM

0
R(s)〈B(u(s) − ũN (s), ũN (s)), ũN (s) − uN(s)〉V ∗,V ds

]∣∣∣∣
≤ E

[ ∫ τM

0
‖u(s)‖L4‖u(s) − ũ(s)N‖1/2H ‖∇(u(s) − ũN (s))‖1/2

L2 ‖∇(ũN (s)

− uN(s))‖L2 ds

]

+ E

[ ∫ τM

0
‖u(s) − ũN (s)‖L4‖uN(s) − ũN (s)‖L4‖∇u(s)‖L2 ds

]

. ≤ CE

[ ∫ τM

0
‖∇u(s)‖1/2

L2 ‖∇(ũN (s) − uN(s))‖L2‖∇(ũN (s) − u(s))‖1/2
L2 ‖ũN (s)

− u(s)‖1/2H ds

]

+ CE

[ (∫ T

0
‖u(s) − ũN (s)‖4

L4 ds

)1/4 (∫ T

0
‖uN(s) − ũ(s)N‖4

L4 ds

)1/4 ]

≤ CE

[
‖ũN − u‖1/2

L∞(0,T ;H)
‖u‖1/2

L2(0,τM,V )
‖ũN − u‖1/2

L2(0,T ,V )
‖ũN − uN‖L2(0,T ,V )

]
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+ CE

[
‖u − ũN‖1/2 

L2(0,T ;V )
‖uN − ũN‖1/2 

L2(0,T ;V )
‖u − ũN‖1/2 

L∞(0,T ;H)
‖uN 

− ũN‖1/2 
L∞(0,T ;H)

]

≤ CE

[
‖ũN − u‖2 L∞(0,T ;H)

]1/4 
E

[
‖ũN − u‖2 

L2(0,T ;V )

]1/4
(
E

[
‖ũN − uN‖2 

L2(0,T ;V )

]1/2 
+ E

[
‖ũN − uN‖2 L∞(0,T ;H)

]1/4 

E

[
‖ũN − uN‖2 

L2(0,T ;V )

]1/4)

→ 0. 

In several steps we use the fact that .‖u(t)‖2H ≤ M on .[0, τM ] and . 
∫ τM

0 ‖∇u(s)‖2
L2 ≤

M . At the end, we find the following relation: 

. E

[
1

2
R(τM)‖ũN (τM) − uN(τM)‖2H

]

+ ν

2
E

[∫ τM

0
dsR(s)‖∇(ũN (s) − uN(s))‖2

L2

]
→ 0. (4.41) 

From relation (4.41), .R(t) ≥ CM > 0 ∀t ≤ τM and the properties of . P N , via  
triangular inequality the thesis follows. ��
Remark 4.28 Until the final estimates on the nonlinear term, the proof of Lemma 
4.27 is analogous to the proof of Lemma 4.7 up to some technicalities due to the 
presence of the Leray projection P . The final estimates of the nonlinear term are a 
bit different due to the lack of regularity of some terms. Thus we prefer to show this 
proof in all its details. 

Lemma 4.29 .B∗ = B(u, u) in L2(	,L2(0, T ;V ∗)). 

Proof of Theorem 4.11 Due to the experience gained on the vorticity formulation, 
we hope at this point that it is clear that Lemma 4.27 is the crucial result in order 
to identify the nonlinear term. We add some computations, similar to what we have 
done for Lemma 4.8 above. The only changes are due to the lack of regularity of the 
process u with respect to the previous section. 

Thanks to the estimates (4.35), (4.36) and the further results about the 
weak (resp. weak. ∗) convergence of .uN to u in .L4(	;L2(0, T ;V )) (resp. 
.L4(	;L∞(0, T ;H))) we get that .B(u, uN) and .B(uN, u) converge weakly to 
.B(u, u) in .L2(	;L2(0, T ;V ∗)) easily. We do the explicit computations just for one 
of the two, the other one is analogous:
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. E

[∫ T

0
‖B(u(s), uN(s))‖2V ∗ ds

]

≤ E

[∫ T

0
‖u(s)‖2

L4‖∇uN(s)‖2
L4 ds

]

≤ CE

[
‖u‖L∞(0,T ;H)‖uN‖L∞(0,T ;H)‖u‖L2(0,T ;V )‖uN‖L2(0,T ;V )

]

≤ CE

[
‖u‖4L∞(0,T ;H)

]
+ CE

[
‖uN‖4L∞(0,T ;H)

]

+ CE

[(∫ T

0
‖∇uN(s)‖2

L2 ds

)2]
+ CE

[(∫ T

0
‖∇u(s)‖2

L2 ds

)2]

≤ C.

Now let .φ ∈ L∞(	;L∞(0, T ;V )), then .B(u, φ) ∈ L∞(	;L∞(0, T ;V ∗)), thus 
from the convergence properties of . uN we have 

. E

[∫ T

0
〈B(u(s), uN(s), φ〉V ∗,V ds

]
= −E

[∫ T

0
〈u(s) · ∇φN, u(s)〉ds

]

→ −E

[∫ T

0
〈u(s) · ∇φ, u(s)〉ds

]

= E

[∫ T

0
〈B(u(s), u(s)), φ〉V ∗,V ds

]
.

From the density of .L∞(	;L∞(0, T ;V )) in .L2(	;L2(0, T ;V )) and the 
uniform boundedness of .B(u, uN) in .L2(	;L2(0, T ;V ∗)) we have the required 
claim. For what concerns the convergence of the nonlinear term, first note 
that, arguing as above, the sequence .{B(uN, uN)}N∈N is uniformly bounded in 
.L2(	;L2(0, T ;V ∗)). Moreover, we have 

. B(u, u) − B(uN, uN) = B(u, u − uN) + B(u, uN)

+ B(uN, u − uN) − B(uN, u) =: I1 + I2 + I3 + I4.

Thanks to the previous observations, .I1 + I2 + I4 converges weakly to 0 in 
.L2(	;L2(0, T ;V ∗)). For what concerns . I3, let us take . φ ∈ L∞(	;L∞(0, T ;
D(A))) and . τM defined as in Lemma 4.27, then we have 

.E

[∫ τM

0
〈B(uN(s), u(s) − uN(s)), φ〉V ∗,V ds

]

= −E

[∫ τM

0
〈B(uN(s), φ), u(s) − uN(s)〉V ∗,V ds

]
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≤ CE

[∫ τM 

0
‖∇uN (s)‖L2‖u(s) − uN (s)‖H ds

]
→ 0 

thanks to Holder’s inequality and Lemma 4.27. Since it holds that .τM ↗ T a.s., we 
have, thanks to Lemma 4.24, 

. 

∣∣∣∣E
[∫ T

0
B(uN(s), u(s) − uN(s)), φ〉V ∗,V ds

]∣∣∣∣
≤

∣∣∣∣E
[∫ τM

0
〈B(uN(s), u(s) − uN(s)), φ〉V ∗,V ds

]∣∣∣∣
+

∣∣∣∣E
[∫ T

τM

〈B(uN(s), u(s) − uN(s)), φ〉V ∗,V ds

]∣∣∣∣
≤

∣∣∣∣E
[∫ τM

0
〈B(uN(s), u(s) − uN(s)), φ〉V ∗,V ds

]∣∣∣∣
+ CE

[∫ T

τM

‖uN(s)‖L4‖u(s) − uN(s)‖L4 ds

]

≤
∣∣∣∣E

[∫ τM

0
〈B(uN(s), u(s) − uN(s)), φ〉V ∗,V ds

]∣∣∣∣

+ CE

[∫ T

τM

‖uN(s)‖2H ds

]1/4
E

[∫ T

τM

‖u(s) − uN(s)‖2H ds

]1/4

≤
∣∣∣∣E

[∫ τM

0
〈B(uN(s), u(s) − uN(s)), φ〉V ∗,V ds

]∣∣∣∣

+ CE

[∫ T

τM

(∫ T

0
‖q(r)‖2H + ‖B∗(r)‖2V ∗ dr + ‖u0‖2H

)
ds

]1/2
.

Therefore, if we fix .ε > 0 and .M > 0 such that 

. CE

[∫ T

τM

(∫ T

0
‖q(r)‖2H + ‖B∗(r)‖2V ∗ dr + ‖u0‖2H

)
ds

]1/2
≤ ε,

then 

. limusupN→+∞
∣∣∣∣E

[∫ T

0
B(uN(s), u(s) − uN(s)), φ〉V ∗,V ds

]∣∣∣∣ ≤ ε.

The thesis follows by the density of .L∞(	;L∞(0, T ;D(A))) in . L2(	;L2(0, T ;
V )) and the uniform boundedness of .B(uN, uN) in .L2(	;L2(0, T ;V ∗)). ��
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Theorem 4.30 There is at most one weak solution of problem (4.28) in the sense of 
Definition 4.20. 

Proof of Theorem 4.11 Even if this proof is analogous to the one presented for 
Theorem 4.9, we prefer to add it in order to make clear to the reader the 
simplifications of the argument described in Sect. 2.3.1 thanks to the presence of 
the transport noise. 

Let .u1, u2 be two solutions and v be their difference. Thus, v satisfies .P-a.s. for 
each .t ∈ [0, T ] and .φ ∈ D(A), 

. 〈v(t), φ〉 =
∫ t

0
〈v(s), (νA + L)φ〉ds +

∫ t

0
b (u1(s), φ, u1(s)) ds

−
∫ t

0
b (u2(s), φ, u2(s)) ds

+
∑
k∈K

∫ t

0
b (σk, φ, v(s)) dWk

s .

Arguing as in the proof of Lemma 4.10 and 4.24, v satisfies the Itô formula below: 

. 
d‖v‖2H

2
=

(
−ν‖∇v‖2

L2 + b(u1, v, u1) − b(u2, v, u2) ± b(u2, v, u1)
)

dt

= −ν‖∇v‖2
L2dt + b(v, v, u1)dt.

We apply the Itô formula to the process .
1
2R(t)‖v(t)‖2H , where . R(t) =

exp(−η
∫ t

0‖∇u1(s)‖2L2 ds)

. 
d

(
R‖v‖2H

)
2

= R
(
−ν‖∇v‖2

L2 + b(v, v, u1)
)

dt − ηR
2

‖v‖2H ‖∇u1‖2L2dt

≤ −νR‖∇v‖2
L2dt − ηR

2
‖v‖2H ‖∇u1‖2L2dt

+ CR‖∇u1‖L2‖v‖H ‖∇v‖L2dt

≤ −νR‖∇v‖2
L2dt − ηR

2
‖v‖2H ‖∇u1‖2L2dt

+ νR‖∇v‖2
L2

2
dt + CR‖v‖2H ‖∇u1‖2L2dt.

Thus, taking . η large enough, we have 

.
d

(
R‖v‖2H

)
2

+ νR‖∇v‖2
L2

2
dt ≤ 0
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and the thesis follows immediately by the Gronwall lemma. ��
Lemmas 4.27 and 4.29 identify the nonlinear term and together with Theo-

rem 4.30 conclude the proof of Theorem 4.21. Again, invoking some abstract results 
on stochastic processes, it can be shown also that the full sequence . uN converges 
to u in .L2(	;L2(0, T ;V )) and for each .t ∈ [0, T ] .uN(t) converges to .u(t) in 
.L2(	;H), see  [44] for some details. Arguing as in Sect. 4.1.4 one can prove that the 
Itô formula and the estimates stated in Lemma 4.24 for the approximating sequence 
. uN continue to hold for the limit point u. We omit the easy details. 

4.4 The 3D Navier–Stokes Equations with Transport Noise 

The final topic we want to discuss is the vorticity formulation for the 3D Navier– 
Stokes equation with transport noise. In this case we should find 

. ∂tω + (u · ∇ω − ω · ∇u)
d=3= ν�ω + curl f

−
∑
k∈K

(σk · ∇ω − ω · ∇σk) ◦ ∂tW
k.

Indeed, in the original vorticity equation there are two quadratic terms 

. u · ∇ω − ω · ∇u

and in both of them we have to replace u by .
(
u + u′), and then . u′ by noise. The 

previous stochastic equation has been investigated, at the level of local-in-time 
existence and uniqueness of smooth solutions (see in particular [81] dealing with 
the more difficult case of .ν = 0), but the link with an equation of the form 

.∂t	 + U · ∇	
d=3= (ν� + L) 	 + 	 · ∇U + curl f (4.42) 

has not been understood until now. Maybe there are fluid regimes where there is a 
link (see the discussion in [126]), but this is still an open problem. 

On the contrary, if we investigate the model, in 3D, with just transport noise, 

. ∂tω + (u · ∇ω − ω · ∇u)
d=3= ν�ω + curl f

−
∑
k∈K

P (σk · ∇ω) ◦ ∂tW
k,

it is possible to prove a rigorous link with (4.42). Notice that we have introduced 
the projection .P : L2 → H in this equation: in general the term .σk · ∇ω is not 
divergence free, while the sum of all other terms is divergence free, hence without
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the projection there would be no solution in general. Moreover, notice that the 
previous model has been investigated only on the 3D torus, to avoid the problem 
of the boundary conditions for the vorticity. 

One can prove that the solution . ω of the stochastic Navier–Stokes equations 
is close (in a suitable topology) to the solution . 	 of the deterministic Navier– 
Stokes equations (4.42) with increased dissipation. This fact has a very important 
consequence: that well-posedness is improved by noise. In the deterministic case, 
the larger the viscosity, the longer the time interval of existence and uniqueness of 
smooth solutions; this interval becomes even infinite when the sizes of the initial 
condition and the viscosity (and the forcing term if it is not zero) satisfy a certain 
relation. Since the noise has the effect of introducing an extra dissipation, it has 
the effect of increasing the length of the time interval of existence and uniqueness 
of smooth solutions of the stochastic equation, length that again becomes infinite 
under certain conditions. 

This is the first known regularization by noise result for 3D Navier–Stokes 
equations; it has been proved in [126]. See also the “deterministic” variant obtained 
by a Wong–Zakai approximation based on rough paths [123]. These works leave 
open the very difficult question of whether the same result holds when the noise 
affects also the stretching term. Results for regularization by noise along similar 
lines, but for other equations, have been developed in [115]. 

4.4.1 The Result in the Case of Only Transport 

Consider, on the 3D torus, the vorticity equation with noise only in the transport 
component: 

. ∂tω + u · ∇ω + P
(
u′ · ∇ω

) = �ω + ω · ∇u,

with noise . u′ of the form 

. u′ (t, x) =
∑

k

σk (x) ◦ ∂tW
k
t .

The projection in the term .P
(
u′ ◦ ∇ω

)
, necessary for compatibility, is the source of 

great technical difficulties (the Itô–Stratonovich corrector is a nonlocal differential 
operator). 

Call . ω the unique local solution, for .ω0 ∈ H (the space . L2 with usual conditions). 

Theorem 4.31 Given .T ,R0, ε > 0 there exists .(σk)k∈K with the following 
property: for every initial condition .ω0 ∈ H with .‖ω0‖H ≤ R0, the 3D Navier– 
Stokes equations with transport noise (and viscosity = 1) has a global unique 
solution on .[0, T ], up to probability . ε.
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The full proof requires too many details, see [126]. Let us mention only one fact. 
The norm .‖ω (t)‖2H can be controlled locally from 

. ∂tω + u · ∇ω − ω · ∇u = �ω,

. 
1

2

d

dt
‖ω (t)‖2H + ‖∇ω (t)‖2

L2 = 〈ω · ∇u, ω〉.

The term .〈ω · ∇u, ω〉 describes the stretching of vorticity . ω produced by the 
deformation tensor . ∇u. This is the potential source of unboundedness of .‖ω (t)‖2H . 

Sobolev and interpolation inequalities: 

. 〈ω · ∇u, ω〉 ≤ ‖ω‖3
L3 ≤ ‖ω‖3

W 1/2,2 ≤ ‖ω‖3/2
L2 ‖ω‖3/2

W 1,2 ≤ ‖ω‖2
W 1,2 + ‖ω‖6

L2

lead to 

. 
d

dt
‖ω (t)‖2H ≤ C‖ω‖6H ,

which provides only a local control. 
However, the interval of existence depends on the viscosity coefficient . ν: 

. ∂tω + u · ∇ω − ω · ∇u = ν�ω

. 
1

2

d

dt
‖ω (t)‖2H + ν‖∇ω (t)‖2H = 〈ω · ∇u, ω〉

≤ ‖ω‖3/2
L2 ‖ω‖3/2

W 1,2

≤ ν‖∇ω (t)‖2H + C

ν3
‖ω‖6H

. 
d

dt
‖ω (t)‖2H ≤ C

ν3
‖ω‖6H .

The explosion is delayed for large . ν. Not only that: beyond a threshold the solution 
is global. 

This is the key for a regularization by noise: transport noise improves dissipation, 
hence it delays blow-up. 

4.5 Summary 

In this chapter and in the previous one we have discussed a second class of noise: 
the one of transport type. There is a third class, variant of the second one, namely 
noise of transport-stretching type in 3D, which is only mentioned but should receive 
due attention.
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Noise of transport type in the equations for auxiliary quantities, like heat, has 
been investigated by several authors. In Chap. 5 we will see that it can be introduced 
as a Wong–Zakai limit, in order to emphasize the presence of a correcting term. In 
the case of heat transport our investigation culminates in the proof of a property of 
eddy dissipation. 

But similar ideas may be applied to the internal structure of the fluid itself 
when we introduce the subdivision in large and small scales. Here the noise is 
used to summarize the dynamics of small scales and affects the closed equation 
for the large scales. This is the motivation for considering stochastic Navier–Stokes 
equations with transport-type noise (and, as mentioned above, also with transport-
stretching noise in 3D). The 2D case starts to be well understood and, in particular, 
similarly to the case of heat transfer, we proved a result of eddy viscosity: turbulence 
enhances the viscosity of the fluid itself. This fact, clearly observed in real situations, 
is perhaps the main confirmation that the heuristic discussion made here about 
stochastic modeling of small scales and consequent transport noise in the large 
ones may have a deep physical meaning, in spite of poor justification at the level 
of continuum mechanics that we can provide at present. 

Moving these ideas to the 3D case but with the limitation of a transport-
type noise, we may show that noise improves the theory of 3D Navier–Stokes 
equations. This was a long-standing project in the case of additive noise, frustrated 
however by several technical difficulties. The case of transport noise proved to be 
more promising. However, for future research, understanding the case of transport-
stretching noise must be considered the most important open problem. 

Let us also add the following very heuristic remark. In these notes we started 
from additive perturbations. The introduction of such noise will be motivated in 
Chap. 5 by the roughness of boundaries. Additive noise, as just mentioned, has not 
been shown to improve so much the theory of 3D Navier–Stokes equations. But 
additive noise in the small scales, as shown in the present chapter, may lead to a 
multiplicative transport noise in the large scales. And transport noise has a better 
regularizing power. In the end it seems, then, that it is the additive noise at small 
scales which regularizes! Presumably the long-standing conjecture that additive 
noise regularizes could be correct but the path to reveal its power is very complex. 
Until now the efforts to prove that additive noise regularizes were based on the 
similarity with the finite-dimensional case, where additive noise is so successful. 
But this is probably too abstract a viewpoint for the Navier–Stokes equations. The 
deep reason of regularization stands inside the links between scales, a fact true for 
fluid dynamics and not for general evolution equations.



Chapter 5 
From Small-Scale Turbulence to Eddy 
Viscosity and Dissipation 

5.1 Introduction: The Global Heuristic Scheme 

The previous chapters have been intentionally restricted to purely mathematical 
results and techniques. However, the choice made above of subjects and their order 
is motivated by certain intuitions, related to turbulence, that we aim to describe in 
this final chapter. For a general and wide introduction to turbulence, see the books 
of A. Chorin [70] and U. Frisch [142]. 

Usually below we refer to the 3D Navier–Stokes equations in vorticity form: 

. ∂tω + u · ∇ω + ω · ∇u = ν�ω + f,

ω|t=0 = ω0,

unless differently specified, because some arguments are closer to our intuition 
when formulated for the vorticity. 

Said in a nutshell, the global heuristic scheme we aim to illustrate here starts 
from the decomposition in large and small space scales introduced in Chap. 4 (see 
Sect. 5.1.1 for a critical discussion of this decomposition) 

. ∂tω + u · ∇ω + ω · ∇u = ν�ω + f ,

∂tω
′ + u · ∇ω′ + ω′ · ∇u = ν�ω′ + f ′,

u = u + u′,

then concentrate the attention on the large scales 

. ∂tω + u · ∇ω + ω · ∇u − ν�ω − f

= −u′ · ∇ω − ω · ∇u′,
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and find a suitable model of the small scales . u′ so that the large scales satisfy a 
closed equation, with small scales acting as a given input. 

In order to construct a model of small scales . u′ we argue that, in certain turbulent 
regimes, it is reasonable to perturb the Navier–Stokes equations by a small-scale 
additive noise (see Sects. 5.2 and 5.5) 

. dω + (u · ∇ω + ω · ∇u − ν�ω) dt = f + d (curlW)
︸ ︷︷ ︸

small scale

,

i.e. .f ′ = d (curlW), so that such noise appears in the small-scale component of the 
previous decomposition 

. dω′ + (

u · ∇ω′ + ω′ · ∇u
)

dt = ν�ω′dt + d (curlW).

It leads (see Sect. 5.3), in a suitable scaling limit based on modeling assumptions 
which include a form of scale separation, to the choice 

. u′ = dW

dt

and thus to the Stratonovich-type equation with transport noise 

. dω + (u · ∇ω + ω · ∇u) dt + dW ◦ ∇ω + ω ◦ ∇dW = (

ν�ω + f
)

dt

for the large scales. 
Finally (see Sect. 5.4), in a further suitable scaling limit, the equation approxi-

mates a deterministic equation with enhanced viscosity 

. ∂tω + u · ∇ω + ω · ∇u = (ν + K)�ω + f .

The full procedure becomes a justification of the well-known claim (Boussinesq 
1877 [43]) that small scale-turbulence acts as an eddy viscosity. 

We shall stress in the next section that the intermediate decomposition step is 
reasonable only locally in time. However, the final model with enhanced viscosity 
is reasonable without time restrictions. 

Our hope is to understand more closely this procedure in order to clarify 
its range of validity and possibly its modifications depending on specific flows. 
See for instance [151, 182, 239] for criticisms about simplistic eddy viscosity 
models, asking for a better understanding of the underlying ideas and therefore the 
subsequent modifications.
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5.1.1 Large and Small Space Scales 

The first heuristic ingredient of the intuition described in Sect. 5.1 is the duality 
between small and large space scales. There are rigorous definitions, see the remark 
below, but they do not fit so well with the heuristic idea we have in mind, hence we 
mention them mostly for comparison. 

Remark 5.1 Let .ω (t, x) be the vorticity field. If, given t , it is a square integrable 
function, we may define (at least) two large-scale projections: 

. πNω (t) =
∑

k∈KN

ωk (t) ek,

�εω (t) = θε ∗ ω(t),

where .(ek) is a complete orthonormal system in the Hilbert space where .ω (t) lives, 
.KN is a set of “first” modes, . θε is a smooth mollifier and . ∗ denotes convolution. 
These projections depend on the choice of N and . ε. 

The large-scale filters described in the Remark are very useful and rigorous. 
However, they do not correspond precisely to our intuition of large-scale vortex 
structures. Anyway, the operator .�ε could be a surrogate, if nothing better is 
available, to single out large vortices. 

Unfortunately, making rigorous the intuition of vortex structures is very difficult. 
However, let us stress that such intuition may be very strong after we had the chance, 
nowadays, to see the results of numerical simulations where these vortex structures 
are clearly visible: in 2D we may observe small vortices merging into larger ones, 
see [41, 218]; and in 3D we have seen large vortex tubes producing small filament 
like vortices by instabilities, see [37, 38, 70, 186, 254]. In nature, vortices are also 
visible many times, see the figures below in this chapter. 

Given an initial condition .ω0 = ω0 (x), we assume  (at least by using  . �ε above) 
that we are able to decompose it into a large-scale component and a small-scale one: 

. ω0 = ω0 + ω′
0.

Similarly, if a force .f = f (t, x) acts on the fluid, we assume we can make an 
analogous splitting: 

. f = f + f ′.

Splitting the data is feasible. The difficulty comes when we want a splitting of 
the solution .ω (t, x). There are two strategies, that we call explicit and implicit. The
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explicit strategy consists in choosing a projection P (like those of the Remark above) 
and defining 

. ω = Pω,

ω′ = ω − ω.

Then the pair .
(

ω,ω′) satisfies a coupled system of equations (of course if one 
does this, it is natural to define the splitting of . ω0 and f above using P itself). 
The advantage of this approach is that we are sure, by definition, that .

(

ω,ω′) is a 
splitting in large and small scales. The drawback is that the coupled system may be 
complicated. For instance, using as P the convolution . �ε with a smooth mollifier, 
we get for . ω the equation 

. ∂tω + u · ∇ω + ω · ∇u = ν�ω + f + R,

where the reminder R is given by 

. R = u · ∇ω + ω · ∇u − �ε (u · ∇ω + ω · ∇u).

The analysis or simplification by modeling of this remainder is quite difficult. 
When .u, ω are averages, R corresponds to the Reynold stress term in the vorticity 
formulation, whose modeling was widely investigated, but it remains a subject of 
great debate, with features depending on specific flows. 

The implicit strategy consists in the study of the system 

. ∂tω + u · ∇ω + ω · ∇u = ν�ω + f ,

∂tω
′ + u · ∇ω′ + ω′ · ∇u = ν�ω′ + f ′,

with initial conditions 

. ω|t=0 = ω0, ω′|t=0 = ω′
0,

where u is the result of the Biot–Savart law on the full vorticity .ω = ω + ω′, hence 
also decomposable in two parts 

. u = u + u′.

If a pair .
(

ω,ω′) is a solution to this system (e.g. in distributional sense), then . ω =
ω + ω′ is a solution (in distributional sense) of the full equation. The system for 
.
(

ω,ω′) contains all information to solve the true Navier–Stokes equations. This 
was the approach that led us to the Navier–Stokes equations with transport noise 
described in Chap. 4. Let us discuss the pros and cons of this approach. 

In this approach the choice of the splitting of . ω0 and f is free and may better 
correspond to our intuition of large and small vortex structures. This is an advantage,
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together with the most important one that the system of equations is relatively easy 
compared to those obtained by the explicit strategy described above. Indeed, the 
equation for large scales reads 

. ∂tω + u · ∇ω + ω · ∇u − ν�ω − f

= −u′ · ∇ω − ω · ∇u′.

It opens the door to choose a priori a model of small scales . u′, e.g. a suitable  
stochastic process, and get a closed equation for large scales (it is related to what 
we do below, in a sense, although we try to be as strictly as possible in the choice of 
. u′). 

The drawback is that the two components of the solution .
(

ω,ω′) may lose the  
property of representing only large and small scales, as time goes on. Initially, they 
are a correct large- and small-scale decomposition, by definition of the splitting 
.ω0 = ω0 + ω′

0. But for how long should we expect that .
(

ω,ω′) is a reasonable 
decomposition in large and small structures? 

Let us briefly discuss this extremely difficult and open issue, distinguishing 2D 
from 3D. As we have remarked above, we all know that in 2D small vortex structures 
merge into larger ones (inverse cascade), see for example [41, 109]. Choose an initial 
condition of the form .ω0 = ω′

0, made only of small scales and assume for simplicity 
.f = 0. The solution for the system (which can be proved to be unique) is simply 
.
(

0, ω′), namely . ω′ is the full vorticity field. But we know it develops large scales 
by inverse cascade, hence it is not a small-scale field anymore, after a relatively 
short time. And the large scales which are created do not appear in the “large-scale 
component” . ω, which remains equal to zero. How could we modify the equations 
in such a way that large-scale structures created by inverse cascade are shifted from 
the . ω′ to the . ω component? At present we do not know. 

In terms of energy and enstrophy, it is commonly accepted that, in 2D, energy 
moves from small to large scales and enstrophy from large to small, see the 
outstanding work of Kraichnan [188] or the more recent reviews [41, 245]. For the 
equations in vorticity form, 

. ∂tω + u · ∇ω = ν�ω + f ,

∂tω
′ + u · ∇ω′ = ν�ω′ + f ′,

here rewritten in 2D without the stretching terms .ω · ∇u and .ω′ · ∇u, it is not easy 
to see the flux of energy. But enstrophy is certainly preserved by both terms . u · ∇ω

and .u · ∇ω′, hence no flux of enstrophy is accepted by this implicit decomposition. 
This is certainly another drawback of the method. 

In 3D, small scales are produced by instabilities of large ones (direct cascade). 
We could reverse the arguments above and identify drawbacks of the implicit 
decomposition, symmetric with respect to those in 2D. If it is already an open 
problem to detect correcting terms in 2D or 3D separately, we cannot even be 
hopeful of finding a general decomposition model which works well in both cases.
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Keeping these objections in mind, we develop some of our heuristic arguments 
below under the hope that for a relatively short time interval .t ∈ [0, T ] the 
decomposition .ω = ω + ω′ provided by the above system is not bad. We hope 
that future research may improve this approximation. 

Remark 5.2 The theory developed by Darryl Holm, Dan Crisan, Mémin and 
collaborators in a series of works (see for instance [67, 81, 171, 177, 213]) starts 
from different viewpoints and cannot be easily compared to the approach described 
here, but it has some similarities, for instance in the structure of the noise. The point 
we want to stress here is that, in order to stay close to data, the stochastic modeling 
of that approach is applied locally in time, on short time intervals, with a suitable 
restarting procedure at every step. This reminds us of the constraint mentioned above 
of locality in time of the implicit decomposition. 

5.2 Small-Scale Turbulence and Additive Noise 

Assume the fluid is turbulent. This is not a unique and well-defined concept. 
For instance, think of a fast fluid along a solid boundary, developing a turbulent 
boundary layer, or a shear flow developing a turbulent region by instability. Large-
scale motion and structures, specific to the geometry of the flow, coexist with 
small-scale ones, maybe more universal. For instance, in the case of the turbulent 
boundary layer, we observe a mean flow and possibly other large-scale elements like 
large scale-vortex structures, superimposed on an extremely complex small-scale 
motion made of small hairpin vortices arising at the boundary, others apparently 
detaching from the boundary and traveling in the interior, others arising from 
the previous ones by further instabilities and so on. The small-scale turbulence 
mentioned in the title of this section refers to this complex motion. See for instance 
[172] for a review on the complexity of the so-called turbulence coherent structures. 
In [172], the authors describe some possible mechanisms behind turbulent boundary 
layer flow and their mechanism of generation. From a mathematical viewpoint, a 
not completely exhaustive view, is that, under suitable assumptions, the solution of 
the Navier–Stokes equations with no-slip boundary conditions can be split in two 
parts: a regular part far from the boundary of the domain which is the solution 
of the Euler equations and a rougher part in the boundary layer of the domain 
which is the solution of the so-called Prandtl equations. Without entering into the 
details of the assumptions about the validity of previous result and the meaning 
of the Prandtl equations, which are out of the heuristic scope of this chapter, let 
us simply point out that, so far, the validity of this decomposition under the natural 
assumptions of Theorem 1.2 is an open problem. It would have a deep impact on our 
knowledge about turbulence, because it would imply that some conjectures raised 
by Kolmogorov in the last century on the behavior of a turbulent fluid for . ν ∼ 0
were false. We refer to [16] for a recent review on this topic.
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Recall the decomposition in large and small scales of the previous section and the 
desire to have an a priori model of small scales. We concentrate on the case when 
small scales are turbulent. A key part of our heuristic proposal outlined in Sect. 5.1 
is the claim that some turbulent regimes can be described by a stochastic equation 
of the form 

. dω + (

u · ∇ω + ω · ∇u − ν�ω − f
)

dt = d (curlW),

ω|t=0 = ω0,

with a space-dependent Brownian motion 

. W = W (t, x)

mostly made of small-scale structures. In Sect. 5.5 below we add details to this 
proposal in the particular case of vortices created at boundaries by small obstacles. 

Having in mind the large-small-scale decomposition, we move immediately to 
the system 

. ∂tω + u · ∇ω + ω · ∇u = ν�ω + f

dω′ + (

u · ∇ω′ + ω′ · ∇u − ν�ω′) dt = d (curlW)

which is equivalent to the previous one. 
The next step of the story is, unfortunately, some kind of simplification of the 

second equation of the previous system. The most extreme simplification would be 

. dω′ = −ε−1ω′dt + ε−1d (curlW).

In several papers, see [7, 95, 133–135], has been investigated the possibility to relax 
this extreme simplification in the direction of the true equation 

. dω′ + (

u · ∇ω′ + ω′ · ∇u − ν�ω′) dt = d (curlW),

but a full solution is still obscure. One of the most critical aspects of the simplifi-
cation is justifying the addition of the term .−ε−1ω′dt , while several developments 
have been made to remove the deletion of other terms. One vague argument in favour 
of .−ε−1ω′dt is that, . ω′ being made of small scales, there is a vague correspondence 
between .ν�ω′ and .−ε−1ω′ (think of the Fourier representation of .�ω′). Another 
vague argument is that, when we have inserted the small-scale force . d (curlW)

already a few lines before the simplification, we have arbitrarily introduced energy 
into the system (one can prove this) and thus we have to compensate it by some 
dissipation and .−ε−1ω′dt looks like a candidate, although very phenomenological.
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Clearly, the issues just discussed require more investigation. For the time being, 
let us accept the proposal that the following system: 

. ∂tω + u · ∇ω + ω · ∇u = ν�ω + f

dω′ = −ε−1ω′dt + ε−1d (curlW),

u = u + u′,

is a very simplified model of small-scale turbulence coupled with large-scale motion 
(we could add some terms to the second equation but we stay at this level for 
simplicity of exposition). 

5.3 Action of Small-Scale Turbulence on Large-Scales: 
Transport Noise Under Scale Separation 

The first equation of the previous system, the equation for the large scales, reads 

. ∂tω + u · ∇ω + ω · ∇u

+ u′ · ∇ω + ω · ∇u′

= ν�ω + f .

When . ε is very small, more precisely in the limit as .ε → 0, it can be proved, see 
[7, 95, 133–135], that . ω solves the stochastic equation 

. dω + (u · ∇ω + ω · ∇u) dt

+ dW ◦ ∇ω + ω ◦ ∇dW

= (

ν�ω + f
)

dt.

The Stratonovich operation . ◦ in the stochastic terms naturally arises in accordance 
with the general Wong–Zakai principle. Since it is a key ingredient of the next 
approximation, the one leading to eddy viscosity, we give a heuristic presentation in 
Sect. 5.6 below. 

The proofs of the result above are not trivial but the intuition is clear: when . ε−1

is very large, the balance of terms in the equation 

. dω′ = −ε−1ω′dt + ε−1d (curlW)

leads to the approximation 

.ω′dt ∼ d (curlW),
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which means (assuming W divergence free) 

. u′ ∼ dW

dt
.

Taking . ε very small corresponds to an assumption of time-scale separation. The  
splitting .ω = ω + ω′ until now was relatively generic, except for the simplifications 
then made in the equation of . ω′. But now, assuming that . ε is very small, we assume 
that parameters in the equation of small scales are extremized compared to those of 
the equation for . ω. Analogously to the problems of averaging with two time scales, 
a very large parameter .ε−1 in the second equation means that the typical time over 
which . ω′ varies is much shorter than the one over which . ω varies. This time-scale 
separation is an assumption, we do not have justifications. 

The time-scale separation heuristically corresponds to a space-scale separation. 
If the typical velocities observed into a fluid flow are of order U , vortex structures 
with average velocity of rotation U have a ratio of space and time scales (radius 
of the vortex times . 2π over period of revolution) of order U . Hence smaller space 
scales, those of . ω′, correspond to smaller time scales, hence the assumption of small 
. ε is in the right direction. But very small . ε means very small space scales too, hence 
we need to assume that the fluid is composed of large vortex structures plus very 
small ones. 

Proving scale separation or proving that existing intermediate scales do not spoil 
the arguments remain open problems. 

5.4 Eddy Viscosity and Eddy Diffusion 

Since the nineteenth century, scientists like Boussinesq started recognizing that 
turbulence may be responsible for an increase of viscosity and diffusion: for 
instance, if the fluid traveling through a pipe is turbulent, it slows down and 
exchanges more heat through the boundary. This idea is also at the foundation of 
Large Eddy Simulation (LES) theory. 

Finding mathematical proofs of this fact is always a challenging question; see 
[27, 239] for a review. There are rigorous theories that investigate the problem but 
it is relevant to find new ideas, also because the precise regimes under which these 
facts are true and the precise form of the extra-viscous or dissipative terms is not 
always known (think to the variety of models in LES theory including Smagorinsky 
one [28, 29]). 

The ideas developed above plus the results of Chaps. 3 and 4 are an attempt to 
provide a new justification. The way turbulence is inserted into the equations is by 
the term .d (curlW), or more precisely by the equation 

.dω′ = −ε−1ω′dt + ε−1d (curlW)
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or its modifications, which should incorporate realistic features of the region 
affected by small-scale turbulence. Given that model, under the assumption of scale 
separation we deduce a stochastic model of large scales . ω affected by transport-
type noise. When the noise has the features described in Chaps. 3 and 4 we deduce 
deterministic equations, precisely for passive quantities in Chap. 3, hence subject 
to an eddy dissipation, and for the fluid field . ω itself in Chap. 4, hence subject to 
an eddy viscosity. We hope to develop this topic further in order to contribute to a 
better understanding of different dissipative terms corresponding to different fluid 
regimes. Indeed in LES theory, the additional dissipative term is not linear, thus it 
cannot be modeled via the transport noise described in Chaps. 3 and 4. 

The ultimate conjecture arising from such arguments is that turbulence could 
even produce a depletion of emerging singularities, thanks to its eddy viscosity 
effect; however, the 3D structure of this question remains poorly understood. 

5.5 More on Additive Noise at Small Scales: Vortex 
Production at Boundaries 

This section is a complement to Sect. 5.2: we try to explain in more detail, still quite 
heuristically, how additive noise may arise in turbulent fluids. 

5.5.1 Generation of Vortices Near Obstacles 

Vortices are produced by instability even on a flat boundary. This fact, however, is 
already incorporated in a mathematical model based on deterministic Navier–Stokes 
equations in a domain with smooth boundary; thus it does not require the artificial 
introduction of a noise. 

Different is the case of vortices produced by irregularities of the boundary or 
by several small or complicated obstacles in the middle of the fluid domain. In 
principle, if we describe precisely such irregularities in the mathematical model, 
then the deterministic model should be sufficient. But this is never done in practice, 
the irregularities being too detailed for a mathematical description. However, some 
attempts in this direction can be found in [17, 63]. It is here that it is meaningful 
to introduce noise: as a phenomenological replacement of a realistic element which 
is discarded by the deterministic part of the mathematical model. In the case of 
irregularities of a boundary this is important, since the consequences in the fluid 
motion of such irregularities are relevant, visible, macroscopic. 

The precise physical description of the generation of vortices is a difficult topic 
in itself. Here we take a phenomenological viewpoint: emergence of vortices near 
obstacles is commonly observed and we content ourselves with an ad hoc inclusion 
of this fact into the equations. Deep research is mandatory on this issue.
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Fig. 5.1 Cloud vortices off Madeira and Canary Islands. Images by the MODIS Rapid Response 
team, NASA 

Fig. 5.2 Ice floes, Kamchatka Coast, Russia. Image courtesy of the Earth Science and Remote 
Sensing Unit, NASA Johnson Space Center, eol.jsc.nasa.gov. NASA photo ID: ISS030-E-162344 

Assume that the velocity field at time t is .u (t, x). Assume that, as a consequence 
of an obstacle in the domain (Fig. 5.11 ) or at the boundary (Figs. 5.22 and 5.33 ), a 
modification occurs and in a very short time we have a field .u (t + �t, x) which is 
not just equal to the smooth evolution of .u (t, x). We may idealize and think that at

1 https://visibleearth.nasa.gov/images/117121/cloud-vortices-off-madeira-and-canary-islands. 
2 https://eol.jsc.nasa.gov/SearchPhotos/photo.pl?mission=ISS030&roll=E&frame=162344. 
3 https://visibleearth.nasa.gov/images/148350/lake-erie-astir/148350f. 
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Fig. 5.3 Lake Erie Astir. NASA Earth Observatory images by Joshua Stevens 

time t we had a jump: 

. u
(

t+, x
) = u

(

t−, x
) + σ (x),

where .σ (x) is presumably localized in space and corresponds to a vortex structure. 
Continuum mechanics does not make jumps; we idealize a fast change due to an 
instability as a jump, for a cleaner mathematical description. 

We emphasize that vortices produced by irregularities (as well as by instabilities) 
appear as discrete events. Figures 5.1, 5.2 and 5.3 show wonderful instances visible 
in nature thanks to special events (otherwise, usually, vortices are not visible), like 
the perturbation of clouds due to the presence of an island and the freezing of water 
into ice structures of vortex type. Those of Fig. 5.1 are an example of von Karman 
vortices and are produced with a rather deterministic time interval, opposite to the 
randomized description below but the scaling limit results described in the sequel 
would hold also in such a case. Figures 5.1, 5.2 and 5.3 have the merit of showing 
very isolated and clearly visible vortices. In general, the complexity of a rough 
boundary profile produces a more disordered pattern of vortices, as schematically 
represented in Fig. 5.4. A wonderful example in nature is shown in Fig. 5.5:4 thanks 
to the different colouring due to phytoplankton, we may appreciate the complexity 
of vortical structures close to a rough boundary.

4 https://visibleearth.nasa.gov/images/65000/phytoplankton-bloom-off-argentina. 
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Fig. 5.4 Schematic representation of several vortices produced by a complex family of boundary 
obstacles. Picture by Claudia Flandoli 

Fig. 5.5 Phytoplankton bloom off Argentina. Jacques Descloitres, MODIS Rapid Response Team, 
NASA/GSFC 

Assume that, due to several obstacles in the boundary at certain locations . xk , 
.k ∈ K , we may observe jumps of the form 

.u
(

t+, x
) = u

(

t−, x
) + σk (x) , (5.1) 

where .σk (x) is a perturbation around . xk . We assume that K is finite, but one can 
generalize, see [124].
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The way to incorporate these jumps into the Navier–Stokes equations is by means 
of an impulsive force: 

. ∂tu + u · ∇u + ∇p = ν�u +
∑

k∈K

∑

i

δ
(

t − tki

)

σk.

Here, for each .k ∈ K , we denote by .tk1 < tk2 < ... the sequence of jump times 
of class k. This way the fluid moves according to the free Navier–Stokes equations 
between two consecutive jumps times (reorder the full family . 

{

tki ; k ∈ K, i ∈ N
}

and consider two consecutive elements); and fulfils (5.1) at the jump times, with the 
correct .k ∈ K . The previous one enters the framework of fluid mechanics SPDEs 
with kick force, see for instance [42, 72, 193]. 

We may assume that the jump times are random or deterministic (for the latter 
case, think of Karman vortices past an obstacle, as in one of the pictures above). For 
some later purposes it is the same, for others it is mathematically more convenient 
to assume them random, thus we do so. We assume that .tki+1 − tki has exponential 

distribution with mean time . τ k , .P
(

tki+1 − tki > s
) = e−s/τ k

, and that all these 
random time intervals are independent. We may equivalently describe this by means 

of a family .
{

(

Nk
t

)

t≥0 ; k ∈ K
}

of independent standard (rate 1) Poisson processes, 

rescale their times as .Nk
t/τk and define .tk1 < tk2 < ... as the random times when the 

Poisson process .Nk
t/τk jumps (at time . tk1 it jumps from 0 to 1, at time . tk2 from 1 to 2 

and so on). We have 

. 
∑

k∈K

∑

i

δ
(

t − tki

)

σk =
∑

k∈K

σk

dNk
t/τk

dt
,

where the time derivative of the jump process .Nk
t/τk is understood in the sense of 

distributions. 
It is then clear that we introduce the function 

. W (t, x) =
∑

k∈K

σk (x) Nk
t/τk =

∑

k∈K

∑

i∈N:tki ≤t

σk (x)

and write the equation in the form 

.∂tu + u · ∇u + ∇p = ν�u + ∂tW. (5.2) 

This arises the mathematical question: can we study an equation of this form when 
.W (t) is not differentiable in a classical sense?
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The Brownian Limit 

In many examples the vortices appear in opposite pairs 

. ± σ (x)

as in the wake after an obstacle of Fig. 5.1 above. At a boundary, usually the primary 
vortices always have the same sign but secondary vortices are often in pairs. With a 
large degree of idealization (this issue certainly requires more investigation) let us 
assume that each vortex . σk appears in pairs by means of two independent Poisson 
processes .N

k,1
t/τ k , N

k,2
t/τ k with the same rate: 

. 
1√
2

⎛

⎝σk (x)
dN

k,1
t/τ k

dt
− σk (x)

dN
k,2
t/τ k

dt

⎞

⎠.

The factor . 1√
2
is just to normalize and maintain the notation . τ k for the mean time 

between consecutive generations, now understanding the generations of .±σk as a 
single process. The full process .W (t, x) thus has the form 

.W (t, x) =
∑

k∈K

1√
2
σk (x)

(

N
k,1
t/τ k − N

k,2
t/τ k

)

. (5.3) 

Let us parametrize by n the jump times and the vortex intensities, as: 

. Wn (t, x) =
∑

k∈K

1

n
σk (x)

N
k,1
n2t/τ k − N

k,2
n2t/τ k√

2
.

The heuristics is that we make many more jumps but of smaller size. The precise 
rescaling has been chosen in order to have a non-zero finite limit. Indeed, the average 
of .Wn (t, x) is zero and the variance is equal to 

. E

[

|Wn (t, x)|2
]

= t
∑

k∈K

|σk (x)|2
τ k

,

which is finite and non-zero in the limit when .n → ∞. Let us check the previous 

result: since .E
[

N
k,j

n2t/τ k

]

= n2t
τ k , .V ar

[

N
k,j

n2t/τ k

]

= n2t
τ k , and .N

k,1
n2t/τ k , N

k,2
n2t/τ k are
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independent, 

. E

⎡

⎣|1
n
σk (x)

N
k,1
n2t/τ k − N

k,2
n2t/τ k√

2
|2

⎤

⎦

= 1

2n2
|σk (x)|2E

[

|Nk,1
n2t/τ k − n2t

τ k
− N

k,2
n2t/τ k + n2t

τ k
|2

]

= 1

2n2
|σk (x)|22V ar

[

N
k,j

n2t/τ k

]

= t
|σk (x)|2

τ k

and then a similar argument applies to the sum in k. 
The Donsker invariance principle (see [39]) claims that, as .n → ∞, 

. 
1

n

(

Nn2t − n2t
)

→ Wt (Brownian motion)

the convergence being in law and uniform on compact sets. A multidimensional 
version of the Donsker theorem similarly gives us that the stochastic process 
.Wn (t, x) converges in law to 

. W (t, x) :=
∑

k∈K

1√
τ k

σk (x) Wk
t ,

where .
(

Wk
t

)

t≥0 are independent Brownian motions. The corresponding Navier– 
Stokes equations, in the usual language of stochastic differential equations, have 
the form 

. du + (u · ∇u + ∇p) dt = ν�udt +
∑

k∈K

1√
τ k

σkdWk
t .

Summarizing, we have at least two examples in mind of non-differentiable 
functions .W (t) which motivate the study of Eq. (5.2), non-classical because of 
the distributional time derivative: the case when .W (t) is a piecewise constant 
function, and the case when it is the trajectory of a process, a linear combination 
of Brownian motions. Recall that, with probability one, a trajectory of Brownian 
motion is nowhere differentiable, not of bounded variation, not Hölder of exponent 
.α ≥ 1

2 on any interval, but it is locally Hölder of any exponent .α < 1
2 . The analysis 

described in this section motivates the interest in studying Navier–Stokes equations 
with rough force as we have done in Chaps. 1 and 2. Some ideas described here are 
related to [161].
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5.5.2 Scaling the Previous Example 

Consider the previous system before introducing the scaling parameter n, namely 
Eq. (5.2) with the forcing .W (t, x) given by (5.3). Let us observe this system at a 
new space-time scale (if it may be of interest: think of observing changes minute by 
minute, when the vortex generation happens every few seconds). Assume . D = R

2

and the positions where the vortices are created correspond to a cluster of islands in 
the ocean. Let 

. uλ (t, x) := λαu
(

λβt, λx
)

.

Then 

. ∂tuλ (t, x) = λα+β (∂tu)
(

λβt, λx
)

,

�uλ (t, x) = λα+2 (�u)
(

λβt, λx
)

,

uλ (t, x) · ∇uλ (t, x) = λ2α+1 (u · ∇u)
(

λβt, λx
)

,

hence we have to choose .β = 2 and .α = 1 to have the same multiplier, that is . λ3, 
and we get 

. ∂tuλ + uλ · ∇uλ + ∇pλ = ν�uλ + λ3 (∂tW)
(

λ2t, λx
)

div uλ = 0.

But 

. λ3 (∂tW)
(

λ2t, λx
)

= ∂tWλ (t, x),

where 

. Wλ (t, x) := λW
(

λ2t, λx
)

=
∑

k∈K

1

λ
√
2
σλ

k (x)
(

N
k,1
λ2t/τ k − N

k,2
λ2t/τ k

)

,

where 

. σλ
k (x) = λ2σk (λx).

Assume . λ is large, like the parameter n of the previous section. In the rescaled unit 
of time, we make very many jumps, of larger size; but also much more concentrated, 
since .σλ

k (x) is rescaled as classical mollifiers.
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Let us observe this force by a test function . φ (just to avoid that the pointwise 
observation may suffer some regularity issue) 

. 〈Wλ (t) , φ〉 =
∑

k∈K

1

λ
√
2

(

N
k,1
λ2t/τ k − N

k,2
λ2t/τ k

)
∫

R2
σλ

k (x) φ (x) dx.

We have zero mean and (as above) 

. E

[

〈Wλ (t) , φ〉2
]

=
∑

k∈K

1

2λ2
2
λ2t

τ k

(∫

R2
σλ

k (x) φ (x) dx

)2

=
∑

k∈K

t

τ k

(∫

R2
σλ

k (x) φ (x) dx

)2

.

We get 

. 

∫

R2
σλ

k (x) φ (x) dx
y=λx=

∫

R2
σk (y) φ

(y

λ

)

dy → φ (0)
∫

R2
σk (y) dy.

So again we see that we have a finite non-zero limit. 
What may we conclude? It is difficult to get a rich conclusion, because . σλ

k (x)

converge to a vector-valued space-distribution . �k (a so-called current), the one such 
that 

. �k (φ) = φ (0)
∫

R2
σk (y) dy.

Thus the limit process is 

. W (t, x) :=
∑

k∈K

1√
τ k

�kW
k
t ,

which is distributional in space, not only non-differentiable in time. Investigating 
this problem seems to be a challenging mathematical task. 

There is a variant which should be mentioned: if we suspend the requirement that 
. σk is localized and ask that the created structures are point vortices, then 

.σk (x) = 1

π

(x − x0)
⊥

|x − x0|2
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and .σλ
k (x) = σk (x)! In this case the limit process is a vector field in space (not a 

distribution), but with infinite energy: 

. 

∫

R2
|σk (x)|2dx = +∞.

See [124] for results on a related model. 

5.5.3 Example of State-Dependent Noise 

The examples of noise presented in Sect. 5.5.1 allow us to deal with the Stochastic 
Navier–Stokes equations as if they were deterministic: given a single noise realiza-
tion, we solve the equation. This was the approach we developed in Chap. 1, useful  
in relatively few cases. Indeed, the case treated in Chap. 1 had the special feature 
that the random input was independent of the solution. But in real situations, as in 
Fig. 5.6, the noise may vary depending on the solution. 

Mathematically speaking, in Chap. 1 the noise, motivated by the discussion 
presented in Sect. 5.5.1, entered the equation as an additive force; this was the key 
property which allowed us to study the linear Stokes problem first, independently of 
the solution of the nonlinear one. There are other cases (different from the additive 
case) which can be treated by similar ideas, but few. 

From the discussion above, we can understand that the noise introduced in 
Chap. 1 has the following interpretation: vortices emerge at a boundary due to 
obstacles and roughness. However, this interpretation neglects some facts. Indeed, 
when the fluid is at rest, certainly no vortex is created; similarly, we do not expect 
frequent creations if the velocity of the flow is very small. The rate of creation of 
vortices hence should depend on some feature of the flow itself. This doesn’t mean 

Fig. 5.6 The average wind speed influences the rate of production of vortices past an obstacle
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that the model of Chap. 1 is useless: it is reasonable when the mean flow is roughly 
constant, and the rates . τ k should be taken appropriately with respect to the constant 
mean flow value. 

When the state .u (t, ·) affects the rate of creation, we may use the concept of 
non-homogeneous Poisson process with random time-dependent rate: we introduce 
(corresponding to each k) an instantaneous rate .λk (u (t)) depending on an average 
intensity of .u (t, ·), e.g.  

. λk (u (t)) = χ2
(

1

|B (xk, r)|
∫

B(xk,r)

|u (t, y)|dy

)

,

where . χ2 is a nondecreasing non-negative function, equal to zero in zero and . r > 0
is a length scale relevant to the problem. Then we introduce the cumulative rate 

. �k (t) =
∫ t

0
λk (u (s)) ds

and finally we modify the Poisson process . Nk
t by this rate, namely we consider the 

process 

. Nk
�k(t)

.

The case previously considered was simply 

. λk (u (t)) = λk, �k (t) = λkt, Nk
λkt

.

The jump times of the noise in the equation will be the jump times of this processes, 
which are delayed or accelerated depending on the average intensity of .u (t): 

.∂tu + u · ∇u + ∇p = ν�u + f + F (u) +
∑

k∈K

σk∂tN
k
�k(t)

(5.4) 

or 

.∂tu+u ·∇u+∇p = ν�u+f +F (u)+
∑

k∈K

1√
2
σk∂t

(

N
k,1
�k(t)

− N
k,2
�k(t)

)

(5.5) 

depending whether we assume that both vortices .σk (x) and .−σk (x) appear and are 
equally likely. 

This is already a very interesting model which could deserve investigation. 
Otherwise, in the case of (5.5), we may rescale the noise as 

.

∑

k∈K

1

n
√
2
σk (x)

(

N
k,1
n2�k(t)

− N
k,2
n2�k(t)

)

. (5.6)
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Notice that, in order to increase the rate at time t , we have to use the instantaneous 
rate .n2λk (t), whence the expression .n2�k (t) (instead of .�k

(

n2t
)

which has a 
completely different and wrong meaning). 

Recalling the convergence of rescaled Poisson processes to Brownian motion 
discussed in Sect. 5.5.1, it can be proved that the limit process of (5.6), in law, is 

. 
∑

k∈K

σk (x) Bk
�k(t)

,

where . Bk
t are independent Brownian motions. Then, by a deep theorem on martin-

gales (e.g. [183]), there exists (possibly on a larger probability space) independent 
Brownian motions . Wk

t such that, in law 

. Bk
�k(t)

=
∫ t

0

√

λk (u (s))dWk
s

(jointly in k). This result is undoubtedly advanced and not trivial even at the heuristic 
level, but notice at least the analogy with the coefficients .

√
λk in the case of constant 

rate: when .λk (u (s)) = λk , .�k (t) = λkt , the previous identity reads 

. Bk
λkt

=
∫ t

0

√

λkdWk
s = √

λkW
k
t

and it is well-known that .λ−1/2
k Bk

λkt
is a new Brownian motion. 

The final equation is 

. ∂tu + u · ∇u + ∇p = ν�u + f + F (u) +
∑

k∈K

σk

√

λk (u)∂tW
k
t .

We write it in the form 

.∂tu + u · ∇u + ∇p = ν�u + f + F (u) +
∑

k∈K

σk (u) ∂tW
k
t (5.7) 

by introducing the maps .σk : H → H given by 

. σk (u) (x) = σk (x)
√

λk (u).

This is exactly the equation treated in Chap. 2.
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5.6 The Wong–Zakai Corrector and Stratonovich Integrals 

In more than one place in these notes we invoke the Wong–Zakai principle and write 
the final equations in the Stratonovich form, or Itô form plus the corrector which 
plays a very key role in Chaps. 3 and 4. Without any aim to prove results here, for 
which we address specialized literature like [249, 251, 257], let us illustrate some of 
the ideas. 

5.6.1 A One-Dimensional Example 

Equations (5.4)–(5.5) are mathematically correct (whether they are physically 
relevant should be investigated more deeply). On the contrary, Eq. (5.7) requires 
a special choice of .F (u) to be the right one: 

. F (u) = 1

2

∑

k∈K

Dσk (u) σk(u).

Here by .Dσk (u) we mean the Frechét Jacobian of .σk (u), which is a linear bounded 
operator from H to H , under suitable assumptions, and .Dσk (u) σk (u) is the 
application of the linear map .Dσk (u) to the element .σk (u) of H . Results of Wong– 
Zakai type for fluid dynamic equations have been proved, see [175, 176]. They are 
very technical and based on methods different from those described here. Hence we 
limit ourselves to explaining the emergence of the term .Dσk (u) σk (u) in the simple 
case of a one-dimensional ordinary differential equation [257]. 

Consider the one-dimensional equation, with .σ (x) ≥ ν > 0, 

. 
dXε

t

dt
= σ

(

Xε
t

) dWε
t

dt
,

where .Wε
t is an approximation of a Brownian motion . Wt . It is an equation with 

separated variables. Then 

. 

dXε
t

dt

σ
(

Xε
t

) = dWε
t

dt
,

. 

∫ T

0

dXε
t

dt

σ
(

Xε
t

)dt =
∫ T

0

dWε
t

dt
dt,

. �
(

Xε
T

) − �(x0) = Wε
T , �′ (x) = 1

σ (x)
,

.Xε
t = �−1 (

�(x0) + Wε
t

)

.
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Hence . Xε· converges weakly to . X· given by 

. Xt = �−1 (� (x0) + Wt).

From the Itô formula, since 

. D�−1 (x) = 1

�′ (

�−1 (x)
) = σ

(

�−1 (x)
)

,

D2�−1 (x) = D
[

σ
(

�−1 (x)
)]

= σ ′ (

�−1 (x)
)

D�−1 (x)

= σ ′ (

�−1 (x)
)

σ
(

�−1 (x)
)

,

. dXt = σ
(

�−1 (� (x0) + Wt)
)

dWt

+ 1

2
σ ′ (

�−1 (� (x0) + Wt)
)

σ
(

�−1 (� (x0) + Wt)
)

dt

= σ (Xt ) dWt + 1

2
σ ′ (Xt ) σ (Xt ) dt.

We have found the corrector above. 
Our conclusion, supported by the previous heuristic evidence, is that the right 

formulation of Eq. (5.7) is the stochastic equation 

. ∂tu + u · ∇u + ∇p = ν�u + f + 1

2

∑

k∈K

Dσk (u) σk (u) +
∑

k∈K

σk (u) ∂tW
k
t .

Remark 5.3 Using the notion of Stratonovich stochastic integral, different from the 
Itô one, denoted by .

∫ t

0 σk (u (s)) ◦ dWk
s , one can write the equation in the more 

natural form 

. ∂tu + u · ∇u + ∇p = ν�u + f +
∑

k∈K

σk (u) ◦ ∂tW
k
t

because 

. 

∫ t

0
σk (u (s)) ◦ dWk

s =
∫ t

0
σk (u (s)) dWk

s + 1

2

∫ t

0
Dσk (u (s)) σk (u (s)) ds

when u solves the equation above. Manipulations (the chain rule) with the 
Stratonovich formulation are similar to classical calculus, but taking expected 
values is not suitable, the fundamental cancellations of Itô integrals are hidden. 
Therefore it is very important to know the Itô formulation.
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5.6.2 The Case of the Heat Equation 

Key to the facts described in Chaps. 3 and 4, see in particular Sect. 3.1, is the  
emergence of the additional operator . L, which is a specific consequence of 
Stratonovich formulation; we feel we need to justify it heuristically, at least for the 
exogenous case. Researchers used to stochastic calculus have a tendency to accept 
a priori the Stratonovich formulation (it is a correct attitude!) and thus accept the 
presence of . L as an obvious fact. But looking at the problem with the eyes of a 
more general scientist, the presence of the additional operator . L is a revolution that 
requires an explanation. 

The rigorous literature on Wong–Zakai-type results for SPDEs is wide, see for 
instance [50, 51, 59, 135, 166, 167, 249, 251]. For the purpose of this heuristic 
explanation, let us consider the heat transport equation 

.∂t θ
ε + uε · ∇θε = κ�θε + q, (5.8) 

where 

. uε (t) = 1

ε

∑

k∈K

∫ t

0
e− 1

ε (t−s)σkdWk
s .

This is a simplified model with respect to the one of Sect. 3.1 (we drop the Stokes 
operator A, taking .u0 = 0 is only to simplify notations). 

Theorem 5.4 If .σk ∈ D (A), .φ ∈ C∞ (D), 

. θε |t=0 = θ0 ∈ L∞ (D),

then the weak solution . θε of Eq. (5.8) with initial condition . θ0 satisfies for every 
. t ≥ 0

. lim
ε→0

〈

θε (t) , φ
〉 = 〈θ (t) , φ〉

in probability, where .θ (t) is the unique weak solution of equation 

.dθ +
∑

k∈K

σk · ∇θdWk = (κ�θ + Lθ + q) dt (5.9) 

with 

. (Lθ) (x) = 1

2

∑

k∈K

σk (x) · ∇ (σk (x) · ∇θ (x)).
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The unique solvability of Eq. (5.9) has been proved in Chap. 3. The unique 
solvability of Eq. (5.8) is classical, along with estimates of the form 

. ‖θε (t)‖2
L2 + 2κ

∫ t

0
‖∇θε (s)‖2

L2ds = ‖θ0‖2L2

.‖θε (t)‖∞ ≤ ‖θ0‖∞. (5.10) 

Let us give only the idea of proof of Theorem 5.4, subset of the results of [223]. 
Recall that, with the notations 

. Wε (t, x) =
∫ t

0
uε (s, x) ds,

W (t, x) =
∑

k∈K

σk (x) Wk
t

in Chap. 3 we have proved that 

. lim
ε→0

E

[

‖Wε (t) − W (t)‖2H
]

= 0.

Let us introduce also some additional notations: 

. ξ
k,ε
t = 1

ε

∫ t

0
e− 1

ε (t−s)dWk
s ,

W
k,ε
t =

∫ t

0
ξk,ε
s ds

so that .uε (t, x) = ∑

k∈K σk (x) ξ
k,ε
t , .Wε (t, x) = ∑

k∈K σk (x) W
k,ε
t . 

We use the weak formulation and try to pass to the limit term by term, taking 
great advantage of the fact that the equation is linear. In the weak formulation of 
Eq. (5.8), let us concentrate only on the difficult term 

. 

∫ t

0

〈

uε (s) · ∇φ, θε (s)
〉

ds

and split it on the partition . πε : 

.

∫ t

0

〈

uε (s) · ∇φ, θε (s)
〉

ds =
∑

ti≤t

∫ ti+1

ti

〈

uε (s) · ∇φ, θε (s)
〉

ds.
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Just for notational convenience (at the end we go back to the general case) assume 
.uε (t) is made only of a single term 

. uε (t, x) = σ (x) ξε
t

where 

. Wε
t :=

∫ t

0
ξε (s) ds → Wt.

Then 

. 

∫ ti+1

ti

〈

uε (s) · ∇φ, θε (s)
〉

ds

=
∫ ti+1

ti

〈

σ · ∇φ, θε (s)
〉

ξε
s ds

=
∫ ti+1

ti

〈

σ · ∇φ, θε (ti)
〉

ξε
s ds +

∫ ti+1

ti

〈

σ · ∇φ,
(

θε (s) − θε (ti)
)〉

ξε
s ds

= 〈

σ · ∇φ, θε (ti)
〉
(

Wε
ti+1

− Wε
ti

)

+
∫ ti+1

ti

〈

σ · ∇φ,
(

θε (s) − θε (ti)
)〉

ξε
s ds.

The sum over the partition of the first term converges to the Itô integral 
.
∫ t

0 〈σ · ∇φ, θ (s)〉 dWs . More difficult is to understand the limit of 

.

∑

ti≤t

∫ ti+1

ti

〈

σ · ∇φ,
(

θε (s) − θε (ti)
)〉

ξε
s ds. (5.11) 

Notice first a potential mistake: one could think that, .θε (s) − θε (ti) being small 
for .s ∈ [ti , ti+1], this sum will converge to zero. But . ξε

s , being related (in the limit) 
to the derivative of BM, is large, and the product .(θε (s) − θε (ti)) ξ ε

s could have a 
non-zero compensation. Indeed, it has: roughly speaking, .(θε (s) − θε (ti)) behaves 
like .

√
ti+1 − ti and . ξε

s diverges like .
1√

ti+1−ti
. 

The way to capture the precise asymptotics is to use Eq. (5.8) again, written here 
for a generic test function . ψ : 

.
〈

ψ, θε (s) − θε (ti)
〉 −

∫ s

ti

〈

σ · ∇ψ, θε (r)
〉

ξε
r dr =

∫ s

ti

〈

κ�ψ, θε (r)
〉

dr. (5.12) 

Take .ψ = σ · ∇φ to connect with the above term (5.11) to be investigated. We have 
now to deal with the two terms 

.

∑

ti≤t

∫ ti+1

ti

∫ s

ti

〈

σ · ∇ (σ · ∇φ) , θε (r)
〉

ξε
r ξ ε

s drds
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and 

.

∑

ti≤t

∫ ti+1

ti

(∫ s

ti

〈

κ� (σ · ∇φ) , θε (r)
〉

dr

)

ξε
s ds. (5.13) 

Having assumed sufficient smoothness of . σ and . φ, we may use (5.10) to bound 
.θε (r) uniformly and find (the inequality is even a.s., with a deterministic constant 
.C > 0) 

. |
∫ s

ti

〈

κ� (σ · ∇φ) , θε (r)
〉

dr| ≤ C (ti+1 − ti ).

Since .
∫ ti+1
ti

|ξε
s |ds is infinitesimal in a suitable probabilistic sense, it is easy to show 

that the term (5.13) goes to zero in probability. The difficult term is 

. 
∑

ti≤t

∫ ti+1

ti

∫ s

ti

〈

σ · ∇ (σ · ∇φ) , θε (r)
〉

ξε
r ξ ε

s drds.

But we start to see an auxiliary second-order differential operator . (σ · ∇σ · ∇)

arising here and this encourages us to continue the computation. One has to play 
again the same trick above: rewrite the previous expression as 

. 
∑

ti≤t

∫ ti+1

ti

∫ s

ti

〈

σ · ∇ (σ · ∇φ) , θε (ti)
〉

ξε
r ξ ε

s drds

=
∑

ti≤t

〈

σ · ∇ (σ · ∇φ) , θε (ti)
〉

∫ ti+1

ti

∫ s

ti

ξ ε
r ξ ε

s drds

plus the remainder 

. Rε :=
∑

ti≤t

∫ ti+1

ti

∫ s

ti

〈

σ · ∇ (σ · ∇φ) , θε (r) − θε (ti)
〉

ξε
r ξ ε

s drds.

This time, one can show that the remainder is infinitesimal. The heuristic idea comes 
from the fact that it contains the product of three terms, all roughly speaking of order 
.
√

ti+1 − ti : 

. θε (r) − θε (ti), Wε (ti+1) − Wε (ti), Wε (ti+1) − Wε (ti).

Again (5.12) and (5.10) are useful here.
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Finally, we have to understand the limit of 

. 
∑

ti≤t

〈

σ · ∇ (σ · ∇φ) , θε (ti)
〉

∫ ti+1

ti

∫ s

ti

ξ ε
r ξ ε

s drds.

In the case of general noise with several independent Brownian motions, we have to 
understand the limit of 

. 
∑

ti≤t

〈

σk · ∇ (σk′ · ∇φ) , θε (ti)
〉

∫ ti+1

ti

∫ s

ti

ξ k,ε
r ξ k′,ε

s drds.

One can prove the following property on the joint quadratic variation: 

. lim
ε→0

∑

ti≤t

∫ ti+1

ti

∫ s

ti

ξ k,ε
r ξ k′,ε

s drds → 1

2
δk,k′ t

uniformly in time, in probability. From properties of Riemann–Stieltjes integrals, it 
follows that the previous sum converges to 

. 
δk,k′

2

∫ t

0
〈σk · ∇ (σk′ · ∇φ) , θ (s)〉 ds.

The final result is that, in the weak sense, 

. lim
ε→0

∫ t

0
uε (s) · ∇θε (s) ds

=
∑

k∈K

∫ t

0
σk · ∇θdWk

s + 1

2

∑

k∈K

∫ t

0
(σk · ∇σk · ∇) θ (s) ds.

5.7 Summary 

Opposite to the previous chapters, which were mathematically rigorous, this one 
aims to present heuristically an ideal path from small-scale turbulence to eddy 
viscosity, going through models with additive noise and transport-type noise. 

The topic of eddy viscosity is very important for applications and numerical 
computations. Although the idea is classical, a precise knowledge of the additional 
elliptic operator, in the large-scale dynamics, which better represents the impact 
of turbulent small scales, is still not fully clear, in particular in the regions close 
to boundaries; for instance, presumably this operator should be degenerate elliptic 
close to the boundary, but the kind of degeneracy may be better understood. Having
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a new strategy to link small turbulent scales to such an operator may give new 
insights; the ideal path described in this chapter seems to be a new promising link. 

As stated in the preface of this book, several issues in this ideal path are still open 
and very difficult. Let us mention a few. The starting point is an additive noise at 
small scales. In this chapter we illustrated a few preliminary ideas about it, motivated 
by boundary irregularities. However, a more precise form and justification is needed. 
The second step is the transfer of this additive noise to a transport noise at large 
scales; the research on this topic is active, but certainly not complete, for instance 
because it is mostly based on what we called implicit strategy, opposite to explicit 
ones. The belief that a transport-type noise should appear is supported also from 
the comparison with other theories and approaches, but there is a chance that other 
terms should be added, for a more precise description. 

Assuming that the previous two problems are sufficiently understood, we have 
in our hands stochastic equations of Navier–Stokes type for the large scales, with a 
kind of transport noise representing the action of small turbulent scales. The final 
step is proving that this stochastic model is close to a deterministic one with eddy 
viscosity. We have completed this last step in the idealized case of a torus and a 
simple noise, essentially space homogeneous. But a more interesting case is when 
there is a boundary, with the small-scale turbulence in the boundary layer; we do 
not have information on this case yet. The fluid velocity is zero at the boundary, 
so it is the turbulent small-scale component and this should lead to a degeneracy 
of the eddy viscosity near the boundary; this is an issue which will require closer 
investigation. 

Similarly, the fluid velocity, or even better its gradient, should play a role in the 
intensity of the turbulent component, leading to state-dependent small-scale noise, 
then yielding state-dependent transport-type noise and finally a state-dependent 
elliptic operator for the eddy viscosity, like for instance the Smagorinsky model 
or other nonlinear models of large eddy simulation theory. This generalization has 
not been developed. 

In spite of all these difficult open questions, we hope that this chapter provides 
some convincing motivations for investigating stochastic versions of Navier-Stokes 
equations, both in the more classical case of additive noise and in the intriguing one 
of transport-type noise, as well as emphasis on the investigation of the boundary, 
related to these topics.
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