

Introduction to Python
for Humanists

This book will introduce digital humanists at all levels of education to Python. It provides
background and guidance on learning the Python computer programming language, and
as it presumes no knowledge on the part of the reader about computers or coding concepts
allows the reader to gradually learn the more complex tasks that are currently popular in
the field of digital humanities. This book will be aimed at undergraduates, graduates, and
faculty who are interested in learning how to use Python as a tool within their workflow.
An Introduction to Python for Digital Humanists will act as a primer for students who wish
to use Python, allowing them to engage with more advanced textbooks. This book fills a
real need, as it is first Python introduction to be aimed squarely at humanities students,
as other books currently available do not approach Python from a humanities perspective.
It will be designed so that those experienced in Python can teach from it, in addition to
allowing those who are interested in being self-taught can use it for that purpose.

Key Features:

• Data analysis
• Data science
• Computational humanities
• Digital humanities
• Python
• Natural language processing
• Social network analysis
• App development

Chapman & Hall/CRC
The Python Series

About the Series
Python has been ranked as the most popular programming language, and it is widely used
in education and industry. This book series will offer a wide range of books on Python for
students and professionals. Titles in the series will help users learn the language at an
introductory and advanced level, and explore its many applications in data science, AI,
and machine learning. Series titles can also be supplemented with Jupyter notebooks.

Image Processing and Acquisition using Python, Second Edition
Ravishankar Chityala, Sridevi Pudipeddi

Python Packages
Tomas Beuzen and Tiffany-Anne Timbers

Statistics and Data Visualisation with Python
Jesús Rogel-Salazar

Introduction to Python for Humanists
William J.B. Mattingly

For more information about this series please visit: https://www.routledge.com/
Chapman--HallCRC-The-Python-Series/book-series/PYTH

https://www.routledge.com/Chapman--HallCRC-The-Python-Series/book-series/PYTH
https://www.routledge.com/Chapman--HallCRC-The-Python-Series/book-series/PYTH

Introduction to Python for
Humanists

William J.B. Mattingly

Front cover image: Ryzhi/Shutterstock

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 William Mattingly

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have
attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright hold-
ers if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged
please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not
available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for iden-
tification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Mattingly, William J. B., author.
Title: Introduction to Python for humanists / William J.B. Mattingly.
Description: First edition. | Boca Raton : CRC Press, [2023] | Series:
Chapman & Hall/CRC the Python series | Includes bibliographical
references and index. | Identifiers: LCCN 2022056310 (print) | LCCN 2022056311 (ebook) | ISBN
9781032377902 (hbk) | ISBN 9781032378374 (pbk) | ISBN 9781003342175
(ebk)
Subjects: LCSH: Python (Computer program language) | Engineering--Data
processing. | Science--Data processing. | Computer programming.
Classification: LCC QA76.73.P98 M383 2023 (print) | LCC QA76.73.P98
(ebook) | DDC 005.13/3--dc23/eng/20221202
LC record available at https://lccn.loc.gov/2022056310
LC ebook record available at https://lccn.loc.gov/2022056311

ISBN: 978-1-032-37790-2 (hbk)
ISBN: 978-1-032-37837-4 (pbk)
ISBN: 978-1-003-34217-5 (ebk)

DOI: 10.1201/9781003342175

Typeset in Palatino LT Std
by Deanta Global Publishing Services, Chennai, India

https://lccn.loc.gov/2022056311
https://lccn.loc.gov/2022056310
mailto:mpkbookspermissions@tandf.co.uk
www.copyright.com
http://dx.doi.org/10.1201/9781003342175

Contents

Preface xv

Acknowledgments xix

About the Author xxi

I The Basics of Python 1

1 Introduction to Python 3
1.1 Introduction to Python . 3

1.1.1 Why Should Humanists Learn to Code? 3
1.1.1.1 The Timeline for Starting a Large Digital History Project 3
1.1.1.2 The Self-Reliant Digital Humanist 4
1.1.1.3 Other Benefits . 5

1.1.2 What Is Python? . 6
1.1.3 Why Python? . 7

1.2 Installing Python . 7
1.2.1 Trinket . 7
1.2.2 Using Google Colab . 7
1.2.3 Using Binder from JupyterBook . 9
1.2.4 Using Jupyter Notebooks Online . 11
1.2.5 Installing Python Locally . 13

1.2.5.1 Download Anaconda Navigator 14
1.2.5.2 Using Anaconda Navigator 14
1.2.5.3 Installing JupyterLab . 14

1.2.6 Conclusion . 15
1.3 Coding Basics . 16

1.3.1 The Print Function . 16
1.3.2 Objects . 17
1.3.3 Variables . 17
1.3.4 Case Sensitivity . 18
1.3.5 Reserved Words . 18
1.3.6 Built-in Types . 19
1.3.7 Type Function . 21
1.3.8 Bugs . 21

2 Data and Data Structures 23
2.1 Introduction to Data . 23

2.1.1 What Is Data? . 23
2.1.2 Strings . 24
2.1.3 Working with Strings as Data . 25

2.1.3.1 Upper Method . 26

v

vi Contents

2.1.3.2 Lower Method . 26
2.1.3.3 Capitalize Method . 26
2.1.3.4 Replace Method . 26
2.1.3.5 Split Method . 27

2.1.4 Numbers (Integers and Floats) . 28
2.1.5 Working with Numbers as Data . 29
2.1.6 Booleans . 30
2.1.7 Conclusion . 30

2.2 Introduction to Data Structures . 30
2.2.1 Data Structures . 30
2.2.2 Lists . 31

2.2.2.1 Indexing a List . 31
2.2.3 Tuples . 32
2.2.4 Mutability vs Immutability . 33
2.2.5 Sets (Bonus Data Structure) . 33
2.2.6 Dictionaries . 34

2.2.6.1 Indexing Dictionaries . 34

3 Loops and Logic 37
3.1 Introduction to Loops . 37

3.1.1 What Are Loops? . 37
3.1.2 For Loops . 37
3.1.3 List Comprehension . 39
3.1.4 Indexing a List with and without Enumerate 40
3.1.5 Operators . 41
3.1.6 While Loops . 42

3.2 Conditionals . 43
3.2.1 If Statement . 43
3.2.2 Else Statement . 44
3.2.3 Elif and the ‘in’ Operator with Strings 44
3.2.4 Conditionals and Lists with ‘in’ and ‘not in’ 45
3.2.5 Conclusion . 46

4 Formal Coding: Functions, Classes, and Libraries 47
4.1 Functions . 47

4.1.1 Introduction . 47
4.1.2 Functions in Action . 47
4.1.3 Docstrings . 49
4.1.4 Functions with Multiple Arguments 49
4.1.5 Keyword Argument . 50
4.1.6 Keyword Arbitrary Arguments . 50
4.1.7 Conclusion . 51
4.1.8 Answer for Result . 51

4.2 Classes . 51
4.2.1 Introduction . 51
4.2.2 Creating a Class . 52
4.2.3 Adding Functions to a Class . 53

4.3 Libraries in Python . 54
4.3.1 Introduction . 54
4.3.2 How to Install Python Libraries . 54

Contents vii

4.3.3 How to Import a Library . 55
4.3.4 Conclusion . 56

5 Working with External Data 57
5.1 Working with Textual Data . 57

5.1.1 Introduction . 57
5.1.2 The “With” Statement . 57
5.1.3 How to Open a Text File . 57
5.1.4 How to Write Data to a Text File . 58

5.2 Working with JSON Data . 59
5.2.1 Introduction . 59
5.2.2 Writing JSON Data with json.dump() 59
5.2.3 Reading JSON data with json.load() 60

5.3 Working with Multiple Files . 60
5.3.1 Introduction . 60
5.3.2 Working with Glob . 60
5.3.3 Grabbing Multiple Nested Directories 61
5.3.4 Walking a Directory . 61
5.3.5 Conclusion . 63

6 Working with Data on the Web 65
6.1 Introduction to HTML . 65

6.1.1 Introduction . 65
6.1.2 Diving into HTML . 65
6.1.3 Understanding Attributes . 66
6.1.4 Parsing HTMLwith BeautifulSoup 66
6.1.5 How to Find a Website’s HTML . 69

6.2 Scraping Web Pages with Requests and BeautifulSoup 70
6.2.1 Introduction . 70
6.2.2 Requests . 70
6.2.3 BeautifulSoup . 71

II Data Analysis with Pandas 75

7 Introduction to Pandas 77
7.1 Introduction to Pandas . 77

7.1.1 What Is Pandas? . 77
7.1.2 Why Use Pandas? . 77
7.1.3 How to Install Pandas . 78
7.1.4 How to Import Pandas . 78

7.2 The Basics of Pandas . 78
7.2.1 How to Create a DataFrame from a Dictionary 78
7.2.2 How to Display a DataFrame . 79
7.2.3 How to Save DataFrame to CSV . 80
7.2.4 How to Read DataFrame from CSV 80
7.2.5 How to Save DataFrame to JSON . 81
7.2.6 How to Add a Column to the DataFrame 81
7.2.7 How to Grab a Specific Column . 82
7.2.8 How to Convert a Column to a List 83
7.2.9 Isolating Unique Values in a Column 83
7.2.10 How to Grab a Specific Row of a DataFrame with iloc 83

viii Contents

7.2.11 Iterating over a DataFrame with df.iterrows() 84
7.2.12 Conclusion . 84

8 Working with Data in Pandas 85
8.1 Finding Data in DataFrame . 85

8.1.1 About the Titanic Dataset . 85
8.1.2 How to Find Column Data . 85
8.1.3 How to Get a Quick Sense of the Dataset with df.head() 86
8.1.4 How to Grab a Specific Range of Rows with df.iloc[] 88
8.1.5 How toGet aQuickQuantitativeUnderstanding of theDatasetwith

describe() . 89
8.1.6 How to Find Specific Information in the Dataset with df.loc . . . 89
8.1.7 How to Query with “OR” (|) on a DataFrame 93

8.2 Organizing the DataFrame . 95
8.2.1 How to Sort Data By Single Column 95
8.2.2 How to Reverse Sort Data by Single Column 97
8.2.3 How to Sort Data by Multiple Columns 98
8.2.4 How to Sort Data byMultiple Columns with Different Values Orga-

nized Differently . 100
8.3 Cleaning the DataFrame . 101

8.3.1 How to Drop a Column in Pandas DataFrame 101
8.3.2 How to Remove Rows That Have NaN in Any Column 104
8.3.3 How to Remove Rows That Have NaN in a Specific Column 104
8.3.4 How to Convert DataFrame Data Types (from Float to Int) 105
8.3.5 Conclusion . 107

9 Searching for Data 109
9.1 Advanced Searching on Strings . 109

9.1.1 Finding Features within a String . 109
9.1.2 Finding Strings That Don’t Contain Feature 110
9.1.3 Using RegEx with Pandas . 110

9.2 Filter and Querying . 112
9.2.1 Introduction . 112
9.2.2 The Filter Function . 113
9.2.3 The Query Function . 116

9.3 Grouping with groupby() . 121
9.3.1 Introduction . 121
9.3.2 groupby() . 121
9.3.3 Quantitative Analysis with .count() and .sum() 122
9.3.4 Working with Multiple Groups . 123
9.3.5 Groupings with Many Subsets . 124

10 Advanced Pandas 125
10.1 Plotting Data with Pandas . 125

10.1.1 Importing the DataFrame . 125
10.1.2 Bar and Barh Charts with Pandas 126
10.1.3 Pie Charts with Pandas . 128
10.1.4 Scatter Plots with Pandas . 130

10.2 Graphing Network Data with Pandas . 138
10.2.1 Getting the Data from Pandas to NetworkX 138
10.2.2 Graphing the Data . 139

Contents ix

10.2.3 Customize the Graph . 139
10.3 Time Series Data . 141

10.3.1 What Is Time Series Data . 141
10.3.2 About the Dataset . 141
10.3.3 Cleaning the Data from Float to Int 143
10.3.4 Convert to Time Series DateTime in Pandas 149

III Natural Language Processing with spaCy 155

11 Introduction to Spacy 157
11.1 The Basics of spaCy . 157

11.1.1 What Is spaCy? . 157
11.1.2 How to Install spaCy . 158
11.1.3 Containers . 158

11.2 Getting Started with spaCy and Its Linguistic Annotations 159
11.2.1 Importing spaCy and Loading Data 159
11.2.2 Creating a Doc Container . 160
11.2.3 Sentence Boundary Detection (SBD) 162
11.2.4 Token Attributes . 163

11.2.4.1 Text . 164
11.2.4.2 Head . 164
11.2.4.3 Left Edge . 164
11.2.4.4 Right Edge . 164
11.2.4.5 Entity Type . 164
11.2.4.6 Ent IOB . 165
11.2.4.7 Lemma . 165
11.2.4.8 Morph . 165
11.2.4.9 Part of Speech . 165
11.2.4.10 Syntactic Dependency . 166
11.2.4.11 Language . 166

11.2.5 Part-of-Speech (POS) Tagging . 166
11.2.6 Named Entity Recognition (NER) 167
11.2.7 Conclusion . 168

11.3 spaCy’s Pipelines . 168
11.3.1 Standard Pipes (Components and Factories) Available from spaCy 168

11.3.1.1 Attribute Rulers . 169
11.3.1.2 Matchers . 170

11.3.2 How to Add Pipes . 170
11.3.3 Examining a Pipeline . 171
11.3.4 Conclusion . 172

12 Rules-Based spaCy 173
12.1 The EntityRuler . 173

12.1.1 Introduction to spaCy’s EntityRuler 173
12.1.2 Demonstration of EntityRuler in Action 173
12.1.3 Introducing Complex Rules and Variance to the EntityRuler

(Advanced) . 177
12.2 The Matcher . 177

12.2.1 Introduction . 177
12.2.2 A Basic Example . 178
12.2.3 Attributes Taken by Matcher . 179

x Contents

12.2.4 Applied Matcher . 180
12.2.4.1 Grabbing all Proper Nouns 181
12.2.4.2 Improving it with Multi-Word Tokens 181
12.2.4.3 Greedy Keyword Argument 181
12.2.4.4 Adding in Sequences . 182

12.3 The PhraseMatcher . 182
12.3.1 Introduction . 182
12.3.2 Setting a Custom Attribute . 184
12.3.3 Adding a Function with on_match 185

12.4 Using RegEx with spaCy . 186
12.4.1 What Is Regular Expressions (RegEx)? 186
12.4.2 The Strengths of RegEx . 186
12.4.3 The Weaknesses of RegEx . 186
12.4.4 How to Use RegEx in Python . 186
12.4.5 How to Use RegEx in spaCy . 188

12.5 Working with Multi-Word Token Entities and RegEx in spaCy 3x 191
12.5.1 Key Concepts in This Notebook . 191
12.5.2 Problems with Multi-Word Tokens in spaCy as Entities 191
12.5.3 Extract Multi-Word Tokens . 191
12.5.4 Reconstruct Spans . 192
12.5.5 Inject the Spans into the doc.ents . 192
12.5.6 Give Priority to Longer Spans . 193

13 Solving a Domain-Specific Problem: A Case Study with Holocaust NER 195
13.1 Cultivating Good Datasets for Entities . 195

13.1.1 Introduction to Datasets . 195
13.1.2 Acquiring the Data . 195
13.1.3 United States Holocaust Memorial Museum 195
13.1.4 Normalizing Data . 196

13.2 The Challenges of Holocaust NER . 197
13.2.1 An Overview of the Problems . 197
13.2.2 Ethical . 197
13.2.3 Linguistic . 197
13.2.4 Toponyms . 198

13.3 Creating a Rules-Based Pipeline for Holocaust Documents 198
13.3.1 Creating a Blank spaCy Model . 199
13.3.2 Creating EntityRulers . 199
13.3.3 Creating Function for Matching RegEx 200
13.3.4 Add Pipe for Finding Streets . 202
13.3.5 Creating a Pipe for Finding Ships 203
13.3.6 Create Pipe for Identifying a Military Personnel 205
13.3.7 Create Pipe for Identifying Spouses 205
13.3.8 Creating a Pipe for Finding Ghettos 206
13.3.9 Creating a Geography Pipe . 206
13.3.10 Seeing the Pipes at Work . 207

14 Topic Modeling: Concepts and Theory 211
14.1 What Is Topic Modeling? . 211

14.1.1 Rules-Based Methods . 212
14.1.2 Machine Learning-Based Methods 212

Contents xi

14.1.3 Why Use Topic Modeling? . 213
14.2 Topics and Clusters . 213

14.2.1 What Are Topics? . 213
14.2.2 What Are Clusters? . 214

14.3 Bigrams and Trigrams . 214
14.3.1 Textual Ambiguity . 214
14.3.2 Bigrams . 214
14.3.3 Trigrams . 215
14.3.4 Why Are These Important? . 215

14.4 LDATopic Modeling . 215
14.4.1 Process of Topic Modeling . 215
14.4.2 Knowing the Total Number of Topics 217
14.4.3 Applying a Topic Model . 218
14.4.4 Summary of Key Issues with LDATopic Modeling 218

14.5 Creating LDA in Python . 218
14.5.1 Importing the Required Libraries and Data 218
14.5.2 Cleaning Documents . 220
14.5.3 Create ID-Word Index . 220
14.5.4 Creating LDATopic Model . 222
14.5.5 Analyze a Document . 222
14.5.6 Analyze the Topic Model . 224

14.6 Transformer Models . 225
14.6.1 Importing Libraries and Gathering Data 225
14.6.2 Embedding the Documents . 226
14.6.3 Flattening the Data . 227
14.6.4 Isolating Clusters with HDBScan . 227
14.6.5 Analyzing the Labels . 227
14.6.6 Outliers (Noise) . 229

14.7 Top2Vec in Python . 230
14.7.1 Creating a Top2Vec Model . 231
14.7.2 Analyzing Our Topic Model . 232
14.7.3 Working with Bigrams and Trigrams 235
14.7.4 Saving and Loading a Top2Vec Model 236

15 Text Analysis with BookNLP 239
15.1 Introduction to BookNLP . 239

15.1.1 What Is BookNLP? . 239
15.1.2 Why Books and Larger Documents? 240
15.1.3 How to Install BookNLP . 241

15.2 Getting Started With BookNLP . 241
15.2.1 Importing BookNLP and Creating a Pipeline 241
15.2.2 Setting up the File and Directories 242
15.2.3 Running the Pipeline . 243

15.3 The Output Files . 243
15.3.1 The .tokens File . 244
15.3.2 The .entities File . 245
15.3.3 The .quotes File . 247
15.3.4 The .supersense File . 248
15.3.5 The .book File . 248
15.3.6 The .book.html File . 251

xii Contents

15.4 Character Analysis . 252
15.4.1 Analyzing the Characters (From BookNLP Repo) 252
15.4.2 Parsing Verb Usage . 254

15.5 Events Analysis . 256
15.5.1 Exploring the Tokens File . 256
15.5.2 Grabbing the Events . 257
15.5.3 Analyzing Events Words and Lemmas 258
15.5.4 Grabbing Event Sentences . 259
15.5.5 Bringing Everything Together . 260
15.5.6 Creating an .events File . 261
15.5.7 Conclusion . 261

16 Social Network Analysis 263
16.1 The Basic Concepts of Social Network Analysis 263

16.1.1 Basic Terminology . 263
16.1.2 SNALibraries in Python . 264

16.2 Introduction to NetworkX . 264
16.2.1 Adding All Edges at Once . 265
16.2.2 Asymmetrical Networks . 266
16.2.3 Calculating Shortest Distance . 267
16.2.4 Calculating Connections . 268
16.2.5 Identifying Major Actors in a Network 268
16.2.6 Limitations of Matplotlib and NetworkX 268

16.3 Producing Dynamic Graphs with PyVis . 269
16.3.1 The Basics of PyVis . 269

16.4 NetworkX and PyVis . 270
16.5 Adding Color to Nodes . 271
16.6 SNA on Humanities Data: Structuring the Data 273

16.6.1 Examining the Data . 273
16.7 SNA on Humanities Data: Creating the Graph 276

16.7.1 Building the Network . 277
16.7.2 Visualizing the Network . 277
16.7.3 Adding Menus . 279
16.7.4 Conclusion . 282

IV Designing an Application with Streamlit 283

17 Introduction to Streamlit 285
17.1 Creating Our First App . 285

17.1.1 Options for Application Development in Python 285
17.1.2 Installing Streamlit . 286
17.1.3 Creating a Home Page . 286

17.2 Displaying Data in Streamlit . 287
17.2.1 Displaying Text to Users . 287
17.2.2 Displaying Python Data Structures 289

17.2.2.1 Data Structures with st.write() 289
17.2.2.2 Data Structures with st.json() 289

17.2.3 Displaying Tabular Data . 289
17.2.3.1 Tabular Data with st.write() 290
17.2.3.2 Tabular Data with st.dataframe() 290
17.2.3.3 Tabular Data with st.table() 291

Contents xiii

17.2.3.4 Tabular Data with st.markdown() 291
17.2.4 Displaying Multimedia in Streamlit 291

17.2.4.1 Images . 292
17.2.4.2 Audio . 292
17.2.4.3 Video . 292

17.3 Streamlit Input Widgets . 292
17.3.1 Text Input Widgets . 293

17.3.1.1 st.text_input() . 293
17.3.1.2 st.text_area() . 293

17.3.2 Numerical Input Widgets . 294
17.3.2.1 st.number_input() . 294
17.3.2.2 st.slider() . 294

17.3.3 Date and Time Input Widgets . 295
17.3.3.1 st.date_input() . 295
17.3.3.2 st.time_input() . 296

17.3.4 Boolean Input Widgets . 296
17.3.4.1 st.checkbox() . 297
17.3.4.2 st.button() . 297

17.3.5 Selection Widgets . 298
17.3.5.1 st.radio() . 298
17.3.5.2 st.selectbox() . 298
17.3.5.3 st.multiselect() . 299

18 Advanced Streamlit Features 301
18.1 Data Visualization . 301

18.1.1 Metrics . 301
18.1.2 Plotting Basic Graphs with Streamlit 302

18.1.2.1 Line Charts with st.line_chart() 303
18.1.2.2 Bar Charts with st.bar_chart() 303
18.1.2.3 Area Charts with st.area_chart() 303

18.1.3 Map Charts . 304
18.1.3.1 Creating Maps with st.map() 305
18.1.3.2 Third-Party Maps – An Example with PyDeck 305

18.2 Layout Design . 307
18.2.1 Layout Widgets . 307

18.2.1.1 Sidebar . 307
18.2.1.2 Columns . 307
18.2.1.3 Expander . 307
18.2.1.4 Container . 309
18.2.1.5 Tabs . 309
18.2.1.6 Empty . 310

18.3 Streamlit Cache and Session States . 310
18.3.1 Caching Data with @st.cache_data 311

18.4 Storing Data with st.session_state . 311
18.5 Custom HTML . 312
18.6 Multi-Page Applications . 313

19 Building a Database Query Application 315
19.1 Building a Database Query Application . 315

19.1.1 Importing the Libraries . 317

xiv Contents

19.1.2 Caching Data . 317
19.1.3 Creating Our App Layout . 318
19.1.4 Using User Inputs to Produce a New DataFrame 319

19.2 Deploying an App in the Cloud with Streamlit Share 321
19.2.1 Create a GitHub Account . 321
19.2.2 Upload Application to GitHub . 321
19.2.3 Connect Streamlit Share to your GitHub 322
19.2.4 Create a New App . 322
19.2.5 Set Custom Subdomain . 322

V Conclusion 327

20 Conclusion 329

Index 331

Preface

I designed this textbook to serve two functions. First, it will function as a primer to Python
for humanists (or, more generally, those without coding experience or a background in
computer science). In this regard, readers will acquire a basic understanding of necessary
background information, such as data and data structures, as well as the basics of Python.

Second, this textbook is designed to not only provide the reader with a basic under-
standing of Python and how to use it, but how to apply it specifically to humanities-based
problems. The book particularly explores applying Python in data analysis with Pandas,
natural language processing (NLP) with spaCy, topic modeling with Gensim (for LDAtopic
modeling) and Top2Vec (for modern topic modeling), and social network analysis with
NetworkX, Matplotlib, and PyVis. It also teaches readers how to design quick applications
with Streamlit and deploy them in the cloud with Streamlit Share.

All code throughout this textbook is designed to be as reproducible as possible. The goal
is for the reader to only need to replace the default datawith their owndata (orwithminimal
effort get their data into a structured format) and have similar results. This should allow the
reader to begin applying themethods discussed throughout this textbookwith relative ease
to their own areas of expertise.

Part I of the textbook introduces the reader to the basics of Python. Here, we will
learn about the basics of coding (Chapter 1) and the essentials about data and data
structures and how to work with them via Python (Chapter 2). These chapters will
provide the necessary foundation for exploring key programming basics, such as loops
and conditionals (Chapter 3), functions, classes, and libraries (Chapter 4), and working
with external data, such as text files and JSON (Chapter 5). The final chapter of Part I
will introduce the reader to the basics of web scraping and working with data found on
the web.

After Part I, the reader will have a basic understanding of Python, its syntax, and be able
to begin working with data to design projects. The remainder of the textbook is designed to
reinforce all of the skills acquired in Part I. Each of the following parts of the textbook will
also introduce the reader to the key libraries associated with their respective subjects.

In Part II, we will take a deep dive into data analysis. In Python, the essential library for
working with data, specifically tabular data, is Pandas. We will learn the basics of Pandas
while working with the open-source Titanic dataset. By the end of Part II, the reader will
have an understanding of Pandas and be able to leverage it in their own projects.

Part III shifts focus to text analysis. Here, we will learn about natural language process-
ing (NLP) and how to use Python and the library spaCy to engage in NLP. This part of
the textbook presumes no knowledge on the part of the reader about NLP or linguistics.
It will, therefore, provide all the basic information needed to begin working with texts in
more robust ways. The reader will learn about two different approaches to NLP, specifically
rules-based (heuristics) and machine learning-based. Both serve different functions and
should be used in different situations. By the end of this part, the reader will have a basic
understanding of each and know when to use them. While the machine learning-based
approaches will be rooted in using off-the-shelf spaCy models, the reader will learn how
to use NLP rules to create custom solutions. The final chapter of this part of the textbook

xv

xvi Preface

will look at a real-world problem, creating a rules-based heuristic pipeline to identify and
extract specific types of entities from texts.

Part IV shifts to other applications of Python to humanities-based problems. In Chap-
ter 14,wewill learn how to do topicmodeling, specifically LatentDierlichtAllocation (LDA)
topicmodeling so that theywill have an understanding of the basic concepts and the history
of the field. After this, we will learn about more recent approaches to topic modeling using
machine learning with the library Top2Vec. Chapter 15 will look at performing text analysis
on larger documents with BookNLP. In Chapter 16, wewill look at Social Network Analysis
with NetworkX and Matplotlib to produce static maps. We will also learn how to create
dynamic JavaScript andHTMLnetworkmapswith the Python library PyVis. These chapters
are all designed to give you the essential background knowledge, terminology, and Python
code to get started applying these libraries and methods on your own dataset.

Part V of the textbook will introduce the reader to app development with the Streamlit
library. Readers will gain an understanding of the basics of Streamlit and how to leverage its
components to create custom apps within just a few hours that can be hosted in the cloud.
The purpose of this part is to help the reader take an idea from concept to reality in as short
of time as possible.

After completing this textbook, you will have a strong enough command of Python to
begin leveraging it in your own projects. You will also have a broad exposure to different
ways that Python can be applied to humanities-based problems. Finally, you will have the
resources necessary for continuing your education.

Limitations of This Textbook

While this book will provide a cursory overview of Python, it will not provide you with all
aspects of the language or how to use it. This book is designed to get you up and running
with Python as quickly as possible, giving you the essential tools you need to read and
write in the language to solve tasks quickly and effectively. This textbook is not designed for
computer scientists who wish to explore the depths of the programming language, rather
humanists who need Python to automate certain tasks in their workflow. Explanation of
certain aspects of the language are, therefore, kept to a minimum.

It is important to note that this book is entirely designed in JupyterNotebooks (discussed
in Part I, Chapter 1). This means that you will not receive exposure to the command line or
receive proper training in writing a Python script (.py) file. These are useful skills
to have, but not necessary to begin working with data. Despite these limitations of the
textbook, this book will give you the tools necessary to begin learning on your own.

Online Version

The print version of this textbook also has a free online component compiled as a Jupyter-
Book. As the libraries and methods discussed in this textbook advance, the print version
of this book will not be easily updated without new editions; the online version, however,
will be updated and maintained. If a section of code quits working because something has
changed with Python or one of the libraries used in this textbook, the online version will be

Preface xvii

corrected. If you notice that there is a problem with code, you can also formally submit an
issue or suggest an edit on GitHub so that it can be updated. These can beminor issues from
typographical errors, the need for greater explanation in a specific area, or problems with
code not working. To submit a GitHub issue, you can use the GitHub icon in the top-right
corner of the online version of this book.

https://taylorandfrancis.com/

Acknowledgments

This Python Textbook was created during my postdoctoral fellowship at the Smithsonian
Institution’s Data Science Lab with collaboration at the United States Holocaust Memorial
Museum. It would not have been possible without the help of Rebecca Dikow, Mike Trizna,
and those in the Data Science Lab who listened to, aided, and advised me while creating
these notebooks. Iwould also like to thank the content experts at theUnited StatesHolocaust
Memorial Museum (USHMM), specifically Michael Haley Goldman, Michael Levy, Robert
Ehrenreich, and Silvina Fernandez-Duque.

I would also like to dedicate this book to my wife, Stephanie Mattingly. She has been a
constant source of encouragement while I wrote this book in all its stages. She also always
encouraged me to pursue data science as a career path. Without her constant guidance, this
book would not have been possible.

xix

https://taylorandfrancis.com/

xxi

About the Author

William Mattingly is a 2022 Harry Frank Guggenheim Distinguished Scholar and a 2022-
2023 ACLS Grantee for his work as co-principal investigator and lead developer for the
Bitter Aloe Project which examines testimonies of violence from South Africa’s Truth and
Reconciliation Commission. He is currently the Postdoctoral Fellow for the Analysis of
Historical Documents at the Smithsonian Institution’s Data Science Lab. Mattingly cur-
rently works on two projects at the Smithsonian. The first is based at the United States
Holocaust Memorial Museum (USHMM), where he is developing a robust pipeline of
machine learning image classification and natural language processing (NLP) models to
automate the cataloging of millions of images. At the Smithsonian, he is working on a proj-
ect connected to the American Women’s History Initiative. Here, he is developing machine
learning and heuristic pipelines with spaCy, a Python NLP library. This pipeline will iden-
tify women in Smithsonian documents and automatically extract knowledge about them
so that we can better understand the influential role women played at the Smithsonian.

https://taylorandfrancis.com/

Part I

The Basics of Python

https://taylorandfrancis.com/

1
Introduction to Python

1.1 Introduction to Python

1.1.1 Why Should Humanists Learn to Code?

Before we begin this book, let’s begin with a simple question.Why should humanists learn to
code? To answer it, let’s consider the ideal digital humanities project.

In an ideal digital humanities project, a humanist (or team of humanists) will leverage
their domain knowledge, or area of expertise. As a domain expert, this project leader, better
known as principal investigator (PI), will convey their idea to their team which will consist
of others in their field and usually a technical lead. This technical lead will (depending
on funding) either handle all technical aspects of the project (web development, coding,
data management, etc.) or lead a team to handle all technical aspects of it. This is the ideal
scenario. Each person on the team does what they do best.

Such a project requires two things that are in high commodity to most researchers:
funding and time. The self-reliant humanist who can leverage their domain knowledge
while also being able to function in a technical capacity on a project drastically reduces both
of these issues in several ways. To understand how, we must first understand how digital
humanities projects receive funding.

1.1.1.1 The Timeline for Starting a Large Digital History Project

Large digital projects often take years to begin. These projects often start with a researcher
(or researchers) wishing to explore a question or create a digital platform for an aspect of
their research. These scholars will then reach out to others in their field to gauge interest.
This process can take several months to a year, especially if the researchers wait to present
their idea at the next conference in their field.

If there is an interest in such a project, the project PI will find a technical expert who
can tell them if it the project is possible and receive an estimate for its cost. If the PI does
not have a technical expert and cannot find one associated with their university, this can be
challenging and time-consuming. As we will see, the relationship between PI and technical
lead is a unique bond that requires good communication from both parties. Selecting the
right technical lead is important because their pay may be one fo the larger budget items. It
is also the person who makes the PI’s vision a digital reality.

Next, the PI will create a list of funding opportunities for the project and then begin
applying to them. Each application can take several months to complete. Once complete,
the PI will then usually submit the application to the granting association through their
university. If there are multiple PIs on the project at different universities, this process can
be more complicated as all institutions usually need to communicate with each other.

The university will usually review all materials. They will be especially interested in the
budget. This process can take a few weeks while the university ensures all numbers are

DOI: 10.1201/9781003342175-2

http://dx.doi.org/10.1201/9781003342175-2

4 Introduction to Python for Humanists

accurate. After all, most universities will be taking a cut of the grant money (sometimes up
to 30%), so they want to make sure they see the numbers first.

After this, the university will submit the grant. Depending on the granting agency, the
wait time can be anywhere from a fewmonths to nearly a year. During this time, the digital
project will may not move forward much, if at all. Rather, it may sit in a holding period
while the PI waits to hear back.

When we look at this timeline, it means that from initial idea to the start of the project,
even in the ideal scenario, it can be realistically 2–3 years before the project begins. All of
this comes with a bit of a gamble as well. The PI believes in the idea, they have also gauged
the community to know that there is interest in it, and they have found a technical lead
who can do the job, but a lot can happen in 2–3 years. In that time, new developments in
the domain expert’s field may have altered the project trajectory (or, worst-case-scenario,
made it redundant). Further, new digital approaches/methods may mean that an entirely
new approach is necessary. This is especially common today if the project involves machine
learning, a field in which new advances are happening every week. In addition to this, the
technical leadmay have taken a job elsewhere. (This does happen as they are not contracted
until the grant is received). Finally, there is no guarantee that funding agencies value the
idea. This means that the time spent designing the project conceptually and preparing to
get started could be entirely in vain.

By learning to code, you can often negate this entire process by testing your idea within
days orweeks. Thismeans that youwill be able to test the validity of the idea and potentially
even create a minimum viable product (MVP) that can be used to assist in obtaining
funding. An MVP is a working subset of a project to demonstrate its validity. For a digital
humanities project, this may mean a simple front-end application or a subset of the data
prepared a specific way. MVPs are quite common today in places such as Silicon Valley,
whereMVPs are used to present an idea to investors. This helps give a real sense of how the
project will work. While not all mechanics will be available in an MVP, it is a good proof-
of-concept. It also demonstrates that the project is possible, the team can do the work they
are promising, and that the team already has a good handle of the potential issues that may
surface. These are all things that granting agencies like to see. Throughout this textbook,
you will develop the skills necessary to create an MVP that you can present to a granting
agency. This is especially true with the final chapter, where we learn how to build cloud-
based Python applications with Streamlit.

1.1.1.2 The Self-Reliant Digital Humanist

Ultimately, the ability to code turns the humanist into an entirely self-reliant researcher.
By learning to code, you can do far more than test out ideas and create MVPs. You can
significantly reduce the cost of a digital humanities project. As a domain expert, you know
your fieldwell. As a coder, youwill knowwhat is technically possible. If you end up gaining
an expertise in data science or machine learning (something that is quite realistic today as
both fields are more accessible than ever), you can leverage some of the most powerful
methods in technical fieldswithin a digital humanities context. You can also eliminatemany
issues that may surface during a digital humanities project.

One problem is communication. The project PI needs the ability to communicate their
ideas to the technical lead. This communication often occurs in a hybrid language that
changes from team to team. The PI over time can begin to use technical terms and
the technical lead will begin to use some domain-specific terms. This relationship and
communication takes time to create. By have a strong command of the technical aspects of
a project, the PI can either eliminate the need for a technical lead entirely or communicate
their ideas to the technical side of the project in technical language.

Introduction to Python 5

Another issue that vanishes is the lag time from idea to execution. Once a funded project
begins, the PIwill guide their vision and convey each step to the technical leadwhose job it is
tomake that vision a reality. There is a lag that exists here. Often,meetings on digital projects
occur on a regular basis, sometimes weekly or bi-weekly. During that time, issues may
surface that are placed on hold until the next meeting. This can put a digital project behind
schedule. If the humanist is self-reliant, however, they can develop their idea independently
of a technical lead. This means that when an issue surfaces, the PI can immediately rectify
it and communicate the solution to the technical lead.

Third, technical leads on projects usually absorb a lot of funding. Hiring a programmer
can be costly, but if your project requires data science andmachine learning, experts in these
areas can costs hundreds of dollars per hour. If the PI has the technical expertise, they can
perform technical aspects of a project until enough money is received to hire a technical
lead.

1.1.1.3 Other Benefits

Learning to code gives the humanist tools beyond simply the ability to code. It fundamen-
tally alters how the humanist views their field and the questions they can explore. Things
that seemed impossible before, will suddenly appear quite simple to solve.

One of the greatest advantages of learning to code is automation, or the process bywhich
we write rules for a computer to perform a repetitive task. As humanists, we do a lot of
things repetitively. Many of the tasks we need to perform as humanists are repetitive and
we, as humans, are prone tomakemistakes. Being able to automate these tasks can radically
reduce the amount of timewe spendperforming repetitive tasks, fromhours,weeks, or even
years, to seconds, minutes, or hours. Imagine having to grab data from an archive website.
Imagine that the information you need is found on 2,000 different pages. How long would
it take you to go to each of those pages and copy and paste the text into a Word document?
In Python, that task can be coded inminutes and left to run for an hour. This allows you, the
researcher to go off and do some other taskmore essential; or, perhaps, enjoy a nice tea break
in a hammock so that when you return to analyze the documents, you will be well-rested.

Coding does not just allow us to automate tasks like this. It also allows us to systemat-
ically clean data. Imagine you wanted to search across PDF scans of medieval Latin. This
problem presents many key issues that make such a task impossible or unreliable. First,
medieval Latin did not have any firm spelling convention. This means that some scans may
have variant spellings of words. Second, Latin is a highly inflected language, meaningword
order is not important, rather the ending of a given word is. When combined with variant
spellings, this means that each word can be represented sometimes hundreds of different
ways. In addition to this, your texts are scans. Are those scans even searchable? If they are,
was the OCR, or Optical Character Recognition, accurate? If it was done prior to 2015, it
likely is not. If after, then the scans may be in a bad enough state where the OCR is not
accurate. In addition to these problems, any OCR system will retain line breaks, meaning
if the key word that you want to search for is hyphenated because the word is broken up
between two lines, you need to account for that in your search. Next, we need to take into
account editor notations, which often are noted in brackets, parentheses, and carrots. While
this example is certainly a complex one, it is perfectly common. And while I am using Latin
to demonstrate a greater issue with inflected languages, these same issues, especially those
aroundOCR, surface with English texts as well. Coding allows us to address each and every
one of these issues, some more easily than others.

The issue of searching is further complicated when this needs to be done for many
documents simultaneously. Imagine if these issues surfaced in 5,000 different PDFs that you
needed to analyze. Could you realistically run all these searches across 5,000 documents?

6 Introduction to Python for Humanists

If you could, would your results be good? To answer the former, yes, if you are willing
to spend months doing it; to answer the latter, likely not. Programming allows for you to
develop programs that perform all these tasks across all 5,000 documents. When you run a
search, you will not simply hit ctrl+f. You will code your own search method so that your
simple search can return very complex results that accounts for variance in the text.

Python makes all of this possible.

1.1.2 What Is Python?

Python is a programming language. Programming languages are ways that we, as humans,
can write commands that will then be executed by a computer. There are many different
programming languages available for humanists to choose from:

1. C

2. Python

3. JavaScript

4. R

5. HTML (this is debatable)

Not all programming languages are created equal. Some are best used for developing
software, such as C; others are best suited for web development, such as HTML and
JavaScript. And others are great at statistical analysis, R (and Python). Where does Python
excel? Python excels in many areas. One thing that sets it apart from other programming
languages for new coders is that it is easy to read and easy to write.

It is relatively easy to write compared to other programming languages because the
syntax, or way inwhich youwrite tasks in code, is straightforward. It is easy to read because
Python uses forced indentation. This means that blocks of code that can be difficult to read
in other programming languages are easily spotted in Python.

Since it’s creation in the early 1990s, Python has soared in popularity which has, in turn,
resulted in a large community of programmers and a large number of libraries available.We
will learn about libraries later in this textbook. For now, think of libraries as large quantities
of code that have already been written for you so that you can write one line of code to
perform a complex task that may take hundreds or thousands of lines of code to write.

Today, Python is one of themost widely used programming languages and is considered
the essential language for text analysis, machine learning, data analysis (alongside R), web
scrapping, and much more.

Python (as of this writing) is currently in version 3.11.0. Let’s break each of these
numbers down. The 3 refers to the main Python language. Python 2 still exists (in fact it
comes standard on all Macs), but it is no longer supported and is slowly being replaced
by Python 3. You should not invest time in learning Python 2 as it is only used to
support legacy software and has a high number of security issues due to its depreciated
status. This is important to note because certain things are coded differently between the
two programming languages. If you were to look for help on a coding forum, such as
StackOverflow, it is important to know about these distinctions.

The11.0 inPython 3.11.0, tells us specificallywhat version of Python 3.Not all code
from certain libraries is backwards compatible, meaning some libraries require a specific
version of Python, so understanding this now as a concept will save confusion later. Each
time a new version comes out, new features are available, so it is important to stay up-to-
date with current versions, but it is not always essential.

Introduction to Python 7

1.1.3 Why Python?

For all the above reasons, I encourage humanists to learn Python as their first programming
language. It is one of the easiest languages to learn, straightforward to write, and can solve
most of the programmatic problems a humanist may face. The large quantities of libraries
and tutorials mean that there are few tasks that will prove impossible to do.

If you are sold on Python, then continue reading this textbook as we learn how to install
it and use it as humanists.

1.2 Installing Python

The most challenging thing about working with Python (or any programming language) is
learning how to install it correctly. Why is this such a challenge? Because installing Python
differs dramatically by operating system and version of operating system. I present to
you five different ways you can start programming Python from the easiest to the more
challenging.

1. Using the Trinket applications embedded throughout the digital version of the
textbook

2. Using Google Colab for each each individual section of the textbook

3. Using the free built-in Binder feature of this textbook

4. Using a free online Jupyter Notebook

5. Installing Python locally via Anaconda Navigator and using JupyterLab

If you are entirely new to programming, I recommend ignoring options 2–4 and simply
using option 1 during the first part of this textbook. In my experience, it is important early
in your programming journey to have as few roadblocks as possible. If you are interested in
jumping in with Python as quickly as possible, then use the freely available Trinket widgets
in the online version of this textbook and return to the installation of Python at a later time.

1.2.1 Trinket

Throughout the digital version of the textbook, you will see Trinket applications embedded
within each page. Trinket allows you to practice your coding skills without ever installing
Python. If you are new to coding and want to get started immediately without installing
Python, I recommend working with Trinket inside the digital version of this textbook.

These will allow for you to practice the lesson right inside the digital textbook.
You will be able to write your code inside this Trinket application and then click the

play button at the top. This will execute your code and populate the results on the right
hand output.

1.2.2 Using Google Colab

During the first part of the textbook, nearly all code can be executed with Trinket. Even
the section on Pandas can be done inside of Trinket. However, the later sections will be

https://trinket.io/

8 Introduction to Python for Humanists

increasingly difficult as they require libraries that are not supported by Trinket. At this time,
you will want to consider another option. Again, to delay the installation of Pyonn on your
machine, we can rely on other cloud-based alternatives.

There are two options for running this textbook’s code in the cloud outside of the
textbook: Google Colab and Binder (addressed below). In the top right corner of each page
is a rocket ship. If you hold your mouse of this rocket ship, you will have two options to
choose from, Binder or Colab. Click Colab.

FIGURE 1.1
Picture of Rocket Ship in Top-Right Corner of Online JupyterBook.

Once you click the Colab button you will be taken to Google Colab and see a Notebook
inside the Google Colab system that should look like this:

FIGURE 1.2
Demo of Google Colab Opened.

Introduction to Python 9

Once here, you can run the notebook.
Colab and Binder have their advantages. Google Colab will be far quicker but will

require you to install the requisite libraries for each page. For most of the first part of the
textbook, this will not be necessary as we will not be working with libraries. You will learn
how to install libraries locally and in a Jupyter Notebook (such as those used on Google
Colab) later in this part of the textbook. Once the libraries are installed, the entire notebook
can be run as if you were running the notebook locally. A downside to Google Colab is its
inability to leverage the data found within this textbook. This means that in some cases,
you will need to manually upload the data into Google Colab for some notebooks to run as
expected.

Another benefit of Google Colab is that it is connected to your Google account. This
means any changes that you make to the notebook can be saved onto your Google Drive
and used at a later date. Each time you open the notebook, however, a unique instance of
Python is created which means you will need to reinstall your libraries. Fortunately, this
process is quite quick.

1.2.3 Using Binder from JupyterBook

Another cloud-based solution is with Binder. Unlike Google Colab, Binder will load up an
environment for the entire textbook and install all libraries using the requirements.txt
file found in this textbook’s repository on GitHub. This means that Binder will take
substantially longer to load, but will contain the entire textbook. It will save the instance
for a period of time as well so that if you return to the same link in a short period of
time, there is a chance it will not have to reinstall all the libraries again. In my experience,
Binder can run into some issues that can be difficult to diagnose, especially if you are new
to programming. For this reason, I would recommend Google Colab over Binder to new
programmers.

AswithGoogle Colab, to begin, put yourmouse over the rocket ship icon in the top-right
portion of the page.

FIGURE 1.3
Demonstration of Rocket Ship in Top-Right Corner.

10 Introduction to Python for Humanists

Abutton should emerge that says “Binder”. Click it.

FIGURE 1.4
Selecting the Binder Button.

At this stage, your screen should look like should look like this:
If it does, then sit back and relax. It may take a few minutes as Binder builds the

environment. Once Binder is finished, click on “File” in the top left corner of the screen
and then select “New Notebook”.

FIGURE 1.5
Creating a New Notebook in Binder.

After this, select “Python 3 (ipykernal)”. This will open a fresh, new notebook.

FIGURE 1.6
Selecting the Python 3 Kernal for the New Notebook.

Introduction to Python 11

Now you should have a new notebook that looks like this:

FIGURE 1.7
Example of a New Notebook Page.

And now, you can fully follow along with this textbook.

1.2.4 Using Jupyter Notebooks Online

If you want to be a bit more independent and learn how to code in Python online without
Binder and this textbook, you can! You do not need to download and install Python on your
local computer either. Instead, you can use free online compilers that allow you follow along
with nearly all of this textbook without issue.

If this is your view at the moment, then click this link: https://jupyter.org/try
Once on the page click the picture that says Jupyter Notebook.

FIGURE 1.8
Creating a Jupyter Notebook Online.

https://jupyter.org

12 Introduction to Python for Humanists

After that, you will see a screen that looks like this:

FIGURE 1.9
Binder Creating a New Environment for the Notebook.

After a few minutes, the environment will load and you should see a notebook. Click
“File” in the top left corner, New Notebook, and select Python (Pyodide).

FIGURE 1.10
Creating a New Notebook.

Introduction to Python 13

Once loaded, you can follow along with this textbook in the new notebook.

FIGURE 1.11
Example of a New Notebook.

1.2.5 Installing Python Locally

If you wish to install Python locally and it is your first time, there are many problems that
can surface. For this reason, I am now recommending all students install via Anaconda
Navigator. It adds extra steps into the installation process, but it eliminates the potential for
mistakes to occur.

Anaconda Navigator is a user-friendly interface that handles the installation process for
you. It also allows for you to create environments, which are small areas on your computer
that have a unique version of Python and libraries installed. We will learn more about this
in Part I, Chapter 4 when we explore libraries.

In this chapter, I will walk you through the steps of installing Anaconda Navigator on
your machine, regardless of operating system.

Whenwewrite code in Python, we do so a few different ways, depending on that code’s
use. Because this is a textbook and the code I am writing is for presentation purposes, I am
using a JupyterNotebook. Other times, youmaywrite a program in an IDE, or an Integrated
Development Environment. Some of these include PyCharm, VS Code, etc. In other cases,
you will use Python in the terminal to perform quick tasks on data in a directory.

Anaconda Navigator removes the need for you to learn how to do all of this because
it allows for you to easily install JupyterLab which functions like an IDE but is a bit more
forgiving. In addition, you can call terminal sessions. I know these terms do not make sense
right now, but as your understanding of programming expands, this paragraph will make

14 Introduction to Python for Humanists

FIGURE 1.12
Anaconda’s Homepage.

more sense. For now, simply understand that Anaconda Navigator and JupyterLab (both of
which we install in this chapter), make your start to learning to code much, much simpler.

1.2.5.1 Download Anaconda Navigator

Now, click on the “Download” button as seen in Figure 1.13 and walk through the
installation process on your computer. Once complete, you will have Anaconda Navigator
installed.

1.2.5.2 Using Anaconda Navigator

Now that Anaconda Navigator is installed, you can use it by opening it up on your
computer. When you first see Anaconda Navigator, you will see several options on the left.
In environments, youwill only see one environment: base. Don’t worry about environments
this early in your Python career. For now, we will simply click the “Home” button on the
left.

1.2.5.3 Installing JupyterLab

In order to start using Python, there are a few different options available to you. You could
use a terminal and follow along with the textbook, but that can be quite difficult if you are
just starting out. Since this textbook was designed in JupyterLab, I think it makes the most
sense to install that software. Go ahead and click “Install” under JupyterLab. Once installed,
you will be able to “Launch” it and follow along with the textbook.

Introduction to Python 15

FIGURE 1.13
Download Individual Edition.

FIGURE 1.14
The Anaconda Navigator Main User Interface.

1.2.6 Conclusion

If at any point in the installation process you get frustrated, do not get discouraged. You are
not alone and it is not a simple or easy process. Thosewho have been programming for years
can make these steps look simple, but troubleshooting issues on your own is challenging.

16 Introduction to Python for Humanists

FIGURE 1.15
How to Install Jupyter Lab.

It is important to remember that programming in general is challenging. Try to view the
challenges that surface as a fun problems that need solving. Try to look at your mistakes
through a lens of Bob Ross and view them as happy accidents.

1.3 Coding Basics

Before we jump into the textbook, we should cover a few basic aspects of programming
that the reader may not know. These are some of the most essential terms and concepts that
you will see used throughout this textbook. Remember, you can always come back to this
section if you forget one of these terms.

1.3.1 The Print Function

The very first thing that every programmer learns is how to print something off using the
relevant programming language. In most tutorials, you will see the phrase “Hello, World!”
used. In this textbook, let’s try something a bit different. Let’s say I wanted to print off
“Hello, William”. We can do this in Python by using the print function. The print function
lets us print off some piece of data. In our case, that piece of data will be a piece of text,
known as a string (see below). Our text is “Hello, WilliamâŁž. The thing that we want to
print off must be located between an open parentheses and a close parentheses. Let’s try to
execute the print command in the cell below.

print("Hello, William!")

Hello, William!

Introduction to Python 17

As we can see, the code that we typed in the Jupyter cell outputted beneath it. Now, it
is your turn. Try to print off something. In order to print off text, you will need to use an
open and a close quotation mark. We will learn more about this as we meet strings in the
next chapter.

<IPython.lib.display.IFrame at 0x7f0a6c7b3af0>

This has worked wonderfully, but what if our Python notebook needs to be more
dynamic, meaning it needs to adjust based on some user input. Perhaps, we need to use
a name other than William based on some user-defined input. To do this, we would need
to store a piece of data in memory. We can do this in Python by creating a variable that will
point to an object. Before we get into how this is done, let’s first get to know objects and
variables.

1.3.2 Objects

When we import or create data within Python, we are essentially creating an object in
memory with a variable. These two words, object and variable mean slightly different
things, but are often used interchangeably. We will not get into the complexities of their
differences and why they exist in this textbook, but for now, view an object as something
that is created by a Python script and stored in your computer’s memory so that it can be
used later in a program.

Think of your computer’s memory rather like your own brain. Imagine if you needed to
remember what the word for “hello” is in German. You may use your memory rather like
a flashcard, where “hello” in English equates to “hallo” in German. In Python, we create
objects in a similar way. The object would be the dictionary entry of “hello: hallo”.

1.3.3 Variables

In order to reference this dictionary entry in memory, we need a way to reference it. We do
this with a variable. The variable is simply the name of the item in our script that will point
to that object in memory. Variables make it so that we can have an easy-to-remember name
to reference, call, and change that object in memory.

Variables can be created by typing a unique word, followed by an “=” sign, followed by
the specific data. As wewill learn throughout this chapter, there are many types of data that
are created differently. Let’s create our first object before we begin. This will be a string, or
a piece of text. (We will learn about these in more detail below.) In my case, I want to create
the object author. I want author to be associated with my name in memory. In the cell, or
block of code, below, let’s do this.

author = "William Mattingly"

Excellent! We have created our first object. Now, it is time to use that object. Below, we
will learn about ways we can manipulate strings, but for now, let’s simply see if that object
exists in memory. We can do this with the print function.

The print function will become your best friend in Python. It is, perhaps, the function I
usemost commonly. The reason for this is because the print function allows for you to easily
debug, or identify problems and fix them, within your code. It allows us to print off objects
that are stored in memory.

To use the print function, we type theword print followed by an open parentheses. After
the open parentheses, we place the object or that or piece of data that wewant to print. After

18 Introduction to Python for Humanists

that, we close the function with the close parentheses. Let’s try to print off our new object
author to make sure it is in memory.

print(author)

William Mattingly

Notice that when I execute the cell above, I see an output that relates to the object we
created above.Whatwould happen if I tried to print off that object, but I used a capital letter,
rather than a lowercase one at the beginning, so Author, rather than author?

1.3.4 Case Sensitivity

print(Author)

NameError Traceback (most recent call last)

Input In [3], in <cell line: 1>()

----> 1 print (Author)

NameError: name 'Author' is not defined

The scary looking block of text above indicates thatwehave produced an error in Python.
This mistake teaches us two things. First, Python is case sensitive. This means that if any
object (or string) will need to bematched in not only letters, but also the case of those letters.
Second, this mistake teaches us that we can only call objects that have been created and
stored in memory.

Now that we have the variable pointing to a specific piece of data, we canmake our print
function above a bit more dynamic. Let’s try and print off the same statement as before, but
with the new full author name. I don’t expect you to understand the specifics of the code
below, rather simply understand that we will frequently need to store variables in memory
so that we can use them later in our programs.

print(f"Hello, {author}!")

Hello, William Mattingly!

1.3.5 Reserved Words

When working with Python, there are a number of words known as reserve words. These
are words that cannot be used as variable names. As of Python version 3.6, there are a total
of 33 reserve words. It can sometimes be difficult to remember all of these reserve words, so
Python has a nice built in function, “help”. If we execute the following command, we will
see an entire list.

help("keywords")

Here is a list of the Python keywords. Enter any keyword to get more help.

False class from or
None continue global pass
True def if raise

(continues on next page)

Introduction to Python 19

(continued from previous page)

and del import return
as elif in try
assert else is while
async except lambda with
await finally nonlocal yield
break for not

These are words that you cannot use as a variable name.

1.3.6 Built-in Types

In addition to reserve words, there are also built-in types in Python. These are words that
you can use (as we will see) to convert one type of data into another. There are 94 of these
in total. Unlike reserve words, you can use a built-in type as a variable name. It is, however,
strongly discouraged to do so because it will overwrite the intended use of these variable
names in your script.

import builtins

[getattr(builtins, d) for d in dir(builtins) if isinstance(getattr(builtins, d), type)]

[ArithmeticError,
AssertionError,
AttributeError,
BaseException,
BlockingIOError,
BrokenPipeError,
BufferError,
BytesWarning,
ChildProcessError,
ConnectionAbortedError,
ConnectionError,
ConnectionRefusedError,
ConnectionResetError,
DeprecationWarning,
EOFError,
OSError,
Exception,
FileExistsError,
FileNotFoundError,
FloatingPointError,
FutureWarning,
GeneratorExit,
OSError,
ImportError,
ImportWarning,
IndentationError,
IndexError,
InterruptedError,
IsADirectoryError,
KeyError,
KeyboardInterrupt,
LookupError,
MemoryError,
ModuleNotFoundError,
NameError,

(continues on next page)

20 Introduction to Python for Humanists

(continued from previous page)

NotADirectoryError,
NotImplementedError,
OSError,
OverflowError,
PendingDeprecationWarning,
PermissionError,
ProcessLookupError,
RecursionError,
ReferenceError,
ResourceWarning,
RuntimeError,
RuntimeWarning,
StopAsyncIteration,
StopIteration,
SyntaxError,
SyntaxWarning,
SystemError,
SystemExit,
TabError,
TimeoutError,
TypeError,
UnboundLocalError,
UnicodeDecodeError,
UnicodeEncodeError,
UnicodeError,
UnicodeTranslateError,
UnicodeWarning,
UserWarning,
ValueError,
Warning,
OSError,
ZeroDivisionError,
_frozen_importlib.BuiltinImporter,
bool,
bytearray,
bytes,
classmethod,
complex,
dict,
enumerate,
filter,
float,
frozenset,
int,
list,
map,
memoryview,
object,
property,
range,
reversed,
set,
slice,
staticmethod,
str,

(continues on next page)

Introduction to Python 21

(continued from previous page)

super,
tuple,
type,
zip]

Of this long list, I recommend paying particular attention to the ones that you are more
likely to write naturally: bool, dict, float, int, list, map, object, property, range, reversed, set,
slice, str, super, tuple, type, and zip. You are more likely to use these as variable names by
accident than, say, ZeroDivisionError; and this shorter list is a lot easier to memorize.

1.3.7 Type Function

It is frequently necessary to check to see what type of data a variable is. To identify this, you
can use the built-in function type in Python. To use type, we use the command below with
the data we want to analyze placed between the two parentheses.

type("this is a string...")

str

1.3.8 Bugs

Throughout your programming career, you will often read or hear about bugs. A bug is
a problem in your code that either returns an error or an unintended result in the output.
Tracing down bugs and fixing them is known as debugging. Aside from figuring out how
to code solutions to problems, debugging can be one of the more time-consuming aspects
of writing a program, especially if it is quite complex. Throughout this textbook, we will
encounter common errors so that you can see them in this controlled space. We will also
walk through what the error means and how to resolve it. That said, you are likely to create
many other bugs as you try to apply the code in this textbook to your own data. That is
expected. Always remember to read each line of your Pyhon carefully and, if you have an
error message, identify where the error is coming from and what it is.

https://taylorandfrancis.com/

2
Data and Data Structures

In this chapter, we will be learning about data and data structures. As with any program-
ming language, it is important to have a basic understanding in these two concepts as
they are the building blocks for most things you will do in Python. Whenever you write
a program or do something with code, you are essentially writing commands to load, save,
interact with, and manipulate data in some way. Understanding the different types of data
and how to structure and store them is, therefore, essential.

2.1 Introduction to Data

2.1.1 What Is Data?

In Python there are seven key pieces of data and data structures which we will be working
with:

• Strings (text)

• Integers (whole numbers)

• Floats (decimal numbers)

• Booleans (True or False)

• lists

• tuples (lists that cannot be changed in memory)

• dictionaries (key : value)

In this chapter, we will explore each of these. While this section focuses on data: strings,
integers, floats, and Booleans; the next sectionwill focus on data structures: lists, tuples, and
dictionaries.

Data are pieces of information (the singular is datum) i.e., integers, floats, and strings.
Data structures are objects that make data relational, i.e., lists, tuples, and dictionaries. Start
to train your brain to recognize the Python syntax for these pieces of data anddata structures
discussed below.

For your convenience, here is a cheatsheet for helping you refer back to these types of
data.

DOI: 10.1201/9781003342175-3

http://dx.doi.org/10.1201/9781003342175-3

24 Introduction to Python for Humanists

Cheatsheet for Data Types and Data Structures in Python

Name Type Category Example Trick Mutable

string str text "William" quotes no
integer int number 1 no decimal no
float float number 1.1 with decimal no
Boolean bool boolean True True or False no
list list sequence [1, 1.1, "one"] [] yes
tuple tuple sequence (1, 1.1, "one") () no
set set sequence {1, 1.1, "one"} {} - unique yes
dictionary dict mapping {"name": "tom"} {key:value} yes

2.1.2 Strings

Strings are a sequence of characters. A good way to think about a string is as text. We can
create a string in python by designating a unique variable name and setting = to something
within quotation marks, i.e., " " or "".

The opening of a quotation mark indicates to Python that a string has begun and the
closing of the same style of a quotation mark indicates the close of a string. It is important
to use the same style of quotation mark for a string, either a double or a single.

Let’s take a look at a few examples of strings.

Examples of Strings

In our first example of a string, we will name our first string object with the variable name
first_string. Notice that we are using an underscore (_) to indicate a separation of two
words in our variable name. This is common practice in Python. We cannot use a space in a
variable name. Another naming convention could befirstString, where the first word is
lower cased while the start of each sequential word is capitalized. This naming convention,
while acceptable, is more common in other programming languages, such as JavaScript.

first_string = "This is a string."

Now that we have created our first object, let’s try and print it off. We can do this using
the print function.

print(first_string)

This is a string.

Let’s take a look at another example. This time, however, we will use two ’.

second_string = 'This is a string too.'
print(second_string)

This is a string too.

Data and Data Structures 25

Let’s now take a look at a bad example of a string. In the example below, we will
intentionally try to create an error message by combining two different types of quotation
marks.

bad_string = "This is a bad example of a string'

Input In [6]
bad_string = "This is a bad example of a string'

ˆ
SyntaxError: EOL while scanning string literal

This error message tells us that we have triggered a “SyntaxError”. A SyntaxError is a
Python error in which we have used improper syntax, or coding language. This means that
when our computer tries to execute the above code, it does not know how to interpret the
line. You will frequently encounter errors like this in your journey as a programmer.

It is always important to read the error message as it will inform you about the specifics
of the problem. For example, I can see that my error was triggered because of something in
the input cell 6. If youwere executing this same commandwithin a Python script, youwould
see the specific line that triggered the error. This allows you to begin to debug or identify
the source of the error and fix it. If, for some reason, you cannot understand the cause of the
error, it may help to Google the error message and search for answers on forums, such as
StackOverflow.

Sometimes, it will be necessary to have a very long string that spansmultiple lineswithin
a Python script. In these instances, you can use three of the same quotationmark style (single
or double) consistently to create a string over multiple lines.

long_string = '''

This is a verrry long string.

'''

print(long_string)

This is a verrry long string.

2.1.3 Working with Strings as Data

Often when working within Python, you will not be simply creating data, you will
be manipulating it and changing it. Because humanists frequently work with strings, I
recommend spending a good deal of time practicing and memorizing the basic ways we
work with strings in Python via the built-in methods.

In order to interact with strings as pieces of data, we use methods and functions. The
chief functions for interacting with strings on a basic level come standard with Python. This
means that you do not need to install third-party libraries. Later in this textbook we will do
more advanced things with strings using third-party libraries, such as Regex, but for now,
we will simply work with the basic methods.

Let’s learn to manipulate strings now through code, but first we need to create a string.
Let’s call it sentence.

sentence = "I am going to learn how to program in Python!"

26 Introduction to Python for Humanists

2.1.3.1 Upper Method

It is not a very clever name, but it will work for our purposes. Now, let’s try to convert the
entire string into all uppercase letters. We can do this with the method .upper(). Notice
that the .upper() is coming after the string and within the () are no arguments. This is a
way you can easily identify a method (as opposed to a function). We will learn more about
these distinctions in the chapters on functions and classes.

print(sentence.upper())

I AM GOING TO LEARN HOW TO PROGRAM IN PYTHON!

2.1.3.2 Lower Method

Noice that our string is now all uppercase. We can do the same thing with the .lower()
method, but this method will make everything in the string lowercase.

print(sentence.lower())

i am going to learn how to program in python!

2.1.3.3 Capitalize Method

On the surface, these methods may appear to only be useful in niche circumstances. While
these methods are useful for making strings look the way you want them to look, they have
far greater utility. Imagine if you wanted to search for a name, “William”, in a string. What
if the data you are examining is from emails, text messages, etc. Williammay be capitalized
or not. This means that you would have to run two searches for William across a string. If,
however, you lowercase the string before you search, you can simply search for “william”
and you will find all hits. This is one of the things that happens on the back-end of most
search engines to ensure that your search is not strictly case-sensitive. In Python, however,
it is important to do this step of data cleaning before running searches over strings.

Let’s explore another method, .capitalize(). This method will allow you to capital-
ize a string.

first_name = "william"

print(first_name.capitalize())

William

I will use this in niche circumstances, particularly when I am performing data cleaning
and need to ensure that all names or proper nouns in a dataset are cleaned and well-
structured.

2.1.3.4 Replace Method

Perhaps the most useful string method is .replace(). Notice in the cells below, replace
takes a mandatory of two arguments, or things passed between the parentheses. Each is
separated by a comma. The first argument is the substring or piece of the string that you
want to replace and the second argument is what you want to replace it with. Why is this so
useful? If you are using Python to analyze texts, those texts will, I promise, never be well-
cleaned. They may have bad encoding, characters that will throw off searches, bad OCR,

Data and Data Structures 27

multiple line breaks, hyphenated characters, the list goes on. The .replace() method
allows you to quickly and effectively clean textual data so that it can be standardized.

Unlike the above methods, for .replace(), we need to put two things within the
parentheses. These are known as arguments. This method requires two and they must be
in order. The first is the thing that you want to replace and the second is the thing that you
want to replace it with. These will be separated by a parentheses and both must be strings.
It should, therefore, look something like this:

.replace("the thing to replace", "the thing you want to replace it with")

In the example below, let’s try and replace the period at the end of “Mattingly.”

introduction = "My name is William Mattingly."

print(introduction.replace(".", ""))

My name is William Mattingly

Excellent! Now, let’s try and reprint off introduction_sentence and see what
happens.

print(introduction)

My name is William Mattingly.

Uh oh! Something is not right. Nothing has changed! Indeed, this is because strings are
immutable objects. Immutable objects are objects that cannot be changed in memory. As we
will see in the next chapter with lists, the other type of object is one that can be changed
in memory. These are known as mutable objects. In order to change a string, therefore,
you must recreate it in memory or create a new string object from it. Let’s try and do that
below.

new_introduction = introduction.replace(".", "")

print(new_introduction)

My name is William Mattingly

2.1.3.5 Split Method

Strings have a lot of other useful methods that we will be learning about throughout this
textbook, such as the split()methodwhich returns a list of substrings, or smaller strings,
that are split by the delimiter, which is the argument of the method. The delimiter tells
Python how to split the string. By default, split()will split your string at the whitespace.
Let’s try and split the following string.

book_name = "Harry Potter and the Chamber of Secrets"

As with replace, split() is a method and, therefore, we use it with a “.” after the
variable name.

print(book_name.split())

28 Introduction to Python for Humanists

['Harry', 'Potter', 'and', 'the', 'Chamber', 'of', 'Secrets']

Our book name is now split into individual words thanks to the split function’s default
delimiter which is the white space. Notice, however, that the delimiter vanishes from our
list of substrings. In the next chapter, we will learn about data structures, such as lists. In
that section, we will learn how to grab specific indices, or sections, of the list.

Split can also take an argument that identifieswhere to split a string, e.g. something other
than a whitespace. Let’s say, I were interested in grabbing the subtitle of the book name. I
could split the string at the “and”.

print(book_name.split(" and "))

['Harry Potter', 'the Chamber of Secrets']

As we can see, we have successfully separated the title from the subtitle. We will
be working with strings a lot more as we progress through this textbook. You should
at this point be familiar with what strings are, how to create them, and how to interact
with them through some basic methods, such as upper(), lower(), capitalize(),
replace(), and split().

2.1.4 Numbers (Integers and Floats)

Numbers are represented in programming languages in several ways. The two we will deal
with are integers and floats.

An integer is a digit that does not contain a decimal place, e.g. 1 or 2 or 3. This can be a
number of any size, such as 100,001,200. Afloat, on the other hand, is a digit with a decimal
place. So, while 1 is an integer, 1.0 is a float. Floats, like integers, can be of any size, but
they necessarily have a decimal place, e.g. 200.0020002938. In Python, you do not need any
special characters to create an integer or float object. You simply need an equal sign. In the
example below,wehave two objectswhich are createdwith a single equal sign. These objects
are titled an_integer and a_float with the former being an object that corresponds to
the integer 1 and the latter being an object that corresponds to the float 1.1.

Examples of Numbers

int1 = 1

print(int1)

1

float1 = 1.1

print (float1)

1.1

Data and Data Structures 29

2.1.5 Working with Numbers as Data

Now that you understand how strings work, let’s begin exploring another type of data:
numbers. Numbers in Python exist in two chief forms:

• integers

• floats

As noted above, integers are numbers without a decimal point, whereas floats are
numbers with a decimal point. This is am important distinction that you should remember,
especially when working with data imported from and exported to Excel.

As digital humanists, you might be thinking to yourself, “I just work with text, why
should I care so much about numbers?” The answer? Numbers allow us to perform
quantitative analysis. What if you wished to know the times a specific author wrote to a
colleague or to which places he wrote most frequently, as was the case with the Republic of
Letters project at Stanford?

To perform that kind of analysis, you need a command of how numbers work in Python,
how to perform basic mathematical functions on those numbers, and how to interact with
them. Further, numbers are essential to understand in order to perform more advanced
functions in Python, such as loops, explored in Chapter 3.

Throughout your digital humanities project, you will very likely need to manipulate
numbers through mathematical operations. Here is a cheatsheet of the common operations.

Cheatsheet for Mathematical Operations

operation code description example result

addition + adds numbers together 1+1 2
subtraction - subtracts one number from another 1-1 0
multiplication * multiplies two numbers 1*2 2
exponential
multiplication

** performs exponential multiplication 2**2 4

division / divides one number from another 2/2 1
modulo % remainder 2%7 1
floor // occurences 2//7 3

The way in which you create a number object in Python is the to create an object
name, use the equal sign and type the number. If your number has a decimal, Python will
automatically consider it a float. If it does not, it will automatically consider it an integer.
Let’s create an integer and a float.

an_integer = 1
print(an_integer)

1

a_float = 1.1
print(a_float)

1.1

30 Introduction to Python for Humanists

2.1.6 Booleans

The term boolean comes from Boolean algebra, which is a type of mathematics that
works in binary logic. Binary is the basis for all computers, save for the more nascent
quantum computers. Binary is 0 or 1; off or on; true or false. A boolean object in pro-
gramming languages is either True or False. True is 1, while False is 0. In Python we
can express these concepts with capitalized T or F for True or False. Let’s make one such
object now.

Examples of Booleans

bool1 = True

print(bool1)

True

2.1.7 Conclusion

This section has introduced you to some of the essential types of data: strings, integers,
floats, and booleans. It has also introduced you to some of the key methods and operations
that you can perform on strings and numbers. Before moving onto the next chapter, I
recommend spending some time and testing out these methods on your own data. Try and
manipulate an input text to locate and retrieve specific information.

2.2 Introduction to Data Structures

2.2.1 Data Structures

In the last section, we met strings, integers, floats, and booleans. Each of these were types of
data. Strings, for example, allowed us to work with text and numbers allowed us to work
with integers and floats. In this chapter, we will begin working with data structures. Data
structures are ways of storing multiple kinds of data in a systematic way. In Python, these
are created as objects that can be stored in memory and called later in a script. They are
divided into two categories: mutable and immutable. We encountered these terms in the
last section, but we will explore what they mean in more depth below.

Data and Data Structures 31

Throughout this section, we will learn about some of the key types of data structures,
how they are different, and how they can be used. We will only cover these in a cursory
manner. Throughout this textbook, we will use these data structures as we write code
and perform data cleaning and data analysis tasks. To keep things simple for now, we
will focus on four types of data structures: lists, tuples, sets, and dictionaries. There are
other types of data structures in Python, but these are the core four that you will use most
frequently.

2.2.2 Lists

The first data structure we will work with is known as a list. Lists are precisely what they
sound like, a list of data. Aswewill see below, there aremultipleways of storing information
in a list-like manner in Python, such as with tuples and sets, but the way we create lists and
way we interact with lists is distinct.

Lists and tuples are identical with one major exception: lists are mutable. This means
that you can create a list object and then alter it in memory. This allows for you to do very
powerful things to lists that you cannot do to tuples. And these are going to be one of the
key data structures you use in all digital humanities projects. The reason? We often need to
adjust data while working with it.

As with data, we can create a list object in memory by creating a variable followed by an
equal sign. To tell Python that the specific type of object we are creating is a list, we use an
open and a close bracket. Each item in the list will be separated by a comma. Lists can store
any type of data. To see this in action, let’s create our first list.

first_list = [1, 1.0, "one"]
print(first_list)

[1, 1.0, 'one']

2.2.2.1 Indexing a List

In Python, we will frequently need to access a piece of data within a list or some other data
structure. This is known as indexing. The way in which we index a list is with an open and
a close bracket within which we place the position at which the data sits that we want to
access. It is important to note that Python is a zero-index language. This means that we
always begin with the number 0 and then count upward, so the item that sits in the first
position in our list is index 0.

Let’s grab the item at index 0 in first_list.

print(first_list[0])

1

In the cell below try to grab the string “one” from first_list.

print(first_list)

[1, 1.0, 'one']

Notice that we have printed off successfully the number 1. Often times, though, it is
important to index multiple items in a list. If we want to do this, we use “[]” again. Within
the brackets we will have a start position and an end position. The end position will be

32 Introduction to Python for Humanists

the point after we want to grab. These will be separated by a “:”. In code, it would look
something like this:

index_item[start:end]

Let’s say, we wanted to grab the first three items from the list, we would want to do
something like this.

print(first_list[0:2])

[1, 1.0]

We can also work backwards with indexing. We can, for example, use a −1 to grab the
final item in the list.

print(first_list[-1])

one

We can also use range indexing to grab the final three items. In Python, if you index a
list with no end point, it will grab everything up to the end of that list. We can see this in
the two examples below.

print(first_list[-2:])

[1.0, 'one']

We can likewise do the same in reverse by grabbing all indices up to the first index. In
other words, the item in index 0.

print(first_list[:1])

[1]

2.2.3 Tuples

Tuples are lists of data that cannot be changed. When we look at lists above, we will see
that lists are the exact same thing as tuples, except they can be changed. We can distinguish
tuples from lists by theway inwhich they are formed.While lists use square brackets, tuples
use parentheses.We create a tuple, like the example below. Our tuple object is a_tuple and
the tuple consist of three items: an integer 1, a float 1.0, and a string of “one”. Lists and tuples
can contain all three of these types of data. The way in which we separate items in a tuple
is with a comma.

first_tuple = (1, 1.0, "one")

Data and Data Structures 33

print(first_tuple)

(1, 1.0, 'one')

In the Tricket application above, try to create a tuple and index it.

2.2.4 Mutability vs Immutability

As noted above, tuples are immutable which means they cannot be changed. Let’s see
precisely what this means in practice. Say, we wanted to add to a list. We can do this
with the .append() method. This will take one argument, or piece of information placed
between the parentheses. You will learn about arguments later when we discuss functions
and methods in greater depth. For now, understand that the information passed between
the parentheses tells the method or function what is needed to perform the function. In this
case, .append() allows us to append, or add, something to a list. The argument that we
pass, “one”, tells what we want to append. In this case, the string, “one”.

first_list.append("one")

print(first_list)

[1, 1.0, 'one', 'one']

Notice that we do not have an error. This is because our list is mutable, or changeable.
This means that we can add to it, delete items from it, and other operations that allow
us to change how it is stored in memory. Tuples, on the other hand, are immutable, or
unchangeable. Let’s try and perform the same method on the tuple and see what happens.

first_tuple.append("one")

Notice that we get an AttributeError. This means that a tuple does not have the
ability to use the appendmethod. This does not exist for tuples because they are immutable
or unchangeable. The onlyway to alter the object name,first_tuple, is to entirely replace
it in memory.

2.2.5 Sets (Bonus Data Structure)

There is one other data structure similar to lists and tuples and I include it here as a bonus
data structure. This is the set. Aset is identical to a list. It is mutable, meaningwe can update
it, but unlike a list, it cannot contain duplicates. This is useful in niche circumstances, such
as when you need to remove all duplicates from a list. I include it here just so that you are
aware that other types of data structures do exist.

34 Introduction to Python for Humanists

first_set = {1, 1.1, "one", "one"}
print (first_set)

{1, 'one', 1.1}

2.2.6 Dictionaries

Like tuples and lists, dictionaries are a data structure in Python. Like lists, dictionaries are
mutable, meaning they can be changed in memory. Unlike tuples and lists, dictionaries
are not lists of data. Instead, they have two components: keys and values. These two
components are separated by a colon. All of this is contained within squiggly brackets. In
the example below, we have a dictionary, a_dict, with a key of “name” and a value of
“William”.

names = {
"first_name": "William",
"last_name": "Mattingly"
}

print(names)

{'first_name': 'William', 'last_name': 'Mattingly'}

In digital humanities projects, dictionaries are particularly useful for structuring com-
plex data that you may have in Excel with each key being an Excel column and each value
being its corresponding value. The dictionary name could be the name of the individual to
whom the row corresponds. Like lists and tuples, you can embed data structures within a
Python dictionary.

While we could realistically store our data in a list such as the one below (name_list),
we would need to be consistent and always place the first name in index 0 and last name in
index 1. This introduces potential issues later in a project. Imagine if one programmer left
a project. Without good documentation, there is nothing inherent in this list that equates
index 0 to first name and index 1 to last name. It is entirely up to the reader of the data to
make sense of this data structure.

Remember, in programming it is always best to be explicit and produce readable code
that others can understand. The dictionary allows us to create keys that indicatewith greater
specificity about the type of data with which we are working. We know from the names
dictionary above that “William” is a first name and “Mattingly” is a last name without
having to think about which index each string resides. We can do this because the keys
of the dictionary are explicit.

name_list = ["William", "Mattingly"]
print (name_list)

['William', 'Mattingly']

2.2.6.1 Indexing Dictionaries

In Python, we will frequently need to index a dictionary. Dictionaries, remember, are a bit
different from lists and tuples. Rather than being a sequence of items in a list, a dictionary
is a collection of keys and corresponding values. To index a dictionary, therefore, we need

Data and Data Structures 35

to work a bit differently. Rather than indexing at a specific point, we index dictionaries at a
specific key.

To understand this, it is best to see it in practice, so let’s go ahead and try to grab the first
name in our dictionary names.

print (names["first_name"])

William

https://taylorandfrancis.com/

3
Loops and Logic

3.1 Introduction to Loops

3.1.1 What Are Loops?

Loops are a fundamental concept in all programming languages. They are essential in nearly
every piece of code that I write and my experience is far from unique. Loops are essential
because they allow you to systematically iterate over data. Iteration is the process by which
you move across a piece of data or collection of data. As we will learn in this section, there
are two types of loops in Python:

1. For loops

2. While loops

While most tasks can be achieved with either loop, the way in which you use them is
different. By the end of this section, you will understand not only how to construct a loop
in Python, but have a general idea about when to use which loop. As you code more and
more, you will learn that coders tend to favor one type of loop over the other. For me (pun
intended), I prefer the for loop. If you askedmewhy, I could not give you an answer. Maybe
by the end of this section, you will have a favorite as well!

3.1.2 For Loops

Agood way to think about a for loop is to first imagine in your mind a list of names:
Tom, Nancy, Drew, Steph.
Notice that in our list above, we have four names. Each name is separated by a comma.

The for loop allows us to move across this list where each comma occurs. Still to this day,
when I write a for loop, I say the following in my mind:

“For each item in this list, do something.”
Let’s imagine that we wanted to use Python to print off each of the names. I would say

in my mind:
“For each item in this list, print off the name.”
I have not written a single bit of code, rather expressed a type of logic, or series of

operations in regular English. This is known as pseudo-code. Pseudo-code is a great way to
thinking about code because it is language-agnostic. By this I mean that the same pseudo-
code can be applied to Python and C alike. It is useful to think about psudeo-code because it
focuses on the logic of the statements, not the code. As you write more complex programs,
you will find that it is not always the programming language that is difficult and produces
errors, rather the logic behind how you have rendered that language. Pseduo-code lets you
first figure out the logic of what you want to do, then you can focus on the execution of
that logic.

DOI: 10.1201/9781003342175-4

http://dx.doi.org/10.1201/9781003342175-4

38 Introduction to Python for Humanists

The above statement in English (“For each item in this list, print off the name.”) will not
work if I write it in a Python file, but it allows for me to get the logic of what I want to do
down on paper. Next, I would need to write out this logic into normal Python syntax. Let’s
try and do that now.

First, let’s make a list of names by creating an object named name_list. You may also
want to call this variable nameList. Either convention is fine.

name_list = ["Tom", "Nancy", "Drew", "Steph"]

Great! Now that we have our name_list variable, let’s try and iterate over it, or pass
over each item in that list. To do this in Python, we would write something like this:

for name in name_list:
print(name)

Tom
Nancy
Drew
Steph

Let’s break down a series of things that are happening here. We start off by writing
“for”. This tells Python that we are about to enter a for loop and that it should check for
proper syntax. Next, we have the word “name”. This is a variable that will point to an object
created in memory. It will be changed each time the loop iterates over the next item in the
expression, “name_list”. This word “name_list” corresponds to the object name that I
want to iterate over. Finally there is a “:”. In Python, this is the way that we note a nested
portion of code. We will use these in nearly every script we write because we frequently
need to nest items in code. Once Python sees a “:”, it will expect the next line to be indented.

On the next line, we have an indent followed by print. If you remember correctly, the
print function allows us to print something off in our output. Next, we have what we want
to be printed, the variable “name”. In other words, we want each name that is temporarily
created in memory to be printed off.

Notice in the block of code below, I have changed the object “name” to “item”. The name
here does notmatter. It is simply aword that will indicate the name of the object that you are
creating. It is considered Pythonic, or good form, to select a name for the object that makes
sense. Because this is a name_list, it makes sense to use the word “name” for that object
name so that others who read your code will understand it better.

for item in name_list:
print (item)

Tom
Nancy
Drew
Steph

While being able to print things off in a for loop is useful, especially when debugging,
usually for loops are used to modify data in some capacity. In the cell below, I want to
be able to create a new list based on the list of names in namelist. However, I know that
all individuals in that list have the last name “Mattingly”. I could manually add the last
name Mattingly to each individual person, but that would be tedious and, if I had a list of
thousands of names, impractical.

Within the for loop, therefore, I want to modify the existing string and add it to the new
list, “new_names”.We canmodify a string in several ways. For now,wewill use the simpler

Loops and Logic 39

approach of simply adding a plus sign (+) between the object name and the new piece of
information I want to add to it, ” Mattingly”

new_names = []
for name in name_list:

print (name+" Mattingly")
new_names.append(name+" Mattingly")

Tom Mattingly
Nancy Mattingly
Drew Mattingly
Steph Mattingly

Now that we have executed the cell above, let’s see how our new list looks. Let’s print
it off.

print(new_names)

['Tom Mattingly', 'Nancy Mattingly', 'Drew Mattingly', 'Steph Mattingly']

Viola! Like magic, we have brought two different pieces of data together in a for loop.

3.1.3 List Comprehension

Sometimes in someone’s code you will see this same idea expressed in a single line of code.
It will look like this:

new_names_comprehension = [name+" Mattingly" for name in name_list]
print(new_names_comprehension)

['Tom Mattingly', 'Nancy Mattingly', 'Drew Mattingly', 'Steph Mattingly']

This is known as list comprehension. List comprehension is a way of creating a list on
a single line with a loop appearing within the open and close brackets. This single line does
precisely the same thing as the four lines of code above, but allows a programmer to express
it in tighter code. Tighter code is a phrase often used to describe code that is more concise.
This is often what polished, final code should look like and it is a style in which computer
scientists in particular try to write. While tighter code is often considered more polished, it
can be more difficult for humanists or novice programmers to understand. Like writing in
a spoken language, the purpose of writing in code is also to be readable. You should know
your audience. If your audience are those who are not computer scientists, perhaps writing
more verbose code is better.

Let’s parse out the components of this single line. First, we have the object that we
want to create with the variable name “new_names_comprehension” we set this equal
to an open bracket. Within this open bracket we state what we want to do to the temporary
variable created across the loop. In this case, that variable is again “name”.Again,we specify
that we want to add ” Mattingly” to that variable name. Next, we specify the loop, e.g. “for
name in name_list”. Finally, we use a closed bracket to indicate the end of that statement.

For now, focus on being more verbose and writing out your code as seen in the first
example. This will help you get the logic down and debug issues as they surface more
easily as your bugs will appear on a specific line that caused the error. When you get more
comfortable with Python, then try to use list comprehension.

I am including list comprehension here not so that you use it, but so that you will see
it here first in a controlled setting. You will likely see this in GitHub repositories and on

40 Introduction to Python for Humanists

StackOverflow with little explanation. Now that you have seen what list comprehension
looks like and understand its components, you will be able to parse that code a bit more
easily.

3.1.4 Indexing a List with and without Enumerate

Often when we create a loop, we need to understand where we are in a specific index of a
list. As you will find with programming, there are multiple ways to do this.

Let’s explore a simple approach first so that you can understand the logic behind the
approach. Next, we will see a cleaner, but more complex example.

i = 0
for name in name_list:

print(i)
print(name)
i=i+1

0
Tom
1
Nancy
2
Drew
3
Steph

In the above example, everything is nearly identical to our initial for loop with one clear
addition, the variable “i”. The name “i” here represents a counter that we are storing outside
of our loop. We initially set this variable to 0. As we iterate over our loop, we conclude each
pass with the code “i=i+1”. This command says to Python take the object “i” and whatever
that number is add 1 to it. This means that each time we pass over our name_list, we know
precisely where we are in the index.

We can write this exact same code, however, by using the built-in function “enumerate”.
Enumerate automatically creates a variable for us during our loop and ticks it up each time
we pass over an item in the list. We can use enumerate to write cleaner and tighter code.

for i, name in enumerate(name_list):
print(i)
print(name)

0
Tom
1
Nancy
2
Drew
3
Steph

Notice that we have the precise same result as above. Let’s break down precisely what
is happening in this example.

The only thing that has changed is the following line:

for i, name in enumerate(name_list):

Loops and Logic 41

Notice the addition of “i, name”. This means that we have two variables that we will
be creating each time we loop. When using enumerate, the very first variable should
always be “i” or something that points to the integer that will count up. Next, we have
a comma. This separates the two variables out in the loop. Next, we have the item in the
list that we create as we iterate over our data. This is the same variable name that we
used before, “name”. Finally, we have “enumerate(name_list):” This tells Python to use
enumerate on the name_list. The enumerate function is what creates the “i” for us in
memory.

In the area below, try to create your own list and iterate over it. Next, try to use enumerate
and print off the index of each item in the list.

<IPython.lib.display.IFrame at 0x7fa632fabe50>

3.1.5 Operators

Wewill very often in loops need to identify Comparison Operators (equal to, less than, etc).
Here is a list of them:

1. Equal to (==)

2. Greater than (>)

3. Less than (<)

4. Less than or equal to (<=)

5. Greater than or equal to (>=)

6. Not equal to (!=)

Operators allow us to return a Boolean (True or False) about the question we pose with
them. Say, for example, we wanted to know if 1 was less than 2. This is True, but in Python
we could structure it like so:

print(1 < 2)

True

We could also structure the false statement of if 1 is greater than 2.

print(1 > 2)

False

Or even if 1 is equal to 2. Notice the double = here. We have to use two = because one =
in Python sets up a new variable.

print(1 == 2)

False

In math, we use an equal sign with a slash through it to state not equal to, but in code
that does not work so cleanly because it is not a character on the keyboard. Instead,we use

42 Introduction to Python for Humanists

!=. Believe it or not, you will get really good about writing != over time. If we wanted to see
if 1 is not equal to 2, we would write this:

print (1 != 2)

True

On the surface, it may seem like you would never need to use comparison operators.
You know that 1 is not equal to 2. In fact, you will use them all the time because comparison
operators allow for you to leverage Boolean logic, or True–False logic. This is particular
useful in loops. A good way to demonstrate this is with a while loop.

3.1.6 While Loops

These operators allow us to structure complex conditions within our loop. So, we can say
that while something is equal to something else, Python should do x. We will see this same
concept in the following section as we explore conditionals. I think the best way to learn
about this concept is to jump in and explore it.

In the for loop, the loop iterated over a set of data. A while loop is a bit different. In a
while loop, the loop will run continuously while something is true. Like the for loop, we
create the loop with a set of commands beginning with its name, while. Next we state the
condition to be met that will result in breaking, or stoping the loop. Let’s say we wanted
to count from 0 to 10. We would create an object named x and set that equal to our start
position. Then we would state so long as x != (not equal to) 10, print off x. In order to ensure
that x ticks up, we need tomake sure that we change the object from x to x+1 so that it moves
up by 1 number each time.

x=0
while x != 10:

print (x)
x=x+1

0
1
2
3
4
5
6
7
8
9

I know I have stated this before, but it is worth mentioning again. In coding, there us
usually never one way to do a task. Notice in the block of code below what is different?
Why don’t you take a look at it and see if you can figure out precisely what is happening
and why it succeeds in performing the same task.

x=0
while x < 10:

print (x)
x=x+1

Loops and Logic 43

0
1
2
3
4
5
6
7
8
9

3.2 Conditionals

Like loops, conditionals are an essential component of all programming languages. Condi-
tionals are a type of logic in programming that allow you to control if something happens
based on condition that something is true or false. Conditionals are always binary. I always
find it useful to think about conditionals in plain English first.

If something is true, then do this. If that something is not true, then you can specify what
should happen if that is the case. In pseudo-code, it would look something like this:

if something is true:
do this

if not:
do this instead.

Notice again the indentation. As we progress throughout this chapter, you will learn
three essential components of conditional statements.

Cheatsheet for Conditionals

code description

if Functions as the start of a condition
else Functions as “if not”
elif Functions as “or if”

3.2.1 If Statement

Let’s begin with the if statement by first creating an object called x and make it equal to 0.
Now, we can say if x is equal to 0, then print it off. Notice in the code below the “:”
and the indentation afterwards. Just as we saw with loops, the “:” indicates that the next
line should be indented.Whenever you have a line of code that uses a conditional statement,
a “:” must always be at the end of the line to indicate to Python where that condition ends.
The next line also, must always be indented.

x=0
if x==0:

print (x)

0

We have successfully printed off the x variable because the condition we stated is True.
Let’s try and state the opposite of this. Let’s set our condition to x == 1.

44 Introduction to Python for Humanists

if x==1:
print (x)

Notice that nothing happens. This is because our condition is False.

3.2.2 Else Statement

If we want something to occur if that condition is not met, we can use the else statement.
Think of else as “if not” in English. In pseudo-code, elsewould look something like this:

if this condition is True:
do this

if not (else):
do something else

Let’s write that out in real code.

if x==1:
print (x)

else:
print ("X is not 1")

X is not 1

Notice that else has the same indentation placement as the if and it too has a “:” followed
by indented code. As noted above, all conditional statement lines must conclude with a
colon and the proceeding line be indented.

Theelse statement is important because it allows a programmer to createmore complex
logic.

3.2.3 Elif and the ‘in’ Operator with Strings

I debated including elif in this section for fear that it may introduce too many new things
at once, but I think it is import to at least be familiar with its existence, even if you will not
be using it right away. In English syntax, elif functions rather like “or if”.

if condition 1 is True:
do this

or if (elif) condition 2 is True:
do this instead

Within this paradigm, it functions a little differently than else. In an else statement,
we perform a specific action if the preceding conditionwas False. With elif, we state that
another condition must be true.

On the surface, this may seem to function as two sequential if statements, but it
functions a little differently than a regular if statement. To understand how, it is best to
see the elif statement in code.

In the code below, youwill seewithin the conditional thewordin, known as an operator.
In Python, in functions rather like the way it functions in English. It is used to test if
something is inside a piece of data or a data structure. So, if we want to know if some string
is within another string, we can use in to see if that is the case.

Loops and Logic 45

In the example below, wewant to know if a substring, or a smaller string, appears within
the text variable.

text = "I know two people. Marge and Susan."
if "Marge" in text:

print ("Marge Found")
elif "Susan" in text:

print ("Susan Found")

Marge Found

This output may appear to be surprising. BothMarge and Susan are in the string, “text”.
Why, then, do we not see “Susan Found” printed off? The reason is because elif only is
triggered if one of the preceding if or other elif statements has not been triggered. If I
wanted to check if both conditions were met, I would, instead, use two if statements, like
so:

if "Marge" in text:
print ("Marge Found")

if "Susan" in text:
print ("Susan Found")

Marge Found
Susan Found

The elif statement allows for more robust logic and sequential conditionals to occur.
When you first start programming, you may not use elif frequently, but it is important,
even early in your programming career, to be familiar with it.

3.2.4 Conditionals and Lists with ‘in’ and ‘not in’

Conditionals are frequently necessary when checking to see if something is in a list.
Remember, lists are data structures that contain a list of data. The data contained within
a list can be strings, integers, floats, or even other data structures, such as lists, tuples, and
dictionaries. You will frequently need to understand what a list contains. To do this, we can
use conditionals with the same in operator that we saw above.

Let’s begin by first making a list called names.

names = ["Terry", "Marge", "Joanne"]

Now that we have a list of names, let’s use the in operator to see if the name “Marge”
is in names.

Warning: Remember: Python is case-sensitive.

46 Introduction to Python for Humanists

In pseudo-code, we could write this as:

if Marge is in names:
then print off True

Because Python resembles English syntax so closely, we only have to make a few
modifications to make this work in actual code.

if "Marge" in names:
print (True)

True

This same thing can also be done in reverse.What ifwewanted to know if another person
was not in names. We could write that as pseudo-code that looks something like this:

if Tom is not in names:
then print off Tom is not on the list

Python makes this construction simple because the in operator has a negative version
to, not in. This operator functions precisely the same way, but it is the opposite of the in
operator. Let’s see it in action.

if "Tom" not in names:
print ("Tom is not in the list.")

Tom is not in the list.

Notice that we have successfully created a conditional statement that checked to see if a
string is not in names. Both in and not in also work with checking if a substring appears
in a string. If we wanted to see if a a substring Jerry appears in the text Tom and Jerry,
we could create a conditional that looks something like this:

if "Tom" in "Tom and Jerry":
print("Tom found.")

Tom found.

3.2.5 Conclusion

This section has introduced the three essential components of conditional statements: if,
else, and elif. I would recommend practicingwith these on your own data. The best way
to learn about conditionals is to use them. Remember, as you write them in Python, speak
out loud in English. I still speak aloud (or in my mind) pseudo code as I write in proper
Python syntax.

4
Formal Coding: Functions, Classes, and Libraries

4.1 Functions

4.1.1 Introduction

In this section, you will learn all about functions. You have already been exposed to several
functions in this textbook, such as the print() function. My goal in this section is to teach
you how to create your own functions.

Functions exist in all programming languages. They allow you towrite a set of code that
can be used later in your program. They are essential because they allow you to not rewrite
the same block of code over and over again. Good code is code that does not repeat. In other
words, if your program has a task that it needs to do repetitively, then you should develop
that code into a clean function (or class which we will meet in the next section).

A function, as we will see has five parts:

1. The name of the function

2. The arguments passed to the function (optional)

3. A docstring that explains the function (optional)

4. The code of the function

5. The returned data (optional)

By the end of this section, you will understand each of these components.

4.1.2 Functions in Action

I think the best way to learn about functions is to see them in action before breaking down
what is happening. Let’s take a look at the code below.

def adding_one(number):
x = number+1
return x

Let’s break down the code above by starting with line one.

def adding_one(number):

Here, we use the word def. In Python, def stands for define because we are defining a
function. When Python sees def it is expecting that what follows will follow the syntax of
a function.

The next component in line one is adding_one. This is the name of the function. The
print function’s name, as you may expect, is print. This is what you will use when you
want to call your function later in your script.

DOI: 10.1201/9781003342175-5

http://dx.doi.org/10.1201/9781003342175-5

48 Introduction to Python for Humanists

Next, we see (number). A Python function name must be followed by parentheses.
Inside your parentheses, you can place one or multiple parameters. These are optional.
Parameters allow you to pass arguments to a function. These arguments can be used by the
function to perform some sort of action by either manipulating that parameter or using it in
some capacity to do some task. In the case of our function, the only parameter is number. If
you are creating multiple parameters, these should be separated by a comma, as we will see
below. Notice that parameters do not have quotation marks around them. This is because
they are not strings, rather parameters that will function like variables inside the code of the
function.

Finally, in this first line, we see “:”. This tells Python two things. First, the syntax for
defining the function is complete and that the next line will be indented within which the
code for your function will sit. This “:” and the indentation are mandatory.

The next line of code is:

x = number+1

This is the code of the function. Herewe are creating a variablewithin the function called
xwhich will be the result of the number passed to the function and 1.

The final portion of the cell is:

return x

This will return for the user x that we created temporarily in the function.
Let’s now call this function in the cell bellow to see how it works.

result = adding_one(1)

In the code above, we have created a new object, result. This will be the result of our
function. Like all objects, it can be named whatever you like, save for the forbidden object
names in Python.

We then call the function, adding_one and pass a single argument to it, an integer. In
this case, 1.

I want you to take amoment and try and guess what result will be. Go ahead and try and
recreate this code in your own notebook, or, if you are using this textbook with the built-in
binder environment, create a new cell below and print off “result”.

print(result)

Did you guess correctly? If so, great. If not, that’s okay. Why do you think your answer
was wrong? Do you understand why? These are some of the core questions you should be
asking yourself at this moment.

If we give the function the number 1, then our output will be 2. Likewise, if we do this
with 3, we will get 4. But what would happen if we tried to pass the string "one"?

bad_result = adding_one("one")

TypeError Traceback (most recent call last)
Input In [8], in <cell line: 1>()
----> 1 bad_result = adding_one("one")

Input In [2], in adding_one(number)
1 def adding_one(number):

----> 2 x = number+1
3 return x

TypeError: can only concatenate str (not "int") to str

Formal Coding: Functions, Classes, and Libraries 49

We receive an error. This error message allows us to debug the problem. It is a
TypeError, meaning we tried to use the wrong object type. We know that the error occurs
in line two of our cell, x = number+1. Why do you think we received this error?

If you said because "one" is a string and you cannot add a string by the integer 1, then
youwould be right. If wewere writing this program for ourselves, wewould know this and
never try to pass a string to the function, but what if someone else is trying to use our code
and does not know precisely what it is supposed to do? In Python, we can pass in some key
information to help our users.

4.1.3 Docstrings

Tohelp users,we can provide themwith a long string at the start of the function that explains
what the function does. This is known as a docstring. Let’s create a new function called
adding_twowith a docstring. This function will do the same as our earlier function, but
add two to number and return that result.

def adding_two(number):
"""
This function expects an integer and will return that integer plus 2.
"""
x = x+2
return x

Notice that the docstring is wrapped around three " at the beginning and end of the
string. I can access this docstring by calling the function and using .__doc__.

print(adding_two.__doc__)

This function expects an integer and will return that integer plus 2.

4.1.4 Functions with Multiple Arguments

In the above section, we saw a simple function that had a single argument. In Python, you
can assign as many arguments you want to a function. Let’s try to make a slightly different
function that adds two numbers together, each supplied by the user.

def my_function2(number1, number2):
x = number1+number2
return x

Notice thatmy_function2 is the precise same as the function above exceptwe have two
arguments, “number1” and “number2”. Also, in the function x is the result of number1
plus number2.

Now, let’s try and use this function by passing two numbers to it: 1 and 3.

result2 = my_function2(1,3)
print (result2)

4

Yay! We got the result we desired. These are known as positional arguments because
we are relying on the position of the argument in the function’s () section. Let’s modify this
function slightly again so that you can see what I mean.

50 Introduction to Python for Humanists

def my_function3(number1, number2):
print ("Number 1 is ", number1)
print ("Number 2 is ", number2)

my_function3(1, 3)

Number 1 is 1
Number 2 is 3

Notice that I have deleted the return line. This is because this function does not need
to return anything to the user. Instead, it’s sole purpose is to simply print off what the two
arguments are. Let’s reverse the order of our arguments now.

my_function3(3, 1)

Number 1 is 3
Number 2 is 1

Because these are positional arguments, we are dependent upon the position of the
arguments to assign them correctly. We can get around this by specifying which argument
we want to assign things to, thus avoiding the reliance on the order in which we pass the
arguments to the function. Check out the code below to see this in action.

my_function3(number2=3, number1=1)

Number 1 is 1
Number 2 is 3

4.1.5 Keyword Argument

Sometimes when we create a function, we want to make it optional for the user to pass
an argument. In these instances, we will create what is known as a keyword argument,
something that is set to a default. In the function below, we want to give the user the option
to pass a last name to the function. Notice, though, it defaults to “Mattingly”.

def add_surname(first_name, last_name = "Mattingly"):
print (first_name, last_name)

add_surname("William")

William Mattingly

That worked well, but a user still has the ability to change the last_name object.

add_surname("William", "Smith")

William Smith

4.1.6 Keyword Arbitrary Arguments

In rare instances, you will not know precisely howmany arguments a user will need to pass
to your function, so you want to give them the option to pass as many as they wish. In these

Formal Coding: Functions, Classes, and Libraries 51

instances, you will use what are known as arbitrary arguments. You assign these with an
“*” before the argument name.

def print_names(*names):
for name in names:

print (name)

print_names("William", "Marge", "Sally", "Alex")

William
Marge
Sally
Alex

Notice that the function has allowed the user to pass as many arguments as they wish
to the function. In my entire time coding, I have only used an arbitrary argument a handful
of times, but it is important to keep it in the back of your mind in case you are ever in that
situation.

4.1.7 Conclusion

Hopefully, you now have a basic understanding about what functions are and how they
work in practice. I recommend spending a few hours playing around with some basic
functions to do some tasks you need to perform on your own personal data. If you get stuck,
try Googling your question. Youwould be surprised howmany responses are available. Pay
particular attention to StackOverflow responses.

4.1.8 Answer for Result

print (result)

2

4.2 Classes

4.2.1 Introduction

In this section, wewill meet classes.Classes are rather like data structures, but they differ in
one significant way. They can have functions attached to them. When you create a class in
Python, you are essentially creating a special kind of data object that can have functions.
Functions embedded within classes are known as methods. You have actually already
met methods. When we first learned about strings, you may recall that when we altered
the data, we used a “.” after the string object name followed by the function (method)
that we wanted to call, e.g. str1.replace(something, something_else). This is what
separates a function from a method syntactically in Python. While a function is called by
itself, a methodmust be called from a class object. While there is no easy way to explain this
distinction, I hope that this explanation will be aided by working with classes and methods
at a closer level below.

52 Introduction to Python for Humanists

4.2.2 Creating a Class

Let’s try creating a basic class. Our class will store data specifically related to emperors, so
let’s go ahead and give it the name Emperor. We expect each emperor in our dataset to have
four attributes: name, birth, coronation, and death.

class Emperor:
def __init__(self, name, birth, coronation, death):

self.name = name
self.birth = birth
self.coronation = coronation
self.death = death

This is theway this basic classwill look. It can be a bit difficult to parsewhat is happening
here when you see it for the first time, so let’s break it down a bit.

In line one, we state:

class Emperor:

The first word we see is the keyword class. Python will see this and expect the syntax
for a class object to follow. This is rather like the function’s def which starts to define
a new function.

The next thingwe see is the class name. In our case, this isEmperor. After the class name,
we have “()”. This is followed by “:” which concludes our first line. This also means that
Python will expect the next line to be indented.

The next line reads:

def __init__(self, name, birth coronation, death)

This is the structure you will use for most classes. The def __init__() is a special
method that loads when the class instance is created. Next, we see the parameters the
function will take within the “()”. There are five parameters. The first is selfwhich points
to the instance of the class itself. You should always write self here first. The next four
parameters are name, birth, coronation, and death.

The self parameter also allows each of the attributes: name, birth, coronation, and
death to be associated with a unique instance of class. This will become more clear as we
proceed.

The next four lines are indented and read:

self.name = name
self.birth = birth
self.coronation = coronation
self.death = death

This function will attach these attributes and bind them to the instance of the class, by
stating self.name = name and so forth. With this, our class is created. Now, let’s try and
make an object that is associated with this class.

As a Carolingianist, I studied Charlemagne, one of the most popular medieval kings
who was the second Carolingian king. He was born in 742, coronated as Roman Emperor
in 800 and died in 814. These are the four essential pieces of data we need for our class.

We can create our special class object Emperor for Charlemagne bywriting the following
line of code.

charlemagne = Emperor("Charlemagne", 742, 800, 814)

Formal Coding: Functions, Classes, and Libraries 53

Notice that we create the class object by using the class name, Emperor() and passing
four arguments associated with the four attributes: name, birth, coronation, death.

Let’s now try and print off that class object.

print (charlemagne)

<__main__.Emperor object at 0x7fdd6c16fc70>

This is new and likely not what you expected. This indicates that the object is a special
class object. We can get the data from this class object by using the vars() command.

print(vars(charlemagne))

{'name': 'Charlemagne', 'birth': 742, 'coronation': 800, 'death': 814}

We can access specific pieces of data in our class by calling our class object and then using
.name_of_attribute. If we wanted to access Charlemagne’s birth year, for example, we
could use the following command.

print(charlemagne.birth)

742

At this point, you may be thinking to yourself: “âŁ¦what’s the big deal? I’ve just made
a dictionary.”

And, at this point, youwould be right. Our class, theway it is structured is really nothing
more than a dictionary of data stored in a special way. This really is not a good usecase for a
class. Remember, what makes classes unique is the ability to attach functions to them. Let’s
learn how to do that now!

4.2.3 Adding Functions to a Class

To create a function within a class, we create a function within it. Let’s make a simple
function that will print off a string that states who the emperor is and when that emperor
was born. To do that, we will alter a class as so:

class Emperor():
def __init__(self, name, birth, coron, death):

self.name = name
self.birth = birth
self.coron = coron
self.death = death

def birth_date(self):
print (f"{self.name} was born in {self.birth}")

Notice that we have now added a function within our class called birth_date(). This
will receive self, or all the data associated with that particular class. This function will now
strictly print off a string that will state when a specific emperor was born.

Now, we just need to create a new class for Charlemagne.

charlemagne = Emperor("Charlemagne", 742, 800, 814)

54 Introduction to Python for Humanists

Within this class, we can access the method birth_date(), like so:

charlemagne.birth_date()

Charlemagne was born in 742

And viola! You have now created your first class that has a specific function associated
with it. Althoughwe covered the basics of classes here, it should be noted thatwenecessarily
did not cover everything. Classes have far more complexity and flexibility than presented
here; nevertheless, the information provided above should give you enough of a sense about
classes to keep moving forward.

Classes and functions are the two building blocks of any project. They allow for you to
have tight, neater code that will be easier to read and look polished and professional. They
preventwriting duplicate code.While itmay appear unnecessary at times to view your code
through functions and classes, I highly encourage you to start looking at it that way. It will
make you a better programmer and you are less likely to have mistakes in your code.

4.3 Libraries in Python

4.3.1 Introduction

Libraries are common across all programming languages. They allow you to import large
amounts of code that contain functions and classes that you can leverage in your own
code. A good way to think about a library is as the old expression: “don’t reinvent the
wheel”. Use what others have done! Open-source is open for a reason! People who make
these libraries do it so that you don’t have to solve certain problems. They’ve done it
for you.

In this section, wewill learn how to install and import libraries. The reason we are doing
this now is because the remainder of this textbookwill require external libraries, specifically
pandas, requests, and BeautifulSoup.

4.3.2 How to Install Python Libraries

Python comes preinstalled with pip. Pip is a package manager. It downloads, installs,
and manages different versions of software on your machine. If you are coming to this
textbook from windows, this concept might be a bit foreign. Think of pip as something
that will manage all your libraries for you. If you have installed Python via Anaconda, as I
recommended, then pipwill be automatically put into your system’s path. Path onWindows
is a way that your computer can understand commands for .exe files that you have on your
system. If you open the terminal and you type “pip-version”. OnWindows, the terminal
is command prompt.

Because I am using JupyterNotebook for this textbook, I can make terminal commands
with the “!” before a block of code. When you type “pip-version”, you should see
something like the following output.

!pip --version

pip 21.2.4 from /home/wjbmattingly/anaconda3/lib/python3.9/site-packages/pip
(python 3.9)

Formal Coding: Functions, Classes, and Libraries 55

If pip is working, then it means we can install the libraries that we will need for the
remainder of the textbook. We will require three libraries:

• Pandas

• Requests

• BeautifulSoup

To install a library, you use the pip command “pip install library_name”, like so:
!pip install pandas
You should see an output similar to this. If you do, then pandas has installed correctly.

Let’s now do the same thing for requests and BeautifulSoup.

!pip install requests

Requirement already satisfied: requests in /home/wjbmattingly/anaconda3/lib/

→֒python3.9/site-packages (2.27.1)

Requirement already satisfied: idna<4,>=2.5 in /home/wjbmattingly/anaconda3/

→֒lib/python3.9/site-packages (from requests) (3.3)

Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/wjbmattingly/

→֒anaconda3/lib/python3.9/site-packages (from requests) (1.26.8)

Requirement already satisfied: charset-normalizer˜=2.0.0 in /home/

→֒wjbmattingly/anaconda3/lib/python3.9/site-packages (from requests) (2.0.4)

Requirement already satisfied: certifi>=2017.4.17 in /home/wjbmattingly/

→֒anaconda3/lib/python3.9/site-packages (from requests) (2021.10.8)

If you have already installed a library, the output will look something like the above.
For BeautifulSoup, we need to say “pip install beautifulsoup4” (I will explain

why later in this textbook).

!pip install beautifulsoup4

Collecting beautifulsoup4
Downloading beautifulsoup4-4.10.0-py3-none-any.whl (97 kB)

||| 97 kB 2.5 MB/s eta 0:00:011
?25hCollecting soupsieve>1.2

Downloading soupsieve-2.3.1-py3-none-any.whl (37 kB)
Installing collected packages: soupsieve, beautifulsoup4
Successfully installed beautifulsoup4-4.10.0 soupsieve-2.3.1

And that’s it! You have installed three new Python libraries! We need to learn one last
thing, though, before we conclude this section. We need to learn how to import libraries
within a Python script.

4.3.3 How to Import a Library

To import a library, we use the command import library_name, like so:

import requests

Sometimes, when we work with libraries, there is a certain Pythonic way to import the
library. A classic case is pandas. With pandas, we import it “as pd”. The “as pd” means
that the name in the script will not be “pandas”, rather “pd”.

import pandas as pd

https://certifi>=2017.4.17

56 Introduction to Python for Humanists

4.3.4 Conclusion

That’s all we need to cover in this chapter about libraries. You should feel a bit more
comfortable about what libraries are, why they are useful, how to install them, and how
to import them. As we continue through the final parts of this textbook, you will become
more comfortable with libraries.

5
Working with External Data

5.1 Working with Textual Data

5.1.1 Introduction

Up until now, we have strictly worked with data that we have produced with our own
code. Rarely will you ever copy-and-paste data into a Python script. Instead, you will need
to interact with external data. Further, you will often need to save data in some way. This
section is the first of two that walk you through how to interact with external data. We will
be working with textual data in this section, while in the following section we will work
with JSON, or JavaScript Object Notation data.

5.1.2 The “With” Statement

The “with” statement in Python is an essential command that allows for you to do
something in memory for so long as the statement is open. This is really important when
opening text files. There are several ways to open text files in Python, but I am only showing
you this method because it is themost Pythonic. Other methods require you to close the text
file in code. If you do not, it will remain open in memory. If you are working with 10,000
text files (I have done this before), and forget to add a close command in your code while
iterating across all 10,000 files, your computerwill run out ofmemory and crash. The “with”
statement avoids this problem entirely.

5.1.3 How to Open a Text File

Let’s see what it looks like in action and then we will break down what is happening.

with open ('../data/sample.txt', "r") as f:
data = f.read()

The first line in our code is

with open (file, "r") as f:

We can see that we start clearly with the “with” statement. Next, we specify what
we are going to do with the with statement. In this case, we will be using the “open”
command. Open tells Python to open a file.Within the parentheses, we pass two arguments.
The first argument is a string that corresponds to where the file is located. Here, the
file is in our data subfolder and is called “sample.txt”. The final component of this
line is “as f”. This tells Python to open that file up temporarily as the object name “f”.
The final colon, which we have seen before, indicates that we are about to do something
indented.

DOI: 10.1201/9781003342175-6

http://dx.doi.org/10.1201/9781003342175-6

58 Introduction to Python for Humanists

The next line is indented because this is a nested bit of code that is being done within
the with statement. The line reads:

data = f.read()

The name data is the object name that we are assigning to the contents of the file. Next,
we see “f.read()”. This command tells Python to take the “f” object, in this case the
temporary file, open it and read its contents.

Now, let’s take a look at those contents! We can print them off with the print
command.

print(data)

This is a sample of a text
This is another line of the same sample text
This is a third line.

We can see that the text file contains three lines. It is frequently necessary to split up
input data by linebreaks. Sometimes this is necessary when the text file is a list of data with
each piece of data stored on a new line. Other times, you need to clean the data so that a
paragraph of a scanned book is a continuous string of text. One of the easiest ways to do
this is to use the built-in method, splitlines().

print(data.splitlines())

['This is a sample of a text', 'This is another line of the same sample text',
→֒'This is a third line.']

As you can see, splitlines() allows us to convert our string into a list of strings that
are separated by linebreaks.

5.1.4 How to Write Data to a Text File

Just as it is necessary to access external data via Python, you will find yourself frequently
needing to storing data outside of a Python script. Let’s take a look at how to do this in the
following block of code.

new_string = "This is a new string."
with open("../data/sample2.txt", "w") as f:

f.write(new_string)

This block of code looks very similar to the one above, but with a few exceptions. First,
we created a string called new_string. Next, we need to drop that new string into a text
file. In this case, we will drop it into data/sample2.txt. Notice, that we have replaced
the “r” with “w”. This is because we are telling Python that we want to write to the file, not
read it.

In the indented bit of code, we use f.write(), rather than f.read(). This allows us
to write to the “f” object, rather than read from it. It will take one argument, the string that
we want to write to the file. In our case, it is the string object, new_string.

Working with External Data 59

5.2 Working with JSON Data

5.2.1 Introduction

In this section, youwillmeet JSONdata. JSON is a data format that is frequently used online.
It stands for JavaScript Object Notation. It is the principal way in which data is stored for
websites and called by JavaScript. There are two reasons to learn JSON data structures early
in your coding career:

1. JSON is universally recognized by all browsers.

2. JSON allows you to structure hierarchical data.

What is hierarchical data? This is data that may be nested within other data. This type of
data is sometimes difficult to represent cleanly in CSV format. A good way to think about
this is with the following data structure. Imagine you wanted to store a series of texts in
Excel. In one column, you would have a text and then in the next column, you would store
a list of speakers. Now, how do you represent the list of names? You could do it like this:

Text Names

John and Kathy both know each other. Marge and Francois do not. John, Kathy, Marge, Francois

But this can get messy really quickly because lists are difficult to store as a data structure
within a cell. There are ways to get around this, but when you start working with this type
of CSV data computationally, it can get complicated the deeper the hierarchies go. Imagine
if for each person, we had an age and a role. How would we store that data? Perhaps like
this:

Text Names Age

John and Kathy both know each other. Marge and Francois do not. John, Kathy, Marge, Francois 20, 25, 30, 35

If I want to update the data, I need to make sure that the list of ages corresponds to the
list of names. Again, this can lead to issues down the road. The solution is to stop using
CSV or Excel to store this type of data and use a format that is more flexible and able to
handle things like lists and nested hierarchical data. In Python, the easiest solution is JSON.
To use JSON, you do not need to install any special libraries. It comes prebuilt with a special
library called JSON. The only methods you need to know to use JSON: json.dump() and
json.load(). But first, let’s import JSON.

import json

Let’s create the data above as a data structure within Python.

data = {"text": "John and Kathy both know each other. Marge and Francois do not.",
"names": ["John", "Kathy", "Marge", "Francois"]}

data

{'text': 'John and Kathy both know each other. Marge and Francois do not.',
'names': ['John', 'Kathy', 'Marge', 'Francois']}

5.2.2 Writing JSON Data with json.dump()

Now, let’s try and store that data outside of Python as a JSON file. To do that, we with use
the with open operator we learned about in the last chapter. Instead of naming this a .txt

60 Introduction to Python for Humanists

file, however, we will name is .json. Next, we will execute the command json.dump(). This
will take 2 essential arguments: the data that you want to dump to the file and the object
in which you want to dump the data, in this case “f”. The other keyword argument here is
indent. I always like to use this because it makes the JSON file easier to read. It indents the
data 4 spaces each time it goes deeper into the hierarchy.

with open ("data/sample_json.json", "w") as f:
json.dump(data, f, indent=4)

5.2.3 Reading JSON data with json.load()

Now that we have dumped the data into a file, let’s try and load it back up. Here, we will
open the same JSON file, but this time as readable. We will create a new object, new_data
and use json.load(). This will take one argument, the file object that you want to load
from. So long as your JSON file is not corrupted, the data will load successfully.

with open ("data/sample_json.json", "r") as f:
new_data = json.load(f)

new_data

{'text': 'John and Kathy both know each other. Marge and Francois do not.',
'names': ['John', 'Kathy', 'Marge', 'Francois']}

These are the only two commands that you need to know to start working with
JSON data in Python. I highly encourage you to spend a few minutes playing with these
commands and trying to store data with json.dump() and load data with json.load().

5.3 Working with Multiple Files

5.3.1 Introduction

Often times, it is necessary to openmultiple files in a Python script. There are multiple ways
to do this, but unlike most Python textbooks. I recommend that beginners use the library
called glob. Glob comes standard with Python which means you do not have to install it.
A good way to think about glob is as a library that allows you to look into a directory and
find all potential files based on certain parameters.

5.3.2 Working with Glob

Working with glob can be a little confusing at first, but let’s break it down. First, we need to
import glob.

import glob

Next, we need to use the glob class. This will take one argument, the string of files that
you want to find. Let’s use the data subfolder as an example. In the example below, we pass
one string to this class. This string will be the subfolder in which the data lies followed by a
slash followed by an asterisk. This asterisk is known as a wild card. In our case, it looks for
all files within this directory.

Working with External Data 61

files = glob.glob("data/asterisk")

Let’s print off the files now to see what all is inside the folder.

print (files)

['data/other2', 'data/sample_json.json', 'data/other', 'data/sample2.txt', 'data/sample.txt']

Notice that we have grabbed all files! Most of the time, however, you will only want to
grab files that are a specific type, e.g. .txt or .json. To achieve this we can add a .txt after the
*. This will grab all the .txt files.

files2 = glob.glob("data/*.txt")
print (files2)

['data/sample2.txt', 'data/sample.txt']

5.3.3 Grabbing Multiple Nested Directories

If you look in the subdirectory data, you will notice two nested directories called “other”
and “other2”. We can grab all files in each directory with the same wildcard *.

files3 = glob.glob("data/*/*.txt")
print (files3)

['data/other2/sample4.txt', 'data/other/sample3.txt']

5.3.4 Walking a Directory

While glob is easy-to-use, it has certain limitations. One of these is when you need to walk
through a directory. Imagine ifwe needed to grab all the .txt files indata,data/other, and
data/other2. In order to grab all of these, we need to walk through all the subdirectories
of data and collect all potential files. This is not possible to do with glob. In these rare
circumstances, you should be familiar with the os library.

The os library allows us to do a lot of more advanced things in Python that I will not
cover in this introductory textbook. One of the main things you will use os for is to navigate
directories and create directories. For Linux users, a lot of the syntax will be familiar, but for
Windows users it can feel a bit foreign. For now, let’s simply import os.

import os

Oncewe have imported os, we can use theos.walk command. Thiswill take one string.
This should correspond to the directory that you want to start walking. Imagine that this is
our directory:

• data

– other

– other2

We want to get all the text files in data, other, and other2.

62 Introduction to Python for Humanists

walking = os.walk("data/")
print (walking)

<generator object _walk at 0x7fcf42690eb0>

This above output tells us what what we are looking at is a generator. Generators are a
bit beyond this textbook, but think of them as a special kind of object that exists for a single
moment in memory. Whenever you see generators, you can usually convert them to a list
to work with them. Let’s convert it by using the list() function in Python

walking = list(walking)
print (walking)

[('data/', ['other2', 'other'], ['sample_json.json', 'sample2.txt', 'sample.txt']),
→֒ ('data/other2', [], ['sample4.txt']), ('data/other', [], ['sample3.txt'])]

This can be a bit diffult to parse, so let’s iterate over each item in “walking”.

for item in walking:
print (item)

('data/', ['other2', 'other'], ['sample_json.json', 'sample2.txt', 'sample.txt'])
('data/other2', [], ['sample4.txt'])
('data/other', [], ['sample3.txt'])

As we can see, each item is a tuple with three parts:

• root directory

• subfolders

• files

For our purposes, we only care about the root directory and the file itself. We can use
these two pieces of data. Let’s now modify our loop to grab these two pieces of data and
print them off.

final_files = []
for item in walking:

root = item[0]
files = item[2]
print ("This is the Root")
print (root)
print ("These are the Files")
print (files)
print ()
print ()

This is the Root
data/
These are the Files
['sample_json.json', 'sample2.txt', 'sample.txt']

This is the Root
data/other2

(continues on next page)

Working with External Data 63

(continued from previous page)

These are the Files
['sample4.txt']

This is the Root
data/other
These are the Files
['sample3.txt']

As we can see, the files are a list. We can then iterate over the files to recombine the root
with the files to cultivate a list. With os, we can do this with os.path.join(). This will
take two arguments, the root directory and the file. Let’s again modify our loop. We will
print off the results.

for item in walking:
root = item[0]
files = item[2]
for file in files:

if file.endswith(".txt"):
print(os.path.join(root, file))

data/sample2.txt
data/sample.txt
data/other2/sample4.txt
data/other/sample3.txt

Excellent! Now, we can use this exact same loop to append the file names to an empty
list called final_files.

final_files = []
for item in walking:

root = item[0]
files = item[2]
for file in files:

if file.endswith(".txt"):
final_files.append(os.path.join(root, file))

print (final_files)

['data/sample2.txt', 'data/sample.txt', 'data/other2/sample4.txt', 'data/other/
→֒sample3.txt']

Notice that we now have all the .txt files in the main directory and all subdirectories.
This will be very useful when your files are in multiple subdirectories within multiple
subdirectories.

5.3.5 Conclusion

I would recommend playing around with the code provided to you in this chapter. I cannot
emphasize enough how frequently you will need to work with multiple files in a Python
project. It is perhaps one of the things you should work hard to commit to memory. Over
time, it will become more instinctual.

https://taylorandfrancis.com/

6
Working with Data on the Web

6.1 Introduction to HTML

6.1.1 Introduction

In this section, we will learn about web scraping, one of the more vital skills of a digital
humanist. Web scraping is a process by which we automate the calling of a server (which
hosts a website) and parsing that request which is an HTML file. HTML stands for
HyperText Markup Language. It is the way in which websites are structured. When we
scrape a website, we write rules for extracting pieces of information from it based on how
that data is structured within the HTML. To be competent at web scraping, therefore, one
must be able to understand and parse HTML.

In this section, we will break down HTML and you will learn the most common tags,
such as “div”, “p”, “strong”, and “span”. You will also learn about attributes within these
tags, such as “href”, “class”, and “id”. It is vital that you understand this before moving
onto the next section in which we learn how to web scrape with Python.

6.1.2 Diving into HTML

So why is HTMLuseful? HTML, like other markup languages, such as XML, or eXstensible
Markup Language, allows users to structure data within data. This is achieved by what are
known as tags. I think It is best to see what this looks like in practice. Let’s examine a simple
HTML file.

<div>
<p>This is a paragraph</p>

</div>

Above, we see a very simple HTML file structure. In the first line of this HTML, we see
<div>. Note the use of < and >. The opening < indicates the start of a tag in HTML. A tag
is a way of denoting structure within an HTML file. It is a way of saying that what comes
after this nested bit of code is this type of data. After the <, we see the word div. This word
denotes the type of tag that we are using. In this case, we are creating a div tag. This is one
of the most common types of tags in HTML. After the tag’s name, we see >. This identifies
the end of the tag creation.

In line two, we see a nested, or indented bit of HTML. In HTML, unlike Python,
indentation is optional. It is, however, good practice to use line breaks and indentation in
HTML to make the document easier for humans to parse. Line two begins with a <p> tag.
The <p> tag in HTML is used to denote the start of a paragraph.

After the creation of the <p> tag, we see This is a paragraph. In HTML, text that
lies outside of the tags is text that appears on theweb page. In this case, theHTMLfilewould
display the text This is a paragraph. Immediately after this bit of text we encounter

DOI: 10.1201/9781003342175-7

http://dx.doi.org/10.1201/9781003342175-7

66 Introduction to Python for Humanists

our first close tag. A close tag in HTML indicates that this nested bit of structure is over.
In our case, the first close tag is </p>. We know that it is a close tag because of the </, as
opposed to <.

In our final line, we see a close div tag.

6.1.3 Understanding Attributes

Let’s take a look at another block of HTML. This time, we will make one small change. Can
you spot it?

<div class="content">
<p>This is a paragraph</p>

</div>

If you said the class="content" portion of the open div tag, then you would be
right. This bit is nested within the tag and is known as an attribute. In our case, the special
attribute used is a class attribute (a very common attribute type). This attribute has a value
of content.

When scraping websites, you can use these attributes to specify which div tag to grab.
There are several common attributes, specifically class and id.

6.1.4 Parsing HTML with BeautifulSoup

Now that we understand a bit about HTML, let’s start trying to parse it in Python. When
we parse HTML, we attempt to automate the identification of HTML’s structure and
systematically interpret it. This is the basis for web scraping. To begin, let’s create a simple
HTML file in memory.

html = """
<html>

<body>
<div class="content">

<p>This is our first content</p>
</div>
<div class="other">

<p>This is is another piece of content</p>
</div>

</body>
</html>
"""

There are many Python libraries available to you for parsing HTML data. For more
robust problems, Selinium1 is the industry standard. While Selinium is powerful, it has
a steep learning curve and can be challenging for those new to Python, especially for
those programming onWindows. Additionally, most web scraping problems can be solved
without Selinium.

For those reasons, we will not be using Selinium in this textbook, rather BeautifulSoup2.
BeautifulSoup is a light-weight Python library for parsing HTML. It is quick and effective.
The most challenging thing about BeautifulSoup is remembering how to install it and
import it in Python.

1https://selenium-python.readthedocs.io
2https://pypi.org/project/beautifulsoup4/

https://selenium-python.readthedocs.io
https://pypi.org

Working with Data on the Web 67

To install BeautifulSoup, you must run the following command in your terminal:

pip install beautifulsoup4

Once it is installed, you can then import BeautifulSoup in the following way:

from bs4 import BeautifulSoup

With BeautifulSoup imported, we can use the BeautifulSoup class. This class allows
us to parse HTML. As we will see throughout this section, you will rarely have HTML as
a string within your Python script, but for now, since we are starting, let’s try to parse the
above html string by passing it to the BeautifulSoup class. It is Pythonic to name your
BeautifulSoup variable soup. If you have amore complex script that is parsing soup objects
frommultiple websites, youmaywant to be more original in your naming conventions, but
for our purposes, soupwill serve us well.

soup = BeautifulSoup(html)

With our soup object created in memory, we can now begin to examine it. If we print it
off, we won’t notice anything special about it. It appears as a regular string.

print(soup)

<html>
<body>
<div class="content">
<p>This is our first content</p>
</div>
<div class="other">
<p>This is is another piece of content</p>
</div>
</body>
</html>

While it may look like a string, it is not. We can observe this by asking Python what type
of object it is with the type function

type(soup)

bs4.BeautifulSoup

As we can see, this is a bs4.BeautifulSoup class. That means that while it may look
like a string, it actually contains more data that can be accessed. For example, We can use
the .findmethod to find specific the first occurrence of a specific tag. The .find method
has one mandatory argument, a string that will be the tag name that you wish to extract.
Let’s grab the first div tag.

first_div = soup.find("div")
print(first_div)

<div class="content">
<p>This is our first content</p>
</div>

As you can see, we were able to grab the first div tag with .find, but we know that
there are multiple div tags in our HTML string. What if we wanted to grab all of them? For

68 Introduction to Python for Humanists

that,we canuse the.find_allmethod. Like.find,.find_all takes a singlemandatory
argument. Again, it is the string of the tag name you wish to extract.

all_divs = soup.find_all("div")
print(all_divs)

[<div class="content">
<p>This is our first content</p>
</div>, <div class="other">
<p>This is is another piece of content</p>
</div>]

Unlike .findwhich returns a single item to us, the .find_allmethod returns a list of
tags. What if we did not want all tags? What if we only wanted to grab the div tags with a
specific class attribute. BeautifulSoup allows us to do this by passing a second argument to
.find or .find_all. This argument will be a dictionary whose keys will be the attributes
and whose values will be the attribute names of the tags you wish to extract.

div_other = soup.find_all("div", {"class": "other"})
print(div_other)

[<div class="other">
<p>This is is another piece of content</p>
</div>]

Once we have obtained the specific tag that we want to extract from the HTML, we
can then access its nested components. Each bs4.BeautifulSoup object functions the
same way as the original soup. It contains all children (nested) tags. We can, therefore,
grab the p tag embedded within the div tag that has a class attribute of other by using
.find("p").

paragraph = div_other[0].find("p")
print(paragraph)

<p>This is is another piece of content</p>

If we are working with textual data, though, we rarely want to retain the HTML, rather
we want to extract the text within the HTML. For this, we can access the raw text that falls
within the HTMLwith .text.

print(paragraph.text)

This is is another piece of content

Being able to do this programaticallymeans that we can automate the scraping of HTML
files via Python. We can, for example, extract all the text from each div tag in our file via
the following two lines of code.

for div in all_divs:
print(div.text)

This is our first content

This is is another piece of content

Working with Data on the Web 69

6.1.5 How to Find a Website’s HTML

Now that you are familiar generally with HTML and how it works, let’s dive in and take
a look at some real-world HTML from a real website. In the next section, we will web
scrape Wikipedia, so let’s go ahead and focus on Wikipedia here as well. If you are using
a web browser that supports it (Chrome and Firefox), you can enter developer mode. Each
operating system and browser has a different set of hotkeys to do this, but on all you can
right click thewebpage and click “inspect”. Thiswill open updevelopermode. At this point,
I highly recommend switching over to the video as it will be a bit easier to follow along.

For this section (and the next), we will be working specifically with this page:
https://en.wikipedia.org/wiki/List_of_French_monarchs.

Go ahead and open it up on another screen or in a new tab. This Wikipedia article
contains some text, but primarily it hosts a list of all Frenchmonarchs, from the Carolingians
up through the mid-19th century with Napoleon III.

When you inspect this page, you will see all the nested HTML within it. Spend some
time and go through these tags. In the next section, we will learn how to scrape this page,
but for now take a look at what we can do with a few basic commands in Python.

import requests
from bs4 import BeautifulSoup

url = "https://en.wikipedia.org/wiki/List_of_French_monarchs"
s = requests.get(url)

soup = BeautifulSoup(s.content)
body = soup.find("div", {"id": "mw-content-text"})
for paragraph in body.find_all("p")[:5]:

if paragraph.text.strip() != "":
print (paragraph.text)

The monarchs of the Kingdom of France ruled from the establishment of the Kingdom
→֒of the West Franks in 843 until the fall of the Second French Empire in 1870,
→֒with several interruptions. Between the period from King Charles the Bald in 843
→֒to King Louis XVI in 1792, France had 45 kings. Adding the 7 emperors and kings
→֒after the French Revolution, this comes to a total of 52 monarchs of France.

In August 843 the Treaty of Verdun divided the Frankish realm into three kingdoms,
→֒one of which (Middle Francia) was short-lived; the other two evolved into France
→֒(West Francia) and, eventually, Germany (East Francia). By this time, the
→֒eastern and western parts of the land had already developed different languages
→֒and cultures.

Initially, the kingdom was ruled primarily by two dynasties, the Carolingians and
→֒the Robertians, who alternated rule from 843 until 987, when Hugh Capet, the
→֒progenitor of the Capetian dynasty, took the throne. The kings use the title
→֒"King of the Franks" until the late twelfth century; the first to adopt the
→֒title of "King of France" was Philip II (r. 1180âŁ“1223). The Capetians ruled
→֒continuously from 987 to 1792 and again from 1814 to 1848. The branches of the
→֒dynasty which ruled after 1328, however, are generally given the specific branch
→֒names of Valois (until 1589), Bourbon (from 1589 until 1792 and from 1814 until
→֒1830), and the OrlÃ©ans (from 1830 until 1848).

In the cell above, we used two libraries, requests and BeautifulSoup to call theWikipedia
server that hosts that particular page. We then searched for the “div” tag that contains the
main body of the page. In this case, it was a “div” tag whose attribute “id” corresponded to
“mw-content-text”. I thin searched for all of the “p” tags, or paragraphs within that body
and printed off the the text if the text was not blank. By the end of the next section, you will

https://en.wikipedia.org
https://en.wikipedia.org

70 Introduction to Python for Humanists

not only understand the code above, but youwill be able to write it and code it out yourself.
For now, inspect that page and see if you can findwhere the “div” tagwhose id corresponds
to “mw-content-text” is located in the HTML. It is okay if this is hard! It is not something
that naturally you can do quickly. It takes practice. A trick to help get you started, however,
is to right click the area that you want to scrape and then click inspect.

Once you feel comfortable with this, feel free to move on to the next section to start
learning how to web scrape!

6.2 Scraping Web Pages with Requests and BeautifulSoup

6.2.1 Introduction

In the last section, we learned about the basics of HTML and the BeautifulSoup library.
We were not, however, working with data found on the web, rather our HTMLwas stored
locally. In this section, we will learn how to make calls to a remote server with the requests
library and then parse that data with BeautifulSoup.

6.2.2 Requests

The requests library allows us to send a signal via Python to server. A good way to think
about requests is as an invisible browser that opens in the background of your computer.
Requests does the precise thing your browser does. It sends a signal over the internet to
connect to a specific server address. While all servers have a unique IP address. Often the
internet links a specific and unique address that can be used as a way to connect to a server
without having to type out an IP address. Unlike your browser, however, requests does not
will up the results for you to see. Instead, it receives the return signal and simply stores the
HTML data in memory.

To begin learning how requests works, let’s first import the requests library:

import requests

Now that we have imported requests, let’s go ahead and create a string object that will
be the website we want to scrape. I always call this string “url” in my code.

url = "https://en.wikipedia.org/wiki/List_of_French_monarchs"

Excellent! Nowwe can use the requests library to make a call to this particular page. We
will do this via the get function in the requests library. The get function has one mandatory
argument: the website that you want to request. In our case, this will be our “url” string.

s = requests.get(url)

Now that we have created a request object, let’s take a look at what this looks like.

print (s)

<Response [200]>

On the surface, this looks likewemay have failed.What is this odd “Response [200]”
and what does it mean? This particular response means that our attempt to connect to a
server was successful. There are many types of responses, but [200] is the one we want to
see. If you ever see a response that is not [200], you canGoogle the particular server response

https://en.wikipedia.org

Working with Data on the Web 71

and you will find out what is happening. Sometimes, a response indicates that your request
was blocked. This may be because the website has anti-web scraping measures in place. In
other cases, the page may be protected, meaning that it lies behind a login. There are too
many potential errors thatmay surface that I cannot detail them all in this basic introduction
section. I will, however, give you a solution to a very common problem that can allow you
to get around a common 403 response. For that solution, check out the final section of this
chapter.

6.2.3 BeautifulSoup

Now that we have learned how to make a call to a server and stored the response (the
HTML) in memory, we need a way to parse that data. Buried within the “s” request object is
the HTML content. We can access that data by accessing the content method of the response
object class. Let’s do that and check out the first 100 characters.

print (s.content[:100])

b'<!DOCTYPE html>\n<html class="client-nojs" lang="en" dir="ltr">\n<head>\n<meta
→֒charset="UTF-8"/>\n<title'

Notice that this data isHTML.At this stage, however, we do not have an easyway to take
this string and process it as structured data. This is where BeautifulSoup comes into play.
BeautifulSoup allows us to convert s.content into structured data that we can then parse.
To do this, we first need to import BeautifulSoup. Unlike most libraries, BeautifulSoup
installs as bs4 (BeautifulSoup4). Because of this we need to import the BeautifulSoup
class from bs4. The command below does this for us.

from bs4 import BeautifulSoup

Next, we need to create a new soup object.

soup = BeautifulSoup(s.content)

If we don’t see an error, then it means we have successfully created a soup object. Let’s
print it off to see what it looks like:

print (str(soup)[:200])

<!DOCTYPE html>
<html class="client-nojs" dir="ltr" lang="en">
<head>
<meta charset="utf-8"/>
<title>List of French monarchs - Wikipedia</title>
<script>document.documentElement.className="client-js";

While the soup object looks precisely the same as the s.content, it is entirely different. It
retains the structure of the HTML because BeautifulSoup has parsed it for us. This means
that we can use special methods. In this section of the textbook, we will use find and
find_all.

• find – this will allow us to find the first instance of a tag being used and grab that tag
and all its nested components.

• find_all – this will return a list of all tags and their nested components that align to this
specific tag.

72 Introduction to Python for Humanists

Let’s take a look at a basic example of the find method.

div = soup.find("div")

Here, we grabbed the first “div” tag on the page. “div” tags, however, are quite common
because they are one of the essential building blocks ofHTML. Let’s take a look at howmany
there are on the entire page. We can do this with the find_allmethod and then count the
list size with the len function.

all_divs = soup.find_all("div")
print (len(all_divs))

97

So, if we want to grab a specific div with only find and find_all, we would have
to count all the “div” tags and find the right index and grab it. This would not work at
scale because this would vary from page to page, even if the HTML data structure were
similar across all pages on a site.Weneed a better solution. This iswhere our second optional
argument comes in. The find function can also take a dictionary that allows us to pass some
specificity to our parsing of the soup object.

Let’s say I want to grab themain body of theWikipedia article. If I inspect the page, I will
notice that one particular “div” tag contains all the data corresponding to the body of the
Wikipedia article. This “div” tag has a special unique id attribute. This id attribute’s name is
“mw-content-text”. This means that I can pass as a second argument a dictionary where
id is the key and the corresponding id name is the value. This will tell BeautifulSoup to find
the first “div” tag that has an id attribute thatmatches mw-content-text. Let’s take a look
at this in code.

body = soup.find("div", {"id": "mw-content-text"})

Now that we have grabbed this body portion of the article, we can print it off with the
text method.

print (body.text[:500])

This article is about French monarchs. For Frankish kings, see List of Frankish
→֒kings.

Division of the Frankish Empire at the Treaty of Verdun in 843
The monarchs of the Kingdom of France ruled from the establishment of the Kingdom
→֒of the West Franks in 843 until the fall of the Second French Empire in 1870,
→֒with several interruptions. Between the period from King Charles the Bald in
→֒843 to King Louis XVI in 1792, France had 45 kings. Adding the 7 emperors and
→֒kings after the French Revolut

This is fantastic! But, what if wewanted to grab the text andmaintain the structure of the
paragraphs. We can do this by searching the soup object at the body level. The body object
that we created is still a soup object that retains all that HTML data, but it only contains
the data for the data found under that particular div. We can use find all now to grab all
the paragraphs from within the body. We can use find_all on the body object to find all the
paragraphs like so:

paragraphs = body.find_all("p")

Working with Data on the Web 73

We can now iterate over the paragraphs. Let’s do that now over the first five paragraphs
and print off the text.

for paragraph in paragraphs[:5]:
print (paragraph.text)

The monarchs of the Kingdom of France ruled from the establishment of the Kingdom
→֒of the West Franks in 843 until the fall of the Second French Empire in 1870,
→֒with several interruptions. Between the period from King Charles the Bald in
→֒843 to King Louis XVI in 1792, France had 45 kings. Adding the 7 emperors and
→֒kings after the French Revolution, this comes to a total of 52 monarchs of
→֒France.

In August 843 the Treaty of Verdun divided the Frankish realm into three kingdoms,
→֒ one of which (Middle Francia) was short-lived; the other two evolved into
→֒France (West Francia) and, eventually, Germany (East Francia). By this time,
→֒the eastern and western parts of the land had already developed different
→֒languages and cultures.

Initially, the kingdom was ruled primarily by two dynasties, the Carolingians and
→֒the Robertians, who alternated rule from 843 until 987, when Hugh Capet, the
→֒progenitor of the Capetian dynasty, took the throne. The kings use the title
→֒"King of the Franks" until the late twelfth century; the first to adopt the
→֒title of "King of France" was Philip II (r. 1180 1223). The Capetians ruled
→֒continuously from 987 to 1792 and again from 1814 to 1848. The branches of the
→֒dynasty which ruled after 1328, however, are generally given the specific
→֒branch names of Valois (until 1589), Bourbon (from 1589 until 1792 and from
→֒1814 until 1830), and the Orl ans (from 1830 until 1848).

Viola! You have now officially webscraped your first page in Python and grabbed some
relevant data. Scraping data from the web is never a copy-and-paste task because every
website structures its HTML a bit differently. Nevertheless, the mechanics are the same.
The basic methods you learned in this chapter should allow you to scrape the majority of
static websites.

-

é

https://taylorandfrancis.com/

Part II

Data Analysis with Pandas

https://taylorandfrancis.com/

7
Introduction to Pandas

In this chapter, we will begin learning about Pandas, a powerful Python library used for
working with tabular data. Throughout this chapter, you will learn about the basics of
Pandas, why its useful, how to install it, and how to use it to perform basic tasks.

7.1 Introduction to Pandas

7.1.1 What Is Pandas?

Pandas is a Python library in Python that allows for you to easilyworkwith tabular data that
is often stored in Excel files or .csv files. It is often considered one of the most vital Python
libraries for data analysis because of its robust capabilities. There are other Python libraries
that allow you to work with Excel data, such as XLSX and XLRD, which are leveraged by
Pandas on the back end to interact with Excel spreadsheets. However, most tabular data is
stored in .csv files, or Comma Separated Values files. There are other variations of this same
structure (such as .tsv), but they all work the same. They use a special character to denote
change in the table to the next column and/or row.

7.1.2 Why Use Pandas?

If you work with data at all or plan to in the future, becoming comfortable with Pandas
early on will make your life a lot easier. There are other Python libraries that allow you to
work with .csv files, such as the CSV library, but these are not the same as Pandas. Pandas
has one large advantage over the CSV library. It not only allows you to input .csv files into
Python, it allows you to easily load them as DataFrames.

DataFrames are special data structures that contain not only the raw data in a table,
but preserve the structure and hierarchy of that table. By loading .csv files as a DataFrame,
Pandas not only allows you easy access to your data, but a powerfulway to analyze it within
a script. In addition to that, Pandas also has robust built-in features that we will explore
throughout this part of the textbook.

Finally, many resources for data analysis are built on top of Pandas. Being able to
understand tutorials and documentation of these resources, therefore, often requires a basic
understanding of Pandas.

So,whyuse Pandas? Because it is the best library for importing andworkingwith tabular
data. It allows you to easily read files as DataFrames. And, it is a required library for most
data analysis resources.

DOI: 10.1201/9781003342175-9

http://dx.doi.org/10.1201/9781003342175-9

78 Introduction to Python for Humanists

7.1.3 How to Install Pandas

Installing pandas is as easy as installing any other Python library. If you are working within
a Jupyter notebook like this one, you can execute the following command within a cell:

!pip install pandas

In Jupyter notebooks the “!” indicates that you want to perform a command in the
terminal. We then specify what command we want to run. In this case, pip install.
Finally, we specify the library we want to install, pandas. If you are not working within
a Jupyter notebook, you can do the same thing by opening up your terminal, such as
command prompt on Windows, and executing the same command.

7.1.4 How to Import Pandas

Once you have installed Pandas, it is time to import it. It is Pythonic, or good Python
practice, to use import pandas as pd. By importing a library as something, you give
it that specific variable as a name. This has a few benefits. First, it makes Pandas easier to
call in your script, because you can call the library with “pd” rather than “pandas”. Second,
all Pandas tutorials and posts on Stackoverflow will use “pd”. This means that your script
will conform to traditional convention.

import pandas as pd

After executing the above command, you will have successfully imported Pandas into
your Python script. In the next notebook, we will start working with Pandas.

7.2 The Basics of Pandas

7.2.1 How to Create a DataFrame from a Dictionary

As we noted in the last section, we need to first import Pandas. To do that we will use
import pandas as pd.

import pandas as pd

With Pandas now loaded correctly, we can begin to work with the library. Normally, you
will create a Pandas DataFrame from a CSV or some external data file. Wewill see examples
of that below. To begin, though, let’s start with the basics. Below we have a dictionary. A
good way to think of this dictionary is as an Excel Spreadsheet.

Each key in the dictionary is a column and its value is a list which contains each cell in
that column. We will see an example of a two-column dataset below, but for now let’s work
with the single column dataset, “names”. In this column, we have a list of six names.

names_dict = {"names":
[

"Tom",
"Mary",
"Jeff",
"Rose",
"Stephanie",
"Rodger"

]}

Introduction to Pandas 79

FIGURE 7.1
Example of an Excel Spreadsheet.

Normally in Python, wewouldworkwith this data as a dictionary. I could do something
like the following to get the value of names:

print(names_dict["names"])

['Tom', 'Mary', 'Jeff', 'Rose', 'Stephanie', 'Rodger']

But this section is on Pandas and DataFrames. We want to do more! We want to work
strictly with our data as a DataFrame. To do that, we can use the line of code below. The
pd.DataFrame() class can take numerous arguments. We won’t get into all of them right
now. For now, understand that there is one essential argument that you must pass: the data
that you wish to convert into a DataFrame. In our case, we will be converting the single-
column dictionary into a DataFrame, so we pass that object as the only argument. We can
see this in the code below.

df = pd.DataFrame(names_dict)

7.2.2 How to Display a DataFrame

Loading the data as DataFrame is not the end of our work. It is often times essential to
view that data in a Jupyter notebook or terminal. To see what it looks like, you can use the
following command.

df

names
0 Tom
1 Mary
2 Jeff
3 Rose
4 Stephanie
5 Rodger

80 Introduction to Python for Humanists

Note that we are not printing off the data with print(). This is because we are working
within a Jupyter notebook. Were we working within an IDE, such as Atom, we would need
to use the following command:

print(df)

names
0 Tom
1 Mary
2 Jeff
3 Rose
4 Stephanie
5 Rodger

Notice, however, that the formatting of the data in the output is a bit different. When we
print off a DataFrame, we do not see the nice formatting, such as the row highlighting and
column header emboldening. It is for these reasons, that I recommend using the command
“df” rather than print (df).

7.2.3 How to Save DataFrame to CSV

Often times when you convert your data into a DataFrame, you will process it and then
ultimately save it to disk. To do this, we have a few different options, such as CSV and
JSON. We will meet this process with JSON a bit later. For now, let’s focus on one file type:
CSV, or comma separated value. To save your DataFrame to a CSV file, you can write the
following command

df.to_csv("../data/names.csv")

As we will see a little later, there are different arguments that you can pass here (and
should!) For now, let’s focus on that single argument that we used: a string. This string
should correspond to the file that you want to create. In this case, we are putting it into the
data subfolder under the name “names.csv”.

7.2.4 How to Read DataFrame from CSV

Now that we have the data saved to a CSV file, let’s create a new DataFrame, df2, and read
that data. We can do this with the command pd.read_csv(). As with to_csv, we can
pass multiple arguments here, but for now, we will stick with the one mandatory one, a
string of the file that we wish to open. In this case, it is the same file we just created. Let’s
open it and print it off.

df2 = pd.read_csv("../data/names.csv")

df2

Unnamed: 0 names
0 0 Tom
1 1 Mary
2 2 Jeff
3 3 Rose
4 4 Stephanie
5 5 Rodger

Introduction to Pandas 81

This doesn’t look right. Notice that this DataFrame looks a bit off fromwhat we saved to
disk. Why is that? It is because of howwe saved the file. If we don’t specify an index, Pandas
will automatically create one for us. In order to correctly save our file, we need to pass an
extra keyword argument, specifically index=False. Let’s try and save this file again under
a different name: names_no_index.csv.

df.to_csv("../data/names_no_index.csv", index=False)

Let’s create a new DataFrame, df3, and reopen and print off the data.

df3 = pd.read_csv("../data/names_no_index.csv")

df3

names
0 Tom
1 Mary
2 Jeff
3 Rose
4 Stephanie
5 Rodger

Like magic, now we have a DataFrame that represents our original data.

7.2.5 How to Save DataFrame to JSON

In Pandas, we are not limited to CSV files, we can do this same process with JSON files,
which are JavaScript Object Notation files. These are a bit different from CSV files and
are used to store more complex data, specifically data that is used on the web because all
browsers can interpret JSON data off-the-shelf. To save our data to a JSON file, we can use
the to_json(). Note that we are not passing the index argument here. When our data is
stored as a JSON file this is not necessary.

df3.to_json("../data/names.json")

Now, let’s open that same data as a new DataFrame, df4. We can do the same thing as
we did with the CSV file, except use read_json() and then print it off.

df4 = pd.read_json("../data/names.json")

df4

names
0 Tom
1 Mary
2 Jeff
3 Rose
4 Stephanie
5 Rodger

7.2.6 How to Add a Column to the DataFrame

When working with DataFrames, you will almost always need to manipulate the data in
someway. Thismeans adding columns, deleting columns, performing permutations ondata

82 Introduction to Python for Humanists

in columns, etc. We are going to cover all these things throughout this textbook. For now,
let’s start with the basics. Imaginewe got the names of individuals fromone source and their
ages from another. We now need to add those ages into our DataFrame. We can approach
the DataFrame as something like a dictionary here. We can add a column by creating it with
df4["ages"]. This allows us to make that equal to the new data. The command below
essentially adds a column to our DataFrame. Let’s execute the command and print it off.

df4["ages"] = [20, 26, 20, 18, 52, 40]

df4

names ages
0 Tom 20
1 Mary 26
2 Jeff 20
3 Rose 18
4 Stephanie 52
5 Rodger 40

Notice that we now have our second column. I want to stress right now, that to do this
we needed data that matched the length of the names. If we tried to do this same act, but
with five ages, rather than six, we would have received an error.

7.2.7 How to Grab a Specific Column

Whenworkingwith a DataFrame, youwill often need to grab a single column of data. To do
that, we can navigate the column data rather like a Python Class. Let’s create a new object,
names, and grab just the names column by stating df4.names. This command tells Pandas
to grab the “names” column. Note, this is case sensitive. After we grab it, let’s print it off too.

names = df4.names

print(names)

0 Tom
1 Mary
2 Jeff
3 Rose
4 Stephanie
5 Rodger
Name: names, dtype: object

Notice that we have a lot of data here about our names. We have their index (left column
of integers). At the bottom, we have the type of data that it is. Don’t worry about this extra
data at the bottom for now. Let’s try and grab the ages column now.

ages = df4.ages

ages

0 20
1 26
2 20

(continues on next page)

Introduction to Pandas 83

(continued from previous page)

3 18
4 52
5 40
Name: ages, dtype: int64

7.2.8 How to Convert a Column to a List

When you are working with a DataFame, you will often times need to work with that data
not as a column, rather as a list. To do this, you will want to convert that data into a list. You
can do this, by calling the method .tolist() after the data in question. Let’s try it with
ages and print off a list of ages.

ages_list = df4.ages.tolist()

print(ages_list)

[20, 26, 20, 18, 52, 40]

While this may not seem necessary on the surface, it is. One of the main reasons that this
is essential is for processing large quantities of data. It is often times computationally less
expensive to work with that data as a list or, better yet, as a NumPy array.

7.2.9 Isolating Unique Values in a Column

We can also isolate the unique values in a column with .uniques().

unique_ages = df4.ages.unique()
print(unique_ages)

[20 26 18 52 40]

7.2.10 How to Grab a Specific Row of a DataFrame with iloc

It will often times be necessary to grab a DataFrame by row, not column. We have a lot of
different ways to grab a row, but for now let’s imagine we want to just grab a specific row
by index. (We can grab all rows that have a certain value in a certain column also, but we
will see that a bit later.) To grab a row by index, you can use the iloc command. This stands
for index location. Index location can be indexed rather like a list, as in the code below. The
index you choose should correspond to the row index (starting with 0).

row1 = df4.iloc[1]

row1

names Mary
ages 26
Name: 1, dtype: object

84 Introduction to Python for Humanists

7.2.11 Iterating over a DataFrame with df.iterrows()

Often, we will need to iterate over an entire DataFrame. We can do that with
df.iterrows() in a for loop. It is important to note that we will need two variables
to do this, the index (idx) and the row (row). This will iterate down a DataFrame row by
row.

for idx, row in df4.iterrows():
print(row)

names Tom
ages 20
Name: 0, dtype: object
names Mary
ages 26
Name: 1, dtype: object
names Jeff
ages 20
Name: 2, dtype: object
names Rose
ages 18
Name: 3, dtype: object
names Stephanie
ages 52
Name: 4, dtype: object
names Rodger
ages 40
Name: 5, dtype: object

We can isolate the values of each row by indexing the row at each column.

for idx, row in df4.iterrows():
print(row["names"], row["ages"])

Tom 20
Mary 26
Jeff 20
Rose 18
Stephanie 52
Rodger 40

This allows you to iterate over an entire DataFrame and isolate each row individually
in a loop. As we will learn throughout this part of the textbook, we do not always need to
iterate over each row to isolate specific data from a DataFrame.

7.2.12 Conclusion

You should now feel comfortable with creating, reading, and saving DataFrames. You
should also be comfortable with adding columns and indexing by rows. In the following
chapters, we will dive into more complex features of DataFrames.

8
Working with Data in Pandas

8.1 Finding Data in DataFrame

8.1.1 About the Titanic Dataset

import pandas as pd

Throughout this chapter, wewill be using the same dataset, the infamousTitanic Survivor
dataset that was put out by Kaggle. It has since become a staple dataset in machine learning
and data science communities because of the breadth of data that it offers on the Titanic
passengers. The goal of most machine learning challenges is to use this dataset to train a
model that can accurately predict if a passenger would have survived given certain gender,
economic, and class conditions.

In this section, we will be using a cleaned version of the dataset available on the GitHub
page below.Wewill be using it because of its breadth of its qualitative and quantitative data.

In this notebook, we are strictly interested in finding key data in the DataFrame. By the
end of the notebook, you should have a good understanding of whyworkingwith CSV data
in Python via Pandas is far more powerful and easier than using Excel.

#data obtained from => https://github.com/datasciencedojo/datasets
df = pd.read_csv("../data/titanic.csv")

8.1.2 How to Find Column Data

Let’s presume that we just obtained this dataset. Let’s also presumewe know nothing about
it. Our first job is to get a sense of the data. Maybe we want to know all the columns that
the dataset contains. To find this information, we can use df.columns.

df.columns

Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],

dtype='object')

With our knowledge from the last chapter, we now know how to convert this into a list!

cols = df.columns.tolist()

cols

DOI: 10.1201/9781003342175-10

https://github.com
http://dx.doi.org/10.1201/9781003342175-10

86 Introduction to Python for Humanists

['PassengerId',
'Survived',
'Pclass',
'Name',
'Sex',
'Age',
'SibSp',
'Parch',
'Ticket',
'Fare',
'Cabin',
'Embarked']

8.1.3 How to Get a Quick Sense of the Dataset with df.head()

Another way to get a quick sense of the data is to use df.head(). This allows us to return
to top pieces of information from the dataset. By default, head returns the top five rows.

df.head()

PassengerId Survived Pclass \
0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S

We can pass in an argument to return more than five. Let’s try and display 20.

df.head(20)

PassengerId Survived Pclass \

0 1 0 3

1 2 1 1

2 3 1 3

3 4 1 1

4 5 0 3

5 6 0 3

6 7 0 1

7 8 0 3

8 9 1 3

(continues on next page)

Working with Data in Pandas 87

(continued from previous page)

9 10 1 2

10 11 1 3

11 12 1 1

12 13 0 3

13 14 0 3

14 15 0 3

15 16 1 2

16 17 0 3

17 18 1 2

18 19 0 3

19 20 1 3

Name Sex Age SibSp \

0 Braund, Mr. Owen Harris male 22.0 1

1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1

2 Heikkinen, Miss. Laina female 26.0 0

3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1

4 Allen, Mr. William Henry male 35.0 0

5 Moran, Mr. James male NaN 0

6 McCarthy, Mr. Timothy J male 54.0 0

7 Palsson, Master. Gosta Leonard male 2.0 3

8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0

9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1

10 Sandstrom, Miss. Marguerite Rut female 4.0 1

11 Bonnell, Miss. Elizabeth female 58.0 0

12 Saundercock, Mr. William Henry male 20.0 0

13 Andersson, Mr. Anders Johan male 39.0 1

14 Vestrom, Miss. Hulda Amanda Adolfina female 14.0 0

15 Hewlett, Mrs. (Mary D Kingcome) female 55.0 0

16 Rice, Master. Eugene male 2.0 4

17 Williams, Mr. Charles Eugene male NaN 0

18 Vander Planke, Mrs. Julius (Emelia Maria Vande... female 31.0 1

19 Masselmani, Mrs. Fatima female NaN 0

Parch Ticket Fare Cabin Embarked

0 0 A/5 21171 7.2500 NaN S

1 0 PC 17599 71.2833 C85 C

2 0 STON/O2. 3101282 7.9250 NaN S

3 0 113803 53.1000 C123 S

4 0 373450 8.0500 NaN S

5 0 330877 8.4583 NaN Q

6 0 17463 51.8625 E46 S

7 1 349909 21.0750 NaN S

8 2 347742 11.1333 NaN S

9 0 237736 30.0708 NaN C

10 1 PP 9549 16.7000 G6 S

11 0 113783 26.5500 C103 S

12 0 A/5. 2151 8.0500 NaN S

13 5 347082 31.2750 NaN S

14 0 350406 7.8542 NaN S

15 0 248706 16.0000 NaN S

16 1 382652 29.1250 NaN Q

17 0 244373 13.0000 NaN S

18 0 345763 18.0000 NaN S

19 0 2649 7.2250 NaN C

88 Introduction to Python for Humanists

8.1.4 How to Grab a Specific Range of Rows with df.iloc[]

Sometimes, however, you need to grab a specific range of rows. Let’s say I am interested in
rows 5–20. To grab this data, we can use the df.iloc[] command that we met in the last
notebook. This will allow us to pass a specific index range like a list.

df.iloc[5:20]

PassengerId Survived Pclass \
5 6 0 3
6 7 0 1
7 8 0 3
8 9 1 3
9 10 1 2
10 11 1 3
11 12 1 1
12 13 0 3
13 14 0 3
14 15 0 3
15 16 1 2
16 17 0 3
17 18 1 2
18 19 0 3
19 20 1 3

Name Sex Age SibSp \
5 Moran, Mr. James male NaN 0
6 McCarthy, Mr. Timothy J male 54.0 0
7 Palsson, Master. Gosta Leonard male 2.0 3
8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0
9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1
10 Sandstrom, Miss. Marguerite Rut female 4.0 1
11 Bonnell, Miss. Elizabeth female 58.0 0
12 Saundercock, Mr. William Henry male 20.0 0
13 Andersson, Mr. Anders Johan male 39.0 1
14 Vestrom, Miss. Hulda Amanda Adolfina female 14.0 0
15 Hewlett, Mrs. (Mary D Kingcome) female 55.0 0
16 Rice, Master. Eugene male 2.0 4
17 Williams, Mr. Charles Eugene male NaN 0
18 Vander Planke, Mrs. Julius (Emelia Maria Vande... female 31.0 1
19 Masselmani, Mrs. Fatima female NaN 0

Parch Ticket Fare Cabin Embarked
5 0 330877 8.4583 NaN Q
6 0 17463 51.8625 E46 S
7 1 349909 21.0750 NaN S
8 2 347742 11.1333 NaN S
9 0 237736 30.0708 NaN C
10 1 PP 9549 16.7000 G6 S
11 0 113783 26.5500 C103 S
12 0 A/5. 2151 8.0500 NaN S
13 5 347082 31.2750 NaN S
14 0 350406 7.8542 NaN S
15 0 248706 16.0000 NaN S
16 1 382652 29.1250 NaN Q
17 0 244373 13.0000 NaN S
18 0 345763 18.0000 NaN S
19 0 2649 7.2250 NaN C

Working with Data in Pandas 89

8.1.5 How to Get a Quick Quantitative Understanding of the Dataset with describe()

When working with numerical, quantitative data, we can automatically grab all numerical
rows and learn a lot about the data with df.describe(). This will return the count, mean,
standard deviation,minimum,maximum, etc. of our quantitative data. Sometimes, this data
is useful to compute in such a way, such as the column “Survived”. Here, we can see that
roughly “.38” or 38% of the passengers (in this dataset) survived. Other numerical data does
not really lend itself well to this kind of analysis, e.g. “PassengerId” which has a unique
numerical number corresponding to each passenger.

df.describe()

PassengerId Survived Pclass Age SibSp \
count 891.000000 891.000000 891.000000 714.000000 891.000000
mean 446.000000 0.383838 2.308642 29.699118 0.523008
std 257.353842 0.486592 0.836071 14.526497 1.102743
min 1.000000 0.000000 1.000000 0.420000 0.000000
25% 223.500000 0.000000 2.000000 20.125000 0.000000
50% 446.000000 0.000000 3.000000 28.000000 0.000000
75% 668.500000 1.000000 3.000000 38.000000 1.000000
max 891.000000 1.000000 3.000000 80.000000 8.000000

Parch Fare
count 891.000000 891.000000
mean 0.381594 32.204208
std 0.806057 49.693429
min 0.000000 0.000000
25% 0.000000 7.910400
50% 0.000000 14.454200
75% 0.000000 31.000000
max 6.000000 512.329200

8.1.6 How to Find Specific Information in the Dataset with df.loc

As researchers, however, we often need to find targeted information in our dataset. Let’s
say I am researching female passengers on the Titanic. I can achieve this fairly easily in
Excel and in Python with Pandas. To do this in Pandas, you can use df.loc[] to pass a
specific argument. In the example below, we are stating that we are looking for the columns
in the DataFrame of “Sex” that match the string “female”. Try to recreate this and find all
males in the dataset on your own. Note at the bottom of the DataFrame 314×12. This is the
dimensions of the DataFrame. We can see that we have 314 results.

df.loc[df["Sex"] == "female"]

PassengerId Survived Pclass \
1 2 1 1
2 3 1 3
3 4 1 1
8 9 1 3
9 10 1 2
..
880 881 1 2
882 883 0 3
885 886 0 3
887 888 1 1
888 889 0 3

(continues on next page)

90 Introduction to Python for Humanists

(continued from previous page)

Name Sex Age SibSp \
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0
9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1
..
880 Shelley, Mrs. William (Imanita Parrish Hall) female 25.0 0
882 Dahlberg, Miss. Gerda Ulrika female 22.0 0
885 Rice, Mrs. William (Margaret Norton) female 39.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1

Parch Ticket Fare Cabin Embarked
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
8 2 347742 11.1333 NaN S
9 0 237736 30.0708 NaN C
..
880 1 230433 26.0000 NaN S
882 0 7552 10.5167 NaN S
885 5 382652 29.1250 NaN Q
887 0 112053 30.0000 B42 S
888 2 W./C. 6607 23.4500 NaN S

[314 rows x 12 columns]

But that’s not all df.loc[] can do. We can addmultiple arguments to our search query
here, rather like SQL. In the example below, note the addition of the parentheses around
df[“Sex”] == “female” this denotes one parameter of our search. We then use the “&”
to add a second parameter. In this case, we are interested in not only returning those that
are female, but also those who are in “Pclass”, or passenger class 1, i.e. First Class. When
we execute the command below, we see that we have found 94 results.

df.loc[(df["Sex"] == "female") & (df["Pclass"] == 1)]

PassengerId Survived Pclass \
1 2 1 1
3 4 1 1
11 12 1 1
31 32 1 1
52 53 1 1
..
856 857 1 1
862 863 1 1
871 872 1 1
879 880 1 1
887 888 1 1

Name Sex Age SibSp \
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
11 Bonnell, Miss. Elizabeth female 58.0 0
31 Spencer, Mrs. William Augustus (Marie Eugenie) female NaN 1
52 Harper, Mrs. Henry Sleeper (Myna Haxtun) female 49.0 1
..

(continues on next page)

Working with Data in Pandas 91

(continued from previous page)

856 Wick, Mrs. George Dennick (Mary Hitchcock) female 45.0 1
862 Swift, Mrs. Frederick Joel (Margaret Welles Ba... female 48.0 0
871 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) female 47.0 1
879 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56.0 0
887 Graham, Miss. Margaret Edith female 19.0 0

Parch Ticket Fare Cabin Embarked
1 0 PC 17599 71.2833 C85 C
3 0 113803 53.1000 C123 S
11 0 113783 26.5500 C103 S
31 0 PC 17569 146.5208 B78 C
52 0 PC 17572 76.7292 D33 C
..
856 1 36928 164.8667 NaN S
862 0 17466 25.9292 D17 S
871 1 11751 52.5542 D35 S
879 1 11767 83.1583 C50 C
887 0 112053 30.0000 B42 S

[94 rows x 12 columns]

Let’s say now we are interested in only finding those that did not survive of the 94. To
do that, we would simply add a third argument to our query. We ask Pandas to only show
those whose “Survived” value is 0, or False. In other words, we are seeking to find those
who did not survive.

df.loc[(df["Sex"] == "female") & (df["Pclass"] == 1) & (df["Survived"] == 0)]

PassengerId Survived Pclass \

177 178 0 1

297 298 0 1

498 499 0 1

Name Sex Age SibSp \

177 Isham, Miss. Ann Elizabeth female 50.0 0

297 Allison, Miss. Helen Loraine female 2.0 1

498 Allison, Mrs. Hudson J C (Bessie Waldo Daniels) female 25.0 1

Parch Ticket Fare Cabin Embarked

177 0 PC 17595 28.7125 C49 C

297 2 113781 151.5500 C22 C26 S

498 2 113781 151.5500 C22 C26 S

With this data, I not only have qualitative information about each passenger, I also have
some significant quantitative information aswell. I know that of the 314 people in the dataset
with the sex of female, 94 were in first class and of those 94, all survived except 3. Let’s now
pose a question and I think you may already know the answer. Did class in any way play
a role in the chance off survival on the Titanic. We don’t need a fancy machine learning
algorithm to help us answer this question. We can simply examine the results from our
query. Let’s find the total number of passengers that are identified as female, but not in first
class, and then find the number of those who did not survive.

df.loc[(df["Sex"] == "female") & (df["Pclass"] > 1)]

92 Introduction to Python for Humanists

PassengerId Survived Pclass \
2 3 1 3
8 9 1 3
9 10 1 2
10 11 1 3
14 15 0 3
..
875 876 1 3
880 881 1 2
882 883 0 3
885 886 0 3
888 889 0 3

Name Sex Age SibSp \
2 Heikkinen, Miss. Laina female 26.0 0
8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0
9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1
10 Sandstrom, Miss. Marguerite Rut female 4.0 1
14 Vestrom, Miss. Hulda Amanda Adolfina female 14.0 0
..
875 Najib, Miss. Adele Kiamie "Jane" female 15.0 0
880 Shelley, Mrs. William (Imanita Parrish Hall) female 25.0 0
882 Dahlberg, Miss. Gerda Ulrika female 22.0 0
885 Rice, Mrs. William (Margaret Norton) female 39.0 0
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1

Parch Ticket Fare Cabin Embarked
2 0 STON/O2. 3101282 7.9250 NaN S
8 2 347742 11.1333 NaN S
9 0 237736 30.0708 NaN C
10 1 PP 9549 16.7000 G6 S
14 0 350406 7.8542 NaN S
..
875 0 2667 7.2250 NaN C
880 1 230433 26.0000 NaN S
882 0 7552 10.5167 NaN S
885 5 382652 29.1250 NaN Q
888 2 W./C. 6607 23.4500 NaN S

[220 rows x 12 columns]

df.loc[(df["Sex"] == "female") & (df["Pclass"] > 1) & (df["Survived"] == 0)]

PassengerId Survived Pclass \
14 15 0 3
18 19 0 3
24 25 0 3
38 39 0 3
40 41 0 3
..
854 855 0 2
863 864 0 3
882 883 0 3
885 886 0 3
888 889 0 3

Name Sex Age SibSp \
14 Vestrom, Miss. Hulda Amanda Adolfina female 14.0 0

(continues on next page)

Working with Data in Pandas 93

(continued from previous page)

18 Vander Planke, Mrs. Julius (Emelia Maria Vande... female 31.0 1
24 Palsson, Miss. Torborg Danira female 8.0 3
38 Vander Planke, Miss. Augusta Maria female 18.0 2
40 Ahlin, Mrs. Johan (Johanna Persdotter Larsson) female 40.0 1
..
854 Carter, Mrs. Ernest Courtenay (Lilian Hughes) female 44.0 1
863 Sage, Miss. Dorothy Edith "Dolly" female NaN 8
882 Dahlberg, Miss. Gerda Ulrika female 22.0 0
885 Rice, Mrs. William (Margaret Norton) female 39.0 0
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1

Parch Ticket Fare Cabin Embarked
14 0 350406 7.8542 NaN S
18 0 345763 18.0000 NaN S
24 1 349909 21.0750 NaN S
38 0 345764 18.0000 NaN S
40 0 7546 9.4750 NaN S
..
854 0 244252 26.0000 NaN S
863 2 CA. 2343 69.5500 NaN S
882 0 7552 10.5167 NaN S
885 5 382652 29.1250 NaN Q
888 2 W./C. 6607 23.4500 NaN S

[78 rows x 12 columns]

As we can see, we have 220 total people identified as female with 78 not surviving. We
can perform some quick calculations to understand better our results.

x = 3/94
x

0.031914893617021274

y = 78/220
y

0.35454545454545455

In this case, x is the death rate for a first class female, whereas y is the death rate for those
not in first class and female. The result is clear. The chance for survival was significantly
greater for those identified as female if they were in first class, roughly 32.5% difference.
Were there other factors at play, possibly. But that is beyond the point here. I am simply
trying to illustrate how to obtain data to begin framing the research question at hand.

Although we can achieve this same analysis in Excel, doing this in Python allows us
to leverage the power of an entire programming language with the data at hand. This is a
simple example of the power of Pandas over Excel. As we move forward, you will see more
examples of this.

8.1.7 How to Query with “OR” (|) on a DataFrame

Above we saw how to use df.loc to structure logical arguments for finding two specific
conditions with “&”. This indicated that both conditions must be true to be returned as a
result. In case you don’t remember it, it looked like this:

94 Introduction to Python for Humanists

df.loc[(df["Sex"] == "female") & (df["Pclass"] > 1)]

PassengerId Survived Pclass \
2 3 1 3
8 9 1 3
9 10 1 2
10 11 1 3
14 15 0 3
..
875 876 1 3
880 881 1 2
882 883 0 3
885 886 0 3
888 889 0 3

Name Sex Age SibSp \
2 Heikkinen, Miss. Laina female 26.0 0
8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0
9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1
10 Sandstrom, Miss. Marguerite Rut female 4.0 1
14 Vestrom, Miss. Hulda Amanda Adolfina female 14.0 0
..
875 Najib, Miss. Adele Kiamie "Jane" female 15.0 0
880 Shelley, Mrs. William (Imanita Parrish Hall) female 25.0 0
882 Dahlberg, Miss. Gerda Ulrika female 22.0 0
885 Rice, Mrs. William (Margaret Norton) female 39.0 0
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1

Parch Ticket Fare Cabin Embarked
2 0 STON/O2. 3101282 7.9250 NaN S
8 2 347742 11.1333 NaN S
9 0 237736 30.0708 NaN C
10 1 PP 9549 16.7000 G6 S
14 0 350406 7.8542 NaN S
..
875 0 2667 7.2250 NaN C
880 1 230433 26.0000 NaN S
882 0 7552 10.5167 NaN S
885 5 382652 29.1250 NaN Q
888 2 W./C. 6607 23.4500 NaN S

[220 rows x 12 columns]

We can do the same conditional approach, but rather than using and, we can also tell
Pandas “or” with the |; this is known as a pipe. Let’s try and grab all first and second class
passengers. We can specify if the “Pclass” is either 1 OR 2.

df.loc[(df["Pclass"] == 1) | (df["Pclass"] == 2)]

PassengerId Survived Pclass \
1 2 1 1
3 4 1 1
6 7 0 1
9 10 1 2
11 12 1 1
..
880 881 1 2

(continues on next page)

Working with Data in Pandas 95

(continued from previous page)

883 884 0 2
886 887 0 2
887 888 1 1
889 890 1 1

Name Sex Age SibSp \
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
6 McCarthy, Mr. Timothy J male 54.0 0
9 Nasser, Mrs. Nicholas (Adele Achem) female 14.0 1
11 Bonnell, Miss. Elizabeth female 58.0 0
..
880 Shelley, Mrs. William (Imanita Parrish Hall) female 25.0 0
883 Banfield, Mr. Frederick James male 28.0 0
886 Montvila, Rev. Juozas male 27.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
889 Behr, Mr. Karl Howell male 26.0 0

Parch Ticket Fare Cabin Embarked
1 0 PC 17599 71.2833 C85 C
3 0 113803 53.1000 C123 S
6 0 17463 51.8625 E46 S
9 0 237736 30.0708 NaN C
11 0 113783 26.5500 C103 S
..
880 1 230433 26.0000 NaN S
883 0 C.A./SOTON 34068 10.5000 NaN S
886 0 211536 13.0000 NaN S
887 0 112053 30.0000 B42 S
889 0 111369 30.0000 C148 C

[400 rows x 12 columns]

By learning to use Pandas in this way and structuring Pandas-based queries, we can
generate the data necessary to begin answering research questions about our data. Pandas,
however, can do more, it can also let us organize our data.

8.2 Organizing the DataFrame

8.2.1 How to Sort Data By Single Column

import pandas as pd
df = pd.read_csv("../data/titanic.csv")

Now that we’ve imported Pandas and created our DataFrame, let’s see what it looks like
again.

df

PassengerId Survived Pclass \
0 1 0 3
1 2 1 1

(continues on next page)

96 Introduction to Python for Humanists

(continued from previous page)

2 3 1 3
3 4 1 1
4 5 0 3
..
886 887 0 2
887 888 1 1
888 889 0 3
889 890 1 1
890 891 0 3

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
..
886 Montvila, Rev. Juozas male 27.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1
889 Behr, Mr. Karl Howell male 26.0 0
890 Dooley, Mr. Patrick male 32.0 0

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S
..
886 0 211536 13.0000 NaN S
887 0 112053 30.0000 B42 S
888 2 W./C. 6607 23.4500 NaN S
889 0 111369 30.0000 C148 C
890 0 370376 7.7500 NaN Q

[891 rows x 12 columns]

In this scenario, I am interested in sorting the data (rather like Excel). Rather than using
the sort feature in Excel, we can use the df.sort_values()method in Python. This will
take one argument, specifically the column that you want to organize by. By default, this
will be ascending. Let’s do this by class. In other words, sort the DataFrame so that those
who were in first class appear first and those in third class appear last. We will do this by
passing the argument “Pclass”, the column name corresponding to passenger class.

df.sort_values("Pclass")

PassengerId Survived Pclass \
445 446 1 1
310 311 1 1
309 310 1 1
307 308 1 1
306 307 1 1
..
379 380 0 3
381 382 1 3

(continues on next page)

Working with Data in Pandas 97

(continued from previous page)

382 383 0 3
371 372 0 3
890 891 0 3

Name Sex Age SibSp \
445 Dodge, Master. Washington male 4.0 0
310 Hays, Miss. Margaret Bechstein female 24.0 0
309 Francatelli, Miss. Laura Mabel female 30.0 0
307 Penasco y Castellana, Mrs. Victor de Satode (M... female 17.0 1
306 Fleming, Miss. Margaret female NaN 0
..
379 Gustafsson, Mr. Karl Gideon male 19.0 0
381 Nakid, Miss. Maria ("Mary") female 1.0 0
382 Tikkanen, Mr. Juho male 32.0 0
371 Wiklund, Mr. Jakob Alfred male 18.0 1
890 Dooley, Mr. Patrick male 32.0 0

Parch Ticket Fare Cabin Embarked
445 2 33638 81.8583 A34 S
310 0 11767 83.1583 C54 C
309 0 PC 17485 56.9292 E36 C
307 0 PC 17758 108.9000 C65 C
306 0 17421 110.8833 NaN C
..
379 0 347069 7.7750 NaN S
381 2 2653 15.7417 NaN C
382 0 STON/O 2. 3101293 7.9250 NaN S
371 0 3101267 6.4958 NaN S
890 0 370376 7.7500 NaN Q

[891 rows x 12 columns]

8.2.2 How to Reverse Sort Data by Single Column

As we can see, our data is now appearing as expected. We can pass additional keyword
arguments to sort the data in the opposite direction, or descending by setting ascending
parameter to False. See the example below.

df.sort_values("Pclass", ascending=False)

PassengerId Survived Pclass \
0 1 0 3
511 512 0 3
500 501 0 3
501 502 0 3
502 503 0 3
..
102 103 0 1
710 711 1 1
711 712 0 1
712 713 1 1
445 446 1 1

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
511 Webber, Mr. James male NaN 0

(continues on next page)

98 Introduction to Python for Humanists

(continued from previous page)

500 Calic, Mr. Petar male 17.0 0
501 Canavan, Miss. Mary female 21.0 0
502 O'Sullivan, Miss. Bridget Mary female NaN 0
..
102 White, Mr. Richard Frasar male 21.0 0
710 Mayne, Mlle. Berthe Antonine ("Mrs de Villiers") female 24.0 0
711 Klaber, Mr. Herman male NaN 0
712 Taylor, Mr. Elmer Zebley male 48.0 1
445 Dodge, Master. Washington male 4.0 0

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
511 0 SOTON/OQ 3101316 8.0500 NaN S
500 0 315086 8.6625 NaN S
501 0 364846 7.7500 NaN Q
502 0 330909 7.6292 NaN Q
..
102 1 35281 77.2875 D26 S
710 0 PC 17482 49.5042 C90 C
711 0 113028 26.5500 C124 S
712 0 19996 52.0000 C126 S
445 2 33638 81.8583 A34 S

[891 rows x 12 columns]

8.2.3 How to Sort Data by Multiple Columns

Again,we can see the power of Pandas over Excel by the simplicity of altering our command
to include multiple columns. Let’s say that we want to sort all the data by “Pclass”, then we
want that data organized again by sex, so that all male and female passengers appear in
order. We can do this by passing the argument of what we want organized as a list. Note
the order of the list as well. The columns that appear earlier in the list correspond to those
that receive primacy in the ascending. In other words, we organize by passenger class firsit,
then sex. In this case, the method head, is simply showing the top 100 rows.

df.sort_values(["Pclass", "Sex"]).head(100)

PassengerId Survived Pclass \
1 2 1 1
3 4 1 1
11 12 1 1
31 32 1 1
52 53 1 1
..
23 24 1 1
27 28 0 1
30 31 0 1
34 35 0 1
35 36 0 1

Name Sex Age SibSp \
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
11 Bonnell, Miss. Elizabeth female 58.0 0
31 Spencer, Mrs. William Augustus (Marie Eugenie) female NaN 1

(continues on next page)

Working with Data in Pandas 99

(continued from previous page)

52 Harper, Mrs. Henry Sleeper (Myna Haxtun) female 49.0 1
..
23 Sloper, Mr. William Thompson male 28.0 0
27 Fortune, Mr. Charles Alexander male 19.0 3
30 Uruchurtu, Don. Manuel E male 40.0 0
34 Meyer, Mr. Edgar Joseph male 28.0 1
35 Holverson, Mr. Alexander Oskar male 42.0 1

Parch Ticket Fare Cabin Embarked
1 0 PC 17599 71.2833 C85 C
3 0 113803 53.1000 C123 S
11 0 113783 26.5500 C103 S
31 0 PC 17569 146.5208 B78 C
52 0 PC 17572 76.7292 D33 C
..
23 0 113788 35.5000 A6 S
27 2 19950 263.0000 C23 C25 C27 S
30 0 PC 17601 27.7208 NaN C
34 0 PC 17604 82.1708 NaN C
35 0 113789 52.0000 NaN S

[100 rows x 12 columns]

As with before, we can control how the data is sorted, either ascending or descending.
If we set ascending to “False”, we organize all items in the list by this method. We can do
this with the sample code below.

df.sort_values(["Pclass", "Sex"], ascending=False)

PassengerId Survived Pclass \
0 1 0 3
4 5 0 3
5 6 0 3
7 8 0 3
12 13 0 3
..
856 857 1 1
862 863 1 1
871 872 1 1
879 880 1 1
887 888 1 1

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
4 Allen, Mr. William Henry male 35.0 0
5 Moran, Mr. James male NaN 0
7 Palsson, Master. Gosta Leonard male 2.0 3
12 Saundercock, Mr. William Henry male 20.0 0
..
856 Wick, Mrs. George Dennick (Mary Hitchcock) female 45.0 1
862 Swift, Mrs. Frederick Joel (Margaret Welles Ba... female 48.0 0
871 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) female 47.0 1
879 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56.0 0
887 Graham, Miss. Margaret Edith female 19.0 0

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
4 0 373450 8.0500 NaN S
5 0 330877 8.4583 NaN Q

(continues on next page)

100 Introduction to Python for Humanists

(continued from previous page)

7 1 349909 21.0750 NaN S
12 0 A/5. 2151 8.0500 NaN S
..
856 1 36928 164.8667 NaN S
862 0 17466 25.9292 D17 S
871 1 11751 52.5542 D35 S
879 1 11767 83.1583 C50 C
887 0 112053 30.0000 B42 S

[891 rows x 12 columns]

8.2.4 How to Sort Data by Multiple Columns with Different Values
Organized Differently

What ifwewant to organize the data differently. By this Imean,wewant for all the data to be
organized by passenger class first and for that data to be ascending (1, 2, 3), but wewant the
sex of the passengers to be organized descending (male, female, rather than female, male).
To achieve this, we can pass a list to ascending with 0s and 1s. 0 is “False” and 1 is “True”.

df.sort_values(["Pclass", "Sex"], ascending=[1,0])

PassengerId Survived Pclass Name \

6 7 0 1 McCarthy, Mr. Timothy J

23 24 1 1 Sloper, Mr. William Thompson

27 28 0 1 Fortune, Mr. Charles Alexander

30 31 0 1 Uruchurtu, Don. Manuel E

34 35 0 1 Meyer, Mr. Edgar Joseph

..

863 864 0 3 Sage, Miss. Dorothy Edith "Dolly"

875 876 1 3 Najib, Miss. Adele Kiamie "Jane"

882 883 0 3 Dahlberg, Miss. Gerda Ulrika

885 886 0 3 Rice, Mrs. William (Margaret Norton)

888 889 0 3 Johnston, Miss. Catherine Helen "Carrie"

Sex Age SibSp Parch Ticket Fare Cabin Embarked

6 male 54.0 0 0 17463 51.8625 E46 S

23 male 28.0 0 0 113788 35.5000 A6 S

27 male 19.0 3 2 19950 263.0000 C23 C25 C27 S

30 male 40.0 0 0 PC 17601 27.7208 NaN C

34 male 28.0 1 0 PC 17604 82.1708 NaN C

..

863 female NaN 8 2 CA. 2343 69.5500 NaN S

875 female 15.0 0 0 2667 7.2250 NaN C

882 female 22.0 0 0 7552 10.5167 NaN S

885 female 39.0 0 5 382652 29.1250 NaN Q

888 female NaN 1 2 W./C. 6607 23.4500 NaN S

[891 rows x 12 columns]

What is particularly nice about Pandas over Excel is that this operation scales nicely. If
wewant to addmoremethods of sorting, we can do that too by simple increasing the indices
of our lists. Always make sure that the length of your lists match, however. In other words,
do not have 3 attributes to sort by and 2 items in your ascending list. In this case, wewant to
organize by passenger class, sex, and age with passenger class ascending, sex descending,
and age ascending. Let’s see what that would look like.

Working with Data in Pandas 101

df.sort_values(["Pclass", "Sex", "Age"], ascending=[1,0,1])

PassengerId Survived Pclass \
305 306 1 1
445 446 1 1
802 803 1 1
550 551 1 1
505 506 0 1
..
697 698 1 3
727 728 1 3
792 793 0 3
863 864 0 3
888 889 0 3

Name Sex Age SibSp Parch \
305 Allison, Master. Hudson Trevor male 0.92 1 2
445 Dodge, Master. Washington male 4.00 0 2
802 Carter, Master. William Thornton II male 11.00 1 2
550 Thayer, Mr. John Borland Jr male 17.00 0 2
505 Penasco y Castellana, Mr. Victor de Satode male 18.00 1 0
..
697 Mullens, Miss. Katherine "Katie" female NaN 0 0
727 Mannion, Miss. Margareth female NaN 0 0
792 Sage, Miss. Stella Anna female NaN 8 2
863 Sage, Miss. Dorothy Edith "Dolly" female NaN 8 2
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2

Ticket Fare Cabin Embarked
305 113781 151.5500 C22 C26 S
445 33638 81.8583 A34 S
802 113760 120.0000 B96 B98 S
550 17421 110.8833 C70 C
505 PC 17758 108.9000 C65 C
..
697 35852 7.7333 NaN Q
727 36866 7.7375 NaN Q
792 CA. 2343 69.5500 NaN S
863 CA. 2343 69.5500 NaN S
888 W./C. 6607 23.4500 NaN S

[891 rows x 12 columns]

As we move forward, we will explore more robust ways to sort and organize our data.
For now, you should feel comfortable with how to use sort_values() to do fairly robust
tasks quickly.

8.3 Cleaning the DataFrame

8.3.1 How to Drop a Column in Pandas DataFrame

import pandas as pd
df = pd.read_csv("../data/titanic.csv")
df

102 Introduction to Python for Humanists

PassengerId Survived Pclass \
0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3
..
886 887 0 2
887 888 1 1
888 889 0 3
889 890 1 1
890 891 0 3

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
..
886 Montvila, Rev. Juozas male 27.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1
889 Behr, Mr. Karl Howell male 26.0 0
890 Dooley, Mr. Patrick male 32.0 0

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S
..
886 0 211536 13.0000 NaN S
887 0 112053 30.0000 B42 S
888 2 W./C. 6607 23.4500 NaN S
889 0 111369 30.0000 C148 C
890 0 370376 7.7500 NaN Q

[891 rows x 12 columns]

Imagine that we have a large DataFrame, but we are not interested in a couple columns.
This is especially import when your DataFrame has 10s or 100s of columns. In these
instances, you need to examine the DataFrame without the useless data. Imagine that we
wanted to study the Titanic data but knew that “Parch” and “Ticket” were categories that
we did not need. We can use df.drop() to pass an argument to remove those specific
columns.

df.drop(columns=["Parch", "Ticket"])

PassengerId Survived Pclass \
0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3
..

(continues on next page)

Working with Data in Pandas 103

(continued from previous page)

886 887 0 2
887 888 1 1
888 889 0 3
889 890 1 1
890 891 0 3

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
..
886 Montvila, Rev. Juozas male 27.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1
889 Behr, Mr. Karl Howell male 26.0 0
890 Dooley, Mr. Patrick male 32.0 0

Fare Cabin Embarked
0 7.2500 NaN S
1 71.2833 C85 C
2 7.9250 NaN S
3 53.1000 C123 S
4 8.0500 NaN S
..
886 13.0000 NaN S
887 30.0000 B42 S
888 23.4500 NaN S
889 30.0000 C148 C
890 7.7500 NaN Q

[891 rows x 10 columns]

Likewise, we can do the opposite. Rather than dropping certain columns, we can keep
certain columns with the example code below.

df[["Survived", "Name"]]

Survived Name
0 0 Braund, Mr. Owen Harris
1 1 Cumings, Mrs. John Bradley (Florence Briggs Th...
2 1 Heikkinen, Miss. Laina
3 1 Futrelle, Mrs. Jacques Heath (Lily May Peel)
4 0 Allen, Mr. William Henry
..
886 0 Montvila, Rev. Juozas
887 1 Graham, Miss. Margaret Edith
888 0 Johnston, Miss. Catherine Helen "Carrie"
889 1 Behr, Mr. Karl Howell
890 0 Dooley, Mr. Patrick

[891 rows x 2 columns]

Note the use of double brackets here, [[]].

104 Introduction to Python for Humanists

8.3.2 How to Remove Rows That Have NaN in Any Column

One of the biggest problems in datasets is the absence of data. If you are training a machine
learning model or just performing quantitative analysis, rows that have missing values, or
NaN, can radically alter your results. It is often good practice to ignore that data or alter it
in some way. Let’s presume that we want to simply remove it from our dataset. To do that,
we can use df.dropna()whichwill remove all rows that have any instance of NaN in any
column.

df.dropna()

PassengerId Survived Pclass \
1 2 1 1
3 4 1 1
6 7 0 1
10 11 1 3
11 12 1 1
..
871 872 1 1
872 873 0 1
879 880 1 1
887 888 1 1
889 890 1 1

Name Sex Age SibSp \
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
6 McCarthy, Mr. Timothy J male 54.0 0
10 Sandstrom, Miss. Marguerite Rut female 4.0 1
11 Bonnell, Miss. Elizabeth female 58.0 0
..
871 Beckwith, Mrs. Richard Leonard (Sallie Monypeny) female 47.0 1
872 Carlsson, Mr. Frans Olof male 33.0 0
879 Potter, Mrs. Thomas Jr (Lily Alexenia Wilson) female 56.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
889 Behr, Mr. Karl Howell male 26.0 0

Parch Ticket Fare Cabin Embarked
1 0 PC 17599 71.2833 C85 C
3 0 113803 53.1000 C123 S
6 0 17463 51.8625 E46 S
10 1 PP 9549 16.7000 G6 S
11 0 113783 26.5500 C103 S
..
871 1 11751 52.5542 D35 S
872 0 695 5.0000 B51 B53 B55 S
879 1 11767 83.1583 C50 C
887 0 112053 30.0000 B42 S
889 0 111369 30.0000 C148 C

[183 rows x 12 columns]

8.3.3 How to Remove Rows That Have NaN in a Specific Column

In some instances, though, we don’t want to remove an entire row just because of NaN in
one column. Maybe that column is not as important for quantitative analysis and we are
not planning to include it in our analysis, but we still want to see it. A good example of

Working with Data in Pandas 105

this is the column “Cabin” which is a string or “Age” which is a float (we’ll get to that in
a moment). Let’s say we want to remove all rows that have NaN in the “Age” column, we
can use the command below.

df2 = df[df["Age"].notna()]

df2

PassengerId Survived Pclass \
0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3
..
885 886 0 3
886 887 0 2
887 888 1 1
889 890 1 1
890 891 0 3

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
..
885 Rice, Mrs. William (Margaret Norton) female 39.0 0
886 Montvila, Rev. Juozas male 27.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
889 Behr, Mr. Karl Howell male 26.0 0
890 Dooley, Mr. Patrick male 32.0 0

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S
..
885 5 382652 29.1250 NaN Q
886 0 211536 13.0000 NaN S
887 0 112053 30.0000 B42 S
889 0 111369 30.0000 C148 C
890 0 370376 7.7500 NaN Q

[714 rows x 12 columns]

As we can see, the size of our DataFrame dropped from 891 rows to 714.

8.3.4 How to Convert DataFrame Data Types (from Float to Int)

In other instances, it may be important not to simply remove a column, but alter it into a
different type of data. In this dataset, “Age” is a float. This is to account for infants who
were below the age of one on the Titanic. Let’s presume that we want to convert all these
floats to integers. To do that we can use the .astype()method on a specific row.

106 Introduction to Python for Humanists

df2.Age = df2.Age.astype(int)

/tmp/ipykernel_708450/3009824114.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
→֒stable/user_guide/indexing.html#returning-a-view-versus-a-copy
df2.Age = df2.Age.astype(int)

df2

PassengerId Survived Pclass \
0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3
..
885 886 0 3
886 887 0 2
887 888 1 1
889 890 1 1
890 891 0 3

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38 1
2 Heikkinen, Miss. Laina female 26 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1
4 Allen, Mr. William Henry male 35 0
..
885 Rice, Mrs. William (Margaret Norton) female 39 0
886 Montvila, Rev. Juozas male 27 0
887 Graham, Miss. Margaret Edith female 19 0
889 Behr, Mr. Karl Howell male 26 0
890 Dooley, Mr. Patrick male 32 0

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S
..
885 5 382652 29.1250 NaN Q
886 0 211536 13.0000 NaN S
887 0 112053 30.0000 B42 S
889 0 111369 30.0000 C148 C
890 0 370376 7.7500 NaN Q

[714 rows x 12 columns]

Now our “Age” column is no longer a float, rather an integer.

https://pandas.pydata.org

Working with Data in Pandas 107

8.3.5 Conclusion

Sorting, cleaning, and organizing data in Pandas can require practice. Even after years
of using Pandas, you will still find yourself looking things up on Stackoverflow or other
resources online. The power of Pandas comes at the cost of making it difficult to master
quickly. With regular practice, however, Pandas does get easier to use over time. Once you
have a command of Pandas, you can do quick data cleaning and analysis all in Python.
In the next chapter, we will look at how leverage Pandas to do more advanced searching
methods.

https://taylorandfrancis.com/

9
Searching for Data

9.1 Advanced Searching on Strings

9.1.1 Finding Features within a String

import pandas as pd
df = pd.read_csv("../data/titanic.csv")
df = df[["Name"]]
df

Name
0 Braund, Mr. Owen Harris
1 Cumings, Mrs. John Bradley (Florence Briggs Th...
2 Heikkinen, Miss. Laina
3 Futrelle, Mrs. Jacques Heath (Lily May Peel)
4 Allen, Mr. William Henry
.. ...
886 Montvila, Rev. Juozas
887 Graham, Miss. Margaret Edith
888 Johnston, Miss. Catherine Helen "Carrie"
889 Behr, Mr. Karl Howell
890 Dooley, Mr. Patrick

[891 rows x 1 columns]

When I am looking at the “df”, I notice that there is a “Rev.” in index 886. As a historian, I
find this fascinating. Now, I start to wonder, howmany reverends were there on the Titanic?
Is this individual unique? If I wanted to ask this question outside of Pandas, I could do the
following:

names = df.Name.tolist()
revs = []
for name in names:

if "Rev." in name:
revs.append(name)

print (revs)

['Byles, Rev. Thomas Roussel Davids', 'Bateman, Rev. Robert James', 'Carter,
→֒ Rev. Ernest Courtenay', 'Kirkland, Rev. Charles Leonard', 'Harper, Rev.
→֒John', 'Montvila, Rev. Juozas']

Sure, that works, but I don’t have any of the other data associated with each of these
reverends. I would have to then do some manual searching in the DataFrame to find their
corresponding data, or save the data as a dictionary and then run look ups. But why do all

DOI: 10.1201/9781003342175-11

http://dx.doi.org/10.1201/9781003342175-11

110 Introduction to Python for Humanists

of that, when we can do it in a single line of code using Pandas’ built-in function. We can
use .str.contains() which takes an argument of what we want to return.

df.loc[df["Name"].str.contains("Rev\.")]

Name
149 Byles, Rev. Thomas Roussel Davids
150 Bateman, Rev. Robert James
249 Carter, Rev. Ernest Courtenay
626 Kirkland, Rev. Charles Leonard
848 Harper, Rev. John
886 Montvila, Rev. Juozas

We can, therefore, see not only the reverends, but also their corresponding data.

9.1.2 Finding Strings That Don’t Contain Feature

What if we wanted to eliminate all names that do not contain “Rev.”? We can introduce “~”
prior to “df” to specify that the “Name” column should not have whatever condition we
express.

df.loc[˜df["Name"].str.contains("Rev\.")]

Name
0 Braund, Mr. Owen Harris
1 Cumings, Mrs. John Bradley (Florence Briggs Th...
2 Heikkinen, Miss. Laina
3 Futrelle, Mrs. Jacques Heath (Lily May Peel)
4 Allen, Mr. William Henry
.. ...
885 Rice, Mrs. William (Margaret Norton)
887 Graham, Miss. Margaret Edith
888 Johnston, Miss. Catherine Helen "Carrie"
889 Behr, Mr. Karl Howell
890 Dooley, Mr. Patrick

[885 rows x 1 columns]

9.1.3 Using RegEx with Pandas

Out of the box, Pandas supports RegEx. RegEx stands for Regular Expressions. It is a
powerful way of performing complex string matching. If we were interested in finding any
instance of “Rev.” or “Mr.”, we would have to write something like this without RegEx:

df.loc[(df["Name"].str.contains("Rev\.")) | (df["Name"].str.contains("Mr\."))]

Name
0 Braund, Mr. Owen Harris
4 Allen, Mr. William Henry
5 Moran, Mr. James
6 McCarthy, Mr. Timothy J
12 Saundercock, Mr. William Henry
.. ...
883 Banfield, Mr. Frederick James
884 Sutehall, Mr. Henry Jr

(continues on next page)

Searching for Data 111

(continued from previous page)

886 Montvila, Rev. Juozas
889 Behr, Mr. Karl Howell
890 Dooley, Mr. Patrick

[523 rows x 1 columns]

While this works, imagine if we had 20 or 30 different conditions. That would be a very
longpiece of code towrite andwhile itwouldwork, it is always best practice towrite shorter,
tighter code. So, let’s do the same thing, but with RegEx. We can add the or condition
into the str.contains() argument. This is a RegEx command. To ensure that RegEx is
registered, it may be necessary to pass it as an argument.

df.loc[df["Name"].str.contains("Rev\.|Mr\.", regex=True)]

Name
0 Braund, Mr. Owen Harris
4 Allen, Mr. William Henry
5 Moran, Mr. James
6 McCarthy, Mr. Timothy J
12 Saundercock, Mr. William Henry
.. ...
883 Banfield, Mr. Frederick James
884 Sutehall, Mr. Henry Jr
886 Montvila, Rev. Juozas
889 Behr, Mr. Karl Howell
890 Dooley, Mr. Patrick

[523 rows x 1 columns]

In some instances, we may have uncleaned data and the use of “Rev.” may be lowercase
in one instance. To ensure that we grab both upper and lowercase forms of this sequence,
let’s ignore the case by using the case keyword and setting it to “False”.

import re
df.loc[df["Name"].str.contains("Rev\.|Mr\.", case=False, regex=True)]

Name
0 Braund, Mr. Owen Harris
4 Allen, Mr. William Henry
5 Moran, Mr. James
6 McCarthy, Mr. Timothy J
12 Saundercock, Mr. William Henry
.. ...
883 Banfield, Mr. Frederick James
884 Sutehall, Mr. Henry Jr
886 Montvila, Rev. Juozas
889 Behr, Mr. Karl Howell
890 Dooley, Mr. Patrick

[523 rows x 1 columns]

112 Introduction to Python for Humanists

9.2 Filter and Querying

9.2.1 Introduction

In this section, we will meet two advanced ways of filtering or searching (querying) our
data. These are aptly named filter() and query() functions. These two functions allow
us to do some fairly advanced things within a narrow scope. By narrow scope, I mean the
questions thatwewant to pose.Whenever you aremanipulating or probingdata, it is always
best to think about the task as simply asking a question. In essence, this is preciselywhat you
are doing. You are asking the database a question. In order to ask the question correctly, as
is the case with any language, you need to know the correct syntax andwhen that particular
question is the right one to ask. In this section, we explore how to frame specific questions
with filter() and query().

Each function is used in particular circumstances. filter() is useful for getting a large
data down to a smaller size, based on the questions you want to ask. query(), on the other
hand, is useful for phrasing questions that use comparison operators (less than, equal to,
greater than, etc.). Let’s explore each in turn, but first, let’s import our Titanic dataset.

import pandas as pd
df = pd.read_csv("../data/titanic.csv")
df

PassengerId Survived Pclass \
0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3
..
886 887 0 2
887 888 1 1
888 889 0 3
889 890 1 1
890 891 0 3

Name Sex Age SibS \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
..
886 Montvila, Rev. Juozas male 27.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1
889 Behr, Mr. Karl Howell male 26.0 0
890 Dooley, Mr. Patrick male 32.0 0

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S

(continues on next page)

Searching for Data 113

(continued from previous page)

..
886 0 211536 13.0000 NaN S
887 0 112053 30.0000 B42 S
888 2 W./C. 6607 23.4500 NaN S
889 0 111369 30.0000 C148 C
890 0 370376 7.7500 NaN Q

[891 rows x 12 columns]

9.2.2 The Filter Function

The filter function is a great way to grab only the relevant columns. The syntax of filter is a
bit easier to use. It takes a single argument, a list of strings. These strings correspond to the
columns.

When to use filter(): Use filter() when you want to get a quick sense of your
dataset or, as we shall see, create a new dataframe based on the columns you want. It is
particularly useful if your dataset has many columns. You can also use it to reorder your
columns in a more desired way.

Let’s say thatwe are interested in just studying the names of the passengers of the Titanic.
It does not make sense to work with the entire DataFrame. We can, therefore, use filter to
just grab the names column, like so:

df.filter(["Name"])

Name
0 Braund, Mr. Owen Harris
1 Cumings, Mrs. John Bradley (Florence Briggs Th...
2 Heikkinen, Miss. Laina
3 Futrelle, Mrs. Jacques Heath (Lily May Peel)
4 Allen, Mr. William Henry
.. ...
886 Montvila, Rev. Juozas
887 Graham, Miss. Margaret Edith
888 Johnston, Miss. Catherine Helen "Carrie"
889 Behr, Mr. Karl Howell
890 Dooley, Mr. Patrick

[891 rows x 1 columns]

This is great, but what if I also want to see the ages of these passengers. No problem. I
can add an additional column to the list.

df.filter(["Name", "Age"])

Name Age
0 Braund, Mr. Owen Harris 22.0
1 Cumings, Mrs. John Bradley (Florence Briggs Th... 38.0
2 Heikkinen, Miss. Laina 26.0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) 35.0
4 Allen, Mr. William Henry 35.0
..
886 Montvila, Rev. Juozas 27.0
887 Graham, Miss. Margaret Edith 19.0

(continues on next page)

114 Introduction to Python for Humanists

(continued from previous page)

888 Johnston, Miss. Catherine Helen "Carrie" NaN
889 Behr, Mr. Karl Howell 26.0
890 Dooley, Mr. Patrick 32.0

[891 rows x 2 columns]

What if I want age to come before name? I can rearrange the order.

df.filter(["Age", "Name"])

Age Name
0 22.0 Braund, Mr. Owen Harris
1 38.0 Cumings, Mrs. John Bradley (Florence Briggs Th...
2 26.0 Heikkinen, Miss. Laina
3 35.0 Futrelle, Mrs. Jacques Heath (Lily May Peel)
4 35.0 Allen, Mr. William Henry
..
886 27.0 Montvila, Rev. Juozas
887 19.0 Graham, Miss. Margaret Edith
888 NaN Johnston, Miss. Catherine Helen "Carrie"
889 26.0 Behr, Mr. Karl Howell
890 32.0 Dooley, Mr. Patrick

[891 rows x 2 columns]

Note that we are not bound to the order of the DataFrame. This is particularly useful if
we want to make a new DataFrame.

new_df = df.filter(["Age", "Name"])
new_df

Age Name
0 22.0 Braund, Mr. Owen Harris
1 38.0 Cumings, Mrs. John Bradley (Florence Briggs Th...
2 26.0 Heikkinen, Miss. Laina
3 35.0 Futrelle, Mrs. Jacques Heath (Lily May Peel)
4 35.0 Allen, Mr. William Henry
..
886 27.0 Montvila, Rev. Juozas
887 19.0 Graham, Miss. Margaret Edith
888 NaN Johnston, Miss. Catherine Helen "Carrie"
889 26.0 Behr, Mr. Karl Howell
890 32.0 Dooley, Mr. Patrick

[891 rows x 2 columns]

Now,we can only examine the data that we actually need. This will make our code faster
and require examining fewer data for each row. Filter’s big limitation is in the fact that it
cannot filter the data further. We cannot, for example, add an extra argument to filter()
that would only return the names with “Miss.”, but we can tack on additional arguments
to filter, such as those that we saw in the previous chapter on searching strings.

Let’s try that now.

df.filter(["Age", "Name"]).Name.str.contains("Miss\.")

Searching for Data 115

0 False
1 False
2 True
3 False
4 False

...
886 False
887 True
888 True
889 False
890 False
Name: Name, Length: 891, dtype: bool

Note that we now have a list of “True” or “False” statements. These tell us if the
word “Miss.” is in the column “Name”. If it is there, we see “True”. If it is not, we see
“False”. Let’s say we want to know how many passengers have the title “Miss.”, we stack
.value_counts() into the chain. Note the plural of counts.

df.filter(["Age", "Name"]).Name.str.contains("Miss\.").value_counts()

False 709
True 182
Name: Name, dtype: int64

Now, let’s say wewere interested in ONLY seeing the rows that contain “Miss.” in them.
We need to structure that filtering as a list. But note that if we wrap the whole thing in
a list, we don’t filter out just the “Age” and “Name” columns. Instead, we get the entire
DataFrame.

df[df.filter(["Age", "Name"]).Name.str.contains("Miss\.") == True]

PassengerId Survived Pclass Name \
2 3 1 3 Heikkinen, Miss. Laina
10 11 1 3 Sandstrom, Miss. Marguerite Rut
11 12 1 1 Bonnell, Miss. Elizabeth
14 15 0 3 Vestrom, Miss. Hulda Amanda Adolfina
22 23 1 3 McGowan, Miss. Anna "Annie"
..
866 867 1 2 Duran y More, Miss. Asuncion
875 876 1 3 Najib, Miss. Adele Kiamie "Jane"
882 883 0 3 Dahlberg, Miss. Gerda Ulrika
887 888 1 1 Graham, Miss. Margaret Edith
888 889 0 3 Johnston, Miss. Catherine Helen "Carrie"

Sex Age SibSp Parch Ticket Fare Cabin Embarked
2 female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
10 female 4.0 1 1 PP 9549 16.7000 G6 S
11 female 58.0 0 0 113783 26.5500 C103 S
14 female 14.0 0 0 350406 7.8542 NaN S
22 female 15.0 0 0 330923 8.0292 NaN Q
..
866 female 27.0 1 0 SC/PARIS 2149 13.8583 NaN C
875 female 15.0 0 0 2667 7.2250 NaN C
882 female 22.0 0 0 7552 10.5167 NaN S
887 female 19.0 0 0 112053 30.0000 B42 S
888 female NaN 1 2 W./C. 6607 23.4500 NaN S

[182 rows x 12 columns]

116 Introduction to Python for Humanists

This is because of where our filter occurs in the chain of commands. Note that filter
occurs within the brackets where we are setting up our parameters. This means that we are
filtering under the conditions of how the list is created, but that once a row is processed, the
DataFrame is unfiltered. If wewant our filter towork,we need to place it after the conditions
have been sorted. Notice that the filter is outside of our brackets now.

df[df.Name.str.contains("Miss\.") == True].filter(["Age", "Name"])

Age Name
2 26.0 Heikkinen, Miss. Laina
10 4.0 Sandstrom, Miss. Marguerite Rut
11 58.0 Bonnell, Miss. Elizabeth
14 14.0 Vestrom, Miss. Hulda Amanda Adolfina
22 15.0 McGowan, Miss. Anna "Annie"
..
866 27.0 Duran y More, Miss. Asuncion
875 15.0 Najib, Miss. Adele Kiamie "Jane"
882 22.0 Dahlberg, Miss. Gerda Ulrika
887 19.0 Graham, Miss. Margaret Edith
888 NaN Johnston, Miss. Catherine Helen "Carrie"

[182 rows x 2 columns]

9.2.3 The Query Function

The Pandasquery()method is a fantasticway to filter and query data. Unlike other Pandas
methods, it uses a string argument that functions rather similar to SQL syntax.

When to use query: You should only use query() when your question (query) can be
posed as greater than, less than, equal to, or not equal to (or some combination of these).
Let me demonstrate. If we wanted to filter out all the rows where the “Pclass” was equal to
3, we could use the following string:

df.query("Pclass == 3")

PassengerId Survived Pclass Name \
0 1 0 3 Braund, Mr. Owen Harris
2 3 1 3 Heikkinen, Miss. Laina
4 5 0 3 Allen, Mr. William Henry
5 6 0 3 Moran, Mr. James
7 8 0 3 Palsson, Master. Gosta Leonard
..
882 883 0 3 Dahlberg, Miss. Gerda Ulrika
884 885 0 3 Sutehall, Mr. Henry Jr
885 886 0 3 Rice, Mrs. William (Margaret Norton)
888 889 0 3 Johnston, Miss. Catherine Helen "Carrie"
890 891 0 3 Dooley, Mr. Patrick

Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 male 22.0 1 0 A/5 21171 7.2500 NaN S
2 female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
4 male 35.0 0 0 373450 8.0500 NaN S
5 male NaN 0 0 330877 8.4583 NaN Q
7 male 2.0 3 1 349909 21.0750 NaN S
..
882 female 22.0 0 0 7552 10.5167 NaN S

(continues on next page)

Searching for Data 117

(continued from previous page)

884 male 25.0 0 0 SOTON/OQ 392076 7.0500 NaN S
885 female 39.0 0 5 382652 29.1250 NaN Q
888 female NaN 1 2 W./C. 6607 23.4500 NaN S
890 male 32.0 0 0 370376 7.7500 NaN Q

[491 rows x 12 columns]

Query can also look for if a column contains any item in a list. We can do this by setting
“Pclass == [list]”.

df.query("Pclass == [1,3]")

PassengerId Survived Pclass \
0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3
..
885 886 0 3
887 888 1 1
888 889 0 3
889 890 1 1
890 891 0 3

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
..
885 Rice, Mrs. William (Margaret Norton) female 39.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1
889 Behr, Mr. Karl Howell male 26.0 0
890 Dooley, Mr. Patrick male 32.0 0

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S
..
885 5 382652 29.1250 NaN Q
887 0 112053 30.0000 B42 S
888 2 W./C. 6607 23.4500 NaN S
889 0 111369 30.0000 C148 C
890 0 370376 7.7500 NaN Q

[707 rows x 12 columns]

We can even stack questions together within this string. Let’s say, I am interested in all
who were in “Pclass 3” and “Survived”. I could write the following string argument:

df.query("Pclass == 3 & Survived == 1")

118 Introduction to Python for Humanists

PassengerId Survived Pclass \
2 3 1 3
8 9 1 3
10 11 1 3
19 20 1 3
22 23 1 3
..
838 839 1 3
855 856 1 3
858 859 1 3
869 870 1 3
875 876 1 3

Name Sex Age SibSp \
2 Heikkinen, Miss. Laina female 26.0 0
8 Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg) female 27.0 0
10 Sandstrom, Miss. Marguerite Rut female 4.0 1
19 Masselmani, Mrs. Fatima female NaN 0
22 McGowan, Miss. Anna "Annie" female 15.0 0
..
838 Chip, Mr. Chang male 32.0 0
855 Aks, Mrs. Sam (Leah Rosen) female 18.0 0
858 Baclini, Mrs. Solomon (Latifa Qurban) female 24.0 0
869 Johnson, Master. Harold Theodor male 4.0 1
875 Najib, Miss. Adele Kiamie "Jane" female 15.0 0

Parch Ticket Fare Cabin Embarked
2 0 STON/O2. 3101282 7.9250 NaN S
8 2 347742 11.1333 NaN S
10 1 PP 9549 16.7000 G6 S
19 0 2649 7.2250 NaN C
22 0 330923 8.0292 NaN Q
..
838 0 1601 56.4958 NaN S
855 1 392091 9.3500 NaN S
858 3 2666 19.2583 NaN C
869 1 347742 11.1333 NaN S
875 0 2667 7.2250 NaN C

[119 rows x 12 columns]

Let’s make the question even more complex. We want to now find the number of these
individuals who were over the age of 40.

df.query("Pclass == 3 & Survived == 1 & Age > 40")

PassengerId Survived Pclass Name Sex Age \
338 339 1 3 Dahl, Mr. Karl Edwart male 45.0
414 415 1 3 Sundman, Mr. Johan Julian male 44.0
483 484 1 3 Turkula, Mrs. (Hedwig) female 63.0

SibSp Parch Ticket Fare Cabin Embarked
338 0 0 7598 8.0500 NaN S
414 0 0 STON/O 2. 3101269 7.9250 NaN S
483 0 0 4134 9.5875 NaN S

I now have a list of three individuals whomet all criteria. I can also usemy “or” operator
(|), rather than “&”. Let’s see if we can achieve what we want. (Note this is an intentional
mistake. Look below for why.)

Searching for Data 119

df.query("Pclass == 3 & Survived == 1 & Age > 40 | Age < 10")

PassengerId Survived Pclass Name \
7 8 0 3 Palsson, Master. Gosta Leonard
10 11 1 3 Sandstrom, Miss. Marguerite Rut
16 17 0 3 Rice, Master. Eugene
24 25 0 3 Palsson, Miss. Torborg Danira
43 44 1 2 Laroche, Miss. Simonne Marie Anne Andree
..
827 828 1 2 Mallet, Master. Andre
831 832 1 2 Richards, Master. George Sibley
850 851 0 3 Andersson, Master. Sigvard Harald Elias
852 853 0 3 Boulos, Miss. Nourelain
869 870 1 3 Johnson, Master. Harold Theodor

Sex Age SibSp Parch Ticket Fare Cabin Embarked
7 male 2.00 3 1 349909 21.0750 NaN S
10 female 4.00 1 1 PP 9549 16.7000 G6 S
16 male 2.00 4 1 382652 29.1250 NaN Q
24 female 8.00 3 1 349909 21.0750 NaN S
43 female 3.00 1 2 SC/Paris 2123 41.5792 NaN C
..
827 male 1.00 0 2 S.C./PARIS 2079 37.0042 NaN C
831 male 0.83 1 1 29106 18.7500 NaN S
850 male 4.00 4 2 347082 31.2750 NaN S
852 female 9.00 1 1 2678 15.2458 NaN C
869 male 4.00 1 1 347742 11.1333 NaN S

[65 rows x 12 columns]

Woops! Something has gone seriously wrong here. We have all different kinds of
“Pclasses”, not just “3s”. We have people who survived and did not. And, most problemati-
cally, we have people only under the age of 10. What has gone wrong here!? The answer lies
in a perhaps forgotten part of math from when we were children, the order of operations.
If you recall from those lessons, the order of operations determines the way in which you
process the problem. 4 + 7 x 2 is very different from (4 + 7) x 2. The former is 18 and the
latter is 22 because the latter has parentheses which tell the reader to do that operation first.
Because programming sits on top of mathematics (especially Boolean algebra), the syntax
of mathematics is often embedded in programming.

Let’s use the order of operations correctly and rephrase our query. Note the parentheses
now before Age > 40 and after Age < 10. Note also that the “&” is before the parentheses.

df.query("Pclass == 3 & Survived == 1 & (Age > 40 | Age < 10)")

PassengerId Survived Pclass \
10 11 1 3
165 166 1 3
172 173 1 3
184 185 1 3
233 234 1 3
261 262 1 3
338 339 1 3
348 349 1 3
381 382 1 3
414 415 1 3
448 449 1 3
469 470 1 3
479 480 1 3

(continues on next page)

120 Introduction to Python for Humanists

(continued from previous page)

483 484 1 3
489 490 1 3
644 645 1 3
691 692 1 3
751 752 1 3
777 778 1 3
788 789 1 3
803 804 1 3
869 870 1 3

Name Sex Age SibSp \
10 Sandstrom, Miss. Marguerite Rut female 4.00 1
165 Goldsmith, Master. Frank John William "Frankie" male 9.00 0
172 Johnson, Miss. Eleanor Ileen female 1.00 1
184 Kink-Heilmann, Miss. Luise Gretchen female 4.00 0
233 Asplund, Miss. Lillian Gertrud female 5.00 4
261 Asplund, Master. Edvin Rojj Felix male 3.00 4
338 Dahl, Mr. Karl Edwart male 45.00 0
348 Coutts, Master. William Loch "William" male 3.00 1
381 Nakid, Miss. Maria ("Mary") female 1.00 0
414 Sundman, Mr. Johan Julian male 44.00 0
448 Baclini, Miss. Marie Catherine female 5.00 2
469 Baclini, Miss. Helene Barbara female 0.75 2
479 Hirvonen, Miss. Hildur E female 2.00 0
483 Turkula, Mrs. (Hedwig) female 63.00 0
489 Coutts, Master. Eden Leslie "Neville" male 9.00 1
644 Baclini, Miss. Eugenie female 0.75 2
691 Karun, Miss. Manca female 4.00 0
751 Moor, Master. Meier male 6.00 0
777 Emanuel, Miss. Virginia Ethel female 5.00 0
788 Dean, Master. Bertram Vere male 1.00 1
803 Thomas, Master. Assad Alexander male 0.42 0
869 Johnson, Master. Harold Theodor male 4.00 1

Parch Ticket Fare Cabin Embarked
10 1 PP 9549 16.7000 G6 S
165 2 363291 20.5250 NaN S
172 1 347742 11.1333 NaN S
184 2 315153 22.0250 NaN S
233 2 347077 31.3875 NaN S
261 2 347077 31.3875 NaN S
338 0 7598 8.0500 NaN S
348 1 C.A. 37671 15.9000 NaN S
381 2 2653 15.7417 NaN C
414 0 STON/O 2. 3101269 7.9250 NaN S
448 1 2666 19.2583 NaN C
469 1 2666 19.2583 NaN C
479 1 3101298 12.2875 NaN S
483 0 4134 9.5875 NaN S
489 1 C.A. 37671 15.9000 NaN S
644 1 2666 19.2583 NaN C
691 1 349256 13.4167 NaN C
751 1 392096 12.4750 E121 S
777 0 364516 12.4750 NaN S
788 2 C.A. 2315 20.5750 NaN S
803 1 2625 8.5167 NaN C
869 1 347742 11.1333 NaN S

This is why query is such a powerful function in Pandas. You can do a lot with a single
string. There are other ways to achieve this same result, but if your question can be entirely
phrased as a series of comparison operators (equal to, less than, etc.), then query is likely
the best option.

Searching for Data 121

9.3 Grouping with groupby()

9.3.1 Introduction

Whenworkingwith large quantities of data, it can sometimes be a bit difficult to understand
broad patterns within your data. Often, you will need to group your data into small
subsections based on some parameter, such as age, name, or some other feature. You
can do this in Pandas using groupby(), which will be the main subject of this section.
Groupby is a feature of Pandas that returns a special groupby object. This object can be
called to perform different types of analyses on data, especially when leveraging the built-
in quantitative features of Pandas, such as count() and sum(). In this section, we will
explore these features and see how they can be used on a real-world dataset, the Titanic
dataset.

import pandas as pd
df = pd.read_csv("../data/titanic.csv")
df = df[["Name", "Sex", "Age", "Pclass", "Fare"]]
df

Name Sex Age Pclass \
0 Braund, Mr. Owen Harris male 22.0 3
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 3
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 3
..
886 Montvila, Rev. Juozas male 27.0 2
887 Graham, Miss. Margaret Edith female 19.0 1
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 3
889 Behr, Mr. Karl Howell male 26.0 1
890 Dooley, Mr. Patrick male 32.0 3

Fare
0 7.2500
1 71.2833
2 7.9250
3 53.1000
4 8.0500
.. ...
886 13.0000
887 30.0000
888 23.4500
889 30.0000
890 7.7500

[891 rows x 5 columns]

9.3.2 groupby()

The groupby() function allows us to easily group our data in the DataFrame. Once your
data are grouped, there are a lot of quantitative questions you can begin to ask. Let’s start
simple. Let’s group our DataFrame by “Sex”.

df.groupby("Sex")

122 Introduction to Python for Humanists

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000002754F3CFB80>

This output may not be quite what you expect. This is an object to which we can now
pose targeted questions. Let’s try and see a DataFrame that only has “male” in the “Sex”
column. We can do that by using get_group("male").

df.groupby("Sex").get_group("male")

Name Sex Age Pclass Fare
0 Braund, Mr. Owen Harris male 22.0 3 7.2500
4 Allen, Mr. William Henry male 35.0 3 8.0500
5 Moran, Mr. James male NaN 3 8.4583
6 McCarthy, Mr. Timothy J male 54.0 1 51.8625
7 Palsson, Master. Gosta Leonard male 2.0 3 21.0750
..
883 Banfield, Mr. Frederick James male 28.0 2 10.5000
884 Sutehall, Mr. Henry Jr male 25.0 3 7.0500
886 Montvila, Rev. Juozas male 27.0 2 13.0000
889 Behr, Mr. Karl Howell male 26.0 1 30.0000
890 Dooley, Mr. Patrick male 32.0 3 7.7500

[577 rows x 5 columns]

This argument does not have to be a string. Let’s say, we want to just get all the people
who are aged 20. We can do the same thing by grouping the dataset by “Age” and then
getting the group of 20 year olds.

df.groupby("Age").get_group(20)

Name Sex Age Pclass Fare
12 Saundercock, Mr. William Henry male 20.0 3 8.0500
91 Andreasson, Mr. Paul Edvin male 20.0 3 7.8542
113 Jussila, Miss. Katriina female 20.0 3 9.8250
131 Coelho, Mr. Domingos Fernandeo male 20.0 3 7.0500
378 Betros, Mr. Tannous male 20.0 3 4.0125
404 Oreskovic, Miss. Marija female 20.0 3 8.6625
441 Hampe, Mr. Leon male 20.0 3 9.5000
622 Nakid, Mr. Sahid male 20.0 3 15.7417
640 Jensen, Mr. Hans Peder male 20.0 3 7.8542
664 Lindqvist, Mr. Eino William male 20.0 3 7.9250
682 Olsvigen, Mr. Thor Anderson male 20.0 3 9.2250
725 Oreskovic, Mr. Luka male 20.0 3 8.6625
762 Barah, Mr. Hanna Assi male 20.0 3 7.2292
840 Alhomaki, Mr. Ilmari Rudolf male 20.0 3 7.9250
876 Gustafsson, Mr. Alfred Ossian male 20.0 3 9.8458

9.3.3 Quantitative Analysis with .count() and .sum()

This is typically not how you would use the grouby function. It is far more powerful and
often used for quantitative analysis on subsets of your data. Let’s say that I want to examine
my dataset by sex and I am interested in known the quantity of column based solely on the
metric of sex. I could use groupby() and .count(). When chained together, our question
then becomes, how many “PassengerId”, “Survived”, “Pclass”, “Name”, etc., do we see
for each column based on sex. While this question is particularly useful for the qualitative
rows (such as “Name”) or numerical strings (such as “PassengerId”) because they display

Searching for Data 123

the total number of passengers because each person has a unique “PassengerId” and
“Name”.

df.groupby("Sex").count()

Name Age Pclass Fare
Sex
female 314 261 314 314
male 577 453 577 577

For the quantitative rows, we can use sum() function. This will tell us the sum of all
the columns that have floats or integers. Note that this is not a really good question to pose
for the “Age” column. It is, however, very useful for the “Fare” column and the “Survived”
column. Remember, if a person survived, they have a 1; if they did not, they have a 0. We
can use the sum to know how many male vs. female survivors there were.

df.groupby("Sex").sum()

Age Pclass Fare
Sex
female 7286.00 678 13966.6628
male 13919.17 1379 14727.2865

Let’s say, though, that we are only interested in the “Fare” column. Before we add sum
to our chain, we can specify that we want specifically the “Fare” column.

df.groupby("Sex").Fare.sum()

Sex
female 13966.6628
male 14727.2865
Name: Fare, dtype: float64

9.3.4 Working with Multiple Groups

Now, we have just the data on a single column. We can see that the combined fare of male
passengers was greater than the combined sum of female passengers. Let’s say though
that we are interested in how these sums divide over “Pclass”. We can pass a list to
groupby, rather than just a string. This list will be a list of a strings that correspond to
columns.

df.groupby(["Sex", "Pclass"]).Fare.sum()

Sex Pclass
female 1 9975.8250

2 1669.7292
3 2321.1086

male 1 8201.5875
2 2132.1125
3 4393.5865

Name: Fare, dtype: float64

The result of this new question is more nuanced. We are not looking at the sum of all
fares, rather the sum of fares divided on a “Pclass-by-Pclass” basis. This means that we can
now understand that these sums varied by class. For example, while the total fare for male

https://13919.17

124 Introduction to Python for Humanists

passengers was greater, the total fare for first class female passengers was greater than their
first class male counterparts. The male fare, however, is greater for both the 2nd Class and
3rd Class groups.

9.3.5 Groupings with Many Subsets

What if we were interested in something that would have more than just six neat sub-
sections, such as three classes per sex. What if we also wanted to add another aspect to
the groups, such as age. If we try and do that, our results are cutoff. We can try and use
pd.set_option().

df.groupby(["Sex", "Pclass", "Age"]).Fare.sum()

Sex Pclass Age
female 1 2.0 151.5500

14.0 120.0000
15.0 211.3375
16.0 183.8792
17.0 165.9000

...
male 3 59.0 7.2500

61.0 6.2375
65.0 7.7500
70.5 7.7500
74.0 7.7750

Name: Fare, Length: 283, dtype: float64

What if we wanted to make this look a bit nicer, as a Pandas DataFrame? We can pass
all our data back into a new DataFrame object.

df = pd.DataFrame(df.groupby(["Sex", "Pclass", "Age"]).Fare.sum())
df

Fare
Sex Pclass Age
female 1 2.0 151.5500

14.0 120.0000
15.0 211.3375
16.0 183.8792
17.0 165.9000

... ...
male 3 59.0 7.2500

61.0 6.2375
65.0 7.7500
70.5 7.7500
74.0 7.7750

[283 rows x 1 columns]

This is now a bit easier to read. You should now have a fairly good understanding of
how to group data in Pandas using groupby() and some of the more powerful ways you
can use groupby() to manipulate quantitative data.

10
Advanced Pandas

10.1 Plotting Data with Pandas

10.1.1 Importing the DataFrame

Pandas sits on top of Matplotlib, one of the standard libraries used by data scientists for
plotting data. As we will see in the next notebooks, you can also leverage other, more
robust, graphing libraries through Pandas. For now, though, let’s start with the basics. In
this notebook, we will explore how to create three types of graphs: bar (and barh), pie, and
scatter. I will also introduce you to some of the more recent features of Pandas 1.3.0, that
allow you to control the graph a bit more.

Before we do any of that, however, let’s import pandas and our data.

import pandas as pd

df = pd.read_csv("../data/titanic.csv")

df

PassengerId Survived Pclass \
0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3
..
886 887 0 2
887 888 1 1
888 889 0 3
889 890 1 1
890 891 0 3

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
..
886 Montvila, Rev. Juozas male 27.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1
889 Behr, Mr. Karl Howell male 26.0 0
890 Dooley, Mr. Patrick male 32.0 0

(continues on next page)

DOI: 10.1201/9781003342175-12

http://dx.doi.org/10.1201/9781003342175-12

126 Introduction to Python for Humanists

(continued from previous page)

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S
..
886 0 211536 13.0000 NaN S
887 0 112053 30.0000 B42 S
888 2 W./C. 6607 23.4500 NaN S
889 0 111369 30.0000 C148 C
890 0 370376 7.7500 NaN Q

[891 rows x 12 columns]

10.1.2 Bar and Barh Charts with Pandas

With our data imported successfully, let’s jump right in with bar charts. Bar charts a great
way to visualize qualitative data quantitatively. To demonstrate what I mean by this, let’s
consider if we wanted to know how many male passengers were on the Titanic relative to
female passengers. I could grab all the value counts and look at the numbers by calling
.value_counts(), as in the example below.

df['Sex'].value_counts()

male 577
female 314
Name: Sex, dtype: int64

This kind of raw numerical data is useful, but it is often difficult to present visually to
audiences. For this reason, it is quite common to have the raw numerical data available, but
to give the audience a quick sense of the numbers visually. We can take that initial code we
see above and using the .plot.bar() function we get the following result.

df['Sex'].value_counts().plot.bar()

<matplotlib.axes._subplots.AxesSubplot at 0x1b2877751c0>

126 Introduction to Python for Humanists

(continued from previous page)

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S
..
886 0 211536 13.0000 NaN S
887 0 112053 30.0000 B42 S
888 2 W./C. 6607 23.4500 NaN S
889 0 111369 30.0000 C148 C
890 0 370376 7.7500 NaN Q

[891 rows x 12 columns]

10.1.2 Bar and Barh Charts with Pandas

With our data imported successfully, let’s jump right in with bar charts. Bar charts a great
way to visualize qualitative data quantitatively. To demonstrate what I mean by this, let’s
consider if we wanted to know how many male passengers were on the Titanic relative to
female passengers. I could grab all the value counts and look at the numbers by calling
.value_counts(), as in the example below.

df['Sex'].value_counts()

male 577
female 314
Name: Sex, dtype: int64

This kind of raw numerical data is useful, but it is often difficult to present visually to
audiences. For this reason, it is quite common to have the raw numerical data available, but
to give the audience a quick sense of the numbers visually. We can take that initial code we
see above and using the .plot.bar() function we get the following result.

df['Sex'].value_counts().plot.bar()

<matplotlib.axes._subplots.AxesSubplot at 0x1b2877751c0>

Advanced Pandas 127

Not bad, but this chart is quite staid. For one thing, it doesn’t even have a title! Let’s fix
that. We can pass a keyword argument of title. This will take a string.

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic")

<matplotlib.axes._subplots.AxesSubplot at 0x1b2e64cdf10>

We have another serious issue, though. Both types of gender are represented with the
same color. This can be difficult for audiences to decipher in some instances, so let’s change
that. We can pass the keyword argument of color which will take a list of colors.

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b289804040>

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a8d52e0>

Advanced Pandas 127

Not bad, but this chart is quite staid. For one thing, it doesn’t even have a title! Let’s fix
that. We can pass a keyword argument of title. This will take a string.

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic")

<matplotlib.axes._subplots.AxesSubplot at 0x1b2e64cdf10>

We have another serious issue, though. Both types of gender are represented with the
same color. This can be difficult for audiences to decipher in some instances, so let’s change
that. We can pass the keyword argument of color which will take a list of colors.

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b289804040>

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a8d52e0>

Advanced Pandas 127

Not bad, but this chart is quite staid. For one thing, it doesn’t even have a title! Let’s fix
that. We can pass a keyword argument of title. This will take a string.

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic")

<matplotlib.axes._subplots.AxesSubplot at 0x1b2e64cdf10>

We have another serious issue, though. Both types of gender are represented with the
same color. This can be difficult for audiences to decipher in some instances, so let’s change
that. We can pass the keyword argument of color which will take a list of colors.

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b289804040>

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a8d52e0>

Advanced Pandas 127

Not bad, but this chart is quite staid. For one thing, it doesn’t even have a title! Let’s fix
that. We can pass a keyword argument of title. This will take a string.

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic")

<matplotlib.axes._subplots.AxesSubplot at 0x1b2e64cdf10>

We have another serious issue, though. Both types of gender are represented with the
same color. This can be difficult for audiences to decipher in some instances, so let’s change
that. We can pass the keyword argument of color which will take a list of colors.

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b289804040>

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a8d52e0>

Advanced Pandas 127

Not bad, but this chart is quite staid. For one thing, it doesn’t even have a title! Let’s fix
that. We can pass a keyword argument of title. This will take a string.

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic")

<matplotlib.axes._subplots.AxesSubplot at 0x1b2e64cdf10>

We have another serious issue, though. Both types of gender are represented with the
same color. This can be difficult for audiences to decipher in some instances, so let’s change
that. We can pass the keyword argument of color which will take a list of colors.

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b289804040>

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a8d52e0>

Advanced Pandas 127

Not bad, but this chart is quite staid. For one thing, it doesn’t even have a title! Let’s fix
that. We can pass a keyword argument of title. This will take a string.

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic")

<matplotlib.axes._subplots.AxesSubplot at 0x1b2e64cdf10>

We have another serious issue, though. Both types of gender are represented with the
same color. This can be difficult for audiences to decipher in some instances, so let’s change
that. We can pass the keyword argument of color which will take a list of colors.

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b289804040>

df['Sex'].value_counts().plot.bar(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a8d52e0>

128 Introduction to Python for Humanists

We can do the same thing with a barh graph, or a bar-horizontal graph.

df['Sex'].value_counts().plot.barh(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a93d460>

10.1.3 Pie Charts with Pandas

df['Sex'].value_counts().plot.pie()

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a990250>

df['Sex'].value_counts().plot.pie(figsize=(6, 6))

128 Introduction to Python for Humanists

We can do the same thing with a barh graph, or a bar-horizontal graph.

df['Sex'].value_counts().plot.barh(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a93d460>

10.1.3 Pie Charts with Pandas

df['Sex'].value_counts().plot.pie()

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a990250>

df['Sex'].value_counts().plot.pie(figsize=(6, 6))

128 Introduction to Python for Humanists

We can do the same thing with a barh graph, or a bar-horizontal graph.

df['Sex'].value_counts().plot.barh(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a93d460>

10.1.3 Pie Charts with Pandas

df['Sex'].value_counts().plot.pie()

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a990250>

df['Sex'].value_counts().plot.pie(figsize=(6, 6))

128 Introduction to Python for Humanists

We can do the same thing with a barh graph, or a bar-horizontal graph.

df['Sex'].value_counts().plot.barh(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a93d460>

10.1.3 Pie Charts with Pandas

df['Sex'].value_counts().plot.pie()

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a990250>

df['Sex'].value_counts().plot.pie(figsize=(6, 6))

128 Introduction to Python for Humanists

We can do the same thing with a barh graph, or a bar-horizontal graph.

df['Sex'].value_counts().plot.barh(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a93d460>

10.1.3 Pie Charts with Pandas

df['Sex'].value_counts().plot.pie()

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a990250>

df['Sex'].value_counts().plot.pie(figsize=(6, 6))

128 Introduction to Python for Humanists

We can do the same thing with a barh graph, or a bar-horizontal graph.

df['Sex'].value_counts().plot.barh(title="Passengers on the Titanic", color=["blue", "red"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a93d460>

10.1.3 Pie Charts with Pandas

df['Sex'].value_counts().plot.pie()

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a990250>

df['Sex'].value_counts().plot.pie(figsize=(6, 6))

Advanced Pandas 129

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a9db490>

Let’s say I was interested in the title of the genders not being lowercase. I can add in
some custom labels to the data as a keyword argument, labels, which takes a list.

df['Sex'].value_counts().plot.pie(labels=["Male", "Female"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aa1b100>

Now that we have our labels as we want them, let’s give the audience a bit of a better
experience. Let’s allow them to easily see the percentage of each gender, not just visually,
but quantitatively. To do this, we can pass the keyword argument, autopct, which will
take a string. In this case, we can pass in the argument “%.2” which is a formatted string.
This argument will convert our data into a percentage.

df['Sex'].value_counts().plot.pie(labels=["Male", "Female"], autopct="%.2f")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aa0ecd0>

Advanced Pandas 129

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a9db490>

Let’s say I was interested in the title of the genders not being lowercase. I can add in
some custom labels to the data as a keyword argument, labels, which takes a list.

df['Sex'].value_counts().plot.pie(labels=["Male", "Female"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aa1b100>

Now that we have our labels as we want them, let’s give the audience a bit of a better
experience. Let’s allow them to easily see the percentage of each gender, not just visually,
but quantitatively. To do this, we can pass the keyword argument, autopct, which will
take a string. In this case, we can pass in the argument “%.2” which is a formatted string.
This argument will convert our data into a percentage.

df['Sex'].value_counts().plot.pie(labels=["Male", "Female"], autopct="%.2f")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aa0ecd0>

Advanced Pandas 129

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a9db490>

Let’s say I was interested in the title of the genders not being lowercase. I can add in
some custom labels to the data as a keyword argument, labels, which takes a list.

df['Sex'].value_counts().plot.pie(labels=["Male", "Female"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aa1b100>

Now that we have our labels as we want them, let’s give the audience a bit of a better
experience. Let’s allow them to easily see the percentage of each gender, not just visually,
but quantitatively. To do this, we can pass the keyword argument, autopct, which will
take a string. In this case, we can pass in the argument “%.2” which is a formatted string.
This argument will convert our data into a percentage.

df['Sex'].value_counts().plot.pie(labels=["Male", "Female"], autopct="%.2f")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aa0ecd0>

Advanced Pandas 129

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a9db490>

Let’s say I was interested in the title of the genders not being lowercase. I can add in
some custom labels to the data as a keyword argument, labels, which takes a list.

df['Sex'].value_counts().plot.pie(labels=["Male", "Female"])

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aa1b100>

Now that we have our labels as we want them, let’s give the audience a bit of a better
experience. Let’s allow them to easily see the percentage of each gender, not just visually,
but quantitatively. To do this, we can pass the keyword argument, autopct, which will
take a string. In this case, we can pass in the argument “%.2” which is a formatted string.
This argument will convert our data into a percentage.

df['Sex'].value_counts().plot.pie(labels=["Male", "Female"], autopct="%.2f")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aa0ecd0>

https://autopct="%.2f

130 Introduction to Python for Humanists

10.1.4 Scatter Plots with Pandas

Scatter plots allow us to plot qualitative data quantitatively in relation to two numerical
attributes. Let’s imagine that we are interested in exploring all passengers, something
qualitative. Now, we want to know how each passenger relates to other passengers on two
numerical, or quantitative attributes, e.g. the age of the passenger and the fare that they
paid. Both of these are quantitative. We can therefore represent each person as a point on
the scatter plot and plot them in relation to their fare (vertical, or y axis) and age (horizontal,
or x axis) on the graph.

In Pandas we can do this by passing two keyword arguments, x and y and set them both
equal to the DataFrame column we want, e.g. “Age” and “Fare”.

df.plot.scatter(x="Age", y="Fare")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a99f9a0>

That looks good, but we can do better. Let’s try to color coordinate this data. Let’s say
we are interested in seeing not only the passenger’s age and fare, but we’re also interested
in color-coordinating the graph so that their “Pclass” effects the color of each plot. We can
do this by passing a few new keyword arguments.

1. c=”Pclass” => c will be the column that affects the color

2. cmap=”virdis” => will be the color map we want to use (these are built into
Pandas)

Advanced Pandas 131

df.plot.scatter(x="Age", y="Fare", c="Pclass",cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aaf2310>

This is starting to look a lot better now. But let’s say we didn’t want to represent our data
as a series of marginally changing numbers. When we pass a DataFrame column to “c” as
a set of numbers, Pandas presumes that that number corresponds to a gradient change in
color. But passenger class is not a gradient change, it is a integral change, meaning no one
will be Pclass 1.2. They will be 1, 2, or 3. In order to fix this graph, we can make a few
changes. First, we can use df.loc that we met in a previous notebook to grab all classes.
Now, we know there are three. We can convert these from numerical representations of the
class into string representations, e.g. First, Second, and Third.

Next, we can convert that entire column from a string column into a Pandas Categorical
Class.

df.loc[(df.Pclass == 1),'Pclass']="First"
df.loc[(df.Pclass == 2),'Pclass']="Second"
df.loc[(df.Pclass == 3),'Pclass']="Third"

We can now see that our data has now been altered in the “Pclass” column.

df

PassengerId Survived Pclass \
0 1 0 Third
1 2 1 First
2 3 1 Third
3 4 1 First
4 5 0 Third
..
886 887 0 Second
887 888 1 First
888 889 0 Third
889 890 1 First
890 891 0 Third

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
..

(continues on next page)

130 Introduction to Python for Humanists

10.1.4 Scatter Plots with Pandas

Scatter plots allow us to plot qualitative data quantitatively in relation to two numerical
attributes. Let’s imagine that we are interested in exploring all passengers, something
qualitative. Now, we want to know how each passenger relates to other passengers on two
numerical, or quantitative attributes, e.g. the age of the passenger and the fare that they
paid. Both of these are quantitative. We can therefore represent each person as a point on
the scatter plot and plot them in relation to their fare (vertical, or y axis) and age (horizontal,
or x axis) on the graph.

In Pandas we can do this by passing two keyword arguments, x and y and set them both
equal to the DataFrame column we want, e.g. “Age” and “Fare”.

df.plot.scatter(x="Age", y="Fare")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a99f9a0>

That looks good, but we can do better. Let’s try to color coordinate this data. Let’s say
we are interested in seeing not only the passenger’s age and fare, but we’re also interested
in color-coordinating the graph so that their “Pclass” effects the color of each plot. We can
do this by passing a few new keyword arguments.

1. c=”Pclass” => c will be the column that affects the color

2. cmap=”virdis” => will be the color map we want to use (these are built into
Pandas)

130 Introduction to Python for Humanists

10.1.4 Scatter Plots with Pandas

Scatter plots allow us to plot qualitative data quantitatively in relation to two numerical
attributes. Let’s imagine that we are interested in exploring all passengers, something
qualitative. Now, we want to know how each passenger relates to other passengers on two
numerical, or quantitative attributes, e.g. the age of the passenger and the fare that they
paid. Both of these are quantitative. We can therefore represent each person as a point on
the scatter plot and plot them in relation to their fare (vertical, or y axis) and age (horizontal,
or x axis) on the graph.

In Pandas we can do this by passing two keyword arguments, x and y and set them both
equal to the DataFrame column we want, e.g. “Age” and “Fare”.

df.plot.scatter(x="Age", y="Fare")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28a99f9a0>

That looks good, but we can do better. Let’s try to color coordinate this data. Let’s say
we are interested in seeing not only the passenger’s age and fare, but we’re also interested
in color-coordinating the graph so that their “Pclass” effects the color of each plot. We can
do this by passing a few new keyword arguments.

1. c=”Pclass” => c will be the column that affects the color

2. cmap=”virdis” => will be the color map we want to use (these are built into
Pandas)

Advanced Pandas 131

df.plot.scatter(x="Age", y="Fare", c="Pclass",cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aaf2310>

This is starting to look a lot better now. But let’s say we didn’t want to represent our data
as a series of marginally changing numbers. When we pass a DataFrame column to “c” as
a set of numbers, Pandas presumes that that number corresponds to a gradient change in
color. But passenger class is not a gradient change, it is a integral change, meaning no one
will be Pclass 1.2. They will be 1, 2, or 3. In order to fix this graph, we can make a few
changes. First, we can use df.loc that we met in a previous notebook to grab all classes.
Now, we know there are three. We can convert these from numerical representations of the
class into string representations, e.g. First, Second, and Third.

Next, we can convert that entire column from a string column into a Pandas Categorical
Class.

df.loc[(df.Pclass == 1),'Pclass']="First"
df.loc[(df.Pclass == 2),'Pclass']="Second"
df.loc[(df.Pclass == 3),'Pclass']="Third"

We can now see that our data has now been altered in the “Pclass” column.

df

PassengerId Survived Pclass \
0 1 0 Third
1 2 1 First
2 3 1 Third
3 4 1 First
4 5 0 Third
..
886 887 0 Second
887 888 1 First
888 889 0 Third
889 890 1 First
890 891 0 Third

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
..

(continues on next page)

Advanced Pandas 131

df.plot.scatter(x="Age", y="Fare", c="Pclass",cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aaf2310>

This is starting to look a lot better now. But let’s say we didn’t want to represent our data
as a series of marginally changing numbers. When we pass a DataFrame column to “c” as
a set of numbers, Pandas presumes that that number corresponds to a gradient change in
color. But passenger class is not a gradient change, it is a integral change, meaning no one
will be Pclass 1.2. They will be 1, 2, or 3. In order to fix this graph, we can make a few
changes. First, we can use df.loc that we met in a previous notebook to grab all classes.
Now, we know there are three. We can convert these from numerical representations of the
class into string representations, e.g. First, Second, and Third.

Next, we can convert that entire column from a string column into a Pandas Categorical
Class.

df.loc[(df.Pclass == 1),'Pclass']="First"
df.loc[(df.Pclass == 2),'Pclass']="Second"
df.loc[(df.Pclass == 3),'Pclass']="Third"

We can now see that our data has now been altered in the “Pclass” column.

df

PassengerId Survived Pclass \
0 1 0 Third
1 2 1 First
2 3 1 Third
3 4 1 First
4 5 0 Third
..
886 887 0 Second
887 888 1 First
888 889 0 Third
889 890 1 First
890 891 0 Third

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
..

(continues on next page)

Advanced Pandas 131

df.plot.scatter(x="Age", y="Fare", c="Pclass",cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aaf2310>

This is starting to look a lot better now. But let’s say we didn’t want to represent our data
as a series of marginally changing numbers. When we pass a DataFrame column to “c” as
a set of numbers, Pandas presumes that that number corresponds to a gradient change in
color. But passenger class is not a gradient change, it is a integral change, meaning no one
will be Pclass 1.2. They will be 1, 2, or 3. In order to fix this graph, we can make a few
changes. First, we can use df.loc that we met in a previous notebook to grab all classes.
Now, we know there are three. We can convert these from numerical representations of the
class into string representations, e.g. First, Second, and Third.

Next, we can convert that entire column from a string column into a Pandas Categorical
Class.

df.loc[(df.Pclass == 1),'Pclass']="First"
df.loc[(df.Pclass == 2),'Pclass']="Second"
df.loc[(df.Pclass == 3),'Pclass']="Third"

We can now see that our data has now been altered in the “Pclass” column.

df

PassengerId Survived Pclass \
0 1 0 Third
1 2 1 First
2 3 1 Third
3 4 1 First
4 5 0 Third
..
886 887 0 Second
887 888 1 First
888 889 0 Third
889 890 1 First
890 891 0 Third

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
..

(continues on next page)

Advanced Pandas 131

df.plot.scatter(x="Age", y="Fare", c="Pclass",cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28aaf2310>

This is starting to look a lot better now. But let’s say we didn’t want to represent our data
as a series of marginally changing numbers. When we pass a DataFrame column to “c” as
a set of numbers, Pandas presumes that that number corresponds to a gradient change in
color. But passenger class is not a gradient change, it is a integral change, meaning no one
will be Pclass 1.2. They will be 1, 2, or 3. In order to fix this graph, we can make a few
changes. First, we can use df.loc that we met in a previous notebook to grab all classes.
Now, we know there are three. We can convert these from numerical representations of the
class into string representations, e.g. First, Second, and Third.

Next, we can convert that entire column from a string column into a Pandas Categorical
Class.

df.loc[(df.Pclass == 1),'Pclass']="First"
df.loc[(df.Pclass == 2),'Pclass']="Second"
df.loc[(df.Pclass == 3),'Pclass']="Third"

We can now see that our data has now been altered in the “Pclass” column.

df

PassengerId Survived Pclass \
0 1 0 Third
1 2 1 First
2 3 1 Third
3 4 1 First
4 5 0 Third
..
886 887 0 Second
887 888 1 First
888 889 0 Third
889 890 1 First
890 891 0 Third

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0
..

(continues on next page)

132 Introduction to Python for Humanists

(continued from previous page)

886 Montvila, Rev. Juozas male 27.0 0
887 Graham, Miss. Margaret Edith female 19.0 0
888 Johnston, Miss. Catherine Helen "Carrie" female NaN 1
889 Behr, Mr. Karl Howell male 26.0 0
890 Dooley, Mr. Patrick male 32.0 0

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S
..
886 0 211536 13.0000 NaN S
887 0 112053 30.0000 B42 S
888 2 W./C. 6607 23.4500 NaN S
889 0 111369 30.0000 C148 C
890 0 370376 7.7500 NaN Q

[891 rows x 12 columns]

Now that our data is successfully converted into a string, youmight be thinking that we
can run the same code as before and we should see the data divided between strings, rather
than a gradient shift between floats. If we execute the cell below, however, we get a rather
large and scary looking error. (Scroll down to see the solution.)

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=50)

ValueError Traceback (most recent call last)
File ˜\anaconda3\lib\site-packages\matplotlib\axes_axes.py:4239, in Axes._parse_
→֒scatter_color_args(c, edgecolors, kwargs, xsize, get_next_color_func)

4238 try: # Is 'c' acceptable as PathCollection facecolors?
-> 4239 colors = mcolors.to_rgba_array(c)

4240 except ValueError:

File ˜\anaconda3\lib\site-packages\matplotlib\colors.py:340, in to_rgba_array(c,
→֒alpha)

339 else:
--> 340 return np.array([to_rgba(cc, alpha) for cc in c])

File ˜\anaconda3\lib\site-packages\matplotlib\colors.py:340, in <listcomp>(.0)
339 else:

--> 340 return np.array([to_rgba(cc, alpha) for cc in c])

File ˜\anaconda3\lib\site-packages\matplotlib\colors.py:185, in to_rgba(c, alpha)
184 if rgba is None: # Suppress exception chaining of cache lookup failure.

--> 185 rgba = _to_rgba_no_colorcycle(c, alpha)
186 try:

File ˜\anaconda3\lib\site-packages\matplotlib\colors.py:261, in _to_rgba_no_
→֒colorcycle(c, alpha)

260 return c, c, c, alpha if alpha is not None else 1.
--> 261 raise ValueError(f"Invalid RGBA argument: {orig_c!r}")

262 # tuple color.

ValueError: Invalid RGBA argument: 'Third'

(continues on next page)

Advanced Pandas 133

(continued from previous page)

During handling of the above exception, another exception occurred:

ValueError Traceback (most recent call last)
Input In [18], in <cell line: 1>()
----> 1 df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=50)

File ˜\AppData\Roaming\Python\Python38\site-packages\pandas\plotting_core.
→֒py:1636, in PlotAccessor.scatter(self, x, y, s, c, **kwargs)

1553 def scatter(self, x, y, s=None, c=None, **kwargs):
1554 """
1555 Create a scatter plot with varying marker point size and color.
1556
(...)
1634 ... colormap='viridis')
1635 """

-> 1636 return self(kind="scatter", x=x, y=y, s=s, c=c, **kwargs)

File ˜\AppData\Roaming\Python\Python38\site-packages\pandas\plotting_core.
→֒py:917, in PlotAccessor.__call__(self, *args, **kwargs)

915 if kind in self._dataframe_kinds:
916 if isinstance(data, ABCDataFrame):

--> 917 return plot_backend.plot(data, x=x, y=y, kind=kind, **kwargs)
918 else:
919 raise ValueError(f"plot kind {kind} can only be used for data

→֒frames")

File ˜\AppData\Roaming\Python\Python38\site-packages\pandas\plotting_matplotlib\
→֒__init__.py:71, in plot(data, kind, **kwargs)

69 kwargs["ax"] = getattr(ax, "left_ax", ax)
70 plot_obj = PLOT_CLASSES[kind](data, **kwargs)

---> 71 plot_obj.generate()
72 plot_obj.draw()
73 return plot_obj.result

File ˜\AppData\Roaming\Python\Python38\site-packages\pandas\plotting_matplotlib\
→֒core.py:288, in MPLPlot.generate(self)

286 self._compute_plot_data()
287 self._setup_subplots()

--> 288 self._make_plot()
289 self._add_table()
290 self._make_legend()

File ˜\AppData\Roaming\Python\Python38\site-packages\pandas\plotting_matplotlib\
→֒core.py:1070, in ScatterPlot._make_plot(self)

1068 else:
1069 label = None

-> 1070 scatter = ax.scatter(
1071 data[x].values,
1072 data[y].values,
1073 c=c_values,
1074 label=label,
1075 cmap=cmap,
1076 norm=norm,
1077 **self.kwds,
1078)
1079 if cb:
1080 cbar_label = c if c_is_column else ""

(continues on next page)

134 Introduction to Python for Humanists

(continued from previous page)

File ˜\anaconda3\lib\site-packages\matplotlib__init__.py:1565, in _preprocess_
→֒data.<locals>.inner(ax, data, *args, **kwargs)

1562 @functools.wraps(func)
1563 def inner(ax, *args, data=None, **kwargs):
1564 if data is None:

-> 1565 return func(ax, *map(sanitize_sequence, args), **kwargs)
1567 bound = new_sig.bind(ax, *args, **kwargs)
1568 auto_label = (bound.arguments.get(label_namer)
1569 or bound.kwargs.get(label_namer))

File ˜\anaconda3\lib\site-packages\matplotlib\cbook\deprecation.py:358, in _
→֒delete_parameter.<locals>.wrapper(*args, **kwargs)

352 if name in arguments and arguments[name] != _deprecated_parameter:
353 warn_deprecated(
354 since, message=f"The {name!r} parameter of {func.__name__}() "
355 f"is deprecated since Matplotlib {since} and will be removed "
356 f"%(removal)s. If any parameter follows {name!r}, they "
357 f"should be pass as keyword, not positionally.")

--> 358 return func(*args, **kwargs)

File ˜\anaconda3\lib\site-packages\matplotlib\axes_axes.py:4401, in Axes.
→֒scatter(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths,
→֒verts, edgecolors, plotnonfinite, **kwargs)

4397 if len(s) not in (1, x.size):
4398 raise ValueError("s must be a scalar, or the same size as x and y")
4400 c, colors, edgecolors = \

-> 4401 self._parse_scatter_color_args(
4402 c, edgecolors, kwargs, x.size,
4403 get_next_color_func=self._get_patches_for_fill.get_next_color)
4405 if plotnonfinite and colors is None:
4406 c = np.ma.masked_invalid(c)

File ˜\anaconda3\lib\site-packages\matplotlib\axes_axes.py:4245, in Axes._parse_
→֒scatter_color_args(c, edgecolors, kwargs, xsize, get_next_color_func)

4242 raise invalid_shape_exception(c.size, xsize)
4243 # Both the mapping *and* the RGBA conversion failed: pretty
4244 # severe failure => one may appreciate a verbose feedback.

-> 4245 raise ValueError(
4246 f"'c' argument must be a color, a sequence of colors, or "
4247 f"a sequence of numbers, not {c}")
4248 else:
4249 if len(colors) not in (0, 1, xsize):
4250 # NB: remember that a single color is also acceptable.
4251 # Besides *colors* will be an empty array if c == 'none'.

ValueError: 'c' argument must be a color, a sequence of colors, or a sequence of
→֒numbers, not ['Third' 'First' 'Third' 'First' 'Third' 'Third' 'First' 'Third'
→֒'Third'
'Second' 'Third' 'First' 'Third' 'Third' 'Third' 'Second' 'Third'
'Second' 'Third' 'Third' 'Second' 'Second' 'Third' 'First' 'Third'
'Third' 'Third' 'First' 'Third' 'Third' 'First' 'First' 'Third' 'Second'
'First' 'First' 'Third' 'Third' 'Third' 'Third' 'Third' 'Second' 'Third'
'Second' 'Third' 'Third' 'Third' 'Third' 'Third' 'Third' 'Third' 'Third'
'First' 'Second' 'First' 'First' 'Second' 'Third' 'Second' 'Third'
'Third' 'First' 'First' 'Third' 'First' 'Third' 'Second' 'Third' 'Third'
'Third' 'Second' 'Third' 'Second' 'Third' 'Third' 'Third' 'Third' 'Third'
'Second' 'Third' 'Third' 'Third' 'Third' 'First' 'Second' 'Third' 'Third'

(continues on next page)

Advanced Pandas 135

(continued from previous page)

'Third' 'First' 'Third' 'Third' 'Third' 'First' 'Third' 'Third' 'Third'
'First' 'First' 'Second' 'Second' 'Third' 'Third' 'First' 'Third' 'Third'
'Third' 'Third' 'Third' 'Third' 'Third' 'First' 'Third' 'Third' 'Third'
'Third' 'Third' 'Third' 'Second' 'First' 'Third' 'Second' 'Third'
'Second' 'Second' 'First' 'Third' 'Third' 'Third' 'Third' 'Third' 'Third'
'Third' 'Third' 'Second' 'Second' 'Second' 'First' 'First' 'Third'
'First' 'Third' 'Third' 'Third' 'Third' 'Second' 'Second' 'Third' 'Third'
'Second' 'Second' 'Second' 'First' 'Third' 'Third' 'Third' 'First'
'Third' 'Third' 'Third' 'Third' 'Third' 'Second' 'Third' 'Third' 'Third'
'Third' 'First' 'Third' 'First' 'Third' 'First' 'Third' 'Third' 'Third'
'First' 'Third' 'Third' 'First' 'Second' 'Third' 'Third' 'Second' 'Third'
'Second' 'Third' 'First' 'Third' 'First' 'Third' 'Third' 'Second'
'Second' 'Third' 'Second' 'First' 'First' 'Third' 'Third' 'Third'
'Second' 'Third' 'Third' 'Third' 'Third' 'Third' 'Third' 'Third' 'Third'
'Third' 'First' 'Third' 'Second' 'Third' 'Second' 'Third' 'First' 'Third'
'Second' 'First' 'Second' 'Third' 'Second' 'Third' 'Third' 'First'
'Third' 'Second' 'Third' 'Second' 'Third' 'First' 'Third' 'Second'
'Third' 'Second' 'Third' 'Second' 'Second' 'Second' 'Second' 'Third'
'Third' 'Second' 'Third' 'Third' 'First' 'Third' 'Second' 'First'
'Second' 'Third' 'Third' 'First' 'Third' 'Third' 'Third' 'First' 'First'
'First' 'Second' 'Third' 'Third' 'First' 'First' 'Third' 'Second' 'Third'
'Third' 'First' 'First' 'First' 'Third' 'Second' 'First' 'Third' 'First'
'Third' 'Second' 'Third' 'Third' 'Third' 'Third' 'Third' 'Third' 'First'
'Third' 'Third' 'Third' 'Second' 'Third' 'First' 'First' 'Second' 'Third'
'Third' 'First' 'Third' 'First' 'First' 'First' 'Third' 'Third' 'Third'
'Second' 'Third' 'First' 'First' 'First' 'Second' 'First' 'First' 'First'
'Second' 'Third' 'Second' 'Third' 'Second' 'Second' 'First' 'First'
'Third' 'Third' 'Second' 'Second' 'Third' 'First' 'Third' 'Second'
'Third' 'First' 'Third' 'First' 'First' 'Third' 'First' 'Third' 'First'
'First' 'Third' 'First' 'Second' 'First' 'Second' 'Second' 'Second'
'Second' 'Second' 'Third' 'Third' 'Third' 'Third' 'First' 'Third' 'Third'
'Third' 'Third' 'First' 'Second' 'Third' 'Third' 'Third' 'Second' 'Third'
'Third' 'Third' 'Third' 'First' 'Third' 'Third' 'First' 'First' 'Third'
'Third' 'First' 'Third' 'First' 'Third' 'First' 'Third' 'Third' 'First'
'Third' 'Third' 'First' 'Third' 'Second' 'Third' 'Second' 'Third'
'Second' 'First' 'Third' 'Third' 'First' 'Third' 'Third' 'Third' 'Second'
'Second' 'Second' 'Third' 'Third' 'Third' 'Third' 'Third' 'Second'
'Third' 'Second' 'Third' 'Third' 'Third' 'Third' 'First' 'Second' 'Third'
'Third' 'Second' 'Second' 'Second' 'Third' 'Third' 'Third' 'Third'
'Third' 'Third' 'Third' 'Second' 'Second' 'Third' 'Third' 'First' 'Third'
'Second' 'Third' 'First' 'First' 'Third' 'Second' 'First' 'Second'
'Second' 'Third' 'Third' 'Second' 'Third' 'First' 'Second' 'First'
'Third' 'First' 'Second' 'Third' 'First' 'First' 'Third' 'Third' 'First'
'First' 'Second' 'Third' 'First' 'Third' 'First' 'Second' 'Third' 'Third'
'Second' 'First' 'Third' 'Third' 'Third' 'Third' 'Second' 'Second'
'Third' 'First' 'Second' 'Third' 'Third' 'Third' 'Third' 'Second' 'Third'
'Third' 'First' 'Third' 'First' 'First' 'Third' 'Third' 'Third' 'Third'
'First' 'First' 'Third' 'Third' 'First' 'Third' 'First' 'Third' 'Third'
'Third' 'Third' 'Third' 'First' 'First' 'Second' 'First' 'Third' 'Third'
'Third' 'Third' 'First' 'First' 'Third' 'First' 'Second' 'Third' 'Second'
'Third' 'First' 'Third' 'Third' 'First' 'Third' 'Third' 'Second' 'First'
'Third' 'Second' 'Second' 'Third' 'Third' 'Third' 'Third' 'Second'
'First' 'First' 'Third' 'First' 'First' 'Third' 'Third' 'Second' 'First'
'First' 'Second' 'Second' 'Third' 'Second' 'First' 'Second' 'Third'
'Third' 'Third' 'First' 'First' 'First' 'First' 'Third' 'Third' 'Third'
'Second' 'Third' 'Third' 'Third' 'Third' 'Third' 'Third' 'Third' 'Second'
'First' 'First' 'Third' 'Third' 'Third' 'Second' 'First' 'Third' 'Third'
'Second' 'First' 'Second' 'First' 'Third' 'First' 'Second' 'First'

(continues on next page)

136 Introduction to Python for Humanists

(continued from previous page)

'Third' 'Third' 'Third' 'First' 'Third' 'Third' 'Second' 'Third' 'Second'
'Third' 'Third' 'First' 'Second' 'Third' 'First' 'Third' 'First' 'Third'
'Third' 'First' 'Second' 'First' 'Third' 'Third' 'Third' 'Third' 'Third'
'Second' 'Third' 'Third' 'Second' 'Second' 'Third' 'First' 'Third'
'Third' 'Third' 'First' 'Second' 'First' 'Third' 'Third' 'First' 'Third'
'First' 'First' 'Third' 'Second' 'Third' 'Second' 'Third' 'Third' 'Third'
'First' 'Third' 'Third' 'Third' 'First' 'Third' 'First' 'Third' 'Third'
'Third' 'Second' 'Third' 'Third' 'Third' 'Second' 'Third' 'Third'
'Second' 'First' 'First' 'Third' 'First' 'Third' 'Third' 'Second'
'Second' 'Third' 'Third' 'First' 'Second' 'First' 'Second' 'Second'
'Second' 'Third' 'Third' 'Third' 'Third' 'First' 'Third' 'First' 'Third'
'Third' 'Second' 'Second' 'Third' 'Third' 'Third' 'First' 'First' 'Third'
'Third' 'Third' 'First' 'Second' 'Third' 'Third' 'First' 'Third' 'First'
'First' 'Third' 'Third' 'Third' 'Second' 'Second' 'First' 'First' 'Third'
'First' 'First' 'First' 'Third' 'Second' 'Third' 'First' 'Second' 'Third'
'Third' 'Second' 'Third' 'Second' 'Second' 'First' 'Third' 'Second'
'Third' 'Second' 'Third' 'First' 'Third' 'Second' 'Second' 'Second'
'Third' 'Third' 'First' 'Third' 'Third' 'First' 'First' 'First' 'Third'
'Third' 'First' 'Third' 'Second' 'First' 'Third' 'Second' 'Third' 'Third'
'Third' 'Second' 'Second' 'Third' 'Second' 'Third' 'First' 'Third'
'Third' 'Third' 'First' 'Third' 'First' 'First' 'Third' 'Third' 'Third'
'Third' 'Third' 'Second' 'Third' 'Second' 'Third' 'Third' 'Third' 'Third'
'First' 'Third' 'First' 'First' 'Third' 'Third' 'Third' 'Third' 'Third'
'Third' 'First' 'Third' 'Second' 'Third' 'First' 'Third' 'Second' 'First'
'Third' 'Third' 'Third' 'Second' 'Second' 'First' 'Third' 'Third' 'Third'
'First' 'Third' 'Second' 'First' 'Third' 'Third' 'Second' 'Third' 'Third'
'First' 'Third' 'Second' 'Third' 'Third' 'First' 'Third' 'First' 'Third'
'Third' 'Third' 'Third' 'Second' 'Third' 'First' 'Third' 'Second' 'Third'
'Third' 'Third' 'First' 'Third' 'Third' 'Third' 'First' 'Third' 'Second'
'First' 'Third' 'Third' 'Third' 'Third' 'Third' 'Second' 'First' 'Third'
'Third' 'Third' 'First' 'Second' 'Third' 'First' 'First' 'Third' 'Third'
'Third' 'Second' 'First' 'Third' 'Second' 'Second' 'Second' 'First'
'Third' 'Third' 'Third' 'First' 'First' 'Third' 'Second' 'Third' 'Third'
'Third' 'Third' 'First' 'Second' 'Third' 'Third' 'Second' 'Third' 'Third'
'Second' 'First' 'Third' 'First' 'Third']

Keeping this massive error in the textbook is essential, despite its size being rather
annoying. It tells us a lot of information about the problem.Whenwe try andpass a keyword
argument of “c”, Pandas is expecting a series of numbers (whichwill correspond to gradient
shifts in the cmap), a list of colors, or a Pandas Categorical column. To change our data to a
list of colors, let’s convert our data into three different colors.

df.loc[(df.Pclass == "First"),'Pclass']="red"
df.loc[(df.Pclass == "Second"),'Pclass']="blue"
df.loc[(df.Pclass == "Third"),'Pclass']="green"

Advanced Pandas 137

df.plot.scatter(x="Age", y="Fare", c="Pclass")

<matplotlib.axes._subplots.AxesSubplot at 0x1b286ac0c10>

Now, our plots are all color coordinated. But I don’t like this. It doesn’t have a nice ledger
to read. Instead, we should convert this data into a Categorical Column. To do this, let’s first
get our data back into First, Second, and Third class format.

df.loc[(df.Pclass == "red"),'Pclass']="First"
df.loc[(df.Pclass == "blue"),'Pclass']="Second"
df.loc[(df.Pclass == "green"),'Pclass']="Third"

Now, let’s try this again by first converting Pclass into a Categorical type.

df['Pclass'] = df.Pclass.astype('category')

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28e20b4f0>

Now, like magic, we have precisely what we want to see. But we can do even better!
Let’s say we don’t like the size of the nodes (points) on the graph. We want to see smaller
nodes to distinguish better between the points. We can pass another keyword argument,
“s”, which stands for size. This expects an integer.

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=5)

<matplotlib.axes._subplots.AxesSubplot at 0x1b28f28f100>

Advanced Pandas 137

df.plot.scatter(x="Age", y="Fare", c="Pclass")

<matplotlib.axes._subplots.AxesSubplot at 0x1b286ac0c10>

Now, our plots are all color coordinated. But I don’t like this. It doesn’t have a nice ledger
to read. Instead, we should convert this data into a Categorical Column. To do this, let’s first
get our data back into First, Second, and Third class format.

df.loc[(df.Pclass == "red"),'Pclass']="First"
df.loc[(df.Pclass == "blue"),'Pclass']="Second"
df.loc[(df.Pclass == "green"),'Pclass']="Third"

Now, let’s try this again by first converting Pclass into a Categorical type.

df['Pclass'] = df.Pclass.astype('category')

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28e20b4f0>

Now, like magic, we have precisely what we want to see. But we can do even better!
Let’s say we don’t like the size of the nodes (points) on the graph. We want to see smaller
nodes to distinguish better between the points. We can pass another keyword argument,
“s”, which stands for size. This expects an integer.

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=5)

<matplotlib.axes._subplots.AxesSubplot at 0x1b28f28f100>

Advanced Pandas 137

df.plot.scatter(x="Age", y="Fare", c="Pclass")

<matplotlib.axes._subplots.AxesSubplot at 0x1b286ac0c10>

Now, our plots are all color coordinated. But I don’t like this. It doesn’t have a nice ledger
to read. Instead, we should convert this data into a Categorical Column. To do this, let’s first
get our data back into First, Second, and Third class format.

df.loc[(df.Pclass == "red"),'Pclass']="First"
df.loc[(df.Pclass == "blue"),'Pclass']="Second"
df.loc[(df.Pclass == "green"),'Pclass']="Third"

Now, let’s try this again by first converting Pclass into a Categorical type.

df['Pclass'] = df.Pclass.astype('category')

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28e20b4f0>

Now, like magic, we have precisely what we want to see. But we can do even better!
Let’s say we don’t like the size of the nodes (points) on the graph. We want to see smaller
nodes to distinguish better between the points. We can pass another keyword argument,
“s”, which stands for size. This expects an integer.

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=5)

<matplotlib.axes._subplots.AxesSubplot at 0x1b28f28f100>

Advanced Pandas 137

df.plot.scatter(x="Age", y="Fare", c="Pclass")

<matplotlib.axes._subplots.AxesSubplot at 0x1b286ac0c10>

Now, our plots are all color coordinated. But I don’t like this. It doesn’t have a nice ledger
to read. Instead, we should convert this data into a Categorical Column. To do this, let’s first
get our data back into First, Second, and Third class format.

df.loc[(df.Pclass == "red"),'Pclass']="First"
df.loc[(df.Pclass == "blue"),'Pclass']="Second"
df.loc[(df.Pclass == "green"),'Pclass']="Third"

Now, let’s try this again by first converting Pclass into a Categorical type.

df['Pclass'] = df.Pclass.astype('category')

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28e20b4f0>

Now, like magic, we have precisely what we want to see. But we can do even better!
Let’s say we don’t like the size of the nodes (points) on the graph. We want to see smaller
nodes to distinguish better between the points. We can pass another keyword argument,
“s”, which stands for size. This expects an integer.

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=5)

<matplotlib.axes._subplots.AxesSubplot at 0x1b28f28f100>

Advanced Pandas 137

df.plot.scatter(x="Age", y="Fare", c="Pclass")

<matplotlib.axes._subplots.AxesSubplot at 0x1b286ac0c10>

Now, our plots are all color coordinated. But I don’t like this. It doesn’t have a nice ledger
to read. Instead, we should convert this data into a Categorical Column. To do this, let’s first
get our data back into First, Second, and Third class format.

df.loc[(df.Pclass == "red"),'Pclass']="First"
df.loc[(df.Pclass == "blue"),'Pclass']="Second"
df.loc[(df.Pclass == "green"),'Pclass']="Third"

Now, let’s try this again by first converting Pclass into a Categorical type.

df['Pclass'] = df.Pclass.astype('category')

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28e20b4f0>

Now, like magic, we have precisely what we want to see. But we can do even better!
Let’s say we don’t like the size of the nodes (points) on the graph. We want to see smaller
nodes to distinguish better between the points. We can pass another keyword argument,
“s”, which stands for size. This expects an integer.

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=5)

<matplotlib.axes._subplots.AxesSubplot at 0x1b28f28f100>

Advanced Pandas 137

df.plot.scatter(x="Age", y="Fare", c="Pclass")

<matplotlib.axes._subplots.AxesSubplot at 0x1b286ac0c10>

Now, our plots are all color coordinated. But I don’t like this. It doesn’t have a nice ledger
to read. Instead, we should convert this data into a Categorical Column. To do this, let’s first
get our data back into First, Second, and Third class format.

df.loc[(df.Pclass == "red"),'Pclass']="First"
df.loc[(df.Pclass == "blue"),'Pclass']="Second"
df.loc[(df.Pclass == "green"),'Pclass']="Third"

Now, let’s try this again by first converting Pclass into a Categorical type.

df['Pclass'] = df.Pclass.astype('category')

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28e20b4f0>

Now, like magic, we have precisely what we want to see. But we can do even better!
Let’s say we don’t like the size of the nodes (points) on the graph. We want to see smaller
nodes to distinguish better between the points. We can pass another keyword argument,
“s”, which stands for size. This expects an integer.

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=5)

<matplotlib.axes._subplots.AxesSubplot at 0x1b28f28f100>

Advanced Pandas 137

df.plot.scatter(x="Age", y="Fare", c="Pclass")

<matplotlib.axes._subplots.AxesSubplot at 0x1b286ac0c10>

Now, our plots are all color coordinated. But I don’t like this. It doesn’t have a nice ledger
to read. Instead, we should convert this data into a Categorical Column. To do this, let’s first
get our data back into First, Second, and Third class format.

df.loc[(df.Pclass == "red"),'Pclass']="First"
df.loc[(df.Pclass == "blue"),'Pclass']="Second"
df.loc[(df.Pclass == "green"),'Pclass']="Third"

Now, let’s try this again by first converting Pclass into a Categorical type.

df['Pclass'] = df.Pclass.astype('category')

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28e20b4f0>

Now, like magic, we have precisely what we want to see. But we can do even better!
Let’s say we don’t like the size of the nodes (points) on the graph. We want to see smaller
nodes to distinguish better between the points. We can pass another keyword argument,
“s”, which stands for size. This expects an integer.

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=5)

<matplotlib.axes._subplots.AxesSubplot at 0x1b28f28f100>

Advanced Pandas 137

df.plot.scatter(x="Age", y="Fare", c="Pclass")

<matplotlib.axes._subplots.AxesSubplot at 0x1b286ac0c10>

Now, our plots are all color coordinated. But I don’t like this. It doesn’t have a nice ledger
to read. Instead, we should convert this data into a Categorical Column. To do this, let’s first
get our data back into First, Second, and Third class format.

df.loc[(df.Pclass == "red"),'Pclass']="First"
df.loc[(df.Pclass == "blue"),'Pclass']="Second"
df.loc[(df.Pclass == "green"),'Pclass']="Third"

Now, let’s try this again by first converting Pclass into a Categorical type.

df['Pclass'] = df.Pclass.astype('category')

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis")

<matplotlib.axes._subplots.AxesSubplot at 0x1b28e20b4f0>

Now, like magic, we have precisely what we want to see. But we can do even better!
Let’s say we don’t like the size of the nodes (points) on the graph. We want to see smaller
nodes to distinguish better between the points. We can pass another keyword argument,
“s”, which stands for size. This expects an integer.

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=5)

<matplotlib.axes._subplots.AxesSubplot at 0x1b28f28f100>

138 Introduction to Python for Humanists

To make it a bit easier to read, let’s also adjust the size a bit. We can do this by passing
the keyword argument, “figsize”, that we saw above with pie charts.

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=5, figsize=(15,5))

<matplotlib.axes._subplots.AxesSubplot at 0x1b28f308340>

By now, you should have a good sense of how to create simple bar, pie, and scatter charts.
In the next few notebooks, wewill be looking at otherways of leveraging Pandas to produce
visualizations, such as using plotly and social networks with NetworkX.

10.2 Graphing Network Data with Pandas

10.2.1 Getting the Data from Pandas to NetworkX

Pandas on its own cannot plot out network data. Instead, we must rely on two other
libraries, NetworkX and Matplotlib. NetworkX is the standard Python library for working
with networks. I have a forthcoming textbook, like this one, that walks users through
NetworkX. Matplotlib is one of the standard plotting libraries. The purpose of this brief
section, is to provide the code necessary for making Pandas work with NetworkX and for
Matplotlib to take networks stored in a Pandas DataFrame and transform the relationships
into graphs. We will address social networks in greater detail in Part IV of this textbook.

import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt

138 Introduction to Python for Humanists

To make it a bit easier to read, let’s also adjust the size a bit. We can do this by passing
the keyword argument, “figsize”, that we saw above with pie charts.

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=5, figsize=(15,5))

<matplotlib.axes._subplots.AxesSubplot at 0x1b28f308340>

By now, you should have a good sense of how to create simple bar, pie, and scatter charts.
In the next few notebooks, wewill be looking at otherways of leveraging Pandas to produce
visualizations, such as using plotly and social networks with NetworkX.

10.2 Graphing Network Data with Pandas

10.2.1 Getting the Data from Pandas to NetworkX

Pandas on its own cannot plot out network data. Instead, we must rely on two other
libraries, NetworkX and Matplotlib. NetworkX is the standard Python library for working
with networks. I have a forthcoming textbook, like this one, that walks users through
NetworkX. Matplotlib is one of the standard plotting libraries. The purpose of this brief
section, is to provide the code necessary for making Pandas work with NetworkX and for
Matplotlib to take networks stored in a Pandas DataFrame and transform the relationships
into graphs. We will address social networks in greater detail in Part IV of this textbook.

import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt

138 Introduction to Python for Humanists

To make it a bit easier to read, let’s also adjust the size a bit. We can do this by passing
the keyword argument, “figsize”, that we saw above with pie charts.

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=5, figsize=(15,5))

<matplotlib.axes._subplots.AxesSubplot at 0x1b28f308340>

By now, you should have a good sense of how to create simple bar, pie, and scatter charts.
In the next few notebooks, wewill be looking at otherways of leveraging Pandas to produce
visualizations, such as using plotly and social networks with NetworkX.

10.2 Graphing Network Data with Pandas

10.2.1 Getting the Data from Pandas to NetworkX

Pandas on its own cannot plot out network data. Instead, we must rely on two other
libraries, NetworkX and Matplotlib. NetworkX is the standard Python library for working
with networks. I have a forthcoming textbook, like this one, that walks users through
NetworkX. Matplotlib is one of the standard plotting libraries. The purpose of this brief
section, is to provide the code necessary for making Pandas work with NetworkX and for
Matplotlib to take networks stored in a Pandas DataFrame and transform the relationships
into graphs. We will address social networks in greater detail in Part IV of this textbook.

import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt

138 Introduction to Python for Humanists

To make it a bit easier to read, let’s also adjust the size a bit. We can do this by passing
the keyword argument, “figsize”, that we saw above with pie charts.

df.plot.scatter(x="Age", y="Fare", c="Pclass", cmap="viridis", s=5, figsize=(15,5))

<matplotlib.axes._subplots.AxesSubplot at 0x1b28f308340>

By now, you should have a good sense of how to create simple bar, pie, and scatter charts.
In the next few notebooks, wewill be looking at otherways of leveraging Pandas to produce
visualizations, such as using plotly and social networks with NetworkX.

10.2 Graphing Network Data with Pandas

10.2.1 Getting the Data from Pandas to NetworkX

Pandas on its own cannot plot out network data. Instead, we must rely on two other
libraries, NetworkX and Matplotlib. NetworkX is the standard Python library for working
with networks. I have a forthcoming textbook, like this one, that walks users through
NetworkX. Matplotlib is one of the standard plotting libraries. The purpose of this brief
section, is to provide the code necessary for making Pandas work with NetworkX and for
Matplotlib to take networks stored in a Pandas DataFrame and transform the relationships
into graphs. We will address social networks in greater detail in Part IV of this textbook.

import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt

Advanced Pandas 139

Let’s now load our data and see what it looks like.

df = pd.read_csv("data/network.csv")

df

source target
0 Tom Rose
1 Rose Rosita
2 Jerry Jeff
3 Jeff Larry
4 Carmen Carmen
5 Rosita Rosita
6 Larry Carmen
7 Larry Jerry

This is a pretty standard format for networks. We have two columns of data, a source,
and a target. Imagine drawing a line to demonstrate networks, the source is where you start
drawing the line and the target is where that line ends. This is known as force in network
theory and is important for understanding the relationship between nodes, or individual
points, in a network graph.

We can useNetworkX’s built in function from_pandas_edgelist() and get that data
straight into an edgelist.

G= nx.from_pandas_edgelist(df, "source", "target")

10.2.2 Graphing the Data

And with just two more lines of code we can plot that data out.

nx.draw(G)
plt.show()

10.2.3 Customize the Graph

We have a problem with the image above, however, it is difficult to understand who the
nodes represent. Let’s give them some labels.

nx.draw(G, with_labels=True)
plt.show()

Advanced Pandas 139

Let’s now load our data and see what it looks like.

df = pd.read_csv("data/network.csv")

df

source target
0 Tom Rose
1 Rose Rosita
2 Jerry Jeff
3 Jeff Larry
4 Carmen Carmen
5 Rosita Rosita
6 Larry Carmen
7 Larry Jerry

This is a pretty standard format for networks. We have two columns of data, a source,
and a target. Imagine drawing a line to demonstrate networks, the source is where you start
drawing the line and the target is where that line ends. This is known as force in network
theory and is important for understanding the relationship between nodes, or individual
points, in a network graph.

We can useNetworkX’s built in function from_pandas_edgelist() and get that data
straight into an edgelist.

G= nx.from_pandas_edgelist(df, "source", "target")

10.2.2 Graphing the Data

And with just two more lines of code we can plot that data out.

nx.draw(G)
plt.show()

10.2.3 Customize the Graph

We have a problem with the image above, however, it is difficult to understand who the
nodes represent. Let’s give them some labels.

nx.draw(G, with_labels=True)
plt.show()

Advanced Pandas 139

Let’s now load our data and see what it looks like.

df = pd.read_csv("data/network.csv")

df

source target
0 Tom Rose
1 Rose Rosita
2 Jerry Jeff
3 Jeff Larry
4 Carmen Carmen
5 Rosita Rosita
6 Larry Carmen
7 Larry Jerry

This is a pretty standard format for networks. We have two columns of data, a source,
and a target. Imagine drawing a line to demonstrate networks, the source is where you start
drawing the line and the target is where that line ends. This is known as force in network
theory and is important for understanding the relationship between nodes, or individual
points, in a network graph.

We can useNetworkX’s built in function from_pandas_edgelist() and get that data
straight into an edgelist.

G= nx.from_pandas_edgelist(df, "source", "target")

10.2.2 Graphing the Data

And with just two more lines of code we can plot that data out.

nx.draw(G)
plt.show()

10.2.3 Customize the Graph

We have a problem with the image above, however, it is difficult to understand who the
nodes represent. Let’s give them some labels.

nx.draw(G, with_labels=True)
plt.show()

140 Introduction to Python for Humanists

Now that we have labels, we need to make them a bit easier to read. We can do this by
changing the font color to “whitesmoke” and setting the background to gray. To achieve this
we first need to create a fig object to which we will append a few attributes. Next, we draw
the network graph and give it a font_color of our desire. Finally, we set the facecolor to
gray and plot it.

fig = plt.figure()
nx.draw(G, with_labels=True, font_color="whitesmoke")
fig.set_facecolor('gray')
plt.show()

What if I wanted each node in our network to have an individual color? We can do that
too by setting up a color map.

val = []
for i in range(len(G.nodes)):

val.append(i)
nx.set_node_attributes(G, val, 'val')
fig = plt.figure()
nx.draw(G, with_labels=True, node_color=val, font_color="whitesmoke")
fig.set_facecolor('gray')
plt.show()

140 Introduction to Python for Humanists

Now that we have labels, we need to make them a bit easier to read. We can do this by
changing the font color to “whitesmoke” and setting the background to gray. To achieve this
we first need to create a fig object to which we will append a few attributes. Next, we draw
the network graph and give it a font_color of our desire. Finally, we set the facecolor to
gray and plot it.

fig = plt.figure()
nx.draw(G, with_labels=True, font_color="whitesmoke")
fig.set_facecolor('gray')
plt.show()

What if I wanted each node in our network to have an individual color? We can do that
too by setting up a color map.

val = []
for i in range(len(G.nodes)):

val.append(i)
nx.set_node_attributes(G, val, 'val')
fig = plt.figure()
nx.draw(G, with_labels=True, node_color=val, font_color="whitesmoke")
fig.set_facecolor('gray')
plt.show()

140 Introduction to Python for Humanists

Now that we have labels, we need to make them a bit easier to read. We can do this by
changing the font color to “whitesmoke” and setting the background to gray. To achieve this
we first need to create a fig object to which we will append a few attributes. Next, we draw
the network graph and give it a font_color of our desire. Finally, we set the facecolor to
gray and plot it.

fig = plt.figure()
nx.draw(G, with_labels=True, font_color="whitesmoke")
fig.set_facecolor('gray')
plt.show()

What if I wanted each node in our network to have an individual color? We can do that
too by setting up a color map.

val = []
for i in range(len(G.nodes)):

val.append(i)
nx.set_node_attributes(G, val, 'val')
fig = plt.figure()
nx.draw(G, with_labels=True, node_color=val, font_color="whitesmoke")
fig.set_facecolor('gray')
plt.show()

140 Introduction to Python for Humanists

Now that we have labels, we need to make them a bit easier to read. We can do this by
changing the font color to “whitesmoke” and setting the background to gray. To achieve this
we first need to create a fig object to which we will append a few attributes. Next, we draw
the network graph and give it a font_color of our desire. Finally, we set the facecolor to
gray and plot it.

fig = plt.figure()
nx.draw(G, with_labels=True, font_color="whitesmoke")
fig.set_facecolor('gray')
plt.show()

What if I wanted each node in our network to have an individual color? We can do that
too by setting up a color map.

val = []
for i in range(len(G.nodes)):

val.append(i)
nx.set_node_attributes(G, val, 'val')
fig = plt.figure()
nx.draw(G, with_labels=True, node_color=val, font_color="whitesmoke")
fig.set_facecolor('gray')
plt.show()

Advanced Pandas 141

10.3 Time Series Data

10.3.1 What Is Time Series Data

Time series data is data that reflects either time or dates. In Pandas this type of data is
known as datetime. If you are working with time series data, as we shall see, there are
significant reasons to ensure that Pandas understands that the data at hand is a date or
a time. It allows for easily manipulation and cleaning of inconsistent data formatting. Let
us consider a simple example. Imagine we were given dates from one source as 01/02/2002
and another as 01.02.2002. Both are valid date formats, but they are structured entirely
differently. Imagine now you had a third dataset that organized the data as 2 January 2002.
Your task is to merge all these datasets together.

If you wanted to do that, you could write out some Python and script them into
alignment, but Pandas offers the ability to do that automatically. In order to leverage that
ability, however, you must tell Pandas that the data at hand is datetime data. Exactly how
you do that, we will learn in this section.

Time series data is important for many different aspects of industry and academia. In
the financial sector, time series data allows for one to understand the past performance of a
stock. This is particularly useful in machine learning predictions which need to understand
the past to predict accurately the future.More importantly, they need to understand the past
a sequence of data. In the humanities, time series data is important for understand historical
context and, aswe shall see, plotting data temporally. Understanding how toworkwith time
series data, therefore, in Pandas is absolutely essential.

10.3.2 About the Dataset

In this section, we will be working with an early version of a dataset I helped cultivate
at the Bitter Aloe Project, a digital humanities project that explores apartheid violence in
South Africa during the 20th century. This dataset comes from Vol. 7 of the Truth and
Reconciliation Commission’s Final Report. I am using not our final, well-cleaned version
of this dataset, rather an earlier version for one key reason. It contains problematic cells
and structure. This is more reflective of real-world data, which will often times come from
multiple sources and need to be cleaned and structured. As such, it is good practice in this
section to try and address some of the common problems that you will encounter with time
series data.

import pandas as pd
df = pd.read_csv("../data/trc.csv")
df

ObjectId Last First \
0 1 AARON Thabo Simon
1 2 ABBOTT Montaigne
2 3 ABRAHAM Nzaliseko Christopher
3 4 ABRAHAMS Achmat Fardiel
4 5 ABRAHAMS Annalene Mildred
...
20829 20888 XUZA Mandla
20830 20889 YAKA Mbangomuni
20831 20890 YALI Khayalethu
20832 20891 YALO Bikiwe

(continues on next page)

142 Introduction to Python for Humanists

(continued from previous page)

20833 20892 YALOLO-BOOYSEN Geoffrey Yali

Description Place \
0 An ANCYL member who was shot and severely inju... Bethulie
1 A member of the SADF who was severely injured ... Messina
2 A COSAS supporter who was kicked and beaten wi... Mdantsane
3 Was shot and blinded in one eye by members of ... Athlone
4 Was shot and injured by members of the SAP in ... Robertson
...
20829 Was severely injured when he was stoned by a f... Carletonville
20830 An IFP supporter and acting induna who was sho... Mvutshini
20831 Was shot by members of the SAP in Lingelihle, ... Cradock
20832 An IFP supporter whose house and possessions w... Port Shepstone
20833 An ANC supporter and youth activist who was to... George

Yr Homeland Province Long Lat \
0 1991.0 NaN Orange Free State 25.97552 -30.503290
1 1987.0 NaN Transvaal 30.039597 -22.351308
2 1985.0 Ciskei Cape of Good Hope 27.6708791 -32.958623
3 1985.0 NaN Cape of Good Hope 18.50214 -33.967220
4 1990.0 NaN Cape of Good Hope 19.883611 -33.802220
...
20829 1991.0 NaN Transvaal 27.397673 -26.360943
20830 1993.0 KwaZulu Natal 30.28172 -30.868900
20831 1986.0 NaN Cape of Good Hope 25.619176 -32.164221
20832 1994.0 NaN Natal 30.4297304 -30.752126
20833 1986.0 NaN Cape of Good Hope 22.459722 -33.964440

HRV ORG
0 shoot|injure ANC|ANCYL|Police|SAP
1 injure SADF
2 beat COSAS|Police
3 shoot|blind SAP
4 shoot|injure Police|SAP
...
20829 injure|stone ANC
20830 shoot NaN
20831 shoot SAP
20832 destroy ANC
20833 torture|detain|torture ANC|SAP

[20834 rows x 12 columns]

As we can see, we have a few different columns which are relatively straight forward.
In this notebook, however, I want to focus on “Yr”, which is a column that contains a single
year referenced within the description. This corresponds to the year in which the violence
described occurred. Notice, however, that we have a problem. Year is being recognized as
a float (a number with a decimal place), or floating number. To confirm our suspicion, let’s
take a look at the data types by using the following command.

display(df.dtypes)

ObjectId int64
Last object
First object
Description object

(continues on next page)

Advanced Pandas 143

(continued from previous page)

Place object
Yr float64
Homeland object
Province object
Long object
Lat float64
HRV object
ORG object
dtype: object

Here, we can see all the different columns and their corresponding data types. Notice
that “Yr” has “float64”. This confirms our suspicion.Why is this a problem?Well, if wewere
to try and plot the data by year (see the bar graph below), we would have floating numbers
in that graph. This does not look clean. We could manually adjust these years to have no
decimal place, but that requires effort on a case-by-case basis. Instead, it is best practice to
convert these floats either to integers or to datetime data. Both have their advantages, but
if your end goal is larger data analysis on time series data (not just plotting the years), I
would opt for the latter. In order to do either, however, we must clean the data to get it into
the correct format.

df['Yr'].value_counts().sort_index().plot.bar(figsize=(20,5))

<AxesSubplot:>

10.3.3 Cleaning the Data from Float to Int

Let’s first try and convert our float column into an integer column. If we execute the
command below which would normally achieve this task, we get the following error.

df['Yr'] = df['Yr'].astype(int)

IntCastingNaNError Traceback (most recent call last)
<ipython-input-4-dc1db5c67903> in <module>
----> 1 df['Yr'] = df['Yr'].astype(int)

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\generic.py in astype(self, dtype, copy, errors)

5804 else:
5805 # else, only a single dtype is given

-> 5806 new_data = self._mgr.astype(dtype=dtype, copy=copy,
→֒errors=errors)

5807 return self._constructor(new_data).__finalize__(self, method=
→֒"astype") (continues on next page)

Advanced Pandas 143

(continued from previous page)

Place object
Yr float64
Homeland object
Province object
Long object
Lat float64
HRV object
ORG object
dtype: object

Here, we can see all the different columns and their corresponding data types. Notice
that “Yr” has “float64”. This confirms our suspicion.Why is this a problem?Well, if wewere
to try and plot the data by year (see the bar graph below), we would have floating numbers
in that graph. This does not look clean. We could manually adjust these years to have no
decimal place, but that requires effort on a case-by-case basis. Instead, it is best practice to
convert these floats either to integers or to datetime data. Both have their advantages, but
if your end goal is larger data analysis on time series data (not just plotting the years), I
would opt for the latter. In order to do either, however, we must clean the data to get it into
the correct format.

df['Yr'].value_counts().sort_index().plot.bar(figsize=(20,5))

<AxesSubplot:>

10.3.3 Cleaning the Data from Float to Int

Let’s first try and convert our float column into an integer column. If we execute the
command below which would normally achieve this task, we get the following error.

df['Yr'] = df['Yr'].astype(int)

IntCastingNaNError Traceback (most recent call last)
<ipython-input-4-dc1db5c67903> in <module>
----> 1 df['Yr'] = df['Yr'].astype(int)

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\generic.py in astype(self, dtype, copy, errors)

5804 else:
5805 # else, only a single dtype is given

-> 5806 new_data = self._mgr.astype(dtype=dtype, copy=copy,
→֒errors=errors)

5807 return self._constructor(new_data).__finalize__(self, method=
→֒"astype") (continues on next page)

Advanced Pandas 143

(continued from previous page)

Place object
Yr float64
Homeland object
Province object
Long object
Lat float64
HRV object
ORG object
dtype: object

Here, we can see all the different columns and their corresponding data types. Notice
that “Yr” has “float64”. This confirms our suspicion.Why is this a problem?Well, if wewere
to try and plot the data by year (see the bar graph below), we would have floating numbers
in that graph. This does not look clean. We could manually adjust these years to have no
decimal place, but that requires effort on a case-by-case basis. Instead, it is best practice to
convert these floats either to integers or to datetime data. Both have their advantages, but
if your end goal is larger data analysis on time series data (not just plotting the years), I
would opt for the latter. In order to do either, however, we must clean the data to get it into
the correct format.

df['Yr'].value_counts().sort_index().plot.bar(figsize=(20,5))

<AxesSubplot:>

10.3.3 Cleaning the Data from Float to Int

Let’s first try and convert our float column into an integer column. If we execute the
command below which would normally achieve this task, we get the following error.

df['Yr'] = df['Yr'].astype(int)

IntCastingNaNError Traceback (most recent call last)
<ipython-input-4-dc1db5c67903> in <module>
----> 1 df['Yr'] = df['Yr'].astype(int)

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\generic.py in astype(self, dtype, copy, errors)

5804 else:
5805 # else, only a single dtype is given

-> 5806 new_data = self._mgr.astype(dtype=dtype, copy=copy,
→֒errors=errors)

5807 return self._constructor(new_data).__finalize__(self, method=
→֒"astype") (continues on next page)

144 Introduction to Python for Humanists

(continued from previous page)

5808

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\internals\managers.py in astype(self, dtype, copy, errors)

412
413 def astype(self: T, dtype, copy: bool = False, errors: str = "raise

→֒") -> T:
--> 414 return self.apply("astype", dtype=dtype, copy=copy,
→֒errors=errors)

415
416 def convert(

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\internals\managers.py in apply(self, f, align_keys, ignore_failures,
→֒**kwargs)

325 applied = b.apply(f, **kwargs)
326 else:

--> 327 applied = getattr(b, f)(**kwargs)
328 except (TypeError, NotImplementedError):
329 if not ignore_failures:

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\internals\blocks.py in astype(self, dtype, copy, errors)

590 values = self.values
591

--> 592 new_values = astype_array_safe(values, dtype, copy=copy,
→֒errors=errors)

593
594 new_values = maybe_coerce_values(new_values)

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\dtypes\cast.py in astype_array_safe(values, dtype, copy, errors)

1307
1308 try:

-> 1309 new_values = astype_array(values, dtype, copy=copy)
1310 except (ValueError, TypeError):
1311 # e.g. astype_nansafe can fail on object-dtype of strings

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\dtypes\cast.py in astype_array(values, dtype, copy)

1255
1256 else:

-> 1257 values = astype_nansafe(values, dtype, copy=copy)
1258
1259 # in pandas we don't store numpy str dtypes, so convert to object

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\dtypes\cast.py in astype_nansafe(arr, dtype, copy, skipna)

1166
1167 elif np.issubdtype(arr.dtype, np.floating) and np.issubdtype(dtype,

→֒np.integer):
-> 1168 return astype_float_to_int_nansafe(arr, dtype, copy)

1169
1170 elif is_object_dtype(arr):

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\dtypes\cast.py in astype_float_to_int_nansafe(values, dtype, copy)

1211 """
(continues on next page)

Advanced Pandas 145

(continued from previous page)

1212 if not np.isfinite(values).all():
-> 1213 raise IntCastingNaNError(

1214 "Cannot convert non-finite values (NA or inf) to integer"
1215)

IntCastingNaNError: Cannot convert non-finite values (NA or inf) to integer

At the very bottom, we see why the error was returned. “IntCastingNaNError:
Cannot convert non-finite values (NA or inf) to integer”. This means
that somewhere in our data, there are a few blank cells in the “Year” column. We need
to fill in these blank cells. To do that, we can use the fillna() function.

df = df.fillna(0)

If we try and rerun our same command as above, you will notice we have no errors.

df['Yr'] = df['Yr'].astype(int)

Now, let’s see if it worked by displaying the data types again.

display(df.dtypes)

ObjectId int64
Last object
First object
Description object
Place object
Yr int32
Homeland object
Province object
Long object
Lat float64
HRV object
ORG object
dtype: object

Notice that “Yr” is now “int32”. Success! Now that we have the data in the correct
format, let’s plot it out. We can plot out the frequency of violence based on year by using
value counts. Thiswill go through the entire “Yr” column and count all the values identified
and store them as a dictionary of frequencies.

df['Yr'].value_counts()

1993 2835
1992 2648
1990 2556
1986 2056
1994 1867
1991 1793
1985 1665
1988 1015
1989 935
1987 744
1980 438
1983 352
1976 319

(continues on next page)

Advanced Pandas 145

(continued from previous page)

1212 if not np.isfinite(values).all():
-> 1213 raise IntCastingNaNError(

1214 "Cannot convert non-finite values (NA or inf) to integer"
1215)

IntCastingNaNError: Cannot convert non-finite values (NA or inf) to integer

At the very bottom, we see why the error was returned. “IntCastingNaNError:
Cannot convert non-finite values (NA or inf) to integer”. This means
that somewhere in our data, there are a few blank cells in the “Year” column. We need
to fill in these blank cells. To do that, we can use the fillna() function.

df = df.fillna(0)

If we try and rerun our same command as above, you will notice we have no errors.

df['Yr'] = df['Yr'].astype(int)

Now, let’s see if it worked by displaying the data types again.

display(df.dtypes)

ObjectId int64
Last object
First object
Description object
Place object
Yr int32
Homeland object
Province object
Long object
Lat float64
HRV object
ORG object
dtype: object

Notice that “Yr” is now “int32”. Success! Now that we have the data in the correct
format, let’s plot it out. We can plot out the frequency of violence based on year by using
value counts. Thiswill go through the entire “Yr” column and count all the values identified
and store them as a dictionary of frequencies.

df['Yr'].value_counts()

1993 2835
1992 2648
1990 2556
1986 2056
1994 1867
1991 1793
1985 1665
1988 1015
1989 935
1987 744
1980 438
1983 352
1976 319

(continues on next page)

146 Introduction to Python for Humanists

(continued from previous page)

1984 301
1960 280
1977 128
1981 124
1982 123
1975 111
1963 88
0 84
1962 69
1978 60
1979 53
1964 37
1961 32
1965 19
1969 14
1968 14
1974 12
1966 11
1970 10
1971 10
1967 8
1972 6
1973 5
1959 3
1998 3
1996 3
1997 2
1958 1
Name: Yr, dtype: int64

This looks great, but let’s try and plot it.

df['Yr'].value_counts().plot.bar(figsize=(20,5))

<AxesSubplot:>

What do you notice that is horribly wrong about our bar graph? If you noticed that it is
not chronological, you’d be right. It would be quite odd to present our data in this format.
When we are examining time series data, we need to visualize that data chronologically
(usually). We can fix this, by adding sort_index().

df['Yr'].value_counts().sort_index()

0 84
1958 1

(continues on next page)

146 Introduction to Python for Humanists

(continued from previous page)

1984 301
1960 280
1977 128
1981 124
1982 123
1975 111
1963 88
0 84
1962 69
1978 60
1979 53
1964 37
1961 32
1965 19
1969 14
1968 14
1974 12
1966 11
1970 10
1971 10
1967 8
1972 6
1973 5
1959 3
1998 3
1996 3
1997 2
1958 1
Name: Yr, dtype: int64

This looks great, but let’s try and plot it.

df['Yr'].value_counts().plot.bar(figsize=(20,5))

<AxesSubplot:>

What do you notice that is horribly wrong about our bar graph? If you noticed that it is
not chronological, you’d be right. It would be quite odd to present our data in this format.
When we are examining time series data, we need to visualize that data chronologically
(usually). We can fix this, by adding sort_index().

df['Yr'].value_counts().sort_index()

0 84
1958 1

(continues on next page)

146 Introduction to Python for Humanists

(continued from previous page)

1984 301
1960 280
1977 128
1981 124
1982 123
1975 111
1963 88
0 84
1962 69
1978 60
1979 53
1964 37
1961 32
1965 19
1969 14
1968 14
1974 12
1966 11
1970 10
1971 10
1967 8
1972 6
1973 5
1959 3
1998 3
1996 3
1997 2
1958 1
Name: Yr, dtype: int64

This looks great, but let’s try and plot it.

df['Yr'].value_counts().plot.bar(figsize=(20,5))

<AxesSubplot:>

What do you notice that is horribly wrong about our bar graph? If you noticed that it is
not chronological, you’d be right. It would be quite odd to present our data in this format.
When we are examining time series data, we need to visualize that data chronologically
(usually). We can fix this, by adding sort_index().

df['Yr'].value_counts().sort_index()

0 84
1958 1

(continues on next page)

Advanced Pandas 147

(continued from previous page)

1959 3
1960 280
1961 32
1962 69
1963 88
1964 37
1965 19
1966 11
1967 8
1968 14
1969 14
1970 10
1971 10
1972 6
1973 5
1974 12
1975 111
1976 319
1977 128
1978 60
1979 53
1980 438
1981 124
1982 123
1983 352
1984 301
1985 1665
1986 2056
1987 744
1988 1015
1989 935
1990 2556
1991 1793
1992 2648
1993 2835
1994 1867
1996 3
1997 2
1998 3
Name: Yr, dtype: int64

Notice that we have now preserved the value counts, but organized them in their correct
order. We can now try plotting that data.

df['Yr'].value_counts().sort_index().plot.bar(figsize=(20,5))

<AxesSubplot:>

Advanced Pandas 147

(continued from previous page)

1959 3
1960 280
1961 32
1962 69
1963 88
1964 37
1965 19
1966 11
1967 8
1968 14
1969 14
1970 10
1971 10
1972 6
1973 5
1974 12
1975 111
1976 319
1977 128
1978 60
1979 53
1980 438
1981 124
1982 123
1983 352
1984 301
1985 1665
1986 2056
1987 744
1988 1015
1989 935
1990 2556
1991 1793
1992 2648
1993 2835
1994 1867
1996 3
1997 2
1998 3
Name: Yr, dtype: int64

Notice that we have now preserved the value counts, but organized them in their correct
order. We can now try plotting that data.

df['Yr'].value_counts().sort_index().plot.bar(figsize=(20,5))

<AxesSubplot:>

Advanced Pandas 147

(continued from previous page)

1959 3
1960 280
1961 32
1962 69
1963 88
1964 37
1965 19
1966 11
1967 8
1968 14
1969 14
1970 10
1971 10
1972 6
1973 5
1974 12
1975 111
1976 319
1977 128
1978 60
1979 53
1980 438
1981 124
1982 123
1983 352
1984 301
1985 1665
1986 2056
1987 744
1988 1015
1989 935
1990 2556
1991 1793
1992 2648
1993 2835
1994 1867
1996 3
1997 2
1998 3
Name: Yr, dtype: int64

Notice that we have now preserved the value counts, but organized them in their correct
order. We can now try plotting that data.

df['Yr'].value_counts().sort_index().plot.bar(figsize=(20,5))

<AxesSubplot:>

148 Introduction to Python for Humanists

We have a potential issue, however. That first row, 0, is throwing off our bar graph.What
if I didn’twant to represent 0, or no date, in the graph. I can solve this problema fewdifferent
ways. Let’s first create a new dataframe called val_year.

val_year = df["Yr"].value_counts().sort_index()
val_year

0 84
1958 1
1959 3
1960 280
1961 32
1962 69
1963 88
1964 37
1965 19
1966 11
1967 8
1968 14
1969 14
1970 10
1971 10
1972 6
1973 5
1974 12
1975 111
1976 319
1977 128
1978 60
1979 53
1980 438
1981 124
1982 123
1983 352
1984 301
1985 1665
1986 2056
1987 744
1988 1015
1989 935
1990 2556
1991 1793
1992 2648
1993 2835
1994 1867
1996 3
1997 2
1998 3
Name: Yr, dtype: int64

With this new dataframe, I can simply start at index 1 and then graph the data. Notice
that the 0 value is now gone.

val_year.iloc[1:].plot.bar(figsize=(20,5))

<AxesSubplot:>

Advanced Pandas 149

Although we have been able to now plot our time series data chronologically, Pandas
has not seen this as a datetime type. Instead, it has viewed these years solely as integers. In
order to work with the years as time series data formally, we need to convert the integers
into datetime format.

10.3.4 Convert to Time Series DateTime in Pandas

Our goal here will be to create a new column that will store “Yr” as a datetime type.
One might think that we could easily just convert everything to datetime. Normally the
following command would work, but instead we get this error.

df['Dates'] = pd.to_datetime(df['Yr'], format='%Y')

TypeError Traceback (most recent call last)
c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\tools\datetimes.py in _to_datetime_with_format(arg, orig_arg, name, tz,
→֒fmt, exact, errors, infer_datetime_format)

508 try:
--> 509 values, tz = conversion.datetime_to_datetime64(arg)

510 dta = DatetimeArray(values, dtype=tz_to_dtype(tz))

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas_
→֒libs\tslibs\conversion.pyx in pandas._libs.tslibs.conversion.datetime_to_
→֒datetime64()

TypeError: Unrecognized value type: <class 'int'>

During handling of the above exception, another exception occurred:

ValueError Traceback (most recent call last)
<ipython-input-14-cc2c68a810bf> in <module>
----> 1 df['Dates'] = pd.to_datetime(df['Yr'], format='%Y')

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\tools\datetimes.py in to_datetime(arg, errors, dayfirst, yearfirst, utc,
→֒format, exact, unit, infer_datetime_format, origin, cache)

881 result = result.tz_localize(tz) # type: ignore[call-arg]
882 elif isinstance(arg, ABCSeries):

--> 883 cache_array = _maybe_cache(arg, format, cache, convert_listlike)
884 if not cache_array.empty:
885 result = arg.map(cache_array)

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\tools\datetimes.py in _maybe_cache(arg, format, cache, convert_listlike)

193 unique_dates = unique(arg)

(continues on next page)

Advanced Pandas 149

Although we have been able to now plot our time series data chronologically, Pandas
has not seen this as a datetime type. Instead, it has viewed these years solely as integers. In
order to work with the years as time series data formally, we need to convert the integers
into datetime format.

10.3.4 Convert to Time Series DateTime in Pandas

Our goal here will be to create a new column that will store “Yr” as a datetime type.
One might think that we could easily just convert everything to datetime. Normally the
following command would work, but instead we get this error.

df['Dates'] = pd.to_datetime(df['Yr'], format='%Y')

TypeError Traceback (most recent call last)
c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\tools\datetimes.py in _to_datetime_with_format(arg, orig_arg, name, tz,
→֒fmt, exact, errors, infer_datetime_format)

508 try:
--> 509 values, tz = conversion.datetime_to_datetime64(arg)

510 dta = DatetimeArray(values, dtype=tz_to_dtype(tz))

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas_
→֒libs\tslibs\conversion.pyx in pandas._libs.tslibs.conversion.datetime_to_
→֒datetime64()

TypeError: Unrecognized value type: <class 'int'>

During handling of the above exception, another exception occurred:

ValueError Traceback (most recent call last)
<ipython-input-14-cc2c68a810bf> in <module>
----> 1 df['Dates'] = pd.to_datetime(df['Yr'], format='%Y')

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\tools\datetimes.py in to_datetime(arg, errors, dayfirst, yearfirst, utc,
→֒format, exact, unit, infer_datetime_format, origin, cache)

881 result = result.tz_localize(tz) # type: ignore[call-arg]
882 elif isinstance(arg, ABCSeries):

--> 883 cache_array = _maybe_cache(arg, format, cache, convert_listlike)
884 if not cache_array.empty:
885 result = arg.map(cache_array)

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\tools\datetimes.py in _maybe_cache(arg, format, cache, convert_listlike)

193 unique_dates = unique(arg)

(continues on next page)

150 Introduction to Python for Humanists

(continued from previous page)

194 if len(unique_dates) < len(arg):
--> 195 cache_dates = convert_listlike(unique_dates, format)

196 cache_array = Series(cache_dates, index=unique_dates)
197 # GH#39882 and GH#35888 in case of None and NaT we get

→֒duplicates

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\tools\datetimes.py in _convert_listlike_datetimes(arg, format, name, tz,
→֒unit, errors, infer_datetime_format, dayfirst, yearfirst, exact)

391
392 if format is not None:

--> 393 res = _to_datetime_with_format(
394 arg, orig_arg, name, tz, format, exact, errors, infer_

→֒datetime_format
395)

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\tools\datetimes.py in _to_datetime_with_format(arg, orig_arg, name, tz,
→֒fmt, exact, errors, infer_datetime_format)

511 return DatetimeIndex._simple_new(dta, name=name)
512 except (ValueError, TypeError):

--> 513 raise err
514
515

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\tools\datetimes.py in _to_datetime_with_format(arg, orig_arg, name, tz,
→֒fmt, exact, errors, infer_datetime_format)

498
499 # fallback

--> 500 res = _array_strptime_with_fallback(
501 arg, name, tz, fmt, exact, errors, infer_datetime_format
502)

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas\
→֒core\tools\datetimes.py in _array_strptime_with_fallback(arg, name, tz, fmt,
→֒exact, errors, infer_datetime_format)

434
435 try:

--> 436 result, timezones = array_strptime(arg, fmt, exact=exact,
→֒errors=errors)

437 if "%Z" in fmt or "%z" in fmt:
438 return _return_parsed_timezone_results(result, timezones, tz,

→֒ name)

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\pandas_
→֒libs\tslibs\strptime.pyx in pandas._libs.tslibs.strptime.array_strptime()

ValueError: time data '0' does not match format '%Y' (match)

Just as the NaN cells plagued us before, so too has the 0s that we filled them with.
Fortunately, we can fix this issue by passing the keyword argument errors="coerce".

df['Dates'] = pd.to_datetime(df['Yr'], format='%Y', errors="coerce")

display(df.dtypes)

Advanced Pandas 151

ObjectId int64
Last object
First object
Description object
Place object
Yr int32
Homeland object
Province object
Long object
Lat float64
HRV object
ORG object
Dates datetime64[ns]
dtype: object

And like magic, we have not only created a new column, but notice that it is in
datetime64[ns] format. We should also understand the keyword argument passed here,
format. Format takes a formatted string that will tell Pandas how to interpret the data
being passed to it. Because our integer referred to a single year, we use “%Y”. Let’s try and
plot this data now to see how it looks.

df['Dates'].value_counts().sort_index().plot.bar(figsize=(20,5))

<AxesSubplot:>

While this data is now plotted as Pandas-structured time series data, it does not look
good. Our dates are rendered in the long, full format that has both the date (in its entirety)
and the time. Let’s fix this by first, extracting the relevant data. In this case, the year and the
counts.

new_df = df['Dates'].value_counts().sort_index()
new_df

1958-01-01 1
1959-01-01 3
1960-01-01 280
1961-01-01 32
1962-01-01 69
1963-01-01 88
1964-01-01 37
1965-01-01 19
1966-01-01 11
1967-01-01 8

(continues on next page)

Advanced Pandas 151

ObjectId int64
Last object
First object
Description object
Place object
Yr int32
Homeland object
Province object
Long object
Lat float64
HRV object
ORG object
Dates datetime64[ns]
dtype: object

And like magic, we have not only created a new column, but notice that it is in
datetime64[ns] format. We should also understand the keyword argument passed here,
format. Format takes a formatted string that will tell Pandas how to interpret the data
being passed to it. Because our integer referred to a single year, we use “%Y”. Let’s try and
plot this data now to see how it looks.

df['Dates'].value_counts().sort_index().plot.bar(figsize=(20,5))

<AxesSubplot:>

While this data is now plotted as Pandas-structured time series data, it does not look
good. Our dates are rendered in the long, full format that has both the date (in its entirety)
and the time. Let’s fix this by first, extracting the relevant data. In this case, the year and the
counts.

new_df = df['Dates'].value_counts().sort_index()
new_df

1958-01-01 1
1959-01-01 3
1960-01-01 280
1961-01-01 32
1962-01-01 69
1963-01-01 88
1964-01-01 37
1965-01-01 19
1966-01-01 11
1967-01-01 8

(continues on next page)

Advanced Pandas 151

ObjectId int64
Last object
First object
Description object
Place object
Yr int32
Homeland object
Province object
Long object
Lat float64
HRV object
ORG object
Dates datetime64[ns]
dtype: object

And like magic, we have not only created a new column, but notice that it is in
datetime64[ns] format. We should also understand the keyword argument passed here,
format. Format takes a formatted string that will tell Pandas how to interpret the data
being passed to it. Because our integer referred to a single year, we use “%Y”. Let’s try and
plot this data now to see how it looks.

df['Dates'].value_counts().sort_index().plot.bar(figsize=(20,5))

<AxesSubplot:>

While this data is now plotted as Pandas-structured time series data, it does not look
good. Our dates are rendered in the long, full format that has both the date (in its entirety)
and the time. Let’s fix this by first, extracting the relevant data. In this case, the year and the
counts.

new_df = df['Dates'].value_counts().sort_index()
new_df

1958-01-01 1
1959-01-01 3
1960-01-01 280
1961-01-01 32
1962-01-01 69
1963-01-01 88
1964-01-01 37
1965-01-01 19
1966-01-01 11
1967-01-01 8

(continues on next page)

152 Introduction to Python for Humanists

(continued from previous page)

1968-01-01 14
1969-01-01 14
1970-01-01 10
1971-01-01 10
1972-01-01 6
1973-01-01 5
1974-01-01 12
1975-01-01 111
1976-01-01 319
1977-01-01 128
1978-01-01 60
1979-01-01 53
1980-01-01 438
1981-01-01 124
1982-01-01 123
1983-01-01 352
1984-01-01 301
1985-01-01 1665
1986-01-01 2056
1987-01-01 744
1988-01-01 1015
1989-01-01 935
1990-01-01 2556
1991-01-01 1793
1992-01-01 2648
1993-01-01 2835
1994-01-01 1867
1996-01-01 3
1997-01-01 2
1998-01-01 3
Name: Dates, dtype: int64

Next, we need to convert that data into a new DataFrame.

new_df = pd.DataFrame(new_df)
new_df.head()

Dates
1958-01-01 1
1959-01-01 3
1960-01-01 280
1961-01-01 32
1962-01-01 69

Now that we have that new DataFrame created, let’s fix our column name and change
Dates to “ViolentActs”.

new_df = new_df.rename(columns={"Dates": "ViolentActs"})
new_df.head()

ViolentActs
1958-01-01 1
1959-01-01 3
1960-01-01 280
1961-01-01 32
1962-01-01 69

Advanced Pandas 153

With the new DataFrame, we can also fix the index so that it is strictly the year. Because
Pandas knows that the index is a datetime type, then we can use the extra method, year, to
grab just the year.

new_df.index = new_df.index.year
new_df.head()

ViolentActs
1958 1
1959 3
1960 280
1961 32
1962 69

Notice that our data is now just the year, the only piece of data in the time series data
that matters to us. With that new DataFrame in the correct format, we can now plot it.

new_df.plot.bar(figsize=(20,5))

<AxesSubplot:>

And thus we have successfully plotted our datetime data after properly formatting it
in Pandas. While working with time series data in Pandas as a datetime can be a bit more
complex in the beginning, it allows for you to more advanced things, such as we saw above
by calling the year with .year. As we will see in the next few chapters, there are other
advantages as well.

Advanced Pandas 153

With the new DataFrame, we can also fix the index so that it is strictly the year. Because
Pandas knows that the index is a datetime type, then we can use the extra method, year, to
grab just the year.

new_df.index = new_df.index.year
new_df.head()

ViolentActs
1958 1
1959 3
1960 280
1961 32
1962 69

Notice that our data is now just the year, the only piece of data in the time series data
that matters to us. With that new DataFrame in the correct format, we can now plot it.

new_df.plot.bar(figsize=(20,5))

<AxesSubplot:>

And thus we have successfully plotted our datetime data after properly formatting it
in Pandas. While working with time series data in Pandas as a datetime can be a bit more
complex in the beginning, it allows for you to more advanced things, such as we saw above
by calling the year with .year. As we will see in the next few chapters, there are other
advantages as well.

https://taylorandfrancis.com/

Part III

Natural Language Processing
with spaCy

https://taylorandfrancis.com/

11
Introduction to Spacy

In this section, wewill begin exploring natural language processing, or NLP, and the Python
library spaCy. spaCy is a framework for performing NLP via Python. Throughout this
section, you will learn the basics of spaCy, from the key terminology and concepts, to
processing texts via spaCy.

11.1 The Basics of spaCy

In this part of the textbook, we will learn how to do natural language processing (NLP)
with spaCy. This section will approach spaCy top-down. In this way, we will gain an
understanding of NLP generally and spaCy’s mechanics specifically. By learning these
concepts first, it will make it easier to approach spaCy in code.

11.1.1 What Is spaCy?

spaCy (yes, spelled with a lowercase “s” and uppercase “C”) is a natural language pro-
cessing framework. Natural language processing, or NLP, is a branch of linguistics that
seeks to parse human language in a computer system. This field is generally referred
to as computational linguistics, though it has far reaching applications beyond academic
linguistic research.

NLP is used in every sector of industry, from academicswho leverage it to aid in research
to financial analysts who try and predict the stockmarket. Lawyers use NLP to help analyze
thousands of legal documents in seconds to target their research and medical doctors
use it to parse patient charts. NLP has been around for decades, but with the increasing
developments in deep learning, a subfield of machine learning, NLP has rapidly expanded.
This is because, as we shall learn all too well throughout this book, language is inherently
ambiguous and complex. By this, I mean that language does not always make perfect sense.
In some cases, it is entirely illogical. The double-negative in English is a good example of
this. In some contexts, it can be a positive, as in, “I don’t not like pasta.” In other cases, the
double negative can be an emphatic negative, as in, “I ain’t not doing that!”

As humans, especially native speakers of a language, we can parse these complex
illogical statements with ease, especially with enough context. For computers, this is not
always easy.

Because NLP is such a complex problem for computers, it requires a complex solution.
The answer has been found in artificial neural networks, or ANNs (neural nets for short).
These are the primary areas of research for deep learning practitioners. As the field of deep
learning (and machine learning in general) expand and advance, so too does NLP. New
methods for training, such as transformer models, push the field further.

DOI: 10.1201/9781003342175-14

http://dx.doi.org/10.1201/9781003342175-14

158 Introduction to Python for Humanists

11.1.2 How to Install spaCy

In order to install spaCy, I recommend visiting their website: https://spacy.io/usage. They
have a nice user-friendly interface. Input your device settings, e.g. Mac, Windows, or
Linux, and your language, e.g. English, French, or German. Theweb-appwill automatically
populate the commands that you need to execute to get started. Since this is a JupyterBook,
we can install these with a “!” in a cell to indicate that we want to run a terminal command.
I will be installing spaCy with the small English model, en_core_web_sm.

!pip install spacy

!python -m spacy download en_core_web_sm

Now that we’ve installed spaCy let’s import it to make sure we installed it correctly.

import spacy

Great! Now, let’s make sure we downloaded the model successfully with the command
below.

nlp = spacy.load("en_core_web_sm")

Excellent! spaCy is now installed correctly and we have successfully downloaded the
small English model. We will pick up here with the code in the next notebook. For now, I
want to focus on big-picture items, specifically spaCy “containers”.

11.1.3 Containers

Containers are spaCy objects that contain a large quantity of data about a text. When we
analyze texts with the spaCy framework, we create different container objects to do that.
Here is a full list of all spaCy containers. We will be focusing on three (emboldened): Doc,
Span, and Token.

• Doc

• DocBin

• Example

• Language

• Lexeme

• Span

• SpanGroup

• Token

I created the image below to show how I visualize spaCy containers in my mind. At
the top, we have a Doc container. This is the basis for all spaCy. It is the main object that
we create. Within the Doc container are many different attributes and subcontainers. One
attribute is the Doc.sents, which contains all the sentences in the Doc container. The doc
container (and each sentence generator) is made up of a set of token containers. These are
things like words, punctuation, etc.

https://spacy.io

Introduction to Spacy 159

Span containers are kind of like a token, in that they are a piece of a Doc container. Spans
have one thing that makes them unique. They can cross multiple tokens.

We can give spans a bit more specificity by classifying them into different groups. These
are known as SpanGroup containers.

FIGURE 11.1
spaCy Container Structure.

If you do not fully understand this dynamic, do not worry. You will get a much better
sense of this pyramid as we move forward throughout this section. For now, I recommend
keeping this image handy so you can refer back to it as we progress through this section
in which we explore the basics of spaCy. In the next section, we will start applying
these concepts in code by creating a doc object and learning about the different attributes
containers have as well as how to find the linguistic annotations.

11.2 Getting Started with spaCy and Its Linguistic Annotations

The goal of this section are twofold. First, it is my hope that you understand the basic spaCy
syntax for creating a Doc container and how to call specific attributes of that container.
Second, it is my hope that you leave this section with a basic understanding of the vast
linguistic annotations available in spaCy. While we will not explore all attributes, we will
deal with many of the most important ones, such as lemmas, parts-of-speech, and named
entities. By the time you are finished with this section, you should have enough of a basic
understanding of spaCy to begin applying it to your own texts.

11.2.1 Importing spaCy and Loading Data

As with all Python libraries, the first thing we need to do is import spaCy. In the last
notebook, I walked you through how to install it and download the small English model. If
you have followed those steps, you should be able to import it like so:

import spacy

With spaCy imported, we can now create our nlp object. This is the standard Pythonic
way to create your model in a Python script. Unless you are working with multiple models

160 Introduction to Python for Humanists

in a script, try to always name your model, nlp. It will make your script much easier
to read. To do this, we will use spacy.load(). This command tells spaCy to load up a
model. In order to know which model to load, it needs a string argument that corresponds
to the model name. Since we will be working with the small English model, we will use
“en_core_web_sm”. This function can take keyword arguments to identify which parts of
the model you want to load, but we will get to that later. For now, we want to import the
whole thing.

nlp = spacy.load("en_core_web_sm")

Great!With themodel loaded, let’s go ahead and import our text. For this section,wewill
be working with the opening description from the Wikipedia article on the United States.
In this repository, it is found in the subfolder data and is entitled wiki_us.txt.

with open("../data/wiki_us.txt", "r") as f:
text = f.read()

Now, let’s see what this text looks like. It can be a bit difficult to read in a JupyterBook,
but notice the horizontal slider below. You don’t neeed to read this in its entirety.

print(text)

The United States of America (U.S.A. or USA), commonly known as the United
→֒States (U.S. or US) or America, is a country located in North America. It
→֒consists of 50 states, a federal district, five major unincorporated
→֒territories, nine Minor Outlying Islands, and 326 Indian reservations. It is
→֒the third-largest country by both land and total area. The United States
→֒shares land borders with Canada to its north and with Mexico to its south.
→֒It has maritime borders with the Bahamas, Cuba, Russia, and other nations.
→֒With a population of over 331 million, it is the third most populous country
→֒in the world. The national capital is Washington, D.C., and the most
→֒populous city and financial center is New York City.

11.2.2 Creating a Doc Container

With the data loaded in, it’s time to make our first Doc container. Unless you are working
withmultipleDoc containers, it is best practice to always call this object “doc”, all lowercase.
To create a Doc container, we will usually just call our nlp object and pass our text to it as a
single argument.

doc = nlp(text)

Great! Let’s see what this looks like.

print (doc)

The United States of America (U.S.A. or USA), commonly known as the United
→֒States (U.S. or US) or America, is a country located in North America. It
→֒consists of 50 states, a federal district, five major unincorporated
→֒territories, nine Minor Outlying Islands, and 326 Indian reservations. It is
→֒the third-largest country by both land and total area. The United States
→֒shares land borders with Canada to its north and with Mexico to its south.
→֒It has maritime borders with the Bahamas, Cuba, Russia, and other nations.
→֒With a population of over 331 million, it is the third most populous country
→֒in the world. The national capital is Washington, D.C., and the most
→֒populous city and financial center is New York City.

Introduction to Spacy 161

If you are trying to spot the difference between this and the text above, good luck.
You will not see a difference when printing off the Doc container. But I promise you, it
is quite different behind the scenes. The Doc container, unlike the text object, contains a lot
of valuable metadata, or attributes, hidden behind it. To prove this, let’s examine the length
of the Doc object and the text object.

print (len(doc))
print (len(text))

146
716

What’s going on here? It is the same text, but different length. Why does this occur? To
answer that, let’s explore it more deeply and try and print off each item in each object.

for token in text[:10]:
print (token)

T
h
e

U
n
i
t
e
d

As we would expect. We have printed off each character, including white spaces. Let’s
try and do the same with the Doc container.

for token in doc[:10]:
print (token)

The
United
States
of
America
(
U.S.A.
or
USA
)

And now we see the magical difference. While on the surface it may seem that the Doc
container’s length is dependent on the quantity of words, look more closely. You should
notice that the open and close parentheses are also considered an item in the container.
These are all known as tokens. Tokens are a fundamental building block of spaCy or any
NLP framework. They can be words or punctuation marks. Tokens are something that
has syntactic purpose in a sentence and is self-contained. A good example of this is the
contraction “don’t” in English. When tokenized, or the process of converting the text into
tokens, we will have two tokens. “do” and “n’t” because the contraction represents two
words, “do” and “not”.

162 Introduction to Python for Humanists

On the surface, this may not seem exceptional. But it is. You may be thinking to yourself
that you could easily use the split method in Python to split by whitespace and have the
same result. But you’d be wrong. Let’s see why.

for token in text.split()[:10]:
print (token)

The
United
States
of
America
(U.S.A.
or
USA),
commonly
known

Notice that the parentheses are not removed or handled individually. To see this more
clearly, let’s print off all tokens from index 5 to 8 in both the text and Doc objects.

words = text.split()[:10]

i=5
for token in doc[i:8]:

print (f"SpaCy Token {i}:\n{token}\nWord Split {i}:\n{words[i]}\n\n")
i=i+1

SpaCy Token 5:
(
Word Split 5:
(U.S.A.

SpaCy Token 6:
U.S.A.
Word Split 6:
or

SpaCy Token 7:
or
Word Split 7:
USA),

We can see clearly now how the spaCy Doc container does much more with its tok-
enization than a simple split method.We could, surely, write complex rules for a language to
achieve the same results, butwhy bother? spaCy does it exceptionallywell for all languages.
In my entire time using spaCy, I have never seen the tokenizer make a mistake. I am sure
that mistakes may occur, but these are probably rare exceptions.

Let’s see what else this Doc container holds.

11.2.3 Sentence Boundary Detection (SBD)

In NLP, sentence boundary detection, or SBD, is the identification of sentences in a text.
Again, this may seem fairly easy to do with rules. One could use split(“.”), but in

Introduction to Spacy 163

English we use the period to also denote abbreviation. You could, again, write rules to look
for periods not proceeded by a lowercaseword, but again, I ask the question, “why bother?”.
We can use spaCy and in seconds have all sentences fully separated through SBD.

To access the sentences in the Doc container, we can use the attribute sents, like so:

for sent in doc.sents:
print (sent)

The United States of America (U.S.A. or USA), commonly known as the United
→֒States (U.S. or US) or America, is a country located in North America.
It consists of 50 states, a federal district, five major unincorporated
→֒territories, nine Minor Outlying Islands, and 326 Indian reservations.
It is the third-largest country by both land and total area.
The United States shares land borders with Canada to its north and with Mexico
→֒to its south.
It has maritime borders with the Bahamas, Cuba, Russia, and other nations.
With a population of over 331 million, it is the third most populous country
→֒in the world.
The national capital is Washington, D.C., and the most populous city and
→֒financial center is New York City.

We got an error. That is because the sents attribute is a Span container that is stored
as a generator. Generators are beyond the scope of this textbook, but in short generators
will yield results from functions rather than return results. While you can iterate over a
generator like a list, they are not the same thing. Instead of populating all results inmemory,
a generator lets us only load one result at a time. We can use next to grab the first sentence.

sentence1 = next(doc.sents)
print(sentence1)

The United States of America (U.S.A. or USA), commonly known as the United
→֒States (U.S. or US) or America, is a country located in North America.

Now we have the first sentence. Now that we have a smaller text, let’s explore spaCy’s
other building block, the token.

11.2.4 Token Attributes

The token object contains a lot of different attributes that are vital to performing NLP in
spaCy. We will be working with a few of them, such as:

Name Description
sent the sentence to which the span blongs
text the raw text of the token
head the parent of the token
left_edge the left edge of the token’s descendents
right_edge the right edge of the token’s descendents
ent_type_ the label of the token, if it is an entity
lemma_ the lemmatized form of the token
morph provides the morphology of the token
pos_ part of speech
dep_ dependency relation
lang_ the language of the parent document

164 Introduction to Python for Humanists

I will briefly describe these here and show you how to grab each one andwhat they look
like. We will be exploring each of these attributes more deeply in this section and future
sections. To demonstrate each of these attributes, we will use one token, “States” which is
part of a sequence of tokens that make up “The United States of America”

token2 = sentence1[2]
print (token2)

States

11.2.4.1 Text

Verbatim text content. -spaCy docs

token2.text

'States'

11.2.4.2 Head

The syntactic parent, or “governor”, of this token. -spaCy docs

token2.head

is

This tells which word it is governed by, in this case, the primary verb, “is”, as it is part
of the noun subject.

11.2.4.3 Left Edge

The leftmost token of this token’s syntactic descendants. -spaCy
docs

token2.left_edge

The

If part of a sequence of tokens that are collectively meaningful, known as multi-word
tokens, this will tell us where the multi-word token begins.

11.2.4.4 Right Edge

The rightmost token of this token’s syntactic descendants. -spaCy
docs

token2.right_edge

,

This will tell us where the multi-word token ends.

11.2.4.5 Entity Type

Named entity type. -spaCy docs

Introduction to Spacy 165

token2.ent_type

384

Note the absence of the “_” at the end of the attribute. This will return an integer that
corresponds to an entity type, where “_” will give you the string equivalent, as below.

token2.ent_type_

'GPE'

We will learn all about types of entities in the chapter on Named Entity Recognition, or
NER. For now, simply understand that GPE is geopolitical entity and is correct.

11.2.4.6 Ent IOB

IOB code of named entity tag. “B” means the token begins an entity,
“I” means it is inside an entity, “O” means it is outside an entity,
and "" means no entity tag is set.

token2.ent_iob_

'I'

IOB is a method of annotating a text. In this case, we see “I” because states is inside an
entity, that is to say that it is part of the United States of America.

11.2.4.7 Lemma

Base form of the token, with no inflectional suffixes. -spaCy docs

token2.lemma_

'States'

sentence1[12].lemma_

'know'

11.2.4.8 Morph

Morphological analysis -spaCy docs

sentence1[12].morph

Aspect=Perf|Tense=Past|VerbForm=Part

11.2.4.9 Part of Speech

Coarse-grained part-of-speech from the Universal POS tag set. -spaCy
docs

166 Introduction to Python for Humanists

token2.pos_

'PROPN'

11.2.4.10 Syntactic Dependency

Syntactic dependency relation. -spaCy docs

token2.dep_

'nsubj'

11.2.4.11 Language

Language of the parent document’s vocabulary. -spaCy docs

token2.lang_

'en'

11.2.5 Part-of-Speech (POS) Tagging

In the field of computational linguistics, understanding parts-of-speech is essential. spaCy
offers an easy way to parse a text and identify its parts of speech. Below, we will iterate
across each token (word or punctuation) in the text and identify its part of speech.

for token in sentence1:
print (token.text, token.pos_, token.dep_)

The DET det
United PROPN compound
States PROPN nsubj
of ADP prep
America PROPN pobj
(PUNCT punct
U.S.A. PROPN appos
or CCONJ cc
USA PROPN conj
) PUNCT punct
, PUNCT punct
commonly ADV advmod
known VERB acl
as ADP prep
the DET det
United PROPN compound
States PROPN pobj
(PUNCT punct
U.S. PROPN appos
or CCONJ cc
US PROPN conj
) PUNCT punct
or CCONJ cc
America PROPN conj

(continues on next page)

https://11.2.4.11
https://11.2.4.10

Introduction to Spacy 167

(continued from previous page)

, PUNCT punct
is AUX ROOT
a DET det
country NOUN attr
located VERB acl
in ADP prep
North PROPN compound
America PROPN pobj
. PUNCT punct

Here, we can see two vital pieces of information: the string and the corresponding
part-of-speech (pos). For a complete list of the pos labels, see the spaCy documentation
(https://spacy.io/api/annotation#pos-tagging). Most of these, however, should be appar-
ent, i.e. PROPN is proper noun, AUX is an auxiliary verb, ADJ, is adjective, etc. We can
visualize this sentencewith a diagram through spaCy’s displaCyNotebook feature. Tomake
this easier to read in a book, we will be using a different, smaller sentence.

from spacy import displacy
sample_doc = nlp("The dog ran over the fence.")
displacy.render(sample_doc, style="dep", options={"compact":True})

<IPython.core.display.HTML object>

11.2.6 Named Entity Recognition (NER)

Another essential task ofNLP, is named entity recognition, orNER. I spoke aboutNER in the
last notebook. Here, I’d like to demonstrate how to perform basic NER via spaCy. Again, we
will iterate over the Doc object as we did above, but instead of iterating over doc.sents,
we will iterate over doc.ents. For our purposes right now, I simply want to print off each
entity’s text (the string itself) and its corresponding label (note the “_” after label). I will be
explaining this process in much greater detail in the next two notebooks.

for ent in doc.ents:
print (ent.text, ent.label_)

The United States of America GPE
U.S.A. GPE
USA GPE
the United States GPE
U.S. GPE
US GPE
America GPE
North America LOC
50 CARDINAL
five CARDINAL
nine CARDINAL
Minor Outlying Islands PERSON
326 CARDINAL
Indian NORP
third ORDINAL
The United States GPE
Canada GPE
Mexico GPE

(continues on next page)

https://spacy.io

168 Introduction to Python for Humanists

(continued from previous page)

Bahamas GPE
Cuba GPE
Russia GPE
over 331 million MONEY
third ORDINAL
Washington GPE
D.C. GPE
New York City GPE

Sometimes it can be difficult to read this output as raw data. In this case, we can again
leverage spaCy’s displaCy feature. Notice that this time we are altering the keyword
argument, style, with the string “ent”. This tells displaCy to display the text as NER
annotations.

displacy.render(doc, style="ent")

<IPython.core.display.HTML object>

11.2.7 Conclusion

I recommend spending a little bit of time going through this notebook a few times. The
information covered throughout this notebookwill be reinforced aswe explore each of these
areas in more depth with real-world examples of how to implement them to tackle different
problems.

11.3 spaCy’s Pipelines

Now that we understand the basics of spaCy’s linguistic features, let’s explore pipelines
in spaCy. As we have seen, spaCy offers both heuristic (rules-based) and machine learning
natural language processing solutions. These solutions are activated by pipes. Here, wewill
explore pipes and pipelines generally and the ones offered by spaCy specifically. In the next
section, wewill explore how you can create custom pipes and add them to a spaCy pipeline.
Before we jump in, let’s import spaCy.

import spacy

11.3.1 Standard Pipes (Components and Factories) Available from spaCy

spaCy is much more than an NLP framework. It is also a way of designing and implement-
ing complex pipelines.

Apipe is a component of a pipeline. A pipeline’s purpose is to take input data, perform
some sort of operation on that input data, and then output those operations either as a new
data or extracted metadata. A pipe is an individual component of a pipeline. In the case of
spaCy, there are a few different pipes that perform different tasks. The tokenizer, tokenizes
the text into individual tokens; the parser, parses the text, and the NER identifies entities
and labels them accordingly. All of this data is stored in the Doc object.

It is important to remember that pipelines are sequential. This means that components
earlier in a pipeline affect what later components receive. Sometimes this sequence is

Introduction to Spacy 169

essential, meaning later pipes depend on earlier pipes. At other times, this sequence is not
essential, meaning later pipes can function without earlier pipes. It is important to keep this
in mind as you create custom spaCy models (or any pipeline for that matter).

FIGURE 11.2
Example of an NER Pipeline.

Here, we see an input, in this case a sentence, enter the pipeline from the left. Two pipes
are activated on this, a rules-based named entity recognizer known as an EntityRuler which
finds entities and an EntityLinker pipe that identifieswhat entity that is to perform toponym
resolution. The sentence is then outputted with the sentence and the entities annotated. At
this point, we could use the doc.ents feature to find the entities in our sentence. In spaCy,
you will often use pipelines that are more sophisticated than this. You will specifically use
a Tok2Vec input layer to vectorize your input sentence. This will allow machine learning
pipes to make predictions.

Below is a complete list of the AttributeRuler pipes available to you from spaCy and the
Matchers.

11.3.1.1 Attribute Rulers

• Dependency Parser

• EntityLinker

• EntityRecognizer

• EntityRuler

• Lemmatizer

• Morpholog

• SentenceRecognizer

• Sentencizer

• SpanCategorizer

• Tagger

• TextCategorizer

• Tok2Vec

170 Introduction to Python for Humanists

• Tokenizer

• TrainablePipe

• Transformer

11.3.1.2 Matchers

• DependencyMatcher

• Matcher

• PhraseMatcher

11.3.2 How to Add Pipes

In most cases, you will use an off-the-shelf spaCy model. In some cases, however, an off-
the-shelf model will not fill your needs or will perform a specific task very slowly. A good
example of this is sentence tokenization. Imagine if you had a document that was around 1
million sentences long. Even if you used the small English model, your model would take
a long time to process those 1 million sentences and separate them. In this instance, you
wouldwant tomake a blank Englishmodel and simply add the Sentencizer to it. The reason
is because each pipe in a pipeline will be activated (unless specified) and that means that
each pipe from Dependency Parser to named entity recognition will be performed on your
data. This is a serious waste of computational resources and time. The small model may
take hours to achieve this task. By creating a blank model and simply adding a Sentencizer
to it, you can reduce this time to merely minutes.

To demonstrate this process, let’s first create a blank model.

nlp = spacy.blank("en")

Here, notice that we have used spacy.blank, rather than spacy.load. When we
create a blank model, we simply pass the two letter combination for a language, in this
case, “en” for English. Now, let’s use the add_pipe() command to add a new pipe to it.
We will simply add a Sentencizer.

nlp.add_pipe("sentencizer")

<spacy.pipeline.sentencizer.Sentencizer at 0x7fd926ca9840>

import requests
from bs4 import BeautifulSoup
s = requests.get("https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.
→֒shakespeare.txt")
soup = BeautifulSoup(s.content).text.replace("-\n", "").replace("\n", "
→֒")[:100000]

%%time
doc = nlp(soup)
print(len(list(doc.sents)))

500
CPU times: user 155 ms, sys: 3.84 ms, total: 159 ms
Wall time: 157 ms

https://ocw.mit.edu

Introduction to Spacy 171

nlp2 = spacy.load("en_core_web_sm")

%%time
doc = nlp2(soup)
print (len(list(doc.sents)))

781
CPU times: user 2.99 s, sys: 79.5 ms, total: 3.07 s
Wall time: 3.07 s

The difference in time here is remarkable. Our text string was 100,000 characters. The
blank model with just the Sentencizer completed its task in 159 milliseconds and found 781
sentences. The small English model, the most efficient one offered by spaCy, did the same
task in 3.07 seconds and found 781 sentences. The small Englishmodel, in other words, took
much longer. This time increases significantly as your texts get larger. The reason for this
large difference in time is the other components active in the spaCy pipeline, such as the
POS Tagger and NER pipes.

Often times you need to find sentences quickly, not necessarily accurately. In these
instances, it makes sense to know tricks like the one above.

11.3.3 Examining a Pipeline

In spaCy, we have a few different ways to study a pipeline. If we want to do this in a script,
we can do the following command:

nlp2.analyze_pipes()

{'summary': {'tok2vec': {'assigns': ['doc.tensor'],
'requires': [],
'scores': [],
'retokenizes': False},
'tagger': {'assigns': ['token.tag'],
'requires': [],
'scores': ['tag_acc'],
'retokenizes': False},
'parser': {'assigns': ['token.dep',

'token.head',
'token.is_sent_start',
'doc.sents'],

'requires': [],
'scores': ['dep_uas',
'dep_las',
'dep_las_per_type',
'sents_p',
'sents_r',
'sents_f'],

'retokenizes': False},
'attribute_ruler': {'assigns': [],
'requires': [],
'scores': [],
'retokenizes': False},
'lemmatizer': {'assigns': ['token.lemma'],
'requires': [],
'scores': ['lemma_acc'],
'retokenizes': False},

(continues on next page)

172 Introduction to Python for Humanists

(continued from previous page)

'ner': {'assigns': ['doc.ents', 'token.ent_iob', 'token.ent_type'],
'requires': [],
'scores': ['ents_f', 'ents_p', 'ents_r', 'ents_per_type'],
'retokenizes': False}},

'problems': {'tok2vec': [],
'tagger': [],
'parser': [],
'attribute_ruler': [],
'lemmatizer': [],
'ner': []},
'attrs': {'token.lemma': {'assigns': ['lemmatizer'], 'requires': []},
'doc.sents': {'assigns': ['parser'], 'requires': []},
'token.is_sent_start': {'assigns': ['parser'], 'requires': []},
'token.dep': {'assigns': ['parser'], 'requires': []},
'token.tag': {'assigns': ['tagger'], 'requires': []},
'doc.ents': {'assigns': ['ner'], 'requires': []},
'token.ent_iob': {'assigns': ['ner'], 'requires': []},
'token.head': {'assigns': ['parser'], 'requires': []},
'doc.tensor': {'assigns': ['tok2vec'], 'requires': []},
'token.ent_type': {'assigns': ['ner'], 'requires': []}}}

Note the dictionary structure. This tells us not only what is inside the pipeline, but its
order. Each key after “summary” is a pipe. The value is a dictionary. This dictionary tells
us a few different things. All of these value dictionaries state: “assigns” which corresponds
to a value of what that particular pipe assigns to the token and doc as it passes through the
pipeline. In some cases, there will be a key of “scores” in the dictionary. This indicates how
the machine learning model was evaluated.

11.3.4 Conclusion

This section has given you an umbrella overview of spaCy. Over the next two sections,
we will deep dive into specific areas and use spaCy to solve general and domain-specific
problems in the digital humanities.

12
Rules-Based spaCy

In this chapter, we will build upon our previous knowledge of spaCy by exploring some
of its rules-based pipes, specifically the EntityRuler, Matcher, PhraseMatcher, and custom
RegEx-based pipes. By the end of this chapter, you will understand how to apply each of
these standard spaCy pipes to specific problems.

12.1 The EntityRuler

12.1.1 Introduction to spaCy’s EntityRuler

The Python library that spaCy comes with offers a few different methods for performing
rules-based NER. One such method is via its EntityRuler.

The EntityRuler is a spaCy factory that allows one to create a set of patterns with
corresponding labels. A factory in spaCy is a set of classes and functions preloaded in spaCy
that perform set tasks. In the case of the EntityRuler, the factory at hand allows the user to
create an EntityRuler, give it a set of instructions, and then use this instructions to find and
label entities.

Once the user has created the EntityRuler and given it a set of instructions, the user can
then add it to the spaCy pipeline as a new pipe. I have spoken in the past notebooks briefly
about pipes, but perhaps it is good to address them in more detail here.

In this notebook, wewill be looking closely at the EntityRuler as a component of a spaCy
model’s pipeline. Off-the-shelf spaCy models come preloaded with an NERmodel; they do
not, however, comewith an EntityRuler. In order to incorperate an EntityRuler into a spaCy
model, it must be created as a new pipe, given instructions, and then added to the model.
Once this is complete, the user can save that new model with the EntityRuler to the disk.

The full documentation of spaCy EntityRuler can be found here: https://spacy.io/api/
entityruler.

This notebookwith synthesize this documentation for non-specialists and provide some
examples of it in action.

12.1.2 Demonstration of EntityRuler in Action

In the code below, we will introduce a new pipe into spaCy’s off-the-shelf small English
model. The purpose of this EntityRuler will be to identify small villages in Poland correctly.

#Import the requisite library
import spacy

#Build upon the spaCy Small Model

(continues on next page)

DOI: 10.1201/9781003342175-15

https://spacy.io
http://dx.doi.org/10.1201/9781003342175-15

174 Introduction to Python for Humanists

(continued from previous page)

nlp = spacy.load("en_core_web_sm")

#Sample text
text = "The village of Treblinka is in Poland. Treblinka was also an
→֒extermination camp."

#Create the Doc object
doc = nlp(text)

#extract entities
for ent in doc.ents:

print (ent.text, ent.label_)

Treblinka GPE
Poland GPE

Depending on the version of model you are using, some results may vary.
The output from the code above demonstrates spaCy’s small model’s to identify Tre-

blinka, which is a small village in Poland. As the sample text indicates, it was also an
extermination camp during WWII. In the first sentence, the spaCy model tagged Treblinka
as an LOC (location) and in the second it was missed entirely. Both are either imprecise or
wrong. I would have accepted ORG for the second sentence, as spaCy’s model does not
know how to classify an extermination camp, but what these results demonstrate is the
model’s failure to generalize on data. The reason? There are a few, but I suspect the model
never encountered the word Treblinka.

This is a common problem in NLP for specific domains. Often times the domains in
which we wish to deploy models, off-the-shelf models will fail because they have not
been trained on domain-specific texts. We can resolve this, however, either via spaCy’s
EntityRuler or via training a new model. As we will see over the next few notebooks, we
can use spaCy’s EntityRuler to easily achieve both.

For now, let’s first remedy the issue by giving the model instructions for correctly
identifying Treblinka. For simplicity, we will use spaCy’s GPE label. In a later notebook,
we will teach a model to correctly identify Treblinka in the latter context as a concentration
camp.

#Import the requisite library
import spacy

#Build upon the spaCy Small Model
nlp = spacy.load("en_core_web_sm")

#Sample text
text = "The village of Treblinka is in Poland. Treblinka was also an
→֒extermination camp."

#Create the EntityRuler
ruler = nlp.add_pipe("entity_ruler")

#List of Entities and Patterns
patterns = [

{"label": "GPE", "pattern": "Treblinka"}
]

ruler.add_patterns(patterns)

(continues on next page)

Rules-Based spaCy 175

(continued from previous page)

doc = nlp(text)

#extract entities
for ent in doc.ents:

print (ent.text, ent.label_)

Treblinka LOC
Poland GPE
Treblinka GPE

If you executed the code above and found that you had the same output, then you did
everything correctly. This method has failed. Why? The answer comes back to the concept
of pipelines. We created and added the EntityRuler to the spaCy model’s pipeline, but by
default, spaCy add’s a new pipe to the end of the pipeline. In order to visualize the pipeline,
let’s use spaCy’s analyze_pipes().

nlp.analyze_pipes()

{'summary': {'tok2vec': {'assigns': ['doc.tensor'],
'requires': [],
'scores': [],
'retokenizes': False},
'tagger': {'assigns': ['token.tag'],
'requires': [],
'scores': ['tag_acc'],
'retokenizes': False},
'parser': {'assigns': ['token.dep',

'token.head',
'token.is_sent_start',
'doc.sents'],

'requires': [],
'scores': ['dep_uas',
'dep_las',
'dep_las_per_type',
'sents_p',
'sents_r',
'sents_f'],

'retokenizes': False},
'attribute_ruler': {'assigns': [],
'requires': [],
'scores': [],
'retokenizes': False},
'lemmatizer': {'assigns': ['token.lemma'],
'requires': [],
'scores': ['lemma_acc'],
'retokenizes': False},
'ner': {'assigns': ['doc.ents', 'token.ent_iob', 'token.ent_type'],
'requires': [],
'scores': ['ents_f', 'ents_p', 'ents_r', 'ents_per_type'],
'retokenizes': False},
'entity_ruler': {'assigns': ['doc.ents', 'token.ent_type', 'token.ent_iob'],
'requires': [],
'scores': ['ents_f', 'ents_p', 'ents_r', 'ents_per_type'],
'retokenizes': False}},

(continues on next page)

176 Introduction to Python for Humanists

(continued from previous page)

'problems': {'tok2vec': [],
'tagger': [],
'parser': [],
'attribute_ruler': [],
'lemmatizer': [],
'ner': [],
'entity_ruler': []},
'attrs': {'token.ent_iob': {'assigns': ['ner', 'entity_ruler'],
'requires': []},
'token.tag': {'assigns': ['tagger'], 'requires': []},
'token.dep': {'assigns': ['parser'], 'requires': []},
'token.is_sent_start': {'assigns': ['parser'], 'requires': []},
'token.lemma': {'assigns': ['lemmatizer'], 'requires': []},
'token.ent_type': {'assigns': ['ner', 'entity_ruler'], 'requires': []},
'doc.sents': {'assigns': ['parser'], 'requires': []},
'token.head': {'assigns': ['parser'], 'requires': []},
'doc.tensor': {'assigns': ['tok2vec'], 'requires': []},
'doc.ents': {'assigns': ['ner', 'entity_ruler'], 'requires': []}}}

This can be a bit difficult to read at first, but what it shows us is the order in which our
pipes are set up and a few other key pieces of information about each pipe. If we locate
“ner”, we notice that “entity_ruler” sits behind it.

In order for our EntityRuler to have primacy, we have to assign it to after the “ner” pipe,
as the example below shows in this line:

ruler = nlp.add_pipe(“entity_ruler”, after=”ner”)

#Build upon the spaCy Small Model
nlp = spacy.load("en_core_web_sm")

#Sample text
text = "The village of Treblinka is in Poland. Treblinka was also an
→֒extermination camp."

#Create the EntityRuler
ruler = nlp.add_pipe("entity_ruler", after="ner")

#List of Entities and Patterns
patterns = [

{"label": "GPE", "pattern": "Treblinka"}
]

ruler.add_patterns(patterns)

doc = nlp(text)

#extract entities
for ent in doc.ents:

print (ent.text, ent.label_)

Treblinka GPE
Poland GPE
Treblinka GPE

Notice now that our EntityRuler is functioning before the “ner” pipe and is, therefore,
prefinding entities and labeling them before the NER gets to them. Because it comes earlier
in the pipeline, its metadata holds primacy over the later “ner” pipe.

Rules-Based spaCy 177

12.1.3 Introducing Complex Rules and Variance to the EntityRuler
(Advanced)

In some instances, labelsmay have a set type of variance that follow a distinct pattern or sets
of patterns. One such example (included in the spaCy documentation) is phone numbers. In
the United States, phone numbers have a few forms. The standard formal method is (xxx)-
xxx-xxxx, but it is not uncommon to see xxx-xxx-xxxx or xxxxxxxxxx. If the owner of the
phone number is giving that same number to someone outside the US, then +1(xxx)-xxx-
xxxx.

If you are working within a United States domain, you can pass RegEx formulas to the
pattern matcher to grab all of these instances.

The spaCy EntityRuler also allows the user to introduce a variety of complex rules
and variances (via, among other things, RegEx) by passing the rules to the pattern.
There are many arguments that one can pass to the patterns. For a complete list, see:
https://spacy.io/usage/rule-based-matching. To experiment with how these work, I rec-
ommend using the spaCy Matcher demo: https://explosion.ai/demos/matcher.

In the example below we work with one example from the spaCy documentation in
whichwe extract a phone number from a text. This same task can be done via RegEx aswell.

#Import the requisite library
import spacy

#Sample text
text = "This is a sample number (555) 555-5555."

#Build upon the spaCy Small Model
nlp = spacy.blank("en")

#Create the Ruler and Add it
ruler = nlp.add_pipe("entity_ruler")

#List of Entities and Patterns (source: https://spacy.io/usage/rule-based-
→֒matching)
patterns = [

{"label": "PHONE_NUMBER", "pattern": [{"ORTH": "("}, {"SHAPE":
→֒"ddd"}, {"ORTH": ")"}, {"SHAPE": "ddd"},

{"ORTH": "-", "OP": "?"}, {"SHAPE": "dddd"}]}
]

#add patterns to ruler
ruler.add_patterns(patterns)

#create the doc
doc = nlp(text)

#extract entities
for ent in doc.ents:

print (ent.text, ent.label_)

(555) 555-5555 PHONE_NUMBER

12.2 The Matcher

12.2.1 Introduction

SpaCy’s built in Matcher component is another way a user can leverage spaCy to leverage
linguistic annotations to find and extract structured data from unstructured text. Unlike the

https://spacy.io
https://explosion.ai
https://spacy.io

178 Introduction to Python for Humanists

EntityRuler that we met in the previous section, the Matcher does not assign the identified
patterns into an extension, such as doc.ents. Instead, the Matcher is designed to be
leveraged outside of a spaCy pipeline. Also unlike the EntityRuler, the Matcher will not
sit inside a spaCy pipeline, rather it will run over a spaCy Doc container.

12.2.2 A Basic Example

To understand how this works, let’s first look at a very basic example of the spaCyMatcher
in practice. We will be working with the small spaCy English pipeline in this example, so
let’s go ahead and import the Matcher class and load up the pipeline.

import spacy
from spacy.matcher import Matcher

nlp = spacy.load("en_core_web_sm")

Now that we have our pipeline loaded up intomemory, let’s go ahead and start working
with the Matcher component. To load up the Matcher, we will use the Matcher class that
we imported above. The Matcher class will take a single argument, the vocabulary of the
nlp pipeline. We can access the nlp vocab by using the command nlp.vocab.

matcher = Matcher(nlp.vocab)

With our Matcher now loaded into memory, it is time to create a basic pattern. The
pattern that we will want to find and extract from our texts is an email. As we will learn
below, there are many token attributes you can leverage to create powerful rules-based
pattern matchers in spaCy, rather like the EntityRuler we learned about in the previous
section. One attribute we can look for is a Boolean (True or False) that looks to see if a token
looks like an e-mail address. This attribute is LIKE_EMAIL.

pattern = [
{"LIKE_EMAIL": True}

]

As with the EntityRuler, we can add these patterns into the Matcher. Unlike our
EntityRuler, we will use the .addmethod, rather than .add_patterns. This method will
take two arguments. First, the label that you want to assign to the matched token(s) and
second the patterns themselves. Note that just like the EntityRuler, our patterns must be
nested in a list.

matcher.add("EMAIL_ADDRESS", [pattern])

With the Matcher now loaded in memory with patterns, we can run it over some text.
Because the spaCy Matcher is a spaCy component, that text must first be converted into a
spaCy Doc container. We can create that Doc container just as we normally would.

doc = nlp("This is an email address: wmattingly@aol.com")

We can then pass that Doc container to the Matcher as a single argument.

matches = matcher(doc)

mailto:wmattingly@aol.com

Rules-Based spaCy 179

Let’s go ahead and print off the matches object now.

print (matches)

[(16571425990740197027, 6, 7)]

This may not be what you were expecting, but let’s dive in and explore what is going
on with this output. The output is a list with a single index. Each index will be a tuple. This
tuple will consist of three parts: lexeme, start token, and end token. The lexeme is
a numerical representation of our label in the nlp.vocab. We can access the label name by
indexing the nlp.vocab at the lexeme index and then accessing the raw text with .text.

Let’s do each of these steps in turn. First, we will create an object called first_match.
This will be our first hit with the Matcher.

first_match = matches[0]
print(first_match)

(16571425990740197027, 6, 7)

Next, we will grab lexeme, which is the first index in our first_match.

lexeme = first_match[0]
print(lexeme)

16571425990740197027

Finally, we will print off the raw text of the label by indexing the nlp.vocab at that
specific lexeme numerical value.

print(nlp.vocab[lexeme].text)

EMAIL_ADDRESS

This is the basic idea behind the Matcher. It is a way of finding structured text using a
pattern-basedmatching technique. Aswith the EntityRuler, there are a lot of token attributes
we can leverage.

12.2.3 Attributes Taken by Matcher

• ORTH − The exact verbatim of a token (str)

• TEXT − The exact verbatim of a token (str)

• LOWER − The lowercase form of the token text (str)

• LENGTH − The length of the token text (int)

• IS_ALPHA

• IS_ASCII

• IS_DIGIT

• IS_LOWER

• IS_UPPER

180 Introduction to Python for Humanists

• IS_TITLE

• IS_PUNCT

• IS_SPACE

• IS_STOP

• IS_SENT_START

• LIKE_NUM

• LIKE_URL

• LIKE_EMAIL

• SPACY

• POS

• TAG

• MORPH

• DEP

• LEMMA

• SHAPE

• ENT_TYPE

• _ − Custom extension attributes (Dict[str, Any])

• OP

12.2.4 Applied Matcher

Let’s now take a look at a practical application of the Matcher. Say, we had a piece of text.
In our case, it will be the following text:

text = """
Harry Potter was the main character in the book.
Harry was a normal boy who discovered he was a wizard.
Ultimately, Potter goes to Hogwarts.
He is also known as the Boy who Lived.
The Boy who Lived has an enemy named Voldemorte who is known as He who Must not
→֒be Named.
"""

Our goal in this exercise is to isolate all proper nouns and extract them. Ideally, wewould
like to extract proper nouns that are bigrams or trigrams and keep them intact.

To do this, we will need to load up the spaCy small English pipeline.

nlp = spacy.load("en_core_web_sm")

Rules-Based spaCy 181

12.2.4.1 Grabbing all Proper Nouns

Our initial pattern will be quite simple. We are simply going to grab all patterns where a
single token has a part-of-speech (POS) is “PROPN”, or proper noun.

matcher = Matcher(nlp.vocab)
pattern = [{"POS": "PROPN"}]
matcher.add("PROPER_NOUNS", [pattern])
doc = nlp(text)
matches = matcher(doc)
print (len(matches))
for match in matches[:10]:

print (match, doc[match[1]:match[2]])

6
(3232560085755078826, 1, 2) Harry
(3232560085755078826, 2, 3) Potter
(3232560085755078826, 12, 13) Harry
(3232560085755078826, 27, 28) Potter
(3232560085755078826, 30, 31) Hogwarts
(3232560085755078826, 52, 53) Voldemorte

12.2.4.2 Improving it with Multi-Word Tokens

While the above output is good, it does not capture multi-word-tokens, such as Harry
Potter. Ideally, wewould like to find and extract these instances.We can do this by passing
in a second argument in our pattern after the POS: OP and set it to “+”. This will look for
any sequence of proper nouns.

matcher = Matcher(nlp.vocab)
pattern = [{"POS": "PROPN", "OP": "+"}]
matcher.add("PROPER_NOUNS", [pattern])
doc = nlp(text)
matches = matcher(doc)
print (len(matches))
for match in matches[:10]:

print (match, doc[match[1]:match[2]])

7
(3232560085755078826, 1, 2) Harry
(3232560085755078826, 1, 3) Harry Potter
(3232560085755078826, 2, 3) Potter
(3232560085755078826, 12, 13) Harry
(3232560085755078826, 27, 28) Potter
(3232560085755078826, 30, 31) Hogwarts
(3232560085755078826, 52, 53) Voldemorte

12.2.4.3 Greedy Keyword Argument

As we can see, this has worked pretty well, but we have a key issue. Harry is grabbed as
Harry Potter as is Potter. These are all three instances of a single multi-word token:
Harry Potter.

The Matcher can also take another keyword argument when we add patterns: greedy.
This will take one of two possible arguments: FIRST or LONGEST. They each define how
spaCy will function when it encounters two matches that have overlapping spans. FIRST

182 Introduction to Python for Humanists

will extract the first hitwith overlapping spans,whileLONGESTwill extract only the longest.
Let’s consider the same example above.

matcher = Matcher(nlp.vocab)
pattern = [{"POS": "PROPN", "OP": "+"}]
matcher.add("PROPER_NOUNS", [pattern], greedy='LONGEST')
doc = nlp(text)
matches = matcher(doc)
print (len(matches))
for match in matches[:10]:

print (match, doc[match[1]:match[2]])

5
(3232560085755078826, 1, 3) Harry Potter
(3232560085755078826, 12, 13) Harry
(3232560085755078826, 27, 28) Potter
(3232560085755078826, 30, 31) Hogwarts
(3232560085755078826, 52, 53) Voldemorte

12.2.4.4 Adding in Sequences

Let’s say I not only wanted to extract these type of instances, but I wanted to look for more
robust patterns.What if I wanted to look for places in the textwhereHarry Potter is followed
by a verb of action (not a verb of to be). We can do this by passing a third component to our
pattern: POS is VERB.

matcher = Matcher(nlp.vocab)
pattern = [{"POS": "PROPN", "OP": "+"}, {"POS": "VERB"}]
matcher.add("PROPER_NOUNS", [pattern], greedy='LONGEST')
doc = nlp(text)
matches = matcher(doc)
matches.sort(key = lambda x: x[1])
print (len(matches))
for match in matches[:10]:

print (match, doc[match[1]:match[2]])

1
(3232560085755078826, 27, 29) Potter goes

And just like this, wewere able to extract an instance ofHarry Potter’s name followed by
a verb of action. In our case, goes. While this example is quite simple, the Matcher allows
for robust pattern matching with spaCy containers. The patterns that we looked at here can
also be used and applied to the EntityRuler.

12.3 The PhraseMatcher

12.3.1 Introduction

Another rules-based component built into spaCy is the PhraseMatcher. Like the Matcher,
the PhraseMatcher does not sit inside a spaCy pipeline. It does not, therefore, align with a
spaCy extension, such as doc.ents, like the EntityRuler does. Instead, it is meant to run
over a Doc container, just like theMatcher. Unlike theMatcher, however, the PhraseMatcher
does not function a sequence of linguistic features at the token level, rather it is focused on
matching at the phrase level.

Rules-Based spaCy 183

In practice, youwould use theMatcherwhen you need to rely on a sequence of linguistic
features at the token level to extract data. This is powerful, but can sometimes be difficult
to write robust patterns to match all instances of a the patterns you wish to match. The
PhraseMatcher, on the other hand, should be used when you know relatively well how the
data will appear in a text. It is easier to use the PhraseMatcher, but it is not as dynamic as
the Matcher.

Basic Example
As with the Matcher, it is best to see the PhraseMatcher in action with a basic example.

First, let’s import the PhraseMatcher class and load up the default small English pipeline.

import spacy
from spacy.matcher import PhraseMatcher

nlp = spacy.load("en_core_web_sm")

Now, let’s consider a basic example. Let’s consider the text below. Here, we wish to find
and extract the instances where Harry Potter appears in the text. Harry appears in four
different ways in the text: 1) Harry Potter, 2) Harry, 3) Potter, and 4) The Boy who Lived.

text = """
Harry Potter was the main character in the book.
Harry was a normal boy who discovered he was a wizard.
Ultimately, Potter goes to Hogwarts.
He is also known as the Boy who Lived.
The Boy who Lived has an enemy named Voldemorte who is known as He who Must not
→֒be Named.
"""

matcher = PhraseMatcher(nlp.vocab)

matcher.add("HARRY_POTTER", [nlp("Harry Potter"), nlp("Harry"), nlp("Potter"),
→֒nlp("the Boy who Lived")])

doc = nlp(text)

Again, we will create our matches.

matches = matcher(doc)

Let’s iterate over our matches.

for match in matches:
print(match)

(12243270181114079557, 1, 2)
(12243270181114079557, 1, 3)
(12243270181114079557, 2, 3)
(12243270181114079557, 12, 13)
(12243270181114079557, 27, 28)
(12243270181114079557, 38, 42)

And now let’s iterate over our matches and grab a bit more data, including the token
spans and the sentence in which a match was found.

184 Introduction to Python for Humanists

for match in matches:
lexeme, start, end = match
print(nlp.vocab[lexeme].text, doc[start:end])
print(f"Sentence: {doc[start].sent}")

HARRY_POTTER Harry
Sentence: Harry Potter was the main character in the book.

HARRY_POTTER Harry Potter
Sentence: Harry Potter was the main character in the book.

HARRY_POTTER Potter
Sentence: Harry Potter was the main character in the book.

HARRY_POTTER Harry
Sentence: Harry was a normal boy who discovered he was a wizard.

HARRY_POTTER Potter
Sentence: Ultimately, Potter goes to Hogwarts.

HARRY_POTTER the Boy who Lived
Sentence: He is also known as the Boy who Lived.

As we can tel, the results are good, but we are missing one case. The second example of
The Boy who Lived was not grabbed because The was not capitalized. We can account
for this by changing the main attribute of the PhraseMatcher.

12.3.2 Setting a Custom Attribute

Unlike the Matcher, the PhraseMatcher does not let us control how it reads each individual
token in the pattern. The way the PhraseMatcher parses the phrase is as the sequence
level. By default, the PhraseMatcher reads the entire pattern as ORTH, or raw text. In other
words, it must be a precise match in order to be flagged and extracted. In some instances,
however, it may be important for a pattern to be not just raw text, but also in all forms,
both uppercase and lowercase. This is particularly important for phrases, like the boy
who lived, where the word the may be capitalized if it is at the start of a sentence.
In these instances, we can change the main way the PhraseMatcher works by using the
attr argument. By using attr="LOWER", we can make our PhraseMatcher pattern case-
agnostic.

matcher = PhraseMatcher(nlp.vocab, attr="LOWER")

matcher.add("HARRY_POTTER", [nlp("Harry Potter"), nlp("Harry"), nlp("Potter"), nlp("the Boy who Lived

→֒")])

doc = nlp(text)

matches = matcher(doc)

for match in matches:
lexeme, start, end = match
print(nlp.vocab[lexeme].text, doc[start:end])
print(f"Sentence: {doc[start].sent}")

Rules-Based spaCy 185

HARRY_POTTER Harry
Sentence: Harry Potter was the main character in the book.

HARRY_POTTER Harry Potter
Sentence: Harry Potter was the main character in the book.

HARRY_POTTER Potter
Sentence: Harry Potter was the main character in the book.

HARRY_POTTER Harry
Sentence: Harry was a normal boy who discovered he was a wizard.

HARRY_POTTER Potter
Sentence: Ultimately, Potter goes to Hogwarts.

HARRY_POTTER the Boy who Lived
Sentence: He is also known as the Boy who Lived.

HARRY_POTTER The Boy who Lived
Sentence: The Boy who Lived has an enemy named Voldemorte who is known as He
→֒who Must not be Named.

Notice that now, we have grabbed all ways the phrase the boy who lived is
expressed in our text.

12.3.3 Adding a Function with on_match

In production, it can sometimes be difficult to deploy a spaCy-based solution that requires
pasting a for loop each time you want to iterate over the results. Usually, you want to
automate certain tasks so that when a match is found, some event occurs in your code.
The PhraseMatcher allows you to pass an extra argument to your patterns: on_match. This
keyword argument will take a function which will receive four arguments from the Phrase-
Matcher: matcher (the PhraseMatcher), doc (the doc container that the PhraseMatcher just
passed over), id, and matches (the resulting matches from the PhraseMatcher).

Let’s create a basic function that will iterate over each match and print off the match, its
label, and the sentence in which it was found.

def on_match(matcher, doc, id, matches):
for match in matches:

lexeme, start, end = match
print(nlp.vocab[lexeme].text, doc[start:end])
print(f"Sentence: {doc[start].sent}")

Just as before, we will create our PhraseMatcher.

matcher = PhraseMatcher(nlp.vocab, attr="LOWER")

This time, however, when we add our patterns to the PhraseMatcher, we will also add
the keyword argument on_match that will point to the above function.

matcher.add("HARRY_POTTER", [nlp("Harry Potter")], on_match=on_match)

All that is left to do is then create the Doc container from the text and then run the
PhraseMatcher over the Doc container.

186 Introduction to Python for Humanists

doc = nlp(text)
matches = matcher(doc)

HARRY_POTTER Harry Potter
Sentence: Harry Potter was the main character in the book.

Just like the PhraseMatcher, the Matcher also can take the on_match keyword
argument.

12.4 Using RegEx with spaCy

12.4.1 What Is Regular Expressions (RegEx)?

Regular Expressions, or RegEx for short, is a way of achieving complex string matching
based on simple or complex patterns. It can be used to perform finding and retrieving
patterns or replacing matching patterns in a string with some other pattern. It was invnted
by an StephenColeKleene in the 1950s and is still widely used today for numerous tasks, but
particularly string matching in texts. RegEx are fully integrated with most search engines
and can allow for more robust searching. Nearly all data scientists, especially those who
workwith texts, use RegEx at some stage in their workflow, fromdata searching, to cleaning
data, to implementing machine learning models. It is an essential tool for any text-based
researcher. For these reasons, it merits a few chapters in this textbook.

In spaCy it can be leveraged in a few different pipes (depending on the task at hand as
we shall see), to identify things such as entities or pattern matching.

12.4.2 The Strengths of RegEx

There are several strengths to RegEx.

1. Due to its complex syntax, it can allow for programmers to write robust rules in
short spaces.

2. It can allow the researcher to find all types of variance in strings.

3. It can perform remarkably quickly when compared to other methods.

4. It is universally supported.

12.4.3 The Weaknesses of RegEx

Despite these strengths, there are a few weaknesses to RegEx.

1. Its syntax is quite difficult for beginners. (I still find myself looking up how to do
certain things.)

2. It order to work well, it requires a domain-expert to work alongside the program-
mer to think of all ways a pattern may vary in texts.

12.4.4 How to Use RegEx in Python

Python comes prepackaged with a RegEx library. We can import it like so:

import re

Rules-Based spaCy 187

Now that we have it imported, we can begin to write out some RegEx rules. Let’s say
we want to find an occurrence of a date in a text. As noted in an earlier notebook, there
are a finite number of ways this can be represented. Let’s try to grab all instances of a day
followed by a month first.

pattern = r"((\d){1,2}
→֒(January|February|March|April|May|June|July|August|September|
→֒October|November|December))"

text = "This is a date 2 February. Another date would be 14 August."
matches = re.findall(pattern, text)
print (matches)

[('2 February', '2', 'February'), ('14 August', '4', 'August')]

In this bit of code, we see a real-life RegEx formula at work. While this looks quite
complex, its syntax is fairly straight forward. Let’s break it down. The first (tells RegEx
that I’m looking for something within the parentheses). In other words, I’m looking for a
pattern that’s going to match the whole pattern, not just components.

Next, we state(\d){1,2}. Thismeans thatwe are looking for any digit (0–9) that occurs
either once or twice, ({1,2}).

Next, we have a space to indicate the space in the string that we would expect with a
date.

Next,wehave (January|February|March|April|May|June|July|August|September|
October|November|December) – this indicates another component of the pattern (because
it is parentheses). The “|” indicates the same concept as “or” in English, so either January,
or February, or March, etc.

Whenwe bring it together, this pattern will match anything that functions as a set of one
or two numbers followed by a month. What happens when we try and do this with a date
that is formed the opposite way?

text = "This is a date February 2. Another date would be 14 August."
matches = re.findall(pattern, text)
print (matches)

[('14 August', '4', 'August')]

It fails. But this is no fault of RegEx. Our pattern cannot accommodate that variation.
Nevertheless, we can account for it by adding it as a possible variation. Possible variations
are accounted for with a “*”.

pattern = r"(((\d){1,2}(
→֒(January|February|March|April|May|June|July|August|September|
→֒October|November|December)))|(((January|February|March|April|
May|June|July|August|September|October|November|December))(\d){1,2}))"

text = "This is a date February 2. Another date would be 14 August."
matches = re.findall(pattern, text)
print (matches)

[('February 2', '', '', '', '', 'February 2', 'February ', 'February', '2'), (
→֒'14 August', '14 August', '4', ' August', 'August', '', '', '', '')]

There are more concise ways to write the same RegEx formula. I have opted here to be
more verbose to make it a bit easier to read. You can see that we’ve allowed for two main
options for our pattern matcher.

188 Introduction to Python for Humanists

Notice, however, that we have a lot of superfluous information for each match. These
are the components of each match. There are several ways we can remove them. One way
is to use the command finditer, rather than findall in RegEx.

text = "This is a date February 2. Another date would be 14 August."
iter_matches = re.finditer(pattern, text)
print (iter_matches)

<callable_iterator object at 0x00000217A415BC10>

This is an iterator object, we can loop over it, however, and get our results.

text = "This is a date February 2. Another date would be 14 August."
iter_matches = re.finditer(pattern, text)
print (iter_matches)
for hit in iter_matches:

print (hit)

<callable_iterator object at 0x00000217A4256670>
<re.Match object; span=(15, 25), match='February 2'>
<re.Match object; span=(49, 58), match='14 August'>

Within each of these is some very salient information, such as the start and end location
(inside the span) and the text itself (match). We can use the start and end location to grab
the text within the string.

text = "This is a date February 2. Another date would be 14 August."
iter_matches = re.finditer(pattern, text)
for hit in iter_matches:

start = hit.start()
end = hit.end()
print (text[start:end])

February 2
14 August

12.4.5 How to Use RegEx in spaCy

Things like dates, times, IP Addresses, etc., that have either consistent or fairly consistent
structures are excellent candidates for RegEx. Fortunately, spaCy has easy ways to imple-
ment RegEx in three pipes: Matcher, PhraseMatcher, and EntityRuler. One of the major
drawbacks to the Matcher and PhraseMatcher, is that they do not align the matches as
doc.ents. Because this textbook is about NER and our goal is to store the entities in the
doc.ents, we will focus on using RegEx with the EntityRuler. In the next notebook, we
will examine other methods.

In the previous notebook, we saw how the code below allowed for us to capture the
phone number in the string. I have modified it a bit here for reasons that will become a bit
more clear below.

#Import the requisite library
import spacy

#Sample text
text = "This is a sample number 555-5555."

(continues on next page)

Rules-Based spaCy 189

(continued from previous page)

#Build upon the spaCy Small Model
nlp = spacy.blank("en")

#Create the Ruler and Add it
ruler = nlp.add_pipe("entity_ruler")

#List of Entities and Patterns (source: https://spacy.io/usage/rule-based-
→֒matching)
patterns = [

{"label": "PHONE_NUMBER", "pattern": [{"SHAPE": "ddd"},
{"ORTH": "-", "OP": "?"}, {"SHAPE": "dddd"}]}

]
#add patterns to ruler
ruler.add_patterns(patterns)

#create the doc
doc = nlp(text)

#extract entities
for ent in doc.ents:

print (ent.text, ent.label_)

INFO:tensorflow:Enabling eager execution
INFO:tensorflow:Enabling v2 tensorshape
INFO:tensorflow:Enabling resource variables
INFO:tensorflow:Enabling tensor equality
INFO:tensorflow:Enabling control flow v2
555-5555 PHONE_NUMBER

This method worked well for grabbing the phone number. But what if we wanted to
use RegEx as opposed to linguistic features, such as shape? First, let’s write some RegEx to
capture 555-5555.

pattern = r"((\d){3}-(\d){4})"
text = "This is a sample number 555-5555."
matches = re.findall(pattern, text)
print (matches)

[('555-5555', '5', '5')]

Okay. So, now we know that we have a RegEx pattern that works. Let’s try and
implement it in the spaCyEntityRuler.We cando thatwith the code below.Whenwe execute
the code below, we have no output.

#Import the requisite library
import spacy

#Sample text
text = "This is a sample number (555) 555-5555."

#Build upon the spaCy Small Model
nlp = spacy.blank("en")

#Create the Ruler and Add it
ruler = nlp.add_pipe("entity_ruler")

(continues on next page)

https://spacy.io

190 Introduction to Python for Humanists

(continued from previous page)

#List of Entities and Patterns (source: https://spacy.io/usage/rule-based-
→֒matching)
patterns = [

{
"label": "PHONE_NUMBER", "pattern": [{"TEXT": {"REGEX": "((\d)

→֒{3}-(\d){4})"}}
]

}
]

#add patterns to ruler
ruler.add_patterns(patterns)

#create the doc
doc = nlp(text)

#extract entities
for ent in doc.ents:

print (ent.text, ent.label_)

This is for one very important reason. spaCy’s EntityRuler cannot use RegEx to pattern
match across tokens. The dash in the phone number throws off the EntityRuler. So, what
are we to do in this scenario? Well, we have a few different options that we will explore in
the next notebook. But before we get to that, let’s try and use RegEx to capture the phone
number with no hyphen.

#Import the requisite library
import spacy

#Sample text
text = "This is a sample number 5555555."
#Build upon the spaCy Small Model
nlp = spacy.blank("en")

#Create the Ruler and Add it
ruler = nlp.add_pipe("entity_ruler")

#List of Entities and Patterns (source: https://spacy.io/usage/rule-based-
→֒matching)
patterns = [

{
"label": "PHONE_NUMBER",
"pattern": [{"TEXT": {"REGEX": "((\d){5})"}}

]
}

]
#add patterns to ruler
ruler.add_patterns(patterns)

#create the doc
doc = nlp(text)

#extract entities
for ent in doc.ents:

print (ent.text, ent.label_)

5555555 PHONE_NUMBER

https://spacy.io
https://spacy.io

Rules-Based spaCy 191

Notice that without the dash and a few modifications to our RegEx, we were able to
capture 5555555 because this is a single token in the spaCy Doc object. Let’s explore how to
solve the problem in the next notebook!

12.5 Working with Multi-Word Token Entities and RegEx
in spaCy 3x

12.5.1 Key Concepts in This Notebook

1. Working with multi-word tokens and RegEx in spaCy 3x.

2. RegEx’s finditer.

3. . Spans

12.5.2 Problems with Multi-Word Tokens in spaCy as Entities

We can use spaCy’sMatcher to grabmulti-word tokens, or tokens that spanmultiple tokens.
Themain problemwith this, however, is that thesemulti-word tokens are not placed into the
doc.ents. This means that we cannot access them the same way we would other entities.
In this notebook, we will figure out how to solve that problem with a simple workflow:

1. Extract multi-word tokens with re.finditer().

2. Reconstruct the spans in the spaCy doc.

3. Give priority to longer spans (optional).

4. Inject the spans into doc.ents.

We will cover each of these steps in turn.

12.5.3 Extract Multi-Word Tokens

First, we need to grab the multi-word tokens. In this notebook, we are going to try and
grab a multi-word token. In this case, a person whose first name begins with Paul. In the
RegEx below, we specify that we are looking for any string that starts with “Paul” and then
is followed by a capitalized letter. We then tell it to grab the entire second word until the
end of the word.

import re

text = "Paul Newman was an American actor, but Paul Hollywood is a British TV
→֒Host. The name Paul is quite common."

pattern = r"Paul [A-Z]\w+"

matches = re.finditer(pattern, text)

for match in matches:
print (match)

<re.Match object; span=(0, 11), match='Paul Newman'>
<re.Match object; span=(39, 53), match='Paul Hollywood'>

Note that we have not grabbed the final “Paul” which is not followed by a last name. In
this case, we are not interested in that Paul. Now that we know how to grab the multi-word
tokens, we need to have a way to parse them in spaCy.

192 Introduction to Python for Humanists

12.5.4 Reconstruct Spans

This next stage is a bit more complicated, but works quite well once you understand the
process. First, we need to import the libraries we will need. Note that we are also adding
Span from spacy.tokens.

import re
import spacy
from spacy.tokens import Span

INFO:tensorflow:Enabling eager execution
INFO:tensorflow:Enabling v2 tensorshape
INFO:tensorflow:Enabling resource variables
INFO:tensorflow:Enabling tensor equality
INFO:tensorflow:Enabling control flow v2

We will do the same thing that we did above with our text and our pattern.

text = "Paul Newman was an American actor, but Paul Hollywood is a British TV
→֒Host. The name Paul is quite common."
pattern = r"Paul [A-Z]\w+"

Here, we will create a blank spaCy English model and create the Doc object of the text.
It will have no entities in it because we are working with a blank model that does not have
an “ner” component.

nlp = spacy.blank("en")
doc = nlp(text)

Even though this part is unnecessary, it is good to do it here because in other situations
you will have entities. If you do, you need to store them as a separate list to which we will
append things.

original_ents = list(doc.ents)

Now, let’s iterate over the results from re.finditer(). In this cell, we are goingg to
grab the start and end from each match. we will then create a temporary span that will
be equal to where the characters start and end in the doc object. This is important because
tokens and characters do not always align correctly. Finally, we append to mwt_ents, the
start, end, and text. The text is not necessary but it will help with debugging.

mwt_ents = []
for match in re.finditer(pattern, doc.text):

start, end = match.span()
span = doc.char_span(start, end)
if span is not None:

mwt_ents.append((span.start, span.end, span.text))

12.5.5 Inject the Spans into the doc.ents

With that data, we can iterate over each entity and identify where it begins and ends in
spaCy. Note, we are using the spaCy Span class. This allows us to create a span object and
assign it a custom label. With this data, we can append each Span to original_ents.

Rules-Based spaCy 193

for ent in mwt_ents:
start, end, name = ent
per_ent = Span(doc, start, end, label="PERSON")
original_ents.append(per_ent)

Andfinally,we setdoc.ents equal tooriginal_ents. This effectively loads the spans
back into the spaCy doc.ents.

doc.ents = original_ents

Let’s iterate over the “ents” as we normally would.

for ent in doc.ents:
print (ent.text, ent.label_)

Paul Newman PERSON
Paul Hollywood PERSON

Note that these are now properly identified entities in our doc.ents class.

12.5.6 Give Priority to Longer Spans

Sometimes, the situation is not so neat. Sometimes our custom RegEx entities will overlap
with spaCy’s entities

import re
import spacy

text = "Paul Newman was an American actor, but Paul Hollywood is a British TV
→֒Host."
pattern = r"Hollywood"

nlp = spacy.load("en_core_web_sm")

doc = nlp(text)
for ent in doc.ents:

print (ent.text, ent.label_)

Paul Newman PERSON
American NORP
Paul Hollywood PERSON
British NORP

Let’s say that we create a new entity. Maybe words associated with Cinema. So, we want
to classify Hollywood as a tag “CINEMA”. Now, in the above text, Hollywood is clearly
associated with Paul Hollywood, but let’s imagine for a moment that it is not. Let’s try and
run the same code as above. If we do, we notice that we get an error.

mwt_ents = []
original_ents = list(doc.ents)
for match in re.finditer(pattern, doc.text):

print (match)
start, end = match.span()
span = doc.char_span(start, end)
if span is not None:

mwt_ents.append((span.start, span.end, span.text))

(continues on next page)

194 Introduction to Python for Humanists

(continued from previous page)

for ent in mwt_ents:
start, end, name = ent
per_ent = Span(doc, start, end, label="CINEMA")
original_ents.append(per_ent)

doc.ents = original_ents

<re.Match object; span=(44, 53), match='Hollywood'>

ValueError Traceback (most recent call last)
<ipython-input-11-425d356ded45> in <module>

12 original_ents.append(per_ent)
13

---> 14 doc.ents = original_ents

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\spacy\
→֒tokens\doc.pyx in spacy.tokens.doc.Doc.ents.__set__()

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\spacy\
→֒tokens\doc.pyx in spacy.tokens.doc.Doc.set_ents()

ValueError: [E1010] Unable to set entity information for token 9 which is
→֒included in more than one span in entities, blocked, missing or outside.

This error tells us that one of our tokens from the finditer() overlapped with one
that our “ner” component found. This is a problem that can be rectified with spaCy’s
filter_spans. This gives primacy to longer spans. Notice howwe have allowed the Paul
Hollywood entity to be a PERSON, rather than CINEMA. This is because Hollywood is
shorter than Paul Hollywood.

13
Solving a Domain-Specific Problem: A Case Study
with Holocaust NER

Now that we have a basic understanding of the spaCy library, we can begin applying that
knowledge towards a domain-specific problem. In our case, wewill explore creating a rules-
based NLP pipeline for performing named entity recognition (NER) on Holocaust-related
documents.

13.1 Cultivating Good Datasets for Entities

13.1.1 Introduction to Datasets

One of the greatest challenges when developing a rules-based pipeline for named entity
recognition is finding quality datasets. In certain domains, data is readily available, but in
many of the domains associated with the humanities, datasets can be hard to find. For this
reason,we often need to create our owndatasets. In this section,wewill set it upon ourselves
to find a list of concentration camps fromdata that is publicly available on theweb. The data
we acquire will not be perfect, nor will it be complete, but it will provide a starting point for
creating a dataset of known concentration camps.

13.1.2 Acquiring the Data

A good way to think about datasets for named entity recognition heuristics is as lists. We
want to construct a list of known concentration camps that we can then pass to a spaCy
EntityRuler pipe as a set of patterns to which we can assign the label CAMP. One of the
first questions youwill ask yourself in this pursuit, is “where can I acquire lists?” The answer
is, unfortunately, “it depends.” Sometimes good datasets exist. There are a few good places
to look, such asGitHub,Wikipedia, and academic digital projects. For each project, youmust
don your detective goggles and explore the web to find places to acquire this data. Most
times, it will take a bit ofwork (and some Python code) to get the data into a structured form.

If we are looking to generate entities for concentration camps, we have a wealth of data,
but this data is not necessarily cleaned or structured. Let’s examine three different locations
where we can collate a list of concentration camps from the web and the strengths and
weaknesses of those sources.

13.1.3 United States Holocaust Memorial Museum

The United States Holocaust Memorial Museum (USHMM), located in Washington,
D.C. in the United States, is an excellent source for data on the Holocaust. When

DOI: 10.1201/9781003342175-16

http://dx.doi.org/10.1201/9781003342175-16

196 Introduction to Python for Humanists

searching the USHMM collections, one way to limit your search is by Key Camps
(https://www.ushmm.org/). This list looks like this:

ushmm_camps = ['Alderney', 'Amersfoort', 'Auschwitz', 'Banjica', 'Bełżec',
→֒'Bergen-Belsen', 'Bernburg', 'Bogdanovka', 'Bolzano', 'Bor', 'Breendonk',

'Breitenau', 'Buchenwald', 'CheÅ‚mno', 'Dachau', 'Drancy', 'Falstad',
→֒'Flossenbürg', 'Fort VII', 'Fossoli', 'Grini', 'Gross-Rosen',

'Herzogenbusch', 'Hinzert', 'Janowska', 'Jasenovac', 'Kaiserwald',
→֒'Kaunas', 'Kemna', 'Klooga', 'Le Vernet', 'Majdanek', 'Malchow',

'Maly Trostenets', 'Mechelen', 'Mittelbau-Dora', 'Natzweiler-Struthof',
→֒'Neuengamme', 'Niederhagen', 'Oberer Kuhberg', 'Oranienburg',

'Osthofen', 'PÅ‚aszów', 'Ravensbruck', 'Risiera di San Sabba',
→֒'Sachsenhausen', 'Sajmište', 'Salaspils', 'Sobibór', 'Soldau', 'Stutthof',

'Theresienstadt', 'Trawniki', 'Treblinka', 'Vaivara']
print (ushmm_camps)

['Alderney', 'Amersfoort', 'Auschwitz', 'Banjica', 'Bełżec', 'Bergen-Belsen',
→֒'Bernburg', 'Bogdanovka', 'Bolzano', 'Bor', 'Breendonk', 'Breitenau',
→֒'Buchenwald', 'CheÅ‚mno', 'Dachau', 'Drancy', 'Falstad', 'Flossenbürg',
→֒'Fort VII', 'Fossoli', 'Grini', 'Gross-Rosen', 'Herzogenbusch', 'Hinzert',
→֒'Janowska', 'Jasenovac', 'Kaiserwald', 'Kaunas', 'Kemna', 'Klooga', 'Le
→֒Vernet', 'Majdanek', 'Malchow', 'Maly Trostenets', 'Mechelen', 'Mittelbau-
→֒Dora', 'Natzweiler-Struthof', 'Neuengamme', 'Niederhagen', 'Oberer Kuhberg',
→֒'Oranienburg', 'Osthofen', 'PÅ‚aszów', 'Ravensbruck', 'Risiera di San Sabba
→֒', 'Sachsenhausen', 'Sajmište', 'Salaspils', 'Sobibór', 'Soldau', 'Stutthof
→֒', 'Theresienstadt', 'Trawniki', 'Treblinka', 'Vaivara']

13.1.4 Normalizing Data

While this dataset is cleaned and good, it has certain limitations. First, it is not complete.
This is a list of key camps, not all camps. Note that subcamps are left off the list. The second
problem we have is that these camps of certain characters in their names that reflect the
accent marks or letters that are not in the English alphabet. Some Holocaust texts, however,
use only English letters and characters. Therefore, searches for certain words, such as Bełżec
will not return a hit in a search for Belzec. It is important, therefore, to make sure both forms
of the word are represented in a rules-based search.

We can normalize accented text in Python with a single line of code via the unidecode
library which can be installed with pip install unidecode. Once installed, we can
import unidecode.

import unidecode

The unidecode library comes with the class unidcode() which will take a single
argument, the string that we wish to standardize. Let’s examine how this works in practice
with the camp Bełżec.

for camp in ushmm_camps[4:5]:
normalized = unidecode.unidecode(camp)
print(camp, normalized)

Bełżec Belzec

Note the standardization of “Bełżec” as “Belzec” in the list. Both forms are now
represented in our dataset, meaning we can develop a rules-based EntityRuler that can find
both forms of these words in texts. While we were able to solve the first problem, that of

https://www.ushmm.org/

Solving a Domain-Specific Problem: A Case Study with Holocaust NER 197

standardized data, we cannot solve the first, however. Should we wish, though, we could
add this dataset to ourWikipedia datasets, but aswewill see below, a larger dataset presents
new challenges.

13.2 The Challenges of Holocaust NER

13.2.1 An Overview of the Problems

Developing an NER pipeline (especially if using a machine learning approach) for Holo-
caust documents has several issues that must be addressed. They fall into three categories:
ethical, linguistic, and toponym resolution.

13.2.2 Ethical

When working with documents as sensitive and delicate as those belonging to the
Holocaust, any data scientist or NLP/ML practitioner must consider the serious ethical
implications of using machine learning. First, there is the issue of privacy. Named Entity
Recognition, by definition, finds and extracted named entities. Do the individualsmentioned
in the documents wish to be more discoverable? Do they wish to have their names removed
fromcontext and stored asmetadata? These are some of the ethical quesitons that one should
consider. That is not to say that the process cannot go forward, but if it does, it falls on the
part of the creator of theNER to explain the ethical considersations thatwent into the process
and the steps taken to remedy them.

When it comes to names, these can be victims of violence, perpetrators of violence,
interviewers of victims, historians, etc. One must ask if it is acceptable to try and use a
machine to introduce decisions about the function of the individual in context. Is it ethical
or even responsible to try and get a machine to identify victims or perpetrators of violence?
Possibly not. It really depends on the desired output and the degree to which the creator of
the NER system wishes to justify their actions.

Further, machine learning is imprecise. This means that mistakes will happen. If your
NER is trying to identify PEOPLE, GPE, and custom entities, such as CONC_CAMP
(concentration camp) and GHETTO, is it ethically acceptable to have errors that result in a
potential victim being labeled as a CONC_CAMP? From a machine learning point-of-view,
this kind of error is possible and understandable. But imagine if a victim or family member
of a victim is trying to use new technology to learn about their past and they see their own
name or that of a friend or family member who was a victim of the Holocaust labeled as a
CONC_CAMP. Why did this happen? For various reasons. If we think about this from the
perspective of the victim, however, this could have a traumatic effect. For these reasons we
have an ethical responsibility to introduce barriers to preven things like this from occuring
and/or introducing warnings and explanations for why these types of errors may occur.

13.2.3 Linguistic

In addition to the ethical concerns, there are also linguistic issues that make Holocaust data
particularly challenging. First, the Holocaust covered a wide section of Europe and, as a
result, those who were involved in or affected by the events surrounding the Holocaust
were, necessarily of various linguistic backgrounds. In addition to this, many individuals
had two mother tongues or spoke multiple languages. This has resulted in documents in
the tens of languages. Furthermore, some documents are multilingual. For example, in the

198 Introduction to Python for Humanists

oral testimonies at the USHMM, inviduals may give testimony in English, but then use a
Yiddish or Polish word. This sudden change in language may or may not be indicated in
the notation.

Handling documents ofmultiple languages is a challenging task inNLP. Fortunately, the
new advents of BERT and transformer-basedmachine learningmodelsmay provide the key.
For now the steps I have taken in this notebookwork strictly for single-language documents.
If a word appears here or there in a text that is foreign, the steps I have providedwill suffice.
If, however, the documents are half German and half English, certain preprocessing steps
need to be taken to handle each language separately.

In addition to multiple languages being present in a document, sometimes a document
may contain peculiar dialects of a language. This will often return poorer results if an NER
model has not been introduced to or experienced such dialectical variances. For example,
in oral testimonies, a victim of the Holocaust may refer to their birthplace by a local name
that is only used by a select few. It may be a village in Poland that most models will have
never encountered. It is important to understand why these issues present problems for
models and how to overcome them. As we saw in the previous notebook, the easiest way
to overcome these issues, is to incorperate them into the training data.

13.2.4 Toponyms

There is one final problem associated with Holocaust documents and that is the problem
of toponyms. Toponyms are proper nouns that are identical but have radically different
meanings depending on the context in which it is used. For example, were I to say “Paris
has an excellent climate this time of year.” Where would I be speaking about? If you read
this, then you would probably assume that I was speaking of Paris, France. What if I told
you that I made that statement while sitting at a caffee in Lexington, KY. The place in which
I made that statement maymean that I was speaking, actually, about Paris, KY, a small town
outside of Lexington. But now what if I told you that I made that statement in this context.
“I just got back from a trip in Texas. Paris has an excellent climate this time of year.” Now,
it is a bit more clear that I may be speaking about Paris, TX.

Without context, that single sentence could have many different meanings. Paris, in this
example, is a toponym. In Holocaust documents, we often experience toponyms for places
that have specific entity labels depending on context. Let’s consider this example. Imagine
that I have a model that can identify two types of entities: LOCATION and GHETTO.

“Warsaw is a large city in Poland. During WWII, the Warsaw Ghetto was created.”
As a human, howwould you annotate these two sentences? If you said, considerWarsaw

in the first sentence a LOCATION andWarsaw in the second sentence a GHETTO, you’d be
right. The trick in NER and NLP is to create systems that can perform this task. Holocaust
documents are filled with examples just like this. The way in which we overcome these
problems is by including correctly toponym resolved training sets, or training sets that have
been manually annotated to ensure that toponyms are labeled correctly, to the model so it
can learn to identify toponyms correctly.

13.3 Creating a Rules-Based Pipeline for Holocaust Documents

In this section, we will walk through how to develop a complete heuristic spaCy pipeline
for performing named entity recognition. We will leverage a combination of EntityRuler
pipes and custom spaCy pipes that use RegEx to find larger matches.

Solving a Domain-Specific Problem: A Case Study with Holocaust NER 199

13.3.1 Creating a Blank spaCy Model

The first thingwe need to do is import all of the different components from spaCy and other
libraries that we will need. I will explain these as we go forward.

import spacy
from spacy.util import filter_spans
from spacy.tokens import Span
from spacy.language import Language
import re
import pandas as pd
import unidecode
from spacy import displacy

We will be using Pandas in this notebook to run data checks in a CSV file originally
produced by theHolocaustGeographiesCollaborative, headed byAnneKnowles, TimCole,
Alberto Giordano, Paul Jaskot, and Anika Walke. We will be importing RegEx because a lot
of our heuristics will rely on capturing multi-word tokens.

Now that we have imported everything, let’s create a blank English pipeline in spaCy.
As we work through this notebook, we will add pipes to it.

nlp = spacy.load("en_core_web_sm")

13.3.2 Creating EntityRulers

In the first section of this chapter, we looked at acquiring a camps dataset from the USHMM
website. We will now build off that section by normalizing our dataset to include camp
names with and without accent marks.

ushmm_camps = ['Alderney', 'Amersfoort', 'Auschwitz', 'Banjica', 'Bełżec',
→֒'Bergen-Belsen', 'Bernburg', 'Bogdanovka', 'Bolzano', 'Bor', 'Breendonk',

'Breitenau', 'Buchenwald', 'CheÅ‚mno', 'Dachau', 'Drancy', 'Falstad',
→֒'Flossenbürg', 'Fort VII', 'Fossoli', 'Grini', 'Gross-Rosen',

'Herzogenbusch', 'Hinzert', 'Janowska', 'Jasenovac', 'Kaiserwald',
→֒'Kaunas', 'Kemna', 'Klooga', 'Le Vernet', 'Majdanek', 'Malchow',

'Maly Trostenets', 'Mechelen', 'Mittelbau-Dora', 'Natzweiler-Struthof',
→֒'Neuengamme', 'Niederhagen', 'Oberer Kuhberg', 'Oranienburg',

'Osthofen', 'PÅ‚aszów', 'Ravensbruck', 'Risiera di San Sabba',
→֒'Sachsenhausen', 'Sajmište', 'Salaspils', 'Sobibór', 'Soldau', 'Stutthof',

'Theresienstadt', 'Trawniki', 'Treblinka', 'Vaivara']

camp_patterns = []
for camp in ushmm_camps:

normalized = unidecode.unidecode(camp)
camp_patterns.append({"pattern": camp, "label": "CAMP"})
camp_patterns.append({"pattern": normalized, "label": "CAMP"})

Note that we are creating a list called camp_patterns. These are a set of patterns
expected by a spaCy EntityRuler. With our patterns created, we can create our EntityRuler.
Note that we are placing the ruler before the NER pipe in the model. This is so that our
heuristic EntityRuler will be able to annotate the doc container before the NER model. We
are also giving it a custom name, camp_ruler. This is so that we know precisely what this
ruler does in our pipeline when we examine the pipeline structure.

camp_ruler = nlp.add_pipe("entity_ruler", before="ner", name="camp_ruler")

200 Introduction to Python for Humanists

With the ruler created, we can then populate it with the patterns.

camp_ruler.add_patterns(camp_patterns)

Now, it is time to test the pipeline to make sure it is working as intended.

doc = nlp("Auschwitz was a camp during WWII. Płaszów was also a camp. Another
→֒spelling is Plaszow.")
displacy.render(doc, style="ent", jupyter=True)

<IPython.core.display.HTML object>

Note that our pipeline is now correctly identifying all forms of camps as camps correctly.
This will ensure that our pipeline can function with different spellings of these words.

13.3.3 Creating Function for Matching RegEx

As noted in the previous section, one of the main challenges with Holocaust-related
data is the high degree of toponyms, or words that have identical spelling but different
classifications.Wewill see this issuewith several of our classes.ManyUS ships, for example,
bear the name of states. Additionally, named ghettos, such as the Warsaw Ghetto, also can
function as a general place (GPE). If we want to use heuristics, therefore, we must create
rather robust rules to ensure that our rules have a high degree of accuracy. We can use the
following function to do just that by leveraging RegEx.

We will be using this function quite a bit for each of our custom spaCy pipes, so let’s
explore this function in depth.

def regex_match(doc, pattern, label, filter=True,
context=False, context_list=[],
window_start=100, window_end=100):

text = doc.text
new_ents = []
original_ents = list(doc.ents)
for match in re.finditer(pattern, doc.text):

start, end = match.span()
span = doc.char_span(start, end)
if context==True:

window = text[start-window_start:end+window_end]
if any(term in window.lower() for term in context_list):

if span is not None:
new_ents.append((span.start, span.end, span.text))

else:
if span is not None:

new_ents.append((span.start, span.end, span.text))
for ent in new_ents:

start, end, name = ent
new_ent = Span(doc, start, end, label=label)
original_ents.append(new_ent)

if filter==True:
filtered = filter_spans(original_ents)
final_ents = filtered

else:
final_ents = new_ents

doc.ents = final_ents
return doc

Solving a Domain-Specific Problem: A Case Study with Holocaust NER 201

The purpose of this function is to leverage RegEx and spaCy to perform full-text matching.
This allows us to use the strengths of both NLP techniques. With RegEx, we can perform
complex fuzzy string matching beyond an individual token. With spaCy, we can leverage
linguistic knowledge about the text. This function will let us pass a RegEx pattern, a Doc
container, and a custom label, then find all items that match the pattern. It will then inject
those RegEx matches into spaCy Span containers that will then be manually inserted into
the found entities. Let’s break this down in the code.

The first line of our code is as follows:

def regex_match(doc, pattern, label, filter=True,
context=False,The context_list=[],
window_start=100, window_end=100):

Here, we are creating a function that will take three mandatory arguments: doc,
pattern, and label. The doc parameter will be the Doc container that is created by the
spaCy nlp pipeline. The patternwill be the RegEx pattern that wewant to use to perform
a match. Finally, the label is the label that we want to assign to the items matched.

We also have several keyword arguments:

• filter

• context

• context_list

• window_start

• window_end

These keyword arguments allow for greater versatility in the function. It allows a user
to filter the entities and only keep the ones that are longest. Remember, spaCy entities are
hard classifications, meaning a token can only belong to a single class, or label. This ensures
that when we manually place our found RegEx matches into the Doc container’s entities,
there are no overlapping entities.

The context parameter is a Boolean that allows for a user to pass a context_list
to the function. This will be a list of words that increases the propability that an identified
token belongs to a specific class. We will see this at play when we write rules for the labels
GHETTO and SHIP. As noted above, ghettos frequently function as GHETTO and GPE. The
presence of certain words around a match, such as ghetto, radically increase the chance
that our hit is a GHETTO and not a GPE. Likewise, with ships, many ships in the US fleet
are named after states. This means we could potentially mark New York, for example, as a
SHIP, rather than as a GPE.

The window_start and window_end control the window of the context. So it will
only look forward and backward n-characters, or the number of characters of text, for the
presence of a word in the context_list. This is a simple heuristic but one that proves
quite effective.

The next bit of code is as follows:

text = doc.text
new_ents = []
original_ents = list(doc.ents)

Here, we are grabbing the raw text of the Doc container. This will be necessary if the user
has enabled context searching. Next, we create an empty list of new entities. This will be the
list to which we append our new hits. Finally, we grab the original entities already found by

202 Introduction to Python for Humanists

earlier pipes. It is important to convert this to a list because doc.ents is a generator which
prevents us from iterating over the data.

The next block of code looks like this:

for match in re.finditer(pattern, doc.text):
start, end = match.span()
span = doc.char_span(start, end)
if context==True:

window = text[start-window_start:end+window_end]
if any(term in window.lower() for term in context_list):

if span is not None:
new_ents.append((span.start, span.end, span.text))

else:
if span is not None:

new_ents.append((span.start, span.end, span.text))

Here, we are using re.finditer() to find all cases where our RegEx formula has
matched in the doc.text. We iterate over each match and create a Spanwith the start and
end character. If the user has enabled context searching, thenwe look for any term in their
context_list to see if it appears in the given window they have established. If there is a
match, then we append the Span to new_ents.

Our final section of code reads:

for ent in new_ents:
start, end, name = ent
new_ent = Span(doc, start, end, label=label)
original_ents.append(new_ent)

if filter==True:
filtered = filter_spans(original_ents)
final_ents = filtered

else:
final_ents = new_ents

doc.ents = final_ents
return doc

Here,we are iterating over each of our newly foundmatches.We then place thenew_ent
match into the original_ents list after assigning it the specified label. Finally, we filter
the spans so that there are no overlapping entities.

Once complete, we reset the doc.ents to the final_ents and return the doc object
back to the user.

13.3.4 Add Pipe for Finding Streets

Let’s examine this function in practice by trying to find and extract all streets in a text.
Because our data comes from Europe, we need to represent the way streets are represented
in multiple languages. Let’s look at the example below where we use RegEx to find ways
in which a street may appear in German (and Dutch) as well as English. Unlike English,
German street names often contain the word street (strasse) as a compound in the street
name. English, on the other hand, has many different ways to render the concept of a street
both in abbreviated and full forms. RegEx is a perfect tool for working with this degree of
variance.

nlp = spacy.load("en_core_web_sm")

german_streets = r"[A-Z][a-z]*(strasse|straße|straat)\b"
(continues on next page)

Solving a Domain-Specific Problem: A Case Study with Holocaust NER 203

(continued from previous page)

english_streets = r"([A-Z][a-z]*
→֒(Street|St|Boulevard|Blvd|Avenue|Ave|Road|Rd|Lane|Ln|Place|Pl)(\.)*)"
@Language.component("find_streets")
def find_streets(doc):

doc = regex_match(doc, german_streets, "STREET")
doc = regex_match(doc, english_streets, "STREET")
return (doc)

nlp.add_pipe("find_streets", before="ner")

doc = nlp("Berlinstrasse was a famous street. In America, many towns have a Main
→֒Street. It can also be spelled Main St.")
displacy.render(doc, style="ent", jupyter=True)

<IPython.core.display.HTML object>

13.3.5 Creating a Pipe for Finding Ships

Ships frequently appear in Holocaust documents. We could provide a list of ships to an
EntityRuler, but finding one of these patterns isn’t enough.Wewant to ensure that the thing
referenced is in fact a ship. Many of these terms could easily be toponyms, or entities that
share the same spelling but mean different things in different contexts, e.g. the Ile de France,
could easily be a GPE that refers to the area around Paris. General Hosey could easily be a
PERSON. These are also known ships. To ensure toponym disambiguation, I set up several
contextual clues, e.g. the list of nautical terms. If any of these words appear in area around
the hit, then the heuristics assign that token the label of SHIP. If not, it ignores it and allows
later pipes or the machine learning model to annotate it.

We can gather a list of known WWII ships from the WWII Database
(https://ww2db.com/). One of the problems with the lists available here is that they are
not “utf-8” encoded. This means that the text is not normalized. Inside this repository is a
CSV file with a normalized version of these ship names. This CSV file also stores metadata
about ships, namely their class, country of origin, and the year they were built.

In spaCy, we can store this metadata inside the entity Span container with a custom
extension. This is done via a function known as a getter function that maps the data to
the custom extension. Let’s see how this works in practice. We will use a synthetic sentence
in which the Activity, a British vessel, is referenced as is New York, a place as well as a
US ship active during WWII.

def ship_metadata_getter(ent):
df = pd.read_csv("../data/wwii-ships.csv")
if ent.label_ == "SHIP":

ship_name = ent.text.replace("The", "").replace("the", "").strip()
row = df.loc[df.name==ship_name]
if len(row) > 0:

row = row.iloc[0]
return {"class": row["class"], "country": row.country, "year_built":

→֒row.year}
else:

return None
else:

return False
nlp = spacy.load("en_core_web_sm")
df = pd.read_csv("../data/wwii-ships.csv")

(continues on next page)

https://ww2db.com/

204 Introduction to Python for Humanists

(continued from previous page)

named_ships_pattern = f"(The|the) ({'|'.join(df.name.tolist())})"

@Language.component("named_ships")
def named_ships(doc):

nautical = ["ship", "boat", "sail", "captain", "sea", "harbor", "aboard",
→֒"admiral", "liner"]

doc = regex_match(doc, named_ships_pattern, "SHIP", context=True, context_
→֒list=nautical)

for ent in doc.ents:
if ent.label_ == "SHIP":

ent.set_extension('ship_metadata', getter=ship_metadata_getter,
→֒force=True)

return (doc)
nlp.add_pipe("named_ships", before="ner")
doc = nlp("The Activity set sail from New York")
for ent in doc.ents:

print(ent.text, ent.label_, ent._.ship_metadata)

The Activity SHIP {'class': 'Activity-class Escort Carrier', 'country':
→֒'United Kingdom', 'year_built': '1942'}
New York GPE False

There is a lot happening in this section of code, so let’s break down the different
components here. The first function is our getter function: ship_metadata_getter().

def ship_metadata_getter(ent):
df = pd.read_csv("../data/wwii-ships.csv")
if ent.label_ == "SHIP":

ship_name = ent.text.replace("The", "").replace("the", "").strip()
row = df.loc[df.name==ship_name]
if len(row) > 0:

row = row.iloc[0]
return {"class": row["class"], "country": row.country, "year_built":

→֒row.year}
else:

return None
else:

return False

This function takes a single argument, the entity identified from the RegEx match. Here,
we strip out the The from the entity’s name and check to see if the ship found appears in
our dataset of known ships. We then isolate the ship’s metadata in the dataset and return
that data as a dictionary.

df = pd.read_csv("../data/wwii-ships.csv")

named_ships_pattern = f"(The|the) ({'|'.join(df.name.tolist())})"

@Language.component("named_ships")
def named_ships(doc):

nautical = ["ship", "boat", "sail", "captain", "sea", "harbor",
→֒"aboard", "admiral", "liner"]

doc = regex_match(doc, named_ships_pattern, "SHIP", context=True,
→֒context_list=nautical)

for ent in doc.ents:

(continues on next page)

Solving a Domain-Specific Problem: A Case Study with Holocaust NER 205

(continued from previous page)

if ent.label_ == "SHIP":
ent.set_extension('ship_metadata', getter=ship_metadata_

→֒getter, force=True)
return (doc)

In this next section of code, we load up the dataset to construct our pattern of names to
find via our RegEx function. As we iterate over each entity in our Doc container, we check
to see if that entity’s label is a SHIP. If it is, then we set the extension of ship_metadata
via the getter function referenced above.

Finally, we add our pipe to the spaCy pipeline and test the model with our constructed
sentence.

nlp.add_pipe("named_ships", before="ner")
doc = nlp("The Activity set sail from New York")
for ent in doc.ents:

print(ent.text, ent.label_, ent._.ship_metadata)

13.3.6 Create Pipe for Identifying a Military Personnel

Military personnel are often referenced in English documents with their military rank. This
means that we can use basic RegEx rules for finding and extracting those individuals. When
we encounter a sequence of tokens that are capitalized after a military rank, we can make
a fairly safe presumption that these tokens will be associated nominally with the rank. For
this pipeline, we can again use the WWII Database to isolate and grab all known military
ranks during WWII for all countries.

nlp = spacy.load("en_core_web_sm")
with open("../data/military_ranks.txt", "r") as f:

ranks = f.read().splitlines()
military_pattern = f"({'|'.join(ranks)})((?=\s[A-Z])(?:\s[A-Z][a-z\.]+)+)"
@Language.component("find_military")
def find_military(doc):

doc = regex_match(doc, military_pattern, "MILITARY")
return (doc)

nlp.add_pipe("find_military", before="ner")

doc = nlp("Captain James T. Kirk commanded the ship.")
displacy.render(doc, style="ent", jupyter=True)

<IPython.core.display.HTML object>

13.3.7 Create Pipe for Identifying Spouses

Often times in historical documents the identity of people are referenced collectively. In
some instances, such as those of spouses, this results in the name of the woman being
attached to the name of her husband. The purpose of this SPOUSAL entity is to identify
such constructs so that users can manipulate the output and reconstruct each individual
singularly.

nlp = spacy.load("en_core_web_sm")
spousal_pattern = r"((Mr|Mrs|Miss|Dr)(\.)* and (Mr|Mrs|Miss|Dr)(\.)*((?=\s[A-Z])(?
→֒:\s[A-Z][a-z\.]+)+))"
@Language.component("find_spousal")

(continues on next page)

206 Introduction to Python for Humanists

(continued from previous page)

def find_spousal(doc):
doc = regex_match(doc, spousal_pattern, "SPOUSAL")
return (doc)

nlp.add_pipe("find_spousal", before="ner")

doc = nlp("Mr. and Mrs. Smith are going to the movie")
for ent in doc.ents:

print(ent.text, ent.label_)

Mr. and Mrs. Smith SPOUSAL

13.3.8 Creating a Pipe for Finding Ghettos

In Holocaust documents, identifying ghettos can be difficult. Frequently, a ghetto has
the same name as the city in which it is found. To distinguish between the city and
the ghetto, speakers and writers often specify that they are referencing the ghetto, not
the city generally, by using the word “ghetto” in near proximity to the city name. The
below pipe leverages this tendency by looking for capitalized words that precede the word
“ghetto”.

ghettos_pattern1 = r"[A-Z]\w+((-|)*[A-Z]\w+)* (g|G)hetto"
ghettos_pattern2 = r"(g|G)hetto (of|in|at)((?=\s[A-Z])(?:\s[A-Z][a-z\.]+)+)"
nlp = spacy.load("en_core_web_sm")
@Language.component("find_ghettos")
def find_ghettos(doc):

doc = regex_match(doc, ghettos_pattern1, "GHETTO")
doc = regex_match(doc, ghettos_pattern2, "GHETTO")
return (doc)

nlp.add_pipe("find_ghettos", before="ner")
doc = nlp("The Warsaw Ghetto was in Poland. The ghetto at Warsaw.")
displacy.render(doc, style="ent", jupyter=True)

<IPython.core.display.HTML object>

13.3.9 Creating a Geography Pipe

Often in historical documents, the named geographic features of Europe are referenced. We
can use both a list and a set of patterns to look for named mountains, forests, rivers, etc.

general_pattern = r"([A-Z]\w+)
→֒(River|Mountain|Mountains|Forest|Forests|Sea|Ocean)*"
river_pattern =
→֒"(the|T he) (Rhone|Volga|Danube|Ural|Dnieper|Don|Pechora|Kama|Oka|
→֒Belaya|Dniester|Rhine|Desna|Elbe|Donets|Vistula|Tagus|Daugava|Loire|
→֒Tisza|Ebro|Prut|Neman|Sava|Meuse|KubanRiver|Douro|Mezen|Oder|Guadiana|
→֒Rhône|Kuma|Warta|Seine|Mureş|Northern Dvina|Vychegda|Drava|Po|
Guadalquivir|Bolshoy Uzen|Siret|Maly Uzen|Terek|Olt|Vashka|Glomma|
Garonne|Usa|Kemijoki|Great Morava|Moselle|Main 525|Torne|Dalälven|Inn|
Maritsa|Marne|Neris|Júcar|Dordogne|Saône|Ume|Mur|Ångerman|Klarälven|
Lule|Gauja|Weser|Kalix|Vindel River|Ljusnan|Indalsälven|Vltava|Ponoy|
Ialomiţa|Onega|Somes|Struma|Adige|Skellefte|Tiber|Vah|Pite|Faxälven|
Vardar|Shannon|Charente|Iskar|Tundzha|Ems|Tana|Scheldt|Timiş|Genil|
→֒Severn|Morava|Luga|Argeş|Ljungan|Minho|Venta|Thames|Drina|Jiu|Drin|
Segura| Torne|Osam|Arda|Yantra|Kamchiya|Mesta)"

(continues on next page)

Solving a Domain-Specific Problem: A Case Study with Holocaust NER 207

(continued from previous page)

nlp = spacy.load("en_core_web_sm")

@Language.component("find_geography")
def find_geography(doc):

doc = regex_match(doc, general_pattern, "GEOGRAPHY")
doc = regex_match(doc, river_pattern, "GEOGRAPHY")
return (doc)

nlp.add_pipe("find_geography", before="ner")
doc = nlp("We entered the Black Forest and eventually walked to the Rhine.")
displacy.render(doc, style="ent", jupyter=True)

<IPython.core.display.HTML object>

13.3.10 Seeing the Pipes at Work

Let’s now bring all this work together and assemble all our pipes into a single pipeline. We
will disable the standard “ner” in this pipeline for now.

nlp = spacy.load("en_core_web_sm", disable=["ner"])
camp_ruler = nlp.add_pipe("entity_ruler", before="ner", name="camp_ruler")
camp_ruler.add_patterns(camp_patterns)
nlp.add_pipe("find_streets", before="ner")
nlp.add_pipe("find_spousal", before="ner")
nlp.add_pipe("find_ghettos", before="ner")
nlp.add_pipe("find_military", before="ner")
nlp.add_pipe("find_geography", before="ner")
nlp.add_pipe("named_ships", before="ner")

/home/wjbmattingly/anaconda3/envs/python-textbook/lib/python3.9/site-packages/
→֒spacy/language.py:1895: UserWarning: [W123] Argument disable with value [
→֒'ner'] is used instead of ['senter'] as specified in the config. Be aware
→֒that this might affect other components in your pipeline.
warnings.warn(

<function __main__.named_ships(doc)>

Now that we have compiled our pipeline, let’s test it. We will grab the raw text of a
USHMM oral history testimony and process it through our pipeline. As we can see below,
wewere able to identify three different types of entities: CAMP, GHETTO, and MILITARY. We
can also see the specific entities we grabbed. Note that the purpose of a heuristic pipeline
is not to grab all entities, rather extract as many true positives as possible at the expense of
missing a few examples. This can improve an overall pipeline that also leverages machine
learning models. All 56 extracted entities are true positives.

import requests
import json
s = requests.get("https://collections.ushmm.org/search/catalog/irn505576.json")

data = json.loads(s.content)
doc = nlp(data["response"]["document"]["fnd_content_web"][0])
ents = list(doc.ents)
ent_types = [ent.label_ for ent in ents]
ent_types = list(set(ent_types))

(continues on next page)

https://collections.ushmm.org

208 Introduction to Python for Humanists

(continued from previous page)

ent_types.sort()
print(f"Found a Total of {len(list(doc.ents))} in {len(ent_types)} categories:
→֒{ent_types}")
for ent in ents:

print(ent.text, ent.label_)

Found a Total of 56 in 3 categories: ['CAMP', 'GHETTO', 'MILITARY']
Sobibór CAMP
Sobibór CAMP
Sobibór CAMP
Oberscharführer Gustav Wagner MILITARY
Sobibór CAMP
Sobibór CAMP
Oberscharführer Karl Frenzel MILITARY
Sobibór CAMP
Sobibor CAMP
Scharführer Hubert Gomerski MILITARY
Scharführer Michel MILITARY
Oberscharführer Hermann Michel MILITARY
Sobibór CAMP
Majdanek CAMP
Treblinka CAMP
Treblinka CAMP
Sobibór CAMP
Treblinka CAMP
Belzec CAMP
Belzec CAMP
Sobibór CAMP
Sobibór CAMP
Treblinka CAMP
Belzec CAMP
Untersturmführer Neumann MILITARY
Hauptscharführer Johann Niemann MILITARY
Sobibór CAMP
Sobibór CAMP
Sobibór CAMP
Sobibór CAMP
Auschwitz CAMP
Auschwitz CAMP
Sobibór CAMP
Oberscharführer Gustav Wagner MILITARY
Sobibór CAMP
Scharführer Wolf MILITARY
Unterscharführer Franz Wolf MILITARY
Sobibor CAMP
Sobibór CAMP
Sobibór CAMP
Sobibór CAMP
Sobibór CAMP
Sobibór CAMP
Sobibór CAMP
Sobibór CAMP
Sobibór CAMP
ghetto in Helm GHETTO
Sobibór CAMP
Sobibór CAMP
Sobibór CAMP

(continues on next page)

Solving a Domain-Specific Problem: A Case Study with Holocaust NER 209

(continued from previous page)

Sobibór CAMP
Sobibór CAMP
Sobibor CAMP
Sobibór CAMP
Sobibór CAMP
Sobibór CAMP

This pipeline can now extract structured metadata from unstructured raw text. With
heuristics like the ones above, we can construct fairly robust NLP pipelines that leverage
lists of known entities as well as spaCy’s built in linguistic features to identify and extract
useful and relevant from our text data. If we wanted to improve our pipeline, we could
also train custom spaCy NERmachine learning models, but this is beyond the scope of this
book. With a strong basis in spaCy, however, and the plentiful resources available online,
this should provide you with a good starting point to begin working with spaCy in your
own projects.

https://taylorandfrancis.com/

14
Topic Modeling: Concepts and Theory

The purposes of this part of the textbook is fivefold:

1. To introduce the reader to the core concepts of topic modeling and text classifica-
tion

2. To provide an introduction to three libraries used for traditional topic modeling
(Scikit Learn, Gensim, and spaCy) for those with limited Python knowledge

3. To detail the problems and solutions to working with various topic modeling
problems

4. To provide an overview of transformer-based topic modeling

5. To provide code that will be easily reproducible for readers who wish to apply
these methods to their own domains.

Throughout this part of the textbook, wewill workwith one dataset, a collection of short
descriptions of violence in Apartheid SouthAfrica, which comes fromVolume 7 of the Truth
and Reconciliation Commission’s final report (hereafter, TRC Volume 7). I have chosen this
dataset because I have experience with it and I know that the data is perfectly suited to topic
modeling as hidden topics are found within it.

In every real world scenario you will know the data that you are working with. In this
section I think it’s worthwhile to spend a little bit of time talking about the data that we are
going to be working with throughout this notebook. The first bit of data that we’re going
to be working with is a collection of descriptions of violence from apartheid South Africa
from the 20th century. They come out of the Truth and Reconciliation Commission in the
early 2000s. The TRC was a body put together at the end of the 20th century to catalog the
violence that befell victims during the apartheid period. The first dataset is what is known
as TRC Volume 7. It is organized as a collection of individuals and a brief description of the
violence that befell them and the victim’s age. Descriptions of violence are not structured
in any way. Instead they have rich metadata within them. This metadata consists of things
like dates, places, and other organizations during the 20th century.

The data that I have prepared for you is a JSON file of TRC Volume 7. The JSON file is
structured as a dictionary with two keys the first key is names and that corresponds to a list
of the victim names. The second key is descriptions. This is the key piece of the data that we
will be working with. These are the descriptions of violence and we are trying to identify
topics within these descriptions.

14.1 What Is Topic Modeling?

Topic modeling is an approach in NLP where we try to find hidden themes within
a collection of documents in a corpus. These themes are the topics. Topic modeling is

DOI: 10.1201/9781003342175-17

http://dx.doi.org/10.1201/9781003342175-17

212 Introduction to Python for Humanists

particularly useful when we do not know the subject of each document in our collection
and the corpus is too vast to manually tag each document with a specific topic name. It
allows us to automate the tagging of each document without doing so manually.

Topicmodeling is distinctly different fromapproach inNLPknown as text classification.
In text classification, we train a machine learning model to recognize specific known labels.
We do this with training data that consists of texts and their corresponding labels. This
method of using training data is similar to the machine learning NER approach we saw in
Part III of this textbook. When we use labeled date to train a machine learning model, this
is known as supervised learning. Topic modeling is an entirely different approach designed
to work with an entirely different problem. Since we do not know our labels and do not
have training data, supervised learningwould notwork. Topicmodeling is an unsupervised
learning approach to finding and identifying the labels.

Today, there are many approaches to topic modeling. Later in this chapter, we will meet
LDA (Latent Dirichlet Allocation) model. While useful, this approach to topic modeling
has largely been replaced with transformer-based topic models. Nevertheless, it is import
to understand LDA topic models in order to appreciate the novelty of transformer-based
approaches. Further, LDA topic modeling has a strong history in the digital humanities and
it is useful to understand how and why this approach works to understand the literature
produced by digital humanities during the early 21st century. Before we can explore each
of these, however, it is import to have a key understanding of the themes and concepts of
topic modeling. This will be the subject of this section.

14.1.1 Rules-Based Methods

A simple approach to the identification of subjects in a collection of documents is what we
would call a rules-based approach. Here, we could argue that documents in which certain
words appear indicate a specific topic. This manual approach may yield good results. For
example, if I had a 100,000 documents and I knew that some dealt with medical details, I
could look for a handful of terms, such as doctor, medicine, hospital, etc. to extract
those documents as dealing with a topic of medical.

The key problem with this approach is scale. We cannot practically construct lists like
this for all possible topics, especially if we do not know the topics found within a corpus.
Further, constructing lists like this requires detailed knowledge about a subject. For these
reasons, a rules-based approach to classifying documents is not practical for large corpora.

14.1.2 Machine Learning-Based Methods

Another option to identify topics in a text is via a machine learning-based approach. In this
method,wedo not give a computer system a set of rules, ratherwe let the computer generate
its own rules to identify topics in a corpus. This is done in two different ways: supervised
and unsupervised learning.

In supervised learning,we know the key subjects in a corpus.We give a computer system
a set of documents with their corresponding label to teach it to identify the characteristics
that make that particular topic or class unique. This is mostly used for text classification.

Another approach is via unsupervised learning. In unsupervised learning, we do not
know the topics of our documents and, instead, wewant let the system identify those topics
and cluster (or group together) the ones of a high degree of similarity together. We then
examine the words that occur the most frequently in each cluster to get a sense of the topics
at hand.

Topic Modeling: Concepts and Theory 213

14.1.3 Why Use Topic Modeling?

All of this leads to a vital question: Why use topic modeling? Topic modeling affords
researchers the ability to learn a lot about their corpus very quickly. It is often used when
the corpus is so large that no single human could read it in a single lifetime.

In both a rules-based and machine learning-based approach, a researcher can see what
major subjects are discussed in a corpus. This information can be used to perform targeted
research by weeding out the documents that likely do not contain the information the
researcher needs. Additionally, the information drawn from topic modeling can be used
to make large deductions about the corpus at hand. We will see that topic modeling can be
used to draw imprecise or incorrect conclusions.

It is vital, however, to understand the limitations of topic modeling. There is always a
potential for the researcher to use topicmodeling to validate awrong presumption about the
data. Throughout this part of the textbook, I will emphasize methodological steps that can
(and should) be taken to limit thesemistakes. Despite this potential for error, topicmodeling
can provide valuable insight, relatively quickly about a large corpus.

14.2 Topics and Clusters

14.2.1 What Are Topics?

Topics are labels assigned to textual data that detail the subjects contained within a given
text. In topic modeling we try to create computer systems that can assign topics the way a
human would. In order to understand this process, it’s best if we take a step back and think
about how we assign topics as humans.

To do this, let’s examine these two texts.

Number Text

Text 1 Thomas enjoys playing basketball. He is an exceptionally good point guard.

Text 2 Victoria enjoys playing baseball. She is an exceptionally good at playing first base.

If I asked you to provide two topics to these texts, what might they be? Basketball and
baseball are likely two top candidates. Text 1would have the topic of basketball, while
Text 2 would have the topic of baseball. Now, let’s consider these same texts, but add
two more into the mix.

Number Text

Text 1 Thomas enjoys playing basketball. He is an exceptionally good point guard.

Text 2 Victoria enjoys playing baseball. She is an exceptionally good at playing first base.

Text 3 John is a talented chef. He enjoys making pasta professionally.

Text 4 Jeff is a talented cook. He owns a pizzeria.

Now, if I asked you to assign two topics to all four texts, what might those topics be? It
is likely that your answer changed. No longer are the two topics of baseball and basketball
relevant because Text 3 and Text 4 do not align well with those topics. Instead, a better
pair of topics might be sports and cooking, or something like that. What changed? The
collection of texts in our corpus changed.

214 Introduction to Python for Humanists

What does this demonstrate? It tells us that topics are corpus-dependent, meaning the
topics we assign to texts depend on their context against surrounding texts. The same holds
true for topic modeling via computer systems.

14.2.2 What Are Clusters?

In topic modeling, computer systems do not generate topics, rather they generate a list
of high concentration words. Texts that share common terms are clustered together by
similarity. A cluster is nothing more than a collection of similar pieces of data. When we are
working with texts, a cluster is a collection of texts that have similar overlapping themes.

There are various ways to cluster textual data that we will explore throughout this
chapter.

14.3 Bigrams and Trigrams

Let’s take amoment and step away from topicmodeling. Instead, let’s think about language.
The essential medium of topic modeling is texts which are the products of language. And
language is nothingmore than a collection ofwordswhose usage is rooted around grammar
and syntax. A given word’s meaning, in other words, is often defined by how, when, and
where it is used in a given text.Words can alsomean different thingswhen used collectively.

14.3.1 Textual Ambiguity

If I use the word apple, you likely are thinking of something like the fruit. Apple is a simple
word, yet it can mean different things in different contexts. What if I said the following:
“My Apple is better than a PC.” Now, what image comes to mind? Perhaps the computer
product.

This is an example of textual ambiguity. Syntactical context helps eliminate textual
ambiguity. Apple is a single word here that contains a single concept. It’s a relatively simple
word. Perhaps one of the earliest a native speaker of English learns as a child. And yet it has
textual ambiguity. Because “apple” is a single word, it is known as a unigram. A unigram
is a single word that represents a single concept.

Textual ambiguity, however, occurs in more dynamic ways when we think about
concepts beyond the single span of a single word. In this section, we will focus on two such
cases that are essential for natural language processing: bigrams and trigrams. Bigrams are
two words that contain a distinct meaning when used together, while trigrams are three
words that contain a distinct meaning when used together.

Understanding bigrams and trigrams are essential because in order for a computer to
truly understand langauge theway a humandoes, itmust be able to understand the nuances
of a single word and how a word’s meaning not only shifts in context, but shifts in meaning
when used in conjunction with other words.

14.3.2 Bigrams

As noted above, a bigram is a combination of two words that have a distinct meaning. To
demonstrate this, let us consider quickly the word “French”. A single word, that may have
multiple meanings. Perhaps the word French refers to the language, perhaps it references a
French person.

Topic Modeling: Concepts and Theory 215

Let’s hold off on the word French for just a moment. Let’s now use the word “rev-
olution”. Again, there is textual ambiguity, but perhaps I am referencing the concept of
revolution in the sense of the Earth.

Now you may already see where I am going with this, but let’s now think about
what happens when I put those two textually ambiguous unigrams together “The French
Revolution”. “The” here is a stop word that is frequently dropped in natural language
processing, so “French Revolution” is all that we should consider. These two words when
combined have a distinct concept.

But we can think about language in even more nuanced ways.

14.3.3 Trigrams

Trigrams, as noted above, are the same as bigrams, except with three words, instead of two.
Let’s continuewith our example of “French”.Whatmight you think about if I used theword
“army”. Perhaps something distinct to your own experiences with the word. For me, as a
modern American, I think initially about the American Army in the modern sense of the
word. So I may picture something like modern soldiers in my mind’s eye.

For others, other images may be more relevant. However, when I use the phrase “The
French Revolutionary Army”, I now have something defined, something distinct. This is
a trigram, a distinct concept consisting of three words that may have individual meanings
when used alone.

14.3.4 Why Are These Important?

So, why are bigrams and trigrams so important? The reason comes down to getting
machines to understand that when certain words are used together, they bear a distinct
meaning. In order to produce a good topic model, therefore, the model must be able to
understand and process words in this manner, the waywe humans use the language we are
trying to get the machine to understand.

14.4 LDA Topic Modeling

A common way to perform topic modeling in the digital humanities is via Latent Dirichlet
Allocation (LDA) topic modeling. This method originated in population genomics in 20001

as a way to understand larger patterns in genomics data. In 20032, it was applied tomachine
learning, specifically texts to solve the problem of topic discovery. It leverages statistics to
identify topics across a distributed set of data.

14.4.1 Process of Topic Modeling

In order to engage in LDATopic Modeling, one must clean a corpus significantly. Common
steps that we will cover in this section are:

• Removal of Stopwords.

• Lemmatization (optional).

• Removal of Punctuation.

1https://academic.oup.com/genetics/article/155/2/945/6048111?login=false
2https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf

https://academic.oup.com
https://www.jmlr.org

216 Introduction to Python for Humanists

Stopwords consist of words common across all texts. The official list from the NLTK
library is as follows:
[’i’, ’me’, ’my’, ’myself’, ’we’, ’our’, ’ours’, ’ourselves’, ’you’,
"you’re", "you’ve", "you’ll", "you’d", ’your’, ’yours’, ’yourself’,
’yourselves’, ’he’, ’him’, ’his’,
’himself’, ’she’, "she’s", ’her’, ’hers’, ’herself’, ’it’, "it’s",
’its’, ’itself’, ’they’, ’them’, ’their’, ’theirs’, ’themselves’,
’what’, ’which’, ’who’, ’whom’, ’this’, ’that’, "that’ll", ’these’,
’those’, ’am’, ’is’, ’are’, ’was’, ’were’, ’be’, ’been’, ’being’,
’have’, ’has’, ’had’, ’having’, ’do’, ’does’, ’did’, ’doing’, ’a’,
’an’, ’the’, ’and’, ’but’, ’if’, ’or’, ’because’, ’as’, ’until’,
’while’, ’of’, ’at’, ’by’, ’for’, ’with’, ’about’, ’against’, ’between’,
’into’, ’through’, ’during’, ’before’, ’after’, ’above’, ’below’,
’to’, ’from’, ’up’, ’down’, ’in’, ’out’, ’on’, ’off’, ’over’, ’under’,
’again’, ’further’, ’then’, ’once’, ’here’, ’there’, ’when’, ’where’,
’why’, ’how’, ’all’, ’any’, ’both’, ’each’, ’few’, ’more’, ’most’,
’other’, ’some’, ’such’, ’no’, ’nor’, ’not’, ’only’, ’own’, ’same’,
’so’, ’than’, ’too’, ’very’, ’s’, ’t’, ’can’, ’will’, ’just’, ’don’,
"don’t", ’should’, "should’ve", ’now’, ’d’, ’ll’, ’m’, ’o’, ’re’,
’ve’, ’y’, ’ain’, ’aren’, "aren’t", ’couldn’, "couldn’t", ’didn’,
"didn’t", ’doesn’, "doesn’t", ’hadn’, "hadn’t", ’hasn’, "hasn’t",
’haven’, "haven’t", ’isn’, "isn’t", ’ma’, ’mightn’, "mightn’t",
’mustn’, "mustn’t", ’needn’, "needn’t", ’shan’, "shan’t", ’shouldn’,
"shouldn’t", ’wasn’, "wasn’t", ’weren’, "weren’t", ’won’, "won’t",
’wouldn’, "wouldn’t"]

Here, let’s consider a simple example. We will work with the following document from
the TRC Volume 7 dataset.

An ANCYL member who was shot and severely injured by SAP members at
Lephoi, Bethulie, Orange Free State (OFS) on 17 April 1991. Police opened
fire on a gathering at an ANC supporter’s house following a dispute
between two neighbours, one of whom was linked to the ANC and the other
to the SAP and a councillor.

After we perform the cleaning steps above (with the exception of lemmatization), we
have the following result:
[’ancyl’, ’member’, ’shot’, ’severely’, ’injured’, ’sap’, ’members’,
’lephoi’, ’bethulie’, ’orange’, ’free’, ’state’, ’ofs’, ’17’, ’april’,
’1991’, ’police’, ’opened’, ’fire’, ’gathering’, ’anc’, ’supporters’,
’house’, ’following’, ’dispute’, ’two’, ’neighbours’, ’one’, ’linked’,
’anc’, ’sap’, ’councillor’]

Note that we now have a list of only lowercase words split into a list. There are no
punctuation marks. In addition, all stop words have been removed.

In addition to cleaning the corpus, one must also reduce all words to unique numbers.
These numbers have now relevance to the word, rather they are a single integer. In
this approach, a researcher creates a bag-of-words (BOW) dictionary. This dictionary is a
collection of integers and their corresponding word. Each text is then reduced to a sequence
of numbers. Once we perform this step, our documents now look like this:
[(0, 1), (1, 1), (2, 2), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1),
(9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1),
(17, 1), (18, 1), (19, 1), (20, 1), (21, 1), (22, 1), (23, 1), (24, 2),
(25, 1), (26, 1), (27, 1), (28, 1), (29, 1)]

Topic Modeling: Concepts and Theory 217

This sequence of numbers refers to the presence of a word in this document. If we were
to print off each individual word from our entire dictionary, we would see that it looks like
this:

0 17
1 1991
2 anc
3 ancyl
4 april
5 bethulie
6 councillor
7 dispute
8 fire
9 following
10 free
11 gathering
12 house
13 injured
14 lephoi
15 linked
16 member
17 members
18 neighbours
19 ofs
20 one
21 opened
22 orange
23 police
24 sap
25 severely
26 shot
27 state
28 supporters
29 two

As we will see when we explore Top2Vec later in this chapter, a major drawback to
this approach is that we do not retain any information about the syntax or semantics of
the language in this approach. Rather, we just know if a word appears or not. Language
is, however, far more complex than simply the presence or lack of presence of words. For
words to have meaning, we must know how that word is used. Word order, for example,
dramatically affects meaning of individual words due to context. Traditional LDA topic
modeling does not offer solutions to these problems.

14.4.2 Knowing the Total Number of Topics

Another issuewith LDATopicModeling is that onemust know a specified amount of topics
to identify across the entire corpus. Assigning this number can be quite challenging and
will require a series of trial-and-error passes. As we will see in the next section, a lot of
these issues, from cleaning a corpus to guessing the quantity of topics in the corpus, are
eliminated with the use of transformers and more recent machine learning methods and
algorithms.

218 Introduction to Python for Humanists

14.4.3 Applying a Topic Model

Once anLDAtopicmodel is trained, it can then be used to interrogate the corpus collectively.
One can explore the topics identified and by reading the documents that the model placed
in the same category. Depending on the corpus, certain topics can sometimes be difficult
to understand. At this stage, the topics do not have actual names, rather they are purely
numerical.

If we want to assign labels to each topic, we have two different options available to us.
First, a content expert can look at the results and intuitively assign a label that makes the
most sense given the corpus. Another approach is through automation. A researcher can
find the most common and unique words that appear in a topic and automatically assign
them to the label name.

14.4.4 Summary of Key Issues with LDA Topic Modeling

In summary, the concept of topic modeling is a worthwhile endeavor for many text-based
classification problems. It is particularly usefulwhen trying to understand large corpora that
cannot possibly be read in a reasonable amount of time. It is also suited to understanding
how documents cluster together in those corpora to understand large, latent (hidden)
themes. LDA Topic Modeling, however, presents many limitations in this process, notably
it requires a good deal of preprocessing, knowledge about the quantity of topics one wants
to find in the corpus, and the inability to retain semantic and syntactic meaning.

14.5 Creating LDA in Python

In the last section, we learned a lot about the key idea and concepts behind LDA topic
modeling. Let’s now put those ideas into practice. In this section, we will be using the
Gensim library to create our topic model and the PyLDAVis library to visualize it. You can
install both libraries with pipwith the following commands:

pip install gensim

and

pip install pyldavis

We will also need to install NLTK, or the Natural Language Toolkit, in order to get a list
of stop words. We can install the library with pip:

pip install nltk

Once you have installed NLTK, youwill need to download the list of English stopwords.
You can do so with the following command:

nltk.download('stopwords')

14.5.1 Importing the Required Libraries and Data

Now that we have our libraries installed correctly, we can import everything.

Topic Modeling: Concepts and Theory 219

import pandas as pd
from nltk.corpus import stopwords
import string
import gensim.corpora as corpora
from gensim.models import LdaModel
import pyLDAvis.gensim_models
pyLDAvis.enable_notebook()

This will import the requisite model from Gensim. For this notebook, we will be using
the LdaModel class. This class allows us to create an LDAmodel. Before we can populate
our model, however, we must first load and clean our data.

df = pd.read_csv("../data/trc.csv")
df = df[["Last", "First", "Description"]]
df

Last First \
0 AARON Thabo Simon
1 ABBOTT Montaigne
2 ABRAHAM Nzaliseko Christopher
3 ABRAHAMS Achmat Fardiel
4 ABRAHAMS Annalene Mildred
...
20829 XUZA Mandla
20830 YAKA Mbangomuni
20831 YALI Khayalethu
20832 YALO Bikiwe
20833 YALOLO-BOOYSEN Geoffrey Yali

Description
0 An ANCYL member who was shot and severely inju...
1 A member of the SADF who was severely injured ...
2 A COSAS supporter who was kicked and beaten wi...
3 Was shot and blinded in one eye by members of ...
4 Was shot and injured by members of the SAP in ...
... ...
20829 Was severely injured when he was stoned by a f...
20830 An IFP supporter and acting induna who was sho...
20831 Was shot by members of the SAP in Lingelihle, ...
20832 An IFP supporter whose house and possessions w...
20833 An ANC supporter and youth activist who was to...

[20834 rows x 3 columns]

Our goal in this section will be to model all the descriptions of violence in the TRC
Volume 7. We will, therefore, grab all documents and place them into a list.

docs = df.Description.tolist()
docs[0]

"An ANCYL member who was shot and severely injured by SAP members at Lephoi,
→֒Bethulie, Orange Free State (OFS) on 17 April 1991. Police opened fire on a
→֒gathering at an ANC supporter's house following a dispute between two
→֒neighbours, one of whom was linked to the ANC and the other to the SAP and a
→֒councillor."

220 Introduction to Python for Humanists

14.5.2 Cleaning Documents

Now that we have our documents, let’s go ahead and load up our stop words. These will
be the words that we remove from our documents.

stop_words = stopwords.words('english')

Next, we need a function to clean our documents. The purpose of the function below
is to take a single document as an input and return a cleaned sequence of words with no
punctuation or stop words.

def clean_doc(doc):
no_punct = ''
for c in doc:

if c not in string.punctuation:
no_punct = no_punct+c

with list comprehension
no_punct = ''.join([c for c in doc if c not in string.punctuation])

words = no_punct.lower().split()

final_words = []
for word in words:

if word not in stop_words:
final_words.append(word)

with list comprehension
final_words = [word for word in words if word not in stop_words]

return final_words

Let’s take a look and seewhat this looks like nowwhenwe run it over our first document.

cleaned = clean_doc(docs[0])
print(docs[0])
print(cleaned)

An ANCYL member who was shot and severely injured by SAP members at Lephoi,
→֒Bethulie, Orange Free State (OFS) on 17 April 1991. Police opened fire on a
→֒gathering at an ANC supporter's house following a dispute between two
→֒neighbours, one of whom was linked to the ANC and the other to the SAP and a
→֒councillor.
['ancyl', 'member', 'shot', 'severely', 'injured', 'sap', 'members', 'lephoi',
→֒'bethulie', 'orange', 'free', 'state', 'ofs', '17', 'april', '1991', 'police
→֒', 'opened', 'fire', 'gathering', 'anc', 'supporters', 'house', 'following',
→֒'dispute', 'two', 'neighbours', 'one', 'linked', 'anc', 'sap', 'councillor']

With our function created, we can now process all our documents. In the line be below,
wewill convert all documents into a list called cleaned_docs. This will be our documents
that are now represented as a sequence of words.

cleaned_docs = [clean_doc(doc) for doc in docs]

14.5.3 Create ID-Word Index

Remember, an LDA topic model cannot look at words, rather it must look at numbers in
order for the algorithm towork. Thismeans that we need to convert all words into numbers.
We can do thiswith a bag-of-words approach. In this approach, we create an ID-Word Index.

Topic Modeling: Concepts and Theory 221

This is essentially a dictionarywhere eachuniquewordhas a unique number. The dictionary
is sorted alphabetically.

id2word = corpora.Dictionary(cleaned_docs)

With the ID-Word Index created, let’s query it and see what wordmaps to index number
250.

id2word[250]

'bmw'

As we can see, it is BMW, a political organization in South Africa. Now that we have our
dictionary,we can convert all our documents into a sequence of numbers, rather thanwords.
We can do this via the doc2bow()method.

corpus = [id2word.doc2bow(cleaned_doc) for cleaned_doc in cleaned_docs]

The corpus object now contains all the documents but represented as a bag-of-words
index, rather than as a sequence of words. This is the precise data that our LDAmodel will
expect.

print(corpus[0])

[(0, 1), (1, 1), (2, 2), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9,
→֒1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1),
→֒(18, 1), (19, 1), (20, 1), (21, 1), (22, 1), (23, 1), (24, 2), (25, 1),
→֒(26, 1), (27, 1), (28, 1), (29, 1)]

In order to see what these numbers correspond to, let’s take a look at our first document
and map each number to the ID-Word Index.

for num in corpus[0]:
num = num[0]
print(f"{num}\t{id2word[num]}")

0 17
1 1991
2 anc
3 ancyl
4 april
5 bethulie
6 councillor
7 dispute
8 fire
9 following
10 free
11 gathering
12 house
13 injured
14 lephoi
15 linked
16 member
17 members
18 neighbours
19 ofs

(continues on next page)

222 Introduction to Python for Humanists

(continued from previous page)

20 one
21 opened
22 orange
23 police
24 sap
25 severely
26 shot
27 state
28 supporters
29 two

14.5.4 Creating LDA Topic Model

With our corpus now prepared, we can pass it to our LDAModel. We need have a lot of
parameters that we can use here, but three things are mandatory:

• corpuswhich will be our corpus object.

• id2wordwhich will be our ID-Word Index.

• num_topicswhich will be the number of topics we want the model to find.

Now, we can train our topic model.

lda_model = LdaModel(corpus=corpus, id2word=id2word, num_topics=100)

Training a model may take several seconds to minutes. The more documents you have,
the longer it will take. Once the model is trained, we can begin to analyze the model.

14.5.5 Analyze a Document

If we want to get the topics for each document in our corpus, we can do so via
get_document_topics(). This will take a single argument, the corpus object. It will
return a list of topics and a score for each topic.

topics = lda_model.get_document_topics(corpus)
len(topics)

20834

We can analyze the topics for our first document.

topics[0]

[(46, 0.2453331),
(49, 0.1601346),
(57, 0.24741054),
(60, 0.064691655),
(65, 0.09262718),
(67, 0.06555787),
(87, 0.058863647),
(91, 0.037500985)]

These topics were assigned to the following document:

Topic Modeling: Concepts and Theory 223

print(docs[0])

An ANCYL member who was shot and severely injured by SAP members at Lephoi,
→֒Bethulie, Orange Free State (OFS) on 17 April 1991. Police opened fire on a
→֒gathering at an ANC supporter's house following a dispute between two
→֒neighbours, one of whom was linked to the ANC and the other to the SAP and a
→֒councillor.

Let’s now print off some of the key words for each of the top 3 topics. For each topic, we
will print off the top 10 words with the get_topic_terms()method which will take two
arguments: the topic number and the amount of words to return.

for topic in topics[0][:3]:
terms = lda_model.get_topic_terms(topic[0], 10)
print(topic)
for num in terms:

num = num[0]
print(num, id2word[num])

print()

(46, 0.24563931)
19 ofs
27 state
10 free
22 orange
1250 wife
2 anc
4 april
279 13
754 received
17 members

(49, 0.16010018)
26 shot
8 fire
21 opened
24 sap
17 members
888 funeral
13 injured
23 police
85 dead
255 march

(57, 0.24714684)
1200 students
3044 parents
1268 william’s
17 members
2040 amabutho
2560 beat
2284 associated
224 school
24 sap
237 assaulted

These results seem acceptable.

224 Introduction to Python for Humanists

14.5.6 Analyze the Topic Model

It is often difficult to gauge the quality of a topic model by simply looking at raw output.
For these reasons, it is useful to be able to study a model in its entirety. We can do this with
PyLDAVis, a library that was designed to display in two-dimensional space the topics of a
topic model and the key words associated with each topic.

vis = pyLDAvis.gensim_models.prepare(lda_model, id_docs, id2word, mds="mmds", R=30)

vis

PreparedData(topic_coordinates= x y topics cluster
→֒Freq
topic
44 -0.137228 0.331389 1 1 3.560200
32 -0.024440 0.469877 2 1 3.391703
38 -0.058394 0.320393 3 1 3.257853
75 -0.231691 -0.283164 4 1 2.487656
76 -0.021365 0.242234 5 1 2.386751
...
73 0.149740 0.107291 96 1 0.292228
6 0.413677 0.241535 97 1 0.261419
56 -0.155346 0.103791 98 1 0.244720
40 -0.343639 -0.348971 99 1 0.216838
98 0.407532 0.141427 100 1 0.171992

[100 rows x 5 columns], topic_info= Term Freq Total
→֒ Category logprob loglift
347 ifp 8027.000000 8027.000000 Default 30.0000 30.0000
28 supporters 10739.000000 10739.000000 Default 29.0000 29.0000
994 tvl 1377.000000 1377.000000 Default 28.0000 28.0000
349 natal 4464.000000 4464.000000 Default 27.0000 27.0000
2 anc 11185.000000 11185.000000 Default 26.0000 26.0000
..
29 two 6.005527 2344.859315 Topic100 -4.8719 0.3982
34 may 4.781922 1535.294958 Topic100 -5.0997 0.5938
17 members 4.859103 8027.289538 Topic100 -5.0837 -1.0443
305 died 3.874836 1066.417025 Topic100 -5.3101 0.7479
100 killed 4.079318 4407.214431 Topic100 -5.2586 -0.6196

[4696 rows x 6 columns], token_table= Topic Freq Term
term
697 1 0.059547 1
697 3 0.011579 1
697 4 0.004962 1
697 8 0.047968 1
697 9 0.011579 1
...
2855 68 0.805436 ’sharpeville
3006 10 0.503830 ’terrorist’
518 93 0.614500 ’whites’
520 5 0.024642 ’s
520 7 0.936390 ’s

[10958 rows x 3 columns], R=30, lambda_step=0.01, plot_opts={'xlab': 'PC1',
→֒'ylab': 'PC2'}, topic_order=[45, 33, 39, 76, 77, 20, 19, 28, 86, 31, 6, 18,
→֒9, 50, 59, 30, 67, 94, 90, 3, 22, 87, 54, 10, 15, 40, 60, 36, 29, 4, 100,
→֒61, 63, 27, 70, 80, 68, 16, 49, 88, 91, 96, 66, 51, 84, 55, 97, 42, 65, 48,
→֒53, 43, 5, 85, 47, 72, 8, 98, 52, 73, 83, 35, 89, 81, 44, 17, 79, 32, 82,
→֒34, 71, 2, 93, 11, 62, 46, 75, 26, 95, 23, 56, 12, 38, 37, 69, 24, 13, 64,
→֒92, 14, 25, 58, 1, 21, 78, 74, 7, 57, 41, 99])

https://lambda_step=0.01

Topic Modeling: Concepts and Theory 225

Now, we can see all 100 topics plotted in two-dimensional space and we can study the
degree to which the words in each topic are unique to that topic when compared with the
corpus as as whole.

While useful as a first step to exploring data, we have more powerful ways of clustering
documents today. As we will see over the remainder of the chapter, other libraries and
approaches that leverage state of the art language models are perhaps better suited to
finding and extracting topics from your corpus.

14.6 Transformer Models

Transformer models language models are robust machine learning models that are capable
of solving many complex problems. It is beyond the scope of this textbook to explain the
architecture of transformers or how they work precisely. Nevertheless, it is important to
understand a few things. First, transformer models are particularly suited for working with
multi-lingual documents. Second, they are powerful, but slow. Third, theway they represent
texts is different from other language models in that they are able to change the vector, or
numerical representation, of an individual word based on context.

This makes them particularly suited to the problem of topic modeling because they can
convert each document into a numerical representation that is not a sequence of numbers
that correspond to the presence of an individual word. Instead, transformer models can
convert a document into a deeply semantic representation that retains the context and
syntax.

In order to leverage transformer models, we need to install Sentence Transformers (from
HuggingFace). We can do that with pip via the command below:

pip install sentence_transformers

In this section, we will also be working with two other libraries: umap (for represent-
ing our complex numerical representation of documents in two-dimensional space) and
hdbscan (for finding clusters). UMAP has gained popularity in recent years as a quick,
effective, and fairly accurateway to represent higher dimensional data in lower dimensions.
In Python, we can access the UMAP algorithm through the UMAP library which can be
installed with pip by typing the following command:

pip install umap-learn

Note the -learn after umap. This is very important as umap is an entirely different
library.

pip install hdbscan

Now that our libraries are installed, we can begin importing them.

14.6.1 Importing Libraries and Gathering Data

from sentence_transformers import SentenceTransformer
import umap
import hdbscan
import pandas as pd

226 Introduction to Python for Humanists

/home/wjbmattingly/anaconda3/envs/python-textbook/lib/python3.9/site-packages/
→֒tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and
→֒ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.
→֒html
from .autonotebook import tqdm as notebook_tqdm

Before we begin leveraging advanced transformer-based topic modeling libraries, like
Top2Vec, we should have a good understanding about how they work. Top2Vec leverages
three libraries: Sentence Transformers, UMAP, and HDBScan. Here, we will explore each of
these so that the reader will have a basic understanding of the theory and methods behind
Top2Vec.

df = pd.read_csv("../data/trc.csv")
df = df[["Last", "First", "Description"]]
df.head(1)

Last First Description
0 AARON Thabo Simon An ANCYL member who was shot and severely inju...

documents = df.Description.tolist()

14.6.2 Embedding the Documents

The first step in using transformers in topic modeling is to convert the text into a vector.
We met vectors when we explored LDA topic modeling in the previous section. Arrays
for LDA topic modeling were rooted in a bag-of-word (BOW) index. This index, while
computationally light, did not retain semantic meaning or word order.

Whenwe areworkingwith transformers,we can create a vector for eachdocument in our
dataset. This vector is not an index of thewords used, rather it is an embedding for the entire
document that contains its semantic usages of words. It also preserves in this same vector
space the word order to a degree. This document vector is similar to the word vector that
we met in Part III of this textbook. Instead of embedding a single word, however, the entire
document receives an embedding. This allows us to mathematically compare documents
across an entire corpus.

To convert our documents into vectors, we first need a transformer model. Fortu-
nately, the Sentence Transformer library from HuggingFace allows us to easily load robust
pre-trained language models. In our case, we will be using the all-MiniLM-L6-v2
model. We can load this model by calling the Sentence Transformer class from the
sentence_transformers library.

model = SentenceTransformer('all-MiniLM-L6-v2')

Once our model class is created, we can use the .encode() method. This method
will encode all the documents that we pass to it. In our case, this is the approximately
22,000 descriptions from theTRCdataset. The.encode()method takes a singlemandatory
argument, a list of data to embed.

doc_embeddings = model.encode(documents)

Now that we have the vectors for each document, let’s examine one.

doc_embeddings[0][:10]

https://ipywidgets.readthedocs.io

Topic Modeling: Concepts and Theory 227

array([-0.07123438, 0.00332599, -0.05571468, 0.08363082, 0.09066874,
0.05503598, 0.08029197, 0.01370712, 0.05912026, 0.06226278],

dtype=float32)

As we can see, this looks remarkably similar to our word embeddings. While this is
useful for examining mathematically comparing the similarity between documents, it can
be difficult to parse this numerical data visually. For this reason, it is useful to flatten the data
into two or three dimensions. This allows the data to be graphed. In the previous section,
we learned how to flatten data with PCA. In this section, wewill meet a new dimensionality
reduction algorithm, UMAP.

14.6.3 Flattening the Data

Once you have installed UMAP correctly, you can access the UMAP class. This will take
several parameters that can be adjusted to yield different results.

umap_proj = umap.UMAP(n_neighbors=10,
min_dist=0.01,
metric='correlation').fit_transform(doc_embeddings)

14.6.4 Isolating Clusters with HDBScan

Once our data has been flattened, we can automatically identify the number of clusters
within it and assign documents to each cluster with the HDBScan algorithm.

hdbscan_labels = hdbscan.HDBSCAN(min_samples=2, min_cluster_size=3).fit_
→֒predict(umap_proj)
print(len(set(hdbscan_labels)))

2317

df["x"] = umap_proj[:, 0]
df["y"] = umap_proj[:, 1]
df["topic"] = hdbscan_labels
df.head(1)

Last First Description \
0 AARON Thabo Simon An ANCYL member who was shot and severely inju...

x y topic
0 7.330942 -0.935302 -1

14.6.5 Analyzing the Labels

Now that we have the labels loaded into our DataFrame, we can use Pandas to examine that
data. Let’s grab a topic and examine it. Here, we will examine topic 100.

for d in df.loc[df.topic == 100].Description.tolist():
print(d)
print()

https://min_dist=0.01

228 Introduction to Python for Humanists

Was one of thirteen people killed in an attack by UDF and ANC supporters on
→֒Inkatha supporters in the Mahwaqa area, near Port Shepstone, Natal, on 24
→֒March 1990. Two UDF supporters were granted amnesty (AC/2000/041).

An ANC supporter who was shot dead on 6 April 1990 when a group of Inkatha
→֒supporters attacked UDF supporters and residents at Mpumalanga, KwaZulu,
→֒near Durban, in spite of a heavy police and military presence. Fourteen
→֒people were killed and at least one hundred and twenty homes were burnt
→֒down. One former IFP member was granted amnesty (AC/1999/0332).

An ANC supporter who was shot and killed when a group of Inkatha supporters
→֒and Caprivi trainees attacked a UDF meeting in a house at Mpumalanga,
→֒KwaZulu, near Durban, on 18 January 1988. Nine people were killed and an
→֒estimated two hundred people were injured in the attack. The group went on
→֒to destroy around eight houses. One former Inkatha member was granted
→֒amnesty (AC/1999/0332).

An ANC supporter who was shot and killed when a group of Inkatha supporters
→֒and Caprivi trainees attacked a UDF meeting in a house at Mpumalanga,
→֒KwaZulu, near Durban, on 18 January 1988. Nine people were killed and an
→֒estimated two hundred people were injured in the attack. The group went on
→֒to destroy around eight houses. One former Inkatha member was granted
→֒amnesty (AC/1999/0332).

An ANC supporter who was shot dead on 18 January 1988 when a group of Inkatha
→֒supporters, including some Caprivi trainees, opened fire on a UDF meeting in
→֒a house at Mpumalanga, KwaZulu, near Durban. Nine people were killed and an
→֒estimated two hundred people were injured. The group went on to destroy
→֒about eight houses. Amnesty applications were received for this incident.

Was one of thirteen people killed in an attack by UDF and ANC supporters on
→֒Inkatha supporters in the Mahwaqa area, near Port Shepstone, Natal, on 24
→֒March 1990. Two UDF supporters were granted amnesty (AC/2000/041).

Was one of thirteen people killed in an attack by UDF and ANC supporters on
→֒Inkatha supporters in the Mahwaqa area, near Port Shepstone, Natal, on 24
→֒March 1990. Two UDF supporters were granted amnesty (AC/2000/041).

Was abducted, interrogated and stabbed to death by UDF and ANC supporters at
→֒Mpumalanga, Natal, in July 1989. He was believed to be an Inkatha member.
→֒One UDF and ANC supporter was granted amnesty (AC/200/011).

Was one of thirteen people killed in an attack by UDF and ANC supporters on
→֒Inkatha supporters in the Mahwaqa area, near Port Shepstone, Natal, on 24
→֒March 1990. Two UDF supporters were granted amnesty (AC/2000/041).

Was one of thirteen people killed in an attack by UDF and ANC supporters on
→֒Inkatha supporters in the Mahwaqa area, near Port Shepstone, Natal, on 24
→֒March 1990. Two UDF supporters were granted amnesty (AC/2000/041).

An Inkatha supporter who was stabbed and severely injured by named ANC
→֒supporters in Mtwalume, near Umzinto, Natal, in political conflict in the
→֒area on 4 February 1990 following the unbanning of political organisations
→֒two days earlier. Two UDF supporters were granted amnesty for the attack
→֒(AC/2000/041).

Was one of thirteen people killed in an attack by UDF and ANC supporters on
→֒Inkatha supporters in the Mahwaqa area, near Port Shepstone, Natal, on 24
→֒March 1990. Two UDF supporters were granted amnesty (AC/2000/041).

(continues on next page)

Topic Modeling: Concepts and Theory 229

(continued from previous page)

Was one of thirteen people killed in an attack by UDF and ANC supporters on
→֒Inkatha supporters in the Mahwaqa area, near Port Shepstone, Natal, on 24
→֒March 1990. Two UDF supporters were granted amnesty (AC/2000/041).

Was one of thirteen people killed in an attack by UDF and ANC supporters on
→֒Inkatha supporters in the Mahwaqa area, near Port Shepstone, Natal, on 24
→֒March 1990. Two UDF supporters were granted amnesty (AC/2000/041).

Was one of thirteen people killed in an attack by UDF and ANC supporters on
→֒Inkatha supporters in the Mahwaqa area, near Port Shepstone, Natal, on 24
→֒March 1990. Two UDF supporters were granted amnesty (AC/2000/041).

Notice that these results for Topic 100 all clearly have overlapping similarity. In some
cases, these are identical, in others they are quite similar. Nevertheless, we have one major
limitation to this approach, outliers or noise. Let’s examine Topic -1.

14.6.6 Outliers (Noise)

df.loc[df.topic == -1]

Last First \
0 AARON Thabo Simon
7 ABRAHAMS Moegsien
16 ADAMS Zwelinzima Sidwell
31 AGGETT Neil Hudson
34 ALBERT Nombuyiselo Francis
...
20804 XULU Josephina
20810 XULU Mzomonje Phineas
20820 XULU Sipho Aubrey
20821 XULU Sipho Brigitte
20830 YAKA Mbangomuni

Description x \
0 An ANCYL member who was shot and severely inju... 7.330942
7 Was stabbed and stoned to death by a group of ... 5.861767
16 Was severely beaten and shot in the leg in Gug... 5.548826
31 Died in detention at John Vorster Square, Joha... 11.213459
34 Was beaten and stabbed to death on 10 December... 6.867918
...
20804 An IFP supporter who had three rondavels burnt... 2.483765
20810 Was stabbed to death in Inchanga, Natal, on 15... 5.103362
20820 An ANC supporter who was shot and fatally woun... 7.560771
20821 An MK operative who was executed in Pretoria C... 3.011799
20830 An IFP supporter and acting induna who was sho... 8.195865

y topic
0 -0.935302 -1
7 10.907988 -1
16 9.517207 -1
31 8.340458 -1
34 2.346848 -1
...
20804 3.955176 -1
20810 11.622403 -1
20820 0.817540 -1
20821 -0.359574 -1
20830 2.783923 -1

[4579 rows x 6 columns]

230 Introduction to Python for Humanists

We have 4,579 outliers, or documents that do not neatly cluster into any one category.
This is a clear limitation of this approach. What do we do with these outliers? One option is
to assign them to the nearest topic. The process of doing this, however, can be quite complex
as the we calculate distance between a document vector and a topic can vary depending on
which measurements we wish to use. In the final section of this chapter, we will examine a
library that handles this problem for us.

14.7 Top2Vec in Python

Now that we understand the primary concepts behind leveraging transformers and sen-
tence embeddings to perform topic modeling, let’s examine a key library and making this
entire workflow simplified with just a single line of Python. That library is Top2Vec.

Unlike a traditional topic modeling approach or even the manual approach with
transformers that we saw in the previous section, Top2Vec will embed not only all the
sentences, but all the words used in your corpus. In addition to this, it will also embed
the topics themselves. This means that words, documents, and topics all occupy the same
higher-dimensional space. On the surface, thismay not seem that important, but it allows us
to understand the relationship between three interconnected pieces of the process in topic
modelingmathematically. Thismeans, for example, Top2Vec let’s us know themathematical
similarity between a given word and a document or a topic in general. Understanding
these relationships lets us understand broader patterns in our topics that may otherwise
be missed.

That said, Top2Vec does have several drawbacks. First, it will produce a high number
of outliers. These are documents that do not fit neatly into any one topic. Top2Vec has a
rather unique way of handling outliers, however. It generates an embedding for the topics
0 and above and then assigns outliers to their nearest topic embedding. This means that
outliers may be quite pronounced for certain topics. For some workflows, this may not be
an issue. Second, Top2Vec can produce results that are occasionally difficult to understand.
Certain topics may not seem to have any coherency. This is common in all approaches to
topic modeling.

In order to model our data, we once again need to load it. Again, we will use Pandas.

import pandas as pd

df = pd.read_json("https://raw.githubusercontent.com/wjbmattingly/bap_sent_
→֒embedding/main/data/vol7.json")
df

names \
0 AARON, Thabo Simon
1 ABBOTT, Montaigne
2 ABDUL WAHAB, Zakier
3 ABRAHAM, Nzaliseko Christopher
4 ABRAHAMS, Achmat Fardiel
... ...
21742 ZWENI, Ernest
21743 ZWENI, Lebuti
21744 ZWENI, Louis
21745 ZWENI, Mpantesa William

(continues on next page)

https://raw.githubusercontent.com

Topic Modeling: Concepts and Theory 231

(continued from previous page)

21746 ZWENI, Xolile Milton

descriptions
0 An ANCYL member who was shot and severely inju...
1 A member of the SADF who was severely injured ...
2 A member of QIBLA who disappeared in September...
3 A COSAS supporter who was kicked and beaten wi...
4 Was shot and blinded in one eye by members of ...
... ...
21742 One of two South African Police (SAP) members ...
21743 An ANC supporter who was shot dead by a named ...
21744 Was shot dead in Tokoza, Transvaal, on 22 May ...
21745 His home was lost in an arson attack by Witdoe...
21746 A Transkei Defence Force (TDF) soldier who was...

[21747 rows x 2 columns]

Once again, we will convert all our descriptions into a single list of documents.

docs = df.descriptions.tolist()
docs[0]

"An ANCYL member who was shot and severely injured by SAP members at
→֒Lephoi, Bethulie, Orange Free State (OFS) on 17 April 1991. Police
→֒opened fire on a gathering at an ANC supporter's house following a
→֒dispute between two neighbours, one of whom was linked to the ANC
→֒and the other to the SAP and a councillor."

14.7.1 Creating a Top2Vec Model

Now that we have our data, we can get started with Top2Vec. First, you will need to install
the library onto your system. In order to do this, you can use pip with the following
command:

pip install top2vec

This will install Top2Vec as well as all its dependencies. Once it is installed, you will be
able to import the Top2Vec class with the following line:

from top2vec import Top2Vec

/home/wjbmattingly/anaconda3/envs/python-textbook/lib/python3.9/site-packages/
→֒tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and
→֒ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.
→֒html
from .autonotebook import tqdm as notebook_tqdm

Once we have imported the Top2Vec class, we can create our Top2Vec topic model with
just one line of Python.We can passmany keyword arguments to our Top2Vec class, but the
result from the default settings is usually quite good. It may take several minutes or even
hours to run the code below, depending on your system requirements.

model = Top2Vec(docs)

https://ipywidgets.readthedocs.io

232 Introduction to Python for Humanists

2022-11-13 13:58:09,857 - top2vec - INFO - Pre-processing documents for
→֒training
2022-11-13 13:58:11,379 - top2vec - INFO - Creating joint document/word
→֒embedding
2022-11-13 13:58:53,163 - top2vec - INFO - Creating lower dimension embedding
→֒of documents
2022-11-13 13:59:16,683 - top2vec - INFO - Finding dense areas of documents
2022-11-13 13:59:18,018 - top2vec - INFO - Finding topics

14.7.2 Analyzing Our Topic Model

Once our Top2Vec topicmodel has finished training, we can then analyze the results. Agood
first step is to analyze the topic sizes. We can do so with themodel .get_topic_sizes().
This method will return a list of two lists: the size of each topic and its number.

topic_sizes, topic_nums = model.get_topic_sizes()

We can better understand these results by zipping the two lists together and iterating
over the first five topics to see how large they are.

for topic_size, topic_num in zip(topic_sizes[:5], topic_nums[:5]):
print(f"Topic Num {topic_num} has {topic_size} documents.")

Topic Num 0 has 763 documents.
Topic Num 1 has 346 documents.
Topic Num 2 has 247 documents.
Topic Num 3 has 232 documents.
Topic Num 4 has 231 documents.

Notice that the higher number the topic number, the smaller the quantity of documents.
This is because Top2Vec organizes the topics by size.

We can use the .get_topics() method to extract information about our topics from
the model. This will take one argument, the quantity of topics you want to examine. It will
return three items: a list of words for each topic, a list of word scores for each list, and a list
of the topic numbers.

topic_words, word_scores, topics = model.get_topics(2)

Let’s now examine the data for Topic 1.

for words, scores, num in zip(topic_words[1:], word_scores[1:], topics[1:]):
print(f"Topic {num}")
for word, score in zip(words, scores):

print(word, score)

Topic 1
matlala 0.8607659
bk 0.8543051
gamatlala 0.8241883
proposed 0.794874
lebowa 0.74230933
resisted 0.67116654
independence 0.65576303
africa 0.6098439
chief 0.49963036

(continues on next page)

Topic Modeling: Concepts and Theory 233

(continued from previous page)

she 0.39457357
because 0.3908882
goederede 0.36000514
february 0.3470583
mahlangu 0.34650403
home 0.34591654
down 0.34060025
south 0.33364677
dennilton 0.3321176
burnt 0.32735756
would 0.3133811
supported 0.31247702
incorporation 0.3080003
stolen 0.28846616
from 0.28013867
had 0.27430868
it 0.2732216
lost 0.2716071
kwandebele 0.266503
congress 0.26175743
allegedly 0.25916496
supporters 0.25534543
village 0.25463325
her 0.25239387
mr 0.2508838
homeland 0.24748528
spite 0.24678819
about 0.24613273
maboloko 0.24536304
resulted 0.24119411
into 0.24059604
opposed 0.23594634
pietersburg 0.23558588
alleged 0.22179778
possessions 0.21927707
many 0.21916199
house 0.21861681
imbokodo 0.21361831
leeuwfontein 0.21190558
tribal 0.21142614
zeerust 0.21082786

This gives us a word list of 50 words most closely associated with Topic 1. Each
word has a score. Remember, words, documents, and topics all occupy the same higher-
dimensional space. This is an example of this advantage in practice. We are able to calculate
the degree to which a word is relevant to a topic because of its proximity to the center of a
topic. The higher the score, the closer a word is to a topic’s center and, therefore, in theory
more closely represents that cluster.

We can also use the search_documents_by_topic() method to learn about the
documents that reside within a topic. This method takes two arguments: topic_num (the
number of the topic you wish to examine) and num_docs (the number of documents you
want to return). This method will return three things: the documents, the scores, or the
degree to which they represent the topic, and their unique ids.

documents, document_scores, document_ids = model.search_documents_by_topic(topic_
→֒num=0, num_docs=10)

234 Introduction to Python for Humanists

Now that we have our data, we can iterate them all simultaneously with the example
provided in the Top2Vec README on GitHub.

for doc, score, doc_id in zip(documents, document_scores, document_ids):
print(f"Document: {doc_id}, Score: {score}")
print("-----------")
print(doc)
print("-----------")
print()

Document: 15060, Score: 0.9702943563461304

An ANC supporter who had her house burnt down by IFP supporters in Sonkombo, Ndwedwe,
→֒KwaZulu, near Durban, on 16 March 1994. See Sonkombo arson attacks.

Document: 5686, Score: 0.965286374092102

She lost her house in Sonkombo, Ndwedwe, KwaZulu, near Durban, in an arson attack by IFP
→֒supporters on 16 March 1994. See Sonkombo arson attacks.

Document: 21471, Score: 0.9650641083717346

An ANC supporter whose house was burnt down by IFP supporters in Sonkombo, Ndwedwe,
→֒KwaZulu, near Durban, on 16 March 1994. See Sonkombo arson attacks.

Document: 2957, Score: 0.9647031426429749

His home was burnt down by IFP supporters on 16 March 1994 at Sonkombo, Ndwedwe, KwaZulu,
→֒near Durban, in intense political conflict in the area. See Sonkombo arson attacks.

Document: 714, Score: 0.9634069204330444

An ANC supporter who had her home burnt down by IFP supporters at Sonkombo, Ndwedwe,
→֒KwaZulu, near Durban, on 16 March 1994. See Sonkombo arson attacks.

Document: 9855, Score: 0.9628040194511414

He had his house burnt down by IFP supporters in Sonkombo, Ndwedwe, KwaZulu, near Durban,
→֒on 16 March 1994. See Sonkombo arson attacks.

Document: 759, Score: 0.9617692232131958

Had her home burnt down by IFP supporters at Sonkombo, Ndwedwe, KwaZulu, near Durban, on
→֒16 March 1994. See Sonkombo arson attacks.

Document: 519, Score: 0.9617335796356201

An ANC supporter who had her house burnt down by IFP supporters on 16 March 1994 at
→֒Sonkombo, Ndwedwe, KwaZulu, near Durban, in intense political conflict in the area. See
→֒Sonkombo arson attacks.

Document: 3424, Score: 0.9609926342964172

An ANC supporter whose home was burnt down by IFP supporters on 20 March 1994 at Sonkombo,
→֒ Ndwedwe, KwaZulu, near Durban. See Sonkombo arson attacks.

(continues on next page)

Topic Modeling: Concepts and Theory 235

(continued from previous page)

Document: 12659, Score: 0.9603915810585022

An ANC supporter who had her house burnt down by IFP supporters in Sonkombo, Ndwedwe,
→֒KwaZulu, near Durban, on 20 March 1994. See Sonkombo arson attacks.

These results are good. These are all individuals who have near identical descriptions in
the TRC Volume 7. In other words, Top2Vec has clearly isolated documents of identical or
overlapping similarity.

14.7.3 Working with Bigrams and Trigrams

Top2Vec also wraps around the Gensim library and allows users to automatically create
bigrams and trigrams. We can initiate this process by setting the keyword argument
ngram_vocba to True.

model_ngram = Top2Vec(docs, ngram_vocab=True)

2022-11-13 13:59:18,293 - top2vec - INFO - Pre-processing documents for
→֒training
2022-11-13 13:59:19,889 - top2vec - INFO - Creating joint document/word
→֒embedding
2022-11-13 14:00:07,661 - top2vec - INFO - Creating lower dimension embedding
→֒of documents
2022-11-13 14:00:19,175 - top2vec - INFO - Finding dense areas of documents
2022-11-13 14:00:19,748 - top2vec - INFO - Finding topics

Now that we have our model_ngram trained, let’s explore Topic 1 once again.

topic_sizes_ngram, topic_nums_ngram = model_ngram.get_topic_sizes()

topic_words_ngram, word_scores_ngram, topics_ngram = model_ngram.get_topics(2)
for words, scores, num in zip(topic_words_ngram[1:], word_scores_ngram[1:],
→֒topics_ngram[1:]):

print(f"Topic {num}")
for word, score in zip(words, scores):

print(word, score)

Topic 1
island 0.7406236
imprisonment 0.7383562
years 0.7350636
robben 0.73397404
half years 0.7247492
years imprisonment 0.7206887
sentenced 0.6986825
served 0.695978
arrested 0.66353947
charged 0.66336066
banned 0.66275764
imprisoned 0.6580816
five years 0.6498868
suspended sentence 0.6363463
prison sentence 0.6340719

(continues on next page)

236 Introduction to Python for Humanists

(continued from previous page)

trial 0.6326254
sentence 0.62952983
activist 0.6273678
months 0.62542427
detained 0.6249351
prison 0.6236554
until 0.6223862
poqo 0.6147149
custody 0.6120131
year sentence 0.6114016
held 0.6040434
worcester 0.60011864
pac 0.5935757
released 0.5893775
poqo activities 0.58773917
charges 0.5808439
zwelethemba worcester 0.57607645
zweletemba worcester 0.575092
arrest 0.5745207
robben island 0.571052
under 0.56998795
worcester cape 0.56770444
detention 0.5670366
with public 0.56048626
ashton 0.55939454
later acquitted 0.5478358
tortured 0.5445701
charged with 0.54265773
act 0.5392955
interrogation 0.5369543
without 0.53288996
paarl 0.53190106
public 0.5305038
prison paarl 0.5296649
year prison 0.5292457

It is important to note that this Topic 1 is entirely different from the Topic 1 of our first
model as both the initialization of the process is random and the data used for embedding
documents is also altered (becausewe are accepting bigrams). Our data does reflect a deeper
representation of our corpus. Prison sentence, for example, is a collective word that has
a distinct meaning.

14.7.4 Saving and Loading a Top2Vec Model

Once we have a model that we are happy with, we can save it using the save()method.

model_ngram.save("../data/top2vec_ngram")

Likewise, we can load up our previous model with load().

new_model = Top2Vec.load("../data/top2vec_ngram")

And for good measure we can run the same code as above to print off our bigrams once
again.

Topic Modeling: Concepts and Theory 237

topic_words_ngram, word_scores_ngram, topics_ngram = new_model.get_topics(2)
for words, scores, num in zip(topic_words_ngram[1:], word_scores_ngram[1:],
→֒topics_ngram[1:]):

print(f"Topic {num}")
for word, score in zip(words, scores):

print(word, score)

Topic 1
island 0.7406236
imprisonment 0.7383562
years 0.7350636
robben 0.73397404
half years 0.7247492
years imprisonment 0.7206887
sentenced 0.6986825
served 0.695978
arrested 0.66353947
charged 0.66336066
banned 0.66275764
imprisoned 0.6580816
five years 0.6498868
suspended sentence 0.6363463
prison sentence 0.6340719
trial 0.6326254
sentence 0.62952983
activist 0.6273678
months 0.62542427
detained 0.6249351
prison 0.6236554
until 0.6223862
poqo 0.6147149
custody 0.6120131
year sentence 0.6114016
held 0.6040434
worcester 0.60011864
pac 0.5935757
released 0.5893775
poqo activities 0.58773917
charges 0.5808439
zwelethemba worcester 0.57607645
zweletemba worcester 0.575092
arrest 0.5745207
robben island 0.571052
under 0.56998795
worcester cape 0.56770444
detention 0.5670366
with public 0.56048626
ashton 0.55939454
later acquitted 0.5478358
tortured 0.5445701
charged with 0.54265773
act 0.5392955
interrogation 0.5369543
without 0.53288996
paarl 0.53190106
public 0.5305038
prison paarl 0.5296649
year prison 0.5292457

238 Introduction to Python for Humanists

If you are working with topic modeling or just want to get a general sense of how your
documents align in a large corpus, then Top2Vec is a great solution to your situation. It offers
a lot of features for a single line of code. There are other options available that do similar
things, notable BerTopic. One should never rely on a single topic modeling approach, nor
should one rest arguments heavily upon the results. Topic modeling, regardless of method,
is imperfect. It is, however, a great way to explore your data and begin finding patterns that
you may otherwise not notice.

15
Text Analysis with BookNLP

In this chapter, we will learn about BookNLP, a powerful Python library for text analysis
on large text documents, namely works of fiction. We will learn about the core aspects of
BookNLP, how to process texts with it, and how to interpret the output files that it produces.
Finally, we will create a few functions for better interpreting the results of the output files.

15.1 Introduction to BookNLP

15.1.1 What Is BookNLP?

BookNLP is a new Python library created by David Bamman. It was originally created as a
Java library in 2014 under the same name, BookNLP by David Bamman, Ted Underwood,
andNoah Smith (see, David Bamman, TedUnderwood andNoah Smith, “ABayesianMixed
Effects Model of Literary Character,” ACL 2014). While Java is a powerful coding language,
both in speed and ease-of-use, not many digital humanists code in Java primarily. This
section will deal strictly with the Python library.

In the documentation, Bamman states:
“BookNLP is a natural language processing pipeline that scales to books and other long

documents (in English), including:

• Part-of-speech tagging

• Dependency parsing

• Entity recognition

• Character name clustering (e.g., “Tom”, “Tom Sawyer”, “Mr. Sawyer”, “Thomas Sawyer”
-> TOM_SAWYER) and coreference resolution

• Quotation speaker identification

• Supersense tagging (e.g., “animal”, “artifact”, “body”, “cognition”, etc.)

• Event tagging

• Referential gender inference (TOM_SAWYER -> he/him/his)”

Unlike its predecessor, the Java library, the Python library leverages the Python NLP
library, spaCy, and the Python Sentence Transformers library from HuggingFace, rather
than Stanford, to performmany of these tasks. In the last few years, spaCy has proven itself
as a dominate force within the NLP community, outperforming many of its predecessors in
accuracy and in its ability to perform at scale. HuggingFace is a library that allows one to
create and leverage large and powerful transformer language models. It also allows users

DOI: 10.1201/9781003342175-18

http://dx.doi.org/10.1201/9781003342175-18

240 Introduction to Python for Humanists

to store these models in the cloud which are too large to store within GitHub or other
comparable repositories.

BookNLP delivers in all the things it sets out to do, though it currently only supports
English. Because it leverages transformer models, BookNLP’s results can generalize well
on non-standard English. I have seen it perform quite well with the South African dialect
of English, by correctly identifying out-of-vocabulary (OOV) words, specifically the correct
labeling of Afrikaans words for minivans as vehicles.

Although only available in English as if March 2022, there are clear plans to expand the
library to include Spanish, Japanese, Russian, and German, as per their recent NEH grant,
awarded in September 2020.

15.1.2 Why Books and Larger Documents?

Both the documentation and this textbook emphasize the word large here. The reason?
Becausemost languagemodels do not performwellwith larger documents. OldRNN-based
languagemodels had a hard time remembering earlier words andwhile newer transformer-
based models, such as BERT, have a larger memory and can look forwards and backwards,
the size of the input they can take in is only 512 words. For larger documents, therefore,
different solutions (and libraries) should be considered. This is where BookNLP comes in.
It also addresses several problems associated with books and larger documents, such as:

• Characters (and people) are referenced by different names. BookNLP solves this problem
with name clustering and coreference resolution. This is a task in NLP where we try and
find all uses a name and correctly assign them to the same identifier, such as Harry, Harry
Potter, and Mr. Harry Potter all being the same person, Harry Potter.

• An adjacent problem is referential gender inferencing. Like coreference resolution, often
times in a book or larger document, a person will be referred to as a pronoun. This is
where referential gender inferencing comes in. This allows a user to correctly assign the
antecedent or postcedent to the correct pronoun. When done successfully, this also allows
you to make decisions about the gender of the character or person based on how they are
referenced in the text. Because this task is so delicate, given the delicate nature of assigning
gender, BookNLP fortunately gives users the data with each pronoun used to reference a
character and also includes non-binary pronouns.

• Another issue is quotation speaker identification. This is when we need to understand
who is speaking, so that we can correctly link characters to their dialogues. It is possible
to do this with spaCy, but it is extremely difficult to do well. BookNLP does a remarkable
job of handling this problem and it does it with a fair degree of accuracy, fromwhat I have
seen.

• Event tagging is another key issue with longer documents and books. There are machine
learning models that find events and you can easily cultivate a list of domain-specific
events to improve a pipeline, but for BookNLP event is defined more broadly. From my
experience, it ismore based aroundkey actions, rather than named events (as it is in named
entity recognition). This has a tangential benefit known as triple extraction. Inmy opinion,
it might be a bit better to view BookNLP events through this lens. Triple extraction is when
we try and extract three pieces of information, such as (Actor, Action, Recipient) or (Actor,
IS, Something). With these types of tuples, we can construct a knowledge tree about a
corpus fairly easily. This a very challenging problem in NLP because triple extraction can
be very domain-specific. BookNLPprovides a great starting place for triple extractionwith
its events.

Text Analysis with BookNLP 241

15.1.3 How to Install BookNLP

If you are using Linux, installation will be easy. Use the following code:
pip install booknlp
You can opt to create a custom environment (recommended but not necessary). If you

are usingWindows, however, as of March 3 2022, you will need to do a few additional steps
which I have documented in this video below:

from IPython.display import HTML
HTML('<iframe width="560" height="315" src="https://www.youtube.com/embed/
→֒3l5ERF3QX0M" title="YouTube video player" frameborder="0" allow="accelerometer;
→֒autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
→֒allowfullscreen></iframe>')

<IPython.core.display.HTML object>

15.2 Getting Started With BookNLP

Now that you have successfully installed BookNLP and the requisite spaCy small model,
we can now dive in! I have tested BookNLP on Linux (Ubuntu 20.04) andWindows 10. The
code provided in this section has worked on both systems once installed correctly. If you
are receiving errors, feel free to submit an issue or pull request with the GitHub icon in the
top right corner of the page.

In this section, I will introduce you to a lot of the code that can be found in the
README.md file on the official repository for BookNLP as well as the official Google Colab
Notebook. I always believe in following the docs early in this textbook, so that you can
follow along a bit more easily.

The goal of this section is to teach you how to run BookNLP over a book (stored as a
text file) and generate the requisite output: a series of files (explained in detail in the next
section).

UnlikemostNLP libraries, themain goal of BookNLP is to generate a series of files stored
in a subdirectory. These files will contain all the requisite data to then begin analyzing the
processed text.

15.2.1 Importing BookNLP and Creating a Pipeline

Aswith all libraries, we need to import BookNLP into our Python file (or notebook) in order
to work with it. We will specifically need the BookNLP class, so let’s go ahead and import
everything with the command below.

from booknlp.booknlp import BookNLP

INFO:tensorflow:Enabling eager execution
INFO:tensorflow:Enabling v2 tensorshape
INFO:tensorflow:Enabling resource variables
INFO:tensorflow:Enabling tensor equality
INFO:tensorflow:Enabling control flow v2
using device cuda

https://README.md
https://www.youtube.com

242 Introduction to Python for Humanists

Now that we have imported the BookNLP class correctly, it’s time to create the BookNLP
pipeline and model in memory. In order to create a BookNLP pipeline, you will want to
create a dictionary. Stick with the documentation here and call this object “model_params”.
This will be a dictionary that will have two keys: pipeline, and model.

• Pipeline will take a value that is a string within which are commas that separate the
different components. You can play around with this later, but for now let’s work with
the entire pipeline which consists of:

– entity

– quote

– supersense

– event

– coref

• Model will have a key that states the size of the model. For now, use big as we are just
trying to follow the docs and create an output that we can analyze in the next section.

model_params={
"pipeline":"entity,quote,supersense,event,coref",
"model":"big"

}

booknlp=BookNLP("en", model_params)

{'pipeline': 'entity,quote,supersense,event,coref', 'model': 'big'}

c:\users\wma22\appdata\local\programs\python\python39\lib\site-packages\spacy\
→֒util.py:833: UserWarning: [W095] Model 'en_core_web_sm' (3.1.0) was trained
→֒with spaCy v3.1 and may not be 100% compatible with the current version (3.
→֒2.2). If you see errors or degraded performance, download a newer compatible
→֒model or retrain your custom model with the current spaCy version. For more
→֒details and available updates, run: python -m spacy validate
warnings.warn(warn_msg)

--- startup: 7.314 seconds ---

15.2.2 Setting up the File and Directories

Next, we need to setup two objects: the input_file and the output_directory. The
input file will be a string that corresponds to the location of your text file that contains the
book or large document you want to analyze. For simplicity sake, I have placed our input
file in data.

The output directory is the directory into which you want BookNLP to dump all the
generated data files. Although there are ways to generate folders programmatically with os,
I recommend to keep things simple andmake the directories manually for now. In our case,
I have already created a subfolder within data entitled “harry_potter”. This is where the
files I generate will be stored.

Finally, let’s make a third object that will be a string. This will be our book_id. Think
of this as a unique name that will the basis for how the external files are named.

Text Analysis with BookNLP 243

input_file="../data/harry_potter_cleaned.txt"

output_directory="../data/harry_potter"

book_id="harry_potter"

15.2.3 Running the Pipeline

Now that we have created the model and the necessary object names, let’s process our text!
To do this, we will use booknlp.process(). This will take three arguments, all of which
we have already created:

• input_file

• output_directory

• book_id

The code below will take some time to run. Even on a powerful computer, it will take
a few minutes for a 100k-word file. Do not bee surprised if this takes 10+ minutes. For
benchmarks, you can see the repository.

booknlp.process(input_file, output_directory, book_id)

--- spacy: 18.936 seconds ---
--- entities: 88.072 seconds ---
--- quotes: 0.105 seconds ---
--- attribution: 28.766 seconds ---
--- name coref: 0.545 seconds ---
--- coref: 28.508 seconds ---
--- TOTAL (excl. startup): 165.277 seconds ---, 99256 words

If all goes well, you should see an output like the one above that lists each process after
it completes with the corresponding time it took to complete the task. You should also see
the files generated in the output directory.

15.3 The Output Files

The output from the BookNLP pipeline is three types of files: TSV files (.tokens, .entities,
.quotes, .supersense), a JSON file (.book) and an HTML file (.book.html). A good way to
think about a TSV is as a CSV where tabs are used to separate tabular data, rather than
commas. Essentially, this is a dataset that can be viewed and analyzed in Excel. A JSON file
is a bit different. It stores data as you would expect to see it in Python, e.g. dictionaries, lists,
etc.

The goal of this section is to explain what each of these files contains so that in the next
few chapters, we can start extracting important data from them.

244 Introduction to Python for Humanists

15.3.1 The .tokens File

The very first file that we should analyze is the .tokens file. Essentially, this is a tab separated
value file (TSV) that contains all the tokens on each line of the file and some important data
about those tokens. A token is a word or punctuation mark within a text. The very first line
of the file will look something like this:

paragraph_ID sentence_ID token_ID_within_sentence token_ID_within_document word
→֒lemma byte_onset byte_offset POS_tag fine_POS_tag dependency_relation
→֒syntactic_head_ID event

As this can be a bit difficult to parse, I am going to load it up as a TSV file through Pandas so we can analyze
it a bit better.

import pandas as pd

df = pd.read_csv("data/harry_potter/harry_potter.tokens", delimiter="\t")
df

paragraph_ID sentence_ID token_ID_within_sentence \
0 0 0 0
1 0 0 1
2 0 0 2
3 0 0 3
4 0 0 4
...
99251 2995 6885 10
99252 2995 6885 11
99253 2995 6885 12
99254 2995 6885 13
99255 2995 6885 14

token_ID_within_document word lemma byte_onset byte_offset \
0 0 Mr. Mr. 0 3
1 1 and and 4 7
2 2 Mrs. Mrs. 8 12
3 3 Dursley Dursley 13 20
4 4 , , 20 21
...
99251 99251 Dudley Dudley 438929 438935
99252 99252 this this 438936 438940
99253 99253 summer summer 438941 438947
99254 99254 438947 438951
99255 99255 \t 438951 438952 PUNCT

POS_tag fine_POS_tag dependency_relation syntactic_head_ID event
0 PROPN NNP nsubj 12 O
1 CCONJ CC cc 0 O
2 PROPN NNP compound 3 O
3 PROPN NNP conj 0 O
4 PUNCT , punct 0 O
...
99251 PROPN NNP pobj 99250 O
99252 DET DT det 99253 O
99253 NOUN NN npadvmod 99245 O
99254 PUNCT . punct 99243 O
99255 '' punct 99243 O NaN

[99256 rows x 13 columns]

Text Analysis with BookNLP 245

As you can see from the output above, we have something that looks like Excel, or
tabular data. Let’s break this down a bit and explain what each column represents:

• paragraph_ID – the index of the paragraph, starting at paragraph 1 being 0 and moving
up to 3031 in our case.

• sentence_ID – same as the paragraph_ID, but with sentences.

• token_ID_within_sentence – same as a the two above, but with a token count by sentence,
resetting with each sentence.

• token_ID_within_document – same as above, but where tokens keep going up in value
throughout the whole document, starting at 0 and ending, in our case, at 99400.

• word – this is the raw text of the word.

• lemma – this is the root of the word.

• byte_onset – think of this as the start character index.

• byte_offset – think of this as the concluding character index.

• POS_tag – the Part of Speech (based on spaCy).

• fine_POS_tag – a more granular understanding of the Part of Speech.

• dependency_relation – this is equivalent to spaCy’s dep tag.

• syntactic_head_ID – This points to the head of the current token so that you can under-
stand how a token relates to other words in the sentence.

• event – this tells you if the token is a trigger for an EVENT or not. You will see, 0, EVENT,
or NaN here.

15.3.2 The .entities File

Let’s do the same thing with the .entities file now!

df_entities = pd.read_csv("data/harry_potter/harry_potter.entities", delimiter="\t")
df_entities

COREF start_token end_token prop cat text
0 364 0 0 PROP PER Mr.
1 92 2 3 PROP PER Mrs. Dursley
2 1 9 10 PROP FAC Privet Drive
3 365 17 17 PRON PER they
4 366 23 23 PRON PER you
...
15858 2355 99227 99227 PRON PER They
15859 2351 99231 99231 PRON PER we
15860 441 99239 99239 NOM FAC home
15861 98 99241 99241 PRON PER I
15862 95 99251 99251 PROP PER Dudley

[15863 rows x 6 columns]

246 Introduction to Python for Humanists

If you get an error that looks like this:

Fear not! This happens sometimes when the .entities file is corrupted with some-
thing like a " mark. You simply need to go into the file and remove the character that
is causing the error. Use the row number as an indicator of where to go in the text file.
Remember, add one row because row 1 is the header data.

Before:

After:

Let’s return to our data.

df_entities

COREF start_token end_token prop cat text
0 364 0 0 PROP PER Mr.
1 92 2 3 PROP PER Mrs. Dursley
2 1 9 10 PROP FAC Privet Drive
3 365 17 17 PRON PER they
4 366 23 23 PRON PER you
...
15858 2355 99227 99227 PRON PER They
15859 2351 99231 99231 PRON PER we
15860 441 99239 99239 NOM FAC home
15861 98 99241 99241 PRON PER I
15862 95 99251 99251 PROP PER Dudley

[15863 rows x 6 columns]

Here we see all the entities found within the text. In our case, wee have 15,863 entities
in the entire book. It is important to remember that some of these are, of course. Before we
get to that, though, let’s break down the columns.

• COREF – this is a COREF id that is a unique identifier for the person. This number will be
used elsewhere to reference a person, such as in the .quotes file, to link the speaker with
the block of text. It should be noted, that COREF is one of the more challenging problems
in NLP. Expect this to not be even close to 90% accurate, rather around the 70% accuracy
range, particularly when pronouns are used for the entity.

• start_token – this is the start token of the entity name.

• end_token – this is the end token of the entity name. Single token entities will have
the same start and end, while multi-word tokens (MWTs) will increase by one for each
additional token.

• prop – this will tlel you if it is a PROP (proper noun) or PROPN (pronoun), or other
categories.

Text Analysis with BookNLP 247

• cat – this will be the entity type (in spaCy terms. BookNLP includes a few other useful
categories, notable VEH for vehicle.

• text – this is the raw text that corresponds to the entity.

15.3.3 The .quotes File

The .quotes file will contain all the quotes in the book. Let’s take a look at this data like
we did above.

df_quotes = pd.read_csv("data/harry_potter/harry_potter.quotes", delimiter="\t")
df_quotes

quote_start quote_end mention_start mention_end mention_phrase \
0 434 438 443 443 he
1 1089 1108 1085 1085 they
2 1343 1346 1347 1347 he
3 1416 1460 1405 1405 he
4 1603 1606 1608 1609 Mr. Dursley
...
2322 99133 99146 99147 99147 He
2323 99163 99172 99161 99161 Hermione
2324 99173 99184 99186 99186 Hermione
2325 99202 99208 99210 99210 Harry
2326 99226 99255 99210 99210 Harry

char_id quote
0 93 Little tyke ,
1 417 The Potters , that 's right , that 's what I ...
2 93 Sorry ,
3 435 Do n't be sorry , my dear sir , for nothing c...
4 93 Shoo !
...
2322 119 Hurry up , boy , we have n't got all day .
2323 220 See you over the summer , then .
2324 220 Hope you have -- er -- a good holiday ,
2325 98 Oh , I will ,
2326 98 They do n't know we 're not allowed to use ma...

[2327 rows x 7 columns]

In our case, we have 2,326 quotes in the entire book. Each quote contains some important
metadata:

• quote_start – the start token of the quote.

• quote_end – the end token of the quote.

• mention_start – this is the start token of the speaker entity.

• mention_end – this is the end token of the speaker entity.

• char_id – this will be the unique identifier we saw above in the .entities file so that you
can perform COREF and find all dialogues for a single character. Remember, there WILL
LIKELY BE ERRORS here. Sometimes you may need to manually align two entity ids as a
single character (as we will see).

• quote – this is the raw text of the quote.

248 Introduction to Python for Humanists

15.3.4 The .supersense File

The final TSV file that we have is the .supersense file. This is something that I think is
quite unique to BookNLP and an absolute delight to have. Here we have all supersense text
found. Agoodway to think about supersense is as amore broadly defined entities file. Here,
we not only have entities, like people, places, etc, but also things like “perception”.

df_supersense = pd.read_csv("data/harry_potter/harry_potter.supersense",
→֒delimiter="\t")
df_supersense

start_token end_token supersense_category text
0 0 0 noun.person Mr.
1 2 3 noun.person Mrs. Dursley
2 6 6 noun.quantity number
3 7 7 noun.quantity four
4 9 10 noun.location Privet Drive
...
29313 99239 99239 noun.location home
29314 99245 99245 verb.perception have
29315 99249 99249 noun.act fun
29316 99251 99251 noun.person Dudley
29317 99253 99253 noun.time summer

[29318 rows x 4 columns]

We can see that we have 29,318 different supersense items with four pieces of data:

• start_token – this is the start token for the supersense text.

• end_token – this is the end token for the supersense text.

• supersense_category – this is the part of speech and category to which the supersense
belongs.

• text – this is the raw text of the supersense.

15.3.5 The .book File

Now that we have looked at all the TSV files, let’s take a look at the .book file. This is
a large JSON file that contains information structured around the characters. In the next
few chapters, we will learn a lot more about this file, but for now, let’s explore how it is
structured.

import json

with open ("data/harry_potter/harry_potter.book", "r") as f:
book_data = json.load(f)

book_data.keys()

dict_keys(['characters'])

It is a giant dictionary with one key: characters. The value of characters is a list. Let’s
check out it’s length.

Text Analysis with BookNLP 249

len(book_data["characters"])

723

So, we have 723 unique characters throughout the book. Again, expect errors here. For
each character, we have a dictionary with 8 keys:

book_data["characters"][0].keys()

dict_keys(['agent', 'patient', 'mod', 'poss', 'id', 'g', 'count', 'mentions'])

These keys are as follows:

• agent – actions that character does.

• patient – actions done to that character.

• mod – adjectives that describe them in the text.

• poss – things the entity has (very broadly defined), e.g. relatives like aunt, uncle; or parts
of the body, e.g. head, back, etc.

• id – their unique id (as seen above).

• g – analysis about gender pronouns used.

• count – number of times the entity appears.

• mentions – how the character is referenced.

book_data["characters"][0]["agent"][:1]
book_data["characters"][0]["patient"][:1]
book_data["characters"][0]["mod"][:1]
book_data["characters"][0]["poss"][:1]
book_data["characters"][0]["id"]
book_data["characters"][0]["g"]
book_data["characters"][0]["count"]
book_data["characters"][0]["mentions"].keys()

dict_keys(['proper', 'common', 'pronoun'])

book_data["characters"][0]["mod"][:10]

[{'w': 'name', 'i': 1206},
{'w': 'older', 'i': 4370},
{'w': 'famous', 'i': 4423},
{'w': 'ready', 'i': 4533},
{'w': 'special', 'i': 5645},
{'w': 'famous', 'i': 5651},
{'w': 'asleep', 'i': 5935},
{'w': 'fast', 'i': 6318},
{'w': 'small', 'i': 6338},
{'w': 'skinny', 'i': 6340}]

250 Introduction to Python for Humanists

book_data["characters"][0]["poss"][:10]

[{'w': 'aunt', 'i': 4356},
{'w': 'uncle', 'i': 4358},
{'w': 'name', 'i': 4461},
{'w': 'blankets', 'i': 5622},
{'w': 'cousin', 'i': 5698},
{'w': 'Petunia', 'i': 5947},
{'w': 'aunt', 'i': 5981},
{'w': 'back', 'i': 6020},
{'w': 'aunt', 'i': 6062},
{'w': 'aunt', 'i': 6133}]

book_data["characters"][0]["id"]

98

For the g category, we see a few different keys:

• inference – the pronouns for the entity in order of highest frequency to lowest.

• argmax – the likely pronoun/gender for the entity.

• max – the degree towhich that pronoun set is used compared to others, e.g. the percentage.

book_data["characters"][0]["g"]

{'inference': {'he/him/his': 0.811,
'she/her': 0.112,
'they/them/their': 0.077,
'xe/xem/xyr/xir': 0.0,
'ze/zem/zir/hir': 0.0},
'argmax': 'he/him/his',
'max': 0.811,
'total': 200311.834}

book_data["characters"][0]["count"]

2005

For mentions, we have three special keys:

• proper – the way they are referenced as proper nouns.

• common – informal names.

• pronoun – the pronouns used to refer to them in prose and dialogue.

book_data["characters"][0]["mentions"].keys()

dict_keys(['proper', 'common', 'pronoun'])

book_data["characters"][0]["mentions"]["proper"]

Text Analysis with BookNLP 251

[{'c': 664, 'n': 'Harry'},
{'c': 46, 'n': 'Potter'},
{'c': 23, 'n': 'Harry Potter'},
{'c': 11, 'n': 'Mr. Potter'},
{'c': 2, 'n': 'Mr. Harry Potter'},
{'c': 1, 'n': 'Harry Hunting'},
{'c': 1, 'n': 'Cokeworth Harry'},
{'c': 1, 'n': 'Both Harry'},
{'c': 1, 'n': 'The Harry Potter'},
{'c': 1, 'n': 'HARRY POTTER'},
{'c': 1, 'n': 'Even Harry'},
{'c': 1, 'n': 'POTTER'},
{'c': 1, 'n': 'the famous Harry Potter'}]

book_data["characters"][0]["mentions"]["common"]

[]

book_data["characters"][0]["mentions"]["pronoun"]

[{'c': 303, 'n': 'he'},
{'c': 217, 'n': 'his'},
{'c': 172, 'n': 'you'},
{'c': 144, 'n': 'He'},
{'c': 107, 'n': 'him'},
{'c': 99, 'n': 'I'},
{'c': 34, 'n': 'me'},
{'c': 30, 'n': 'your'},
{'c': 27, 'n': 'yeh'},
{'c': 27, 'n': 'You'},
{'c': 18, 'n': 'yer'},
{'c': 16, 'n': 'himself'},
{'c': 14, 'n': 'my'},
{'c': 12, 'n': 'His'},
{'c': 5, 'n': 'Your'},
{'c': 3, 'n': 'Yeh'},
{'c': 3, 'n': 'Yer'},
{'c': 3, 'n': 'My'},
{'c': 2, 'n': "yeh've"},
{'c': 2, 'n': "yeh'd"},
{'c': 2, 'n': 'ter'},
{'c': 2, 'n': 'myself'},
{'c': 2, 'n': 'yourself'},
{'c': 1, 'n': 'YOU'},
{'c': 1, 'n': 'mine'},
{'c': 1, 'n': 'yours'},
{'c': 1, 'n': "Yeh'd"},
{'c': 1, 'n': 'yerself'},
{'c': 1, 'n': "Yeh've"},
{'c': 1, 'n': "yeh'll"}]

15.3.6 The .book.html File

The final file that is outputted from BookNLP is the .book.html file. This is a nicely
organized, easy-to-read, HTML file that should open in your browser.

252 Introduction to Python for Humanists

15.4 Character Analysis

This section is dedicated to analyzing the characters contained within the .book file. As
you may recall from the last section, this is a JSON file. A lot of what I will cover here, can
be found in the BookNLP repository, specifically in the Google Colab Jupyter Notebook. I
am, however, making some modifications to the code there to make it a bit more useful for
varying circumstances. I will specifically show you how to use this restructured data to pose
narrow questions about characters in a text.

The following functions and imports will be necessary for this chapter. They allow us
to load up the JSON data from the .book file and count the occurrences of certain things
found within the .book file.

import json
from collections import Counter

def proc(filename):
with open(filename) as file:

data=json.load(file)
return data

def get_counter_from_dependency_list(dep_list):
counter=Counter()
for token in dep_list:

term=token["w"]
tokenGlobalIndex=token["i"]
counter[term]+=1

return counter

Now that we have successfully created these functions, let’s go ahead and load up our
JSON data from the .book file. We can do this with the function above that we created called
“proc”. Essentially, this loads and parses the JSON file for us using the JSON library that
comes standard with Python.

data=proc("data/harry_potter/harry_potter.book")

Now that we have loaded the data, we can start to analyze it!

15.4.1 Analyzing the Characters (From BookNLP Repo)

If you have had a chance to look at the Google Colab notebook provided by BookNLP, this
function will look similar. I have made some modifications to the code presented there so
that we can do a bit more with it. In the notebook, the original code printed off character
data. My modifications and the fact that I have structured it as a function, allow us to do a
bit more. We can actually begin analyzing the characters.

I have kept my function’s code as close to the original as possible so that it can be better
understood within the documentation.

def create_character_data(data, printTop):
character_data = {}
for character in data["characters"]:

agentList=character["agent"]

(continues on next page)

Text Analysis with BookNLP 253

(continued from previous page)

patientList=character["patient"]
possList=character["poss"]
modList=character["mod"]

character_id=character["id"]
count=character["count"]

referential_gender_distribution=referential_gender_prediction="unknown"

if character["g"] is not None and character["g"] != "unknown":
referential_gender_distribution=character["g"]["inference"]
referential_gender=character["g"]["argmax"]

mentions=character["mentions"]
proper_mentions=mentions["proper"]
max_proper_mention=""

#Let's create some empty lists that we can append to.
poss_items = []
agent_items = []
patient_items = []
mod_items = []

just print out information about named characters
if len(mentions["proper"]) > 0:

max_proper_mention=mentions["proper"][0]["n"]
for k, v in get_counter_from_dependency_list(possList).most_

→֒common(printTop):
poss_items.append((v,k))

for k, v in get_counter_from_dependency_list(agentList).most_
→֒common(printTop):

agent_items.append((v,k))

for k, v in get_counter_from_dependency_list(patientList).most_
→֒common(printTop):

patient_items.append((v,k))

for k, v in get_counter_from_dependency_list(modList).most_
→֒common(printTop):

mod_items.append((v,k))

print(character_id, count, max_proper_mention, referential_gender)
character_data[character_id] = {"id": character_id,

"count": count,
"max_proper_mention": max_proper_mention,
"referential_gender": referential_gender,
"possList": poss_items,
"agentList": agent_items,
"patientList": patient_items,
"modList": mod_items

}

return character_data

This function expects two arguments:

• The data that we created above, i.e. the original .book JSON data.

254 Introduction to Python for Humanists

• printTopwhich will be the number of items you seek to return about the character.

Let’s go ahead and create some character_data now that will retain the top 10 items
connected to each character. If youwant to see all possible things connected to the character,
simply set this item to a very high number, e.g. 20,000. This is not the cleanest, but it allowed
me to keep this function as simple as possible.

This function will return a new data file that will be a dictionary where each unique id is
a key and the corresponding character data will be populated as its value (also structured as
a dictionary). I have kept the keys of this nested dictionary identical to the original Google
Colab file.

character_data = create_character_data(data, 10)

Now that we have created this character data, let’s take a look at the main Harry Potter
id (which is 98).

print (character_data[98])

{'id': 98, 'count': 2029, 'max_proper_mention': 'Harry', 'referential_gender':
→֒'he/him/his', 'possList': [(19, 'head'), (15, 'eyes'), (12, 'parents'), (12,
→֒'cupboard'), (10, 'life'), (10, 'hand'), (9, 'aunt'), (8, 'mind'), (7,
→֒'heart'), (7,'uncle')], 'agentList': [(91, 'said'), (46, 'had'),
→֒(39, 'know'), (22, 'felt'), (22, 'saw'), (21, 'got'), (21, 'going'), (21,
→֒'thought'), (18, 'heard'), (18, 'looked')], 'patientList': [(10, 'told'),
→֒(5, 'take'), (5, 'asked'), (4, 'kill'), (4, 'reminded'), (4, 'stop'), (4,
→֒'got'), (4, 'tell'), (3, 'took'), (3, 'saw')], 'modList': [(8, 'sure'), (5,
→֒'able'), (4, 'famous'), (3, 'glad'), (2, 'name'), (2, 'special'),
→֒(2, 'surprised'), (2, 'baby'), (2, 'stupid'), (2, 'afraid')]}

Notice that we can now see the main gender, verbs, possession items, etc. connected
to Harry Potter. Having the data structured in this manner allows us to more easily start
posing some questions to the original .book file.

15.4.2 Parsing Verb Usage

One of those questions can be about verb usage. I have created a brand new function that
allows you to explore how certain verbs are used within the text based on the new character
data file we just created. It expects one argument: the new character data file. We can pass
an additional keyword argument that should be a list. This list will contain one or two of
the following items:

• agent – the doer of the action.

• patient – the recipient of the action.

Again, this function is not something I would put in production. I have designed it to
be easier to read so that you can do something similar and grab data you may find relevant
for your own project or research.

def find_verb_usage(data, analysis=["agent", "patient"]):
new_analysis = []
for item in analysis:

if item == "agent":
new_analysis.append("agentList")

elif item == "patient":

(continues on next page)

Text Analysis with BookNLP 255

(continued from previous page)

new_analysis.append("patientList")
main_agents = {}
main_patients = {}
for character in character_data:

temp_data = character_data[character]
for item in new_analysis:

for verb in temp_data[item]:
verb = verb[1].lower()
if item == "agentList":

if verb not in main_agents:
main_agents[verb] = [(character, temp_data["max_proper_

→֒mention"])]
else:

main_agents[verb].append((character, temp_data["max_
→֒proper_mention"]))

elif item == "patientList":
if verb not in main_patients:

main_patients[verb] = [(character, temp_data["max_proper_
→֒mention"])]

else:
main_patients[verb].append((character, temp_data["max_

→֒proper_mention"]))
verb_usage = {"agent": main_agents,

"patient": main_patients}
return verb_usage

Essentially, this function will read in the character data file that we created above and
create a new dictionary that has two keys: agent and patient. Within each will be the verbs
used in the text. These will be matched to a list of the characters connected to those verbs.
Let’s go ahead and create this verb data now.

verb_data = find_verb_usage(data)

By restructuring the data around the verbs, you can analyze the characters in a verb-
centric manner. Let’s say I was interested in what characters were the agents of the verb
“reared”. I could go into the dictionary at the agent key and look for the key of rearedwithin
the agent verbs. My output is the tuple of (character_id, most frequent name for that
character). In this case: Firenze the centaur.

verb_data["agent"]["reared"]

[(352, 'Firenze')]

It is important to note two things here, however. First, our verbs are not lemmatized. I
intentionally left this as the case because in some circumstances understanding how a verb
is used is important. You may, for example, be interested in how “said” functioned in the
next, not both “said” and “say”. If you wanted to modify the code above, therefore, you
could go into the tokens file to find that verb’s lemma.

Another thing to note is that we are only seeing the results from the top 10 in this
scenario. If you want to see how verbs area used by all characters, create a new character
data file and make your top-n equal to a larger number.

256 Introduction to Python for Humanists

15.5 Events Analysis

The only output file that details event data is the .tokens file. As a result, this file will be
the focus of this section. Each subsection of this section will analyze the .tokens file in
a deeper way to identify and extract event data. At the end of the chapter, we will bring
everything together with a single function that can recreate these results on any BookNLP
output .tokens file.

15.5.1 Exploring the Tokens File

Let’s first go ahead and open up the .tokens file and take a look at it so we can remember
precisely what the .tsv file looks like. If you remember from Part III, we can analyze the files
a bit more easily if we use Pandas.

import pandas as pd
df = pd.read_csv("data/harry_potter/harry_potter.tokens", delimiter="\t")
df

paragraph_ID sentence_ID token_ID_within_sentence \
0 0 0 0
1 0 0 1
2 0 0 2
3 0 0 3
4 0 0 4
...
99251 2995 6172 10
99252 2995 6172 11
99253 2995 6172 12
99254 2995 6172 13
99255 2995 6172 14

token_ID_within_document word lemma byte_onset byte_offset \
0 0 Mr. Mr. 0 3
1 1 and and 4 7
2 2 Mrs. Mrs. 8 12
3 3 Dursley Dursley 13 20
4 4 , , 20 21
...
99251 99251 Dudley Dudley 438929 438935
99252 99252 this this 438936 438940
99253 99253 summer summer 438941 438947
99254 99254 438947 438951
99255 99255 \t 438951 438952 PUNCT

POS_tag fine_POS_tag dependency_relation syntactic_head_ID event
0 PROPN NNP nmod 3 O
1 CCONJ CC cc 0 O
2 PROPN NNP compound 3 O
3 PROPN NNP nsubj 12 O
4 PUNCT , punct 3 O
...
99251 PROPN NNP pobj 99250 O
99252 DET DT det 99253 O
99253 NOUN NN npadvmod 99245 O
99254 PUNCT . punct 99243 O
99255 '' punct 99243 O NaN

[99256 rows x 13 columns]

Text Analysis with BookNLP 257

We have approximately 99,000 rows and 13 columns of data. Throughout this section,
we will focus on only four columns in particular:

• sentence_ID

• word

• lemma

• event

As such, let’s go ahead and remove all the extra data for now so that we can just view
the columns we care about.

df = df[["sentence_ID", "word", "lemma", "event"]] df

Excellent! Now we can analyze this event column a bit more easily.

15.5.2 Grabbing the Events

One of the things we can see above is that some event columns contain NaN. Ideally, we
want to ignore these entirely. We can do this in pandas by using the isnull()method.

events = df[˜df['event'].isnull()]
events

sentence_ID word lemma event
0 0 Mr. Mr. O
1 0 and and O
2 0 Mrs. Mrs. O
3 0 Dursley Dursley O
4 0 , , O
...
99250 6172 with with O
99251 6172 Dudley Dudley O
99252 6172 this this O
99253 6172 summer summer O
99254 6172 O

[94498 rows x 4 columns]

As we can see this eliminated roughly 5,000 rows. Let’s take a closer look at the column
event and see what kind of data we can expect to see here.

event_options = set(events.event.tolist())
print (event_options)

{'EVENT', 'O'}

By converting this column to a list and then to a set (which eliminates the duplicates),
we can see that we have two types of data in the event column:

• EVENT

• O

If a row has “EVENT” in the column then it means the corresponding word was
identified by the BookNLP pipeline as being an event-triggering word. Now that we know
this, let’s take a look at only the rows that have EVENT in the event column.

258 Introduction to Python for Humanists

real_events = events.loc[df["event"] == "EVENT"]
real_events

sentence_ID word lemma event
242 9 shuddered shudder EVENT
308 12 woke wake EVENT
346 13 hummed hum EVENT
349 13 picked pick EVENT
361 13 gossiped gossip EVENT
...
99152 6167 hung hang EVENT
99185 6169 said say EVENT
99209 6170 said say EVENT
99215 6170 surprised surprised EVENT
99218 6170 grin grin EVENT

[6029 rows x 4 columns]

We now have only 6,029 rows to analyze!

15.5.3 Analyzing Events Words and Lemmas

Let’s dig a little deeper. Let’s try to analyze the words and lemmas of these rows to see how
many unique words and lemmas we have.

event_words = set(real_events.word.tolist())
len(event_words)

1501

event_lemmas = list(set(real_events.lemma.tolist()))
event_lemmas.sort()
len(event_lemmas)

1021

print (event_lemmas[:10])

['BOOM', 'Bludger', 'Pompously', 'Scowling', 'Smelting', 'Whispers', 'aback',
→֒'accept', 'ache', 'act']

While we have 1,501 unique words, we only have 1,021 unique lemmas. If we were
interested in seeing the type of eventwords and lemmas appear inHarry Potter, we can now
do that, but something I notice quickly is that some lemmas are capitalized. Let’s eliminate
all duplicates by lowering all lemmas.

final_lemmas = []
for lemma in event_lemmas:

lemma = lemma.lower()
if lemma not in final_lemmas:

final_lemmas.append(lemma)

print(len(final_lemmas))
print(final_lemmas[:10])

Text Analysis with BookNLP 259

1020
['boom', 'bludger', 'pompously', 'scowling', 'smelting', 'whispers', 'aback',
→֒'accept', 'ache', 'act']

We eliminated only one duplicate.

15.5.4 Grabbing Event Sentences

Now that we know how to grab individual event-triggering words, what about the sen-
tences that contain events? To analyze this, we can use the sentence_ID column which
contains a unique number for each sentence.

sentences = real_events.sentence_ID.tolist()
events = real_events.word.tolist()
print (sentences[:10])
print (events[:10])

[9, 12, 13, 13, 13, 13, 13, 14, 15, 15]
['shuddered', 'woke', 'hummed', 'picked', 'gossiped', 'wrestled', 'screaming',
→֒'flutter', 'picked', 'pecked']

We can see that some sentences appear multiple times. This is because they contain
multiple words that are event-triggering.

Let’s take a look at our initial DataFrame once again.

df

sentence_ID word lemma event
0 0 Mr. Mr. O
1 0 and and O
2 0 Mrs. Mrs. O
3 0 Dursley Dursley O
4 0 , , O
...
99251 6172 Dudley Dudley O
99252 6172 this this O
99253 6172 summer summer O
99254 6172 O
99255 6172 \t 438951 NaN

[99256 rows x 4 columns]

Let’s say we were interested in grabbing the first sentence from the first event, we can
grab all rows that have a matching sentence_ID.

sentence1 = sentences[0]
result = df[df["sentence_ID"] == int(sentence)]
result

sentence_ID word lemma event
240 9 The the O
241 9 Dursleys Dursleys O
242 9 shuddered shudder EVENT
243 9 to to O
244 9 think think O

(continues on next page)

260 Introduction to Python for Humanists

(continued from previous page)

245 9 what what O
246 9 the the O
247 9 neighbors neighbor O
248 9 would would O
249 9 say say O
250 9 if if O
251 9 the the O
252 9 Potters Potters O
253 9 arrived arrive O
254 9 in in O
255 9 the the O
256 9 street street O
257 9 . . O

With this data, we can then grab all the words and reconstruct the sentence.

words = result.word.tolist()
resentence = " ".join(words)

print (resentence)

The Dursleys shuddered to think what the neighbors would say if the Potters
→֒arrived in the street .

15.5.5 Bringing Everything Together

Let’s now bring everything together we just learned in this chapter and make it into a
function. This function will receive a file that corresponds to the .tokens file. It will find
the relevant event rows and then reconstruct the sentences that correspond to each event
word. The output will be a list of dictionaries that are event-centric. Each dictionary will
have three keys:

• event_word – the event-triggering word.

• event_lemma – the event_word’s lemma.

• sentence – the sentence that the event-triggering word is in.

def grab_event_sentences(file):
df = pd.read_csv(file, delimiter="\t")
real_events = df.loc[df["event"] == "EVENT"]
sentences = real_events.sentence_ID.tolist()
event_words = real_events.word.tolist()
event_lemmas = real_events.lemma.tolist()
final_sentences = []
x=0
for sentence in sentences:

result = df[df["sentence_ID"] == int(sentence)]
words = result.word.tolist()
resentence = " ".join(words)
final_sentences.append({"event_word": event_words[x],

"event_lemma": event_lemmas[x],
"sentence": resentence

(continues on next page)

Text Analysis with BookNLP 261

(continued from previous page)

})
x=x+1

return final_sentences

event_data = grab_event_sentences("data/harry_potter/harry_potter.tokens")

Let’s take a look at the output now.

print (event_data[0])

{'event_word': 'shuddered', 'event_lemma': 'shudder', 'sentence': 'The
→֒Dursleys shuddered to think what the neighbors would say if the Potters
→֒arrived in the street .'}

15.5.6 Creating an .events File

This allows us to now analyze the events identified in the BookNLP pipeline a bit more
easily. Since we don’t have an .events output file, this is currently one way that we can
simulate the same result by creating a special events-centric output. With this data, we can
now create a new DataFrame.

new_df = pd.DataFrame(event_data)

new_df

event_word event_lemma sentence
0 shuddered shudder The Dursleys shuddered to think what the neigh...
1 woke wake When Mr. and Mrs. Dursley woke up on the dull ...
2 hummed hum Mr. Dursley hummed as he picked out his most b...
3 picked pick Mr. Dursley hummed as he picked out his most b...
4 gossiped gossip Mr. Dursley hummed as he picked out his most b...
...
6024 hung hang Harry hung back for a last word with Ron and H...
6025 said say \t \t Hope you have -- er -- a good holiday , ...
6026 said say \t Oh , I will , \t said Harry , and they were...
6027 surprised surprised \t Oh , I will , \t said Harry , and they were...
6028 grin grin \t Oh , I will , \t said Harry , and they were...

[6029 rows x 3 columns]

We can also output it to the same subdirectory as the other files.

new_df.to_csv("data/harry_potter/harry_potter.events", index=False)

And now you have an .events file!

15.5.7 Conclusion

You should now have a basic understanding of BookNLP and what it can do. While the
results will not be perfect, it will give you a great starting point for understanding the
salient characters, extracting, quotes, and identifying the major events within a large work
of fiction.

https://taylorandfrancis.com/

16
Social Network Analysis

In this chapter, we will shift away from NLP and examine social network analysis (SNA).
SNA is the process by which researchers study the networks of social relationships. These
can be familial (parents to children), social (friends), etc. The goal of SNAis to reveal insights
about a network or group of individuals by studying them collectively and often through
visualization methods.

16.1 The Basic Concepts of Social Network Analysis

16.1.1 Basic Terminology

Visualized social networks are often studied through graphs, or visual representations of
relationships in a network. These graphs today stem often from graph theory, a branch of
mathematics. In graph theory, mathematics is used to study graph-based problems. Believe
it or not, we are all beneficiaries of this discipline. Have you ever used Google Maps to go
from point A to point B? This is graph theory at play. Behind the scenes is a complex set
of relationships that allow Google to recommend certain paths over others to ensure that
you have the fastest (or least expensive) route.

This chapter will not cover all the complexities of SNA, rather give enough of the basic
terminology and concepts so that all readers can learn how to leverage Python to perform
SNA. The chief goal of this chapter is to introduce the process by which we can perform
SNA through structured data.

In a graph, there are a collection of nodes. These are dots in the graph that represent
each piece of data. In a social network graph, each node would be a person or some kind of
entity that a researcher wishes to map. Other entities may include things like businesses or
agencies.

In order to understand how different nodes relate to one another, we represent the
relationships between them with edges. In a graph, these edges look like lines.

Because graphs are often drawnwith mathematics, it is important to know the force of a
graph. Force in network theory is the direction of movement between two nodes. If we are
mapping how characters move to different places in a graph, all people and places would
receive a node in a graph. We would then inflict force with the person doing the movement
towards the place. This would position the nodes in a particular way in a graph.

In a network graph, we can often map multi-modal networks, or networks where
different types of relationships are overlapping. Often, we can do this in a graph by
representing each type of relationship as a separate edge color.

Graphs are a useful way to explore complex relationships because in a single image,
we can glean information that would otherwise be missed. We can examine our data
quantitatively, meaning we can see the frequency that certain nodes appear in our data and,

DOI: 10.1201/9781003342175-19

http://dx.doi.org/10.1201/9781003342175-19

264 Introduction to Python for Humanists

more importantly, the frequency with which that node relates to other nodes in the graph.
We could, of course, extract this information for a node relatively easily with Pandas, but a
graph let’s us see many different relationships between many different pieces of data all in
a single image. For these reasons, it is often useful to be familiar with SNA generally and
generally how to map nodal relationships in Python.

16.1.2 SNA Libraries in Python

Python has several libraries for performing SNA. In this section, we will look closely at
two: NetworkX (and Matplotlib to visualize the graph) and PyVis. Each has its strengths
and weaknesses.

NetworkX is a powerful library that allows users to hold complex graph-based data,
such as nodes and edges, in a single class. It also allows us to perform basic mathematical
calculations to discover things like centrality of a node in a graph, a concept we will learn
about in the next section. NetworkX is designed to work alongside Matplotlib for plotting
those graphs. As we shall see, there are some limitations to this approach. PyVis is another
graph visualization library and while you can create graphs entirely independently of
NetworkX, some workflows may benefit from creating the graph data in NetworkX and
then passing that data to PyVis for visualization. You can download all of these libraries
with pip

To install Matplotlib, use the following command in your terminal:

pip install matplotlib

For NetworkX, you can use this command:

pip install networkx

And for PyVis, you can use this command:

pip install pyvis

Note that each of these libraries are all in lowercase when we install them via pip.

16.2 Introduction to NetworkX

Now that we have installed our libraries correctly, we can begin working with NetworkX
and Matplotlib. To import each library, we will use the code below. You will often see
Matplotlib imported one of two ways:

import matplotlib.pyplot as plt

or:

from matplotlib import pyplot as plt

Both import pyplot as plt and, therefore, are identical. The usage comes down to
preference.

from matplotlib import pyplot as plt
import networkx as nx

Social Network Analysis 265

Beforewe begin, wemust first have a set of relationships that wewish to graph. Let’s use
a simple toy example, such as the five relationships below. Each person in these relationships
will function as a single node in our graph. We will want to map these relationships by
drawing edges between each individual’s node.

rels = [

["Fred", "George"],
["Harry", "Rita"],
["Fred", "Ginny"],
["Tom", "Ginny"],
["Harry", "Ginny"]

]

In order to begin working with this data in NetworkX, we need to first populate a
NetworkX Graph class. It is Pythonic to call this variable G.

G = nx.Graph()

Once created,we can populate the graphwith relationships in a loop.Wewillwant to use
the .add_edge()method from the Graph class. This will take twomandatory arguments:
1. the source node and 2. the destination node. The source and the destination are important
in certain circumstances when force is applied in a graph. This controls how the map is
displayed visually.

for rel in rels:
source, dest = rel
G.add_edge(source, dest)

With all our edges add into the graph, we can now plot it with Matplotlib. We will use
the draw_networkx() function to create a plot in memory. This will take one argument,
the graph of nodes wewish to visualize. Next, wewill use plt.show() to display themap.
Since we are working within a Jupyter Notebook, this will be displayed as an output.

nx.draw_networkx(G)
plt.show()

16.2.1 Adding All Edges at Once

Sometimes, youwill not want to add each edge individually. In these circumstances, we can
leverage the add_edges_from() method to add a list of edges all at once. This method
will expect a list of relationships.

266 Introduction to Python for Humanists

G = nx.Graph()
G.add_edges_from(rels)
nx.draw_networkx(G)
plt.show()

16.2.2 Asymmetrical Networks

The above examples are all cases of symmetrical networks. This is where each node has
an equal attraction to the other. The best example of this is with colleagues. If Ginny is a
colleague with Harry, then Harry is a colleague with Ginny. Not all relationships work in
this manner. Some relationships are asymmetrical. This is where one person has a unique
relationship with another that cannot be the same in reverse. Agood example of this is with
parents and children. If Fred is the father of George, then George cannot possibly be the
father of Fred.

NetworkX affords us the ability to draw these types of relationships with a different
graph class called a DiGraph. We can use the precise same code as above, but rather than
using .nx.Graph(), we will use nx.DiGraph().

G = nx.DiGraph()
G.add_edges_from(rels)
nx.draw_networkx(G)
plt.show()

Note the salient change in our graph, specifically the arrows that point towards specific
nodes. These arrows in a graph indicate the direction, or force, between two nodes in a

Social Network Analysis 267

graph. In the graph above, for example, we can see that Harry has a different relationship
to Rita than Rita does with Harry.

16.2.3 Calculating Shortest Distance

The above example is rather simple. Let’s create a more complex graph with a few more
relationships.

rels = [

["Fred", "George"],
["Harry", "Rita"],
["Fred", "Ginny"],
["Tom", "Ginny"],
["Harry", "Ginny"],
["Harry", "George"],
["Frank", "Ginny"],
["Marge", "Rita"],
["Fred", "Rita"]

]

G = nx.Graph()
G.add_edges_from(rels)
nx.draw_networkx(G)
plt.show()

Acommon problem in graph theory is calculating the shortest distance to individuals. A
goodway to think about this iswith the classic gameSeven Degrees of Kevin Bacon.
If we wanted to know the shortest distance between Fred and Rita, we could realistically
look at the graph above and figure that out. But what if we had thousands of nodes? What
about millions? These are real-world problems that cannot be solved practically by simple
human observation. NetworkX preserves the network as a graph that it can walk to easily
identify the shortest path between two nodes at any given point. To calculate this, we can
use nx.shortest_path(). This will take three arguments, the graph in which the nodes
are found and the source node and target node. The result will be a list of the source node,
followed by allbrokers or intermediaries between the source and target node. These brokers
will be followed by the target node.

268 Introduction to Python for Humanists

nx.shortest_path(G, 'Fred', 'Marge')

['Fred', 'Rita', 'Marge']

16.2.4 Calculating Connections

Another common task in graph analysis is understanding the degree, or number of
connections, a node as at any given moment. This allows us to understand the role an
individual plays within a network. Nodes with higher degree values often indicate a higher
degree of importance in the data, though this is not always the case. In humanities-based
inquiry, we frequentlyworkwith imperfect or incomplete data due to losses in the historical
record. It is important, therefore, to understand a degree value as a reflection of extant data,
not a reflection of certain importance.

We can calculate a node’s degree value with nx.degree() which will take two
arguments, the graph in which the node is found and the node for whom we seek a degree
value.

nx.degree(G, "Fred")

3

16.2.5 Identifying Major Actors in a Network

Another way to understand a specific node’s role in a network, is to calculate a node’s
centrality, or degree of focus, in a network. We can calculate and grab the centrality of all
nodes in our graph with nx.degree_centrality(). This will take a single argument,
our graph. It will return a dictionary whose keys are each node and whose values are each
node’s centrality score. The higher the number, themore significant role that particular node
plays in the graph.

centrality = nx.degree_centrality(G)
centrality

{'Fred': 0.42857142857142855,
'George': 0.2857142857142857,
'Harry': 0.42857142857142855,
'Rita': 0.42857142857142855,
'Ginny': 0.5714285714285714,
'Tom': 0.14285714285714285,
'Frank': 0.14285714285714285,
'Marge': 0.14285714285714285}

16.2.6 Limitations of Matplotlib and NetworkX

While NetworkX is quite useful for creating the data necessary to draw quick and (with
practice) quality graphs via Matplotlib, this is largely suited to smaller networks. Often,
when we are working with larger datasets of networks it will be important to visualize
those networks more dynamically, where users can zoom in, zoom out, and select certain
nodes. Most of these types of graphs are designed and implemented in JavaScript.

Social Network Analysis 269

The graphs designed in JavaScript have the advantage of being able to be opened in
any browser and distributed across the web or embedded in any website. Fortunately, the
Python library PyVis allows us to produce JavaScript-based graphs with Python code.

16.3 Producing Dynamic Graphs with PyVis

PyVis1 is a powerful Python library that is capable of outputting an HTML file which
contains the data and JavaScript necessary for users to view and engage with network data.
It has a fairly large community and is well-supported. One of its largest advantages over
NetworkX and Matplotlib is in the dynamic nature of the graphs.

Dynamic graphs, or those that can be manipulated by a user in some capacity, are better
suited than static graphs for networks that a large or more complex.

There are other libraries for doing similar steps as laid out here. Bokeh is a suitable alter-
native. Themain issue with Bokeh is that it has a steep learning curve and, while it certainly
offers greater flexibility and customization options than PyVis, it can be challenging for
those newer to Python. As we will see, you can produce quality, dynamic network graphs
with PyVis in just a few lines of Python code. For this reason, I am opting to focus on PyVis
in this section.

You can install PyVis via pip by running in the command line:

pip install pyvis

This should install PyVis on your system.

16.3.1 The Basics of PyVis

Once you have installed PyVis, you will want to import the Network class. We can do so
with the following line.

from pyvis.network import Network

The Network class holds all of the data that will be used to create the graph. Sincewe are
working within a Jupyter Notebook, we will want to set the keyword argument notebook
to True. This will ensure that when we create our network graph, it will not only output as
an HTML file, but also load within the notebook.

We can create a Network object and load it into memory with the following command:

net = Network(notebook=True)

Local cdn resources have problems on chrome/safari when used in jupyter-
→֒notebook.

Again, we will work with the same toy data here.

rels = [

["Fred", "George"],
["Harry", "Rita"],

(continues on next page)

1https://pyvis.readthedocs.io/en/latest/index.html

https://pyvis.readthedocs.io

270 Introduction to Python for Humanists

(continued from previous page)

["Fred", "Ginny"],
["Tom", "Ginny"],
["Harry", "Ginny"]

]

In PyVis, we want to create each node in the graph individually and then populate the
edge between the two nodes in the relationship. Therefore, we will want to iterate over each
relationshipwith afor loop.Wewill use the.add_nodemethod for each node in the graph
and the .add_edge()method to create an edge between the two nodes.

for rel in rels:
source, dest = rel
net.add_node(source)
net.add_node(dest)
net.add_edge(source, dest)

Once we have populated the Network class with all our date, we can visualize it with
the method .show(). This will take a single argument, a string that will be the file created.

net.save_graph("simple_graph.html")

from IPython.display import HTML
HTML(filename="simple_graph.html")

<IPython.core.display.HTML object>

In the graph above, try to interact with the data. You will notice that you can drag-and-
drop nodes. You can zoom in and out in the graph. This is a good demonstration of the
power PyVis has over NetworkX and Matplotlib.

16.4 NetworkX and PyVis

While this works, we don’t have all the advantages that NetworkX afforded us. PyVis, it is
important to note, while useful, is primarily a wrapper for producing JavaScript graphs. It
is not as robust as NetworkX when it comes to handling and querying complex network
relationships. We cannot generate, for example, metrics for things like centrality. For these
reasons, it is best to combine the best of NetworkX and PyVis by first passing your network
data to NetworkX, creating the graph, and then passing the NetworkX graph to PyVis for
conversion to an interactive graph.

import networkx as nx

Just as we did in the previous section, we will create a NetworkX nx.Graph() and
populate it with our relationships.

G = nx.Graph()
rels = [

["Fred", "George"],

(continues on next page)

Social Network Analysis 271

(continued from previous page)

["Harry", "Rita"],
["Fred", "Ginny"],
["Tom", "Ginny"],
["Harry", "Ginny"],
["Harry", "George"],
["Frank", "Ginny"],
["Marge", "Rita"],
["Fred", "Rita"]

]
G.add_edges_from(rels)

Now that we have our NetworkX Graph, we can create a PyVis Network class.

net = Network()

Using the from_nx() method, which will take a single argument, our NetworkX
Graph, or G.

net.from_nx(G)

With the data now populated, we can save and view our PyVis Network.

net.save_graph("networkx-pyvis.html")

HTML(filename="networkx-pyvis.html")

<IPython.core.display.HTML object>

Notice that our graph is rendered precisely just as it had been with NetworkX and
Matplotlib, but now that same data is dynamic. In other words, we were able to leverage
the best of NetworkX and PyVis with this approach.

16.5 Adding Color to Nodes

Graphs where every node is the same color can be difficult to interpret. For this reason,
we may want to represent each node as a distinct color given some trait of that node. In
the example below, we will use a simple list of Harry Potter characters. We will use their
houses to denote node color. Let’s import the same libraries we have worked with so far in
this chapter and throughout this textbook.

import networkx as nx
from pyvis.network import Network
import pandas as pd
from IPython.display import HTML

Our data is stored as a csv file which we can load with Pandas.

node_df = pd.read_csv("../data/hp - nodes.csv")
node_df

272 Introduction to Python for Humanists

name house color
0 Harry Gryffindor red
1 Hermione Gryffindor red
2 Ron Gryffindor red
3 Drako Slytherine green
4 Snape Slytherine green
5 Sedric Hufflepuff yellow
6 Luna Ravenclaw blue

Now that we have our data loaded, we can iterate over each Pandas row and populate a
list of nodes. Notice, that when we append to nodes, we are not appending a string, rather
a tuple. Index 0 of the tuple is the character name, while index 1 is a dictionary. This is where
we can store special attributes associated with the node. Think of this as metadata. In our
case, we want two pieces of metadata, color and house.

nodes = []

for idx, row in node_df.iterrows():

nodes.append((row["name"], {"color": row.color, "house": row.house}))

nodes[:1]

[('Harry', {'color': 'red', 'house': 'Gryffindor'})]

Now that we have our node list created, let’s populate it into a NetworkX Graph.

G = nx.Graph()
G.add_nodes_from(nodes)

From here, we can do the same thing with our edge list, which is also stored in a Pandas
dataframe. NetworkX has built-in ways of creating a graph from a Pandas edge list, but we
will do this manually here.

rel_df = pd.read_csv("../data/hp - rels.csv")
rel_df

source target
0 Harry Hermione
1 Hermione Ron
2 Ron Harry
3 Drako Harry
4 Snape Sedric
5 Sedric Harry
6 Luna Harry
7 Snape Harry
8 Luna Hermione
9 Ron Drako

edge_list = []
for idx, row in rel_df.iterrows():

edge_list.append((row.source, row.target))
edge_list[:1]

[('Harry', 'Hermione')]

Now that we have our edge list, we can inject it into the same Graph object.

Social Network Analysis 273

G.add_edges_from(edge_list)

At this stage, our NetworkX Graph is complete with all the data. We can now repeat the
steps from the previous section and create our PyVis visualization from the data.

net = Network(notebook=True)

Local cdn resources have problems on chrome/safari when used in jupyter-
→֒notebook.

net.from_nx(G)

net.save_graph("hp_network.html")

HTML(filename="hp_network.html")

<IPython.core.display.HTML object>

We now have a graph with nodes represented with different colors. Notice that the
source node controls the edge color by default. NetworkX and PyVis both allowus to control
the edge color in the same way as it did with nodes, but instead of adding color as an
attribute of the node, we could also assign this to the edge as an attribute.

16.6 SNA on Humanities Data: Structuring the Data

In this section, we will apply the skills we have learned about SNAon real humanities data.
Again,wewill beworkingwith the TRCVolume 7.Unlike the section onTopicModeling,we
will not be interested in how the descriptions of violence cluster together. Instead, we will
be interested in exploring how organizations relate to specific individuals as they appear
in their descriptions. It is important to note here, in this approach we do not know the
relationship between the victim and the organization. There is equal possibility that they
were a member or victim of the organization. To understand these relationships, we would
want to use spaCy and a few NLP techniques to extract meaning about these relationships
first.

16.6.1 Examining the Data

First, let’s import our required libraries.Wewill only be concernedwith structuring the data
in this section, so wewill only import Pandas.Wewill also import random because wewant
to assign a random color to each unique organization. This ensures that our approach scales
quickly if we were to add thousands of new organizations into our dataset. For a polished,
final version, one would want to manually assign a color to each organization so that the
results would be more reproducible.

import pandas as pd
import random

We will now load our data. We only need four of the columns: Last, First, ORG, and
Place.

274 Introduction to Python for Humanists

df = pd.read_csv("../data/trc.csv")
df = df[:1000]
df = df[["Last", "First","ORG", "Place"]]

df

Last First ORG Place
0 AARON Thabo Simon ANC|ANCYL|Police|SAP Bethulie
1 ABBOTT Montaigne SADF Messina
2 ABRAHAM Nzaliseko Christopher COSAS|Police Mdantsane
3 ABRAHAMS Achmat Fardiel SAP Athlone
4 ABRAHAMS Annalene Mildred Police|SAP Robertson
..
995 CELE Nompumelelo Iris `Magwaza’ ANC Ndwedwe
996 CELE Nomvula Eunice ANC Umbumbulu
997 CELE Nonhlanhla Evelina ANC Umzimkulu
998 CELE Nozimpahla NaN Sonkombo
999 DLAMINI Cedric Bongani ANC Durban

[1000 rows x 4 columns]

Now that we have our data, we can begin clean it and prepare it for inclusion in a
NetworkX graph. Our goal is to create a list of nodes and edges separately which we will
then store as two separate Pandas DataFrames. We will then be able to use this data for
graph creation in the next section. To do this, we will use the following code:

nodes = []
edge_list = []
found_orgs = []
for idx, row in df.iterrows():

node_id = f"{idx}_{row.First} {row.Last}"
place = row.Place
nodes.append(({"name": node_id, "color": "green", "place": place}))
if pd.isnull(row.ORG) == False:

orgs = row.ORG.split("|")
for org in orgs:

if org not in found_orgs:
color = "#"+''.join([random.choice('0123456789ABCDEF') for j in

→֒range(6)])
nodes.append({"name": org, "color": color})
found_orgs.append(org)

edge_list.append({"source": org, "target": node_id, "place": place})
print(nodes[:1])
print(edge_list[:1])
print(len(nodes))

[{'name': '0_Thabo Simon AARON', 'color': 'green', 'place': 'Bethulie'}]

[{'source': 'ANC', 'target': '0_Thabo Simon AARON', 'place': 'Bethulie'}]

1021

Let’s break this down. First, we create three separate lists that we will append to:

nodes = []
edge_list = []
found_orgs = []

https://pd.isnull(row.ORG

Social Network Analysis 275

The list nodes will contain a list of all nodes for the graph. The list edge_list will
contain all the edges in our graph. The list found_orgswill be an easy way to knowwhich
organizations have already been found. This is to prevent us from adding an organization
into our nodes list more than once.

Next, we begin iterating over our DataFrame and creating a unique node_id for each
person. Remember, some individuals have the same first and last names. This means we
need to assign a unique number to their name as well. We also want to give each node some
extra metadata, namely the place that is referenced in their description and the color of
green. This will keep all individuals in our graph the same node color.

for idx, row in df.iterrows():
node_id = f"{idx}_{row.First} {row.Last}"
place = row.Place
nodes.append(({"name": node_id, "color": "green", "place": place}))

After this, we want to then add each organization to the node list if it does not appear
already in there and then add an edge between it and the individual towhich it is connected.

if pd.isnull(row.ORG) == False:
orgs = row.ORG.split("|")
for org in orgs:

if org not in found_orgs:
color = "#"+''.join([random.choice('0123456789ABCDEF')

→֒for j in range(6)])
nodes.append({"name": org, "color": color})
found_orgs.append(org)

edge_list.append({"source": org, "target": node_id, "place":
→֒place})

Not all individual’s, however, are connected to organizations. Sometimes, our ORG
column is null. For this reason, we use the condition:

if pd.isnull(row.ORG) == False:

This checks to see if the ORG column is empty. If it is, we ignore it. If not, then we split
up all the organizations into individual strings and then check to see if is in found_orgs.
If not, then we assign it a random color and add it to our list of nodes. Next, we add it to
found_orgs so that we do not add it again.

Once we have created our data, we can save each the node list and the edge list to CSV
files.

node_df = pd.DataFrame(nodes)
node_df.to_csv("../data/nodes.csv", index=False)
node_df.head(1)

name color place
0 0_Thabo Simon AARON green Bethulie

edge_df = pd.DataFrame(edge_list)
edge_df.to_csv("../data/edges.csv", index=False)
edge_df.head(1)

source target place
0 ANC 0_Thabo Simon AARON Bethulie

https://pd.isnull(row.ORG
https://pd.isnull(row.ORG

276 Introduction to Python for Humanists

16.7 SNA on Humanities Data: Creating the Graph

Now that we have created our node data and edge data, let’s go ahead and load them via
Pandas.

import pandas as pd

nodes_df = pd.read_csv("../data/nodes.csv")
edges_df = pd.read_csv("../data/edges.csv")

nodes_df.head(1)

name color place
0 0_Thabo Simon AARON green Bethulie

edges_df.head(1)

source target place
0 ANC 0_Thabo Simon AARON Bethulie

With this data, we can now construct a node list and edge list with just a few lines of
Python. In the code below, we will be iterating over each DataFrame and creating lists of
nodes and lists of edges sin the format that NetworkX expects. Remember, NetworkXwants
to see each node in a node list rendered like this:

(NODE_ID, {METADATA})

Each edge in the edge list should be rendered like this:

(EDGE_SOURCE, EDGE_TARGET, {METADATA})

Remember, that these must be tuples and the metadata must be stored in the final index
with each key being an attribute and each value being the value of that attribute.

nodes = []
edges = []
for idx, row in nodes_df.iterrows():

nodes.append((row["name"], {"color": row.color, "place": row.place, "title":
→֒row["name"]}))
for idx, row in edges_df.iterrows():

edges.append((row.source.strip(), row.target, {"place": row.place}))

nodes[0]

('0_Thabo Simon AARON',
{'color': 'green', 'place': 'Bethulie', 'title': '0_Thabo Simon AARON'})

edges[0]

('ANC', '0_Thabo Simon AARON', {'place': 'Bethulie'})

Social Network Analysis 277

16.7.1 Building the Network

from pyvis.network import Network
import networkx as nx

Now that we have our data structured correctly, we can begin constructing our network
with NetworkX. We will first create our Graph class (G) and then add the nodes from our
list of nodes and our edges from our list of edges.

G = nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)

Whenworkingwith larger datasets, calculating the physics can often be time consuming
when the PyVis HTML graph loads. For this reason, it can be useful to calculate the
placement of the x and y coordinates beforehand. NetworkX gives us the ability to do this
by leveraging the method of the algorithm we wish to use. In our case, we will use the
spring_layout(). This method will take a single argument, the graph that we want to
process. In our case, this is G.

This will return a list of lists. Each sublist will be x and y coordinates.

pos = nx.spring_layout(G)
pos['2_Nzaliseko Christopher ABRAHAM']

array([0.15706733, -0.01991105])

16.7.2 Visualizing the Network

First, we want to create our PyVis graph. We will be setting notebook to True because we
are working within a Notebook.

net = Network(notebook=True)
net.from_nx(G)

Local cdn resources have problems on chrome/safari when used in jupyter-
→֒notebook.

Let’s first take a look at the first node in our graph. We can access this individual’s node
by grabbing index 0 in the nodes attribute of our net object.

net.nodes[0]

{'color': 'green',
'place': 'Bethulie',
'title': '0_Thabo Simon AARON',
'size': 10,
'id': '0_Thabo Simon AARON',
'label': '0_Thabo Simon AARON',
'shape': 'dot'}

Now we want this node to have an x and a y coordinate as attributes and we want this
data to come from the pos object above which contains the data about each node’s position
in the graph. To manually add these attributes to our nodes, we can use a for loop and
create a new key of x and y and add those to each node.

278 Introduction to Python for Humanists

for node in net.nodes:
x, y = pos[node["id"]]
node["x"] = x*10000
node["y"] = y*10000

net.nodes[0]

{'color': 'green',
'place': 'Bethulie',
'title': '0_Thabo Simon AARON',
'size': 10,
'id': '0_Thabo Simon AARON',
'label': '0_Thabo Simon AARON',
'shape': 'dot',
'x': 220.5653302371502,
'y': 175.43811351060867}

Now that we have our PyVis graph created and assigned x and y coordinates, we can
start to do somemore advanced things. I can useget_adj_list() to create a dictionary of
all nodes. Each key will be a unique node id. The values will be sets (lists with only unique
items in each index) that correspond to the nodes to which they are connected. Because the
purpose of this graph is to visualize relationships between people and organizations, set
will include only organizations referenced in that individual’s description.

neighbor_map = net.get_adj_list()

neighbor_map["0_Thabo Simon AARON"]

{'ANC', 'ANCYL', 'Police', 'SAP'}

In the PyVis official documentation, this data is used to generate a title that will pop up
when an individual hovers over it. It is modified slightly to replace the
 HTML tag
with \n.

for node in net.nodes:
node["title"] += " Neighbors:\n" + "\n".join(neighbor_map[node["id"]])

net.nodes[0]

{'color': 'green',
'place': 'Bethulie',
'title': '0_Thabo Simon AARON Neighbors:\nSAP\nANCYL\nPolice\nANC',
'size': 10,
'id': '0_Thabo Simon AARON',
'label': '0_Thabo Simon AARON',
'shape': 'dot',
'x': 220.5653302371502,
'y': 175.43811351060867}

The number of connections in our graph also tells us the relative importance of a node.
Remember, we have all individuals connected to organizations; we do not have individuals
connected to other individuals. This means the organizations in our graphwill have a larger
number of connections. What if we wanted to use that information to increase the size of
each node in the graph based on the number of unique connections? For this, we can set a
node’s value based on the length of connections found in the neighbor_map.

Social Network Analysis 279

for node in net.nodes:
node["value"] = len(neighbor_map[node["id"]])

net.nodes[0]

{'color': 'green',
'place': 'Bethulie',
'title': '0_Thabo Simon AARON Neighbors:\nSAP\nANCYL\nPolice\nANC',
'size': 10,
'id': '0_Thabo Simon AARON',
'label': '0_Thabo Simon AARON',
'shape': 'dot',
'x': 220.5653302371502,
'y': 175.43811351060867,
'value': 4}

Now that we have all of our data, we can now visualize it all. Because we already
calculated the physics of our graph, we do not want to enable physics, so we will set that to
False.

net.toggle_physics(False)
net.save_graph("trc_graph.html")

The generated graph may be a bit difficult to interpret as the default window is quite
zoomed out. This is because there are a lot of nodes in our graph that do not have any
connections. A graph is a visual representation of mathematical relationships between
nodes. The weaker nodes, or those with fewer connections, appear further away from the
center of the graph. Likewise, stronger clusters, or those collection of nodes with the highest
number of connections, will appear closer to the center. The gravity of these larger nodes
push the smaller nodes with fewer connections further away in a spring loaded graph.

Because this is a dynamic graph, you can zoom in to examine the cluster if you are
viewing this textbook online.

16.7.3 Adding Menus

Finding and isolating specific nodes in a large graph can be a bit difficult as well. What if
you wanted to see where a specific node appeared? You would need to keep searching until
you found that node. PyVis offers a solution to this problem with two types of menus. The
first is a Select Menu. This allows you to select a specific node in the graph and highlight
it. Depending on the graph size, it may take a few seconds for this visualization to take
place. You can create a select menu with your graph by passing a keyword argument of
select_menu and setting it to True when you first create your PyVis graph and call the
Network class, like so:

net = Network(select_menu=True)

Note, if you are using a Jupyer Notebook to analyze your graph, this menu will appear
but your graph data will not. This is due to the extra layer of JavaScript found within the
HTML file. In order to visualize this graph, you will need to open it as a separate HTML
file. The code below would create the same graph as above, but with a Select Menu.

net = Network(select_menu=True)
net.from_nx(G)

(continues on next page)

280 Introduction to Python for Humanists

(continued from previous page)

neighbor_map = net.get_adj_list()
for node in net.nodes:

x, y = pos[node["id"]]
node["x"] = x*10000
node["y"] = y*10000
node["title"] += " Neighbors:\n" + "\n".join(neighbor_map[node["id"]])
node["value"] = len(neighbor_map[node["id"]])

net.toggle_physics(False)
net.save_graph("trc_graph_select.html")

When you open the generated HTML file, you will see this:

FIGURE 16.1
Demonstration of Network Graph with a Select Menu.

You can the select a node in the graph and highlight that particular node. Let’s say I
wanted to see all nodes connected to the ANC in the graph. I would select ANC. The graph
will then highlight that particular node and its connections.

FIGURE 16.2
Demonstration of Selecting Item in Select Menu.

Social Network Analysis 281

FIGURE 16.3
Demonstration of Filter Menu in the Application.

FIGURE 16.4
Demonstration of Selecting Filters in the Filter Menu.

PyVis also offers a way to filter the graph with a Filter Menu. The filter menu allows
you to find nodes or edges that have specific metadata. In the previous notebook, we made
sure that our nodes and edges contained metadata about the place that was connected to it.
This means that we can isolate the relevant edges or nodes in the graph with this metadata.
Again, this makes it a lot easier to find relevant material and identify patterns in your data
that may not be so easy to do as raw data. We can create a Filter Menu by passing
a keyword argument filter_menu when we create the Network class and setting it to
True.

net = Network(select_menu=True, filter_menu=True)
net.from_nx(G)
neighbor_map = net.get_adj_list()
for node in net.nodes:

x, y = pos[node["id"]]
node["x"] = x*10000
node["y"] = y*10000

(continues on next page)

282 Introduction to Python for Humanists

(continued from previous page)

node["title"] += " Neighbors:\n" + "\n".join(neighbor_map[node["id"]])
node["value"] = len(neighbor_map[node["id"]])

net.toggle_physics(False)
net.save_graph("trc_graph_select_filter.html")

When you open the HTML file that is created, you will see the following graph:
Notice the addition of the Filter Menu below the Select Menu. You can select

between nodes or edges as the item to filter and then select which piece of metadata. In
our case, we want to filter by place. We then select the place that we want to isolate and
view. In our case, let’s view Durban. We can then press Filter and view the results.

16.7.4 Conclusion

Applying SNA to humanities data is not always the right solution to the problem, but if
you are dealing with many pieces of data that are interconnected with different types of
relationships, it can offer you a great way to quickly get a sense of patterns that you may
otherwise miss. As a humanist, you can then use this information to generate questions or
perhaps have a specific collection of sources or nodes that you can explore more closely.
This chapter has not covered all aspects of SNA nor all the libraries for performing it via
Python, but you should have a strong enough basis to begin applying it to your own data
with minor modifications.

Part IV

Designing an Application with
Streamlit

https://taylorandfrancis.com/

17
Introduction to Streamlit

In this part of the textbook, we will learn how to build a custom application in Python
with Streamlit and host that application in the cloud. In Chapter 18, we cover the basic
of Streamlit, its utility, the key terminology, and how to display data on a page for a user.
Here, readers will gain an understanding of the main widgets Streamlit offers, how to use
them andwhy their useful. In Chapter 19, we dive into more advanced features of Streamlit
to produce better looking and more complex applications by creating data visualizations,
controlling the layout of our application, caching data, leveraging custom HTML, and how
to designmulti-page apps. In Chapter 20, readers will build upon this knowledge and learn
how to develop a custom application and deploy it on Streamlit Share. We will design a
database querying application that will be based around Pandas.

17.1 Creating Our First App

17.1.1 Options for Application Development in Python

In Python, there are several options available to those interested in designing applications.
Selecting the right one depends on a few different factors, from customization, deployment
(where the application will sit), performance, and speed with which it can be designed.
Five years ago, if one wanted to design an application in Python, one needed to use the
library Tkinter. This would have a Python-based application that could run locally. The key
issue with Tkinter is that it has a steep learning curve, it can only run locally (unless you
are willing to package a massive and slow .exe for a simple application), and its aesthetics
leaves something to be desired.

If one wanted to deploy an application on the web, there were two options available
to researchers until a few years ago: flask and Django. Django has a steep learning curve
but allows users to design and build entire websites that are entirely Python based. It
also requires a detailed knowledge of servers in order to get an app running in the cloud
effectively. Flask is a simplified version of Django that does not require knowledge of server
side development for deployment.

Today, there are two options that allow researchers to make applications in minutes. The
first is Bokeh. Bokeh allows one to create a Python server based application or write custom
JavaScript functions that allow for an application to be compiled and distributed as a single
HTML file. Bokeh excels at interactive applications where a user can manipulate a graph
that simultaneously changes the output of a table, for example.

For this textbook, we will learn how to design applications with Streamlit. I have chosen
Streamlit for this textbook for a few reasons. First, Streamlit is relatively easy to learn. You
can have your first application up and running in minutes. Second, it is well-maintained.
This means that new features are added regularly. The maintainers of the library listen

DOI: 10.1201/9781003342175-21

http://dx.doi.org/10.1201/9781003342175-21

286 Introduction to Python for Humanists

to their users and consistently provide features that they need. Third, Streamlit was just
purchased by Snowflake which means it should continue to exist far into the future. This
means that this section of the textbook will not likely go out of date quickly. Fourth, spaCy
has pre-built Streamlit components, meaning you can create a spaCy-based application in
seconds, not hours. Fifth, Streamlit has a large community and an active forum and Discord
channel. This means that if you need to do something in Streamlit, there is likely a tutorial
available; if you encounter a bug, there is likely a solution on the forum; if a solution is not
on the forum, someone will help you if you ask.

All of these reasons make Streamlit the logical choice for a textbook designed for those
with limited coding experience.

17.1.2 Installing Streamlit

In order to begin designing applications with Streamlit, you first need to install it. Like all
other Python libraries, you can do so by using pip. Once you execute the code below, you
will install Streamlit locally.

pip install streamlit

Remember, if you are installing Streamlit via a Jupyter Notebook, you will need to add
a leading !:

!pip install streamlit

The entire Streamlit application used for teaching purposes in this book can be found
in the main repository under streamlit_application. To view the application while
reading the book, you can run the following command:

streamlit run Home.py

If you have installed Streamlit correctly, you should see a Streamlit application in your
browser. In this section, we will learn about all the features covered in the demonstration
application. In the final section of this chapter, wewill learn how to build a basic application
involving real-world humanities data.

17.1.3 Creating a Home Page

To get startedwith Streamlit, you only need one Python (.py) file. This will be themain page
of your application. For our purposes, wewill call this Home.py. Once you have created the
Python file, you should import Streamlit. You can do sowith the following command on the
first line of the Python file.

import streamlit as st

Note that we are importing Streamlit specifically as st. This adheres to the official
Streamlit documentation. One should stick to this convention as nearly all Streamlit users
follow this and it is expected. It will, therefore, make your code easier to understand for
others and it will also make it easier for you to debug issues that surface as your code will
conform to the expected standards.

Once you have created your file, you can run the following command in your command
line:

streamlit run Home.py

Introduction to Streamlit 287

This will create your application on a local server (on your local computer) and populate
that server in your browser. Streamlit functions by continuing to run the Python script
in the background. This means that as you develop your application, you can see those
developments in real time. In the top-right corner, you will see a hamburger icon (three
horizontal lines, see Figure 17.1). If you click this button, you will see several options. One
of these is Rerun. This will let you rerun your application in real-time.

FIGURE 17.1
Location of the Hamburger Icon.

17.2 Displaying Data in Streamlit

Streamlit offers numerous ways to display different types of data. In this section, we will
be looking at a few of those methods from raw text, to structured markdown, to Pandas
DataFrames, and even images.

17.2.1 Displaying Text to Users

Once you have imported streamlit, you can use the Streamlit library to create an appli-
cation with just a few lines of code. To follow along in the repository, you can view the
01-Displaying Data.py file or the Displaying Data page of the application.

Streamlit offers a number ofways to display information to the users of your application.
One of the most common things we must convey to a user is text. This can be a title, it can

288 Introduction to Python for Humanists

explain basic information about the application, or it can be to display results from some
prompt. Streamlit offers several ways to display information to users.

st.title

Every application needs a name. If you want the title of your application to stand out on
the page, you can use st.title() to output a title on your application page. This will take
one argument, a string which will be your application title. It is entirely optional to have a
title. To add the title, you would place the following line into your Python file.

st.title("This a Title.")

Once you have added this to your Python file, you can hit refresh in your Streamlit
application, and you should see a title page now appear at the top of your page.

st.header

Now that we have a title, we can add some extra layers to our application, rather like a
traditional HTML website. We can add headers, for example, with st.header(). Again,
this will take a single argument, the text that you wish to display as a header. You can add a
header to your application by adding the following line to the same Python file and hitting
refresh:

st.header("This a Header.")

Notice that our header appears belowour title. This is because Streamlit reads the Python
file top-to-bottom as it reruns in the background. If you want an item to appear higher
in the application, you must place it earlier in your Python file. Additionally, you can use
containers which we will meet later in this chapter.

st.subheader

Just like st.header, st.subheader adds a subheading to your application to allow
you to have even greater nested structure. If you add the following line to your Python file
and hit refresh, you will see a subheading appear.

st.subheader("This a Subheader.")

st.write

The most common way to display text to a user is with st.write(). With this
command, we can pass a single argument, some sort of data that we want to display. Let’s
use this command and display the string “This is text.”. To do this, we would add the
following line to our Python file:

st.write("This is text.")

Streamlit’s st.write is quite powerful. As we will see below, it can display data
structures, such as lists and dictionaries, as well as entire dataframes, automatically.

st.caption

In Streamlit, it may be necessary to caption something. Aswewill see, images can be cap-
tioned separately. To caption something in your application, you will use st.caption().
Again, this will take a single argument, the string that we wish to display as a caption. We
can add a caption to our application by adding the following line to our Python file:

Introduction to Streamlit 289

st.caption("This a Caption.")

st.markdown

Finally, we have st.markdown. Markdown is a type of language that allows you to
structure text quickly. Markdown is easy-to-read for both humans and machines and is the
standard language used for README pages. Markdown files end with a .md extension.

Streamlit allows users to leverage the power ofmarkdown inside a Streamlit application.
This means that we can read in a markdown file stored in the same directory as our
application and automatically display that file’s contents in our application. This is really
useful when you have pages or sections on a page that require longer section of text or,
perhaps, things like lists. These types of long strings can often crowd a Python file. In
our demonstration Streamlit application, for example, we can see this in action with the
following lines added to our Python file.

with open("./markdown/sample.md", "r") as f:
markdown_text = f.read()

st.markdown(markdown_text)

As we will learn later in this book, st.markdown can also be used to display HTML
which makes it even more powerful.

17.2.2 Displaying Python Data Structures

It is often necessary to display rawdata inside an application either during the development
phase of the application or in production (when users will engage with the app). Streamlit
has two different ways to display data with the same results: st.write() or st.json().
On the surface, they both do the same thing, but st.json allows you to set an expanded
keyword argument to True or False. This allows you to control if the data appears in its
entirety in the application or as a expandable option within the application.

17.2.2.1 Data Structures with st.write()

Let’s first test this out with st.write(). We can use the following two lines to create a
dictionary called names and then st.write() to display that data.

names = {"people": ["Tom", "Mary", "Fred", "Stephanie"]}
st.write(names)

The output will look like Figure 17.2 in your application.

17.2.2.2 Data Structures with st.json()

For our second option, we can use st.json, but note that we are able to specify expanded
here as a keyword argument.

names = {"people": ["Tom", "Mary", "Fred", "Stephanie"]}
st.json(names, expanded=False)

The output will look like Figure 17.3 in your application.

17.2.3 Displaying Tabular Data

There are four ways to display tabular data within Streamlit.

https://open("./markdown/sample.md

290 Introduction to Python for Humanists

FIGURE 17.2
Example of Dictionary Output with st.write().

FIGURE 17.3
Example of Dictionary Output with st.json().

• st.write() (defaults to st.dataframe())

• st.dataframe()

• st.table()

• st.markdown()

While on the surface, these may all seem to display the same data, understanding what
each does is important so that you can have your application do precisely what you wish.

17.2.3.1 Tabular Data with st.write()

If you are trying to test an application quickly and just want to display tabular data without
any extra customization, then st.write() is perfectly suitable. If Streamlit detects a
Pandas DataFrame as the object that is being passed to st.write(), it will automatically
output that data via st.dataframe().

st.write(df)

17.2.3.2 Tabular Data with st.dataframe()

If you want to have more control over how your tabular data is displayed in your
application, you may want to use st.dataframe instead. By using st.dataframe, you
can control the width and height of the displayed dataframe.

st.dataframe(df, height=750)

The output will look like Figure 17.4 in your application.
With both st.write() and st.dataframe, users will be given a Streamlit dataframe

display. This means that they can highlight certain parts of the dataframe, expand cells to

Introduction to Streamlit 291

FIGURE 17.4
Example of DataFrame Output with st.dataframe().

read longer text, and sort the data. In other words, the dataframe is an entirely interactive
display widget.

17.2.3.3 Tabular Data with st.table()

One of the downsides the st.dataframe display is that the interactivity comes at the cost
of aesthetics. If you are working with humanities data, you may have a lot of text in your
tables. That text can be difficult for viewers to read in the standard st.dataframe output.
In these situations, st.tablemay be more appropriate.

st.table(df)

17.2.3.4 Tabular Data with st.markdown()

A key limitation of both the st.table() and st.dataframe is that they do not offer a
way to display images. With markdown, we can easily display images within our tables.
This, however, comes at the cost of not being able to sort the output. We will learn how
to do this later when we work with custom HTML in our Streamlit application. For
now, understand that you can convert a Pandas DataFrame to markdown by using the
to_markdown()method.

st.markdown(df.to_markdown())

17.2.4 Displaying Multimedia in Streamlit

Streamlit also offers the ability to easily add multimedia into your application. For all three
types of media (images, audio, and video), Streamlit allows you to place the media in the
app in four ways:

292 Introduction to Python for Humanists

• file path

• from a url

• from a NumPy Array

• from bytes

Each of these has its own uses. If the media you have is available locally within the app
(such as logos and design elements), from file path usually makes the most sense. If your
data sits on a server on the Web, then url is the right choice. These will be images that do
not sit within the code of your application or in the local directory. When you have a user
input media data into the app (via file upload), you will want to load the data via NumPy
Array or Bytes. We will see these last two in action during the final chapter of this section
when we apply Streamlit to develop real digital humanities applications.

17.2.4.1 Images

If we are working with images, we can load a local image with the following line:

st.image(path_to_image)

17.2.4.2 Audio

For audio, we would use the following line:

st.audio(path_to_image)

17.2.4.3 Video

For video we would use the following line:

st.video(path_to_image)

17.3 Streamlit Input Widgets

Often when you are designing your application, you will need a way to allow the user to
interact with the app. When this occurs, you want a way to do something that that user
input. There are many ways that we can allow a user to interact with our data in Streamlit.
In this section, we will cover five of the main categories:

• text input

• numerical input

• date input

• boolean input

• selection input

Introduction to Streamlit 293

Cheatsheet for Widgets in Streamlit

Widget Return Description

text_input string A small text region
text_area string A large text region
number_input integer or float A typed number input
slider integer or float A slider for number input
date_input timeseries A calendar for selecting a date
time_input timeseries A dropdown menu for selecting a time
checkbox Boolean A checkbox for marking something as true or false
button Boolean A button for triggering an event
radio string A selection for a single option
selectbox string A selection for a single option (dropdown menu)
multiselect list A selection for multiple options (dropdown menu)

17.3.1 Text Input Widgets

Streamlit offers two ways to allow users to input textual data into an application. You can
either usest.text_input() orst.text_area(). Both essentially do precisely the same
thing, that is, return a string from the user; but each should be used in specific situations.
Streamlit’s st.text_input() is designed for shorter text (such as names, queries, etc.),
while st.text_area() should be used for longer string input data, such as text that can
be processed via a spaCy pipeline.

17.3.1.1 st.text_input()

user_text = st.text_input("Input some text here")
st.write(user_text)

The output will look like Figure 17.5 in your application.

FIGURE 17.5
Example of the st.text_input(). Widget

17.3.1.2 st.text_area()

To create a text area style input, you can use the precise same code, but replacetext_input
with text_area. Both of these classes also let us pass an additional argument for some
default text as the second parameter. We can add some default text that will prepopulate
the text field with a predetermined string.

294 Introduction to Python for Humanists

default_text = st.text_area("Input some text here", "default text")
st.write(default_text)

The output will look like Figure 17.6 in your application.

FIGURE 17.6
Example of st.text_area()Widget.

17.3.2 Numerical Input Widgets

While you could let a user input numerical data inside of st.text_input()or
st.text_area(), this really would be inappropriate. Both of these input options return
strings. This means that if you gave the user the ability to input numerical data, you would
have to convert it to either an integer or float. In addition to this, the text input widgets do
not offer any special keyword arguments that you can pass to the widget that are specific
to numerical data, such as minimum value and maximum value.

It is far better in these scenarios to use one of two options for numerical input.

17.3.2.1 st.number_input()

The first option is st.number_input(). This feature lets a user input a numerical data
that they can tick up or down via a minus or plus sign in the widget. The widget will return
an integer or float, depending on how you structure the widget.

Users can also manually type in a specific number. Another feature of this widget is
the ability to specify a minimum value (with the min_value argument) and maximum
value (with the max_value argument). You can also give the user a default value by setting
the value argument to a specific number. Finally, you can even provide a step argument
which will step up every n-numbers, so a step of “2” would increase the value by two each
time the user clicks the plus symbol in the widget.

user_number = st.number_input("Input Number",
min_value=1,
max_value=10,
value=5,
step=1)

st.write(user_number)

The output will look like Figure 17.7 in your application.

17.3.2.2 st.slider()

Another way to let a user input data is via the st.slider()widget. This widget will also
return an integer or a float, depending on if your values are in decimal form.

Introduction to Streamlit 295

FIGURE 17.7
Example of st.number_input()Widget.

slider_number = st.slider("Select your Number",
min_value=1,
max_value=10,
value=5,
step=1)

st.write(slider_number)

The output will look like Figure 17.8 in your application.

FIGURE 17.8
Example of st.slider()Widget.

17.3.3 Date and Time Input Widgets

Working with dates and times is essential in a lot of applications and Streamlit has two
widgets for receiving time-series data. Both will require the use of the built-in library
datetime, so be sure to import this if you intend to work time time-series data in your
application.

17.3.3.1 st.date_input()

The first widget is st.date_input(), this allows you to receive a date object which will
allow you to structure robust logic, such as finding all data that fall between a start date and
end date. When creating the widget, you can simply use the defaults, but if you expect all
your data to fall between two dates, it may be wise to set minimum and maximum values.
You can do this via the datetime library datemethod. You should ensure that all values
in the st.date_input()widget conform to the following format:

datetime.date(2000, 6, 12)

In practice, this is what your widget would look like:

296 Introduction to Python for Humanists

import datetime
user_date = st.date_input("Select your Date",

value = datetime.date(2000, 6, 12),
min_value = datetime.date(2000, 1, 12),
max_value = datetime.date(2001, 1, 12)
)

st.write(user_date)

The output will look like Figure 17.9 in your application.

FIGURE 17.9
Example of st.date_input(). Widget.

17.3.3.2 st.time_input()

You can do precisely the same thing with time via the st.time_input() widget. With
time, however, we cannot set min or max values. Also, unlike the st.date_input(), the
st.time_input() will use the timemethod from the datetime library.

import datetime
user_time = st.time_input("Select your Time",

value = datetime.time(6, 12),
)

st.write(user_time)

The output will look like Figure 17.10 in your application.

17.3.4 Boolean Input Widgets

Another important feature for controlling the logic of your application is understanding
Boolean (True or False) values from a user input. In Streamlit, we have two ways of using
Boolean inputs to control the logic and they both function a bit differently.

Introduction to Streamlit 297

FIGURE 17.10
Example of st.time_input(). Widget.

17.3.4.1 st.checkbox()

The first is st.checkbox(). This allows us to create a checkbox. Its state can be constantly
changed. So a box can be checked or unchecked. As a user changes the state of the checkbox,
the Boolean output from thewidget will change.We can create a checkboxwidget andwrite
out the results with the following lines of code.

checked = st.checkbox("Select this checkbox")
st.write(f"Current state of checkbox: {checked}")

The output will look like Figure 17.11 in your application.

FIGURE 17.11
Example of st.checkbox()Widget.

17.3.4.2 st.button()

Unlike the st.checkbox() widget, the st.button() widget will have a continuous
state. Thismeans that once the button is clicked, its Boolean output valuewill forever change
unless you specifically change it in your script. In other words, the button’s state at the
start of the application is False, but once a user clicks the button, that state will be True
continuously. This is important because it means that the click of a button can trigger a
one-time event, such as draw a map or run a machine learning model.

You can create a basic button with the code sample below.

state = st.button("Click to Change current state")
st.write(f"Button has been pressed: {state}")

298 Introduction to Python for Humanists

The output will look like Figure 17.12 in your application.

FIGURE 17.12
Example of st.button()Widget.

17.3.5 Selection Widgets

The final collection of important widgets in Streamlit are the selection widgets. These allow
you to give users a set of options to choose from. There are three types of selection widgets.

17.3.5.1 st.radio()

The first is st.radio(). This widget allows you to give the user the ability to second one
item from a list of options. Only one option can be selected by the user.

You can use the code below to give the user the ability to choose between three different
colors.

options = ["Red", "Blue", "Yellow"]
radio_selection = st.radio("Select Color", options)
st.write(f"Color selected is {radio_selection}")

The output will look like Figure 17.3 in your application.

FIGURE 17.13
Example of st.radio()Widget.

The st.radio()widget will return a string of the selected option.

17.3.5.2 st.selectbox()

The same logic holds true for the st.selectbox() widget. The only difference between
this and the st.radio()widget is the aesthetic way the options are presented. Aselectbox
is often more appropriate if you are presenting a user with a larger selection of options,
which would be clunky with radio buttons. This will return a string of the selected item.

options = ["Red", "Blue", "Yellow"]
selectbox_selection = st.selectbox("Select Color", options)
st.write(f"Color selected is {selectbox_selection}")

Introduction to Streamlit 299

The output will look like Figure 17.14 in your application.

FIGURE 17.14
Example of st.selectbox()Widget.

17.3.5.3 st.multiselect()

The final selection widget is the st.multiselect()widget which allows a user to select
multiple items from a selectbox. This will return a list of the selected items in the options.

options = ["Red", "Blue", "Yellow"]
multiselect_selection = st.multiselect("Select Color", options)
st.write(f"Color selected is {multiselect_selection}")

The output will look like Figure 17.15 in your application.

FIGURE 17.15
Example off st.multiselect()Widget.

https://taylorandfrancis.com/

18
Advanced Streamlit Features

18.1 Data Visualization

When working with large quantities of data, it can often be difficult to present that data in
a way that makes sense to non-experts. In these situations, we often rely on some form of
chart to represent our data. Creating quality graphs in Python requires a lot of practice, but
quality charts can be produced with Matplotlib, Altair, PyDeck, PyVis, Plotly, and Bokeh.
Each has their own strengths. In this section, we will not go into these libraries, rather we
will focus on how to present these different types of graphs in Streamlit.

In Streamlit, we can leverage these libraries to produce visually appealing charts in just
a few lines of code. We will focus on three types of graphs: Basic Plot Graphs, Map Graphs,
and Network Graphs.

18.1.1 Metrics

Before we address plots, we should spend a brief moment and think about how we display
raw numerical quantitative data. We could display the length of a dataframe or the word
count of some text st.write(). Again, while this would be quick to do, it would not allow
you to display other important information, such as how that number has changed from
a previous state. Nor would it allow you to easily represent the change in a positive or
negative direction without complex JavaScript and HTML. In these scenarios, we would
want to use st.metric().

By default, the metric will display a numerical output of some sort. This number could
also be a string representation of a number, e.g. temperature. Let’s say, we wanted to create
a simple applicationwhere a user could copy-and-paste some text into a st.text_area()
field. The appwould split up thewords at everywhite space and then provide the user with
the total word count.

import streamlit as st
text = st.text_area("Paste text here to get word count.", "This is some
→֒default text.")
word_count = len(text.split())
st.metric("Word Count", word_count)

The output will look like Figure 18.1.
Since we are using the st.metric() widget, however, we can also pass in a keyword

argument that displays the degree to which the metric changed from the previous state. To
do this, we will need to leverage the Streamlit Session State, which we will meet later in this
chapter. This allows us to store a variable across different runs of the application. For now,
we can ignore this bit of the code below and focus on the third argument that we passed to
metric, change. This will display a change feature in the widget that will show the up or
down trend of the change in green and red color, respectively.

DOI: 10.1201/9781003342175-22

http://dx.doi.org/10.1201/9781003342175-22

302 Introduction to Python for Humanists

FIGURE 18.1
Example of Standard st.metric()Widget.

if "prev_word_count" not in st.session_state:
st.session_state["prev_word_count"] = 5

text = st.text_area("Paste text here to get word count.", "This is some
→֒default text.")
word_count = len(text.split())
change = word_count-st.session_state.prev_word_count
st.metric("Word Count", word_count, change)
st.session_state.prev_word_count = word_count

The output will look like Figure 18.2.

FIGURE 18.2
Example of st.metric()Widget with Change.

Metric is a useful feature that allows us to create apps that display numerical data in
easy-to-understand ways. But in other situations, a single qualitative number may not be
appropriate. Here is where charts come in handy.

18.1.2 Plotting Basic Graphs with Streamlit

We can plot basic graphs in Streamlit by passing a Pandas dataframe to different chart
widgets in Streamlit. The first basic plot we can create is a line chart which we can create
with the Streamlit widget st.line_chart(). We will be working with the Titanic dataset
here that we first met in Part II of this textbook. To prepare the data for visualization, we
need to modify it a bit and group everything by the specific value that we want to plot.

Advanced Streamlit Features 303

FIGURE 18.3
Example of Streamlit Line Chart.

In our case, we want to visualize the number of survivors for different age groups on the
Titanic. We can prepare our dataframe with the code below.

df = pd.read_csv("data/titanic.csv")
df = df[["Age", "Survived"]]
chart_df = df.groupby(["Age"]).sum()
chart_df["Age"] = chart_df.index

18.1.2.1 Line Charts with st.line_chart()

Once we have created our new chart_df, we can pass it to st.line_chart(). Here, we
will pass the entire dataframe as the first argument and specify our x axis and y axis on
the graph. In our case, we want to view the Age column on the x axis and the Survived
column on the y axis.

st.line_chart(chart_df, x="Age", y=["Survived"])

The output will look like Figure 18.3.

18.1.2.2 Bar Charts with st.bar_chart()

Likewise, we can present this same data as a bar_chart with the widget st.bar_chart().
This will take the same arguments as above.

st.bar_chart(chart_df, x="Age", y=["Survived"])

The output will look like Figure 18.4.

18.1.2.3 Area Charts with st.area_chart()

And finally we can also use the same arguments to create an area chart with the
st.area_char() widget.

304 Introduction to Python for Humanists

FIGURE 18.4
Example of Streamlit Bar Chart.

FIGURE 18.5
Example of Streamlit Area Chart.

st.area_chart(chart_df, x="Age", y=["Survived"])

The output will look like Figure 18.5.

18.1.3 Map Charts

A lot of digital humanities data is geospatial, or data that can be plotted on a map. Streamlit
affords the ability to map geospatial data in several different ways; first, via the standard
st.map() widget and second via the third-party chart libraries. Regardless of the library
used, you will want to prepare your data well where your coordinates are labeled as either
lat or latitude for the latitude and lon or longitude for the longitude. For this

Advanced Streamlit Features 305

demonstration, we will be working with data from South Africa’s Truth and Reconciliation
Commission that we met in Part IV of this textbook when we explores Social Network
Analysis.

In order to prepare the dataframe, we can use the following code:

df = pd.read_feather("data/trc")
df = df.dropna()
df = df[["full_name", "long", "lat"]]
df["lat"] = pd.to_numeric(df["lat"], downcast="float")
df["long"] = pd.to_numeric(df["long"], downcast="float")
df.columns = ["full_name", "lon", "lat"]

18.1.3.1 Creating Maps with st.map()

Once the data is prepared properly, we can then graph it with the standard Streamlit widget
st.map() with a single line of code:

st.map(df)

The output will look like Figure 18.6.

FIGURE 18.6
Example of st.map() Output.

Each node on this graph is a row in the dataframe. This is an interactive map that users
can zoom in to each node on the graph. While this is useful for users to get a sense of the
geospatial data quickly, the Streamlit st.map()widget is limited in what it can do.

18.1.3.2 Third-Party Maps – An Example with PyDeck

For more advanced mapping features, you will need to rely on third-party libraries.
Fortunately, Stremalit has wrappers pre-designed so that you can leverage the power and
versatility of these other libraries all within your application Python file.

For our purposes, we will use Streamlit’s built in PyDeck wrapper with the
st.pydeck_chart() widget. The code below will create a similar graph, but note that
because we are creating a PyDeck map, rather than a standard Streamlit map, we can
leverage the full power of the PyDeck library, including giving tooltips that pop out for

306 Introduction to Python for Humanists

each node, the radius of our nodes, the degree to which they come off the map in three
dimensional space, the pitch of the map, and the default zoom.

st.pydeck_chart(pdk.Deck(
map_style=None,
initial_view_state=pdk.ViewState(

latitude=-25.97,
longitude=30.50,
zoom=5,
pitch=0,

),
layers=[

pdk.Layer(
"ScatterplotLayer",
df,
pickable=True,
opacity=0.8,
stroked=True,
filled=False,
radius_scale=6,
radius_min_pixels=1,
radius_max_pixels=1000,
line_width_min_pixels=5,
get_position="[lon, lat]",
get_radius="radius",
get_fill_color=[255, 140, 0],
get_line_color=[255, 140, 0],

),
],

))

The output will look like Figure 18.7.

FIGURE 18.7
Example of Streamlit PyDeck Map.

https://longitude=30.50
https://latitude=-25.97

Advanced Streamlit Features 307

18.2 Layout Design

Controlling the layout of an application is essential from both an aesthetic and program-
matic perspective. In Streamlit, we have a number of ways to control our app’s layout.
Streamlit offers six different ways of controling the layout of your application through
widgets. Further customization is also possible by controling the page configuration of your
application as well as custom HTML. Here, we will focus on the first two; we will treat
custom HTML later in this section.

18.2.1 Layout Widgets

18.2.1.1 Sidebar

The sidebar is one of themore useful layout features in Streamlit. If you are creating amulti-
page app, you will have a sidebar by default. If, however, you are not using a multi-page
app, you simply need to do something within the st.sidebar() widget and the sidebar
will automatically appear for you. We can access the sidebar widget at any place in our
Python file by writing st.sidebar.[widget]().

If we were to use the following code in our Python file, for example, we would
immediately have a sidebar with a header entityled Sidebar Header.

st.sidebar.header("Sidebar Header")

The output will look like Figure 18.8.
Notice on the left-hand side of the application, we have our header appear. We can

populate any widget we desire into the sidebar by calling st.sidebar and then following
this up with .[widget].

18.2.1.2 Columns

Wecan also control the horizontal layout of our applicationwith Streamlit’sst.columns()
widget. This will take a single mandatory argument, an integer that corresponds to the
number of columns you wish to create. This will return a list of column widgets that you
can write to. As with the sidebar, to write to the column widget, you will use its variable
name proceeded by .[widget (write, header, etc.)].

st.header("Columns")
cols = st.columns(2)
cols[0].write("Column 1")
cols[1].write("Column 2")

The output will look like Figure 18.9.

18.2.1.3 Expander

In some cases, we will want to allow a user to view a large amount of data, but this will
detract from the application and put some of themain features very low on themain page of
the app. In these, cases wewant a user to be able to expand certain aspects of the application
when they wish and compress them when they are finished using them. Streamlit comes
built with this feature in the st.expander()widget.

Once we create an expander in our application, we can then insert any other Streamlit
we wish inside of it, just like columns and the sidebar. In the code below, we are creating a
simple expander and then writing into it.

308 Introduction to Python for Humanists

FIGURE 18.8
Example of a Streamlit Sidebar.

FIGURE 18.9
Example of Streamlit Columns.

Advanced Streamlit Features 309

expander = st.expander("This is an Expander")
expander.write("This is some text in an expander...")

The output will look like Figure 18.10.

FIGURE 18.10
Example off Streamlit Expander.

Notice how we see a new widget on our page. In the top-right corner, you can press the
carrot and the expander will reveal the contents.

FIGURE 18.11
Example of Opened Expander.

18.2.1.4 Container

We also have the ability to create containers in our application with the st.container()
widget. Remember, Streamlit widgets are populated in the order that Streamlit reads your
Python file. This means that if your user performs an action and you want to display that
data later in your file, then that data will populate at the bottom of your application. This is
not ideal. In these scenarios, you need away to populate a result higher in your application’s
page. You can do this with the container. The container will sit in that precise position and
it can then be populated at a later time.

st.header("Container")
container = st.container()
container.write("This is some text inside a container...")

The output will look like Figure 18.12.

18.2.1.5 Tabs

In Streamlit, we can also make tabs so that a single page can host several different pages
within it. This is useful if you are working with multiple datasets or collections of items
that need to be displayed individually, but there is not enough space in your app to display
all data sequentially. We create tabs in Streamlit via the st.tabs() widget. This will take
a single argument which will be a list of tab names.

310 Introduction to Python for Humanists

FIGURE 18.12
Example of a Streamlit Container.

In the sample code below, we create the tabs on line 1 and then iterate over them to
populate each tab with a unique message via st.write().

tabs = st.tabs(["Tab 1", "Tab 2"])
for i, tab in enumerate(tabs):

tabs[i].write(f"Tab {i+1}")

The output will look like Figure 18.13.

FIGURE 18.13
Example of Streamlit Tabs.

18.2.1.6 Empty

The final layout widget in Streamlit is st.empty(). This takes no arguments. It sits
on the page, rather like the st.container() widget, but unlike st.container(),
st.empty()will only display the most recent item sent to it. This is useful in rather niche
scenarios when you want to display data individually. You can use the following code to
iterate over a list of names. Note in the image below that only the last name on the list
appears. This is because it was the final item in the list.

st.header("Empty")
empty = st.empty()
items = ["Tom", "Fred", "Stephanie"]
for item in items:

empty.write(item)

The output will look like Figure 18.14.

18.3 Streamlit Cache and Session States

Being able tomakemoremodular, custom, anddynamic applicationsmeans getting to know
how to leverage advanced features in Streamlit when it comes to working with data stored
in memory. In Streamlit, we have two ways to store data in memory, either by caching the
data with @st.cache_data or with the st.session_state.

Advanced Streamlit Features 311

FIGURE 18.14
Example of Streamlit Empty.

18.3.1 Caching Data with @st.cache_data

Whenworkingwith large data-drivenprojects, run timewill become an issuewith Streamlit.
This is because Streamlit reruns the Python file each time something changes in the
application.With large datasets, this means that each time a user does anything within your
application, Streamlit will need to reload all the data. For this reason, it is essential to know
how to store large datasets (or models) in cache so that Streamlit does not need to reload
large memory-intensive data or models each item it reruns.

We can cache our data with an @st.cache_data above a function that loads the data.
If we wanted to load our Titanic dataset and store it in memory, therefore, we would use
the following code snippet:

@st.cache_data
def load_df():

df = pd.read_csv("./data/titanic.csv")
return df

This is precisely the code that we will walk through when we create our first application
in Streamlit later in this part of the textbook.

18.4 Storing Data with st.session_state

Aside from storing large data with cache, we can also store previous states of data with the
st.session_state. The Streamlit Session State gives greater flexibility to an application.
It functions as a dictionary that stores data that remains the same during any given state
of the app. This means that if your app is rerun by the user because they interacted
with the application, then the variable stored in the session state would remain the
same.

This is essential for more complex data-driven applications. Let’s consider the simple
example that we saw earlier in this chapter when we examined the st.metric()widget.

if "prev_word_count" not in st.session_state:
st.session_state["prev_word_count"] = 5

text = st.text_area("Paste text here to get word count.", "This is some
→֒default text.")
word_count = len(text.split())
change = word_count-st.session_state.prev_word_count
st.metric("Word Count", word_count, change)
st.session_state.prev_word_count = word_count

312 Introduction to Python for Humanists

In this sample, we start off with a conditional:

if "prev_word_count" not in st.session_state:

This line looks to see if a variable name that we want to use is stored in our session state.
If it is not stored there, then we want to create that new key. We do that with the following
line:

st.session_state["prev_word_count"] = 5

Here we are setting the prev_word_count key to 5.
Next, we give the user the ability to input some text for which they wish to receive a

word count. In order for the metric to know if the new metric is higher or lower than the
previous one, we must store the previous text’s total word count. To do this, we access the
previous session state in the final line of the snippet below.

text = st.text_area("Paste text here to get word count.", "This is some
→֒default text.")
word_count = len(text.split())
change = word_count-st.session_state.prev_word_count

Once we have populated those results, we then can update the st.session_state.
previous_word_count value to the new value. This allows us to always know the state
of the previous word count, so that when we display the change value, we know precisely
how much our metric has changed.

st.metric("Word Count", word_count, change)
st.session_state.prev_word_count = word_count

18.5 Custom HTML

Adding custom HTML in Streamlit allows you to develop more customized applications
that fit your need. While it is not always necessary, it is useful to understand how to embed
HTMLwithin an application.

CustomHTMLcan be added viast.markdown(). In order for yourHTMLto appear on
the page, however, youmust pass a keyword argument unsafe_allow_html=True. This
allows the HTML to be rendered. Let’s look at a basic example where we want to display
text with a background color of yellow. We can do this by wrapping our text in an a tag
in HTML and setting the style’s background color to yellow.

html = """
This text has a yellow background
"""
st.header("Without unsafe_allow_html=True")
st.markdown(html)

If we do not set unsafe_allow_html to True, then our result will look like
Figure 18.15.

If we do set it to True, then our result will look like Figure 18.16.
While this lets you design more robust apps, it does introduce certain security issues.

Advanced Streamlit Features 313

FIGURE 18.15
Example of Custom HTML in Streamlit when Blocked.

FIGURE 18.16
Example of Custom HTML in Streamlit when Allowed.

18.6 Multi-Page Applications

Finally, Streamlit allows users to design applications that have multiple pages. In order to
design a multi-page application, you must have a pages subfolder in your main directory.
All Python files inside this directory will be considered to be pages for your application.
If you wish to have your pages appear in a special order, you can do so by naming each
page 01-page name and 02-page_name. Streamlit will automatically remove the leading
numbers and dash.

https://taylorandfrancis.com/

19
Building a Database Query Application

Now that you know the basics of Streamlit and some of its more advanced features, then it
comes time to put that knowledge to practice. In this chapter, we will design a Streamlit
application from scratch. It will be built around the Titanic dataset that we used in the
Pandas portion of this textbook. We will not only design this application, we will also put
it in the cloud so that users can access it.

In Section 19.1 of this chapter we will walk through the basics of designing the appli-
cation in Python. In Section 19.2, we will then focus on getting our application running in
the cloud. The purpose of this chapter is to give you hands-on experience with designing
an application as well as provide a template for you to use in a future project that requires
querying a Pandas dataframe in Streamlit.

19.1 Building a Database Query Application

Throughout this section, we will be developing an application in Streamlit that looks like
Figure 19.1.

We will be working with the following code:

import streamlit as st
import pandas as pd

Cache our data
@st.cache_resource()
def load_df():

df = pd.read_csv("./data/titanic.csv")
survival_options = df.Survived.unique()
p_class_options = df.Pclass.unique()
sex_options = df.Sex.unique()
embark_options = df.Embarked.unique()

min_fare = df.Fare.min()
max_fare = df.Fare.max()

min_age = df.Age.min()
max_age = df.Age.max()

return df, survival_options, p_class_options, sex_options, embark_options, min_
→֒fare, max_fare, min_age, max_age

def check_rows(column, options):
return res.loc[res[column].isin(options)]

(continues on next page)

DOI: 10.1201/9781003342175-23

http://dx.doi.org/10.1201/9781003342175-23

316 Introduction to Python for Humanists

FIGURE 19.1
Example of the Demo Application.

(continued from previous page)

st.title("Demo DataFrame Query App")

df, survival_options, p_class_options, sex_options, embark_options, min_fare, max_
→֒fare, min_age, max_age = load_df()
res = df

name_query = st.text_input("String match for Name")

cols = st.columns(4)
survival = cols[0].multiselect("Survived", survival_options)
p_class = cols[1].multiselect("Passenger Class", p_class_options)
sex = cols[2].multiselect("Sex", sex_options)
embark = cols[3].multiselect("Embarked", embark_options)

range_cols = st.columns(3)
min_fare_range, max_fare_range = range_cols[0].slider("Lowest Fare", float(min_
→֒fare), float(max_fare),

[float(min_fare), float(max_fare)])
min_age_range, max_age_range = range_cols[2].slider("Lowest Age", float(min_age),
→֒float(max_age),

[float(min_age), float(max_age)])

if name_query != "":
res = res.loc[res.Name.str.contains(name_query)]

if survival:
res = check_rows("Survived", survival)

(continues on next page)

Building a Database Query Application 317

(continued from previous page)

if p_class:
res = check_rows("Pclass", p_class)

if sex:
res = check_rows("Sex", sex)

if embark:
res = check_rows("Embarked", embark)

if range_cols[0].checkbox("Use Fare Range"):
res = res.loc[(res.Fare > min_fare_range) & (res.Age < max_fare_range)]

if range_cols[2].checkbox("Use Age Range"):
res = res.loc[(res.Age > min_age_range) & (res.Age < max_age_range)]

removal_columns = st.multiselect("Select Columns to Remove", df.columns.tolist())
for column in removal_columns:

res = res.drop(column, axis=1)
st.write(res)

By the end of this chapter, you will be able to understand and parse each line of this
code.

19.1.1 Importing the Libraries

At the start of our Python file, we first import the required libraries. We are using Streamlit
for the app development and Pandas for working with our data.

import streamlit as st
import pandas as pd

19.1.2 Caching Data

Let’s examine the next section of code.

@st.cache_data
def load_df():

df = pd.read_csv("./data/titanic.csv")
survival_options = df.Survived.unique()
p_class_options = df.Pclass.unique()
sex_options = df.Sex.unique()
embark_options = df.Embarked.unique()

min_fare = df.Fare.min()
max_fare = df.Fare.max()

min_age = df.Age.min()
max_age = df.Age.max()

return df, survival_options, p_class_options, sex_options, embark_options, min_
→֒fare, max_fare, min_age, max_age

The first line is:

@st.cache_data

This decorator followed by st.cache_data establishes that resulting objects from the
function that proceeds it should be cached into memory.

The next line begins the creation of our function.

318 Introduction to Python for Humanists

def load_df():

Once we have defined our function we begin working with our data. First, we load the
data:

df = pd.read_csv("./data/titanic.csv")

Next, our application will leverage four st.multiselect()widgets for four different
columns in our dataframe. In order to populate a list of options for users to select, we need
to know the unique values of each column.We can grab each unique valuewith.unique()
on each column.

survival_options = df.Survived.unique()
p_class_options = df.Pclass.unique()
sex_options = df.Sex.unique()
embark_options = df.Embarked.unique()

Next, our applicationwill also leverage two sliders: one for Age and one for Fare. These
will allow a user to find results based on a person’s age or the fare of their ticket. We need to
know the max value and the minimum value for each of these so that we can automatically
set the slider minimum and maximum values.

min_fare = df.Fare.min()
max_fare = df.Fare.max()

min_age = df.Age.min()
max_age = df.Age.max()

Finally, we return all of these values so that when the function is called each of these will
be returned.

return df, survival_options, p_class_options, sex_options, embark_
→֒options, min_fare, max_fare, min_age, max_age

Once we have created this function, we can call it and create all the objects that we need
with the following code:

df, survival_options, p_class_options, sex_options, embark_options, min_
→֒fare, max_fare, min_age, max_age = load_df()

We will also create another object whose variable name will be res. This will be the
dataframe that gets manipulated by the user and populates the results in the app.

res = df

19.1.3 Creating Our App Layout

After preparing all the data, now comes the time to design the general layout of our
application. We use the following code:

name_query = st.text_input("String match for Name")

cols = st.columns(4)
survival = cols[0].multiselect("Survived", survival_options)
p_class = cols[1].multiselect("Passenger Class", p_class_options)
sex = cols[2].multiselect("Sex", sex_options)
embark = cols[3].multiselect("Embarked", embark_options)

(continues on next page)

Building a Database Query Application 319

(continued from previous page)

range_cols = st.columns(3)
min_fare_range, max_fare_range = range_cols[0].slider("Lowest Fare", float(min_
→֒fare), float(max_fare),

[float(min_fare), float(max_fare)])
min_age_range, max_age_range = range_cols[2].slider("Lowest Age", float(min_age),
→֒float(max_age),

[float(min_age), float(max_age)])

Let’s break down this section of the code. In the first line, we create an object
name_query. This will be a string that is returned from a st.text_input() widget. We
will use this input to query the Name field in the dataframe.

name_query = st.text_input("String match for Name")

Next, we will create four columns that we can populate with our st.multiselect()
widgets.

cols = st.columns(4)

Now that we have our columns, we can create our four st.multiselect() widgets.
The user will be able to select which items that want to see returned for each field in the
dataframe. Each of these will return a list of options. We will gather data for four fields:
Survived, Pclass, Sex, and Embarked.

survival = cols[0].multiselect("Survived", survival_options)
p_class = cols[1].multiselect("Passenger Class", p_class_options)
sex = cols[2].multiselect("Sex", sex_options)
embark = cols[3].multiselect("Embarked", embark_options)

Next, we need three new columns so that we can populate our two range sliders. We are
using three columns here so that there is a large gap between the two sliders.

range_cols = st.columns(3)

We will populate the first and last slider, we will place two st.slider() widgets. We
will use the minimum and maximum values for the Age and Fare fields in the dataframe.

min_fare_range, max_fare_range = range_cols[0].slider("Lowest Fare",
→֒float(min_fare), float(max_fare),

[float(min_fare), float(max_
→֒fare)])
min_age_range, max_age_range = range_cols[2].slider("Lowest Age",
→֒float(min_age), float(max_age),

[float(min_age), float(max_age)])

19.1.4 Using User Inputs to Produce a New DataFrame

With the general layout designed, we can then work with the input from the user to
modify our res dataframe. The following code manipulates the dataframe through a set
of conditions we generate from the user input.

if name_query != "":
res = res.loc[res.Name.str.contains(name_query)]

if survival:
res = check_rows("Survived", survival)

if p_class:

(continues on next page)

320 Introduction to Python for Humanists

(continued from previous page)

res = check_rows("Pclass", p_class)
if sex:

res = check_rows("Sex", sex)
if embark:

res = check_rows("Embarked", embark)
if range_cols[0].checkbox("Use Fare Range"):

res = res.loc[(res.Fare > min_fare_range) & (res.Age < max_fare_range)]
if range_cols[2].checkbox("Use Age Range"):

res = res.loc[(res.Age > min_age_range) & (res.Age < max_age_range)]
removal_columns = st.multiselect("Select Columns to Remove", df.columns.tolist())
for column in removal_columns:

res = res.drop(column, axis=1)
st.write(res)

First, we check to see if the user has written anything in the st.text_input()widget.
If it is, then we will narrow the dataframe down to anything that matches the user’s string.

if name_query != "":
res = res.loc[res.Name.str.contains(name_query)]

For each of the st.multiselect() widget inputs, we check to see if the user has
selected how to narrow the dataframe:

if survival:
res = check_rows("Survived", survival)

if p_class:
res = check_rows("Pclass", p_class)

if sex:
res = check_rows("Sex", sex)

if embark:
res = check_rows("Embarked", embark)

Next, we will use the input from the minimum and maximum values of the sliders for
Age and Fare. So that we do not ignore results where Age or Fare are NaN in the dataset,
we want to give the user the ability to check an st.checkbox() widget. This will allow
the user to activate or deactivate the sliders.

if range_cols[0].checkbox("Use Fare Range"):
res = res.loc[(res.Fare > min_fare_range) & (res.Age < max_fare_

→֒range)]
if range_cols[2].checkbox("Use Age Range"):

res = res.loc[(res.Age > min_age_range) & (res.Age < max_age_range)]

We also want to give the user one final input, the ability to narrow down and delete
columns from the dataset. The reason for this is because not all fields will be relevant to
every user and since this is a large dataset, it makes sense to give them the ability to limit
which fields they are seeing to the ones they want.

removal_columns = st.multiselect("Select Columns to Remove", df.columns.
→֒tolist())
for column in removal_columns:

res = res.drop(column, axis=1)

Building a Database Query Application 321

Aswehavemanipulated theresdataframe throughout each of these lines,we are finally
ready to display the data:

st.write(res)

19.2 Deploying an App in the Cloud with Streamlit Share

Once you have designed an application and have tested it locally, it comes time to share
it with others. We can do this with Streamlit by leveraging several different cloud-based
services. Fortunately, Streamlit offers a free Streamlit Share service that lets users share their
apps for free.

19.2.1 Create a GitHub Account

In order to deploy your application, you will need a place to store your application’s source
code. The easiest way to do this is via GitHub which Streamlit and many other application
hosting services support.

19.2.2 Upload Application to GitHub

Once you have created your GitHub account, you can create a repository and upload the
code into the repository. If you are just starting out with GitHub, getting used to Git can
be a bit daunting. Git is powerful, but has a steep learning curve. It allows you to maintain
your code, especially in teams, and version control everything. This means that your code
is always backed up and you can access previous versions of your code at any single time.

To upload your application formally, you would want to be familiar with Git and how
to perform basic tasks, such as cloning a repository, adding files to it, committing those
changes, and then pushing them to the repository. While this is the better approach, it is
not the only one. For now, you can get your application up and running entirely in your
browser.

First, we will create a new repository. To do this, we will go to our GitHub main page
and select New, found in the top-left side of your screen.

Once you click New, you will see the screen in Figure 19.3.
Here, we will fill out the details of our repository. We need to first give it a unique

name. We can keep all other settings the default for now. Once done, we will click Create
repository. After this, you will see a new screen that looks like Figure 19.4.

You will now select creating a new file. Once you do, you will see a screen that
looks like Figure 19.5.

Here, youwill create a file called README.md and assign some text to it. This will ideally
describe your application. It will be what users see when they visit your GitHub repository.
Once you have a description you are happy with, click Commit new file. This will lead
to a final new screen.

Next, we need upload our application and data to our repository. To do this, we will
click Add file and upload our local files that are necessary for running our Streamlit
application. You will also want to make a requirements.txt file lists all required
libraries, such as Pandas.

322 Introduction to Python for Humanists

19.2.3 Connect Streamlit Share to your GitHub

Now that we have our repository created, we need to link Streamlit Share to our GitHub.
To do so, you will need to visit https://share.streamlit.io/Once on this page, you
will see a screen that looks like Figure 19.6.

SelectContinue with GitHub and use yourGitHub credentials for login verification.
Once you are logged in, you will see a screen that looks like this at the top:

19.2.4 Create a New App

Select New App. After a few seconds, you will be taken to a page that looks like this:
Click on each of these fields. First, select your repository. Streamlit will be connected

to your GitHub, so you will be able to see all your repositories, both private and public.
Next, select the branch of your repository. We have not covered branches in this textbook.
Branches are a function of Git. By default, your application will be on the main branch of
your repository. Finally, select the main Python file in which your application rests. Once
you have filled out these three fields, click Deploy!.

19.2.5 Set Custom Subdomain

It will take several minutes (depending on the complexity of your application and the
number of required libraries you wish to have installed). At this point, Streamlit Share is
building an environment on a server to host your application in the cloud. Once complete,
it will provide you with a unique domain for your application with the extension. This will

FIGURE 19.2
Creating a New GitHub Repository by Selecting New.

https://share.streamlit.io

Building a Database Query Application 323

FIGURE 19.3
Example of GitHub Form for Creating New Repository.

FIGURE 19.4
Example of First Screen after Creating New Repository.

324 Introduction to Python for Humanists

FIGURE 19.5
Example of Creating your First File and Commit in the New Repository.

FIGURE 19.6
Example of Adding Files to the New Repository.

Building a Database Query Application 325

FIGURE 19.7
Connecting GitHub to Streamlit Share.

FIGURE 19.8
Form for Creating a New Application.

be based on your repository name and your GitHub username. We can create a custom
subdomain for free by returning to our Streamlit Share homepage and selecting the three
dots next to our application’s name.

Once here, select Settings and you will see a page that looks like Figure 19.7.
Note that in the middle of the screen, you will see your long subdomain. You can now

change it to something unique and easier to remember for distributing to users. After you
change your subdomain, click Save.

Now, your app is in the cloud with a unique and easy-to-remember subdomain!

326 Introduction to Python for Humanists

FIGURE 19.9
Select the Settings for your Application.

FIGURE 19.10
The Default URL for your Application.

FIGURE 19.11
The New URL for your Application.

Part V

Conclusion

https://taylorandfrancis.com/

20
Conclusion

This textbook has introduced you to some of the key concepts and terminology associated
with Python. It has also given you the tools necessary to begin applying Python to your
own projects. While Part I sought to give you the basic coding skills necessary to begin
programming in Python, the later parts of this textbook gave you the basis to begin applying
Python to specific digital humanities problems, fromdata analysiswith Pandas, toNLPwith
spaCy, topic modeling with Top2Vec, social network analysis with NetworkX and PyVis,
and how to create applications in short time with Streamlit.

While this textbook was not able to cover all aspects of Python or even all the ways to
apply it in the digital humanities, you should now have a resource to return to for code and
exposition on key methods. This will not be the end of your programming journey, rather
the beginning. From here, you can begin to learn on your own and expand your knowledge.

DOI: 10.1201/9781003342175-25

http://dx.doi.org/10.1201/9781003342175-25

https://taylorandfrancis.com/

Index

A

Advanced Pandas
graphing network data with pandas

customize the graph, 139–140
data from pandas to NetworkX,

138–139
data graphing, 139

plotting data with Pandas
bar and barh charts, 126–128
importing DataFrame, 125–126
pie charts, 128–130
scatter plots, 130–138

time series data, 141
convert to time series datetime in

Pandas, 149–153
data from float to int, 143–149
dataset, 141–143

Anaconda Navigator, 13–15
Append method, 33
AttributeError, 33
Attributes, 66
Automation, 5

B

Bar chart, 126–128
Barh charts, 126–128
BeautifulSoup, 55, 66–68, 71–73
BERT, 198, 240
Bigrams, 214–215
Binary, 30
Binder, 8, 9
Bitter Aloe Project, 141
Blank spaCy Model, 199
Bokeh, 269, 285
BookNLP

book_id, 242
booknlp.process(), 243
with books and larger documents, 240

character analysis
.book JSON data, 253
character_data, 254
function’s code, 252–253
printTop, 254
verb usage, 254–255

creating pipeline, 241–242
description, 239
events analysis

.events file, 261

.tokens file, 256–257
event columns, 257, 258
event_lemma, 260
event_word, 260
isnull() method, 257
sentence, 260
sentence_ID column, 259–260
words and lemmas, 258–259

event tagging, 240
importing, 241–242
input_file, 242
installation, 241
model key, 242
model_params, 242
on non-standard English, 240
out-of-vocabulary (OOV) words, 240
output_directory, 242
output files

.book file, 248–251

.book.html File, 252

.entities file, 245–247

.quotes file, 247

.supersense file, 248

.tokens file, 244–245
pipeline key, 242
quotation speaker identification, 240
referential gender inferencing, 240

Booleans, 30
Bugs, 21
Built-in types, 19–21

332 Index

C

Capitalize method, 26
Case sensitivity, 18
Classes, 51

adding functions to, 53–54
creation, 52–53

Close tag, 66
Code learning, 3

benefits, 5–6
Coding basics

bugs, 21
built-in types, 19–21
case sensitivity, 18
objects, 17
print function, 16–17
reserved words, 18–19
type function, 21
variables, 17–18

Comparison operators, 41
Conditionals, 43

elif functions, 44–45
else statement, 44
if statement, 43–44
‘in’ function, 44–45
lists with ‘in’ and ‘not in,’ 45–46

CSV data, 59
CSV library, 77

D

Data, 23; see also Data structures
booleans, 30
float to int, 143–149
graphing, 139
numbers (integers and floats), 28

as data, 29
strings, 24–25
strings as data, 25

capitalize method, 26
lower method, 26
replace method, 26–27
split method, 27–28
upper method, 26

Database query application
app layout, 318–319
caching data, 317–318
demo application, 316
deploying app with Streamlit share

connecting Streamlit Share to GitHub,
322, 324

creating new app, 322
custom subdomain creation, 322, 325,

326
GitHub account creation, 321
upload application to GitHub, 321,

323, 324
developing application, 315–317
importing libraries, 317
new dataframe creation, 319–321

DataFrame, 77
add column to, 81–82
cleaning

convert DataFrame data types (Float
to Int), 105–106

drop Column in Pandas DataFrame,
101–103

remove rows have NaN in any
column, 104

remove rows have NaN in specific
column, 104–105

create from dictionary, 78–79
display, 79–80
finding data

dataset with describe(), 89
find column data, 85–86
grab specific range of rows with

df.iloc[], 88
query with “or” (|) on DataFrame,

93–95
quick sense of dataset with df.head(),

86–87
specific information in dataset with

df.loc, 89–93
Titanic dataset, 85

grab specific row with iloc, 83
iterating over with df.iterrows(), 84
organization

reverse sort data by single column,
97–98

sort data by multiple columns, 98–100
sort data by multiple columns with

different values, 100–101
sort data by single column, 95–97

read from CSV, 80–81
save to CSV, 80

save to JSON, 81
Data on web

HTML, 65

Index 333

attributes, 66
diving into, 65–66
parsing with BeautifulSoup, 66–68

web pages scraping
with BeautifulSoup, 71–73
with requests, 70–71
website’s HTML, 69–70

Data searching
advanced searching on strings

features within string, 109–110
strings without feature, 110
using RegEx with Pandas, 110–112

filter function, 113–116
grouping, 121

with groupby() function, 121–122
with many subsets, 124
quantitative analysis with.count(),

122–123
quantitative analysis with.sum(),

122–123
working with multiple groups,

123–124
query function, 116–120

Dataset, 141–143
Data structures, 23, 24, 30–31

dictionaries, 34–35
list, 31–32
mutability vs. immutability, 33
sets (bonus data structure), 33–34
tuples, 32–33

Data types, 24
Debug, 25
Debugging, 21
def (defining function), 47
Dictionaries, 34–35
DiGraph, 266
Directory, 61–63
“Div” tags, 65, 67, 69, 70, 72
Django, 285
Docstring, 49
Domain knowledge, 3

E

Elif function, 44–45
Else statement, 44
EntityRuler spaCy

adding to spaCy pipeline, 173
analyze_pipes(), 175–176
assigning after “ner” pipe, 176

complex rules, 177
demonstration of, 173–176
factory, 173
full documentation of, 173
model instructions, 174
purpose of, 173
variance, 177

Enumerate, 40–41

F

Filter function, 112–116
Final Report, 141
Flask, 285
Floats, 28, 29
For loop, 37–39
Functions, 47

in action, 47–49
docstring, 49
keyword arbitrary arguments, 50–51
keyword argument, 50
with multiple arguments, 49–50

G

GitHub, 39
Glob, 60–61
Google Colab, 7–9
Graphing network data with pandas

customize the graph, 139–140
data from pandas to NetworkX, 138–139
data graphing, 139

Graph theory, 263
Grouping, 121

with groupby() function, 121–122
with many subsets, 124
quantitative analysis with.count(),

122–123
quantitative analysis with.sum(), 122–123
working with multiple groups, 123–124

H

Holocaust named entity recognition (NER)
datasets

concentration camps, 195
normalizing data, 196–197
rules-based EntityRuler, 196

334 Index

United States Holocaust Memorial
Museum (USHMM), 195–196

ethical resolution, 197
linguistic resolution, 197–198
rules-based pipeline

Blank spaCy Model, 199
camp_patterns, 199
camp_ruler, 199
EntityRulers, 199–200
extracted entities, 207–209
finding ships, 203–205
finding streets, 202–203
full-text matching, 201–202
geography pipe creation, 206–207
ghettos identification, 206
Matching RegEx, 200–202
military personnel identification, 205
spouses identification, 205–206

toponyms, 198
HTML, see HyperText Markup Language
HuggingFace, 239
Humanities data, social network analysis

(SNA)
data examination, 273–275
edge_list, 275
Filter Menu, 281, 282
found_orgs, 275
get_adj_list(), 278
Graph class (G), 277
nodes and edges, 274–276
PyVis graph, 277–279
Select Menu, 279, 280
spring_layout(), 277

HyperText Markup Language (HTML), 65,
71, 73

attributes, 66
diving into, 65–66
parsing with BeautifulSoup, 66–68

I

If statement, 43–44
Immutable objects, 27
Indexing, 31

dictionaries, 34–35
a list, 31–32
a list with and without enumerate, 40–41

Index location, 83
Integers, 28, 29

J

JavaScript Object Notation (JSON), 59, 80
JSON data, 59

reading data with json.load(), 60
writing data with json.dump(), 59–60

JupyterBook, 9–11
JupyterLab, 14, 16
JupyterNotebook, 54, 78
Jupyter Notebooks online, 11–13

K

Keyword arbitrary arguments, 50–51
Keyword argument, 50

L

Large digital projects, 3
Latent Dirichlet Allocation (LDA) topic

modeling
bag-of-words (BOW) dictionary, 216
label assigning, 218
lemmatization, 216
limitations, 218
punctuation removal, 216
in Python

cleaning documents, 220
corpus, 222
Gensim library, 218
get_document_topics(), 222
get_topic_terms() method, 223
ID-Word Index creation, 220–222
id2word, 222
LdaModel class, 219
libraries and data importing, 218–219
Natural Language Toolkit (NLTK)

installation, 218
num_topics, 222
PyLDAVis library, 218, 224

stopwords removal, 216
trial-and-error passes, 217
word order, 217

Latin, 5
LDA topic modeling, see Latent Dirichlet

Allocation (LDA) topic modeling
Libraries, 54

import a library, 55
installation, 54–55

List, 31–32

Index 335

comprehension, 39–40
conditionals with ‘in’ and ‘not in’, 45–46
convert a column to, 83
indexing with and without enumerate,

40–41
Loops, 37

indexing list with and without
enumerate, 40–41

list comprehension, 39–40
for loops, 37–39
operators, 41–42
while loops, 42–43

Lower method, 26

M

Machine learning-based approach, 212
Matcher spaCy

.add method, 178
adding in sequences, 182
basic pattern creation, 178
Doc container, 178
end token, 179
first_match object, 179
grabbing all proper nouns, 181
greedy keyword argument, 181–182
lexeme, 179
LIKE_EMAIL attribute, 178
Matcher class, 178
multi-word tokens, 181
nlp vocab, 178
rules-based pattern matchers, 178
start token, 179
token attributes, 179–180

Mathematical operations, 29
Methods, 51
Minimum viable product (MVP), 4
Multiple argument, 49–50
Multiple nested directories, 61
Mutability vs. immutability, 33
Mutable objects, 27
MVP, seeMinimum viable product

N

NaN
cells, 150
remove rows in any column, 104
remove rows in specific column, 104–105

NetworkX, 138–139

add_edges_from() method, 265–266
adding color to nodes, 271–273
asymmetrical networks, 266–267
connections calculation, 268
degree of focus, 268
destination node, 265
DiGraph, 266
draw_networkx() function, 265
limitations, 268–269
Matplotlib, 264
NetworkX Graph class, 265
NetworkX nx.Graph(), 270
node centrality calculation, 268
node degree value calculation, 268
nx.degree_centrality(), 268
plt.show(), 265
shortest distance calculation, 267–268
source node, 265

New Notebook, 10, 11
Numbers (integers and floats), 28

as data, 29

O

Objects, 17
OCR, see Optical Character Recognition
Open-source, 54
Operators, 41–42
Optical Character Recognition (OCR), 5

P

Pandas, 7, 55, 77
add column to DataFrame, 81–82
cleaning DataFrame

convert DataFrame data types (Float
to Int), 105–106

drop Column in Pandas DataFrame,
101–103

remove rows have NaN in any
column, 104

remove rows have NaN in specific
column, 104–105

convert column to list, 83
create DataFrame from dictionary, 78–79
display a DataFrame, 79–80
finding data in DataFrame

dataset with describe(), 89
find column data, 85–86

336 Index

grab specific range of rows with
df.iloc[], 88

query with “or” (|) on DataFrame,
93–95

quick sense of dataset with df.head(),
86–87

specific information in dataset with
df.loc, 89–93

Titanic dataset, 85
grab specific column, 82–83
grab specific row of DataFrame with iloc,

83
import Pandas, 78
installation, 78
isolating unique values in column, 83
iterating over DataFrame with

df.iterrows(), 84
organizing DataFrame

reverse sort data by single column,
97–98

sort data by multiple columns, 98–100
sort data by multiple columns with

different values, 100–101
sort data by single column, 95–97

read DataFrame from CSV, 80–81
save DataFrame to CSV, 80
save DataFrame to JSON, 81

using RegEx with, 110–112
Parse, 66
Pclass, 90, 94, 96, 98, 116, 119
PhraseMatcher

custom attribute, 184–185
on_match patterns, 185–186
PhraseMatcher class, 183

PI, see Principal investigator
Pie charts, 128–130
Pip, 54, 55
Pipe, 94
Plotting data with Pandas

bar and barh charts, 126–128
importing DataFrame, 125–126
pie charts, 128–130
scatter plots, 130–138

Positional arguments, 49, 50
Principal investigator (PI), 3, 4
Print function, 16–17
Programming languages, 6
Pseudo-code, 37, 46
PyDeck, 305–306
Python, 6; see also individual entries

coding basics
bugs, 21
built-in types, 19–21
case sensitivity, 18
objects, 17
print function, 16–17
reserved words, 18–19
type function, 21
variables, 17–18

installation, 7
Binder from JupyterBook, 9–11
Google Colab, 7–9
Jupyter Notebooks online, 11–13
local installation, 13–15
Trinket, 7

Python 2, 6
Python 3, 6
Python 3 Kernal, 10
Python script, 17, 25, 58
PyVis

adding color to nodes, 271–273
basics of, 269–270
Bokeh, 269
installation, 269
PyVis Network class, 271

Q

Query function, 112, 116–120

R

Regular Expressions (RegEx), 25
finding and retrieving patterns, 186
matching RegEx, 200–202
multi-word token entities

multi-word tokens extraction, 191
priority to longer spans, 193–194
reconstruct spans, 192
Span to original_ents, 192–193

in Python, 186–188
replacing matching patterns, 186
search engines, 186
in spaCy, 188–191
strengths of, 186

weaknesses of, 186
Replace method, 26–27
Requests, 55
Requests library, 70–71
Reserved words, 18–19

Index 337

Root directory, 62, 63
Rules-based methods, 212

S

Scatter plots, 130–138
Scraping websites, 66
Self-reliant digital humanist, 4–5
Self-reliant humanist, 3
Selinium, 66
Sets (bonus data structure), 33–34
Single argument, 49
Social network analysis (SNA)

on humanities data
data examination, 273–275
edge_list, 275
Filter Menu, 281, 282
found_orgs, 275
get_adj_list(), 278
Graph class (G), 277
nodes and edges, 274–276
PyVis graph, 277–279
Select Menu, 279, 280
spring_layout(), 277

NetworkX, 276, 277
add_edges_from() method, 265–266
adding color to nodes, 271–273
asymmetrical networks, 266–267
connections calculation, 268
degree of focus, 268
destination node, 265
DiGraph, 266
draw_networkx() function, 265
limitations, 268–269
Matplotlib, 264
NetworkX Graph class, 265
NetworkX nx.Graph(), 270
node centrality calculation, 268
node degree value calculation, 268
nx.degree_centrality(), 268
plt.show(), 265
shortest distance calculation, 267–268
source node, 265

PyVis
adding color to nodes, 271–273
basics of, 269–270
Bokeh, 269
installation, 269
PyVis Network class, 271

spaCy, 239

EntityRuler
adding to spaCy pipeline, 173
analyze_pipes(), 175–176
assigning after “ner” pipe, 176
complex rules, 177
demonstration of, 173–176
factory, 173
full documentation of, 173
model instructions, 174
purpose of, 173
variance, 177

GPE label, 174
Matcher

adding in sequences, 182
.add method, 178
basic pattern creation, 178
Doc container, 178
end token, 179
first_match object, 179
grabbing all proper nouns, 181
greedy keyword argument, 181–182
lexeme, 179
LIKE_EMAIL attribute, 178
Matcher class, 178
multi-word tokens, 181
nlp vocab, 178
rules-based pattern matchers, 178
start token, 179
token attributes, 179–180

PhraseMatcher
custom attribute, 184–185
on_match patterns, 185–186
PhraseMatcher class, 183

Regular Expressions (RegEx)
finding and retrieving patterns, 186
implementation, 188–191
multi-word token entities, 191–194
replacing matching patterns, 186
search engines, 186
strengths of, 186
weaknesses of, 186

Split method, 27–28
StackOverflow, 6, 25, 40
Streamlit

basic graphs plotting
area charts, 303, 304
bar charts, 303, 304
line charts, 303
st.line_chart(), 302

cache, 310–311

338 Index

customHTML, 312–313
data storage, 311–312
data structures displaying

st.json(), 289, 290
st.write(), 289, 290

database query application (see Database
query application)

home page creation, 286–287
input widgets

Boolean inputs, 296–298
cheatsheet, 293
date and time input, 295–296
numerical input, 294–295
selection widgets, 298–299
text input, 293–294

installation, 286
layout design

columns, 307, 308
container, 309, 310
empty, 310, 311
expander, 307, 309
sidebar, 307
tabs, 309–310

map charts
creating maps with st.map(), 305
PyDeck, 305–306
st.map() widget, 304

metrics, 301–302
multi-page applications, 313
multimedia displaying, 291–292
session states, 310–311
tabular data displaying

st.dataframe(), 290–291
st.markdown(), 291
st.table(), 291
st.write(), 290

text displaying to users
st.caption(), 288
st.header(), 288
st.markdown, 289
st.subheader, 288
st.title(), 288
st.write(), 288

Strings, 24–25
advanced searching

features within string, 109–110
strings without feature, 110
using RegEx with Pandas, 110–112

as data, 25
capitalize method, 26

lower method, 26
replace method, 26–27
split method, 27–28
upper method, 26

Supervised learning, 212
SyntaxError, 25

T

Tabular data, 77
Tag, 65
Technical lead, 3, 4
Textual ambiguity, 214
Textual data, 57

“with” statement, 57
open text file, 57–58
write data to text file, 58

Third-party libraries, 25
Tighter code, 39
Time series data, 141

convert to time series datetime in
Pandas, 149–153

data from float to int, 143–149
dataset, 141–143

Titanic dataset, 85
Tkinter, 285
Top2Vec, 226

.get_topic_sizes(), 232

.get_topics() method, 232
bigrams, 235–236
drawbacks, 230
keyword arguments, 231
loading, 236–237
pip, 231
README on GitHub, 234–235
saving, 236–237
search_documents_by_topic()

method, 233
trigrams, 235–236

Topic modeling
cluster, 214
definition, 211
LDA topic modeling (see Latent Dirichlet

Allocation (LDA) topic modeling)
machine learning-based approach, 212
rules-based methods, 212
text classification, 212
topics, 213–214
transformer models

.encode() method, 226

Index 339

analyzing labels, 227–229
bag-of-word (BOW) index, 226
converting text into vector, 226
HDBScan, 225–227
outliers (noise), 229–230
Sentence Transformers installation,

225
Top2Vec, 226
UMAP, 225, 227

Toponyms, 198
Transformer-basedmachine learning

models, 198
Transformer models

bag-of-word (BOW) index, 226
HDBScan library, 225, 226
sentence transformers installation, 225
transformer-based topic modeling

libraries, 226
UMAP library, 225

Trigrams, 215
Trinket, 7
Truth and Reconciliation Commission

(TRC), 211
Tuples, 32–33
Type function, 21
TypeError, 49

U

United States Holocaust Memorial Museum
(USHMM), 195–196

Unsupervised learning, 212
Upper method, 26

V

Variables, 17–18

W

Web pages scraping
with BeautifulSoup, 71–73
with requests, 70–71

Web scraping, 65, 66
Website’s HTML, 69–70
While loop, 42–43
Wikipedia, 69
“With” statement, 57
Working with external data

working with JSON data, 59
reading data with json.load(), 60
writing data with json.dump(), 59–60

working with multiple files
grabbing multiple nested directories,

61
walking a directory, 61–63
working with glob, 60–61

working with textual data, 57
“with” statement, 57
open text file, 57–58
write data to text file, 58

Z

Zero-index language, 31

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	Part I The Basics of Python
	Chapter 1 Introduction to Python
	1.1 Introduction to Python
	1.1.1 Why Should Humanists Learn to Code?
	1.1.1.1 The Timeline for Starting a Large Digital History Project
	1.1.1.2 The Self-Reliant Digital Humanist
	1.1.1.3 Other Benefits

	1.1.2 What Is Python?
	1.1.3 Why Python?

	1.2 Installing Python
	1.2.1 Trinket
	1.2.2 Using Google Colab
	1.2.3 Using Binder from JupyterBook
	1.2.4 Using Jupyter Notebooks Online
	1.2.5 Installing Python Locally
	1.2.5.1 Download Anaconda Navigator
	1.2.5.2 Using Anaconda Navigator
	1.2.5.3 Installing JupyterLab

	1.2.6 Conclusion

	1.3 Coding Basics
	1.3.1 The Print Function
	1.3.2 Objects
	1.3.3 Variables
	1.3.4 Case Sensitivity
	1.3.5 Reserved Words
	1.3.6 Built-in Types
	1.3.7 Type Function
	1.3.8 Bugs

	Chapter 2 Data and Data Structures
	2.1 Introduction to Data
	2.1.1 What Is Data?
	2.1.2 Strings
	2.1.3 Working with Strings as Data
	2.1.3.1 Upper Method
	2.1.3.2 Lower Method
	2.1.3.3 Capitalize Method
	2.1.3.4 Replace Method
	2.1.3.5 Split Method

	2.1.4 Numbers (Integers and Floats)
	2.1.5 Working with Numbers as Data
	2.1.6 Booleans
	2.1.7 Conclusion

	2.2 Introduction to Data Structures
	2.2.1 Data Structures
	2.2.2 Lists
	2.2.2.1 Indexing a List

	2.2.3 Tuples
	2.2.4 Mutability vs Immutability
	2.2.5 Sets (Bonus Data Structure)
	2.2.6 Dictionaries
	2.2.6.1 Indexing Dictionaries

	Chapter 3 Loops and Logic
	3.1 Introduction to Loops
	3.1.1 What Are Loops?
	3.1.2 For Loops
	3.1.3 List Comprehension
	3.1.4 Indexing a List with and without Enumerate
	3.1.5 Operators
	3.1.6 While Loops

	3.2 Conditionals
	3.2.1 If Statement
	3.2.2 Else Statement
	3.2.3 Elif and the ‘in’ Operator with Strings
	3.2.4 Conditionals and Lists with ‘in’ and ‘not in’
	3.2.5 Conclusion

	Chapter 4 Formal Coding: Functions, Classes, and Libraries
	4.1 Functions
	4.1.1 Introduction
	4.1.2 Functions in Action
	4.1.3 Docstrings
	4.1.4 Functions with Multiple Arguments
	4.1.5 Keyword Argument
	4.1.6 Keyword Arbitrary Arguments
	4.1.7 Conclusion
	4.1.8 Answer for Result

	4.2 Classes
	4.2.1 Introduction
	4.2.2 Creating a Class
	4.2.3 Adding Functions to a Class

	4.3 Libraries in Python
	4.3.1 Introduction
	4.3.2 How to Install Python Libraries
	4.3.3 How to Import a Library
	4.3.4 Conclusion

	Chapter 5 Working with External Data
	5.1 Working with Textual Data
	5.1.1 Introduction
	5.1.2 The “With” Statement
	5.1.3 How to Open a Text File
	5.1.4 How toWrite Data to a Text File

	5.2 Working with JSON Data
	5.2.1 Introduction
	5.2.2 Writing JSON Data with json.dump()
	5.2.3 Reading JSON data with json.load()

	5.3 Working with Multiple Files
	5.3.1 Introduction
	5.3.2 Working with Glob
	5.3.3 Grabbing Multiple Nested Directories
	5.3.4 Walking a Directory
	5.3.5 Conclusion

	Chapter 6 Working with Data on theWeb
	6.1 Introduction to HTML
	6.1.1 Introduction
	6.1.2 Diving into HTML
	6.1.3 Understanding Attributes
	6.1.4 Parsing HTML with BeautifulSoup
	6.1.5 How to Find aWebsite’s HTML

	6.2 Scraping Web Pages with Requests and BeautifulSoup
	6.2.1 Introduction
	6.2.2 Requests
	6.2.3 BeautifulSoup

	Part II Data Analysis with Pandas
	Chapter 7 Introduction to Pandas
	7.1 Introduction to Pandas
	7.1.1 What Is Pandas?
	7.1.2 Why Use Pandas?
	7.1.3 How to Install Pandas
	7.1.4 How to Import Pandas

	7.2 The Basics of Pandas
	7.2.1 How to Create a DataFrame from a Dictionary
	7.2.2 How to Display a DataFrame
	7.2.3 How to Save DataFrame to CSV
	7.2.4 How to Read DataFrame from CSV
	7.2.5 How to Save DataFrame to JSON
	7.2.6 How to Add a Column to the DataFrame
	7.2.7 How to Grab a Specific Column
	7.2.8 How to Convert a Column to a List
	7.2.9 Isolating Unique Values in a Column
	7.2.10 How to Grab a Specific Row of a DataFrame with iloc
	7.2.11 Iterating over a DataFrame with df.iterrows()
	7.2.12 Conclusion

	Chapter 8 Working with Data in Pandas
	8.1 Finding Data in DataFrame
	8.1.1 About the Titanic Dataset
	8.1.2 How to Find Column Data
	8.1.3 How to Get a Quick Sense of the Dataset with df.head()
	8.1.4 How to Grab a Specific Range of Rows with df.iloc[]
	8.1.5 HowtoGet aQuickQuantitativeUnderstanding of theDatasetwith describe()
	8.1.6 How to Find Specific Information in the Dataset with df.loc
	8.1.7 How to Query with “OR” (|) on a DataFrame

	8.2 Organizing the DataFrame
	8.2.1 How to Sort Data By Single Column
	8.2.2 How to Reverse Sort Data by Single Column
	8.2.3 How to Sort Data by Multiple Columns
	8.2.4 How to Sort Data byMultiple Columns with Different Values Organized Differently

	8.3 Cleaning the DataFrame
	8.3.1 How to Drop a Column in Pandas DataFrame
	8.3.2 How to Remove Rows That Have NaN in Any Column
	8.3.3 How to Remove Rows That Have NaN in a Specific Column
	8.3.4 How to Convert DataFrame Data Types (from Float to Int)
	8.3.5 Conclusion

	Chapter 9 Searching for Data
	9.1 Advanced Searching on Strings
	9.1.1 Finding Features within a String
	9.1.2 Finding Strings That Don’t Contain Feature
	9.1.3 Using RegEx with Pandas

	9.2 Filter and Querying
	9.2.1 Introduction
	9.2.2 The Filter Function
	9.2.3 The Query Function

	9.3 Grouping with groupby()
	9.3.1 Introduction
	9.3.2 groupby()
	9.3.3 Quantitative Analysis with .count() and .sum()
	9.3.4 Working with Multiple Groups
	9.3.5 Groupings with Many Subsets

	Chapter 10 Advanced Pandas
	10.1 Plotting Data with Pandas
	10.1.1 Importing the DataFrame
	10.1.2 Bar and Barh Charts with Pandas
	10.1.3 Pie Charts with Pandas
	10.1.4 Scatter Plots with Pandas

	10.2 Graphing Network Data with Pandas
	10.2.1 Getting the Data from Pandas to NetworkX
	10.2.2 Graphing the Data
	10.2.3 Customize the Graph

	10.3 Time Series Data
	10.3.1 What Is Time Series Data
	10.3.2 About the Dataset
	10.3.3 Cleaning the Data from Float to Int
	10.3.4 Convert to Time Series DateTime in Pandas

	Part III Natural Language Processing with spaCy
	Chapter 11 Introduction to Spacy
	11.1 The Basics of spaCy
	11.1.1 What Is spaCy?
	11.1.2 How to Install spaCy
	11.1.3 Containers

	11.2 Getting Started with spaCy and Its Linguistic Annotations
	11.2.1 Importing spaCy and Loading Data
	11.2.2 Creating a Doc Container
	11.2.3 Sentence Boundary Detection (SBD)
	11.2.4 Token Attributes
	11.2.4.1 Text
	11.2.4.2 Head
	11.2.4.3 Left Edge
	11.2.4.4 Right Edge
	11.2.4.5 Entity Type
	11.2.4.6 Ent IOB
	11.2.4.7 Lemma
	11.2.4.8 Morph
	11.2.4.9 Part of Speech
	11.2.4.10 Syntactic Dependency
	11.2.4.11 Language

	11.2.5 Part-of-Speech (POS) Tagging
	11.2.6 Named Entity Recognition (NER)
	11.2.7 Conclusion

	11.3 spaCy’s Pipelines
	11.3.1 Standard Pipes (Components and Factories) Available from spaCy
	11.3.1.1 Attribute Rulers

	11.3.1.2 Matchers
	11.3.2 How to Add Pipes
	11.3.3 Examining a Pipeline
	11.3.4 Conclusion

	Chapter 12 Rules-Based spaCy
	12.1 The EntityRuler
	12.1.1 Introduction to spaCy’s EntityRuler
	12.1.2 Demonstration of EntityRuler in Action
	12.1.3 Introducing Complex Rules and Variance to the EntityRuler (Advanced)

	12.2 The Matcher
	12.2.1 Introduction
	12.2.2 A Basic Example
	12.2.3 Attributes Taken by Matcher
	12.2.4 Applied Matcher
	12.2.4.1 Grabbing all Proper Nouns
	12.2.4.2 Improving it with Multi-Word Tokens
	12.2.4.3 Greedy Keyword Argument
	12.2.4.4 Adding in Sequences

	12.3 The PhraseMatcher
	12.3.1 Introduction
	12.3.2 Setting a Custom Attribute
	12.3.3 Adding a Function with on_match

	12.4 Using RegEx with spaCy
	12.4.1 What Is Regular Expressions (RegEx)?
	12.4.2 The Strengths of RegEx
	12.4.3 The Weaknesses of RegEx
	12.4.4 How to Use RegEx in Python
	12.4.5 How to Use RegEx in spaCy

	12.5 Working with Multi-Word Token Entities and RegEx in spaCy 3x
	12.5.1 Key Concepts in This Notebook
	12.5.2 Problems with Multi-Word Tokens in spaCy as Entities
	12.5.3 Extract Multi-Word Tokens
	12.5.4 Reconstruct Spans
	12.5.5 Inject the Spans into the doc.ents
	12.5.6 Give Priority to Longer Spans

	Chapter 13 Solving a Domain-Specific Problem: A Case Study with Holocaust NER
	13.1 Cultivating Good Datasets for Entities
	13.1.1 Introduction to Datasets
	13.1.2 Acquiring the Data
	13.1.3 United States Holocaust Memorial Museum
	13.1.4 Normalizing Data

	13.2 The Challenges of Holocaust NER
	13.2.1 An Overview of the Problems
	13.2.2 Ethical
	13.2.3 Linguistic
	13.2.4 Toponyms

	13.3 Creating a Rules-Based Pipeline for Holocaust Documents
	13.3.1 Creating a Blank spaCy Model
	13.3.2 Creating EntityRulers
	13.3.3 Creating Function for Matching RegEx
	13.3.4 Add Pipe for Finding Streets
	13.3.5 Creating a Pipe for Finding Ships
	13.3.6 Create Pipe for Identifying a Military Personnel
	13.3.7 Create Pipe for Identifying Spouses
	13.3.8 Creating a Pipe for Finding Ghettos
	13.3.9 Creating a Geography Pipe
	13.3.10 Seeing the Pipes at Work

	Chapter 14 Topic Modeling: Concepts and Theory
	14.1 What Is Topic Modeling?
	14.1.1 Rules-Based Methods
	14.1.2 Machine Learning-Based Methods
	14.1.3 Why Use Topic Modeling?

	14.2 Topics and Clusters
	14.2.1 What Are Topics?
	14.2.2 What Are Clusters?

	14.3 Bigrams and Trigrams
	14.3.1 Textual Ambiguity
	14.3.2 Bigrams
	14.3.3 Trigrams
	14.3.4 Why Are These Important?

	14.4 LDA Topic Modeling
	14.4.1 Process of Topic Modeling
	14.4.2 Knowing the Total Number of Topics
	14.4.3 Applying a Topic Model
	14.4.4 Summary of Key Issues with LDA Topic Modeling

	14.5 Creating LDA in Python
	14.5.1 Importing the Required Libraries and Data
	14.5.2 Cleaning Documents
	14.5.3 Create ID-Word Index
	14.5.4 Creating LDA Topic Model
	14.5.5 Analyze a Document
	14.5.6 Analyze the Topic Model

	14.6 Transformer Models
	14.6.1 Importing Libraries and Gathering Data
	14.6.2 Embedding the Documents
	14.6.3 Flattening the Data
	14.6.4 Isolating Clusters with HDBScan
	14.6.5 Analyzing the Labels
	14.6.6 Outliers (Noise)

	14.7 Top2Vec in Python
	14.7.1 Creating a Top2Vec Model
	14.7.2 Analyzing Our Topic Model
	14.7.3 Working with Bigrams and Trigrams
	14.7.4 Saving and Loading a Top2Vec Model

	Chapter 15 Text Analysis with BookNLP
	15.1 Introduction to BookNLP
	15.1.1 What Is BookNLP?
	15.1.2 Why Books and Larger Documents?
	15.1.3 How to Install BookNLP

	15.2 Getting Started With BookNLP
	15.2.1 Importing BookNLP and Creating a Pipeline
	15.2.2 Setting up the File and Directories
	15.2.3 Running the Pipeline

	15.3 The Output Files
	15.3.1 The .tokens File
	15.3.2 The .entities File
	15.3.3 The .quotes File
	15.3.4 The .supersense File
	15.3.5 The .book File
	15.3.6 The .book.html File

	15.4 Character Analysis
	15.4.1 Analyzing the Characters (From BookNLP Repo)
	15.4.2 Parsing Verb Usage

	15.5 Events Analysis
	15.5.1 Exploring the Tokens File
	15.5.2 Grabbing the Events
	15.5.3 Analyzing Events Words and Lemmas
	15.5.4 Grabbing Event Sentences
	15.5.5 Bringing Everything Together
	15.5.6 Creating an .events File
	15.5.7 Conclusion

	Chapter 16 Social Network Analysis
	16.1 The Basic Concepts of Social Network Analysis
	16.1.1 Basic Terminology
	16.1.2 SNA Libraries in Python

	16.2 Introduction to NetworkX
	16.2.1 Adding All Edges at Once
	16.2.2 Asymmetrical Networks
	16.2.3 Calculating Shortest Distance
	16.2.4 Calculating Connections
	16.2.5 Identifying Major Actors in a Network
	16.2.6 Limitations of Matplotlib and NetworkX

	16.3 Producing Dynamic Graphs with PyVis
	16.3.1 The Basics of PyVis

	16.4 NetworkX and PyVis
	16.5 Adding Color to Nodes
	16.6 SNA on Humanities Data: Structuring the Data
	16.6.1 Examining the Data

	16.7 SNA on Humanities Data: Creating the Graph
	16.7.1 Building the Network
	16.7.2 Visualizing the Network
	16.7.3 Adding Menus
	16.7.4 Conclusion

	Part IV Designing an Application with Streamlit
	Chapter 17 Introduction to Streamlit
	17.1 Creating Our First App
	17.1.1 Options for Application Development in Python
	17.1.2 Installing Streamlit
	17.1.3 Creating a Home Page

	17.2 Displaying Data in Streamlit
	17.2.1 Displaying Text to Users
	17.2.2 Displaying Python Data Structures
	17.2.2.1 Data Structures with st.write()
	17.2.2.2 Data Structures with st.json()

	17.2.3 Displaying Tabular Data
	17.2.3.1 Tabular Data with st.write()
	17.2.3.2 Tabular Data with st.dataframe()
	17.2.3.3 Tabular Data with st.table()
	17.2.3.4 Tabular Data with st.markdown()

	17.2.4 Displaying Multimedia in Streamlit
	17.2.4.1 Images
	17.2.4.2 Audio
	17.2.4.3 Video

	17.3 Streamlit Input Widgets
	17.3.1 Text Input Widgets
	17.3.1.1 st.text_input()
	17.3.1.2 st.text_area()

	17.3.2 Numerical Input Widgets
	17.3.2.1 st.number_input()
	17.3.2.2 st.slider()

	17.3.3 Date and Time Input Widgets
	17.3.3.1 st.date_input()
	17.3.3.2 st.time_input()

	17.3.4 Boolean Input Widgets
	17.3.4.1 st.checkbox()
	17.3.4.2 st.button()

	17.3.5 Selection Widgets
	17.3.5.1 st.radio()
	17.3.5.2 st.selectbox()
	17.3.5.3 st.multiselect()

	Chapter 18 Advanced Streamlit Features
	18.1 Data Visualization
	18.1.1 Metrics
	18.1.2 Plotting Basic Graphs with Streamlit
	18.1.2.1 Line Charts with st.line_chart()
	18.1.2.2 Bar Charts with st.bar_chart()
	18.1.2.3 Area Charts with st.area_chart()

	18.1.3 Map Charts
	18.1.3.1 Creating Maps with st.map()
	18.1.3.2 Third-Party Maps – An Example with PyDeck

	18.2 Layout Design
	18.2.1 Layout Widgets
	18.2.1.1 Sidebar
	18.2.1.2 Columns
	18.2.1.3 Expander
	18.2.1.4 Container
	18.2.1.5 Tabs
	18.2.1.6 Empty

	18.3 Streamlit Cache and Session States
	18.3.1 Caching Data with @st.cache_data

	18.4 Storing Data with st.session_state
	18.5 Custom HTML
	18.6 Multi-Page Applications

	Chapter 19 Building a Database Query Application
	19.1 Building a Database Query Application
	19.1.1 Importing the Libraries
	19.1.2 Caching Data
	19.1.3 Creating Our App Layout
	19.1.4 Using User Inputs to Produce a New DataFrame

	19.2 Deploying an App in the Cloud with Streamlit Share
	19.2.1 Create a GitHub Account
	19.2.2 Upload Application to GitHub
	19.2.3 Connect Streamlit Share to your GitHub
	19.2.4 Create a New App
	19.2.5 Set Custom Subdomain

	Part V Conclusion
	Chapter 20 Conclusion

	Index

