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PREFACE

This book grew out of lecture notes for a course on floating-point com-
putation given for several years at the IBM Systems Research Institute.
It presents floating-point arithmetic in a somewhat generalized form which
allows for variations in the radix and the word length. However, instead of
striving for extreme generality, the book discusses the arithmetic of the IBM
System/360 in detail and generalizes it where it 1s convenient to do so. The
examples in the book refer primarily to the System/360 and to the FOR-
TRAN and PL/I compilers currently available for it, but other machines and
other compilers are discussed where appropriate. All the examples are pre-
sented 1n higher-level languages, so no knowledge of Assembler Language
1s necessary. However, it 1s assumed that the reader i1s familiar with either
FORTRAN or PL/I. (It is not necessary for him to be familiar with both of
these languages.)

The material presented here might constitute a second course in program-
ming for someone interested in scientific computing. A first course in pro-
gramming usually concentrates on a description of language features and the
use of these features in writing programs. This book discusses the details of
what actually happens when floating-point arithmetic 1s performed during
the execution of the program, and the emphasis is on the quality of the answers
produced. It 1s my hope that, by making the reader more aware of the arith-
metic that will be performed as a result of the FORTRAN statement he writes,
the book will contribute to the production of better programs.

This book is directed toward two different types of readers. First, it is
addressed to the obvious audience of those who are interested in using
higher-level languages to write programs which will perform floating-point
computation. Second, 1t 1s also directed toward the compiler designers and
machine designers who are concerned with floating-point operations. The
material presented here has been found to be of interest to this group because,

1X



X PREFACE

by illustrating the way floating-point arithmetic is used to solve problems, it
leads to an understanding of the reasons for incorporating various features
in the hardware and in the languages.

It is a pleasure to acknowledge the assistance I have received from many
friends, colleagues, and students. Particularly important was my association
with the SHARE Numerical Analysis Project, for it led to many helpful
discussions with W. J. Cody, L. J. Harding, Jr., W. Kahan, H. Kuki, O. K.
Smith, and L. R. Turner. I would especially like to thank W. J. Cody and
D. W. Sweeney for reading the manuscript and making many helpful sugges-
tions. Finally, I would like to thank Miss Katherine Chandri for carefully
typing the manuscript.

PAT H. STERBENZ
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1 FLOATING-POINT NUMBER
SYSTEMS

1.1. FIXED-POINT CALCULATION

We shall begin with a brief look at fixed-point calculation 1n order to
understand why one is led to use floating-point arithmetic. Fixed-point arith-
metic is extensively used in computers, especially in business or commercial
applications. Since many of the early stored program machines had only
fixed-point arithmetic, at least insofar as the operation codes available in
hardware were concerned, it has also been used for scientific computing.

Fixed-point arithmetic i1s the natural form of arithmetic when one is
dealing with small integers. Here a “small” integer i1s one which i1s small
enough so that we may record i1t and use 1t exactly—that i1s, without rounding.
Usually, the limitation 1s either the word size of the machine or the maximum
number of digits on which arithmetic can be performed in one step. This limit
may be 1019, 235  10'5, etc., depending on the machine being used. On some
variable word length machines, the bound may be so large that we are
restricted only by the efficient use of storage. Of course, one can use more than
one word to hold a number and use multiple-precision fixed-point arithmetic,
but this becomes cumbersome, and it 1s seldom supported by higher-level
languages. If all the data, intermediate results, and answers are small integers,
all the arithmetic i1s exact, so no errors are introduced by the arithmetic
operations. This 1s often (but not always) the situation in the calculations one
finds 1in accounting and business applications of computers. (To keep all
quantities 1n the realm of integers, one may have to express financial data in
cents rather than dollars.) Consequently, machines designed for business or
commercial applications of computers emphasize fixed-point arithmetic. For
scientific computing, indexing provides a salient example of arithmetic
involving only small integers.
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By contrast, problems which are referred to as scientific frequently involve
calculations 1in which the arithmetic produces only an approximate answer.
It we want to divide 1 by 3 on a decimal machine, we would require an infinite
number of places to represent the answer .333333 . . . exactly. Consequently,
we are forced to round the result to a modest number of digits. Practical
considerations lead to the same approach for multiplication. Although the
product of several numbers, each having only a finite number of digits, could
be computed and stored exactly, the number of digits required can grow
quite rapidly. For example, we may require 50 digits to represent the product
of 10 five-digit numbers. In this case we find it expedient to round the result
to a reasonable number of digits, even though we could calculate the exact
answer 1f we wanted to. Thus, we may distinguish between integer arithmetic,
which is exact, and the fixed-point arithmetic of scientific computing, in which
the computed answers are approximations for the true answers.

If we are using integer arithmetic on a variable word length machine, we
may store each variable in a field just large enough to hold the number of
digits required by the maximum value the variable may attain. We are then
faced with the problem of estimating the maximum size of each value we
develop. Underestimating the maximum size of any quantity can result in a
catastrophic error, which, if undetected, can result in the program producing
a ridiculous answer. However, since all the arithmetic 1s exact, we are not
concerned with error analysis.

In contrast, in scientific computing we are continually faced with the prob-
lem of rounding numbers in order to reduce the number of digits required to
a manageable size. This often leads to a fixed word length approach in which
we select some reasonable word length for the number of digits which will be
carried in each number. On a fixed word length machine, there is a compelling
reason for selecting the word length of our numbers to be the word length of
the machine, although there are cases in which one might pack two numbers in
one word on a machine with long word length or use two words per number
on a machine with short word length. On a variable word length machine, we
may select the word length to be used in computation arbitrarily within some
rather wide limits. Thus, we are led to treat each quantity as a signed p-digit
number in the number base of the machine. Typical examples are a 10-digit
decimal word, a 35-bit binary word, etc. The 10-digit decimal word length is
quite common in the desk calculators designed for scientific computing, and
many stored program machines have roughly this word length. These
machines are usually capable of developing numbers twice as long in the
registers. For example, we may be able to multiply two 10-digit numbers to
produce a 20-digit result, and on a typical desk calculator we can add a 10-
digit number into 10 consecutive positions of a 20-digit accumulator.

To 1illustrate the use of fixed-point arithmetic, we suppose that we are
working with a 10-digit decimal machine. The decimal point is not actually
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stored as part of the number; instead, its position must be remembered by the
programmer. Thus, instead of storing the number —12.34512345, we store
the minus sign and the string of digits 1234512345, Suppose that we have
decided to store a number x with three digits to the left of the decimal point
and seven digits to the right. This means that we are convinced that | x| will
always be less than 1000. If, for some data, we have x = .5432154321, we
have to store x as 0005432154. Now suppose that we want to compute
z = X -+ y, where x 1s stored with three places to the left of the decimal point
and y 1s stored with the decimal point at the left of the number. For example,
we may have x = 123.4512345 and y = .1111122222. Before we can add x
and y we must shift one of them to line up the decimal points. By shifting y
three places to the right, we produce 0001111122, which has three places to
the left of its decimal point. Then this value may be added to x to produce the
value 123.5623467 for z.

A further complication is that there may be a high-order carry. Thus, even
though x << 1000 and y << 1, we may have z = x + y > 1000, 1n which case |
z would require four places to the left of the decimal point. Unless we are
convinced that | z| will be less than 1000 for all runs of the program, we shall
have to store z with four places to the left of the decimal point. Thus, for the
data considered above we would store z as 0123562346, which sacrifices one
digit of accuracy. Because we had to allow for the possibility that | z| may be
—1000, we have sacrificed accuracy whenever | z| << 1000. This is the funda-
mental problem that faces us whenever we use fixed-point arithmetic. We
must estimate the maximum value for each quantity which 1s involved in the
calculation, either as data, intermediate result, or final answer. If this estimate
of the maximum number of digits required is exceeded, we lose high-order
digits, which may cause us to produce ridiculous answers. But if we overes-
timate the maximum, we lose accuracy unnecessarily.

It we store x 1n a 10-digit word with three places to the left of the decimal
point, we can represent x to within 4.5 X 1077 regardless of the size of x.
Now if x = 123.4512345, we can represent x with small relative error, but if
x =~ .0000056, we can save only two significant digits of x. Thus, in fixed-point
computation we control absolute error rather than relative error or the
number of significant digits. In some problems it is absolute error that we
want to control, and fixed-point arithmetic can be used quite easily. In other
problems, such as the solution of simultaneous equations, scale factors can be
introduced so that the computation can be carried out using fixed-point
arithmetic [see National Physical Laboratory (1961)]. But there are many
problems which are quite difficult to handle in fixed-point. A particularly
annoying aspect of fixed-point computing is that a slight change in the prob-
lem may change the bounds for various quantities in the program, so that
extensive recoding becomes necessary.

As an illustration of the difficulty of programming in fixed-point, consider
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the problem of computing x" for large N. Suppose that we have quite tight
bounds for the range of x, say .1 << x << 1. If we want to compute x!°% we
know only that 107190 <7 x100 ], If we are working with a 10-digit machine,
we store x!°% with the decimal point at the left. Then we shall store zero for
x100 1f x100 j5 Jess than 10719, that 1s, if x 1s less than about .793.

In writing a fixed-point program, we must decide which digits to save at
the time we write the program, so we must make the decision without seeing
the numbers involved. This 1s quite different from the sttuation in manual
calculation. Whether we are working with pencil and paper or with a desk
calculator, we record the decimal point with each number we write down and
we look at the number before deciding which digits to keep. It is quite natural
to try to follow this same approach in machine computation. For each number
we shall store the first few significant digits and an indication of where the
decimal point lies. We can see from the example of x!°° that unless we carry a
great many digits, we cannot guarantee that the decimal point will lie between
the first and last digit we are carrying. Thus, instead of storing the decimal
point as a character in the string of digits, it 1s convenient to store a count
indicating how many digits of our number lie to the left of the decimal point.
If this count is negative, it indicates the number of leading zeros that have
been suppressed. Since we do not see the intermediate results, we must depend
on the computer to select the proper digits for us. For each arithmetic opera-
tion we ask the computer to present us with the first few significant digits and
the count telling us where the decimal point lies. These operations are referred
to as floating-point arithmetic.

Floating-point arithmetic has proved to be very useful, and today most of
what 1s thought of as scientific computing i1s performed in floating-point
arithmetic. It 1s available as hardware operation codes on many machines,
and 1t 1s accomplished by subroutines on others. It 1s widely exploited by
higher-level languages through compilers and interpreters. In fact, the ability
to write a program without keeping track of the decimal point adds a great
deal to the ease of use of many higher-level languages.

1.2. FLOATING-DECIMAL REPRESENTATION OF
NUMBERS

Because decimal numbers are much more familiar than binary or hexa-
decimal numbers, we shall begin by describing floating-decimal numbers and
arithmetic. In Section 1.4 these will be generalized to an arbitrary radix, and
throughout most of the book we shall deal with floating-point numbers with
an arbitrary radix. However, many of the examples will use the decimal
system.

As we have seen, our objective is to represent numbers by their first few
significant digits and an indication of where the decimal point lies. The
approach we shall follow 1s a shight modification of the familiar concept of
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scientific notation. To indicate which digits of a number are significant, it has
long been the custom to write numbers such as the velocity of light as
1.86 x 10° miles per second instead of 186,000 miles per second. Thus, in
scientific notation we write our number as a signed number x in the range
I < |x| < 10 times a power of 10. This could be implemented on a computer
—and 1t sometimes has been. However, we shall modify this approach slightly
and hold the significant digits with the decimal point at the left, so the velocity
of light will be written as .186 x 10° miles per second. That is, we write our
numbers as y x 10%, where .1 <Z|y| << I. Here the exponent on the 10 is the
count we discussed 1n the last section. A further modification that we make to
the 1dea of scientific notation 1s that instead of carrying only the significant
digits 1n a number, we shall carry a fixed number of digits throughout the
computation regardiess of whether we can guarantee that the low-order digits
are significant.

We now have to decide how many digits to carry in the floating-point
numbers. It 1s natural to try to fit the floating-point representation of a num-
ber into one word, and this 1s the usual approach when floating-point
arithmetic is to be performed by hardware operation codes. However, if the
floating-point arithmetic i1s performed by subroutines, i1t 1s quite possible to
use one word to hold the significant digits and another word to hold the power
of 10. Suppose that we have a decimal machine in which each word holds a
sign and 10 decimal digits. We shall illustrate a floating-decimal representa-
tion in which we use one word per number. The sign bit of the word holds the
sign of the number, and we shall use eight decimal digits of the word to hold
the high-order eight digits of the number (not all of which need be significant).
It 1s assumed that there 1s a decimal point at the left of these eight digits and
that the high-order digit 1s not zero. Thus, we represent the velocity of light
as .18600000 x 10¢°,

We have two digits left to hold the power of 10. Now our number may be
multiplied by either a positive or negative power of 10, so the exponent of the
10 1s a signed integer. Since the sign bit of the word was used to hold the sign
of the number, we have to hold a signed integer in two decimal digits. A
common approach is to store the signed exponent plus 50 in these two digits.
Then we can represent powers of 10 from 1073° to 104?, inclusive. We assume
that the representation for the power of 10 is written ahead of the significant
digits, so our representation for the velocity of light becomes --5618600000.
Obviously other approaches are possible, and they will be discussed in
Section 12.2.

From time to time we shall want to refer to the various parts of the
floating-point representation, so it 1s desirable to introduce terminology for
them. Unfortunately, there are several terms 1n common use. In this book we
shall follow a commonly used terminology borrowed from logarithms. We
shall refer to the string of significant digits with its sign and the decimal point
on the left as the mantissa of the floating-point number. The mantissa will
have a fixed number of digits, so the low-order digits may not be significant.
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The power of 10 will be called the exponent of the number and the exponent
plus 50 will be called the characteristic. Thus, for our representation of the
velocity of light as -+5618600000, the mantissa is 4-.18600000, the exponent is
6, and the characteristic 1s 56. This terminology becomes awkward only when
we talk about logarithms of floating-point numbers. Since other names that
are sometimes used to describe the parts of the floating-point representation
are also used elsewhere in mathematics, changing the nomenclature merely
changes the ambiguity to some other area. Thus, the mantissa is called the
fraction in Campbell (1962) and in Cody (1971a), 1t 1s called the fractional part
in Knuth (1969), and 1t 1s called the coefficient in Ashenhurst (19635a, 1965b).
Forsythe and Moler (1967) avoid ambiguity by referring to the mantissa as
the significand, but this name has not yet achieved wide use. The characteristic
1s often called the biased exponent.

Another aspect of number representation i1s the distinction between
normalized and wunnormalized numbers. A nonzero number 1s said to be
normalized if the leading digit of its mantissa i1s not zero. Since we associate
the sign with the mantissa m, this means that .1 << |m| < I. Now if the
mantissa 1s zero, the number is zero regardless of what the characteristic is.
The representation of zero 1s said to be normalized if its sign i1s plus and its
characteristic 1s zero. Thus, a normal zero 1s +0000000000. A number which 1s
not normalized 1s said to be unnormalized. In most of our work we shall
assume that all the numbers we are dealing with are normalized and the
floating-point arithmetic always produces normalized answers. In Section 12.4
we shall discuss unnormalized operands and arithmetic operations which are
allowed to produce unnormalized results.

We have tacitly assumed that the mantissa m is represented by a sign fol-
lowed by a positive number which represents |m|. The representation of
negative numbers by complements is discussed i1n Section 12.2.

When we are writing programs in a higher-level language, such as
FORTRAN or PL/I, we can usually think of our numbers as they are written
analytically, rather than as they are represented in the machine. Thus, we
think of the velocity of light as .18600000 x 10° instead of as -+5618600000.
There are some situations, such as the dismantling of floating-point numbers
(discussed in Section 4.4), in which we must know exactly how the numbers
are represented 1n the machine. But these cases are atypical, and for most of
this book we shall be able to deal with numbers as they are written analytically.

1.3. FLOATING-DECIMAL ARITHMETIC

Before proceeding to a more general setting, 1t 1s desirable to see how to
perform the standard arithmetic operations of addition, subtraction, multi-
plication, and division for floating-decimal numbers with the representation
described 1n the previous section. For each operation, our objective is to
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produce the first eight digits of the result as a normalized floating-point num-
ber. We shall ignore the limitation on the size of the exponent until the
discussion of overflow and underflow in Chapter 2.

We shall perform these operations on the normalized floating-point
numbers x and y, where x = 10°m and y = 107n. Here m and n are eight-digit
decimal numbers, and 1t they are not zero, we have .1 << |m| <1 and
A <3 lnmll=S 15

First, consider multiplication. If either factor 1s zero, we produce a normal
zero as the answer. If both factors are nonzero, we may easily determine the
sign of the answer by checking whether x and y have like or unlike signs. To
see how the absolute value of the answer 1s computed, we may assume that x
and y are both positive, so .1 <~ m, n << 1. We want the first eight significant
digits of

xy-= 10O mn,
We first compute the 16-digit product mn. If mn > .1, the mantissa of the

answer 1s the first eight digits to the right of the decimal point in mn and the
characteristic of the answer is

e + f 4+ 50 = characteristic (x) + characteristic (y7) — 30.

On the other hand, suppose that mn << .1. If we took the answer to be the
first eight digits to the right of the decimal point in mn, we would produce an
unnormalized result. Since both 7 and n are .1, we have

Al == n == Ll

so mn has exactly one leading zero. We shift mn one place to the lett, which 1s
equivalent to multiplying it by 10, and we subtract 1 from e - f. Since

xy = 10¢*7=1(10mn)

and .1 [0mn << 1, the mantissa of the answer 1s the first eight digits to the
right of the decimal point in 10mn, and the characteristic of the answer is

e + f— 1 -+ 50 = characteristic (x) | characteristic () — 50 — 1.

Here the normalization which we had to perform after multiplication is called
postnormalization.

Next, consider division. If x 1s zero, the answer 1s zero, and 1f y 1s zero, the
answer 1s undefined. Since we determine the sign of the answer by checking
whether x and y have like or unlike signs, we may assume that x and y are
positive. Now

* — 107 L,
V n
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and, since .1 << m, n < 1, we have

. o N
14

If m << n, we have .1 << m/n <= 1. In this case we take the mantissa of the
answer to be the first eight digits to the right of the decimal point in m/n and
the characteristic of the answer to be

e — -+ 50 = characteristic (x) — characteristic (y) + 50.

On the other hand, if m > n, we have

T
| =2 e <2 1),
1

In this case we shift m one place to the right, which is equivalent to dividing 1t
by 10, and add 1 to e. Since

..Y = lofrf_!_l -l’?],
; M

the mantissa of the answer is the first eight digits to the right of the decimal
point in (.1m)/n, and the characteristic of the answer is

e — [+ 1 4+ 50 = characteristic (x) — characteristic (y) + 50 + 1.

Finally, consider addition and subtraction. Since x and y are signed
numbers, to subtract y from x we simply change the sign of y and add it to x.
Therefore, 1t suffices to consider addition. As in manual computation, we
must first line up the decimal points of x and y. We begin by comparing the
characteristics of x and y and interchanging x and y, if necessary, to make x
the number with the larger characteristic. Thus, we obtain e > f. We then
write y as 10°n’, where n” — 107“""n 1s obtained by shifting n to the right
e — [ places. If e = f, y will now be unnormalized and n” will have 8 - e — f
places to the right of the decimal point. Then

x -+ y= 10¢(m + n’),

so if m + »' is in the range .1 <|m + n'| < 1, the characteristic of the
answer is ¢ + 50, and the mantissa of the answer 1s the first eight digits to the
right of the decimal pointin m -+ n'. Suppose that .1 < |m - n"| << [ fails to
hold. First, consider the case in which x and y have the same sign. Then
lm + n'| > |m| > .1,sowehave |m 4 n' | > 1. Since

im+n'|l=|m|+|n| <2,
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there is exactly one digit to the left of the decimal point. We shift m -+ n" one
place to the right and add 1 to e. Since

x + y=10*[.1(m + n')],

the characteristic of the answerise -+ 1 - 50, and the mantissa of the answer
is the first eight digits to the right of the decimal point in .1(m -+ »n').
Finally, suppose that x and y have opposite signs. Then

|m -+ n'| < max(|m|,|n"]) <1,

so we have |m -+ n'| << .1. 1f m 4 n" 1s zero, we produce a normal zero as the
answer. Otherwise, we have 0 << |m -+ »n'| << .1, so we now normalize the
answer and refer to this procedure as postnormalization. Let & be the number
of leading zeros in m -+ n’, so .1 << 10*|m -+~ n"| << 1. Then we shift m -+ n’
to the left & places and subtract & from e. Since

x -+ y = 10¢~"*10*(m + n')],
the characteristic of the answer 1s
e — k -+ 50 = characteristic (x) — k,

and the mantissa of the answer 1s the first eight digits to the right of the
decimal point in 10%(m - n").

1.4. FLOATING-POINT NUMBER SYSTEMS

We shall now generalize the i1dea of floating-decimal arithmetic discussed
in the last two sections to include many of the systems actually in use on
computers. We want to do this in such a way as to include decimal, binary,
octal, and hexadecimal representations of numbers, to allow for variations in
word length from one machine to another, and to allow for variations in the
details of how the arithmetic 1s performed. We shall designate the floating-
point number system by FP(r, p, a). Here r i1s the radix or base of the number
system. Thus, r i1s 10 for a decimal machine, 2 for a binary machine, 8 for an
octal machine, and 16 for a hexadecimal machine. Although these are the
commonly used values of r, our approach will allow r to be any integer >>2.
Since we shall occasionally want to use examples from systems other than
decimal, we shall adopt the following convention about writing numbers: The
radix may be specified by writing a letter as a subscript following the string of
digits. The subscript will be D for decimal, B for binary, O for octal, and H
for hexadecimal. If no radix i1s specified, the number 1s decimal. Thus,

m ,

(1.4.1) 25 =25, = 19, = 31, = 11001 .
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For hexadecimal numbers, the digits “ten” through “fifteen™ will be designated
by A through F, respectively. Thus, 12, = C,,.

In the symbol FP(r, p, a), p stands for precision, and 1t designates the
number of base r digits contained in the mantissa. For a we shall substitute
various symbols specifying the details of how the arithmeticisto be performed.
Thus, ¢ will stand for chopped arithmetic, R for rounded arithmetic, etc. (The
precise meaning of rounding and chopping is discussed in Section 1.5.) The
system discussed in Sections 1.2 and 1.3 i1s designated by FP(10, 8, ¢), indicat-
ing that it used eight-digit decimal numbers and that it employed chopped
arithmetic. Similarly, a 27-bit binary machine using chopped arithmetic would
be designated by FP(2, 27, ¢).

Now FP(r, p, a) will denote a system comprised of a set S of numbers
which we shall call floating-point numbers and a definition of the four arith-
metic operations of floating-point addition, floating-point subtraction, floating-
point multiplication, and floating-point division, defined for elements ot S. The
set S of floating-point numbers depends on r and p but not on a. When r and
p are not fixed by context, we shall write S(r, p) instead of S. The set S(r, p)
contains zero and all numbers of the form

(1.4.2) X = rém,

where e 1s any integer (positive, negative, or zero) and m 1S any positive or
negative fraction satisfying

(1.4.3) Pl < |m| < 1

whose absolute value can be expressed 1n the base r using at most p digits.
That 1s,

lm| = r?M,

where M is an integer in the range r?~! <<~ M < r?. In (1.4.2), the signed
number »1 is called the mantissa of x and e is called the exponent of x.

Since every floating-point number 1s a real number, we can perform the
standard arithmetic operations of addition, subtraction, multiplication, and
division upon the elements of S viewed as real numbers. Thus, for x and y in
S, we may form x + yp, xy, and x/y. However, it is quite possible that these
operations will produce numbers not in S. For example, we may need 2p
digits to represent the product of two p-digit numbers, and division may
produce a result requiring an infinite number of digits. Since the results of
floating-point arithmetic always lie in S, the floating-point operations produce
results which may differ from the results produced by the arithmetic opera-
tions in the field of real numbers. Thus, we define four new operations, called
floating-point addition, floating-point subtraction, floating-point multiplication,
and floating-point division for which we use the symbols ¢, @, %, and —,
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respectively. The use of * to denote floating-point multiplication is so familiar
from FORTRAN that it seems very natural. On the other hand, the use of -
for floating-point division may require some care. If x is to be divided by y in

-

the field of real numbers, we shall write x/y or -, never x - .
y

In general, we expect the operations -+, —, x, and -~ to produce results
which are close to the results produced by |-, —, -, and /. That is, we expect to
have x x ¥y = xy, etc. The symbol substituted for a in FP(r, p, a) will specify
the details of exactly how the floating-point operations are defined.

Our definition of FP(r, p, a) omits several details of the floating-point
number representation which would have to be specified in order to give a
description of the system that is complete enough to allow an engineer to
design a computer to handle it. In fact, some of the details we have omitted
may affect the programmer who is using the machine. The most striking
omission 1s that we have not specified any bounds on the range of the
exponent. In practice, such bounds always exist. For the system described in
Section 1.2, the exponent had to lie in the range —50 <~ ¢ <~ 49, and for the
IBM System/360 the exponent must lie in the range —64 < ¢ <~ 63. Attempt-
ing to produce a number whose exponent lies outside this range results in
overflow or underflow, so the bounds for the exponent are of interest to the
programmer. But in analyzing a program, problems related to overflow and
underflow are often studied separately from problems related to the errors
introduced by the floating-point arithmetic. This will be our approach here.
We shall study the effects of performing arithmetic in a hypothetical system
FP(r, p, a) which places no bounds on the exponent, and we shall relegate the
study of overflow and underflow to a separate chapter (Chapter 2).

Even though we do not place bounds on the exponent of the numbers in
S(r, p), from time to time we shall want to refer to the characteristic of a
floating-point number. We shall assume that there 1s a number y such that the
signed exponent e is actually stored as a characteristic which is defined to be
e 4+ p. Then y 1s 50 for the system described in Section 1.2, 64 for the [BM
System/360, and 128 for the IBM 7090. A machine which stores the exponent
as a signed number would have y = 0. We shall assume that a normalized
zero 1s stored with the smallest allowable characteristic.

Another omission is that we have not allowed for variations in the form in
which negative numbers are stored. We shall assume that negative numbers
are stored with a minus sign and the true value of the magnitude of the
mantissa. Of course other approaches are possible. Machines have been built
which use either r’s complements or (r — 1)’s complements. The use of com-
plements will be discussed in Section 12.2, but throughout the rest of this book
we shall assume that negative numbers are stored with sign and true magnitude .

Still another omission is that we have not allowed for variations in where
the radix point falls in the mantissa of a floating-point number. Throughout
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this book we shall assume that the radix point lies at the left of the mantissa,
so the mantissa of a normalized, nonzero number satisfies (1.4.3). However,
other schemes have been implemented. For example, on the CDC 6600,
floating-point numbers are represented in the form 2¢c, where ¢ 1s called the
coefficient and 1s an integer. In this case, the binary point 1s at the right of the
mantissa. Since results from FP(r, p, a) are readily translated to such a system,
we shall assume throughout that the radix point lies at the left.

We have specified that all floating-point numbers are normalized, and we
shall assume that the floating-point operations ), &), %, and -~ produce
normalized results. Many machines offer the programmer the option of
producing unnormalized results by suppressing the postnormalization which
may occur in (), @, and *. This is true for (H and & on the IBM System/360,
but the FORTRAN and PL/I compilers for that machine translate the
arithmetic operations which appear in an arithmetic expression into the
normalized operation codes. Thus, we are dealing with the system the pro-
grammer sees when he writes programs in FORTRAN or PL/I for the IBM
System/360. In Section 12.4, we shall discuss both unnormalized operation
codes and unnormalized operands.

Finally, some machines have special numbers which are treated differently.
For example, the CDC 6600 has an co and an indeterminant form. The IBM
7030 had flag bits in the floating-point word which could cause interrupts.
These features will be discussed in Section 12.2.

1.5. FP(r, p. c) AND FP(r, p. R)

We shall now specify two different ways 1in which the floating-point
operations (H), &), *, and -~ may be defined, yielding two different systems
which will be designated by FP(r, p, ¢) and FP(r, p, R). The letters ¢ and R
will denote chopped and rounded arithmetic, respectively. In chopped arith-
metic, the result i1s first normalized, and then its low-order digits are discarded
and its high-order p digits are retained unchanged. One often sees this
approach referred to as fruncation instead of chopping. However, this use of
the word truncation may lead to confusion with the term truncation error,
which is a poorly defined and overworked term 1n numerical analysis. It 1s
used to refer to the error introduced by replacing an infinite series by a finite
number of terms of the series, and it 1s sometimes used in a much wider
context to refer to the error introduced by replacing a continuous problem by
a discrete problem. To avoid the possibility of confusion between this type of
error and the error introduced by the floating-point arithmetic, we use the
term chopping instead of the more commonly used term truncation. The term
chopping has been used 1n this context by other authors. [See, for example,
McCracken and Dorn (1964).]
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If x 1s any real number, let X denote x chopped to p digits in the base r.
More specifically, for any real number x let 7" be the set of all numbers y in
S(r, p) with | y| << | x|. Then x is the element in 7" which is closest to x. Thus,
in FP(10, 8, ¢), .123456789 = .12345678 and —.123456789 = —.12345678.
To pertorm arithmetic in FP(r, p, ¢), we first perform the corresponding
operation in the real number system, and then we chop the result to p digits in
the base r. Thus

xXPy=x-+y

XOy=x—Y
X Xk J.? — _X‘}_v

X — = 1—/_1-

Similarly, we introduce the concept of rounded arithmetic. Here rounding
means that we round to the closest p-digit number in the base r. If two such
numbers are equally close, we round the magnitude upward. This is sometimes
referred to as symmetric rounding. Other rules for rounding are possible, but
they are more complicated, and they are seldom implemented on computers.
For any real number x, let x be x rounded to p digits 1n the base r.
The is, x in the number in S(! p) which i1s closest to x. If two numbers in
S(r, p) are equally close to x, X wyll denote the one with ]arger magnitude.
Thus, in FP(10, 8, R), .123456789 12345679 123456785 = .12345679,
123456783 — .12345678, and — 173456785 12345679. To perform
arithmetic in FP(r, p, R), we first perform the operdtlon in the real number
system, and then we round the results to p digits in the base r. Thus, in

EP(r, o R):

X k. Y = Xp

O

X =—y=Xx/y

Most implementations of floating-point arithmetic have tried to produce
results which were either approximately the correctly chopped results or
approximately the correctly rounded results. However, computers have
seldom, 1f ever, produced exactly the results which would be produced 1n
FP(r, p, ¢) or FP(r, p, R). (In Section 12.3 we shall discuss how a machine
could be designed to produce exactly these results.) Thus, both FP(r, p, ¢) and
FP(r, p, R) are 1dealized systems which probably do not describe exactly the
arithmetic the programmer 1s using. But since the ideas of chopping and
rounding are easy to work with, it 1s often convenient to study the results
produced in these systems, without considering the modifications which have
been introduced by the machine designers to make the arithmetic easier to
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perform. In Section 1.8 we shall discuss the system FP(r, p, clg), which has
been implemented on many machines, including the IBM System/360. In
some cases there 1s no difference between the results in FP(r, p, ¢) and
FP(r, p, clg), and in other cases the difference 1s not important, so we may
draw our examples from FP(r, p, ¢). In still other cases the distinction between
FP(r, p, ¢) and FP(r, p, ¢lg) 1s important, so we shall deal with FP(r, p, clg).
Since we shall place special emphasis on the arithmetic of the IBM
System/360, we shall be most concerned with FP(r, p, clg). Because this
system 1s closely related to FP(r, p, ¢), we shall devote much more time to the
study of FP(r, p, ¢) than we do to the study of FP(r, p, R). However,
FP(r, p, R) will be discussed where appropriate, and many of the results
obtained for FP(r, p, ¢) will be carried to FP(r, p, R) in the exercises.

1.6. LAWS OF ALGEBRA

Algebraic manipulation of formulas is based on the validity of a few
fundamental laws. Specifically, we appeal to the fact that the real numbers
form a field. This means that the sum and product of real numbers are defined
and that the following six axioms hold for any real numbers a, b, ¢:

. Closure: The product ab and sum a -+ b of the real numbers @ and b
are real numbers.

2. Commutative laws:
a+ b=>b-+ a

1.6.1
( ) ab = ba

|

3. Associative laws:

(a+ b))+ c=a-+ (b+ ¢)
(ab)c = a(bc)

(13621
4. Distributive law:
L] 26.3) alb + ¢) = ab + ac

5. There are real numbers O and | such that

(1.6.4) a1+ 0=0+a=uy
and
(1.6.5) el = 1+d =

hold for all a.
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6. For any real number a there 1s a real number —a such that
(1.6.6) a+ (—a)=(—a)+ a=0,
and if @ == 0, there 1s a real number ¢! such that
(1.6.7) i =470a= 1.

A consequence of these axioms 1s that there are no divisors of zero, that is,
if ab = 0, then at least one of the factors a, & must vanish. Another conse-
quence of these axioms is the cancellation law:

(1.6.8) It ab = q¢ and a =& 0, then b = ¢
We now define subtraction by
a—b=a+ (=b),

and if b = 0, we define division by

Two immediate consequences of these definitions, along with (1.6.1) and
(1.6.2), are

(1.6.9) (a+b)—b=a
and
(1.6.10) "(“‘2‘) =

We now ask whether these laws are valid in our floating-point number
system. Since their validity may depend on the details of how the arithmetic is
performed, we study the specific system FP(r, p, ¢). [The question of whether
these laws are valid in FP(r, p, R) forms Exercises 3-7.] We shall see that
several of these laws fail to hold, although some of the ones which fail do hold
“approximately”™ in the sense that the two expressions are approximately
equal. The investigation of which of the laws hold approximately will be
postponed until Section 3.4. The fact that some of these laws fail to hold is
more than an oddity of the floating-point number system. Because they are
the basis of the algebraic manipulation of formulas, the failure of any of them
means that the programmer must think of his computation as being performed
in FP(r, p, ¢) instead of in the real number system. It may affect the best way
to write a formula in FORTRAN or PL/I.
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The following theorem 1s an immediate consequence of the definitions and
the validy of the commutative laws in the real number system.

THEOREM

In FP(r, p, ¢), the floating-point sum a ¢ b and the floating-point product
a = b of two floating-point numbers ¢ and b are floating-point numbers. Also,
for any a and b in S(r, p),

aPb=b@da
dxbv="b %
aP0=0Pa=a

ax1l =1x%xag=a

a@®(—a) = (~a)Da=0

It will be shown in Section 1.9 that for any @ = 0 1n S(r, p) there 1s a num-
ber b in S(r, p) with a.x b = 1. That 1s, every nonzero element in FP(r, p, ¢)
has an inverse. However, this is not as helpful as it seems. In the real number
system, the existence of the inverse 1s used to define division, and it enables us
to solve the equation ax = b. But we have defined division directly. Moreover,
we shall see in Section 1.9 that, because of the failure of the associative law of
multiplication in FP(r, p, ¢), the existence of a number ¢ with @ *x ¢ = 1 1s not
helpful in solving the equation a * x = b.

We shall now show that the remaining laws, namely (1.6.2), (1.6.3), (1.6.8),
(1.6.9), and (1.6.10), fail to hold in FP(r, p, ¢) for nontrivial combinations of
rand p. [They may hold, for example, in FP(2, 1, ¢).] By this we mean that 1t 1s
not true that they hold for all a, b, ¢ in S(r, p). There may be some values of
a, b, ¢ for which they hold, but for each law we shall display an example for
which the law fails.

Failure of the Assoctative Law of Addition

To show that
@@Pb)Pc=aPBDc)

fails to hold in FP(r, p, ¢), let a = r~27, b = 1, and ¢ = — 1. Then

@y =1 < =4 =1,
50

e

@a@®b)Pc=1P(—1)=0.
But
aPbDc)y=r??PH0=r22,

so the law fails.
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If the associative law of addition were valid in FP(r, p, ¢), then (1.6.9)
would also hold. That 1s, we would have

(@a® b)O b =a.

But the example above shows that this fails to hold for ¢ = r 22 and b = 1.

Sometimes we can exploit the fact that these laws fail. Suppose that we
want the integer part of a number x which i1s known to be positive and less
than r?7'. Let y = r?~1. Then the integer part of x is given by (x @ y) @ y.
For example, suppose that we are working in FP(10, 8, ¢) and that x =
12.345678. Then x + y = 10000012, so (x + y) — y 1s 12. (Another way to
produce the integer part of x i1s given 1n Section 12.4.)

In other cases, the failure of (1.6.9) may be more annoying. For example,
in. EP(10, 8,¢) let @ =3.3333333 and b'=.22222222. Then a b =
3.5555555 and (a &® b) — b 1s 3.33333328, so (a @ b) © b 1s 3.333332, which
1s different from a.

From the examples we have considered, it might appear that the failure of
the associative law was due to the fact that subtractions were involved. We
now give an example which shows that the associative law of addition may
fail to hold even if a, b, and c all have the same sign. Leta=1,b = (r — 1)r 7,
and ¢ = »72. Then

a@a@b)Pc=14+F—1)p?PPHr?=10r7=1,
but
(l L\—?} (h (5_\) C:) - l (_9 ,.—(p—l) — ] + ’.-(p—l)j

so the associative law fails to hold. However, in Section 3.4 we shall show that
the associative law holds approximately if a, b, and ¢ all have the same sign.

Failure of the Associative Law of Multiplication
We shall show that the associative law of multiplication
(@a*xb)*xc=ax(bx*c)

fails to hold in FP(r, p, ¢), except for trivial combinations of r and p. To
simplify notation, let s = p — 1. We shall assume that

which 1s true for all interesting combinations of rand p. Leta = b =1 + r*
and ¢ =1 = 2¢™*; Theén

(a*xb)xc=142r +r&¥+e=(0U0F2r*)*x({l — 2r-9)

— l R 4,.*2:: _— l = p=P.
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But

ax(bxc)=a*x1 —rs—2rx={A~+r)*x{ —r = —r»

kS +.p)

= ] — r? — p7% —

= T = 2p .

Thus, the associative law of multiplication fails to hold in FP(r, p, ¢) if
4r-2s < p~P,thatis, 1f 4 << r#=2. By considering various special cases, it can be
shown that the associative law of multiplication fails to hold in FP(r, p, ¢)
except for the four trivial systems FP(3, 1, ¢), FP(2, 1, ¢), FP(2, 2, ¢), and
FP(2: 3. ¢):

The failure of the two associative laws has an annoying logical conse-
quence. In the real number system, we define the product of two real numbers;
then, since the associative law of multiplication holds, we may simply write
the product of three real numbers as abc and let the reader group them 1n any
way he wants to. But, since the associative law of multiplication fails to hold
in FP(r, p, ¢) for interesting values of r and p, 1t 1s not legitimate to use this
approach for floating-point multiplication. Technically, we should be required
to specify whether we want (a * b) * c or a * (b * ¢); we should not be allowed
to write a * b * ¢. However, the FORTRAN and PL/I compilers allow us to
write a * b * ¢ without inserting parentheses. A justification for this lies in the
fact that the associative law of multiplication holds approximately in
EFP(r, p, ¢), as will be shown in Section 3.4. With somewhat less justification,
the compilers also allow us to write a sum, such as a & b @ ¢ ) d, without
parentheses. Some compilers, for example the FORTRAN and PL/I com-
pilers for the IBM System/360, specify that these operations be performed
from left to right. That is,

axb*xcxd= (axb)*c)xd

1.6.11
( ) aPbPchHd=(aDb)Dc)Pd.

On the other hand, there have been some compilers which did not guarantee
the order in which these operations would be performed. Since we are
emphasizing the IBM System/360 and its compilers, we shall use (1.6.11) as
the definition of repetitive multiplication and repetitive addition in our
floating-point number systems FP(r, p, a).

Consider the two expressions a * b * ¢ and a * ¢ * b in FP(r, p, ¢). Now

a*b*xc=(@*b)y*xc—=cx*(ax*b)
and
a*xc*b=(a*xc)*b=(c=*a)x*b.

Then these two expressions may fail to be equal because the associative law
does not always hold. As an example, consider the expression 2xy, which we

S — e ——————— e
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may code as 2 # x * p. In FP(10, &, ¢), suppose that x == 88111117 and that
y = .44444444. Then

2 & 3= 1.76222234 = 17622223,
while
2%y = 8BEEEBBE = 2y.

Thus, 2 * y is exact, but 2 * x is not. Then 2 * y * x = 2xp, but 2 * x * y may
be smaller than this. Indeed, by carrying out the computations we find
that 2 * y * x = 78320992 but that 2 * x* y = .78320990. Similarly, 1n
FP(16, 8, ¢), if x = .88111117,, and y = .44444444,., then

2 X a= V022220 = 1 N0 2L
and
888BEEEE,, = 2.

|

2 *y

Direct computation yields 2 #* yx x = .489142B6,,, while 2x x#*ypy =
4891 A42B2,,. Although multiplication by 2 1s always exact on a binary
machine, on a machine with any other radix 1t can introduce error if the
absolute value of the mantissa 1s greater than one-half. Thus, the order of the
factors can be important even 1n so simple an expression as 2xy. If we know
something about the size of x and y, we may have a preference for one or the
other of the forms 2 * x * y or 2 * y * x.

Failure of the Cancellation Law

To show that the cancellation law (1.6.8) fails to hold in FP(r, p, ¢), except
for trivial combinations of » and p, we find values a, b, and ¢ in S(r, p) such
thata =2 0, b £ c,and a * b = a * c¢. To this end, we first consider the case in
witich: 7 >2Z afid o > 2. et =2, p=r—1,and ¢ =4 ="1 - g2~ ¥,
Then p == ¢, but

|

a*b=r+r—2

and

rt+r —2+4 2% —p 4+ p— 2,

|

i *.C

Thus, a * b = a * ¢, so the cancellation law fails. It 1s particularly annoying
that we cannot cancel so simple a multiplier as 2.

For FPUZ p; ), Wwe supbose dhat p > 4, et g =6=1.1, and ¢ =
1.1, + 272V, Then b= c, but

-

a%b=ag=rc= 1001,

so the cancellation law fails.
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By considering the remaining cases, it can be shown that the cancellation
law fails to hold in FP(r, p, ¢) except for the four systems FP(3, 1, ¢),
BP(2. 1, ¢l BP(2:. 200 and FP(2. 3, ).

Failure of the Distributive Law
We shall show that the distributive law
a*(b®c)=(a*xb)D (a*c)

fails to hold in FP(r, p, ¢) for interesting values of r and p. First, suppose that
r>2andp>2. Leta=r—1,b=r—1+ "%V and¢c = (r— 1)r—2-1,

Then
g¥b=(r—2)¢ 41
and
@ %0 = jip—= 204 1lr="=,
SO
((1 k b) (a K () = (! = 7 & == (, s 2),«-—(;7-.’-1) D
=(r—2y+ 14 (r—2)p 72
But

a # (b gy ={F= L)#((F =1 p7774)
= [(F= 2= 1 4 (= =12,
so the distributive law fails to hold in FP(r, p, ¢) for r > 2 and p > 2.

For FPlZ:p.cl,-8uppose that p > 4. Let '@ = 11 5 .0= L1, =270
afid ‘e =270 'Then @4 b'=="10 01 ; atid iy ¥ &' = ([T )7~ 50

(@£ &V (a4 ¢y = (10.0]),; 3 2721 278 = 1001,
But
g-x{b-pa) =010 5 < &P 2= 1001 % == 277
so the distributive law fails. By considering the remaining cases, it can be

shown that the distributive law fails to hold in FP(r, p, ¢) except for the single
gase.of PEZ; 1. ¢l

Failure of the Relationa x (b ~a) =b

In FP(r, p, ), let @ and b be positive and ¢ — b = a. Then ¢ = b/a, so
unless h/a can be expressed in p digits in the base r, we have ¢ << b/a. Then
ac < b, so

ax (b - a)=ac<b.
Thus, the relation

holds if and only if b - a = b/a.
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Except for the trivial case of FP(2, 1, ¢), we may select b = 1 and let a be
an integer 1n the range 1 << a << r? which is relatively prime to r. Then b/a
cannot be represented in a finite number of digits in the base r, so (1.6.12)
fails. Thus, (1.6.12) fails to hold in FP(r, p, ¢) except for the trivial case of
FR(2. 1. &).

1.7. INEQUALITIES IN FP(r, p. c)

We shall now investigate the extent to which FE(r, p, ¢) preserves the order
relationships which we are accustomed to for the real number system. Since
every number in S(r, p) is a real number, the relations x << y, x <Z y, etc., are
defined for them. The following laws are fundamental for the manipulation of
inequalities 1n the real number system:

1. If a << b, then for all ¢
a-t+ c<<b-+ c.
2. Ma < band e < 4, then
a-t+c < b+ d
3. It b << ¢ and a 1s positive, then
ab < ac.

We would like the corresponding laws to hold in FP(r, p, ¢).

First, we observe that if x and y are real numbers with x << y, then x << 5.
Of course we may have x = p even though x << y. This occurs whenever the
first p digits of x and y are the same. The following theorem follows imme-
diately from this observation and the definitions of &) and .

THEOREM 1.7.1

In FEr, 7.8,

[. It a < b, thena® ¢ << b & ¢ holds for all c.
2. Ifa<bandc<d,thena@c << b® d.
3. If b << cand a1s positive, thenax b < a * c..

Unfortunately, these relationships, which were strict inequalities in the
real number system, have been weakened to < in FP(r, p, ¢). We shall show
below that the strict inequalities fail to hold in FP(r, p, ¢), so this theorem is
the strongest statement that can be made.
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For (1), let g =r%?, b=2r"%?, and ¢ =1. Théna < b, but a @ ¢ =

b @ c=1.

For (2), we assume that p > 2. Let

a=1—pr>*
b= ]
==+

d = =8 3= plotl)

Thena < bandc < d,buta > ¢ = b d = 1. By considering the remaining
case of p = 1, 1t can be shown that the strict inequality holds in (2) only for
BREL: Ik

For (3), we note that in any system FP(r, p, ¢) in which the cancellation
law fails to hold, we have positive numbers a, b, ¢ with b < c and a * b =
a * c¢. Thus, the strict inequality holds in (3) only for the systems FP(3, 1, ¢),
FP(Z, 1;¢), BP(2,.2. cF and FP(2,3.2]).

The importance of these results lies in the fact that once we have estab-
lished that an inequality holds, we expect to be able to deduce other relation-
ships from it. Suppose that we have compared x and y in a program and found
that x << y. If we now decide to change the units in which they are expressed
by multiplying both of them by a positive constant, we expect the resulting
values to satisfy the same inequality. However, we have seen that they may
become equal. Indeed, if ¥ £ 2, even multiplication by 2 may convert unequal
numbers into equal numbers. This may have annoying consequences. For
example, if the denominator of a fraction is a * b — a * ¢, then determining
that b 54 ¢ 1s not sufficient protection against division by zero. Another
annoying consequence may arise in trying to debug a program which is
misbehaving. If our output shows us that a«b = a* ¢, we cannot be
absolutely certain which branch we took 1f the program branches on the
condition b = ¢. This might lead us to search for the bug in the wrong part of

the program.

1.8. FP(r, p, clq)

When we introduced the system FP(r, p, ¢), we mentioned that many
machines use approximately, but not exactly, this system. It may be viewed
as an 1deal system which 1s not quite attained in practice. We shall now
describe a system FP(r, p, clg), which 1s a slight modification of FP(r, p, ¢)
and which describes exactly the arithmetic that has been implemented on
many machines. It includes both the single- and double-precision arithmetic
of the IBM System/360 and the single-precision arithmetic of the IBM 709,
7090, and 7094 (but not the 704). It does not describe the double-precision

i
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arithmetic of the IBM 7094, which is more closely related to the programmed
double-precision arithmetic described in Chapter 5. We are still ignoring the
bounds on the range of the exponent.

The symbol ¢/g means that we shall perform chopped arithmetic using a
low- order register which is g digits long, where ¢ may be any integer > 0.
This low-order register will be used 1n the operations &b, &, and = to hold
low-order digits of intermediate results which have more than p digits. More
spectfically, in the operation = 1t will hold the next ¢ digits of the product, and
in the operations b and © 1t will hold the next g digits of the operand which is
shifted. The 7090 has a 27-bit low-order register called the MO, and the IBM
System/360 uses a one-digit low-order register called the guard digit. Thus, the
arithmetic on the IBM 7090 1s performed in the system FP(2, 27, ¢/27), and
the single-precision arithmetic on the IBM System/360 is performed in the
system FP(16, 6, c/l1). When the early copies of the IBM System/360 were
delivered, there was no guard digit for double-precision arithmetic, so the
double-precision arithmetic was performed in the system FP(16, 14, c/0).
Later, during 1968, the architecture of the IBM System/360 was changed to
incorporate a guard digit in double-precision arithmetic. This change was
also made in the machines already installed, so double-precision arithmetic on
the IBM System/360 1s now performed in the system FP(16, 14, ¢/1). Since the
length of the low-order register determines the length of the intermediate
results which may be held, we may think of FP(r, p, ¢) as FP(r, p, clo).

We still assume that our floating-point arithmetic takes p-digit normalized
operands and produces a p-digit normalized result. We are interested in the
low-order register only as 1t affects the high-order digits which are returned
as the answer. Of course, 1t would be desirable to make the low-order digits
available to the programmer—at least to the assembly language programmer
—since they are useful for programming rounding or programming higher-
precision arithmetic. However, this 1s not a requirement for the system
FP(r, p, clg). Thus, in the IBM System/360 the guard digit, which 1s used while
the arithmetic 1s being performed, 1s never saved in a register, so there is no
way the programmer can get access to it—even 1n assembly language. Never-
theless, the guard digit meets our requirement for a one-digit low-order

register.
Floating-Point Division

In the machines we are modeling here, the IBM 7090 and the IBM
System/360,7 the floating divide operation produce_s the correctly chopped
result. Thus, in FP(r, p, c¢lq) we define a = b to be a/b.

TExceptions to this rule are the IBM System/360 models 91, 95, and 195. On these
models, the floating divide operation may produce a result which differs from the result
produced by other models of the IBM System/360. [See International Business Machines

(1966 and 1969).]
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Floating-Point Multiplication

We define the product a = b to be zero if either factor is zero. It ab = 0,
the sign of the product is + or — depending on whether ¢ and 6 have like or
unlike signs. Then we may assume that @ and b are positive. Let

rem, - e e

(
and

b= iR Al B W |

lLet p' = mn, so

ah = Ee g
Since

e Sl A

w1’ 1s a 2p-digit number with the radix point at the left and at most one leading
zero. We assume that we can hold only p -+ ¢ digits of the result, so we let ¢
be the first p + ¢ digits to the right of the radix point in x". Thus, if g > p,
we have u'" = u’, but if ¢ << p, u'" is obtained by discarding the low-order
p — q digits of the 2p-digit number x'. Let

3l =K 201

where g and y are defined as follows: If r ' << y << 1, then g = e | f and
u = p'’. On the other hand, if x'" << r~', then we shift x"" one place to the
left to normalize it and compensate by decreasing the exponent by 1. (This
shift is referred to as postnormalization.) In this case we have g = e - f — |
and 4 = ru’’. We may summarize these two cases by writing

=81 f—=%k
ﬂ —_— }'kﬂ’,,

where k i1s 1 or O depending on whether or not postnormalization is required.

We shall now compare the results obtained for a = b in FP(r, p, clg) and
FP(r, p, ¢). If no postnormalization is required, in each case the mantissa of
a * b is the high-order p digits of the 2p-digit number x’, so the results are the
same. On the other hand, if postnormalization is required, the mantissa of
a* bin FP(r, p, clg) is digits 2 through p -+ 1 of x”". Now 1t ¢ == 1, these are
the same as the digits of x', so a * b produces the same result in FP(r, p, clg)
as it does in FP(r, p, ¢). But if ¢ = 0, the (p + 1)st digit of "’ 1s zero, so,
after a left shift of one place for postnormalization, the pth digit of the product
is zero. Thus, we have proved the following theorem:

THEOREM 1.8.1

The floating-point product = produces the same result in FP(r, p, clg) for
g > 1 as 1t does in FP(r, p, ¢). For ¢ = 0 the product  produces the same




SEC. 1.8 rp(r, p, clg) 25

result in FP(r, p, ¢[0) as it does in FP(r, p, ¢) whenever no postnormalization
s required. If postnormalization is required, the product a =« b in FP(r, p, ¢/0)
1s obtained from the product @ = b in FP(r, p, ¢) by replacing the pth digit of
the mantissa by zero.

A particularly annoying consequence of the result for ¢ = 0 (no guard
digit) concerns multiplication by a power of r. If a is a power of r, say r¢, then
we write a as r¢*1. 71, so the mantissa of @ 1s r— 1. (This is written in the base
ras .l1.) Then pu" = r~'n << r~1!, so postnormalization i1s required. Thus, if
g — 0, multiplication by a power of r replaces the low-order digit of the
mantissa by zero. In many scientific calculations, scale factors are chosen to
be a power of r so that scaling will not introduce rounding errors. [For
example, see Forsythe and Moler (1967).] We see that this fails to be true in
FP(r, p, ¢/0). Even more annoying, since »° = |, we find that multiplication by
| may change a number. Indeed, multiplication by I in FP(r, p, ¢/0) has
exactly the effect of replacing the low-order digit by zero, so FP(r, p, ¢/0) does
not have a unit element satisfying (1.6.4). The engineering change on the IBM
System/360 mentioned above, which added a guard digit to the double-
precision arithmetic, removed these problems by changing the system from
FP(16, 14, ¢/0) to FP(16, 14, c/1).

Floating-Point Addition and Subtraction

We define
(1.8.1) a0

so we may restrict our attention to the floating-point addition of signed
numbers. As above, we write a — r°m and b — r’n. We shall assume that a
and b are normalized and that e > f. (If ¢ << f, we interchange ¢ and b to
produce the situation described above.) Then we write

= P

where n" — r='“"'n 1s obtained by shifting n to the right ¢ — f places. Of
course 1’ 1s not normalized unless ¢ = f. We are assuming that we have only a
g-digit register to hold the low-order digits shifted out of the p-digit register
holding b, so we let n”” be the high-order p 4 g digits of the [p + (¢ — f)]-digit
number #'. If e —f < g, we have " = n’, but if e — f > g, then n'’ is
obtained from n" by discarding the low-order ¢ — f — ¢ digits. Any digits of
n" which do not appear in »n”” are lost and cannot enter the calculation. (The
shift of ¢ — f places to the right, retaining only the high-order p -+ ¢g digits, is
called the preshift.) We then form ¢" = m + »n"" and set
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We note that it one of the operands 1s zero (in normalized form) it has the
smallest allowable characteristic, so its exponent 1S not greater than the
exponent of the other operand. Thus, it ¢ 5 /, it is the zero which is shifted to
the right, so n”" = n’ == n. Then our definition produces

aH0=a>00=a
(1.8.2) OB b=25>

0> b= —b,
as expected.

To analyze the effects of this definition in more detail, it 1s convenient to
separate the discussion into two cases, depending on whether the addition of
signed numbers results 1n the addition or subtraction of their magnitudes. In
each case we shall write the results as

(1.8.3) a®b=repu.

Add Magnitude Case

This case arises if we add numbers having the same sign or subtract
numbers having opposite signs. A consequence of our definition is that

e,

(1.8.4) (—a) D (=b) = —(a @D b).

Using (1.8.1), (1.8.2), and (1.8.4), we may reduce the discussion of the add
magnitude case to the discussion of ¢ ) b where a and b are positive. Since
m and n' are less than 1,

p=m4n" <2
and
RS e
i == e,

Then g’ can be represented as a (p -+ g + 1)-digit number with the radix
point after the first digit (which may be zero). If 4" << 1, we write ¢ = ¢ and
u = u'. On the other hand, it " > 1, we write

reﬂ’ — ',,.«s'-ni-E(’rfﬂilu")‘j

sog =—e¢ -+ 1land g = r '4’. In either case, we retain the high-order p digits
of m - n", and these are the same as the high-order p digits of m + n.
Therefore, in the add magnitude case, ¢ b and a @ b produce the same
results in FP(r, p, clg) for all ¢ > 0 as they do in FP(r, p, ¢). Any digits of #»’
which were discarded to produce n’* would have been discarded later when 4
was chopped to produce u.

Subtract Magnitude Case

This case arises if we add numbers having opposite signs or subtract
numbers having the same sign. Using (1.8.1), (1.8.2), and (1.8.4), we may
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reduce this case to the problem of computing a 4 b where

and

Then
U =mn" <m=<1l.

If ' = 0, we set a b b equal to a normalized zero. If g’ is not zero, we need
to ask only whether 1t is normalized. If it is not, we normalize it and refer to
this operation as postnormalization. Let & be the number of leading zeros in

W' Since
/

’.eﬂ — ,.e—k(rkﬂ’)’

wesetg=e— kand yu =ry'.
We first suppose that g > 0. Before we computed m -+ n’* by subtracting
n''| from m, we shifted »n to the right e — f places. Now if ¢ — f > 2, then

r - —_ )

H Y R €

4 F i :
=g == | B Y=

Thus, when ¢ — / > 2 we never have to shift 4" more than one place to the
left to postnormalize 1t, so k 1s either O or 1. Therefore, it & > 2, thene — f
must be 0 or 1. This means that whenever k > 2 we have n'" —= n', so y’ —
m -+ n' and 1t may be represented with at most p -+ 1 digits to the right of the
radix point. Then, when we shift 4" to the left & ~> 2 places, we are able to
hold all its digits, so u = r*(m -+ n’). That 1s, it ¢ > 0 and k& > 2, the
operation () introduces no error, so

a®b=a-+b.

This 1s a rather surprising result, since the postshift of two or more places
indicates that the subtraction @ — |b| has produced leading zeros and there-
fore resulted in the loss of significance. The secret lies in the fact that although
the operation a ) b produces exactly the correct result for the operands @ and
b, the result 1s sensitive to errors in ¢ and b.

Next, we note thatife — f <Z g, thenn” = n’,sou’ = m + n'. In thiscase
the operation a -+ b produces the correctly chopped result—that 1s, 1t pro-
duces the same result as it would in FP(r, p, ¢).

Finally, suppose thate — f > g > 0. Then some of the low-order digits of
n" were chopped during the preshift. Unless these digits were zero, we have
subtracted too little from m1, so

4

I =ipi—= | n )

But we may have to chop nonzero digits of 4" in order to shorten u' to p
digits, and this would make the answer smaller. Thus, we have two effects
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which tend to compensate. Chopping »n" tends to make x too large, while
chopping u' tends to make g too small. Sinceg >> 1, we must havee — f > 2,
so k 1s either O or 1. Then g will be either digits 1 through p or else digits 2
through p + 1 of 4. Now we have retained p + ¢ digits of n’, so

(185) In"l _ ln”l < p=(p+a)

(For the IBM 7090, g — 27 so the difference between n" and »n"" 1s seldom
important. But for the IBM System/360, we have g = | and the difference may
be noticeable.) From (1.8.5) we see that if 4’ 1s too large, it is in error by less
than 1 in the (p + g)th position to the right of the radix point. Then if y 1s too
large, 1t 1s too large by less than I in the (p -+ g — 1)st position. In particular,
this means that if a @ b % a + b, than |a & b| 1s greater than |a + 6| by |
in the last place. We summarize these results in the following theorem.

THEOREM 1.8.2

For the subtract magnitude case with g > 0,

. If the postshift 1s two or more places, a ® b = a + b.

2. If the preshift 1s g or fewer places, the operation a (0 b produces the
same result in FP(r, p, clg) as it does in FP(r, p, ¢).

3. If the preshift is more than g places, the operationa + beither produces
the same result in FP(r. p, clg) as it does in FP(r, p, ¢), or else the result in
FP(r, p, clg) may be obtained by increasing the absolute value of the result in
FP(r, p, ¢) by 1 in the last place. In this case, |a + b| < |a + b| <|a @ b|,
and |a @ b| is greater than |a 4+ b| by less than 1 in the (p + g — I)st

position.

Finally, suppose that ¢ = 0. In this case we may produce a result which 1s
quite bad. For example, suppose that =1 ang o= =—(_ — r~?). Here
=Y, p= =l =P, 0 = =t —etV] and u'" = —(}*“ — r7P).
Then an EP(z, p, clb),

a® b =r-"r
but
a +_ b - r~—(p+1)'

Thus, the result in FP(r, p, ¢/0) 1s r times as large as the result in FP(r, p, ¢).
This was one of the reasons for adding a guard digit to the double-precision
arithmetic on the IBM System/360.

In summary, we see that for g > 0 the four operations b, ©, *, and -
produce results in FP(r, p, clg) which are close to the results produced in
FP(r, p, ¢). In fact, the only difference arises in the subtract magnitude case
for the operations (H and ©. Since we are primarily interested in the case
g > 0, we may often ignore the distinction between these systems and deal
with FP(r, p, ¢). Indeed, in all the examples discussed in Sections 1.6 and 1.7
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in the study of the laws of algebra and inequalities, the same results would be
produced in FP(r, p, clg) for g = 0 as in FP(r, p, ¢). Thus, we have demon-
strated the failure of these laws in FP(r, p, ¢lg) for ¢ > 0 and nontrivial
combinations of » and p.

1.9. THE SOLUTION OF axx =50 IN FP(r, p, c)

In this section we shall consider the question of whether or not an equa-
tion of the form

(1:9.)) A% X=9

has a solution in FP(r, p, ¢). [Our analysis will also apply to FP(r, p, clg) for
all ¢ — 0, since the operation = produces the same result in this system as it
does in FP(r, p, ¢).] Since the solution of ax = b is b/a, it 1s natural to ask
whether 6 = a satisfies (1.9.1). But if it did, we would have

a* (b= a) = b,

and we saw 1n Section 1.6 that this holds if and only if the division b — a 1s
exact. Thus, b = a seldom satisties (1.9.1). For any @ and ¢ in S(r, p), we may
set b — a = ¢ and obtain an equation of the form (1.9.1) which does have a
solution, although this solution may be different from 6 - a. In this section
we shall show that for nontrivial combinations of » and p there are always
nonzero a and H in S(r, p) for which (1.9.1) does not possess a solution.

Assume that ¢ and b are given, and write a — r°m. Since we do not expect
to solve (1.9.1) if @ — 0, and we clearly can solve it if & — 0, we may assume
that neither ¢ nor b 1s zero. Changing the sign of x changes the sign of a = x,
so we need consider only the case i which a and b are positive. Then
r=Y:< mi.< l.oand we muy write x = Fin, rml <

< < = b, Now 163 .00 X' 18
multiplied by a power of r, a = x 1s multiplied by the same power of r, so the
problem of solving (1.9.1) reduces to the question of whether or not we can
find a number x such that & = x has the same mantissa as b. Clearly this
depends only on the mantissas of @ and A. Then (1.9.1) 1s solvable for all b 1f
and only if the mantissa of @ = x takes on all the (» — 1)r?~! possible nonzero
values as the mantissa of x varies from r 'to | — r 7. But the failure of the
cancellation law for nontrivial systems FP(r, p, ¢) implies that there are num-
bers a, x, and y in S(r, p) such that ¢ £ 0, x and y have different mantissas,
and a = x — a=*y. For this value of a there are duplications among the
mantissas of a + x as the mantissa of x variesfrom r 'to | — r 2, so there
must also be omissions. That is, there are values of b for which a = x 1s never
b. The tailure of the cancellation law also shows that there are values of @ and
b for which the solution of (1.9.1) is not unique.
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We shall now examine the computation a * x in more detail. Write

a*x =reti~%y,

where ¢ == r*mn and k is 1 or 0 depending on whether or not postnormaliza-
tion is required. Now |
FTImM = min < .,

so we have either r*m < mn <r~land k=1 orelse r~1' << mn < m and
k=0.Smmilarly,if k =1, we have r 'n < mn < r-1!, and if kK = 0, we have
r~!' <" mn < n. Thus, 1t postnormalization 1s required, the mantissa x of
a + x 1s > both m and n. On the other hand, if no postnormalization is
required, g is less than both m and n. Surprisingly, x# can never lie between
m and n.

We note that if m = r~!, then x4 = n, so Eq. (1.9.1) can be solved for all
b. Thus, we may assume thatm > r-'. If n =1 — r~?, we have

SO ==m—=r=sm = m=r-"

so i — mn — m — r~?. In this case the mantissa of @ * x is less than m by I
in the last place.

Now suppose that n << I — r 7 and consider the number y obtained by
increasing x by 1 in the last place. Then y = r7/, where | = n+r-?. It kK = 0,

( I 92) mi = mn + mr=? < mn -+ r-"*
yields ml << mn + r 7. On the other hand, if k — I, we have
(193) ml = mn + r=rm > mn + y(pt ”:

sorml > u + r 7. Then, if ml << r~', we find that increasing x by I in the last
place increases a * x by at least | in the last place. For the special case in which
a * x requires postnormalization but a * y does not, we have

(1.9.4) mn <<ml=mn+rm<<mnt+r?»<rt4r>

{

so ml = r~'. Clearly a = y is greater than a % x in this case. Finally, if »
| — r~7 then increasing x by 1 1n the last place produces y = r/,so a = y
r’a, which is greater than a = x by | in the last place. We have proved:

THEOREM 1.9.1

In FP(r, p, ¢), let a and x be positive. If a x x requires postnormalization,
increasing x by I in the last place increases a * x by at least | in the last place.
If a * x does not require postnormalization, increasing x by 1 in the last place
either leaves @ * x unchanged or increases i1t by 1 1n the last place.
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We shall now consider the changes in a = x as n varies fromr-'tol — r 7.
We shall still assume thatm > r='. If n — r ', 4 — m and postnormalization
1s required. It n=1—r"?, yu=m —r 7 and no postnormalization is
required. Let v be the smallest mantissa n for which no postnormalization i1s
required. Thenr ' << v << 1 — r 7 and from (1.9.4) we see that my — r "', An
immediate consequence of this is that z = r! ¢y 1s a solution of

(1.9.5) %2 =]

That 1s, every nonzero element of FP(r, p, ¢) has an inverse under the opera-
tion %. Now 1If the associative law were valid in FP(r, p, ¢), we could solve
(1.9.1) by letting z be a solution of (1.9.5) and setting x = z % b. Then a * x
would be equal to (a = z) = b, which 1s 5. Unfortunately, since the associative
law of multiplication fails to hold in FP(r, p, ¢) for nontrivial systems, the
existence of an inverse does not allow us to solve (1.9.1).

Now as n varies fromv to 1l — r 7, gy varies fromr-'"tom — r=7, and in
this range increasing n by | 1in the last place increases g by at most 1 1n the last
place. Then g takes on every value less than m, so (1.9.1) can always be solved
if the mantissa of b 1s smaller than the mantissa of a. It can also be solved 1f a
and b have the same mantissa, since n — r~ ! yields g == m. Thus, it (1.9.1) fails
to have a solution, the mantissa of » must be larger than the mantissa of a.

We shall now ask whether we can solve (1.9.1) for all b = 0. We surely can
it m — 1 — r 7, because there are no mantissas which are larger. Then we
may assume that r ' <<m << 1 — r=?, There are (1 — m)r? — 1 mantissas
greater than m. If (1.9.1) has a solution for all b, @ * x cannot skip any of
these mantissas as »n varies from r ' -+ r 7 to v — r 7. Since there are no
repetitions among the values of x corresponding to » In this range, a
necessary and sufficient condition for (1.9.1) to have a solution for all & is that

V12 = (L — myre — 1],
that 1s,

(1.9.6) v=r"t4+1—mn.

Since the right-hand side of (1.9.6) is obtained by increasing » ! by (I — m)r?
units in the last place, it 1s surely large enough so that m(r "' + 1 — m) =~ r 1.
Thus, v can never exceed the right-hand side of (1.9.6). Therefore, a necessary
and sufficient condition for (1.9.1) to have a solution for all b 1s that

e~ = L —m— P2y < rl,
which reduces to
e = L~ Pt =T = et >0

[ et
g(t) =12 — (1 +r ' —r2) + r 1.
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Then (1.9.1) has a solution for all b if and only if g(s7) > 0. By direct substitu-
tion we find

< ) el S
gir=h oty = ol S (F S DR b g o 1R
g([ == r—P) — p=(p+1)

g(] .__jr—p) o _(J— 1)’.—;; _Jl_jr_fp+1:l +j(j_ ]_)f.-::ap.

Now g(r) 1s a quadratic expression which is positive for large |¢|. If there are
two values ¢, << ¢, for which g(7) is negative, then g(¢) 1s negative for all 7 in
the range ¢, <<t << t,. Clearly g(r~!) and g(1 — r~7) are always positive. If
r > 2 and p > 2, we find that g(r ~! 4 r~?) and g(1 — 2r~?) are negative, so
(1.9.1) has a solution forall bif and only if misr~tor1 — r 7. Forr = 2 and
p>4, we find that g(2°!' 4 2-?) and g(1 — 2-»~V) are positive, but
g(27t 4+ 2-»=)yand g(1 — 3.27?) are negative, so (1.9.1) has a solution for
all b 1if and only if m has one of the four values 2-1!, 21 4 2-7 1 — 277 or
| — 21 By considering the remaining cases we may prove the following
theorem:

THEOREM 1.9.2

In EP(r, p,¢), Eq. (1.9.1) with @ = 0 has a solution if b = U or if the
absolute value of the mantissa of b 1s not larger than the absolute value of the
mantissa of a. In the four systems FP(3, 1, ¢), FP(2, 1, ¢), FP(2, 2, ¢), and
FP(2, 3, ¢), (1.9.1) always has a solution if a = 0. In any other system
FP(r, p, c) with ¥ => 3, (1.9.1) has a solution for all 4 if and only 1f the absolute
value of the mantissaof aisr~tor 1 — r=?2. In FP(2, p, ¢) with p >4, (1.9.1)
has a solution for all / if and only if the absolute value of the mantissa of a is
one of the four numbers 2-!, 27! 4+ 277 1 — 2772 or 1 — 2,1,

Our study of @ = x also leads to a better understanding of the relationship
between (b - a) * a and b. We suppose that @ and b are positive, and let
x = b = a. We saw 1n Section 1.6 that x = a will be less than b unless the
division b - a 1s exact, that is, unless b/a 1s in S(r, p). Suppose that x << b/a,
S0 @eX < b Let x=repi, 2~V ="m =<1, and. let y = riOon--r=2). Théen
X <<, 5 <8y, 80

(1.9.7) e 3 ol XA A

Now (1.9.2) and (1.9.3) show that the mantissa of a * y cannot exceed the
mantissa of @ = x by more than r units in the last place. Then (1.9.7) yields the
following theorem:
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THEOREM 1.9.3

In FP(r, p, ¢) or in FP(r, p, clg) withg > 1,leta £ Oand ¢ = (b — a) * a.
Then |b| cannot exceed | ¢| by more than r units in the last place of c.

1.10. DIVISION

We have defined division in both FP(r, p, ¢) and FP(r, p, clg) by
a = b= alb.

We now look more closely at the details of this computation. If / is zero, the
quotient i1s undefined, and for any b = 0, we have 0 = 5/ — 0. Then we may
assume that ¢ and b are nonzero and normalized. Let

3=, prid = m| = L
b= prt S
Then
a —— ’.E—fﬂ,
b 7
and
- m|
g g e
n

Write a —b=r¢y. It |min| <1, we set g=e — f and g = m/n. On the
other hand, if |m/n| > 1, we have

a i .m
— p€ ffl(,. I __)
b x 7

16 2ol = gt
i <|r'! — l
n

and

sowesetg=e—f41land g=r"‘min. Let k be O if |m|<|n|and 1 if
|75 = 1 n|: Then

g=e—f+k

=" n.

We note that in forming » ~*m we may have to shift m one place to the right, so
we must be able to handle a (p -+ 1)-digit dividend.

Now on some machines—tor example, the IBM 7090—the floating-point
divide operation produces both a quotient and a remainder. To see how the
remainder 1s defined, we recall that for positive integers 4 and B we may
divide 4 by B to produce quotient Q and a remainder R less than B. That is,
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there are unique integers Q and R such that

A= BO + R
0 << R < B.

This 1s readily extended to any integers A and B with B % 0, so we have the
following theorem:

THEOREM 1.10.1

If A and B are any integers with B 5 0, there are unique integers Q and
R such that

Yo A= B0 R,
2. 0 | Ry & B
3. If O 1s not zero, it has the same sign as A/B.

4. If R 1s not zero, it has the same sign as A.

Theorem 1.10.1 1s often the basis of the fixed-point divide operation on
computers.

We wish to divide m’ by n, where m’ = r~*m. Set A = r??m’ and B = r?n.
Then the O and R of Theorem 1.10.1 satisty

r’*m’' = r?nQ + R,

SO
(1.10.1) m. = nr-20 - F=22R.
We setg = r 20 and § = r*?R, 80

(1.10.2) m' = nqg -+ s.

Since |r2?n| > |r**m’|, we have |Q| < r? and hence |g| << 1. Also, since
|R| < |r?n|, we have

(1.10.3) sl < | r 25l

In both (1.10.1) and (1.10.2), the two terms on the right-hand side have the
same sign, SO

|m"| = |nl|-|q| +|s].
With (1.10.3), this yields

[ng| << |m'| <|n|(ql|+ r7),
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SO

/

| | Iy =
1g| < o < |q| 4 r2.

Since ¢ 1s r~? times an integer and |g| << 1, g 1s m'/n. By the definition of m’,
|m'/n| > r~1, so g is normalized. In general, s is not normalized. Let ¢ = r#g
and d = r¢t*~2g, Then g = bc + d and ¢ = a = b. Machines such as the
IBM 7090 which produce both a quotient and a remainder normally produce
these values of ¢ and d, leaving d in unnormalized form. Thus, the remainder
d 1s characterized by

d = a — bla = b).

EAXERCISES

1. Carry out the arithmetic in FP(10, 4, ¢) for each of the examples in Sections
1.6 and 1.7.

2. In FP(10, 4, ¢), find an equation a * x = b with a %= 0 which does not have a
solution. Also, find an equation for which the solution is not unique.

3. Show that the associative law of addition fails to hold in FP(r, p, R).

4. It can be shown that the associative law of multiplication fails to hold in
FP(r, p, R) except for the three trivial systems FP(3, 1, R), FP(2, 1, R), and
FP(2, 2, R). Show that this law fails to hold in FP(r, p, R) for the following
combinations of r and p:

2 e i
b. r =2, p = 4.

5. It can be shown that the cancellation law fails to hold in FP(r, p, R) except for
the three trivial systems FP(3, 1, R), FP(2, 1, R), and FP(2, 2, R). Show that
this law fails to hold in FP(r, p, R) for the following combinations of r and p:
' TR e Al e Y
B = L 2

6. It can be shown that the distributive law fails to hold in FP(r, p, R) except for
the trivial system FP(2, 1, R). Show that this law fails to hold in FP(r, p, R) for
the following combinations of r and p:
'« U o TN ; (R
B =2 p =%,

7. It can be shown that the relation a * (b = a) = b fails to hold in FP(r, p, R)
except for the trivial systems FP(2, 1, R) and FP(2, 2, R). Show that this relation
fails to hold in FP(», p, R) for the following combinations of » and p:

SR N T
b. r=2,p =%

8. Show that the following inequalities hold in FP(r, p, R):
a. f a < b,thena@® ¢ < b@® ¢ holds for all c.
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b. Ifa<<bandc <d,thena®@c<bPd.
c. Ita< b, thenag*ec< b*¢holdsforall ¢> 0.

9, Show that inequality a of Exercise 8 cannot be strengthened to a strict in-
equality.
10. Forinequality b of Exercise 8, it can be shown that strict inequality holds only
for the trivial system FP(2, 1, R). Show that the strict inequality fails to hold
in FP(r, p, R) for the following combinations of » and p:
", e S 0 5 OB
B.ob= 2,0 =2

11. Show that inequality ¢ of Exercise 8 cannot be strengthened to a strict inequal-
ity except for the trivial systems FP(3, 1, R), FP(2, 1, R), and FP(2, 2, R).

12, In FP(r, p, R), what is the mantissa of @ * x if @ and x are positive and the
mantissa of xi1s1 — r=2?

13. If » > 2, show that the equation a* x = 1 does not have a solution In
FP(r, p, R) when the mantissa of @ 1s 1 — r~72, That 1s, a number whose
mantissa is 1 — r~ 7 does not have an inverse in FP(r, p, R) if r > 2.

14. Show that the equation @ * x = 1 always has a solution in FP(r, p, R) if a is
positive and 1ts mantissa s satisfies

1 4+ -1
r-l < m < — 5 -

15. If r > 2 and we exclude the trivial case FP(3, 1, R), show that in FP(r, p, R)
the equation a * x = b has a solution for all 5 i1f and only if |a|1s a power of r.

16. Show that in FP(2, p, R) with p > 3 the equation a = x = b has a solution for
all b if and only if the absolute value of the mantissa of a is either 271 or
| — 27>,

17. Suppose that we use Euler’s method to solve the differential equation y* = —y
for 0 << x << 1 with (0) = 1. We take N steps with step size 4 = 1/N. For this
differential equation, the formula for Euler’s method reduces to

yn-l-l — yn o hyn

To illustrate the arithmetic involved, we solve this problem several times with
different values of N, taking N = 16, 32, 64, ..., 4096. In each case we print

only the final value yy.
We shall consider two different ways in which this formula might be coded

in FORTRAN. They are

Y=Y —H=#Y
and
Z=41.,=H)*Z.

Our FORTRAN program i1s



18.

19.
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1 FORMAT (I6,2F13.8)

= Th

PO 200 K = 1.9
¥ =]

& =]

H =4:/N

DA 16 L= 1IN
Y =X —Hzx%Y

100 Z = (1.—H)*Z
WRITE (3,1)N,Y,Z
200 N = Nx2
STOP
END

The question 1s whether or not the values printed for Y and Z are 1dentical.
Run this program in single-precision on whatever machine you have available
and explain why the values of Y and Z are the same or different on that
machine. (You may have to modify the WRITE statement to agree with the
conventions at installation.)

The values printed for Y and Z by the program in Exercise 17 will be identical
If it 1s run on the IBM 7090, but they will be different 1f 1t 1s run on the IBM
System/360.

a. Explain why the values of Y and Z are identical when the computation 1s
performed in FP(2, 27, ¢/27) but different when the computation i1s per-
formed in FP(16, 6, c/1).

b. Explain in general terms how the values of Y and Z would differ if the com-

putation were performed in FP(2, 27, ¢/1).

. Explain in general terms how the values of Y and Z would differ if the

computation were performed in FP(16, 6, ¢/6).

.

Suppose that we have written a FORTRAN program whose input includes a
temperature X measured 1n centigrade. The program converts X from
centigrade to Farenheit by the FORTRAN statement

F—= 1.8%X - 32,

Suppose that we want F to be exactly zero, so we ask what number X must be
supplied as input to produce the value zero for F. Here X must be the solution
of the equation

A*x X = =32

where A is the number in S(r, p) to which the FORTRAN compiler converts
[.8. We assume that the integer 32 i1s converted exactly. Depending on the
FORTRAN compiler used, 4 may be either 1.8 or<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>