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PREFACE

This book grew out of lecture notes for a course on floating-point com
putation given for several years at the IBM Systems Research Institute. 
It presents floating-point arithmetic in a somewhat generalized form which 
allows for variations in the radix and the word length. However, instead of 
striving for extreme generality, the book discusses the arithmetic o' the IBM 
System/360 in detail and generalizes it where it is convenient to do so. The 
examples in the book refer primarily to the System/360 and to the FOR
TRAN and PL/I compilers currently available for it, but other machines and 
other compilers are discussed where appropriate. All the examples are pre
sented in higher-level languages, so no knowledge of Assembler Language 
is necessary. However, it is assumed that the reader is familiar with either 
FORTRAN or PL/I. (It is not necessary for him to be familiar with both of 
these languages.)

The material presented here might constitute a second course in program
ming for someone interested in scientific computing. A first course in pro
gramming usually concentrates on a description of language features and the 
use of these features in writing programs. This book discusses the details of 
what actually happens when floating-point arithmetic is performed during 
the execution of the program, and the emphasis is on the quality of the answers 
produced. It is my hope that, by making the reader more aware of the arith
metic that will be performed as a result of the FORTRAN statement he writes, 
the book will contribute to the production of better programs.

This book is directed toward two different types of readers. First, it is 
addressed to the obvious audience of those who are interested in using 
higher-level languages to write programs which will perform floating-point 
computation. Second, it is also directed toward the compiler designers and 
machine designers who are concerned with floating-point operations. The 
material presented here has been found to be of interest to this group because,

ix
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by illustrating the way floating-point arithmetic is used to solve problems, it 
leads to an understanding of the reasons for incorporating various features 
in the hardware and in the languages.

It is a pleasure to acknowledge the assistance I have received from many 
friends, colleagues, and students. Particularly important was my association 
with the SHARE Numerical Analysis Project, for it led to many helpful 
discussions with W. J. Cody, L. J. Harding, Jr., W. Kahan, H. Kuki, O. K. 
Smith, and L. R. Turner. I would especially like to thank W. J. Cody and 
D. W. Sweeney for reading the manuscript and making many helpful sugges
tions. Finally, I would like to thank Miss Katherine Chandri for carefully 
typing the manuscript.

Pat H. Sterbenz
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FLOATING-POINT NUMBER
SYSTEMS

1.1. FIXED-POINT CALCULATION

We shall begin with a brief look at fixed-point calculation in order to 
understand why one is led to use floating-point arithmetic. Fixed-point arith
metic is extensively used in computers, especially in business or commercial 
applications. Since many of the early stored program machines had only 
fixed-point arithmetic, at least insofar as the operation codes available in 
hardware were concerned, it has also been used for scientific computing.

Fixed-point arithmetic is the natural form of arithmetic when one is 
dealing with small integers. Here a “smalT integer is one which is small 
enough so that we may record it and use it exactly—that is, without rounding. 
Usually, the limitation is either the word size of the machine or the maximum 
number of digits on which arithmetic can be performed in one step. This limit 
may be 101 °, 235, 1015, etc., depending on the machine being used. On some 
variable word length machines, the bound may be so large that we are 
restricted only by the efficient use of storage. Of course, one can use more than 
one word to hold a number and use multiple-precision fixed-point arithmetic, 
but this becomes cumbersome, and it is seldom supported by higher-level 
languages. If all the data, intermediate results, and answers are small integers, 
all the arithmetic is exact, so no errors are introduced by the arithmetic 
operations. This is often (but not always) the situation in the calculations one 
finds in accounting and business applications of computers. ( To keep all 
quantities in the realm of integers, one may have to express financial data in 
cents rather than dollars.) Consequently, machines designed for business or 
commercial applications of computers emphasize fixed-point arithmetic. For 
scientific computing, indexing provides a salient example of arithmetic 
involving only small integers.

1



2 FLOATING-POINT NUMBER SYSTEMS CHAP. 1

By contrast, problems which are referred to as scientific frequently involve 
calculations in which the arithmetic produces only an approximate answer. 
If we want to divide 1 by 3 on a decimal machine, we would require an infinite 
number of places to represent the answer .333333 . . . exactly. Consequently, 
we are breed to round the result to a modest number of digits. Practical 

| considerations lead to the same approach for multiplication. Although the 
product of several numbers, each having only a finite number of digits, could 
be computed and stored exactly, the number of digits required can grow 
quite rapidly. For example, we may require 50 digits to represent the product 
of 10 five-digit numbers. In this case we find it expedient to round the result 
to a reasonable number of digits, even though we could calculate the exact 
answer if we wanted to. Thus, we may distinguish between integer arithmetic, 
which is exact, and the fixed-point arithmetic of scientific computing, in which 
the computed answers are approximations for the true answers.

If we are using integer arithmetic on a variable word length machine, we 
may store each variable in a field just large enough to hold the number of 
digits required by the maximum value the variable may attain. We are then 
faced with the problem of estimating the maximum size of each value we 
develop. Underestimating the maximum size of any quantity can result in a 
catastrophic error, which, if undetected, can result in the program producing 
a ridiculous answer. However, since all the arithmetic is exact, we are not 
concerned with error analysis.

| In contrast, in scientific computing we are continually faced with the prob
lem of rounding numbers in order to reduce the number of digits required to 
a manageable size. This often leads to a fixed word length approach in which 
we select some reasonable word length for the number of digits which will be 
carried in each number. On a fixed word length machine, there is a compelling 
reason for selecting the word length of our numbers to be the word length of 
the machine, although there are cases in which one might pack two numbers in 
one word on a machine with long word length or use two words per number 
on a machine with short word length. On a variable word length machine, we 
may select the word length to be used in computation arbitrarily within some 
rather wide limits. Thus, we are led to treat each quantity as a signed p-digit 
number in the number base of the machine. Typical examples are a 10-digit 
decimal word, a 35-bit binary word, etc. The 10-digit decimal word length is 
quite common in the desk calculators designed for scientific computing, and 
many stored program machines have roughly this word length. These 
machines are usually capable of developing numbers twice as long in the 
registers. For example, we may be able to multiply two 10-digit numbers to 
produce a 20-digit result, and on a typical desk calculator we can add a 10- 
digit number into 10 consecutive positions of a 20-digit accumulator.

To illustrate the use of fixed-point arithmetic, we suppose that we are 
working with a 10-digit decimal machine. The decimal point is not actually 
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stored as part of the number; instead, its position must be remembered by the 
programmer. Thus, instead of storing the number — 12.34512345, we store 
the minus sign and the string of digits 1234512345. Suppose that we have 
decided to store a number x with three digits to the left of the decimal point 
and seven digits to the right. This means that we are convinced that |x| will 
always be less than 1000. If, for some data, we have x = .5432154321, we 
have to store x as 0005432154. Now suppose that we want to compute 
z = x + y, where x is stored with three places to the left of the decimal point 
and y is stored with the decimal point at the left of the number. For example, 
we may have x = 123.4512345 and y = .1111122222. Before we can add x 
and y we must shift one of them to line up the decimal points. By shifting y 
three places to the right, we produce 0001111122, which has three places to 
the left of its decimal point. Then this value may be added to x to produce the 
value 123.5623467 for z.

A further complication is that there may be a high-order carry. Thus, even 1 
though x < 1000 and y < 1, we may have z = x + y > 1000, in which case 1 / 
z would require four places to the left of the decimal point. Unless we are I 
convinced that | z | will be less than 1000 for all runs of the program, we shall n 
have to store z with four places to the left of the decimal point. Thus, for the 
data considered above we would store z as 0123562346, which sacrifices one 
digit of accuracy. Because we had to allow for the possibility that | z | may be 
>1000, we have sacrificed accuracy whenever |z| < 1000. This is the funda
mental problem that faces us whenever we use fixed-point arithmetic. We 
must estimate the maximum value for each quantity which is involved in the 
calculation, either as data, intermediate result, or final answer. If this estimate 
of the maximum number of digits required is exceeded, we lose high-order 
digits, which may cause us to produce ridiculous answers. But if we overes
timate the maximum, we lose accuracy unnecessarily.

If we store x in a 10-digit word with three places to the left of the decimal 
point, we can represent x to within f .5 X 10"7 regardless of the size of x. 
Now if x 123.4512345, we can represent x with small relative error, but if 
x .0000056, we can save only two significant digits of x. Thus, in fixed-point 
computation we control absolute error rather than relative error or the 
number of significant digits. In some problems it is absolute error that we 
want to control, and fixed-point arithmetic can be used quite easily. In other 
problems, such as the solution of simultaneous equations, scale factors can be 
introduced so that the computation can be carried out using fixed-point 
arithmetic [see National Physical Laboratory (1961)]. But there are many 
problems which are quite difficult to handle in fixed-point. A particularly 
annoying aspect of fixed-point computing is that a slight change in the prob
lem may change the bounds for various quantities in the program, so that 
extensive recoding becomes necessary.

As an illustration of the difficulty of programming in fixed-point, consider
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the problem of computing xN for large N. Suppose that we have quite tight 
bounds for the range of x, say .1 < x < 1. If we want to compute x100, we 
know only that 10“100 < x100 < 1. If we are working with a 10-digit machine, 
we store x100 with the decimal point at the left. Then we shall store zero for 
x100 if x100 is less than 10"10, that is, if x is less than about .793.

In writing a fixed-point program, we must decide which digits to save at 
the time we write the program, so we must make the decision without seeing 
the numbers involved. This is quite different from the situation in manual 
calculation. Whether we are working with pencil and paper or with a desk 
calculator, we record the decimal point with each number we write down and 
we look at the number before deciding which digits to keep. It is quite natural 
to try to follow this same approach in machine computation. For each number 
we shall store the first few significant digits and an indication of where the 
decimal point lies. We can see from the example of x'00 that unless we carry a 
great many digits, we cannot guarantee that the decimal point will lie between 
the first and last digit we are carrying. Thus, instead of storing the decimal 
point as a character in the string of digits, it is convenient to store a count 
indicating how many digits of our number lie to the left of the decimal point. 
If this count is negative, it indicates the number of leading zeros that have 
been suppressed. Since we do not see the intermediate results, we must depend 
on the computer to select the proper digits for us. For each arithmetic opera
tion we ask the computer to present us with the first few significant digits and 
the count telling us where the decimal point lies. These operations are referred 
to as floating-point arithmetic.

Floating-point arithmetic has proved to be very useful, and today most of 
what is thought of as scientific computing is performed in floating-point 
arithmetic. It is available as hardware operation codes on many machines, 
and it is accomplished by subroutines on others. It is widely exploited by 
higher-level languages through compilers and interpreters. In fact, the ability 
to write a program without keeping track of the decimal point adds a great 
deal to the ease of use of many higher-level languages.

1.2. FLOATING-DECIMAL REPRESENTATION OF
NUMBERS

Because decimal numbers are much more familiar than binary or hexa
decimal numbers, we shall begin by describing floating-decimal numbers and 
arithmetic. In Section 1.4 these will be generalized to an arbitrary radix, and 
throughout most of the book we shall deal with floating-point numbers with 
an arbitrary radix. However, many of the examples will use the decimal 
system.

As we have seen, our objective is to represent numbers by their first few 
significant digits and an indication of where the decimal point lies. The 
approach we shall follow is a slight modification of the familiar concept of 
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scientific notation. To indicate which digits of a number are significant, it has 
long been the custom to write numbers such as the velocity of light as 
1.86 x 105 miles per second instead of 186,000 miles per second. Thus, in 
scientific notation we write our number as a signed number x in the range 
1 <|x|< 10 times a power of 10. This could be implemented on a computer 
—and it sometimes has been. However, we shall modify this approach slightly 
and hold the significant digits with the decimal point at the left, so the velocity 
of light will be written as .186 X 106 miles per second. That is, we write our 
numbers as y X 10*, where .1 < | | < 1. Here the exponent on the 10 is the 
count we discussed in the last section. A further modification that we make to 
the idea of scientific notation is that instead of carrying only the significant 
digits in a number, we shall carry a fixed number of digits throughout the 
computation regardless of whether we can guarantee that the low-order digits 
are significant.

We now have to decide how many digits to carry in the floating-point 
numbers. It is natural to try to fit the floating-point representation of a num
ber into one word, and this is the usual approach when floating-point 
arithmetic is to be performed by hardware operation codes. However, if the 
floating-point arithmetic is performed by subroutines, it is quite possible to 
use one word to hold the significant digits and another word to hold the power 
of 10. Suppose that we have a decimal machine in which each word holds a 
sign and 10 decimal digits. We shall illustrate a floating-decimal representa
tion in which we use one word per number. The sign bit of the word holds the 
sign of the number, and we shall use eight decimal digits of the word to hold 
the high-order eight digits of the number (not all of which need be significant). 
It is assumed that there is a decimal point at the left of these eight digits and 
that the high-order digit is not zero. Thus, we represent the velocity of light 
as .18600000 X IO6.

We have two digits left to hold the power of 10. Now our number may be 
multiplied by either a positive or negative power of 10, so the exponent of the 
10 is a signed integer. Since the sign bit of the word was used to hold the sign 
of the number, we have to hold a signed integer in two decimal digits. A 
common approach is to store the signed exponent plus 50 in these two digits. 
Then we can represent powers of 10 from IO-50 to 1049, inclusive. We assume 
that the representation for the power of 10 is written ahead of the significant 
digits, so our representation for the velocity of light becomes +5618600000. 
Obviously other approaches are possible, and they will be discussed in 
Section 12.2.

From time to time we shall want to refer to the various parts of the 
floating-point representation, so it is desirable to introduce terminology for 
them. Unfortunately, there are several terms in common use. In this book we 
shall follow a commonly used terminology borrowed from logarithms. We 
shall refer to the string of significant digits with its sign and the decimal point 
on the left as the mantissa of the floating-point number. The mantissa will 
have a fixed number of digits, so the low-order digits may not be significant.
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The power of 10 will be called the exponent of the number and the exponent 
plus 50 will be called the characteristic. Thus, for our representation of the 
velocity of light as +5618600000, the mantissa is +.18600000, the exponent is 
6, and the characteristic is 56. This terminology becomes awkward only when 
we talk about logarithms of floating-point numbers. Since other names that 
are sometimes used to describe the parts of the floating-point representation 
are also used elsewhere in mathematics, changing the nomenclature merely 
changes the ambiguity to some other area. Thus, the mantissa is called the 
fraction in Campbell (1962) and in Cody (1971a), it is called thefractional part 
in Knuth (1969), and it is called the coefficient in Ashenhurst (1965a, 1965b). 
Forsythe and Moler (1967) avoid ambiguity by referring to the mantissa as 
the significand, but this name has not yet achieved wide use. The characteristic 
is often called the biased exponent.

Another aspect of number representation is the distinction between 
normalized and unnormalized numbers. A nonzero number is said to be 
normalized if the leading digit of its mantissa is not zero. Since we associate 
the sign with the mantissa m, this means that .1 < |/n| < 1. Now if the 
mantissa is zero, the number is zero regardless of what the characteristic is. 
The representation of zero is said to be normalized if its sign is plus and its 
characteristic is zero. Thus, a normal zero is +0000000000. A number which is 
not normalized is said to be unnormalized. In most of our work we shall 
assume that all the numbers we are dealing with are normalized and the 
floating-point arithmetic always produces normalized answers. In Section 12.4 
we shall discuss unnormalized operands and arithmetic operations which are 
allowed to produce unnormalized results.

We have tacitly assumed that the mantissa m is represented by a sign fol
lowed by a positive number which represents \m\. The representation of 
negative numbers by complements is discussed in Section 12.2.

When we are writing programs in a higher-level language, such as 
FORTRAN or PL/1, we can usually think of our numbers as they are written 
analytically, rather than as they are represented in the machine. Thus, we 
think of the velocity of light as .18600000 x 106 instead of as +5618600000. 
There are some situations, such as the dismantling of floating-point numbers 
(discussed in Section 4.4), in which we must know exactly how the numbers 
are represented in the machine. But these cases are atypical, and for most of 
this book we shall be able to deal with numbers as they are written analytically.

1.3. FLOATING-DECIMAL ARITHMETIC

Before proceeding to a more general setting, it is desirable to see how to 
perform the standard arithmetic operations of addition, subtraction, multi
plication, and division for floating-decimal numbers with the representation 
described in the previous section. For each operation, our objective is to
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produce the first eight digits of the result as a normalized floating-point num
ber. We shall ignore the limitation on the size of the exponent until the 
discussion of overflow and underflow in Chapter 2.

We shall perform these operations on the normalized floating-point 
numbers x and y, where x = 10*7/7 and y = lOOz. Here m and n are eight-digit 
decimal numbers, and if they are not zero, we have .1 <|/h|< 1 and 
.1 < | n | < 1.

First, consider multiplication. If either factor is zero, we produce a normal 
zero as the answer. If both factors are nonzero, we may easily determine the 
sign of the answer by checking whether x and y have like or unlike signs. To 
see how the absolute value of the answer is computed, we may assume that x 
and y are both positive, so .1 < m, n < 1. We want the first eight significant 
digits of

IO€+///z/z.

We first compute the 16-digit product mn. If mn > .1, the mantissa of the 
answer is the first eight digits to the right of the decimal point in mn and the 
characteristic of the answer is

e -F/+ 50 — characteristic (x) + characteristic (y) - 50.

On the other hand, suppose that mn < .1. If we took the answer to be the 
first eight digits to the right of the decimal point in mn. we would produce an 
unnormalized result. Since both m and n are >. 1, we have

01 mn

so mn has exactly one leading zero. We shift mn one place to the left, which is 
equivalent to multiplying it by 10, and we subtract I from e + Since

xy — ^lOz/z/z)

and .1 < 1O//7Z2 < 1, the mantissa of the answer is the first eight digits to the 
right of the decimal point in lOw/z, and the characteristic of the answer is

e f — I -F 50 = characteristic (x) characteristic (y)

Here the normalization which we had to perform after multiplication is called 
postnormalization.

Next, consider division. If x is zero, the answer is zero, and ify is zero, the 
answer is undefined. Since we determine the sign of the answer by checking 
whether x and y have like or unlike signs, we may assume that x and y are 
positive. Now

y n
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and, since . 1 <C m, n 1, we have

— < 10. n

If m < n, we have .1 < m/n < 1. In this case we take the mantissa of the 
answer to be the first eight digits to the right of the decimal point in rn/n and 
the characteristic of the answer to be

e — / + 50 — characteristic (x) — characteristic (y) + 50.

On the other hand, if ni > /?, we have

In this case we shift m one place to the right, which is equivalent to dividing it 
by 10, and add 1 to e. Since

_ |Qe-/+1 • ।M 
n

the mantissa of the answer is the first eight digits to the right of the decimal 
point in (.I/??)//?, and the characteristic of the answer is

characteristic (x) characteristic (y) 50

Finally, consider addition and subtraction. Since x and y are signed 
numbers, to subtract y from x we simply change the sign of y and add it to x. 
Therefore, it suffices to consider addition. As in manual computation, we 
must first line up the decimal points of x and y. We begin by comparing the 
characteristics of x and y and interchanging x and y, if necessary, to make x 
the number with the larger characteristic. Thus, we obtain e >f. We then 
write y as I0ez?', where n' = 1is obtained by shifting n to the right 
e — f places. If e #= f\y will now be unnormalized and n' will have 8 + e — / 
places to the right of the decimal point. Then

x + y = I Qe(m + /?'),

so if m + n is in the range .1 < \ni + n'\ < 1, the characteristic of the 
answer is e + 50, and the mantissa of the answer is the first eight digits to the 
right of the decimal point in m + n . Suppose that .1 < | m -|- n' | < 1 fails to 
hold. First, consider the case in which x and y have the same sign. Then 
I I > | I > . I, so we have | m + n | > I. Since

m Im
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there is exactly one digit to the left of the decimal point. We shift m + n one 
place to the right and add I to e. Since

10e,I[.l(/77 + /?')],

the characteristic of the answer is e + I + 50, and the mantissa of the answer 
is the first eight digits to the right of the decimal point in A(m + n').

Finally, suppose that x and have opposite signs. Then

m + >/1 < max(| m |, | n' |) < 1,

so we have | m + n | < . 1. If tn + n' is zero, we produce a normal zero as the 
answer. Otherwise, we have 0 < + n' | < .1, so we now normalize the
answer and refer to this procedure as postnormalization. Let k be the number 
of leading zeros in m + n, so.l < 10A \m + n | < I. Then we shift m + n 
to the left k places and subtract k from e. Since

X + y - 1O*(/77 + /?')],

the characteristic of the answer is

e — A' H 50 = characteristic (x) — k,

and the mantissa of the answer is the first eight digits to the right of the 
decimal point in n')>

1.4. FLOATING-POINT NUMBER SYSTEMS

We shall now generalize the idea of floating-decimal arithmetic discussed 
in the last two sections to include many of the systems actually in use on 
computers. We want to do this in such a way as to include decimal, binary, 
octal, and hexadecimal representations of numbers, to allow for variations in 
word length from one machine to another, and to allow for variations in the 
details of how the arithmetic is performed. We shall designate the floating
point number system by FP(r, p, a). Here r is the radix or base of the number 
system. Thus, r is 10 for a decimal machine, 2 for a binary machine, 8 for an 
octal machine, and 16 for a hexadecimal machine. Although these are the 
commonly used values of r, our approach will allow r to be any integer >2. 
Since we shall occasionally want to use examples from systems other than 
decimal, we shall adopt the following convention about writing numbers: The 
radix may be specified by writing a letter as a subscript following the string of 
digits. The subscript will be D for decimal, B for binary, O for octal, and H 
for hexadecimal. If no radix is specified, the number is decimal. Thus,

(I.4.1) 25 = 25p = I9z/ = 3lo = I !00l/r
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For hexadecimal numbers, the digits “ten” through “fifteen” will be designated 
by A through F, respectively. Thus, 12D = CIf.

In the symbol FP(r, p, a), p stands for precision, and it designates the 
number of base r digits contained in the mantissa. For a we shall substitute 
various symbols specifying the details of how the arithmetic is to be performed. 
Thus, c will stand for chopped arithmetic, R for rounded arithmetic, etc. (The 
precise meaning of rounding and chopping is discussed in Section 1.5.) The 
system discussed in Sections 1.2 and 1.3 is designated by FP(10, 8, c), indicat
ing that it used eight-digit decimal numbers and that it employed chopped 
arithmetic. Similarly, a 27-bit binary machine using chopped arithmetic would 
be designated by FP(2, 27, c).

Now FP(r, p, a) will denote a system comprised of a set S' of numbers 
which we shall call floating-point numbers and a definition of the four arith
metic operations of floating-point addition, floating-point subtraction, floating
point multiplication, and floating-point division, defined for elements of S. The 
set S of floating-point numbers depends on r and p but not on a. When r and 
p are not fixed by context, we shall write S(r, p) instead of S. The set S(r, p) 
contains zero and all numbers of the form 

(1.4.2)

where e is any integer (positive, negative, or zero) and m is any positive or 
negative fraction satisfying

(1.4.3)

whose absolute value can be expressed in the base r using at most p digits. 
That is,

m

where M is an integer in the range < M < In (1.4.2), the signed 
number m is called the mantissa of x and e is called the exponent of x.

Since every floating-point number is a real number, we can perform the 
standard arithmetic operations of addition, subtraction, multiplication, and 
division upon the elements of S viewed as real numbers. Thus, for x and in 
S, we may form x -_t a;v, and x/y. However, it is quite possible that these 
operations will produce numbers not in 5. For example, we may need 2p 
digits to represent the product of two p-digit numbers, and division may 
produce a result requiring an infinite number of digits. Since the results of 
floating-point arithmetic always lie in S', the floating-point operations produce 
results which may differ from the results produced by the arithmetic opera
tions in the field of real numbers. Thus, we define four new operations, called 
floating-point addition, floating-point subtraction, floating-point multiplication, 
and floating-point division for which we use the symbols 0, *, and
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respectively, The use of * to denote floating-point multiplication is so familiar 
from FORTRAN that it seems very natural. On the other hand, the use of T- 
for floating-point division may require some care. If x is to be divided by y in

the field of real numbers, we shall write x/y or —, never x ? y.
y

In general, we expect the operations @, Q, *, and <- to produce results 
which are close to the results produced by +, —, •, and /. That is, we expect to 
have x * j’ ,vj’, etc. The symbol substituted for a in FP(r, /?, a) will specify 
the details of exactly how the floating-point operations are defined.

Our definition of FP(r, p, a) omits several details of the floating-point 
number representation which would have to be specified in order to give a 
description of the system that is complete enough to allow an engineer to 
design a computer to handle it. In fact, some of the details we have omitted 
may affect the programmer who is using the machine. The most striking 
omission is that we have not specified any bounds on the range of the 
exponent. In practice, such bounds always exist. For the system described in 
Section 1.2, the exponent had to lie in the range — 50 < e < 49, and for the 
BM System/360 the exponent must lie in the range — 64 < e <C 63. Attempt

ing to produce a number whose exponent lies outside this range results in 
overflow or underflow, so the bounds for the exponent are of interest to the 
programmer. But in analyzing a program, problems related to overflow and 
underflow are often studied separately from problems related to the errors 
introduced by the floating-point arithmetic. This will be our approach here. 
We shall study the effects of performing arithmetic in a hypothetical system 
I P(r, />, a) which places no bounds on the exponent, and we shall relegate the 
study of overflow and underflow to a separate chapter (Chapter 2).

Even though we do not place bounds on the exponent of the numbers in 
S(r, p), from time to time we shall want to refer to the characteristic of a 
floating-point number. We shall assume that there is a number y such that the 
signed exponent e is actually stored as a characteristic which is defined to be 
e + y. Then y is 50 for the system described in Section 1.2, 64 for the IBM 
System/360, and 128 for the IBM 7090. A machine which stores the exponent 
as a signed number would have y = 0. We shall assume that a normalized 
zero is stored with the smallest allowable characteristic.

Another omission is that we have not allowed for variations in the form in 
which negative numbers are stored. We shall assume that negative numbers 
are stored with a minus sign and the true value of the magnitude of the 
mantissa. Of course other approaches are possible. Machines have been built 
which use either r's complements or (r — I )'s complements. The use of com
plements will be discussed in Section 12.2, but throughout the rest of this book 
we shall assume that negative numbers are stored with sign and true magnitude.

Still another omission is that we have not allowed for variations in where 
the radix point falls in the mantissa of a floating-point number. Throughout 
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this book we shall assume that the radix point lies at the left of the mantissa, 
so the mantissa of a normalized, nonzero number satisfies (1.4.3). However, 
other schemes have been implemented. For example, on the CDC 6600, 
floating-point numbers are represented in the form 2ec, where c is called the 
coefficient and is an integer. In this case, the binary point is at the right of the 
mantissa. Since results from FP(r, /?, a) are readily translated to such a system, 
we shall assume throughout that the radix point lies at the left.

We have specified that all floating-point numbers are normalized, and we 
shall assume that the floating-point operations 0, 0, *, and 4- produce 
normalized results. Many machines offer the programmer the option of 
producing unnormalized results by suppressing the postnormalization which 
may occur in 0, 0, and *. This is true for 0 and 0 on the IBM System/360, 
but the FORTRAN and PL/I compilers for that machine translate the 
arithmetic operations which appear in an arithmetic expression into the 
normalized operation codes. Thus, we are dealing with the system the pro
grammer sees when he writes programs in FORTRAN or PL/I for the IBM 
System/360. In Section 12.4, we shall discuss both unnormalized operation 
codes and unnormalized operands.

Finally, some machines have special numbers which are treated differently. 
For example, the CDC 6600 has an co and an indeterminant form. The IBM 
7030 had flag bits in the floating-point word which could cause interrupts. 
These features will be discussed in Section 12.2.

1.5. FP(r, p,c) AND FP(r, p, R)

We shall now specify two different ways in which the floating-point 
operations 0, 0, *, and 4- may be defined, yielding two different systems 
which will be designated by FP(r,/?, c) and FP(r,/?, R). The letters c and R 
will denote chopped and rounded arithmetic, respectively. In chopped arith
metic, the result is first normalized, and then its low-order digits are discarded 
and its high-order p digits are retained unchanged. One often sees this 
approach referred to as truncation instead of chopping. However, this use of 
the word truncation may lead to confusion with the term truncation error, 
which is a poorly defined and overworked term in numerical analysis. It is 
used to refer to the error introduced by replacing an infinite series by a finite 
number of terms of the series, and it is sometimes used in a much wider 
context to refer to the error introduced by replacing a continuous problem by 
a discrete problem. To avoid the possibility of confusion between this type of 
error and the error introduced by the floating-point arithmetic, we use the 
term chopping instead of the more commonly used term truncation. The term 
chopping has been used in this context by other authors. [See, for example, 
McCracken and Dorn (1964).]
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If x is any real number, let x denote x chopped to p digits in the base r. 
More specifically, for any real number x let T be the set of all numbers y in 
S(r, p) with | y | < | x |. Then x is the element in T which is closest to x. Thus, 
in FP(10, 8, c), .123456789 = .12345678 and -.123456789 = -.12345678. 
To perform arithmetic in FP(r, p, c), we first perform the corresponding 
operation in the real number system, and then we chop the result to p digits in 
the base r. Thus

Similarly, we introduce the concept of rounded arithmetic. Here rounding 
means that we round to the closest p-digit number in the base r. If two such 
numbers are equally close, we round the magnitude upward. This is sometimes 
referred to as symmetric rounding. Other rules for rounding are possible, but 
they are more complicated, and they are seldom implemented on computers. 
For any real number x, let x be x rounded to p digits in the base r. 
The is, x in the number in S(r, p) which is closest to x. If two numbers in 
S(r, p) are equally close to x, x will denote the one with larger magnitude. 
Thus, in FP(10, 8, A), .123456789° = .12345679, .123456785° = .12345679, 
.123456783° - .12345678, and -.123456785° = .12345679. To perform 
arithmetic in FP(r, p, /?), we first perform the operation in the real number 
system, and then we round the results to p digits in the base r. Thus, in 
FP(r, p, R) :

Most implementations of floating-point arithmetic have tried to produce 
results which were either approximately the correctly chopped results or 
approximately the correctly rounded results. However, computers have 
seldom, if ever, produced exactly the results which would be produced in 
I P(r, p, c) or FP(r, p, R>. (In Section 12.3 we shall discuss how a machine 
could be designed to produce exactly these results. ) Thus, both FP(r,p, c) and 
FP(r, p, R) are idealized systems which probably do not describe exactly the 
arithmetic the programmer is using. But since the ideas of chopping and 
rounding are easy to work with, it is often convenient to study the results 
produced in these systems, without considering the modifications which have 
been introduced by the machine designers to make the arithmetic easier to 
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perform. In Section 1.8 we shall discuss the system FP(r, p, c!q), which has 
been implemented on many machines, including the IBM System/360. In 
some cases there is no difference between the results in FP(r, p, c) and 
FP(r, p, clq), and in other cases the difference is not important, so we may 
draw our examples from FP(r, p, c). In still other cases the distinction between 
I'Pfr, p, c) and FP(r, /?, clq) is important, so we shall deal with FP(r, p, clq).

Since we shall place special emphasis on the arithmetic of the IBM 
System/360, we shall be most concerned with FP(r, /?, clq). Because this 
system is closely related to FP(r, /?, c), we shall devote much more time to the 
study of FP(r, /?, c) than we do to the study of FP(r, p, R). However, 
FP(r, p, R) will be discussed where appropriate, and many of the results 
obtained for FP(r, p, c) will be carried to FP(r, /?, R) in the exercises.

1.6. LAWS OF ALGEBRA

Algebraic manipulation of formulas is based on the validity of a few 
fundamental laws. Specifically, we appeal to the fact that the real numbers 
form a field. This means that the sum and product of real numbers are defined 
and that the following six axioms hold for any real numbers a. b, c:

I. Closure*. The product ab and sum a + b of the real numbers a and b 
are real numbers.

2. Commutative laws:

b = b 4- a
(l.6.l)

ab = ba
3. Associative laws:

(/j + c)
(I.6.2)

(a + b) + c = a + । 

(ab) c = a(bc)
4. Distributive law:

(1.6.3) a(b + c) = ab +

5. There are real numbers 0 and I such that

(1.6.4) a + 0 = 0 + a = a

and 

(I.6.5) a-1 = I = a

hold for all a.
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6. For any real number a there is a real number —a such that

(1.6.6) a + (—d) = (~ a) + a = 0,

and if a 0, there is a real number a~x such that 

(I.6.7) aa 1 = a 1 a — 1.

A consequence of these axioms is that there are no divisors of zero, that is, 
if ab = 0, then at least one of the factors a, b must vanish. Another conse
quence of these axioms is the cancellation law:

If ab = ac and a 0, then b — c.

We now define subtraction by 

a — b a + (—£>),

and if b 0, we define division by

a 
b

= ab

Two immediate consequences of these definitions, along with (1.6.1) and
(1.6.2), are

(1.6.9) 

and 

(1.6.10)

We now ask whether these laws are valid in our floating-point number 
system. Since their validity may depend on the details of how the arithmetic is 
performed, we study the specific system FP(r, p, c). [The question of whether 
these laws are valid in FP(r, p, A) forms Exercises 3-7.] We shall see that 
several of these laws fail to hold, although some of the ones which fail do hold 
“approximately" in the sense that the two expressions are approximately 
equal. The investigation of which of the laws hold approximately will be 
postponed until Section 3.4. The fact that some of these laws fail to hold is 
more than an oddity of the floating-point number system. Because they are 
the basis of the algebraic manipulation of formulas, the failure of any of them 
means that the programmer must think of his computation as being performed 
in FP(r, p, c) instead of in the real number system. It may affect the best way 
to write a formula in FORTRAN or PL/1.
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i he following theorem is an immediate consequence of the definitions and 
the validy of the commutative laws in the real number system.

Theorem

In FP(r, p, c), the floating-point sum a © b and the floating-point product 
a * h of two floating-point numbers a and b are floating-point numbers. Also, 
for any a and b in S(r, /?),

a ©) 0 — 0 © a — a 
a * 1 -- 1 * a = a

a ® {—<£) = (-a) @ a = 0.

It will be shown in Section 1.9 that for any a 0 in S(r, p) there is a num
ber b in S(r, p) with a**b = 1. That is, every nonzero element in FP(r, p, c) 
has an inverse. However, this is not as helpful as it seems. In the real number 
system, the existence of the inverse is used to define division, and it enables us 
to solve the equation ax = b. But we have defined division directly. Moreover, 
we shall see in Section 1.9 that, because of the failure of the associative law of 
multiplication in FP(r, /?, c), the existence of a number c with a* c = 1 is not 
helpful in solving the equation a * x — b.

We shall now show that the remaining laws, namely (1.6.2), (1.6.3), (1.6.8), 
(1.6.9), and (1.6.10), fail to hold in FP© p, c) for nontrivial combinations of 
r and p. [They may hold, for example, in FP(2, 1, c).] By this we mean that it is 
not true that they hold for all a, b, c in S(r, p). There may be some values of 
a, /?, c for which they hold, but for each law we shall display an example for 
which the law fails.

Failure of the Associative Law of Addition

To show that
(<7 © b) @ c a © c)

fails to hold in FP(r,p, c), let a = r“2p, b = I, and c — — 1. Then

a © b = 1 + r = 1,
so

But

so the law fails.
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If the associative law of addition were valid in FP(r,/?, c), then (1.6.9) 
would also hold. That is, we would have

But the example above shows that this fails to hold for a = r~2p and b — I.
Sometimes we can exploit the fact that these laws fail. Suppose that we 

want the integer part of a number x which is known to be positive and less 
than rp~}. Let j = rp~1. Then the integer part of x is given by (x © j) © y. 
For example, suppose that we are working in FP(10, 8, c) and that x = 
12.345678. Then x + y = 10000012, so (x + y) — y is 12. (Another way to 
produce the integer part of x is given in Section 12.4.)

In other cases, the failure of (1.6.9) may be more annoying. For example, 
in FP(10, 8, c) let a = 3.3333333 and b = .22222222. Then a © b = 
3.5555555 and (a © b) - b is 3.33333328, so (a © b) © b is 3.333332, which 
is different from a.

From the examples we have considered, it might appear that the failure of 
the associative law was due to the fact that subtractions were involved. We 
now give an example which shows that the associative law of addition may 
fail to hold even if a, b, and c all have the same sign. Let a — 1, b = (r — l)r’p, 
and c — r~p. Then

(a © b) © c = 1 + (r - © r~p = 1 © r~p = 1,
but

a © (b @ c) = 1 © = 1 + r~(p~l),

so the associative law fails to hold. However, in Section 3.4 we shall show that 
the associative law holds approximately if a, b, and c all have the same sign.

’allure of the Associative Law of Multiplication

We shall show that the associative law of multiplication

(a * b) * c = a * (b * c)

fails to hold in FP(r,/?, c), except for trivial combinations of r and p. To 
simplify notation, let s = p — 1. We shall assume that

4r 2 v

which is true for all interesting combinations of r and p. Let a = b = 1 + r~s 
and c = I — 2r~s. Then
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But

= 1 - lr~p.

Thus, the associative law of multiplication fails to hold in FP(r, /?, c) if 
4r~2s < that is, if 4 < rp~2. By considering various special cases, it can be 
shown that the associative law of multiplication fails to hold in FP(r, p, c) 
except for the four trivial systems FP(3, 1, c), FP(2, 1, c), FP(2, 2, c), and 
FP(2, 3, c).

The failure of the two associative laws has an annoying logical conse
quence. In the real number system, we define the product of two real numbers; 
then, since the associative law of multiplication holds, we may simply write 
the product of three real numbers as abc and let the reader group them in any 
way he wants to. But, since the associative law of multiplication fails to hold 
in FP(r, p, c) for interesting values of r and /?, it is not legitimate to use this 
approach for floating-point multiplication. Technically, we should be required 
to specify whether we want (a * b) * c or a * (b * c); we should not be allowed 
to write a * b * c. However, the FORTRAN and PL/I compilers allow us to 
write a * b * c without inserting parentheses. A justification for this lies in the 
fact that the associative law of multiplication holds approximately in 
FP(r, p, c), as will be shown in Section 3.4. With somewhat less justification, 
the compilers also allow us to write a sum, such as a © b © c © d, without 
parentheses. Some compilers, for example the FORTRAN and PL/1 com
pilers for the IBM System/360, specify that these operations be performed 
from left to right. That is,

a * b * c * d — ((a * b) * c) * d 
(1.6.11)

a © b © c © d — ([a © b) © c) © d.

On the other hand, there have been some compilers which did not guarantee 
the order in which these operations would be performed. Since we are 
emphasizing the IBM System/360 and its compilers, we shall use (1.6.11) as 
the definition of repetitive multiplication and repetitive addition in our 
floating-point number systems FP(r, p, a).

Consider the two expressions a * b * c and a * c * b in FP(r, p, c). Now

and
a * b * c = (a * b) * c = c * (a * b)

a * c * b = (a * c) * b = (c * a) * b.

Then these two expressions may fail to be equal because the associative law 
does not always hold. As an example, consider the expression 2xy, which we 
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may code as 2 * x * y. In FP(lO, 8, c), suppose that x = .88111117 and that 
y = .44444444. Then

2 * x = 1.76222234 = 1.7622223,
while

2 * j = .88888888 = 2y.

Thus, 2 * y is exact, but 2 * x is not. Then 2 * x = 2xy, but 2 * x * y may
be smaller than this. Indeed, by carrying out the computations we find 
that 2* x= .78320992 but that 2*x*y = .78320990. Similarly, in 
FP(16, 8, c), if x = .88111117„ and y = .44444444,,, then

2 * x = 1.1022222E„ = 1.1022222„ 
and

2 * y = .88888888,, = 2y,

Direct computation yields 2 * y * x = .4891/42B6,,, while 2 * x * y — 
.489M2E2,,. Although multiplication by 2 is always exact on a binary 
machine, on a machine with any other radix it can introduce error if the 
absolute value of the mantissa is greater than one-half. Thus, the order of the 
factors can be important even in so simple an expression as 2xy. If we know 
something about the size of x and we may have a preference for one or the 
other of the forms 2 * x * y or 2 * y * x.

Failure of the Cancellation Law

To show that the cancellation law (1.6.8) fails to hold in FP(r, p, c), except 
for trivial combinations of r and p, we find values a, h, and c in S(r, p) such 
that a 0, b c, and a * b = a * c. To this end, we first consider the case in 
which r > 2 and p > 2. Let a = 2, b = r — 1, and c — r — 1 + 
Then b c, but

and
a * c = r + r — 2 + 2r (p IJ = r + r — 2

Thus, a * b — a * c, so the cancellation law fails. It is particularly annoying 
that we cannot cancel so simple a multiplier as 2.

For FP(2, p, c), we suppose that p > 4. Let a = b = 1.1and c —
1.1B + 2_{/?~l). Then b c, but

a * b = a * c = 10.01

so the cancellation law fails.
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By considering the remaining cases, it can be shown that the cancellation 
law fails to hold in I:\y(j\p, c) except for the four systems FP(3, 1, c), 
FP(2, 1, c), FP(2, 2, c), and FP(2, 3, c).

Failure of the Distributive Law

We shall show that the distributive law

a * (A @ c) (a * b) © (a * c)

fails to hold in FP(r, p, c) for interesting values oi r and p. First, suppose that 
r > 2 and p > 2. Let a = r — 1, — r - - 1 + >~{p -1>? and c — (r — 1 )r (p~n. 
Then

a * b = (r — 2)r + 1 
and

a * c = [(r - 2)r + l ]r-^-f), 
so

(a * b) © (fl * c) — (r — 2)r + 1 + (r — 2)r~{p~2) + r~{p H

= (r - 2)r + 1 + (r - 2)r‘^-2).
But

so the distributive law fails to hold in FP(r, /?, c) for r > 2 and p > 2.
For FP(2,/?, c), suppose that p > 4. Let a = 1.1B, h = Ll5 4~ 2~(p“1), 

and c = 2~(p~1). Then a*b = 10.01 and « * c = (1.1 j2"<p“1), so

(a * Z>) © (a * c) = (10.01 + T~p - 10.01
But

a * (/j 4- c) = 1.1B * (1.1B + 2-^’2)) = 10.01 n + 2~(p~2\

so the distributive law fails. By considering the remaining cases, it can be 
shown that the distributive law fails to hold in FP(r, /?, c) except or the single 
case of FP(2, 1, c).

Failure of the Relation a * (b + a) = b

In FP(r, p, c), let a and b be positive and c = b 4- a. Then c = b/a, so 
unless b/a can be expressed in p digits in the base r, we have c < b/a. Then 
ac < b, so

a * (b -F fl) = ac
Thus, the relation

(1.6.12) a * ( /? -F fl) = b

holds if and only if b -F a = b/a.
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Except for the trivial case of FP(2, 1, c), we may select b = 1 and let a be 
an integer in the range 1 < a < rp which is relatively prime to r. Then b/a 
cannot be represented in a finite number of digits in the base r, so (1.6.12) 
fails. Thus, (1.6.12) fails to hold in FP(r, p, c) except for the trivial case of 
FP(2, l,c).

1.7. INEQUALITIES IN FP(r,p,c)

We shall now investigate the extent to which FF(r, /?, c) preserves the order 
relationships which we are accustomed to for the real number system. Since 
every number in S(r, p; is a real number, the relations x < y, x < y, etc., are 
defined for them. The following laws are fundamental for the manipulation of 
inequalities in the real number system:

I. Ij'47 < b, then for all c

a + c < b

2. If a < b and c < d, then

a c < b d.

3. If b < c and a is positive, then

ab < ac.

We would like the corresponding laws to hold in FP(r,p, c).
First, we observe that if x and y are real numbers with x < j, then x < j>. 

Of course we may have x = even though x < y. This occurs whenever the 
first p digits of x and are the same. The following theorem follows imme
diately from this observation and the definitions of © and *.

Theorem 1.7.1

In FP(r,p, c),

1. If a < b, then a © c < b © c holds for all c.

2. If a < b and c < d, then a © c <C b © d.

3. If b < c and a is positive, then a * b <Z a * c.

Unfortunately, these relationships, which were strict inequalities in the 
real number system, have been weakened to < in FP(r, p, c). We shall show 
below that the strict inequalities fail to hold in FP(r, p, c), so this theorem is 
the strongest statement that can be made.
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For (1), let a — r 2p. b = 2r 2p, and c — 
b@ c - 1.

For (2 ), we assume that p > 2. Let

1. Then a < b, but a © c

r~p

d — r p ( p + 1 )

Then a < b and c < d, but a@ c = b @ d l.By considering the remaining 
case of p = 1, it can be shown that the strict inequality holds in (2) only for 
FP(2, l,c).

For (3), we note that in any system FP(r, p, c) in which the cancellation 
law fails to hold, we have positive numbers a, /?, c with b < c and a * b = 
a * c. Thus, the strict inequality holds in (3) only for the systems FP(3, 1, 
FP(2, 1, c), FP(2, 2, c) and FP(2, 3, c).

The importance of these results lies in the fact that once we have estab
lished that an inequality holds, we expect to be able to deduce other relation
ships from it. Suppose that we have compared x and y in a program and found 
that x < y. If we now decide to change the units in which they are expressed 
by multiplying both of them by a positive constant, we expect the resulting 
values to satisfy the same inequality. However, we have seen that they may 
become equal. Indeed, if r #= 2, even multiplication by 2 may convert unequal 
numbers into equal numbers. This may have annoying consequences. For 
example, if the denominator of a fraction is a * b — a * c, then determining 
that b yt c is not sufficient protection against division by zero. Another 
annoying consequence may arise in trying to debug a program which is 
misbehaving. If our output shows us that a * b = a * c, we cannot be 
absolutely certain which branch we took if the program branches on the 
condition b — c. This might lead us to search for the bug in the wrong part of 
the program.
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1.8. FP(r, p, c/q)
F

When we introduced the system FP(r, p, c), we mentioned that many 
machines use approximately, but not exactly, this system. It may be viewed 
as an ideal system which is not quite attained in practice. We shall now 
describe a system FP(r, p, clq), which is a slight modification of FP(r, p, c) 
and which describes exactly the arithmetic that has been implemented on 
many machines. It includes both the single- and double-precision arithmetic 
of the IBM System/360 and the single-precision arithmetic of the IBM 709, 
7090. and 7094 (but not the 704). It does not describe the double-precision 
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arithmetic of the IBM 7094, which is more closely related to the programmed 
double-precision arithmetic described in Chapter 5. We are still ignoring the 
bounds on the range of the exponent.

The symbol clq means that we shall perform chopped arithmetic using a 
low- order register which is q digits long, where q may be any integer > 0. 
This low-order register will be used in the operations 0, 0, and * to hold 
low-order digits of intermediate results which have more than p digits. More 
specifically, in the operation * it will hold the next^y digits of the product, and 
in the operations (0 and 0 it will hold the next q digits of the operand which is 
shifted. The 7090 has a 27-bit low-order register called the MQ, and the IBM 
System/360 uses a one-digit low-order register called the guard digit. Thus, the 
arithmetic on the I BM 7090 is performed in the system FP(2, 27, c/27), and 
the single-precision arithmetic on the IBM System/360 is performed in the 
system FP(16, 6, c/1). When the early copies of the IBM System/360 were 
delivered, there was no guard digit for double-precision arithmetic, so the 
double-precision arithmetic was performed in the system FP(16, 14, c/0). 
Later, during 1968, the architecture of the IBM System/360 was changed to 
incorporate a guard digit in double-precision arithmetic. This change was 
also made in the machines already installed, so double-precision arithmetic on 
the IBM System/360 is now performed in the system FP(16, 14, cl 1). Since the 
length of the low-order register determines the length of the intermediate 
results which may be held, we may think of FP(r, p, c) as FP(r, p, cloo).

We still assume that our floating-point arithmetic takes /7-digit normalized 
operands and produces a /7-digit normalized result. We are interested in the 
low-order register only as it affects the high-order digits which are returned 
as the answer. Of course, it would be desirable to make the low-order digits 
available to the programmer—at least to the assembly language programmer 
—since they are useful for programming rounding or programming higher- 
precision arithmetic. However, this is not a requirement for the system 
FP(r, clq). Thus, in the IBM System/360 the guard digit, which is used while 
the arithmetic is being performed, is never saved in a register, so there is no 
way the programmer can get access to it—even in assembly language. Never
theless, the guard digit meets our requirement for a one-digit low-order 
register.

Floating-Point Division

In the machines we are modeling here, the IBM 7090 and the IBM 
System/360,t the floating divide operation produces the correctly chopped 
result. Thus, in FP(r, p, clq) we define a 4- b to be alb.

fExceptions to this rule are the IBM System/360 models 91,95, and 195. On these 
models, the Boating divide operation may produce a result which differs from the result 
produced by other models of the IBM System/360. [See International Business Machines 
(1966 and 1969).]
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Floating-Point Multiplication

We define the product a * b to be zero if either factor is zero. If ab 0, 
the sign of the product is + or — depending on whether a and b have like or 
unlike signs. Then we may assume that a and b are positive. Let

a = rem, r ~1 <Z m 
and

b — rfn, r~l <f n
Let p' = mn9 so

ab = re+fp'.
Since

r 2 < p < 1,

//' is a 2/7-digit number with the radix point at the left and at most one leading 
zero. We assume that we can hold only p + q digits of the result, so we let p" 
be the first p + q digits to the right of the radix point in p . Thus, if q > p, 
we have p" = p', but if q < p, p" is obtained by discarding the low-order 
p — q digits of the 2p-digit number p . Let

a * b = rsp,

where g and p are defined as follows: If r-1 < p < 1, then g = e + f and 
p = p". On the other hand, if p" < r~x, then we shift p" one place to the 
left to normalize it and compensate by decreasing the exponent by 1. (This 
shift is referred to as postnormalization. ) In this case we have g = e + f — I 
and p = rp,f. We may summarize these two cases by writing

g=e+f—k

p = rp ,

where k is 1 or 0 depending on whether or not postnormalization is required.
We shall now compare the results obtained for a * b in FP(r, p, clq) and 

FP(r, p, c). If no postnormalization is required, in each case the mantissa of 
a * b is the high-order p digits of the 2p-digit number p\ so the results are the 
same. On the other hand, if postnormalization is required, the mantissa of 
a * b in FP(r, p, clq) is digits 2 through p + 1 of p". Now if q > 1, these are 
the same as the digits of p\ so a * b produces the same result in FP(r, p, clq) 
as it does in FP(r, p, c). But if q = 0, the (p + l)st digit of p” is zero, so, 
after a left shift of one place for postnormalization, the pth digit of the product 
is zero. Thus, we have proved the following theorem:

Theorem 1.8.1

The floating-point product * produces the same result in FP(r, p, clq) for 
q > 1 as it does in FP(r, p, c). For q = 0 the product * produces the same
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result in FP(r, p, clO) as it does in FP(r, p, c) whenever no postnormalization 
is required. If postnormalization is required, the product a * b in FP(r, p, clO) 
is obtained from the product a * h in FP(r, p, c) by replacing the pth digit of 
the mantissa by zero.

A particularly annoying consequence of the result for q = 0 (no guard 
digit) concerns multiplication by a power of r. If a is a power of r, say then 
we write a as • r~\ so the mantissa of a is r’1. ( This is written in the base 
r as .1.) Then p' = r hi < r"1, so postnormalization is required. Thus, if 
q — 0, multiplication by a power of r replaces the low-order digit of the 
mantissa by zero. In many scientific calculations, scale factors are chosen to 
be a power of r so that scaling will not introduce rounding errors. [For 
example, see Forsythe and Moler (1967).] We see that this fails to be true in 
FP(r, /?, c/0). Even more annoying, since r° = 1, we find that multiplication by 
I may change a number. Indeed, multiplication by 1 in FP(r, p, c/0) has 
exactly the effect of replacing the low-order digit by zero, so FP(r, /?, c/0) does 
not have a unit element satisfying (1.6.4). The engineering change on the IBM 
System/360 mentioned above, which added a guard digit to the double
precision arithmetic, removed these problems by changing the system from 
FP(16, 14, c/0) to FP(16, 14, c/1).

Floating-Point Addition and Subtraction

We define

(1.8.1) aQ b = a @ (—/?),

so we may restrict our attention to the floating-point addition of signed 
numbers. As above, we write a = rem and b = rfn. We shall assume that a 
and b are normalized and that e (If e </, we interchange a and b to 
produce the situation described above.) Then we write

b = rcn\

where n = is obtained by shifting n to the right e — f places. Of
course n is not normalized unless e = f. We are assuming that we have only a 
r/-digit register to hold the low-order digits shifted out of the p-digit register 
holding /?, so we let n" be the high-order p + q digits of the [/? + (<? — /)]-digit 
number n . If e — f < q, we have n' = nf, but if e — f > q, then n" is 
obtained from n' by discarding the low-order e — f — q digits. Any digits of 
n’ which do not appear in n' are lost and cannot enter the calculation. (The 
shift of e — /places to the right, retaining only the high-order p + q digits, is 
called the preshift.) We then form p = m + n" and set

a @ b rep'
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We note that if one of the operands is zero (in normalized form) it has the 
smallest allowable characteristic, so its exponent is not greater than the 
exponent of the other operand. Thus, if e /, it is the zero which is shifted to 
the right, so n" = n = n. Then our definition produces

ci (-0 0 a © 0 = a

Q@b = b
QQb= -b, 

as expected.
To analyze the effects of this definition in more detail, it is convenient to 

separate the discussion into two cases, depending on whether the addition of 
signed numbers results in the addition or subtraction of their magnitudes. In 
each case we shall write the results as

a © b — r^/z.

Add Magnitude Case

This case arises if we add numbers having the same sign or subtract 
numbers having opposite signs. A consequence of our definition is that

(—a) © (—b) = —(a © b).

Using (1.8.1), (1.8.2), and (1.8.4), we may reduce the discussion of the add 
magnitude case to the discussion of a © b where a and b are positive. Since 
m and n are less than 1, 

and

Then //' can be represented as a (p + q + 1 j-digit number with the radix 
point after the first digit (which may be zero). If p < 1, we write g = e and 
p = p. On the other hand, if p > 1, we write 

r'p = ^(r1/?),

so g — e + 1 and p — r~xp . In either case, we retain the high-orderp digits 
of m + n", and these are the same as the high-order p digits of m + n. 
Therefore, in the add magnitude case, a © b and a © b produce the same 
results in FP(r, p, clq) for all q > 0 as they do in FP(r, /;, c). Any digits of n 
which were discarded to produce n,r would have been discarded later when p! 
was chopped to produce p.

Subtract Magnitude Case

This case arises if we add numbers having opposite signs or subtract 
numbers having the same sign. Using (1.8.1), (1.8.2), and (1.8.4), we may
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reduce this case to the problem of computing a © h where 

and

Then
m + n

If p' = 0, we set a © h equal to a normalized zero. If p is not zero, we need 
to ask only whether it is normalized. If it is not, we normalize it and refer to 
this operation as postnormalization, Let k be the number of leading zeros in 
//. Since 

we set g = e — k and /z = rkp .
We first suppose that q > 0. Before we computed m + n" by subtracting 

\n"1 from we shifted n to the right e — /’places. Now if e —-/> 2, then 
n" | < r~\ so 

f I ' < I — 1 — ? — 7/z = m — n | > r —- r - f> r \

Thus, when e — f> 2 we never have to shift /z' more than one place to the 
left to postnormalize it, so k is either 0 or I. Therefore, if k > 2, then e — f 
must be 0 or 1. This means that whenever k > 2 we have n" = so /z' = 
m + n and it may be represented with at most p + 1 digits to the right of the 
radix point. Then, when we shift p to the left k > 2 places, we are able to 
hold all its digits, so /z = + n). That is, if q > 0 and k > 2, the
operation @ introduces no error, so

a @ h = a + b.

This is a rather surprising result, since the postshift of two or more places 
indicates that the subtraction a — |6| has produced leading zeros and there
fore resulted in the loss of significance. The secret lies in the fact that although 
the operation a © b produces exactly the correct result for the operands a and 
/;, the result is sensitive to errors in a and b.

Next, we note that if c — /< q, then n' = n', so p' — m + n . In this case 
the operation a © b produces the correctly chopped result—that is, it pro
duces the same result as it would in FP(r, /?, c).

Finally, suppose that e —• f > q > 0. Then some of the low-order digits of 
n' were chopped during the preshift. Unless these digits were zero, we have 
subtracted too little from ni, so

m f n

But we may have to chop nonzero digits of p in order to shorten p' to p 
digits, and this would make the answer smaller. Thus, we have two effects 
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which tend to compensate. Chopping n tends to make // too large, while 
chopping p tends to make // too small. Since q > I, we must have e —/> 2, 
so k is either 0 or 1. Then p will be either digits 1 through p or else digits 2 
through p -|- 1 of p . Now we have retained p + q digits of n, so 

(1.8.5) «'l

(For the IBM 7090, q = 21 so the difference between n and n" is seldom 
important. But for the IBM System/360, we have# = 1 and the difference may 
be noticeable.) From (1.8.5) we see that if p is too large, it is in error by less 
than 1 in the (p + #)th position to the right of the radix point. Then i f p is too 
large, it is too large by less than 1 in the (p + q — 1 )st position. In particular, 
this means that if a © b ■=£ a + b, than | a © b | is greater than | a + b | by 1 
in the last place. We summarize these results in the following theorem.

THEOREM 1.8.2

For the subtract magnitude case with q > 0,

1. If the postshift is two or more places, a © b = a + b.

2. If the preshift is q or fewer places, the operation a © b produces the 
same result in FP(r, p, clq) as it does in FP(r, p, c).

3. If the preshift is more than q places, the operation a + b either produces 
the same result in FP(r„/?, clq) as it does in FP(r, p, <?), or else the result in 
FP(r, p, clq) may be obtained by increasing the absolute value of the result in 
FP(r, p, c) by 1 in the last place. In this case, \a b \ < | a + b\ < | a © b |, 
and |a@/>| is greater than |« + 6| by less than 1 in the (p + q — l)st 
position.

Finally, suppose that# = 0. In this case we may produce a result which is 
quite bad. For example, suppose that a = 1 and b = —(1 — r~p). Here 
m = r”1, n = —(1 — r ^), n' = — [r 1 — r (p l H], and n,f = —(r 1 — r~p). 
Then in FP(r, p, c/0), 

a © b = r p
but

Thus, the result in FP(r, p, c/0) is r times as large as the result in FP(r, p, c). 
This was one of the reasons for adding a guard digit to the double-precision 
arithmetic on the IBM System/360.

Jn summary, we see that for # > 0 the four operations ©, ©, *, and ~ 
produce results in FP(r, p, clq) which are close to the results produced in 
FP(r, p, c). In act, the only difference arises in the subtract magnitude case 
for the operations @ and ©. Since we are primarily interested in the case 
# > 0, we may often ignore the distinction between these systems and deal 
with FP(r, p, c). Indeed, in all the examples discussed in Sections 1.6 and 1.7 
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in the study of the laws of algebra and inequalities, the same results would be 
produced in FP(r, /?, c/q) for q > 0 as in FP(r, /?, c). Thus, we have demon
strated the failure of these laws in FP(r,p, c/q) for q > 0 and nontrivial 
combinations of r and /?.

1.9. THE SOLUTION OF a * x = b IN FP(r, p, c)

In this section we shall consider the question of whether or not an equa
tion of the form 

(I.9.I) a * x = b

has a solution in FP(r, /?, c). [Our analysis will also apply to FP(r, p, c/q) for 
all q > 0, since the operation * produces the same result in this system as it 
does in FP(r,/?, c).] Since the solution of ax — b is h/a, it is natural to ask 
whether b 4- a satisfies (1.9.1). But if it did, we would have

a * (/? 4- a.= /?,

and we saw in Section 1.6 that this holds if and only if the division b 4- a is 
exact. Thus, h 4- a seldom satisfies 1.9.1 . For any a and c in S(i\ p), we may 
set b — a * c and obtain an equation of the form (1.9.1) which does have a 
solution, although this solution may be different from b 4- a. In this section 
we shall show that for nontrivial combinations of r and p there are always 
nonzero a and b in S(r, /?) for which (1.9.1) docs not possess a solution.

Assume that a and b are given, and write a = rem. Since we do not expect 
to solve (1.9.1) if a — 0, and we clearly can solve it i; b — 0, we may assume 
that neither a nor b is zero. Changing the sign ol x changes the sign o\ a * A', 
so we need consider only the case in which a and b are positive. Then

< /» < 1, and we may write x = rfn, <Zn < 1. Now if a or x is 
multiplied by a power of r, a * x is multiplied by the same power of r, so the 
problem of solving (1.9.1) reduces to the question of whether or not we can 
find a number x such that a * x has the same mantissa as b. Clearly this 
depends only on the mantissas of a and b. Then (1.9.1) is solvable for all b if 
and only if the mantissa of a * x takes on all the (r — I )rp~' possible nonzero 
values as the mantissa of x varies from r~l to I — r~p. But the failure ol the 
cancellation law for nontrivial systems FP(r, /?, c) implies that there are num
bers r/, x, and r in S(r, p) such that a 0, x and y have different mantissas, 
and a * x = a * r. For this value of a there are duplications among the 
mantissas of a * x as the mantissa of x varies from r-1 to 1 — r~p, so there 
must also be omissions. That is, there are values of/? for which a * x is never 
/?. The failure of the cancellation law also shows that there are values of a and 
b for which the solution of (1.9.1) is not unique.
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We shall now examine the computation a * x in more detail. Write

a * x

where // = rkmn and A' is 1 or 0 depending on whether or not postnormaliza
tion is required. Now

xm <Z mn < m,

so we have either r < mn < r-1 and k — 1 or else r"1 < mn < m and 
k = 0. Similarly, if A — 1, we have r~ln < mn < r-t, and if k = 0, we have 
r1 < mn < n. Thus, if postnormalization is required, the mantissa /z of 
a * x is > both m and n. On the other hand, if no postnormalization is 
required, /z is less than both m and n. Surprisingly, /z can never lie between 
m and n.

We note that ifzn = r"1, then /z = n, so Eq. (1.9.1) can be solved for all 
b. Thus, we may assume that m > r"1. If n = 1 — r“p, we have

m > mn = m — r pm > m — r p

so /z — mn = m — r~p. In this case the mantissa of a * x is less than m by 1 
in the last place.

Now suppose that n < 1 — r~p and consider the number obtained by 
increasing x by 1 in the last place. Then y — rfl, where / = n + r "p. If k = 0,

(1.9.2) ml = mn + mr p < mn + r p

yields ml <C mn r~p. On the other hand, if A I, we have

(1.9.3) ml — mn + r pm > mn + r (^+1)

so rml > // + r~p. Then, if ml < r-1, we find that increasing x by I in the last 
place increases a * x by at least 1 in the last place. For the special case in which 
a * x requires postnormalization but a * j’ does not, we have

(1.9.4) mn < ml = mn + r pm < mn + r~p < r-1 + r”p,

so ml = r1. Clearly a * p is greater than a * x in this case. Finally, if n = 
1 — r~p, then increasing x by 1 in the last place produces y = rf, so a * y 
rfa, which is greater than a * x by 1 in the last place. We have proved:

Theorem 1.9.1

In FP(r, /?, c), let a and x be positive. If a * x requires postnormalization, 
increasing x by 1 in the last place increases a * x by at least 1 in the last place. 
I; a * x does not require postnormalization, increasing x by 1 in the fast place 
either leaves a * x unchanged or increases it by 1 in the last place.
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We shall now consider the changes in a * x as n varies from r-1 to 1 — r~p. 
We shall still assume that m > r 1. If n = r~ L // = m and postnormalization 
is required. If n = 1 — /z = m — r~p and no postnormalization is 
required. Let v be the smallest mantissa n for which no postnormalization is 
required. Then r 1 < v < 1 — r'A and from (1.9.4) we see thatmv ~ r~'. An 
immediate consequence of this is that z — r1-rv is a solution of 

(1.9.5) a *

That is, every nonzero element of FP(r, /?, c) has an inverse under the opera
tion *. Now if the associative law were valid in FP(r,/?, c), we could solve 
(1.9.1) by letting z be a solution of (1.9.5) and setting x = z * /?. Then a * x 
would be equal to (a * z) * /?, which is b. Unfortunately, since the associative 
law of multiplication fails to hold in FP(r,/?, c) for nontrivial systems, the 
existence of an inverse does not allow us to solve (1.9.1).

Now as n varies from v to 1 — r~p, /z varies from r-1 to m — r~p, and in 
this range increasing n by I in the last place increases /z by at most 1 in the last 
place. Then /z takes on every value less than so (1.9.1) can always be solved 
if the mantissa of/? is smaller than the mantissa of a. It can also be solved if a 
and h have the same mantissa, since n — 1 yields /z = m. Thus, if (1.9.1) fails
to have a solution, the mantissa of/? must be larger than the mantissa of a.

We shall now ask whether we can solve (1.9.1) for all /? > 0. We surely can 
if m — 1 — r_p, because there are no mantissas which are larger. Then we 
may assume that r-1 < m < 1 — r~p. There are (1 — m)rp — 1 mantissas 
greater than m. If (1.9.1) has a solution for all /?, a * x cannot skip any of 
these mantissas as n varies from r-1 + r~p to v — r~p. Since there are no 
repetitions among the values of /z corresponding to n in this range, a 
necessary and sufficient condition for (1.9.1) to have a solution for all b is that

[(1 — m)rp
that is,

Since the right-hand side of (1.9.6) is obtained by increasing r 1 by (1 — m)rp 
units in the last place, it is surely large enough so that m(r ~1 + 1 — m) > r “1. 
Thus, v can never exceed the right-hand side of (1.9.6). therefore, a necessary 
and sufficient condition for (1.9.1) to have a solution for all /? is that

/??(/• 1 + 1 — m — r p) < r 1 
which reduces to ■

m1 — (1 + r 1 — r ‘p)m + r~l > 0 
Let

g(z) = t~ — (I + r 1 — r p)t + r ’.
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Then (1.9.1) has a solution for all b if and only if g(m) > 0. By direct substitu
tion we find

g(r 1 +jrr') = -jr~p + (J + l)r-(*+1’ +./(./+ l)r 2p 
g(l — r_p) = r~(p+1)

g(l — jr~p) = —(j— Ik'" +jr-‘p+i) +j(J — l)r~2p.

Now g(t) is a quadratic expression which is positive for large |z |. If there are 
two values r1 < t2 for which g(t) is negative, then g(r) is negative for all t in 
the range t} < t < /2. Clearly g(r-1) and g(l — r~p) are always positive. If 
r > 2 and p > 2, we find that g(r-1 + r~p) andg(l — 2r~p) are negative, so 
(1.9.1) has a solution for all b if and only if /n is r~1 or 1 — r ~p. For r = 2 and 
p > 4, we find that g(2-1 + 2~p) and g(l — 2_(;?“1)) are positive, but 
g(2-1 + 2"fp-I)) and g(l — 3*2_jP) are negative, so (1.9.1) has a solution for 
all b if and only if m has one of the four values 2-1, 2-1 + 2~p, 1 — 2~p, or 
1 — 2~fp-1). By considering the remaining cases we may prove the following 
theorem:

Theorem 1.9.2

In FP(r,/?, c), Eq. (1.9.1) with a 0 has a solution if b = 0 or if the 
absolute value of the mantissa of b is not larger than the absolute value of the 
mantissa of a. In the four systems FP(3, 1, c), FP(2, 1, c), FP(2, 2, c), and 
FP(2, 3, c), (1.9. 1) always has a solution if a 0. In any other system 
FP(r, p, c) with r > 3, (1.9.1) has a solution for all b if and only if the absolute 
value of the mantissa of a is r~l or I — r ~p. In FP(2, p, c) with p >4, (1.9.1) 
has a solution for all b if and only if the absolute value of the mantissa of a is 
one of the four numbers 2-1, 2-1 + 2’p, 1 — 2~p, or I — 2~(p-1).

Our study of a * x also leads to a better understanding of the relationship 
between (b 4- a] * a and b. We suppose that a and b are positive, and let 
x — b 4- a. We saw in Section 1.6 that x * a will be less than b unless the 
division b 4- a is exact, that is, unless b/a is in S(r, /?). Suppose that x < b/a, 
so a * x < b. Let x = rem, r"1 <4 m < 1, and let y = re(m + r~p). Then 
ax < b < ayy so 

(1.9.7) a * x < b <4 a '!• y.

Now (1.9.2) and (1.9.3) show that the mantissa of a *y cannot exceed the 
mantissa of a * x by more than r units in the last place. Then (1.9.7) yields the 
following theorem:
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Theorem 1.9.3

In FP(r, /?, c) or in FP(r, /?, c/q) with 7 ?> 1, let a 0 and c = (/? 4- a) * a. 
Then | b | cannot exceed |c| by more than r units in the last place of c.

1.10. DIVISION

We have defined division in both FP(r, /?, c) and LP(r, /?, c/q) by

a 4- b = a/b.

We now look more closely at the details of this computation. If b is zero, the 
quotient is undefined, and for any b 0, we have 0 4- b = 0. Then we may 
assume that a and b are nonzero and normalized. Let

Then

and

Write a 4- b — rg/z. If |m]n | < I, we set g 
other hand, if mjn I > I, we have

/' and // = m/n. On the

and

so we set g = e and // = r hiijn. Let k be 0 if |/;/| < |/?[ and I if
| n |. Thenm

r kmfn.

We note that in forming r~km we may have to shift m one place to the right, so 
we must be able to handle a (p + I)-digit dividend.

Now on some machines—for example, the IBM 7090—the floating-point 
divide operation produces both a quotient and a remainder. To see how the 
remainder is defined, we recall that for positive integers A and B we may 
divide A by B to produce quotient Q and a remainder R less than B. That is,
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there are unique integers Q and R such that

A = BQ + R 

0 < < B.

This is readily extended to any integers A and B with B 0, so we have the 
following theorem:

Theorem 1.10.1

If A and B are any integers with B 0, there are unique integers Q and 
R such that

1. A = BQ + R.

2. 0<|A| <|B|.

3. If Q is not zero, it has the same sign as A/B.

4. If R is not zero, it has the same sign as A.

Theorem 1.10.1 is often the basis of the fixed-point divide operation on 
computers.

We wish to divide m by /?, where m' = r~km. Set A ~ rZpm and B = rpn. 
Then the Q and R of Theorem 1.10.1 satisfy

r2pm = rpnQ + R,

so

(1.10.1) m' — nr~pQ + r~2pR.

We set q — r~pQ and = r~2pR, so

(1.10.2) m' = nq +

Since |r2pn | > we have |£)| < rp and hence | <71 < 1. Also, since
[ R | < | rpn |, we have

(1.10.3)

In both (1 .10.1) and (1.10.2), the two terms on the right-hand side have the 
same sign, so

mf | = | n | - ] q

With (1.10.3), this yields

I nq I .'C | m <|n|(l?l + rp\
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Since q is r~p times an integer and |#| < 1, q is m'/n. By the definition of 
\mffn \ > r~ \ so q is normalized. In general, s is not normalized. Let c = rgq 
and d = re+k~ps. Then a = be + d and c — a -F b. Machines such as the 
IBM 7090 which produce both a quotient and a remainder normally produce 
these values ofc and d, leaving d in unnormalized form. Thus, the remainder 
d is characterized by

d = a —- b(a b).

EXERCISES

1. Carry out the arithmetic in FP(10, 4, c) for each of the examples in Sections 
1.6 and 1.7.

2. In FP(10, 4, c), find an equation a * x = b with a 0 which does not have a 
solution. Also, find an equation for which the solution is not unique.

i * r • • *

3. Show that the associative law of addition fails to hold in FP(r, p, A).
4. It can be shown that the associative law of multiplication fails to hold in 

FP(r,p, A) except for the three trivial systems FP(3, 1, A), FP(2, 1, /?), and 
FP(2, 2, R). Show that this law fails to hold in FP(r, p, R) for the following 
combinations of r and p:
a. r > 2, p 7> 2.
b. r = 2, p > 4.

5. It can be shown that the cancellation law fails to hold in FP(r, p, R) except for 
the three trivial systems FP(3, 1, R), FP(2, 1, /?), and FP(2, 2, R). Show that I 
this law fails to hold in FP(r, p, R) for the following combinations of r and p: 
a. r > 2, p > 2.
b. r = 2, p > 4.

6. It can be shown that the distributive law fails to hold in FP(r, p, R) except for 
the trivial system FP(2, 1, R). Show that this law fails to hold in FP r, p, R) for 
the following combinations of r andp‘. ■
ci. r > 5, p~> 3.
b. r = 2,p >4.

7. It can be shown that the relation a * -7? 7- d) = b fails to hold in FP(r, p, R) 
except for the trivial systems FP(2,1, R) and FP(2, 2, A). Show that this relation 
fails to hold in FP(r, p, R) for the following combinations of r andp:
a- r > 2, p > 2.
b. r — 2, p > 4.

8. Show that the following inequalities hold in FP(r, p, R):
a. If a < b, then a © c < b © c holds for all e.
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b. If a < b and c < d, then a @ c < b © d.
c. II a < /?, then a * c <C b * c holds for all c > 0.

9. Show that inequality a of Exercise 8 cannot be strengthened to a strict in
equality.

10. For inequality b of Exercise 8, it can be shown that strict inequality holds only 
for the trivial system FP(2, 1, R). Show that the strict inequality fails to hold 
in FP(r, p, R) for the following combinations of r and p\ 
a. r > 2, p > 2.
b. r = 2, p > 2.

11. Show that inequality c of Exercise 8 cannot be strengthened to a strict inequal
ity except for the trivial systems FP(3, 1, /?), FP(2, 1, R), and FP(2, 2, 7?).

12. In FP(r, R), what is the mantissa of a * x if a and x are positive and the 
mantissa of x is I — r~p?

13. If r> 2, show that the equation a * x = 1 does not have a solution in 
FP(r, p, R} when the mantissa of a is 1 — That is, a number whose 
mantissa is 1 — r~p does not have an inverse in FP(r, p, R) if r > 2.

14. Show that the equation a * x = 1 always has a solution in FP(r, p, R) if a is 
positive and its mantissa m satisfies

\j 15. If r > 2 and we exclude the trivial case FP(3, 1, R), show that in FP(r, p, R) 
the equation a * x — b has a solution for all b if and only if | a | is a power of r.

16. Show that in FP(2, p, R) with p > 3 the equation a * x = b has a solution for 
all b if and only if the absolute value of the mantissa of a is either 2-1 or 
I — 2~p.

17. Suppose that we use Euler's method to solve the differential equation y' ~ — y 
for 0 < A' < 1 with j(0) ~ I ■ take N steps with step size h = For this 
differential equation, the formula for Euler's method reduces to

1 = yn —

To illustrate the arithmetic involved, we solve this problem several times with 
different values of N, taking N = 16, 32, 64, , 4096. in each case we print
only the final value yN.

We shall consider two different ways in which this formula might be coded 
in FORTRAN. They are

Y = Y — H * Y 

and
Z = (1. - H) * Z.

Our FORTRAN program is
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1 FORMAT (I6,2F13.8)
N = 16
DO 200 K = 1,9
Y = 1
Z = 1
H = l./N
DO 100 I = 1,N
Y - Y—H*Y

100 Z = (1. —H)*Z
WRITE (3,1)N,Y,Z 

200 N = N*2
STOP
END

The question is whether or not the values printed for Y and Z are identical. 
Run this program in single-precision on whatever machine you have available 
and explain why the values of Y and Z are the same or different on that 
machine. (You may have to modify the WRITE statement to agree with the 
conventions at installation.)

18. The values printed for Y and Z by the program in Exercise 17 will be identical 
if it is run on the IBM 7090, but they will be different if it is run on the IBM 
System/360.
a. Explain why the values of Y and Z are identical when the computation is 

performed in FP(2, 27, cl2T) but different when the computation is per
formed in FP(16, 6, c/1).

b. Explain in general terms how the values of Y and Z would differ if the com
putation were performed in FP(2, 27, c/1).

c. Explain in general terms how the values of V and Z would differ if the 
computation were performed in FP(16, 6, c/6).

19. Suppose that we have written a FORTRAN program whose input includes a 
temperature X measured in centigrade. The program converts X from 
centigrade to Farenheit by the FORTRAN statement

F = 1.8*X + 32.

Suppose that we want F to be exactly zero, so we ask what number X must be 
supplied as input to produce the value zero for F. Here X must be the solution 
of the equation

A * X = -32,

where A is the number in 5(r, p) to which the FORTRAN compiler converts 
1.8. We assume that the integer 32 is converted exactly. Depending on the 
FORTRAN compiler used, A may be either 1.8 or 1.8°. (The FORTRAN 
compiler for the IBM System/360 produced by the manufacturer would 
produce A = 1.8.)
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Show that the following statements are true:
a. The equation A * X ~ —32D does not have a solution in FP(16, 6, c/1) 

if A = T8 = l.CCCCC,,.
b. The equation A * X = —32D has a solution in FP(16, 6, c/1) if A — 1.8° = 

\.CCCCDn.
c. In FP(16, 14, cZl), the equation A * X ~ - -32p has a solution if A = 1.8° 

but not if A = 1.8.
d. In FP(2, 27, cllT), the equation A * X — —32D has a solution if A = 1.8 — 

L8°
e. In FPUO, 8, c), the equation A * X = —32 has a solution. (Here no 

conversion is necessary.)
20. Consider the computation of

c = b X a) * a

in FP(r, c), where r and p designate the radix and precision of the machine 
you are using. Find an example which shows that there are numbers a and b in 
5(r, p) such that b and c differ by r units in the last place.



9 FLOAT,NG POINT OVERFLOW 
AND UNDERFLOW

2.1. BOUNDS FOR EXPONENTS

Up to this point we have assumed that a floating-point number was any 
number which could be written in the form rem, where e is any integer, 
r1 < | /n | < 1, and | m | can be expressed in the base r using at most p digits. 
But, as we saw in Sections 1.3 and 1.4, we usually store the signed exponent as 
a characteristic in a few digits of the word. Thus, in a decimal machine the 
characteristic is often defined to be the exponent plus 50, and it is stored in 
two-decimal digits. This restricts the exponent to the range — 50 < e < 49. 
The IBM 704, 709, 7090, and 7094 used an eight-bit characteristic which 
was defined to be the exponent plus 128. This restricted the exponent to 
— 128 <7 e < 127. The IBM System/360 uses a seven-bit characteristic which 
is defined to be the exponent plus 64, so the exponent must lie in the range 
— 64 < e <7 63. The CDC 6600 uses an 11 -bit field to hold the exponent, and 
it holds negative exponents in one's complement form. This produces a range 
— 1023 < e < 1023 for the exponent. Thus, in general, the exponent is re
stricted to a range

(2.1.1)

For a machine which stores the exponent as a characteristic, we usually have

(2.1.2) c* — — (<?*

But if the machine holds negative exponents as either one's complements or 
sign and true magnitude (as, for example, the IBM 7030 did), we may have 
c* — —e*. Since the CDC 6600 uses a mantissa which is a 48-bit integer, in 

39
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our notation, which treats the mantissa as a fraction, we would write e* = 
1071 and e., = -975. *T*

Restricting the range of the exponent restricts the range of the floating
point numbers which we can represent. We shall use Q to designate the 
largest positive floating-point number which can be represented subject to 
(2.1.1). Similarly, co will designate the smallest normalized positive number 
which can be represented subject to (2.1.1). Then

(2.1.3)

and

(2.1.4) co — re*r 1 = re* J.

For the IBM System/360, this yields

Q = 1063( 1 - 16"6) < 1663 
(2 1 5) 

co = IO’65.

This presents a slight asymmetry in our floating-point number system: There 
are some small numbers whose reciprocals cannot be represented because they 
are larger than Q.

The fact that the bounds e* and e.s. are inherent in the machine imple
mentation of floating-point arithmetic suggests that they should be included 
in the definition, of floating-point numbers. Thus, instead of S(r, p) we could 
deal with the set S(r, p, e*) which contains zero and all numbers in Sir, p) 
which can be written in the form rem, where e is an integer satisfying 2.1.1) 
and r"1 < |/n| < 1. However, we shall not follow this approach. Instead, we 
shall deal with problems related to overflow and underflow separately from 
problems related to rounding error and the anomalies of floating-point 
arithmetic. We shall perform arithmetic in the system FP(r, p, a) as long as 
the results we obtain have exponents satisfying (2.1.1). If we try to produce a 
result which has an exponent outside this range, we say that we have encoun
tered exponent spill. If we try to produce a number with absolute value 
greater than Q, the exponent spill is called exponent overflow or floating-point 
overflow. Similarly, if we try to produce a nonzero number with absolute value 
less than co, the exponent spill is called exponent underflow or floating-point 
underflow. In this book we shall not deal with fixed-point overflow, so we 
shall often use the simpler terms overflow and underflow to describe exponent 
spill.

In this chapter we shall discuss various ways of dealing with exponent 
spill. This often involves both the question of what the hardware does and 
the question of what the compiler does. Of course what the compiler can do is 
to some extent determined by what the hardware does.
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2.2. Q-ZERO FIXUP

One of the earliest approaches to the problem of exponent spill used what 
we shall call the £l-zero fixup. This was used in many of the interpreters which 
performed floating-point arithmetic, and it is still extensively used today. 
With this approach, whenever we have a floating-point underflow, the result 
is set to zero. After a floating-point overflow, the result is set to a number 
which has the correct sign and whose absolute value is Q. When Q is used in 
this way, it is sometimes erroneously referred to as infinity." But Q is a 
legitimate floating-point number, and it does not act like co. For example, 
Q 4- 2 < Q.

A more elaborate approach is used in the floating-point arithmetic of the 
CDC 6600. Here floating-point underflow produces zero as the answer, and 
floating-point overflow produces a genuine infinity. This is a special bit 
pattern which is treated as infinity by the hardware. Thus, for any normal 
floating-point number ,v,

Also, if -V 0.

x 4- 0

There is another special bit pattern which is called INDEFINITE and is 
produced as the result of an indeterminant form. Thus, 0 * co and 0 -? 0 both 
produce INDEFINITE as the result. For any arithmetic operation, if one of 
the operands is INDEFINITE, the result is INDEFINITE. Thus, the CDC 
6600 truly has an oo-zero fixup. It depends on having the hardware recognize 
certain bit patterns as co or INDEFINITE whenever they are used as 
operands in any floating-point operation. Thus, this fixup depends on how the 
hardware works. There is no reasonable way to implement it unless the 
hardware tests the operands in every floating-point operation.

The Q-zero fixup and the oo-zero fixup have the same objective: They 
। allow the computation to proceed after exponent spill in a more or less 

reasonable manner. The Q-zero fixup is easier to implement, since it does not 
require the testing of the operands in all floating-point operations. In fact, it 
is often implemented in software when the hardware produces some other 
result.

We shall now look at the rationale for these fixups. Producing an answer 
which is co or INDEFINITE is usually an indication that exponent spill has 
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occurred. With the Q-zero fixup, if our final answer is close to Q, it is often 
(perhaps usually) an indication that exponent spill occurred earlier. However, 
the real motivation for either the Q-zero fixup or the 00-zero fixup is that we 
may be able to produce good answers even though we have encountered 
exponent spill for some intermediate results.

We shall illustrate this by considering the computation of sin x. Typical 
coding would first reduce the problem to computing the sine or cosine of an 
argument x with, say, | x | < tt/4. For sin x in this reduced range, we would set 
y = x * x and compute z = sin x from

(2.2.5) z ~ x * (a0 + y * (#! + j’ * (a2 + j * (a3 + •)))■

Here the ak are the coefficients for a polynomial approximation for sin x in the 
range —(ti/4) < x < zr/4. To produce good relative error for small x, we must 
have a0 I. Now, suppose that x * x underflows. On the IBM System/360 
this means that x2 < 16"65, so

(2.2.6) x c.25- 16-32.

If we set = 0, we shall compute

Indeed, if aQ = I, then z — x, and for x satisfying (2.2.6) we find that the 
approximation sin x x is good to over 65 hexadecimal digits. Therefore, 
setting the result to zero after exponent underflow allows us to produce 
excellent results in this computation. If we used some other approach for 
underflow, say terminating the computation, we would have had to test x to 
see whether it satisfied (2.2.6). If it did, we would set z = x; otherwise we 
would compute z Yom (2.2.5). This would be faster when x satisfied (2.2.6), 
but it would degrade performance whenever x2 > 16"65, which is by far the 
commoner case.

The calculation described above is typical of a class of programs which will 
produce good answers if a quantity which underflows is replaced by zero. 
This does not mean that this approach is always successful. Some drawbacks 
to setting the underflowed result equal to zero are discussed in Sections 2.7 
and 2.8, where other approaches are considered. However, there are many 
cases where a term which has underflowed may be ignored, so this approach 
enjoys wide popularity. In fact, one often hears the Q-zero fixup referred to 
as the standard fixup.

Setting the result equal to f Q after overflows is less attractive; basically, 
it is an attempt to approximate the ra-zero fixup. But there are some situa
tions in which it will produce good results. For example, suppose that we 
encounter overflow in computing x and that we are really interested in
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y — arctan x. Jf x is positive, arctan x and arctan Q are both approximately 
n/2, so replacing x by Q allows us to compute a good approximation for y. 
Similarly, we shall produce a good result for y if we replace x by ~Q when
ever x is negative. Thus, the Q-zero fixup handles this problem quite nicely. 
However, the example seems rather contrived.

A more typical situation is to encounter overflow in a sequence of multi
plications and divisions used to compute one term in a sum. (Addition and 
subtraction can produce overflow only if both operands have absolute value 
close to Q.) We would like to have overflow in the denominator treated as 
equivalent to underflow in the numerator. The 00-zcro fixup does this quite 
nicely. For example, consider

x = (a * b) 4- (c * d)

Assume that c * d overflows but that a* b does not. The oo-zero fixup will 
produce x = 0. The Q-zero fixup will also produce x = 0 if |a * b | < Q-cu. 
[If e* and e* satisfy (2.1.2), Q-co = r“2(l — r"1.] Thus, the Q-zero
fixup produces the same result as the oo-zero fixup as long as | a * b | < Q*co, 
and it will produce a small value for | x | as long as | a * b | is substantially less 
than Q. Suppose that we want to use the value we have computed for x to 
compute

z = x @ y.

If x has been set to zero, we shall compute z = y. If the Q-zero fixup has 
produced a nonzero value for x and y is small, we may obtain a poor value 
for z. Even the oo-zero fixup will not always yield good values for z. For 
example, suppose that 1, a * b Q/2 and that c*rf^2Q. Then x 
should be approximately -j, so if we replace x by zero, we shall produce a poor 
value for z. This value would be even worse if y were, say, IO 6. Thus, neither 
the Q-zero fixup nor the oo-zero fixup is a panacea, but there are a reasonable 
number of cases in which they produce good results.

In our definition of the Q-zero fixup, the result after overflow was set to a 
number with the correct sign and with the absolute value Q. Similarly, the 
<x3-zero fixup could have been defined to use two special bit patterns represent
ing + and — oo, with normal sign control and definitions such as 
( + oo) (~oo) = INDEFINITE. We now consider an example which 
illustrates the value of retaining the sign after overflow. Suppose that we are 
using a gradient technique to find the maximum of a function /(x, y). With 
such a method we vary the step size h from step to step. [See Crockett and 
Chernoff (1955).] If we have taken a step in gradient direction which results in 
a decrease in the value of /(x, y), it means that we have taken too large a step. 
Thus, if we take a step of size h from (x , y,.' to (xn+l, y/j+1) and find that
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we reject the point (x„+1, j’zi+1) and take another step from (xZI, jQ with smaller 
step size, say /z/2. Now suppose that f(xn+overflows. if /'(xz)+1, vzj+1) 
< —Q, we surely want to reject the point (xzj+], yzi+,) and reduce h. Our 
program will do this automatically if our computation of /(xn+I, j’n+I) pro
duces the result Q or any negative number close to Q. On the other hand, 
if we did not preserve the sign and our computation of/(x„+1, produced 
the value Q or oo, our program would move to the point (,vzj+I, yz(+1) thinking 
that it had produced an increase in f(x, y). Thus, there are problems in which 
the sign of a number which has overflowed can be vital.

If the hardware provides an interrupt on exponent spill (see Section 2.3), 
the actual fixup is often performed by software. Even so, the type of fixup 
which can be provided by the software is constrained by the way the hardware 
operates. We have seen that the oo-zero fixup depends on the hardware 
recognizing certain bit patterns as oo or “indefinite” whenever they are used 
as operands. Even the Q-zero fixup requires that the hardware produce the 
correct sign. Originally, the IBM System/360 produced a result after exponent 
spill which could be described as ?-zero. Here the result was set to zero after 
underflow, and the result after overflow was unpredictable in the sense that it 
varied from model to model. In some cases the result was set to zero after 
overflow. The Q-zero fixup could not be performed by software because the 
sign of a result which had overflowed was often lost. The engineering change 
referred to in Section 1.8 changed the architecture of the machine so that after 
either overflow or underflow it now produces the wrapped-aroundcharacteristic 
described in Section 2.3. The standard software then changes this result to the 
Q-zero fixup.

Other fixups are possible. For example, we might want an Q-gj fixup, so 
that a result which underflowed would not appear to be zero in a test made by 
an IF statement. However, the Q-zero fixup is by far the commonest now in 
use.

2.3. INTERRUPT

Often the programmer wants to know whether or not an exponent spill 
has occurred. In fact, unless the hardware provides a standard fixup, there 
must be some monitoring of the floating-point arithmetic, so that software 
can provide a fixup after exponent spill.

In many implementations of floating-point arithmetic, the result after 
exponent spill has a wrapped-around characteristic. To define this result more 
precisely, we shall assume that the characteristic is defined to be the exponent 
plus y and that it may be any integer from 0 to c — 1. Then e* = c — 1 — y 
and = — y, so

(2.3.1) c = e'Ai — e.:. + 1.
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We say that the result after exponent spill has a wrapped-around characteris
tic if it has the correct sign, the correct mantissa, and a characteristic in the 
interval [0, c — 11 which differs from the correct characteristic by c. Thus, 
instead of c -|- 1 the characteristic will be I; instead of —3 it will be c — 3. 
This means that if we have performed an operation in which the answer is so 
large that it overflows, the hardware may return a very small number as the 
answer. Similarly, the result after underflow may be a very large number. 
These results are almost the worst possible numbers to use for further calcula
tion, so some type of fixup is required if we are to proceed.

The scope of the problem may best be illustrated by looking back to the 
IBM 704. When exponent spill occurred in this machine, the result had a 
wrapped-around characteristic and an indicator was set. The only way to 
provide a fixup such as the Q-zero fixup was to test an indicator after each 
floating-point operation—a rather obnoxious procedure. Moreover, for 
Q, and * the result appeared in the accumulator and (roughly) the low-order 
bits appeared in the MQ. But for 4-, the quotient appeared in the MQ and the 
accumulator held the remainder. Since the accumulator and the MQ each had 
its own characteristic, either could overflow or underflow, and each had its 
own indicator which had to be tested. Unless one were programming double
precision arithmetic, underflows in the remainder, or in the MQ following

0, or could usually be ignored. To determine exactly what had 
happened, one had to know whether the operation was what indicators 
had been turned on, and, in one case, the high-order bit of the characteristic 
of MQ. Since it is troublesome to test the indicators after each floating-point 
instruction, one might be led to forego any fixup and merely test the indicators 
at the end of a routine to see whether spill had occurred. But such a test was 
ambiguous. Suppose that we found that the overflow indicator for the 
accumulator had been turned on. This could indicate one or more overflows or 
underflows of the result of 0, or *. On the other hand, it might have been 
caused by the underflow of a remainder, which could be ignored. In fact, 
since fixed-point arithmetic was performed in the same accumulator, the 
overflow indicator could have been turned on by a fixed-point overflow, or 
even by shifting a number to extract the low-order bits. Thus, even a test at 
the end of the program to find out whether or not spill had occurred was 
often impractical. Many programs did not even bother to test for spill at all. 
One simply ran them and hoped for the best.

As a result of this situation, a new treatment of exponent spill was used in 
the IBM 709, and later, in the IBM 7090 and 7094. It was based on an 
approach which was referred to as trapping on those machines and which is 
now usually referred to as interruption. After exponent spill, the register still 
held the result with wrapped-around characteristic as it had before. However, 
the flow of the program would be interrupted, and the program would branch 
to a fixed location which should have a routine to handle the spill. The
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instruction counter would be saved, so the overflow routine could find the 
location of the instruction that caused the spill and return to the following 
instruction. This has been modified slightly on more recent machines. On the 
IBM System/360, there are many situations which may cause interrupts, so 
the interrupt handler must first determine the cause of the interrupt and then 
branch to the appropriate routine. Moreover, for certain of the interrupts 
there is a mask which can be set to specify whether the interrupt is to be taken 
or ignored.

The use of interruption after exponent spill provides a great deal of flexibil
ity. If suitable programs are included in the interrupt handler, it is possible 
to provide a wide variety of different treatments of spill. The approaches 
described in Sections 2.5, 2.7, and 2.8 depend very heavily on the assumption 
that there is an interrupt after exponent spill and that the hardware produces 
the answer with wrapped-around characteristic.

It is convenient to restate the definition of the wrapped-around character
istic in a way which is not as dependent on the way in which the characteristic 
is stored. We use (2.3.1) as the definition of c. Then the result after exponent 
spill is said to have a wrapped-around characteristic if it has the correct sign, 
the correct mantissa, and a characteristic which is the correct characteristic 
plus c after underflow and the correct characteristic minus c after overflow.

2.4. MESSAGES AND TESTS

As we saw in Section 2.3, if the hardware provides an interruption after I 
exponent spill, the fixup is often produced by the overflow routine. In addi
tion, the overflow routine often prints error messages to indicate that exponent 
spill has occurred. The overflow routine is usually supplied by the compiler, 
and it determines what options (if any) are available to the programmer. But 
FORTRAN G and FORTRAN H for the IBM System/360 provide the 
extended error-handling facility, which allows the user to specify the treatment 
he wants for exponent spill. He can specify the number of error messages he 
wants printed, and he can indicate whether or not the computation should be 
terminated. He can even supply the name of a subroutine he wants called to 
provide his own fixup. This makes it easy for the user to write his own overflow 
routine in a higher-level language. In this section and in Section 2.10 we shall 
discuss some of the things we might want the overflow routine to do.

The most drastic action that can be taken after exponent spill is to 
terminate the program, (We would hope that if this is done the overflow 
routine would give us a clear indication of what happened and where in the 
program it occurred.) However, there are several reasons we might prefer not 
to terminate the execution of the program. First, as we have seen in Section 
2.2, a standard fixup might allow the program to run to completion and
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produce the correct answer. In this case, if exponent spill terminates the 
program, the programmer must code tests to avoid the spill. Thus, in those 
cases in which a standard fixup would be successful, we clearly do not want to 
terminate the calculation. A second objection is that even if the exponent spill 
indicates a catastrophic error, terminating the program may deny the pro
grammer the information he needs to debug the program. If the program were 
run to completion, it might produce output that would be helpful in tracing 
the error. Finally, although some of the results may be contaminated by 
exponent spill, others may contain meaningful information. Thus, one column 
in a page of output may be nonsense, while the remaining output is valid. 
Even more annoying, out of several cases to be run there may be one case 
which spills. If this happens to be the first case run, terminating the calculation 
denies us the results from the good cases. Thus, terminating the execution of 
the program is often too drastic an action to take after exponent spill, so it 
probably should not be adopted as the standard procedure. However, it is 
desirable for the overflow routine to offer the programmer the option of 
terminating the calculation if he wants to.

It should be pointed out that allowing the calculation to proceed with an 
Q-zero fixup may produce other difficulties. For example, it may even produce 
an infinite loop. But many computers today use an operating system which 
will terminate the program when a time estimate is exceeded. This provides 
protection against infinite loops arising from other sources as well.

We shall assume that program execution is allowed to continue after 
exponent spill. Then there are four questions which must be addressed:

1. What output, if any, should be produced to indicate that spill has 
occurred ?

2. How can the programmer insert a test in his program to find out 
whether he has had an overflow or an underflow?

3. What number should be produced as the result after exponent spill in 
order to allow the calculation to continue?

4. To what point should the overflow routine retrun after processing the 
interruption ?

In this section we shall discuss questions 1 and 2. The other questions will be 
discussed in Section 2.10.

We shall first address the question of what output should be printed after 
exponent spill. We heartily recommend that this output use the English words 
overflow and underflow to describe what happened. In early versions of 
FORTRAN for the IBM System/360, the output printed after exponent spill 
was the message

IHC210I PROGRAM INTERRUPT ( ) OLD PSW IS
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followed by 16 hexadecimal digits representing the program status word 
(PSW). By consulting the correct manual, the programmer would discover 
that the interrupt could have been caused by fixed-point overflow, floating
point overflow, floating-point underflow, or floating-point division by zero. 
To find out which it was he had to look at the eighth hexadecimal digit of the 
16-digit PSW to see whether it was 9, A, C, or D. It is clearly preferable 
(almost mandatory) to have an English description of what happened. This is 
provided by the extended error-handling facility on the IBM System/360.

If a number which has overflowed is replaced by we are very likely to 
encounter further overflows. For example, if a* = =f Q, 2 * x overflows. Thus, 
if we have any overflows in a program and use the Q-zero fixup, we are likely 
to have many overflows. For FORTRAN on the IBM 7090, this led to the 
approach of printing a line of output for each of the first five exponent spills 
in a program but not printing messages for spills after the first five. Since it is 
quite possible to encounter 2000 or 3000 overflows, something of this sort is 
desirable. It is better to have the overflow routine count the number of over
flows and the number of underflows for which no messages were printed and 
print a message at the end of the program giving these counts. Also, instead 
of printing exactly five messages, it is desirable to allow the programmer to 
specify how many messages he wants.

One problem that arose on the IBM 7090 is not present on the IBM 
System/360. On the 7090, single-precision addition, subtraction, and multi
plication produced a double-precision result in which the second word had its 
own characteristic. Therefore, these operations could produce underflow in 
either the high-order or the low-order digits of a result. In many cases, the 
low-order digits would never be used, so the fact that they underflowed was 
irrelevant. Nevertheless, if this was one of the first five spills, an underflow 
message would be printed even though high-order digits were valid. If some 
of the numbers in a calculation were getting small, we were very likely to 
encounter underflow first in the low-order digits. Thus, the first five messages 
about exponent spill might describe irrelevant underflows in the low-order 
digits. Then, when spills occurred which might affect the answers, no messages 
were printed, because five spills had already occurred. Unfortunately, 
messages describing these irrelevant underflows often conditioned the pro
grammer to ignore all underflow messages. The absence of the low-order 
characteristic on the IBM System/360 eliminates this problem. This situation 
was also taken into account in the design of the extended-precision arithmetic 
on the models 85 and 195 and on the IBM System/370. Underflow in the 
characteristic of the low-order double word does not cause an interrupt on 
these models.

Next, we shall consider the question of how the programmer can perform 
a test to find out whether spill has occurred. With many ol the FORTRAN
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compilers for the IBM System/360, this involves calling a subroutine named 
OVERFL. We write

CALL OVERFL (K)

and K will be set to 1, 2, or 3 by the subroutine OVERFL. K will be 2 if no 
spill has occurred since the last time OVERFL was called. If there have been 
one or more spills since the last time OVERFL was called, K will be set to 1 or 
3 depending on whether the last spill was an overflow or an underflow. This 
may be annoying if we have a program in which we are concerned about 
overflows but may ignore underflows. If we call OVERFL and the value 
returned is 3, we do not know whether an overflow has occurred. Thus, when 
we call the OVERFL routine with an argument K, there should be at least 
four values to which K can be set. These would specify that since the last time 
OVERFL was called there has been no spill, overflows only, underflows only, 
or both overflows and underflows. With the extended error-handling facility, 
we can obtain even more information we can find out the number of 
overflows and the number of underflows that have occurred.

2.5. ON OVERFLOW AND ON UNDERFLOW
IN PL/l

A great deal of flexibility has been built into PL/I at the language level by 
the inclusion of the ON OVERFLOW and ON UNDERFLOW statements. 
We can use the construction

ON OVERFLOW: BEGIN:

and then write any PL/I statements we want to. If a floating-point overflow 
occurs, the interrupt handler will branch to this piece of coding, so the pro
grammer can do whatever he wants to after overflow. In many respects this is 
equivalent to allowing the programmer to write his own overflow routine in a 
high-level language. He can print whatever output he desires, store whatever 
information he needs, keep track of overflows and underflows for later 
testing, and branch to any point in his program, including RETURN to the 
instruction following the one which caused the spill. The treatment of over
flow may be changed by using additional ON OVERFLOW statements, 
and each procedure (subroutine) may have its own ON statements which 
modify the treatment of spill within the procedure.

The ON statements are extremely powerful, and they provide the PL/I 
programmer with a great deal of flexibility in the treatment of exceptional 
cases. However, a limitation on the power of these statements is the fact that
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the programmer does not have access to the contents of the register that 
spilled. Consequently, these statements cannot be used to provide special 
fixups, such as those discussed in Sections 2.7 and 2.8. In fact, they cannot 
even be used to produce the Q-zero fixup after overflow.

Since the way exponent spill is handled by PL/l may depend on the 
implementation, we shall consider version V of the PL/I (F) compiler for the 
IBM System/360. First, suppose that we do not use the ON statements to 
provide our own treatment for spill. After an exponent spill, a message will 
be printed indicating whether the spill was an overflow or an underflow and 
where in the program it occurred. Following underflow, the result is set to 
zero and the calculation proceeds, but following overflow, the calculation is 
terminated. If we use the NO OVERFLOW prefix, the calculation will 
proceed after overflow, but the result will be left with a wrapped-around 
characteristic and no messages will be printed. Thus, there is no way to 
provide the Q-zero fixup and allow the calculation to proceed after overflow.

In spite of this limitation, the ON statements provide a very powerful tool 
and they are a significant advance in the handling of spills at the language 
level. In fact, the availability of these statements might be a reason for writing 
a program in PL/I rather than FORTRAN.

2.6. EXAMPLE

In most implementations of floating-point arithmetic, the range of the 
exponents is large enough to handle the vast majority of the numbers that 
arise in our calculations. For example, on the IBM System/360, we have 
Q 7.23 X 1075 and a> 5.40 x 10“78. Even Avogadro’s number, which is 
6.03 X 1023, and Planck's constant, which is 6.55 X 10 27 erg second, are 
comfortably within this range. Since Q is so large, it might appear that we 
would never encounter overflow unless our program contained errors in 
logic. We shall now consider an example which shows that this is not true.

Suppose that a manufacturer produces two models of a product, model A 
and model B. He has collected data which shows that 10% of his orders are 
for model A and 90% are for model B, and on a particular day he receives 
2000 orders for this product. We assume that the orders are random and 
independent, so he would expect to have about 200 orders for model A. We 
want to compute the probability that there will be at most 200 orders for 
model A. Indeed, we might like to see the probability that there are exactly k 
orders for model A and the probability that there are at most k orders for 
model A, for k = 0, 1, . . . , 2000. If we are going to write a program to solve 
this problem, we would like it to work in a more general setting in which the 
number of orders received is N and the probability that any order is for model 
A is p. Then q = 1 — p is the probability that an order is for model B. Let
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xk be the probability that exactly k of the N orders are for model A, and let 
yk be the probability that at most k of the N orders are for model A. Then 

(2.6.1)

and

(2.6.2)

(2.6.3)

where is the binomial coefficient

TV\ TV!
k) ~ k\(N - £)!

If we first compute the xk\ they/s present no problem, so we shall consider 
only the problem of writing a program to compute the x/s given by (2.6.2). 
The program must work for TV on the order of 2000.

Clearly, the formula for xk may be rewritten as

(2.6.4) TV(TV - !)• • -(TV - k 
k\

We shall consider the computation of x200 when TV = 2000 and /? = .!, and 
we shall assume that we are using a machine with the values of Q and co given 
above for the IBM System/360. This computation may be split into four 
parts, namely, computating (.9)]80°, (.I)200, 200!, and 2000-1999 ••• 1801. 
Then these four quantities must be combined. Now k\ overflows or k > 57, 
so 200! overflows. All the more so, 2000-1999 ••• 1801 overflows. Since 
(.I)200 = 10-200, (.I)200 underflows. We even find that (.9)1800 underflows, 
since it is approximately 4.3 X 10~83. Thus, we cannot represent any of the 
four parts listed above. However, we know that each xk satisfies 0 < xk < 1, 
and we expect j?200 to be about one-half, so

200

Since the sum of 201 of the xk\ is about .5, they cannot all be small. (For
example, if each xk < .001, we would have j200 < .201.) Therefore, many of 
the xks must be 'Teasonable"-sized numbers, say .001 < xk < 1. Since 

X200 > 001 aHCl CD200 10 200, the binomial coefficient must
overflow.

If xk < co for some value of k, then xk < 10 77, so we would be quite 
willing to replace xk by zero. [This will happen for k = 0, since x0 = (,9)2000.]
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Thus, we shall require our program to set equal to zero if it is less than co, 
but otherwise we want a valid answer for xk. There are several ways in which 
this might be coded, but to illustrate the handling of exponent spill we shall 
perform all the multiplications and divisions. For N = 2000 and k = 200, 
there are 2400 operations, and in the worst case, for k = 2000, there are 6000 
operations. We shall see in Section 3.5 that this will not cost us more than 13 
bits in accuracy, so if the calculation is performed in double-precision, the 
result will be good to better than single-precision accuracy. (These vague 
statements about accuracy are made more precise in Section 3.5.) For 
N — 2000, both x0 and are less than co. To avoid the complication of 
branching around certain loops for these two values of /<, we shall compute 
xk only for 1 < k < N — 1. Thus, our problem is

Problem

Write a program which takes the values of N, p, and k with 1 < k < 
N — 1 and produces xk defined by (2.6.2). Set the answer to zero if xk < co 
(or if xk is slightly greater than co but the rounding error introduced by the 
multiplications and divisions makes our computed value for xk less than co.)

Since we are interested only in the computation, we shall ignore the 
statements necessary to type the variables as double-precision, to read in the 
input N, p, and /<; and to write the output xk. We shall first write crude 
FORTRAN and PL/I programs which ignore the problem of spill. These 
programs will then be modified to illustrate two different ways to cope with 
the spills. We shall assume that the programs are to be run on the IBM 
System/360.

FORTRAN Progran Ignoring Spill

DO 100 J = 1,K 
100 X = X*(N+1-J)

DO 200 J = 1,K
200 X = X/J

DO 300 J - 1,K
300 X = X*P

KK = K+l
DO 400 J = KK,N 

400 X = X*Q

For PL/I, we could simply translate this program. However, because of 
the way we shall recode it later, we shall change the DO loops to use the DO 
WHILE construction.



sec. 2.6 EXAMPLE 53

PL)I Program Ignoring Spill

KI, K2, K3 = 1;
DO WHILE (KI < = K);

X - X*(N+1 KI);
KI - KI + I;
END;

DO WHILE (K2 < = K);
X = X/K2;
K2 = K2+1;
END;

DO WHILE (K3 < = K);
X = X*P
K3 = K3+1;
END;

DO WHILE (K3 < = N);
X = X*Q;
K3 = K3+1;
END;

Both these programs will produce good results if they are run in double
precision on the IBM System/360 and no spill occurs. Unfortunately, we are 
guaranteed to encounter spill for the data we are considering.

We first modify the FORTRAN program to prevent spill. Let BIG be a 
large power of r comfortably less than Q, say 1 650 for the IBM System/360. 
(We make BIG a power of r so that we shall not introduce rounding error 
when we use it as a scale factor.) Now if

(2.6.5)
BIG < BIG,

multiplying or dividing X by a number less than 2000 cannot cause spill. 1 f X 
gets to be larger than BIG, we shall divide it by BIG. Then the true value we 
are computing is represented by X • BIG. We shall use an integer I to count 
the number of times we have divided by BIG, so the value of xk will be 
represented by

(2.6.6)

Similarly, we set SMALL

a-a. = AM BIG)1

l./BIG, and if X becomes less than SMALL we
shall multiply X by BIG and subtract one from 1. Then the value of will 
always be given by (2.6.6). The coding is shown below.
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FORTRAN Program Preventing Spill

BIG = 16.**50
SMALL = l./BIG
Q = l.-P
X = I
I = 0
DO 100 J = i,K
X = X*(N+1-J)
IF (X.LE.BIG) GO TO 100
X = X/B1G
I = 1 + 1

100 CONTINUE
DO 200 J = 1,K
X = X/J
IF (X.GE.SMALL) GO TO 200 
X = X*BIG
I = I—1

200 CONTINUE
DO 300 J = 1,K
X = X*P
IF (X.GE.SMALL) GO TO 300 
X = X*BIG
I = 1-1

300 CONTINUE
KK = K+l
DO 400 J = KK,N

IF (X.GE.SMALL) GO TO 400
X = X*BIG
1 = 1-1

400 CONTINUE

This coding produces values ol'X and I such that (2.6.6) holds (except for 
rounding error.' If I = 0, we have produced the desired answer. Since (2.6.5) 
holds and we know that xk < 1,1 cannot be positive. But if I is negative, we 
may be able to divide X by BIG without underflow as long as X > 16-15). 
Thus, to complete the program, we write

TEST = l./(16.**15)
500 IF (I.GE.O) GO TO 700

IF (X.LT.TEST) GO TO 600
X = X/BIG
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I = 1+1
GO TO 500

600 X — 0
700 CONTINUE

With this added coding, we now have a solution to our problem in 
FORTRAN.

For the Pi L/I program, we shall consider a diflerent approach which makes 
use of the ON statements. Of the four loops in our original PL/I program, we 
note that the first loop makes X larger, while the other loops make X smaller. 
Our approach is to start making X larger until it overflows, then go to the 
loops which make X smaller until it underflows, then return to the first loop, 
etc. Basic to this approach is an assumption about the way the PL/I compiler 
works. We assume that a statement such as 

(2.6.7) X*P;

is compiled into a LOAD, followed by a FLOATING MULTIPLY to com
pute X*P, followed by a STORE to store the new value for X. Thus, if the 
multiplication produces an interrupt, the value of X in storage is the value X 
had prior to the multiplication. Similarly, we assume that the statement

K3 = K3+1;

compiles into a LOAD, ADD, STORE sequence and that this is performed 
after the computation in (2.6.7). Then, when an interrupt occurs, the values of 
X and K3 in storage are the values that these variables had prior to the 
computation which caused the interrupt. Our approach would not work if X 
and K3 were held in registers instead of being stored each time we go through 
the loop. (We can verify our assumption about the way PL/I compiles these 
statements by looking at an Assembly listing of the compiled code.) Our 
PL/1 coding is:

PLj! Program Which Handles Spill

ON OVERFLOW GO TO SMALLER;
ON UNDERFLOW BEGIN;

IF KI < K THEN GO TO BIGGER;
ELSE DO;

X = 0
GO TO FINIS;
END;

END;
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X = 1;
Q = 1-P;
KI, K2, K3 = 1;

BIGGER: DO WHILE (KI < = K);
X = X*(N+1-K1);
KI = Kl + 1;
END;

SMALLER: DO WHILE (K2 < = K);
X - X/K2;
K2 = K2+1;
END;

DO WHILE (K3 < = K);
X = X*P;
K3 = K3+1;
END;

DO WHILE (K3 < - N);

K3 = K3+1;
END;

IF KI < = K THEN GO TO BIGGER;
FINIS:

Note that in PL/I, if K2 is larger than K, then the DO loop beginning

DO WHILE (K2 < = K);

will not be executed. Thus, suppose that we overflow, go to SMALLER, and 
then underflow in the loop controlled on K3. If we overflow again, we go to 
SMALLER, but since K2 will be greater than K we shall not execute the DO 
loop controlled on K2. Instead, we shall skip this loop and pick up the 
calculation where we dropped it. Also, note that in the ON UNDERFLOW 
routine, we had to see whether there was any work still to be done in the loop 
labeled BIGGER. If we have underflowed and there is no more computing to 
be done in the loop which will make X larger, we set X = 0 and go to FINIS.

This PL/I program provides a solution to our problem. Here the treatment 
of spill required us to branch to a different point in the program rather than 
simply returning to the instruction after the instruction which caused the 
interrupt. One difficulty with this type of programming is that it makes every 
floating-point instruction a conditional branch. Since some of the branches in 
the program are not shown explicitly, the program is harder to debug.

In summary, this is an example of a problem in which the answer is of 
“reasonable"’ size, but we are exposed to spill in the calculation and a standard 
fixup will not help us. Yet we have been successful in solving the problem in 
higher-level languages.
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2.7. COUNTING MODE

Probably the best treatment of exponent spill that has been described in 
the literature was developed by W. Kahan (1965a and 1966) for the IBM 7094 
at the University of Toronto. This approach allowed the programmer to call 
the overflow routine and specify which one of several treatments of spill he 
wanted. In addition to specifying whether he wanted overflow messages 
printed or suppressed, he could specify one of three different modes for 
handling the result after spill. Naturally one of these modes called for the 
Q-zero fixup. The other two modes which could be requested were the 
counting mode discussed in this section and the gradual underflow discussed in 
the next section.

Counting mode is not designed as a standard fixup to be used indiscrimi- 
nantly. Rather, it is designed to be one of several options which might be 
requested occasionally for handling specific problems. For the problem 
discussed in Section 2.6, counting mode provides a solution similar to the 
approach we used in our FORTRAN program. However, it is a much cleaner 
and more elegant solution. It is based on the assumption that the result 
produced by the hardware after an exponent spill has a wrapped-around 
characteristic. We recall that this means that the result has the correct sign, 
the correct mantissa, and a characteristic which is the correct characteristic 
plus c after underflow and the correct characteristic minus c after overflow. 
Here c depends on the machine, and (sec Section 2.3) it is defined by

I 1c = e — e* + 1.

To use the counting mode, we would call the overflow routine and tell it 
to begin operating in counting mode, counting in location I. It would then 
operate in counting mode until it was told to change. When spill occurs, the 
result in the register will be left unchanged, so it will still have a wrapped
around characteristic. But the number in location I is increased or decreased 
by 1, depending on whether the spill was an overflow or an underflow. Thus, 
in location I we have a count of the number of overflows minus the number of 
underflows. It is the responsibility of the problem programmer to store a zero 
in location 1 before he enters the counting mode and to see that I is typed as 
an integer. The objective of counting mode is to allow us to produce numbers 
X and I, such that the correct result is given by 

(2.7.1)

Had we had this approach available for the problem in Section 2.6, we 
could have used our original FORTRAN program with only slight modifica
tions. We would have to call the overflow routine at the beginning of the 
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program to tell it to operate in counting mode and count in location I. We 
would also need a statement I = 0 to initialize I. At the end of the program 
we would have found X and I such that the desired value for xk is given by 
(2.7.1). We know that xk cannot be greater than Q, so X will hold the value of 
xk unless I is negative. But if I is negative, the computed value for x* is less 
than co, so we want to set x equal to zero. Thus, at the end of the program we 
need only the one additional statement:

IF (LLT.O) X = 0.

This approach is not only simpler and easier to program, but it is more 
efficient, because it removes the tests from the loops. We have allowed the 
hardware to monitor the spills instead of having to test for them ourselves.

The use of counting mode is based on several assumptions about the 
problem. First, at any time only one location I is used to count the spills, so 
the question of which variable is to be multiplied by (rc)[ must be unambigu
ous. For example, suppose that we wanted to compute both

(2.7.2) x = II ak
k - 1

and
n

(2.73) y = || bk.
k=(

If we used the FORTRAN programming

DO 100 K = 1, N 
X = X*A(K)

100 Y = Y*B(K)

we would be unable to tell whether a spill affected x or y. Either we would 
have to modify the program to compute x and in separate loops, reinitializ
ing I in between, or else we would have to be able to guarantee that one of the 
calculations, say (2.7.2), would never cause spill.

A second requirement is that we must know whether a spill in an interme
diate result affects the numerator or the denominator of a fraction. If a spill 
were encountered in the FORTRAN statement

X (A*B)/(C*D)

the effect would be ambiguous. Suppose that an overflow occurred. The 
computed value of X should be multiplied by rc if the overflow occurred while 
we were computing A*B or during the division, but it should be divided by rc 
if the overflow occurred while we were computing C*D.
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Finally, we require that further calculation using a spilled result must 
involve only multiplications and divisions, because a number which has 
spilled does not have the correct characteristic. If it were used in an addition 
or subtraction, the shifting would not be done correctly. (Of course, special 
routines could be written to perform the addition and subtraction correctly. 
The calling sequence for such a routine would specify the two terms to be 
added, the overflow count I, and which of the terms the overflow count 
applied to.) However, the most rapid change in the characteristic arises from 
multiplication and division, so the counting mode handles an interesting 
collection of cases. Indeed, it is immediately applicable to computations 
such as

if we can guarantee that the addition ck + dk never causes spill. If we cannot 
guarantee this, we would have to rearrange the computations as

If the FORTRAN compiler provides the extended error-handling facility, 
it is easy for the user to produce this treatment for exponent spill. With PL/I, 
the ON statements enable us to produce counting mode for overflow but not 
for underflow. For example, we can write the statement

ON OVERFLOW 1 = 1 + 1;

This would do exactly what counting mode does when an overflow occurs, 
because PL/I does not provide any standard fixup after overflow. (The lan
guage states that after overflow the result is undefined, and in fact the 
compiler for the IBM System/360 leaves the result unchanged.) However, the 
analogous treatment for underflow will not work, because the PL/I language 
requires that the result be set to zero after an underflow. Thus, we cannot use 
ON UNDERFLOW to do the counting, because the result is not left with 
wrapped-around characteristic.

2.8. GRADUAL UNDERFLOW

Gradual underflow is another treatment of underflow which was devised
by Kahan (1965a and 1966). With this approach, a number which should have 
an exponent less than e* will be written with the exponent e* and an unnor
malized mantissa. (For many machines this means that a number which has 
underflowed will be written with the characteristic zero.) Thus, if the exponent 
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should be e* — A, we shall make the exponent of the number e* and shift the 
mantissa k places to the right, so the mantissa has k leading zeros. We retain 
only p digits to the right of the radix point in the mantissa, so the A' low-order 
digits of the mantissa must be chopped (or rounded). If the exponent should 
be e* — p or less, we shall shift the mantissa p or more places to the right, 
leaving a zero mantissa. Since we have assumed in Section 1.4 that a normal 
zero is stored with the smallest allowable characteristic, this will be a normal 
zero.

The problem addressed by both counting mode and gradual underflow is 
to avoid having numbers which have spilled contaminate a final result. If the 
computation involves a sequence of multiplications and divisions, the 
counting mode provides an elegant answer. The gradual underflow is designed 
primarily for addition and subtraction. We want to be assured that our 
treatment of underflow will not contaminate the result when a number which 
has underflowed is added to a number which has not.

To illustrate the problem, consider the IBM System/360. Suppose that we 
want to compute x @j’, where x has characteristic 2 and mantissa . 123456;/ 
and y has underflowed but should have had the characteristic — 1 and the 
mantissa .65432I/;. In FP(16, 6, c/1), where there are no bounds on the 
exponent, we would have shifted the mantissa of j three places to the right 
and performed the addition:

.123456

.0006543

.123/M/I3„

Then the number A23AAA3h would have been chopped to six digits, so the 
mantissa of x © v would be A23AAA. But j underflowed, and if we use the 
Q-zero fixup, we shall replace y by zero, so x @ y will be x. Thus, the Q-zero 
treatment of underflow has contaminated the fourth hexadecimal digit of our 
answer. In the worst case, if x = m and j should have characteristic — 1 and 
mantissa .FFFFFFU, we have the following results:

x + p = 16"64 X AFFFFFFH 
x@y = 16‘64 X AFFFFFh

x@y= 16“64 X AFFFFFh

x@y=]6~^ X

in FP(16,6, c/I) with no bounds on 
exponents
if the arithmetic is performed in 
FP( 16, 6, c/1), co = 16~65, and gradual 
underflow is used
if a> = 16 65 and the Q-zero fixup is 
used.

Thus, there are cases in which the Q-zero fixup may produce an error of 
almost I in the first significant digit of the answer. In this situation, gradual 
underflow allowed us to produce the same result as we would have produced if 
we had been able to use — 1 as a characteristic. (See Exercise 4.)
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From the above examples, we see that if the exponent e of x is in the range 
— 2, then x @ y may have abnormally large error if j 

underflows and we use the Q-zero fixup. For the IBM System/360, this can 
affect single-precision numbers with characteristic < 4 and double-precision 
numbers with characteristic <f 12, and on the models 85 and 195 and the 
IBM System/370 this can affect extended-precision numbers with character
istic < 26. Since the number 1 has characteristic 65, this means that a signifi
cant portion of the extended-precision numbers can be affected by this type of 
error.

Gradual underflow provides a good solution to the problem of adding a 
number which has underflowed to a number which has not. Even in a 
sequence of additions, such as the computation of

n

gradual underflow is attractive. Suppose that some of the aks underflow but 
that the final value of S’ does not. If we use gradual underflow, the bound for 
the error in the answer will be close to the bound that would have been 
obtained if no underflow had occurred. (In many cases it is the same bound.)

The penalty we pay for gradual underflow is the introduction of unnor
malized numbers into our calculation. Floating-point arithmetic with unnor- 
maiized operands will be discussed in more detail in Section 12.4. As we shall 
see then, the use of unnormalized operands in the operations © and © may 
cause the wrong operand to be shifted and result in the loss of accuracy. 
However, this situation does not arise when the unnormalized operands have 
exponent e*, so the addition or subtraction of the unnormalized numbers 
produced by gradual underflow does not present a problem. For many 
machines, the use of unnormalized operands in the operations * and 4- may 
require more care. As we shall see in Section 12.4, there are machines (for 
example, the IBM 7090) on which the operations * and — may produce 
unnormalized results with exponents greater than e* and poor accuracy if the 
operands are unnormalized. Fortunately, this problem does not arise on the 
IBM System/360, because the floating-point multiply and divide operations 
prenormalize the operands before performing the arithmetic. Thus, if we use 
gradual underflow with the IBM System/360, the only unnormalized numbers 
we shall produce will have the exponent so we shall not encounter any 
difficulty with them.

2.9. IMPRECISE INTERRUPT

Some of the very fast machines, such as the iBM System/360 models 91 
and 195, use the pipeline approach to achieve speed. With this approach, the 
computer will be processing different stages of several different instructions 
at the same time. In this case, the interrupt cannot operate as cleanly as it does 
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on nonpipeline machines. We shall consider here the situation with regard to 
the models 91 and 195 of the IBM System/360. If a floating-point spill occurs 
and the interrupt is masked on, all instructions which have already been 
decoded will be completed before the interrupt is taken. When the interrupt 
occurs, the instruction counter will point to the next instruction to be 
executed. All instructions prior to this instruction have been executed, but 
instructions beyond it have not. However, before the interrupt is taken, we 
may have executed other floating-point instructions after the one which 
caused the interrupt. The interrupt is said to be imprecise in the sense that we 
do not know which instruction caused the interrupt. In fact, the result of an 
operation which spilled may be used as an operand in another floating-point 
operation before the interrupt occurs.

On a machine with an imprecise interrupt, we cannot count on a software 
fixup for exponent spill, because the interrupt may occur too late. Any fixup 
that is to be performed must be done by the hardware. The models 91 and 
195 of the IBM System/360 provide the fl-zero fixup in hardware, instead of 
leaving the result with wrapped-around characteristic. This means that some 
of the more elegant approaches to exponent spill, such as the counting mode 
or gradual underflow, cannot be used on these machines. However, we may 
still wish to mask the interrupt on in order to print messages or to allow a 
FORTRAN programmer to test whether or not spill has occurred by the use 
of CALL OVERFL. If we are using the ON OVERFLOW or ON UNDER
FLOW statements in PL/I, care must be exercised, because the interrupt may 
occur slightly later in the program than we would expect it to. For this reason, 
the PL/I program shown in Section 2.6 would not work correctly on the 
models 91 and 195 of the IBM System/360.

The inability to provide a precise interrupt for exponent spill is inherent in 
the pipeline approach to computer design. The CDC 6600, which is also a 
pipeline machine, approaches the problem differently. It automatically 
provides the <x>-zero fixup in hardware, and it does not provide any interrupt 
at all for exponent spill.

2.10. CHANGING THE TREATMENT OF SPILL

As we mentioned in Section 2.4, the overflow routine is usually supplied 
by the compiler, and it determines what options (if any) the programmer has. 
While some systems are very rigid and do not allow the programmer any 
choice at all, other systems provide a great deal of flexibility. For example, 
the overflow routine developed by Kahan (1965a and 1966) allowed the 
programmer to specify whether he wanted the Q-zero fixup, counting mode, or 
gradual underflow. In addition, he could specify the maximum number of 
messages he wanted printed.

The extended error-handling facility, which is available with some of the
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I ORTRAN compilers for the IBM System/360, provides even greater flexi
bility. The programmer can indicate whether or not he wants the calculation 
to be terminated, and he can specify the maximum number of messages he 
wants printed for each type of error. Also, if he does not want to use the 
Q-zero fixup, he can specify the name of a subroutine he wants called to 
produce a special fixup. By coding the appropriate subroutine, he can produce 
either counting mode or gradual underflow. The ability to call his own 
subroutine after exponent spill also allows the programmer to supply his own 
error messages.

Similarly, the ON statements in PL/I enable the programmer to provide 
his own treatment for exponent spill. Although he cannot provide his own 
fixup, he can print his own overflow messages and he can perform any calcula
tions he wants to. Moreover, the ON statements allow him to branch to any 
point in his program after exponent spill.

Thus, with either PL/I or the extended error-handling facility, the pro
grammer has a great deal of freedom in specifying the action he wants taken 
after exponent spill. Indeed, it is almost as if he were writing his own overflow 
routine, subject to a few restrictions. We shall now consider how he might 
want to use this capability.

An important aspect of these systems is that they make it easy to change 
the treatment of exponent spill at any time in the program. This can be 
especially useful if we want to use a special fixup, such as counting mode. 
Although counting mode can be very effective for certain types of calculations, 
we have seen that we would not want to use it as the standard fixup. With 
either the ON statements or the extended error-handling facility, we can 
change the fixup to counting mode during the execution of one part of a 
program but use the Q-zero fixup in the rest of the program. In particular, a 
subroutine can use its own fixup without altering the treatment of exponent 
spill in the rest of the program.

We may want to suppress error messages during part of a program but 
allow them to be printed during the rest of the program. For example, suppose 
that we are using a subroutine which has been thoroughly tested and which 
will produce good answers if the Q-zero fixup is used for underflow. Then any 
underflows that occur in this subroutine can be ignored, so there is no need to 
print messages for them. In fact, it we have supplied a bound for the number 
of underflow messages, then printing messages for these irrelevant underflows 
might prevent the printing of messages for other underflows that occur later 
in the program but cannot be ignored. Therefore, we would like to suppress 
underflow messages during the execution of such a subroutine and then 
resume printing them when we leave the subroutine.

There are also times when we might want to supply our own error mes
sages, so that we can make them more informative than the ones supplied by 
the system. For example, by printing the value of one or more variables, we 
might be able to indicate how far the program had progressed before the 
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exponent spill occurred. This is easy to do with the ON statements, and it can 
also be accomplished with the extended error-handling facility in FORTRAN 
if the variables we want to print are in COMMON.

Finally, consider the point to which we want to branch after exponent spill 
occurs. In the PL/I solution of the problem in Section 2.6, we saw that the 
ability to branch to any point in the program can be extremely useful. There 
are other situations in which it is also convenient. Suppose that we are run
ning several cases, only one of which produces exponent spill. It might be quite 
desirable to terminate the calculation of the case which spilled, write a 
message, and then proceed to the next case. In this way we can salvage the 
results of the good cases even though we cannot complete the calculation of 
the case that spilled.

There are some problems in which we can avoid exponent spill in the 
intermediate results by changing the way in which the calculation is per
formed. (For example, this is the case in the computation of fl'a2 4-~b2 dis
cussed in Exercise 7 and in the solution of a quadratic equation discussed in 
Section 9.3. J For problems of this sort, it is sometimes attractive to write the 
program assuming that no spills occur and then use the ON statements to 
provide special treatment for the cases that spill. In this way, we can use the 
simpler procedure for the cases that do not spill, so we avoid degrading the 
speed of the routine. If a spill occurs, we shall use a special procedure to com
plete the solution of the problem, so we do not want to return to the 
instruction following the one that caused the spill. 'Phus, this approach would 
not be feasible without the ability to branch to some other point in the 
program after exponent spill.

Since we may want to change the treatment of spill many times during the 
execution of a program, it is important that these changes be cheap in terms of 
execution time. The treatment of spill can be changed in PL/I at the cost of a 
few loads and stores, and it can be changed with the extended error-handling 
facility at the cost of a subroutine call.

2.11. VIRTUAL OVERFLOW AND UNDERFLOW

We shall use the terms virtual overflow and virtual underflow to refer to 
situations in which a subroutine performs a test and finds that it has been 
asked to calculate a quantity whose absolute value is either greater than Q or 
between zero and co. In this case, no floating-point arithmetic was performed 
which tried to produce a number with exponent greater than e* or less than 
e*, so we do not have a genuine spill and there will be no interruption. Instead, 
the subroutine itself must take some action to reflect the fact that the answer 
cannot be represented as a legitimate floating-point number.

For example, consider the library program used to compute ex. Now ex 
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will be greater than Q for x > log{, Q, and logt, Q is a rather modest-sized 
number—about 174.673 for the IBM System/360. Thus, if we write a 
FORTRAN program for the IBM System/360 and use the expression EXP(X) 
with X — 200, the library program cannot compute the correct value for 
EXP(X), because it is greater than Q. Similar situations arise in the programs 
for SINH(X), COSH(X), GAMMA(X), etc.

It is interesting to note that the subroutine for ex would be unlikely to 
produce a genuine spill, even if it did not test to see whether x > logc Q. 
Typical coding to compute ex first divides x by Iogt, r (or multiplies x by logr e) 
to produce

Then
•’ ~ I og„ r

ex — ey Iog£, r = ry.

Next, j is written in the form 

where I is an integer and Fis a fraction with 0 < F < 1. This yields 

with r1 < r F < 1. Then our computed value for ex will have an exponent 
equal to Zand a mantissa which is an approximation for r“F. The computation 
for r F does not produce any spill, and I is simply converted to a characteris
tic and inserted in the proper place in the word. Since this would produce a 
ridiculous answer when x is greater than log(, Q, a test must be made. Thus, 
the program may produce a virtual overflow, but it will not produce a genuine 
overflow.

The importance of virtual overflow and underflow lies in the fact that the 
programmer thinks of them as being the same, or almost the same, as genuine 
overflow and underflow. But they do not produce an interrupt to initiate the 
normal treatment of spill. For example, consider the ** operation in 
FORTRAN or PL/I. Typically, the expression X**B is evaluated as if it were 
written as the FORTRAN expression EXP(B*ALOG(X)). Thus, when a real 
number is raised to a real power, there is an implicit use of the exponential 
routine. On the other hand, many compilers handle a real number raised to 
an integer power (X**I) by repetitive squaring. (See Section 3.6.) Suppose 
that x > v Then both X*X and X**2 will produce a genuine overflow. 
But if the number stored in B is 2, then X**B does not. In fact, many 
FORTRAN compilers handle the expression X**2. as if it were written as 
EXP(2.*ALOG(X)), so it will not produce a genuine spill. The problem 
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programmer does not want to have to worry about the details of this sort; he 
would like to have X**2 and X**2. produce the same effect.

In general, we would like to have virtual spill produce the same effects 
that a genuine spill would have. If we are using a standard fixup, say the 
fl-zero fixup, this is easy to implement. If, say, the routine for ex finds that the 
argument is greater than logc fl, it can simply multiply two positive numbers 
which are large enough to produce an overflow. This will cause an interrupt, 
and the overflow routine will provide a standard fixup, write the appropriate 
messages, and include the overflow in the counts that are tested by calling 
OVERFL. Control will be returned to the routine for ex, which will deliver the 
standard fixup as the answer.

The problem becomes more difficult if we are using a more sophisticated 
treatment of spill, such as the counting mode described in Section 2.7. As a 
first approach, we might try to find two numbers whose product would over
flow and produce the correct result with wrapped-around characteristic. But 
there is a bound for how large the characteristic can be after overflow. (See 
Exercise 3.) Even worse, in the routine for ex we may find that ex is greater 
than rcfl. This suggests that if the counting mode is to be implemented for 
virtual spill, it should be possible to call the overflow routine and tell it that we 
have encountered virtual spill. The calling sequence would use two arguments 
1 and X to indicate that the correct result is X-(re)7. The overflow routine 
would provide whatever treatment of spill was then being used and return the 
answer in X. It can be argued that this is unnecessary sophistication, but it 
would provide an elegant treatment for virtual spill.

2.12. DIVISION BY ZERO AND
INDETERMINANT FORMS

Another subject that is closely related to exponent spill is division by zero, 
If we coded the expression A 4 B, we did not expect B to be zero. Often A 
and B are approximations we have computed for numbers a and b, and we 
really want to form a/b. If B is zero but A is not, it is reasonable to assume 
that |6| is less than | a |, so a/b has a large absolute value. The CDC 6600, 
which uses a special bit pattern to represent oo, sets A 4- 0 equal to oo 
whenever A 0. Other machines, such as the IBM System/360, provide an 
interrupt when a divide operation is performed and the divisor is zero, and 
then they depend on the interrupt routine to write an error message and 
provide a standard fixup. Here the natural fixup is to set A 4- 0 equal to fl 
whenever A 0, and we shall refer to this as the fl fixup for division by zero. 
Even if we interpret A 4- 0 to mean A b for some b close to zero, we cannot 
determine the sign o^' A 4- b. so the fl fixup always sets the quotient to +fl.

Suppose that we are using the fl fixup for division by zero and the fl-zero 
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fixup for exponent spill. If we wish to compute A 4- B and B underflows, the 
Q-zero fixup will set B — 0. Then if A ^4 0, the Q fixup for division by zero 
will set A 4- B equal to Q. Thus, an underflow in the denominator has been 
treated as an overflow in the quotient. This is a reasonable approach, but it is 
not a panacea. For example, if A = cd and B has underflowed but should have 
been only slightly less than co, this approach would set A 4- B equal to Q when 
the correct answer is only slightly larger than 1.

Next, suppose that we try to perform a floating-point division of zero by 
zero. Here, there is no generally acceptable value to be used in further calcula
tion. In fact, such a division is usually a signal of trouble in the program. The 
only reason for not terminating the program is that we may want to proceed 
to other parts of the program or other data that will not be contaminated by 
the result of this division. The error message printed for division by zero 
should distinguish the case 0 4- 0 from the case A -4 0 with A 0. Moreover, 
a different fixup, say 0 or 1, should be used for 0 4-0.

A similar situation arises with other indeterminant forms, such as X**Y 
when X and Y are both zero. These should be handled as a special sort of 
virtual spill in which a special message is printed and a special fixup is used.

In FORTRAN, we may want to use different fixups for 0**0 depending on 
whether it arises from I**J, X**I, or X**Y, where X and Y are floating-point 
numbers and I and J are integers. This is because integers are usually exact, 
but a floating-point number is often only an approximation for the number we 
are really interested in. Thus, if X and I are zero, we may think of X**I as 
representing x° for some x close to zero, so it is natural to use one as the fixup. 
On the other hand, if X and Y are zero and we think of X** Y as representing 
xy for some x and y close to zero, there is no natural fixup.

Finally, consider the indeterminant form 0-oo. We mentioned in Section 
2.2 that the CDC 6600 has special bit patterns to represent oo and INDEFI
NITE, and that 0*oo is defined to be INDEFINITE. When we are using the 
Q-zero fixup, we often think of Q as infinity. But since Q is a valid floating
point number, 0*Q is zero. In fact, 0*Q does not cause an interrupt, so we 
have no opportunity to provide a special fixup for it.

EXERCISES

1. The subroutine which FORTRAN uses for the ** operation often computes 
X**N for N < 0 as if it were written as

l./(X**IABS(N)).

If Q < 1/cd, this may produce overflow even though XN > co. What 
FORTRAN coding would you use to produce the number co = 16~65 on the 
IBM System/360?
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2. For the machine you are using, find floating-point numbers a and b such that 
X*X does not spill if a < X < b, but it will spill if X is any other nonzero, 
normalized, floating-point number.

3. Consider a machine in which the characteristic is defined to be the exponent 
plus y and may be any integer from zero to 2y — 1. Then e* — y — 1 and e* = 
—y. Assume that arithmetic is performed in FP(r, p, cl 1) and that if a floating
point operation produces exponent spill, the result is left with a wrapped
around characteristic. Let a and b be nonzero, normalized, floating-point 
numbers. What are the upper and lower bounds for the characteristic of the 
result in the following situations?
a. a © b after overflow.
b. a * b after overflow.
c. a 4- b after overflow.
d. a © b after underflow.
e. a * b after underflow.
f. a 4- b after underflow.
Suppose that a is a normalized floating-point number, that b has underflowed, 
and that we use the gradual underflow fixup. Except for overflow and under
flow, the calculation is performed in FP(r, p, cl\).
a. If a and b have the same sign, show that the value produced by a © b is 

the same value we would have produced if the range for the exponents had 
been large enough so that b did not underflow.

b. If a and b have opposite signs, compare the value produced for a © b by this 
approach with the value we would have produced if the range for the 
exponent had been large enough so that b did not underflow.

c. Let c = a + b and let c be the value we would have produced for c if we 
had used the Q-zero fixup instead of gradual underflow. We define the 
relative error by

P

What is the largest value p may have?
5. For the machine that you are using, suppose that x and y are normalized 

floating-point numbers. What are the best bounds a and b for which you can 
guarantee that

will not spill if a < x < b and a < y < /??

6. Some machines have a compare instruction which will determine whether 
A > B, A = B, or A < B without producing exponent spill. When the 
hardware includes such an instruction, the FORTRAN compilers often use 
it to handle logical IFs, such as IF(A.LT.B). Even if there is a compare 
instruction, many FORTRAN compilers will implement the arithmetic IF, 
such as IF(A — B), by subtracting B from A and determining whether the 
result is positive, zero, or negative. Then the logical IF can prevent spills that
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might be produced if we used the arithmetic IF. Unfortunately, some 
FORTRAN compilers have elected not to implement the logical IF.

Assume that A and B are normalized floating-point numbers. Write a 
FORTRAN program to determine whether A > B, A = B, or A < B using 
only arithmetic IFs. This should be coded in such a way that you can guarantee 
that the program will never produce exponent spill.

7. Let z be the complex number a 4- bi. Suppose that we are using a version of 
FORTRAN which does not support complex data types or complex arithmetic. 
Then we shall be given the two parts of z, a and /?, as normalized floating-point 
numbers. Write a FORTRAN program to compute

= a/^2 + b2

on the machine you are using. This should be coded in such a way that it will 
not produce exponent spill unless the answer spills. (It is clear that either 
z = 0 or else | z | > co, so the final answer cannot underflow. But | Q + Q/1 — 
^2(1, so the program may have a virtual overflow. We want to get a good 
answer for | z | whenever it does not exceed Q. If | z | > Q, use whatever stan
dard fixup, such as Q or co, is convenient on the machine you are using.)

8. In Section 2.7, we saw that in the implementation of PL/I for the IBM System/ 
360, the ON statements could be used to produce the counting mode for 
overflows but not for underflows. We may rewrite the computation of the 
example of Section 2.6 to change the underflows into overflows in the 
denominator. Let p' = \jp and*/' = \jq. Then

a 
b

where

and
1) (N - K + 1)a =

b = kl(p')k(q')N-k.

Write a PL/I program for this computation, using the ON OVERFLOW 
statement to produce the same effect as the counting mode.

9. A problem which can easily produce exponent spill is the computation of the 
determinant of a large matrix. Even if the elements of the matrix are of 
“reasonable” size, the determinant may be very large or very small. If A is a 
matrix of order n with elements of "reasonable" size, so is the matrix B obtained 
by multiplying every element of A by 10. But

det(£) = 10" det(/l),

so if h is large, at least one of these determinants must spill. A typical program 
to compute the determinant of A first converts A to a triangular matrix T 
having the same determinant (except perhaps for sign). We consider the 
problem of computing the determinant of a triangular matrix T. This deter-
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minant is given by

d = ri 'n* 

i= 1

a. Write a FORTRAN program for the machine you are using to compute d, 
given that

co

for all i, If d satisfies

co < d < Q

the program should produce d regardless of whether any of the intermediate 
results spill. If d is not in this range, a standard fixup should be used.

b. Recode this program, assuming that your system provides counting mode, 
c. Code this problem in PL/I using the ON statements.

10. Suppose that we are using the counting mode to handle exponent spill. We 
shall consider a subroutine to perform the function alluded to in Section 2.7 
of adding a number which has spilled to a number which has not. The calling 
sequence is

CALL ADD (A,B,I)

This is to mean that the floating-point number A is to be added to the number

The routine is to compute D and J, such that

D*(rc)J ~ A

and store D and J in place of B and I.
a. Determine a scheme for computing D and J. This will involve making tests 

to determine the size of A, B, and I.
b. Write a FORTRAN program to implement the scheme you devised in part 

a.
]

I 
t 
t 
i] 
t
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3.1. SIGNIFICANT DIGITS

The idea of significant digits is familiar to any student of the physical 
sciences, and it is often used to motivate the idea of floating-point arithmetic. 
Unfortunately, the specification of which digits in a number are significant is 
often rather vague. Certainly leading zeros are not to be counted, but there 
are several different views about exactly when other digits in the number are 
to be considered significant. For example, a commonly used approach is to 
ignore leading zeros and count any other digit as significant if the error is less 
than one-half a unit in that radix place. On the other hand, we might be willing 
to consider a digit to be significant when the error is known only to be less 
than one unit in that radix place. We shall ignore these ambiguities and not 
try to give a precise definition of significant digits. Instead, we observe that in 
those problems in which one is led to speak of significant digits, it is usually the 
relative error that is the really important measure of error, in the sense that it 
can be handled nicely mathematically and that the way in which it is pro
pagated can be easily understood. Thus, the number of significant digits is 
usually used as a rough measure of relative error.

A major disadvantage of an error analysis based on the number of 
significant digits is the discreteness of this measure of error. For example, in 
FP(r, p, a) there are usually only p + I statements that can be made about 
the number of significant digits, namely that /?, p — I, . . . , 2, I, or none of 
the digits arc significant. (However, a constant such as 2 may be correct to 
infinitely many places.) For machines of comparable accuracy, the larger r is, 
the smaller p will be. Thus, the number of significant digits gives a more 
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accurate indication of the size of the error when r is small than it does when r 
is large. But even on a binary machine, the discreteness of the number of 
significant digits is a major limitation.

This discreteness is also annoying when we try to decide whether or not a 
digit should be considered to be significant. For example, suppose that our 
definition of significant digits specifies that a digit is significant if the error is 
less than one-hall a unit in that position. If x — 12.345 and x = 12.346 are 
two approximations for the number x = 12.34549981, then we would say 
that x has five significant digits while x has only four. Yet x is almost as good 
an approximation for x as x is.

Another annoying aspect of the discreteness of the number of significant 
digits concerns its behavior in the neighborhood o a power of the radix. 
Suppose that x and y are approximations lor x and v and that each of them 
has an error of slightly less than .0005. If x = 1.002 and y = .998, then the 
approximations have about the same relative error, but x has four significant 
digits while y has only three. Thus, in the neighborhood of a power of the 
radix there is a jump in the number of significant digits required to produce 
either the same relative error or the same absolute error.

Because of these difficulties, we shall not propose a precise definition for 
the number of significant digits. Instead, we shall view it as a crude measure 
of relative error. Thus, it is meaningful to discuss the distinction between, 
say, two significant digits and eight significant digits, but we shall not be 
precise about the distinction between n and n + 1 significant digits.

In the same vein, we shall use the expression "good to almost word 
length” to mean that the error is at most a "few” units in the last place. This 
expression will be used to distinguish between this situation and the situation 
in which we have only one or two significant digits.

There is a well-known rule for the number of significant digits in a product 
or quotient. In general terms, this states that if the factors have n and n' 
significant digits, then the product has n = min(«f, n") significant digits. In 
Fxercise 1, we shall show that this statement of the rule is too strong and that 
the error in the product may be larger than is suggested by the statement that 
it has n significant digits. A more precise statement of this rule is given in 
Hildebrand (1956). However, the rule is widely remembered in the form given 
above, and it is often used as a justification for floating-point computa
tion.

We shall not pursue a more precise statement o this rule; instead, our 
analysis of error will be based on the ru les for relative error. We again observe 
that the number of significant digits is a crude measure of relative error, so 
the rule above is satisfactory when we are considering the difference between, 
say, two and eight significant digits rather than the distinction between seven 
and eight significant digits.
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3.2. RELATIVE ERROR

We shall now examine the concept of relative error more closely. Ifx is an 
approximation for x and x 7^ 0, the relative error p is defined by

(3.2.1)

Clearly this is equivalent to

(3.2.2) (1 +

It turns out that it is often convenient to use (3.2.2) instead of (3.2.1), 
although (3.2.1) is the natural definition of relative error and it is far more 
familiar. However, whenever we have x, p, and x satisfying (3.2.2) with x 0, 
we may consider x to be an approximation for x with relative error p. Note 
that p is a signed number. The absolute value of x is too large when p is 
positive and it is too small when — 1 < p < 0. If p < --1, x has the wrong 
sign.

When x is zero, the relative error is o 'ten left undefined. However, there 
are some situations in which it is convenient to extend the definition oi 
relative error to include this case. If x = x — 0, we set p — 0, since there is no 
error. If x is zero but x is not, we define p to be 00.

Now suppose that x is written in the form

rem, m

Here we do not require that x be in S(r, p), so we may use infinitely many 
digits in the representation of m. Let x be an approximation for x, and write

r€m.

We have used the same exponent e i'or x and x, so we cannot require that m be 
normalized. Then

(3.2.4)

Thus, the relative error in the approximation x x is the relative error in the 
mantissas when the numbers are written with the same exponent.

An important special case arises if x is any real number satisfying (3.2.3) 
and x = x is the approximation obtained by chopping x to/? digits in the base 
r. Then |m| <L |w?|, so p < 0. Since

m — m



*

74 ERROR ANALYSIS CHAP. 3

and r 1 < |/n| < 1, (3.2.4) yields

(3.2.5) 0 P

We shall often rewrite (3.2.5) as

(3.2.6) P)x,

This is a very convenient bound tor the relative error introduced by 
chopping a number to S(r, p), and we shall use it extensively. However, we can 
obtain a slightly stronger bound, which we shall want to use occasionally. 
Suppose that x satisfies (3.2.3), and write x = (1 — p)x. Now |x|== 
(1 — p) | x|, so we may assume that x > 0. Let x — x = 6, so

Here 0 < 6 < re p and re x <x < re. Let /(/) t/(x + t). Then

f\t)

so the maximum value of / (r) on the interval 0 < t < re~p is J (re~p), There
fore,

Now x > re \ so (3.2.7: yields

Since this bound is only slightly stronger than the simpler bound given in 
(3.2.6), there will be only one or two occasions when we shall find it necessary 
to use (3.2.8) instead of (3.2.6).

Now suppose that x in 3.2.4) is the approximation x obtained by 
rounding x to p digits in the base r. Then

so

In this case we do not know the sign of p.
In general, let x = rem be an approximation for x, where x is given by
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(3.2.3). If \m — m\ = e, then the relative error p satisfies

(3.2.10)

Thus, the bound re for the relative error in x due to an error 6 in the mantissa 
depends on r. If r is small, not only is the bound re small, but the range given 
by (3.2.10) is small. We often find that the errors introduced at each stage in 
the calculation have a bound which can be expressed in terms of units in the 
pth position. For example, each arithmetic operation introduces an error of 
less than one unit in the last place when the arithmetic is performed in 
FP(r, p, c) and an error of at most one-half a unit in the last place when the 
arithmetic is performed in 1 3 r, p, R). For other systems FP(r, p, a), we 
obtain bounds of the same sort. Thus, the error introduced in m by a floating
point operation is bounded by an e such as r~p. But the error often propagates 
as relative error. Therefore, we would favor a machine with small radix so 
that the term re in (3.2.10) is small. The choice of the radix for a machine will 
be discussed in more detail in Section 12.1. However, we note that the relative i
error introduced by chopping x to produce x is bounded by r-(p“n, so for 

’ P( 16, 6, c) we get a bound 16 5 = 2~20, which is the same bound we would 
get for FP(2, 21, c).

As a special case of (3.2.10), we note that if x is obtained from x by 
increasing |x| by 1 in thepth place, we have x = (1 + /?)x, with

3.3. RELATIVE ERROR IN FP(r, p, clq)

In this section we shall study both the relative error introduced by per
forming arithmetic in FP(r, p, clq) and the way in which relative error is 
propagated by arithmetic operations. We shall assume throughout that q > 0.

Relative Error in Multiplication and Division

In FP(r, p, clq) with q > 0, we have a * b ab and a b = a/b, so

(1 — p)ab,

0

(p ■ 1 )

Now suppose that we have approximations x and y for x and y with
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1' x and y are the results of earlier calculations, we usually do not know the 
signs of a and t, and the bounds for a and t may be larger than But 
if x and y are the numbers we have in the machine and we want to compute 
xy, the best we can do is to form x * y. By (3.3.1) we may write

- p xy,
SO

X * y = (1 — /?)(! + cr)(l I - r)xy.

If we use (p to denote the relative error in x * y, we have

v * y = (1 + (p)xy.
where

(p ~ — p 4 a + r — pcr px 4 err — pax.

We hope that each of the relative errors p, cr, and x is small, say less than 
10"5. Then the product terms in (3.3.3 are much smaller than /?, cr, and t, so

(3.3.4) (p — p ;• cr + X.

Since we do not know the signs of ct and t, we cannot get any comfort from 
the minus sign in (3.3.4). The signs may be such that the magnitudes of p, cr, 
and x are added rather than subtracted.

Division produces similar results. If ,v and y satisfy (3.3.2 i, we write

so

x + y = (i - p)y’ 0 </><<<-”

Y — v = (1 H~~ o*)
’ y (1 +T) y

If we write 

Z>)(1

we have

(3.3.5)

We obtain a useful approximation tor 1 -f <5 by recalling that or | t | < 1,

If |t| is small, this yields
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SO

(3.3.6) <5 — p + cr — T.

As with (3.3.4), since we do not know the signs of cr and t, we do not know 
whether these errors add or compensate.

Several comments should be made about these formulas.
In (3.3.4) we see the basis for the vague rule we referred to in Section 3.2 

for the number of significant digits in a product. If x and J satisfy (3.3.2), then 
the true product xy satisfies 

(3.3.7) t 4- av)xy,

so the relative error in xy is approximately the sum of the relative errors tr 
and t in x and y. If a and r are small, the relative error in xy cannot be much 
larger than twice the maximum of |cr|, |t|. Since we use the number of 
significant digits as a measure of relative error, this leads to the rule that the 
product has as many significant digits as the least significant factor. As we 
have seen, this is only a rough estimate for the error in the product, and if we 
give a precise meaning to significant digits, it is often too strong a statement. 
It is too strong, not only because the relative errors are added, but also 
because an error of j in the A th place of a factor may produce a = 
while a relative error of * 1 * in the product may correspond to an absolute 
error of almost r/2 in the /cth place if its mantissa is only slightly less than 1. 
However, the rule does indicate correctly that the relative error does not grow 
rapidly when we are performing multiplications and divisions. (See Section 
3.5.)

Also, in (3.3.4) we see that the relative error in the product is approxi
mately the sum of three terms, namely the relative errors a and r inherited 
from the factors x and y, and the new error p introduced because we formed 
the floating-point product x * y instead o the true product xy. There is a 
widely remembered rule which states that it is not worth developing and 
retaining digits unless we can guarantee that they are significant. If we fol
lowed this rule, we would be allowed to make p almost as large as cr and t. 
That is, we would be allowed to insert a new error whose magnitude is almost 
as large as the bound for the relative error due to earlier approximations. But 
this has very much the flavor of saying that we are willing to double the error 
at each stage in the calculation (or, perhaps, multiply it by 1.5 or 1.1). This 
may be acceptable if we only perform two or three operations, but on an 
automatic computer we often perform hundreds or thousands of operations, 
so we certainly do not want to double the error at each step.

It is quite likely that we first heard of the rule that it is not worth devel
oping digits unless we can guarantee that they are significant when we were 
introduced to logarithms. At that time, we might have assumed that if' we 



78 ERROR ANALYSIS CHAP. 3

were asked to multiply four 5-digit numbers, we had to develop the full 20- 
digit product. Until we were persuaded that it was reasonable to retain only 
five digits, we could not be expected to use logarithms. But these calculations 
usually involved only a few operations. Even here, we would usually continue 
to use a five-place table o ' logarithms even after the error had grown to a 
point at which we could only guarantee that four digits of the answer were 
significant.

The secret of success of floating-point computation lies in the fact that we 
continue to do arithmetic to p digits of precision even though the accuracy of 
our intermediate results has degraded so that we can only guarantee that a 
few digits are significant. That is, we select a precision of, say, eight decimal 
digits, and we perform all calculations at that precision, even though we can 
regard only three or bur of the digits as significant. Thus, the new errors 
introduced are small with respect to the propagated error, so our loss of 
accuracy is more dependent on the inherited error than on the new error 
introduced at the present step. This will be illustrated in Section 3.5. We shall 
see that the really important question is not how much earlier errors have 
affected the accuracy of our present result, but rather how the error we 
introduce now will affect the final answer.

Relative Error in Addition and Subtraction

We shall first examine the operations © and Q in FP(r, p, c/r/), and then 
we shall study the way in which relative error is propagated by these opera
tions.

In Section 1.8 we saw that in the add magnitude case we have a © b = 
a + b and a Q b — a — b. so in this case we have

(1 - p)(a -<p- 1)

(1 — p)(a — /?),

We may easily reduce the subtract magnitude case to the computation of 
a © b where a > 0 > b and a > |6|. The operation a @ b will be exact i 
a — —b, so we shall assume that

a > 0 > b > —a.

Since there is no reasonable bound for the error introduced in the subtract 
magnitude case in FP(r, p, c/0), we shall discuss only FP r, p, c/q) with q > I. 
By Theorem 1.8.2, the operation a © h produces a result which either is a + b 
or can be obtained by increasing a + b by 1 in the last place. Write

a + b reni. r 1 < hi
and

a © b = rem.
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Then \fn — m\ < r 'p, so

a © b = (I + p)(a + b),

This result produces the same bound for |/?| that we would have had in 
FP(r, />, c), but we no longer know the sign of p.

The bound in (3.3.9) may be sharpened slightly. We shall consider the 
case in which a (J) b > a + b. As we saw in Theorem 1.8.2, if a © b is not 
a + b, then a © b is greater than a + b is greater than a + b by less than 1 in 
the (p + q — I )st place. Then we may write

(3.3.10) a@b = (1 + p)(a + b), < p <

Thus, we have proved

Theorem 3.3.1

In FP(r, p, clq) with q > 1

a © b = (1 + p\a + b), 
_

a © b = (1 -|- p)(a — b),

For the add magnitude case, the inequalities read — < p < 0.

Corollary

I n FPfr, p, cl I),

f- p)(a + b), 

f- p)(a — b),
■

We shall now turn to the question of the propagation of error by addition 
and subtraction. We shall consider this problem in terms of relative error, 
although there are many cases in which it is advantageous to study it in terms 
of absolute error instead. (See, ibr example. Section 3.12.) We shall again 
suppose that we have approximations x and y for x and y satisfying (3.3.2), 
and we shall suppose that both a and t are greater than — I, so both x and y 
have the correct signs. We shall first consider the add magnitude case, so we 
may assume that both x and y are positive. Then

so

where

Now

x + y = x + y + ax + ry,

x + y = (1 + <p)(x + y),

<p(x + j>) = ax + ry.

[min(a, t)](x + j) ex + ry < [max(cr, t)](x + jy),
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SO

(3.3.11)

This yields

(3.3.12)

min(cr, t) < (p < max(cr, t).

\<P max(|cr|, | t |).

That is, in the add magnitude case the relative error in x + y is at most the 
maximum relative error in one of the terms.

Unfortunately, in the subtract magnitude case there is no bound for the 
relative error in the answer due to errors in the operands. For example, 
suppose that we have the approximations

x = 1.2345678

y = 1.2345677
for

1.23456776

1.23456774.

Then x — y = 2. IO'8 while x — y = 10“7, so even though x and y are good 
approximations for x and y, we find that x — y is not a good approximation 
for x — y. Indeed, we could have good approximations x and y for x and y 
but find that x — y is zero while x — y is not.

In the subtract magnitude case, we are exposed to the magnification of the 
relative error because of the loss of leading digits. If we have lost several 
leading digits, then we have had to shift the answer several places to post
normalize it, and we saw in Section 1.8 that in this case the floating-point 
subtract operation introduces no error. That is, x Q y = x — y. However, 
any error in x or y will atfect higher-order digits of x — y, so small errors in 
the operands may produce a large relative error in the answer. But the 
floating-point arithmetic was not at fault. To produce a better answer we must 
have better approximations or x and y.

3.4. APPROXIMATE LAWS OF ALGEBRA

We now return to the study o 'the laws of algebra discussed in Section 1.6. 
There, we showed that the following laws of algebra are not valid in 
FP(r, P, c):

Associative laws:

(3.4.1) a ® (^ © c) — (a © © e
(3.4.2) a * (b * c) = (a * b) * c.
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Distributive law:

(3.4.3) (a * b) @ (a * c).

Cancellation law:

If a 0 and a * b a * c, then b

We now ask whether these laws hold approximately. For example, we 
shall see that we can write

a * (b * c) (a * Z>) * c
in tiie sense that

a * b * c) = (I + p)[(a * b) * c]

with a small bound for |p|.
For each of the laws stated above, we shall determine whether or not the 

law holds approximately. When it does, we shall obtain bounds for the relative 
difference p and for the number of units in the last place by which the two 
numbers may difTer. As in (Chapter I, we shall study the system FP r, p, c) in 
detail and relegate the study of FP(/-, p, R) to the exercises.

First, we shall prove two theorems which will be helpful in the study of 
these questions.

Theorem 3. 4.1

Suppose that x and y are positive real numbers. In FP(r, p, c) or in 
FP(r, p, clq), x @ j is either x + y or less than x + y by I in the last place.

Proof. Since we have the add magnitude case, the computation x@ y 
produces x + y in either FP(r, p, c) or FP(r, p, clq), We may choose notation 
so that x > y and write

Here/is either e or e + I. Also, we have

Now x @7 = x 4- y, since the digits chopped fromy to produce^ would be 
chopped from x + y to produce x + Then

so
(x @ J’) 4
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Thus, x ©y is either x + y or less than x + y by 1 in the last place.

Theorem 3. 4.2

Suppose that x and y are positive real numbers and that x is in S(r, p). In 
FP(r, p, <?) or in FP(r, p, clq) with q > 1, x * y is either xy or less than xy by 
at most r units in the last place.

Proof. Let

and

Here

and

x = rem, 

y = rfn,

= rmn

where k is 1 or 0 depending on whether or not postnormalization is required. 
Now

y = y + 0 < e, < rf~p
and

xy = X * y + 62, 0 < e2 < rg~f 
so

XJ = x(y + 6,) = X * y + e2 + X6j.
That is,

xy = x * y + 6, 
where

6 — X6 j C2.
Then

e < rg p + remrf p = rg P(1 4- rkm t

If no postnormalization is required, € < 2rg p, but when postnormalization is 
required, we have only 6 < (r + 1 )rg~p. Then x * y is either xy or less than 
xy by at most r units in the last place.

We now turn to the study of the approximate laws of algebra.

Associative Law of Addition

The example given in Section 1.6 showed that the associative law of 
addition (3.4.1) does not even hold approximately in 1 P(r, p, c).

We now ask whether (3.4.1) holds approximately in the special case in 
which tz, b, c all have the same sign. Clearly, this may be reduced to the case in 
which they are all positive. We may apply Theorem 3.4.1, setting x = a and
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y = h + c. Since y = h © c, this shows that a © (h © c) is either a + b + c 
or less than a ©/? + <* by I in the last place. A similar result holds for 
(a © b) © c, so it can differ from a © (b © c) by at most 1 in the last place. 
This yields

Theorem 3.4.3

If a, b, and c all have the same sign, then in either FP(r, p, c or 
! P(r, p, clq\ the numbers (a © b') © c and a © (b © c) are either identical or 
else they differ by 1 in the last place. We can write

a © (b © c) = (1 + p)[(a © b) © c], |p | < 
and

a © (b © c) = (1 — p)(a + b + c), 0 < p < 2r~p

(a © b) © c = (1 — p)(a + b + c), 0 < p < 2r~p.

To show that a © (b © c) and (a © b) © c may indeed differ by 1 in 
the last place even if a, b, and c all have the same sign, we may set a — 1 
and b = c = (r — l)r_p. Then (a © b) © c — 1, while a @ (b @ c) ~ 
1 +

Associative Law of Multiplication

We shall now show that the associative law of multiplication holds 
approximately in FP(r, p, <?) and FP(r, /?, clq) for f/> 1. In either of these 
systems, a * b = ab. Let

r-(p-1)

<3-4-4)

so /] is the bound given in (3.2.8) for the relative error introduced by chopping 
a number to S(i\ p). We may write

a * b = '1 — p)ab, 0 <C p < /?,
' and

{a * b) * c ~ (1 — a)[(a * Z>)c], 0 < cr < /?.
Then

(a * b) * c — (1 — p — a + pe)abc,

so we may write

(a * b) * c = (1 — T)abc,

where 0 < t < 2/? — ©. Similarly, we may write

a * (b * c) = (1 — (p)abc,

where 0 <© < 2/? — /?2.
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Thus, we have

so

(3.4.5) a * (b * c) — (1 + <5)[(a * b) * c],

where

Then

— (28 — B2) < 3 < 1_____ I — ~~ A2 .

This yields 

(3.4.6)

Using the value of /? in (3.4.4). (3.4.6) reduces to 

(3.4.7) <51 < 2r~(p-1)(l +

We shall now try to bound the number of units in the last place by which 
a * (b * c) and (a * b) * c may differ. We may assume that a, b, and c are all 
positive. Since b * c = be, we may use Theorem 3.4.2 with x — a and y — be 
to find that a * (b * c) is either abe or less than abc by at most r units in the 
last place. A similar result holds for (a * b) * c, so (a * b) * c and a * (b * c) 
can differ by at most r units in the last place.

We have proved

Theorem 3.4.4

In FP(r, p, c) and FP(r, p, elq) with q > 1, the numbers (a * b) * e and 
a * (b * c) can differ by at most r units in the last place. We may write

(a * b) * e = (1 + <5)[(a * b) * c],

where <5 satisfies (3.4.7).

We consider an example from FP(16, 6, c) to show that a * (b * e) and 
(a */>)*<? can indeed differ by r units in the last place. Let a = .FEH, 
b 1 .000FF/m and c=1.01006;/. Then (a * b) * c is .FF0E3/7H, while 
a * (b * e) is .FF0E2FH,
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Distributive Law

We shall now consider whether the distributive law > 3.4.3) holds approxi
mately. Since the cancellation law fails to hold in FP(r, p, c) except for 
trivial combinations of r and p, there are positive numbers a, b, and c 
such that b c but a * b = a * c. Then (a * b) © [a * (— c ! is zero, but 
a*[6©(—c)] is not, so the distributive law (3.4.3) does not even hold 
approximately.

However, in FP(r, p, clq) with q > I, we know that for arbitrary a, b, and 
c we have

b @c = (I + p)(b + c),
and

a * ( b @ c) ~ ( i — a)[a(6 © c)l, 0 < cr < r"'p 1 \ 
so 

(3.4.8) a * (h © c) = (1 + r)a(b + c).

where

Then

(3.4.9)

1 + t — 1— a + p — op.

Thus a * (b @ c) is approximately equal to a(b + c). If the distributive law 
does not hold approximately, it means that (a * b> ©• (a * c) is not approxi
mately equal to ab f ac. We note that if the arithmetic is performed in 
FP(r, /?, c) instead of FP(r, p, clq), the bound for t in (3.4.9) may be sharpened 
to

(3.4.10)

We shall now show that (3.4.3) does hold approximately in IP(r, p, clq) 
when b and c have the same sign and q > 1. We may assume that a, b, and c 
are all positive. Since we have the add magnitude case, b @ c = b -F c. Then 
we may use Theorem 3.4.2 with x = a and y = b c to find that a * (b © c) 
is either a(b c) or less than a(b + c) by at most r units in the last place. 
Similarly, since a * b = ab and a c ~ ac, we may use Theorem 3.4.1 with 
x = ab and y — ac to find that (a * b) © (a * c) is either ab + ac or less than 
ab + ac by I in the last place. Then the two sides of (3.4.3) can diner by at 
most r units in the last place. As a consequence, we may write

(3.4.11) a * ( b © c) = (1 + /?)[(« * b) © ( a * c)].

We have proved
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Theorem 3.4.5

In FP(r, p, c) or in FP(r, p, clq) with q > I, if h and c have the same sign, 
then a * {b © C and f# * © (fl * <’• can differ by at most r units in the last
place and 3.4.11) holds. Regardless of the signs of b and c, we always have 
(3.4.8), where t satisfies (3.4.10) when the arithmetic is performed in 
FP(r, /?, c) and t satisfies (3.4.9) when the arithmetic is performed in 
FP(r, p, clq 1 with q > 1.

To show that the two sides of (3.4.3) may indeed differ by r units in the 
last place when b and c have the same sign, we shall consider an example in 
FP(r, p, c), where we assume that r > 3 and p > 4. Let a = \ ~ r-<p-2\ 
b = 1, and

Then the reader may verify that

a * {h © c)
while

(a * b) © (a * c) = 1

A similar example may be bund for a binary machine. See Exercise 3.)

Cancellation Law

We shall now show that the cancellation law holds approximately in 
P( r, /?, c) and FP(r, p, clq) for q > 1. Suppose that a 0 and a * /? — a * c. 

Using the value of p in (3.4.4), we may write 

and

so

Then

(3.4.12)

where

so

Therefore,
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so, using (3.4.4),

(3.4.13)

We now try to bound the number of units in the last place by which b and 
c may differ. Choose notation so that | b I < | c | and let ni be the mantissa of c. 
If \b\ is less than |c| by j units in the last place, then 

m

so (3.4.13) implies that j < r. Thus, b and c can differ by at most r 
in the last place. We have proved

1 units

Theorem 3.4.6

In FP(r, p, c) and FP(r, p, clq) with q > 1, if a 0 and a * b = a * c, then 
b and c can differ by at most r — 1 units in the last place. Also, b — (1 + t)c, 
where | t | < r~{p~1\

We consider an example to show that b and c can indeed differ by r — 1 
units in the last place. Assume thatp > 4 and let a = 1 + r-1, b = 1 — r"2, 
and c — b + (r — 1 )r'p. Then b and c differ by r — I units in the last place, 
but in FP(r, p, c)

a * b = a * c = 1

3.5. PROPAGATION OF ROUNDING ERROR

As a simple example of the growth of rounding error, we shall consider 
the problem of computing 

(3.5.1)

Here we shall assume that the xt. are all given exactly as floating-point num
bers. Our computing procedure is to set

and define

so x = Pn. Since we are performing the arithmetic in FP(r, p, t/ i, instead o' 
computing Pk we compute PA, k = 1,2,...,/?. Here

k = 1,2,...,/?.
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Then we may write
= (I + PkV\xk,

where the bounds for the pk depend on the arithmetic used. For FP(r, p, clq) 
with q > 1, we know that

0<-^

On the other hand, if we had used rounded arithmetic we would have had

Now
Px 4 PtV’n

and by induction, one proves that

Then, setting x Pn. we have

where

(3.5.3)
n

Since an expression for relative error quite often has the form of (3.5.3), 
we look or a simple bound for a. Suppose that we are given bounds p* and 
p* such that

holds for each i. We shall assume that p,. and p* are nonnegative and that 
p* < 1, so 1 — p* > 0. Then

1 + (1 - />*)" < <7 < (I + P*Y

Now
", / n \ « I n \ ,

-1+(i-p*)’ =-L >-L . \Pi
k=i \ k / k-1 \ k /

= -[(I 4 />*)"-

Let p denote the larger of p* and p*. Then

(3.5.61 | cr | <h (1 4 p)n 1.
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We shall now consider the expression (1 + />)" — 1:

so if np is small, we have

(3.5.7) np.

However, we often want a bound for | a I instead of an approximation for a 
bound. Now for p > 0,

Then (3.5.6) yields

en/}

If np is small, this is approximately the bound np that would be obtained 
using (3.5.7). In some applications, (3.5.8) is a convenient form for the bound, 
but in other cases, it is convenient to use the bound given by the following 
theorem:

Theorem 3.5.1

If p > 0 and n is a positive integer with np < 1, then

(I +/>)"— 1 < np + (np)2.

Proof. This clearly holds if n is 1 or 2, so we want to show that

1 + np d p)n = np +

that is,

or

Now
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Since np < 1, this yields

so (3.5.9) holds.
Thus, if np < I, we may write (3.5.6) as

(3.5.10)

We shall now consider

1 +(1 />)"! = i _ (i _ p)”_

Theorem 3.5.2

If 0 < p < 1 and n is a positive integer with np < 1, then

| — 1 + (1 “ p)n | <C np.

Proof. We may assume that n > 1. Since

1 — (*—/’)" = np — £’ I , )(—P)\ 
k = 2 \ k /

it suffices to show that

Let m be the largest integer < | n — I /2]. Then n is either 2m 1 or 2m + 2,
so

Therefore, it suffices to show that

(3.5.11)

which reduces to

But

Iff < «p(l +

so the inequality holds.

These results may be combined into the following theorem:

*
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Theorem 3.5.3

Let I + cr = ] |?=i ( I + /?.), where —p* < /?, < p* holds for / = 
1,2,...,/?. Suppose that np* and np* are both positive and less than 1. Then

—wp* < cr < np* 1 + np*).

If p is the larger of p* and p*, then |tr| < np(l + np.

These theorems are fundamental for establishing bounds for relative error. 
The bound for |a| is given by (3.5.6), and in (3.5.7) we see that np is an 
approximation for this bound. But in Theorem 3.5.1 we see that np is also a 
bound for the relative error in the approximation (3.5.7). Since we are 
bounding the relative error cr, we hope that np is small, say 10'5 or 10"6. But 
then the approximation (3.5.7) is very good. Indeed, if np is so large that the 
approximation (3.5.7) is unsatisfactory, then it is almost certainly large 
enough to indicate that the approximation x x is unsatisfactory. Thus, 
(3.5.7) is a good approximation which is not likely to mislead us.

These bounds of the form np may be interpreted in another way. Suppose 
that we have performed n multiplications in FP(r, p, clq) with q > 1. Then 
p* — and p* = 0, so 

(3.5.12) — V* < cr < 0.

Now, suppose that n = rk, so np* = Then (3.5.12) is the bound we
would have had for the relative error introduced by a single multiplication in 
FP(r, p — A, clq), so we may think of the rk multiplications as having pos
sibly cost us k digits in accuracy. Thus, performing a million multiplications 
may cost us about six decimal digits, or, since 106 220, about 20 bits. Then
we would not want to perform a million multiplications in FP(16, 6, cl\ k but 
the bound for the relative error introduced by performing a million multi
plications in FP(16, 14, c/1) is smaller than the bound for the relative error 
introduced by a single multiplication in FP(16, 9, cl]).

This also sheds light on the precision we should use. Suppose that we want 
to perform 200 multiplications in IT( 10, 8, c). Then we may lose between two 
and three decimal digits of accuracy, instead of performing all arithmetic in 
FP(I0, 8, c), suppose that we adhered to the “well-known rule" referred to in 
Section 3.3, which states that it is not worth developing digits unless we can 
guarantee that they are significant. This would suggest that after the first 100 
multiplications we could reduce the precision of our arithmetic to six decimal 
digits. But then the second 100 multiplications would expose us to the loss of 
two more decimal digits, so the final bound for relative error would be the 
same as the bound for the relative error after a single multiplication in 
1 । 10, 4, c). Here we see clearly the advantages of performing all arithmetic 
at the higher precision, so the new error introduced will always be small.
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Reducing the precision of the arithmetic risks unnecessary damage to the 
final result.

Finally, suppose that instead of (3.5.1) we really wanted to compute

(3.5.13)

where the x. in (3.5.1) are floating-point numbers with xf y.. If each x(. 
satisfies

then

The relative error here again has the form of (3.5.3). If (/? + 1)t* < 1, we may 
write

x = (1 + a)(l + t)v,

where the bounds for cr are given by Theorem 3.5.3 and t satisfies

— (n + 1)t* < t < (n | 1)t*[I -f- (/? 1)t* .

This suggests that the precision should be chosen so that the bound p br the 
p; is no larger than t*, and we would prefer to have p substantially smaller 
than t*. We are sometimes interested in the special case in which x4. = j”., so 
the /?, and the tz have the same bounds. Then we may write x (1 + jS)y with

—(2n

3.6. X**N

Many higher-level languages use a special symbol, such as ** or to 
designate exponentiation. Since most computers do not have an instruction 
to perform exponentiation, XN must be evaluated by a subroutine. Thus, in 
terms of the computation performed, the ** operation is similar to a function, 
such as SQRT or SIN.

The calculation performed for ** operation in FORTRAN often depends 
on the data types of the operands. For example, if X and Y are real, the 
calculation performed to compute X**Y is often equivalent to the evaluation 
of the expression EXP (Y*ALOG(X)). In this section, we shall consider the 
computation of X**N, where X is real and N is a positive integer. We shall 
assume that the computation is carried out in cither FI r, /?, c) or FP(r, p, clq) 
with q > 1, and we shall consider three approaches for the computation of

Y = X**N
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Each approach will be illustrated by a FORTRAN program, and for the sake 
of simplicity, we shall allow the programs to change X and N. We repeat that 
N is assumed to be a positive integer.

Repetitive Multiplication

Here, we shall perform the computation

DO 100 I

This approach requires N multiplications, and the growth o rounding error 
for this calculation was studied in Section 3.5. Using (3.5.2 and 3.5.3), we 
see that we compute Y — (1 — tr) K, where

N

Here pi is the relative error introduced by the Zth multiplication, and it 
satisfies 0 < /?. < r{p~n. The first multiplication forms 1*X, and since 
multiplication by 1 is exact, p{ — 0. Then (3.6.1) may be replaced by

Setting p* = r we have

(3.6.3) 0 < a < 1 -(1 - p*)N'\ 

or, using Theorem (3.5.2),

0 < a < (TV — 1)/?*.

Repetitive Squaring

In this approach, we use the binary representation of N. Let

(3.6.5) 

where 

(3.6.6) 

and each A\. is 0 or 1. Then the binary representation of N is

' ■ ' 1
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soLet Pi

and

Pt = P?-i, i = 1,2,..., m,

(3.6.8) 

or

(3.6.9)
m

i- 0 
k । / 0

We use (3.6.9) to compute Y, and our computational procedure is

100

200

L = N/2
K = N —2*L 
IF(K.EQ.l) Y = Y*P 
N = L
IF(N.EQ.O) GO TO 200
P = P*P
GO TO 100 
CONTINUE

Let

(3.6.10)

Then this algorithm requires only k + m floating-point multiplications. On a 
binary machine, the computation L — N/2 may be performed by shifting N 
one place to the right, and K = N — 2*L is the low-order bit of N prior to 
this shift. Thus, the fixed-point arithmetic used in this algorithm may be very 
easy to perform in Assembler language. In any event, we only go through the 
loop m -F I times, so this approach produces substantial savings in computer 
time when N is large.

In this procedure, instead of computing the Pt. and Y from (3.6.7) and 
(3.6.9), we compute approximations P. and Y by setting Po = X and using

(3.6.11) / 1, 2,. . . , z?z,

and

(3.6.12)

where | ( * denotes the * operation.
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We may write

(3.6.13) ^ = (1 - pt)pf-1,

and

(3.6.14)
rn

0-J ■ ■ ■ (1 - crj || P„ 
i = o 

k,?0

with 0 < < r (p ”. Since the first multiplication in (3.6.14) multiplies a
number by 1, = 0. Now Po = X, 1\ = (I — p{)Xz,

^2 = 0 “Pl)2 (I -P2)*4

and one proves by induction that

A = (1 — A)(l - A-i)2(1 - p.-2)4 • • • (1 -
so

a.) PJ°f][(l Pi)2^2']*'

k “| m m

it (i - n*‘i2,nK‘ - a)*' •■•(!- a)*12"'].
i = 1 J i = 0 < - 1

Thus

where

or

Then

y = d -r)F,

11(1 -az) n II (1 -py)

A) II 11(1 -Py)

m

m m

(3.6.15)

where

1 -t= 11(1 -a,.) H(1

(3.6.16)
TH

Thus, 1 — t is the product of factors of the form 1 — af or 1 — /?.. Let n be 
the number of such factors, so 

(3.6.17)

Then, using (3.6.10) and (3.6.16), we find that

nr
n = 2Z

i = 0
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Since

(3.6.18) 

we have

andThus, we have N factors of the form 1 p.. Since a [ = 0, we have

(3.6.19)

where p* = This is exactly the same bound we had in (3.6.3) or the 
relative error cr when we used the repetitive multiplication algorithm.

With either of these algorithms, we obtain a formula for the relative error 
which has the form of (3.6.1 or (3.6.15), but with the repetitive squaring 
algorithm there are only a few different values 1 — pj which are repeated /y 
times. Using (3.6.16), we see that

Similarly,

1 1

- k.-lk,)^^-

Thus, if the first two squarings produce bad relative error, it is as if three- 
fourths of the multiplications in the repetitive multiplication method had 
produced bad relative error.

Nested Squaring

In this algorithm, we again use the binary representation of N given by 
(3.6.5) and (3.6.6) and the representation of Y given by 3.6.8 . This time we 
define

m

so Y — Qo. Now Qm = Xkm = X and

so

(3.6.20)

In this approach, we first determine the value of satisfying (3.6.6). We then 
set Q,n — X an(J compute Qj from (3.6.20) for / = m — 1, m — 2, . . . , I, 0.
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Then Y — Qo. The following FORTRAN program assumes only that we are 
given an integer L with 2L > N.

Y = 1
LL = 2 * * L
DO 100 I = 1, L

N = N*2
IF (N.LT.LL) GO TO 100
Y = Y*X
N = N-LL

100 CONTINUE

This approach requires L •- k floating-point multiplications, where k is given 
by (3.6.10), and even if we take L — m + 1, we find that this is one more 
floating-point multiplication than the repetitive squaring method required. 
But if we knew the value of m satisfying 3.6.6), we could initialize with E = X 
instead of Y = 1, and go through the loop only m — 1 times. In this case we 
would use only k + m — 1 floating-point multiplications, which is one fewer 
than we required for the repetitive squaring algorithm. Thus, this algorithm 
is attractive when it is easy to find m, that is, to find the location of the high- 
order one bit in the binary representation of N. As before, the fixed-point 
arithmetic is easy to perform on a binary machine.

In our computation, instead of computing given by (3.6.20 we 
compute an approximation Q f obtained by setting Qm = X and using

(3.6.21) *

As before, we may write

(3.6.22)

where 0 < aPj_x < r {p n. Proceeding by induction, one proves that

and

(3.6.23)

Using (3.6.8), (3.6.23) may be written as

(3.6.24)
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SO

(3.6.25) f = (1 - p)T,

where

(3.6.26) ] — (p —

Let n be the number of factors of the brm 1 — o.or 1 — /?. in (3.6.26). 
Then

(3.6.27)

Using (3.6.5), (3.6.18), and the fact that km
N — 1. Then, setting p* — we have

1, (3.6.27) reduces to n

0<?< 1 -(1 -

which is the same bound we obtained for the relative error in the other two 
algorithms. As with the repetitive squaring algorithm, the relative errors 
from the first few multiplications have a large eTect on the final answer when 
N is large.

Even the nested squaring algorithm does not necessarily minimize the 
number of floating-point multiplications needed to compute X**N. For _ t
example, Exercise 13 illustrates a faster method or computing X**15. For a 
detailed discussion of the problem of minimizing the number of multiplica
tions in the computation of X**N, see Knuth (1969).

3.7. CONDITION

In studying the propagation of error, we are often confronted with the 
question of how an error in the input x affects the answer. For example, 
suppose that we want to compute xA' for some positive integer A, but that 
instead of x we are given an approximation x for x with x = (1 + cr)x. Then 
we ask how close xN is to x^. Now

(3.7.1) x" = (1 + <t)nxn,

so Theorem 3.5.3 allows us to translate bounds for a into bounds for the 
relative error in the approximation xv xjV. Indeed, comparision of 13.7.1) 
with Section 3.6 shows that the way in which errors in x affect the answer to 
this problem is quite similar to the way in which errors in the computation 
X**N affect the answer.
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In general, we shall say that the problem of computing

y = f(x)

is well conditioned if small changes in x produce only small changes in /'(x). 
while it is ill-conditioned or poorly conditioned if small changes in x can 
produce large changes in /(x). This is still rather vague, because we have not 
specified the meaning of small and large. In some cases we are interested in 
absolute changes, while in other cases we are concerned about relative 
changes.

The condition of the problem (3.7.2) may depend on the data x as well as 
the function fix}. Thus, for a given function fixy the problem of computing 
J’ = /(*) may be well conditioned for certain values of x, but ill-conditioned 
for other values of x.

The computation in ; 3.7.2) may be generalized to the case in which we use

i = 1, 2, .. . , m

to compute m values v. from n input values xI? . . . , xn. In this case, it is often 
convenient to measure the size of a change in the x’s or /s by a norm for a 
vector space. Using this approach for the problem of finding a solution of a 
system of simultaneous equations

Ax = b,

where the right-hand-side h is arbitrary, one can assign a condition number to 
the matrix A representing the extent of the ill-conditioning of the problem 
(3.7.4). [See Wilkinson (1963) or Forsythe and Moler (1967).] As Wilkinson 
points out, the fact that a matrix is ill-conditioned for the problem of finding 
the solution of (3.7.4) does not imply that it will be ill-conditioned for the 
problem of finding its eigenvalues or eigenvectors. Thus, we should speak of 
the condition of a problem, not a matrix.

We shall now consider the condition of the problem (3.7.2) in more detail. 
Suppose that we have a program or subroutine to perform the computation in 
(3.7.2), but that instead of x we are given only an approximation x for x. In 
place of x, our program sees only x, so it tries to evaluate /(x) instead of 
/(x). We now ignore the errors in computing /(x) and ask how different f(x] 
can be from J (x). That is, we ask how much the error in the approximation 
x x would damage the answer if no further errors were made. This is 
exactly the question of how well conditioned the problem (3.7.2) is.

We let

(3.7.5) 

and we assume that fix) is continuous and possesses a derivative at every
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point between x and x + 6. Then, by the theorem of mean value, 

/(.« + e) - /M =

where £ lies between x and x 4- e. Thus,

(3-7.6) f(.x + e) -/(x) = €/'(0-

Iff is small enough so that f'(t) does not change very much between x and 
x 6, we have

(3.7.7) /(x + 6)-/(x)^6nv).

Alternatively, suppose that we have a bound M such that

(3.7.8)

holds for all t between x and x + f. Then

(3.7.9) l/Cv)“/Cv)l<kA/|.

in many cases (3.7.7) provides an adequate warning when the answer is 
sensitive to errors in the data, but when a bound is required we use 3.7.9).

When /(x) is not zero, we may prefer to use relative error instead of 
absolute error. From (3.7.6) we obtain

(3.7.10) /(x) - /(x) = f/W
f{x) f(x)

Now if .v 
becomes

(I + p)x, we may take px as the value of € in ■ 3.7.5), so (3.7.10)

(3.7.11)

As before,

(3.7.12)

f(x)-f(x)pxf'(  ̂
f(x) f(x)

f(x) - f(x) _ pxf(x) 
fto f(x)

if f'( f does not change much between x and x, and if ff(t) satisfies 3.7.8 , 
we have

(3.7.13) /(■V) - fix) 
fix)

pxM 
7M

These results then give us a measure o the condition of the problem (3.7.2 ;. 
We may think of in (3.7.12) and xAf//(x) in (3.7.13) as magnifica
tion factors indicating how the relative error p in x is magnified.
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As an example, we may consider the function /(x) = ex. Then (3.7.11) 
becomes

and (3.7.12) yields
/(X) - /(,y) 

/(X)
px.

In place of (3.7.13), we may use the fact that < e''f”c{ t0 obtain

/(x) f(x) 
f(x)

The results in (3.7.6) through (3.7.13) may be extended to a function

(3.7.14) n

of several variables. If /(xls. . . , xn) has continuous partial derivatives with 
respect to xn . . . , xn, which we denote by A,(xI? . . . , x„), then

n

where each lies between xk and xk ek. From (3.7.15) we find that if 
= (1 i At)*** & = then

provided f(x^ . . . , xn) is not zero. As above, if the partial derivatives do not 
change too much, we may write (3.7.16) as

Usually it suffices to consider the size of each of the magnification factors 
. . . , a-J/ZCyj, . . . , x„) in (3.7.17).

Finally, this approach may be extended to functions defined implicitly.
If v*, x*, . . . , x* satisfies

(3.7.18) F(y, x13. . . , xff) = 0,

and if Fy does not vanish ati j’*, x*, . . . ,xj), then (3.7.18) defines y implicitly 
as a function /(xls . . . , x„) in a neighborhood of (x*, . . . , x*). Here

i ? • •
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and

(3.7.19)

We may then use (3.7.15), (3.7.16), or (3.7.17) to study /(x1? . . . , x„).
We shall illustrate this approach by considering the problem of computing 

the roots of a polynomial. This problem has been studied in more detail by 
Wilkinson (1963). We let

p(x)

and study a simple root a of the equation p(x') = 0. Let

n
F(x, a0,...,an)= S akx^ k — Q

so f(«; a0,. . . , o„) = 0. Now Fa,(x, a0, . . . , a„) = xk and Fx(x, a0,. . . , a„) 
= p'(x). If a is a simple root, then p'(a) #= 0, so we may write a as a function 

, ari) of the coefficients. By substituting these values or and /, in 
(3.7.19), we have

(3.7.20) da  r , , —ak
dak

Now suppose that we change only one coefficient ak, replacing it by (1 + p)ak, 
and let a be the new value of a. If p is small enough so that we can use 
(3.7.17), we have

(3.7.21) q — q
q p'(q)

H ere we see that the sensitivity of the root to changes in a coefficient depends 
on both which coefficient is changed and which root we are considering.

A striking example of this sensitivity was given by Wilkinson 11963). He 
considered the polynomial

(3.7.22) p(x) = (x - l)(x - 2) • • • (x - 20)

and studied the effect on the roots o 'changes in 9. The roots near 1 are quite 
insensitive to such changes, but the roots near 6 are changed dramatically by 
small changes in a19. In fact, he showed that a change of 1 in the sixty-third 
bit of a19 can produce a change o ’almost 1 in the thirty-second bit of the root 
16. A change of 1 in the thirty-first bit of a19 produces so large a change in 
the roots that the approximation (3.7.21) cannot be used, and some of the 
roots become complex with imaginary parts as large as 2.8/. For a thorough 
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study of the condition of polynomials, the reader is referred to Wilkinson's 
book.

3.8. ERROR ANALYSIS OF A PROGRAM

To illustrate the error analysis of a program, we shall consider a very 
simple problem, namely finding the value of a linear function. Here we are 
given a, b, and x, and we are asked to compute

y — ax + b.

We write a subroutine LIN whose input is a, b, and x and whose output is y. 
Phe FORTRAN program for LIN is

SUBROUTINE LIN(A,B,X,Y)
Y = A*X+B
RETURN
END

We shall assume that the input A, B, and X are all normalized floating-point 
numbers, and we shall ignore overflow and underflow.

Suppose that we have written this program as a library subroutine and 
that we want to tell the user what accuracy he can expect from it. What can 
we say?

Before trying to answer this question, we shall consider an example. 
Suppose that we are using an eight-digit decimal machine and that the com
putation is performed in FP(lO, 8, c). Let

and

Y = AX + B

Y = (A * Y)©£.

Suppose that the input to the routine is

A = .56785679

X - .54325433

B = -.30849066,

AX= .3084 9065 9987 4007,

and A * X is .30849065. Then

(.00125993)- IO’8,
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while Y = - ICT8. If 

is the relative error, we find that p is about 792.64.
Clearly, our program is capable of producing very bad relative error. Since 

we are exposed to a relative error of several hundred, there is no meaningful 
bound on relative error that we can state to the user.

We note that for this particular set of data the absolute error is quite
small. In fact, |F — K| < ICC8. However, we might have had data with a 
much larger characteristic. For example, suppose that

A = (.56785679). IO40

X = .54325433

B = -(.30849066). 1040.

Then |F — K| — — (.99874007: • 1032, so the program may produce large 
absolute error. Indeed, the only bound for the absolute error is about 10~8 
times the overflow threshold Q.

Thus, there is no meaningful bound that we can state to the user l or either 
the absolute error or the relative error.

We note that in the examples we have considered the error was small with 
respect to B. We ask whether we can promise the user that this will always be 
the case. But i f the input to the program consists of A and X given by (3.8.3), 
while B = 10~40, then we find that

|r - y| = (.99874007)-10"8 + 10’40

which is not small with respect to B.
Next, we ask whether we can promise the user that the error will always be 

small with respect to AX. But if A and X have the values given in (3.8.3) and 
B = 12345678, we find that Y — B. so | Y — Y| = AX, and the error is not 
small with respect to AX.

In summary, these attempts to bound the error have yielded the following 
information:

1. Absolute error: no reasonable bound.

2. Relative error: no reasonable bound.

3. Error always small with respect to B: false.

4. Error always small with respect to AX: false.

As a final attempt, we might make the following rather vague statement: 
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The error is always small with respect to some quantity which appears in the 
calculation either as initial data, as an intermediate resu t, or as the final 
answer.

There are two objections to this statement. First, it is oil no help to the 
user, who may be unfamiliar with the algorithm being used and who never 
sees the intermediate results. Second, this statement can be made about some 
very “sick” programs, such as the program discussed in Section 4.2 for 
computing e~x or sin x using the power series when x = 128, or the calcula
tion considered in Section 3.10 or computing sinh x Yom the formula

sinh x =

when x is small.
Thus, all the above attempts to bound the error in our program have 

failed to yield a meaningful statement that can be made to a user. In the next 
section, we shall see that a backward error analysis will provide such a 
statement.

3.9. BACKWARD ERROR ANALYSIS

Suppose that we want to compute y = f(x\ and instead of y we have 
computed a value y with y y. A forward error analysis attempts to bound 
either the absolute error y — y or the relative error (y — y)/y. A backward 
error analysis seeks a number x with y — /(x) and attempts to bound either 
the absolute difference x — x or the relative difference (x — x)/x.

Thus, instead o ' asking how well we have solved the problem, we try to 
find out what problem we have solved. There may be more than one value of 
x with y = f (x), in which case we choose one close to x. Our objective is to be 
able to make a statement of the following form: “We have found an exact 
solution of the problem y = f(x) for some value of x with |x — x| < 3 or 
| (x — x)/x | < p. We do not know the specific value of x, but we have a bound 
(3 or p) for how far it can be from x.”

With this approach, we view the errors in the computation as being 
equivalent to a perturbation o the data. That is, the computation is equiva
lent to first perturbing the data to produce x and then computing y from x 
exactly. The user must then assess the effect that this perturbation of the data 
has on the answer. But the user already had to worry about how the answer is 
affected by noise in the data which arose because of the inaccuracy of 
measurements or even because of radix conversion in the input program. The 
backward error analysis merely magnifies the importance of his considering 
this effect.

The idea of a backward error analysis is easily extended to a function of
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several variables. If we wish to compute y — f(xi9. . . 9 xnY and instead we 
have computed y, wc seek x19 . . . , xn with

(3.9.1)

In this case there are likely to be many vectors (x1? . . . , a; ) satisfying (3.9.1). 
We may try to bound x. — x. for each i or (x. — x. /xz for each i. In many 
applications in matrix theory, we select a norm ||x|| for the vector space and 
try to bound || x — x||.

To illustrate a backward error analysis, we shall consider our FORTRAN 
program L1N(A,B,X,Y) discussed in Section 3.8. We wanted to compute Y 
given by (3.8.1), and instead we computed Y given by (3.8.2). Now in 
FP(r, p, c) or in FP(r, /?, clq) with q > 1, we have

(A * X) @ B = (1 + a)[Q4 * X) + 5], | a | <
and

A * X = (1 - p)AX, 0 < p <
Then

Y = (1 +<7)[(1 - p)AX+ 5], 
so we may write

Y = AX + B, 
where

A = (1 + a)A
B = (l +(7)5

X = (1 - p)X.

Alternatively, we could write

where
2=0 +(7)(1 p)A

B - (1 + u)B,

Thus, a backward error analysis shows that we have solved a problem close 
to the problem specified, so we can promise the user that the errors introduced 
in the calculation are equivalent to a small perturbation of the data, and we *
can give bounds or the perturbation. A backward error analysis has provided 
an answer for the question posed in Section 3.8.

We see that the subroutine LIN provides good answers for some input, 
but the error may be very large for other input. In act, those cases in which 
LIN produces large relative error (Y — F) Fare the cases in which AX and B 
have opposite signs and magnitudes approximately equal, so the computation
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I AX - B involves the loss of several leading digits. But this is exactly the case 
in which the answer Y is extremely sensitive to changes in the input, that is, 

i the case in which the problem (3.8.1) is ill-conditioned.
I This situation is quite typical. It rather often turns out that a program

produces good answers for some input and poor answers for other input. If 
we can perform a backward error analysis, we can view the computational 
errors as equivalent to perturbing the data, so the quality of the answer will 
depend on the condition of the problem. Since the condition of the problem 

i may depend on the data, it is up to the user to worry about the condition oi 
the problem he has posed.

3.10. EXAMPLES

In this section we shall consider two examples; one is il^conditioned and 
the other is well conditioned.

First, consider the problem of computing cos x for x close to zr/2. Now 
cos x = sin(zr2 — x), so if x ti'2 we have cos x ti/2 — x. Suppose that 
we are working in PP(lO, 8, o) and x agrees with n/2 to six digits. Then a 
change of I in the eighth digit of x produces a change o about ! in the second 
digit of cos x. Thus, a slight change in x produces a large relative change in 
cos x, so the problem is ill-conditioned from the point of view of relative error. 
This could also be verified from (3.7.12), which shows that the relative error a 
in cos x due to a relative error p in x is approximately

(3.10.1) a px tan x.

By means of a backward error analysis, any errors introduced in computing 
cos x can be viewed as being equivalent to perturbing the argument x by a 
relative error p, and (3.10.1) shows that p will be magnified by approximately 
x tan x.

We could compute cos x with good relative error even when x is close to 
2 if we were willing to use higher-precision arithmetic in the calculation. 

Thus, suppose that we are given an eight-digit number x in S( 10, 8) with 
tc/4 < x < 7t/2. We could use double-precision arithmetic to subtract it from 
a 16-digit representation o Tr/2, producing a value for ?r/2 — x which is good 
to at least eight digits. Then sim^/2 — x) can be computed to about eight
digit accuracy in 1 P(10, 8, a), so we can produce a value for cos x with good 
relative error.

A typical cosine program first reduces the problem to the problem of 
computing the sine or cosine of an angle v with | y | < jt/4. [See Fike (1968) or 
Cody (1971a).] If this reduction is performed using double-precision arith
metic, the program can produce good relative error, even for the cosine of an 
angle close to 7i/2. Since this reduction of the angle is a small part of the total
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work involved in computing the cosine, one might be willing to use double
precision arithmetic for the argument reduction and use single-precision 
arithmetic for the rest of the calculation. In this case, we can produce an 
answer with good relative error for the problem of finding the cosine o the 
argument x which was supplied to the cosine routine, but if x is close to 7r/2, 
the answer is still sensitive to any errors in x. Since most floating-point 
numbers that arise in computation are only approximations, one might argue 
that in those cases in which the problem is ill-conditioned it is not worthwhile 
doing extra work to produce a good answer for the cosine of the argument 
supplied to the routine. Which of these approaches one takes often depends on 
how easy it is to use double-precision arithmetic in the reduction of the 
argument. In the manufacturer-supplied subroutines or the FORTRAN and 
PL/I libraries in the IBM System/360, the single-precision SIN and COS 
routines use double-precision arithmetic in the reduction of the argument, but 
the double-precision routines do not use higher-precision arithmetic. This 
decision was clearly based on the fact that it was easy to include double
precision arithmetic in the single-precision program because the machine has 
double-precision operation codes, but on many models of the IBM 
System/360 there are no operation codes or extended-precision arithmetic, so 
it is not as easy to perform arithmetic with more than double-precision 
accuracy.?

As a second example, we consider the problem of computing sinh x or x 
close to zero. In many of the early implementations of FORTRAN, the 
function sinh x was not in the library, so the user had to compute it himself if 
he wanted to use it. He was likely to use the formula

(3.10.2) sinh x —

which could be handled nicely as a statement Junction in FORTRAN. But 
when x is close to zero, both ex and e~x are close to 1, so many digits are lost 
in the subtraction in (3.10.2). For example, suppose that we are working in 
FP( 10, 8, a) and that

(3.10.3) x = 10"5 x .12345678.

Then e±x I ± x, so
ex 1.0000012

e~x .99999877.

fCody (1971a) describes a way to produce higher-precision accuracy in the argument 
reduction when the hardware does not provide higher-precision arithmetic. His approach 
uses techniques similar to those discussed in Chapter 5 for using single-precision arithmetic 
to program higher-precision arithmetic, but he simplifies the calculation by taking advantage 
of special features of the argument reduction problem.
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Then (3.10.2) would yield the value

(3.10.4) sinhx .000001215.

But for x in (3.10.3), the approximation

(3.10.5) sinh x x

is good to almost 12 decimal digits, so the answer in (3.10.4) is only good to 
about two decimal places. However, the situation here is diiferent from the 
situation with the cosine problem. We have a formula 3.10.5) which produces 
a good answer for small x, and this formula shows that the problem is wel' 
conditioned. Alternatively, we could use (3.7.12), which shows that the 
relative error cr in sinh x due to a relative error p in x is approximately

(3.10.6) cosh xpx — sinh x

For small x, cosh x 1 and x/sinh x 1, so the problem is well conditioned. 
Thus, we cannot blame the problem; rather, it is the algorithm (3.10.21 which 
is at fault. A typical program for sinh x might use a polynomial approxima
tion for small |x| and (3.10.2) when |x| is large enough so that no digits are 
lost in the subtraction. [See Fike (1968).]

It is interesting to compare these two examples. In each case we could 
blame the poor relative error in the answer on a subtraction in which many 
leading digits were lost. But we found that the cosine problem was ill- 
conditioned and we either had to accept the poor relative error or use higher- 
precision arithmetic. On the other hand, the computation of the hyperbolic 
sine was well conditioned, and it was the algorithm which was at fault. It is 
typical that the condition of the problem can give us insight about whether 
or not it is worthwhile to seek another algorithm.

3.11. CHANGING THE PROBLEM

Suppose that we want to use a subroutine which requires us to supply the 
coefficients a and b of a linear unction, written in the form

/(x) a(x + b),

which is to be used for |x| < 1. But suppose that we have been using f(x) 
in the form

/(x) = ax
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and we have approximations d and c for a and c. Let

(3.11.3) a = .00000056

c = .54325432,

and suppose that a and c are each in error by less than .5 X 10 8. Then a has 
two significant digits, while c has eight. But, for |x| < 1, /(x) can still be 
computed from (3.11.2) to an accuracy of about eight significant digits.

We have to supply a and h to the subroutine, but we do not know the value 
o' b = c/a. The best that we can do is to supply d and b, where

(3.11.4)

so the subroutine will evaluate the function J (.v) defined by

(3.11.5) 7(-v) = a * (.v © b).

Now b is accurate to about two significant digits, and since b is almost 106 
while |x|< L b@x is also only accurate to two significant digits. Then 
/(x) is the product of two factors, a and x © b, each of which is accurate to 
about two significant digits, so we might expect that J'(x) would be accurate 
to only two significant digits. We shall see that this badly overestimates the 
error. Also, it would suggest incorrectly that the division in (3.11.4) need be 
performed only to about two-digit accuracy.

We shall suppose that the computations in (3.11.4) and 3.11.5) are per
formed in FP(10, 8, c). From Theorem 3.4.5, we know that (3.11.5) may be 
written in the form

(3.11.6) f(x) = (I - Mv + 0 < p < 2 X 10~7,

or

(3.11.7) /(a-) = (1 - pY<x + (1 + p)ab.

Also, (3.11.4) may be written as

(3.11.8) 0 < <7 < 10©

so (3.11.7) becomes

(3.11.9)

Thus,

/'(a) = (1 — p)ax + (1 — /?)(! - o)c.
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where

(3.11.10) (1 ~ pfi
(1 —/?)(! — cr)c.

The bounds fora and p in (3.1 1.10 show that f(x is accurate to almost seven 
digits. In fact, for the data in (3.11.3), /’(x) is accurate to a lew units in the 
eighth place.

Had we performed the division in (3.11.4) to only two digits of accuracy,
■“fc-

the bound for a in (3.11.8) would be 10*1 and /(x; would be accurate only to 
about two digits. In fact, if we had used h instead of b in (3.11.5), then (3.11.7) 
would read

/(x) — (I — p)ax + (1 - p)ab.

But (lb would agree with c only to about two digits, so f(x) would be good 
only to about two-digit accuracy.

Here a backward error analysis has shown that the computation in 
(3.11.4/ and (3.11.5) produces a result / x) which is quite close to

/(x) (lx + c,

and this was already found to be a satisfactory approximation for fix). Thus, 
we have changed the problem from (3.11.2) to (3.11.11) and then to (3.11.5) 
and have bund that the answer / x) was a good approximation for /(x). But 
a typical analysis based on significant digits would compare (3.11.5) with 
(3.11.1), and, finding that a and b agree with a and b only to two significant 
digits, it would conclude that /(x) is good only to two-digit accuracy. This is 
a drawback of an analysis based on significant digits. A backward error 
analysis shows that (3.11.5) corresponds to a slight perturbation of the 
original data, and the fact that b is not a good approximation for b is simply 
irrelevant.

As a second example of this situation, we shall consider the problem of 
finding the real root a of the equation

(3.11.12) p(x) = ax7 + bx + c = 0,

where a, A, and c are all positive, a and b are approximately 1, and c .1. 
Since a and b have the same sign, it is easy to see that p\x} does not vanish 
for any real x, so (3.1 1.12) has exactly one real root. Also, if a and b are 
approximately 1 and c . I, it is apparent that this root will be approximately 
—. 1. We can see from 3.11.12) that p(x) is not sensitive to changes in a when 
|x| .1, and we could use this to show that the root a is not sensitive to
changes in a. Alternatively, we could use 3.7.21) to see that a is well condi
tioned with respect to changes in a, b, and c and that it is mucii less sensitive to
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changes in a than it is to changes in b or c. Thus, if we are given approxima
tions b and c for b and c which are accurate to eight significant digits and an 
approximation a for a which is accurate to two significant digits, the root a 
can be determined to almost eight significant digits.

Now suppose that we want to use a root finder which requires that the 
lead coefficient of' the polynomial be 1. We want to find the roots of the 
equation

(3.11.13) <7(x) = x7 + dx + e — 0,

where d = b/a and e = c/a. Naturally, we would compute

(3.11.14)

and attempt to solve the equation

(3.11.15) q(x) — x7 + dx + e = 0.

Now d and e agree with d and e only to about two places, and an analysis o 
the sensitivity of the root a of (3.11.13 wou d lead us to expect that the root 
a of (3.11.15) would agree with a only to about two places. But if the arith
metic in (3.11.14) is performed in FP(10, 8, c), we may write

where 0 < p, a < 10 7. Then (3.11.15) has the same roots as

(3.11.16)

wiiere
b = (1 — p)b, a)c.

Since b and c are only slight perturbations of b and c, we conclude that the 
root a of (3.11.15) and (3.1 1.16) agrees with a to seven or eight places.

The situation described here arises rather often. There are many cases in 
which the solution to a mathematical problem P involves transforming the 
problem into another problem P' which has the same answer. But if we know 
the data in P only approximately, we obtain a transformed problem P, which 
we hope has approximately the same solution as P. Often this can be guar
anteed by a backward error analysis which shows that P has the same solution 
as a problem obtained by a slight perturbation of the data in P. Our primary 
concern is how close the solution to the problem P is to the solution to P. The 
fact that the data in P differ from the data in Pf is not important if we can 
guarantee that we have not changed the answer much. Unfortunately, the fact

I
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that the data in P are not good approximations for the data in P' has some
times been used erroneously to try to justify using less accurate arithmetic in 
the solution of P, thereby needlessly contaminating the answer.

3.12. STATISTICAL ERROR ANALYSIS

So far, we have tried to produce bounds for the error. But sometimes it is 
appropriate to consider the average error instead of the maximum error. As an 
illustration, consider the computation of

(3.12.1)

in FPilO, 8, a). Suppose that the a. are all positive and that we are given 
approximations J. for the an where the ai are three-digit integers. Then 
0 < a. < 1000. f irst, we suppose that the J. are the ai rounded to the nearest 
integer, so

Then in place of 3.12.1), we attempt to compute

(3.12.3)

Unless n is so large that x > IO8, the computation of x in (3.12.3) will be 
exact, so we shall compute x = x + c, where

(3.12.4)

Clearly, we have the bound < n/2.
In a statistical error analysis, we assume that the 6. are independent 

random variables. Unless we have additional information about the it is 
customary to assume that the 6. are selected from a uniform distribution in 
the interval — £ < 6. <f f. Then the expected value for e in (3.12.4) is zero. 
But, more important, the random variable 6 has a probability density 
function with a peak at zero. For example, the density unction for 6, + 6, is 
p(x) — I — |x| for | A'| < I. The graph of p(x) is shown in Figure 3.12.1. 
Indeed, by appealing to the central limit theorem isee, for example, Mood 
and Graybill (1963)] we conclude that the probability density function for e 
approaches that of a normal distribution as fi —> oo. Even for modest values 
ofthe distribution for 6 is close to a normal distribution. In fact, when the 
6. are independent and uniformly distributed, the distribution of e approaches
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-1 0 1

Figure 3.12.1

a normal distribution so rapidly that some of the early random number 
generators designed to produce numbers drawn at random Yom a normal 
distribution merely added 10 or 12 numbers selected independently from a 
uniform distribution. [See Muller (1959).]

Since the distribution for 6 is approximately normal, the value x computed 
in (3.12.3) is likely to be much closer to x than it is to either of the bounds 
a* ± (See Exercise 18.) In fact (see Exercise 17), it can be shown that if 
the et are independent and uni:brmly distributed on the intervalf—4), then 
the standard deviation of 6 is K/n/l2. Therefore, for large /? we would expect 
6 to be much closer to zero than to ±/?/2, so the error bounds are likely to 
give a severe overestimate of the error actually incurred. In addition to the 
error bounds (or perhaps instead of them) we might like to be given the 
expected value and standard deviation of 6.

Now suppose that the are produced by chopping the a. instead of 
rounding them. Instead of (3.12.2), we have

= a, - 0 < t,. < 1,

and we write x — x — 6. where 6 satisfies 3.12.4). Clearly, the bounds for e 
are given by 0 < 6 < n. But now the expected value for e is n/2 and the 
probability density function for 6 has a peak at n/2. Consequently, we might 
wish to add n/2 to x as a correction. But if we do not use such a correction, e 
is likely to be on the order oi 'n/2, that is, on the order o one-half the bound. 
Then using the bound instead of the average produces a difference of only one 
bit in our estimate of the error.

In general, when we use rounded arithmetic we may hope that the value 
we have computed is close to the expected value of the answer and that the 
error produced is considerably smaller than the error bound. Of course, we 
cannot guarantee that this is the case, but the discussion above suggests that 
this is very likely to occur. [See, however, Hartree (1949).] On the other hand, 
if we use chopped arithmetic instead of the rounded arithmetic, then we may 
expect the error to be within about one bit or so of the bound. For this reason,

I
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statistical analysis oi error enjoys far more favor when the arithmetic used is 
rounded than when it is chopped.

We indicated that it is customary to assume that the error incurred when 
numbers are rounded is a random variable which is uniformly distributed 
between and | units in the last place and that the errors incurred at 
different steps in the calculation are independent. This has been supported by 
experiments; see, for example, Hull and Swenson c 1966) and Henrici (1959). 
On the other hand, Hartree (1949) shows that this assumption is not always 
valid. His results have sometimes been cited as a reason for not using the 
statistical approach to error analysis, but even in the case he considers, the 
error incurred is still substantially smaller than the bound.

We have seen that in many cases it is relative error that is propagated. 
Thus, in Section 3.5 we found that or the calculation of 

(3.12.5)
n

we produced a value x which satisfied

n

i = I
where the pt are the relative errors introduced by the n multiplications. The 
bounds for the p, are 0 < — pi < when the arithmetic is performed in 
FP(r, p, c) and P n when it is performed in FP(r, p, R). Then
x — (1 + cr)x, where the relative error cr satisfies 

(3.12.6) (1 + A)-

Since the p, are small, we may study the approximation a for a given by 

(3.12.7)

First, we must consider the probability distribution for the pr To this end, 
let y be any nonzero real number and let y be either y or y . We shall consider 
the relative error p given by p = (y — y)/y. Write

y = rem, m

and y = rem. Here

and

(3.12.8)

m = m

m
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As above, it is customary to assume that the absolute error e is a uniformly 
distributed random variable. We usually want to perform an error analysis 
without looking at the intermediate results, so we would like to give an 
estimate for a in (3.12.6) without having to look at each of the intermediate 
products developed in the evaluation of (3.12.5). Therefore, it is customary to 
assume that the mantissa m is also a random variable. Another justification of 
this point of view is based on thinking of the computation as being performed 
many times with di iferent sets of data. Then we need to know the probability 
distribution for a random mantissa.

There is general agreement that the mantissas of floating-point numbers 
are not uniformly distributed. [See Hamming (1962), Pinkham (1961), or 
Knuth (1969).] Instead, it is customary to assume that they are distributed 
logarithmically, that is, that the probability density function is

(3.12.9) /(w) = —p-----,m logc r m

This assumption is based on the following observations: First, this distribu
tion reproduces itself under multiplication, but a uniform distribution does 
not. [See flamming (1962) and Exercise 20. | A second justification is based on 
the fact that many of the numbers that arise in computation represent 
measurable quantities such as lengths, forces, etc., and it is reasonable to 
believe that the distribution of the mantissas of such quantities is independent 
of the units in which they are measured. Pinkham (1961) shows that this leads 
to the cone usion that the distribution of mantissas must be logarithmic. As 
indicated below, there is also empirical evidence to support this view. (Also, 
see Exercise 23.)

Let k be a positive integer which is less than r. The probability that the 
leading digit of m is less than k is the probability that r"1 < m < k/r. If we 
assume that (3.12.9) is the probability density function for /??, we find that the 
probability that the leading digit o' m is less than k is

(3.12.10) dm = log, k = . ,
m loge r logc r

Thus, in the decimal system the probability that the leading digit is 1 is about 
.3, and the probability that it is I, 2, or 3 is about .6. Hamming (1962) gives 
frequency counts for the leading digits of dimensioned physical constants he 
selected at random from the Handbook of Chemistry and Physics. His data 
agree quite well with ( 3.12.10).

In FP(16, p, #), we are sometimes interested in the number of leading 
zeros in the binary representation of m. If we take k equal to 2, 4, 8 in 
(3.12.10), we find that the probabilities ol having 0, 1,2, or 3 leading zeros in 
the binary representation of m are all equal. This is validated by the experi
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merits ol Azen and Derr (1968), in which they analyzed samples of hexa
decimal mantissas resulting from computation. (They also propose a simpler 
distribution for hexadecimal mantissas which has this property of producing 
a uniform distribution o the number of leading zeros in the binary repre
sentation of m.) Thus, we may expect that hexadecimal mantissas arising in 
computation will have three leading zeros in their binary representation about 
one-fourth o ’the time, whereas this would happen only about one-fifteenth of 
the time if they were uniformly distributed.

The importance of the distribution of mantissas lies in its el ect on the 
relative error in (3.12.8). Since the probability density function in 3.12.9) has 
a peak at r~\ random mantissas are much more likely to be close to r-1 than 
close to 1. Then for any absolute error e in m9 the relative error p is much 
more likely to be close to re than close to e. Thus, we are more likely to 
experience the worst case for the relative error than we would be if the 
mantissas were uniformly distributed. (See Exercise 22.) I his will affect our 
estimate of a quantity such as a in 3.12.7).

EXERCISES

1. Show that even if the approximations x 10.13 and y .9523 are each ac
curate to within one-half a unit in the fourth digit, the approximation xy 
(10.13; *(.9523) may be in error by more than five units in the fourth digit.

2. In FP(r, p, c/1), show that in the subtract magnitude case we may indeed have

a © b = (1 + p)(a + b\

where p is positive and close to
3. Show that in FP(2,j?, c) for nontrivial values of p, the numbers a * (b © c) 

and a * b) @ (a * c) can differ by two units in the last place, even if b and c 
have the same sign.

4. In FP(r, p, c), find a bound ' or the relative error of the approximations

(a * b) -? a b
a * (b 4- a) b.

5. Show that the following statements hold in FP(r, p, R) for interesting values of 
r and p.
a. The associative law o addition does not even hold approximately.
b. If a, b, and c all have the same sign, then

a © (b © c) = (1 + n)[(a © b) © c],

where | p | <
c. a * (b * c) = (1 + p)[(p * b) * c], where | p \ < 2r“(p'*1>(l + 2r“(^"n).
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d. If a * b a * c and a 0, then b = (I + p)c, where

P (I

e. The distributive law does not even hold approximately.
f. For any a, b, c

a * (b © c) = (l + p)[a(b + c)],

where | p\ < r-(p-o).
g. If b and c have the same sign, then

(a * b) © (a * c) = (1 4- p)[rr * (b © c)],

where \p \ < 4- 2r_(^"n).
6. Suppose that x and y arc numbers in S(r, p) and that we want to compute 

z ~ x2 — y2, performing the arithmetic in I P(r, p, clq) with q > 1. Show that 
the calculation

z = (x © y) * (x © y)

produces a value z with good relative error but that there is no reasonable 
bound for the relative error if we use the formula

Which formula is more efficient from the point o 'view of computer time on the 
machine you are using?

7. Suppose that we are given a number x in S(r, p) with 0 < x < 1 and that we 
want to compute

y = 1 -

performing the arithmetic in FP(r, p, clq) with q > 1. Assume that we have a 
library program SQRT which produces good relative error for the square root 
computation. Show that the formula

y = 1 - SQRT(1 - x)

may produce bad relative error when x is close to zero. By reversing the usual 
process of simplification of algebraic expressions, we may rationalize the 
numerator of 1 — \/l — x to produce

■’ H © - x ’
Show that the coding

y = x 4- (1 + SQRT(1 - a))

always produces good relative error.
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8. Suppose that we have N observations Xj, x2,...» xN. We define the sample 
mean M and variance V by

My.

One readily show's that V is also given by

Phis formula is particularly convenient when we do not want to store all the 
x’s. Unfortunately, it is much more sensitive to rounding error than the first 
formula is, particularly when E is substantially smaller than M2.
a. Explain why the second formula for E is more sensitive to rounding error 

than the first formula is.
b. Perform the following computations for N — 100 and 1000 and k = 0, 

1000, 2000, 3000, and 10,000. Let a; = A: + i for i = 1,2, . . . , TV. Compute 
A/ and V in both FP(16, 6, cl\ ) and FP(16, 14, <71), using both formulas 
for E. Compare the results with the results obtained analytically from

A(N + I) 
?

N(N + 1)(2TV +
6

c. Perform the following computations for TV = 100 and 1000 and k = 500, 
100, 20, 10, 2, and 1. Use a random number generator to generate N values 
a; selected from a uniform distribution on the interval 500 — k to 500 + k. 
Compute M and V in both FP(16, 6, cl\ and FP( 16, 14, c/1 using each of 
the formulas for K Explain the behavior of the results.

d. As above, suppose that we have N values xz with sample mean M and 
sample variance K Let

Xi = a; — a, / = 1, 2, . . . , N.

Then the y( have a sample mean M — a and a sample variance V. If a is 
close to M, using the second formula to compute Las the variance of the j’s 
may be almost as attractive as using the first formula to compute Fas the 
variance of the a's. ( Why ?) In part c, we would expect M to be close to 500. 
Repeat the computations in part c computing V as the variance of the .y’s, 
where

y. = x. - 500, i = 1, 2,. . . , N,

and compare with the results of the previous computation.
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9. Let x — S/li xi an(3 x = Sili where

x, =(1 + A)x„ i = 1,2,... ,7V.

Suppose that all the xf are positive. Prove that

x = (1 + p)x,
where | p | < max j <i<N | pL |. |

10. Suppose that we want to compute 5 = S/li xh where the xz are positive real
numbers. Let xz be x, chopped to 5(r, p), and set

i = 1,2, ...,7V— 1,

where the arithmetic is performed in FP(r, p, c) or FP(r, p, clq). Let S = SN. 
Clearly S < 5. Prove that 5 exceeds S by less than TV units in the last place of 
5.

11. Let At and Bi be positive numbers in 5(r, p) for i = 1, 2, . . . , TV, and let

5 = f AiBi.
i= l

To compute an approximation S for S, we set So = 0 and let

Si - t © (At'*BJ 7= 1,2,..., TV,

where all operations are performed in FP(r,/?, c/q) with q > 1. Then we set 
S = SN and note that S < S. Using the result of Exercise 8, prove that S 
exceeds S by less than TV units in the last place of S. Show by an example that 
S may exceed S by almost TV units in the last place of S.

12. Let X be a number in 5(16, 6), so X is also in 5(16, 14). Let Y = XN, where TV 
is a positive integer, and suppose that we compute Y = X**Nin FP(16, 14, c/1). 
Let y and Y be the values of Y and Y chopped to 5(16, 6). For each of the 
three methods for computing X^*N given in Section 3.6, find a bound for the 
relative error in the approximation Y Yand give an estimate of how large TV 
must be be bre Y and Y can differ by more than one unit in the last place.

If you have access to a machine which performs arithmetic in FP( 16,14, c/1), 
select several values of Xand TV and compare the results obtained by computing 
X**N in FP(! 6, 14, c/1) using each of the three methods described in Section 
3.6.

13. In Section 3.6 we gave a method for computing XN requiring m + k — 1 
floating-point multiplications. Show that X15 can be computed using only five 
floating-point multiplications, although m 4* k — 1 =6.

14. Suppose that we want to compute Y = X~N, where N is a positive integer and 
X is in 5(r, p). Find bounds for the relative errors in the approximations A Y
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and B Y. where A and B are computed from the FORTRAN statements

A = l./X**N
B = (1,/X)**N

Assume that the arithmetic is performed in FP(r, p, dq) with q > 1.
15. Suppose that we want to compute the value of p(x), where

N

p(x) = S ak^Y 
k-Q

It is customary to evaluate p(x) using I lorner's method:

p(x) = aQ + x(ai + x(a2 + • • ■ + x(aN-\ 4- x-^)))- • -)•

To code this in FORTRAN, we might store the coefficients in an array A, 
storing ak in A(Zc 4 1), k = 0, 1, . .. , N. Then we would use the FORTRAN 
coding

P = A(N4-1)
DO 100 K = 1,N

100 P = P*X+A(N4-1 - K)

Suppose that ak and x are in S(r, p) and that we perform all the arithmetic in 
FPi r,p dq) with q > 1. Using a backward error analysis, show that we have 
computed

p(x) = £ &kXk, 
k~0

where ak = 1 4~ pk^k- Find the bounds for the pk. If each ak > 0, show that 
for x > 0

p(a-) = (1 4- p)p(x),

and find a bound for p.
16.

17.

18.

’rove that if 6 is a random variable which is uniformly distributed on the
interval — £ then the variance of € is
Suppose that 6 = C and that the C are independent random variables 
which are uniformly distributed on the interval —£ < €t < |. Using the result 
o ’ Exercise 16, show that the standard deviation of 6 is 12.
Write a program to perform the following calculations for N = 1000, 5000, 
and 10,000 and k =2, 10, 20, and 100. Use a random number generator to 
generate N random numbers selected from a uniform distribution on the 
interval — | < x < | and treat these numbers as N/k observations of k 
random variables 6 j, e2,. . . , ek. Form € — so we ^ave values for 
6. Compute the sample mean and standard deviation for e. Divide the interval 
— (k/2) < x< k/2 into 100 equal subintervals and obtain frequency counts 
for the number of values of 6 which fall into each subinterval.
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19. Let 6 j and 62 be independent random variables which are uniformly distributed 
on the interval — | < a < and let 6 = + 62. Prove that the probability
density function for e is p(x) = 1 |x| for |x| < 1.

20. Let z ~ xy, where x and y are independent random variables.
a. Show that if the mantissas of x and y have a logarithmic distribution, so 

does the mantissa of z.
b. Show that if the mantissas of x and y have a logarithmic distribution, then 

the probability that postnormalization will be required in computing x * y 
is .5.

c. Find the probability density function for the mantissa of z if the mantissas 
of x and y are uniformly distributed on the interval r-1 < t < 1.

21. It is often convenient to think of the mantissa o a floating-point number as a 
random variable. Find the mean and standard deviation of a random 
variable where

a. m is uniformly distributed on the interval r-1 < x < 1.
b. m has a logarithmic distribution on the interval r-1 < x < 1.

22. In (3.12.8 we saw that the relative error p introduced by rounding orchopping 
a number to p digits is of the form elm. Suppose that 6 and m are independent
random variables and that p ~ elm. Find the mean and variance of p if
a. e is uniformly distributed on the interval —r~p < x < 0 and m has a

logarithmic distribution on the interval r-1 < x < 1.
b. e is uniformly distributed on the interval — ^r~p < x <Z ^r~p and m has a 

logarithmic distribution on the interval r-1 < x < 1.
c. e is uniformly distributed on the interval r~p < x < 0 and m is uniformly 

distributed on the interval r-1 < x < 1.
d.

e.

e is uniformly distributed on the interval — \r~p 
uniformly distributed on the interval r"1 < x < 1.

and m is

To assess the importance of the distribution of the mantissas, compare the 
mean and variance computed in part a with the ones computed in part c. 
Similarly, compare the mean and variance computed in part b with the ones
computed in part d.

23. Using the techniques described in Section 4.4, modify a matrix inversion 
program to extract the mantissa of every number which arises in the calcula
tion. Divide the interval r-1 < x < 1 into 20 subintervals and obtain frequency 
counts for the number of mantissas which 'all in each subinterval. Compute the 
sample mean and standard deviation of the mantissas. Run the program for 
several matrices whose order is about 10.



4 EXAMPLES

4.1. QUADRATURE

In this chapter we shall consider some examples of floating-point computa
tion. These examples will be referred to elsewhere in the book to indicate why 
certain approaches have been taken to implementation of eatures such as 
rounding, double-precision arithmetic, etc.

The first example we shall discuss is a quadrature problem. Suppose that 
we want to use Simpson's rule to compute an approximation for the value of

Select an even positive integer TV and set H = (B — A)/N. Let xk = A + kH, 
k = 0, I, 2, . . . , N. Then the approximation for / given by Simpson’s rule is 

(4.1.1) ,SA. = ^[/(a-0) + 4/(a-1) ; 2/(A-2) + 4/(A-3) + 2/(a4) + • • ■

4/(-vn_,) + /(x„)].

If/1 A' > has a bounded fourth derivative on A < a < B, it can be shown that

(4.1.2) / = + 0(//4).

[See, for example, Hildebrand (1956).]
For our example we shall try to compute

(4.1.3) sin x dx.

123
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( iearly I = 1, and we shall observe how well SN approximates I as ^increases. 
We shall perform the indicated computation using floating-point arithmetic, 
and we shall print SN for N = 2k, k = 1,2,..., 16.

For our first attempt we shall use the following rather naive FORT RAN 
program:

100
200

1000

B = 1.570796
DO 100 K = 1,16
N = 2**K
H = B/N
X - 0
S = SIN(X)
NN - N - 3
IF(K.EQ.l) GO TO 200
DO 100 I = 1,NN,2
X = X+H
S = S+4.*SIN(X)
X = X + H
S = S + 2.*SIN(X)
X = X+H
s = S+4.*SIN(X)
x = X+H
S = S+SIN(X)
SIMP = S*H/3.
WRITE ( ) K,N,SIMP

This program was run in FP(16, 6, c/1), and the output is shown in Figure 
4.1.1. The results are disappointing. The first three lines produce the sort of 
behavior we expected, but then the answer drifts below 1, with the error 
becoming worse and worse as the value of N increases.

To see how the precision of the arithmetic affects the result, the entire 
calculation was performed in FP(16, 14, c/1). For the IBM System/360, this 
meant that the variables had to be typed as double-precision, SIN had to be 
changed to DSIN, and B had to be set to 1.5707963267948966D0. The results 
of this run are shown in Figure 4.1.2. This is clearly an improvement, but we 
still observe the annoying drift of the answer below 1. The output suggests, 
correctly, that if we took still larger values of k the answer would continue to 
degrade. One might be tempted to dismiss this behavior with some vague 
comment about the growth of rounding error as the number of operations 
increase, but the regularity with which the answer degrades cries out for an 
explanation.

It turns out that the error which causes this systematic drift in the answer
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K

1
2
3
4
5
6
7
8
9

10

12
13
14
15
16

N

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

SIMP

1 .00227833 
1.00013256 
1.00000668 
0.99999714 
0.99999583 
0.99999392 
0.99999267 
0.99997008 
0.99994498 
0.99992907 
0.99990^32 
0.99954379 
0.99926186 
0.99897254 
0.99887526 
0.99309123 Figure 4.1.1

K N SIMP

1
2
3
4
5
6

8
9

10
11
12
13
14
15
16

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

1.002279877492210 
1 .000134584974193 
1.000008295523968 
1.000000516684706 
1.000000032265000 
1.000000002016128 
1.000000000126000 
I.000000000007869 
1.000000000000481 
1.000000000000017 
0.999999999999983 
0.999999999999901 
0.999999999999835 
0.999999999999767 
0.999999999999677 
0.999999999998398 Figure 4.1.2

arises in the accumulation of the sums S and X. In our program, A" has been 
advanced by repetitively adding H, and S is the sum of terms of the form 
2 sin x and 4 sin x. First, consider S. For the final value of S, we have 

so S = 3/H. Since H = B — A))N, this yields

c 6/VA >
71
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so the final value of S is about 2N. Our last value for N was 216, so 2/V = 
20000;/. Since S must grow to about this value, for many of the additions the 
six-digit hexadecimal number S will have the form xxxxx.xH. But the terms 
added to S do not exceed 4, so the alignment o the radix points produces the 
situation

xxxxx.x

Since the numbers are positive, it is immaterial whether the low-order four 
digits of the number added to S are chopped before or after the addition— 
that is, it makes no difference whether the computation is performed in 
FP(16, 6, c), FP(16, 6, cl I), or FP( 16, 6, c/0). Thus, we may view the computa
tion as first chopping the terms 2 sin x or 4 sin x, and then performing the 
addition exactly. This in turn may be viewed as using Simpson's rule to 
compute the integral of a function /’(x), where /(x) drifts farther and farther 
below sin x as x increases, and it is obtained by chopping the low-order bits from 
sin x. Since the discrepancy between J'(x) and sin x increases as N increases, 
this explains the systematic drift of the answer. It also shows that our program 
should not be sensitive to small errors introduced by the SIN routine. (See 
Exercise 2.)

A similar situation arises in the computation of X. X increases from 0 to B, 
and H = B 4- N, so X will get to be substantially larger than H. As above, 
this means that the computed value for X will drift farther and farther below 
the correct value. Since sin x is monotone increasing in the interval, the error 
in X will tend to make the computed value for sin x too small, and this 
amplifies the effect of the errors in S. (See Exercises 2 and 8.)

The computation of X is easily corrected. Instead of advancing X by 
adding //, we may compute X as a multiple of H. For example, inside the 
loop we would use X = I * H and X = (I + 1) * H, and similar computa
tions can be used at the other places where X appears.

The computation of S is more troublesome. One approach is to accumu
late the sum in double-precision. This could be coded so that S is the only 
double-precision variable in the program, and the only place where double
precision arithmetic is used is in the addition of single-precision terms such as 
4 sin x and 2 sin x to S'. Figure 4.1.3 shows the results obtained by making this 
change along with the change in the computation of X mentioned above. This 
shows that we have isolated and corrected the cause of the drift in the answer. 
Exercise 4 suggests explanations for the small error still remaining in these 
results, but we have clearly corrected the major source of error which was 
responsible for the continual degradation of the answer as N increases.

Correcting the computation of S' in the double-precision version of our

I
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SIMP

2
4
8

2
3
4
5
6

16
32
64

1.00227833 
1.00013256
1 .00000668 
0.99999869 
0.99999809 
0.99999809

7 128 0.99999839
8 256 0.99999809
9 512 0.99999809

10 1024 0.99999809
11 2048 0.99999839
12 4096 0.99999809
13 8192 0.99999809
14 16384 0.99999809
15 32768 0.99999839
16 65536 0. 99999809 Figure 4.1.3

program is not as simple, unless we have still higher-precision arithmetic 
available. However, it may be accomplished either by using the results of 
Section 4.3 or by exploiting our knowledge of the size of the numbers in the 
problem. (See Exercise 7.)

We shall now look more carei'ully at the computation o 'the sum of terms 
having the same sign. Suppose that we have N + 1 terms which we may 
assume are all positive, and let

n = 0, 1,.

We actually compute sn instead of sn, where s0 = /0 and

5„+1 = sn © r„+1, n = 0, I,. . . , N — 1.
Write

We shall assume that the computation is performed in FP( r, p, clq\ so we have 

(4.1.4) 

where 0 <C cn+1 < ren"r p. It can be proved by induction that 

where 

(4.1.5)
i= i
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Since the L are ail positive, we have e„+l > en for all /?. Then

6r < nrCn L

so sN is larger than sN by less than N units in the last place.
This bound may be sharpened. Let / = eN —- e0 and suppose that for 

i = 0, 1, . . . , I there are k. values of n with en = e0 4~ z. Then

(4.1.6) + • • • + Vz].

This shows that we want sn to grow as slowly as possible. Therefore, it is 
desirable to arrange the order of the terms so that the smallest terms are added 
in first. Ideally, we would like to have

(4.L7)

In our problem we do not satisfy (4.1.7), because we alternate between the 
terms 4 sin x and 2 sin x. However, since sin x is increasing as x varies from 0 
to jc/2, we do have some of the effect of starting with smaller terms and 
proceeding to larger ones. Exercise 3 suggests some experiments which show 
the effect of the order in which the terms are added.

The program we have been considering so far is quite inefficient. One of 
the nice features of Simpson's rule is that when the number of intervals is 
doubled, we need not recompute f(x) at the points already used. For any value 
of N in (4.1.1), let

E = f(A) + J\B)

i - 1

GV/2)- 1

Then the formula ‘or Simpson's rule is

4F

But when we double the number of intervals, each of the points previously 
used will have an even subscript, while the new points will have odd subscripts. 
This yields

(4.1.8)

Thus if we want to compute S1N, it costs only a couple of extra multiplies and 
adds to compute SN as well. The following program takes advantage of this 
fact:
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B = I.570796
E = SIN(0)+SIN(B)
T = 0
DO 1000 K = 1,16
N = 2**K
F = 0
DO 100 I = 1,N,2
X = 1*11

100 F = F-f-SIN(X)
S = (E+4.*F+2.*T)*H/3.

1000 WRITE ( ) K,N,S

Figure 4.1.4 shows the output from this program, and Figure 4.1.5 shows 
the output from a double-precision version of this program. Not only is the 
program more efficient, but we see that it produces somewhat better results 
than our earlier program. The results o Exercise 6 will show that most o this 
improvement is due to the change in the way the terms are added to S. Other 
ways to rearrange the addition of the terms in S' are also explored in Exercise 6.

uadrature problems often require the addition of many terms having the 
same sign, and the behavior we have observed is quite common. The problem 
stems from the fact that we are using chopped arithmetic, so all the errors 6, 
in <4.1.5 have the same sign. This suggests that it might be advantageous to 
use rounded arithmetic. Then the e,. in (4.1.5) would tend to compensate, so 
we would hope that 3 would be close to zero. (See Section 6.2. ) To investigate 
the effect o rounding, the original program was run with all calculations 
performed in 11:16, 6, ell) except for the addition of the terms 4 sin x and 
2 sin x to .S'. These additions were performed in FP(r, p, R). (The way this may

K N SIMP

1 2 1.00227833
2 4 1.00013256
3 8 1.00000572
4 16 0.99999809
5 32 0.99999774
6 64 0. 99999714
7 128 0.99999458
8 256 0.99999237
9 512 0.99999076

10 1024 0. 99997044
11 2048 0.99993259
12 4096 0.99990082
13 8192 0.99987566
14 16384 0.99954891
15 32768 0.99892169
16 65536 0.99839622 igure 4.1.4
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K N SIMP

1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536

1.002279877492210 
1.000134584974193 
1.000008295523968 
1.000000516684706 
1.000000032265001 
1.000000002016128 
1.000000000126000 
1.000000000007873 
1.000000000000490 
1.000000000000024 
0.999999999999987 
0.999999999999978 
0.999999999999972 
0.999999999999906 
0.999999999999763 
0.999999999999642 Figure 4.1.5

K N SIMP

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2 
4
8

16
32
64

128
256
512 

1024 
2048 
4096 
8192

16384 
32768 
65536

1.00227833 
1.00013256 
1.00000668 
0.99999934 
0.99999809 
0.99999678 
0.99999553 
0.99998885 
0.99998218 
0.99997073 
0.99995357 
0.99992019 
0.99984580 
0.99969101 
0.99969035 
0.99992716 Figure 4.1.6

be coded is discussed in Section 6.3.) The results are shown in Figure 4.1.6. By 
comparing Figure 4.1.6 with Figure 4.1.1, we see that rounded arithmetic 
produces significant improvement in this problem, particularly when a large 
number of terms are used in (4.1.1).

A final run of the original program was made using the bias removal 
described in Section 6.4, and the results are shown in Figure 4.1.7. As above, 
the only changes from the original program were that bias removal was used 
in the addition of the terms 2 sin x and 4 sin x to 5.

4.2. POWER SERIES

Power series are familiar to anyone who has taken a course in calculus, and 
they seem to provide a means of computing many important functions.
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K N SIMP

1
2
3
4
5
6

8
9

10

12
13
14
15
16

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

1.00227833 
1.00013256 
1.00000668 
0.99999934 
0.99999839 
0.99999714 
0.99999583 
0.99999428 
0.99998093 
0.99997294 
0.99995232 
0.99992943 
0.99985152 
0.99969864 
0.99969608 
1.00030041 Figure 4.1.7

Naturally, we would be concerned about whether the series converges, and we 
may have learned that some series converge so slowly that we would not want 
to use them directly for computational purposes, even with the aid of a digital 
computer. An example of such a series is

Iogc 2 =

But the numerical problems involved in using power series are often ignored. 
To illustrate the numerical difficulties, we shall consider the following prob
lem:

Problem
Use the power series to compute ex, and sin x for x — 1, 2, 4, 8, 16, 

32, 64, and 128.

We recall that the power series for ex is

(4.2.1)

and that the series for sin x is

(4.2.2) (2k + 1)! *

It is well known that these series converge Cor all values of x.
The output for this computation is shown in Figure 4.2.1. We have printed 

the values produced when the functions were computed by using the power 
series in both single-precision and double-precision. Here single- and double-
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COMPUTATION OF E TO THE X BY POWER SERIES

X SINGLE DOUBLE LI BRARY

1
2
4
8

16
32
64

128

0. 27182789F 01
0.73890495E 01
0.54598007E 02
0.29809497E 04
0.88860890E 07
0.78962152F 14
0.62349641F 28
0.38R75452E 56

0.27182818284590430 01
0.7389056098930648D 01
0.54598150033144190 02
0.29809579870417260 04
0.88861105205078640 07
0.78962960182680480 14
0.62351490808115610 28
0.38877084059945460 56

0.2718281828459045D 01 
0. 73890560989306510 01 
0.54598150033144240 02 
0.29809579870417280 04 
0.88861105205078720 07 
0.78962960182680690 14 
0.62351490808116170 28 
0.38877084059945970 56

-2
-4
-8

-16
-32
-64

-12 8

0.3678792IE 00
0.13533521E 00
0.18314630E-01
0. 41966909E-03

-0.35498899E-0?
-0.62804331E 06

O.32858773F 20
0.13160663E 48

0.36787944117144220 00
0. 13533528323661260 00
0.1831563888873392D-01
0.33546262792152410-03 
0.11253003670233380-06 

-0.14369684864922200—03
0.26988919172475200 11

-0.3475250814162216D 38

0.36787944117144230 00 
0.13533528323661270 00 
0. 1831563 8888 734180-01 
0.33546262790251180-03 
0. 112 53517471925 910-06 
0.1266416554909417D-13 
0.16038108905486380-27 
0.25722093726424150-55

COMPUTATION OF SIN(X) BY POWER SERIES

SINGLE DOUBLE L I BRARY

1 0.84147096E 00
2 0.90929759F 00
4 -0.75680238E 00
8 0.98923141E 00

16 -0.34140092F 00
32 0.28767938E 06
64 0.20472729F 21

128 0.25310850E 47

0.84147098480789650 00
0.90929742682568170 00

-0.75680249530792830 00
0.98935R246623353I0 00

-0.28790331667472630 00
0.55164311510024590 00
0.10791053277194050 11

-0.27842086001817330 38 
1

0. 84 147098480789650 00 
0.90929742682568170 00

-0.75680249530792820 00
0.9893582466233818D 00

-0.28790331666506360 03 
0.55142668124168990 00 
0.9200260381967901D 00 
0.721 0377 105017319D 00

Figure 4.2.1

precision refer to FP(16, 6, c71) and FP(16, 14, c/1), respectively. For com
parison, we have also printed the values produced by the corresponding 
FORTRAN library routines, that is, by EXP(X) and SIN(X). In each case we 
terminated the calculation when the term added did not change the sum. To 
avoid overflows in the factorials involved, each term was computed from the 
preceding one. For example, in the series for ex the /<th term is given by

(4.2.3)
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and we compute tk+l from 

(4.2.4)

A similar procedure is used in the series for sin x.
In f igure 4.2.1 we see that the results are quite good for small x and that 

the results for ex are reasonably good for all the arguments tested. But the 
series computations for e~x and sin x produced ridiculous answers when x 
was large.

To try to understand what happened, we shall consider the computation 
of ex and e~x. In each case, the terms added or subtracted are of the form 
(4.2.3). For x = 128, the first few terms are

1.
128.

8193.
349525. 33333 • • •

11181477. 33333 •••.

We see that these terms grow quite rapidly. In fact,14.2.4 shows that they will 
continue to grow until k + 1 = x. Thus, the terms with largest magnitude 
are Z127 and Z128. When k > x, the terms decrease in size. Schematically, this 
growth of the terms when x is large may be shown by

xxxx.

xxxxxxx • • • xxxxxx.xxxxxx
XXXXXX • • • xxxxxx.xxxxxx • * •

.000000 • • • OOOOOOxxxxxx • • •

But we have retained only the high-order p digits o f each term. In fact, in 
the computation of the terms the error may grow to a point where the last 
two or three digits in the term are in error. Thus, instead of tk we have an 
approximation ik, where we may write

(4.2.5)
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(4.2.6) (i + />*)'*•

Then we attempt to compute 

(4.2.7)

Even if we ignore the additional errors introduced because we used floating
point arithmetic to add the 7Af s in (4.2.7), our answer will be in error by the 
sum of the e/s. In the computation of ex for positive x, all the tk arc positive. 
Then the fact that each is small with respect to tk implies that 2 is small 
with respect to 2 h* In fact, by Exercise 9 of Chapter 3 we have 

where |/?| < maxA |pA. Since ik has been computed using only 2k — 2 
floating-point multiplications, the results of Section 3.5 show that if the 
arithmetic is performed in FP(r, p, cl\ \ then

\pk\<(2k -2)<(^l\

Thus, our computation should produce reasonably good values or ex when
x > 0

To illustrate the problems which arise in the computation of ex when 
x < 0, we shall consider the case in which x — —128. The correct value for 
e’128 is about 2.57 x 10“56, so the number we are trying to calculate is 
extremely small. But the tk in (4.2.3) with largest absolute value is r]28, which 
is approximately 1.37 x 1054. In hexadecimal, this is approximately 
.E4DH x 1645. Since our single-precision calculation was performed in 
FP(16, 6, c/1), we retained only the high-order six hexadecimal digits of the 
terms tk. In fact, as we indicated above, the errors ek may affect the last two 
or three digits of these terms, so we may expect the ek to be on the order of, 
say, 1639 or 1640. ;See Exercise 9.) Thus, even if we performed the addition in 
(4.2.7) exactly instead of using floating-point arithmetic, we would still have 
an error 

(4.2.8) 

where some of the f/s have a magnitude as large as 1639. We have used 
chopped arithmetic, so all the pks in (4.2,6) are negative. Since the tks 
alternate in sign, this implies that the q's also alternate in sign. Thus, there 
may be some tendency for the q’s in (4.2.8) to compensate. However, we would 
still expect 6 to be of more or less the same order of magnitude as the largest 
ek, say 1638 or 1639. Exercise 9 shows that this is indeed the case.
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Thus, we see that when all the tk's are positive, the errors may accumulate, 
but they will affect only the low-order digits of the answer. But when the 
presence of terms o ' opposite sign produces an answer which is many orders 
of magnitude smaller than the largest term, we can expect our error to be 
larger than the answer. The only way we can produce a good result in this 
case is to keep enough digits in each term so that each q is small with respect 
to the final answer. Since the sixth hexadecimal digit o 'the answer for e"128 is 
the ninety-seventh hexadecimal digit of the largest term, and since the ek may 
affect the low-order two or three digits of tk, this means that if we wanted our 
answer for e’128 to be good to about six hexadecimal digits, we should 
perform the calculation in Fl 16, 100, c/1) instead of FP(16, 6, c/1).

The situation for sin x is similar, since | sin x| < 1 while the term with 
largest magnitude is the same as for ex.

We shall next consider the way the library programs compute these func
tions. For ex it is customary to begin by dividing x by log, r (or multiplying x 
by logr e). Let

(4.2.9)

so

log, r

(4.2.10)

If we write

where I is an integer and 0 < 1, we have

Then I is the exponent of the answer and r~r is the mantissa, so we have 
reduced the problem to the computation of r"x with 0 < x < 1. [Further 
refinements are possible. See, for example, Fike (1968) and Clark, Cody and 
Kuki (1971).] Naturally we shall use floating-point arithmetic in this computa
tion, so we set

(4.2.11) 

and

(4.2.12)

V = x 4- £, L log, r, 

y = J - A

where J is an integer and 0 < F < 1. Then we compute r~l and insert the 
exponent J in the answer. (For 0 < F < 1, r~1' can be computed from the 
power series or from a polynomial or rational approximation.)
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Similarly, we may reduce the argument of the sine function by using the 
fact that it is periodic. A crude approach would be to write

Then if y I + F, where I is an integer and I F\ < I, we have 

sin x = sin(2^/ + 2nF) — 3\n{2nF\

so we can reduce the problem to the computation of the sine of an angle with 
absolute value less than 2n. A better approach is to divide x by zr/4, writing

n/4
and

y = i+ A,

where I is an integer and 0 < F < I. We then write

7 = 8A + A,

where and A are integers and 0 < A <8. A is particularly easy to obtain 
if /is written in binary.) Then, depending on the value of A, we may reduce the 
problem to the computation of either the sine or the cosine of an angle with 
absolute value less than n/4.

There are other functions for which it is easy to reduce the arguments. 
[See, for example, Fike (1968).] But if no such techniques are available, the 
power series may be quite treacherous.

The reduction of the argument avoids the pitfalls we have just observed in 
trying to use the power series for e~x and sin x, and it also reduces the number 
of terms needed. After reducing the argument, most library programs will use 
a polynomial or rational approximation instead of the power series, but the 
primary motivation for doing so is to make the routines slightly faster. Once 
the argument has been reduced, the use of the power series would be feasible.

Power series arise in many places in applied mathematics. For example, 
there are techniques for obtaining a series solution for a differential equation. 
But we can see that we cannot use these power series blindly for numerical 
calculation, and it is quite annoying that so powerful a mathematical tool can 
misbehave so badly.

We shall now consider the opposite situation—the case in which the power 
series can help us avoid numerical difficulties. Suppose that we want to find 
the value of

(4.2.13) F(x) = f(x) — g(x)
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for small values of x and that / (0) — g(0). If /Tx) and g(x) are continuous, 
then as x —> 0 we have F(x» > 0. If the common value of / (0) and g(()) is 

then for small values of x both / 'x) and g(x) will be approximately c, 
so (4.2.13) will involve cancellation of leading digits and it will produce bad 
relative error. In this situation, we find it very hard to compute F(x) with good 
relative error using ।4.2.13). We have already seen an example of this problem 
in the discussion of

in Section 3.10.
We shall consider an alternative to (4.2.13) to be used when x is smali. 

Suppose that /(x) and g(x) can be expanded in power series about the origin:

(4.2.14)

(4.2.15) 

Then

(4.2.16) 

where

F(x) = f ckxk,

<■ k — Uk ^k* k — 1,2,....

If the radii of convergence of the series in (4.2.14) and (4.2.15) are and 7?2, 
then the series in (4.2.16) surely converges for |x| < min(K15 /?2). Since 
/(0) = &(0)> we see that c0 = 0. Then

(4.2.17)
oo

Where x is small enough, the series in (4.2.17) will converge very rapidly and 
the first few nonvanishing terms in (4.2.17) will be a good approximation for 
/ (x). In fact, if x is small enough, the first nonvanishing term in (4.2.17) is a 
good approximation for F(xj. Examples of this approach are given in 
Exercise 15, and Exercise 18 gives examples of the use of the Taylor series 
expansion about a point other than the origin.

4.3. EXACT SUMS AND DIFFERENCES IN
FP(r, p, dq)

In this section we shall consider the problem of trying to produce exact 
sums and differences. That is, given A and B in S(r, p), we would like to 
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produce A + B and A — B instead o- A @ B and A 0 B. As a first step in 
this direction, we shall prove the following theorem:

Theorem 4. 3.1

In FP(r, p, clq) with q > 1, if

then A Q B is exact. That is, 

(4.3.1)

Proof. Let

A Q B = A - B.

A — rem,

B — /A,

Since A > B, we have e >f Clearly (4.3,1) holds when e = f so we may 
assume that e > f. But

A <C 2B <C rrfn <

so e ==/+ 1 and B = r€n, where n = r^n. Since q > 1, to perform the 
floating-point subtraction A Q B, we first form

p' — m — n .

Let k be the number of leading zeros in p . Then A A B — r8p. where 
g = e — k and p = rkp . (See Section 1.8.) Now B > A/2, so A — B < B 
< rf. Then p' has at least one leading zero, so k > 1. This yields

L- / fp = rKp = rp ,

and (4.3.1) follows.
Then one readily proves

Corollary

In FPi r, p, clq) with q > 1, if A and B have the same sign and

2-lT

then the operations A Q B and B Q A are exact.

We shall now address the more complicated problem of trying to repre
sent the exact sum of two floating-point numbers A and B. We would like to
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represent this sum by two floating-point numbers 5 and T, where S contains 
the high-order p digits of A + B and 7 contains those digits of A + B which 
do not fit in S. Thus, we would like to find S and Tin S(r, p) such that

2. S and T are nonoverlapping numbers. That is, if T 0 then

(characteristic of 7 < (characteristic o S) — p.

3. If T 0, then S and T have the same sign.

But we may not be able to achieve all three of these objectives. For 
example, suppose that we are using an eight-digit decimal machine and that 
we have A ~ 1 and B = — IO"50. Then

A -|- B = .999999 • • • 999,

so it would require 50 digits to represent A + B. But if S and T are two 
positive numbers in S(10, 8), they can hold only 16 of these digits. Therefore, 
we cannot find S and T satisfying 1, 2, and 3, But if we set S — 1 and T — 
—10"50, then S and T will satisfy 1 and 2.

Our approach will be to try to find S' and Tsatisfying 1 and 2, and to see in 
what cases we can also guarantee that 3 holds. Throughout, we shall assume 
that

B

In some cases this causes no difficulty because we know which o' the numbers 
has the larger absolute value. In other cases, we would have to perform a test 
and interchange A and B if (4.3.2) fails to hold.

We shall study the FORTRAN coding

T B - (S - A)

and we shall assume that we do not encounter exponent overflow or under
flow. Thus, we shall assume that (4.3.2) holds and set

(4.3.3) 

where we assume that the arithmetic is performed in FP(r, p, clq) with q > 1.
It is clear that S and Tsatisfy 1,2, and 3 if B is either 0 or ~A, so we may 

assume that neither B nor S vanishes. Also, changing the sign of both A and B
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will simply change the signs of both S and T, so it suffices to consider the case 
in which A is positive. We shall write

A rem,
B — rfn,

m

S = r8p, r 1 < // < 1.

Here (4.3.2) implies that e >/.
We shall first consider the case in which A and B have the same sign.

Theorem 4. 3.2

Suppose that A and B are numbers in S(r, p) having the same sign and that 
| A | > | B |. Let S ~ A @ B and T = B Q (S A A), where the arithmetic is 
performed in FP(r, p, clq) with q > 1. Then

1. S + T = A + B.
2. If T A 0, then

(characteristic of T) < (characteristic of S) — p.

3. If T A 0, then S and T have the same sign.

Proof. We may assume that A > 2? > 0. If e — /> p, then S = A and 
T = B and the theorem follows. Therefore, we may assume that e — f < p. 
Let B — Br A B2, where B} contains the high-order p — (e — f) digits of B 
and B2 contains the remaining digits of B. We saw in Section 1.8 that when A 
and B have the same sign the operation A @ B produces the same result in 
FP(r, p, city as it does in FP(r,p, clq) for q > 0. Thus, B2 has no effect on 
A © B, so

The characteristic g of'S is either e or e + 1, depending on whether or not a 
high-order carry is produced in the addition in (4.3.4). First, suppose that 
g = e. Then no digits are lost in chopping A + B{, so the addition in (4.3.4) 
is exact. That is, S = A + B}. Since S’ and A have the same exponent, the 
computation S — A is exact. Thus, S @ A — B^ so T = Bz. But these values 
of S and T satisfy 1, 2, and 3, so the theorem holds if g = e.

Suppose that g = e + 1. Then the low-order digit of the (p + l)-digit 
sum A + Bx had to be chopped to produce A @ Bx. Write

A + B, = S + Z>,

where D — dr€~p and d is a single-digit number in the base r. Clearly
A < S’ < 2A, so by Theorem 4.3.1

C= SQA = B} - D.
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If D is not zero, it is a single-digit number within the p digits spanned by B, so 
C may be represented as a /?-digit floating-point number with the same 
characteristic as B, although it may be unnormalized when it is written in this 
form. Then the operation B Q C is exact, so

T- B C= B2 + Z),

and 1 holds. Clearly T is nonnegative, so 3 holds. Finally, D < (r — l)rc p 
and Bz < re'p, so

yg-p

and 2 holds. This completes the proof of Theorem 4.3.2.

We shall now consider the case in which A and B have opposite signs. As 
we saw above, we cannot demand that S and Thave the same sign. To simplify 
the statement o: the theorem, we shall restrict our attention to FP(r,p, ell).

Theorem 4. 3.3

Suppose that A and B are numbers in S(r, p) having opposite signs and 
that | A | > | B |. Let S = A @ B and T — B Q (S' Q A), where the arithmetic 
is performed in FPi r,/?, c/1). Then

], S + T = A + B.
2. If T 0, then

(characteristic of T) < (characteristic of Sj — p.

Proof. As above, we may assume that A > — B > 0. If e =f we find that 
5 = A + B and T — 0, and the theorem follows. Also, since we have only 
one guard digit, if p — /> p + 1, then 5 = A and T = B, so 1 and 2 hold. 
Therefore, we may assume that

Let By be the high-order p + 1 — (e — f) digits of 7?, and let B2 be the 
remaining digits of B. If Bz 0, then Bz is negative and

(4.3.6)

Clearly S = A @ Bx. Let

(4.3.7) A + Bx - S + D,

where D contains those digits of A + B j which must be dropped when A + Bx 
is chopped to p digits. Here D > 0. Let k be the number of places we must 
left-shift A + Bx to postnormalize it. Theng = e — /<, and if D 0, we have

(4.3.8)
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Now if k > 1, we know from Theorem 1.8.2 that A @ B = A + so 
T = 0 and the theorem follows. This is also the case if k = e — f = 1. Then 
we may assume that we have

(4.3.9) 

(4.3.10) 

and that (4.3.5) holds.
We shall begin by showing that the computation C-SQA is exact; 

that is,

C = SQ A = S - A.

If k ~ 0, this follows Tom the fact that S and A have the same characteristic. 
If k = 1, then by (4.3.10) we have e — f> 2, so A > and | 5| < re~2. 
But then A > S' > A/2, so (4.3.11) holds by Theorem 4.3.1.

Now (4.3.11) and (4.3.7) yield

(4.3.12)

First, suppose that

(4.3.13) e — f < p + k.

Then (p + A), so (4.3.8) shows that B\. Since is negative
and D is positive, we see from (4.3.12) that

and

Therefore, by the corollary to Theorem 4.3.1, the floating-point subtraction 
B Q C is exact, so

(4.3.14) T = B - C = B. + D.

Then 1 follows from (4.3.7) and (4.3.14). Since D > 0 > B., the characteris
tic of T cannot exceed the larger of the characteristics of B2 and D. Then, 
since k < 2, 2 follows from (4.3.6) and (4.3.8).

Finally, we suppose that (4.3.5), (4.3.9), and (4.3.10 hold but that (4.3.13) 
does not. Then

p + k < e — f < p + 1,
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so k — 0 and

(4.3.15) ? ~f=P

Thus, the mantissa of B is right-shifted p places before its absolute value is 
subtracted from the mantissa of A, and no postnormalization is required. 
This implies that

5 = A QB A

and that

C = SQA = -re~p.

Then

Here B is negative, and From (4.3.15) we see that / — e — p. J'hen the com
putation of Tis exact, and T < re~p, so 1 and 2 hold. This completes the proof 
of Theorem 4.3.3.

We shall also need the Following result:

Theorem 4. 3.4

Suppose that A and B are numbers in S(r,p) and that > |2?|. Let 
S = A @ B and T=BQ(SQ A), where the arithmetic is performed in 
FP(r, p, cl\\ Then the characteristic of T does not exceed the characteristic 
of B.

Proof. Let the characteristics of A and B be e and/ respectively. Clearly, 
e >f. First, suppose that A and B have the same sign. If f < e — p, then 
S — A and T = B, so the theorem holds. Suppose that f > e — p. The 
characteristic of S is at most e + 1, so by Theorem 4.3.2 the characteristic of 
T is at most e + 1 — p <lf as asserted. Next, suppose that A and B have 
opposite signs. If e — f>pi 1, S — A and T = B, so the theorem holds. 
Suppose that /> e — p. Then the characteristic of S is at most e, so by 
Theorem 4.3.3 the characteristic of T is at most e — p, and the theorem 
follows.

4.4. DISMANTLING FLOATING-POINT NUMBERS

The floating-point number is comprised or three parts: the sign, the 
characteristic, and the absolute value of the mantissa. From time to time we 
want to dismantle the number into these parts so that we can work with them 
separately. If we are coding in Assembler language, this is usually quite easy,
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since we can use a logical AND or shifts to remove those parts of the number 
which we do not want. But if we are using a higher-level language, such as 
FORTRAN or PL/I, it is often harder to obtain the parts of the number. We 
can always test the sign of the number with an IF statement, but these 
languages do not provide direct access to the mantissa or the characteristic. 
(In Chapter I I we shall suggest that it would be desirable for higher-level 
languages to allow us to extract these parts of the number.)

Since the representation of the floating-point number varies from machine 
to machine, any FORTRAN or PL/I coding used to extract the characteristic 
or mantissa will be machine-dependent. We shall describe the coding for the 
IBM System/360, but the modifications necessary for other machines should 
be quite clear. We recall that the representation of the floating-point number 
on the IBM System/360 consists of the sign bit, followed by the characteristic, 
followed by the absolute value of the mantissa. Suppose that

(4.4.1) .x = 16f/?/, 

where |/n| < 1. The absolute value of the mantissa m is a fraction which 
occupies either 24 bits or 56 bits, depending on whether the number is in 
single-precision or double-precision. The characteristic is defined to be the 
exponent e plus 64, and it is stored as a seven-bit nonnegative integer.

To begin with, we shall consider the form in which we would like to obtain 
the characteristic and the mantissa. Usually we would like to have the 
characteristic represented as an integer. It is quite easy to obtain the exponent 
if we have the characteristic, and vice versa, so we shall address the problem 
of finding the characteristic. When we are coding in FORTRAN, we might 
want to represent the mantissa m as a floating-point number. That is, if x is 
given by (4.4.1), we might want to obtain

(4.4.2) y = !6°/n.

Alternatively, we might want to represent 224m as an integer /. If we are 
coding in PL/I, there is also the possibility of representing the raction m as 
a fixed-point binary number.

We shall consider the FORTRAN coding first. The basic approach is to 
use the EQUIVALENCE statement to allow us to treat the floating-point 
number as an integer or as a logical variable. Suppose that I and A are typed 
by default, so i is an integer and A is a single-precision floating-point number. 
Write

(4.4.3) EQUIVALENCE (A,I)

which means that A and I refer to the same word in storage. If we write 
A = X, then X will be stored in this word and we can refer to it as I. A
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difficulty arises because the IBM System/360 represents floating-point num
bers as “sign and true magnitude,” but it uses the 2's complement representa
tion for negative numbers in fixed-point. If we are interested only in the 
characteristic, we may write

(4.4.4) A = ABS(X)

Then I will refer to a 31-bit positive integer in which the high-order seven bits 
are the characteristic ofX and the low-order 24 bits are 224 times the absolute 
value of the mantissa of X. We may store the characteristic of X in J by 
writing

(4.4.5) J = I/2**24

If we use this value of J and write

(4.4.6) J*2**24

the value of K will be 224| m |. By testing the sign of X, we can use K to obtain 
the appropriate representation for the mantissa of X. For example, if we want 
to obtain j in (4.4.2), we may write

(4.4.7) I = 2**30+K

IF(X.LT.O)

[In place of 4.4.9) we could have used the SIGN function.]
If X is a double-precision number, we can still use (4.4.3). 4.4.4), and 

(4.4.5) to obtain the characteristic of X. since it is only necessary to work with 
the high-order word of X. But on the IBM System/360, double-precision 
numbers have 56-bit mantissas, while integers are restricted to 32 bits. 
Therefore, if we want to work with the mantissa m of a double-precision 
number X, we shall use the floating-point representation for m shown in 
(4.4.2). To obtain this representation for /??, we type X. Y, and A double
precision. Then (4.4.3) means that I would refer to the high-order word of A. 
We must also change ABS in (4.4.4) to DABS. With these modifications, 
(4.4.3)—(4.4.9) will produce the desired representation for the mantissa of the 
double-precision number X.

We do not need to employ the same subterfuge in PL/I. Instead, we may 
use UNSPEC to convert the floating-point number to a bit string and 
SUBSTR to extract the substring we want. Thus,

SUBSTR(UNSPEC(X),2,7)
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is a bit string seven bits long beginning at the second bit of X, so it is a bit 
string comprised of the seven bits in the characteristic o X. To make it into 
an integer, we may concatenate it with enough zeros to make it the proper 
length, and then store it in the appropriate location in storage. For example, 
if I is typed by default as FIXED BINARY( 15,0), we may write

UNSPEC(I) = ’000000000'B 11 SUBSTR(UNSPEC(X),2,7);

As a second example from PL/I, suppose that we want to construct a 
floating-point number Y having the same mantissa (and sign) as X but having 
as its characteristic the low-order seven bits of I. To illustrate a somewhat 
different approach, suppose that B is declared to be a bit string oi length 32. 
We may write

B = UNSPEC(X);
SUBSTR(B,2,7) = SUBSTR(UNSPEC(I),10,7);
UNSPEC(Y) = B;

Of course many other approaches are possible in PL/l, all making use of the 
fact that we may treat the number as a bit string.

EXERCISES

1. To assess the effect o the rounding errors in the accumulation of the sum S in 
the quadrature problem of Section 4.1, perform the following calculations on a 
machine which performs arithmetic in either 1 .’(r, /?, c) or FP(r,p, clq)\ 
a. Perform the entire calculation in double-precision, except that S is typed 

single-precision.
b. Perform the entire calculation in single-precision, except that S is typed 

double-precision. Use the original program which advances Yby adding H. 
Compare your results with the results shown in Figure 4.1.3, which were 
produced by a program in which S was typed double-precision, but X was 
computed using I * H and (/ + 1) * H instead of X + H,

c. Perform the entire calculation in single-precision, but compute X using 
/ * H and (/ + 1) * H instead of X + H.

2. To study whether the quadrature program in Section 4.1 is sensitive to noise in 
the SIN routine, perform the following experiments in FP(r, p, c) or 
FP(r, p, clq). Use a version of the quadrature program in which S is double
precision but everything else is single-precision, and X is computed using I * H 
and (7 4- 1) * H.
a. Run the program three times with SIN(X) replaced by SlN(Jf) + Kr~p, 

7C =1,2,3.
b. Run the program three times with SIN T) replaced by (1 Kr~p} SIN(Jf), 

K = 1, 2, 3.
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To study the effect of the errors in computing X in the quadrature program of 
Section 4.1, use the program to compute the following three integrals. Per
form the calculations in I I r, /?, c) or Fl r, p clq;. Use a version of the 
program in which S is double-precision but everything else is single-precision. 
Run each program twice, the first time computing X using /* // and (7 + 1) * 
//, and the second time computing X using X + H. The integrals to be com
puted are

sin x dx.
0

0

Explain the behavior o these programs.

4. The results in Figure 4.1.3 show that we have identified the major source of 
error in the quadrature program of Section 4.1. These results were produced 
by a program in which all calculations were performed in FP 16, 6, Al) 
except for the accumulation of S, which was done in double-precision. In this 
program X was computed using I * H and (/ + 1) * H. We shall now try to 
identify the source of the small error still remaining in the calculation.
a. Because we used only a seven-digit representation for 7t/2, and because of 

the error introduced by conversion from decimal to hexadecimal, the value 
of B which is used by the program is not exactly 7t/2. Let B be the value o B 
which is actually stored in the machine. Then our program is trying to 

p? Cn/2
compute sin x dx instead of sin x dx, so the error in 7? introduces Jo Jo
an error of

in the final answer. First, obtain a bound for this error analytically. Then 
find the error in the approximation B ?r/2 on the machine you are using 
by writing a simple FORTRAN program which obtains B from the state
ment

B = 1.570796

and subtracts this value o B from a double-precision representation of zc/2. 
b. In our program, H was obtained by dividing B by N, Since A is a power of

2, this division would be exact on a binary machine. But our runs were 
made in FP(16, 6, c/1), so the operation B 4- A need not be exact. Now B 
docs not enter the program directly, so our program is really trying to 

r nh '
compute sin x dx. Thus, the error in H produces the same effect as the J 0

error in B studied above. Find a bound for the error in the answer due to 
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the error in the division B N. By looking at the value of B in our problem, 
determine whether the division by N is exact, and if it is not exact, determine 
what the error in the division B ~ N actually is.

c. In order to use double-precision only in the accumulation of the sum S, S 
was declared to be double-precision and the FORTRAN statement which 
produces SIMP was changed to

SIMP = SNGL(S)*H/3.

If we had left the right-hand side of this statement as S*H/3., this multiplica
tion and division would have been performed in double-precision. Obtain 
a bound for the error introduced by perfoiming these two operations in 
single-precision. Run a version of the program which performs these opera
tions in both single-precision and double-precision and print both answers, 

d. As a final source of error, we consider the multiplications I*H and
I + 1) * H used to produce X. In our computation, these multiplications 

were performed in FP(r, p, c/1). Rerun the program performing these 
multiplications in FP(r, p, /?). [The coding to produce arithmetic in 
FP(r, p, R) is discussed in Section 6.3.]

e. Of the possible sources of error listed above, which had the largest effect 
on the answer?

5. Run the second version of the quadrature problem which exploits the rela
tionship (4.1.8), but compute X by setting X = H initially and advance it by 
X = X + 2.*H.

6. In the quadrature problem of Section 4.1, S is the sum of N terms i = 
1, 2, . . . , N. We consider the effect on the final answer of breaking up the sum 
S into several smaller sums. In each case, make the indicated changes in the 
original version of the program given in Section 4.1.
a. Let N > 8 and write

/W
4 » 0,1,2, 3, 4.

Then we may write 

where Sj is given by

Run the program accumulating these our sums and then adding them 
to produce S.

b. Reprogram the problem to first compute and store the N values of By 
adding r2l-i to / = 1, 2, . . . , A/2, we may reduce 5 to the sum of N/2 
terms. By combining pairs of these terms, we reduce S to the sum of 7V/4 
terms. Continuing in this way, we compute 5. Run this program to see what 
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effect it has on the final answer. Restrict the value of TV to whatever storage 
size is convenient.

c. Reprogram the computation in part b to avoid having to precompute and 
store all the terms

d. Using Eq. (4.1.6), explain why these rearrangements of the computation of 
S improve the final answer.

7. We shall now try to produce good results with a double-precision version of the 
quadrature program of Section 4.1. For the computation of X we can use 
/ * H and (7 + l)*/f. But 5 is more difficult, since many versions of 
FORTRAN do not provide more than double-precision arithmetic. We shall 
suggest two different treatments of S below.
a. We think of 5 as the sum of TV terms 6, and we write each tt as

/. = f. u- f'

where t- represents the high-order digits of /z and t-' is the rest of rz. This 
may be accomplished by setting BIG = rl for a suitable value of / and 
setting

/< = (/. © BIG) Q BIG
= 6 e

By a suitable choice of BIG,

and

may be computed exactly. Determine the value of BIG to use and run the 
program in double-precision, computing S' and S' and adding them to 
produce S.

b. First determine the exponent of 4 SIN(77». By exploiting the monotonic 
behavior of S as more and more terms are added, it is relatively easy to 
keep track of the exponent of 5 after each addition. Then we may accu
mulate the values of the kt in Eq. (4.1.6). If we assume that the average error 
in the addition of a term to S is one-half a unit in the pth position of the 
new value of S, the expected value of the error is one-half of the value o: 
3N given by (4.1.6). Run the program computing this correction andadding 
it to S before Sis multiplied by H/3.

8. We shall study the effect of the computation of X on the results of the quadra
ture program of Section 4.1. Let A^be the value of Xcomputed by repetitively 
adding //, and let X be the value of X computed using I * H and (/ + 1) * H. 
Run the original version of the quadrature program modified to compute X 
in the following ways:
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a. X — X. (This is the program shown in Section 4.1.)
b. X = X.
c. Use X — X for the first hal f of the points, and then X = X for the rest of 

the points.
d. Use X = X for the first half of the points, and then X = X for the rest of 

the points.
Explain the results.

9. Write a program to use the power scries to compute e~x for x = 1, 2, 4, 8, ... , 
128 without reducing the argument. For each value of x, print the following 
information in addition to that shown in Figure 4.2.1:
a. The number of terms used.
b. The value T of the term tk with the largest absolute value.
c. We may estimate the error € by comparing the result produced by the series 

with the result produced by the library routine. Print 6 4- T, where Tis the 
absolute value of the largest term found in part b.

d. Let p be the relative error in the result produced by the power series. We 
may estimate p by dividing the € computed in part c by the value for e~x 
produced by the library routine. For each x, print this value for p. Also, 
proceeding analytically, find a bound for p for each x.

10. Another way to compute ex for x < 0 is to represent it as l/eul. For x = 
1, 2, 4, 8, ... , 128, use the power series to compute ex without reducing the 
argument. Using this value for ex, calculate I 4- ex and compare this result 
with the result produced by the library program for e~x.

11. Suppose that we want to compute c-150 and e“170 from the power series 
without reducing the argument and that we want the answer to be accurate to 
six hexadecimal digits. By computing the term tk in (4.2.3) with the largest 
absolute value and computing e~x from the library program, determine how 
many hexadecimal digits of precision would be needed in the arithmetic to 
produce this result.

12. Write a program to compute e~x using the power series without reducing the
argument.
a. Use single-precision arithmetic to compute the terms tk, but use double

precision arithmetic to accumulate the sum of these terms. That is, type 
SUM as double-precision and add the single-precision values o the terms 
tk to the double-precision value o SUM. Does this improve the value 
of e~x when x is large?

b. Use double-precision arithmetic to compute the values of the terms tk, but 
accumulate the sum of the terms in single-precision. Does this improve the 
value O' ex when x is large?

13. We shall explore the error in the terms tk in (4.2.3). First, proceeding analyt
ically, obtain a bound for the relative error pk in (4.2.6). Then use this bound 
to obtain a bound for the €k in (4.2.5) in terms of units in the last place of tk. 
Write a program to compute the terms tk in both single-precision and double
precision for x = 128. Let T and TT be the single-precision and double
precision values for tk, respectively. Then TQ TTand (TQ TT) 4- TT are 
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estimates for €k and pk in (4.2.5; and (4.2.6) for the single-precision com
putation of tk. For each of the terms tk used in the single-precision calculation 
o e"128, print this value for pk and print this value for €k expressed in units in 
the last place of T. ( fo find the value of a unit in the last place of T, use 
techniques discussed in Section 4.4.)

14. Write a program to perform the argument reduction for sin x. That is, your 
program should take a single-precision floating-point number x and reduce the 
problem to the computation of the sine or cosine of an angle z with | z [ < zr/4. 
Perform the following computations for x = ±2\ k = 1, 2, . . ., 20:
a. Reduce the problem to the computation of the sine or cosine of an angle z 

with | z | < 7t/4, and compute this sine or cosine using the power series.
b. Reduce the argument as in part a, but compute the sine or cosine of z using 

the library program.
c. Use double-precision arithmetic in the reduction of the argument, but 

compute the sine or cosine of z using the power series and single-precision 
arithmetic.

d. Use double-precision arithmetic in the reduction of the argument, but com
pute the sine or cosine of z using the single-precision library program.

e. Compute sin using the library program directly.
15. Write a program to compute the following unctions for small values of x, both 

by using the formulas directly and by using the power series. Compare the 
results for x = 10~\ k — I, 2, . . ., 25. (Depending on the machine you are 
using, you may have to include tests to avoid underflows in the evaluation of 
the power series.) Also, for each function determine how small x must be before 
it suffices to use only the first term in the power series.
a. ex — 1 + x. ♦
b. x cos x — sin x.

16. For what values of x will the formula

sinh x

give a good relative error for sinh x?
17. Write a program to compute the value o 'the oilowing functions forx = 10~fc, 

k = 1, 2, . . . , 25. Each function should be computed in three ways: first, by 
using the formula directly; second, by using the power series; and third, by 
rationalizing the numerator as discussed in Exercise 7 of Chapter 3.

18. Write a program to compute the value of the bllowing functions, both by 
using the formula directly and by expanding the function in a power series 
about x = 1. Test the program for values of x close to 1.
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b. log

19. Show that Theorem 4.3.3 need not hold when the arithmetic is performed in 
FP(r, p, clq) with q > 1 and p + k <C e — f < p + q.

20. Give an example to show that 5 and T in Theorem 4.3.3 may have opposite
sign and that

(characteristic of T) = (characteristic of S) ~ p.

21. Suppose that A and B are in S(r, p) and that we perform all arithmetic in 
FP(r, p, c/1). As in Section 4.3, set

S = A@B 

T=BQ(SQA).

To avoid the situation described in Exercise 20, we perform the following 
cleanup:

Prove that S' and T' satisfy
a. S' + T' = A + B.
b. If T' 7^ 0, then

(characteristic of T) < (characteristic of S') — p.

c. If S and T' have opposite signs, then

(characteristic of T ) < (characteristic of S') - (p + 1).

Also, show that if we repeat the cleanup by setting

then S" = S' and T" = T'.

22. Show by an example that Theorems 4.3.2 and 4.3.3 may fail to hold if 
Ml < Mi-

23. Suppose that we want to find the intersection of the circles

(x - C)2 + y2 = B2,

where A > B > 0 and C > 0. If

C-B<A<B + C,
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then the circles intersect and the coordinates of the intersections are given by

When the circles are nearly tangent, the value ol y may be quite sensitive to 
errors in A, B, and C. However, we can produce a good solution for the prob
lem if we assume that A, B, and C are given exactly as numbers in S(r, p). x 
may be computed with good relative error by using the approach described in 
Exercise 6 of Chapter 3. To compute an accurate value for y, we must compute 
A2 — x2 with good relative error. First, show that

(A + B + C)(/4 + B - C)(A + C - B)(B + C - A) 
4C2

Then, using Theorem 4.3.1, show how the right-hand side of this expression can 
be evaluated with good relative error whenever the circles have an intersection.

24. Write a FORTRAN program which will add a single-precision number to a 
double-precision number and produce a double-precision answer. Use only 
single-precision arithmetic to accomplish this.

25. Use the technique developed in Exercise 24 to modify a double-precision 
version of the quadrature program ol Section 4.1 so that the sum S is accu
mulated in twice double-precision arithmetic.

26. Suppose that X is a single-precision floating-point number with exponent e 
and mantissa m. That is, X — rem, where \m\ < 1. Write a FORTRAN 
program to store the value of the exponent e in J. If the value of£ is an integer 
in the range 0 < L < 128, form the floating-point number T whose charac
teristic is L and whose mantissa (including sign ) is the same as the mantissa of

27. Solve Exercise 26 when X and Y are double-precision numbers.
28. If we are using FORTRAN on the IBM System/360, we can gain access to the 

eight-bit bytes of a number by using EQUIVALENCE statements with vari
ables typed LOGICAL* 1. Write a FORTRAN program using this approach to 
extract the characteristic of a floating-point number.

29. Let x be a positive number in S(r, p), and let x be the next larger number in 
S(r, /?). That is, x is the smallest number in S(r, p) that is greater than x. 
Write a program in FORTRAN or PL/I to produce x .



5 DOUBLE-PRECISION 
CALCULATION

We have been considering calculations performed in a system FP(r, /?, a), 
but from time to time we want to perform part or all of a computation in 
higher-precision. Most computers used for scientific computing provide two 
or more different precisions, either through hardware operation codes or 
through subroutines. Thus, we may perform arithmetic in either I Pir, /?, a) or 
FP(r,/?', #), and since the higher-precision p' is usually about 2/?, these 
systems are referred to as single-precision and double-precision, respectively. 
In fact, these terms are used even if/?' is not exactly 2p. For example, in the 
IBM System/360, FP( 16, 6, clY) is called single-precision and I P(16, 14, c/l) 
is called double-precision. The actual precision associated with the terms 
single-precision and double-precision varies considerably from one machine 
to another. For example, double-precision arithmetic on the IBM System/360 
is performed in the system FP(16, 14, c/1), but this is roughly the same 
precision as the system FP(2, 48, a), which is called single-precision on the 
CDC 6600.

Machines designed or scientific computing usually have hardware 
operation codes to perf orm arithmetic in at least one system FP(r, /?, a). Some 
machines, such as the IBM 7094 and System/360, also have hardware opera
tion codes to perform double-precision arithmetic. In other cases, for example, 
the IBM 7090 and the CDC 6600, the hardware provides operation codes 
which are helpful in programming double-precision arithmetic, but the 
double-precision arithmetic is actually performed by calling a subroutine.

Still greater flexibility has been provided by some variable word length 
machines. For example, the IBM 1620 had hardware operation codes to 
perform floating-point arithmetic in 1P(1O,/?,<?), where /? could be any 
integer from 2 to 100.

154
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5.1. PROGRAMS USING DOUBLE-PRECISION 
ARITHMETIC

As we saw in the quadrature program discussed in Section 4.1, it is often 
desirable to perform one or two arithmetic operations in a program with 
greater precision than is used in the rest of the program. In other problems, 
one may decide at the outset to perform all calculations in double-precision, 
so the problem will be solved in FP(r, 2p, a) instead of FP(r, p, a).

There have been a ew implementations of FORTRAN, especially those 
for variable word length machines, in which one can specify at the outset the 
precision to be used in the whole problem. But the situation in which we want 
to insert a few double-precision operations in a program which is otherwise 
single-precision arises often enough so that languages such as FORTRAN 
and PL/I usually implement double-precision in a manner designed to 
support this use. The commonest approach [see American Standards Associa
tion (1964)] is or each variable to have its precision defined independently, 
either by default or by an explicit declaration. The precision of a constant is 
determined by its appearance. In FORTRAN, any constant which contains a 
decimal point is considered to be a floating-point number. Its precision can be 
specified explicitly by writing it with an E or D exponent, where E designates 
single-precision and D designates double-precision. Thus, 2. and 2.E0 are 
single-precision numbers, while 2.DO is a double-precision number. With 
many FORTRAN compilers, the precision of a constant which is written 
without an E or D exponent is determined by the number of digits it has. 
There is a number A. which depends on the machine, such that the constant 
will be considered to be a single-precision number if it has N or ‘ewer digits, 
but it will be considered to be a double-precision number if it has more than 
A digits.t (Compilers may differ as to whether or not leading zeros should be 
counted in applying this rule.)

The precision of the operands determines the precision oi the floating-point 
arithmetic which will be used. If both operands have the same precision, this 
precision will be used in the arithmetic and the result will have the same 
precision as the operands. But if one of the operands is single-precision and the 
other operand is double-precision, the single-precision operand will be 
extended to double-precision by appending zeros to it, the arithmetic will be 
performed in double-precision, and the result will be typed as double
precision.

There are slight differences in the details of the implementation o

11 he original versions of the manufacturer-supplied FORTRAN compilers for the 
IBM System/360 used A — 7. However, later versions of these compilers consider any 
floating-point constant written without an exponent to be a single-precision number. The 
only way to make a constant double-precision is to use a D exponent.
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compi ers 'or different machines. We shall discuss the problems associated 
with writing double-precision programs for the manufacturer-supplied 
FORTRAN or the IBM System/360. Other compilers may treat these 
problems in a slightly different way.

To illustrate the problem of converting a program from single-precision 
to double-precision, we refer to the program for the quadrature problem 
discussed in Section 4.1. First, we must type each of the floating-point 
variables as double-precision. This means that each floating-point variable 
must appear in either a DOUBLE PRECISION statement or a REAL*8 
statement. Here we are immediately faced with the clerical problem of 
assuring that we have not accidentally omitted a variable. It is very easy to 
slip up and produce a program in which almost everything is done in double
precision but which produces results that are good to only single-precision 
accuracy because we forgot to type one variable as double-precision. For 
example, suppose that we want to interchange A and B. This might be coded 
as

TEMP = B 
B = A 
A = TEMP

If TEMP is not used elsewhere in the program, we might overlook it and 
forget to type it as double-precision. Then this coding would store the high- 
order digits of B in A and store zeros in the low-order digits of A.

Many compilers produce a list of the variables used in the program. This 
list should be consulted to see if there are any variables which we forgot to 
type as double-precision. It would be convenient if the compiler provided a 
list of the variables sorted by type, so that we could easily spot any single
precision variables.

Next, we have to worry about converting the constants from single
precision to double-precision. This may require us to look up some constants 
again to find their values more accurately. For example, in the quadrature 
prob em in Section 4.1, the value for zr/2 had to be changed from 1.570796 to 
1.5707963267948966. A more annoying situation concerns constants which 
can be specified with fewer than N digits. For example, if a formula calls for 
23/17, instead of computing this fraction by hand we might write the statement

(5.1.1) C = 23./17.

and let the computer do the division. This takes a little more computer time, 
but if the computation is not inside a loop, it is not very expensive. But 
according to the rules of FORTRAN, the numbers 23. and 17. in (5.1.1) are 
single-precision numbers, so the division of 23 by 17 will be performed in 
single-precision. If C is typed double-precision, this quotient will be extended
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to double-precision by appending zeros to it before it is stored in C. Thus, 
even though C is typed double-precision, its value will be accurate only to 
single-precision. To produce a value for C which is good to double-precision 
accuracy, one of the constants in (5.1.1) must be changed to a double
precision number. The easiest way to accomplish this is to use a D exponent;! 
for example, we may write

C = 23.D0/17.

As the expressions become more complicated, the pitfalls become more 
subtle. For example, suppose that we want to set Y = 23X/17, where X and Y 
are typed double-precision. We might code this as

(5.1.2) Y = 23./17.*X

Since the implied order of the operations is left to right, 23 will be divided by 
17 in single-precision, and then the quotient will be extended with zeros and 
multiplied by X in double-precision. Thus, Y will be accurate to only single- 
precision accuracy. But if we had written

(5.1.3) Y = X*23./17.

the entire calculation would have been performed in double-precision. That *
is, 23 would have been extended to double-precision and multiplied by X in 
double-precision, and then the result would have been divided by 17 in 
double-precision. Thus, (5.1.3) produces double-precision accuracy, while 
(5.1.2) produces only single-precision accuracy. In either case the rules of 
FORTRAN allow us to determine how the calculation will be performed. 
But, because we can use single-precision constants in expressions such as 
(5.1.3) without ill effects, we often neglect converting constants to double
precision when it is necessary. It might be better to discipline oneself to 
convert all floating-point constants to double-precision.

A final problem with constants concerns statements such as

(5.1.4) X = .1

FORTRAN considers .1 to be a single-precision number, so the conversion 
from decimal to the radix r of the machine will be performed to only single
precision accuracy. If X is typed double-precision, this single-precision value 
for .1 will be extended with zeros and stored in X. Although . ln may be 
expressed with one decimal digit, it requires infinitely many digits in the base

fWith many FORTRAN compilers, we can force a constant to be double-precision by 
appending enough zeros to the right of the decimal point so that it has more than N digits.
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r if r is a power of 2, For example,

,1D = .1999999999 .. ./f

Thus, the FORTRAN statement in (5.1.4) produces only single-precision 
accuracy on a machine such as the IBM System/360, even if X is typed double
precision. The obvious correction is to write .1 as .1 DO.

Next, we have to worry about the functions used in the program. If we 
have used any FORTRAN functions, the names must be changed to refer to 
the double-precision versions of these functions. For example, in the quadra
ture problem in Section 4.1, we must change SIN to DSIN. (Some compilers, 
such as WATFOR, even require that the name DSIN appear in a double
precision statement. Since a function such as SIN may appear at many points 
in the program, it is often simpler to do this conversion by using an arithmetic 
statement function such as

SIN(X) = DSIN(X)

at the beginning of the program.
We also have to worry about user-supplied functions. Suppose that we 

have coded a subroutine to compute a function F(x), using the statement

(5.1.6) FUNCTION F(X)

Clearly, the function subprogram must be changed to compute a double
precision value for F(X). In addition, we shall change the FUNCTION 
statement in (5.1.6) to

DOUBLE PRECISION FUNCTION F(X)

This tells the subroutine that it is to return a double-precision value as the 
answer. However, it does not tell the calling program to look for a double
precision value for F(X). To do this, F must be typed as double-precision in 
the calling program by means of a DOUBLE PRECISION or REAL*8 
statement. Otherwise the calling program would take the high-order part of 
F and extend it with zeros. Similarly, if we have used 1 5.1.5 ) to change SIN to 
the double-precision sine routine, then SIN must appear in either a DOUBLE 
PRECISION or REAL*8 statement.

All subroutines called must be replaced by double-precision versions. 
Naturally, the appropriate variables in the subroutines must be typed double
precision, but this is especially important for arrays. Suppose that an array 
A which is typed as double-precision in the calling program is passed to a 
subroutine as an argument. If we neglect to type this array as double- 
precision in the subroutine, the subroutine will treat the low-order part of 
A( l) as A(2), etc., which is likely to produce a ludicrous answer.
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Similarly, a floating-point variable or array which appears in COMMON 
must be given the same precision in all programs which refer to ( OMMON. 
Failure to do so would change the layout oi COMMON. For example, 
suppose that we have used

COMMON A(4),B(lO)

where A and B are typed double-precision in the calling program. If a 
subroutine uses the same COMMON statement but types only B as double
precision, t] ien A will be allowed only bur words instead of eight words i four 
double words). Then the subroutine will think that B starts four words (two 
double words earlier, so when it tries to refer to, say, B(6) it will actually be 
referring to B(4). This is likely to produce disastrous results. Thus, by 
affecting the layout of COMMON, the precision of A may affect a subroutine 
which does not use A explicitly.

Changing the layout of COMMON is one of several ways in which 
converting a program from single-precision to double-precision may affect 
the management of storage. A similar situation concerns the use of the 
EQUIVALENCE statement. For example, suppose that we have written

DIMENSION A(lO),I(iO) 
EQUIVALENCE (A,I)

Then, for example, A(6) and 1(6) occupy the same location. But if A is 
declared to be double-precision, then 1(5) and 1(6) occupy the same location 
as A(3). This change may cause the program to fail to execute correctly.

But by far the most serious problem with the management of storage 
arises if the conversion of the program from single-precision to double
precision causes us to use so much storage that the data no longer fit in main 
memory. In some cases, in a multiprogramming environment, this may be 
remedied by requesting more storage. But in other cases it may mean that the 
problem must be partitioned, using auxiliary storage such as tape, disk, or 
drum. This may change the flow of the problem, and it certainly is not a 
trivial change. In this case the management of storage might be a major 
reason for trying to avoid the use oi double-precision. This is particularly true 
with some of the very fast machines which provide double-precision arith
metic that is almost as fast as single-precision. Indeed, on the IBM System/360 
models 91 and 195, most of the double-precision operations take about the 
same amount of time as the single-precision operations do, and on the model 
85, double-precision addition is faster than single-precision addition. With 
these machines, we might very well plan at the outset to use double-precision 
unless it would require us to use too much storage.

Thus, even though the language supports double-precision arithmetic, it 
may be a nontrivial task to convert a program from single-precision to double
precision. For the most part, the individual changes are easy enough to make, 
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the only difficulty being that we may overlook a change that is necessary. But 
the problem becomes more formidable if converting to double-precision 
changes the management o storage, or if we have used some single-precision 
library subroutines for which no double-precision versions are available.

We shall now turn to the problem of inserting a few double-precision 
statements in an otherwise single-precision program. In the quadrature 
problem in Section 4.1, we saw the advantage o using double-precision to 
accumulate the sums. This is easily accomplished. If we type S as double
precision, then a statement such as

S - S + SIN(X)

compiles a single-precision evaluation of sin x, then extends this number to 
double-precision, and adds it to S using double-precision addition.

A more annoying problem concerns the accumulation o an inner product 
(x, y) defined by 

(5.I.7)

This is an extremely important operation, which constitutes the inner loop of 
many matrix operations. There are sound reasons for evaluating (5.1.7) by 
brming the double-precision product of the single-precision numbers x; and 
y( and performing the addition in double-precision. In fact, there are some 
algorithms for which it is absolutely essential that this approach be used. 
[See the discussion of iterative refinement in Wilkinson (I963) or Forsythe 
and Moler ( 1967).]

First, consider the coding

S = 0
DO 100 I = l,N 

JOO S = S+X(I)*Y(I)

where S is typed double-precision. The result produced will depend on the 
particular implementation of FORTRAN we are using. In many cases, X( I) 
would be multiplied by Y(I) using single-precision multiplication, and then 
the result would be extended to double-precision and added to S using 
double-precision addition. It is then a question of how the product X(I)*Y(I) 
is extended to double-precision. On many machines—for example, the IBM 
7094 and System/360—the single-precision multiply command automatically 
produces the double-precision product of the single-precision operands and 
stores it in two registers. When we are working in single-precision, we take the 
high-order part of this product and ignore the low-order part. Then in state
ment 100 above, we would like the compiler to add the double-precision value 
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of X(I)-Y(I) to S using double-precision addition. (This is what the 
manufacturer-supplied FORTRAN for the 7094 did.)

The manufacturer-supplied FORTRAN lor the IBM System/360 uses a 
dilierent approach. Evoking the rule that the product of two single-precision 
operands is single-precision, it interprets X(I)*Y(I) to mean the high-order 
part of the product X(I)«Y(I), and it extends this with zeros before adding it 
to S with a double-precision add operation. Ironically, it takes two or three 
extra instructions to replace the low-order digits with zeros.

To produce the answer we want on the IBM System/360, we have to force 
one of the factors to be double-precision. This may be done by replacing 
statement 100 with the statement

100 S ~ S+DBLE(X(I))*Y(I)

Then X( I) and Y( I) will be extended to double-precision by appending zeros, 
the product X(I)*Y(I) will be computed using a double-precision multiply 
command, and it will be added to S in double-precision. This produces the 
answer we want, but it requires the execution of unnecessary instructions. 
This loss of efficiency is annoying because the calculation of an inner product 
(5.1.7) appears in the inner loop of many matrix programs.

A common mistake is to use the coding

100 S - S+DBLE(X(I)*Y(I))

instead of (5.1.8). This produces exactly the same result as we produced with 
our original coding. That is, the single-precision number X(I)*Y(I) is extended 
to double-precision by appending zeros to it before it is added to S.

Thus, we find that the rule that the result is single-precision whenever both 
operands are single-precision may be troublesome. It would be much more con
venient if the rule stated the following: When the result of a single-preci
sion operation is to be extended to double-precision, if the single-precision 
operation automatically produces a double-precision result, then the iow- 
order digits are to be retained instead of being replaced by zeros.

Finally, we note that PL/I solves some, but not all, of the problems 
discussed in this section. The variables must still be converted to double
precision, but the concept of generic functions eliminates the problem of 
changing the names of functions. We do not have to change SIN to DSIN as 
we did in FORTRAN, because PL/I does not use the name DSIN. Instead, 
SIN(X) will call either the single-precision or double-precision sine routine 
depending on the precision of X, and the result will have the same precision 
as X has.t

fSome FOR I RAN compilers also provide generic functions. The FORTRAN H 
Extended compiler for the IBM System/360 has a GENERIC statement which can be used 
to specify that the common function names are to be treated as generic names.
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Converting the constants is still a problem in PL/I, and the problem is 
amplified by the fact that PL/I has no D exponent. The only way to force a 
constant to be double-precision is to use more than N digits. But in some 
respects, the way PL/1 treats constants is helpful. For example, if X is 
double-precision, then . 1*X produces the result we want. The constant .1 is 
treated as a fixed-point decimal number. When it is to be used in an operation 
where the other operand is a double-precision floating-point number, it will 
be converted to a double-precision floating-point number, and the radix 
conversion will be good to double-precision accuracy. FORTRAN would 
have converted .1 to only single-precision accuracy, so . 1*X would be good 
to only single-precision.

Finally, we note that PL/I presents the same problem FORTRAN does in 
the computation of inner products.

5.2. IMPLICIT TYPING OF NAMES

We have seen that compilers provide us with the facility to produce 
double-precision calculation wherever we want it, thereby making it easy to 
insert a few double-precision operations in an otherwise single-precision 
program. But when we wanted to perform the entire calculation in double
precision, we bund that we were faced with the clerical task of assuring that 
all floating-point variables had been declared to be double-precision. The 
IMPLICIT statement in FORTRAN is designed to alleviate this difficulty. It 
allows us to establish different conventions for the data type of names 
beginning with certain letters. Thus, if we wanted all floating-point variables 
to be double-precision on the IBM System/360, we would write

(5.2.1) IMPLICIT REAL*8 (A-H,O-Z)

This means that variables or functions whose names begin with one of the 
letters A through H or O through Z will be typed REAL*8 (double- 
precision), unless this implicit typing is overridden by an explicit declaration. 
If we wanted, say, TEMP to be single-precision but all other floating-point 
variables to be double-precision, we would use (5.2.1) along with

REAL*4 TEMP

Similarly, if only a few variables were to be typed double-precision, we might 
decide that we wanted all variables whose names begin with D to be typed 
double-precision. Then, in place of (5.2.1) we would use

IMPLICIT REAL*8 (D)

It is clearly easier to use (5.2.1) than to type each double-precision variable 



sec. 5.3 ROUTINES TO PERFORM DOUBLE-PRECISION ARITHMETIC 163

explicitly by including it in a DOUBLE PRECISION statement. But by far 
the most important advantage of the IMPLiC I T statement is that it eliminates 
the careless clerical errors of forgetting to type a variable as double-precision. 
Those FORTRAN compilers which have implemented the IMPLICIT 
statement make it much easier to perform the entire calculation in double
precision, although the IMPLICIT statement does not handle all the problems 
discussed in Section 5.1. We still have to change the names of the library 
functions, replacing SIN by DSIN, etc., and we still have to worry about the 
constants and the layout of storage. However, the IMPLICIT statement 
removes one common source of errors.

The DEFAULT statement, which has been implemented by some PL/I 
compilers, is similar to the IMPLICIT statement in FORTRAN. It allows us 
to specify the default attributes of variable names, so we may specify that all 
names beginning with A through H or O through Z are to be double
precision.

The FORTRAN H Extended compiler for the IBM System/360 provides 
even greater assistance when we want to write the entire program in double
precision. It has a feature called automatic precision increase which allows us 
to specify that everything that appears to be single-precision is to be 
“promoted” to double-precision. When this feature is used, the floating-point 
variables will be typed double-precision, the floating-point constants will be 
treated as if they were written with D exponents, and double-precision 
versions of the FORTRAN library programs will be called. While this 
approach is not foolproof, it eliminates most of the clerical problems that 
arise in the conversion of a single-precision program to double-precision.

5.3. ROUTINES TO PERFORM 
DOUBLE-PRECISION ARITHMETIC

We shall now consider how we can write subroutines to perform double
precision arithmetic on a machine which does not have double-precision 
operation codes in hardware. For example, in Section 5.4 we shall discuss a 
subroutine to multiply two double-precision numbers to produce a double
precision result. One approach would be to use only fixed-point arithmetic in 
the subroutine, just as we would if we wanted to program floating-point 
arithmetic in a machine which did not have any floating-point operation 
codes. This is a distinct possibility, and on some machines it might be the best 
way to proceed. But in this book we shall discuss only the programming of 
double-precision arithmetic using the single-precision operations. Thus, we 
shall assume that we have operation codes to perform arithmetic in FP(r, p, a) 
and that we want to write subroutines to perform arithmetic in FP(r, 2/?, a).

At this point we shall introduce abbreviations for certain operations. For 
each of the arithmetic operations A, *, and there are two operands 
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and one result. We shall use the letters S and D to indicate whether these 
numbers are to be single-precision or double-precision. Thus single-precision 
operations in I I i\ p, a) will be called SSS operations, and l ull double
precision arithmetic in FP(r, 2/?, a) will be referred to as DDD arithmetic. 
However, we may want to refer to an operation which, say, multiplies two 
single-precision numbers to produce a double-precision product. This will be 
called an SSD multiply. Similarly, an SDD add is an operation which adds a 
single-precision number to a double-precision number to produce a double- 
precision result.

When we use floating-point arithmetic to code the double-precision 
operations, we represent a double-precision number as the sum of two single
precision numbers.!* Thus, the double-precision number A is given by

where A} and A2 are numbers in S r, p) and are usually stored in consecutive 
words in memory.!

In the representation of A in the form (5.3.1 i, several decisions must be 
made. First, since we are thinking of Al and A2 as the high-order and low- 
order digits of A, it is common to require that they not overlap. That is, we 
require

characteristic (J2) < characteristic (A t) — p.

Some implementations have required that equality hold in (5.3.2) unless 
A2 — 0. If we make this requirement, A2 may be unnormalized. Other 
implementations have required that A2 be normalized, so the inequality may 
hold in (5.3.2 Also, we might wish to require that A{ and A2 have the same 
sign unless A2 = 0, although some implementations have allowed A{ and A2 
to have opposite signs.

After these decisions about the representation of A have been made, we 
may assume that the input to our routines has these specifications and we 
must guarantee that the output does also. Thus, the specifications for the 
representation of A in ( 5.3.1) represent a trade-off between the advantages of 
requiring, say, sign agreement in the input and the extra work required to 
produce this feature in the output. In discussing the programming of double
precision arithmetic, we shall often be rather vague about the exact specifi-

fEven when the subroutines lor double-precision arithmetic are coded using only fixed- 
point operations, we still usually use two words to store double-precision numbers. But 
in this case, we might elect not to store a characteristic with the low-order digits, so the 
mantissa might be more than twice as long as the mantissa of a single-precision number.

Jin Section 5.7, we shall discuss how the compiler can be coerced into handling these 
numbers if it does not support the double-precision data type.
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cations of Ax and A2, because the trade-offs depend on the details of the 
single-precision arithmetic available to us.

An annoying problem related to the representation in (5.3.1) arises when 
A2 underflows but Ax does not. If the double-precision arithmetic were 
performed by hardware, it might be implemented in such a way that it would 
ignore the characteristic of A2. Then underflow in A2 would not present a 
problem. This is also possible when the subroutines for double-precision 
arithmetic use only fixed-point operations. But when floating-point operations 
are used in the routines lor double-precision arithmetic, A2 must be a valid 
floating-point number. One approach would be to give A2 a wrapped-around 
characteristic when it underflows and modify the double-precision arithmetic 
routines to handle operands of this sort. But it is far more common to set A2 
to zero when it underflows, thereby giving up double-precision accuracy.

5.4. DOUBLE-PRECISION MULTIPLICATION

Suppose that we are given double-precision representations

(5.4.1) 

for A and B and that we want to produce a double-precision representation 

c = G + c2
l or the product ol A and B. For simplicity, we shall assume that if the low- 
order part of A or B does not vanish, then it has the same sign as the high- 
order part and that the characteristics differ by at least p. We shall also assume 
that we have available an SSD multiply.

Since double-precision multiplication presents no difficulty if either A or 
B vanishes, we shall assume that AB 0. Clearly

(5.4.2) AB — AXBX AXB2 I A2B2i

and each of the four terms on the right-hand side can be computed exactly 
using an SSD multiply. Moreover, our assumption about sign agreement 
implies that the nonzero terms in (5.4.2) all have the same sign. Write 

(5.4.3)

Then

(5.4.4) re+^2<\AiBi\<re+^
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and .JiBj may be represented as a 2/?-digit number with exponent e + f. 
(Although it may be unnormalized when it is written with this exponent, its 
mantissa has at most one leading zero.)

We may write

A HI,

B, = fJ2

Then we can represent AlBz and AZB{ as 2/?-digit numbers with exponent at 
most e + f ~~ p. and AZBZ as a 2p-digit number with exponent at most 
e + f — 2p.

To illustrate the alignment of the terms on the right of (5,4,2), we take 
p = 6 and show AiBjlre+f, In each case we show the minimum number of 
leading zeros:

(5.4.5)

A}B = .xxxxxx xxxxxx

A.B. - .000000 xxxxxx xxxxxx
I JiLJ

A2B, = .000000 A'XA'A'A'A* XXXXXX

A,B, = .000000 000000 .v.r.v.ra xxxxxx
4W

We must combine these four terms and preserve the high-order 2p digits of the 
product. Since > r-2, we want either the first 2p digits to the right of 
the radix point in this sum, or else digits 2 through 2p + 1. In any event, the 
low-order p digits of the 2/7-digit product AZBZ will not al feet the result, so 
we may use an SSS multiply to form AZBZ.

A commonly used approach is to develop only the first 2p digits to the 
right of the radix point in the products shown in (5.4.5). We shall call this 
“coarse double-precision" multiplication. With this approach, we ignore 
AZBZ and compute AZB} and A{BZ usingSSS multiplies. Our answer is then 
produced by adding these two products to the SSD product A j Bx, using SDD 
adds. The digits dropped from each of the products A}BZ. AZB^ and AZBZ 
have an absolute value less than re^f~lp. so the absolute value of the error is 
less than 3re+/"2p, Thus, if the product does not require postnormalization, 
the error is less than three units in the last place. But if postnormalization is 
required, the bound for the error is 3r units in the last place. Similarly, we 
could define coarse triple-precision multiplication or coarse //-fold-precision 
multiplication. In general we shall call the arithmetic “coarse" if the error can 
be as large as a few units in the last digit or two.

By contrast, “clean double-precision multiplication" would develop an 
answer in which the error is less than one unit in the last place. To produce 
this result, we would not only have to use SSD multiplies to compute A}BZ 
and AZB^ but we would also have to perform the addition of the terms in
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(5.4.2) in such a way that we achieve this accuracy. This can be accomplished 
by using the procedures for double-precision addition; they will be described 
in the next section, so we shall leave the details of the program to Exercise 3. 
An annoying problem that may arise in this program is that AZBZ and the 
low-order parts of A ( Bz and AZB{ may underflow even though C, and C2 do 
not. One way to handle this problem is to multiply A or B by a suitable scale 
factor before computing the product and then divide the answer by the scale 
factor. If we choose the scale factor be to a power of r, the scaling will not 
introduce any error and it can be performed by adjusting the characteristics 
of the numbers.

We often find that the work required to produce clean double-precision 
multiplication lies more or less midway between the work required for coarse 
double-precision multiplication and the work required for coarse triple
precision multiplication. That is, it may require a significant amount of extra 
work to gain a few extra bits of accuracy. This has often led the developers of 
routines for double-precision arithmetic to provide coarse double-precision 
arithmetic rather than clean double-precision arithmetic.

When double-precision arithmetic is provided by the hardware, the 
trade-olfs may be quite different. In many cases, clean arithmetic may be 
produced at little extra cost. But on some machines, the hardware performs 
double-precision arithmetic using an algorithm similar to the one described 
above for programming it. In this case, the hardware designer may elect to 
provide coarse double-precision arithmetic.

We note that the crucial point is the availability of an SSD multiply and 
either an SSD or an SDD add. In some cases these operations are available in 
hardware, but in other cases they may have to be programmed. The opera
tions which are available in hardware vary substantially from one machine to 
another. The IBM System/360 provides a Tull set of DDD operations for 
double-precision arithmetic. [Here double-precision means arithmetic in the 
system FP( 16, 14, cl\).] On the other hand, most models of the IBM 
System/360 do not provide extended-precision arithmetic—that is, arithmetic 
in Ilf 16, 28, cl I). If we wanted to program extended-precision arithmetic, we 
would use the approaches discussed here, thinking of FP( 16, 14, c/l) as single
precision and FP( 16, 28, cl I) as double-precision. In this sense, we would have 
only SSS operations available. But the models 85 and 195 of the IBM 
System/360 have DDD operations for addition, subtraction, and multiplica
tion in FP(I6, 28, c/l ). On the IBM 7090, the single-precision operations 
0, and * were really SSD operations. One simply ignored the low-order word 
of the answer when arithmetic was to be performed in FP(2, 27, c/27). The 
CDC 6600 uses a somewhat di fie rent approach. To produce an SSD add, 
subtract, or multiply, one must execute two instructions—one to produce the 
high-order part of the answer and the other to produce the low-order part of 
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the answer. Thus, an SSD multiplication requires two multiplications. But 
this is a pipeline machine with two multipliers, so we may be able to perform 
the two multiplications simultaneously.

Only rarely have machines provided an SDD add, although the IBM 7030 
did. But it is quite common to have an SSD add.

5.5. DOUBLE-PRECISION ADDITION AND
SUBTRACTION

We shall discuss only the programming of double-precision addition. 
Double-precision subtraction may be performed either by changing the sign 
of one of the operands or by making the obvious modifications in the proce
dures described below. However, we shall distinguish between the add 
magnitude and subtract magnitude cases.

We shall describe the use of SSD addition to program double-precision 
addition. If an SSD add operation is not provided by the hardware, it must be 
programmed. When the arithmetic is performed in FP(r, p, c/l), this may be 
accomplished by the coding described in Section 4.3.

The details of a routine for double-precision addition depend on the 
representation of double-precision numbers and on the manner in which SSD 
addition is performed. We shall assume that the double-precision number A 
is represented as

(5.5.1) A = At + A2,

where A} and A. are two nonoverlapping, normalized, single-precision 
numbers. We shall also assume that arithmetic is performed in I P(r, p, cl\) 
and that SSD addition is performed by using the coding described in Section 
4.3. That is, to compute the SSD sum of A and we first interchange A and 
B. if necessary, to make \A | > | B\. Then we use the formulas (4.3.3). Thus 
SSD addition produces the results described in Theorems 4.3.2, 4.3.3, and 
4.3.4.

We shall begin by discussing the programming of SDD addition. Let A 
have the representation (5.5.1) and let B be a single-precision number. We 
would like to produce a double-precision number 

which contains the high-order 2p digits of A + B. But since we do not require 
sign agreement in (5.5.1), this is hard to attain. Instead, we shall require that 
the error in the approximation + S2 A + Bbe less than one unit in the 
last place of S2, but we shall not require that | S, + S21 < | A + B |.

We shall first consider the special case in which we assume that the 
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characteristic of B is at least as large as the characteristic of A} and B —A. 
Let Cj + C2 be the SSD sum of B and A{. Since A} and A2 do not overlap, 
there will be no overlap of A2 with nonzero digits of C2. Let D be the SSS 
sum A2 @ C2, and set = Cj and S2 = D. Then the SDDsum of A and B 
is given by S in (5.5.2).

Next, we consider the add magnitude case, which we define to be the case 
in which A} and B have the same sign. For this case, we can use a special 
algorithm which is slightly simpler than the general procedure for SDH 
addition. If the characteristic of B is less than the characteristic of At, the 
coding described above might produce an overlap of A2 with nonzero digits 
of C2. Then there could be a high-order carry in the addition A2 @ C2, and 
this carry could make and S2 overlap. The overlap of and S2 could be 
cleared up by combining and S2 with an SSD add, but then we would have 
only 2p — I digits of the answer. Although this answer might be acceptable 
for coarse SDD addition, we shall try to produce a cleaner result.

Procedure I

To produce the SDD sum of A and B, when A, and B have the same sign,

I. Let Ct + C2 be the SSD sum of B and A2.
2. Let Dx + D, be the SSD sum of C\ and A{,
3. Let E be the SSS sum D2 @ C2.
4. Let Sj = Dx and S2 = E. Then S in (5.5.2) is the SDD sum of A and B.

To show that this procedure produces the desired result, we shall consider 
two cases. First, suppose that the characteristic of A, is at least as large as the 
characteristic of B. The first step reduces the problem to computing the SDD 
sum of Cj + C2 and A 1? where the characteristic of A t is at least as large as 
the characteristic of This is the special case considered above, and steps 
2 and 3 are exactly the approach we used there. On the other hand, suppose 
that the characteristic of B is greater than the characteristic of A{. Then the 
characteristics of B and A2 differ by at least p + 1, so C\ = B and C2 = A2. 
Again, this is the special case considered above, and the arithmetic in steps 
2 and 3 is exactly the computation used there to add B to A. Thus, the proce
dure handles the add magnitude case.

But Procedure 1 is not adequate for the subtract magnitude case. Suppose 
that

Ai = re( ! — r"p)

A2 = re p( 1 — r 'p)

With our assumption about the way SSD addition is performed, step 1 in
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Procedure 1 would produce C\ — B and C2 = A2. In step 2 we would obtain
B and 0, so step 3 would produce E = A2. But then

Sj - + B = + r-2)

and S2 = A2, so the characteristics of and S2 difier by 2. That is, andS2 
overlap unless p < 2. (Further complications would arise with other defini
tions of SSD addition.)

For the general case, we use the following procedure:

Procedure 2

To produce the SDD sum of A and B,

1. Let C] + C2 be the SSD sum of B and At.
2. Let Z)t + ZL be the SSD sum of C2 and A,.
3. Let E, + E2 be the SSD sum of Ci and D}.
4. Let F be the SSS sum of E2 and D2.
5. Let = Ej and S2 = E. Then S in (5.5.2) is the SDD sum of A and B.

Clearly, the first two steps of Procedure 2 reduce the problem to computing 
the SDD sum of and D} + Z)2. Unless B = — Al9 the characteristic of 
is at least as large as the characteristic of Z),, so steps 3 and 4 produce the 
desired result in either the add magnitude or subtract magnitude case. It is 
easy to see that this procedure also handles the case in which B = — A ,, so it 
is a general procedure for SDD addition. It is quite expensive, since it requires 
four additions, three of which are SSD additions. Therefore, we might be 
willing to accept a coarse version of SDD addition.

We shall now consider the programming of DDD addition. If the hardware 
provides SDD addition, it would be natural to use two SDD adds. But if 
SDD addition must be programmed, it is preferable to program DDD 
addition directly.

Suppose that B = B} + B2 is a double-precision number.

Procedure 3

To produce the clean DDD sum of A and Z?,

1. Let C] + C2 be the SSD sum of A} and B^.
2. Let D, + D, be the SSD sum of J , and B., 1 in
3. Let E| + E2 be the SSD sum of C2 and Z)r
4. Let Fx + E2 be the SSD sum of Ct and Et.
5. Let G be the SSS sum E2 @ E2.
6. Let H be the SSS sum G @ D,.
7. Let Sj + S2 be the SSD sum of Fx and H. Then S in (5.5.2) is the DDD 

sum of A and B.
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We shall now show that this procedure produces the desired result. 
Clearly steps I and 2 reduce the problem to computing the DDD sum of the 
double-precision numbers C\ 4~ C2 and D, + D2. Also, it follows from 
Theorem 4.3.4 that D2 does not overlap with either or any nonzero digits 
of C2. Similarly, E2 does not overlap with Ex or Cfo Then the first four steps 
reduce the problem to finding the sum of four nonoverlapping numbers Fx, 
F2, E2, and D2. This is accomplished by steps 5, 6, and 7. In the add magnitude 
case, we would not need to perform the addition in step 7. It would suffice to 
set Sj = Ft and S2 = H. But in the subtract magnitude case, Fx and H might 
overlap, so the SSD addition in step 7 is needed to clean up the answer.

A subject closely related to addition and subtraction is the comparison of 
two double-precision numbers A and B. One approach would be to use a 
DDD operation to compute A — B and then perform a test to see whether 
A — B is positive, negative, or zero. But other approaches may be used if we 
make certain assumptions about the representation of double-precision 
numbers. We have required that the high-order and low-order parts of the 
double-precision number be normalized and nonoverlapping. Suppose that 
in addition we require that the two parts of the number have the same sign 
unless the low-order part vanishes. Then the comparison may be simplified. 
We first compare the high-order parts of A and B. If they are unequal, the 
number with the larger high-order part is larger. If the high-order parts are 
equal, we compare the low-order parts. The result of this comparison deter
mines whether the numbers are equal and which number is larger when they 
are unequal.

Of course, one reason for using a comparison is that it is likely to be aster 
than DDD subtraction. But another advantage is that on many machines it 
may be performed without underflow. The subtraction exposes us to under
flow when A and B are both small and nearly equal.

5.6. DOUBLE-PRECISION DIVISION

If the hardware provides some, but not all, of the double-precision opera
tions, division is likely to be omitted. For example, on the models 85 and 195 
of the IBM System/360, there are hardware operation codes for extended- 
precision addition, subtraction, and multiplication but not for division. Thus, 
it is quite common to have to program double-precision division. We shall 
assume that the arithmetic is performed in FP(r, p, cl\) and that SSD addition 
produces the results described for the coding in Section 4.3.

We shall begin by discussing SSD division. That is, we want to develop the 
double-precision quotient of two single-precision numbers A and B. We use 
SSS division to compute Qx = A B. The remainder, which was discussed 
in Section 1.10, is given by

(5.6.1) R = A - BQ,.
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In Section 1. 0 we saw that R can be represented as a single-precision number. 
On some machines, or example the IBM 7090, the single-precision divide 
command produces R as well as Q}. But if the hardware does not provide R, 
we must compute it. To do so, we first let Cx + C2 be the SSD product BQX. 
Theorem 1.9.3 shows that C, can differ from A by at most r — I units in the 
last place, so we may use an SSS subtraction to compute the one-digit number 
D = A 0 C|. Since we know that R can be represented exactly as a single- 
precision number, we can compute R by using an SSS subtraction to form 
R — D 0 C2. Let Q2 — R 4- B. Then and Q2 are nonoverlapping num
bers, so + Q2 is the desired representation for the double-precision 
quotient.

We shall now extend this approach to produce DSD division. Here DSD 
division means the division of a double-precision number A{ + A2 by a 
single-precision number B to produce a double-precision answer. We shall 
consider clean DSD division first, and then we shall see how this procedure 
can be shortened to produce a coarse version.

Let Ci be the SSS quotient At 4- B, and compute the remainder R' = 
Aj — BC{ as above. Let R = A — BCr, so

= R' + A,.

It is possible that we may require more than p digits to express the sum of R’ 
and /I,, so we let /?. + R, be the SSD sum of R' and A,. Let C, be the SSS Zr J Xi
quotient R{ 4- B. Unlike the situation in SSD division, 0 and C2 may 
overlap, so we may have fewer than 2p digits of the quotient. (The extent of 
this overlap will be studied below.) We continue the process by computing the 
remainder R" = Ri — BC2. Let S be the remainder A — B(C} + C2). Clearly

S - R - BC.,
so

If we wished to compute a triple- or quadruple-precision answer, we would 
compute S exactly and continue this process. But for DSD division, we 
merely compute 0 = R" 0 R2 using SSS addition, and then we brm the 
quotient C3 — S; - B. To produce the answer, we form the double-precision 
sum of CH C2, and C3.

We shall now study the extent of the overlap of the C/s. Without loss of 
generality we may assume that A} and B are positive. Let

Ai = rem,

B —

We saw in Section 1.10 that the exponent of the quotient C( is e — f + 
where k is 0 if m < n and 1 if m > n. The remainder R’ may be written in the
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Here I' may be unnormalized, but it is a /?-digit Traction and 0 < lf < n. It 
i'ollows that Q} and Qz in our procedure for SSD division do not overlap. 
But in our procedure for DSD division, the addition ofJ2 to R' may make the 
mantissa of R' greater than n. In fact, the exponent of might be 
e + k — p + I. But the largest R can be is

It follows that the exponent of C2 is at most e + k — p + 2 — /, so there is 
at most a two-digit overlap of C2 with Similarly, there is at most a 
two-digit overlap of C3 with C2.

We shall now prove that there cannot be both a two-digit overlap of Cx 
with C2 and a two-digit overlap of C2 with C3. To this end, suppose that there 
is a two-digit overlap of Q with C2. Clearly, this implies that A2 is positive. 
Let J2==rg7w2, where r-1</n2<l. Since g < e — p, we may write 
/12 = re+k~pm'z. Here /?f2 is positive and less than I, but it may have more 
than p digits to the right of the radix point. Then 

R = re^~p(p +

and since there is a two-digit overlap of C2 with C1? we must have

(5.6.2)

Then n + so m'z > (r — I)/?. Thus, the exponent of A2 must be
e + k — p, so we must have k = 0 and g = e — p. But then R can be 
represented as a Tp + I)-digit number, so Rz is a one-digit number. We may 
write Rz = rc-2p+1rf, where d is either zero or a one-digit number in the range 
r"1 < d < 1. From (5.6.2) we see that the mantissa of R} is at least /?, so we 
may write R" = re+2~2pr\ where k' < n. Then 

(5.6.3) S = re+2~2p(/'f + r~7/),

so either S < rc4 2 2p or else S < re+3 2pl,f. But in either case there can be at 
most a one-digit overlap of C3 with C2. Therefore, the sum Ct + C2 + C3 
spans at least 3p — 3 digits.

To see how large the error in the approximation + C2 + C3 A/B 
may be, we shall consider what would happen if the division process were 
continued to produce C4. There can be at most a two-digit overlap of C4 with 
C3, so the error in C{ + C2 + C3 is less than 1 in the (3p — 5)th digit. To 
obtain a better bound Tor this error, suppose that Cj + C2 + C3 spans only 
3p — 3 digits. If there is a two-digit overlap of Cz with C3, there can be at
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most a one-digit overlap of C3 with C4. Suppose that there is a two-digit 
overlap of Ct with C2 and a one-digit overlap of C2 with C3. Then S is given 
by (5.6.3), and it may be expressed as a (p + l)-digit number. Proceeding as 
above, one may show that there is at most a one-digit overlap of C3 with C4. 
Thus, in all cases the error in the approximation Ci + C2 4- C3 A/B is 
less than one unit in the (3p — 4)th digit.

The final operation in clean DSD division is combining C,, C2, and C3. 
We use SSD addition to combine C2 and C3, and then we add C\ to this sum 
using SDD addition. This is the special case o SDD addition in which the 
characteristic of the single-precision number is at least as large as the 
characteristic of the double-precision number.

For coarse I >SD division, it is typical not to develop C3. We first compute 
Cj and R' as above; then C2 is computed as (R' f4- B using SSS 
operations. Our answer Q{ + Qz is the SSD sum of Cj and C2. There may be 
a two-digit overlap of C\ and C2, so we may have developed only 2p — 2 
digits. Moreover, if we were to develop C3, it might overlap with C2. Proceed
ing as above, it is easy to show that the error in the approximation 
Q\ + Qz is less than one unit in the (2p — 3)rd digit.

We now turn to DDD division. There are several ways in which this can 
be programmed, and we begin by discussing two approaches often used for 
coarse DDD division.

The first of these methods is based on the power series

(5.6.4) I - .y +x2-.y3+

This series converges when |x| < I, and it converges very rapidly when x is 
small. Write

Aj 4~ A% A। 4“ A2
+~B~z = ^Jl 4-(A/X)]‘

Using x = B./Bj in (5.6.4), we have

(5.6.5)

If B} and Bz do not overlap and B} is normalized, we have

Then we may surely ignore the terms in (5.6.5) after (Bz/B}y, and we usually 
ignore this term as well. Thus, we use DSD division to divide A} + Az by 

and then we multiply this quotient by I — BJB^
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Let Cj + C2 be the result obtained when A, + Az is divided by using 
DSD division, and let D be the SSS quotient Bz 4- Bx. We form an approxi
mation for

(Cj + C2)(l - D) = C\ C2 - C}D - CZD

by ignoring the term CZD and using SSS multiplication to form E = C} * D. 
Then our answer will be obtained by subtracting E from C\ + C2 using an 
SDD operation.

A second method sometimes used l or coarse DDD division first computes 
the reciprocal of B and then multiplies this reciprocal by A using DDD 
multiplication. We compute the reciprocal of B by using Newton's method to 
solve the equation

(5.6.6)

Newton's method i'or solving an equation

(5.6.7) /(.v) = 0

requires us to select a first approximation x0 and form x,, x2, . . . using 

(5.6.8)

Suppose that x$ is a solution of 5.6.7), and let c/( = x„ — x*. It is well known 
that if /(x) is twice differentiable, then

for some £ lying between x„ and x*. [See, for example, Hildebrand (1956).] 
the relative error ejx*, we have

(5.6.9)

Applying this method to Eq. (5.6.6), we obtain from (5.6.8)

x„(2 - Bxn).

We shall use 1 4- B i'or our first approximation x0, so x0 is a good approxi
mation for 1/5. From (5.6.9) we find isee Exercise 12)

(5.6.10) Pn + I P n •
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Since x0 is accurate to almost single-precision accuracy, Xj will be accurate to 
almost double-precision accuracy. We shall take xt to be our approximation 
for \/B.

We now consider the details of this computation. Let C be the SSS 
quotient 1 — so

(5.6.11) X] = C(2 - BC).

Here BC 1, and this approximation is good to almost p digits. Then it is 
reasonable to approximate the expression 2 — BC by 1 + £>, where D is a 
single-precision number. We want

1 + D 1 + (1 - BC),

so we take D to be the high-order p digits of 1 — BC. Let + E2 be the 
SDD product of B and C. Then we need an SDS operation to compute D. 
This is accomplished by the SSS operations

D = (1 © £,)©£>•
■*

We now replace 5.6.11) by

Xj C(1 + D) = C + CD.

Our approximation for 1 /B will be the SSD sum of C and F, where F is the 
SSS product C * D. The analysis of the accuracy of this operation forms 
Exercise 12.

We now address the problem of producing clean DDD division. Our 
approach will be based on the procedure used above to produce the clean 
DSD quotient. In general terms, our procedure for the clean division of the 
double-precision number At + Az by the double-precision number B{ + Bz 
will be

1. Let C| be the SSS quotient ~ B}.
2. Compute the remainder

+B2)Ci.

3. Let be the high-order word of R.
4. Let C2 be the SSS quotient B{.
5. Compute the remainder

S = R (S, + B2)C2.

6. Let S, be the high-order word of 5.
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7. Let C} be the SSS quotient S} E Bx,
8. Let Qx + Q2 be the double-precision approximation for

C2 + C3.

If R and S were computed exactly in steps 2 and 5, this process could be 
continued to produce a triple- or quadruple-precision answer.

In considering the details of this procedure, we may assume that A{ and 
B} are positive. Let

Ax = remx, 

B{ = rfnx,

As we saw in the case of DSD division, there may be an overlap of C, with 
C2 and of C2 with C3. But DDD division differs from DSD division in that B} 
may be less than B. so we may have C\ > A/B. If this happens, R will be 
negative.

We shall now consider the computation of R in step 2. First, let + D2 
be the SSD product of Bx and CH and let E be the remainder Ax — BxCi. 
This is exactly the computation used in DSD division, so we know that E may 
be represented as a single-precision number and that it may be computed as

using SSS operations. Now Cj has the exponent e + /< — /, where k is 0 if 
m < n and /< is I if m > /?. Then E may be written as re+k~pm\ where m is a 
fraction with 0 <C ni < /?. Now

R = £+ A. - BAE. M ** ■ I

Here A2 has an exponent g < e — /?, and the exponent of B2C\ is at most 
e + k — f + (./ — p) = e + k — p. Since we want only 2/? digits of the 
quotient, we develop only a double-precision representation for R. Thus, we 
let Ex + E2 be the SSD product B2C} and let R2 be the double-precision 
representation for E + A2 — Fx. Then

7?2 — f2.

We use this value of in step 4 to compute C2.
To compute £ in step 5, we form the remainder

G= Rx - C2Bx

as above. Then

S =~ R- C.B = G + R. - F2- C.B., At m *•
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Let II be the SSS product ( \ * B and let S, be the sum G @ R 0 F2 0 II 
computed with SSS operations. We use this value of S, to compute C3 in 
step 7.

With this procedure we cannot guarantee that we shall produce the prop
erly chopped answer, since the remainder at the final step may be negative. 
The analysis of the overlap of C, with C2 and of C2 with C3 forms Exercise 14. 
and the shortening of this procedure to produce coarse DDD division forms 
Exercise 16.

One problem that arises in this computation is underflow in the remainder. 
The characteristics of /?, and S, are about p and 2p less than the characteristic 
ol 0. In fact, they may be even smaller unless the remainders are unnor
malized. Then if A is small, these remainders may underflow. But if B is also 
small, the quotient may be on the order of I, so it is annoying not to be able 
to compute it. We note that the quotient will underflow when | A | is small and 
| B । is extremely large. This suggests that we can perform a test, and when the 
quotient does not underflow we can scale A and B before division.

A minor irritant is that we may have 0, 4- B} | > Q > \A/Z?|. Then the 
quotient A/ 2? does not overflow, but the computation of C, = A{ 4- B{ does. 
For a coarse division routine, we might allow the answer to overflow when 
this happens. But for clean DDD division, we would have to test lor this case 
and introduce scale factors.

Finally, we repeat our earlier warning. The details of a program to perform 
double-precision arithmetic will depend on the representation of the double
precision numbers and on the results produced by the SSD operations. The 
procedures discussed here show the general approaches, but modifications 
may be necessary for a specific implementation of them.

5.7. WRITING DOUBLE-PRECISION PROGRAMS
WITHOUT LANGUAGE SUPPORT

We shall now treat the problem of writing a program using higher- 
precision arithmetic than the compiler supports. To be specific, suppose that 
we are using FORTRAN and that the compiler does not support the double
precision data type. (More generally, we may interpret double-precision to 
mean twice the highest precision supported by the compiler.)

We shall have to have subroutines which we can call to perform the 
double-precision arithmetic. For each arithmetic operation we shall write a 
call, such as

(5.7.1) CALL ADD (Al,A2,BI,B2,Cl,C2)

To avoid having to write six arguments in each of these calls, the subroutines 
might require that the double-precision number be thought of as a subscripted 
variable with dimension 2. Then instead of (5.7.1), the call would have the
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form

(5.7.2) CALL ADD (A,B,C)

With this approach, the subroutine would require that the high- and low-order 
parts of the double-precision number be stored in adjacent memory locations. 
If we wanted A, B, and C to be IO-by-IO matrices, we would have to make 
them three-dimensional arrays dimensioned (2,10,10). The subscript which 
determines which part of the double-precision number we are referring to 
must be the first subscript, so that the two parts of the number are stored in 
adjacent locations. To add the (/,./) elements of A and B and store the result 
in the (/, /) position of C, we would have to write

CALL ADD (A(l,I,J),B(l,IJ),C(l,I,J))

It is clear that our program will be more tedious to write and more 
difficult to read than it would be if we could use the double-precision data 
type. In fact, the “higher-level language" no longer seems to be as high-level. 
But we can still use its indexing capabilities, and we can use DO loops and 1I 
statements to control the flow of the program.

The introduction of an additional subscript to handle double-precision 
numbers may make the program rather cumbersome. There is a trick which 
can sometimes be used to simplify the representation of double-precision 
numbers. Suppose that we are using a version o FORTRAN which 
suppose the COMPLEX data type and that our program uses only real 
numbers. If we type our double-precision numbers as COMPLEX, the 
proper storage will allocated and the right arguments will be passed to 
subroutines. Since we are not using complex arithmetic in the program, we 
may be able to exploit the COMPLEX data type still further. Complex multi
plication and division are often performed by subroutines, so the opera
tions * and ; are compiled as subroutine calls. We could replace the 
routines which perform complex arithmetic by new routines which have the 
same names but which perform double-precision arithmetic. The double
precision multiplication could be coded as C = A*B instead of using a CALL 
statement. Unfortunately, complex addition and subtraction are so simple 
that they are usually compiled directly, so we would still have to code double
precision addition and subtraction in the form (5.7.2).

A more serious problem arises when we want to enter constants to double
precision accuracy. For example, suppose that we want to enter ti to 32 
decimal places but that the version o FORTRAN we are using supports only 
arithmetic in FP( 16. 14, a). Suppose that we wrote

Al = 3.141592653589793
A2 = .2384626433832795E-15
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and then set

chap. 5

(5.7.4) PI = Al + A2

Here Pl would be accurate to only 14 hexadecimal digits, because the conver
sion of Al is performed to that accuracy, i o see that this is so, we shall 
consider the simpler case of a statement such as B = .2. The hexadecimal 
equivalent of the decimal number .2 is .333 • • - so the statement B = .2 will 
produce a value of B which is accurate to only 14 hexadecimal digits. Thus, 
the addition of A2 to Al in (5.7.4) cannot compensate for the fact that the 
value of Al produced by (5.7.3) is accurate to only 14 hexadecimal digits.

Instead o using (5.7.3) and (5.7.4i, our approach will be based on the fact 
that integers less than 1614 may be entered exactly. Now 1614 7.206 x IO16,
so we may enter any 16-digit integer exactly. In place of (5.7.3) we write

Al = 3141592653589793.
A2 = 2384626433832795.

Then the number we want to store in PI is

X - (Al+A2/10,6)/1015

We compute X using double-precision arithmetic and store the value in PI.
The same approach could be used for input. Fortunately, the treatment of 

input is usually simplified by the fact that the numbers are shorter. Counted 
numbers seldom involve more than 10 or 12 digits, and measured quantities 
are usually known to only a few digits of accuracy. Mathematical constants, 
such as 7t, are usually entered as constants at compile time rather than entered 
as input.

For output, the problem is more complicated. We may want to print our 
answers to double-precision accuracy, either for use in some other program or 
for testing the program. One approach is to print them without converting 
them. । We could use the Z format with the FORTRAN compilers for the 
IBM System/360.) This is often the best approach for numbers to be used as 
constants in another program. But i we want to print the double-precision 
representation Tor a number /I, we first find an integer k such that

10* > Ml > IO*"1,

and then we reverse the process described above ibr input.

5.8. USES OF DOUBLE-PRECISION

As we have mentioned, some machines have hardware operation codes to 
perform double-precision arithmetic, while other machines use subroutines 
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to perform these operations. Regardless of how the arithmetic is performed, 
it may or may not be supported by the higher-level languages. There are many 
machines on which FORTRAN supports the double-precision data type even 
though the hardware has no operation codes for double-precision arithmetic. 
On the other hand, there are machines on which the hardware can perform 
higher precision arithmetic than that supported by the compilers. We would 
prefer to have the double-precision arithmetic performed by the hardware, 
because it is significantly aster. Also, we would find it much more convenient 
to have the compilers support the double-precision data type. In some 
situations, the manner in which double-precision is supported is crucial; in 
other cases it is more a matter of convenience. In this section we shall discuss 
several different situations in which we would want to use some double
precision arithmetic. In each case, we shall consider how important it is to 
have the arithmetic performed by the hardware and to have the double
precision data type supported by the compilers.

1. Development and Testing of Single Precision
Subroutines

Here we consider single-precision subroutines which are used as library 
programs. They may be part of the compiler or they may be programs written 
at a given installation, but because of their extensive use, we would like them 
to be both fast and accurate. They are expected to be carefully written and 
carefully tested.

a. Development of an Approximation

Consider the problem of developing a library program to compute a func
tion / fx). For example, we might want to write a single-precision exponential 
routine. It is typical to begin by reducing the range of the argument to some 
interval a < x <f b and then use a polynomial or rational approximation <p(x) 
for f(x) in this interval. Thus, we seek a function (p(x) with

(5.8.1) /(x) for a

Our program or f(x) will evaluate using single-precision arithmetic, so 
the value it will produce for f(x) will be p(x) instead of (p(x), where 

(5.8.2) ?(x) «= 9>(x).

Typically, we would like the approximation (5.8.1) to be good to, say, two or 
three bits beyond the word length, so that the error in (5.8.1 ) is small with 
respect to the error in (5.8.2).

We usually have to write a program to compute the coefficients of p(x). 
Since our objective is to produce an approximation <p(x> which is good to at 
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least single-precision accuracy, we use higher-precision arithmetic to compute 
these coefficients. They will then be rounded to single-precision and used as 
constants in our program for /(x).

Thus, as part of the development of a single-precision program to compute 
/(x), we have to use a double-precision program to compute the coefficients 
o f o u r a p p r o x i m at i o n. We may wa n t o u r f i n a I p r og ra m w h i c h c o m p u te s f (x) 
to be very efficient, but the speed of the program which computes the 
coefficients of p(x) is not important. This program is run only once as a 
development tool, so it is acceptable to have the double-precision arithmetic 
performed by subroutines. In fact, there have been cases in which the coeffi
cients of j?(x) were computed on a different machine from the one for which 
the program for/(x) was being written.

In developing the approximation, it would be extremely convenient to 
have a compiler which supports the double-precision data type. But these 
approximations have often been computed without such support. Indeed, the 
approximations in the library routines for the highest precision supported by 
the compiler have to be produced without such support.

b. Testing a Single-Precision Subroutine

To test a subroutine which computes the value of a function /(xl we 
generate some test values for x and use the subroutine to compute /(x). One 
of the best ways to test these results is to extend each test value of x to 
double-precision by appending zeros and then compute/Vx) using a double
precision routine. (See Chapter 10.) Then we can estimate the error by 
comparing these values for/(x\ Since we are interested in only the first two or 
three decimal digits of the error, the double-precision program for /’(x) need 
be accurate to only two or three digits beyond single-precision. This accuracy 
is usually quite easy to achieve.

Since our double-precision program will be run for many different test 
cases, the speed of the double-precision arithmetic is a little more important 
than it was under heading a. The time required for each test case may 
determine how extensive our testing will be.

As under heading a, it is convenient, but not mandatory, to have the 
compiler support the double-precision data type.

Inserting a Few Double-Precision Operations 
in an Otherwise Single-Precision Program

There are many programs in which it is desirable to perform a few opera
tions in higher precision than that used in the rest of the program. One 
example of this situation is the quadrature problem discussed in Section 4.1. 
There we saw that it was quite attractive to use higher-precision arithmetic in 
the accumulation of the sum. Another well-known example is the use of 
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higher-precision arithmetic in the accumulation oh inner products in matrix 
programs.

These examples are quite typical. We can often produce a more accurate 
answer by the judicious use of a few double-precision operations. Then we 
have a trade-off between speed and accuracy, and the speed of the double
precision arithmetic may determine whether or not we shall perform these 
operations in double-precision. It may be crucial to have the double-precision 
arithmetic performed by the hardware.

For example, in writing a library subroutine for a function such as sin x 
or ex, we might want to use double-precision arithmetic in the reduction of the 
argument. [See Cody (1971b) or Kuki (1971).) I the double-precision arith
metic is performed by the hardware, this may produce better accuracy with 
negligible loss of speed. But if the hardware does not provide double-precision 
arithmetic, we may be unwilling to accept the degradation in speed. In other 
situations, we might be willing to have the program run significantly slower 
if it will produce better accuracy, so it would be acceptable to have the 
arithmetic performed by subroutines.

When the double-precision arithmetic is performed by the hardware, it 
can be used in programs written in Assembler language, even if the compilers 
do not support the double-precision data type. This can be of benefit to the 
user of higher-level languages by providing him with more accurate single
precision library programs.

However, a great many o ’today's programs and subroutines are written 
in higher-level languages, and we would like to have these programs use 
double-precision arithmetic where it is appropriate. Some of them may do so 
by calling subroutines, as described in Section 5.7, but the use of double
precision will be much more extensive if the compiler supports the double
precision data type.

3. Increasing the Precision of a Program To 
Determine Its Accuracy

It is quite common for a subroutine intended to be used as a library 
program to be subjected to the testing described under heading \.b. But such 
testing is less often applied to an application program; the user is more 
likely to wait until he has reason to question the accuracy of the results 
produced. Then he would like to run the program in higher-precision to assess 
the accuracy of his single-precision program. Usually the objective is to 
determine whether single-precision arithmetic will suffice, so only modest 
changes will be made in the mathematics.

Fhe double-precision program is being used for test runs rather than 
production runs, so the speed of the double-precision arithmetic is usually 
not vital. It is acceptable to have the arithmetic performed by subroutines.
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But the conversion of the program from single-precision to double-precision 
may be a formidable task, so compiler support for the double-precision data 
type is often crucial.

4. Programs Requiring Double-Precision
Calculation

There are some programs in which the calculation must be performed in 
double-precision in order to produce a good answer. Since this situation is 
common y misunderstood, we shall discuss the way it can arise. One often 
hears the comment that high-precision arithmetic is unnecessary because the 
data are known to only a few digits of accuracy and we want only a few 
digits of accuracy in the answer. To be specific, suppose that the data are 
accurate to 1 part in 10,000 and that we want to know the answer to within 
1 part in 1000. That is, we hope that neither the errors in the measurement of 
the data nor the errors in the calculation will produce an error in the answer 
greater than 1 part in 1000. To have any hope of achieving this result, the 
problem must be well conditioned. A relative error of .0001 in the data must 
produce a relative error less than .001 in the answer. But even though the 
problem is well-conditioned, we may be using an algorithm which is not. 
Consider the use of the power series in Section 4.2 to compute e~x and sin x. 
These problems were reasonably well conditioned, but as the value of x 
increased, the precision needed to produce a good answer grew rapidly. 
Another example of this situation is the use of the formula

when x is small. (See Section 3.10.) Thus, even though the problem is well 
conditioned, the algorithm we are using may require that we use high- 
precision arithmetic.

In the examples mentioned above, it is easy to see how to revise the 
algorithm so that the calculation can be performed in single-precision. This 
might suggest that when high-precision arithmetic is needed for a well- 
conditioned problem, one should look for a better algorithm instead of 
increasing the precision. This approach should certainly be considered. But 
an appropriate algorithm may be far from obvious, and the user is interested 
in getting an answer to his problem. Therefore, he would often prefer to 
increase the precision and use the algorithm at hand rather than undertaking 
the research necessary to discover a better algorithm.

When one realizes that more than normal precision is required for his 
calculation, he will do whatever is necessary to produce the answer. Except 
for extremely large problems, he will usually not demand that the arithmetic 
be performed by hardware. Whi le he would like to have the compiler support 
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the double-precision data type, he will usually do whatever coding is necessary 
to solve his problem.

5. Programs Requiring Calculations in 
Higher-than-Double-Precision

In Section 4.2 we saw that the use of the power series to compute sin x 
when x is large is an example of an algorithm which is so sensitive to rounding 
error that more than double-precision accuracy is required. Higher-precision 
arithmetic will be discussed in the next section.

5.9. HIGHER-PRECISION ARITHMETIC

Of the uses of double-precision considered in the previous section, those 
discussed in Sections 5.8.1, 2, and 3 involved the use of double-precision 
arithmetic to support programs written primarily in single-precision. Now the 
meaning of single-precision varies considerably from one machine to another. 
But if a significant number of problems are run in a given precision, the 
discussion in the previous section shows the desirability of hardware and 
software support for arithmetic at twice that precision. Experience shows that 
if single-precision is on the order of 20 or 25 bits, there will be a significant 
number of programs which will be run in double-precision. But if single
precision is on the order of'50 bits, the vast majority of today's programs can 
be run primarily in single-precision. Thus, precision on the order of 50 bits 
seems to be adequate as the normal precision for most of todays programs, 
and precision on the order of 100 bits is desirable as support for programs 
written primarily in 50-bit precision.

As we mentioned at the end of the previous section, the algorithm we are 
using might be so sensitive to rounding errors that we woud have to use more 
than 100 bits of precision. But if a problem requires more than this precision, 
it may require substantially more, so it does not seem necessary to support 
any specific precision beyond about 100 bits. Instead, we would like to have 
subroutines to perform 7V-fold-precision arithmetic, where the user can 
specify N.

Suppose that we want to perform 16-fold-precision arithmetic on the IBM 
System/360. That is, we want to perform arithmetic in a system FP( 16, 96, a). 
If our representation of these numbers were a generalization of the one we 
used for double-precision numbers in Sections 5.3-5.7, each part of the 
number wou d have its own characteristic and mantissa. Suppose that X is on 
the order of I. Since the smallest normalized positive number on the IBM 
System/360 is I6-65, the low-order parts of the representation of X would 
underflow. Therefore, it is not reasonable to require that each part of the 
representation of the A-fold precision number be a valid floating-point num
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ber. Also, consider the case in which we want to compute X @ T, where X is 
on the order of I and [ K| < 16 65. Then replacing Y by zero would damage 
about one-third of the digits in X © Y. Thus, as our precision increases, we 
also want to increase the range of the characteristic.

It is common for A-fold-precision subroutines to use fixed-point opera
tions instead of floating-point operations to produce arithmetic in 
FP(r, Np,a\. Then the parts of the A-fold-precision number need not be 
valid floating-point numbers, so we can use, say, a full word to represent the 
characteristic.

Suppose that the machine we are using provides fixed-point arithmetic 
operations which handle signed /7-digit integers in the radix r. Except for the 
pre- and postshifts, we can think of each word as a digit and perform the 
arithmetic in the radix rp. [If N is extremely large, it might suffice to normalize 
in the radix rp. That is, we might be willing toperform the arithmetic in the 
system FP(rp, A, a).]

EXERCISES

1. Show that the number l/(r — 1) has the representation .111111 • • • in the base 
/*. Use this result to find the hexadecimal representation for the decimal num
bers .2 and . 1.

2. Write a FORTRAN program for the double-precision version of the quadra
ture problem in Section 4.1. For the computation of X use X — 1*H and X = 
(/ + 1)*//. Program SDD addition to accumulate the sum S in twice-doublc- 
precision.

3. Assume that we are given SSD operations for addition and multiplication.
a. Program coarse DDD multiplication.
b. Program clean DDD multiplication.
c. Program coarse triple-precision multiplication.
d. Program clean triple-precision multiplication.

4. To test the programs written in Exercise 3, we need SSD operations. If we have 
a version of FORTRAN which provides clean double-precision arithmetic, the 
following FORTRAN programming will produce SSD multiplication. Let 
A, B, Cl, and C2 be typed single-precision, and let D be typed double
precision. Write

DBLE(A)*B

Then Cl, C2 is the SSD product AB. For SSD addition, we may use either this 
approach or the coding described in Section 4.2.

Using these SSD operations, test the programs written for Exercise 3. What 
assumptions do you have to make about the representation of double- and 
triple-precision numbers?
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5. In Section 5.4 we saw that clean DDD multiplication could be produced by 
combining the four products in (5.4.5). Here the first three products are com
puted using SSD multiplication, but we may use SSS multiplication to form 

* ^2- II single-precision multiplication takes a long time, we can use a 
different approach which requires only three SSD multiplications. We assume 
that our representation of double-precision numbers requires that if the low- 
order part ol the number docs not vanish, it has the same sign as the high-order 
part and its characteristic is exactly p less than that of the high-order part. 
(Then we cannot require that the low-order part be normalized.) Let A and B 
be given by (5.4.1), and set

We assume that multiplication by a power of r can be performed rapidly by 
adjusting the characteristic. Now

AB = A{B} — (rpCD — f~pAlBl — r^2B2) + ^2^2-

Then we need only three SSD multiplications to form A^B^ CD, and A2B2.
a. Show that C and D can be represented exactly as p-digit floating-point 

numbers.
b. Assume that we have SSD operations for addition and multiplication. 

How should the terms in the above formula for AB be combined to produce 
the clean DDD product AB of A and B?

c. Program the approach devised in part b and use the method described in 
Exercise 4 to test the program.

6. What changes must be made in Procedures 1, 2, and 3 of Section 5.5 to produce 
subtraction instead of addition?

7. Suppose that we have an SDD add operation available and that we want to 
program DDD addition. Let A and B be given by (5.4.1). We consider coding 
the DDD addition as either

(4) (Z?2 ■■

B2 (94 (B} (4) A),

where (49 denotes SDD addition. Which of these formulas is better in the add 
magnitude case? Which is better in the subtract magnitude case? How much 
difference does it make which formula we use?

8. Consider Procedure 3 in Section 5.5. We observed that the SSD addition in 
step 7 was unnecessary in the add magnitude case, since it would suffice to set 

= Fj and S2 = H. Show by an example that and H might overlap in the 
subtract magnitude case, so step 7 is needed to clean up the answer.

9. What simplifications can be made in Procedure 3 of Section 5.5 if we are willing 
to accept coarse DDD addition?
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10. Write a program to compare two double-precision numbers. The program 
should determine whether or not the numbers arc equal, and if they are 
unequal, it should determine which number is larger. You may assume that the 
representation of double-precision numbers requires that the two parts of the 
number do not overlap. However, the program should work even if the high- 
and low-order parts of the double-precision number have opposite signs. It 
should also work when the high-order part of the number is not normalized. 
You may assume that underflow does not occur during the execution of the 
program.

11. Suppose that we use the method of coarse DDD division based on the power 
series. Let Ct + C2 be the result obtained when /1i + A2 is divided by Bx 
using DSD division, and let D be the SSS quotient B2 B{. Let Ebe the SSS 
product G * /), and let Qj 4- Qz be the SDD sum of — Eand C\ + C2. How 
accurate is the approximation CL + Q2 A/B2

12. Suppose that we use the approach based on Newton's method to compute the 
reciprocal of a double-precision number B. Let x0 be the SSS quotient 1 Bx. 
a. Show that (5.6.10) holds.
b. Suppose that X] is computed exactly as x0(2 — BxQk How accurate is the 

approximation Xj 1/5?
c. To produce a coarse reciprocal, we let C be the single-precision number x0 

and let Ex + E2 be the SDD product of B and C. We then compute D 
using the SSS operations

£> = (1 Q EJ Q E2,

and let Ebe the SSS product C * D. Our approximation for 1/5 is the SSD 
sum of C and E. How accurate is this approximation for 1/5?

13. Consider the procedure or clean DDD division given in Section 5.6. Let 
A and 5 be positive numbers.
a. Show by an example that it is possible for A t -? Bx to overflow even though 

A/B < Q.
b. Show by an example that it is possible for to underflow even though 

A/B > 1.
c. Devise a strategy to avoid spurious overflows and underflows in this pro

cedure by testing and scaling. Il A/B < Q, the program should not 
overflow. There should be no underflows unless one or both parts of the 
answer underflows.

14. Consider the procedure for clean DDD division described in Section 5.6.
a. Show by an example that there may be a two-digit overlap of C2 with Ct.
b. What is the minimum number of digits spanned by C| + C2 4- C3?
c. How accurate is the approximation Ct 4- C2 + C3 A/B2

15. Write a program to perform clean DDD division and test it.
16. How can the procedure for clean DDD division in Section 5.6 be shortened 

to produce coarse DDD division? Estimate the maximum error for your 
procedure.



ROUNDING

6.1. GENERAL CONSIDERATIONS

For any real number x, the values x and x obtained by chopping or 
rounding x to p digits in the base r were defined in Section 1.5. In Section 3.2, 
we saw that

(6.1.1)
0 <f p < r"‘p 1J

Thus, with rounding we have a smaller bound 'or the relative error, but we do
not know its sign. For binary systems Fl 2, p, a\ we note that = r~p,
so the bound for the relative error introduced by a single operation is the 
same in FP:2,p, R) as it is in FP(2, p -F 1, c), From this result we might be 
led to think of rounding as having the same value as adding a bit to the 
precision and using chopping. However, there are distinctions between 
1 • < 2, p, R) and FP(2, p + 1, c), and depending on what we are doing we may 
have a decided preference for one system or the other.

Let a = rem be a positive, normalized number in S(r, p), and suppose that 
a is not a power of r. Then x = a if and only if x lies in the interval 1 : 
a < x < a + re'p, while x = a when x is in the interval IK: a — \re~p < x < 
a + Thus, either chopping or rounding maps an interval of length re~p 
into a number in S(r,p). (A slight modification of 1R is necessary if a is a 
power of r, and the obvious modification of 1R and lc must be made if a is 
negative.) We may think of x as representing the interval IR by its midpoint, 
while x represents Ic by the end point closest to the origin. Thus, if we are 
given either x or x , we know only that x lies in a given interval of length

189
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so either x or x gives us the same amount of information about x. Similarly, 
the bounds for the relative error given in (6.1.1) for either rounding or chop
ping restrict p to an interval of length

The distinction between rounding and chopping is twofold. First, rounding 
gives us a smaller bound for the absolute value of the relative error introduced 
at a given stage in the calculation. This, in turn, may lead to a smaller bound 
for the error in the answer. The other distinction is that chopping always 
decreases the absolute value of x, while rounding may either increase or 
decrease |x|. In some situations, consistently chopping numbers may intro
duce a bias in the results which rounding would eliminate, i. See, for example, 
the quadrature problem in Section 4.1.) In other situations, the errors 
introduced by chopping may compensate.

However, even in the case in which the errors introduced by chopping tend 
to compensate, chopping usually will not produce a smaller bound for the 
error than rounding would. For example, suppose that we have a and b in 
S( 10, 6), and that

x a = 6.54321

y b = 1.11111. w

Suppose that we want to compute x — y, so we form

a - b = 5.43210.

If a and b are x and y, respectively, we find that

(6.1.2) a Q h — 10 5 < x — y < a Q b + 10 5.

But we find that (6.1.2) still holds if a and b are x and y. Thus, even though 
the errors introduced by chopping tend to compensate while the errors 
introduced by rounding might add, we still obtain the same bounds. On the 
other hand, if we had been interested in x + y instead of x — r, we would 
have formed a @ b ~ 7.65432. In place of (6.1.2) we would find

if a x and b = f, while

a@ b — 10 5 <C x + j’ < a ; b + 10 5

if a — x and b = j°. In each case x + y is known to lie in an interval of 
length 2* 10'5, but rounding produces a smaller bound for the absolute value 
of the error.
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6.2. USES OF ROUNDING

There are several ways in which rounding might be used in a program. In 
some cases, we might perform the entire calculation in FP( r,p, /?). In other 
cases, we might perform most of the calculation in some other system 
FP(r, p, n), with an occasional arithmetic operation performed in FP(r, p, R). 
Finally, we might use rounding when we shorten a number from double
precision to single-precision. The way in which rounding is used will depend 
to a large extent on what is provided by the hardware and software.

We are likely to perform almost all our floating-point arithmetic in 
whatever system I P(r, p, a) is supplied by the hardware or software of the 
machine we are using. This system probably will not be exactly FP(r, p, c) or 
FP(r, p, /?), but it is more likely to be a variant of chopping than rounding— 
particularly when the floating-point arithmetic is performed by the hardware. 
There have, however, been a few machines which provided a form of rounded 
arithmetic. For example, the CDC 6600 has operation codes which preround 
the operands. This produces a system I P(2, 48, a) which is different from 
FP(2, 48, /?) but which does provide some of the effects of rounding.

Rounded arithmetic is somewhat more common when the floating-point 
arithmetic is performed by software instead of hardware. Again, there are 
many variations in the details of the implementation of rounding but in some 
cases software has actually provided arithmetic in FP(r, p, /?).

We have seen that the advantages of rounded arithmetic are that it tends to 
produce smaller error bounds and that it tends to reduce bias. Although we 
shall use whatever system FP(r, p, a) is provided by the machine we are using, 
we would probably prefer FP(r, p, R) to FP(r, p, c if we were given our 
choice. The principal reason for the prevalence of chopped arithmetic is that 
it is easier to implement and it will probably be a little faster. Of course, in 
considering a given implementation of either rounding orchopping, there are 
other questions which must be considered. For example, we would have to 
explore the question of whether there are any anomalies in the arithmetic and 
the question of how it can be used for operations such as FLOAT to FIXED 
conversion and programmed double-precision arithmetic.

We shall now consider using rounding selectively. Suppose that we per
form almost all our arithmetic in FP(r, p, clq) but that we want to use rounded 
arithmetic in a few operations in the program. An example of this is the 
quadrature problem discussed in Section 4.1. In that section we discussed the 
idea of performing the entire calculation in FP(I6, 6, c/1) except for the 
accumulation of the sum S'. The only difference between the programs which 
produced the output shown in Figures 4.1.1 and 4.1.6 was that in the latter 
program the addition of terms to S was performed in FP(16, 6, R). From 
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these results we can see the advantage of inserting rounding at a few crucial 
points in the program. It is particularly advantageous on a machine on which 
it is easier to produce rounded results than to perform double-precision 
arithmetic. (This is not the case with the IBM System/360.)

Finally, we consider the problem of shortening a number from double
precision to single-precision. This situation arises when double-precision 
arithmetic is used selectively at a crucial point in the program. Suppose that 
X is typed single-precision, and we write 

(6.2.1) 

where the expression on the right-hand side of (6.2.1) produces a double
precision result D, With many FORTRANs, including those for the IBM 
System/360, this result D is chopped to single-precision and stored in X. That 
is, X — D. But our use of double-precision in (6.2.1) suggests that we were 
concerned about accuracy, so we might prefer to have the slightly more 
accurate value X = D . In the next section we shall discuss how this could be 
coded.

6.3. IMPLEMENTATION OF ROUNDING

We shall now address the question of how one can incorporate rounded 
arithmetic in his program. This will depend on the type of arithmetic provided 
by the hardware, and it will also depend on whether or not the language in 
which the program is being written provides a way to request rounding. I

We have mentioned that the commonest situation is for the hardware to 
provide some variant of chopped arithmetic. But some machines are more 
versatile. For example, the CDC 6600 has one set of operation codes which 
produce chopped arithmetic and another set of operation codes which produce 
a version oJ rounded arithmetic. With such a machine, the programmer who 
is using. Assembler language has his choice of which arithmetic to use, 
although this is not necessarily true for the programmer who writes his 
program in FORTRAN.

To produce a rounded result, we must look at the digits discarded. Sup
pose that we are using a machine which performs arithmetic in a system 
i P /*,/?, clq i and produces only the high-order p digits of the result. Unfor- 
tunately, there is no way we can use this number to produce the correctly 
rounded result. Somehow we must gain access to the digits discarded to find 
out whether or not what we discarded is as large as half a unit in the last place 
retained. We shall assume that r is even, since this is true on all machines 
currently in use. Then we need look at only the first digit discarded to see 
whether it is as large as r/2. Thus, if the hardware makes available one or more 
extra digits, we can program rounding—at least in Assembler language.
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Indeed, arithmetic in FP(r, p, A) can be produced by performing arithmetic in 
FP(r, p + 1, c) and then rounding the result to p digits.

Thus, if we want to perform rounded arithmetic on a machine which 
provides only chopped arithmetic, we are faced with the requirement of 
developing at least one extra digit in the result and then rounding the result to 
p digits. Usually this means that we S ave to develop the result in double
precision and then round it to single-precision. For example, suppose that we 
have a machine which performs arithmetic in FP(r, p, c) and that we want to 
compute

(6.3.1) 

in I P(r, p, /?). We first use an SSD add to produce the double-precision sum 
of the two single-precision numbers A and B, and then we round this sum to 
single-precision. There are some machines, for example, the IBM 7090, on 
which many of the single-precision operations are really SSD operations. 
Then rounding can be programmed quite cheaply —at least in Assembler 
language. But on other machines, for example, the IBM System/360, most 
single-precision operations produce only single-precision results, so rounded 
arithmetic takes longer than double-precision arithmetic. In that case, arith
metic in FP(r, p, R> usually would not be used for computational purposes, 
although it might be used for study purposes, as in our study of the quadra
ture program in Section 4.1.

As we saw in Chapter 5, the FOR I RAN coding to produce the SSD add 
needed in (6.3.1) would be

(6.3.2) D = DBLE(A)+B

where D is typed double-precision. To complete the operation in (6.3.1), D 
must be rounded to single-precision and stored in X. We saw in Section 6.2 
that rounding a number from double-precision to single-precision is of 
interest in itself.

Suppose that S and D are typed single-precision and double-precision, 
respectively, and that we want to round the value of D to single-precision and 
store it in S. First, we write the FORTRAN statement

(6.3.3) 

and we assume that this statement will store the high-order digits of D in S. 
(This will usually be the case, but it may not be true if the double-precision 
arithmetic is performed by software and the routines do not guarantee sign 
agreement between the high-order and low-order parts of the double-precision 
number.) Then the FORTRAN expression D —S produces the remaining 
digits of D, and if it does not vanish, it has the same sign as D and S. If
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| D —S| is less than one-half a unit in the last place of S|, S is the correctly 
rounded result; otherwise the absolute value o S must be increased by I in 
the last place. Thus, we want to increase the absolute value o S whenever 
2*| D—SI is at least I in the last place of |S|. This may be accomplished by the 
following FORTRAN statement:

(6.3.4) S S+2.*(D-S)

Since S contains the high-order digits of D, in place of (6.3.4) we could use the 
FORTRAN statement

(6.3.5)

If we are writing the program in Assembler language, we might use this 
same approach. On the other hand, some machines, such as the IBM 7090 and 
the IBM System/360 models 85 and 95, have an operation code which rounds 
a double-precision number to single-precision.

We shall now consider the question of how rounding can be supported in 
higher-level languages when we are working on a machine which does not 
perform its arithmetic in FP(r, p, /?). f irst, we should have in the language a 
function ROUND(D) whose argument D is a double-precision number and 
whose value is D rounded to single-precision. The result should be typed as 
single-precision. Since the coding for this function, is so simple, it should be 
incorporated as an in-line subroutine rather than as a call to a subprogram. 
PL । has the syntax for such a function, but instead o rounding D it uses the 
bias removal operation B(X) discussed in Section 6.4.

Performing all arithmetic in FP(r, p, /?) is more difficult. If the hardware 
provides only chopped arithmetic and delivers only the high-order p digits of 
the result, there is really no way to produce rounded arithmetic short of 
producing the double-precision result and rounding it to single-precision. On 
the other hand, suppose that the hardware operations for single-precision 
arithmetic are really SSD operations. We would like to be able to write

(6.3.6) ROUND(expression) 

and have the compiler round the double-precision number produced by the 
expression in the parentheses in (6.3.7) whenever the last operation used in 
producing this expression was an SSD operation. This facility was provided 
by the modifications to the FORTRAN compiler for the IBM 7090 made at 
the University of Toronto. [See Kahan (1965a, 1966).]

6.4. BIAS REMOVAL

We shall now turn to a procedure which we shall call bias removal. Another 
name for this procedure is the statistical round. When we compared rounding
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with chopping in Section 6.1, we noted that rounding had two el Teets— 
reducing the size of the maximum error and eliminating bias. The bias removal 
feature which we shall discuss here does not reduce the size of the maximum 
error, but it does tend to reduce or eliminate bias.

We shall assume that the radix r of our floating-point number system is 
even. I he bias removal procedure performs an operation which replaces a 
floating-point number x by a number which we shall designate by B(x). If 
x = 0, B(x) — 0. For x 0, B(x) forces the low-order digit of x to be odd. 
Thus, B(x) = x if x is zero or if the low-order digit of x is odd. Otherwise, 
B(x) is obtained from x by increasing the absolute value of x by I in thepth 
digit of the mantissa. If the radix r is a power of 2, this simply means that the 
low-order bit of the mantissa is set to 1 whenever x 0. Similarly, if we used 
the binary coded decimal representation for decimal digits in FP(10,/la), 
then whenever x 0 we produce B(x) by setting the one bit of the low-order 
digit of the mantissa to 1.

When the computation o B(x is performed by hardware, the operation 
usually turns out to be very fast because it does not propagate any carries. 
Also, the operation is sometimes quite easy to perform in software. For 
example, suppose that r is a power of 2 and that negative numbers are stored 
as sign and true magnitude. To compute B(x) we would first perform a test to 
see that x is not zero; then we would OR x with a word which is all zeros 
except for the low-order bit which is 1—at least if this operation is available 
on the machine.

In using bias removal, the basic approach is that instead of doing arith
metic in either FP r, p, c or FP(r, p, R). one uses bias removal in conjunction 
with chopping. That is, if we are given a real number x, then instead of brm- 
ing either x or x , we form B(xj. Now there are two different ways in which 
bias removal may be used. First, we might decide to use it in every arithmetic 
operation. Thus, we might define a system FP(r, /?, B) where the arithmetic is 
defined by

a @ b = B(a -f- b)

a A b = B\ a — b)

a * b — B(ab)

a 4- b — B(a!b)

and perform all arithmetic in FPfr, /?, B). On the other hand, we might want 
to use bias removal selectively. That is, we might decide to perform most of 
the arithmetic in, say, FP(r,/?, clq) but perform a few specific operations in 
FP(r, p, B).

Unless bias removal is used selectively, some care must be taken in its 
implementation. If every number x which arises in the problem is replaced by 
B(x! it is impossible to represent small integers exactly. (See Exercise 10.) 
This is extremely annoying. An alternative is to use a function B'(x) defined
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for all real numbers x by

B'(x) - x

B'(x) = B(x)

if x is in S(t\ p

if x is not in S(r, p).

That is, we shall represent x exactly if possible; otherwise we shall use B(x). 
We could then define a system FP(r, p, B ) by setting x @ y — B'(x + v/. etc. 
Such a system was implemented in hardware on the NORC (Naval Ordnance 
Research Calculator) built in the early 1950s. [See Eckert and Jones (1955). | 
NORC performed arithmetic in roughly the system FP(10, 13, B' >.

It is far more common for bias removal to be used selectively, performing 
an occasional operation in FP(r, p, B). We have noted that if we want to 
produce x , we have to see the first digit discarded. If the hardware provides 
some variant of chopped arithmetic and produces only the high-order p digits 
of the result, we cannot use this number to program arithmetic in FP(r, p, R). 
The advantage of bias removal lies in the fact that we do not have to look at 
the digits discarded. Thus, if the hardware performs an arithmetic operation in 
FP(r, p, c) and produces a result x, we can perform the operation in 
FP(r, p, B) by forming B(x).

The implementation O’ the ROUND function in the PL/I compilers for 
the IBM System/360 uses bias removal whenever the argument is a floating
point number. Thus, ROUND(x will form B(x). When this is used in con
junction with the chopped arithmetic of the IBM System/360, it allows us to 
perform arithmetic in (approximately ) the system FP(r, p, B). Since bias 
removal will be performed only when we write ROUND explicitly, there is no 
danger of changing numbers we wanted to be exact.

Let x be any real number and set x = B(x). If we write

r 1 <f m

then we also have

m

Here | m | is either | m | or | m | r p, so | m — m | < r~p. Then we may write

x = (l +p)x, |p|

We see that this provides the same bound for | p; that we would have had with 
chopping, but we no longer know the sign of p. Unlike rounding, bias removal 
does not reduce the size of the error produced by shortening x to p digits. In 
fact, the representation of x by B(x) gives us less information about x than x 
does, because it only restricts x to an interval of length 2re~p.

The advantage of B(x) is that its absolute value may be either too large or 
too small, so we tend to reduce bias. As an illustration of the effectiveness of
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this approach, we refer to the quadrature problem discussed in Section 4.1. 
We encountered difficulties there because we were adding a large number of 
terms of the same sign, so the sum got to be much larger than the terms. We 
saw that chopped arithmetic introduced a bias in the sum, so the sum con
sistently drifted below the correct value. In Figure 4.1.6 we saw that rounding 
produces a significant improvement in the answer. Similarly, in Figure 4.1.7 
we saw that bias removal produces about the same improvement. We conclude 
that the improvement produced by rounding was primarily due to the 
tendency to reduce bias. The fact that it introduced smaller errors was oi less 
importance. Thus, this is an example of a problem in which we would have a 
decided preference for performing arithmetic in 1 2,/;,/?) instead of
FP(2, p + 1, c), even though the two systems produce the same bound for 
the absolute value of the error introduced in any operation.

The improvement produced by bias removal in the quadrature problem of 
Section 4.1 is typical of many quadrature problems and of some differential 
equation problems. In problems of this sort, the tendency to reduce bias is 
the most important aspect of rounding, and forming l?(x) may be a satis fac
tory substitute for rounding. On the other hand, there are problems in which 
the smaller error bounds in FP(r, p, R) are used to produce highly accurate 
resu ts. For example, the program SQRT written by W. Kahan for the 7090 
at the University of Toronto claims that the error is never more than 
.50000163 units in the last place. Such accuracy could not be achieved without 
judicious use of rounding, and bias removal would be no substitute.

6.5. OTHER "ROUNDING" PROCEDURES

When we define the floating-point arithmetic operations, we are faced 
with the problem of approximating a real number x by a number x in S(i\ /?). 
By far the commonest approaches in digital computing are forms ofchopping, — o rounding, or bias removal. That is, the commonest choices for x are x, x , or 
B x). However, there are other approaches that could be used, and they might 
be useful in special situations.

First, we note that x has a slight bias because we round the magnitude 
upward whenever the digits discarded are exactly one-half a unit in the last 
place kept. There is a slight modification of our rule for rounding which is ■ —— oquite popular for hand computation. This approach defines x to be x unless 
there are two numbers in S(r, p) which are equally close to x. In that case, we 
let x be the one in which the low-order digit of the mantissa is even. This 
eliminates the bias introduced in our definition of x°. Although this rule is 
well known, it has seldom, if ever, been used for machine computation.

For any real number x, let x£ and xR be the left and right neighbors of x in 
S(r, p). That is, xL is the largest number in S(r, p) which is <x, and is the 
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smallest number in Sr,/?) which is >x. Then xL <Z x <C xR, and xL < xR 
unless x is in S(r, /?). We almost always want our approximation x to be one 
of the numbers x7, xR. Our definition of rounding specifies that x is the 
neighbor closest to x, with a special convention to handle the case in which 
xL and xR are equally close to x. Similarly, our definition of chopping 
specifies that x is the neighbor with smaller absolute value. This suggests 
other rules for selecting the neighbor we want. For example, we could define 
a rule antichopping which would always select the neighbor with larger 
absolute value. Similarly, we could define rules chop left and chop right which 
would always select the neighbor x7 and x*, respectively. (x7 and xR are often 
referred to as the floor and ceiling, respectively.) These rules could be useful in 
certain cases in which we want the error (or the relative error) to have a speci
fic sign. Another example of their use arises in the definition of interval 
arithmetic in Section 7.4. There, we shall want to round an interval outward.

In Section 6.4 we discussed the possibility of performing bias removal 
after chopping by forming Z?(x). Similarly, we can perform these other 
operations after chopping, although this will introduce additional error when 
x is in S(r,pv To facilitate these operations, it would be convenient to have 
the compilers support functions such as AUGMENT, DECREMENT, 
AUGMENT ABSOLUTE VALUE, and DECREMENT ABSOLUTE 
VALUE. These operations can also be useful in testing programs.

EXERCISES

L Write a program to shorten a double-precision number D to single-precision 
using the following rules. (In some cases you may have to use techniques 
discussed in Section 4.4.) 
a. Rounding.
b. Antichopping.
c. Chop left.
d. Chop right.
e. B(D).
f.
Let D and S be typed double-precision and single-precision, respectively, and 
suppose that we want to round D to single-precision and store it in S. In Section 
6.3 we suggested the FORTRAN coding

S = D
S = S+2.*(D-S)

What can we say about the result stored in S if our representation of double
precision numbers does not require sign agreement between the high-order and 
low-order parts?

3. There are other ways to round a double-precision number to single-precision.
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Suppose that D and 5 are typed double-precision and single-precision, respec
tively, and that we want to store D in S, \ D — 0, set 5 = D. If D is not zero, 
construct a double-precision number % having the same sign and characteristic 
as D, having a mantissa which is all zeros except lor the (p + ! )st digit, which is 
r/2. (Clearly X is unnormalized.) Form

5 = D@X,

where the operation © is performed in double-precision. If’our representation 
of double-precision numbers requires sign agreement and requires that the two 
parts of the number be nonoverlapping, this coding will store D in 5*.
a. Will this coding store D in S on the machine you are using?
b. Why must zero be handled specially?
c. Write a program to perform these operations. I you wish to write the 
program in a higher-level language, use the techniques described in Section 4.4. - □

4. Suppose that we want to form A + B , where A and B are in 5(r, pj. We first 
perform a test and interchange A and B i |B|> Then, using the 
FORTRAN coding studied in Section 4.3, we write

S = A®B

T = BQ(S - A)

S - S © 2. * T.

We consider different systems in which the operations @, ©, and * may be 
performed. In which of the following systems will this coding produce A + B ? 
a. FP(r,p,c/l).
b. FP(r, p, c).
c. FP(r, p, c/0 .
d. FP(r, /?, R).
e. rhe floating-point number system provided by the machine you are using.

5. Suppose that we want to perform addition using bias removal. Write a 
program to produce the following quantities:
a. B(X + T).
b. B'(X + T).

6. Write a program to solve the quadrature problem discussed in Section 4.1. 
For the computation of X use I*H and (I+1)*H. Perform the addition of 
terms to S in the following systems:
a. FP(r, p, /?).
b. FP(r, p, B).

7. Convert the programs written for Exercise 6 to double-precision.
8. Write a program to solve the quadrature problem discussed in Section 4.1. 

Compute X by repetitively addiqg H. Perform both the addition of terms to 
S and the addition of H to X in tne following systems:
a. FP(r, p, A).
b. FP(r, p, B).
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9. Convert the programs written for Exercise 8 to double-precision.
10. Consider the system FP(r, p, B).

a. If we represent the integer n by B(n), show that

b. Suppose that x = B(2). Is x * x the same as x © x?
11. Let x be a real number and let x be the number in S(r, p) obtained from x by 

one of the following rules: chopping, antichopping, chop left, chop right. Let

and

Which of the rules will guarantee that 
a. 6 > 0.

c. p > 0.
d. p < 0.

12. Write a program to use the Runge-Kutta method to solve the differential 
equation y' = y for 0 < x < 1. Take >•(()) = 1 and print only y(l). Run the 
program using 2Y steps, for N = 0, 1,2,..., 12. Run three versions of the 
program, performing the arithmetic in the following systems:
a. FP(r, p, c).
b. FP(r, /?, /?).
c. FP(r, p, B).



AUTOMATIC ANALYSIS 
OF ERROR

7.1. INTRODUCTION

In this chapter we shall study several approaches which have been used to 
try to let the computer assist us in the analysis of error. With these approaches, 
we ask the computer to produce both an answer and an indication of how 
accurate the answer is. As we shall see, none of these approaches is a panacea. 
They have not yet reached the point at which we can recommend that they be 
used in place of floating-point arithmetic as the normal computing procedure. 
But each of these approaches has its advocates, and they have succeeded in 
producing reasonable error estimates.

Getting the computer to give us an indication of the accuracy of the 
answers it produces is a major problem facing the computer profession. There 
are a few subroutines for which detailed error analyses have been performed 
manually, but such programs are distressingly rare. Far too often, we have 
little idea of how accurate the answer is. Since the difficulty of performing an 
error analysis increases as the complexity of the problem increases, this 
situation is not likely to change. It appears that our only hope is to get the 
computer to produce a reliable error estimate.

At first glance it might appear that we are carrying so may extra digits in 
the calculation that we could ignore the loss of accuracy. But, as we saw in 
Section 5.9, we may produce bad results if we are using an algorithm which is 
sensitive to rounding error. In Section 4.2 we studied the use of the power 
series to compute e~x and sin a*, and we observed extreme loss of accuracy in 
a reasonably well-conditioned problem. We would like to be warned of this 
loss of accuracy by an error analysis.

Another reason for the importance of an error analysis is that we do not 
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observe what is happening in the calculation. Suppose that our algorithm
requires us to form x y, and for one set of input data x and y are nearly 
equal. Then errors in x and y may produce large relative error in x — y. If we 
were performing the calculation by hand, we would observe this loss of 
accuracy and know that we have to worry about the accuracy of the answer. 
But when the calculation is performed by a machine, we do not see the 
intermediate result, so we do not get any warnings.

It seems likely that this problem will be magnified as time goes on. The 
use of formula manipulation languages, such as FORMAC, is growing. It is 
reasonable to expect that the ability to manipulate formulas will be incor
porated into some future compilers. Then we might code a formula for a 
function /(x, y) and ask the compiler to produce the code for, say, d3f/(dx2 dy). 
Since we would not see the formulas the computer was using, we could not be 
expected to know whether the formulas were sensitive to rounding errors. 
Our only hope would be to have the computer estimate the error.

Thus, the problem of producing an automatic error analysis is extremely 
important. We shall discuss some of the approaches which have been used in 
attempts to solve this problem, and we shall try to show the difficulties 
inherent in each approach.

None of these techniques can be used blindly. Rather, they are tools that
we can use to try to write programs which will give us both numerical results 
and a reasonable estimate of their accuracy. In many cases, we shall have to 
modify the algorithms we are using in order to produce good results with these 
tools. Unfortunately, we are not yet able to produce reliable error estimates 
automatically and painlessly.

In Sections 7.2, 7.3, and 7.4, we shall discuss three different techniques 
which address this problem. Each of these techniques involves replacing the 
standard floating-point arithmetic by slightly different operations. The modi
fied arithmetic is usually performed by subroutines, but there have been some 
machines on which it was performed by the hardware. For example, the IBM 
7030 provided noisy mode, and the Maniac III provided significance 
arithmetic.

7.2. SIGNIFICANCE ARITHMETIC

Significance arithmetic is a technique for the automatic analysis of 
rounding error which has been studied by Metropolis, Ashenhurst, and 
others. Its best known implementation was in the Maniac III, where one had 
the option of using either significance arithmetic or normalized arithmetic. 
[See Ashenhurst (1962).] But it has also been provided on other machines. For 
example, it was implemented on an IBM 7090 at New York University by 
installing a special feature. [See Goldstein (1963).]
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With significance arithmetic, we use unnormalized numbers throughout 
the calculation. The ob ective is to represent each number with enough 
leading zeros so that the remaining digitswill be significant. Then the appear
ance of the number will tell us how many significant digits it has. The 
arithmetic operations must be modified so that they will produce an unnor
malized result with the correct number of leading zeros. This is fairly easy to 
implement for addition and subtraction, since it merely means that we omit 
postnormalization. For multiplication and division, the rules are based on the 
idea that the answer should have as many leading zeros as the least significant 
operand. Naturally there are slight variations in the way these rules have been 
implemented on di erent machines, but they usually require only modest 
changes in the way floating-point arithmetic is performed.

Ashenhurst (1964) discusses the design of function subroutines to be used 
with significance arithmetic. The objective is to produce an answer whose 
significance is determined by the significance of the input and the condition of 
the problem. For example, suppose that we want to compute ex. As we saw in 
Section 3.7, the relative error in ex due to a relative error p in x is approxi
mately px. We may use the number of significant digits in x to estimate /?, and 
then use the value of px to determine how many significant digits ex has. A 
similar approach may be used for other functions. We would also want 
special programs for radix conversion. They should produce an unnormalized 
result with the correct number of significant digits. [See Metropolis and 
Ashenhurst (1965)*]

Thus, to use significance arithmetic, we want to change both the arithmetic 
and the library programs. Following this approach, the advocates o signifi
cance arithmetic have produced good results.

Unfortunately, significance arithmetic has several drawbacks. Indeed, the 
objections raised in ( hapter 3 to the use of significant digits as a measure of 
accuracy apply here. First, as we saw in Section 3.1, the discreteness of the 
number of significant digits poses a problem, and this is particularly pro
nounced when the radix is large. As a consequence, most implementations of 
significance arithmetic have been on binary machines.

A second drawback is that there is no guarantee that the estimate of 
accuracy produced by using significance arithmetic is correct. Thus, if our 
answer is .00054321 x 106, there is no guarantee that five ( or even two) of the 
digits are significant. (Of course standard floating-point arithmetic gives us no 
indication at all of the accuracy of the answer. But since the objective of 
significance arithmetic is to tell us how accurate the answer is, it is disap
pointing that it cannot guarantee that the digits it produces are accurate.) 
However, experiments such as those described by Ashenhurst (1965b) show 
that when significance arithmetic is used carefully, it will often give a good 
indication of the accuracy of the answer.

The exact behavior of significance arithmetic will depend on the details of 
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its implementation. But if it used chopped arithmetic, it would almost surely 
I ail to assess the decay of the answer to the quadrature problem of Section 4.1. 
The answer would not be as accurate as significance arithmetic would lead us 
to believe.

A more serious disadvantage of significance arithmetic is that it causes us 
to introduce larger errors at each step in the calculation. Depending on whether 
we use chopped or rounded arithmetic, the error introduced by an arithmetic 
operation is bounded by either one unit or one-hall a unit in the last place 
kept. Since we retain I ewer digits of the answer when we use significance 
arithmetic, the errors are larger. Indeed, the new error introduced at each 
step is of more or less the same order of magnitude as the inherited error. 
Thus, significance arithmetic uses the rule mentioned in Chapter 3 which 
suggests that we should develop only those digits that we can guarantee are 
significant. In Section 3.5, we considered the computation of

n

for arge n. We saw that if we shortened the precision as the propagated error 
increased, we would needlessly damage the answer. But significance arith
metic must shorten the precision in this way if it is to estimate the error in the 
computation of (7.2.1). Therefore, we may expect it to produce a less accurate 
answer. This is the price we pay for getting an estimate of the error.

Although we may be willing to sacrifice a little accuracy to get an indica
tion of how accurate the answer is, we would like to limit this loss of accuracy. 
One way to do this was proposed by Gray and Harrison 1959).t They use 
normalized floating-point numbers, but along with each number they carry an 
index of significance which indicates how many of the digits are significant. 
With this approach, we would set aside a few bits in the word for the index of 
significance, and we would modify the floating-point arithmetic so that it 
would produce both the answer and its index of significance. Thus, if we were 
using a machine which performed arithmetic in FP< 2, 48, a), we would set 
aside six bits for the index of significance and perform arithmetic in 
FP(2, 42, a). This would sacrifice six bits, but never more than six bits.

A final difficulty with significance arithmetic arises in situations such as 
those described in Section 3.11. In that section, we considered the transforma
tion of a problem into another problem having the same answer. The crucial 
question was whether the answer to the new problem was close to the answer 
to the original problem. We discussed two problems in which it was important 
to compute the new coefficients to full precision, even though this involved 
the division of a number with eight significant digits by a number with two 
significant digits. We could compute a good answer to these problems with 
normalized arithmetic but not with the unnormalized form of significance

fThis was implemented in FLIP at Argonne National Laboratory. 
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arithmetic. We could also compute a good answer by using the version of 
significance arithmetic based on an index of significance, but the index of 
significance would mislead us by indicating that the answer was rather poor.

Finally, we point out that significance arithmetic suffers from the simul
taneity problem, which will be discussed in Section 7.4.

7.3. NOISY MODE

Some machines, for example, the IBM 7030, have provided noisy mode in 
addition to the normal floating-point arithmetic. Performing the floating
point arithmetic in noisy mode changes the digits which will be shifted into 
the answer when postnormalization is required. To use noisy mode, we per
form the calculation twice, first in the normal mode and then in noisy mode. 
The extent to which the two answers agree is taken as an indication of the 
accuracy of the answer.

The details of the implementation of noisy mode may vary Tom machine 
to machine. Usually, noisy mode changes the answer only when postnor
malization is required. To illustrate a typical implementation ol noisy mode, 
we shall consider an example in FP("10, 8, a). Let

(7.3.1) x = 1234.5678

v = 1234.4321

and suppose that we want to form z = xQy. In either FP(10, 8, c) or 
FP(10, 8, Jf), the value of z would be .13570000. Here the result had to be 
shifted four places to the left to postnormalize it, and we shifted in four zeros. 
If x and y are known only approximately, we really do not know what digits 
should be shifted in. In noisy mode, we shiT in 9s instead of zeros, so the 
value computed for z would be . 13579999. Thus, the idea of noisy mode is to 
insert “noise” when we are uncertain of what the digit should be. We hope 
that this noise will propagate in about the same way that the errors introduced 
by normal floating-point arithmetic do, so the change in the answer will give 
us an indication of how accurate our answer is.

If the subtraction described above had been performed in the base r, the 
digits shifted in would have been (r — 1 s instead of 9s. In general, when the 
arithmetic is performed in noisy mode, the digits shifted in during postnor
malization are the (r — l)’s complements of the digits that would have been 
shifted in by the normal floating-point arithmetic. This definition can also be 
used for multiplication and for addition and subtraction when the operands 
have di Terent characteristics. The el ect o ' noisy mode on division may vary 
considerably from one implementation to another. One approach is to extend
the dividend by appending several digits of r — 1 )s to it before dividing. 

When noisy mode is provided by the Ttardware, there must be a way to 
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specify whether we want noisy arithmetic or normal arithmetic. If there were 
separate operation codes for noisy arithmetic, we would have to change the 
floating-point instructions in order to rerun the program in noisy mode. It 
would be much more convenient if we could simply specify that the machine 
should operate in noisy mode until we tell it to change back to normal mode. 
Thus, we would like to tell the computer to “enter noisy mode" and have it 
perform all floating-point arithmetic in noisy mode until we tell it to “leave 
noisy mode." (This is approximately the way noisy mode was handled in the 
IBM 7030.)

The cost that we pay for using noisy mode is running the problem twice. 
But the results produced by the normal run of the program have not been 
damaged.

Unfortunately, there is no guarantee that the true answer lies between the 
results produced in noisy arithmetic and normal arithmetic. As a simple 
example, consider the computation of z = x Q y, where x and j are given by 
(7.3.1). For these data, the result produced for z using noisy mode is x — 
where x = 1234.56789999. However, it is possible that the correct value for z 
is x — y, where j = 1234.43219999. But in this case, the correct value for z 
would be .13560001. Thus, we may have inserted noise in the wrong direction. 
Indeed, experiments show that noisy mode may either overestimate or 
underestimate the error. Nevertheless, it has been used successfully to produce 
an indication of the accuracy of the answer.

If noisy mode is supported by the hardware in the manner described above, 
it is quite easy to control the mode of the arithmetic. Suppose that we are 
coding in FORTRAN. We would want a subroutine NOISY which we could 
call when we wanted to enter or leave noisy mode. This subroutine would 
have to be written in Assembler language, but it could be called by FORTRAN 
programs. The call would have the form

CALL NOISY (J)

where J is an integer. Then NOISY would enter noisy mode if J is 1 and leave 
noisy mode if J is 0. If J is neither 0 nor I, NOISY would not change the mode, 
but it would set J to 0 or I to indicate which mode the machine is in. With 
such a routine it would be easy to rerun the problem in noisy mode, and we 
could even write a DO loop to execute the program twice, first in normal mode 
and then in noisy mode. Then we could compare the answers before printing 
them.

If noisy mode is supported in this way, it is easy to incorporate it in a 
program. But we may have to exercise care in using it. The difficulties which 
can arise depend on the details of the floating-point arithmetic and on how the 
compiler handles various operations. As an illustration, consider the 
FORTRAN statement

I

*
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I his requires that the integer I be converted into a floating-point number and 
stored in X. There are various ways to do this, but a common approach is to 
begin by constructing an unnormalized floating-point number whose 
exponent is p and whose mantissa is On many machines this can be 
accomplished by inserting the appropriate characteristic in the high-order 
digits of the word.) Then this number is normalized by adding zero to it. 
Suppose that this approach is used on an eight-digit decimal machine. If I has 
the value 2, we first construct the unnormalized number .00000002 x 108, 
and then we add zero to it. But when the addition of zero is performed in 
noisy mode, it will produce the number 2.9999999. Since the integer I is 
usually exact, this value for X is unacceptable. It can lead us to produce a 
ridiculous answer when the problem is run in noisy mode. Thus, noisy mode 
does not always give us a good indication of the accuracy of our answer.

Noisy mode cannot be used blindly. We must examine the library to see 
whether the library subroutines will produce acceptable results when they are 
run in noisy mode, and we must understand when the compiler will compile 
floating-point instructions. It is quite likely that we shall encounter difficulties 
unless the compiler was specifically designed to compile programs that will 
run in both the normal mode and noisy mode.

7.4. INTERVAL ARITHMETIC

The use of interval arithmetic has been studied extensively by R. Moore, 
E. Hansen, and others. [See Moore (1966).] Although it has been used on 
many different machines, it has been implemented by calling subroutines 
instead o' by hardware operation codes. The basic idea is that each number x 
in the calculation will be represented by an interval (xu x2), where x1 and x2 
are chosen in such a way that we can guarantee that Xj < x < x2. Thus, if we 
have an approximation x for x with |x — x| < 6, we would represent x by 
the interval ex — 6, x + 6) instead of by the number x. We shall require that 
x2>x], but we shall allow the use of the degenerate interval (x, x) to 
represent a number which is known exactly.

Throughout the calculation we deal with intervals instead of numbers. Our 
objective is to represent the answer y by an interval j’], y2) with < j? < y2. 
If the interval ( r,, r2 ) is small enough, the midpoint of the interval provides a 
good approximation i'or r. For example, if y were represented by the interval 
(1.2345612, 1.2345678), we could approximate y by y = 1.2345645. Then we 
would have | y — j | <C .33 x 10 6. If the interval were large, say (7, 29), we 
would get little information about r, but we would know that we did not have 
a good approximation for y. By contrast, if we were using normal floating
point arithmetic, we would produce a number, such as 12.345678, and have 
no indication of its accuracy.

In Sections 7.2 and 7.3 we saw that both significance arithmetic and noisy
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mode might overestimate the accuracy of the answer. But when interval 
arithmetic is carefully implemented and carefully used, it is possible to 
guarantee the result. That is, we can guarantee that if the answer y is repre
sented by the interval (j,, j2), then 7, < y < In this respect it is superior 
to either significance arithmetic or noisy mode, and this is one of the reasons 
for its receiving wider use.

When we use interval arithmetic, we perform arithmetic operations on 
intervals instead of on numbers. For example, instead of adding two numbers 
x and we “add" the intervals (xH x2) and (jj, ) to produce an interval 
(zJ5 z2) such that zx < x + j < z2 holds if x, < x < x2 and yx < y < y2. 
The natural definitions for addition and subtraction are

Similarly, the natural definition for multiplication is

(7.4.2)

For example, if X| and are positive, we have

and if X] < 0 < x2 but 0 < we have

Similar definitions hold for the other cases. We do not define the division of 
(Xj, x2) by (j’j, j’2) if zero lies in the interval (j2). Otherwise, we would like 
to define division by

(7-4.3)

But we cannot use the definitions (7.4.1)—(7.4.3) directly, because the 
number of digits required to represent the end points of the intervals would
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grow too rapidly. Instead, we shall use only intervals whose end points are 
floating-point numbers. Since we want to be able to guarantee that the answer 
lies in the interval we have produced, the arithmetic operations will be defined 
by rounding the intervals on the right-hand side of (7.4.1 )-(7.4.3'i outward. 
For example, in place of (zn z2) in (7.4.2) we use the interval (wn w2), where 
Wj is the largest number in S(r, p) which is <zn and w2 is the smallest 
number in S(r, p) which is > z2. The other operations are defined similarly.

We shall now consider the library programs which compute functions such 
as sin x or ex. When we are using interval arithmetic, the argument will be an 
interval (x1? x2i, and the answer will be an interval (y,, j’2). For the function 
/(x), we would like to have and j2 defined by

(7.4.4)
j’j = min /(x)

<X<A*2

y2 = max /(x).
A 1 < X < X 2

As above, the interval J2) *s rounded outward to make the end points 
floating-point numbers. If the function /(x) is monotonic, the numbers in 
i 7.4.4) are quite easy to compute. For example, for the function ex the result is 
the interval (ex\ eX2). But when the unction f(x) is not monotonic, the 
calculation of and y2 in (7.4.4) may be more complicated, if the argument 
for the sine function is the interval (1.5, 1.6), we would like to produce the 
interval (sin 1.5, 1) as the answer. Thus, even for simple ('unctions we may have 
to perform some tests to compute the values in (7.4.4). We would like to have 
an interval library which would contain function subroutines which would 
produce these values.

The principal problem with interval arithmetic is that we may produce 
intervals which are so large that the midpoint is not a good approximation for 
the answer. If we want four decimal digit accuracy in the answer, we have to 
produce an interval (j,, ) whose end points and j2 differ by at most 1 in
the fourth digit. But as we shall see below, there are situations in which we 
may produce a very large interval, say (.5, 2), even though normal floating
point arithmetic would produce a good answer.

Interval arithmetic suffers from some of the same problems that arise in a 
manual error analysis. The bounds we obtain for the errors are based on the 
assumption that we have incurred the worst possible error at every step. But 
in practice we are usually more fortunate, so the bounds tend to be larger 
than the errors we produce in a typical calculation. This is an inherent 
property of a rigorous error analysis.

A much more serious problem is that we may produce a bound which is 
larger than it need be. The objective of an error analysis is to produce a bound 
which is reasonably close to the smallest rigorous bound. Unfortunately, 
interval arithmetic has a tendency to produce intervals which are larger than
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necessary. Suppose that a quantity x enters the calculation in more than one 
place and that the errors it introduces tend to compensate. Interval arithmetic 
usually does not recognize the fact that x must have the same value at every 
point in the calculation, and this makes it produce too large an interval Tor 
the answer. This is known as the simultaneity problem.

To illustrate this problem we shall consider an example. Suppose that we 
want to compute

(7.4.5)

and that x, j*, and z are represented by the intervals (x1?x2), 
(Zj, z2), respectively.

Then (7.4.5) will be replaced by

and

(7.4.6)

Suppose that the data are

(7.4.7) (x„x2) = (l,2) 

(yltJ2) = (.01,-02) 
(z,, z,) = (.001, .002).

Then the numerator of (7.4.6) is the interval (1.01,2.02), and the denominator 
is (1.001,2.002), so

(7.4.8) (w’>, M’J (1.01, 2.02) 
(1.001, 2.002)

Then (w,, w2) is the interval

1.01 2.02 \
2.002' 1.00 J

rounded outward. If we use eight-digit decimal arithmetic, this yields

(7.4.9) (.50449550, 2.0179821).

But i' we write (7.4.5) in the form

our interval formulation becomes

(7.4.10)
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Here (j\, y2)l(x^ x2! = (.005, .02), so the numerator is the interval (1.005, 
1.02). Similarly, the denominator is (1.0005, 1.002), so (w,, w2) is the interval

1.002 1.0005

rounded outward. This yields

(7.4.11) Or,, w2) = (1.0029940, 1.0194903)

which is a much better answer than (7.4.9).
When we used (7.4.6), we first reduced the problem to the calculation 

(7.4.8). The upper bound for iv was obtained by dividing the largest numera
tor, 2.02, by the smallest denominator, 1.001. If the numerator in (7.4.8) is 
2.02, x must be 2. But if the denominator is 1.001, x must be I. Clearly x 
cannot have these two values simultaneously, so it is impossible for the worst 
case in the division in (7.4.8) to arise. Since our interval formulation of the 
problem (7.4.5) discarded the fact that x must have the same value in the 
numerator as it does in the denominator, we really computed 

where u/,, w2) = (1,2) and the other intervals are given by (7.4.7). Even the 
formulation in (7.4.10) suffers slightly from the simultaneity problem, because 
we do not use the fact that x must have the same value in the two places it 
appears. Therefore, (7.4.1 1) does not yield the best bounds for w.

Unfortunately, it is not simply a matter of finding the best formula to use. 
Suppose that we want to solve the same problem, but with the data

(7.4.12)

(x1? x2) = (.001, .002)

(v,, v2) = (1.001, 1.002)

z2) - (1.001, 1.002).

Then both the numerator and the denominator of (7.4.6) are represented by 
the interval (1.002, 1.004), so (vv,, w2) is the interval

1.002 1.004
1.004’ 1.002

rounded outward. This yields

(w1} Vv2) = (.99800796, 1.0019961).

But if we use the formulation (7.4.10) with the data in (7.4.12), we find that
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O’^J-2 (*n x2) = (500.5, 1002), so the numerator is the interval (501.5,10031. 
We get the same interval for the denominator, so

vv 501.5 1003
1003 ’ 501.5

For these data, (7.4.6) gives a much better answer than (7.4.10) does.
Thus, we cannot reject (7.4.6 and always use 7.4.10). Which of these 

formulations we should use depends on the data, and if we select the wrong 
one, we may produce an interval which is very much larger than necessary.

If the calculation of iv in (7.4.5 > were the crucial point in the program, we 
might use the approach we discussed for the function subroutines in the 
library. This would be more work, but it would overcome the simultaneity 
problem. We would set

and write a program to compute w, and w2, where

(7.4.13) n’t = min/(x, z),
(7.4.14) iv2 = max/(x, j’, z),

As an illustration, we shall consider the case in which x1? and are all 
positive. 1 Programming the general case forms Exercise 3.) Then

mm 

max

Since the derivative of (x |- a')!(x + b) is (b — d)/(x + b)\ it ollows that

We may use a similar approach to find irt. For the data in (7.4.7), this yields 
the interval

(iv,, M’2) (1.0039960, 1.0189811).

This shows that even the interval in (7.4.1 I ) was larger than necessary.
Thus, although interval arithmetic gives us guaranteed bounds, it has a
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tendency to produce intervals which are too large. When it is used carefully, 
it can be quite effective. [See Moore 1965a).] However, it does not appear to 
be a panacea which will replace floating-point arithmetic as the standard 
computing procedure.

We need two floating-point numbers to represent an interval, so interval 
arithmetic doubles the storage required to hold the data. It also makes the 
arithmetic more complicated. In these respects it is quite similar to double
precision arithmetic. Indeed, when we use interval arithmetic we are faced 
with the same programming problems that face us when we use double
precision arithmetic with a compiler which does not support the double
precision data type. Therefore, we can use the techniques discussed in Section 
5.7. Arithmetic statements must be replaced by subroutine calls, and we must 
use some technique to allocate two words for every variable, ft is often 
convenient to use an additional subscript for this purpose, or we may be able 
to use the COMPLEX data type. A ew compilers have supported the data 
type OTHER, which has proved to be very effective for interval arithmetic.

7.5. RERUNNING THE PROGRAM IN
HIGHER-PRECISION

Each of the approaches to automatic error analysis discussed in Sections 
7.2, 7.3, and 7.4 has been used successfully, but none of them has acquired 
wide usage as yet. As we saw, they had to be used with care. It is to be hoped 
that we shall learn more about the use of techniques such as these, so that it 
will be easier to use the computer for the automatic analysis o error.

Presently, the commonest way to use the computer to study the accuracy 
of our answers is simply to rerun the program in higher-precision. Suppose 
that our original answer was and that when we reran the program in 
higher-precision we produced an answer y2. Our ob ective is to determine the 
accuracy of yn and for this purpose we need to know only the first two or 
three decimal digits of the error. Therefore, if y2 is accurate to at least two or 
three more decimal places than y, is, we can use yt — y2 and(y, — y2 )/y2 to 
estimate the error and the relative error in yt.

The use of this approach is based on the assumption that running the 
program in higher-precision will produce a more accurate answer. While this 
will generally be true, there are several situations in which it may ail to hold. 
First, the error in the answer may be due primarily to errors in the data. Then 
the answer would not be improved by increasing the precision of the calcula
tion. By contrast, both significance arithmetic and interval arithmetic offer us 
a way to study the effect that noise in the data has on the answer. Another 
reason that increasing the precision might not increase the accuracy o the 
answer is that our program might have used approximations which are not
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accurate to higher-precision. Increasing the precision cannot correct errors 
due to such approximations. Rather, it is a technique i or studying the effect 
that rounding error lias on the answer. The question of whether this approach 
will provide a good measure of this effect will be discussed below.

A second assumption is that it is easy to rerun the program in higher- 
precision. This may or may not be true. The conversion of a FORTRAN or 
PL/I program from single-precision to double-precision was discussed in 
Section 5.1. We saw that it is easy to overlook one variable or constant in the 
program and produce a result which is good to only single-precision accuracy. 
A more difficult problem arises if the compiler does not support the high- 
precision data type. Then we have to use the techniques discussed in Section 
5.7.

We shall now turn to the question of whether rerunning the program in 
higher-precision will produce a more accurate answer. To avoid the problems 
described above, we shall assume that the data are known to as many places 
as we need and that any approximations used in the program are accurate to 
the highest precision we use. Then increasing the precision of the arithmetic 
will usually increase the accuracy of the answer, but we cannot guarantee that 
it will do so. Indeed, we shall give examples of situations in which it does not. 
Fortunately, such situations are quite rare. In most instances, rerunning the 
program in higher-precision will provide a good estimate of the effect of 
rounding error.

To study the effect of precision on the accuracy of the answer, we shall 
select a problem whose answer is known and solve it in FP(r, p, c) for several 
values of p. The accuracy of the result y produced by the program will be 
determined by comparing it with the correct answer y. We shall plot d versus 
p, where d is the number of correct digits in y.

There are several ways to perform such experiments. On some variable 
word length machines the number of digits in the floating-point numbers can 
be specified at the beginning of the compilation. Then we can simply recompile 
the program specifying different values for p. But more often we have to use 
subroutines to produce results we want. For examp e, we can code subroutines 
to perform addition, subtraction, multiplication, and division in FP(r,p, c), 
where p is specified by the user.

We shall adopt a somewhat different approach. Suppose that FP(r, pmax, 
clq) is the highest-precision arithmetic supported by the machine. We shall 
perform the arithmetic operations in FP(r, p[Tiax, clq) and then chop the results 
to p digits. Then we are really performing the arithmetic in FP(r, p, clq'), 
where q' — q + /?rnax — p. All variables will be declared to have the precision 
prnax, and we shall have to write a special subroutine CHOP which will chop a 
number X to p digits, replacing the low-order /?max — p digits by zeros. 
Instead of writing a FORTRAN statement such as X — A + B + C, we 
must write
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X — A+B

CALL CHOP (X)

X = X+C

CALL CHOP (X)

CHOP should be written in such a way that the value ofp can be specified by 
calling it with a different entry point.

The subroutine CHOP can also be used to handle input data. We may 
enter numbers with an accuracy of/?max and then chop them to p digits. We 
can even use this approach for library programs such as SIN(X) and 
SQRT(X). To avoid having to write />-digit versions of these subroutines, we 
shall simply call the version of the subroutine lor the precision pmax and then 
chop the result to p digits. Since the subroutine used arithmetic with the 
precision /?max, this may produce a slightly better result than we would expect 
to produce on a /2-digit machine. But it will be a reasonable result, and with 
this approach we do not have to rewrite the library for each precision p.

Our objective is to plot d versus /?, where d is the number ol correct digits 
in the answer. We would expect to produce a graph such as the one shown in 
Figure 7.5.1. For each digit we add to the precision of the arithmetic, we 
expect to get one more digit o:i accuracy in the answer, so we expect the points 
to lie on a straight line with a slope of 45°. If the x intercept of this line is a, 
we have lost a digits of accuracy in the calculation. This is a measure of the 
condition of the problem.

However, the points will not fall exactly on a straight line. One reason or 
this is the discreteness of the number of correct digits in the answer. To 
overcome this difficulty, we shall use a continuous measure of accuracy.

Figure 7.5.1
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Suppose that the correct answer is y and that we have produced a value y. 
We let

(7.5.1)

and note that — logr 6 has the property that it is increased by I when 6 is 
divided by r. To produce a measure of the number of correct digits in y, we 
determine e such that

and set

(7.5.2) d = e + logr .5 — logr c.

I ff is one-half a unit in the /th position of y, we have c — so d — /. Then 
the integer part of d is the number of correct digits in y, and (7.5.2) gives us a 
continuous measure of the accuracy of y.

The question of how to measure the number of digits of accuracy in the 
answer becomes more complicated when we consider a program whose output 
is several numbers instead of one. For example, a matrix inversion program 
produces /r numbers, and some of these numbers will be more accurate than 
others. Usually it is best to use an appropriate norm to measure the accuracy 
of the answer. In our discussion here, we shall consider only programs that 
produce a single number as the answer.

We first consider two simple problems to illustrate the way our results may 
depart from the behavior shown in Figure 7.5.1. Let y = and y = I 4- 47. 
When the arithmetic is performed in FP(16,p, c), we produce the results 
shown in Figure 7.5.2. This is about the sort of behavior we would expect. The 
points do indeed follow the line quite well, but they do not lie exactly on the 
line. The variations from the line are due to variations in the digits chopped. 
The sixth hexadecimal digit of is zero, so we produced the same results 
using six digits as we did using five digits. Thus, we cannot guarantee that 
increasing the precision of the arithmetic will increase the accuracy of the 
result.

We next consider a problem in which the behavior is a little more erratic. 
Let

(7.5.3)

To compute y, we set

A = 1 4- 7

B = 68 4- 483

C - 70 4- 483
y = (A * A) Q (B * C).



sec. 7.5 RERUNNING THE PROGRAM IN HIGHER-PRECISION 217

Figure 7.5.2

Figure 7.5.3 shows the results produced when this calculation was performed 
in FP( 16, p, c). The numerical values for d were

p d

4 .42
5 2.64
6 2.64
7 4.00
8 6.37
9 5.38

10 6.47
11 8.11
12 8.48
13 9.96
14 12.46

Of particular interest is the fact that we lost one digit of accuracy by increas
ing the precision from eight digits to nine digits.

To see how this loss oi accuracy can happen, we examine the calculation 
of y more closely. Let

u

= u — v. Also, let
u = A * A
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Figure 7. 5.3

so y = u 0 v. We have used chopped arithmetic in the calculation of u and
r, so it < u and v < v. Write

Then

(7.5.4)

U — li + 6j,

V = V + 62,

We expect the number of digits accuracy in w and v to behave more or less 
like the graph in Figure 7.5.2. When p is increased by 1, we expect and 62 to 
be decreased by about a factor of 16. This does indeed happen when p is 
increased from 8 to 9. But the errors 6; and c2 are both nonnegative, so they 
tend to compensate. For p ~ 8, 6! and 62 arc nearly equal, so |ft — e21 is 
about as large as either 6, or e2. Whenp is increased to 9, 62 is decreased 
by more than a factor of 16, so 6 162|. Even though e2 has been decreased
by a factor of almost 16, it is still about 16 times as large as 6 was for p — 8. 
Thus, the decrease in accuracy when p is increased Tom 8 to 9 is due to the 
fact that the errors and e2 in (7.5.4) almost compensate when p is 8, so the 
answer is more accurate than we would expect it to be.

In spite of the unexpected behavior when we increased p from 8 to 9, the 
results shown in Figure 7.5.3 do not invalidate the approach of increasing the 
precision to test the accuracy of the answer. But they suggest that increasing 
p by one or two digits will not suffice. Since we normally increase the precision 
from single-precision to double-precision or from double-precision to triple
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precision, it is typical to increase p by several digits rather than one or two 
digits. We hope that this is enough to overcome such local anomalies. 
Increasingp by five or six digits would allow us to produce a good estimate of 
the error in the computation in (7.5.3).

The results shown in Figure 7.5.3 displayed a slight irregularity because 
the answer produced when p — 8 was more accurate than we expected it to be. 
But this discrepancy can be much larger. Suppose that we want to compute 
y = A — B, where

and

A = 2.3456110000000234567

B = 1.1111109999999111111.

Figure 7.5.4 shows the results produced when this computation is performed 
in I P(10,/?, c). The answer produced using five- or six-digit arithmetic is far 
more accurate than we expect it to be. In fact, it is more accurate than the 
answer produced using 13-digit arithmetic. Thus, we cannot guarantee that 
increasing the precision by five or six digits will increase the accuracy of the 
answer.

The anomalies we observed in Figures 7.5.3 and 7.5.4 were due to the fact 
that we produced an unusually good answer for certain values ofp. Our next 
example shows a different way in which increasing p can fail to produce a more

io

Figure 7. 5.4
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accurate answer. Let

(7.5.5)

where

y = x + A sin Bx,

A = 10’8

B = 1016.

Figure 7. 5.5 shows the results produced when the computation is performed 
in FP(16, p, c). The numerial values are shown in the following table:

1
7

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1.20 
1.59
2.71
4.20
4.58
5.66
6.13
6.20
6.21
6.30
6.54
6.67
6.79
7.40
8.54
9.47

10.36
11.54
12.47
13.36

The flat part of this graph ranging from p = 7 through p = 13 differs drama
tically from the behavior we expect.

To see what happens in the calculation of (7.5.5), write z — Bx. If 
Bx > 16r, our approximation z for z is likely to have an error of several 
radians. Then the result computed for sin z is pure noise. Now 1613 > 1016/7 
> 1612, so when p = 13 the error in z is less than 1 radian. Increasing p 
beyond 13 produces the sort of behavior we expect. For p < 7, the contribu
tion of A sin Bx is negligible, so this part of the graph is also normal.

Figures 7.5.4 and 7.5.5 show that we cannot guarantee that increasing the 
precision will improve the answer. These examples may appear to be rather
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Figure 7.5.5

0 2 4 6 8 IO I2 I4
P

Figure 7.5.6

pathological, but that is because increasing the precision by five or six digits 
usually does increase the accuracy of the answer. The behavior shown in 
Figures 7.5.2 and 7.5.3 is much more typical.

To illustrate the effect of precision on a less trivial computation, we 
consider the two problems discussed in Sections 4.1 and 4.2. Figure 7.5.6 
shows the result produced when the quadrature problem of Section 4.1 was
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Figure 7.5.7

run in 1 (16,/?, c) with N — 213. Similarly, Figure 7.5.7 shows the results 
produced when we use the power series to compute e“7 and perform the 
arithmetic in FP(16, p, clq'), where qf = 15 — p.

EXERCISES

1. Write a subroutine to perform the operation of multiplication in interval 
arithmetic. That is, the subroutine should compute the values of zx and z2 in 
(7.4.2) and round the interval (zt, z2) outward.

2. Write a sine routine to be used with interval arithmetic. The input is the interval 
(xH a'2), and the routine should compute

7t = min sin x

y2 — max sin x
X\<>X<X2

and round the interval (yH y2) outward.
3. Let

/(-V, y, z)

Write a subroutine which can be used to compute this unction when we are 
using interval arithmetic. The input will be the intervals (xi,x2), (7i,y2), and 
Zj, z2). Assume that the interval (xn x2) (^1,^2) does not contain zero. The

output will be the interval (wt, w2) rounded outward, where Wj and w2 are given 
by (7.4.13) and (7.4.14).
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4. Let X be in S(r, p) and let TV be a positive integer. Select several values of Xclose 
to 1 and compute /V1023 using one of the algorithms described in Section 3.6.

The value of X must be close enough to 1 so that you do not encounter either 
overflow or underflow/ Perform the calculation using both interval arithmetic 
and normal floating-point arithmetic. Compare the interval produced with the 
error bound obtained in Section 3.6.

5. Compute in hexadecimal and show that the sixth hexadecimal digit is zero. 
Verify that the points in Figure 7.5.2 are above or below the line depending 
on the size of the first digit dropped.

6. Write the subroutine CHOP described in Section 7.5 and perform some experi
ments of the sort described there.



RADIX CONVERSION

8.1. EQUIVALENT NUMBER OF DIGITS

Unless we are using a decimal machine, we are faced with the problem of 
radix conversion for both input and output. These conversion programs will 
be the subject o 'this chapter, but be ore discussing the conversion techniques 
themselves, we shall try to determine the number of decimal digits needed to 
produce an accuracy which is “equivalent" to the accuracy we are using inside 
the machine. We suppose that we are using a machine which performs arith
metic in a system FP(r, p, a), where r 10. Then we want to know the number 
of decimal digits needed to produce the same accuracy as p-digit numbers in 
the radix r. This will not depend on the sign of the numbers, so we may 
restrict our attention to positive numbers.

Consider the set S(r,p) of p-digit floating-point numbers in the radix r. 
The numbers in S(r, p) which lie in the interval re~x < x < re are uniformly 
spaced at a distance re~p apart. We shall designate this distance by 8 and we 
note that 8 changes as we go past a power of r.

We shall now consider two systems FPCr^p^c) and FP(r2,p2, c) with 
r2. Unless one of the radices is a power of the other, the spacing of the 

numbers in the sets S(r1,/?I) and S(r2,p2) will change at different points. 
Consider an interval /: a < .x < b which is large enough to contain at least 
two points of each of the sets and S(r2,p2). Suppose that

(8.1.1)

and let = rp Pi be the distance between consecutive points of S(ri5 pf) in I.

224
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For any real number x in /, the bound for the error incurred by chopping x to 
•S’( rh is Si. Then the system with the smaller <5. is the more accurate in I in 
the sense that the maximum error incurred by chopping a number to S(r(, p() 
is smaller. This will be our criterion for comparing the systems, so we shall 
say that FP(rl,p1, c) is more accurate than FP(r2,p2, c) if 3} < 32, that is, if

(8.1.2) ffrPl ..P2 — Plr 1 ' ' 2

[We would aiso arrive at the criterion (8.1.2) if we compared FP(Tj, R) 
with FP(r2,A).]

This criterion depends on /, so it suggests that we might prefer one of the 
systems FP(rf, /x, c) in some intervals and the other system in other intervals. 
This is often true. As an illustration, we shall compare FP( 16, 6, c) with 
FP(I0, /?, c). In the interval .1 < x< 1, the value of 3 is 16~6 = 2-24 for 
FP( 16, 6, c), and it is 10_p for FP(10,/?, c). Now IO-7 > 2~24 > 10“8, so in 
this interval we find that FP(16, 6, c) is more accurate than FP(10, 7, c) but 
not as accurate as FP(10, 8, c). Indeed, 2~24 .6 x 10~7, so for .1 < x < 1
the six-digit hexadecimal machine is more accurate than a seven-digit decimal 
machine by about one bit.

Now suppose that 1 <x< 10. The values of 6 for FP(16, 6, c) and 
FP(10,p, c) are 2-20 and respectively. Since 2-20 .954 x 10’6,
FP(16, 6, c) is only slightly more accurate than FP(IO, 7, c) in this interval. 
Next, suppose that 10 < x < 16. fhe value of 3 for FP( 16, 6, c) is still 2-20, 
but the decimal representation of x requires two digits to the left oi'the decimal 
point, so 5 is 10 2) for 1 Pi I0,p, c). Then I P(16, 6, c) is slightly more
accurate than FP(10, 8, c) in the interval 10 < x < 16.

Finally, suppose that 16 < x < 100. The hexadecimal representation of 
x requires two digits to the left of the radix point, so the value of 3 for 
FP(16, 6, c) is 2~16. But 3 is still 10^"2) for FP(IO,p, c), so FP(10, 7, c) is 
more accurate than FP( 16, 6, c) for numbers in this interval.

Thus, the number of decimal digits needed to produce the same accuracy 
as FP( 16, 6, c) depends on the size of the numbers considered. The accuracy of 
FP(16, 6, c) may lie between that of I P(10, 6, c) and FP(10, 7, c), between 
that of FP( 10, 7, c) and FP(10, 8, c) or between that of FP(10, 8, c) and 
I 10, 9, c), because the spacing o ' the numbers in S(f\ p) changes when we 
go past a power o r, so the spacing of the numbers in 5(16, 6 and S(10, p) 
changes at different points.

To establish bounds for the variation in the equivalent number of digits, 
we shall consider the relative error. Let x = rem, r “1 < m < 1, and let x be x 
chopped to S(r, p), so x = rem. Then x = (1 — /?)x, where

m — m
m
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Write c = tn — m, so

(8.1.3)

Let a ~ r€m and b = a + re~p. Then (8.1.3) holds for any x in the interval 
a < x < b. Let P be the least upper bound for the relative error p introduced 
by chopping a number x in the interval a < x < b to S(r9p), Since 
dp)de > 0,

and since r'1 < m

(8.1.4)

Thus, if I is any interval containing at least two points of S(r,/?), the least 
upper bound for the relative error introduced by chopping numbers in / to 
S(r, p) is at least r~p and at most r"(p-1)/( 1 +

Instead of using the bound for absolute error as the criterion 'or deciding 
which of the systems FP(r„ pi9 c) is the more accurate, we could use the bound 
for the relative error. Let I be an interval which contains at least two points of 
each of the sets S(rx,px) and S(r2,/?2), so the bound for the relative error 
introduced by chopping a number in I to S(rt, p£) is at least r[pi and at most

If

(8.1.5)

we always get a smaller bound for the relative error by chopping the numbers 
in / to Sf/4!,/?!) instead of S(r2,/?2)« Since (8.1.5; does not depend on /, this 
would lead us to say that FP(r!,/?i, c) is always more accurate than FI r2, 
p2, c) when (8.1.5) holds. It is sometimes convenient to write the criterion 
(8.1.5) in the equivalent form

(8.1.6)

We shall now show that when (8.1.5) holds we would also say that 
f P(/i,Pi5 c) is always more accurate than FP(r2s /?2, c) if we used the criterion 
based on absolute error. Suppose that (8.1.5) holds and consider an interval / 
which contains at least two points of each o the sets S(r£i /?£) and whose end 
points a and b satisfy (8.1.1). Since / contains at least two points o p}), it
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follows from (8.1.1) that

With (8.1.5), this yields

Thus, (8.1.2) holds, so we conclude that FP(rH p{, c) is always more accurate 
than FP(r2,/?2, c) when (8.1.5) holds.

We again compare FP(16, 6, c) with FP(10, p, c). The values of rp and 
rp-i for FP(16, 6, c) are 224 and 220. Now 106 < 220 and 224 < 108, so 
FP(16, 6, c) is always more accurate than FP( 10, 6, c) but less accurate than 
FP(10, 9, c).

When we say that a system FP(r1,/?1, c) is more accurate than a system 
FP(r2,p2, Ch we are referring to the bounds for the error due to chopping. 
This does not mean that for every number x, less error will be introduced i we 
chop x to S(ru p{) instead of S(r2, p2). For example, the decimal number .1 is 
in S( 10, 3) but not in S(2, 100), so we introduce more error by chopping it to 
S(2, 100: than we do by chopping it to S^IO, 3). Nevertheless, the comparison 
based on error bounds appears to be a reasonable way to compare the 
accuracy of systems with different radices.

Some slight variations of the criterion (8.1.6) are useful. For example, 
(8.1.6) follows from

(8.1.7) r~(pi~ 1) f 1 r-Pl
' 2

and (8.1.7) is often easier to remember. We might also use the criterion

pi 
2

If equality holds in 8.1.7), Flf r,, pt, c) is always at least as accurate as 
FP(r2,p2, c\ and there are some intervals in which it is more accurate. The 
criterion (8.1.7) was obtained by Goldberg (1967), and (8.1.8) was obtained 
by Matula (1968b). Each of them arrived at the criterion by considering the 
effect of conversion and reconversion.

Comparisons of the accuracy of systems FP(rz,c) are i'undamental to 
many aspects of our programs. For instance, they are often the basis for our 
decisions about the number of decimal digits we should specify in our input 
and output formats. They also affect the decisions made by the compilers 
about the typing of variables and constants. For example, in the implementa
tion of PL/I for the IBM System/360, a floating-point constant will be treated 
as single-precision if it has at most six decimal digits, but it will be treated as 
double-precision if it has more than six decimal digits. This decision is based 
on the criterion (8.1.5).
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When we want to compare the overall accuracy o two different machines, 
there is another viewpoint we may take. Suppose that we are asked whether 
we would prefer to have the arithmetic performed in FP(rlspi,c) or 
I The question is easily answered if r?3 < r?1"1 + 1 or if

+ 1. But if neither of these relations holds, which of the systems 
is the more accurate may depend on the size of the numbers we are working 
with. In that case, it is reasonable to base our decision on the bounds for the 
relative error. Then we would select i;P(rH p{, c) in preference to FP(r2, c) 
if ~ 

(8.1.9) / 2
1 + rTPl" ”

This criterion is equivalent to

rT-1 + 1 + 1

(8.!. 10) 1)
1

.~(P2 ~ 1 )

When we use this criterion, we are comparing the worst case for the relative 
error in FP(r1? p,, c) with the worst case for the relative error in FP(r2, /?2, c). 
This appears to be a reasonable basis for comparing the accuracy of the 
systems FP(r.,/?., c) over a wide range o problems. On the basis of (8.LIO), 
we would prefer FP( 16, 6, c) to FP( 10, 7, c), but we would prefer FP(10, 8, c) 
to FP(16, 6, c).

8.2. PROPERTIES OF CONVERSION 
TRANSFORMATIONS

When we write input or output statements in a language such as 
F( RTRAN or PL/I, there are various formats we may use for floating-point 
numbers. But it is usually quite easy to change a number from one of these 
brmats to another, so we shall consider only the E format. Then the problem 

becomes one of converting a floating-point number in S(r 1, ) to a floating
point number in S’(r2,p2). One of the sets S(rf, pr is the set of decimal 
floating-point numbers, and the other is the set of floating-point numbers 
handled by the machine we are using. By considering the general case, we may 
discuss input and output conversion simultaneously.

Mathematically, the conversion program is a transformation r of the set 
S\r^p{) into the set S r2,p2). To each element a in t assigns an
element na) in S r2,p2 \ called the image o ’ a. It is convenient to use the 
standard terminology for trans ibrmations to describe properties of conver-
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sion programs. The transformation t is said to be well defined if the image t(o) 
is independent of the representation of a. We note that there are many 
different ways to represent an input number in an E format, for example, 

27.EO, 2700.E-2, .0027E4, 2.70E1, 

etc. If t is well defined, all these representations of the number 27 will be 
converted into the same number. For some conversion programs, the trans
formation r is not well defined.

Suppose that t is a transformation of S(rn p} ’ into S(r2, p2). We say that 
t is a transformation of S(r^pi) onto S(r2,p2) if for every element b in 
S(r2,p2} there is at least one element a in S(r^px) with b = r(a). Thus, the 
statement that t is onto S(r2, Pi) makes the additional assertion that every 
element in S(r2. p2) is the image of some element in Slfj, p{) under t.

The transformation t is said to be one to one if distinct elements of 
/?]) have distinct images. Thus, the assertion that the transformation r is 

one to one means that for a and b in p-), r(a) — r(b) if and only i a = b. 
I'he statement that t is one to one makes no assertion about whether or not t 

is a transformation onto S(r2, p2).
We shall say that the transformation r is monotone provided that r a) < 

r(b) holds for every pair of elements a, b in S(rH p{) with a < b. If < T(b 
holds for every pair of elements in SO'f, p}) with a < b, t is said to be strictly 
monotone. It follows at once that r is strictly monotone if and only if it is both 
monotone and one to one.

Since we have both input and output conversion programs, we also have a 
transformation a of S(r2, p2) into S(r}, p}). We define a transformation err of 
S(rl? pj into itself by setting

eTT(tz) = CF(t(47J

for all a in p{ l It is natural to ask whether crT(7z) = a holds for all a in

We may also define a transformation (ar)2 of Sfrls p}) into itself by setting

(<7t)2(a) — OT[cFT(fl)]

for all a in S(r,, pxY This definition is easily extended to (crT)n for every posi
tive integer n. We shah be interested in the behavior of that is. in the 
effect of converting and reconverting a number n times.

The terminology we have introduced is the standard mathematical 
terminology for properties of transformations. But a conversion program has 
the additional requirement that lor each a in S(r}, p{\ t(o) must be approxi
mately a. For any real number a, let aL and aR be the left and right neighbors 
O' a in S(r2, PzY That is, aL is the largest number in S(r2, pz ) which is < a, and 
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aR is the smallest number in S(r2, Pi) which is > a. If a is in 5(r2, p2), aL = 
aR = a. We shall say that r is a neighbor transformation if r converts each a in 
S(ri9Pi) into one of its neighbors aL, aR. Any conversion transformation which 
is not a neighbor transformation introduces unnecessarily large error. There 
are two neighbor transformations which are of particular interest. We say 
that t is a truncation conversion transformation if tia) is the number a obtained 
by chopping a to S(r2, p2). Similarly, t is a rounding conversion transformation 
if x(a) is the number a obtained by rounding a to S(r2, pfp

There are some numbers which belong to both S(rH p{) and S(r2, p2). For 
example, this is true of small integers. It is extremely desirable for t to have 
the property that xa) = a whenever a is in both S(ri9pf and S(r2, p2). This 
always holds for a neighbor transformation.

Consider an interval I which does not contain a power of either rx or r2. 
For i = 1, 2, let S. be the set consisting of those points in S(r., pp which lie 
in I. The spacing of the numbers in S(r.9 p^ is uniform in any interval which 
does not contain a power of r, so the points in each 5. are uniformly spaced. 
Let t be a transformation of S(r{i p{) into S(r2, p2) such that x(a) a holds 
for all a in S(r{J px). If a is in we would expect r(a) to be in S2. This need 
not always be true, because points near the ends of I might have images 
outside of /, but it should hold for almost all a in Similarly, if an element 
b in S2 is the image x(a) of some element a in S(r^p{), we would expect a to be 
in S]. Again, this may not always be true, but it will be true for points that 
are not too close to the ends of /.

Now suppose that the transformation t is onto. Then every point in S2 is 
the image of at least one point in Sir^p^, and most of the points in S2 are 
images of points in If every point in S2 were the image of some point in 
5i, we would conclude that must have at least as many points as S2 does. 
Clearly S2 cannot have very many more points than does. Therefore, we 
expect the points of 5\ to be closer together than the points of S2 are. We saw 
in Section 8.1 that this will be true for all such intervals I if (8.1.8) holds. Thus, 
if t is onto, we expect that

(8.2.1)

Similarly, if t is one to one, the images of the points in 5| are all distinct, 
and almost all of them lie in S2. Therefore, we expect S2 to have at least as 
many points as S{. This will hold for all such intervals I if

(8.2.2)

The statements we have made are rather vague. We have said that we 
expect 8.2.1) to hold if r is onto and we expect (8.2.2) to hold if t is one to 
one, but we have not stated that they must hold, because we have considered 
the general case in which we know only that r(a) a. Much stronger state
ments can be made if we are more specific about r. Matula 1968b) considers 
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the case in which r\ r{ for any positive integers / and j, and he shows that 
if T is either a truncation conversion transformation or a rounding conversion 
transformation, then (8.2.1) is necessary and sufficient for t to be onto and 
(8.2.2) is necessary and sufficient for r to be one to one.

Consider a machine which performs arithmetic in FP(r, p, c), and suppose 
that we use E formats for input and output with //-digit decimal numbers. 
Then we are working with the sets Su\ p) and S(lO, p'). If

(8.2.3) 1(X

the points in S(r, p) are always at least as close together as the points in 
S( 10, //). Then the input conversion can be one to one, and the output conver
sion can be onto. On the other hand, if 

(8.2.4) 10^-1

the input conversion can be onto and the output conversion can be one to one.
If neither (8.2.3) nor (8.2.4) holds, we would expect that neither the input 

conversion nor the output conversion would be onto and that neither of them 
would be one to one. (M atu la's results show that this is the case for either a 
truncation conversion transformation or a rounding conversion transforma
tion.; Of course, if one of the relations (8.2.3) or (8.2.4) does hold, it does not 
guarantee that the corresponding conversion transformation will be onto or 
one to one. This depends on the quality of the conversion program.

We are generally given the system FP(r,/>, a) in which the machine 
performs arithmetic, so we are given the set S(r, p) of floating-point numbers 
handled by the machine. We must decide how many digits to use for input 
and output, so we must select the length p' o the numbers in 10, p* . In 
some cases, such as the PUT DATA statement in PL/I, the compiler selects 
// for us. PL/I bases its decision on < 8.2.3), so it guarantees that the floating
point numbers in the machine will be more closely spaced than the decimal 
numbers arc. The use of the criterion (8.2.3) is based on the view that the 
programmer will think of his computation as being performed in I P( 10, p\ a\ 
so the arithmetic in the machine should be at least this accurate. When two 
decimal numbers are different, they should still be different after they are 
converted to S(/\ p). That is, the input conversion should be one to one. The 
use of the criterion ■ 8.2.3) for determining the number of digits to be printed 
on output is based on the idea that we should print only those digits that are 
significant. We would not expect the answer to have p' significant decimal 
digits if the numbers in S( 10, p } are closer together than the numbers in 
S(r, /?) are. This suggests that the selection of/?' should be based on the crite
rion (8.2.3Also, if we expect p’ decimal digits of the answer to be signifi
cant, we would want to be able to produce every number in Si 10, p' i, so we 
would want the output conversion transformation to be onto.

But there is another point of view we may adopt in selecting p'. In many 
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carefully written programs it is essential that we write the program with the 
realization that the computation will be performed in FP(r, p, a). Suppose 
that we want to enter a constant such as Till. We would like to produce the 
number in S(r, p) which is closest to njl, so we want the input conversion 
transformation to be onto. This suggests that we use the criterion (8.2.4) for 
the selection o\ p'. With this criterion, we can also hope that the output 
conversion transformation will be one to one. Then when the same value is 
printed for two numbers A and B, we would know that A and B were equal 
before they were converted. This is quite helpful in debugging programs, 
because it helps us determine which branches were taken in the program.

Thus, we would use the criterion (8.2.3) for the selection of// i ' we want to 
think of the calculation as being performed in FP( 10, pf, a). But if we program 
with the realization that the calculation will be performed in FP(r, /?, a), then 
(8.2.4) is the natural criterion to use for the selection of p .

Finally, we shall consider the e lect of conversion and reconversion. This 
was studied in detail by Matula (1968a). First, suppose that our conversion 
programs produce a truncation conversion transformation for both input and 
output. For any positive number a in we have

err a) < r(a) < a.

Then each conversion and reconversion decreases the number until we reach 
a number which belongs to both S r^p^) and S<r2,p2). If the number is 
converted and reconverted many times, this downward drift can be quite 
annoying.

Matula (1968a) considers the case in which r\ for any positive 
integers i and /. He shows that if cr is a rounding conversion transformation 
and t is a truncation conversion transformation, then err a) = a holds or all 
a in S(r15 pj if and only if

He also shows that if both a and r are rounding conversion transformations, 
then crr(fl) = a holds for all a in S(rx.pA if and only if

r i •

8.3. CONVERSION TECHNIQUES

We shall now consider several techniques which can be used to convert a 
number from one radix to another. To discuss input and output conversion 
simultaneously, we shall consider the general case of converting a number 
Tom S(r}, p{) to a number in S(r2, p2). Since the sign of the number is easy to 
handle, it suffices to consider the conversion of positive numbers.
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It is easy to change a number in S(r, p) from the form

to

x = rem,

(8.3.2) x = rU.

where I is an integer less than rp. We shall discuss the conversion oi numbers 
written in each of these forms.

Many machines are able to perform arithmetic in only one radix. Then 
for the input conversion we want to perform the arithmetic in the radix r2 
which we are converting to, and for the output conversion we want to perform 
the arithmetic in the radix which we are converting from. The techniques 
we shall use will depend on whether we perform the arithmetic in the radix 
r} or r2. But we shall still discuss the general case of converting a number 
from S(rt,Pj) to S(r2,p2\ because there are some machines, the IBM 
System/360, for example, which can perform both decimal and binary 
arithmetic.

Some aspects of the conversion programs are dependent on the represen
tation of the decimal numbers. We shall assume that the decimal numbers are 
represented as a string of decimal digits.! We shall also assume that it is easy 
to convert one-digit integers from one radix to the other. For example, 
suppose that we are using a four-bit binary-coded decimal representation br 
decimal digits. Then it is easy to convert a decimal digit to binary or to con
vert a binary or octal digit to decimal, but converting a hexadecimal digit to 
decimal requires a little more work.

We shall first consider the conversion of a positive integer I from the radix 
r} to the radix r2. This is part of the problem of converting a number in the 
form (8.3.2), and it is also of interest in its own right for handling I formats. 
We shall assume that I < rf* for z = 1, 2, so that / can be represented exactly 
in both systems. We may write 

where 0 < and 0 < ht < r2. Then we are given the aL and we want to 
find the br

We begin by considering techniques which allow us to perform the arith
metic in the radix r,. One approach is to divide / by 1 to get a quotient
and a remainder less than r?1-1. Then bPi_x ~ and we may continue

fOccasionally other representationshave been used. An example was the card image used 
on the IBM 704. We shall not discuss the conversion of data represented in this way.
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the process by dividing /?j by rf2-2 to get the next digit. This procedure 
requires p2 — I divisions, each division producing one more digit 6.. The 
final remainder is Z?o. There are two disadvantages to this approach. First, we 
still do about the same amount of work if / is small. (We may save a little time 
by comparing the powers of r2 with / and not performing the division unless 
r'2 < /• A second disadvantage is that we must store the representation of 
each of the p2 — 1 numbers A in the radix rt.

We may overcome both of these disadvantages by developing the digits 
/r in the opposite order. Divide / by r2 to get a quotient Qx and a remainder 
/?! less than r2. Then Z?o — R}. Then divide O- by r2 to get a quotient Q2 and 
a remainder R2 = b}. Continuing in this way, we may develop the rest of the 
digits br We terminate the procedure whenever the quotient Q. is zero, so less 
work is required when 1 is small. With this procedure we need to store only 
the representation of r2 in the radix r}. With either of these procedures we 
develop the bi in the radix so each digit must be converted to the radix r2.

Next, suppose that we want to use arithmetic in the radix r2 to convert /. 
Let f(x) be the polynomial

/(x)

so I — /(/*]). We first convert each digit ai to the radix r2. Then we compute 
from the formula

/(/■i) = a0 + r,(at + rt(a2 + ■ •• + rt(api_2 + ■ • ■),

where the arithmetic is performed in the radix r2. This requires at most 
Pj — 1 multiplications and additions, and it is easy to shorten the procedure 
when the representation of / in the radix r, has fewer than px digits.

With any of these techniques for the conversion of/, it is often convenient 
to perform the radix conversion in fixed-point arithmetic and then convert 
the result to floating-point. In particular, this is the natural way to proceed 
if the machine has a convert instruction for the conversion of fixed-point 
integers. But the word length for fixed-point numbers may be shorter than 
the precision of the floating-point numbers we are using, so we may have to 
partition /. In this case, we select an integer /< such that integers less than 
can be converted directly, and then we write / as a polynomial in rkx. For 
example, if / < we can write 

I = Cq + c.rf

where the are less than r*. It is easy to obtain the c£- from the representation 
of / in 8.3.3), and we can convert the to floating-point numbers in S(r2, p2).
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Then we form the floating-point representation of I by computing

I = c0 + {r? * [<?j + * c2)]}
in FP(r2, p2, a).

Next, we shall consider the conversion of a fraction F. We are given the 
representation

pi

and we want to convert F to
P2

It may be impossible to represent /'in the radix r2 withp2 digits, so we want 
F' F. We shall try to produce the value Fof F chopped to S(r2, p2). First 
suppose that we can perform arithmetic in the radix rt, We multiply F by r2 
and note that bx is the integer part of r2F Let Fx be the fractional part of r2F. 
Then we multiply Fx by r2, and let b2 be the integer part of r2FP Continuing 
in this way, we obtain the first p2 digits of F, so F' = F.

Suppose that we want to use arithmetic in the radix r2 to convert the 
fraction F. Let 

/(-v)

so F— /(/T1)- Then we could compute F' by evaluating / Tf1) in the radix 
r2. Unfortunately, it may be impossible to represent rf1 exactly in the radix r2 
with p2 digits, and the error in the representation of rf1 may introduce more 
error in F' than we would like. One way to overcome this difficulty is to use 
more than p2 digits in the evaluation of /'(rr1). But it is usually easier to 
convert F by converting the integer rppF exactly and then dividing the result 
by in FP(r2,p2, a).

We shall now consider the conversion of a floating-point number x = r\m 
from to S(r2,p2). First, suppose that we can perform arithmetic in
the radix r2. We adjust the exponent e so that m is either an integer or a frac
tion, and then we convert m to the radix r,. Call this value mf. Then we Xi
complete the conversion of x by multiplying in by in the radix r2, and this 
is often done by performing the arithmetic in the system FP(r2, p2, a). T,p do 
this, we need a representation of r\ in the radix r2 for all values e which can 
arise without producing overflow or underflow. We can reduce the number of 
different powers of that have to be stored by dividing by r’f1 when e is 
negative. But if the range of the exponents is large, it may require too much 
storage to store even the positive powers of . One way to save storage is to 
compute using one of the techniques described in Section 3.6 for the 
computation of X**N. Alternatively, we might store a few powers of rl and 
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compute the others. For example, we could store and rj for k = 1, 2, 3, 
. . . , 9. Then it would be very easy to compute r\ for any positive integer e 
less than 100.

The accuracy of the result produced by this technique depends on the 
accuracy of the multiplication and division and on the accuracy of the 
representation o Unfortunately, we may need more than p2 digits to 
represent r\ when e is large. (See Exercise 9.) By using only p2 digits in the 
representation of r*, we may introduce an error in the answer which is larger 
than the error introduced by the multiplication or division. If r1 = 10 and r2 
is a power of 2, S(r2, p2) does not contain 1 but it does contain r\ for small 
positive integers e. This provides an additional motivation for dividing by 
r1!*1 when e is negative.

Finally, suppose that we want to perform the arithmetic in the radix 
We first find the integer e for which 

and then we divide x by r2 to produce a number Clearly r21 < v < 1, so e 
is the exponent of the answer. To obtain the mantissa of the answer, we con
vert the fraction using the technique described earlier.

With either o. these techniques, we need to store or to compute the repre
sentation of the powers of one radix in the other radix. We are concerned with 
both the conversion oi decimal numbers to the radix r and the conversion of 
numbers in S(r, p) to decimal. If we store the representation of powers of 10 
in the radix r, then we can use arithmetic in the radix r for both of these 
conversions. Alternatively, we could store the decimal representation of the 
powers of r and use decimal arithmetic for both conversions.

If we are using chopped arithmetic and we want the conversion program 
to produce a rounding conversion transformation, we usually try to produce 
the first p2 + 1 digits of and then round the result to p2 digits. The round 
operation requires us to perform an addition in the radix r2.

The various techniques described above will differ in speed, accuracy, and 
the storage required. We shall not discuss the speed or the storage required, 
because they depend on the machine we are using. But we shall consider a few 
of the problems related to accuracy. We shall assume that the machine per
forms arithmetic in the system FP(r, p, c), where r is a power of 2.

We shall first consider input conversion. Suppose that we begin by chang
ing the decimal number to the form 8.3.1) and that we then program the 
conversion using chopped arithmetic. Let

x — ICK/h, .1 < m < 1,

and let ni' = m be the fraction ni converted to the radix r. To complete the 
conversion of x, we multiply or divide by 10id in FP(r, /?, c). Suppose that 
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x = 2, so x will be changed to the form 101 x .2. Since r is a power of 2, .2 is 
not in S(r, //). Then will be less than .2, so 10 * m' < 2. Thus, 2 will be 
converted into a number less than 2, so we do not have a neighbor transforma
tion. 1 he fact that small integers are not converted exactly is quite annoying. 
A possible remedy is to use higher-precision arithmetic in the conversion and 
then round the result to S(r, p).

Another approach is to begin by changing the decimal number to the form 
(8.3.2). so we convert the integer / instead of the fraction m. If I does not have 
too many digits, it can be converted exactly. Similarly, if |e| is not too large. 
10lfl is in S(r,p). If both / and 10H are in S(r, //), then the multiplication or 
division of / by 10|cl in FP(r, p, c) will produce the correctly chopped answer 
x. This means that small integers will be converted exactly. In fact, we can find 
a wider class of numbers for which this procedure will produce the correctly 
chopped answer. Let A be the integer for which

10* < rp < 10*+1,

and let e be the largest integer such that 10c is in S(r, p) for all integers e with 
I < e < e. Then this conversion procedure will produce the correctly chopped 
answer x whenever the decimal representation of x in the brm (8.3.2 
satisfies both

(8.3.6)

and 

(8.3.7) 10*.

The condition (8.3.7 means that / has at most k decimal digits. Once we have 
determined A and e, it is easy to see whether the conditions (8.3.6) and (8.3.7) 
hold. These conditions are satisfied by many of the numbers we use in our 
programs, so there is a significant class o numbers for which this conversion 
procedure will produce the correctly chopped answer. But if either (8.3.6) or 
(8.3.7) fails to hold, we may not even have a neighbor transformation. In fact, 
the transformation might not even be monotone.

We may encounter the same sort of problems with the output conversion 
program. Suppose that we begin by determining e such that

(8.3.8) 10-1.

Then we divide x by 10* in FP(r, /?, c) to produce a fraction v. (If e is negative, 
we can multiply x by 10:<rlJ 1 lere e is the exponent of the answer, and the 
mantissa of the answer is obtained by converting the fraction y to decimal. 
We assume that the conversion of y produces the value j” of y chopped to 
S(10,// ?. Consider the case in which x — 2. Here e = 1, so y = 2 10.
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Since .2 is not in S(r, /?), y < .2. Then when y is converted to decimal we 
produce the value y < y < .2. We again have the problem that small 
integers are not converted exactly.

One remedy for this problem is to change the approach so that we convert 
integers instead of fractions. We begin by finding e satisfying (8.3.8) and k 
satisfying (8.3.5). Instead of dividing or multiplying x by 10H, we divide or 
multiply x by IO1*"*1. This produces a number z in S(r, p) with

10* 10*'1.

The integer part of z may be converted exactly. We convert the fractional part 
of z independently, producing the chopped result z. With this approach, we 
can guarantee that small integers are converted exactly.

EXERCISES

1. Consider the conversion of decimal numbers into numbers in S(16, 14). 
Suppose that the conversion program transforms the decimal number x into 
the value t x) of x chopped to S(16, 14). Answer the following questions for 
x = rc/4,71/2, 7t, 2ti, and 471.
a. What is the value x of x rounded to S(l 6, 14)? —— Q
b. Find a decimal number y for which r(y) = x . Use as few decimal digits a: 

possible in the representation of y.
c. In some implementations of PL/I i’or the IBM System/360, we were allowed 

a maximum of 16 decimal digits to specify a floating-point constant. Find 
the 16-digit decimal number y for which r(y) is closest to x°. By how many 
digits in the last place do T(y) and x differ?

2. Let S(r, p) be the set of floating-point numbers handled by the machine you are 
using. Find the largest integer p' which satisfies (8.2.3), and find the smallest 
integer p' which satisfies 8.2.4). What are these values 'orp' if S(r, p) is the set 
of double-precision floating-point numbers on the machine you are using?

3. Let t be a transformation of S(rH pj into S(r2, p2)? and let g be a transforma
tion of into S(/'i,Pi). Find a bound for the relative error in the
approximation ctt(x) x if both G and T are neighbor transformations.

4. Let t be a rounding conversion transformation of S(rx, px) into S(r2, Pz) and 
let G be a rounding conversion transformation of S(/'2,p2) into S(rl,p1). Prove 
that if r7pl > then cft(x) = x holds for all x in 50'nPi).

5. Let T be a truncation conversion transformation of S(rH/?i) into S(r2, Pz), 
and let G be a rounding conversion transformation oi S(r2,p2) into 5'(r1,/;I ). 
Prove that if rj2-1 > 2rf — 1, then gt(x) = x holds for all x in S(/'i,pi).

6. Let T be a rounding conversion transformation of Si 16, 6) into S( 10, 8).
a. Prove that t cannot be a transformation onto S( 10, 8).
b. Find a number in S(10, 8) which is not the image of any number in S(16, 6) 

under r.
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100.
100.

Let r be a truncation conversion transformation of 5(16, 6) into 5(10, 9), and 
let o be a truncation conversion transformation of 5(10, 9) into 5(16, 6).
a. Write a program which will produce the transformations a and r for num

bers in the interval 16
b. Select a number x which is in 5(16, 6) and lies in the interval 16

Convert and reconvert x several times. That is, form (oT)n(x). How many 
times must the conversion and reconversion be repeated be'ore you reach a 
number .y in 5(16, 6) with (<7T)(.y) = >’?

c. Repeat part b for several other values of x.
8. Let T be a truncation conversion transformation of 5( 16, 6) into 5(10, 9), and 

let <7 be a truncation conversion transformation of 5(10, 9) into 5(16, 6). Let x 
be a positive number in 5(16, 6). Suppose that we convert and reconvert x 
many times. That is, we form (ctt)"(x) for large //.
a. If 16 < x < 100, what is the maximum number of units in the last place by 

which x and (<7T)n(x) may differ?
b. If a* lies between 4 and 1, what is the maximum number of units in the last 

place by which x and (ar)'’(x) may differ?
c. Find a value of a* such that the downward drift of (<tt)”(x) will never stop. 

That is, we shall never reach a number y with (ct)(j) = y.

9. Let 5(r, p) be the set of floating-point numbers on the machine you are using, 
bind the largest integer e such that 10e is in 5(r, p) for every integer e with 
1 < e <C e. Is it possible for 10e to be in 5 r, p) for some integer e > e?

10. Let 5(r, p) be the set of floating-point numbers on the machine you are using. 
Suppose that you have an input conversion program which begins by changing 
the decimal number to the form (8.3.2). Then it converts the integer I to 5i r, p) 
and multiplies or divides I by 10!e| in the system FP(r, p, c). If / is not in 
5(r,/?), assume that / is converted into the properly chopped value L If 10|fi 
is not in 5(r, p), then 1 is multiplied or divided by the number P — 10lel 
obtained by chopping 1to 5(r, p}.

a. When can you guarantee that this program will produce the correctly 
chopped answer. [That is, find the values of k and e to use in (8.3.6) and 
(8.3.7).]

b. Is the input conversion transformation r well defined?
c. Is the input conversion transformation monotone?
d. Suppose that the input conversion program converts x into x. Find a bound 

for the relative error in the approximation x x.
11. Change the specifications of the conversion program described in Exercise 10 

by changing the number P used as an approximation for 101<?l. Let P be the 
number 10lel obtained by rounding 10'd to 5(r, p). Answer all the questions in 
Exercise 9 for this conversion program.

12. Suppose that you can perform arithmetic only in the radix rb How would you 
program a rounding conversion transformation of 5(F[,Pi) into



CAREFULLY WRITTEN 
PROGRAMS

9.1. INTRODUCTION

In this chapter we shall illustrate some of the problems that face us when 
we try to produce high-quality programs. We shall refer to these programs as 
carefully written programs in contrast to “quick and dirty” programs. Care
fully written programs are typified by library routines, although not all library 
routines have achieved high quality. Since a library program will be used 
extensively, its author is usually willing to devote a great deal of time and 
effort to the program. His ob ective is to produce a nigh-quality program 
rather than a quick and dirty program.

To write a good program, we must have a thorough understanding of the 
problem we are solving. In fact, writing the program often forces us to study 
aspects o the problem which we would not have considered otherwise. This 
suggests that our illustrations o carefully written programs should deal with 
problems which are extremely amilliar. We shall discuss the solution o a 
quadratic equation and computing the average of two numbers. By consider
ing these simple problems, we hope to show why it takes so long to write a 
high-quality program.

We shall not discuss either the speed of execution of the program or the 
amount of storage it requires, although both of these al feet the quality o the 
program. Instead, we shall restrict our attention to the quality of the answers 
produced by the program.

9.2. AVERAGE PROBLEM

As our first illustration of a carefully written program, we shall consider a 
program which computes the average of two normalized floating-point 

240
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numbers. We could begin by specifying the accuracy we expect in the 
answer—say an error of less than one unit in the last place. But it might turn 
out that the accuracy we have specified is extremely difficult to achieve 
without resorting to higher-precision arithmetic and that we could produce a 
much more efficient program if we relaxed the accuracy criterion slightly. 
Instead of specifying the accuracy of the program in advance, we shall try to 
produce as accurate an answer as we can without degrading the speed of the 
program too much. However, we shall require the write-up of the program to 
provide the user with a bound for the error.

The accuracy of our answer may depend on the precision of the arithmetic 
used in the program. I f we performed the entire calculation in higher-precision 
arithmetic and then rounded the result to single-precision, we would expect 
to produce a very accurate answer. But this seems to be a very high price to 
pay, so we would not be willing to use this approach if it produced only a 
slight improvement over a single-precision version of the program. We usually 
start with the hope that we can write the entire program in single-precision. 
As we saw in the discussion of the quadrature problem in Section 4.1, it is 
sometimes highly advantageous to perform a few operations in a precision 
which is higher than that used in the rest of the program. Whether this 
approach is reasonable often depends on whether the hardware and software 
support double-precision arithmetic. For the average problem, we shall 
assume that double-precision arithmetic is extremely expensive, so we shall 
require that only single-precision arithmetic be used.

When we use a library program to compute a familiar function, we expect 
the program to preserve many well-known properties of the function. For 
example, we would be quite annoyed if a cosine routine produced an answer 
greater than 1, or if it failed to produce the value 1 for the cosine of zero. 
Similarly, the average of two numbers has several familiar properties, and we 
shall demand that the program preserve them. For example, the answer 
should be independent of the order of the arguments. Another requirement is 
that the average o A and B should be zero if and only if B = —A. Also, we 
would be annoyed if the average failed to satisfy

(9.2.1) min(/l, B) < average^, B) < maxi A, B).

We note that equality can hold in (9.2.1 > if A = B. When A B, we would 
like to have

(9.2.2) min(/t, B) < average(/l, B) < maxM, B).

But if A and B were consecutive floating-point numbers, we could not satisfy 
(9.2.2), so we shall require only that our program satisfy (9.2.1).

Finally, consider the problem of overflow and underflow. The input 
numbers A and B are floating-point numbers, and their average cannot exceed 
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the larger of them. Therefore, the correct answer does not exceed the largest 
floating-point number Q. If overflow occurs, it is the fault of the algorithm, 
not the problem. We shall require that the program never overflow.

The situation with underflow is different. If we are asked to compute the 
average of zero and the smallest normalized positive number co, the answer 
underflows. We shall require that no underflows occur unless the answer has 
an absolute value less than co.

Based on these ideas, we give the following specifications for the program.

Specifications for the Average Problem

1. The program may be written as either a function subprogram or as a 
subroutine subprogram. The input A and B may be assumed to be normalized 
floating-point numbers, and the result produced for the average must be a 
normalized floating-point number. Only single-precision arithmetic may be 
used.

2. Accuracy: The value produced for the answer must be approximately 
(A + 2T)/2» and it must have the correct sign. The write-up must contain a 
reasonable bound for the error. The error bound may be given either in terms 
of units in the last place or as a bound for the relative error.

3. Properties: The program must produce a value for the average which 
has the following properties:
a. min(/t, B) < average(/l, B) < max(/4, B).
b. average^, B = average^, A).
c. average^, B) — 0 if and only if B — —A.
d. average(—A, — B) = —average^, B).
(Property c may be modified if the average underflows.)

4. Overflow!Underflow: The program should never produce an overflow, 
and it should not underflow unless

0 < IG4 + B)/21 < co.

There should be a reasonable strategy for handling the case in which 9.2.3) 
holds. *fhe write-up should tell the user what happens in this case and what 
number will be returned as the answer. It should also tell him how to find out 
whether this case arose.

The reader is invited to stop here and write a program meeting these 
specifications. We shall discuss some aspects of the problem, but part of the 
problem will be left as exercises. Since the details of the problems we encoun
ter will depend on the floating-point arithmetic we are using, we shall assume 
throughout that the arithmetic is performed in the system FP(r, p, c).
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The natural formulas to consider using for the average o A and B are

(9.2.4)

(9.2.5)

(9.2.6)

AV

AV

AV

(A © B) - 2

(A ^2)®{B~2)

A © [(B - A) -r 2].

We shall discuss some of the problems that arise with the use of each o 'these 
formulas.

If A and B have the same sign, then formula (9.2.4) might produce over
flow. Similarly, formula (9.2.6) can produce overflow if A and 2? have opposite 
signs. Then one way to avoid overflow is to test A and B for sign agreement 
and use one or the other of these ormulas depending on whether they have 
like signs or unlike signs. Indeed, we shall see that many aspects of the behavior 
of formulas 9.2.4)—19.2.6) depend on whether or not A and B have the same 
sign, so it is quite natural to use one formula when they have the same sign 
and another formula when they have different signs.

It is easy to show that (9.2.4) cannot produce underflow unless (9.2.3) 
holds. 1 lie division by 2 in formula (9.2.5) will not underflow unless A or B 
has an absolute value which is positive but less than 2m. Even if | A | and IB | 
are both > 2m, the addition in ( 9.2.5) can underflow if A and B have opposite 
signs. (See Exercise 6.) With formula (9.2.6), we have to worry about under
flow both in the computation of

(9.2.7) C = (B © A) 4- 2

and in the addition of C to A.
One way to avoid underflow with any of these formulas is to scale the 

problem when A and B are both small. We shall illustrate this approach by 
considering the computation of C in (9.2.7). Suppose that A = where 
r ~1 < | < 1. If i B © A | 0, we have | B © A ) > re~p-^ >© |/rp+1. It
follows that (9.2.7) cannot underflow unless both

(9.2.8)

and

(9.2.9)

When both 19.2.8 and (9.2.9) hold, we can scale the problem by multiplying 
A and B by rp+2. This will not produce overflow so long as the machine pro
vides a reasonable range of exponents. The advantage of scaling by a power 
of r is that it does not introduce any error. We compute a value D for the 
average of rp+2A and rp+1B, and then we divide Z)byrp+2. Before dividing D
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by rp+2, we can perform a test to see whether | D \ > rp+2co. If 0 < | <
rp+2a>, we can omit the division by rp+2 and provide whatever treatment we 
have decided on lor the case in which the answer underflows.

Another problem with formula (9.2.6) is that it is not symmetric in A and 
B, so it might produce a different result if the arguments A and B were 
interchanged. To overcome this difficulty, we could require that, say,

(9.2.10) 

and interchange A and B if (9.2.10) does not hold.
Next, we shall consider the properties listed under heading 3 in the specifi

cations. To see how these properties can fail to hold, we shall consider some 
examples in FP( 10, 6, c). It is easy to modify these examples so that they apply 
to FP(16, p. c), but they are not applicable to a binary machine.

First, suppose that

A = .500001

B = .500003.

Then A + B = 1.000004, so A @ B = A + B = 1. Then (A © B) -F 2 - .5, 
so formula (9.2.4) can produce a result which is smaller than min(/4, B). It 
can be shown that the value produced by formula (9.2.4) in FP(r,/?, c) 
satisfies (3a) if and only if r — 2.

Similarly, if

A .500001

.500003,

then B © A = —1, so formula (9.2.6) produces the answer .000001. But the 
correct answer is —.000001, so formula (9.2.6) failed to produce the correct 
sign.

We even find difficulties with formula '9.2.5). Let

A = B = .500001.

Then A 4- 2 = B -F 2 .25, so formula (9.2.5) produces the value .5, which
is smaller than minM, 5). Similarly, if

A = .500001

B = -.500000,

then (9.2.5) produces the value zero even though B — A. It can be shown 
that these two examples represent the only cases in which the result produced 
by this brmula ails to have the properties listed under heading 3 in the
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specifications. That is, it fails to satisfy (3a) if and only if A = B and 
J t 2 A/2, and it fails to satisfy (3c) if and only if A A- 2 = — B 4- 2 and
A — B. If we want to use formula (9.2.5), we can provide special treatment 
for these cases.

It can be shown that formula (9.2.4) produces a result which has all the 
properties listed under heading 3 in the specifications if A and B have opposite 
signs. Similarly, it can be shown that the result produced by (9.2.6) satisfies 
(3a), (3c), and (3d) when A and B have the same sign. We may use these 
observations to devise a strategy for selecting tne appropriate formula based 
on the signs of A and B.

We shall now turn to the question of the accuracy of the answers produced 
by these formulas. To see how the error behaves, we shall consider some 
examples in FP( 10, 6, c). The first example uses formula (9.2.5) for the data

Here

A = 2.00001

B = .0000199999.

4 = । .000005

I- = .00000999995.

Then (9.2.5) produces the answer 1.00000 instead of 1.00001499995, so the 
error is almost 1 } units in the last place. It can be shown that if A and B have 
the same sign, then (9.2.5) always produces an error of less than I J- units in 
the last place.

Now suppose that A and B have opposite signs. We have seen that (9.2.5) 
can produce the answer zero even though B — A. Even if we provided 
special treatment for the case in which A 2=5 4-2, the formula can 
produce large relative error if | ^4 | is close to | B |. Suppose that

A = 2.00004

B = -2.00001.

Then (9.2.5) would produce the answer .00002 instead o .000015. Since this is 
a relative error of we would not use this formula for the case in which A 
and B have opposite signs.

Next, we shall consider formula 9.2.4). Let

A = 1.00002

B = -.000001

Then A @ B = 1.00001, so 'A @ 5 i 4- 2 = .500005. The correct answer is
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.5000095, so the error is 44 units in the last place. It can be shown that if r is 
even and A and B have opposite signs, then the error produced by (9.2.4) is 
'ess than r/2 units in the last place. We shall not consider the error produced 
by (9.2.4) in the case in which A and B have the same sign, because the formula 
can produce a result which does not satisfy (3a).

For formula (9.2.6), we consider the example

A = .0000008
B = 1.00002.

Here B Q A = 1.00001, so (9.2.6) produces the answer .500005. But the 
correct answer is .50000104, so the error is 5.4 units in the last place. It can be 
shown that the error produced by 9.2.6) is less than r/2 + 1 units in the last 
place if r is even and A and B have the same sign. We have seen that when A 
and B have opposite signs the value produced by (9.2.6) might have the wrong 
sign, which would produce a relative error greater than 1.

9.3. QUADRATIC EQUATION

Consider the problem of writing a subroutine to solve the quadratic 
equation

(9.3.1) Ax2 + Bx + C = 0.

The input will be the coefficients A, B, and C, and the output will be the roots 
R1 and R2.t We shall assume that A, B. and C are real and that they are 
normalized floating-point numbers. Three aspects of the problem will be 
discussed: the form of the CALL, producing good accuracy, and avoiding 
overflow and underflow.

First, consider the CALL. It would be natural to use

(9.3.2) CALL QUAD(A,B,C,R1,R2,I)

where I is an error indicator which would be set to indicate whether or not we 
have been able to solve the equation. But what should the subroutine do if the 
roots of 9.3.1 ; are complex? One approach would be to treat the case in 
which the roots are complex as an error. On the other hand, it could always 
return the roots as complex numbers, even when they are real. The CALI 
could be written as

(9.3.3) CALL QbAD(A,B,C,RlR,RII,R2R,R2LI)

fForsylhc (1970) discusses the specifications for a good quadratic equation solver, and 
he describes a high-quality program produced by Kahan.
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where, for example, R1R and R1I are the real and imaginary parts of Rl. 
Another approach would be to use the CALL (9.3.2) and require that R i and 
R2 be typed COMPLEX. But there are many cases in which we know that 
the roots of (9.3.1) are real, and in these cases it would be annoying to have to 
type the roots COMPLEX in the calling program. I we forgot to do so, we 
would change other variables in the calling program, producing disastrous 
results. Including the extra variables in the CALL statement (9.3.3) is a small 
price to pay, since we do not have to look at the imaginary parts if we know 
that the roots are real.

There is still another way to handle comp:ex roots of (9.3.1). Since the 
coefficients of (9.3.1) are real, when the roots are not real they are complex 
conjugates a f bi. We could use the CALL (9.3.2) and store a and b in Rl 
and R2, using I to indicate that the roots are not real. From the point of view 
of the author of the subroutine, this would appear to be an ideal solution. It 
retains the simplest form of the CALL, and yet it provides complete informa
tion about the answer. Unfortunately, experience shows that many users of a 
subroutine such as this do not bother to test the error indicator. If the user 
expected the roots to be real and did not test I, he would get a bad answer 
when the roots are not real. For example, a slight change in the coefficients of 
(9.3.1) could change a double root at 2 into a pair of complex roots 2 ± 10~8/. 
If we stored 2 in Rl and 10-8 in R2 and the user thought that the roots were 
real, he would be very dissatisfied with the value 10"8 for a root of the equa
tion. Exercise 12 gives an example of an equation in which a double root is 
changed into a pair of complex conjugates by the error introduced by radix 
conversion.

Based on these observations, it seems reasonable to accept the form 
(9.3.3) for the CALL.

Another question related to the calling sequence is what the subroutine 
should do when A =0. I we were solving (9.3.1) by hand, we would never 
consider using the quadratic formula

(9.3.4) - 4/fC
2A

when A = 0. If we do try to use (9.3,4), we encounter division by zero and we 
cannot find the root of the equation Bx + C = 0. One approach is to use the 
error indicator I to indicate that A = 0. and set Rl — — C -F B and R2 = Q.

The fol lowing example suggests that this might be a reasonable approach to 
use when A = 0. Suppose that we want to find the maximum value of the 
function

in the interval 0 < x < 1. We would find the roots of the quadratic equation
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f'(x) = 0 and test the value of x) at 0, 1, and any root of/'%*) — 0 lying 
between 0 and 1. Now suppose that i’or one set of data we have a = 0, so 
/'(x) is linear. We want the root of / '(x) = 0, and any number the quadratic 
equation solver produced for the second root would be acceptable. We would 
reject the number if it did not lie in the interval 0 < x < 1, and if it did lie in 
this interval, we would test it. But if the quadratic equation solver did not 
produce the root of the linear equation / ix) = 0, we would have to provide 
special treatment for the case a = 0.

Similarly, if A = B = C = 0, the subroutine could return any values for 
R1 and R2 and set I to indicate that every complex number satisfies the 
equation. If A = B = 0 but C 0, I should indicate that the equation has 
no solution.

The way a subroutine treats degenerate cases such as these can be quite 
important, because they arise in computing far more often than one might 
expect. One reason for this is that we write the program to handle the general 
case, but we often test the program on simple cases that can be handled 
analytically. To find a problem which can be solved easily, we may simplify 
the formulation, and this can easily result in a degenerate case for some 
subroutine.

We shall now turn to the question of the accuracy of the answers. We 
shall assume that the arithmetic is performed in FP(r, p, c) and that A 0. 
We shall also assume that the relative error introduced by the square root 
program we are using is small. As we saw in Chapter 3, the result produced by 
multiplication or division in FPfr, p, c) will have small relative error if the 
operands do. This is also true of addition and subtraction when we have the 
add magnitude case, so our primary concern is the subtract magnitude case. 
The quadratic formula (9.3.4) will produce a small relative error if we do not 
encounter this case.

First, suppose that B2 — 4AC > 0 and consider the addition of 
-a/B2 — 4AC to — B. For one of the roots we shall have the add magnitude 
case, and or the other root we shall have the subtract magnitude case. We 
shall test the sign of —B and select the + or — sign in front of the square root 
so that we first compute the root RI for which we have the add magnitude 
case. Since the product of the roots of (9.3.1) is C/A, we may compute R2 from

(9J.5) “ =

If we can compute B' — 4AC accurately, this gives us a way to compute both 
roots of (9.3.1) with small relative error. [Another way to compute R2 is to 
rationalize the numerator in (9.3.4).]

Now consider the computation of the discriminant B1 — 4AC. In Exercise 
6 of Chapter 3 we saw that there is no reasonable bound for the relative error 
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produced by coding x2 — y2 as (x * x) Q (y * y). Similarly, we may produce a 
large relative error in the computation o B2 — 4AC if B2 4AC, To see how 
this error will affect the answer, suppose that B is slightly less than 1 and that 
B2 — 4AC 10 8. If we were using eight-digit decimal arithmetic, we might 
obtain the value 2 X IO*8 for B2 — 4AC. Then x B2 — 4AC would be

X 10 4 instead of IO-4, so the error introduced in the calculation of 
B2 — 4AC has produced an error in digits near the middle of the answer.

When B2 4XC, the roots of Eq. (9.3.1) are nearly equal. Consider the 
equation

lax -r a2 — 0,

which has a double root at a. If we change the constant term in (9.3.6) to 
a2 — e2, we have the equation

x2 — lax + a2 — 62 = 0,

whose roots are a ■ - e. Suppose that a is slightly less than 1 and that 6 — 10~4. 
Then a change of 1 in the eighth digit of the constant term in (9.3.6) produces 
a change of I in the fourth digit of the roots, so the problem is not well 
conditioned. By means of a backward error analysis, it can be shown that the 
value we compute for v B2 — 4AC is exactly x B2 — 4AC', where C' C. 
But when the roots are nearly equal, this change in C can produce a significant 
change in the answers.

Thus, we want the value computed for x B2 — 4AC to have a small 
relative error, and in the subtract magnitude case this requires us to use 
higher-precision arithmetic. We shall use double-precision arithmetic to 
compute B2 — 4AC, and then shorten the result to single-precision and use a 
single-precision square root program. The rest of the calculation can be 
performed in single-precision.

If we compute the discriminant in this way and use the approach sug
gested earlier for the calculation of R2, we can compute both roots with small 
relative error.

Finally, we shall consider the problem of overflow and underflow. Our 
objective is to compute any root of (9.3.1) whose absolute value lies between 
co and Q. To simplify the discussion, we shall assume that we are using the 
IBM System/360, where r = 16, Q 1663, and co = I6'65.

Since the quadratic formula requires us to compute B2 and 4AC, we can 
encounter overflow even when the coefficients and the roots are substantially 
less than Q. An example of this is provided by the equation

(9.3.7) 1640x2 - 3 • 1640x + 2 • I640 = 0,

where B2 and 4AC overflow, but the roots are 1 and 2. It is clear that we can 
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avoid this overflow by dividing (9.3.7) by 1640. This suggests that we should 
scale the coefficients of (9.3.1) so that the coefficient of x2 is close to 1.

But consider the equation

(9.3.8) 16~40x2 - 3x + 2 • 1640 = 0,

whose roots are 1640 and 2 • 1640. If we tried to scale the coefficients by 
multiplying (9.3.8) by 1640, the constant term would overflow. For this 
problem, it is convenient to introduce the scale factor in x instead of in the 
coefficients. If we substitute x = 1640(9.3.8) becomes

(9.3.9) 164V - 3 • 1640j> + 2 • 1640 = 0.

As above, we can solve (9.3.9) if we divide the coefficients by 1640. Then the 
roots of (9.3.9) must be multiplied by 1 640 to produce the roots of (9.3.8).

Our approach will be a combination of these two types of scaiing. It will 
require us to extract the exponents of the floating-point numbers we are using 
and to change them. These operations can be performed by using the tech
niques discussed in Section 4.4. All the scaling will be done by adjusting the 
exponents, so it will not introduce any errors. We shall assume that neither 
A nor C is zero, since the other cases are easy to handle.

We shall scale the problem by substituting x — 16Aj and multiplying the 
coefficients by 16L. Then (9.3.1) becomes

(9.3.10) 162* + My 16K+£fi>+ 16£C-0,

which we write as

(9.3.11)

We shall select K and L so that the exponent of A' is zero and either B = 0 or 
the exponent of B' is zero. First, extract the exponents eA, eB, and ec of A, B, 
and C. If B = 0, set K — 0 and L = — eA. If B 0, the exponents eBA and 
ec. of A', Bf and Cf are given by

We want

eA. = eA + 2K-rL 

eB' ~ ‘ b K L

= T

2K + L = ~eA 
K+ L = -eB,

so we set K = eB — eA and L = eA — 2eB.
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We now construct the floating-point numbers A' and B' by changing the 
exponents of A and B to zero. We would also like to change the exponent of 
C to ea = ec + L, but ec> may be outside the range o ' the exponents handled 
by the machine. For example, this happens with the equation

16’4OX2 16~40x - 1640 = 0.

Even if | C' | < Q, the calculation of 4ArC' might produce overflow. But with 
our scaling of A' and B', it is easy to see that we shall not encounter either 
overflow or underflow in the solution of (9.3.11) if

(9.3.12)

We shall first consider the case in which (9.3.12) holds. We can change the 
exponent of C to ec> and solve (9.3.1 1). Then the roots of (9.3.11) must be 
multiplied by 16A to produce the roots of (9.3.1), Since these multiplications 
can produce overflow or underflow, we might prefer to perform the multipli
cations by changing the exponents. This would allow us to provide any 
treatment we wanted to for the cases in which the answer overflows or 
underflows.

Now suppose that (9.3.12) does not hold. We may write

(9.3.13) C = 162JtfC",

where the exponent of C is 0 or 1 according to whether the exponent of C is 
even or odd. We 'orm C" by changing the exponent of C, and we compute

First, suppose that B = 0. If AC < 0, the roots of (9.3.11) are J i 6MS. Then 
the roots of (9.3.1) may be obtained by adding K + M to the exponents of S 
and —S. Similarly, if AC > 0, the roots of (9.3.1) are 16A 1 MSi. The real parts 
are zero and the imaginary parts are obtained by changing the exponents of 
S and -S.

Next, suppose that ec- < — 63 and that B 0. Then 16'1 < | B' | < 1 and 
4A'C\ < 16 62. so we may ignore the contribution of 4A'C' to the discrimi

nant of (9.3.1 1). For the add magnitude case, we takej^ = —B' A', and to
compute the other root we form T — —C" -F (A' * To get the roots of 
(9.3.1), we add K to the exponent of and 2M -f K to the exponent of T.

Finally, suppose that ee > 62. Then we may ignore the contribution of 
(B')1 to the discriminant, so our brmula becomes

(9.3.14) -B’ ± ^/-4A’Cf 
2A'
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If AC < 0, the roots of (9.3.11) are real and we may ignore the contribution 
o B' in (9.3.14). This yields ± 16MS for the roots of (9.3.11). But if AC > 0, 
the real parts of the roots are —B'/(2A\ and the imaginary parts are ± 16MS. 
As above, the roots of (9.3.1) are obtained by changing the exponents of the 
roots of ( 9.3.11).

EXERCISES

1. Find two floating-point numbers A and B such that

A ® l(BQ A) ~ 2] B© [(A © B) ~ 2],

when the arithmetic is performed in the system
a. FP(10, 6, c),
b. FP(2, p, c).

2. Suppose that we use the brmula

AV = (A 4- 2) © (B 4- 2)

for the average problem. Assume that r is even and that the arithmetic is 
performed in the system FP(r, p, c). Show that

min(/4, B) <4 AV < max(/l, B)

fails to hold if and only if A = B but A 4- 2 A/2.

3. Suppose that we use the formula AV — (A © B) 4- 2 for the average problem. 
Assume that the arithmetic is performed in the system FP(r, p, c), where p > 2. 
Show that

min(/4, B} < AV < max(/I, B)

holds for all A and B in S(r, p) if and only if r = 2.

4. Show that if A and B have opposite signs, then formula (9.2.4) produces a 
result which has all the properties listed under heading 3 in the specifications 
for the average problem.

5. Suppose that we perform the arithmetic for the average problem in FP(r, p, c), 
where r is even and p > 2. For which of the formulas (9.2.4)-(9.2.6) can we 
assert that the result satisfies

min(T, B) < AV < max(^, B)

whenever there is a floating-point number between A and B?

6. Suppose that we are using a machine on which the arithmetic is performed in 
FP( 16, 6, c) and that co = 16“65. Find floating-point numbers A and B such
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that

IA | > 2a>
B > 2cd

but (A 4- 2) © (B — 2) underflows.

7. In 14 10, 6, c), find an example of two floating-point numbers A and B for 
which B = — A but

4- 2] 0.

8. Write a program to solve the average problem on the machine you are using. 
It should meet all the specifications given in Section 9.2.

9. Suppose that we use formula (9.2.5) for the average problem. Assume that the 
arithmetic is performed in FP(r, p, c), where r is even. Show that ii A and B 
have the same sign, then the error is less than 11 units in the last place.

10. Suppose that we use the formula (9.2.4) for the average problem. Assume that 
the arithmetic is performed in the system FP(r, p, c), where r is even. Show 
that the error is less than r/2 units in the last place.

1. Suppose that we use formula 9.2.6) for the average problem. Assume that the 
arithmetic is performed in the system FP(r, p, c), where r is even. Show that 
if A and B have the same sign, then the error is less than r/2 + 1 units in the 
last place.

12. Convert the coefficients o' the equation

1030x2 - 2*lO3Ox + 1030 = 0

to 5(16, 6) using a truncation conversion transformation. Show that the roots 
of the resulting equation

Ax2 + Bx 4- C = 0

arc not real.

13. Suppose that you want to solve the quadratic equation

Ax2 Bx + C = 0

without doing any scaling. Let eA, eB, and ec be the exponents of the floating
point numbers A, B, and C. Find a number e such that you will not encounter 
either overflow or underflow on the machine you are using if | eA |, | eB |, and | ec ] 
are all less than e.

14. Find an example of a quadratic equation 

/lx2 4- Bx + C = 0
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whose coefficients are normalized floating-point numbers on the machine 
you are using, and
a. One root overflows.
b. One root underflows.
c. One root overflows and one root underflows.

15. Let Ax2 + Bx + C = 0 be a quadratic equation whose coefficients are nor
malized floating-point numbers. Suppose that we use the scaling described in 
Section 9.3 and that (9.3.12) holds. Find examples to show that wc may en
counter either overflow or underflow when we multiply the roots of 9.3.11) by 
16*

16. Suppose that we use the quadratic formula to solve

Ax2 + Bx - A = 0,

without providing any special treatment for the computation of R2. Also, 
assume that B2 + 4X2 is computed using single-precision arithmetic. Let 
B = 1.23456 and A — .000123. Describe what happens when the calculation is 
performed in FP(10, 6, c).

17. Consider the quadratic equation

Ax2 + Bx = C = 0

where A — .20000001, B = —.4, and C = .19999999. Use the quadratic 
formula to find both roots of the equation, performing all operations in 
FP(10, 8, c). Assume that the square root routine produces the correctly 
chopped result. What is the error in the answers? What is the error in the 
answers if we perform the calculation of B2 — 4AC in FP(10, 16, c), but 
perform the rest of the calculation in FP(10, 8, c)?

18. Let A, B, and C be in S(r,p), and suppose that we compute B2 — 4AC in 
FP(r, 2p, c). Show that we obtain the correctly chopped value B2 — 4AC if 
r is 2 or 4 but that we do not always obtain B2 — 4AC if r is 10 or 2k with 
k > 2. If r 3, show that we always obtain B2 — 4AC when the calculation is 
performed in FP(r, 2p + 1, c).



CHECKING AND 
TESTING

10.1. RANGE CHECKING

We shall distinguish between the ideas ol checking and testing. By testing 
we mean running test cases to test the behavior o the program. Checking 
refers to checks that are incorporated in the program to check the validity ol 
the answers that are produced.

One of the simplest forms of checking is to check that the numbers lie in a 
prescribed range. For example, a statistical program can check that variances 
are nonnegative and that the absolute values of the correlation coefficients do 
not exceed 1. Then if one of these conditions is violated, the program can 
print an error message instead of producing a ridiculous answer.

Many programs check the input data and print a message if they detect an 
invalid character. In some cases, they also check the range of the numbers 
read in. When an error is detected, the error message should indicate where 
the error occurred, so we do not have to search through several hundred cards 
to find the one that is mispunched.

It is quite common for a library subroutine to check the range of its 
arguments. For example, square root programs usually check that the argu
ment is nonnegative, an arcsine program may check that the absolute value of 
its argument is at most 1, and a matrix inversion program might check that 
the parameter specifying the order of the matrix is a positive integer. A 
subroutine to compute ex may check that x < log(, Q in order to avoid the 
case in which the answer overflows. These checks are designed to detect cases 
in which the problem is incorrectly posed or in which the program is unab e to 
produce a reasonable answer. We normally expect library programs to provide 
us with this protection.

255
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Some compilers provide us with a similar sort of protection. Programs 
compiled by WATFOR check the range of the subscripts, and they print an 
error message if we try to use a subscript which is larger than the dimension 
of the array. PL I provides a similar check on an optional basis. We can 
specify whether or not we want the program it produces to check the range of 
the subscripts.

10.2. MATHEMATICAL CHECKS

The most familiar form of checking pertains to the solution of an equation 
,/'fx) = 0. After we have solved the equation, we can check the answer by 
substituting it into the equation. This concept is extremely familiar from 
elementary courses in mathematics. Some algorithms for the solution of 
/ ( x) = 0 use an iterative procedure in which the stopping criterion is based 
on the size of f(x\ so the procedure automatically includes a check.

When automatic computers were first used, it was quite common to spend 
as much time and effort checking the answers as calculating them. But much 
less checking is done today, and this may be attributed to several factors. 
First, and probably most important, the hardware has become very much 
more reliable. Also, the problems we solve have become more complicated, 
so it is harder to find a satisfactory check. Finally, we have more confidence in 
our programs, because they are written in higher-level languages. (This 
confidence may not be justified, but it seems to exist.)

Our experience with solving problems analytically suggests that it is much 
easier to check the answer than it is to solve the problem. For example, 
consider the equation

x6 4- 2x5 - 8x3 - 4x2

It is more difficult to solve the equation than it is to check the fact that v'T is 
a root. Even in machine calculation, we would rather find the value of a 
polynomial p(x) than find the roots ofp(x) = 0. This is also true of solving a 
system of n linear equations. It requires about J/z3 multiplications and addi
tions to solve the equations, but it requires only n~ multiplications and 
additions to check the solution. For large values of zz, checking the answer 
requires much less machine time than solving the equations.

Another type of problem in which checking has been used successfully is 
the solution of the partial di erential equations that arise in hydrodynamics. 
Here we often find that conservation laws, such as the conservation of energy 
or the conservation o momentum, can be used as a check. But there are other 
problems in which it is quite difficult to find a satisfactory check. This is true 
of many problems referred to as simulation.
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The commonest ^orm of a check is an equation such as

(10.2.1) /(x) = 0

which is satisfied exactly by the correct answer x for our problem. Unfortun
ately, we usually have only an approximation x for x, and we do not expect 
f(x) to be exactly zero. Moreover, we usually cannot calculate /(x) exactly, 
so we obtain an approximation / (x) for /(x). We cannot expect /'(x) to be 
exactly zero, but we hope that |/(x) is small. We are immediately faced with 
the problem of deciding how large |/(x)l must be before we should reject x.

Often we do not have a clear idea about where the cutoff point should be 
set, but the larger |/(x) is, the less confidence we have in the answer x. This 
suggests that we should select two criteria A and B. We would accept the 
answer x if | /’(x) | < A and reject it if | f(x) | > B. If A < | f(x) | < B. then x 
is questionable. For this case, we might print a warning message and allow 
the calculation to continue.

The criteria A and B cannot be chosen without some knowledge of the 
function f(xj. i or example, suppose that we are working in FP< 10, 8, c and 
we set A = 10~8 and B = 106. If

(10.2.2) /(x) = 1030x2 - 3 • 1030x 2 • 1030,

then either /(x) — 0 or else |./(x)| > 106. Therefore we shall reject the 
answer unless /(x) is exactly zero. On the other hand, if

(10.2.3) /(a-) = 10"30x2 3 - 10~30x + 2 • IO’30,

| f(x! j will be less than IO"8 unless | x| is extremely large. Thus, we need some 
idea of the size of the numbers that will arise in the computation of / x) 
before we select A and B.

The scaling of the coefficients of / (x) is not the only source of difficulty in 
the selection of A and B. Consider the polynomial

(10.2.4) /'(x) = x" — ax" 1 — x + a,

where n > 3 and a = 8.76543/7. Here /'(x) = (x — a) x" 1 — I), so the roots 
of f(x) = 0 are a and the (/? — 1 )st roots of unity. Suppose that we are 
working in FP(16, 6, c) and have obtained an approximation a = 8.76544„ 
for the root a. We would like to check a by computing / (a), and since a 
differs from a by only one unit in the last place, we want to accept a.

The following table shows the true values of /(a) rounded to four decimal 
digits:



258 CHECKING AND TESTING CHAP. 10

/(«)

5
10
20
40
80

.6734 x IO"4 

.4889 X IO-2 

.2122 X 103 

.3996 x 1012

.1417 x 1031

.1781 x 1068

When we evaluate /(a) by performing the arithmetic in FP(16, 6, c), we shall 
produce approximately these results. Although the coefficients of (10.1.4) are 
of reasonable size, changing the root by 1 in the last place produces an 
extremely large value or] / :.v) when n is large. We clearly cannot set A large 
enough to accept the value a without accepting many very bad approxima
tions for the roots of / (x) = 0. This behavior is not unusual for polynomials 
of high degree.

For some problems, we may be able to write the check in the form

(10.2.5) F(x) = G(x),

where / t x) and G(x) can be computed with small relative errors. Then we can 
base our criteria for accepting the answer x on the relative difference

F(x) - G(x)
G(x)

Although we still have to decide on the cutoff points, the influence of the 
scaling of the coefficients has been eliminated.

It may be advantageous to change the check from the form (10.2. ) to the 
form (10.2.5) by carrying some of the terms in f(x) to the right-hand side of 
the equation. For example, if /(x) is given by (10.2.4), we could write

xn a = &xn ‘1

We want to be able to compute F(x) and Gfx) in (10.2.5) with small relative 
errors, so we would usually try to carry out this rearrangement in such a way 
that all the terms in F(x) and G(x) have the same sign. But the sign of a term 
may depend on the value of x, so we might want to let the rearrangement 
depend on x. We could compute each term in /(x) and let F(x) be the sum of 
the terms which are positive. While this approach is not foolproof, there are 
times when it can be quite effective.

Other strategies for checking may be devised. If /(x in (10.2.1) is a func
tion of a single variable x, we may ask whether f(x) changes sign in the 
neighborhood of x. That is, we could select a value p and compare the sign oi
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fix) with the signs of f(x ± px). Since f(x) may vanish without changing 
sign, this check cannot be used indiscriminantly. But we could decide to accept 
the answer x when either |/(x) I < A or JYx) changes sign in the neighbor
hood of x.

10.3. TESTING

We shall now consider the problems involved in testing a program to 
determine the quality of the answers it produces.t These tests may be 
performed by either the author of the program or a user, but we shall assume 
that the objective of the test is program evaluation, not debugging. Sometimes 
the test merely verifies that the program produces reasonably good answers for 
a few problems whose answers are known, but we would prefer to have a more 
extensive test which would test the behavior of the program on a large number 
of di 'erent cases. We have seen that it is often difficult to perform an error 
analysis and find a good bound for the error produced by a program. Instead, 
we often try to obtain an estimate of the maximum error by testing the pro
gram on a large number of cases. Results of tests of this sort are often 
included in the documentation of the program.

Some guide lines for testing various classes of programs are beginning to 
appear in the literature.i Both the formulation of a good set of test cases and 
the evaluation of the results of the test require a detailed knowledge of the 
problem being solved, so we shall make only a few general comments about 
testing.

Since any test of the accuracy of the results produced by a program is 
based on the comparison of these results with the correct answers, one of the 
major difficulties we face is finding the correct answer to the problem. 
Sometimes this leads us to test the program on problems which can be so ved 
analytically. Unfortunately, these cases may not be sufficiently general to 
provide a good test.

Suppose that we are testing a subroutine rather than a complete program. 
The data supplied to the subroutine will be floating-point numbers in S(r, p), 
but we often find that the problems for which we know the answers have data 
which are not in S(r, p), For example, consider a subroutine which computes 
the value of a function /'(x), where we know that /(|) = a. The number | 
will not be in S(r, p) unless r is divisible by 3. Suppose that we call the 
subroutine with an argument x | and the subroutine returns the answer a.

fThe algorithms section of the Communications of the ACM and the SHARE SSDs 
publish reviews containing the results of such tests. An extensive review of the FOR I RAN 
library for the IBM System/360 was published by Clark et al. (1967).

JAn example is the collection of guide lines published by Kuki et al. (1966). Usow (1969, 
1970) published a bibliography of papers on the testing of programs.
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The error introduced by the subroutine is the difference between a and f(x). 
Probably the commonest mistake in testing programs is to compare a with a 
instead of with /'(x). The discrepancy between a and a is due partly to the 
error introduced by the subroutine and partly to the change in the argument. 
We cannot fault the subroutine for failing to guess the argument we had in 
mind.

Thus, we have to be able to find the value of /'(x) for x in S(r, /?), and this 
often requires us to write a program to compute f(x') using higher-preci si on 
arithmetic. Since we are interested in only the first two or three decimal digits 
of the error, the answer produced by the higher-precision program has to be 
accurate to only a lew more than p digits. Even so, writing a program which 
will produce answers that are this accurate may be a major undertaking. For 
example, we may have to develop new approximations which are more 
accurate than the ones used in the program we are testing.

When our test is based on a comparison of the results produced by a 
subroutine with the results produced by a higher-precision program, we must 
be careful about the way the arguments are generated. We should generate 
the p-digit arguments for the subroutine and then extend them to higher- 
precision by appending zeros. Then both programs are trying to compute / x) 
or the same value of x. A common mistake is to generate a higher-precision 

number x for the argument of the higher-precision program and use x as the 
argument of the subroutine. This contaminates the test because the two 
programs will receive different arguments.

There are several ways in which we might compare the answer y computed 
by the subroutine with the correct answer j. For instance, we can compute 
either the absolute error or the relative error. (Which of these is the appro
priate measure of the accuracy of the result will depend on the nature of the 
problem. ! Instead of computing the relative error, we sometimes express the 
error in terms of units in the last place. When the answer is a vector instead of 
a single number, it is often appropriate to compute the norm of the error.

Instead of comparing y with the correct answer j, some tests have com
pared y with the number obtained by rounding y to S(r, p). Then the — o 
program is considered to be perfect if it always produces the answer j , and 
the maximum number of units in the last place by which y and y differ can 
be used as a measure of the accuracy of the program. This leads to a descrip
tion of the test results which is easy to understand. But suppose that we are 
using an eight-digit decimal machine and that

y = 1.234567850000001.

Then y° = 1.2345679, but y is almost as good an approximation I or 7 as^ is. 
I f we compare y withy°, we shall consider 1.2345680 to be as good an answer 
as y is, but it has about three times as large an error. Thus, we obtain a better 
estimate of the error by comparing y with y instead of with y .



EXERCISES 261

Our test of a program is often based on random arguments selected from a 
suitable distribution. Then we can compute the sample mean and variance for 
the error as well as the maximum error observed. As we saw in Chapter 3, 
there are problems in which the average error is more important than the 
maximum error.

In addition to testing the program on a large number of typical problems, 
we may want to devote part of our test to trying to determine the class of 
problems for which the program will produce reliable answers. This leads us 
to test the program on some problems which are known to be difficult to 
handle. For example, it is common for a test of a program for the solution of 
simultaneous equations to include a few problems which are ill-conditioned, 
and the test cases for a differential equation solver usually include some 
“sti • ’ " systems of differential equations. By testing the limits of the program in 
this way, we hope to determine the type of problem 'or which the program 
can be used with confidence. Also, tests of this sort will show us whether the 
program can recognize the cases in which it is unable to produce a good 
answer and provide us with a suitable warning. However, these should not be 
the only tests we perform, because our primary interest is in the behavior of 
the program on the sort of problem for which it was designed. Most of our 
test cases should be more typical of the use we expect to make of the program.

EXERCISES

1. Let a = 8.76543#, a = 8.76544#, and /? = a — 1. Let

p(x) = (x — a)(x”'1 T x”’2 T * • ■ + 1),

so

p(x) = xn — pxn~{ — f}xn~z — ... — jSx — a.

Suppose that we obtain the approximation a for the root x = a of p x) = 0. 
Check a by computing the value of p(a) 'or n — 3, 5, 10, 20, 40, 80.

2. Let a be an approximation for the root a of

xn — ax71"1 - x + a = o,

where a = 8.76543#. Take several values of a close to a and check them using

xn 4- a = ax”"1

for n = 3, 5, 10, 20, 40, 80.

3. Show that the root x = oc of

xn — ax”'1 — x + a = 0 
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is well conditioned with respect to changes in the nonzero coefficients of the 
equation.

4. Let a be an approximation for the root aof’ the equation

p(x) = xn — ax""1 — x

where a = 8.765437/ and a = 8.76544/z. To check a, we select a value of p 
and compute p(a — pot) and p(dt { pot). We shall accept ot if these quantities 
have opposite signs. Perform this check for n = 3, 5, 10, 20, 40, 80.

5. Let a be an approximation for the root a of

p(x) = xn — ax"-1 — x 4- a = 0,

where a — 8.76543/z and a = a 4- 16“I3. Then a differs from a by 1 in the 
fourteenth hexadecimal digit. Check a by computing p(a) in Fl 16, 14, c/1) for 
n = 3, 5, 10, 20, 40, 80.

6. Let x = 7t/6 and let 7t be a floating-point number which is an approximation for 
71. To obtain an approximation x for x, we form x = ft -4- 6 using floating-point 
division. Let y be the value produced for sin x by the sine routine. How much 
of' the error in the approximation y sin x is due to the change in the argu
ment ?

7. Test the sine routine on the machine you are using.



11 LANGUAGE FEATURES FOR 
FLOATING-POINT COMPUTATION

11.1. INTRODUCTION

We shall now turn to the question of the characteristics a higher-level 
language should have to enable us to write programs for floating-point com
putation. Some aspects of this question were considered in earlier chapters. 
The treatment o1'overflow and underflow was discussed in Chapter 2, and the 
language support for double-precision arithmetic was discussed in Chapter 5. 
Consequently, these subjects will not be addressed in this chapter.

Many discussions of compilers stress fast compilation, fast execution, 
machine independence, and ease of writing programs in the language. These 
objectives are desirable and widely recognized. Our intent is to discuss some 
other objectives which are less often mentioned. We shall consider the 
language from the point of view of the author of a caret ally written program. 
The principal question we shall address is whether the language gives us 
suifficient control over the calculation so that we can produce a high-quality 
program.

The first properties we shall look for in the language are predictability, 
controllability, and observability. Then in Section 11.3, we shall discuss some 
operations that are often difficult to program in higher-level languages. 
Finally, machine independence will be discussed in Section 11.4. Many of our 
comments will refer to the implementation of the language rather than the 
language specifications themselves.

263
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11.2. PREDICTABILITY, CONTROLLABILITY,
OBSERVABILITY

Floating-point arithmetic usually produces only an approximation for the 
correct answer, and rearrangements of the calculation which would be 
mathematically equivalent i f the arithmetic were performed in the real number 
system may have a significant effect on the accuracy of the answer. Therefore, 
we may want to know the sequence of operations which will be used to 
evaluate the arithmetic expressions we have written.

In Chapter I, we saw that the associative laws of addition and multiplica
tion fail to hold in FP(r, /?, c). Consequently, instead of writing

(11.2.1) X=A*B*C,

we should use parentheses to indicate the order in which the operations are to 
be performed. But the compilers allow us to write expressions such as (11.2.1), 
and this can be justified by the act that the associative law of multiplication 
holds approximately. ( See Section 3.4.) Indeed, there are many cases in which 
we do- not care whether the compiler treats (11.2.1) as (A * B) * C or 
A * (B * C). But there are other times when the distinction is important, so 
we would like to know which form will be used.

Thus, one aspect of predictability is that we want to know what arithmetic 
operations will be performed when we write a statement such as (11.2.1). This 
is even more important with a statement such as

(11.2.2) X = A + B - C,

because the associative law of addition does not even hold approximately. 
The number (A @ B) Q C need not be close to A © (B Q C .

Almost any compiler is deterministic in the sense that a given program will 
always produce the same object code. But predictability means that the user 
can predict the arithmetic operations that will be performed. This requires 
simple rules, such as “the terms in a sum will be added from left to right." It 
also requires that these rules be communicated to the user.

There are times when we are uncertain about the way the compiler treats 
certain statements, so we want to find out what arithmetic operations have 
been compiled. We shall refer to this as observability. Many compilers provide 
this capability by allowing us to request an Assembler listing of the object 
code. This listing shows us the sequence of operations that will be performed, 
and it provides a way to resolve any ambiguities in the description of the 
language.

While predictability is desirable, controllability is essential. When we know 
exactly the way we want the calculation to be performed, we must be able to 
produce the desired sequence of arithmetic operations. This means that the
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compiler must honor our parentheses. While we would like to be able to 
predict the way (11.2.2) will be evaluated, it is essential that the statement

X = (A + B) - C

produce (A @ B) Q C.
A second aspect of predictability and controllability concerns the conver

sion of constants. When we write a statement such as X = 2.1, will the 
number stored in Arbe2.1,2.1 , or merely some number close to 2.1? Il 
the constant is a number C which can be represented exactly in S(r, p, will the 
conversion program produce C exactly? Here the predictability of the conver
sion program depends on its documentation. Unfortunately, we are often 
given little or no information of this sort. Even if we cannot have complete 
predictability, it would be helpful to have a description oi the cases in which 
the result can be described easily. (For example, see Exercise 10 of Chapter 8.)

Since constants will be converted to the radix r before they are used in the 
calculation, there are times when we want a constant to be converted to a 
specific number in S(r, p). For example, we might want to produce the 
corrrectly rounded value of n. This is another aspect oi'controllability, and it 
means that the conversion transformation must be onto. That is, for any 
number x in S r, p), there must be a constant which will be converted into x.

Another way to produce a number we want in S(r, p) is to enter the num
ber in the radix r of the machine. This is the natural way to express numbers 
such as 1 — I + r~ co,Q etc. It is also an appropriate way to enter 
constants which were computed by another program. For example, we may 
write a program to compute the coefficients of a polynomial approximation 
for a function /(x) and then use these coefficients as constants in another 
program which computes /(x). But converting these coefficients to decimal 
and then reconverting them to the radix r might introduce errors, so we might 
prefer to print them in the radix r and then enter them in that form in our 
program for /(x).t

Finally, since our calculation will be performed in FP(r, /?, a), there are 
times when we want to see the numbers in Si r, p) that arise in the calculation. 
This is another aspect of observability, and it is another reason for our 
wanting the language to provide us the option of printing numbers in the 
radix of the machine.

11.3. EASE OF PROGRAMMING

The widespread use of higher-level languages for floating-point computa
tion is due to the fact that they make it much easier to program many of the

fSome FORTRANs for the IBM System/360 support the Z format which provides this 
capability.
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calculations we want to perform. Since the merits of these languages are 
widely recognized, we shall not dwell on them here. Instead, we shall indicate 
a lew aspects of loating-point computation that are hard to program in many 
higher-level languages. The criterion we shall adopt is that operations which 
are easy to program in Assembler language should be easy to program in the 
higher-level language. Fortunately, this is true of most of the things we want 
to do with floating-point numbers.

However, in many higher-level languages it is difficult to perform opera
tions which make explicit reference to the representation of the number, or 
example, in Section 4.4 we described ways to dismantle the floating-point 
number. We succeeded in coding this operation in both FOR ' RAN and 
PL/I, but the FOR I RAN coding was quite devious and it obscured the 
intent of the code. It would be much nicer if the language had functions which 
would produce the parts of the number. We shall suggest four functions which 
would enable us to perform operations like this that are often difficult to 
program in higher-level languages. The names selected for these unctions 
follow the FORTRAN conventions.

First, we shall consider functions which would allow us to dismantle and 
reassemble the floating-point number. We would like to have an integer valued 
function IEXP(X) whose value is the exponent of the floating-point number 
X. To reassemble the floating-point number, we would like to have a “unction 
ASSEMB 1,X . The value of ASSEM B( I,X would be a floating-point number 
whose exponent is 1 and whose sign and mantissa are the same as those of X. 
This function would also allow us to extract the mantissa of X. If we set 
1 = 0, then the value of ASSEM B(I,X) is a floating-point number which is 
equal to the mantissa of X.

Rounding is another operation that is often difficult to program in higher- 
level languages. We would like to have a function ROUND(D) whose 
argument is the double-precision number D and whose value is the single
precision number D .

Finally, it would be helpful to have a function AUG(X,I) whose value is 
the floating-point number X augmented by I units in the last place. (When I is 
negative, X is decremented.) This function would allow us to perform opera
tions such as rounding the intervals outward in interval arithmetic. (See 
Section 7.4.) It can also be useful in testing programs, i n some tests we want 
to use consecutive floating-point numbers as arguments to see whether the 
answers are monotonic; in other tests we might want to step the argument by 
a fixed number of units in the last place. [See Turner (1969b).]

Since all these operations are easy to perform in Assembler language, we 
could produce the function subroutines described above and include them in 
the library for the machine we are using. Even if these subroutines were coded 
in Assembler language, they could have linkages which would allow them to 
be called by programs written in the higher-level language. But it would be 
much more convenient if they were provided by the higher-level language 



SEC. 1 1.4 MACHINE INDEPENDENCE 267

itself. Since they are so short, they could be compiled as in-line code instead of 
using subroutine calls. This would make the execution of these operations 
much faster, so we would be more inclined to use them. Moreover, they are 
especially useful when we are trying to produce a high-quality program, so we 
would like to use them in programs which will be distributed to others. But 
when we distribute a program, we would prefer not to have to distribute our 
library subroutines along with it. Thus, it would be much nicer if these 
functions were provided by the higher-level languages.

11.4. MACHINE INDEPENDENCE

We shall now ask whether a program can be written in a higher-level 
language and run on two (or more) different machines. We often find that this 
is not the case; the program must be modified to run on a second machine. 
The basic question is how difficult it is to make these modifications. In 
recognition of the fact that some modifications may be necessary, it is 
becoming common to speak of the portability of a program. Instead of asking 
whether a program is machine-independent, we ask how much work will be 
required to transport it to another machine.

We often find that the most serious problem we encounter in converting a 
program rom one machine to another is the incompatibility of the compilers. 
Different compilers implement different language features, and in some cases 
they handle the same statement in different ways. This is even true of dif
ferent FORTRAN compilers for the same machine. One way to enhance the 
portability of our programs is to restrict ourselves to the language features 
common to all the compilers we wish to use. But if we do this, we may have to 
sacrifice some of the power of the language, and in some cases the quality of 
the program will suffer. Since it is the high-quality programs that we are most 
interested in converting from one machine to another, we usually will not be 
willing to sacrifice quality to gain portability.

I f a program must be modified to convert it to another machine, the first 
problem we face is identifying the statements that must be changed. Cases of 
obvious machine dependency, such as the use of UNSPEC in PL/I, are not 
nearly as troublesome as hidden dependencies are. Similarly, the functions 
I EXP and ASSEMB suggested in the previous section are easy to identify as 
possible sources of machine dependency. By making the machine dependence 
explicit, these functions would enhance the portability of our programs.

In Section 11.2 we mentioned the desirability of entering constants in the 
radix r of the machine. This is another language feature which makes the 
machine dependence clear. Since the constants which we would want to enter 
in the radix r are very likely to be machine-dependent, writing them in this 
form helps identify items that have to be modified. In addition to writing 
constants in the radix r, we sometimes want to use the radix r in input and 
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output formats. The most common use of this format occurs in test programs 
and special-purpose programs which we are not interested in converting to 
another machine. But if we do want to convert a program that uses this format, 
the modifications that have to be made are usually quite clear.

After we find the items in the program that are machine-dependent, we 
have to decide how to change them. To do this correctly, we must understand 
the intent of the coding. But the intent of the coding is most easily understood 
when the language allows the programmer to specify the operations he wants 
to perform. For example, if the program uses the functions IEXP and 
ASS EM B described in Sect ion 11.3, it is easy to see what the programmer was 
trying to do. By contrast, the FORTRAN coding for these operations 
described in Section 4.4 completely obscures the intent of the code. While the 
use of UNSPEC in PL/I indicates that the coding is machine-dependent, it 
does not describe the intent of the coding as well as the functions IEXP and 
ASSEMB do.

As we have seen, a carefully written program often uses constants which 
are chosen for the specific machine on which the program is to be run. There 
are several types of constants that are machine-dependent. First, there are 
constants such as r, /?, co, Q, etc., which describe the characteristics of the 
machine. Second, there are mathematical constants, such as rc, e, log(, 2, etc. 
We would like to enter these constants in such a way that the number stored 
in the machine is the correctly rounded value of the constant. Finally, there 
are the coefficients for the approximations we shall use for various functions. 
Both the coefficients and the number of terms in the approximation will 
depend on the word length of t lie machine we are using. It has been proposed 
that the first two types of constants could be stored in a special subroutine 
which could be called by programs that need the constant. Thus, by calling 
this program and asking for the fourth constant we could obtain say, the ■
correctly rounded value of ti/I. Each machine would have such a subroutine 
with t) i.e constants arranged in the same order. To convert a program to a new 
machine, we would change this one subroutine instead of changing the 
constants in every program that used them. Here the price we pay for 
portability is some extra subroutine calls. A variation of this approach is to 
place the block of constants in TOM MON, so that we can avoid the 
subroutine calls.

There are two different situations in which we are interested in the 
portability of programs, and they present slightly di Terent problems. The 
first case is the one in which the machine we have been using is to be replaced 
by a new machine, so we want to convert all our programs. The second case 
arises when we have access to several different machines, and we want our 
programs to run on all sfiese machines. We shall call the first case conversion 
and the second case the multiple-machine case. In the conversion case, once 
the conversion lias been performed we are no longer interested in the original 
version of the program. But in the multiple-machine case, we want to avoid 
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maintaining several different versions of the program, so we want to write the 
program in such a way that it will run on all the machines we are using.

Conversion appears to be the easier case, since we can modify the program 
in any way we want to. In fact, we can use a sift program to flag statements 
that are clearly machine-dependent. But the conversion case may also present 
some difficulties. We often find that the programs were written for the first 
machine without any consideration of the problems involved in transporting 
them to the new machine. (Some of the programs may have been written 
before we knew the specifications for the new machine and its compilers.) 
Also, we may have to convert the programs at a time when we have had 
little or no experience with the new machine, so we may be unaware of some 
idiosyncrasies of the machine that can affect the programs.

The difficulties in the multiple-machine case stem from the fact that we 
want genuine machine independence—that is, we want the same program to 
run on several different machines. However, we shall assume that at the time we 
write the program we are familiar with all the machines on which it is to be 
run. In principle, it should be possible to write such a program. If we want to 
use some coding that is machine-dependent, we can perform a test to deter
mine which machine the program is being run on and then branch to the 
appropriate coding.t But the compilers sometimes make it quite difficult to 
do this. Some of the statements in the program we compile on machine A will 
be executed only on machine B, but the compiler for machine A may diagnose 
them as errors. It is quite acceptable for the compiler to print warning mes
sages for these errors, but it must not consider them to be so serious that it 
fails to compile the rest of the program. Of course, it is also vital that these 
errors not contaminate the rest of the program.

If we use this approach, we must be able to perform a test to determine 
which machine the program is being run on. We shall call this the machine 
identification problem. We want to per brm a simple computation which will 
produce di j fere nt answers on two different machines. When the machines are 
specified, such a test is usually quite easy to devise. In Exercise 7 we shall 
address the more general problem of performing a series of tests to identify the 
system FP(r, p, d) in which the floating-point calculation is being performed.

EXERCISES

1. Another way to obtain the exponent of a floating-point number is to use 
logr |x|, which we can compute by using

logr |.v| logj-v 
loge r

*|'A slightly less elegant approach is to write the machine-dependent statements as 
comments. To convert the program to another machine, we only have to change a few 
characters to change the appropriate comments to executable statements.
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Write a program to use logr |x| to compute the exponent of x on the machine 
you are using. Does this computation produce the correct exponent for all 
floating-point numbers?

2. For mathematical constants, such as ti and e, we want the number stored in the 
machine to be accurate to the precision of the machine. Then the number of 
digits used to represent the constant becomes a source of machine dependency 
in the program. At the expense of execution time, we can sometimes overcome 
this difficulty by using a standard library function. For example, we can compute 
ji/4 by computing arctan(l). What other constants can we obtain in this way?

3. Consider the function ASSEMB(I,X) described in Section 11.3. What should 
this subroutine do when the value of I is outside of the range of the exponents of 
the floating-point numbers on our machine?

4. Write Assembler language subroutines for the functions IEXP, ASSEMB, 
ROUND, and AUG on the machine you are using.

5. How would you use the functions described in Section 11.3 to decide whether or 
not X differs from Y by less than K units in the last place of Y ?
a. Use AUG.
b. Use IEXP and ASSEMB.

6. Suppose that you are writing a program which you intend to run on two different 
machines. Devise a simple test to identify the machine on which the program is 
being run, if the systems in which the two machines perform floating-point 
arithmetic are:
a. FP(2, 40, a) and FP(2, 48, a)
b. FP(16, 6, c) and FP(2, 24, c)
c. FP(16, 6, c) and FP(10, 7, c)
d. FP(2, 27, c) and FP(10, 8, c)
e. FP(2, 27, R) and FP(2, 28, c)

7. Suppose that you are writing a program which is to be run on many different 
machines. Devise a collection of tests which will identify the system FP(r, p, a) 
in which the calculation is being performed. You may assume that all of the 
machines on which the program will be run have all of the following five pro
perties:
a. r is either 10 or 2A with 1 k < 6.
b. > 1000.
c. ci is /?, c, or clq. If a is clq, then q is 0, 1, or 2.
d. Q > r2p and co <
e. If your program contains a constant which is a positive integer less than 

1,000, then the compiler does not introduce any error when it converts the 
constant to S(r, p).



12 FLOATING-POINT 
HARDWARE

12.1. CHOICE OF RADIX

The choice oi'the radix is the most basic decision to be made in the design 
of the floating-point hardware. The criteria on which this decision is based 
are usually speed, cost, and ease of use. It is generally accepted that binary 
arithmetic is faster than decimal arithmetic—at least at the same cost—so 
the very fast machines have seldom used the decimal representation for 
floating-point numbers. ( I he NOR.C was an exception.) Since it is as easy to 
perform the basic arithmetic operations in the radix 2* as it is in binary, 
several machines have been designed with a radix which is a power of 2.

We now have machines which are capable of performing floating-point 
• arithmetic at remarkably high speeds. For example, the execution time for 

single-precision multiplication on the model 195 of the IBM System/360 is 
162 nanoseconds, which is less than one quarter of a memory cycle. Indeed, a 
conditional branch may take longer than floating-point multiplication on 

• this model of the IBM System/360. Thus, the speed of the floating-point 
arithmetic is no longer the major bottleneck, so the fact that binary arithmetic 
is faster than decimal arithmetic is not as decisive as it once was in the 
selection of the radix.

Another argument that is sometimes advanced or binary machines is that 
they make more efficient use of the storage. The decimal representation of 
numbers requires more bits than the binary representation does to produce 
the same accuracy, so a binary machine can have a shorter word length than a 
decimal machine with comparable accuracy. This can reduce the cost of the 
memory. Alternatively, if it uses the same word length, the binary machine 
can provide more accuracy.

271
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There are several respects in which a machine with radix 2k differs from a 
binary machine. One di'Terence is that with larger values of /< we may expect 
that less shifting will be required in the operations 0 and 0; [See Sweeney 
1965).] Therefore, these operations might be slightly faster on an octal or a 

hexadecimal machine than on a binary machine. Another difference is in the 
size of the exponent. As an illustration, we shall compare a binary machine 
with a hexadecimal machine having the same word length and the same range 
of floating-point numbers. Since 16'’ = 24f, the binary machine will require 
two more bits for the characteristic. Then its mantissa will be two bits
shorter. Thus, to produce the same range for the floating-point numbers, we 
need the same word length for the numbers in 5( 16, /?) as we do for the num
bers in 5(2, Ap — 2).

A machine with the radix 2k also differs from a binary machine in the 
accuracy of the computation. We shall illustrate this by comparing I P( 16, 6, c) 
with FP(2, p. c\. When we chop a number to 5(16, 6), we retain the high-order 
21, 22, 23, or 24 bits, depending on the leading hexadecimal digit. It follows 
that the arithmetic operations in FP(16, 6, c are at east as accurate as those 
in FP(2, 21, c. and they are never more accurate than the operations in 
FP(2, 24, c). The bounds for the relative error in a program are often the 
same in FP(16, 6, c) as they are in I 7I 2, 21, c], so we should think of 
FP( 16, 6, c) as being roughly equivalent to I I 2, 21, c . [However, by exercis
ing sufficient care, we can sometimes produce a slightly better result in 
FP(16, 6, c) than we can in FP(2, 21, c).] But since 24 bits are used to 
represent the mantissas o the numbers in 5(16, 6), it is easy to fall into the 
trap of thinking of FP(16, 6, c) as being about the same as FP(2, 24, c). This 
is a mistake, because we can seldom attain this accuracy.

The major advantage of decimal arithmetic is that it eliminates the need 
for radix conversion. This alfects both the speed of computation and the ease 
of use of the machine. We may think of the radix conversion as the price we 
pay to use binary arithmetic instead of the slower decimal arithmetic. It is 
worth paying this price if the program does a lot of computation. But decimal 
arithmetic could be quite attractive in a program that reads in a lot of decimal 
input and performs relatively little computation on it. There might not be 
enough compulation to ol set the time required to convert the numbers to 
binary.

In many respects, decimal machines are easier to use than binary machines 
are. Many simple decimal numbers cannot be represented exactly in a binary 
machine, and this can lead to programming errors. For example, if we want to 
use the decimal number .1 in a double-precision FORTRAN program, we 
may have to write it as . 1 DO to force the compiler to perform the conversion 
to double-precision accuracy. (See Section 5.1.: This problem does not arise on 
a decimal machine. Also, since binary numbers are not as familiar as decimal 
numbers are, many programmers find it much harder to understand what is
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happening in the calculation when they are using a binary machine. The 
calculation is further obscured in a binary machine by the fact that the output 
is decimal, so we do not see the numbers the machine is using. But it is often 
necessary for the programmer to understand the details of the arithmetic in 
order to write a high-quality program. It is usually easier to reach this level of 
understanding when the calculation is performed on a decimal machine.

Finally, we want the representation of the floating-point numbers to be 
compatible with the representation o ’the fixed-point numbers. Numbers may 
be converted from floating-point to fixed-point or Tom fixed-point to floating
point numbers in the inner loop of the calculation, so it is important that these 
conversions be easy to perform. We would not want them to involve radix 
conversion between decimal and binary, but we would not object to changing 
the radix from 2 to 2k. Since fixed-point numbers are used for indexing and 
address calculations, their representation must be compatible with the 
addressing scheme of the machine. In many cases this produces a strong argu
ment for making the fixed-point arithmetic binary. Another advantage of the 
binary representation of fixed-point numbers is that any bit configuration is a 
valid number, so we can accept any coding of the input data and use the 
fixed-point operations to convert it to the form we want to use.

12.2. THE REPRESENTATION OF
FLOATING-POIN r NUMBERS

We usually want to treat the floating-point number as a single entity, so 
it is convenient to have it stored in a single word of memory. Then a basic 
design decision is how to partition the word into the sign, characteristic, and 
mantissa of the number. Also, the designer must decide how negative num
bers will be represented and how the sign of the exponent will be handled.

The signed exponent e will actually be stored as the characteristic e + y. 
See Section 1.4.) If y = 0, the exponent is stored as a signed integer; other

wise the characteristic is nonnegative. Many decimal machines have allocated 
two decimal digits for the characteristic and used y = 50. For binary 
machines, the common choice for y is where k is the number of bits used 
to hold the characteristic. But some binary machines have used y = 0, and 
this approach has also been used on decimal machines when the representa
tion of the decimal digits is such that we do not need an extra digit to hold the 
sign.

In addition to selecting y, the designer must decide where to place the 
characteristic within the word. Insofar as the floating-point instructions are 
concerned, this decision can be made arbitrarily. But if we want to use non
floating-point instructions to manipulate floating-point numbers, the location 
of the characteristic may be important. I or example, some machines have
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special instructions which manipulate subdivisions of the word called bytes. 
Then it is easy to extract the characteristic if it occupies a byte. Also, when the 
characteristic is placedin the high-order digits of the word, it may be possible 
to use fixed-point instructions to compare two normalized floating-point 
numbers.

Next, consider the representation of negative numbers. Throughout this 
book we have assumed that the machine stored the sign and true magnitude 
of the mantissa, but some machines have used either the r’s complement or the 
(r — 1 )’s complement to represent the mantissa of a negative number. Again, 
compatibility with the representation oi the fixed-point numbers may be an 
important consideration in deciding which representation to use. Also, it may 
be a little harder for the programmer to understand what is happening in the 
calculation when the machine uses complements, because complements are 
not as familiar as signed numbers are.

If the machine uses the sign and true magnitude representation for 
negative numbers, then the subtract magnitude case for the operations @ and 
0 is handled by complementing one of the operands and adding. If the 
operand having the larger magnitude is complemented, the result will have to 
be recomplemented.t One advantage oi representing negative numbers by 
complements is that this recomplementation is never required, so the opera
tions @ and 0 may be slightly faster. However, it may make multiplication a 
little more complicated. [See 1-lores (1963).]

When we use complements to represent negative numbers, the mantissa m 
of a number in S(r, /?) will be represented by a positive number m'. If m > 0, 
mf = m. If m < 0, then m = r — | m | if we use the r’s complement, and 
m — r r p — | m | if we use the (r — l)’s complement. The number mf can 
always be expressed with p + I digits in the radix r, and 0 < mf < r. The 
leading digit o which represents the sign of/??, is usually required to be 
either zero or r — 1. But this is wasteful unless r = 2. We could avoid using a 
whole digit to hold the sign by using a mixed radix representation for in' with 
one bit to the left of the point. Nevertheless, we are more likely to find 
complements used to represent negative numbers on a binary machine than 
on other machines.

Many machines have a minus zero which appears to be different from a 
plus zero. With the sign and true magnitude representation of numbers.

fOne way to reduce the requcncy of recomplementation is to complement the operand 
with the smaller exponent when the exponents arc unequal. Then recomplementation will 
be required only if the operands have the same exponent, and the machine complemented 
the number with the larger magnitude. Sweeney 1965; reported the results obtained by 
tracing several programs and counting the number of times the operands had the same 
exponent in the subtract magnitude case. He also showed how often this situation would 
arise on machines with different radices. As we would expect, increasing the radix increases 
the number of times the operands have the same exponent.

■
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minus zero and plus zero have zero mantissas with different sign bits. We also 
have two zeros if we use (r ~ l)’s complements, because the (r — l)'s com
plement of zero is a number whose digits are all (r — l)s. When the machine 
has both a plus zero and a minus zero, we would like to be assured that they 
will both be treated as zero in all contexts. We seldom encounter difficulty in 
the arithmetic operations, but we must be careful about the branching 
instructions. For example, if the machine has a BRANCH ON MINUS 
instruction, will it branch on a minus zero? Similarly, if the machine has a 
COMPARE instruction and we compare a plus zero with a minus zero, will 
they be treated as equal ? When we write programs in Assembler language we 
must know the answers to these questions to avoid taking the wrong branches.

Some machines guarantee that a minus zero will never be produced as the 
result of a floating-point operation. This is usually enough to protect us from 
encountering them, although we must be careful when floating-point numbers 
are produced by non-floating-point operations such as those described in 
Section 4.4. We would also want to be assured that the library programs 
never produce minus zeros.

We do not have a minus zero when we use r's complements, since the r’s 
complement of zero is zero.t But the number r/2 is its own complement, and 
this may present special problems. For example, on a binary machine we can 
represent the mantissa — 1 but not the mantissa +1- This anomaly must be 
accommodated in some way. We could allow the floating-point numbers to 
have the mantissa —1, but then changing the sign of x could change its 
exponent. Alternatively, the arithmetic operations could be designed so that 
they would never produce a result with m' = 1. In either case, we encounter 
many of the problems presented by minus zero. Either the arithmetic opera
tions must be designed to handle operands whose mantissas are —1, or else 
they must guarantee that the results they produce will never have this 
mantissa.

Some machines have special bit patterns that will not be treated as valid 
floating-point numbers. For example, the CDC 6600 represents INFINITY 
and INDEFINITE by a zero mantissa with special values for the exponent. 
The hardware must recognize these bit patterns whenever they appear as 
operands in floating-point operations and set the result accordingly. (See 
Section 2.2.) The IBM 7030 had a different way to indicate that a number was 
abnormal. Each floating-point number had three extra bits called flag bits. 
The program could set these bits, test them, or use them to cause interrupts.

The CDC 6600 produces the bit pattern INDEFINITE as the result of an 
indeterminant form. But if we think of this bit pattern as simply meaning that 
the number is not a valid floating-point number, it has other uses. For 
example, consider a machine which appends extra bits to the word for error

Ti his is because we retain only one digit to the left of the radix point in /n.



276 FLOATING-POINT HARDWARE CHAP. 12

detection. If we want to proceed after a machine error has been detected in a 
number, we can set the number to INDEFINITE. This approach can also be 
used when a subroutine is unable to produce a reasonable answer for certain 
input data. Similarly, in statistical programs it is desirable to distinguish 
between missing data and zero. Missing data can be set to INDEFINITE.

Thus, we would like to produce the value INDEFINITE whenever we are 
unable to compute a reasonably good value for a number. To make this 
approach easible, there are two properties the hardware should have. First, 
the result produced by a floating-point operation should be INDEFINITE 
whenever one of the operands is INDEFINITE. Then we can let the calcula
tion proceed, and those numbers which have been contaminated by the error 
wilt be INDEI I NITE, but the other numbers will be printed correctly. The 
second requirement is that we must be able to test a number to determine 
whether or not it is INDEFINITE. This may be necessary in order to avoid 
infinite loops and to force the program to take the proper branches. It is also 
essential if we want to use INDEFIN ITE to handle missing data. Even if the 
hardware satisfies these two requirements, careful programming may be 
necessary.

Next, consider the scaling of the mantissa. We have assumed that the 
mantissa m is a/?-digit number with the radix point at the left, sor"1 < |m| 
unless m = 0. But some machines store the mantissa as a p-digit integer with 
the radix point at the right. Hamming and Mammell (1965) suggest placing 
the radix point at the right of the leading digit of m. Then we would have 
1 < |m| < r unless m = 0. The scaling of the mantissa has no effect on the 
operations 0 and 0, and the only impact it has on the operations * and 4- is 
in the calculation of the exponent. But it may have an effect on the range of 
the floating-point numbers. For example, consider a binary machine which 
uses k bits to hold the characteristic. Suppose that the characteristic c is the 
exponent plus y and that 0 <f c < 2k — 1. The commonest choice for y is 
2A'-1, so the exponent e satisfies

If the mantissa is an integer, co is several orders of magnitude larger than I/Q. 
Then there are many floating-point numbers in the machine whose reciprocals 
cannot be represented. Unless the range of the exponents is extremely large, 
this lack of symmetry can be annoying. We might prefer to use a different 
value of y which would make the range of the floating-point numbers sym
metric. (See Exercise 9.)

Still another variation in the representation of floating-point numbers in a 
binary machine was proposed by Goldberg (1967) and McKeeman (1967). 
Consider a machine which uses the sign and true magnitude representation 
for negative numbers, and suppose that the characteristic is stored as a
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nonnegative integer. Since the Ingh-order bit of the mantissa of a normalized, 
nonzero number is always 1, it need not be stored. Instead, we can store the 
remaining/? — I bits of the mantissa, and the hardware can supply the leading 
bit when it is needed. The number zero requires special treatment; we can 
specify that a floating-point number is zero when all the bits appearing in its 
characteristic and mantissa are zero. Then every nonzero number that appears 
in the machine is normalized. This may make operations such as FLOAT TO 
FIXED and ( IXEDTO FLOAT more difficult to program unless the machine 
has special instructions to perform them, but we obtain one more bit of 
precision without increasing the word length.

12.3. FP(r, p, c) AND FP(r p, R)

The advantage of the systems FP(r, p, c) and FP(r, p, 7?) is that they are 
quite easy for the user to understand, rhe system FI r, p, a) in which the 
machine performs arithmetic o ’ten resembles one of these systems, but there 
are usually some slight differences which the user must consider when he 
wants to produce high-quality programs. In this section we shall consider the 
way the hardware can be designed to perform arithmetic in FP(r, p, c) and 
FP(r, p, 7T. We shall assume that the operands are normalized.

Arithmetic in I P© p, c) can be produced by a slight modification of the 
arithmetic operations in FP(r, p, clq) which was proposed by Harding (1966a, 
1966b l Floating-point division was defined to be the same in FP© p, clq) as it 
is in FP(r, p, and we saw in Section 1.8 that floating-point multiplication 
produces the same result in FP(r, p, clq as it does in 1 P(r, p, c) whenever 
r/ > L Also, in the add magnitude case, the operations © and © produce the 
same results in F P< r, p, clq) as they do in FP(r, p, c). Therefore, it suffices to 
consider a © b, where we may assume that a > b > 0. Let

b = r7/?.

Since a > b > 0, we have e >f. Now b — ren\ where n — r~(e~f)n is 
obtained by shifting n to the right e — /'places. Let q > 1 and let nn be the 
first p + q places to the right of the radix point in n , Instead of using n', as 
we would in FP(r, p, clq). we use where

n if n,f = n 

if n" < nf.

Thus, h" is a p + q + 1 )-digit fraction, and its last digit is nonzero if and 
only if nonzero digits of n were chopped to produce /ff We now let
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p = m — n'", and we note that the first p + q digits to the right of the radix 
point in p are the same as those of m — n . To complete the operation, we 
normalize r1’//' and chop it to Sir, p). The analysis in Section 1.8 shows that 
this produces the result a — b as long as q > 1.

fhe function of the ip + q + 1 )st digit of /?"' is to force a borrow from the 
ip + t/)th digit of m whenever n" < n'. In place of (12.3.1), we could have 
used

(12.3.2)

n" +

where i is any integer in the range 1 < / < r — 1. If r = 2*, we can take 
z = 2AI in (12.3.2), so we need only one extra bit instead of an extra digit. 
Harding calls this extra bit a sticky bit, because any nonzero bit shifted 
through this bit position sticks there. Even if r is not a power of 2, we shall 
refer to the (p + q + 1 )st digit of n"f as a sticky digit. Thus, to produce 
arithmetic in FP(r, p, c), we take q > 1 and modify the arithmetic in 
FP(r, p, clq] by introducing a sticky digit in the subtract magnitude case of 
the operations © and Q.

When r is even, it is easy to modify this approach to produce arithmetic 
in FP(r, p, R). For division, we develop the first p 4- 1 digits of the quotient 
and then round the answer to p digits. For the operations ©, ©, and *, we can 
simply proceed as we would in FP(r, p, ell), using a sticky digit in the 
subtract magnitude case of the operations © and © and then round the 
result to Sir, p instead ol chopping it. Since the final operation of rounding 
a number to p digits may require us to perform an extra addition, rounded 
arithmetic is likely to be a little slower than chopped arithmetic.

12.4. UN NORMALIZED NUMBERS AND 
UNNORMALIZED ARITHMETIC

We have assumed that a nonzero number x in Sir, p) was always written 
in the form

rem,

We shall now consider unnormalized numbers, so the mantissa will be allowed 
to have an absolute value less than r ’. But then the representation of the 
floating-point number is not unique, because there are many numbers in 
Sir,p) which can be written with more than one exponent. Unfortunately, 
the result produced by the arithmetic operations often depends on the 
representation of the operands. Therefore, we shall now consider a floating
point number to be an ordered pair (e, m), where e is its exponent and m is its 
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mantissa. The exponent is a signed integer and the mantissa is a signed 
fraction which can be represented in the radix r with p digits to the right of the 
radix point. Then (e, m) is a representation for the number rem in 5(r, p), and 
| m | < 1.

The hardware could be designed so that each arithmetic operation nor
malized the operands before performing the arithmetic, so the results would 
be the same regardless of whether the operands were normalized or not. But 
prenormalizing the operands is extra work, and it makes the arithmetic 
slower. It may even a fifect the speed with which arithmetic can be performed 
on normalized numbers, because the machine must test the numbers to see 
whether they are normalized. Therefore, the hardware often performs the 
arithmetic without prenormalizing the operands. Instead, it simply uses the 
exponent e and mantissa m which appear in the representation (e, ni) of 
the floating-point numbers. But then the result produced by the operation may 
depend on the representation of the operands. We shall illustrate this by 
considering the case in which the machine is designed so that the arithmetic 
will be performed in the system FP(r, p, clq) whenever the operands are 
normalized.

To compute the product (e, w) * (/, /?), let p' be the first p + q digits to 
the right of the radix point in the 2/7-digit product mn. Then the result 
produced by the operation (e, ni) * (f, n) is the normalized number (g, p), 
where rgp = re+fp'. That is, we normalize the number re*f p' and then chop 
it to 5(r, p). Il' q > /?, then p' — nm, and we shall produce the same result as 
we would in the system I P(r, p, c). But \ q < p and the operands are unnor
malized, we may have chopped digits that would have been retained in 
FP(r, p, c). In fact, we could have p = 0 even though mn 0. The smaller q 
is, the more severe this problem becomes, and it would be particularly 
annoying i\' q were 0 or 1. For this reason, the IBM System/360 normalizes 
the operands before it performs the multiplication.t

Next, we shall consider the quotient (e, m) 4- (/, /?). If neither m nor n is 
zero, then 

(12.4.1)

holds whenever m and n are normalized. But when the operands are allowed 
to be unnormalized, we have only

t There are many variations in the way machines compute the product of unnormalized 
numbers. For example, the IBM 7090 never shifts the result more than one place to post
normalize it. If the operands are normalized, this will produce a normalized result. (See 
Section 1.8.) Otherwise, the result may be unnormalized, and the product can vanish even 
though mn 0.
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To perform the division of normalized numbers, the machine must be able to 
handle the case in which (12.4.1) holds. But the case in which | ,77//? | > /* is 
often troublesome, and machines differ in the way they treat it. For example, 
the IBM 7090 produced a divide check condition whenever |/r?//71 > r, and it 
did not perform the division. On the other hand, the IBM System/360 avoids 
the problem by prenormalizing the operands.

Finally, consider the operations 0 and 0. We can compute (e, ni) Q 
(/, ri) by changing the sign 01 n and adding, so it suffices to consider (e, /n) 0 
(/, //). Also, we may assume that the notation is chosen so that e > /. As in 
Section 1.8, we form n = r~{e~f)n by shifting /? to the right e —/places. Let 
n" be the first p 0 q digits to the right of the radix point in and form 
p' = m + n". The result produced by the operation (e, m) 0 (/, /?) is the 
normalized number (g, p), where rgp = rep'. Thus if|//'| < 1, rep‘ is nor
malized and chopped to p digits. On the other hand, if | p | > 1, g = e + 1 
and p is obtained by chopping r 1 p’ to p digits. If (e, m) is normalized, it is 
easy to see that we shall produce the same result regardless of whether (/, /?) 
is normalized. But if (c, ni} is unnormalized and e — f > q, then we shall chop 
more digits of n' than we would have if (c, m) had been prenormalized, and 
the operation may produce a different result. In fact, when (e, /n) is unnor
malized, we may shift the number with the larger magnitude. This will happen 
if e > f but | rcm | < | rfn .

The behavior of (e, 0) in addition and subtraction is particularly impor
tant. Suppose that

(12.4.2) (e, 0) 0 (./; n) // ■

Clearly

(12.4.3) rgp

holds whenever/> e. We recall that in Section 1.4 we defined a normalized 
zero to be a representation (e, 0 > for zero in which e is the smallest allowable 
exponent, so (12.4.3) always holds if (c, 0) is normalized. Since the operation 
0 always produces a normalized result, the effect of adding a normalized 
zero to (/ n) is to normalize it—that is, to produce a normalized number 
(g, p satisfying (12.4.3). But we may change the value of a floating-point 
number if we add an unnormalized zero to it, because n will be chopped in 
the computation of (e, 0) 0 1/, iv if e — /> q. For this reason, unnormalized 
zeros can be troublesome. Our definition of floating-point arithmetic in 
Chapter 1 specified that the result produced by the operations 0, /, *, and 
4- will always be normalized, even if it is zero. When this holds, as it does on 
many machines, including the IBM System/360, we usually will not encounter 
any unnormalized zeros in our computation unless we make a special effort to 
produce them.
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There are some situations in which unnormalized zeros can be quite 
useful. For example, if x has the representation (/, /?), then we can chop x to 
an integer by forming (f, ri) ff) (p + <7, 0). This is an easy way to extract the 
integer part of a floating-point number when we are coding in Assembler 
language, and the compiler can use this approach to handle the FORTRAN 
functions AIN'T and AMOD.

In programming the FIXED TO FLOAT conversion, it is often con
venient to begin by constructing an unnormalized number. Let / be an integer 
with |/| < rp, and suppose that we want to convert the representation of I 
from a fixed-point to a floating-point number. By converting p to a character
istic and inserting it in the correct portion of the word that holds /, we can 
form the floating-point representation (/>, r~pI) for /. But (p, r~pI) may be 
unnormalized, so we complete the FIXED TO F LOAT conversion by nor
malizing it. Some machines have a NORMALIZE instruction which can be 
used for this purpose; otherwise we normalize the number by adding a 
normalized zero to it.

We have assumed that the floating-point arithmetic operations always 
produce normalized results. But many machines have additional instructions 
to perform unnormalized arithmetic, and these instructions can produce 
unnormalized results. We shall assume that these operations are performed in 
the same way as the operations in Fl .r, p, clq), except that the postnormaliza
tion is omitted. That is, we never normalize p before chopping it. The result 
may be unnormalized even though both of the operands are normalized. On 
some machines, for example, the CDC 6600, all the instructions perform 
unnormalized arithmetic. To produce a normalized result on such a machine, 
we first perform the arithmetic operation and then use a NORMALIZE 
instruction.

Unnormalized arithmetic is often used in programming the FLOAT TO 
I IXED conversion. We shall illustrate this by considering the coding required 
for the FOR I RAN statement

I = X

Suppose that the representation for the floating-point number X is (c, m), 
where e < p. I we add (/?, 0) to (e, m) using unnormalized addition, the result 
is (p, n), where rpn is the integer part of X. The integer we want to store in I is 
comprised of the p digits of n with the radix point at the right. We can 
usually obtain the result by extracting the p digits and sign of n and storing 
them in Lt The advantage of using unnormalized addition here is that we 
know the scaling of the result.

fThe coding is slightly more complicated on the IBM System/360, because the machine 
uses the sign and true magnitude representation for floating-point numbers, but it uses the 
2's complement representation for negative fixed-point numbers.
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Two other sources of unnormalized numbers are the gradual underflow 
described in Section 2.8 and the significance arithmetic discussed in Section 
7.2. With the gradual underflow, a result which underflows may be replaced 
by an unnormalized number. Significance arithmetic produces unnormalized 
results, but it uses arithmetic operations which differ somewhat from the 
unnormalized arithmetic discussed above.

EXERCISES

1. Consider a decimal machine in which each word contains 12 decimal digits 
and a sign, and suppose that we want to use these words to store the numbers in

10, 10). We have two decimal digits left to hold the characteristic, which we 
shall define to be the exponent plus 50. Assume that the machine uses four 
bits to represent a decimal digit and one bit for the sign, so each word requires 
49 bits. We want to compare this machine with a binary machine having a 
49-bit word.
a. Find the largest value of p for which we can represent the numbers in 

5(2, p) in a 49-bit word if we use enough bits for the characteristic so that 
we can represent at least as large a range of floating-point numbers as the 
decimal machine does.

b. Let p' be the value of p found in part a. Using the criterion (8.1.9) based on 
the comparison of worst cases, find the largest value o:p/z for which we 
would prefer to use the system FP(2, p', c) instead of FP( 10, p", c).

2. Consider a machine which performs arithmetic in the system FP(4, p, c). The 
mantissa requires 2p bits, so if we use one bit for the sign and k bits for the 
characteristic, we shall need 2p + k + 1 bits to hold a floating-point number. 
We want to compare this machine with a binary machine which uses 2p + 
k + 1 bits for each floating-point number and performs arithmetic in 
FP(2, p\ c). Suppose that the binary machine uses k' bits to hold the charac
teristic, where k' is chosen to produce approximately the same range of floating
point numbers that we had on the machine with radix 4.
a. How large can p' be?
b. Which machine provides the better bound for the relative error introduced 

by chopping a number?
c. Compare the average relative error introduced by chopping numbers on 

these machines.

3. Compare the average relative error introduced by chopping numbers to 
5(16, 6) with that introduced by chopping numbers to 5(2, 22), assuming that 
the mantissas are
a. Uniformly distributed.
b. Logarithmically distributed.

4. Suppose that we are using a machine which performs arithmetic in I P( 16, 6, c). 
To compute x-(^/2), we can either multiply x by n/2 or divide x by 2/tc. 
Compare the accuracy with which we can approximate 7t/2 and 2/n by numbers 
in 5(16, 6).
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5. Suppose that you were designing the floating-point number system for a binary 
machine with a 48-bit word. How would you partition the word into the sign, 
characteristic, and mantissa?

6. Consider a machine which uses complements to represent negative numbers.
a. If the machine uses (r — 1 )’s complements, how can you determine whether 

or not a number is normalized?
b. If the machine uses (r — l)'s complements, how would you normalize an 

unnormalized number?
c. If the machine uses r's complements, how can you determine whether or 

not a number is normalized?
d. If the machine uses r’s complements, how would you normalize an unnor

malized number?

7. Consider the problem o shortening a number from double-precision to single
precision on a binary machine which uses complements to represent negative 
numbers. Let x be a positive number in S(2, 2p), let x be x chopped to S(2, p), 
and let x be x rounded to S(2,p). Suppose that we are given — x, with its 
mantissa represented as a complement, and that we want to form either —x or 
—x . The result is to be stored as a single-precision number with its mantissa 

■represented as a complement. (Note that the l's complement o the mantissa 
m of a single-precision number is 2 — 2~p — tn.)
a. How would you form —x if the machine uses l’s complements?
b. How would you form — x if the machine uses l’s complements?
c. How would you form — x i; the machine uses 2's complements?
d. How would you form —x if the machine uses 2’s complements?

8. Consider a machine which has a special bit pattern which is treated as 
INDEFINITE.
a. What value would you want stored in I by the FORTRAN statement

when the value of X is INDEFINITE?
b. Give an example of a situation in which it is essential to know whether or 

not a number is INDEFINITE.

9. Consider a decimal machine in which the representation of the floating-point 
numbers consists of a sign, a two-digit characteristic, and an eight-digit 
mantissa. The characteristic c is the exponent plus y, and it lies in the interval 
0 < c < 99. We consider three possible forms for the mantissa:

,XXXXXXXX

x.xxxxxxx 

xxxxxxxx.

For each of these forms,
a. Find co if y = 50.
b. Find the value of y that would make the range of the floating-point num

bers symmetric. That is, find the value of y that will yield Qco = 1 — I O'8.
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c. Describe the calculation of the characteristic of the product of two nor
malized floating-point numbers.

10. Let x and y be positive numbers in S(r, p), and let z = x © y, where the sum is 
computed in I P(r, p, clq). Suppose that (e, ni) and (/, n) are representations 
for x and y which are not required to be normalized, and let

(g, fl) = (e, ni) © (f, n).

Suppose that the machine which we are using is designed so that the arithmetic 
will be performed in FP(r, p, clq) whenever the operands are normalized, and 
suppose that it computes the sum (e, ni) © (/’ n) in the way described in Section 
12.4. By how many units in the last place of z can r8 pi differ from z?

11. Consider a machine which has only unnormalized arithmetic operations. 
Suppose that it performs arithmetic as it would in FP(r, p, clq) but that it never 
normalizes the result before chopping it. After each arithmetic operation, we 
use a NORMALIZE instruction to normalize the result. How does the result 
differ from the result that would be produced i the arithmetic were performed 
in the system FP(r, p, c/0) using normalized arithmetic operations?

12. Program the FLOAT TO FIXED and FIXED TO FLOAT conversions in 
Assembler language for the machine you are using. What special cases must be 
considered ?

13. What would be the effect of using a sticky digit in the add magnitude case of the 
operations @ and © when
a. The operands are normalized?
b. The operands are not required to be normalized?
c. The operands are not required to be normalized and the operation is 

unnormalized addition?

14. Consider a machine which performs arithmetic in FP(r, p, c) when the operands 
are normalized. To accomplish this, it performs the arithmetic in FP(r, p, clq), 
where q > 1, and it uses a sticky digit in the subtract magnitude case of the 
operations © and ©. Assume that it does not prenormalize the operands 
before performing the arithmetic. Let (g, pi) be the result produced by the 
operation (p + <7, 0) © (e, ni). Describe (g, ]1) if 
a. The operation is normalized addition.
b. The operation is unnormalized addition.

15. How does the unnormalized arithmetic described in Section 12.4 differ rom 
the significance arithmetic discussed in Section 7.2?



COMPLEX NUMBERS

13.1. PROGRAMS USING COMPLEX NUMBERS

Although the hardware seldom has operation codes for complex arith
metic, some higher-level languages support the data type COMPLEX. With 
this data type, the complex number is carried in the form x + iy9 where x and 
y are floating-point numbers stored in adjacent storage ceils. Another possi
bility is to represent the complex number in the form Aei0, where A and 3 are 
floating-point numbers. While this is more convenient lor multiplication and 
division, it is less convenient for addition and subtraction. We shall assume 
that the complex numbers are always written in the form x + iy.

When the compiler does not support the data type COMPLEX, we 
encounter many of the same problems we face when we want to use double
precision arithmetic and the compiler does not support the double-precision 
data type. First, complex numbers require twice as much storage as real 
numbers do, so we can use one of the techniques decribed in Section 5.7 to 
allocate the storage for them. We might use different names, say AR and Al, 
for the real and imaginary parts of A, or we might use an additional subscript 
to refer to the two parts of the number. Second, the arithmetic must be 
changed, and in many cases it will be performed by calling subroutines. 
Finally, we may want to have complex versions of some of the basic library 
programs.

An annoying problem that arises with complex numbers is that the 
intermediate results may overflow or underflow even though the answer is 
within range. For example, if z — x + zy, then | z | = ^x1 + y2. Here x2 and 
y2 can overflow even though |z| is much less than Q. Similarly, they can 
underflow even though | z ] is much larger than co. Therefore, we would like to

285
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have a library program which would avoid these overflows and underflows 
and compute the absolute value of a complex number z whenever co < | z | < 
Q. (See Exercise 8 of Chapter 2.)

13.2. RELATIVE ERROR

If z is an approximation f or the complex number z 0, we may define the 
relative error p by

so z = (I + p)z. Here p is a complex number, and we are usually interested 
in a bound for | p |.

Another approach is to consider the real and imaginary parts of z sepa
rately. Let z = x + iy and z = x + iy. I f neither x nor y vanishes, we may set

and

Then we shall be interested in the bounds for the | ak 
Suppose that | | < a for k = 1, 2. Since

P

we have

I /’I2

SO | p | < <7. Thus, I p | < max(i (Tj |, I cr2 |), so \p\ is small if both the | cr | are 
small.

But the converse does not hold. Suppose that z = I + 10 l0z and that 
p = IO-8/. Then

z ; z • pz IO'18 + (io-8

so |ct2 | is on the order of' 100. Thus, one of the | crk may be large even though
p | is small.

However, the relative error p is still very useful. In many cases we can 
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obtain a bound for |p| but not for the |crA. |. Moreover, it is often the relative 
error p that is propagated, not the akA

13.3. COMPLEX ARITHMETIC

We shall now consider the addition, subtraction, multiplication, and 
division of complex numbers. The complex numbers will be stored in the 
machine in the form x + iy, where x and j* are real, floating-point numbers. 
To simplify the discussion, we shall assume that the machine performs 
floating-point arithmetic in the system FP(r, p, c/1).

For k = 1,2, let

where xA and r\. are in r, p). If z — x -|- iy is one of the complex numbers 
Z] + z2, z\ — 24, or z\!zi-> we want to compute an approximation 
z = x 4- zjfor z. Let p be the relative error in this approximation, so

+ p)z.

We want this relative error to be small, and it would be nice if the relative 
errors a, and cr: in the approximations x x and y v were also small. 
Unfortunately, we cannot always guarantee that the | crA | will be small, unless 
we use higher-precision arithmetic. But even if we use only single-precision 
arithmetic, we can produce a small bound for |p|.

For the sum z. + we set x = x, x, and y = p, (44 p?. The results of 
Section 3.3 show that x = ( 1 rrfixandy— 1 a,)v, where] | </• ip“11
for k ~ 1,2. Then, as we saw in Section 13.2, | p | < Subtraction is
handled similarly. Since these computations are so simple, many of the 
compilers that handle the COMPLEX data type compile in-line code instead 
of calls to subroutines for the addition and subtraction of complex numbers.

Before discussing complex multiplication, we shall prove two theorems 
which will be used to obtain bounds for the relative error.

Theorem 13 .3.1

Let a, b, c, and d be positive numbers in S(r, pi. let u = ah 4- cd, and let 
ii == (a b) @ c * d), where the floating-point arithmetic is performed in the 
system FP(r, p, c/1). Suppose that ab > cd, and let e and /’ be the integers 
for which re X < ab < rc and rf 1 <C u < rj. Then \ii - z/| < 2rf p and 
|(£i — w)/w| < 2r Moreover, iff> e, then |z7 — u\ < (1 + r x)rf~p.

j The same situation arises in matrix problems when wc study the error in a vector. We 
usually consider a norm of the error instead of the relative error in the components of the 
vector.
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Proof. Since a * b and c * d are positive and cd < ah, it Allows that 

a = (a * b) + cd.
Then we may write

[a * b) cd = u + 6,,

where 0 < < rf p. We also have ab
it = u -I - fi + f2 and

a * b e2, where 0 <C f 2 < re p, so

(13.3.1)

Since/> e, this yields |w — z/| < 2rz p and

I, so (13.3.1) readsIf/> e, then / = e

u — u

Theorem 13 .3.2

Let a, h, c, and d be positive numbers in Sir, p), let v = ab — cd, and let 
v = (a * fr) Q (c * d), where the floating-point arithmetic is performed in the 
system FP(r, p, cl\). Suppose that ab > cd, and let e be the integer for which 
r®-1 < < f.e j jien

b. | v — v | < re p.

Proof. If ah — cd, then a * b = c * d, so v = v — 0 and the theorem 
holds. Therefore, we may assume that ab > cd. Let

ab = {a * /?) -{- 5, 

cd — (c * d) + 8Z
and

(a * b) — i f * d) — [(a * Z>) © (c * rf)] +
so

v — v + <5 j — (52

Let f be the integer for which rf 1 <Z cd < rf. Then 0 <T <5t < r€ p and

L | v - v | < (2 — r 1 )rr p.

2. If erf > re~\ then | v — v| < re'p.

3. If v 0 and | (v — v)/v | > 2r~{p then
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0 < <52 < rf p. Since the subtraction of c * d from a * b is performed in 
FP(r, p, c/1), we have

Then
v — v | = 15 j — + <5 J < (2 — r 1 )re p,

so assertion 1 holds. The second assertion follows from the fact that <53 = 0 
whenever e ~ f.

To prove the third assertion, we assume that v 0 and that

(13.3.2)

If e = f, then both assertions a and b are true, regardless of whether or not 
(13.3.2) holds. Therefore, we may assume that e > /'. Then 

so
—82 + <53 > — re~p~'.

We first show that v < re If v > re ’, we have

so ; 13.3.2) implies that v < re 1. If v > re 1 > v, then | v and

Therefore, (13.3.2) implies that v < re 1. Then there is a postshift of at least 
one place in the floating-point subtraction of c * </, from a * b and since the 
arithmetic is performed in the system I I r, /?, c/l), this implies that 83 < 0. 
Then

re-p-I < J + J < re-P^

so assertion b holds. If v > this yields

v — v

Therefore, (13.3.2) implies that v < But

v = ab — cd > re 1 — cd.
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so cd > re~} — v > Thus, assertion a holds, which completes the proof 
of the theorem.

We shall now consider the product z of the complex numbers zx and z2. 
The real and imaginary parts of z are given by

(13.3.3)
.x = x,x2 - yxy2

f" 2 J ’ I »

and we shall use the approximations

(13.3.4)
X = (x, * x2)@ (y, * v2) 

y = Ui *j2)©(*2 *Ji)
for x and y.

It is easy to see that if the calculation of x involves the add magnitude case, 
then the calculation of y involves the subtract magnitude case, and vice 
versa. If, say, the calculation of x involves the add magnitude case, then the 
approximation x x will have a small relative error. But when the calcula
tion of x involves the subtract magnitude case, we cannot guarantee that the 
approximation x x will have a small relative error unless we use higher- 
precision arithmetic. However, even though the relative error in one of the 
components may be large, the following theorem provides a small bound for 
\p \ when the arithmetic is performed in FP(r, p, c/1).

Theorem 13 .3.3

Let z, and z2 be complex numbers of the form zk =■ xk + iyk, where the 
xk and yk are in S(r, p); let z = zxz2; and let z = x + iy, where x and y are 
given by (13.3.4). Assume that the calculations in (13.3.4) are performed in the 
system FP(r, p, c/1). Then z = (I + p)z, where | p | < 2r {p -1).

Proof. Since

(z’zjzz = (—+ ixx)z2 = i(zxz2) = -v -F /x,

the calculation of (zzI)z2 requires us to perform the same arithmetic operations 
that we perform in the calculation oi z,z2, except that the signs of the terms in 
y and y are changed. Therefore, the calculation of (zz1)z2 produces the same 
relative error that the calculation ofZiZ2 does, so we may restrict our attention 
to the case in which | x, | > |j^ |. Similarly, if we replace zt by —zn we merely 
change the signs of all the terms in (13.3.3) and (13.3.4), so it suffices to con
sider the case in which x > 0. If >4 = 0, 13.3.3) reduces to x = xxx2 and 
y = xlty2. Then the relative errors in the approximations xt * x2 x and 
xt * y2 y have absolute values less than r~{p u, so|p|<r l). Therefore, 
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we may assume that 0. A similar argument applies to z2, so we may 
assume that xk > | yk | > 0 holds for k = 1,2. Also, we shall assume that the 
notation is chosen so that | x2^i | > | xt y21. Finally, if we replace zx and z2 by 
their conjugates — iy{ and x2 -- iyz, we merely change the signs of the 
terms in y and y. Therefore, we may assume that j’j > 0. Thus, it suffices to 
consider the case in which

(13.3.5)

(13.3.6)

and 

(13.3.7) a'zTi a i-vij‘2

Let e,f, g, and h be in the integers for which

(13.3.8)

Clearly g < e. If x = (I { a/x and y = (1 + cr2)y, where |ok | < 2r~(jP“n 
for k ~ 1,2, the theorem ollows from the results of Section 13.2. Therefore, 
we need consider only the case in which one of the | ak | is at least 2r~(p~1).

First, suppose that y2 is negative. Then we have the add magnitude case 
in the calculation of x and the subtract magnitude case in the calculation of y. 
By Theorem 13.3.1, Jv = (I + ajx, where | cr, | < 2r ~{p u. Therefore, we 
need consider only the case in which | (y — y)/y | > 2r“(p*1). Now y = 
(x2 * Ti) © (-vi * IT21), so> Theorem 13.3.2,

(13.3.9)

First, suppose that/ > e. Then | z | > | x | > rf 1, and, by Theorem 13.3.1,

x-x|<(l +r-1)/^’/
so

But

(13.3.10)

so |p | < 2r*(p~1).
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Thus, we may assume that/ = e. Then we have

so it suffices to show that

or

(13.3.11)

From (13.3.8) and (13.3.9), we obtain

so

Then

Let

1r2g~2

For t > re *, we have

F’(t) = 1 -

so the minimum of F(r) on the interval re 1 < / < is

Then x > F(re T), so

and (13.3.11) holds. Thus, ) p | < 2r {p 11 if y2 < 0.

Now suppose that is positive, so we have the subtract magnitude case 
in the calculation of x and the add magnitude case in the calculation of y. As 
above, we need consider only the case in which | a , | > 2r,p~l\ so by
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Theorem 13.3.2,

(13.3.12)

Then

(13.3.13)

so
< y < j’ < 2re.

Thus, h is either e or e 1. If h = e 1, we have

by Theorem 13.3.1. so

Using (13.3.10), this yields |/?| < 2r Therefore, we may assume that 
h = e. If ~>re~\ then (13.3.13) implies that so, using
(13.3.12), we have

P

Therefore, we may assume that

But then h — g + 1, so, by Theorem 13.3.1, | y — < (1 + r ])re p, and
this yields

Thus, | p| < 2r {p 1J also holds for r2 > 0, which completes the proof of the 
theorem.

We may have some problems with overflow and underflow in the calcula
tions in (13.3.4). We can encounter exponent spill in the intermediate results, 
even though the numbers we are trying to compute are within range. For 
example, |x, * x21 can be greater than Q even though |x| is less than 
Similarly, Xj * x2 and j’, * can underflow even though x > co. Now if one 
of the intermediate results, say x{ * x2, overflows, we have

1*1 H*ll > 1*1 
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so |z| > Q. We might be willing to accept the Q-zero fixup in this case, 
although it is not completely satisfactory. (See Exercise 6.) But underflows 
may be more annoying. Suppose that j’j * yz underflows and that we use the 
Q-zero fixup. If | xt * x21 < rP replacing y t * y2 by zero can produce an 
abnormally large relative error in x. If Iis also small, this can produce an 
abnormally large value for | p |.

There are two ways we can avoid this problem. One is to use gradual 
underflow, described in Section 2.8. Another approach is to scale z, and z2 
before per brming the calculations in (13.3.4) and then adjust the final answer. 
If we use scale factors which are powers of the radix, scaling will not introduce 
any error. The scale factors can be chosen in various ways. (See Exercise 7.) 
For example, we might scale zx and z2 so that the exponent of the larger 
component of each zk is zero. Then we shall never encounter overflow in the 
calculations in (13.3.6;. and numbers which underflow can be replaced by 
zero with negligible effect on |p|. Therefore, we can use the Q-zero fixup for 
underflow.t If zx and zz were multiplied by the scale factors and sz. we 
complete the operation by dividing x and y by 5^2. If is a power of the 
radix, we can do this by adjusting the exponents of .v and y, and we can 
provide whatever treatment we want when the resulting exponents are out of 
range.

so the real and imaginary parts of z are

Finally, consider division. Assume that z2 0, and let z = z}jzz. Then

(13.3.14)

(13.3.15)

The natural approximation to use is z = x 4- iy. where x and jare computed 
by replacing the arithmetic operations in « 13.3.15) by the corresponding 
floating-point operations. That is, we set

(13.3.16)

and compute x and y Yom

(13.3.17)
[(.r, * .y2) @ O', * fJ]

y = [(x2 * y,) 0 (x. * j0]
fSince these underflows have negligible effect on |p|, we might want to avoid printing

underflow messages for them.
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Now z w/ D, where

>v = (.v, + - iy2)
and

D

Let ip u + iv, where

Then x — u ~ D and y = v D. By Theorems 13.3.3 and 13.3.1, we may 
write h* = (1 + cr)vv and D = (1 T t)Z), where | a | and |t| are less than 
2r '(p”1 Also,

v ~ D

where the 8k 
151 <

are real and 0 < 8k < r (p H. Then z — (1 + 8)w/D, with 
Thus

We may write z = (1 p)z, where

which yields

(13.3.18)

Then p ^ cr T 5— t, which shows that the calculations in (13.3.16) and 
(13.3.1 7) yield a small relative error p. Using (13.3.18), we can obtain a bound 
for | p| on the order of 5r“(p"n, but this is not a very good bound. If we 
exclude trivial combinations of r and p, it can be shown that |p| < 3r“(p“1).

Overflow and underflow present a much more serious problem in complex 
division than they do in complex multiplication. If one of the products in 
(13.3.4) overflows, | z21 must be greater than £2. But the intermediate results 
in (13.3.16) and (13.3.17) can overflow even when ( zjz2| is on the order of 1. 
For example, if | | | z21 > v£2, we have |zj/z2|^l, but D > £2.
Similarly, we can have | zjz21 1 and D < cd. Thus, we can have exponent
spill in (13.3.16) and (13.3.17) even though | z{ |, | z21, and | zjz21 all differ from



296 COMPLEX NUMBERS CHAP. 13

a) and Q by many orders of magnitude. Unfortunately, if we use the Q-zero 
fixup for exponent spill in (13.3.16) and (13.3.17), we can produce some very 
misleading results. <See Exercise 9.) There ore, most programs for complex 
division try to avoid exponent spill, either by rearranging the calculations in 
(13.3.16) and (13.3.17) or by scaling Zj and z2.

One approach, suggested by Smith (1962), is to divide the factors 
(x2 — iy2) and (x2 + y?) in (13.3.!4) by either x2 or v2, whichever has the 
larger absolute value. That is, if |x2| > |y2 L we use

(13.3.19) Q = y2 ~x2

D = x1 © (y2 * Q)

x = [x, © O', * 0] 4- D

y = D’i e (x, * 0] - b,

and if |x2| < |^2|, we use

(13.3.20) 2=x24-j’2
b = (x2 * Q)®y2

x = [(x, *0©J’,]4 b

y=[O’.*2)0xl]4 b.

This approach avoids many of the most disastrous cases of exponent spill, 
but we can still encounter some problems if one of the | zk | is on the order o! co.

Another approach is to scale and z2. We could select a scale factor S 
and compute z'j/z2, where zk = zA./S for k = 1, 2. for example, we might 
use S' — max(|x2|, Then

(13.3.21)

so

(13.3.22)

Consequently, we shall not encounter overflow unless |z1/z2| is either out of 
range or almost out of range. Also, underflows are not a problem unless 
|zj/z2| is quite small, so we have eliminated the most disastrous cases o 
exponent spill. However, we will still have the same sort of problems with 
overflow and underflow that we had in the multiplication of complex num
bers. Instead of using the scale actor max(|x21, | ), we might prefer to make
S a power of the radix, so that the scaling will not introduce any rounding 
errors. Suppose that we choose the scale factor S to be rT where e is the
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exponent of max(|x2|, |y2|). Then in place of (13.3.21) and (13.3.22), we have

and

so the scale factor r€ is almost as effective in eliminating exponent spills as 
max(|x2[, |j’2|).

Probably the best approach is to scale z, and z2 independently. For 
k = 1,2, let ek be the exponent o max(|xA. |yA |), and let zk = zkfrek. We can 
divide z\ by z2 and then add ex — e2 to the exponents of the real and 
imaginary parts of the quotient. Now r’1 < |z'J < , and

Therefore, we shall not encounter overflow in the division of z\ by z2, and 
numbers which underflow are so small with respect to | z\]z2 | that replacing 
them by zero has a negligible effect on the complex relative error p = 
(z — z)/z. We can provide any treatment we desire for the cases in which the 
addition of ex — e2 to the exponents of x and y produces numbers that are 
out of range.

EXERCISES

1. For k = 1, 2, let zk = xk + iyk be an approximation for zk = xk -|- iyk, 
and suppose that xk = (1 + yk = (1 + and zk = (1 + pk)zk. 
Let ZiZ2 = x + iy and ZjZ2 = x + iy, and write x — (1 + <7)x, y — (1 4- T)y, 
and zxz2 = (1 + p)zxz2. Here cr, T, and the ak and Tk are real, but /?, p^ and 
p2 may be complex.
a. Lind an example which shows that even if the | ak | and | Tk ! are small, we 

cannot guarantee that both | cr | and | t | will be small.
b. Find a bound for | p | in terms of | /? t | and | p2 [.

2. Let z = Aei6 be an approximation for z = where 0 < 0 < 271. If 
A = (1 4- ct)A, 0 = (1 4- T)0, and z = (1 4- find a bound for \p\ in 
terms of | a | and | t .

3. Suppose that zk = Ake‘0tt where Ak and 0k are in S(r, p) for k — 1,2. Let 
A= A} * A2 and 0 where the arithmetic is performed in
I P(r, p, c), and consider the approximation z = Aei0 or z — zxz2. Write 
z = x 4- iy and z — x 4- iy, and let x = (1 4- <z)x, y = (1 -f T)y, and 
z = (1 + p)z. What can you say about | a | r |, and | p | ?
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4. Find an example which shows that the relative error p in Theorem 13.3.3 can 
be close to 2.

5. For k = 1,2, let zk = xk -F iyky where xk and yk are in S(r, pj and xA. > |yk |. 
Let z — ZjZ2, and write z = x + iy.
a. If x < XjX2, what is the smallest | z | can be?
b. Find an example in which xPx2 > Q but |x| and |j'| are both less than Q.

For k = 1, 2, let zk = xk + iyk, where the xk and are in S(r, p) and 
xk > |yk |. Let ztz2 — * + iy, and let z = x + iy be the approximation for 
ZjZ2 computed by using (13.3.4). Suppose that we perform the floating-point 
arithmetic in FP(r, p, cl 1) and use the Q-zero fixup for overflow and underflow, 
a. If X|X2 > Q, what is the smallest |z] can be?
b. Find an example in which x and y are greater than Q but x = 0 and y = Q. 
c. Suppose that x and y are greater than Q but x — 0 and y — Q. How large 

can x/y be?
d. Find an example in which x > y but 0 < x < y.
e. If x > y but 0 < x < how large can y/x be?
I*. If x and y are zero, how large can [ztz2^ be?

For k — 1,2, let zk — xk -}- iyk, where the xk and j’* are in 5(r, p). Let 
z,z2 -- x + iy and let z = x + iy be the approximation for ZjZ2 computed by 
using (13.3.4). Assume that we perform the floating-point arithmetic in 
1 P(r, p, c/1) and use the Q-zero fixup lor overflow and underflow. Suppose 
that we scale the zk by forming zk = zk/Sk, and let z'k = xk + 04- 
a. Let Sk = ret, where ek is the exponent oi max(|x\|, |»|), and suppose that 

both |xiy21 and |x2^\ | are less than co. Then y = 0. How large can |y| be? 
How large can l^/xj be?

b. Assume that we want the scale factors Sk to be powers of the radix, so 
Sk ~ re*. Is there a better choice for the ek than the exponent of

8. Let zL and z2 be complex numbers of the form x* + v*, where the xk and 
are in S(r, p). Let z = and let z — x + iy be the approximation for z 
produced by the calculations in (13.3.16) and (13.3.17). Find an example in 
which z = (1 + p)z, where | p | is close to 3.

9. Let Zj and z2 be complex numbers of the form xk + where the xt and 
are in 5(r,p). Let z = Zj/z2, and let z = x + iy be the approximation for z 
produced by the calculations in (13.3.16) and (13.3.17). Suppose that we do 
not scale the zk and that we use the Q-zero fixup for overflow and underflow, 
a. What is the range of |zj/z2| if D — 0 but D 0?
b. Suppose that |x| and |y| are greater than Q. How small can |z| be?
c. Suppose that |xHx2|, ij’i y2|, |xj y2|, |x2j’i|, |xj|, and |j^| are all greater 

than Q. What numbers will be produced for x and y?

10. Let z} and z2 be complex numbers of the form xk + iyk, where the xA. and y^ 
are in S(r, p) and | xk | > 1- Let z = zt/z2, and let z = x 4- iy be the
approximation for z produced by the calculations in (13.3.19). Assume that 
we use the Q-zero fixup for exponent spill.
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a. Suppose that £> > Q and that neither x nor p is zero. Find a lower bound 
for|zi/z2|.

b. Suppose that | y2/x2 I < so j’2 * Q will be replaced by zero in the cal
culation of D. What is the maximum relative error this can introduce in D?

c. f ind an example in which underflows in the calculation of x and y produce 
a bad relative error even though [zi/z2| is on the order of 1, D does not 
underflow, and neither x nor y is zero.

11. Let zl and z2 be complex numbers of the form xk + where the xk and yk 
are in S(r, p) and |a\| > Let e be the exponent of x2. To avoid the most 
disastrous cases of exponent spill in the calculation of zt/z2, we compute 
z\/z'2, where z'k = zk/re.
a. Find an example in which the calculation of zj overflows, even though the 

calculation of zjz2 would not overflow. How small can |z(/z2| be if this 
happens?

b. Suppose that we are using the Q-zero fixup for exponent spill and that we 
encounter underflow, either in the calculation of z\ or in the division of z\ 
by z2. How large can the relative error be if the final answer is not zero?

12. Let Zj and z2 be complex numbers of the form xk ■ z>^, where the xk and yk
are in S(r, p). Let ek be the exponent of max(|A>|, |j\|). To avoid exponent 
spill in the division of zx by z2, we scale zt and z2 individually by forming

— Zklre,c' Then we adjust the exponents of the answer accordingly.
a. Show that any numbers which underflow may be replaced by zero with 

negligible effect on the relative error p in the answer.
b. Let zj/z2 = x + />, and suppose that we produce the answer x + O’. If we 

use the Q-zero fixup for exponent spill, underflows may cause us to 
produce y = 0, even though y 0. Find a better choice for the ek that 
would help avoid this situation.

I
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GLOSSARY OF SYMBOLS

Symbol Definition Page

S(r,P)

FP(r, p, a)

FP(r, p, c)

FP(r, p, R)

FP(r, p, clq)

Floating-point addition 10
Floating-point subtraction 10
Floating-point multiplication 10
Floating-point division 10
Radix (number base) in which the floating-point numbers 9

are written
Set of floating-point numbers having p digits of precision 10 

in the radix r
Floating-point number system using /?-digit numbers in 9 

the radix r; the symbol substituted or a designates the 
type of arithmetic used

Floating-point number system using p-digit numbers in 12 
the radix r; the symbol c specifies that the system uses 
chopped arithmetic

Floating-point number system using j?-digit numbers in 12 
the radix r; the symbol R specifies that the system uses 
rounded arithmetic

Floating-point number system using /?-digit numbers in 22
the radix r; the symbol clq specifies that the system uses 
chopped arithmetic with a low-order register that is q 
digits long

xL
Xr

B(x)

B'to

Number produced by chopping x to p digits in the radix r 13
Number produced by rounding x to p digits in the radix r 13
Largest number in S(r9p) which is < x 197
Smallest number in S(rtp) which is > x 197
Number obtained rom x by performing the bias removal 195 

operation
Number obtained from x by performing the modified bias 196 

removal operation
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Symbol Definition Page

D, H, O, B used 
as subscripts 
in numbers

A, B, C, D, E, F 
used as digits 
in numbers 

e*

(0

These subscripts specify the radix in which the number is 
written; D stands for decimal, // for hexadecimal, O

Jr ? J"

for octal, and B for binary
When a number is written in hexadecimal, the symbols 

A, B, C, D, E, F represent the hexadecimal digits ten 
through fifteen, respectively.

Maximum exponent that can be used in the machine 
representation of floating-point numbers

Minimum exponent that can be used in the machine 
representation of floating-point numbers

Number which must be added to the exponent of a 
floating-point number to produce its characteristic

Largest positive floating-point number whose exponent 
is < e*

Smallest positive floating-point number whose exponent 
is > e*.

10

39

39

40

40
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Add magnitude case, 26, 78, 79-80, 
248, 291, 292

Antichopping, 198
Ashenhurst, R. L., 202, 203
ASSEMB function, 266, 267-268
Associative law:
addition, 14, 16-17, 80, 82-83
multiplication, 14, 17-19, 80, 83-84

AUGMENT function, 198, 266
Automatic precision increase, 163
Average program, 240-246
Azen, S., 117

Backward error analysis, 105-107, 111,
249

Base, see Radix
Binary arithmetic, 271
Binary machine, 9, 271, 273
Binary representation of numbers, 9,

273
Bias removal, 130, 194-197
Biased exponent, 6

Cancellation law, 15, 19-20, 22, 29, 
81, 86-87

CDC 6600, 12, 30-40, 41,62, 66-67,
154, 167, 191, 192, 275, 281

Ceiling, 198
Characteristic, 6, 1 1, 39, 44, 57, 

60-61, 143-146, 164, 165, 185, 
272, 273-274

Checking, 255-259
Chop left rule, 198
Chop right rule, 198
Chopping, 10, 12, 13, 73-74, 114, 126, 

134, 189-190, 191, 226-227, 277- 
278, 280

Clean double-precision arithmetic, 166
Closure, 14
Coarse double-precision arithmetic, 

166, 167
Cody, W. J., 108, 183
Coefficient, 6, 1 2
COMMON, 159, 268
Commutative laws, 14, 16
COMPARE instruction, 68
Complements, 11, 145, 274-275
Complex absolute value function, 69, 

285
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Complex arithmetic, 285, 287-297 
addition, 287 
division, 294-297 
multiplication, 290-294 
subtraction, 287

Complex data type, 179, 247, 285, 
287

Complex numbers, 246-247, 253, 285 
relative error in approximating, 286- 

287
Condition, 98-103, 107, 109, 111-112, 

184, 249, 261
Conservation laws, 256
Constants, 155-157, 179-180, 182, 

207, 265, 268
Controllability, 263, 264-265
Conversion, 157-158, 179-180, 227-

238, 253, 265, 272
Cosine, 107-108, 136, 241
Counting mode, 57-59, 62, 63, 66

Double-precision arithmetic, 163-178 
addition, 168-171 
division, 171-178
in FORTRAN programs, 124, 145, 

155-161, 162-163, 178-180, 193 
on IBM 7090, 22-23, 48, 154 
on IBM System /360, 23, 48, 154 
multiplication, 165-168 
need for, 108, 131-132, 180-185, 

249
in PL/I programs, 161-162 
subtraction, 168-171

Double-precision data type, 124, 156
Double-precision numbers, 154, 164- 

165
on IBM 7090, 22-23
on IBM System/360, 23, 48

DSD division, 172-174

D

D exponent, 155, 157-158
D format, 155
DBLE function, 161
DDD arithmetic, 164, 167 
addition, 1 70-1 71 
division, 174-178 
multiplication, 165-167 
subtraction, 170-171

Decimal arithmetic, 6-9, 271, 272 
Decimal floating-point numbers, see

Floating-decimal numbers 
Decimal machine, 9, 271-273 
DECREMENT function, 198, 266 
DEFAULT statement, 163 
Derr, J., 117 
Digit:
hexadecimal, 10 
sticky, 278

Dismantling floating-point numbers, 
143-146

Distributive law, 14, 20, 81, 85-86 
Division by zero, 66-67 
Divisors of zero, 1 5

E exponent, 1 55
E format, 155, 228-229
EQUIVALENCE statement, 144, 159
Equivalent number of digits, 224-228, 

272
Error analysis:
of arithmetic in FP r, p, clq), 

75-80
automatic, 201-202
of Average program, 245-246
backward, 105-107, 111, 249
forward, 105
using higher-precision arithmetic, 

213-220
using interval arithmetic, 207-213
using noisy mode, 205-207
of programs, 103-105, 127-128, 133- 

134, 245-246
of propagated error, 75-77, 79-80, 

87-92
of quadrature program, 127-128
using significance arithmetic, 202- 

205
statistical, 1 13-117
of sum of power series, 133-134
of X**N, 92-98
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Error messages, 46-48, 62-64, 255 
Exact sums, 137-143
Exponent:
of a loating-point number, 6, 10-11, 

39, 59, 144, 250-252, 279, 294, 
297

overflow, see Overflow
spill, see Spill
underflow, see Underflow

Exponential function, 101, 135 
Exponentiation, 65, 67, 92-98 
Extended error handling facility, 46 
Extended-precision arithmetic on IBM

System/360, 48, 49, 62-63, 108

FIXED TO FLOAT conversion, 206-
207, 273, 281

Fixed-point arithmetic, 273-274
Fixed-point calculation, 1-4
Fixed-point numbers, 1-3, 144-145,

273
Fixup:

- Zero, 41-43
- , 44
- Zero, 41-44, 47, 57, 62, 63, 67
(for division), 66-67

standard, 42
Flag bits, 1 2, 275
FLOAT TO FIXED conversion, 191, 

273, 281
Floating decimal arithmetic, 6-9, 271- 

272
Floating decimal numbers, 4-6, 225, 

228, 272-273
Floating-point arithmetic:

addition, 10-11, 25-29, 60-61
on CDC 6600, 41, 62, 66-67, 154,

167, 191, 192, 275, 281
division, 10-11, 12, 28-29, 33-35
double-precision, see Double-precision 

arithmetic
on IBM 7090, 22, 23, 45, 1 54, 279, 

280

on IBM System/360, 12, 22-23, 44, 
61-62, 66, 154, 167, 171, 271, 
279,280

multiplication, 10-11, 12, 24-25, 
28-29

overflow in, see Overflow 
subtraction, 10-11, 12, 25-29, 60-61 
underflow in, see Underflow

Floating-point number systems, see 
FP (r, p, a), FP (r, p, c), 
FP (r, p, clq), FP (r, p, R)

Floating-point numbers, 10-1 1, 224- 
228, 273-277

on CDC 6600, 12, 39-40, 41, 67, 
154, 167, 275

on IBM 7090, 23, 39, 154
on IBM System/360, 23, 39-40, 145, 

154, 167
Floor, 1 98
FORMAC, 202
FORTRAN, 12, 18, 46, 48-49, 52-55, 

62, 65-66, 67, 68-69, 92, 144-145, 
153, 1 55-161, 162-163, 178-181, 
192, 193-194, 265, 266, 267-268

Forward error analysis, 105
FP(r, p, a), 9-1 1
FP(r. p, c), 12-14, 75, 80-87, 242-246, 

277-278
FP(r, p, clq), 22-29, 78-79, 80-87, 

137-143
FP(r, p, R), 12-14, 35, 75, 117-118, 

191, 277-278
Fraction, 6
Fractional part, 6

Goldberg, I. B., 227, 276
Gradual underflow, 57, 59-61, 62
Gray, L. H., 204
Guard digit, 23, 25, 28

H

Hamming, R. W., 1 16, 276
Harding, L. J. Jr., 277-278
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Harrison, J. G, 204
Hartree, D. R., 114, 115
Henrici, P., 304
Hexadecimal machine, 9, 272
Hexadecimal representation of num

bers, 9, 10, 116-117, 158, 225, 
233, 272

Higher-precision arithmetic, 185-186, 
213-219

Hull, T. E., 115

M

Machine identification problem, 269, 
270

Machine independence, 267-269
Magnification factor, 100
Mammell, W. L., 276
MANIAC HI, 202
Mantissa, 5, 10, 29-32, 39-40, 73-74, 

116, 143-146, 185, 272, 276-277, 
278-279

IBM 1620, 154
IBM 704, 22, 39, 45, 233
IBM 709, 22, 39, 45
IBM 7090, 22, 33, 35, 39, 45, 48, 61,

154, 167, 279
IBM 7094, 22-23, 39, 45
IBM 7030, 12, 39, 168, 202, 205-206, 

275
IBM System/360, 22, 23, 39, 44, 61, 

66, 145, 154, 167, 171, 271, 279, 
280

I EXP function, 266, 267-268
IMPLICIT statement, 162
Imprecise interrupt, 61-62 
INDEFINITE, 41, 67, 275-276
Indeterminant forms, 12, 67
Index of significance, 204
Inequalities, 21
Infinity, 12, 41-43, 67, 275
Inner product, 160
Interrupt, 45-46, 61-62, 66
Interval arithmetic, 198, 207-213

Matula, D. W., 227, 230-231, 232
McKeeman, W. M., 276
Messages, 46-48, 62-64, 255
Metropolis, N., 202, 203
Minus zero, 274-275
Monotone transformation, 229
Moore, R. E., 207, 213
MQ, 23

A^-fold precision arithmetic, 185
Neighbor, 197, 229-230
Neighbor transformation, 230
Newton’s method for computing 

reciprocals, 175
Noisy mode, 205-207
NORC, 196, 271
NORMALIZE instruction, 281
Normalized numbers, 6, 7, 12, 27, 

277, 279
Normalized zero, 6, 27, 60, 280

Kahan, W., 57, 59, 62, 194, 197, 246
Knuth, D. E., 98, 1 16
Kuki, H., 183, 259

Low-order register, 23

Observability, 263, 264-265
Octal representation of numbers, 9,

ON statements, 49-50, 62-63
One to one transformation, 229, 230

232
Onto, transformation, 229, 230-232
OTHER data type, 213
Overflow, I 1,40, 42-44, 45, 46, 

242-244, 249, 251, 285, 293-294, 
295-297
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Overflow routine, 46
Overflow test, 47

P

Pinkham, R. S., 116
Pipeline machine, 61
PL/I, 12, 18, 49-50, 53, 55-56, 62, 63, 

145-146, 161-162, 163, 196, 227, 
231, 256, 266, 267

Portability, 267-269
Postnormalization, 7, 24, 30, 166, 

281
Power series, 130-137, 174
Precision, 10, 78, 180-186, 213-222, 

224-227, 249
Predictability, 263
Prenormalization, 61, 279, 280
Prerounding, 191
Preshift, 25
PUT DATA statement, 231

Quadratic equation, 64, 246-252
Quadrature, 123-130, 191-192, 204
Quotient, 33-35, 76-77

R

Radix, 9, 71-72, 75, 224-225, 265, 
271-273

Radix conversion, see Conversion
Radix point, 11-12, 276
Random mantissa, 116-117
Range checking, 255-256
REAL*8 statement, 156
Reconversion, 232
Relative error:
in addition and subtraction, 78-80
bounds on, 74-75
comparison for different systems, 

224-228
definition, 73-75

in division, 76
in FP(r, p, c), 75, 272
in FP(r, p, clq), 75-80
in FP(r, p, R), 75
in multiplication, 75-77

Remainder, 33-35, 171-174, 176-178
Roots of polynomials, 102-103, 111- 

112, 246-252, 256

ROUND function, 194, 196, 266 
Rounded arithmetic, 114-115, 129, 

191,277-278

Rounding, 10, 1 2-13, 74, 113-114,
1 15, 129, 182, 189-194, 197, 
260, 277-278

Rounding conversion transformation, 
230

S

Scale factor, 3, 25, 167, 178, 243, 
250-252, 294, 296-297

Scientific notation, 5
Significance arithmetic, 202-205, 207
Significand, 6
Significant digits, 71-72, 203, 231
Simpson’s Rule, 123, 128
Simultaneity Problem, 205, 210
Sine, 42, 107-108, 136
Sinh, 108-109, 137
Spill, 40, 45, 46 (see also, Overflow, 

Underflow)
SDD arithmetic, 164, 168, 169
SSD arithmetic, 164, 167, 168
division, 1 71-1 72 
multiplication, 165, 166

SSS arithmetic, 164
Standard fixup, 42, 46-47
Statistical error analysis, 1 13-1 17
Sticky bit, 278
Sticky digit, 278
Subscript range checking, 256
Sweeney, D. W., 272, 274
Swenson, J. L., 115
Symmetric rounding, 13
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Unnormalized zero, 280-281
UN SPEC, 145-146, 267

Testing programs, 182, 255, 259-261
Tests for spill, 48-49
Trapping, 45 (see also. Interrupt)
Transformation: 
conversion, 228-232 
into, 228-229 
monotone, 229 
neighbor, 230 
one to one, 229-232 
onto, 229-232 
rounding, 230, 232 
strictly monotone, 229 
truncation, 230, 232 
well defined, 229

Truncation, 12 see also. Chopping) 
Truncation conversion transformation, 

230, 232

Variable word length machines, 154- 
155

Virtual overflow and underflow, 64-66

W

WATFOR, 158, 256
Well-defined transformation, 229
Wilkinson, J. H., 99, 102-103
Wrapped-around characteristic, 44, 

45-46, 50, 57, 62, 165

Underflow, 11,40, 42, 45, 46, 47, 57, 
59-61,62, 165, 167, 178, 242-
244, 251, 285, 293-294, 295-297 

Unnormalized arithmetic, 12, 203, 
278-282

Unnormalized numbers, 59-61, 164,
203, 207, 278-282

Z format, 1 80, 265
Zero:
minus, 274-275 
normalized, 6, 27, 60, 280
plus, 274
unnormalized, 280-281
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