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Note to the Dover Edition

 

This edition differs from the original in that typographical

errors have been corrected and a new solutions section

contains hints and answers, many corrected, for almost all

of the problems.

The original goal of a five-volume series covering all of the

major branches of physics was never realized because of a

change in ownership of the original publishing house.



Preface to the First Edition

 

 

This is the second of a planned series of five volumes

designed for use in undergraduate physics courses by

students majoring in science or engineering. The aim of the

series is to present a thorough discussion of the basic

concepts of physics from a modern point of view. The first

volume, Mechanics, examines newtonian mechanics;

subsequent books in the series will include volumes on

electromagnetism, thermal physics, and quantum

mechanics.

The volumes in this series are intended for use in an

introductory course of four or more semesters. Since the

subject matter is discussed in greater depth than that

usually found in introductory-level textbooks, each volume

may be useful for a second course or an intermediate-level

course in the specific subject covered by the individual

volumes.

The theories of relativity have a fascination that captures

the interest of even those students who are without much

knowledge of physics. Furthermore, many of the basic

concepts may be taught without the use of the calculus or

difficult mathematical analyses. For these reasons, a short

course on relativity can provide an introduction to physics

that is attractive to students. Appropriate material may be

chosen from the present text for a short introduction to the

kinematics of special relativity, which is suitable for

students having little background in physics beyond some

familiarity with newtonian kinematics. The book may be



used in various other ways moreover, even as a text for a

one-semester, intermediate-level course in modern physics.

This book is divided into three chapters, which cover the

kinematics and dynamics of special relativity and include an

introduction to the ideas of general relativity; each chapter

covers one major subject. The introduction to each chapter

contains a review of the relevant newtonian mechanics,

although this material need not be covered in depth. In

addition, much of the chapter on kinematics and parts of

the chapter on the dynamics of special relativity do not

require any knowledge of the calculus, although such

knowledge would be helpful.

The present text is self-contained, but desirable additional

background for this text may be obtained from a study of

newtonian mechanics as presented in Mechanics. Although

that text is not prerequisite to the present book, a number

of topics discussed in this text are dealt with in greater

detail there; these topics include vectors, Newton’s laws,

scattering, and wave motion.

 



 

The chapter on the kinematics of special relativity includes a

discussion of space-time geometry and of the group-

theoretical basis for the importance of 4-vectors. These

discussions culminate, in the chapter concerning the



dynamics, in the development of the covariant formulation

of the conservation laws and the equation of motion. Many

applications of special relativity in nuclear and particle

physics are presented in a section containing a description

of the development of those subjects and the properties of

the particles.

The third chapter provides an introduction to general

relativity. The relevance of Riemannian geometry to a

theory of gravitation and the first-order metric of the

principle of equivalence are discussed in some detail, but

Einstein’s equations, the Schwarzschild solution, and its

consequences are described only briefly. Nevertheless, the

chapter contains more material on general relativity than

many physics students have encountered in the past—the

students’ shortcoming in this field is unfortunate in view of

the recent resurgence of interest in both the theoretical and

experimental aspects of general relativity.

The chapters are divided into subsections, each of which

contains material that usually can be covered in one lecture.

However, there are a number of sections on given concepts

that may be left for assigned reading or that may be

correlated for one discussion. The possibilities for this

approach are diagrammed on the flow chart. Almost all

subsections are followed by problems, and each chapter is

followed by an additional set of problems.

References to the corresponding material in a few selected

texts are given at the beginning of most subsections; these

references may be used for supplementary reading or as a

source of additional problems. The book contains numerous

references to books and articles, and these may be used to

supplement the discussion in the text or as assigned

reading. There are also a few advanced references at the



end of each chapter to be used as a basis for more

advanced discussions.

The order of presentation of the material need not follow the

text exactly, although this might be helpful. The flow chart

shows the grouping of subject matter according to section

topics, and indicates the relationship of sections to one

another. Each section is dependent only on the material

listed along the lines that flow into the box marked with the

number of the section. Those sections from which there are

no outgoing lines, or whose topics do not lead into material

selected for study, may be omitted. This is particularly true

for those sections that lie outside the shaded regions and

that provide additional discussions of the relevant topics.

I wish to thank all those who offered suggestions for the

improvement of this book and those who encouraged me in

this task; they include J. C. Bergstrom, M. H. Brennan, V. K.

Gupta, R. N. H. Haslam, L. Katz, H. N. Rundle, and G. J.

Sofko. A particular expression of thanks is due my good

friend and former colleague on the faculty here, G. J. D.

Taylor, for many interesting discussions. In addition, I owe a

debt of gratitude to E. L. Tomusiak, who read the manuscript

and made many worthwhile suggestions.

I am indebted to Professor R. W. Fuller, who made valuable

comments on an initial draft. I am grateful for the thoughtful

criticism of the consulting editors, Professors M. J. Klein and

B. F. Stearns, who read through a number of drafts and

always provided valuable advice and numerous suggestions

for improvement.

Full responsibility for any errors, however, rests on my

shoulders. I will always welcome any corrections and

suggestions.



My wife Lilianne deserves special commendation. She typed

all drafts of the manuscript and provided encouragement,

humor, and patience throughout the project.

RAY SKINNER

Saskatoon, Canada
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Special Relativity Theory: Kinematics

1

 

 

Our notions of space and time are derived from experiences

with relative positions, clocks, motions, etc. These notions

are refined as our range of experience increases, as can be

confirmed by anyone who has watched an infant reach for a

distant object or waited for a young child to return “in just a

moment,” or by one who has become more and more

familiar with motions of objects and the laws to which these

motions are subject. An improvement in understanding of

our everyday notions of space and time is not enough,

though; like all our other ideas, these notions and the basis

for them must be scrutinized continuously for hidden

fallacies as the range of our experiences is expanded. If

necessary, these notions must be modified with the insight

provided by new experiences. We cannot maintain ideas that

are contrary to experience or, in other words, that disagree

with experiment. This book focuses on the modification of

our usual views of space and time and the consequent

changes in the laws of motion resulting from new information

provided by experiments performed in the last half of the

nineteenth century.

The basis for our familiar notions of space and time is

provided by our knowledge of the common motions of

everyday experience, such as the motions of a ball or a car.

These motions are correctly described by a set of laws

introduced by the great English physicist and mathematician

Sir Isaac Newton (1642–1727). His laws of motion are also

valid to a high degree of accuracy when applied to the



motions of the planets in the Solar System, extending some

10¹³ m across space and involving periods of 10¹⁰ sec. On

the other hand, Newton’s laws were used* by the father of

nuclear physics, Sir Ernest Rutherford (1871–1937), in his

analysis of the experiments that led to the discovery of the

atomic nucleus, an object measuring about 10–14 m across,

which experienced collisions for about 10–20 sec in those

experiments. The range of validity of Newton’s laws is

limited, however; the special theory of relativity is required

for the description of some phenomena that are not correctly

described by Newton’s laws.

The special theory of relativity is based on concepts of space

and time that differ from those applicable in newtonian

mechanics (although the concepts of relativity theory are

compatible with the newtonian concepts in their common

range of validity). There is a natural division of subject

matter in the special theory of relativity: (1) kinematics,

which is the study of the concepts of space and time and the

means of describing the motions of objects; (2) dynamics,

which is the study of the regularities in these motions or the

rules that govern them. The kinematics of special relativity

form the subject matter of this chapter; the dynamics of

special relativity are discussed in Chapter 2.

Newtonian mechanics represents a precise statement of our

intuitive ideas about the common motions of everyday

experience. Therefore, it is worthwhile at this point to review

the kinematics of newtonian mechanics as a preliminary step

in our study of the modifications in newtonian kinematics

required by the special theory of relativity.

Newton maintained that time was absolute: that is, every

observer can determine time intervals relative to a time

standard or clock that depends in no way on that observer. It

follows from this, for example, that if the time interval



between two explosions is 94 sec according to your clock,

the time interval between these two events is also 94 sec

according to my clock (unless one of the clocks is not

functioning properly). This idea—that the length of the time

interval between two events is independent of who

measures it—provided a cornerstone for acceptable

explanations of observed physical phenomena until the turn

of this century.

It was assumed also, until the beginning of this century, that

space satisfied the axioms of Euclidean geometry. It follows,

for example, that two straight rods of lengths A and B that

form a right-angled V have their outer ends separated by the

distance , as given by the theorem of Pythagoras [Figure

1.1(a)], and that this is true relative to all observers. A

similar formula results in three dimensions [Figure 1.1(b)],

again with respect to all observers.

Newtonian mechanics is based on the assumption that we

can specify the position of an object in this Euclidean space

at any instant of (the absolute) time. The motion of an object

is described by giving its position at the various instants of

time during that motion. A real object is extended, occupying

a volume in space—not only one point—and the description

of its motions requires the specification of each point in that

object at each instant of time. This description is not a

simple matter in general because of the relative motions of

the parts, and it would be difficult indeed to find in such

complicated motions regularities that could be stated as

simple rules that govern these motions. This complication is

avoided in newtonian mechanics by the use of the concept of

a point particle. A point particle is an idealized object that

behaves in every way as a real object, except that it

occupies no volume. Newton’s laws of motion apply to the

motions of point particles, and they describe the motions of

real extended objects if these objects are treated as an



assembly of interacting point particles. (The converse of this

—real objects consist of point particles that satisfy Newton’s

laws—is not true.)

 

 

FIGURE 1.1 Consequences of the axioms of Euclidean

geometry, (a) The theorem of Pythagoras. (b) .



 

The position of a point particle P can be specified in a

number of ways relative to a given point O fixed to a

reference frame. We can set up one or another coordinate

system relative to that reference frame, and we can specify

position by giving the coordinates of that point relative to the

origin O (Figure 1.2). Different sets of coordinates describe

the same displacement, that from the origin to the position,

and so the position may be designated by an entity, the

position or displacement vector, that represents that

displacement independent of the coordinate system used

(Figure 1.3). The displacement vector determines the

distance, the direction along the line between the position

and the origin, and the sense—from the origin O to the

position P—of that direction no matter what coordinate

system is used to describe that vector. The description of a

displacement vector depends on the choice of reference

frame, and differs in this respect from a more familiar type of

physical quantity, called a scalar, that is given by one

number and its unit and that is independent of the reference

frame. In this book a displacement vector is designated* by

a boldface letter, such as r, or, if the end points are given, by

use of the form (letter for the initial point) (letter for the final

point), with an arrow over the two letters, such as . The

length of a displacement vector is a scalar and is called the

magnitude of the vector. We denote the magnitude of a

vector such as r by the corresponding letter in italic print, r,

or by vertical bars around the vector’s symbol such as |r| or .

 



 

FIGURE 1.2 Coordinate systems appropriate for the

description of motions on a plane. (a) Choice of origin O and

a reference direction OX. (b) Rectangular or cartesian

coordinates (x, y) of P. (c) Polar coordinates (r, θ) of P.

 

 

FIGURE 1.3 The displacement vector r from O to P.

 

One displacement may be followed by another, and the

combination of the corresponding vectors is called the vector



sum. The combination process is called vector addition. Just

as one displacement followed by another is equivalent to a

third displacement, so the vector sum of two vectors is a

third vector (Figures 1.4 and 1.5):

 

 

 

FIGURE 1.4 The addition of displacements.

 

The vector b is given by the process of vector subtraction of

a from c:

 

 

Any entity that can be specified by a magnitude, a direction,

and a sense and satisfies a similar law of addition is also

called a vector.



The motion of a point particle is specified by its position r at

each instant of time t. We use a standard notation for

functions to write (Figure 1.6)

 

 

 

FIGURE 1.5 The addition of the vectors a and b.

 

The motion also may be specified by the manner in which

the position of the particle changes as time passes. Let ∆r

denote the displacement, the change in the position of the

particle, in the time interval ∆t (Figure 1.7). The average

velocity of the particle between times t and t + ∆t is defined

by

 

 

If the average velocity vectors are calculated for smaller and

smaller values of ∆t, the average velocities approach a

vector v defined as the (instantaneous) velocity at the time



t; the velocity is the limit, denoted by the expression “lim,”

of the average velocities, and is defined in mathematical

notation by

 

 

 

FIGURE 1.6 The position vector of P relative to O at time t.

 

In much of the work in this chapter, the velocities under

consideration will be constant vectors and so the respective

average and instantaneous velocities will be equal. The

magnitude υ of the velocity v is called the speed.

The manner in which the velocity of a particle changes with

time plays an important role in newtonian mechanics (see

the introductory paragraphs of Chapter 2). The rate of

change of the velocity with respect to the time is called the

acceleration a and is defined by

 



 

The position vector of a particle specifies the site of the

particle relative to a given frame of reference; thus it is of

interest to determine the relation between the position

vectors relative to two different frames. If the frames are at

rest relative to one another, the relation involves only the

vector R representing the displacement between the origins

or reference points (Figure 1.8). The relation is given by the

basic property of the addition of vectors:

 

 

A similar relation for the instantaneous position vectors is

true if the reference frames are in relative motion.

 

 

 



FIGURE 1.7 The definition of ∆r: ∆r = r(t + ∆t) – r(t).

 

 

FIGURE 1.8 The relation between the reference systems S

and S′.

 

where we have used the absolute character of time to label

each vector by the same value of t. It follows directly from

the definition of velocity and acceleration that

 

 

and

 



 

The description of the regularities in the motions of objects—

the laws of mechanics—can be complex or simple,

depending upon the reference frame used. Newton’s laws of

mechanics take on their simplest form relative to a frame of

reference attached to the distant (“fixed”) stars or to any

other frame moving with a constant velocity relative to the

fixed stars. Every such frame is called an inertial frame of

reference, since a particle not experiencing any modification

in its motion because of the presence of other objects in its

environment exhibits only the property of inertia in such a

motion; it moves with a constant velocity relative to each

and every inertial reference frame.

The relation between the positions of an object relative to

two inertial frames is given by the transformation law

[Equations (1.8), (1.9), and (1.10)] for the case in which V(t)

= V, a constant vector. This restricted transformation law is

called the galilean transformation law after the Italian

scientist Galileo Galilei (1564–1642), and for the particular

case in which R is zero at t = 0 the law is given by

 

 

Newton’s laws of motion take on their most simple form and,

indeed, the same form relative to all inertial frames related

by the galilean transformation law. Therefore, according to

Newton’s laws, it is impossible by a mechanical experiment

to distinguish one inertial frame from another related by the



galilean transformation law. This is a statement of the

galilean principle of relativity.

This concludes our review of the kinematics of newtonian

mechanics. It can be seen from our discussion that this

kinematics depends on the use of an absolute time, the

same time for all observers (in the derivation of the galilean

transformation) and on the properties of Euclidean geometry

(in the representation of vectors by directed straight-line

segments independent of the observer). However, we shall

see in this chapter that although these concepts are valid

within the range of applicability of newtonian mechanics,

they are not universally applicable.

Modifications in the pretwentieth century notions of space

and time were found to be necessary as a result of

experiments performed to determine the properties of light

propagation. The propagation of light is a form of energy

transmission that exhibits wave-like properties as

demonstrated, for example, by the famous experiment

(Figure 1.9) performed in the early part of the nineteenth

century by the English physicist Thomas Young (1773–1829).

 

 

FIGURE 1.9 Young’s experiment: The incident light that

passes through S acts as a single source for light traveling

along the two paths through S1 and S2, and gives an

interference pattern on the final screen. The interference



pattern can be explained on the basis of a wave theory of

light; a stream of particles or corpuscles would produce an

entirely different pattern according to our customary ideas of

particle behavior.

 

Other waves such as sound waves, earthquake waves, and

disturbances transmitted through solids, require a material

medium for their transmission. Indeed, they are propagated

by means of the interactions between neighboring elements;

the motion of one part influences the behavior of the next

part, and the disturbance is transmitted from one portion to

the next, as shown in Figure 1.10. The properties of

propagation of those types of waves, such as the speed of

transmission, can be used to determine properties of the

material medium through which they are propagated, and

also can be used to gain information about the mechanism

by which these waves are transmitted. Thus, the speed of

sound in air (about 330 m/sec) is determined in part by the

temperature of the air, and the speed of transmission of a

disturbance in a solid is determined in part by the density of

the solid.

Light propagates with a finite, but very great speed (Section

1.1). However, unlike the more familiar types of waves, light

can be transmitted without the presence of a material

medium. This is illustrated, for example, by the fact that

starlight reaches us after traveling tremendous distances

through space practically devoid of matter. This peculiarity of

light transmission may also be demonstrated by an

experiment that illustrates the fact that sound requires a

material medium for its transmission (Figure 1.11). As the air

is pumped out of the bell jar, the intensity of the sound of

the ringing bell decreases to zero thus suggesting that sound

requires a medium like air for its transmission, whereas the



intensity of the light reflected from the bell does not

decrease.

Since light does not require a material medium for its

propagation, we can depict waves of light in the manner

used to describe sound waves, for example, only if we

postulate the existence of some medium that transmits the

light waves. Before the turn of this century, experimental

techniques were sufficiently refined to the point where

scientists could make measurements that would determine

the reference frame in which this medium is at rest. All such

experiments were unsuccessful in detecting that reference

frame (Section 1.2). Nature appeared to be conspiring to

prevent the detection of the medium that transmits light

waves, and it remained for the great German-American

theoretical physicist Albert Einstein (1879–1955) to point out

that as a result, the assumption of the existence of such a

medium was superfluous. Space itself, which we usually

think of as a sort of “nothingness,” has the property that it

can transmit light even in the absence of matter.

 



 

FIGURE 1.10 The manner in which a wave having the form of

a short pulse is propagated along a solid rod. The rod is

shown at rest in the top line. The vertical lines, etched in the

rod, are equidistant when the enclosed regions are in

equilibrium.



 

The lack of success in determining the privileged reference

frame in which the medium that transmits light waves is at

rest, and other considerations, led Einstein to postulate that

in fact there was no such preferred reference frame, and that

the speed of light is the same relative to all inertial frames.

These postulates of the special theory of relativity* (Section

1.3) have been corroborated by many experiments since

then and now have achieved the status of laws of nature.

The kinematic consequences of the postulates of the special

theory of relativity form the subject matter of Sections 1.4 to

1.10.

 

 



FIGURE 1.11 The bell can be seen even when there is no air

in the jar.

 

As a consequence of a study of the propagation of light, we

gain further insight into the properties of space and time. We

find that we must modify our notions on space and time as a

result of experimental results (or new experiences, if you

wish). These modifications appear very drastic indeed

(Section 1.4), although the extraordinary consequences lie

outside the range of our experiences of everyday life. We

find that the division between space and time for one

observer may not be the division between space and time

for another. The concept of absolute time is demolished, and

space and time become intermingled into one continuum,

space-time. The valid transformation law (Section 1.5)

relating the instant of time and the coordinates in space of

an event relative to one inertial observer to the time and

position of the same event relative to another inertial

observer can be derived on the basis of Einstein’s postulate

of the equality of the speed of light for all inertial observers.

That the relation between observers is different than was

believed prior to the turn of the century is shown by the fact

that two observers in relative motion do not determine, in

general, the same value for the length of an object nor the

same value for the time interval between two events

(Section 1.5). Even the visual appearance of an object is

different for one observer than another (Section 1.6).

Furthermore, velocity vectors combine in a manner different

from that given by the galilean transformation law (Section

1.7).

The modifications in our notions of space and time required

by experiment are formulated best in terms of occurrences

or events and in terms of a geometry that does not satisfy



the axioms of Euclidean geometry (Section 1.8). Events are

the points of space-time and require four coordinates each

for their specification. The analog of a position displacement

in space is an event displacement and, just as a position

displacement is the prototype of a vector in space, an event

displacement is the prototype of a 4-vector in space-time

(Section 1.9). These 4-component vectors and other similar

entities are what we must use henceforth in our formulation

of the laws of physics, otherwise our statements of these

laws will vary from observer to observer in circumstances

involving relative speeds comparable to the speed of light.

A 4-component wave-propagation vector can be introduced

to describe the propagation properties of a wave in space-

time (Section 1.10).

In Chapter 2, we shall use the ideas developed in this

chapter to amend the laws of mechanics to a form consistent

with our new insight into space and time.

 

 

FIGURE 1.12 The angle θ between a and b may be defined in

either of the ways shown.



 

Problem 1.1

 

The product of a scalar x and a vector a, xa is a vector of

magnitude |x| |a| having the direction of a and the sense of a

if x is positive, and having the opposite sense if x is

negative.

 

(a)   A vector V of magnitude V can always be written in the

form , where is called the unit vector in the direction of V. If V

is a velocity, what are the units of ?

(b)   Let , and be unit vectors in the direction of the positive

x, y, and z axes, respectively. Show that any vector V can be

written in the form

 

 

where Vx, Vy, and Vz are called the (rectangular)

components of V. Do these components depend on the

choice of coordinate axes?

(c)   Show that two vectors V and W are equal if and only if

their components are equal:

 

 



(d)   Use a vector diagram to show that (V + W) + X = V +

(W + X).

(e)   Show that the components of V + W are Vx + Wx, Vy +

Wy, Vz + Wz, and that the components of V – W are Vx – Wx,

Vy – Wy, Vz – Wz.

 

Problem 1.2

 

Two vectors can be multiplied together in three ways that are

meaningful to physicists. One of these ways is described in

this problem, another is described in Secton 1.9.4, and the

third in Problem A1.17.

 

(a)   The dot or scalar product of two vectors a and b is

defined by a·b = ab cos θ, where θ is the angle between a

and b (Figure 1.12). Show that a·b is |a| times the component

of b along the direction of a.

(b)   Show from the result of (a) that

 

 

(c)   Show that and . Find the values of the scalar products of

all other combinations of unit vectors along the directions of

the coordinate axes.

(d)   Use the results of (b) and (c) to show that

 



 

(e)   Show that the number axbx + ayby + azbz formed from

the components ax, ay, az, and bx, by, bz, of a and b

respectively relative to one set of coordinate axes is

independent of the choice of those axes.

 

Problem 1.3

 

A sinusoidal or harmonic plane wave traveling in the positive

x direction is described by a wave function of the form A sin

(kx – ωt) or by the complex form Aei(kx – ωt).

 

(a)   The frequency ν is the number of complete oscillations

that take place at one point x0 per unit time. Show that to ω

= 2π ν. [The unit of frequency, cycle per second, is called the

hertz (Hz) after the German physicist Heinrich Hertz (1857–

1894).]

(b)   A harmonic wave at any one instant t0 consists of the

repetition of an elementary unit in both directions. The size

of the smallest such unit is called the wavelength λ (Figure

1.13). Show that λ = 2π/k.

 



 

FIGURE 1.13 The waveform ψ(x, t0) = A sin (kx – ωt0) of a

harmonic wave at time t0 consists of the repetition of an

elementary unit of length λ.

 

(c)   The period T of a harmonic wave is the time required for

one cycle of the wave to occur at one point x0. Show that νT

= 1.

(d)   The (phase) velocity v of the harmonic wave is given by

, where υ is the speed with which the waveform moves.

Show that

 

 

and, from this, that υ = ω/k = λν.

(e)   The propagation vector k of the harmonic wave is a

vector of magnitude k directed along the direction of



propagation of the wave. Show that and that the wave

function may be written as A sin (k·r – ωt), where .

(f)   The vector A determines whether the wave is

longitudinal or transverse. If the wave is longitudinal, A lies

along the direction of k, and if transverse, along a direction

perpendicular to k. The direction of A in the latter case is

called the direction of polarization of the transverse wave.

Show that A·k = 0 for a transverse wave.

 

Problem 1.4

 

Let the wave function A sin (kx – ωt) describe the

displacement of the material at the position x at time t

resulting from the transmission of a plane harmonic wave

through the material. The displacement is referred to the

reference frame S.

 

(a)   An observer moves relative to the reference frame S

with the velocity . Use the galilean transformation law to

show that the frequency ν′ of the wave relative to that

observer is given by ν′ = ν(1 – V/υ), where ν and υ are the

frequency and speed of the wave relative to the reference

frame S.

(b)   A source of harmonic waves of frequency νs moves

through the material with a velocity and generates the wave

described relative to S by A sin (kx – ωt). Use the fact that

the wavelength λ is a scalar, and hence has the same value

relative to the source and the reference frame S, to show

that ν = νs/(1 – V/υ). These changes in frequency are called



the doppler effect after the Austrian physicist Christian

Johann Doppler (1803–1853).

 

Problem 1.5

 

Use the scalar product v·v = v² = υ² to show that

 

 

where θ is the angle between v′ and V. What are the

maximum and minimum values of υ for given values of υ′

and V?

 

Problem 1.6

 

Derive the galilean transformation law v = v′ + V directly

from r(t) = r′(t) + R(t) using the definition of velocity and the

fact that dR/dt = V, a constant vector.



1.1   The Speed of Light

 

The speed of a wave in a material medium depends on the

type of wave under consideration and on the properties and

circumstances of that medium. Light exhibits wave

properties, can be transmitted through various media, and

even propagates through a vacuum. It might be expected,

therefore, that the values of the speed of light in various

media would provide some information on the mechanism of

these waves.



1.1.1   Measurements of the speed of

light*

 

Galileo appears to be the first scientist to have suggested a

way to determine the speed of light even though some of his

contemporaries believed that light was transmitted

instantaneously. He suggested placing two observers some

distance apart, each observer being equipped with a lamp

that could be shut off quickly. The first observer shuts his

lamp and, immediately upon seeing this, the second

observer shuts his off. The first observer notes the time that

elapses between the instant at which he shuts off his own

lamp and the instant at which he sees the other observer

shut his off. If this observed time interval is proportional to

the separation distance of the two observers, then the speed

of light is finite and can be determined from this experiment.

However, a positive result cannot be obtained from Galileo’s

experiment over the distances available between terrestrial

points.

The difficulty with Galileo’s experiment, aside from the

necessity of making measurements of very short time

intervals, is that it takes a human observer a comparatively

long time to react to a stimulus—that is, a finite time called

the reaction time elapses between the time an observer sees

the other’s lamp being shut off and when the observer shuts

off his own lamp. This human weakness can be overcome in

the following way: Since the second observer acts merely as

a reflector of the shutting off of the light from the first lamp,

the second observer can be replaced by a mirror that reflects

any light signal without delay. In addition, the measurement

of the time interval can be performed by mechanical means



in which the human reaction time plays no part. For

example, an opaque sheet containing two holes moved

across the light source allows the light out one hole and back

into the source region through the other hole only for one

particular speed, namely that for which the light goes

through the first hole to the mirror and back in the exact

length of time it takes the sheet to move the distance

between the holes (Figure 1.14). This is the basis of the first

terrestrial determination of the speed of light, performed in

1849 by the French physicist A. H. L. Fizeau (1819–1896)

(Figure 1.15).

Notable measurements of the speed of light were performed

by the American experimental physicist A. A. Michelson

(1852–1931).* He used a technique developed by the French

physicist Leon Foucault (1819–1868) that involved the use of

rotating mirrors in place of the toothed wheel of Fizeau’s

method (Figure 1.16) [1].†

 

 

FIGURE 1.14 It takes the light pulse the time 2L/c to travel

from S1 to M and back through S2 to the source, where c is

the speed of light. During this time the screen moves a

distance d at speed υ. Therefore, in order that the light pass

through S2, it is necessary that 2L/c = d/υ or c = 2Lυ/d.

 



 

FIGURE 1.15 Fizeau’s toothed-wheel apparatus for measuring

the speed of light. The spaces between the teeth act as the

holes of Figure 1.14.

 

The speed of light in a vacuum is denoted by the letter c.*

The recommended value for c is

 

 

A vacuum transmits light, but light also propagates through

matter such as glass. The speed of light cm in a material

medium can be determined through the techniques

described above if part of the path of the light travels

through a tube containing the medium. The speeds so

measured are always less than c, and the ratio

 

 



is called the index of refraction of the medium. The

propagation of light in a material medium depends upon the

interaction of the light with the matter, and this interaction

differs for different wavelengths of the transmitted light.

Therefore, the index of refraction depends (slightly) on the

wavelength of the light as well as on the properties of the

medium.

 

 

FIGURE 1.16 Michelson’s rotating mirror apparatus.

 

SUMMARY The speed of light in vacuo is finite and has been

measured to be c = 2.998 × 10⁸ m/sec. The speed of light in

a material medium is less than c and is a characteristic of

the medium.

 

Problem 1.7



 

Calculate the speed of light in miles per hour.

 

Problem 1.8

 

Calculate the time required for light to travel a distance

equal to the circumference of the earth.

 

Problem 1.9

 

Calculate the time required for light to travel from the sun to

the earth.

 

Problem 1.10

 

Calculate the time required for light to travel from the moon

to the earth.

 

Problem 1.11

 

The semimajor axis of the orbit of the outer planet Pluto is

5.91 × 10⁹ km. Calculate the time required for sunlight to



cross the solar system.

 

Problem 1.12

 

Discuss the feasibility of measuring the speed of light by the

apparatus shown in Figure 1.14 or by another simple piece of

apparatus.

 

Problem 1.13

 

Two men, each of whom can react to a signal in 1/10 sec,

perform Galileo’s experiment and calculate the speed of light

as 2 × 10⁸ m/sec from their observations. Calculate their

separation distance in terms of the radius of the earth, 6.4 ×

10⁶ m.

 

Problem 1.14

 

A man estimates the depth to the water in a well by dropping

a stone from the mouth of the well and determining the time

that elapses before the stone is seen to strike the water.

 

(a)   Calculate the depth if this time is 0.25 sec.



(b)   What fraction of that time is required for the light from

the splash to reach the man at the top of the well?

 

Problem 1.15

 

Calculate the frequencies of the light with the following

wavelengths (1 Å = 1 angstrom = 10–10 m).

 

 

Problem 1.16

 

Fizeau used a toothed wheel with 720 teeth, and the

distance between his toothed wheel and the mirror was

8,633 m. He observed the speed of rotation of the wheel

when all the light was stopped by the teeth. Calculate that

angular speed.

 

Problem 1.17

 

(a)   Explain, as you would to a high school student, the

principles of operation of Michelson’s rotating mirror



apparatus for measuring c.

(b)   Michelson used a distance from a rotating octagonal

mirror to a fixed mirror of 35 km. Calculate the angular

speeds of the rotating mirror for which the light passes

through the lens system as if the octagonal mirror were not

rotating.

 

Problem 1.18

 

Calculate the speed of light in each of the media whose

index of refraction is listed below:

 

 

Problem 1.19

 

The index of refraction of a piece of crown glass has the

following values at the given wavelengths:

 

 

Calculate the speed of light for each of these wavelengths.



1.1.2   The aberration of starlight*

 

A direct manifestation of the finite speed of light is the

phenomenon of aberration. This phenomenon was

discovered by the English astronomer James Bradley (1693–

1762).† Aberration is the systematic change in the relative

position of a star as viewed from the earth during the

earth’s annual revolution around the sun. A long narrow

telescope attached to the earth must be inclined at an angle

to the incoming starlight in order that the starlight reach the

bottom of the telescope, since, during the (nonzero) time it

takes the light to travel the length of the telescope, the

earth has moved a small, but nevertheless nonzero,

distance in its orbit (Figure 1.17). The angles involved are

small, less than a minute of arc, but these are measurable

and agree with the hypothesis that the earth is circling in

the inertial frame attached to the sun with a speed of 2π ×

1.5 × 10¹¹ m/yr.

 



 

FIGURE 1.17 Stellar aberration.

 

SUMMARY The finite speed with which light travels is

reflected in the variations throughout the year of the

apparent positions of stars.

 

Example 1.1

 



Q.   Consider starlight striking the earth from the direction

perpendicular to the plane of the earth’s orbit (Figure 1.18).

(a)   A long narrow terrestrial telescope must be inclined at

an angle to that direction in order that the starlight reach

the bottom of the telescope. Calculate this angle.

(b)   Calculate the angular diameter of the apparent orbit of

the star.

 

A.   (a)   Let ∆t be the time it takes for the starlight to travel

the length of the telescope (Figure 1.18). During this time,

the telescope moves across the path of the starlight through

a distance of υ ∆t, where υ is the orbital speed of the earth,

 

 

Therefore, the angle α at which the telescope is tilted is

given by

 

 

Since ,

 

 



(b)   Relative to the earth, the telescope is tilted at an angle

of 20.5 sec of arc with respect to the direction of the

incoming starlight. The telescope must swing once about

this direction each year (Figure 1.19), so the angular

diameter of the apparent orbit is 2 × 20.5 sec = 41 sec of

arc.

 

 

FIGURE 1.18 During the time ∆t that it takes the starlight to

travel the length of the telescope, the telescope moves a

distance υ ∆t.

 



Problem 1.20

 

Discuss the phenomenon of aberration of starlight if the

speed of light were as small as the speed of sound in air,

about 330 m/sec. For example, would it be possible to see

all stars situated above the horizon? What would the night

sky look like?

 

Problem 1.21

 

A star lies on the plane of the earth’s orbit. Take t = 0 to be

that instant at which the earth’s motion is directly toward

the star (see Figure 1.20). At any given instant, a long

narrow terrestrial telescope must be inclined at an angle to

that direction in order that the starlight reach the bottom of

the telescope. Calculate this angle as a function of the time

t. Describe the apparent orbit of the star.

 

Problem 1.22

 

At some instant of time, the direction of the velocity v of the

earth in its orbit around the sun makes an angle θ with the

direction to a star, as shown in Figure 1.21. Let θ′ be the

angle with respect to v at which a long terrestrial telescope

must be inclined in order that the starlight reach the bottom

of the telescope.



 

(a)   Show that

 

 

(b)   Show that for

 

 

Hint: Use the relation f(θ′) = f(θ) + [df(θ)/dθ](θ′ – θ), which

you should justify.

(c)   Show that for ,

 

 



 

FIGURE 1.19 Apparent angular orbit of star.

 



 

FIGURE 1.20 Direction of starlight from a star in the plane of

the earth’s orbit.

 

(d)   Show that, for , we have , and hence

 

 

Hint: Use the approximations sin x ≈ x and cos x ≈ 1, valid

for small x. You should justify these approximations, at least

with the use of a drawing of a triangle having one small

angle.

 

 



FIGURE 1.21 Direction of starlight.



1.2   The Michelson–Morley

Experiment*

 

The experiments described in the preceding section show

that light waves travel with the speed c = 2.998 × 10⁸

m/sec, although we did not specify the reference frame to

which this speed is referred. Nor did we discuss in any detail

the existence and properties of the medium that transmits

light waves similar to the manner in which air carries sound

waves to our ears. These problems were of concern to the

physicists of the nineteenth century. They considered waves

to be the oscillations of the material in a medium and, since

light exhibits wavelike properties, they very naturally

assumed the existence of a medium, called (luminiferous)

ether,* that acted as a carrier of light waves. According to

this view, light consists of oscillations in this medium, and c

is the speed of the ether waves relative to that reference

frame in which the ether is at rest.

The ether theory encountered insurmountable difficulties,

aside from that that will be of concern to us later in this

section. One such difficulty arose as follows: In order to

explain the transmission of starlight, for example, it was

necessary to assume that ether existed everywhere.

Furthermore, ether must interact with matter, since the

speed of the ether waves, light, is modified appreciably in

the presence of matter (by the index of refraction factor).

On the other hand, the planets pass through ether on their

orbits in excellent agreement with Newton’s law of

gravitation if no account is taken of the presence of the

ether. Thus, it was necessary to assume that there existed

an interaction between ether and matter that resulted in a



considerable modification in the behavior of the ether but

none whatsoever in the motion of matter. This was only one

of the difficulties encountered by the ether theory; in order

to maintain the theory, scientists were forced to assign

properties to the ether that were in direct conflict with all

their usual notions of what was reasonable and possible. A

decisive blow to the ether theory was struck by the “ether-

drift” experiment of Michelson and his American chemist

and physicist colleague, E. W. Morley (1838–1923).



1.2.1   The experiment and its result†

 

The motivation for the Michelson-Morley experiment was to

test for the motion or drift of the ether past the earth during

the earth’s orbital motion around the sun. The phenomenon

of aberration was regarded as proof that the earth, in its

orbital motion, moves through the medium that carries light

waves, as is evident from our analysis of that phenomenon in

the last section.

If light consists of oscillations in the ether and therefore has

a constant speed, say c, relative to the reference frame in

which the ether is at rest, then the speed of light with

respect to the earth cE can be obtained from the galilean

transformation law:

 

 

where cE is the velocity of a light wave relative to the earth,

c is its velocity relative to the ether, and –v is the velocity of

the ether relative to the earth. Thus, v is the velocity of the

earth with respect to the ether (Figure 1.22). The speed of

light with respect to the earth cE therefore varies, according

to (1.17), between the limits c – υ and c + υ, its value

depending on the relative directions of the earth’s velocity v

and the propagation vector of the light wave; c is about 3 ×

10⁸ m/sec, and υ, about 0.0003 × 10⁸ m/sec.

 



 

FIGURE 1.22 cE ≠ c, in general.

 

At the time of the Michelson-Morley experiment, techniques

were not sufficiently refined to measure the speed of light

over a one-way path to better than one part in 10,000, the

accuracy required to distinguish cE from c directly (Problem

1.23). (For that matter, such an experiment is not feasible

today. See Section 1.4.1.) Therefore, Michelson and Morley

had to use a less direct method to detect the difference

between cE and c. Their method involved the measurement

of the difference in the speeds of light in different directions

relative to v. The difference itself could be measured even

though the value of cE in one direction could not.

The Michelson-Morley experiment involved the use of an

interferometer that Michelson had invented previously. In a

Michelson interferometer (Figure 1.23), the amplitude of the

light from an extended source is divided into two beams by a

lightly silvered mirror. The two beams are reflected from

plane mirrors, one fixed and one movable, and recombined

by the semitransparent mirror. The observer sees two

images of the same source. If the two mirrors are not exactly



perpendicular, the two images are separated by a wedge-

shaped space, and the path difference between the light that

strikes the two mirrors varies linearly across the wedge. The

result is an interference pattern having the appearance of

line fringes as shown in Figure 1.24. The darkest parts of the

fringes result when the light from one path interferes

destructively with the light from the other. If the movable

mirror is displaced with the calibrated screw along the

direction of the light beam, the fringes move across the field.

A new fringe crosses a given point on the field when the

difference in the path lengths of the two beams changes by

one wavelength. Since the path length of the light is twice

that of the displacement of the mirror, a new fringe crosses a

given point on the field whenever the mirror is displaced a

distance λ/2, where λ is the wavelength of the light. Thus,

the distance d that the mirror is displaced when n fringes

pass a given point is equal to

 

 



 

FIGURE 1.23 The Michelson inter ferometer.

 

The interferometer can be used to measure wavelengths or,

alternatively, to determine small distances accurately in

terms of known wavelengths.

The above analysis of the Michelson interferometer is based

on the assumptions that the speed of light is the same in

each beam and that this remains constant throughout the

course of the experiment. However, if the interferometer is

moving through the ether, as shown in Figure 1.25, the

speed of the light going from S to M1 is c + υ, that from M1



to S is c – υ, and that from S to M2 or from M2 to S is . As a

result of these different speeds, there is a shift in the fringes

from that that would occur if v were zero. The number of

fringes shifted due to the motion alone is calculated in

Example 1.2 and is given by

 

 

 

FIGURE 1.24 Appearance of the line fringes observed in a

Michelson interferometer.

 

This shift and the shift due to the difference in path lengths,

|SM1 – SM2|, are superposed, and it is not possible to

measure the path lengths sufficiently precisely to

disentangle these shifts. The interferometer cannot be

brought to rest with respect to the ether, moreover, and thus

the shift cannot be observed while the interferometer

preserves its orientation relative to v. However, a shift can



be observed if the interferometer is rotated through 90°

about an axis perpendicular to v; in this circumstance, the

number of fringes that should shift is equal to the sum of the

number shifted, n of Equation (1.19), when SM1 and SM2

rotate to orientations symmetrical about the direction of v

and the same number n shifted when they rotate the same

amount beyond that. Therefore, a rotation of the

interferometer through 90° about an axis perpendicular to v

introduces a shift of N fringes, with

 

 

FIGURE 1.25 Schematic diagram of an interferometer

traveling with the velocity v through the ether.

 



 

In the Michelson-Morley apparatus, a Michelson

interferometer was mounted on a large stone slab that

rested on a wooden float that in turn was supported by liquid

mercury (Figure 1.26). The whole apparatus could be easily

rotated slowly and continuously for hours at a time and an

observer could walk around with the interferometer, thus all

the while measuring any shift in the positions of the fringes.

The effective distance SM1 was increased to 11 m through

the use of multiple reflections (Figure 1.27). Michelson and

Morley used a sodium lamp with its characteristic yellow

light of wavelength λ = 5.89 × 10–7 m. Therefore, the shift in

the number of fringes expected for the sodium light was

 

 

 

FIGURE 1.26 Cross-sectional view of the Michelson–Morley

support for the interferometer.

 



The measurements of Michelson and Morley showed that

there was no shift in the fringes that exceeded their small

error limits, 0.02 at the most [2].

The null result of the Michelson-Morley experiment is

incomprehensible on the basis of an ether theory of light

transmission. However, it is not the ether theory primarily

that is at fault; our analysis rests on the galilean

transformation law, Equation (1.17), with the concept of the

ether introduced only to define the reference frame in which

the velocity of light c has the same magnitude in all

directions. Thus, the Michelson-Morley experiment indicates

that the galilean transformation law is not always valid.

Because of the simplicity of the derivation of this law (see

Problem 1.6), we therefore must reexamine the notions of

space and time upon which this law is based.

 

SUMMARY The Michelson-Morley experiment was designed to

measure the speed with which the earth moves through the

medium of transmission of light. The null result of this

experiment, combined with the results of other experiments,

indicates the necessity of a major modification in the

newtonian notions of space and time.

 



 

FIGURE 1.27 Light paths in the Michelson-Morley apparatus.

 

 



FIGURE 1.28 If light travels for a time T1 = l1/c on one path

relative to the ether and for a time T2 = l2/c on another, the

difference in path length relative to the ether is |l1 – l2| =

c|T1 – c|T2 – T1|.

 

Example 1.2

 

Q.   Calculate the fringe shift that results only from the

motion through the ether of the interferometer (Figure 1.25).

 

A.   Since the speeds of the light are different on the different

paths, we calculate the times T1 and T2 required for the light

to travel the paths S–M1–S and S–M2–S, respectively; then

the number of fringes shifted as a result of the difference in

path length and of the motion is given by (Figure 1.28)

another, the difference in path length

 

 

where λ is the wavelength of the light used. Along the path

SM1, the speed of light relative to the interferometer is c – υ,

so the time taken for light to go from S to M1 is SM1/(c – υ).

Similarly, along M1S the speed is c + υ and the transit time

is SM1(c + υ). Therefore, the time required for light to travel

the path S–M1–S is

 



 

Along the paths SM2 and M2S, the speed of light is (Figure

1.29); hence

 

 

 

FIGURE 1.29 If cE is perpendicular to v, then .



 

The number of fringes shifted as a result of the difference in

the path lengths and the motion is

 

 

The number of fringes shifted owing to the motion alone is

 

 

if SM1 ≈ SM2. This shift appears as a correction to the shift,

of number (2/λ)|SM1 – SM2|, owing to the path-length

difference, and cannot be observed if the orientation of the

interferometer is kept fixed relative to the velocity v.

However, if the interferometer is rotated through 90°, the

shift (1.26) appears as a correction with opposite sign in

(1.25); hence, rotation of the interferometer through 90°

introduces a shift of the fringes in number equal to

 

 

Problem 1.23



 

(a)   Calculate cE [of Equation (1.17)] as a function of the

angle α between cE and v.

(b)   Express the maximum possible value of (cE – c)/c as a

percentage.

 

Problem 1.24

 

How many lines of sodium light would be shifted if the mirror

M2 were moved through 1.00 mm?

 

Problem 1.25

 

How far would the mirror M1 of the Michelson interferometer

have to be moved to give the expected shift, Equation

(1.21), in the number of fringes?

 

Problem 1.26

 

Let θ be the angle between the direction of v and the line

bisecting the angle M1SM2 (Figure 1.25). Assume SM1 =

SM2.

 



(a)   Calculate, as a function of θ, the number of fringes that

would be expected to pass a given point relative to the view

when θ = 0.

(b)   Plot the result of (a) on a graph and draw lines

corresponding to n = ± 0.02 within which the measurements

of Michelson and Morley lie.

 

Problem 1.27

 

Calculate the shift that would have been expected in the

Michelson-Morley experiment if that experiment had been

performed at the position of perihelion of each of the planets

listed.

 



1.3   The Kinematic Postulate of the

Special Theory of Relativity

 

The assumption of a medium, the ether, for the

transmission of light appeared very natural to the physicists

of the nineteenth century. Faced with the contradiction in

their interpretations of the phenomenon of aberration and

the null result of the Michelson-Morley experiment, these

scientists modified their models of the ether. Models were

based on the assumption that only part of the ether was

being dragged along by the earth or that the speed of light

relative to its source is constant and equal to c.* However,

the results of these other hypotheses were inconsistent with

other experiments and eventually all had to be abandoned.

The difficulty did not lie in any particular model of the ether

that was constructed but rather in the assumption that all

physical phenomena, in particular the wave-like behavior of

light, could be explained on the basis of newtonian

kinematics.



1.3.1   The invariance of the speed of

light†

 

Consideration of the phenomenon of aberration and the null

result of the Michelson-Morley experiment show that light

waves do not satisfy the relation

 

 

based on our common-sense ideas of space and time

(Figure 1.30). However, we should not be surprised if these

ideas are not valid for the description of energy transmitted

as fast as that of light. Our everyday experiences upon

which these ideas are based include few phenomena in

which perceivable speeds greater than 100 mi/hr appear

and none in which speeds of any appreciable fraction of c =

186,000 mi/sec are apparent (Problem 1.28). It is possible

that extrapolations of our common-sense ideas are valid

beyond the range of everyday experience upon which they

are based, but they need not be. In the case under

consideration, extrapolation of our common-sense ideas

leads to false conclusions, conclusions that disagree with

experiments or, in other words, with the real world as it is.

 



 

FIGURE 1.30 The equation v = v′ + V follows immediately

from the obvious relation r = r′ + R, according to our usual

ideas on space and time.

 

The attempts that were made to patch up the newtonian

theory of space and time in order to obtain agreement with

experiment failed. The evidence pointed out the necessity of

a major modification in our ordinary ideas on the concepts

of space and time. The accepted modification can be

credited to the great Albert Einstein,* although some of his

results had been anticipated independently by the Dutch

theoretical physicist Hendrik Antoon Lorentz (1853–1928)

and by the French mathematician and scientist Henri

Poincaré (1854–1912) [3].†

Einstein realized very clearly that the difficulties discussed

above pointed out a need for a major modification in the



usual views of space and time. He concluded that the

concept of the ether as a transmitter of light waves is

artificial, since the effects of the ether could not be detected

as shown, for example, by the Michelson-Morley

experiment. There exists no privileged inertial reference

system, and so the idea of an ether that defines such a

preferred frame is superfluous. It is simply a property of

space that light can propagate through it.

Waves in a material medium are transmitted as a result of

the interactions between the particles in the material. A

study of the behavior of these waves provides information

on the properties of these interactions. On the other hand,

light can be transmitted through space in which no matter is

present. This suggests, by analogy, that a study of the

behavior of light will provide us with information on

properties of space. This is indeed the case; for example,

the null result of the Michelson-Morley experiment indicates

that the speed of light is the same in all inertial reference

frames (since the existence of a preferred reference frame is

inconsistent with the null result). This conclusion is

consistent also with observations on aberration, for in that

phenomenon, it is the direction and not the speed of the

light that is observed; measurements of the speed give the

result c. The postulate of the equality of the speed of light

with respect to all inertial reference frames is not consistent,

however, with the galilean transformation law, in particular

with the equation for the galilean transformation of

velocities, Equation (1.28). The contradiction is only

apparent, though, since the range of experience upon which

the galilean transformation law is based does not include

perceptible speeds comparable to that of light. The

Michelson-Morley experiment extends our range of

experience and shows that our usual concepts of space and

time are not valid in that extended range.



In 1905,‡ Einstein introduced modifications in the newtonian

notions of space and time, and these modifications can be

considered to be based on a total acceptance of the results

of the Michelson-Morley experiment.§ The concept of space

and time introduced by Einstein is based on the kinematic

postulate of the special theory of relativity [4]*:

 

The speed of light in a vacuum has the same value relative

to all inertial reference frames and is independent of the

relative velocity of the light source and the observer.

 

Einstein’s kinematic postulate and the predictions that

follow from it are consistent with all experimental results to

date, and in fact, the postulate has achieved the status of a

law of physics. Therefore, our common-sense ideas of space

and time are not universally valid; we must give up many of

these, and in the next section, we shall show how drastic

this change is.

 

SUMMARY Space and time have the properties that light can

propagate through space and that the speed of light in

vacuo has the same value relative to all inertial observers.

 

Problem 1.28

 

Estimate the highest speed with which you actually have

seen something move. Calculate the percentage ratio of this



speed to that of light.

 

Problem 1.29

 

Show that Einstein’s postulate is not consistent with

Equation (1.28).

 

Problem 1.30

 

Explain why it is not necessary to consider a property of

invariance for the speed of sound.



1.4   The Relative Character of

Simultaneity

 

A fundamental and important error in our customary ideas

of space and time concerns simultaneity. To see this, we first

introduce two pertinent definitions. An event is defined as

an occurrence at a particular point in space at a particular

time. Two events that take place at the same instant of

time, though not necessarily at the same point in space, are

said to occur simultaneously.

Common sense tells us that if two events occur

simultaneously according to one person, these events must

occur simultaneously from the point of view of all observers.

However, common sense is based on our everyday

experiences† and does not include perception of relative

speeds near the speed of light (Problem 1.28). Therefore,

our common-sense notions of simultaneity must be

scrutinized in light of the evidence that our everyday

notions of space and time are incorrect.



1.4.1   An analysis of the concept of

simultaneity*

 

Our analysis will depend for its important features on the

properties of light, since, as we argued before, a study of

these properties can provide us with information on the

properties of space and time.

We shall discuss two events that, according to one observer,

occur at the same instant of time, and we shall consider

whether or not these two events occur simultaneously from

the point of view of another observer. In order to have a

picture we can visualize, we shall consider a fictitious

manned rocket ship that is traveling with a constant

velocity, of magnitude comparable to the speed of light,

relative to observer S (Figure 1.31). The frames of reference

of both the ship and S are inertial. Observer S′ traveling with

the rocket, observes S from a window at a point midway

between each end of the rocket.

The two events we shall consider occur at the ends of the

rocket at that instant, according to S, at which S and S′ are

closest to one another. We shall suppose that each event is

marked by a visible spark that results in a very short pulse

of light that can be detected by both S and S′. Whether or

not the sparks occur simultaneously according to S′ will be

left an open question for the moment.

How does S know that the sparks occurred at both ends of

the rocket simultaneously? He certainly could not see the

light from the sparks at the same instant the sparks occur,

for light travels with a finite speed and therefore requires a



finite time to reach S from each end of the rocket. However,

if S has some method by which he can measure the time at

which a distant event occurs, he could determine whether

or not two distant events were simultaneous by comparing

the times at which they took place. Therefore, the problem

of determining whether or not two distant events are

simultaneous reduces to our finding a means of measuring

the time at which a distant event occurs.

The most obvious way to establish comparable time scales

at two separated points A and B is to synchronize two

identical clocks at one point, say A, and move one of these

clocks to B. However, this procedure is valid only if the

displacement of the clock has no effect on the timekeeping

properties of the clock. Suppose, for example, that the clock

is a pendulum. Then, in order that we could justify this

means of comparing times at separated points, we would

have to argue, using laws of mechanics, that the

displacement of the oscillating pendulum has no effect on

the timekeeping properties of that pendulum. However, we

cannot argue in this way until we see what, if any, changes

in our laws of mechanics are necessary as a result of the

principle of the invariance of the speed of light. In the

analogous circumstance in which two such pendulums are

used to measure the speed of light in each of two inertial

frames in relative motion, Newton’s laws state that the

measured speeds differ in general. Since these laws result in

an incorrect description in that case, we cannot justify their

use in predicting the effects of a displacement on the

pendulum. Therefore, we must devise another method of

comparing times at separated points, a method we can

justify. Since our problem arises because of a property of

light, we investigate the use of light pulses for determining

times at distant points.

 



 

FIGURE 1.31 The observer S sees S′ and the rocket moving

past with speed V.

 

With the use of light signals, S can establish the time t1 of

any event that occurs at a point in space different from his

own position in the following way (Figure 1.32): Let d be the

distance from S to the point at which the event occurs.

 



 

FIGURE 1.32 S sees the gun flash at t = d/c and calculates

that the gun was fired at t = 0. (a) S at t = 0. (b) Marksman

at t = 0. (c) S at t = d/c. (d) Marksman at t = d/c. (e) The

marksman as seen by S at t = 0. (f) The marksman as seen

by S at t = d/c.

 

Let t2 be the time at which light emitted at the event

reaches S. The light traveled for the time interval d/c



between its emission at the event and its reception at the

position of S. Thus, the time interval t2 – t1 is equal to d/c or

 

 

Actually, this is a definition of the time at which a distant

event occurs, and it is a valid definition only if it does not

lead to any inconsistencies. Since this definition gives a

comparison of times at two different points, for example the

time of an event at B as measured by an observer at A, the

definition is consistent if the relation between times as

measured at the two points is reciprocal; this is true if the

speed of light cAB along AB is equal to that cBA along BA.

How can we verify that these two speeds are equal?

Consider a measurement of, say, cAB, the speed of light

transmitted along the line from A to B. This can be

determined, from a measurement of the time tA of emission

of a light pulse at A and of the time tB of its reception at B,

to be AB/(tB – tA). However, for this purpose, we need a

method to compare the times at the two separated points A

and B, and it is this method we are trying to establish. Thus,

we can establish a time scale at distant points if we can

show that cAB = cBA, which we can do if we have

established a time scale at distant points. We break out of

this circle by adopting the convention that the speed of light

has the same value, namely c, in all directions relative to

one inertial frame. With this convention, we define the time

of a distant event as the time established by the method

given above and embodied in Equation (1.29).

Since the speed of light c is the same relative to all inertial

systems, we have obtained a consistent scheme for



establishing a time scale at all points of any inertial

reference frame. However, a time scale constructed in this

way is not defined in an absolute manner, but one such time

scale is defined relative to each inertial reference system.

We can conclude that S determines that the sparks occurred

at both ends of the rocket simultaneously by considering the

motions of the rocket and the light pulses (Figure 1.33) at

various instants of time t relative to S. For t < 0, S′ who is

situated at the midpoint of the rocket, is approaching S

[Figure 1.33(a)]. At the time t = 0 relative to S, S and S′ are

nearest each other [Figure 1.33(b)]; also at that instant,

according to S, the sparks occur at both ends of the rocket,

although S cannot be aware of that fact at that time. For t >

0, S′ moves away from S and the light flashes move away

from the ends. At t = d/2c, the light pulses are both at a

distance d/2 from S [Figure 1.33(c)], and at t = d/c, the

pulses meet at the position of S [Figure 1.33(d)]. Since each

of these flashes traveled a distance d, S determines from

Equation (1.29) the time at which each was emitted as t =

d/c – d/c = 0 and concludes that the flashes were emitted

simultaneously relative to his time scale.

Let us consider now the sequence of events from the point

of view of S′ (Figure 1.34). For this purpose, we must start

with a relation between the point of view of S of some of the

events and the point of view of S′ of these same events.

One relation is provided if we adopt the convention that the

clock of S′ reads t′ = 0 at the event in which S and S′ are

nearest each other [Figure 1.34(c)]. Another relation results

from the concept of coincidence of events. Consider the

following events: the position of S at the instant at which

the light flash from the front meets S and the position of S

at the instant at which the light flash from the back meets S.

According to S, these two events are coincident. These must

also be coincident according to S′, or we would be forced to



give up our ideas of the identity of events, a very drastic

step indeed and a step that is not necessary in order to

obtain agreement with experiment.

Since S and S′ agree on the coincidence of events, both S

and S′ accept that the light flashes meet S at a point on the

rocket behind S′. According to S′, the light pulses he sees

originate from sparks at the ends of the rocket, and he sees

the light pulse from the front of the rocket [Figure 1.34(d)]

before he sees the light pulse from the back end.

Furthermore, the speed of light is the same in his reference

frame as it is in that of S, so it takes the same amount of

time for the light to travel from the front end of the rocket to

S′ at the midpoint as it does from the back end to S′. Hence,

S′ concludes that the spark struck at the front end of the

rocket [Figure 1.34(b)] before it struck at the back end

[Figure 1.34(d)].

 



 

FIGURE 1.33 The motions of the rocket and the light pulses

as viewed by S. (The length of the rocket is 2d according to

S.) (a) t < 0. (b) t = 0. (c) t = (d/2)/c. (d) t = d/e (e) t =

(3d/2)/c.

 



 

FIGURE 1.34 The motions of the observer S and the light

pulses as viewed by S′. (The length of the rocket is 2d′

according to S′.) (a) t′ < –(d′/2)/c. (b)t′ = –(d′/2)/c. (c)t′ = 0.

(d) t′ = (d′/2)/c. (e) t′ = d′/c.

 

The positions relative to S′ of S and the light flashes at the

various instants of time shown in Figure 1.34 can be

deduced from the assumption, which will be justified later,

that the speed of S′ relative to S is equal to the speed of S



relative to S′. In the case shown in Figure 1.34, this speed υ

is . We have adopted the convention that S is nearest S′ at

time t′ = 0 [Figure 1.34(c)]. At some later time , an event

occurs in which S and the light flashes meet at a point on

the rocket, and we must now determine where this point is.

For this purpose, consider Figure 1.33. From 1.33(d), we see

that the event in which the light flashes meet S occurs at

the time t = d/c according to S. In the time interval t, S′ has

moved a distance past S; thus, relative to S, the event

occurs at a point P on the rocket halfway between S′ and the

end of the rocket. Therefore,* or [Figure 1.34(e)]. Also, the

light flash from the back of the rocket has traveled the

distance d′/2 with speed c to arrive at P at the time , so the

spark at the back occurred at a time t′ = d′/2c [Figure

1.34(d)], a time interval d′/2c before . Similarly, the light

from the front has traveled a distance 3d′/2 at the speed c

to reach P at , so the spark at the front occurred at t′ = d′/c –

3d′/2c = ′ d′/2c [Figure 1.34(b)].

We assumed that sparks occurred at both ends at the same

instant according to S and concluded that the spark at the

front end occurred first according to S′. Is our argument

valid? A careful examination of the argument will not reveal

any errors. Who is correct then, S or S′? Did the sparks occur

at both ends at the same instant or did the spark at the

front end occur first? The answer to the first question is that

both are right. The answer to the second question is that the

sparks occurred simultaneously according to the point of

view of S and that the spark at the front end occurred first

according to the point of view of S′.

We must conclude, therefore, that Einstein’s principle of the

invariance of the speed of light results in simultaneity

having a relative character. Simultaneity cannot be defined

in an absolute sense, but rather can be defined only relative

to an inertial frame of reference. Two events that are



simultaneous according to one observer may not be

simultaneous relative to another. The name “theory of

relativity” may be considered to be a reflection of this fact;

some concepts, such as that of simultaneity, can be defined

in fact only relative to an observer, and not in an absolute

sense as suggested by newtonian kinematics. This does not

mean, however, that Einstein’s theory of relativity states

that every concept must be defined relative to an observer

or, as it is phrased frequently, that everything is relative. It

is true that some concepts that, previous to Einstein’s

studies, were thought (incorrectly) to be absolute can be

defined only relative to an observer, as we have shown is

true for simultaneity. However, as we shall see shortly,

Einstein’s theory of relativity states that certain other

entities can be defined in an absolute sense, independent of

the observer; entities of this sort play a central role in the

laws of physics.

It may appear at a first glance as if we have given up a

certain amount of symmetry that was present in newtonian

mechanics, since, for example, the two events considered

above occur simultaneously according to S, whereas one of

these events occurs before the other according to S′. This

apparent asymmetry can be removed, however, if we

consider the case in which the sparks occur at both ends of

the rockets simultaneously according to S′. In this case, the

light flashes meet at S′ after he has passed S and therefore

after the light pulse from the back has traveled past S.

Hence, according to S, the spark occurs at the back end of

the rocket first (Problem 1.34). The two events,

simultaneous according to S′, are not simultaneous relative

to S. Therefore, no asymmetry between the two reference

frames is introduced by the theory of relativity: Two events

can occur simultaneously in either frame of reference.

However, events that occur simultaneously with respect to



one reference frame may not occur simultaneously relative

to the other.

 

SUMMARY The times relative to an inertial observer of two

spatially separated events are related by the kinematic

postulate of special relativity, together with the convention

that the speed of light has the same value in all directions

relative to that observer. The simultaneity of two events

relative to an inertial observer is defined by the equality of

the times, relative to that observer, of the events. The

times, relative to another inertial observer, of these two

events may not be equal; thus, simultaneity has a relative

character.

 

Problem 1.31

 

Explain why the above analysis does not apply to sound

waves.

 

Problem 1.32

 

With the visible light emitted at the event, S sees an event

at 4.00 P.M. that took place 5 mi from S. Calculate the time

at which the event occurred according to S.

 

Problem 1.33



 

A second and identical rocket, carrying an observer S″,

travels with velocity −V relative to S. Sparks occur at both

ends of this second rocket when S is opposite S″, at time t =

0 (Figure 1.33).

 

(a)   Draw a diagram showing the positions of the observer

S″ and the light pulses at the times t = −d/2c, 0, d/2c, and

d/c according to S. Assume the speed V is .

(b)   Draw a diagram showing the positions of the observer S

and the light pulses at the times t″ = −d″/2c, 0, d″/2c, and

d″/c according to S″ for the case of (a); 2d″ is the length of

the rocket according to S″. Assume that the speed of S

relative to S′ is .

 

Problem 1.34

 

(Use the results of Problem 1.33.)

 

(a)   Draw a diagram showing the positions of the observer S

and the light pulses at the times t′ = −d′/2c, 0, d′/2c, and

d′/c according to S′ for the case in which sparks occur at

both ends of the rocket simultaneously according to S′; 2d′ is

the length of the rocket according to S′. Assume that the

speed of S relative to S″ is .



(b)   Draw a diagram showing the positions of the observer

S′ and the light pulses at the times t = −d/2c, 0, d/2c, and

d/c according to S for the case of (a); 2d is the length of the

rocket according to S. Assume that the speed of S′ relative

to S is .

(c)   At what times do the sparks strike the front and the

back of the rocket according to S?



1.4.2   The relative character of time

and length measurements*

 

Our analysis of the relative character of simultaneity also

yields other consequences of Einstein’s principle. First we

shall consider measurements of time intervals by S and S′.

Let us suppose that S has a number of clocks at rest in the S

reference frame that show the same time simultaneously

according to S and that S′ also has a corresponding number

of clocks synchronized according to S′ and at rest in the S′

reference frame. The clocks in one reference frame, say that

of S′, can be synchronized by the use of light signals in the

manner described previously; S′ sends out light pulses at a

given instant, say t′ = 0, and a clock at a distance d′ from S′

is set at the time d′/c at that instant at which the light signal

arrives (Figure 1.35). The clocks in the two systems can be

related by setting both t′ of the clock at the position of S′

and t of the clock at the position of S equal to zero at that

instant at which S and S′ are closest.

 



 

FIGURE 1.35 Synchronous clocks in S′ reference frame. (a)

Clocks A, B, and C. (b) Light signals sent out from clock B at

t′ = 0 reach clocks A and C at time t′ = d′/c′.

 

A comparison of the two sets of clocks can be made with the

use of Figures 1.33 and 1.34. Consider the time t = 0

according to S. This is the time according to S of the event

at the front of the rocket in which a spark occurs. This event

occurs at the time t′ = −d′/2c according to S′; t = 0 is also

the time according to S of the event at which S is nearest S′,

and this event occurs at the time t′ = 0 according to S′. Also,

t = 0 is the time according to S of the event at the back of



the rocket in which a spark occurs, and this event occurs at

the time t′ = d′/2c according to S′. Figure 1.36 shows the

clocks of S and S′ that give the times of these events, and it

can be seen from this that, according to the synchronized

clocks of S, the clocks of S′ are not synchronized. Similarly,

according to the synchronized clocks of S′, the clocks of S

are not synchronized (Problem 1.35). We conclude that time

cannot be defined in an absolute manner, but must be

defined relative to an inertial reference frame.

 

 

FIGURE 1.36 A comparison of the clocks of S′ and those of S

at the time t = 0 in the frame of reference of S.

 

We next consider measurements of the length of the rocket

ship by S and by S′. By laying meter sticks end to end along

its length, S′ can measure the length of the rocket ship.



Although S cannot do this since the rocket is moving past

him, he can measure the length of the rocket in the

following way: He marks the positions, in his reference

frame, of both ends of the rocket simultaneously as it moves

past him and then he lays meter sticks end to end to

measure the distance between these marks. He must mark

both ends simultaneously, for if he marks the front end first,

his marks will give too small a value for the length, and if he

marks the back end first, he will obtain too large a value for

the length (Figure 1.37). However, if S marks both ends

simultaneously in the S reference frame, then S′ observes

that S marked the front end first and hence concludes that

the value obtained by S for the length of the rocket is too

small. We conclude that lengths are not absolute, but must

be defined relative to an inertial frame of reference.

 

SUMMARY The relative character of simultaneity is reflected

in the facts that times and distances cannot be defined in an

absolute manner but must be defined relative to an inertial

reference frame.

 

Problem 1.35

 

Use the diagrams of Problem 1.34 to show a comparison of

the clocks of S′ at the midpoint and ends of the rocket at

time t′ = 0 with the corresponding clocks of S.

 

Problem 1.36



 

Use the diagrams of Problem 1.34 to show that S claims that

the values obtained by S′ for distances are too small.

 

Problem 1.37

 

Explain why it does not follow from r = r′ + R (Figure 1.30)

that v = v′ + V.

 



 

FIGURE 1.37 Two wrong ways to measure the length of a

moving object. (a) S marks front end first. (b) S marks back

end first.

 

Problem 1.38

 

Observer S determines the times t1 and t2 at which the

front and back ends, respectively, of the rocket pass him

and states that the length of the rocket is V(t2 – t1). Does S′

agree? Explain.



1.5   The Lorentz Transformation

 

The qualitative arguments given in the last section indicate

the necessity of finding the transformation equations

relating the position vector r and the time t of an event in

one inertial reference frame S to those, r′ and t′ of the same

event in another inertial reference frame S′. The

transformation law that results from the kinematic postulate

of special relativity is called the Lorentz transformation,

after the theoretical physicist H. A. Lorentz.* Lorentz tried to

explain all the macroscopic phenomena of optics and

electrodynamics in terms of the microscopic behavior of

electrons and atoms. In particular, Lorentz attempted to

reconcile experiments such as that of Michelson and Morley

with newtonian kinematics, and for this purpose he

developed, on the basis of the laws of electromagnetism,†

transformation laws having the form of those that now bear

his name. Einstein, however, recognized that it was

necessary to reexamine the newtonian concepts of space

and time. The results of his examination yielded a

transformation law that was identical in form to that given

earlier by Lorentz, but it had a different interpretation and

was derived on a sound basis. In this section, we shall

derive the Lorentz transformation law on the basis of

Einstein’s principle of the constancy of the speed of light.



1.5.1   Inadequacy of the galilean

transformation law*

 

An inertial reference system is defined to include an inertial

reference frame and a system of synchronous clocks at rest

in that frame. For our purposes, it is convenient to think of

the “scaffolding” of the reference frame as representing a

set of coordinate lines. The reference frame can be imagined

as an interlocking set of rigid bars that mark off the points

with integral values of two of the coordinates (Figure 1.38).

We can visualize a set of identical clocks attached at

pertinent points to the frame and synchronized by the

procedure outlined in Section 1.4.2. Furthermore, we can

imagine that there are spectators at every point of the

reference frame who can determine the position (x, y, z) and

time t of each event coincident with its occurrence. The

imaginary arrangement we have just outlined is what we

mean by the phrase “an inertial reference system.” Often,

we shall say “(inertial) observer” instead of “inertial

reference system” in order that the mental image given

above be brought more vividly to mind. However, it must be

remembered that such an observer is always present at

every event; he is not seated at one point in space watching

distant events when their light reaches his eye.†

 



 

FIGURE 1.38 Visualization of an inertial reference system or

observer: the reference frame scaffolding and a set of

synchronous clocks.

 

We consider two inertial reference systems S and S′ with S′

moving at the constant speed V, relative to S, along the

direction of the positive x axis. We assume that the two sets

of clocks, one stationary and synchronous in S and the other

stationary and synchronous in S’, are adjusted so that, at the

S time t = 0, the origins of S and S′ coincide and the S′ clock

at the origin reads zero (Figure 1.39). The x and x′ axes

coincide (Figure 1.40). These restrictions are introduced at



this point only to simplify the discussion; it does not require

much effort to generalize our results to apply to inertial

reference frames that are not so restricted.

 

 

FIGURE 1.39 The adjustment of the sets of clocks: one set is

synchronous in S′ and the other synchronous in S. The clocks

are seen as observed by S.

 

The transformation equations connecting the position vector

and time of an event relative to the S inertial frame to those

of the same event relative to the S′ inertial frame must

reduce, for values of V that we encounter in everyday life , to

the galilean transformation law of newtonian mechanics:

 



 

We should add to this the equation

 

 

since, for the relative speeds encountered in everyday

experience, there exists a universal time that is defined

independent of the inertial reference frame. The galilean

transformation equations can be rewritten in terms of the

components of the position vectors r and r′. Because of our

assumptions, the vector R has zero y and z components and

an x component equal to Vt or Vt′. We therefore obtain the

following form for the galilean transformation equations for

the particular case under consideration:

 



 

FIGURE 1.40 Reference frames S and S′ as seen by S.

 

 

The transformation equations for velocities that follow from

the galilean equations,

 

 

do not appear to agree with the fact that the speed of light is

the same for all inertial observers in all directions, for if

 



 

then

 

 

However, for V’s having magnitudes with which we are

familiar in everyday life, no experiment has been performed

to date that can distinguish between c – V and c. Thus, the

galilean transformation law is valid for a description of our

usual experiences of everyday life, but it is not valid for a

description of those phenomena that involve relative speeds

of magnitude comparable to the speed of light.

 

SUMMARY The galilean transformation law adequately

describes the relation between the coordinates and times of

an event relative to two different inertial systems only in

those circumstances involving relative speeds much smaller

than c.

 

Problem 1.39

 

A pulse of light, emitted at the origin at time t = 0 relative to

S, lies on the surface of the sphere,

 

 



at time t relative to S. On what surface relative to S′ would

the light lie if the galilean transformation were applicable?

 

Problem 1.40

 

A train 1 mi long travels at 60 mph past a station. An

observer S′ on the train uses a coordinate system with the

origin at the rear of the train and with the positive x′ axis

pointing toward the front of the train. An observer S on the

station platform uses a coordinate system with the origin at

one end of the station platform and with the positive x axis

pointing in the direction of motion of the train. The two

observers set their clocks at t = 0 at that instant at which

the two origins coincide.

 

(a)   Find t and t′ for that instant when the front of the train

passes the origin of S.

(b)   Find the coordinates x and x′ of the rear of the train at

the instant calculated in (a).

(c)   Find the coordinates x and x′ of the front end of the train

at t = t′ = 0.

(d)   Find the coordinates x and x′ of the front of the train and

also those of the back at time t = 1 min.

 

Problem 1.41

 



Two events have coordinates (x1, y1, z1) and t1 and (x2, y2,

z2) and t2 relative to an inertial observer S and coordinates

and and and relative to S′. Find the relation between the

distance between these events relative to S and that relative

to S′ on the basis that the galilean transformation equations

are applicable. Explain why these distances are not

necessarily equal.



1.5.2   Time dilatation and Lorentz

contraction*

 

The Lorentz transformation law, which is valid for all

possible speeds V, is derived on the basis of the kinematic

postulate that a light signal traveling with speed c relative

to S also travels with speed c relative to S′. There exists a

variety of ways to deduce the Lorentz transformation law;

we shall describe one of these in the text and introduce

others in Problems 1.70 and 1.71. The derivation given in

the text proceeds in the following way: Using properties of

light pulses, we determine a comparison between lengths

and also between time intervals, as measured by two

inertial observers in relative motion. Then in Section 1.5.3,

these results are collected together and applied to give the

Lorentz transformation equations relating the position

vector r and the time t of an event relative to S to those, r′

and t′, of the same event relative to S′.

 



 

FIGURE 1.41 Meter sticks of S′ and S lying along the y′ and y

axes, respectively.

 

We begin by comparing the length of a meter stick A′B′ lying

at rest along the y′ axis of S′ with that of a meter stick AB

lying at rest along the y axis of S. [The meter is defined,

relative to a frame of reference, as 1,650,763.73

wavelengths of the orange line in the spectrum of a sample

of krypton-86 at rest relative to that frame, and this

definition of the meter applies in either inertial system.] Let

the midpoints of the meter sticks, C′ and C, lie at O′ and O,

respectively (Figure 1.41). The points C′ and C coincide at

time t′ = 0 = t.

 



 

FIGURE 1.42 A″ is the position of A′ when it crosses the y

axis, along AB. The figure was drawn on the (incorrect)

assumption that A″B″ < AB.

 

Observer S determines the length of A′B′ by measuring the

positions of A′ and B′ simultaneously relative to S. Let A″ be

the position of A′ relative to S when A′ crosses the y axis,

and let B″ be the corresponding position of B′ (Figure 1.42).

Since C′B′ = C′A′ and since the direction of motion is

perpendicular to the S′ rod, then A″C must equal B′C, or else

one direction in space could be distinguished by physical

means from another; no distinction has ever been observed

among the different directions in space, and thus there is no

experimental basis for violating the principle of the isotropy

of space. Consider a light signal emitted at C at such a time

that the signal reaches B′ when B′ coincides with B″. Since C

moves along the x′ axis, CB′ = CA′, and the light signal

reaches A′ at the same time relative to S. Also, since CB″ =

CA″, the light signal reaches A″ at the same time relative to

S. Therefore, B′ coincides with B″, and A′ coincides with A″



simultaneously relative to S. Hence S measures the length

of the S′ stick A′B′ as equal to A″B″.

 

 

FIGURE 1.43 A method by which S can measure the length

of A′B′. The figure was drawn on the (incorrect) assumption

that A″B″ < AB. (a) The nails on the ends of the meter stick

of S′ move toward the meter stick of S. (b) The slashes left

by the nails determine the length of A′B′ as measured by S.

 



 

FIGURE 1.44 Relative to S″, the meter sticks are moving with

the same speed, V″; thus, the nails at the ends of the meter

stick of S′ slash the ends of the meter stick of S.

 

One procedure by which S can measure the distance A″B″ is

shown in Figure 1.43. Nails at A′ and B′ slash the meter stick

of S at A″ and B″ as the meter stick of S′ passes by, and S

determines the length of A′B′ by a measurement of the

distance between the slashes.

Observer S′ could measure the length of the meter stick of S

in an identical manner, and we might expect that the two

results would be the same as a result of the fact, stated

before, that the speed of S′ relative to S is equal to the

speed of S relative to S′. However, we have not proven this

yet and, indeed, we do not need to introduce this fact to

show that the results of the two measurements are the

same. This can be shown through the use of a third inertial

observer S″.

The measurement by S of the length of the S′ stick is shown

in Figure 1.44 from the point of view of the inertial observer



S″ relative to whom both S and S′ are moving with the same

speed V″ along the x″ axis. Arguments similar to those given

above show that A′ and A″ coincide at the same time,

relative to S″, that B′ and B″ coincide. However, if A″ and B″

differ from A and B, say A″B″ < AB, then S″ can distinguish

by an experiment the direction of V″ from that of −V″,

contrary to the principle of the isotropy of space—that is, S″

observes that the slashes, physical marks observable to all,

from the nails on the ends of the meter stick of S′ occur at

the ends of the meter stick of S. Hence A″B″ = AB, and

therefore S determines that the length of the meter stick of

S′ is 1 m.

This result may be generalized. The length of each of the

sticks may be chosen arbitrarily as long as the number of

meters in length of one stick relative to the inertial system

in which it is at rest is equal to the length of the other stick

relative to its rest inertial system. Furthermore, the

directions of the y and y′ axes are arbitrary as long as these

two directions are parallel and each is orthogonal to the

direction of the relative motion. Therefore, we conclude that

a measuring stick has the same length relative to all inertial

systems moving along directions perpendicular to the stick.

Let us now investigate, from the point of view of S, the

behavior of a clock that is at rest in the S′ reference system.

For this purpose, we construct a clock that uses light

signals, thus depending on the speed of light for the ticking

off of equal time intervals. This clock consists of a light

pulse emitter and receiver situated at one end of a rod and

a mirror at the other (Figure 1.45). If the distance between

the mirror and the source and receiver is L, it takes a time

Δt = 2L/c for a pulse to travel from the source to the mirror

and back to the receiver. By properly connecting the source

and receiver so that the source emits a light pulse

instantaneously when the receiver absorbs one, we obtain a



clock that ticks off equal time intervals of magnitude 2L/c.

Let us suppose that S and S′ possess a number of such

clocks, each oriented so that the light pulses travel parallel

to the respective y axes. Our previous conclusion shows that

the distance in any one of these clocks between the mirror

and the emitter-receiver is L according to both observers.

Then according to S′ for example, one of his clocks, say that

shown in Figure 1.45, works as described above and

regularly ticks off time intervals of duration Δt′ = 2L/c.

However, this device is in motion relative to S, so S

observes that each light pulse travels a distance greater

than L (Figure 1.46). Indeed, he observes that the time

interval between the ticks of the S′ clock is given by

 

 

Hence, S observes that the clock of S′ is running slow and

that the time interval Δt’ as measured on the S′ clock is

related to the corresponding time Δt that S measures by the

equation

 

 

Thus, for example, when the S′ clock ticks off 1 sec,

 

 



then S observes that a greater time,

 

 

has elapsed. Therefore, the S′ clock appears to S to be

running slow. This phenomenon is known as time dilatation

(or, sometimes, time dilation).

 

 

FIGURE 1.45 A light-pulse clock that ticks off time intervals

of Δt = 2L/c.

 



It is important to note that the clock of S′ is timed by S with

a number of clocks fixed in the S system (Figure 1.47).

We now compare length measurements performed by the

two inertial observers S and S′ on rods lying along the

direction of relative motion of S and S′. Consider a rod A′B′

lying at rest relative to S′ on the x′ axis and moving past S

with the speed V in the positive x direction (Figure 1.48). Let

the length of the rod be l′ relative to S′ and l relative to S.

 

 

FIGURE 1.46 The dashed line is the path of the light pulse of

the S′ clock as observed by S. The time interval Δt between

clocks is given by the relation (c Δt/2)² = [V(Δt/2)]² + L² as

being .

 



We can use the formula derived for time dilatations if we

devise a method by which S′ measures the length of the rod

with light pulses and a single clock and then consider this

method from the point of view of S. One such method is the

following: A light-pulse emitter and receiver is placed at one

end of the rod A′ and a mirror at the other B′ (Figure 1.49).

With a clock at A′, S′ measures the time for a light pulse,

emitted at A′ at time , to pass from A′ to B′ and back to A′ at

time . The length of the rod l′ relative to S′ is given by

 

 



 

FIGURE 1.47 Time dilatation: S observes that each clock of

S′, such as the S′ clock shown, is running slow.

 



 

FIGURE 1.48 The rod A′B′ moves past S with velocity V.

 

Now consider the sequence of events involved in this

measurement from the point of view of S. The light flash is

emitted at time t1 relative to S when A′ coincides with the

point X [Figure 1.50(a)]. The flash strikes the mirror at time t

relative to S when B′ coincides with Y [Figure 1.50(b)] and

returns to A′ at time t2 relative to S when A′ coincides with Z

[Figure 1.50(c)]. The time Δt = t2 – t1 relative to S for the

light flash to go from A′ to B′ and back to A′ consists of two

parts, t – t1 and t2 – t, which we shall calculate separately.

The time required for the flash to travel from X to Y, XY/c, is

t – t1 and XY is equal to the length of the rod RY = l plus the

distance XR = V(t – t1) that the rod moves during that time

interval. Hence,

 

 

or

 

 

Similarly, t2 – t is the time required for light to travel from Y

to Z, YZ/c, and YZ is equal to the length of the rod ZS = l



less the distance YS = V(t2 – t) that the rod moves during

that interval of time. Therefore,

 

 

or

 

 

 

FIGURE 1.49 S′ measures the length l′ of the rod by

measuring the time Δt′ required for light to travel to and fro;

is obtained.

 



 

FIGURE 1.50 Sequence of events, from the point of view of

S, involved in the measurement of the length A′B′ by S′ (a)

The light flash is emitted at time t1. (b) The light flash

reaches the mirror at time t. (c) The light flash is received at

A′ at time t2.

 

The total time interval Δt is given by

 



 

Observer S notices that his clocks read t1 when one of the

clocks of S′ reads and that the S clocks read t2 when the

same S′ clock reads . Hence,

 

 

and, from Equations (1.45) and (1.46),

 

 

Since is less than unity, a meter stick moving with S′ (for

which l = 1 m) is observed by S to have a length that is less

than 1 m. The moving rod is contracted in the direction of

motion by the factor (Figure 1.51).

This phenomenon is known as the Lorentz contraction, since

the theory of Lorentz predicted such a contraction in an

object moving relative to the ether with a speed V.* Notice,

however, that our derivation of this effect does not involve

the ether (or a privileged reference frame).



 

 

FIGURE 1.51 Lorentz contractions for various speeds V.

 

SUMMARY The length of a measuring rod is the same

relative to every inertial reference system moving along a

direction perpendicular to the rod. The interval of time Δt′ as

measured by a clock moving with speed V past an inertial

reference system takes place over the time Δt = Δt′[1 –

(V²/c²)]−½ as measured by the clocks of that inertial

observer. A measuring rod of rest length l′ moving with

speed V along the direction of its length past an inertial

reference system has the length l = l′[1 – (V²/c²)]½ as

measured by that inertial observer.



 

Problem 1.42

 

A clock moves past you with the speed found in your answer

to Problem 1.28. Calculate how long it takes for this clock to

lose 1 sec relative to you.

 

Problem 1.43

 

Calculate the percentage change in the length of a rod

moving with the speed found in your answer to Problem

1.28 in a direction parallel to its length.

 

Problem 1.44

 

An airplane travels at a speed of 1,500 mi/hr.

 

(a)   Calculate the percentage change in its length due to

Lorentz contraction relative to the earth.

(b)   How far does the plane travel before the pilot’s watch is

slowed down by 1 sec relative to the earth?

 



Problem 1.45

 

An S′ clock moves past the observer S, who measures that

the S′ clock loses 1 sec every hour.

 

(a)   Calculate the speed of S′ relative to S.

(b)   The clocks of S are situated 1 m apart along the

direction of motion of S′. How many clocks of S does the S′

clock pass when it ticks off 1 sec?

 

Problem 1.46

 

When observer S measures a meter stick of S′ that lies

along the direction of motion of S′, he notes a contraction of

1 mm. Find the speed of S′ relative to S.

 

Problem 1.47

 

A cube with sides of length L moves with S′.

 

(a)   Find the volume of the cube as measured by S.



(b)   How fast would the cube have to be moving in order

that its volume be halved according to S?

 

Problem 1.48

 

A meter stick, at rest in S′, is inclined at an angle of 45°

relative to S with respect to the direction of motion of the

inertial frame S′ relative to the frame S. The frame S′ moves

with a speed of 0.99c past the frame S. What is the length

of the meter stick as measured by the observer S, and what

is the angle between the meter stick and the x axis as

observed by S?

 

Problem 1.49

 

A meter stick, at rest in S′, is inclined at an angle θ with

respect to the direction of motion of S′ relative to S; S′

moves past S with the speed 0.9c. Calculate the length l(θ)

of the meter stick as measured by the observer S, and draw

a graph that shows the value of l(θ) for each value of θ.

 

Problem 1.50

 

The formula for time dilatation can be derived solely on the

basis of the Lorentz contraction, as shown in this problem.



Observer S′ uses a light-pulse clock (Figure 1.45) with the

light-pulse path, of length L′, lying along the x′ axis.

 

(a)   Show that, according to S′ the clock ticks off time

intervals of length Δt′ = 2L′/c.

(b)   Let Δt1 be the time as measured by S for the light pulse

to travel from the emitter to the mirror. Show that, if proper

account is taken of the Lorentz contraction,

 

 

obtain

 

 

(c)   Let Δt2 be the time as measured by S for the light pulse

to travel from the mirror to the receiver. Show that

 

 

and hence obtain

 



 

(d)   Show that S measures the time intervals between

pulses as

 

 

from this, derive the formula for the time dilatation.

 

Problem 1.51

 

The formula for the Lorentz contraction can be derived

solely on the basis of time dilatation, as shown in this

problem. A rod of length l′ lying along the x′ axis moves with

S′ past S, who observes the times t1 and t2 at which the

ends of the rod pass the point x and determines the length

l1 from the formula l1 = V Δt. Find l1 in terms of l′. (For this

problem, you will need to assume the fact, which will be

proven shortly, that S moves with the velocity –V relative to

S′ if S′ moves with the velocity V relative to S.)



1.5.3   A special set of Lorentz

transformation equations*

 

An inertial observer S describes an event by the position

vector r, or the coordinates (x, y, z) of the point where the

event took place, and the time t at which the event occurred.

Another inertial observer S′ describes the same event by a

position vector r′, or the coordinates (x′, y′, z′), and a time t′

relative to the S′ inertial system. There exists some relation

between the inertial systems S and S′, so, since the

coordinates (x, y, z) and time t relative to S describe the

same event as do the coordinates (x′, y′, z′) and time t′

relative to S′, there must exist transformation equations that

determine x′, y′, z′ and t′ in terms of x, y, z, and t:

 

 

We shall derive now a formula for these transformation

equations for the circumstance in which S and S′ are related

in a simple manner. This derivation of the equations for a

Lorentz transformation depends on the consequences, such

as the time dilatation and the Lorentz contraction, that we

have deduced from the kinematic postulate of special

relativity.

The form of these transformation equations is restricted by

the kinematic postulate of special relativity; the explicit

formula for any case depends also on the relation between

the inertial systems S and S′. Let us consider the case



involving the simplest nontrivial relation between the inertial

systems S and S′. In this case, S and S′ are in relative motion,

or the problem reduces, in a trivial fashion, to a rotation of

the axes or a translation of the origins. In order to avoid

complications, we assume that the coordinate axes are

aligned and the origins of the inertial systems are coincident

at an initial time. Thus, we shall consider the special case in

which the system S′ moves with velocity relative to S, the

origins O and O′ coincide at t = t′ = 0, and the y′ and z′ axes

coincide at t = t′ = 0 with the y and z axes, respectively

(Figure 1.52). We now deduce in turn the explicit set of

Lorentz transformation equations for this special case.

 



 

FIGURE 1.52 The relation between the inertial systems S and

S′ described in the text. (a) The motion of S′ as observed by

S. (b) The event that occurs at O at time t = 0 relative to S

occurs at O′ at time t′ = 0 relative to S′.

 



 

FIGURE 1.53 .

 

Consider the y′ coordinate of an event. This represents a

distance relative to S′, measured along a direction

perpendicular to the direction of relative motion, and is equal

to y, the corresponding distance for the event that S

measures. The z′ and z coordinates are similarly related, and

hence

 

 

Consider now the x coordinate at time t relative to S of the

event that occurs at a point with the corresponding

coordinate x′ relative to S′. The value x is equal* to OA = OO′



+ O′A (Figure 1.53), where OO′ is the distance that O′ has

traveled from O in the time t and O′A is the distance along

the line of relative motion that S′ measures to be x′. The

point O′ is moving with speed V relative to O and coincides

with O at time t = 0. Hence, OO′ = Vt. The length of O′A

relative to S′ is x′; because of the Lorentz contraction, S

measures this distance to be . Therefore,

 

 

or

 

 

Finally, we must derive the transformation equation that

determines the S′ time t′ of the event in terms of the

coordinates (x, y, z) and time t of the event relative to S. The

formula for time dilatation gives the rate at which a clock of

S′ appears to S to be slowing down, but it does not give

directly the relation between the times t′ and t of every

event. It gives the relation only between the times for those

events that occur at the origin O′ since the S and S′ clocks at

the origin are synchronized at t = t′ = 0, then, according to

S, the S′ clock at the origin O′ reads when the S time to is

given by

 

 



However, we know how every clock in S is synchronized with

that at O and how every clock in S′ is synchronized with that

at O′. This knowledge, together with the relation between the

clocks at O and O′ allows us to deduce an equation relating

the times of any event.

Moreover, we need consider only the relation between those

two sets of clocks that lie on the x and the x′ axes. Any clock

off one of these axes can be synchronized through the use of

light signals with a corresponding clock on the axis of the

relevant reference frame with the same x or x′ coordinate.

Since distances l and l′ perpendicular to the axes are the

same relative to both observers and since the process of

synchronization involves only the time-interval changes l/c or

l′/c, the observers agree that each clock off the axis is

synchronized with the corresponding clock on the axis.

Suppose that when the S′ clock at the origin reads a light

pulse is sent out from O′ (x′ = 0) along the x′ axis, and that

this light flash arrives at the point x′ at time t′. According to

S′ the time t′ is later than by the time interval in which light

travels the distance x′. Hence,

 

 

On the other hand, according to S, the light signal was

emitted at time to and traveled the distance plus the

distance V(t – to) that the point labeled x′ moved during the

transit time of the light pulse. Therefore,

 



 

thus

 

 

or

 

 

Substitution for x′ from Equation (1.51) gives the result

 

 

We conclude that the transformation equations, which relate

to coordinates of an event relative to two reference systems

whose origins coincide at time t = t′ = 0, whose axes are

parallel, and whose relative velocity is along the x or x′ axes,

are

 



 

These are a special case of the Lorentz transformation

equations.

These equations can be solved for x, y, z, and t in terms of

x′, y′, z′, and t′.

The resulting inverse relations are

 

 

Alternatively, this inverse transformation can be obtained

from Equation (1.58) by the replacement of V, the velocity of

S′ relative to S, by V′, the velocity of S relative to S′:

 

 

A comparison of these sets of equations shows that the S

frame moves with the velocity relative to S′. This equality of

the speeds V and V′ is not a trivial conclusion, since neither

the unit of length nor the unit of time is directly comparable

in S and S′.

The fact that the galilean transformation is valid for speeds

that we normally encounter can be derived from the special

Lorentz transformation equations



 

 

If V is much smaller than c, we can neglect the term V²/c² as

compared to unity in the denominators, and also, for not too

large values of x, we can neglect the factor V/c² in the last

equation. Thus, the galilean transformation equations,

 

 

result as a first approximation to the Lorentz transformation

equations. This result is important, for if the Lorentz

transformation had not reduced to the galilean

transformation for small values of V, we would know that the

Lorentz transformation was not correct, because of the

abundant evidence from everyday life that the galilean

transformation is valid for values of V much smaller than c.

 

SUMMARY There exist transformation equations relating the

coordinates (x, y, z) and t relative to an inertial observer S of

an event and the coordinates (x′, y′, z′) and t′ relative to

another inertial observer S′ of the same event. The form of

these transformation equations is restricted by the kinematic

postulate of special relativity, and the explicit equations for

the transformation depend on the relation between S and S′.

For the simplest nontrivial case,

 



 

Example 1.3

 

Q.   Two events in a particle’s life occur, relative to an inertial

observer S, at time t1 with ct1 = 2 m and at the point x1 = 1

m, y1 = z1 = 0, and at time t2 with ct2 = 5 m and at the

point x2 = 3 m, y2 = z2 = 0.

 

(a)   Find the average speed relative to S with which the

particle moved between these two events.

(b)   An inertial observer S′ moves with velocity relative to S.

The origins of the two systems coincided at time t = 0 and t′

= 0. Find the coordinates of the two events relative to S′.

(c)   Find the distance between the two events relative to S′

and also the time between the two events relative to S′.

(d)   Find the average speed relative to S′ with which the

particle moved between these two events.

 

A.   (a)   The distance relative to S that the particle traveled

between the two events is x2 – x1 = 3 − 1 = 2 m. The time

(t2 – t1) between the two events is given by

 



 

Therefore, the average speed of the particle is v = 2 m/(1 ×

10−8 sec) = 2 × 10⁸ m/sec.

(b)   The position relative to S′ of the particle at the first

event is

 

 

The time relative to S′ of this event is given by

 

 

Similarly, the position and time relative to S′ of the second

event are

 

 

(c)   The distance relative to S′ between the two events is

given by

 



 

The time between the two events is given by

 

 

(d)   The average speed relative to S′ of the particle between

the two

events is given by

 

 

Notice that this is not equal to .

 

Problem 1.52

 

Show, for V equal to the speed found in your answer to

Problem 1.28, that the differences between the galilean

transformation equations and the Lorentz transformation

equations can be neglected.

 

Problem 1.53



 

The reference system S′ moves with velocity relative to S.

Find the x′ and l′ coordinates of each of the events whose x

and t coordinates are listed below. (Use c = 3.0 × 10⁸

m/sec.)

 

 

Problem 1.54

 

Using the data of Problem 1.53, calculate the distances

between the positions of the following pairs of events in S′:

 

(a)   E1 and E2,

(b)   E2 and E3,

(c)   E1 and E4.

 

Explain why these results are not given by the formula for

the Lorentz contraction.

 

Problem 1.55



 

Calculate the time intervals between the following pairs of

events in S′, using the data of Problem 1.53:

 

(a)   E1 and E2,

(b)   E2 and E3,

(c)   E3 and E4.

 

Explain why these results are not given by the formula for

time dilatation.

 

Problem 1.56

 

(a)   Repeat the calculations of Problem 1.40 using the

Lorentz transformation Equations (1.58).

(b)   Calculate the percentage differences in your answers to

Problem 1.40 and (a).

(c)   Repeat the calculations of Problem 1.40 for the case in

which the train’s speed is 12c/13.

 

Problem 1.57

 



(a)   Consider the case in which S′ moves with a velocity V,

not necessarily in the x direction, relative to S. Show that,

under other conditions similar to those stated before,

 

 

Hint: Write and , where the subscripts || and denote

components parallel and perpendicular to V, respectively. In

particular, show that r|| = (V/V)(V · r/V). Then use the facts

that r||, changes as x does for the special case studied in the

text and that r± remains unchanged.

(b)   Show that

 



1.5.4   Derivation of time-dilatation

and Lorentz contraction formulas

from Lorentz transformation

equations*

 

Before we proceed to consider the general form of the

Lorentz transformation equations, let us look again at a

comparison by the observers S and S′ of their clocks and

measuring rods. We must, of course, arrive at the time-

dilatation and length-contraction formulas, since we derived

the Lorentz transformations using them. However, the

Lorentz transformations afford a clear view of the

circumstances in which these effects are observed, and they

can be derived without specifically including these effects

initially (see Problems 1.70 and 1.71). First we investigate,

from the point of view of S, the behavior of a clock that is at

rest in the S′ reference frame.

In a problem of this type, we must examine carefully what

information is given and also what information is desired. We

know that the clock is stationary relative to S′ and hence is

situated at all times at a point, say that labeled ), in the

frame of reference of S′. We wish to compare the time

interval that elapses according to S between the instants

when the clock, moving past S, reads and when it reads .

When the clock under consideration reads this is an event

labeled in the S′ reference frame by the space coordinates

and the time coordinate and in the S frame by the

coordinates (x1, y1, z1) and t1. The event that occurs at the

clock as it reads has the coordinates and in S′ and (x2, y2,

z2) = (x2, y1, z1) and t2 in S. Note: This event corresponds



to a different S clock than that at (x1, y1, z1); see Figure

1.54.

The time according to S at which these events take place can

be determined in terms of the coordinates in S′ of these

events from the Lorentz transformation equation

 

 

The events occur, according to S, at times t1 and t2, given

by

 

 

Therefore, the time interval between these two events that S

measures is equal to

 



 

FIGURE 1.54 The measurement of the time interval t2 – t1 by

S of the time required for the clock at of S′ to move its hands

from to .

 

 



This is the formula for time dilatation derived earlier through

the use of the properties of a light-pulse clock.

Consider now the behavior of an S clock from the point of

view of S′. The S clock is in motion with speed V relative to

S′, so the time interval measured by S′ during which the

reading on the S clock changes from t1 to t2 is given by

 

 

The Equations (1.72) and (1.73) appear to be inconsistent

with each other, as does the resulting fact that each

observer determines the other’s clocks to be running slow.

However, the equations are not inconsistent. Equation (1.72)

relates the readings t2 and on one clock of S′ to the readings

t2 and t1 on two clocks of S. The S clock that reads t1 is

coincident with the S′ clock at the event at which it reads

and the other S clock that reads t2 is coincident with the

same S′ clock at the event at which it reads t2. Similarly,

Equation (1.73) relates the readings t2 and t1 of one S clock

with the readings of two different S′ clocks. A comparison of

these different circumstances is shown in Figure 1.55.

We now compare length measurements performed on the

same rod by the two observers S and S′. The transformation

equations for y and z are different than that for x, the

coordinate in the direction of motion, so the result of a

comparison of length measurements will depend on the

angle of orientation of the rod with respect to the direction of

V. The same result is obtained in a measurement of the

length of a rod that is perpendicular to the direction of

relative motion by observers S and S′. However, when the

rod lies parallel to the direction of motion, the length of the



rod as measured by an observer depends on the speed with

which the rod moves relative to that observer.

 

 

FIGURE 1.55 Time dilatation. (a) S observes that each clock

of S′, such as the S′ clock shown, is running slow. (b) S′

observes that each clock of S is running slow.

 



Consider a rod lying at rest on the x′ axis and moving past S

with speed V in the positive x direction. The ends of the rod

lie at the fixed points with x′ coordinates and in the frame S′

so the length of the rod, as measured by an observer at rest

relative to the rod, is given by

 

 

The observer S measures the length of the rod in terms of

the simultaneous positions x1 and x2 of the ends of the rod,

say at the same instant of time t0, in his reference frame:

 

 

Since we wish to calculate x1 and x2 in terms of the time t0

and the positions and in the S′ frame, the pertinent formula

to use here is

 

 

We obtain

 



 

or

 

 

the formula for Lorentz contraction derived earlier.

Now consider a rod lying at rest on the x axis and moving

past S′ with speed V in the negative x′ direction. Let the ends

of the rod have coordinates x1 and x2, with

 

 

The observer S′ determines the corresponding coordinates

and of the ends of the rod simultaneously, say at time .

Then, since

 

 

we have

 



 

or

 

 

The Equations (1.78) and (1.82) appear inconsistent, as does

the resulting fact that each observer determines that the

other’s measuring sticks are shortened in the direction of

motion. However, the equations are consistent, as the

following analysis shows: The measurement of a moving rod

by an observer involves two events, one in which the

position of one end of the rod is marked, and the other in

which the position of the other end is marked (Figure 1.56).

An observer determines the length by marking the ends

simultaneously relative to his own inertial system. However,

these two events are not simultaneous according to the

other observer. Therefore, the description of the two events,

and in particular the differences in the coordinates x2 – x1 or

, is different for each of the observers. If S measures the

length of a rod at rest relative to S′, then S obtains a result

that depends on his concept of simultaneity. According to S′,

S does not mark the ends of the rod simultaneously.

Similarly, when S′ measures the length of a rod at rest

relative to S, the marks are not made simultaneously

according to S.

 



 

FIGURE 1.56 Each measurement of a length involves two

events (designated by flashes) that are described differently

by S and S′. (a) The measurement by S of the S′ measuring

rod. (i) Viewpoint of S of the measurement by S of the S′

measuring rod. (ii) Viewpoint of S′ of the measurement by S

of the S′ measuring rod. (b) The measurement by S′ of the S

measuring rod. (i) Viewpoint of S of the measurement by S′

of the S measuring rod. (ii) Viewpoint of S′ of the

measurement by S′ of the S measuring rod.



 

The circumstances are symmetrical with respect to the two

observers: If the meter sticks lie along the x or x′ directions,

S determines the length of a meter stick of S′ as being less

than 1 m, and S′ determines that the length of an S meter

stick is less than 1 m. Furthermore, the Lorentz contraction

factors are the same, namely, , for both observers.

 

SUMMARY The formula for time dilatation can be derived

from the Lorentz transformation equations by finding the

times relative to an inertial observer of the two events at

which a clock, moving relative to that observer, reads two

different times. The formula for Lorentz contraction can be

derived from the Lorentz transformation equations by finding

the simultaneous positions relative to an inertial observer of

the end points of a measuring rod moving relative to that

observer. Furthermore, the Lorentz transformation equations

show that there is no inconsistency in the fact that each of

two inertial observers in relative motion observes the time

dilatation and Lorentz contraction in the clocks and rods of

the other.

 

Problem 1.58

 

A student is asked in an examination to calculate the time

interval, as observed by S, in which a clock of S′ ticks off the

interval The student uses the formula

 



 

instead of Equation (1.70) and obtains the result

 

 

instead of Equation (1.72). Describe, as if you were

correcting this student’s paper, the error that he made and

the physical situation to which his formulas are relevant.

 

Problem 1.59

 

An inertial observer measures the length of a meter stick,

moving along the direction of its length, to be 57 cm. How

fast is the meter stick moving?

 

Problem 1.60

 

The ends of a meter stick lie along the x′ axis of the inertial

frame of S′ at the points and . Another inertial observer S

measures the length of the meter stick at the time t0 given

by ct0 = 3.00 m. The relations between the coordinates of S

and S′ are given by Equation (1.58) with V = 4c/5.

 



(a)   Find the positions relative to S of the endpoints of the S′

stick at the time of the measurement.

(b)   Find and , where and are the times relative to S′ of the

two events in the measurement by S.

(c)   At time given by m, S′ measures the distance between

the two points in S that are described in (a). Find the

positions relative to S′ of those points at the time .

(d)   Find ct1 and ct2, where t1 and t2 are the times relative

to S of the two events in the measurement by S′ described in

(c).

 

Problem 1.61

 

Observer S measures the length of an S′ meter stick whose

length lies along the direction of the relative motion of S and

S′. The result is 92.8 cm.

 

(a)   Observer S′ measures the length of the meter stick of S.

What result does he obtain?

(b)   What time elapses, according to S′, during which the

hands of a clock of S move 1 hr ahead?

 

Problem 1.62

 



Observer S measures the length of an S′ meter stick whose

length lies along the direction of relative motion of S and S′.

Using the procedure described above, S finds that the

resulting marks on the S meter stick are 84.3 cm apart.

Observer S′ measures the distance between the marks.

 

(a)   What result does S′ obtain?

(b)   Explain, with the aid of drawings of the events that

occur, why S′ does not obtain 1 m as the result.

 

Problem 1.63

 

Observer S uses a clock at O and compares the readings of

this clock with the clocks of S′ that are coincident with the S

clock at various times t.

 

(a)   How do these readings compare?

(b)   Describe the corresponding circumstance for one clock

of S′.

(c)   Compare your answers to (a) and (b) with the formulas

for the phenomena of time dilatation.

 

Problem 1.64

 



Observer S′ measures the length of an S meter stick whose

length lies along the direction of relative motion of S and S′

and obtains 68.4 cm as a result. If S′ marked the end of the

rod simultaneously according to his clocks, what time

interval occurred between these two events according to the

clocks of S?

 

Problem 1.65

 

Observer S notices that 97 min elapse when the hands of an

S′ clock move ahead 1 hr.

 

(a)   Find the speed of S′ relative to S.

(b)   How far, according to S, does the S′ clock move in that

interval?



1.5.5   The general form of the

Lorentz transformation equations*

 

The special form of the Lorentz transformation Equations

(1.58) applies only to the transformation between inertial

systems whose origins coincide at t = t′ = 0, whose axes are

parallel, and whose relative velocity lies along the x or x′

axis. These restrictions were introduced for convenience

only, and we shall investigate now the general form of the

Lorentz transformation equations.

Let the same event be labeled by the coordinates (x, y, z)

and time t relative to S and the coordinates (x′, y′, z′) and

time t′ relative to S′. We are concerned with the form of the

transformation equations,

 

 

which is restricted by the kinematic postulate of special

relativity and the facts that no one point in space can be

distinguished from any other point: the principle of

homogeneity of space; no one instant of time can be

distinguished from any other instant: the principle of the

homogeneity of time; and no one direction in space can be

distinguished from any other direction: the principle of the

isotropy of space.

The numbers x, y, and z are cartesian coordinates and

designate lengths as determined by appropriate measuring



rods. Similarly, the number t is a time interval as measured

by an acceptable clock. Thus the transformation law (1.83)

relates quantities that have the physical significance of

lengths and time intervals, and upon which we can impose

the conditions of the homogeneity and isotropy of space and

the homogeneity of time. (These conditions would not be

simple to impose if we considered transformations to

spherical polar coordinates, for example.)

Assume, for the moment, that the functions, such as x′(x, y,

z, t), are not linear in x, y, z, and t. For example, x′ might be

quadratic in these variables as in the equation

 

 

If this were the case, then the origin or some other point in S′

could be distinguished, by an experiment, from other points,

and we would be compelled to renounce the principle of

homogeneity of space and time, an unwarranted step. An

illustration of the effects of a nonlinear transformation is

shown in Figure 1.57; in that case, the point O′ is

distinguishable from other points by the property that a

length about O′ relative to S′ appears shorter relative to S

than does the same length, relative to S′, about any other

point. This property of O′ could be determined by an

experiment and would distinguish O′ from all other points,

contrary to the principle of the homogeneity of space.

 



 

FIGURE 1.57 An example of a nonlinear relation between S

and S′ at time t = 0. If the relations between the coordinates

of one event in S and the coordinates in S′ of the same event

were nonlinear as shown, one point in S′ (the origin as shown

in this figure) would appear different to S than other points.

 

We conclude that the transformation equations (1.83) are

linear in x, y, z, and t, so we can write

 

 

where the a’s, , and are independent of x, y, z, and t, but

they do depend on the relation between S and S′.



The event that, according to S, occurs at the origin O at time

t = 0, takes place at the point with coordinates and at the

time relative to S′. The origin O′ of S′ can be selected

arbitrarily, so, for convenience, the coordinates often are

chosen to be zero. Similarly, the time t′ = 0 can be selected

arbitrarily, and convenience often dictates the choice .

We now consider the restriction that the kinematic postulate

of special relativity places on the transformation equations

(1.85). Consider a light signal emitted at the point r1 or (x1,

y1, z1) at time t1 that reaches the point r2 or (x2, y2, z2) at

time t2 relative to S. Then,

 

 

Relative to the inertial observer S′, the two events occur at

the point or at the time and at the point or at the time .

According to the kinematic postulate, the light signal travels

with the speed c relative to both inertial systems; hence

 

 

The inverse relationship also is valid. If we define Δr and Δt

by

 

 

we have that

 



 

if and only if

 

 

the symbols (Δs)² and (Δs′)² are defined to be the quadratic

expressions c²(Δt)² − (Δr)² and c²(Δr′)² − (Δr′)², respectively.

The fact that the equations connecting the two sets of

coordinates are linear allows us to determine a relation

between

 

 

and

 

 

for any two events and not just for those that can be

connected by a light signal. The quantity (Δs)² is quadratic in

x2 – x1, y2 – y1, z2 – z1, and t2 – t1 and, because of the

linearity of the transformation equations, is thus quadratic in

, and . Since (Δs)², a quadratic in , , and , is zero if and only if

(Δs′)², also a quadratic in , and , is zero, we must have



 

 

where K(V) is some function of the velocity V of S′ relative to

S. Since space is isotropic, K(V) can depend only on the

magnitude V of V and not on its direction:

 

 

A measurement of a length along a line perpendicular to the

direction of relative motion gives the same results for both

observers. The two events, the marking of each end, occur

simultaneously for both observers according to our earlier

arguments, and hence, for these two events, Δt = Δt′ = 0.

Since the two relative lengths are equal, (Δr)² = (Δr′)², and

thus for these two special events

 

 

Moreover, since K(V) depends not on the events but only on

the relative speed V of the two observers, this relation is

valid in all cases. We conclude that

 

 

This is the restriction on the transformation equations (1.85)

that is imposed by the kinematic postulate of special



relativity. Any transformation of the form (1.85) that satisfies

the restriction (1.96) is called a Lorentz transformation.

The special Lorentz transformation (1.58) is derived from the

restriction (1.96) in Problems (1.70) and (1.71).

 

SUMMARY The coordinates of two events, (x1, y1, z1) and t1

and (x2, y2, z2) and t2, relative to one inertial reference

system are related to the coordinates of the same two

events, and and and , relative to another inertial reference

system by the condition

 

 

according to the kinematic postulate of relativity. Any linear

transformation between the coordinates of the two systems

that satisfies this condition is called a Lorentz

transformation.

 

Example 1.4

 

Q.   Show that the transformation

 



 

is a Lorentz transformation.

 

A.   Consider two events E1 and E2. The first, E1, occurs at

the point (x1, y1, z1) at time t1 relative to S and at the point

 

 

at the time

 

 

relative to S′. Similar relations hold for the coordinates and

time that describe E2. Therefore,

 

 

Hence, the transformation (1.97) is a Lorentz transformation.



 

Example 1.5

 

Q.   (a)   Show that the transformation

 

 

is a Lorentz transformation, and describe the relation

between the S and the S′ systems. (b) Equation (1.101) is a

linear transformation similar to the transformation

 

 

Discuss this similarity in more detail.

 

A.   (a)   That Equation (1.101) is a Lorentz transformation

can be shown by direct substitution, as in the preceding

example. Alternatively, we can show this by considering the

relation between the S and S′ systems. Since t′ = t, we need

consider only the spatial coordinates. It can be seen from

Figure 1.58 that

 



 

or

 

 

describe the relationship between the coordinates of a point

P relative to two coordinate systems S and S′ for which the S′

axes are obtained by rotating the S axes about the z axis

through the angle θ. Since distances between points do not

change under a rotation of the axes,

 

 

and thus

 

 

Hence, the transformation (1.101) is a Lorentz

transformation.

 



 

FIGURE 1.58 Relations between the two sets of coordinates

of a point P, which are (x, y) in one coordinate system and (x′

y′) in another, obtained by a rotation through the angle θ.

 

(b)   Consider Equation (1.102). Since the y and z

coordinates do not change, we restrict our considerations to

the t and x coordinates. Equation (1.102) describes a Lorentz

transformation with

 

 

We can reduce this restriction to a familiar form by replacing

t with λ/ic,



 

 

since, under this substitution, Equation (1.107) becomes

 

 

Since the sum of the squares of two numbers is equal to the

square of the hypotenuse of a right-angle triangle with

opposite sides having the length of those numbers, as shown

in Figure 1.59, this relation is a reflection of the invariance of

the distance between two points, specified by the

rectangular coordinates (x1, λ1) and (x2, λ2) in one

coordinate system, under a rotation of the coordinate axes

through some angle a to another coordinate system. The

transformation from one coordinate system to another is

given by

 

 

If we substitute from Equation (1.108) for the λ’s and

compare the result with Equation (1.102), we find that

 

 

so that α, the “angle of rotation,” is imaginary. Thus, the

special Lorentz transformation (1.102) is sometimes said to

be an imaginary rotation in the xt plane.



 

 

FIGURE 1.59 A circumstance for which (Δx)² + (Δλ)² = (Δx′)²

+ (Δλ′)².

 

Problem 1.66

 

The hyperbolic functions sinh ϑ and cosh ϑ are defined by

the relations

 

 

which are similar to the relations

 



 

(a)   Show that the special Lorentz transformation (1.102)

can be written as

 

 

where

 

 

(b)   Show that ϑ = iα, where α is the imaginary angle of

rotation of the example above.

(c)   Show that cosh² ϑ − sinh² ϑ = 1, and use this result to

show that

 

 

(d)   Show, from the fact that tanh ϑ = − V/c, that

 

 

Problem 1.67



 

Show that, because the transformation equations (1.85) are

linear, a motion with constant velocity relative to one inertial

system appears as a motion with constant velocity relative

to any other inertial system.

 

Problem 1.68

 

(a)   Show that the transformation given by x = x′ + X; y = y′

+ Y; z = z′ + Z; t = t′ + T, where X, Y, Z, and T are constants,

is a Lorentz transformation.

(b)   Describe the relation between the S and the S′

coordinate systems.

 

Problem 1.69

 

(a)   Show that each of the transformations given below is a

Lorentz transformation:

 

   (i)   

  (ii)   



 (iii)   

 (iv)   

 

(b)   Describe the relation between the S and the S′

coordinate systems connected by each of the

transformations of (a).

 

 

FIGURE 1.60 Prior to 1959, it was believed that the cube (a)

would appear as in (b) when it moves past with velocity V. (V

= 0.9c for the case shown.) This belief is incorrect.

 

Problem 1.70

 



Derive the special Lorentz transformation (1.58) in the

following way: Assume that x and t are related to x′ and t′ by

the equation (see Equation 1.96)

 

 

and that the transformation is linear:

 

 

(a)   Use the fact that the origin of S′, x′ = 0, corresponds to x

= Vt to obtain

 

 

(b)   Insert the transformation equations of (a) into the

equation expressing the equality of the speed of light for all

observers and solve for a, α, and β by equating the

coefficients of the x², xt, and t² terms to each other.

 

Problem 1.71

 

Derive the special Lorentz transformation (1.58) as follows:

Assume that x and t are related to x′ and t′ by the equation



 

 

This can be rewritten in the form

 

*

 

(a)   Show that, for some angle a,

 

 

(b)   Use the fact that the origin of S′, x′ = 0, corresponds to

x = Vt to obtain

 

 

(c)   Show from (a) and (b) that

 

 



 

FIGURE 1.61 Instantaneous positions of two light sources

moving past the viewer O.



1.6   The Visual Appearance of

Moving Objects

 

Until 1959, it was believed that the Lorentz contraction was

the sole effect that needed to be considered when

describing how you actually would see an object moving

past you at a high speed. According to this belief, since an

object, moving past with speed V, is shortened by the factor

in the direction of motion, a viewer would see the object

distorted by this compression. Figure 1.60 shows how it was

believed that a cube would appear to a viewer watching the

cube move past at a high speed.

This belief was maintained until 1959, when it was pointed

out that the visual appearance is not determined by the

simultaneous positions of all points on the object. Rather,

the visual appearance is determined by the light from all

points on the object that arrives simultaneously at the eye.



1.6.1   The difference between the

instantaneous location of an object

and its visual appearance

 

The American physicist N. James Terrell (1923– ) showed in

1959 that the Lorentz contraction is not the only effect that

determines the visual appearance of a rapidly moving

object.* The other fact that must be taken into account is

that the eye records all the light that is received

simultaneously, even though, if the object is extended, this

light was emitted at different times from parts of the object

at different distances from the observer. For example,

suppose a moving object consists of two point sources of

light, separated by the distance L′, one traveling with speed

V along a line at a distance L from a single viewer O and the

other traveling with the same speed along a parallel line at a

distance of L + L′ from O (Figure 1.61). The light from the

closer source travels a shorter distance to O than the light

from the distant source. Therefore, at any instant t, O sees

the closer source as being ahead of the distant source, since

the light arrives at the eyes of O simultaneously from a point

P at which the close source occupied a time PO/c before t

and from the point P′, further back, at which the distant

source occupied a time P′O/c before t (Figure 1.62).

 



 

FIGURE 1.62 O sees the two sources as being at P and P′

when the two sources are at P1 and . (V = 0.5c for the case

illustrated.)

 

 

FIGURE 1.64 Light seen from the far corner of the back face

of the cube.

 



We can determine the visual appearance of a rapidly moving

object by combining the effects of the Lorentz contraction in

the direction of motion and the fact that the eye records the

light that is received simultaneously even though this light

was emitted at different times from different parts of the

object. For example, consider a cube moving past O at a very

high speed. We shall assume for simplicity that the cube is

such a long distance away that the light from it that reaches

O is essentially a parallel beam (Figure 1.63). Because of

Lorentz contraction, the side of the cube nearest O and

parallel to the direction of V is shortened by a factor of . Also,

as Terrell pointed out in 1959, O may see light from the back

face of the cube, even if this back face is instantaneously in

his line of sight. At first glance, it might not be expected that

light from the far corner of the back face of the cube will

reach O, because the whole back, all the way to that corner,

is in his line of sight. However, it must be kept in mind that

the block is moving, so that as the light from that corner

travels toward O, the block moves out of the way. We see

from Figure 1.64 that O can see the far corner of the cube

even though the block is in his line of sight at the instant the

light was emitted.

 



 

FIGURE 1.63 Cube moving past a viewer O.

 



 

FIGURE 1.65 (a) Appearance of cube at rest, (b) Appearance

of cube in motion. (c) Appearance of rotated cube at rest.

 

Let us consider the appearance of a cube, with each side of

length L′, at the instant the cube appears to be directly

opposite the viewer. Were the cube at rest, it would appear

as in Figure 1.65(a). The motion of the cube results in the

near side being shortened by the factor to the length L′ and

also in the viewer’s seeing the far corner of the cube as if it

were a distance (V/c) L′ behind the near rear corner (Figure

1.66). Thus the cube appears as shown in Figure 1.65(b).

This appearance is identical to the appearance of the cube if

it were at rest and rotated through the angle a given by sin α

= V/c [Figure 1.65(c)]. Hence, the cube does not appear

distorted, but it does appear rotated. The cube does not

appear to show any effects of the Lorentz transformation,



although it is because of the Lorentz contraction of the near

side that the appearance of the cube is not distorted.

 

SUMMARY The instantaneous location of a rapidly moving

extended object is determined by the simultaneous positions

of all points on the object; it differs from that of a stationary

object because of the effects of Lorentz contraction. The

instantaneous visual appearance of a rapidly moving

extended object is determined by the light that reaches the

eye of the viewer simultaneously. This appearance differs

from that of a stationary object because of the effects of the

finite speed of light and the Lorentz contraction.

 

 

FIGURE 1.66 OP′ = L′ tan ϕ = (V/c) L′ since tan ϕ = V/c

(Problem 1.72).

 



 

FIGURE 1.67

 



 

FIGURE 1.68 The angle ϕ through which the object appears

to be rotated.

 

Example 1.6

 

Q.   Calculate the angle of Figure 1.62.

 



A.   We choose the time t = 0 to be the instant at which the

two sources are closest to O. Let t1 be the time at which O

sees the closer source at P. Then t1 = L/c. Let −t2, with t2 >

0, be the time at which the distant source emits the light

that O sees at time t1. This light travels the distance in time

t1 − (−t2) = t1 + t2 (Figure 1.67), so that

 

 

Hence,

 

 

or

 

 

Therefore, the positive solution t2 of this equation is

 

 

The angle θ is given by

 



 

Problem 1.72

 

Consider the case for which and L is sufficiently large that PO

and PO′ of Figure 1.62 are essentially parallel. Show that the

angle ϕ (Figure 1.68) that PP′ makes with the extension of OP

is given by tan ϕ = V/c.

 

Problem 1.73

 

The distances L and L′ of Figure 1.62 are equal. Draw a graph

of θ versus V/c.

 

Problem 1.74

 

A cube with sides of 1.00 m travels past an observer with the

speed V = 4c/5. The cube is sufficiently far from the observer

that the light reaching the viewer’s eye enters in a parallel

beam. Find the time between the emissions at the far back

corner and at the near side of light that reaches the viewer’s

eye simultaneously. How far does the cube travel in that time

interval?



 

Problem 1.75

 

A box of length 1.62 m, height 0.54 m, and width 0.73 m

moves with speed 0.7c in the direction of its length past an

observer. The box is sufficiently far from the observer that

the light reaching the viewer’s eyes enters in a parallel

beam. Draw a scale diagram of the appearance of the box

when it appears directly opposite the observer.

 

Problem 1.76

 

Determine the appearance of the box of Problem 1.75 when

its rear corner is directly opposite an observer who is 1.38 m

from the box at the closest point.

 

Problem 1.77

 

Describe the appearance of a “fast-moving” distant cube as

“seen” by reflected sound waves. That is, determine the

appearance, taking into account the finite speed of the

radiation by which the cube is seen, but neglecting the

effects of Lorentz contraction. Does the cube appear

distorted?



1.7   Transformation Law for

Velocities

 

Two inertial observers in relative motion do not agree on

time-interval measurements nor on all length

measurements, and so the relation between the velocities of

an object that they measure is more complicated than that

given by the galilean transformation law.



1.7.1   Derivation of the

transformation law*

 

The Lorentz transformation law for velocities can be obtained

from the Lorentz transformation equations for spatial

coordinates and time. For simplicity, we shall consider the

motion of an object along the x or x′ axis (we can drop the

arrow notation for vectors with the understanding that the

labels, such as x, denote the components of the vectors in

the positive x direction) that is moving with constant velocity

v relative to S and with velocity v′ relative to S′. The

technique for obtaining the relationship between the

velocities can be generalized in a straightforward manner to

apply to velocities not along the direction of relative motion

of the two inertial frames. This generalization is left as an

exercise (Problem 1.78).

The average velocity of an object relative to a given

reference frame is calculated from the coordinates of two

events in the history of that object (Figure 1.69). For the case

under consideration, we can omit consideration of the y and

z coordinates. Let (x1, t1) and (x2, t2) be the coordinates

relative to S of these two events. These are related to the

coordinates relative to S′ and , respectively, of the same two

events through the Lorentz transformation equations

 

 

Hence, we obtain



 

 

since for the two events as t2 – t1 → 0, or

 

 

The inverse transformation equation obtained if we solve

(1.119) for υ′ is

 

 



 

FIGURE 1.69 The average velocity is calculated from the

coordinates of two events in the history of an object.

 

For speeds |υ| and |V| much less than the speed of light c,

the term Vυ/c² in the denominator can be neglected, so

 

 

Thus, we obtain the familiar result of the galilean

transformation law for the speeds with which we are familiar

in everyday life. The deviations of the transformation law



from expectations based on ordinary experience occur for

speeds near that of light. In the limiting case in which an

object is moving relative to S′ with the velocity υ′ = c, the

velocity relative to S is given by

 

 

a result consistent with the hypothesis of the equality of the

speed of light for all observers.

The case in which |υ′| is comparable to c can be studied if we

rewrite Equation (1.119) in the form

 

 

We consider the case in which both υ′ and V are positive.

Then, for V < c, the quantity designated by α is less than

unity, and α(c – υ′) is not sufficient to increase υ′ up to the

value c. Therefore, v is less than c for υ′ and V both positive

and less than c.

 

SUMMARY The transformation law for velocities can be

calculated from the Lorentz transformation equations. The

explicit form of this transformation law depends on the



relation between the two pertinent inertial observers and the

direction of the velocity relative to one of the reference

systems.

 

Example 1.7

 

Q.   (a)   A pulse of light travels with the velocity relative to

an observer S′. If S′ travels with the velocity relative to

another observer S, determine the velocity of the pulse of

light relative to S.

(b)   Show explicitly that the speed of the light pulse relative

to S is c.

 

A.   (a)   Let us assume that the light pulse starts from the

origin of the S′ reference frame at time t′ = 0. Then, at time

t′, the light pulse is at the point with coordinates x′ = 0, y′ =

ct′, z′ = 0. The coordinates x, y, z of that point and the time t

at which the light pulse is there, relative to S, are given by

 

 

The velocity of the light pulse relative to S is given by the

components

 



 

(b)   The speed v of the light pulse relative to S is given by

 

 

thus, v = c.

 

Problem 1.78

 

The velocity of a particle is v relative to S and v′ relative to

S′. The velocity of S′ relative to S is V. Use the results of

Problem 1.57 to determine v′ in terms of v and V:

 

 

Problem 1.79

 



The velocity of S′ relative to S is . An object moves with a

speed of 0.99c in the negative x direction relative to S.

 

(a)   What is the speed of separation of the origin of S′ and

the object as seen from S? Is your answer contradictory to

the result deduced from Equation (1.123)? Explain.

(b)   What is the speed of the object as seen by S′?

 

Problem 1.80

 

An observer S′ moves with velocity relative to another

observer S. Relative to a third observer S″, both S and S′

move with the same speed V″; S moves with velocity relative

to S″ and S′ with velocity relative to S″. Find V″.

 

Problem 1.81

 

Describe some science fiction effects that would occur if the

speed of light were 60 mi/hr.

 

Problem 1.82

 



The velocity of an inertial observer S2 is relative to another

observer S1. The velocity of a third inertial observer S3 is

relative to S2.

 

(a)   Find the velocity of S3 relative to S1.

(b)   Let (x1, t1), (x2, t2), and (x3, t3) be the coordinates of

an event relative to S1, S2, and S3, respectively. Obtain the

transformation equations relating (x1, t1) and (x3, t3) in the

following two ways and show that they are equivalent:

   (i)   First obtain the transformation equations relating (x1,

t1) and (x2, t2) and those relating (x2, t2) and (x3, t3), and

use these to obtain the equations relating (x1, t1) and (x3,

t3).

  (ii)   Use the result of (a) to obtain directly the equations

relating (x1, t1) and (x3, t3).

 

Problem 1.83

 

Observer S′ moves with velocity relative to S. Derive the

transformation equation for the Lorentz contraction factor,

 

 

where



 



1.8   Events and Space-Time

 

The relativistic notions of space and time are formulated

most clearly in terms of the concepts of events and of

space-time. These can be introduced conveniently by

analogy with the customary development of the

corresponding ideas of position and space. After this

introduction, however, it is necessary to use relativity theory

to analyze the properties of space-time and the views of

different inertial observers of space-time.



1.8.1   The terminology*

 

It is desirable to review briefly our ideas of points in space,

vectors, coordinate systems, etc., before introducing the

analogous but novel ideas of relativity theory.

Earlier in this chapter, we considered space as the arena

within which objects undergo their motions. An object

occupies a region of space at one instant, and that region of

space exists even if there is no object there. The difficulties

associated with finding simple rules for describing the

regularities in the motions of real objects are bypassed in

newtonian mechanics by the extrapolation to the concept of

a point particle, an object of zero spatial dimensions; the

totality of all possible positions of a point particle forms the

continuum we call space.

Consider a number of inertial observers (who we shall

assume are at rest relative to each other in order to avoid

any difficulties with differences in their definitions of

simultaneity). Although these observers may represent the

position of a (point) particle or a point in space by different

coordinates, nevertheless they all agree on the coincidence

of the particle and that point in space. The position

displacement† between the simultaneous positions of two

particles is the same for all these observers; therefore, this

position displacement can be represented by a vector that is

defined independent of the reference frame of the observer.

However, different observers may assign different

components to the same (position displacement) vector. This

is illustrated in Figure 1.70, which shows the components of

a vector Δr relative to the coordinate systems of two

observers S and S′. The pairs of components (Δx, Δy) and



(Δx′, Δy′) are related through the formulas [see Equations

(1.103) and (1.104)]

 

 

FIGURE 1.70 The components of Δr are (x2 – x1, y2 – y1)

relative to the coordinate system of S and relative to the

coordinate system of S′.

 



 

FIGURE 1.71 An orbit viewed by two different observers. (a)

The orbit of a projectile near the surface of the earth as

viewed by observer S. (b) The orbit of a projectile near the

surface of the earth as viewed by another observer S′.

 

 

The orbit of a particle is defined as the path in space of the

particle’s motion. The position vector of each point on the

orbit, relative to a preassigned point in space, is the same for

all inertial observers at rest relative to each other. Hence,

relative to that point, the orbit of a particle is the same for all

such observers, even though different observers may use

different coordinates to describe the orbit—for example, the

orbit of a projectile near the surface of the earth is shown in

Figure 1.71(a) from the point of view of one observer S, and



in Figure 1.71(b) from the point of view of another, namely,

S′.

The above ideas are valid for inertial observers at rest

relative to each other, but not for inertial observers in

relative motion. For example, consider the view of two

observers on the position-displacement vector between the

simultaneous positions of two particles. Since whether or not

two occurrences separated in space are simultaneous

depends on the observer, that position-displacement vector

will not be the same for all observers. If this vector

represents the position of a particle at a given time relative

to a preassigned point in space, this position vector will not

be the same for all inertial observers in relative motion.

What, then, do the different observers agree on? All

observers see the same occurrences, each an incident such

as a collision or an explosion that takes place in some region

of space during some interval of time. All occurrences take

place in a nonzero region of space and take some time to

complete, but we can generalize from experience with

occurrences that take place in a small region and are

completed in a short time to the concept of a point

occurrence or an event. A (point) event is an occurrence that

takes place at a specific point in space and at a specific

instant of time.

All inertial observers agree on the coincidence of events—

that is, if two events take place at one point in space at the

same time relative to one observer, they also occur

simultaneously at some point in space relative to any other

inertial observer. For example, if all the coordinates t1 and

(x1, y1, z1) and t2 and (x2, y2, z2) of two events are equal

according to S, then it follows that the coordinates of the two

events S′, moving with velocity , relative to S,

 



 

and

 

 

are equal. Therefore, although the space and time

coordinates of an event may differ for different inertial

observers, each event is an entity that is independent of any

particular set of coordinates that are used to describe it. In

particular, the relation of one event to another,

corresponding to a position displacement or the position

vector of one point in space relative to another, is something

that is the same for al1 observers even though different

observers may assign different space and time components

to describe the occurrence of one event relative to another.

Figure 1.72 shows the components of the description of the

event E2 relative to the event E1 with respect to the

coordinate system of observer S. These components

describe the event displacement of E2 relative to E1. The

pairs of coordinates (Δx, Δt) and (Δx′, Δt′) of E2 relative to E1

with respect to S and S′ are related through the formulas

 

 



 

FIGURE 1.72 Two observers may assign different space and

time coordinates to the two events, but the event

displacement between the events. the relation of the event

E, to E1, is independent of the observers. (a) Events E1 and

E2. (b) The components (x2 – x1, t2 – t1) of the event

displacement between E1 and E2.

 



 

FIGURE 1.73 The event P occurs, relative to S, at the position

(x0, y0, z0) at the time t0. Relative to S, QR is the point in

space with coordinates (x1, y1, z1).

 

The totality of all possible positions of a point particle forms

what we call space. Since each point in space can be

specified by three numbers, say the x, y, and z coordinates

relative to one coordinate system, we say that space has

three dimensions. Similarly, the totality of all possible events

forms space-time. An event can be represented by an

observer S as a point in space at an instant of time. Four

numbers, the time and the three components of the spatial

position vector, are needed to specify the event relative to

the observer. Therefore, space-time has four dimensions.

It is impossible to construct in space four mutually

perpendicular axes on which all coordinates of events can be

plotted, just as it is impossible to construct three mutually



perpendicular axes on a plane. However, on a plane, we can

draw a perspective diagram of three mutually perpendicular

axes; if we omit one spatial component, say the z

component, we can draw the coordinate axes of space-time

on a plane as shown in Figure 1.73. An event is represented

by a point such as P on that graph. The point P, which

represents a time and a position in space, is called a world

point in space-time. A point in space is represented on such

a graph by a line parallel to the t axis, such as the line QR

shown. It must be kept in mind that QR is a fixed point in

space relative to the observer S, but not a fixed point in

space relative to all observers.

The history of a particle is a continuous sequence of events;

it can be represented, relative to one observer S, as a curve

in the four dimensions of space-time. This curve (Figure 1.74)

is called the world line of the particle. The world line of a

particle that moves with a variable velocity relative to S is

curved (Figure 1.75). The world lines of all inertial observers

relative to any one inertial observer are straight lines.

 



 

FIGURE 1.74 The world line of a particle moving with a

constant velocity relative to an inertial observer S. (a) The

position in space relative to S of a particle at various instants

of time relative to S. (b) The world line of the particle of (a)

as seen by an observer S. The orbit is the plane through the t

axis and the projection of the world line onto the spatial

region.

 



The world lines of light pulses play special roles in physics

because of the equality of the speed of light for all inertial

observers. A light pulse that starts at the origin of the

reference frame of S at time t = 0 reaches the position (x, y,

z) at time t where

 

 

Because c is such a large speed compared to those that we

perceive in everyday life, the world line of the light pulse can

be approximated by a straight line with t = r/∞ = 0 for the

description of familiar phenomena. This is valid also for the

world line of any motion with a speed of the order of that of

light. Therefore, to show the pertinent features of such fast

motions on a space-time diagram, it is necessary to use

relative scales for the time axis and the spatial axes that

would appear preposterous for everyday use. The most

convenient scale to use is that in which the time axis is

marked off in the units of ct, that is, in units of distance. We

introduce the variable τ, defined by

 

 

which measures off time, for example, in meters or miles.

 



 

FIGURE 1.75 The world line, relative to an observer S, of a

particle that rises to the height y0 at time t0 and is in free

fall near the earth’s surface.

 

 



FIGURE 1.76 (a) The world line of a light pulse that goes

through the event O, the origin in space at time τ = 0, and

moves in the positive x direction. (b) The world lines of all

light pulses through O form the light or null cone relative to

O, described by τ² − (x² + y² + z²) = 0.

 

In these units, the world line of a light pulse is a straight line

that makes an angle of 45° with the τ axis (Figure 1.76). The

world lines of all light pulses through an event O form the

light cone, also called the null cone, relative to O. The world

line of a particle traveling with the constant velocity v is a

straight line that makes an angle θ, given by

 

 

with the τ axis. If υ is negligible compared to c, then tan θ ≈

0 and θ = 0; the world lines of the motions (with constant

velocity) perceived in everyday life appear in this space-time

diagram to be parallel to the τ axis (Figure 1.77).

 



 

FIGURE 1.77 The world line of two particles traveling with

constant velocity relative to S. The speed of particle 1 is of

the same order as c, and that of particle 2 is of the order of

the speeds perceived in everyday life.

 



 

FIGURE 1.78 World line of a particle undergoing circular

motion with constant speed.

 

SUMMARY The totality of all possible occurrences forms the

four-dimensional continuum that we call space-time. The

analogues, in space-time, of positions, position

displacements, points, and orbits in space are, respectively,

events, event displacements, world points, and world lines.

 

Example 1.8

 



Q.   A particle undergoes circular motion in the xy plane with

constant speed relative to an inertial observer S. Draw the

world line of the particle on the space-time diagram of S.

 

A.   Let us choose the spatial origin, x = y = z = 0, as the

center of the motion so that the position vector of the

particle is given by the components

 

 

The speed of the particle is Rω, where R is the radius of the

circle of motion. We suppress the z axis in the space-time

diagram. Since x² + y² = R², the particle travels on the

surface of a right cylinder of radius R in space-time with its

axis along the ct axis (x = y = 0). We set ct = τ so that

 

 

and from this, we can see that the world points rotate about

the ct axis on a circle whose plane moves up the axis. The

world line is the helix shown in Figure 1.78.

 

Problem 1.84

 

Calculate the following times, in meters: Your age, the time

since Julius Caesar, the time it takes light to pass an atom of



radius ∼10−8 cm, the time it takes light to pass a nucleus of

radius ∼10−12 cm.

 

Problem 1.85

 

(a)   Calculate the parameter β = v/c for the following

speeds: The speed with which you entered this room, 60

mi/hr, the speed of an orbiting satellite (∼5 mi/sec).

(b)   Calculate the angle θ = arctan β for the speeds of (a).

 

Problem 1.86

 

In an alternate formalism to that given above, distances are

measured in units of time—for example, the distance L

meters is given in seconds by L/c = L/(2.998 × 10⁸) sec.

 

(a)   What is the physical significance of L/c sec?

(b)   Calculate the following distances in seconds: Your

height, the distance around the earth, the distance to the

sun.

 

Problem 1.87

 



Draw a space-time diagram showing world lines of two

particles that undergo a collision and then separate.

 

Problem 1.88

 

The world line of particle 1 relative to an inertial observer S

is described by the equations

 

 

The world line of particle 2 relative to an inertial observer S

is described by the equations

 

 

(a)   Draw the world lines of the particles on the space-time

diagram of S.

(b)   What equations describe the world line of particle 1

relative to an inertial system fixed to particle 2?

(c)   Draw the world lines of particle 1 and the point x = y =

z = 0 in S on the space-time diagram of particle 2.

 

Problem 1.89



 

Draw the world line, on the space-time diagram of S, of a

particle that starts from rest at time t = 0 and undergoes an

acceleration along the positive x direction until it acquires a

speed v ≈ c.

 

Problem 1.90

 

A pulse of light is reflected back and forth between two

mirrors at the end of a meter stick lying along the positive x′

axis of an inertial observer S′ (Figure 1.79). The light pulse is

at the mirror at x′ = 0 at t′ = 0.

 

(a)   Draw the world line of the light pulse on the space-time

diagram of S′.

(b)   Find the coordinates, relative to an inertial observer S,

of the events at which the light pulse reverses direction; S′

moves with velocity relative to S.

(c)   Draw the world line of the light pulse on the space-time

diagram of S.

 

 



FIGURE 1.79 Reflected light pulse.



1.8.2   The relation between the

space-time diagrams of two inertial

observers*

 

The relation between the space-time diagrams of two inertial

observers, S and S′, in relative motion with respect to each

other, can be determined from the Lorentz transformation

law. For simplicity, we consider the case in which S′ is

moving with speed V along the positive x direction and for

which the event x = y = z = τ = 0 (with τ = ct) is described

by S′ as x′ = y′ = z′ = τ′ = 0. In this case, we can omit

consideration of the respective y and z axes and coordinates,

since these are the same for both observers. The relevant

parts of the space-time diagrams are the xτ and x′τ′ planes,

which coincide. The transformation law for the coordinates of

an event,

 

 

can be simplified through the introduction of the parameters

 

 

These parameters are related by the equations



 

 

In terms of these parameters, the Lorentz transformation law

(1.138) becomes

 

 

The τ′ axis of S′ is seen by S as the line x′ = 0 or x = βτ. This

is the world line of the spatial origin of S′. The x′ axis of S′ is

the line τ′ = 0 or τ = βx. These two axes appear to S as lines

that make equal angles, each given by θ = arctan β, with the

τ and x axes, respectively (Figure 1.80). The relative scales

on the axes can be determined from the Lorentz

transformation equations or, as shown in Example 1.9, from

the formulas for time dilatation and Lorentz contraction.

 



 

FIGURE 1.80 The S′ axes on the space-time diagram of S. for

the case shown.

 

The light cone and the coordinate lines of S′ can also be

drawn on the space-time diagram of S (Figure 1.81). The

light cone is given by the equation x = ±τ on the space-time

diagram of S and by the equation x′ = ±τ′ on the space-time

diagram of S′. The coordinate line, x′ = K, a constant,

appears in the space-time diagram of S as the line

 

 



 

FIGURE 1.81 (a) Lines of constant x and lines of constant τ

on the space-time diagram of S. (b) Lines of constant x′ and

lines of constant τ′ on the space-time diagram of S.

 

this line is parallel to the τ′ axis. The line x′ = a constant

represents a point in space to S′, since the spatial x′

coordinate remains the same for all times τ′. This line does

not represent a point in space to S but is the world line of a

particle traveling with the constant speed V. The line τ′ = a



constant appears in the space-time diagram of S as a line

parallel to the x′ axis and does not represent to S a line of

constant time τ. Example 1.9 illustrates one method for

determining the scales and the coordinate lines of the space-

time diagram of S′ on that of S.

 

SUMMARY The space-time diagram of one inertial observer

appears to have oblique axes relative to another inertial

observer in relative motion. The direction of the axes and the

scales can be determined from the Lorentz transformation or

its consequences.

 

Example 1.9

 

Q.   An inertial observer S′ travels with the velocity relative to

another inertial observer S.

(a)   Draw the x′ and τ′ coordinate axes of S′ on the space-

time diagram of S.

(b)   Use the formulas for time dilatation and Lorentz

contraction to mark off the scales on these axes.

(c)   Mark on this diagram the events for which x′ = 2, τ′ = 1

and x′ = 1, τ′ = 3.

 

A.   (a)   Relative to the coordinate axes of S, the τ′ and x′

coordinate axes of S′ are described by τ = (1/β)x and τ = βx.

These lines are inclined to the coordinate axes of S at the

angle φ = arctan β = arctan 3/5 = 30°58′. These lines can be



drawn as the lines connecting the origin O to the points x =

3, τ = 5 and x = 5, τ = 3 on the space time diagram of S

[Figure 1.82(a)].

 

 

FIGURE 1.82 The coordinate axes and units of S′ and the

events A and B on the space-time diagram of S. (a) The x′

and τ′ coordinate axes, (b) The event T1′ corresponds to τ′ =

1, x′ = 0, and the event X1′ to τ′ = 0, x′ = 1. (c) The event A

corresponds to x′ = 2, τ′ = 1, and B corresponds to x′ = 1, τ′

= 3.

 

(b)   Let T1′ be the event on the τ′ axis with the τ′ coordinate

unity. The τ coordinate of T1′ is given by the time-dilatation

formula to be . Therefore, on the space-time diagram of S,

. Let X1′ be the event on the x′ axis with the x′ coordinate

unity. Then the following argument or the use of the formula

for Lorentz contraction (Problem 1.92) shows that, on the

space-time diagram of S, OX1′ = OT1′. The point Ex at the

intersection of the line through T1′ parallel to OX1′ and the

line through X1′ parallel to OT1′ lies on the light cone x′ = τ′.



Because of this construction, the x′ coordinate of X1′ equals

that of E1, and this in turn is equal to the τ′ coordinate of E1

and hence that of T1′. Therefore, OX1′ = OT1′ [Figure

1.82(b)].

(c)   The events X1′, X2′, X3′, . . . on the x′ axis at distances

from O of OT1′, 2 × OT1′, 3 û OT1′ are marked off. Similarly,

the events T1′, T2′, T3′,... on the y′ axis at distances from O

of OT1′, 2 × OT1′, 3 × OT1′ are shown. The event with

coordinates x′ = 2, τ′ = 1 is at the intersection of the line

through X2′ parallel to OT1′ and the line through T1′ parallel

to OX1′. The event with coordinates x′ = 1, τ′ = 3 is at the

intersection of the line through X1′ parallel to OT1′ and the

line through T3′ parallel to OX1′ [Figure 1.82(c)].

 

Problem 1.91

 

An inertial observer S′ travels with the velocity relative to

another inertial observer S.

 

(a)   Draw the x′ and τ′ coordinate axes of S′ on the space-

time diagram of S.

(b)   Mark off the scales on these axes.

(c)   Mark on this diagram the following events:

 



 

Problem 1.92

 

An inertial observer S′ travels with the velocity relative to

another inertial observer S. Let X′ be the event with

coordinates x′ = 1, τ′ = 0 and X be the event x′ = 1, τ = 0.

Note: It is τ, not τ′, that is zero at X.

 

(a)   Show, from the Lorentz contraction formula, that on the

space-time diagram of S.

(b)   Show that the acute angle that XX′ makes with the x

axis is π/2 – φ on the space-time diagram of S.

(c)   Apply the trigonometric law of sines to obtain the length

OX′ on the space-time diagram of S.

 

Problem 1.93

 

The earth travels with speed 2.98 × 10⁴ m/sec in its orbit

around the sun. Calculate the angle between the τ′ and τ

axes for the case in which βc = 2.98 × 10⁴ m/sec.



 

Problem 1.94

 

An inertial observer S′ travels with the velocity relative to

another inertial observer S.

 

(a)   Draw the x′ and τ′ coordinate axes of S′ on the space-

time diagram of S.

(b)   Find the coordinates relative to S of the following

events:

 

 

(c)   Draw the scales on the axes and draw in the coordinate

lines x′ = 1, x′ = 2, x′ = 3 and τ′ = 1, τ′ = 2, τ′ = 3.

 

Problem 1.95

 

(a)   Show that the quantity τ² – x² has the same value

relative to all inertial observers that are in relative motion in

the x directions and that have origins coincident at time

zero.



(b)   Draw, on the space-time diagram of S, the curves τ² – x²

= 1 and τ² – x² = – 1. Explain why these curves are called

calibration curves.



1.8.3   Space-time view of time

dilatation and Lorentz contraction *

 

The space-time diagram of S′ as seen by S (Figure 1.81)

shows Lorentz contraction and time dilatation in the

following way: Consider a rod of unit length, with its ends at

x′ = 0 and x′ = 1, moving with S′ past S. The world lines of

the endpoints of the rod are shown on the space-time

diagram of S in Figure 1.83. Three events, O, B, and C, in the

history of the endpoints of the rod are marked; O and B are

the positions of the endpoints at the time τ = 0, and O and

C are the positions of the endpoints at the time τ′ = 0.

Therefore, according to S, the rod appears at OB at time τ =

0, and thereafter moves parallel to OB between the lines OD

and BC; according to S′, the rod appears at OC at time τ′ =

0, and thereafter moves parallel to OC between the lines OD

and BC. It can be seen from the figure that OB is less than

unity, so the rod appears contracted to S. On the other

hand, the event B corresponds to a value of τ′ less than

zero, and thus according to the clocks of S′, the event B

occurred before the event O. Also, since the time τ of the

event C is greater than zero, the event C occurred after the

events O and B, according to the clocks of S.

 



 

FIGURE 1.83 World lines of the ends of a rod of unit length

moving with S′.

 

It can be seen from the space-time diagram (Figure 1.83)

that, to both inertial observers S and S′, the world lines of

the ends of the rod are the straight lines OD and BC.

However, the coordinates that one observer assigns one

event on these world lines differ (except for the event O)

from the coordinates assigned to that event by the other

observer.

 



 

FIGURE 1.84 Time dilatation.

 

Time dilatation is illustrated in Figure 1.84. The τ′ axis is the

world line of a clock situated at the origin in the space of S′.

The events T1′, T2′, and T3′ mark the successive tickings of

that clock. These events have τ coordinates successively

greater than 1, 2, and 3, respectively, so, according to the

clocks of S, that S′ clock appears to be running slow. On the

other hand, the events T1, T2, and T3 mark the successive

tickings of a clock at the origin in space of S, and these

events have τ′ coordinates successively greater than 1, 2,

and 3, respectively. According to the clocks of S′, that clock

appears to be running slow.

 



 

FIGURE 1.85 The event E occurs after τ = 0 according to S

and after τ′ = 0 according to s′.

 

SUMMARY Time dilatation and Lorentz contraction can be

exhibited on a space-time diagram. These phenomena

result from the obliquity of the axes of two inertial observers

in relative motion and the relation between the scales on

these axes.

 



 

FIGURE 1.86 If , the event E occurs at x″ = 0 relative to an

observer S″.

 

Problem 1.96

 

(a)   Draw the lines of constant x and constant τ on the

space-time diagram of S′ for the case in which S′ moves with

velocity relative to S.

(b)   Show the phenomena of Lorentz contraction and time

dilatation on the diagram of (a). Show the Lorentz

contraction of a rod at rest in S and of a rod at rest in S′.

 



 

FIGURE 1.87 The event E′ occurs at a point in space different

from x = 0 according to S, and at a point in space different

from x′ = 0 according to S′.

 

Problem 1.97

 

(a)   Draw the space-time diagram of S in terms of the

coordinates x and T = ct/3 instead of x and τ. Show the x′

and T′ axes of S′ if S′ moves with the velocity relative to S.

(b)   On your diagram of (a), show the Lorentz contraction of

a rod of unit length moving with S′.



1.8.4   The partitioning of space-time

by a light cone*

 

Let us now consider an event, say that marked E in Figure

1.85, that occurs within the light cone (τ1/x1 > 1) at a time

later than τ = 0 according to S (τ1 > 0). This event also

occurs at a time τ1′ later than τ′ = 0 according to any

observer S′ moving with the velocity , |V| < c, relative to S,

since τ1′ = γτ1[1 – β(x1/τ1)] > 0. However, the point in

space at which this event occurs depends on V. For example,

for an observer S″ for which (Figure 1.86), the event E occurs

at the origin of the S″ space, x″1 = γ[x1 – (x1/τ1)τ1] = 0.

Thus, although the spatial coordinate of the event E relative

to S′, x′, is less than zero, that relative to S, x, is greater than

zero, and that relative to S″, x″, is equal to zero, the event E

in each case occurs at a time greater than zero. Relative to

the time τ = 0, τ′ = 0 or τ″ = 0, the event E occurs in the

future. This is true for all events within that branch of the

light cone, and hence that region of space-time can be called

the absolute future relative to the event O. Similarly, all

events within the other branch of the light cone occur in the

absolute past with respect to O.

Now we consider an event, say that marked E′ in Figure 1.87,

that occurs outside the light cone (|x2/τ2| > 1) at a point in

space different from x = 0. Let S′ be any other inertial

observer moving with velocity relative to S and for which the

event O has coordinates x′ = τ′ = 0. It is still assumed that

|V| < c. Since the world line x′ = 0 lies within the light cone,

the event E′ occurs at a point x′2 in space different from x′ =

0 according to S′: x′2 = γx2[1 – (βτ2/x2)] ≠ 0. The time at

which this event occurs, however, depends on the observer.



For example, for an observer S′″ for which (Figure 1.88), the

event occurs at time τ′″ = γ[τ2 – (τ2/x2)x2] = 0. Therefore,

although the time at which the event E′ occurs is before that

of O according to S′, later than that of O according to S, and

simultaneous with O according to S′″ the event E′ occurred at

a point in space different from O according to each observer.

This is true for all events outside the light cone, and so the

region of space-time outside the light cone can be called the

absolute elsewhere relative to O. The division of space-time

by the light cone into absolute past, absolute elsewhere, and

absolute future is shown in Figure 1.89.

 

 

FIGURE 1.88 If , the event E′ occurs at the time τ′″ = 0.

 

If units for the time and space axes are used that are

appropriate for the description of the motions perceived in



everyday life, the angular opening of the light cone becomes

almost 180°; in the limiting case, the two branches of the

 

 

FIGURE 1.89 Division of space-time by the light cone.

 

cone degenerate into one plane (Figure 1.90) that separates

the absolute future from the absolute past. All lines such as

that corresponding to time τ′ = 0 lie squashed between the

two degenerate cones or in the plane, and hence it appears

that time is absolute, the same for every observer. This



result is in agreement with the galilean transformation that is

valid for all speeds V « c.

 

SUMMARY Space-time is divided by the light cone with its

vertex at an event O into three distinct regions: the absolute

future relative to O, the absolute elsewhere relative to O, and

the absolute past relative to O.

 

Example 1.10

 

Q.   An event E occurs at the world point with coordinates x

= 5, τ = 3 relative to an inertial observer S (Figure 1.91).

(a)   Find the speed of the inertial observer S′ for which E and

O occur at the same time.

(b)   Find the spatial distance between E and O relative to S′.

 

A.   (a)   Let the event O occur at the time t′ = 0 relative to

S′. Then, since E and O occur at the same time, E occurs at

the time t′ = 0 and lies on the x′ axis. The x′ and τ′ axes are

symmetrically situated about the light cone, and since the

event x = 5, τ = 3 lies on the x′ axis, the event E′, τ = 5, x =

3, lies on the τ′ axis. Event E′ represents one event in the life

of the S′ clock that is at O at time t = 0, so the speed V of

that clock relative to S is given by V = 3c/5. Since the τ′ axis

lies in the region between the positive τ and x axes, the

motion of S′ is along the positive x direction.

(b)   The position of E relative to S′ is given by



 

 

Therefore, the spatial distance between E and O relative to S′

is 4.

 

 

FIGURE 1.90 Division of space-time, with the axes marked in

units appropriate for everyday experience, by the light cone.

 



 

FIGURE 1.91 The event E and the coordinate axes of S′.

 

Problem 1.98

 

An event E occurs at the world point with coordinates x = –

13, τ = 12 relative to an inertial observer S.

 

(a)   Find the speed of the inertial observer S′ for which E and

O occur at the same time.

(b)   Find the spatial distance between E and O relative to S′.

(c)   Draw the coordinate axes of S′ on the space-time

diagram of S and mark off the scales on these axes.

 



Problem 1.99

 

An event E occurs at the world point with coordinates x = 4,

τ = 5 relative to an inertial observer S.

 

(a)   Find the speed of the inertial observer S′ for which E and

O occur at the same position in space.

(b)   Find the time between the events E and O relative to S′.

 

Problem 1.100

 

An event E1 can be said to be the cause of an event E2, the

effect, only if the event E1 occurs (in time) before the event

E2. Suppose that the effect E2 is triggered by a signal

propagated from the cause E1. Let v be the speed at which

this signal is propagated. Show that v ≤ c. Hint: Consider the

alternative, v > c. Show that, in some inertial reference

systems, the event E2 appears as the cause and not the

effect.

 

Problem 1.101

 

Show that the world line of a particle, after an event E, must

lie inside the light cone relative to E (Figure 1.92) if the

particle’s speed never exceeds c.*



 

 

FIGURE 1.92 The world line through E lies inside the light

cone with vertex at E.

 

Problem 1.102

 

(a)   Two searchlights, a distance 2L apart on the ground, are

directed toward each other. The two beams are swung at the

angular rate of ω Hz upward in the vertical plane containing

the two searchlights. Calculate the speed of the point of

intersection of the two beams as a function of t, the time

after they were horizontal. When is this speed equal to c? Is

it ever greater than c? Hint: Let x equal the distance from

the midpoint between the two searchlights to the point of

intersection of the beams at time t. Show that tan ωt′ = x/L,

where . Then show that v = dx/dt can be written as c cos



α(t′)/sin [ωt′ + α(t′)], where tan α(t′) = c cos ωt′/ωL. Note that

ωt′ π/2 for x oo and that vt′ = 0 = ωL.

(b)   The two searchlights of (a) are directed upward at τ = 0

and rotated toward each other in the vertical plane

containing the two searchlights at the constant angular rate

of ω Hz. Calculate the velocity of the point of intersection of

the beams and discuss your answer.

(c)   Is there any contradiction between the answer to (a)

and that of Problem 1.100?†



1.8.5   Space-time intervalst‡

 

The region of space-time in which an event E lies relative to

the event O can be determined from the coordinates in

space, (x, y, z), and in time, τ, of the event E with respect to

O of any observer S. If E lies on the light cone, then the

quadratic form s², defined by

 

 

is equal to zero. This quadratic expression has the same

value when evaluated for the event E for all observers

(Section 1.5),

 

 

thus for all events on the light cone, s² is equal to zero for all

observers.

Consider now an event E in the absolute future with respect

to O. There exists an inertial reference system S″ (Figure

1.86) for which this event occurs at the same point in space

as does O but later in time; in this reference frame, x″ = y″ =

z″ = 0 and τ″ > 0. Hence

 



 

Since s² has the same value relative to any inertial observer,

the coordinates of E relative to S satisfy the condition

 

 

Also, since E occurs in the absolute future, τ > 0. Similarly, it

can be shown that the coordinates relative to S of any event

E″ in the absolute past also satisfy Equation (1.147) and the

condition τ < 0.

Now consider an event E′ in the absolute elsewhere. There

exists an inertial reference frame S′″ (Figure 1.88) in which E′

occurs at the same time as O; in that frame, τ′″ = 0 and x′″²

+ y′″² + z′″² > 0. Hence

 

 

Since S² has the same value relative to any inertial frame,

the coordinates of E′ relative to S satisfy the condition

 

 

The coordinates (x, y, z) and τ specify the event

displacement of the event E relative to the event O. An event

displacement for which S² > 0 is called a time-like event

displacement, one for which s² = 0 is called a null event

displacement, and one for which s² < 0 is called a space-like

event displacement* (Figure 1.93). The square root of the



absolute value of S², , is called the interval between the two

events O and E.†

 

 

FIGURE 1.93 The values of s² = τ² – (x² + y² + z²) in the

regions of space-time.

 

If the event displacement between two events in space-time

is space-like, there exists an inertial reference system in

which the two events occur simultaneously. The distance

between the two points in space relative to that reference

frame is called the proper length separating those events.



The proper length between the two space-like events is

given by .

If the event displacement between two events in space-time

is time-like, there exists an inertial reference system in which

the two events occur at the same position in space. One can

imagine a clock fixed in this system, which therefore moves

with constant velocity relative to S from the event O to the

event E and which measures time, in units of length, as the

interval past O if t > 0 or as before O if t < 0. Consider now a

particle that moves with constant velocity relative to S from

the event O to the event E. The time τ0 that would be read

by a clock fixed to the particle,

 

 

 



FIGURE 1.94 The world line of a particle undergoing

accelerated motion relative to S.

 

is called the proper time of the particle. This proper time

interval is the smallest measure of the time between the two

events O and E in the particle’s life; the time between these

two events relative to any inertial observer is equal to or

greater than τ0. In the usual units of time, the proper time of

the particle when it coincides with the event with

coordinates relative to S of (x, y, z) and t is given by

 

 

We can associate a proper time relative to O with a particle

whose velocity is not constant with respect to S by

introducing the small change in the proper time during each

small segment of the motion in which the speed of the

particle is appreciably constant with respect to S (Figure

1.94). If the particle’s speed relative to S at the event

labeled x, y, z and t is approximately constant during the

motion to the event at (x + dx, y + dy, z + dz), and t + dt,

the change in the proper time dt0 associated with the

separation of those two events can be approximated by

 

 

where v(t), with components dx/dt, dy/dt, dz/dt, is the

velocity of the particle with respect to S in its motion from



the first event to the second (Figure 1.95). The total proper

time throughout its motion from the event O to the event

with time t according to the clocks of S is therefore the sum

of the small changes dt0 in the proper time throughout the

motion; we write

 

 

 

FIGURE 1.95 The proper time interval Δt0 in the reference

frame in which the particle is instantaneously at rest at t0 =

0.

 



where, it must be noted, v(t) is a function of t.

The proper time of any event on a particle’s world line

depends on the history of the particle; thus, there is, in

general, no simple transformation equation relating the

proper time on a world line to the corresponding time as

determined by an inertial observer. However, the world line

of a particle is a curve in space-time, and the proper time τ0

along that world line is an appropriate parameter to use in

describing the world line. Thus, the world line can be

represented relative to an observer S by the equations

 

 

SUMMARY The quadratic form s² = τ² – (x² + y² + z²) is

positive, zero, or negative if the event displacement

described by the coordinates (x, y, z), and τ is time-like, null,

or space-like, respectively. If the event displacement is

space-like, is the proper length, or the distance between the

two events relative to that inertial system in which the

events occur at the same time. The event displacements

between two events along a particle’s world line are timelike,

and measures the proper time between the events, the time

measured by an inertial clock that moves from one event to

the other.

 

Example 1.11

 

Q.   An object, at the event O at time τ = 0, travels with the

velocity relative to S for a time of 5 m, and then abruptly

reverses its velocity to and returns to the same point in the



reference frame of S [Figure 1.96(a)]. Describe the proper

time of the particle that elapses during this trip.

 

 

FIGURE 1.96 The twin paradox, (a) World line of a particle

that, relative to S, travels for a time of 5 m with velocity ,

and then for the same length of time with velocity . (b) The

proper time of the particle during the motion of (a) is 6 m. At

each meter of time, the particle emits a light signal that

travels to S on one of the world lines shown.

 

A.   The proper time interval dt0 during the time interval dt

as determined by S is

 

 

where during the first 5 m of time and during the second 5 m

of time. Therefore, throughout the motion

 



 

the total proper time T0 is [Figure 1.96(b)]

 

 

Thus, the proper time is less than the time observed by an

inertial observer.

 

This is the basis of the famous “twin paradox.”* One twin

goes on a space journey and returns to the other twin, who

stayed at home. Time is measured in each case by the pulse

rate and the aging process. When the traveler returns home,

he has aged by the amount

 

 

while the twin that stayed home has aged by

 

 

The paradox appears if we note that, to the traveler, the

stay-at-home twin moves off and then returns. However,



there is an observable difference in the motions; the traveler

experiences accelerations that distinguish his motion from

that of the other twin.

 

Problem 1.103

 

The earth travels with the speed 2.98 × 10⁴ m/sec in its orbit

around the sun. Assume that the sun is at rest in an inertial

system. Calculate the age of a man who lives 70 years as

determined by clocks in the sun’s rest system.

 

Problem 1.104

 

The Pleiades nebula is 130 parsecs away. How fast would a

space traveler have to move relative to the earth in order

that he reach this nebula in 70 years? 1 parsec = 3.09 × 10¹⁶

m.

 

Problem 1.105

 

The x and τ coordinates, in meters, of three events relative

to S are listed below. Their y and z coordinates are the same.

 



 

(a)   Determine whether the event separation between each

pair of events is time-like, space-like, or null.

(b)   Find the proper length between each space-like

separation.

(c)   Find the proper time along each time-like separation.

(d)   Find the velocity relative to S of the reference system in

which each spacelike separation is along the x′ axis.

(e)   Find the velocity relative to S of the reference system in

which each timelike separation is along the τ′ axis.

 

Problem 1.106

 

A space traveler wishes to travel to a star that is 15 × 10¹³

km away; he wishes to age only 10 years in the process. If

he did this and returned to earth at the same speed, how

long would he have been traveling according to a clock at

rest on the earth?



1.8.6   Minkowski geometry*

 

Space-time is a four-dimensional continuum in which we can

define points (events) and straight lines. However, the

axioms that these points and lines satisfy are not those of

Euclidean geometry, the geometry applicable, for example,

to this sheet of paper. A Euclidean four-dimensional space is

conceivable and, therefore, is one of the geometries of

interest to mathematicians; in such a 4-space, the distance d

between two points labeled (τ1, x1, y1, z1) and (τ2, x2, y2,

z2) is given by

 

 

and the distance between the points calculated from this

formula is the same for all coordinate systems. On the other

hand, in the geometry of space-time, the geometry that

describes the real world, d² calculated for two points as

given by Equation (1.160) does not have the same value in

all coordinate systems; rather, the “distance” in space-time

between two events (r1, x1, y1, z1) and (τ2, x2, y2, z2),

defined as the interval s,

 

 

is the same for all observers.

In a space with Euclidean geometry, two lines that are

orthogonal in one coordinate system are orthogonal in all.



However, two straight lines, such as the τ and x axes defined

by x = y = z = 0 and τ = y = z = 0, that subtend an angle of

90° in one coordinate system on a space-time diagram do

not subtend an angle of 90° relative to the space-time

diagram of every other inertial observer (Figure 1.97).

Therefore, orthogonality in space-time cannot be defined in

terms of 90° angles that retain their values relative to all

coordinate systems. Orthogonality in space-time can be

defined, however, in terms of 90° angles relative to one

coordinate system, and this definition can be stated in a

manner that does not depend in any way on that coordinate

system—that is, we can define orthogonality in space-time

such that, if it is a property of two lines in one coordinate

system, it is a property of those two lines in all coordinate

systems. This point is illustrated by the following examples.

 

 

FIGURE 1.97 The two lines, the τ and x axes, that subtend an

angle of 90° on the space-time diagram of S do not do so on

the space-time diagram of S′.



 

Consider two perpendicular line segments and at one instant

of time in the space of an inertial observer S (Figure 1.98).

The event displacement between the events O and P is

space-like relative to all inertial observers, and furthermore,

since the interval is invariant,

 

 

Similarly, the event displacement between the events O and

Q is space-like, and the invariant interval is given by

 

 

The condition relative to S, that the spatial line segments

and subtend an angle of 90°, can be expressed by the

pythagorean theorem:

 

 

This can be rewritten in terms of the invariant intervals as

 

 

by definition, two space-like event displacements, those

between events O and Q



 

 

FIGURE 1.98 Two orthogonal spacelike event displacements

as seen by two different inertial observers. [The dashed lines

in (b) are parallel to the axes.]

 

and events O and P, are orthogonal if the event

displacement between events P and Q is space-like and if the

respective intervals satisfy Equation (1.164).

 



 

FIGURE 1.99 The event displacements between events O and

P and events O and Q are orthogonal. The dashed line is a

null event displacement.

 

Consider now three events, O, P, and g, for which O and P

occur at the same point in space and O and Q occur at the

same time relative to an inertial observer S (Figure 1.99). On

the space-time diagram of S, the two event displacements

subtend an angle of 90°. This condition can be expressed in

an invariant way as follows: If the intervals and are equal,

the event displacement from the event P to the event Q is

null. By definition, a time-like event displacement is

orthogonal to a space-like event displacement if the end-

points of equal-interval event displacements along those

directions are connected by a null event displacement. Thus,

for example, the τ and x axes in one coordinate system are

orthogonal by this definition even though, on a space-time

diagram relative to another coordinate system, they meet at

an angle different from 90°.

Two time-like event displacements are never orthogonal;

since the vertex angle of the light cone is 90°, there exists



no coordinate system in which they subtend an angle of 90°.

The above examples show the manner in which

orthogonality can be defined in the geometry of space-time.

These definitions can be combined into one definition

through use of the notion of 4-vectors, considered in Section

1.9. This definition also gives the condition for the

orthogonality of a null event displacement with another

event displacement.

The geometry that is defined by these relations of distance

and orthogonality is called Minkowski geometry,* after the

Russian-German mathematician H. Minkowski (1864–1909),

who formulated Einstein’s special theory of relativity in terms

of this geometry of space-time.

 

SUMMARY The geometry of space-time is called Minkowski

geometry. The distances of this geometry and the conditions

for orthogonality can be specified in a manner that is

independent of any coordinate system.

 

Example 1.12

 

Four event displacements, one time-like and three space-like

—OT, OX, OY, and OZ—which are mutually orthogonal, can

be used as coordinate axes for a

reference system in space-time. If we choose OT as the time

axis, the event T has the coordinates (τ, 0, 0, 0) where .

Since OT is orthogonal to OX, OY, and OZ, the events X, Y,

and z all have zero time coordinates [Problem 1.108(c)]. If



we can choose OX as the x axis, the event X has the

coordinates (0, x, 0, 0), where ; the events Y and z have zero

x coordinates [Problem 1.108(a)]. We therefore can choose Y

as the y axis, and the event Y has the coordinates (0, 0, y,

0), where ; then Z must have co-ordinates (0, 0, 0, z), with ,

and it must lie on the z axis.

 

Problem 1.107

 

A sphere in a Euclidean 4-space is defined by the condition

d² = c². Define a “sphere” in a Minkowski 4-space, and draw

the intersection of one in the coordinate system S with the

plane y = z = 0.

 

Problem 1.108

 

(a)   Let OP and OQ be two space-like line segments that are

orthogonal in a Minkowski 4-space. Let (τ1, x1, y1, z1) and

(τ2, x2, y2, z2) be their coordinates relative to a coordinate

system S (which you may choose on the basis of

convenience). Show that

 

 

(b)   Show that if S′ is moving with the velocity βcx relative to

S, then

 



 

is a consequence of the equation of (a).

(c)   Let OP be a time-like line segment that is orthogonal in

a Minkowski 4-space to the space-like line segment OQ.

Show that the coordinates of OP and OQ satisfy the equation

of (a).

(d)   Two line segments in a Minkowski 4-space are said to be

orthogonal if their coordinates (τ1 x1, y1, z1) and (τ2, x2,

y2, z2) relative to any coordinate system S satisfy

 

 

Show that a null line segment is orthogonal to itself.



1.9   4-Vectors

 

The experiences of everyday life suggest that some physical

entities—for example the time of an event—can be defined

in an absolute way independent of the inertial observer.

With the additional insight into the nature of time obtained

from our studies, we have seen that time, and other

entities, cannot be defined in an absolute mariner but can

be defined only relative to an observer. This does not mean,

however, that everything can be defined only relative to an

observer; in fact, our new insight into the nature of space

and time provides us with a method of determining which

entities are independent of the inertial observer. One such

entity is the event displacement between two events, say

the displacement from the event O to the event E that is

represented by the coordinates (x, y, z) and τ relative to the

inertial observer S; an event displacement is the same for

all inertial observers, even though another observer may

use different coordinates to represent that displacement. In

this section, we shall see how to recognize other such

entities and some ways in which such entities can be

introduced into our study of mechanics.

 



 

FIGURE 1.100 Different spectators A, B, and C view a

translucent cone. The picture of the cone is the view of C.



1.9.1   Definition and properties of 4-

vectors*

 

Entities that are independent of the observer are very

important in the formulation of physical laws. A law of

physics is a statement about behavior—for example about

how an object moves—and thus should refer only to what

that behavior is undergoing and not to the observer who

witnesses it. Entities that can be defined only relative to an

observer depend on the circumstances of the observer, as

well as on what is observed; they should not play a central

role in the statement of a law of physics. Thus, while it

matters that our new insight into the nature of space and

time shows us which entities can be defined in a relative

manner only, it is also important that we be able to

recognize which entities can be defined independent of the

observer.

Let us consider an analogous circumstance from everyday

life. An object, say a translucent plastic cone as shown in

Figure 1.100, is viewed by different spectators. The way in

which the object appears to each spectator depends on his

point of view (Figure 1.101). Since the appearance of the

object is different for different viewers, how can we

determine that the object exists independent of the viewer?

If we know that the object exists independent of the viewer

and if we know that it is a translucent cone, we can state

how that object appears from each point of view. Now we

reverse this procedure: If A, from his knowledge of what he

sees and of the relative position of B, can state how the

object appears to B,† and if B can do the same for C, etc., we

can say that the object exists independent of the viewer, as



the following argument suggests. The appearance of the

object is different for different viewers. These differences in

appearance are not a property of the object alone; they

depend also on the viewpoint of the spectator. Since each

spectator, from his own observations, can determine what

every other spectator sees, there must be something there

that does not depend on the point of view of the spectator.

The features in the views that are common to all spectators

are features of the object. These and the object that is the

totality of all such features exist independent of the viewer.

 

 

FIGURE 1.101 A and B see the cone as (a) a triangle and (b)

a circle, respectively.



 

Let us examine circumstances in the familiar case in which

all inertial observers under consideration are at rest relative

to each other. For such observers, there are some entities,

called scalars, that are described by a number and a unit

and that have the same value for all such observers. For

example, the length of a rod or the time interval between

two specified events are scalars with respect to inertial

observers at rest relative to each other. Moreover, there exist

more complicated entities than scalars that do not depend

on the observer. These entities are described by each

observer in terms of a set of components that are defined

relative to the observer. For example, although different

observers may represent a position-displacement vector by

different components (Figure 1.102),

 

 

the vector exists independent of the observer. For position-

displacement vectors, this results from the fact that the

observers can communicate to each other what features are

characteristic of the positions of the endpoints; thus, they

know that they are assigning their respective sets of

coordinates, such as (x, y, z), to describe the given position P

relative to the given position O.

The vector by itself determines one scalar, the length of the

vector given by relative to S. This is indeed a scalar, since it

follows from the transformation law (1.165) that

 

 



Thus the expression x² + y² + z² has the same value when

evaluated in any coordinate system, and we say that the

square of the length of a vector is invariant inform under the

transformation law (1.165). Similarly, two vectors a and b

determine a scalar a · b, the dot or scalar product given by

 

 

The expression axbx + ayby + azbz is also invariant in form

under the transformation law (1.165):

 

 

Consider now the event displacement from event O to event

E. In principle, observers can communicate to each other

what features are characteristic of each event; they can

know that they are assigning their respective sets of

coordinates, such as (x, y, z) and τ, to describe the given

event E relative to the given event O. Furthermore, the

Lorentz transformation provides a relation, analogous to

Equation (1.165), between the coordinates (x, y, z) and τ

relative to the inertial system S of the event E with respect

to O and the coordinates (x′, y′, z′) and τ′ relative to the

inertial system S′ of the same event separation. For example,

 

 



for the special case in which the relative velocity of S′ with

respect to S is . Hence, the inertial observer S can calculate

the components relative to S′ of the event displacement in

terms of the S components and the measurable relation

between the systems S and S′. Therefore, since one observer

can tell how another describes the same event

displacement, event displacements exist independent of the

observer.*

Let the coordinates with respect to S of the event E1 relative

to O be (x1, y1, x1) and τ1 and those of the event E2 relative

to E1 be (x12, y12, z12) and τ12; then the coordinates (x2,

y2, z2) and τ2 with respect to S of the event E2 relative to O

are (x1 + x12, y1 + y12, z1 + z12) and (τ1 + τ12) (Figure

1.103). Since the Lorentz transformation law for event

displacements is linear and homogeneous in the coordinates

relative to S, then, if the coordinates with respect to S′ of the

respective event displacements are indicated by a prime, we

have, for example,

 

 

FIGURE 1.102 The vector is independent of the observers S

and S′, at rest relative to each other, although it is



represented by the components (x, y) relative to S and the

different components (x′, y′) relative to S′.

 

 

FIGURE 1.103 The coordinates x2 and τ2 of E2 with respect

to O are given by x2 = x1 + x12 and τ2 = τ1 + τ12.

 



 

FIGURE 1.104 The coordinates of the 4-vector x are (x0, x1,

x2, x3) relative to S and (x0′, x1′, x2′, x3′) relative to S′.

 

 

Similarly,

 

 

Hence, for all inertial observers, event displacements

combine in a linear manner, analogous to the way in which

position-displacement vectors in space combine, relative to

observers at rest with respect to each other. However, an



event displacement is represented to an observer by four

coordinates, whereas a position-displacement vector is

represented by only three. Therefore, we say that an event

displacement is a 4-vector.

There exist other entities that share the properties of event

displacements that we have described. Thus, in general, a 4-

vector is defined as an entity that, relative to every inertial

observer, is represented by four components that transform

in the same way that the components of event

displacements do. All 4-vectors, like event displacements,

are independent of the inertial observer, even though

different observers may use different components to

represent a given 4-vector.

The event-displacement 4-vector has four components τ, x,

y, and z, which can be rewritten, for simplification of our

later work, as

 

 

The components of this 4-vector are, therefore, (x0, x1, x2,

x3); they can be referred to collectively by the symbol xμ,

where the Greek symbol μ is understood to range over 0, 1,

2, and 3.* Another 4-vector has, relative to an inertial

observer S, one time-like component, say F0 analogous to τ

= x0, and three space-like components, F1, F2, and F3

similar to x = x1, y = x2, and z = x3. If another inertial

observer is moving with the velocity relative to S, the

components F0′, F1′, F2′, and F3′ of this 4-vector relative to S′

are given by

 



 

The 4-vector can be represented by its components relative

to the inertial observer S as (F0, F1, F2, F3) or as (F0, F),

where F is equal to . Alternatively, that 4-vector can be

designated† by F in handwritten material or by a script letter

in printed matter. For example, the displacement of the

event E relative to O (Figure 1.104) can be designated by OE,

or by (τ, x, y, z) = (x0, x1, x2, x3), or even by x to indicate

that it is the four-dimensional generalization of the

coordinate x of a point on a line.

Two 4-vectors, say a and b, are equal relative to one inertial

observer S if they have the same components relative to

that observer. If this is true, then the 4-vector

 

 

has all components relative to S equal to zero. Since the

Lorentz transformation law is linear and homogeneous in the

four components, the 4-vector c is equal to zero in every

inertial system. Therefore, if two 4-vectors are equal relative

to one observer, they are equal relative to all observers, and

we can write

 

 

Since every 4-vector transforms in a manner identical to x,

we can associate with a scalar, corresponding to τ² – (x² + y²

+ z²),

 



 

which we call the norm of the vector. The vector is said to be

time-like, space-like, or null if is positive, negative, or zero,

respectively.

Just as the length squared of a position-displacement vector

in space can be generalized to the scalar product of two

position-displacement vectors [see Equations (1.166) and

(1.167)], so also the definition of the norm of a 4-vector can

be generalized to yield a scalar that represents a product of

two 4-vectors. Let a and b be 4-vectors; we define the scalar

product of the two 4-vectors by

 

 

This is equal to a0′b0′ – (a1′b1′ + a2′b2′ + a3′b3′), since, for

example,

 

 

Therefore, the scalar product of two 4-vectors, as defined by

(1.177), is a scalar in space-time.

 



SUMMARY Some dynamical variables, of which an event

displacement is the prototype, that characterize the behavior

or properties of a physical system are represented by a set

of four components defined relative to an inertial observer.

The set of components is called a 4-vector if the components

defined relative to inertial observers are connected by

Lorentz transformations in the same way that event

displacements are. One 4-vector determines one number,

the norm, which has the same value relative to all inertial

observers. Two 4-vectors together determine another such

invariant, the scalar product.

 

Problem 1.109

 

Find the norms of a and b and the scalar product a · b for

each set of a and b whose components relative to an inertial

observer S are listed below:

 

(a)   

.

(b)   

.

(c)   



.

 

Problem 1.110

 

The components relative to an inertial observer S of two 4-

vectors and are (3, 3, 0, 0) and (0, 0, 2, 0).

 

(a)   Draw the 4-vectors on a space-time diagram of S.

(b)   An inertial observer S′ travels with the velocity relative

to S. Find the components of and relative to S′.

(c)   Find ², ² and · from the information given initially, and

also calculate them from your answer to (b).

(d)   Would you say that and are orthogonal?

 

Problem 1.111

 

The spatial components of a 4-vector are equal to the spatial

components of the event separation x in every inertial

reference system. Show that = . Hint: Show that – cannot

have only time-like components in every inertial reference

system.

 



Problem 1.112

 

The scalar product of two 4-vectors, and , is zero: · = 0.

(a)   Assume that is time-like. Show that is space-like and

that the directions of and on a space-time diagram in the

plane of and make equal angles with the light cone. Hint:

Consider the components of the vectors in that inertial

system in which lies along the time axis.

(b)   Assume that and are both space-like. Show that the

spatial components and are perpendicular in that inertial

reference system in which has a zero time component.

(c)   Draw the 4-vectors and on a space-time diagram for the

case of (a) and on another such diagram for the case of (b).



1.9.2   The 4-velocity*

 

As we stressed before, 4-vectors are important because they

are entities that do not depend upon an inertial observer nor

upon his circumstances. In order that we can formulate laws

of physics that do not depend upon an inertial observer, we

must find 4-vector generalizations of the 3-vectors in space,

such as the velocity vector v, that are used in newtonian

mechanics to describe motions. Sometimes, the fact that the

last three components of a 4-vector form a 3-vector in space

can be used to find the required generalization. (Unlike the

spatial components, the time-component of a 4-vector, such

as τ = ct, is a scalar under the restricted transformations

between inertial observers at rest relative to each other.) For

example, the components of the position vector r form the

last three components of the event 4-vector , so is the 4-

vector generalization of r; indeed, there is no other 4-vector

that has spatial components equal to the position vector r in

every inertial system (Problem 1.111).

Let us use these ideas to find the relativistic generalization

of the velocity vector relative to S,

 

 

For this purpose, we examine the manner in which this 3-

vector is calculated. The position vector (t) is determined as

a function of the time, a scalar under rotations of the

(spatial) coordinate axes. The ratio of the change of position

vector Δr to the change in the (scalar) time Δt is evaluated,



and the usual limiting procedure applied. If we restrict our

considerations to the transformations between observers at

rest relative to each other, then v is a 3-vector, since Δr is a

vector in space and Δt is a scalar.

 

 

FIGURE 1.105 Relative to each observer, the velocity 3-

vector corresponds to a displacement in space that is

represented on the diagram by a line segment joining two

simultaneous events relative to the respective observer.

 

This procedure can be generalized to yield the velocity 4-

vector. The components of the position vector r are the last

three components of the event vector x. We wish to express



the event vector along the world line of the particle as a

function of a scalar that reduces, in circumstances familiar

from everyday life, to the time t. The time t is not a scalar,

since it depends on the observer, but there is one scalar that

is equal to t in circumstances that involve speeds much

smaller than c. This is the proper time t0 denned by the

proper time interval

 

 

the time interval measured in that inertial frame in which the

particle is instantaneously at rest, where v is the

(instantaneous) speed of the particle relative to the inertial

observer S. Therefore, we describe the world line of the

particle by the equation

 

 

the relativistic generalization of the equation for the

particle’s position as a function of time

 

 

The 4-velocity is denned, therefore, as the rate of change of

the 4-vector x with respect to the scalar t0:

 



 

This 4-vector has components

 

 

and the norm

 

 

 

FIGURE 1.106 The 4-velocity v(t0) is the tangent vector to

the world line at the event x(t0) and has norm c².



 

The two velocity vectors v(t) and v(t0) have a different

interpretation. The first, v(t), is the rate of change of the

particle’s position in space with respect to the time of the

observer S. Other observers will obtain vector functions of

the time different from v(t) for the time rate of change of

position (Figure 1.105), since different observers may not

agree on simultaneity; also, the velocity 3-vector v

corresponds, for each observer, to a displacement in space.

On the other hand, the 4-vector v is the same for all

observers. Since v corresponds to the direction in space-time

of the separation Δx between two neighboring events on the

world line of the particle (Figure 1.106), it is the tangent

vector v to the world line, with norm c². Thus although v

does not have the simple interpretation of the time rate of

change of position, it has the advantage, for our purposes, of

being the same to all observers.

 

SUMMARY The 4-velocity v of a particle is defined as the

derivative with respect to the proper time t0 of the event-

displacement vector x(t0) of the particle. The velocity v(t0) is

a 4-vector with norm c² that is tangent to the world line of

the particle at the event specified by the proper time t0.

 

Example 1.13

 

Q.   The inertial observer S′ travels with the constant velocity

with respect to S. The 3-velocities of a particle relative to S

and relative to S′ are and , respectively. Find the



transformation law relating v and v′ (Section 1.7) from the

fact that v is a 4-vector.

 

A.   The components of v relative to and to S′ are,

respectively,

 

 

and

 

 

The components v0, v1 are related to the components v0′,

v1, through

 

 

or, with β = V/c,

 

 



We replace on the right-hand side of the first equation by 1/c

times the left-hand side of the second to obtain

 

 

Note that we also obtain the transformation law for the

Lorentz contraction and time dilatation factoi :

 

 

Problem 1.113

 

(a)   Draw, on a space-time diagram of S, the world line of a

particle that moves with velocity until t = 0 relative to S, and

thereafter with velocity .

(b)   Find the proper time t0 of the particle in terms of the

time t as measured by S.

 

Problem 1.114

 

A particle travels, relative to an inertial observer S, on a

circle of radius 2 m with the constant speed v = 4c/5.

 



(a)   Find the proper time t0 of the particle in terms of the

time t as measured by S.

(b)   Show that, relative to an appropriately chosen set of

coordinate axes for S,

 

 

(c)   Find the components of x(t0) relative to S.

(d)   Find v(t0).

(e)   Show explicitly from the results of (d) that v² = c².

 

Problem 1.115

 

An inertial observer S measures the motion of an object at

times τ2 = 1, τ2 = 2, and τ3 = 3. At these times, the particle

is traveling in the positive x direction along the directions in

space-time specified by the event displacements with

coordinates (τ, x) given by (1, 0), (1, ), and (1, ), respectively.

 

(a)   Find the corresponding 4-velocity vectors. Hint: Use the

fact that v · v = c² or, equivalently, .

(b)   Draw these 4-velocity vectors on the space-time

diagrams of S. Explain why they do not have the same

length.



 

Problem 1.116

 

(a)   Show that the acceleration 4-vector is given by a =

dv/dt0.

(b)   Show that, relative to an inertial observer S, the

components of a are

 

 

(c)   Show that, if v « c, a has the components (0, a), where a

= d²r/dt².

(d)   Show that v · a = 0. Is a time-like, null, or space-like?

 

Problem 1.117

 

Throughout its motion, a particle experiences a constant

acceleration a of in feet per second per second relative to

that reference system in which the particle is

instantaneously at rest. Calculate the acceleration 4-vector a

relative to an observer with respect to which, at the instant

under consideration, the particle is traveling at the speed c/2

along the direction of the acceleration a.



1.9.3   Conditions satisfied by the

transformations of sets of

components among different

observers

 

We have seen that 4-vectors exist independent of the

observer, even though different observers describe a 4-

vector with different values of the components. There also

exist other entities that do not depend on the observer and

that, like 4-vectors, are described by each observer in terms

of a number of components, the values of which depend

upon the observer. How can we find out if a set of

components relative to an observer describes an entity that

is independent of that observer?

Consider an entity that exists in space-time and is

independent of the observer. We can say that the entity

exists independent of each observer if we know how to

transform the components relative to one observer into the

components relative to another. The manner in which these

components transform is not arbitrary. Their transformation

law must share some features of the Lorentz transformation

law for the components of event displacements between the

two observers. Let us examine the conditions that such

transformation laws must satisfy.

For simplicity, we shall restrict our considerations for the

moment to the transformations between inertial observers

whose spatial axes coincide at some event O. Thus, for the

time being, we omit consideration of the transformations

between observers at rest relative to each other–for



example, those differing only in the orientation of their

spatial axes. As a result of this restriction, the relation

between two inertial systems is defined by one vector, their

relative velocity.

We are interested in an entity, which we denote by R, that

exists independent of the observer. An inertial observer S1

describes R in terms of a number of components, and we

denote these components collectively by the symbol RS1.

Consider an observer S2 moving with velocity V21 relative

to S1. If R exists independent of the observer, there is a

transformation law that determines the components RS2

relative to S2 in terms of the components RS1 and the

velocity V21. There is an operation, which we denote by ,

that transforms the set of components RS1 into the set RS2.

We indicate the operation by the sign ooo and write

 

 

Note that the order of the two entities, and RS1, is

important.

This transformation law satisfies certain conditions as a

result of the fact that the transformation relates

components referred to different inertial systems in space-

time. These conditions arise in the following manner: To

each inertial reference system, we can associate in a unique

manner a vector V, where V is the velocity of that system

with respect to one (arbitrarily) chosen inertial reference

frame S (Figure 1.107). If we consider each vector V to

represent a point in space relative to a point P as the origin,

the totality of these points fills a sphere of radius c centered

at P up to but not including the surface (Figure 1.108). Each

transformation function corresponds to the displacement



from the point defined by V1 to the point defined by V2.*

Note, however, that

 

 

FIGURE 1.107 Each inertial frame S1 can be related to a

point P inside a sphere of radius c about P.(Note that the

point P is related to the frame S.) (a) The reference frame of

Si moves with velocity V1 relative to the chosen reference

frame S. (b) The vector V1 designates a point P1 in space

relative to P; P1 lies inside a sphere of radius c centered at P

since V1 < c.

 



 

FIGURE 1.108 Every inertial frame S1 can be related to a

point P1 inside the sphere (Figure 1.107) and every point P′

inside the sphere can be related to an inertial reference

frame S′. (a) To each point P′ inside a sphere of radius c

centered at P, there corresponds a vector . (b) To each

vector V′, there corresponds an inertial reference frame S′

moving with velocity V′ relative to S.

 

V21 ≠ V2 – V1, but rather V21 is given in terms of V2 and

V1 by the Lorentz transformation equations for velocities,

Equation (1.127). In order that this correspondence be

consistent, the transformation functions must combine in a

manner reflecting that by which the corresponding

displacements combine (by vector addition). For example,

the displacement from the point V1 to V2 followed by the

displacement from V2 to V3 is equal to the displacement

from V1 directly to V3. Therefore, the transformation of the

components of R from S1 to S2 followed by the

transformation from S2 to S3 must be equal to the

transformation from S1 directly to S3 (Figure 1.109):



 

 

This relation can be written in the symbolic form

 

 

A particular case occurs if S3 = S1. The velocity V12

associated with the transformation from S2 to S1 is given by

the Lorentz transformation as

 

 

hence,

 

 

where is that transformation that leaves the components

unchanged.

The conditions given above are necessary to ensure that the

transformations combine in a consistent manner, similar to

that of the corresponding “displacements” in Figure 1.109.

Furthermore, the velocity V31 in the combination law

(1.194) must be determined from V32 and V21 by the

Lorentz transformation law for velocities (1.127), in order

that the transformations , relating the components of R in

different inertial systems, combine in a manner consistent



with the Lorentz transformation law for event displacements

in space-time.

 

SUMMARY The rule for transforming the components of an

entity from one reference system must satisfy certain

conditions, or the transformation rule is not consistent with

the Lorentz transformation law.

 

 

FIGURE 1.109 Since , the transformation from S1 to S2

followed by the transformation from S2 to S3 must equal the

transformation from S1 to S3. (a) The instantaneous relation

of the inertial reference frames S1, S2, S3, to the reference

frame S. (b) The transformation from S to S1 corresponds to



the displacement V1, the transformation from S1 to S2 to

the displacement from P1 to P2, , etc. (Note that does not

equal the velocity of S2 relative to S1, even though the

displacement from P1 to P2 represents the transformation

from S1 to S2.)

 

Problem 1.118

 

Discuss the rules that must be satisfied, according to the

galilean transformation law, by the transformation

equations of a set of components. What distinguishes the

transformation equations that obey the galilean

transformation law from those that obey the Lorentz

transformation law?

 

Problem 1.119

 

Show that the reference frames denoted by the points inside

a very small circle near P of Figure 1.108(a) satisfy the

galilean transformation law.

 

Problem 1.120

 

A group is a set of elements, A, B, C, . . . , for which there

exists a law that defines the combination A ooo B of any two



elements of the set and that satisfies the following

conditions:

 

(a)   If A and B are elements of the set, then so is A ooo B.

(b)   A ooo (B ooo C) = (A ooo B) ooo C.

(c)   The set contains an element I (the identity element)

that satisfies

 

 

for every member A of the set.

(d)   To every element A in the set, there exists an element

B such that

 

 

Consider the set of transformations given above with the

law of combination

 

 

Show that the set forms a group.*

 

Problem 1.121



 

Consider the position vectors of the points in 3-space, P1,

P2, P3, . . . , as the elements and the vector sum as the

combination law; P1 ooo P2 corresponds to P1 + P2. Show

that these elements with this combination law obey the

group properties.



1.9.4   Tensors in space-time

 

The discussion of Section 1.9.3 shows that the

transformation law for the components of an entity that is

independent of the reference system is subject to certain

restrictions. Armed with this knowledge, we are now in a

position to examine entities other than scalars and 4-vectors

that are defined relative to an inertial system by a set of

components and that exist independent of the observer. As

an introduction to this, we first show that the Lorentz

transformations for 4-vectors do combine according to the

conditions of Section 1.9.3.

An inertial observer S describes a 4-vector a by four

components that we denote by (a0, a1, a2, a3), where a0 is

the time-like component and a1, a2, a3 are the spatial

components in the x, y, and z directions, respectively. One

component is designated by aμ with the Greek letter

subscript μ equal to one of the numbers 0, 1, 2, or 3. The

component aμ of a referred to another observer S′ is

determined from the components a0, a1, a2, and a3 by the

linear and homogeneous transformation that relates the

components of event displacements in the two inertial

systems. We write this transformation as

 

 

This can be written in a simpler form if we use this

convention: Repeated Greek letter indices in any expression

denote the sum made up from that expression with the

repeated indices set equal to zero and the negatives of that



expression with the repeated indices set equal to 1, 2, and 3

in turn. Thus, with this convention, Equation (1.197) can be

written as

 

 

Also, the scalar product of two 4-vectors, a0b0 – (a1b1 +

a2b2 + a3b3), can be written within this convention * as

 

 

The transformation coefficienis Lμ′μ depend on me relation

between the observers S and S′. For example, if S′ is

traveling with the velocity relative to S, these coefficients

have the following values:

 

 

all other Lμ′μ = 0. The transformation given by Equation

(1.198) corresponds to the general form, Equation (1.192),

 

 

The equation corresponding to the relation (1.194) can be

deduced in the following way: Let aμ″ be the μth component

of a relative to the inertial observer S″. Then,



 

 

but also,

 

 

These relations are true for all aμ, so

 

 

which is a special case of

 

 

These results show that Lorentz transformations, of 4-vectors

do indeed satisfy the conditions derived in Section 1.9.3. We

now turn our attention to more complicated entities whose

transformation laws satisfy these conditions.

Let a, and b be two 4-vectors, and consider the entity T

defined relative to an inertial observer S by the set of

components

 

 



The components of T relative to another observer S′ are

defined by

 

 

Relative to another observer S″, the components of T are

 

 

and

 

 

Hence, the condition

 

 

is satisfied, since [see Equation (1.204)]

 

 

Therefore, any entity T that is defined by the 16 components

Tμv that transform as



 

 

exists independent of the observer. We call T a tensor of the

second order. (A 4-vector is a tensor of the first order.)

A tensor of the second order has 16 components defined

relative to one inertial observer. Such tensors are important

in the relativistic formulation of the laws of

electromagnetism. Similar tensors play a fundamental role in

Einstein’s theory of gravitation, the general theory of

relativity (Chapter 3). Tensors of other orders can also be

defined.

 

SUMMARY The Lorentz transformations of 4-vectors satisfy

the conditions described in Section 1.9.3 for entities that

exist independent of the observer. There are also other such

entities, such as second-order tensors that are defined

relative to an observer by 16 components.

 

Example 1.14

 

Q.   The components of a tensor of the second order are

represented by Tμv.

(a)   Write out an explicit form for ruu.

(b)   Show that Tw is a scalar.

 



A.   (a).   According to our summation convention,

 

 

(b)   The transformation law for Tμμ is given by Equation

(1.212) to be

 

 

The expression Lμ′μLμ′μ appears in the transformation

equation for the scalar product of two vectors,

 

 

which, according to Equation (1.178), can be written as

 

 

Therefore, the effect of Lμ′μLμ′v on the components Tμv of a

tensor of the second order is the same as a summation over

the two indices:

 

 

Hence,



 

 

thus, Tμμ is a scalar.

 

Problem 1.122

 

The reference system S′ is at rest with respect to S. The z

and z′ coordinate axes coincide, but the x′ and y′ coordinate

axes are rotated through the angle θ about the positive z

direction with respect to the x and y axes. Find the

coefficients Lμ′μ for the transformation law.

 

Problem 1.123

 

(a)   If S′ is traveling with the velocity relative to S and S″ is

traveling with the velocity relative to S′, find the velocity of

S″ relative to S.

(b)   Show explicitly that

 

 

and describe the relation of this to Equation (1.194).

 



Problem 1.124

 

(a)   Define a tensor of the third order.

(b)   What is a tensor of the zeroth order?

 

Problem 1.125

 

One component of a tensor of the second order is Tμv. Show

that the components (T01, T02, T03) transform similar to the

components of a vector in space under the rotation of

Problem 1.122.

 

Problem 1.126

 

(a)   A tensor of the second order is said to be symmetric if,

relative to one reference system S, Tμv = Tμv. Show that,

relative to any other reference system S′, Tμ′v′ = Tv′μ′. Hint:

Consider Sμv = Tμv – Tvμ. Show that the Sμv are the

components of a tensor of the second order and that each of

these components is zero.

(b)   A tensor of the second order is said to be skew-

symmetric if, relative to one reference system S, Tμv = –

Tvμ. Show that, relative to any other reference system S′,

Tμ′v′ = – Tμ′v′.



1.10   The Propagation 4-Vector for

Waves

 

The theory of special relativity is required for the description

of motions of particles in which relative speeds comparable

to c are involved. This theory is also required for the

description of some types of waves, phenomena, such as

those of electrodynamics and the relativistic quantum

theory, that are more complicated than are the motions of

particles. Chapter 2 is devoted to the laws of dynamics of

particles. In this section, we shall consider only part of the

effects of relativity on wave phenomena.

Relative to an observer S, a wave is described by a wave

function that varies over the position r in space and the time

t relative to S. The wave function may be a scalar quantity,

a vector, a tensor, or even some other entity that exists

independent of the observer. Examples are wave functions

that describe the change at time t in the pressure at r from

its equilibrium value, the displacement at time t from the

equilibrium position r of some material, or the variation at r

and t of some other dynamical variable.

Harmonic plane waves are described relative to S by a wave

function that can be factored into two parts, one that

describes the amplitude and, for example, the polarization,

and the other that describes the variation of the wave with

position and time. For example, a linearly polarized

harmonic plane wave can be described by the vector wave

function

 



 

where E0 is the amplitude, the unit vector ê describes the

direction of polarization, and the sine factor describes the

variation of E with position and time. The latter factor, with

which we shall be concerned below, has a sinusoidal

dependence on r and t relative to an inertial observer S, as

in

 

 

or in

 

 

The propagation vector relative to S of this sinusoidal

component k has magnitude, in terms of the wavelength λ,

 

 

and lies in the direction of propagation of this component.

The circular frequency ω is related to the frequency v and

the speed u of the harmonic wave, both relative to S, by the

equations

 



 

Our interest in this section is in the manner in which k and ω

depend on the observer.



1.10.1   The propagation vector and

the doppler effect*

 

The wave function that represents a given wave to one

observer S may be different from the wave function for

another observer S′. The wave function can be analyzed in

terms of plane-wave harmonic components. We need

consider only the way in which the wave functions for

harmonic plane waves transform, since, if we know this, it is

possible to determine the way in which any wave function is

transformed through use of a mathematical proposition

known as Fourier’s theorem.

One factor in the wave function, relative to S, of a harmonic

plane wave depends on the character of the wave—that is,

on whether it is a scalar or a tensor wave, or whatever. This

factor transforms from one observer to another as its

character would indicate, and will not concern us here. We

need only note that the transformation equations for such

entities as vectors are linear and homogeneous in the

components, and thus the other factor, the time- and

position-dependent factor, appears in the wave function

relative to every observer if it appears in the wave function

of one.

This other factor, which is common to the wave functions

relative to all observers, depends on the position r and the

time t of the event at which it is evaluated only in the

argument (k · r – ωt) of a sinusoidal function such as exp [i(k

· r – ωt + α)] or sin (k · r – ωt + α). Thus, if the wave

function obeys a linear and homogeneous transformation



law, this phase factor is the same for all observers; it is a

scalar quantity. Therefore, the phase

 

 

at the event (ct, r) relative to that at the event (0, 0) is the

same for all observers to within an additive integral multiple

of 2π, since, for example, sin (θ + 2πn) = sin θ. However,

the transformation law for p cannot be discontinuous as the

relationship between the observers is changed continuously,

or else the one inertial system at which p jumps would be

distinguished from others; hence, the additive integral

multiple of 2π cannot appear. Thus, the relative phase p is a

scalar if the wave function obeys a linear and homogeneous

transformation law. The wave functions that describe the

behavior of all types of waves with which we will be

concerned, such as light and sound, do satisfy this condition

of a linear and homogeneous transformation law.

We can give a physical interpretation of the scalar nature of

p in the following way: Suppose we calculate the values of

the function

 

 

at each event on the line in Minkowski space from the event

O, with coordinates (0, 0) relative to S, to the event P, with

coordinates (ct, r) relative to S. Then the function ψ will have

N maxima along the line from O to P (Figure 1.110), with

 



 

Each maximum corresponds to a wave crest, so N is the

number of wave crests between the event O and the event

P. Since p is a scalar in space-time, every inertial observer

would count the same number of crests between these two

events if there existed an experimental technique by which

this counting could be done.

 

 

FIGURE 1.110 Plot of ψ along the event separation from O to

P. The value of ψ at each point on the straight world line

from O to P is given by the directed distance perpendicular

to that line from the point to the curve.

 



The coordinates (ct′, r′) relative to an inertial observer S′ of

the event displacement of P relative to O are linear and

homogeneous functions of the coordinates (ct, r) of that

event displacement relative to S. Hence, the phase p = k · r

– ωt, which is linear and homogeneous in the coordinates

relative to S, is also linear and homogeneous in the

coordinates relative to S′:

 

 

where the coefficients α, β, γ, and δ are determined by the

transformation equations relating (ct, r) and (ct′, r′) and are

independent of the coordinates (ct′, r′). We can rewrite this

in the form

 

 

which defines k′ and ω′ in terms of k and ω and the

transformation equations.

The space- and time-dependent factor in the wave function

relative to S′ has the form exp [i(k′ · r′ – ω′t′ + α)] or sin (k′ ·

r′ – ω′t′ + α), so k′ and ω′ are the propagation vector and

circular frequency of the wave relative to S′. Now we

consider the transformation law relating k′ and ω′ to k and

ω. The invariance of the form

 

 



suggests that (ω/c, k) are the components relative to S of a

4-vector and that the form (ω/c)τ – k · r is the scalar product

of that 4-vector and the event 4-vector x. That this

suggestion is valid is shown by the following argument:

We introduce a 4-vector b that is described relative to S by

the components (w/c, k) and inquire if the components of b

relative to S′ are (w′/c, k′). Since b is a 4-vector,

 

 

is invariant in form, so that

 

 

However,

 

 

so that

 

 



since this is true for all values of τ′ and r′, we must have

 

 

Hence, (ω′/c, k′) are the components relative to S′ of the 4-

vector with components (ω/c, k) relative to S. We call this

the propagation 4-vector and denote it by k.

Since k is a 4-vector, the transformation from the

components (ω/c, k) to (ω′/c, k′) is the same as that from (τ,

r) to (τ′, r′). In particular, if S′ moves with the constant

velocity with respect to S, then

 

 

The last expression results from the fact that βkx = Vkx/c =

V · k/c.

The relation between the frequencies v = ω/2π and v′ =

ω′/2π measured by the two observers is given by

 

 



If V « c, then γ = [1 – (V²/C²)]–½ ≈ 1, and the doppler shift is

given by

 

 

where v is the speed of the harmonic wave and θ is the

angle between V and the direction of propagation of the

wave. This is the formula for the doppler shift that we

deduced in Problem 1.4 on the basis of our notions of space

and time applicable to small relative speeds (V/c « 1).

The right-hand side of

 

 

differs by the factor [1 – (V²/C²)]–½ from the right-hand side

of Equation (1.237), which is valid for small V/c. This factor

enters into the doppler shift for all angles θ, and in

particular, it gives a doppler shift for θ = π/2:

 

 

This effect, called the transverse doppler effect, is a direct

result of time dilatation and hence is unobservable for small

relative speeds (V/c « 1). The transverse doppler effect has

been verified experimentally to high accuracy by



spectroscopic measurements of the frequency of light

emitted by rapidly moving ions.

 

SUMMARY The relative phase of a plane wave k · r – ωt, at

an event P(ct, r) relative to that at the event (O(0, 0), is a

scalar quantity if the wave function satisfies a linear and

homogeneous transformation law. For such a wave, the

components (ω/c, k) relative to an observer S are the

components of a 4-vector.

 

Example 1.15

 

The doppler effect is the basis for radar measurements of a

vehicle’s speed. This use of the doppler effect comes about

in the following way:

There are two types of radar* (radio direction and ranging)

systems, pulsed radar, which measures distances, and

doppler radar, which measures speeds. In all radar systems,

electromagnetic radiation is emitted by the radar

transmitter and is reflected by the object whose position or

speed is to be determined (Figure 1.111). The reflected

signal is then detected by the radar receiver. The two types

of radar, pulsed and doppler, are distinguished by the

different physical principles upon which they operate.

In pulsed radar, the electromagnetic radiation transmitted is

in the form of very short pulses. The time interval between

emission and detection of the pulse is measured (Figure

1.112), giving the distance from the radar set to the

reflector. The time interval between transmission and



reception for each mile of distance between the radar set

and the reflector is

 

 

Pulsed radar can be used to measure the speed of approach

or recession of a reflector, since for that, we need to

measure only the distances to the reflector at two different

times. However, it would require very delicate apparatus to

measure time intervals to an accuracy (~1 μsec) sufficient

to distinguish between speeds of approach, say, of 60 and

70 mph (see Problem 1.132).

On the other hand, doppler radar measures speed directly,

and the apparatus required to determine differences in

speeds of even one mile per hour is simple and trustworthy.

In doppler radar, a continuous harmonic wave, and not a

pulse, of electromagnetic radiation is transmitted. One

doppler radar device in use transmits such radiation at

2,455 MHz.

 



 

FIGURE 1.111 Transmitted and reflected waves.

 

This continuous wave is partially reflected by the object

whose speed is being measured, but the reflected radiation

differs from that transmitted through a change in frequency

as a result of the doppler effect. The process of reflection

can be considered to take place in two parts. First, the

reflector absorbs the transmitted wave at a frequency that

is greater than the frequency emitted by the transmitter for

an approaching reflector and less for a receding reflector.

Second, the reflector emits the reflected wave that the

radar receiver detects at an even higher frequency for

approaching reflectors or at an even lower frequency for

those receding (Problem 1.133). The difference in frequency

between that emitted by a radar transmitter at 2,455 MHz

and that detected by the radar receiver is 73 Hz for each

mile per hour of approach or recession of the reflector

(Problem 1.134).

 

 

FIGURE 1.112 Shape of oscilloscope trace for pulsed rada



 

It would be extremely difficult to measure frequencies

around 2,455 MHz to such a degree of accuracy that

differences of a few tens of hertz could be detected.

However, the difference in frequencies between two such

waves can be measured directly by use of the phenomenon

of beats. The beats produced in a transmitted frequency of

2,455 MHz have frequencies of 73 Hz per mile per hour of

reflector speed and are easy to detect. Indeed, the beat

frequencies are in the audio range and could be detected as

a pure tone in an audio generator, the tone having a higher

pitch for higher reflector speeds.

 

Problem 1.127

 

Show that if (ct, r) is time-like or null, then relative to S, the

N of Equation (1.226) is the number of wavelengths that

leave the spatial origin r = 0 after the time t = 0 and arrive

at the position r in space before time t.

 

Problem 1.128

 

A star is moving directly away from the earth with a speed

of 0.80c. The star emits light of frequency 5.09 × 10¹⁴ Hz.

Calculate the frequency of this light observed at the earth.

 



Problem 1.129

 

Calculate, in miles per hour, how fast you would have to

travel toward a red light (λ = 6.40 × 10–7 m) to see it as

green (λ = 5.20 × 10–7 m).

 

Problem 1.130

 

(a)   Consider starlight striking the earth from the direction

perpendicular to the plane of the earth’s orbit. Calculate the

angle of inclination, with respect to that direction for a long

narrow terrestrial telescope, necessary in order that the

starlight reach the bottom of the telescope.

(b)   Compare your answer to (a) with the results derived

earlier in Example 1.1. Explain why that previous derivation,

based on the galilean transformation law, proved adequate

to describe the aberration of starlight.

 

Problem 1.131

 

A wave moves with the velocity relative to S. The observer

S′ moves with the velocity relative to S. Find the velocity v′

of the wave relative to S′ from the transformation equations

(1.235).

 



Problem 1.132

 

Two cars, one traveling 60 mi/hr (the legal speed limit) and

one at 70 mi/hr, are observed for 30 sec by pulsed radar.

 

(a)   Calculate the time interval measured by the pulsed

radar set that corresponds to the distances traveled by

these cars in the 30 sec.

(b)   What time difference must be detected if the pulsed

radar is to be used to determine the difference in speeds in

order to obtain a conviction of the driver of the faster car?

 

Problem 1.133

 

(a)   Show that the frequency of harmonic radiation

absorbed by an approaching vehicle is greater than the

frequency emitted by the stationary transmitter.

(b)   Show that the frequency of harmonic radiation

absorbed by a stationary receiver is greater than the

frequency emitted by an approaching transmitter.

(c)   State the problems corresponding to (a) and (b) for a

receding vehicle, and answer them.

 

Problem 1.134



 

A doppler radar transmitter emits at 2,455 MHz. Calculate

the beat frequency detected by the radar set from a vehicle

that is

 

(a)   approaching at 1 mi/hr,

(b)   receding at 70 mi/hr.

 

Problem 1.135

 

A transverse wave described relative to S by a wave

function of the form

 

 

is said to be circularly polarized [see Problem 1.3(f)]. The

polarization is said to be right-handed if ψ(x, t), at a given

point x, appears to rotate clockwise to an observer in S

looking toward the source in the direction opposite to the

direction of propagation (Figure 1.113).

 

(a)   Define left-handed polarization.

 



 

FIGURE 1.113 The two cases of circular polarization are

shown in (a) and (b).

 

(b)   Which of the signs, + or –, applies to right-handed

polarization?

(c)   What is the polarization of the wave of (b) as seen by

an observer S′ moving along the x axis of S? Discuss the

polarization as seen by an observer S″ moving in another

direction relative to S.



Additional Problems

 

Problem A1.1

 

The first evaluation of the speed of light was made by the

Danish astronomer O. Roemer (1644–1710). He determined

that the innermost satellite of Jupiter, called Io and about the

same size as the moon, underwent a regular variation in its

period of revolution; as the earth traveled away from Jupiter

(for example, at point A of Figure A1.1), the period of Io

increased, and as the earth traveled toward Jupiter, the

period decreased. The average period of Io is 42.5 hr.

Roemer argued that the real period of the satellite was

constant and that the apparent variation resulted from

differences in the time delay in the light from Io arriving at

the earth.

 

 

(a)   Calculate the distance that the earth travels in its orbit

about the sun during the time of one period of Io.

 



 

FIGURE A1.1 Orbits of Earth, Jupiter, and Io, Jupiter’s

innermost satellite. (a) The orbits of Jupiter and Earth. (b)

The orbit of Io around Jupiter.

 

(b)   Let t = 0 correspond to the time at which the earth is

nearest Jupiter. Calculate, at time t, the delay or advance in

the reappearance of Io after being eclipsed by Jupiter owing

to the light traveling the change in the separation distance

between the earth and Jupiter from the previous eclipse.

Neglect the orbital motion of Jupiter and express your

answer in terms of c, the speed of light.

(c)   Calculate, in terms of c, the accumulated apparent

delays over the six months in which the earth moves from

the point nearest Jupiter to its farthest position from Jupiter.

Show that this equals the time required for light to cross the

diameter of the earth’s orbit.



(d)   Measurements of the eclipses of Io give 16 min 38 sec

for the time required for light to cross a diameter of the

earth’s orbit. Calculate the speed of light.

(e)   Plot the apparent variation of the period of Io’s orbital

motion as observed at the earth against time.

 

Problem A1.2

 

The direction of a star relative to the earth may vary during

the course of a year if the direction of the star relative to the

sun is fixed, as shown in Figure A1.2. The maximum angle

subtended at the star by the radius of the earth’s orbit is

called the heliocentric or annual parallax p of the star. The

values of the parallax in seconds of arc for a few stars are

shown in the table.

 

(a)   Let D be the distance from the sun to a star with

parallax p measured in seconds of arc. Show that D = 2.063

× 10⁵ R/p, where R = 1.495 × 10⁸km is the radius of the

earth’s orbit.

(b)   Calculate the distance, in kilometers and miles, from the

sun to each of the stars listed above.

(c)   A convenient unit of distance for the study of planetary

motions is the astronomical unit (AU), equal to the mean

earth-sun distance, 1.495 × 10¹¹m. Calculate, in

astronomical units, the distances between each of the stars

listed in the preceding table and the sun.

 



Star Parallax, arcsec

Sirius 0.37

Vega 0.125

Centauri 0.75

Betelgeuse 0.012

Polaris 0.008



 

 

FIGURE A1.2 Parallax.

 

(d)   The light-year is the distance that light will travel in one

year. Show that

 

 

(e)   Calculate the distance in light-years between each of

the stars listed above and the sun.

(f)   How long before now was the light that you can see

tonight emitted from each of the stars listed above?



(g)   A convenient unit of distance for expressing stellar

distances is the parsec. One parsec is the distance at which

a star would have a parallax of one second of arc. Show that

 

 

(h)   Calculate the distance, in parsecs, between each of the

stars listed above and the sun.

 

 

FIGURE A1.3 Wavefronts from a source moving with a

velocity V relative to a medium in which the speed with



which disturbances are transmitted is v < V.

 

Problem A1.3

 

Shock or bow waves are produced in a material when the

source of a disturbance moves faster than the speed at

which the waves from the disturbance are carried away from

the source. The wave appears as a conical wavefront

spreading out from the line of motion of the source (Figure

A1.3).

 

 

FIGURE A1.4 Cone of Čerenkov radiation.

 

The equivalent of shock waves for light is Čerenkov

radiation* which is produced by fast charged particles

traversing a transparent medium. The charged particles

must have a speed v greater than c/n, the speed of light in



that medium. Most of the energy is produced in the visible

region of the spectrum and accounts for the observation of

Madame Curie of the glowing in the dark of glass bottles

containing strong concentrations of radium salts.

 

(a)   Show that the light travels along a cone of apex angle 0

to the direction of the moving charged particles (Figure

A1.4), where

 

 

(b)   Calculate the angle 6 for Čerenkov radiation from

particles moving with the speed v ≈ c through each of the

materials listed in Problem 1.18.

 

Problem A1.4

 

(a)   Show that, for relative speeds v near, , the formulas for

Lorentz contraction and time dilatation mice me iorm

 

 

(b)   Calculate the Lorentz contraction factor and the time-

dilatation factor for each of the following speeds:



   (i)   v = 0.99c,

  (ii)   v = 0.999c,

 (iii)   v = 0.9999c.

(c)   Find the speeds v for which the Lorentz contraction

factor has the following values:

   (i)   10–3,

  (ii)   10–6,

 (iii)   10–9.

 

Problem A1.5

 

(a)   Derive the formula for time dilatation from the special

Lorentz transformation equations in the following way: Use

the formula

 

 

to find relations between the times t1 and t2 and the

positions x1 and x2 of a clock in S′ that reads t1′ and t2′,

respectively, at the two events. Then use the relation

between x2 – x1 and t2 – t1 to derive the time-dilatation

formula.



(b)   Derive the length as determined by S of a measuring

rod at rest in S′ from the formulas

 

 

Hint: Use the last formula to find t2′ – t1′ in terms of the

times t2 and t1 at which the positions of the ends of the rod

are determined by S and the length x2′ – x1′.

 

Problem A1.6

 

There is a set of synchronized clocks in each of two inertial

systems, S and S′. The clocks in each frame are 1 m apart;

they read time in meters. The system S′ moves with the

velocity relative to S. Draw a diagram showing the positions,

according to S, of a few of the S′ clocks at time t = 0 and the

times t′ that they read.

 

Problem A1.7

 

Determine the visual appearance of a rapidly moving sphere

that is sufficiently far away that the light received by the eye

is essentially a parallel beam. Determine the appearance

only for that time interval in which the velocity of the sphere

is essentially perpendicular to the line joining the sphere to

the eye.



 

Problem A1.8

 

An inertial observer S draws a circle x² + y² = 1 in his xy

plane.

 

(a)   Show this spatial curve on the space-time diagram of S.

(b)   An inertial observer S′ moves with the velocity relative

to S. Draw his coordinate axes on the space-time diagram of

S and mark the scales on these axes.

(c)   What curve does S′ observe as the circle of S?

(d)   Explain your answer to (c) in terms of the space-time

diagrams of (a) and (b).

 

Problem A1.9

 

The world line of a particle is given by the equation relative

to an inertial observer S.

 

(a)   Draw the world line of the particle on the space-time

diagram of S.

(b)   Draw the 4-velocity on the world line at the points

where the world line crosses the coordinate lines τ = 0, τ =



1, τ = 2, and τ = 3.

(c)   Calculate the proper time t0 of the particle at the time t

relative to S.

 

Problem A1.10

 

A meter stick travels along the x axis of S with velocity

relative to the inertial observer S. A flat table, parallel to the

x axis and containing a hole of length 1 m along the x

direction, moves with velocity relative to S (Figure A1.5). The

positions of the center of the meter stick, the center of the

hole, and the origin x = y = 0 of the spatial coordinate axes

of S coincide at t = 0. According to S, the meter stick is

contracted in its direction of motion and therefore should

pass through the hole. At first glance, it might be argued

that, relative to the meter stick, the hole is Lorentz

contracted and the meter stick cannot pass through the hole.

Resolve this paradox* by determining the positions of the

edges of the hole as viewed at one instant of time from the

reference system of the meter stick.

 



 

FIGURE Al.5 Does the stick pass through the hole?

 

Problem A1.11

 

Relative to an inertial observer S, a thin thread 1 m long is

stretched to its breaking point along the x axis between the

points x = 0 and x = 1. At time τ = 0, the ends of the thread

are accelerated almost instantaneously to a velocity of .

 

(a)   Draw the world lines of the ends of the thread on the

space-time diagram of S.

(b)   Draw the world lines of the ends of the thread on the

space-time diagram of an inertial observer S′ moving with

velocity relative to S.



(c)   Does the thread break when it undergoes the

acceleration?† Explain why from the point of view of S and

also from the point of view of S′.

 

Problem A1.12

 

A rod moves horizontally with velocity over a flat table in

which there is a hole equal in size to the proper length of the

rod. It is argued from the point of view of the table that the

rod is shorter than the hole is and that, therefore, the rod will

undergo an acceleration g, directed downward, when it is

over the hole and thus hit the far side. On the other hand, it

is argued from the point of view of the rod that the hole is

shorter and the straight rod will pass over the hole.

 

(a)   Explain why the visual appearance of objects—for

example, the rotation of an object considered in Section 1.6,

plays no role in the resolution of a paradox like this.

(b)   Let S be the reference system of the table and S′ be that

system that moves with velocity relative to S. Relative to S,

we assume that the rod undergoes the acceleration – gŷ.

Suppose the rod is straight according to S. Find its shape

relative to S′ and resolve the paradox.*

(c)   The forces that the table exerts to support the rod

disappear as the rod moves over the hole. These forces

disappear along the rod, because of its motion, faster than

the speed of sound, which is the speed with which

disturbances propagate along the rod. Can the rod adjust to

the loss of support as it moves across the edge of the hole?



Discuss the assumption that the rod is straight according to

S.

 

Problem A1.13

 

The speed of light in a transparent medium with index of

refraction n is c/n relative to that medium. Show that the

speed of light in the x direction in the transparent medium

relative to an observer moving with the velocity relative to

the medium is,† to first order in v/c,

 

 

Problem A1.14

 

The transverse doppler effect has been measured indirectly

by H. E. Ives and G. R. Stilwell.‡ They used the apparatus

shown schematically in Figure A1.6 to determine the

wavelengths of light in a particular spectral line of moving

hydrogen atoms emitted in the backward and forward

directions. The average of these wavelengths is shifted from

the wavelength of the same spectral line emitted by

stationary atoms by an amount given by the formula for the

transverse doppler effect, as shown in the following problem.

(a)   Let γ0 be the wavelength of the spectral line relative to

that reference system in which the atom is at rest. Show



that, in the reference system S in which the atom moves

with velocity V, the wavelength γ is given by

 

 

FIGURE A1.6 The Ives-Stilwell experiment.

 

where β = V/c and 6 is the angle between V and the

direction of propagation of the wave relative to S.

 

 

(b)   The transverse doppler shift appears for θ = ω/2. Ives

and Stilwell did not make their measurements at a right

angle to the direction of V, since it only required a very small

deviation from this direction to produce an additional doppler



shift comparable to the transverse shift expected. Deter

mine the angle a relative to 0 = π/2 at which the transverse

shift and the additional doppler shift are equal for β = 0.004,

the order of speeds used by Ives and Stilwell. Determine the

angle a′ relative to θ = 0 and the angle α″ relative to θ = π

for which the angle dependent term of the equation in (a)

gives a contribution equal to the factor.

(c)   Show that the average of λθ = 0 and λθ = π is equal to

the wavelength λθ = π/2 that results from the transverse

doppler effect.

 

Problem A1.15

 

The German astronomer Heinrich Wilhelm Olbers (1758–

1840) published in 1826 a paper on the problem of the

darkness of the night sky, a problem involving a calculation

of the total light that should reach the earth from the stars if

a few reasonable assumptions are satisfied. The calculation

in this problem will show, on the basis of these assumptions,

that the temperature of the earth should be a few thousand

degrees, obviously in contradiction with reality. Olbers’

paradox* the disagreement between the plausible

calculation and actuality, was resolved by the work of the

American astronomer Edwin P. Hubble (1889–1953), who, in

1929, announced that distant galaxies of stars are receding

from us with a speed proportional to their distance. Part (a)

of this problem concerns Olbers’ paradox, and part (b),

Hubble’s law.

 



 

FIGURE A1.7 Ω = A/R² sterad.

 

(a)   Assume that the whole universe is much like the part

that we can see from the earth—that is, assume that

everywhere in the universe the distribution of stars over

large regions is uniform and that the stars, on the average,

are similar to those in the neighborhood of the sun. Also,

since the light that reaches us now from the distant stars

was emitted long ago, assume that the average distribution

and brightness have not changed appreciably with time.

Furthermore, make the assumption that there are no

systematic motions, so that the universe is static.

 

(i)   Perform the following calculation of the light that travels

toward us from all the stars. Suppose there are N stars per

unit volume on the average. Show that, in a shell of radius R,

thickness ΔR, centered at the earth, there are 4πR²NΔR stars.

The light energy from an average star that travels toward us

per unit time is proportional to 1/R², say equal to K/R²; show



that the light from the shell that travels toward us is K4πNΔR.

Show that the light that travels toward us from all stars is

infinite, on the basis of the above assumptions. Is this equal

to the light that reaches the earth? Explain your answer.

 

(ii)   The light that reaches us from a star, if the line of sight

from the earth to the star is not broken by another star or

interstellar dust, is proportional to 1/D², where D is the

distance to the star. Consider each star to be of average

brightness. A measure of the portion of the sky cut out by

the star is provided by the solid angle Ω subtended at the

earth by the star (Figure A1.7). The solid angle Ω is equal to

the ratio of the area A of a sphere of radius R centered at the

earth, cut out by the cone with vertex at the earth and

surrounding the star, to the square of the radius of the

sphere R²: Ω = A/R². The unit of solid angle is the steradian.

Show that the light that reaches us from the star is

proportional to the solid angle Ω, subtended by that part of

the star in a direct line of sight to the earth. We denote the

proportionality constant by a; thus the light reaching us from

the star is αΩ. Under the above assumption of uniformity,

each line of sight would end in a star. Show that the total

light that should reach us, on the basis of the above

assumptions, is 4πα, the same as if the earth were

surrounded by a sphere of any radius at the temperature of

the. average star, some thousands of degrees.

 (iii)   The temperature of the sun is 6,000°K. Explain, as you

would to a high school student, the relation of the above

calculation to daylight and the darkness at night.

(b)   Hubble showed that lines in the spectra of galaxies were

shifted toward the red or long wavelengths*; the red shift Δλ

in wavelength λ per unit wave length is directly proportional



to the distance r from the earth †: Δλ/λ = (vr/c)r, where vr is

the Hubble constant whose present accepted value is 3 ×

10–18/sec.

 

(i)   Express vr in kilometers per second-megaparsecs.

  (ii)   Show that the red shift can be interpreted as a motion

of the galaxies away from the earth with recession speeds V

= vrr, for V/c « 1. Hint: Consider the doppler shift in

wavelength for V/c « 1.

 

(iii)   Hubble observed red shifts up to Δλ/λ ~ 1/8. Calculate

the speed of recession and the distance of a galaxy showing

this red shift.

 

(iv)   The quasars [6] (quasistellar radio sources)* 3C273 and

3C48 show red shifts of 0.16 and 0.37. Find their speeds of

recession and distances from Hubble’s relationship, and

show in each case that the neglect of V/c compared to unity

provides a good approximation.

 (v)    The motion of galaxies away from the earth appears to

place the earth in a unique position, the center of the

expansion. Show that if, in fact, the universe is expanding,

every point in the universe can be considered equally well as

the center of expansion. Hint: Consider a reference frame

scaffolding, such as that shown in Figure 1.38, in which the

distances between points of juncture of the scaffolding are

increasing linearly with time. Choose an arbitrary point as

origin and show that each juncture point is receding from



that origin with a speed proportional to its distance from the

origin.

 

(vi)   Assume that the universe was created by an explosion

of condensed matter that is and has been expanding at the

rate given by Hubble’s relationship. Calculate the age of the

universe on the basis of this assumption.†

(vii)   Explain how the expansion of the universe can be used

as a basis for the resolution of Olbers’ paradox. Hint:

Consider the light energy emitted by a star per unit time and

its relation to the energy per unit volume, as the volume

expands.

 

Problem A1.16

 

(This problem should be attempted only if you are familiar

with the principle of equivalence and the formulas for the

potential energies due to gravity. You may wish to do this

Problem after you have studied Section 3.2.)

The principle of equivalence states that an inertial reference

frame at rest in a region of a gravitational force is equivalent

to a noninertial reference frame in which no gravitational

forces are present but which is undergoing an acceleration

relative to the fixed stars. Thus, the principle of equivalence

can be combined with the special theory of relativity to

provide information on the behavior of light under

gravitation.‡



(a)   Consider an emitter of light of frequency v0 at a height

h above a light receiver near the earth’s surface. Determine

the frequency v of the light that strikes the receiver in the

following way: Replace the system of emitter and receiver at

rest in the region of gravitational force by a noninertial

system in a force-free region, undergoing an acceleration g

upward relative to an inertial frame. Let Δv be the difference

in the speed of the receiver when the light is received and

the speed of the emitter when the light was emitted. Show

that Δv = gh/c and that v ≈ v0[1 + (Δv/c)] = v0[1 + (gh/c²)].

 

 

FIGURE A1.8 The definition of the vector product a × b.

 

   (i)   R. V. Pound and G. A. Rebka, Jr.,* measured (v – v0)/v0

for a fall of h = 74 ft and obtained (2.56 ± 0.26) × 10–15.



Compare their result with the prediction of (a).

(b)   Consider two clocks A and B separated in a region of

gravitational force by a distance h along the direction of

gravitational force. Replace the system as in (a), and let the

clocks move past an inertial clock C. Let vA be the speed of

A past C and vB that of B. Show that the periods TA, TB, and

Tc of the clocks at A, B, and C, respectively, are related by

 

 

so that

 

 

Hint: Assume that and are both much smaller than unity.

 

(i)   Show that ΔTB = ΔTA{1 + [(VA – VB)/c²]}, where VA and

VB are the gravitational potential energies per unit mass at A

and B, respectively.

 

(ii)   Light of frequency v0 is emitted at A and absorbed as

light of frequency v at B. Show from (b) that

 

 



(iii)   Compare a series of clocks at various heights above a

star of mass M and radius R to show that light of frequency

v0 emitted at the” surface of the star is determined to have

frequency v a large distance from the star, with

 

 

This shift in frequency toward the red end of the visible light

spectrum is called the gravitational red shift and must be

distinguished from the recessional red shifts of distant

galaxies (Problem A1.15).

 

Problem A1.17

 

(a)   The components relative to an observer S of a skew-

symmetric tensor of the second order, are Tμv.

 

(i)   Show that Tμv = 0.

 

(ii)   Show that Tμv has only six independent nonvanishing

components, and list these.

(b)   Two 4-vectors with components aμ and bμ relative to S

are a and b.

   (i)   Show that aμbv – avbμ is a skew-symmetric tensor of

the second order.



  (ii)   The cross or vector product of two 3-vectors a and b is

defined as a vector written as a × b (or a ∧ b) (Figure A1.8)

with magnitude |a| |b| sin θ, direction perpendicular to the

plane of a and b, and with sense as determined by the right-

hand rule shown in Figure A1.9: curl the fingers of the right

hand from a to b and the thumb designates the sense. Show

that the magnitude of a × b is equal to the area of the

parallelogram with sides a and b. Show that a × b = – b × a.

 (iii)   Show that the magnitude of a × b is equal to |a| times

the magnitude of the component of b perpendicular to a.

 

(iv)   Use the result of (iii) to show that

 

 

(v)    Show that and . Find the vector products of all other

combinations of unit vectors along the directions of the

coordinate axes.

 

(vi)   Use the results of (iv) and (v) to show that

 

 

(vii)   Show that a × b determined by the use of a left-hand

rule is opposite in sense to a × b determined with a right-

hand rule. A vector that changes sign under the exchange of

a left for a right hand is called a pseudovector or a polar

vector to distinguish it from a true or axial vector.



 

 

FIGURE A1.9 Right-hand rule for the determination of the

sense of a × b.

 

(c)   Consider the transformation

 

 

(i)   Show that the components (P1, P2, P3) where P1 = T23,

P2 = T31, and P3 = T12, of any skew-symmetric tensor of

the second order behave like the components of a 3-vector

under that transformation.



 

(ii)   Show that the components (V1, V2, V3), where V1 =

T01, V2 = T02, and V3 = T03, of any skew-symmetric tensor

of the second order behave like the components of a 3-

vector under that transformation.

(d)   Consider the transformation

 

 

   (i)   Show that the components (a1, a29, a3) of a 3-vector

become (– a1, – a2, – a3) under that transformation.

  (ii)   Show that the components (d1, d2, d3) of a pseudo 3-

vector become (d1, d2, d3) under that transformation.

 

(iii)   Show that V is a true 3-vector and P is a pseudo 3-

vector.

(e)   Let S′ be a reference system that is moving with the

velocity relative to S.

   (i)   Suppose that V1 = V2 = V3 = 0. Find (V1′, V2, V3) in

terms of the 3-vector P with components (P1, P2, P3). Show

that

 

 



  (ii)   Suppose that P1 = P2 = P3 = 0. Find the components

(P1′, P2′, P3′) in terms of V = (V1, V2, V3). Show that

 

 

(iii)   Find P′ and V′ in terms of P and V in the case in which

neither P nor V vanishes.

 

Problem A1.18

 

(This problem is for students who have some familiarity with

matrices.)

(a)   Show that the components Tμv of a tensor of the second

order can be written in matrix form.

(b)   Show that the components TμvSvρ, calculated

according to our summation convention, can be calculated

from the matrix product of the following three matrices:

   (i)   that corresponding to Tμv,

  (ii)   that with elements g00 = – g11 = – g22 = – g33 = 1

and gμv = 0, μ ≠ v,

 (iii)   that corresponding to Svρ.

(c)   Write the components bμ as the elements of a column

matrix with one element per row and the components aμ as

the elements of a row matrix with one element per column.



Show that a·a is equal to the matrix product of the following

three matrices:

   (i)   that corresponding to aμ,

  (ii)   that of (b)(ii) above,

 (iii)   that corresponding to bμ.

(d)   Show that Tμu, calculated according to our summation

convention, is the trace of the matrix formed by the matrix

product of

   (i)   the matrix corresponding to Tμv,

  (ii)   the matrix of (b)(ii) above.
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Newton’s laws of motion have been remarkably successful in

describing the motions of macroscopic objects, but the

kinematics of newtonian mechanics, and thus perhaps the

range of validity of Newton’s laws, are limited to

circumstances in which every one of the relative speeds

involved is very small compared to c. This limitation is

generally not restrictive in those problems involving the

motions of macroscopic objects only; the upper limit in

speed is imposed, in practice, by the fact that tremendous

energies would be required to accelerate macroscopic

objects to speeds near that of light.

Atomic and subatomic particles can be accelerated to such

speeds, however, so we turn now to the problem of

describing the motions of objects under circumstances in

which at least one of the relative speeds involved is

comparable to c. We must discover whether Newton’s laws

are valid even if some of the relative speeds involved are

large. If they are not valid, we must determine what

modifications are required in these laws of motion. Answers

to these problems form the subject matter of this chapter.

There are two theories, each correct within a restricted range

of application, that we will need to consider in our

discussions of these problems. The first of these theories is

the kinematics of special relativity that we studied in

Chapter 1. The second is newtonian mechanics, which is so

useful in describing the motions of familiar objects in those



circumstances in which newtonian and relativistic kinematics

coincide. Any relativistic theory of dynamics must agree with

newtonian mechanics, at least in that limit, and so it is

worthwhile at this point to review the structure of newtonian

mechanics. The problems at the end of this introduction

provide material for further study in the field of newtonian

mechanics.

One class of motions, force-free motions, is distinguished

above all others in newtonian mechanics: by definition, a

particle that moves with a constant velocity relative to any

inertial frame of reference experiences no force. According to

newtonian mechanics, deviations from this class of motions

are attributable to the presence of objects within the

environment of the given particle. The objects are said to

interact with the particle.

The interaction between only two particles results in each

experiencing an acceleration (Figure 2.1), and the two

accelerations are related: the ratio of the magnitudes of the

accelerations, defined as the inverse ratio of the masses,

 

 

is the same for any two given particles independent of the

means by which they interact. If the interaction results in

one particle experiencing a smaller acceleration than the

other, its mass is larger than the other’s, so the ratio of the

masses is a measure of the relative inertia of the two

particles. The masses of objects are given in terms of the

mass of an arbitrarily chosen standard. In addition, mass is

conserved in all reactions that are described by newtonian

mechanics.



 

 

FIGURE 2.1 Accelerations produced in two interacting

particles.

 

The deviation from motion under no force,

 

 

is measured by the acceleration with respect to an inertial

frame

 

 

or, more conveniently, by the product mass times

acceleration. This is defined as the force experienced by the

particle:

 

 



The force experienced by a particle is determined, according

to Newton’s second law of motion, by the objects in the

environment of the particle. Thus, the differential equation

that describes the motion of the particle r(t) in terms of the

environment and the (arbitrarily) given initial position and

velocity is Newton’s equation of motion

 

 

Moreover, the force is a vectorially additive function of the

environment; the force due to two objects in the

environment is the vector sum of the forces that would result

from the presence of each of the objects in the absence of

the other.

This principle of the additivity of environments means that

all forces may be reduced to a sum of fundamental forces,

forces between two particles that depend on the intrinsic

properties of the particles. Newtonian mechanics depends

very critically on the properties of these fundamental forces.

There must be few of these in nature, and they must have a

simple mathematical form or physical phenomena would be

too complicated to describe within the newtonian formalism.

There do exist two fundamental forces that are simple in

mathematical form: the electrostatic force and the

gravitational force. The electrostatic force is the electric

force between two stationary particles, each of which

possesses the property of electric charge, given by

Coulomb’s law as

 



 

Here F2(1) is the electrostatic force experienced by particle 2

due to the presence of particle 1, r is the position vector of

particle 2 relative to particle 1 (Figure 2.2), q1 and q2 are the

respective charges of the particles, and K is a positive

universal constant. In the system of units in which forces are

measured in newtons, distances in meters, and charges in

coulombs,

 

 

The gravitational force is given by Newton’s law of

gravitation as

 

 

where F2(1) is the gravitational force, m1 and m2 are the

inertial masses,* and G is a positive universal constant given

by

 

 



 

FIGURE 2.2 Separation vector r.

 

The electrostatic and gravitational forces do not describe all

the interactions experienced by particles. For example, there

are also velocity-dependent interactions called magnetic

forces that come into play between two charged particles in

relative motion. The problems involved in describing

magnetic interactions in terms of the relative position vector

and the relative velocity between two particles led in the

nineteenth century to the development of another type of

theory, field theory, for the description of electromagnetic

phenomena. We shall not consider those problems, but we

shall use the formula for the magnetic force experienced by

one particle of charge q and velocity v due to the presence

of other moving charges:

 

 

where B = B(r, t) is a vector field called the magnetic

induction, which represents the effects of the other charges

and will be given where needed in the work to follow.†

There are other forms for forces, such as friction, that

describe in a pheno-menological manner the effects of many

interactions. These forces are not fundamental in nature,

however, and so will be excluded from our discussions.

Finally, the forces between pairs of particles in a system are

not all independent. A system composed of particles, each

moving according to the equation of motion



 

 

appears as one object whose motion, according to Newton’s

laws, satisfies the equation

 

 

This behavior is explained in newtonian mechanics by

Newton’s third law, which states that if the force experienced

by the ith particle due to the presence of the jth particle is

Fi(j), then

 

 

For any system of particles, the equations of motion and

knowledge of the forces involved completely determine the

motions in terms of the initial positions and velocities.

Therefore, armed with this knowledge we can find the time

variation of any entity that can be measured and is

associated with the particle or its motion. Such an entity is

called a dynamical variable. Dynamical variables, in general,

vary with the time in a manner dependent on the motions

under consideration. There do exist, however, some

dynamical variables that do not change with time if the

interactions are described by fundamental forces. That these

dynamical variables are conserved is a very general feature

of motions, and provides partial information on the behavior

of a system even in those cases where we do not or cannot



solve the equations of motion. The discussion in the rest of

this chapter will involve only two of these conservation laws.

An isolated system of particles may be viewed as an object,

and within the framework of newtonian mechanics the

behavior of that object is subject to Newton’s equation of

motion. Therefore, since by definition there are no external

forces acting on an isolated system, some average position

within the object moves with constant velocity. It is a

consequence of Newton’s laws that this average position is

described by a vector equal to the mass-weighted average

position vector of all the particles in the system:

 

 

is the position vector of the center of mass. We introduce the

(linear) momentum of the ith particle as

 

 

and obtain from Newton’s laws that P = M dR/dt, where

 

 

and

 



 

is conserved. This conservation law of linear momentum is

independent of the form of the forces of interaction between

the particles of the system.

The other conservation law that will be of interest to us

directly involves the form of these forces. The law depends

on them through a scalar function of the position vectors r1,

r2,... of the particles of the system called the potential

energy V(rl, r2, . . .). The potential energy is defined* in

terms of the forces F1, F2,... experienced by the particles

through the equation

 

 

and the value, say V = 0, for some specified reference

configuration such as that for which the particles are

sufficiently far apart that the forces can be neglected. The

dynamical variable E defined by

 

 

is the energy of the system, and is a conserved dynamical

variable. The energy of the system includes the kinetic

energy of each particle, , that is equal to the work done on

the particle between a state of rest and a state of motion

with velocity vi:

 



 

where F · dr is the work done by the force F on the particle

during its motion through the displacement dr.

The conservation law of energy sometimes can be reduced

to a form that does not depend on the form of the force

functions. Consider a system of particles that are initially

moving freely (without interacting), then interact and finally

move away from each other to become free again. The

energy E is conserved throughout the motion so the initial

energy is equal to the final energy. The relation given by the

conservation law

 

 

does not depend on the form of the potential energy. Thus

we conclude our review of newtonian mechanics.

Section 2.1 is concerned with a critical examination of the

role of the newtonian concepts of space and time in the

formulation of Newton’s laws and the statement of a

principle that permits our extending these laws to yield

descriptions of motions involving large relative speeds. We

shall find that Newton’s laws involve the concept of absolute

simultaneity in a critical manner and these laws must be

modified in some way. Where can we look for this

modification? Since the problem arises from the fact that the

relation between various inertial frames is different from

what we had believed previously, we will investigate that



part of mechanics that involves the relation between the

description of motions relative to different frames, the

principle of relativity.

This principle, which may be deduced from Newton’s laws of

motion, remains valid even in those circumstances under

which Newton’s laws no longer apply. The principle of

relativity provides us with a starting point for our

investigation of laws of mechanics valid in circumstances

involving relative speeds comparable to c. Section 2.1

contains a statement of this principle and a discussion of its

application to the problem of finding the appropriate laws of

motion.

Laws of physics that are valid regardless of the relative

speeds involved are called relativistic laws. Those laws

whose validity is limited to circumstances not involving any

relative speeds comparable to c are called nonrelativistic

laws.* Relativistic laws of motion must reduce, under the

appropriate circumstances, to nonrelativistic laws.

Furthermore, the basic entities that appear in the simplest

relativistic laws possess analogues in their nonrelativistic

limit, the newtonian formulation of mechanics. We can

arrive, therefore, at these relativistic laws by suitable

generalizations of the corresponding newtonian laws.

Two problems are involved in generalizing laws from

newtonian mechanics to the corresponding relativistic laws.

In the first place, we must find dynamical variables that are

relevant to a description of the behavior of interacting

objects and that, in addition, are defined in a manner

consistent with the Lorentz transformation law. The

dynamical variables in point are the 4-momentum introduced

in Section 2.2 and the Minkowski force introduced in Section

2.3. Second, we must find relations between these

dynamical variables that restrict their values to those



satisfied in actual motions. This aim cannot be achieved

completely within the framework of the concepts that are

simple generalizations of the concepts of newtonian

mechanics. Therefore, the studies in this chapter are

restricted to two types of equations between dynamical

variables—conservation laws and the simplest equations of

motion—that can be introduced within that framework.

We begin in Section 2.2 with those dynamical relations in

which the interactions do not appear explicitly, namely, the

generalizations of the nonrelativistic conservation laws of

momentum and mass and, under the appropriate

restrictions, the conservation law of energy. The

corresponding relativistic conservation laws do not provide a

complete description of the motions of objects, but they do

provide an introduction to the study of the effects of

interactions between objects. Furthermore, these

conservation laws apply under analogous conditions even at

the atomic and subatomic levels, where many of our

ordinary concepts break down.

The simplest equation of motion is that for an object that

experiences a given external interaction. In this case, the

motion of the object does not modify the environment

appreciably; the motion can be described by a force function

that does not depend on the motion of the object itself. In

Section 2.3, we formulate a simple generalization of

Newton’s equation of motion, which is compatible with the

principle of relativity and which describes the motion of an

object under a given external interaction.

Most of the practical applications of relativistic mechanics

involve the fundamental particles of physics, which are

described in Section 2.4.* The masses of these particles are

sufficiently small that they can be accelerated in the

laboratory to relativistic speeds; furthermore, these particles



often are observed moving at such speeds when they strike

the earth’s atmosphere from outer space. A study of these

particles shows conclusively the necessity for the relativistic

generalizations of Newton’s laws of motion and the

corresponding conservation laws. The behavior of these

particles cannot be described in detail without the use of the

concepts of quantum mechanics; nevertheless, this behavior

is restricted by the relativistic conservation laws.

Section 2.4 contains many problems involving

experimentally determined numbers that provide useful

examples of the developments given in Sections 2.2 and 2.3.

 

Problem 2.1

 

Consider two inertial systems S and S′ related by the galilean

transformation law.

 

(a)   An observer in S measures the mass ratio m1/m2 of two

particles in a collision experiment. Show from the galilean

transformation law that an observer in S′ who makes the

appropriate measurements in that experiment also obtains

the number m1/m2 for the ratio.

(b)   Consider the fundamental force Fi(j), experienced by

particle i due to the presence of particle j, given relative to S

by

 



 

Show from the galilean transformation law that, relative to

S′,

 

 

(c)   Consider a system of particles 1, 2,..., N interacting

among themselves through the fundamental forces of part

(b), and experiencing no other forces.

   (i)   Show that P = m1v1 + m2v2 + ··· + mNvN is

conserved as a consequence of Newton’s laws.

  (ii)   Let Fi be the total force experienced by the ith particle.

Show from the galilean transformation law that the equation

of motion miai = Fi relative to S is equivalent to relative to S′.

Show that the galilean principle of relativity follows from this

result.

 

Problem 2.2

 

(a)   The total energy of a system depends on the position ri

and the velocity vi of each particle:

 

 



Show that if

 

 

for sufficiently small Δt, the energy is conserved. Hint:

Expand E(r + Δr, v + Δv) and neglect the terms in (Δt)².

(b)   Show that the rate at which work is done on a particle is

given by F · v, the power P, and that .

(c)   The electric work done on a charged particle is

proportional to the charge of the particle. The work done in

joules per coulomb is the potential difference in volts

experienced by the particle. The work done on an electron

when it is accelerated through one volt is called an electron

volt (eV). Show that 1 eV = 1.602 × 10−19 J.

(d)   An electron is accelerated from rest to motion with a

kinetic energy of 10 MeV. The acceleration takes place over

10−7 sec. Calculate the average power in watts (J/sec)

required for this acceleration.

(e)   Calculate the speed of a 10-MeV electron if the kinetic

energy were given by the nonrelativistic formula .

(f)   The radius of a proton is about one femtometer (1 fm =

10−15 m). Calculate the radius in angstroms (1 Å = 10−10

m).

(g)   The masses of some particles are conveniently

expressed in the (unified) atomic mass unit, u, equal to 1/12

the mass of an atom of C¹²: 1 u = 1.660 × 10−27kg.

Calculate the mass of the proton in unified atomic mass

units.



(h)   Calculate the approximate density of the proton and the

density of water in kilograms per cubic meter and unified

atomic mass units per cubic femtometer.

 

 

FIGURE 2.3 Collision with a fixed hard sphere.

 

Problem 2.3

 

Use nonrelativistic mechanics in this problem. A point

particle incident on a fixed hard sphere experiences a force

at the surface of the sphere that reverses the component of

momentum normal to the sphere at the point of contact, and

leaves the corresponding tangential component unchanged.

 

(a)   Show that the incident and scattered motions make

equal angles with the radius of the sphere drawn to the point



of contact, and that the incident motion, the scattered

motion, and that radius lie in one plane (Figure 2.3).

(b)   The angle Θ through which the particle’s motion is

deflected is called the scattering angle. The distance S

between the line of the particle’s motion and a parallel line

through the center of the force center is called the impact

parameter. Show that for hard-sphere scattering by a sphere

of radius a (Figure 2.4) S = a cos (Θ/2).

(c)   Consider the collision of a hard sphere of radius r with

an identical hard sphere (Figure 2.5). Show that S = 2r cos

(Θ/2).

 

Problem 2.4

 

Use nonrelativistic mechanics in this problem. Consider a

particle incident on a spherical system of particles for which

the attractive force between each pair of the particles is

exerted only over a very short distance. On approaching the

system, the particle experiences a brief attraction, but once

inside the net force is zero (Figure 2.6).

 



 

FIGURE 2.4 Diagram for the calculation of the relation

between Θ and S for hard-sphere scattering.

 



 

FIGURE 2.5 Collision of identical hard spheres.

 

(a)   Show that the effects of such a force are approximated

by the square-well potential (Figure 2.7)

 

 

Hint: Consider the force for which the potential varies

smoothly from −V0 at r = a − ε to 0 at r = a + ε.

 



 

FIGURE 2.6 This force is approximated by a square-well

force. Inside the dashed region the particle experiences a net

force toward the center of the sphere.

 

(b)   Use conservation laws to show that the normal (n) and

tangential (t) components of the velocity inside and outside

the sphere are related by

 

 

Show that (Figure 2.8) if E = the incident energy,

 

 



(c)   Consider a particle with energy E = V0 that is scattered

by the square well of part (a). Show that (Figure 2.9)

 

 

 

FIGURE 2.7 The square-well potential.

 

and

 

 



 

FIGURE 2.8 The angle of incidence and the angle of

refraction r.

 

Problem 2.5

 

A particle moves toward a force center with the

nonrelativistic speed υi before it experiences any appreciable

acceleration. The repulsive force is given by .

 

(a)   Show directly from Newton’s equation of motion that the

angular momentum relative to the force center L = mr × v is

conserved. Show that implies that the motion takes place in

a plane.

(b)   Set up a polar-coordinate system in the plane of the

motion with the origin at the force center. Show that

mr²(dθ/dt) = L is a constant. Hint: Show that the component

of velocity perpendicular to r is r(dθ/dt).



(c)   Show from the energy conservation law that . Show that

υ² = (dr/dt)² + r²(dθ/dt)².

(d)   Show that

 

 

Hint: Use dr/dt = (dr/dθ)(dθ/dt).

(e)   Set u = 1/r and show that

 

 

 

FIGURE 2.9 The scattering angle and the impact parameter

for square-well scattering.

 

(f)   Show that

 

 



is a solution of the differential equations of (d) or (e).

(g)   Show that (Figure 2.10) L = mSυi and that 1/r → 0 for θ

= θi.

(h)   Show that the scattering angle Θ is given by .

 

Problem 2.6

 

A particle of mass m and electric charge q moves relative to

an inertial system S with the nonrelativistic speed υ in a

region of constant magnetic induction B.

 

 

FIGURE 2.10 Relation between orbit and scattering

parameters S and Θ for scattering by an inverse-square

central force.



 

(a)   The particle moves relative to S in a plane perpendicular

to B. Show that the particle travels on a circle of radius R =

mυ/|q|B.

(b)   The component parallel to B of the velocity relative to S

of the particle is v|| and that perpendicular to B is v⊥. Show

that, relative to S, the particle moves on a circle of radius R

= mυ⊥/|q|B, whose center travels with the velocity v||.

 

 

FIGURE 2.11 Thrust of rocket.

 

Problem 2.7

 

Consider a rocketship in free space. Hot gases are ejected

from the tail of the rocket at the constant rate of μ kg/sec

with the constant velocity V relative to the rocket (Figure

2.11). Let M(t) denote the mass of the rocket and v(t) its

velocity at time t.



 

(a)   Show that as a consequence of Newton’s laws the

velocity v changes in the short time interval dt according to

the relation M dv + (μ dt) V = 0 or M(dv/dt) = −μV.

(b)   Show that M(t) = M0 − μt, where M0 = M(0).

(c)   Show that if the rocket were at rest at time t = 0, the

velocity of the rocket at time t would be given by v(t) = V ln

(1 − μt/M).



2.1   The Dynamic Postulate of

Einstein’s Special Relativity Theory

 

It is a common experience when traveling by boat or plane

that you are unable to detect any effects of the “motion.”

The behavior of objects relative to the “moving” boat or

plane is indistinguishable from their behavior, under similar

circumstances, relative to the earth. More striking is our

inability to detect any effects of the earth’s orbital speed of

30 km/sec, about 70,000 mi/hr, upon the course of any

physical process. These facts corroborate the principle of

relativity, which states, in effect, that the laws of nature do

not differentiate one particular inertial reference system

from any other. The question of the validity of this principle

is the main topic of this section.



2.1.1   The incompatibility of

Newton’s laws and the principle of

relativity*

 

The galilean form of the principle of relativity is a

consequence of newtonian mechanics (see Problem 2.1).

Thus, our inability to detect any effects of steady motions

involving only small relative speeds follows as a

consequence of Newton’s laws of motion and the newtonian

ideas of space and time. We now know, from our critical

examination of the properties of space and time (relativistic

kinematics) in Chapter 1, that the newtonian ideas of space

and time are untenable in circumstances involving large

relative speeds. Therefore in the light of insight, provided by

relativistic kinematics, into the properties of space and time,

we must examine the validity of Newton’s laws—particularly

their compatibility with the principle of relativity as they

apply to circumstances involving relative speeds comparable

to c.

Our main concern lies in the relation between the laws of

mechanics as referred to various inertial systems. Therefore

let us assume for the moment that Newton’s laws of motion

are valid for all motions relative to one particular inertial

system S, say that in which the sun is (almost) at rest.

Newton’s equation of motion for a particle relates two

vectors, the force and the acceleration. The force depends

on the relation of the particle to its environment and is thus

independent of the reference frame relative to which the

motion is measured. On the other hand, the acceleration is

measured relative to the reference frame. As a result, the



equation of motion (2.5) takes on the same form relative to

all inertial frames connected to the inertial system S by the

galilean transformation equations

 

 

Furthermore, since t = t′, the concept of simultaneity and

related concepts like instantaneous relative displacement

are the same for all such inertial systems. We conclude that

if Newton’s laws of motion are valid in the one particular

inertial reference system S, the same statements of the laws

are valid in all other inertial reference systems connected to

S by galilean transformations.

Newton’s laws of motion are consistent with the principle of

relativity for all inertial systems moving with speeds, relative

to the particular inertial system S, sufficiently small that the

Lorentz transformation reduces to the galilean

transformation. However, Newton’s laws are not compatible

with the principle of relativity for circumstances involving

relative speeds of the order of c. For one thing, acceleration

plays an important role in Newton’s laws, and yet the

acceleration dv/dt measured relative to one inertial frame

does not transform under a Lorentz transformation into the

acceleration relative to another inertial frame (Problem 2.8).

That is, if the acceleration of the particle relative to the

inertial system S is determined by the environment, then

relative to another inertial system S′ the environment

determines a more complicated entity that depends on the

velocity of the particle relative to S′ and the velocity of S′

relative to S. This result is not compatible with the principle

of relativity, since, from an examination of the behavior of

the particle, we could decide whether we are referring the



motion to the “privileged” inertial system S or to the

“moving” inertial system S′.

Furthermore, the concept of simultaneity plays an important

part in the formulation of Newton’s laws. For instance, his

second law states that the acceleration of a particle at a

given instant t is determined by the properties of the

environment, objects at other points in space, at that same

time t. Consider, for example, the motion of two particles

that interact through a repulsive force. If the two particles

undergo straight-line motion along the line joining their

positions at any instant, say the x axis, then their world lines

appear as shown on the space-time diagram in Figure 2.12.

This diagram depicts the particles approaching each other,

undergoing a repulsive interaction, and then receding from

each other. Suppose now that particle 1 experiences a force

that depends on the instantaneous separation distance from

particle 2. Then one inertial observer S determines that

separation distance relative to the event E1 as , while

another inertial observer S′ determines that separation

distance as . Thus, the instantaneous force depends on the

observer and, moreover, on the motion of the object, since

the event separation E1E3 depends on what happens to the

particle, that is, on where the world line goes, after E2. We

conclude that the notion of force as a simple function of the

instantaneous environment, as implied by newtonian

mechanics, is not compatible with the principles of relativity

and the invariance of the speed of light.

 



 

FIGURE 2.12 The distance between particles 1 and 2 relative

to E1 is relative to S and relative to S′.

 

It is possible that the newtonian notion of force can be

modified suitably to fit into the framework of the principle of

relativity. In this event, we must inquire next into the validity

of Newton’s third law. This states that a component force

experienced by one particle at the time t is equal in

magnitude and opposite in direction to the corresponding

component force experienced by another particle, spatially

separated from the first, at that same instant t. This would

mean, in the circumstances shown in Figure 2.12, that the

force experienced by particle 1 at E1 is equal and opposite to

the force experienced by particle 2 at E2 according to S and

at E3 according to S′. This comes about because of the fact,

shown in our study of relativistic kinematics, that spatially

separated events that are simultaneous relative to one

inertial system are not simultaneous in all other inertial

systems. Therefore, if Newton’s third law, which depends on



the use of the concept of simultaneity, is valid in one inertial

system S, this law is not valid in the same form in all inertial

systems. We see again that Newton’s laws are not

compatible with the principle of relativity for circumstances

involving relative speeds of the order of c.

 

SUMMARY Newton’s laws of motion are incompatible with the

principle of relativity because of the properties of space-time

revealed by the invariance of the speed of light. For one

thing, the acceleration measured relative to one inertial

frame does not determine, by itself, the acceleration relative

to another inertial frame. Also, the relative character of

simultaneity shows that, in all but the simplest cases, the

instantaneous force experienced by an object cannot depend

on the simultaneous configuration of the environment

relative to all observers. Furthermore, the instantaneous

action of one object on another in general cannot be equal

and opposite to the reaction simultaneously relative to all

inertial observers.

 

Problem 2.8

 

An inertial system S′ moves with velocity relative to another

inertial system S. Let a = d²r/dt² be the acceleration of a

particle relative to S and a′ = d²r′/dt′² be the acceleration of

the same particle relative to S′.

 

(a)   Show that



 

 

(b)   Show, from the results of (a), that the acceleration a

relative to S does not determine, by itself, the acceleration a′

relative to S′. Compare this with the discussion in Section

1.9.



2.1.2   The dynamic postulate of

special relativity*

 

The incompatibility of Newton’s laws of motion and the

principle of relativity presents us with several alternatives.

Is there one special inertial reference system, one that we

might call “absolute,” in which Newton’s laws of motion

retain the form that we have considered previously? Or

must we modify our laws of physics, in particular Newton’s

laws, so that they take on the same form relative to every

inertial system and thus satisfy the principle of relativity? Or

is there some middle course that we must follow?

There is no point in debating about which must be done—

the answer rests with the results of experiments. Newton’s

laws are outstandingly successful in the description of

physical phenomena over a wide range of validity, from the

motions of objects as small as dust particles to the motions

of planets in the solar system. However, a careful analysis

shows that the successes of newtonian mechanics are

limited to circumstances involving relative speeds much less

than c. Therefore, it is possible that the principle of relativity

is valid, together with the necessary modification in

Newton’s laws, without any contradiction from that great

body of experience that corroborates newtonian mechanics

within its range of validity.

On the other hand, we cannot point to one particular

experiment that demonstrates conclusively that all inertial

reference systems are equivalent for our description of the

laws of nature. Indeed, some reflection will show that the

principle of relativity can be based only on agreement



between every one of a very large number of experiments

and consequences of that principle. Experiments that

involve relative speeds of the order of c are being performed

every day in scientific laboratories around the world. There

is no experimental evidence to show the existence of an

absolute reference system. All experimental results are

consistent with the principle of relativity. Therefore, we must

accept the dynamic postulate of special relativity put

forward by Einstein.

 

Principle of Relativity: All inertial reference systems are

completely equivalent as regards our description of all laws

of nature.

 

We now face the task of formulating laws of motion that are

consistent with the principle of relativity and the relation

between different inertial systems, the Lorentz

transformation law. These laws also must reduce to

Newton’s laws for those circumstances in which all speeds

involved are much less than c.

The formulation of relativistic laws of motion involves two

issues. One of these concerns the determination of an

equation of motion that takes on the same form relative to

all inertial reference systems so that the equation of motion

does not distinguish one inertial system from all others. The

other difficulty concerns the concept of simultaneity; this

concept, applied to spatially separated events, cannot enter

into any relativistic formulation of a physical law. These

issues have been resolved for some types of interactions,

but within a framework of ideas different from that we have

encountered thus far. A relativistic theory of gravitation,



including laws that describe the motions of interacting

particles, has been proposed by Einstein and is discussed in

Chapter 3. The motions of interacting particles with electric

charges are described by another theory that involves the

field concept. The behavior of particles interacting in other

ways can be described only within the framework of the

concepts of quantum mechanics.

The rest of this chapter is devoted to laying a foundation for

a study of relativistic interactions while, at the same time,

restricting our considerations in order to avoid the major

problems involved in an investigation of these interactions.

The difficulty arising from the relative nature of simultaneity

appears in the problem of describing the interactions

between spatially separated particles. A partial description

of the effects of these interactions is given by conservation

laws that, as in newtonian mechanics, are satisfied

regardless of the nature of the interaction. In Section 2.2,

we explore the nature of these conservation laws in

relativity theory. In Section 2.3 we establish a relativistic

formulation of the equation of motion for a particle

experiencing a given external interaction. By restricting our

investigation thus to circumstances involving interactions

that are given independent of the motion of the particle

under consideration, we resolve one of the issues without

encountering the other.

 

SUMMARY The principle of relativity has withstood the test

of experiment, whereas the range of validity of the

newtonian formulation of mechanics is restricted to

circumstances involving relative speeds that are much less

than c. Therefore, we require a reformulation of the laws of

motion consistent with the dynamic postulate of special

relativity.



 

Problem 2.9

 

A student reads the section above and describes to a friend

the reasons that Newton’s laws of motion are not universally

valid. The friend asks “Then why did you study and learn

something that is wrong?” State the answer that you would

give to this question.

 

Problem 2.10

What is the difference between Einstein’s postulate and the

galilean principle of relativity?



2.1.3   Covariant equations

 

In the next two sections, we will be concerned with

generalizing nonrelativistic equations, such as Newton’s

equation of motion

 

 

to relativistic equations that are valid under circumstances

in which relative speeds of the order of c are manifest. We

must find, for this purpose, equations that are compatible

both with the principle of relativity and with the principle of

the invariance of the speed of light. Therefore, we first

examine the conditions that an equation, expressing a

physical law, must satisfy in order that it be compatible with

these principles.

A law of physics is a statement of a relationship between

different physical entities, each of which can be

experimentally measured, at least in principle. If it is not

possible to state this relationship in an identical manner

with respect to every inertial system, we would be able to

differentiate between inertial systems, a result contrary to

the principle of relativity. Therefore, the principle of

relativity implies that it is possible to state a physical law in

such a manner that the statement takes on the same form

relative to every inertial system.

The principle of the invariance of the speed of light is taken

into account by the requirement that the different inertial



systems be related through the Lorentz transformation law.

The statement of a physical law may consist of, or have as

an integral part, an equation analogous to (2.23), which

relates the behavior of two different entities. For example,

Equation (2.23) gives a relation between the acceleration a

= d²r/dt² that is defined by the motion of the particle and

the force F that is determined by the environment. In order

that an equation be compatible with the principle of

relativity, it must be possible to express that equation in the

same form relative to every inertial reference system.

Consider the relativistic formulation of an equation that

consists of a relation between two different entities, each of

which is described by a set of components. In the first place,

each of these entities must exist independent of the inertial

reference system, as described in Section 1.9. Furthermore,

the components of the two entities must transform in the

same way under a Lorentz transformation from one inertial

system to another in order that the form of the equation

does not change under that transformation. Equations that

satisfy these conditions are said to be covariant under the

Lorentz transformation law. Hence, the principle of relativity

implies that it must be possible to express any equation that

is an integral part of a law of physics in a form covariant

under the Lorentz transformation law.

 

SUMMARY An equation relating two entities is said to be

covariant if the entities can be defined independent of any

inertial reference system and if the components of the two

entities transform in the same way under a Lorentz

transformation. Any equation that is a statement of a law of

physics must be covariant under Lorentz transformations, or

the equation would violate the principle of relativity.



 

Problem 2.11

 

The components of a 4-vector are denoted by bμ and the

components of a tensor of the second order T are denoted

by Tμv. Is the equation bμ = Tμ3 a covariant equation?

State the reasons for your answer.

 

Problem 2.12

 

This problem provides an example of finding a covariant

equation, which describes the motion of a particle, in terms

of information that is not presented in a covariant form. The

motion of a particle relative to an inertial system S is

described by the equation r = v0t, where v0 is a constant

vector..

 

(a)   Show that this is not a covariant equation.

(b)   Let t0 be the proper time of the particle measured

relative to the event t = 0, r = 0. Show that, relative to any

inertial system, the motion is described by the covariant

equation υ(t0) = υ0 where υ0 is the 4-vector whose

components relative to S are

 



 

Problem 2.13

 

Show that the equation

 

 

is an equation that is not covariant under the Lorentz

transformation law (see Problem 2.8).



2.2   The Conservation of Momentum

and Energy

 

The problem of formulating relativistic laws for the motions

of interacting particles is complicated by consequences of

the principle of the invariance of the speed of light, such as

the relative nature of simultaneity. The restricted problem of

finding the covariant equation of motion, without

consideration being given to the forms of the fundamental

interactions between particles, will be discussed in Section

2.3. In this section, we shall investigate those results that

can be studied without even inquiring into the covariant

form of the equation of motion.

We will be concerned with a partial description of the results

of interactions that take place in a circumscribed region of

space-time (Figure 2.13). That is, we consider a system of

particles, initially noninteracting, that, over a finite period of

time, undergo interactions in a restricted region of space,

after which there appear particles that are again

noninteracting. We impose the restriction in the initial part

of this section that no form of energy or momentum other

than that associated with the particles appears in space-

time outside the region of interaction.

 



 

FIGURE 2.13 The interaction between the particles occurs in

a limited region of space-time.

 

The simplest examples of interactions that take place in a

restricted region of space and time are point forces, forces

that act between particles only when they are coincident

(Figure 2.14). Since the point of action of the interaction and

the source of the interaction are one and the same world

point in space-time, there are no problems with simultaneity

involved in describing the interaction. Since point

interactions are localized at a world point, they often are

called local interactions.

We will arrive at the relativistic conservation laws by’

generalizing the appropriate nonrelativistic laws in the



following way: We first consider the description of the

collision under investigation according to nonrelativistic

mechanics. We will argue that the relativistic laws must

reproduce this description in the appropriate circumstances.

Therefore, we consider possible covariant generalizations of

the nonrelativistic laws and, in this way, arrive at dynamical

laws that are compatible with the principle of relativity.*

 

 

FIGURE 2.14 Space-time diagram of a point interaction

between two particles with world lines represented by a

single and a double line, respectively.

 

The simplest circumstance in which a conservation law

holds is in the force-free motion of a single particle. We

consider this case first, since it provides us with an

introduction to the dynamical variables that appear under

more general circumstances.



It must be kept in mind that, after we have obtained a

plausible set of laws, we must turn to the results of

experiments for the decision as to whether or not these laws

are valid.



2.2.1   The covariant form of the

conservation law f or the force-free

motion of a single particle†

 

We first consider the simplest motion, namely, that of a

particle that experiences no force. In order to obtain a

covariant equation that describes such a motion, we

consider the characteristics of the motion relative to one

inertial system and then determine how we can describe

these characteristics independent of that reference system.

A particle that experiences no force moves, relative to any

inertial system S, with a velocity v(t) that is constant in time

t. At any instant of time, the velocity vector v(t) determines

in a unique manner a 4-vector, the 4-velocity υ, which is an

entity that exists independent of the reference system S (see

Section 1.9.2). Relative to the inertial system S, the 4-

velocity υ has the components

 

 

where γ = [1 − (υ²/c²)]−½.

In the general case of accelerated motion, the 4-velocity υ

varies from event to event along the world line (Figure 2.15),

and it can be represented as a 4-vector function of one

parameter that specifies the events along the world line. The

transformation properties of this parameter are fixed by the

principle of relativity. Since we wish to describe the



characteristics of the motion independent of any inertial

system, the parameter that specifies events along the world

line must be a scalar. The appropriate parameter is,

therefore, the proper time t0 of the particle (Section 1.8);

thus, we write the 4-velocity as υ(t0).

In the case of force-free motion, the velocity v(t) does not

change during the motion and the associated 4-velocity υ(t0)

is also constant throughout the motion (Figure 2.16). Let υ0

be a constant 4-vector equal to the 4-velocity υ(t0) at any

event, say the event t0 = 0, during the particle’s motion.

Then the condition that the particle experiences no force can

be expressed by the covariant equation

 

 

The condition for free motion can be expressed also by any

scalar multiple of this equation. In fact, the corresponding

nonrelativistic equation,

 

 

is a consequence of a general law for systems of particles,

that of conservation of momentum, for the special case of a

one-particle system:

 

 

where p = mv and m is the scalar called mass. The special

case [Equation (2.27)] of this general law reduces to



Equation (2.26) for a single-particle system, because each

term in the equation is proportional to m. This feature does

not appear in the general case, so no such reduction of the

law for a many-particle system to an equation between

velocities and independent of the masses is possible in

general. This suggests, but does not prove, that the form

(2.27) of the equation for single-particle force-free motion is

more relevant to our problem than is the form (2.26). This

conjecture will be confirmed in Sections 2.2.2 through 2.2.4;

in anticipation of this, it is worthwhile for us to examine, at

this point, the dynamical variables that appear in the

appropriate relativistic generalization of Equation (2.27).

 



 

FIGURE 2.15 The 4-velocity υ varies from event to event if

the world line is not straight; that is, if the motion is

accelerated.

 



The spatial components of the covariant equation υ(t0) = υ0

that describes single-particle force-free motion give the

nonrelativistic conservation law v(t) = v0 in the limiting

cases for which υ/c 1. Therefore, that covariant equation can

be modified so that the spatial components reduce to the

nonrelativistic law of momentum conservation by

multiplication with a scalar that reduces to the mass m in the

nonrelativistic limit. However, a scalar has the same value

relative to all inertial systems, and the value of the relevant

scalar factor is m when referred to a system in which υ/c 1.

Therefore, the appropriate scalar multiplicative factor is m;

the covariant form of the single-particle law of momentum

conservation is

 

 



 

FIGURE 2.16 The world line of a particle moving with a

constant velocity.

 

The mass coefficient m may be measured, according to its

definition, in a collision in which the relative speeds involved

are sufficiently small that relativistic effects play no part.

Sometimes m is called the rest mass, or proper mass, of the

particle to indicate that it is measured in terms of

acceleration ratios by an experiment in which nonrelativistic

mechanics (υ/c ≈ 0) is applicable. As shown by its definition,

m is a scalar quantity. We shall assume throughout this



chapter, except where it is stated explicitly otherwise, that

the magnitude of the (rest) mass does not change

throughout the motion, as occurs, for example, if the object

is an evaporating liquid drop. Under this assumption, m is an

invariant scalar.

 

 

FIGURE 2.17 The relativistic mass mυ.

 

The 4-vector mυ is called the 4-momentum or, for reasons

that will be apparent shortly, the energy-momentum vector:

 



 

The spatial component of the 4-momentum is a 3-vector,

 

 

called the relativistic momentum. This 3-vector can be

written p = mυv, a form identical to that for the

nonrelativistic momentum of a particle of mass mυ, and so

 

 

is called the relativistic mass. Figures 2.17 and 2.18 show the

dependence of the relativistic mass and the magnitude of

the relativistic momentum mυυ on the speed υ = |v|, and

Figure 2.19 shows the speed υ of a particle in terms of its

relativistic momentum.

The time-like component relative to S of the 4-momentum is

 

 

We obtain some insight into the significance of this term by

considering the familiar case of the nonrelativistic limit, υ/c

1. In this circumstance, we can expand the factor [1 −

(υ²/c²)]−½ in powers of υ/c to obtain



 

 

This can be rewritten as

 

 

from which we see that, in the nonrelativistic limit, p0c −

mc² is the kinetic energy. We define that quantity to be the

relativistic kinetic energy T with respect to S for all possible

values of υ:

 

 

Figure 2.20 shows T as a function of υ.

The term mc² that is added to T in the equation

 

 



 

FIGURE 2.18 The relativistic momentum. The dashed line is

the curve for mv, the nonrelativistic expression for the

momentum.

 

is an energy that depends only on the rest mass of the

particle and that vanishes for zero rest mass. As we sna11

see shortly, it is possible under some circumstances to

convert this amount of energy to other forms through the

annihilation of the rest mass m. The term mc² is called the

rest energy E0:

 



 

FIGURE 2.19 The speed |v| of a particle in terms of its

relativistic momen tum p.

 

 

The sum of the rest energy and the relativistic kinetic energy

is called the relativistic energy E of the particle (Figure 2.21):

 

 

It must be kept in mind in the following that merely defining

(mυc² − mc²) as the relativistic kinetic energy and mυc² as

the relativistic energy does not bestow on these quantities

all the properties possessed by the similarly named

expressions of nonrelativistic mechanics. The properties of T

and E require further investigation, as presented in Sections

2.2.2 through 2.2.6.



The 4-momentum has components

 

 

for this reason, is sometimes called the energy-momentum

vector. The norm of the energy-momentum vector is given

by

 

 

 



FIGURE 2.20 The kinetic energy T. The dashed line shows the

nonrelativistic form, .

 

and is thus an invariant quantity. This relation, illustrated in

Figure 2.22, is frequently useful in calculations involving the

energy and momentum of a particle. This relation also

provides a definition of the (rest) mass that is valid for

relativistic and nonrelativistic speeds. The relation between

the relativistic energy mυc² and the rest mass m can be

stated as follows:

 

The relativistic energy is the time-like component of a 4-

vector whose norm is proportional to the square of the rest

mass.

 

In relativistic mechanics, the relativistic momentum p is not

equal to a constant times the velocity v, as in nonrelativistic

mechanics, but equals mγv. The additional factor γ also

appears in the relativistic energy E = mγc², and hence the

velocity is related to the momentum and energy by the

relation

 

 

SUMMARY The covariant equation that describes single-

particle force-free motion and that reduces to the

nonrelativistic law of momentum conservation for υ/c 1 is



 

 

where is the 4-momentum or the energy-momentum vector,

and m is the rest mass. The components of relative to a

reference system are written as (E/c, p), where E is the

relativistic energy, p = mυv is the relativistic momentum,

and mυ is the relativistic mass; T = E − mc² is called the

relativistic kinetic energy.

 

Example 2.1

 

Q.   The components of the energy-momentum vector are

(E/c, p) relative to an inertial system S and (E′/c, p′) relative

to another inertial system S′; S′ moves with the velocity

relative to S. Find the relations between the components

(E/c, px, py, pz) and (E′/c, px′, py′, pz′).

 

A.   The energy-momentum vector is a 4-vector; its

components are related by the Lorentz transformation law

Equation (1.173). Hence,

 

 



 

FIGURE 2.21 The relativistic energy E = mυc².

 

Example 2.2

 

In the physics of particles of high energies, it is frequently

convenient to express the masses and relativistic

momentums as energies. This is achieved if we multiply the

usual entities, in the customary notation m and p, by the

appropriate powers of c, namely c² and c, respectively, and

call the products the (rest) mass and momentum. These

entities, expressed as energies, can be denoted by the



conventional symbols m and p, so that we have, for

example, the relations

 

 

 

and

 

 

Most physicists working with particles at high energies are

familiar with the masses, in megaelectron volts, of the

particles of interest. Therefore, to avoid confusion between

the two remaining quantities, the energy and the magnitude

of the momentum, we write units of the momentum

expressed in megaelectron volts as Me V/c.

 



 

FIGURE 2.22 E²/c² = p² + (mc)². Note that if either p or E/c is

larger than mc, p ≈ E/c.

 

Q.   (a)   The mass of a proton is 1.67 × 10−27 kg. Find the

mass of a proton in megaelectron volts.

(b)   A proton has a relative kinetic energy of 2.00 GeV. Find

the energy, momentum, and speed of the proton.

 

A.   (a)   The energy corresponding to a rest mass of 1.67 ×

10−27 kg is

 



 

(b)   The energy of the proton E is given by

 

 

The momentum p of the proton is given by

 

 

In the terminology of high-energy particle physics, p is equal

to 2.78 × 10³ MeV/c, or 2.78 GeV/c. The speed of the proton

is given by

 

 

Problem 2.14

 



Calculate the kinetic energy, in megaelectron volts, and the

momentum in megaelectron volts per c of an 80-kg man

walking 4 mi/hr.

 

Problem 2.15

 

Show that 1 u = 931 MeV.

 

Problem 2.16

 

(a)   Show that, for a particle traveling with speed υ relative

to an inertial system S,

 

 

(b)   A particle moves relative to an inertial system S with

relativistic kinetic energy much greater than the particle’s

rest energy. Show that

 

 

Problem 2.17

 



(a)   Find the rest energy of an electron, in megaelectron

volts.

(b)   Find the relativistic masses of electrons with the

following relativistic kinetic energies:

   i)   1 eV,

  (ii)   1 keV,

 (iii)   1 MeV,

 (iv)   1 GeV (or, as it is often written, 1 BeV).

(c)   Calculate the ratio of relativistic mass to rest mass of

each of the electrons of(b).

(d)   Calculate (c − υ)/c for each of the electrons of (b).

 

Problem 2.18

 

An electron has a momentum of 78 MeV/c. Find the

following:

 

(a)   the energy,

(b)   the kinetic energy,

(c)   the speed of the electron.

 

Problem 2.19



 

(a)   Show that the relativistic energies E′ and E of Equation

(2.42) are related by

 

 

(b)   Deduce the transformation equation for the relativistic

mass,

 

 

Problem 2.20

 

The world line of a particle is described relative to an inertial

observer S by the equation

 

 

(a)   Draw the world line of the particle on the space-time

diagram of S.

(b)   Draw, on this space-time diagram, the energy-

momentum vectors, with an appropriate scale, at the points

on the world line for which



   (i)   ct = 0,

  (ii)   ct = 4,

 (iii)   ct = 5.

 

Problem 2.21

 

(a)   What is the mass of a π+ meson, in kilograms?

 

Mass of π+ meson = 139.6 MeV.

 

(b)   Find the relativistic energies and relativistic momentums

of π+ mesons moving with the following speeds:

   (i)   β = 0.01,

  (ii)   β = 0.1,

 (iii)   β = 0.50,

 (iv)   β = 0.90,

 (v)    β = 0.99,

 (vi)  β = 0.999,

(vii)   β = 0.9999.

 



Problem 2.22

 

Show that .

 

Problem 2.23

 

A plane wave is specified in part by the 4-propagation vector

with components (ω/c, k) relative to an observer (Section

1.10). The free motion of a particle is specified by the 4-

momentum with components (E/c, p) relative to an observer.

Quantum mechanics attributes a particle-like behavior to

waves and wave-like behavior to particles.

 

(a)   What is the form of the covariant equation that relates

the two descriptions?

(b)   What is the equivalent rest mass of a light wave?

 

Problem 2.24

 

It was tacitly assumed in the above analysis that motion with

constant velocity v relative to one inertial system would be

described as unaccelerated motion relative to any other

inertial system. Show in the following way that this result

follows from the fact that the Lorentz transformation



equations are linear. Write a general Lorentz transformation

as

 

xμ′ = Lμ′μxμ + aμ′,

 

where the Lμ′μ and aμ′ are constants. Write out the explicit

forms of this equation for μ′ = 0 and, say, μ′ = 1; from these

explicit expressions, show that if dx/dt, dy/dt, and dz/dt are

all constant, then dx′/dt′ is also constant.



2.2.2   Conservation laws for elastic

collisions*

 

We now turn to the problem of finding relativistic

conservation laws for systems of particles. We begin with the

simplest case by restricting our considerations here to

collisions in which none of the basic properties, such as rest

mass and charge, of any of the particles involved is changed

by the collision. A collision in which this restriction is satisfied

is called an elastic collision. A collision in which this

restriction is not satisfied is illustrated in Figure 2.23. Keep in

mind that our concern is with the values of the dynamical

variables outside the region of space-time in which the

interactions take place (see Figure 2.13).

Let us consider first the description of an elastic collision

according to nonrelativistic mechanics. This description

should be valid if all relative speeds involved are much less

than c. We consider the effects of a collision between N

particles, each of whose dynamical variables before the

collision is labeled by a superscript (a), with a = 1, 2,..., N.

For example, the velocity of particle a is denoted by v(a)

(Figure 2.24).

 



 

FIGURE 2.23 Space-time diagram of an inelastic collision:

Particle 2 disintegrates into particles 3 and 4 at event E.

 

The effect of the collision of the particles on their motions is

described in part by standard conservation laws. A

nonrelativistic collision of particles that interact with forces

derivable from a potential energy satisfy, in general, a

number of conservation laws—those of momentum, energy,

and angular momentum. (For the time being, we shall omit

consideration of the conservation law of angular momentum;

the relativistic form of this law will be discussed in Problem

A2.17.) The nonrelativistic conservation laws of momentum

and energy have the following forms:

 



 

FIGURE 2.24 The dynamical variables of the particles are

labeled by a superscript.

 

 

and

 

 



where the subscripts i (for initial) and f (for final) denote the

labeled values of the dynamical variables before the collision

and after the collision, respectively.

These conservation laws do not provide a complete

description of the motions, since, from these conservation

laws alone, we cannot obtain a unique specification of the

result of the collision. For example, in a collision of two

identical particles interacting with a known force, it is

necessary also to know the impact parameter and the plane

of the motion before the unique angle of scatter can be

determined (Figure 2.25). Moreover, in order to obtain the

complete specification of the motion, we must know the

force; we wish at this time to obtain as much information as

possible about relativistic dynamics while avoiding the

problems associated with a determination of the interactions

between particles. Therefore, we restrict our considerations

to the relativistic generalizations of the standard

conservation laws, Equations (2.50) and (2.51).

The nonrelativistic laws of conservation of momentum and

energy are valid under circumstances in which all relative

speeds are much less than c. The conservation laws of

relativistic mechanics that we seek must reduce to the

corresponding laws of newtonian mechanics under these

circumstances; thus, we are led to expect that the

fundamental concepts and laws of nonrelativistic mechanics

correspond to analogous concepts and laws in relativistic

mechanics. Therefore, we anticipate that in relativistic

mechanics there exist conservation laws of the relativistic

analogues of momentum and energy.

There is one simplifying feature in relativity theory, namely,

that the relativistic mass and the relativistic energy (and

hence, essentially, the relativistic kinetic energy) are one

and the same entity aside from the immaterial factor of c².



The fact that two apparently dissimilar nonrelativistic

concepts, energy and mass, correspond to one relativistic

concept, relativistic energy or relativistic mass, arises in the

following manner: For a relative speed υ c, the relativistic

mass is essentially the constant m, and, in fact, a

measurement of mυ using a conventional technique for

measuring masses is certain to give m within the limits of

experimental errors. Thus, the difference mυ − m cannot be

determined by a mass measurement, but, on the other hand,

it can be obtained by a measurement of the kinetic energy ,

since for υ c. Therefore, the nonrelativistic mass is the

substantial part of the relativistic mass, and the

nonrelativistic kinetic energy is, apart from the factor of c²,

the (relatively small) difference between the relativistic mass

and the rest mass. The nonrelativistic conservation law of

energy (2.51) will thus follow from (1) the fact that the

collision is elastic, so that the rest masses are unchanged,

and (2) a conservation law of relativistic energy.

 



 

FIGURE 2.25 The conservation laws of momentum and

energy are satisfied by different motions, (a) Before the

collision, (b) After a head-on collision. (c) After a glancing

collision.

 

The nonrelativistic equations (2.50) and (2.51) for an elastic

collision therefore are equivalent to the set

 

 



and

 

 

where denotes the relativistic mass of particle (a).

At this point, we can proceed directly to the relativistic form

of these conservation laws. We note in the first place that,

since mυ= m for |υ|/c 1 Equation (2.52) is the nonrelativistic

limit of

 

 

and in the second place that is a 4-vector and hence can be

defined independent of the observer. As a result of these

facts, we see that

 

 

is a covariant equation that reduces in the nonrelativistic

limit to Equations (2.52) and (2.53). This is the relativistic

law of 4-momentum conservation:

 



 

We obtained this law by generalizing the nonrelativistic

conservation laws, so we cannot maintain that we derived it.

Indeed, the validity of this law must be based on its

agreement with experiments and, in order that they support

this law and not its nonrelativistic limit, these experiments

must pertain to a range of experience outside of which the

nonrelativistic laws are valid. Experiments with fast (υ ≈ c)

particles that are performed day after day in high-energy

laboratories throughout the world support the validity of the

4-momentum conservation law. Some of these experiments

are discussed in the problems. The process of generalization

by which we arrived at this conservation law is examined in

detail in Section 2.2.3.

 

SUMMARY The nonrelativistic conservation laws of mass,

momentum, and kinetic energy for elastic collisions may be

generalized to one covariant 4-vector law. This is the

conservation law of 4-momentum

 

 

whose validity has been corroborated by many experiments.

 

Example 2.3

 



Q.   A particle of rest mass m1 and kinetic energy T1 relative

to an inertial system S is incident on a particle of rest mass

m2 stationary with respect to S.

(a)   Find the components of the total 4-momentum vector

relative to S.

(b)   Find the kinetic energy T2 of the particle m2 relative to

that inertial system S′ in which the particle m1 is at rest.

 

A.   (a)   The energy relative to S of particle m1 is given by

 

 

and the magnitude of its momentum relative to S is given by

the relation

 

 

to be

 

 

Let designate the direction of p1. Then the total 4-

momentum has components, relative to S, given by

 



 

with

 

 

(b)   Let the components of be [(E2/c) + m1c, p2] relative to

S′. Since the 4-momentum with components (E2/c, p2)

describes the motion of m2,

 

 

The components of relative to S and S′ involve the given

data and the unknown T2. Therefore, the one relation

necessary to calculate the one unknown can be obtained

from the fact that is an invariant. We equate the norm of

calculated relative to S to the norm calculated relative to S′:

 

 

Cancellation of from each side gives the relation

 

 



Therefore,

 

 

Example 2.4

 

Q.   Two particles travel with 4-momentums and ,

respectively. The center-of-momentum system is that inertial

system in which the total relativistic momentum is zero

(Figure 2.26). Label the components of 4-vectors relative to

the center-of-momentum system by a superscript asterisk.

 

 

FIGURE 2.26 The center-of-momentum system: The total

relativistic momentum is zero relative to that system.



 

(a)   Find the total (relativistic) energy in the center-of-

momentum system.

(b)   Find the velocity of the center-of-momentum system

relative to the inertial system S in which the total 4-

momentum has components (E/c, P).

 

A.   (a)   Relative to the center-of-momentum system, the

components of the total 4-momentum are (E*/c, 0), since P*

= 0. Therefore,

 

 

(b)   The components of are (E*/c, 0) relative to the center-of-

momentum system and (E/c, P) relative to S. Let V be the

velocity of the center-of-momentum system with respect to

S. Then the transformation law that determines the

components (E/c, P) from the components (E*/c, 0) is

identical to that that determines the components relative to

S of the 4-momentum of a single particle of mass m in terms

of the components relative to the rest system of the particle

The velocity of the particle relative to S is c²p/ε; hence,

 

 



This can also be expressed in terms of the components (E1/c,

p1) and (E2/c, p2) of and , respectively, relative to S. Since E

= E1 + E2 and P = p1 + p2, we have

 

 

Example 2.5

 

Q.   A particle of rest mass m undergoes an elastic collision

in which its 4-momentum is changed from to (Figure 2.27).

Show that the 4-momentum transferred to the particle, , is

space-like unless .

 

A.   The norm of the 4-momentum transfer is given by

 

 

We can evaluate relative to a particular inertial system, and,

since is a scalar, we can thus obtain the value of A relative to

any other inertial system. Since

 

 



it is most convenient to evaluate this relative to an inertial

system, say S′, in which (or, alternatively, in that system in

which ). Relative to S′,

 

 

and

 

 

 

FIGURE 2.27 The 4-momentum transfer to the particle: .

 

where is the initial momentum relative to S′. Hence,

 



 

and

 

 

only if , in which case the particle is at rest relative to S′ both

before and after the collision, so . If , then , and the 4-

momentum transfer is space-like.

 

Example 2.6

 

Q.   A particle of mass m and kinetic energy Ti relative to an

inertial system S collides elastically with a particle of mass M

intitially at rest with respect to S (Figure 2.28).

(a)  Find a relation between the kinetic energy Ti of the

incident projectile, the energy ΔE = Ti − Tf transferred from

the projectile to the target, and the angle θ through which

the projectile is scattered.

(b)  Find the relation of (a) for the extreme-relativistic case in

which mc² Ti and in which the terms in mc²/Ti can be

neglected compared to unity.

 



A.   (a)   Let and be the initial and final 4-momentums,

respectively, of the particle of mass m, and let and be those

of M. Then, relative to S

 

 

 

and

 

 



 

FIGURE 2.28 An elastic collision with a target that was

initially stationary relative to S. (a) Before the collision. (b)

After the collision, (c) Space-time diagram of the collision.



 

The conservation law of energy-momentum is

 

 

Since p·p′ depends on the angle θ, we obtain a relation

involving θ from the equality of the norms of the vectors and

:

 

 

so that

 

 

Since

 

 

we obtain

 



 

The time-like component of the energy-momentum

conservation law gives the relation

 

 

Also,

 

 

 

Therefore,

 

 

(b)   For mc² Ti we can neglect all the terms involving m in

the above equation, since this can be written as

 



 

Therefore, unless ΔE ∼ Ti,

 

 

This can also be written in the convenient form

 

 

since Ti = Ei − mc² ≈ Ei and Tf ≈ Ef.

 

Example 2.7

 

The form of a relativistic conservation law, that of energy-

momentum, was conjectured in the text on the basis of the

4-vector concept. It is possible also to use the Lorentz

transformation to arrive at the same form by more direct

generalizations of the nonrelativistic laws. These direct

generalizations involve much the same assumptions as given

in the text and the use of the formula (1.191) for the

transformation law of :



 

 

In nonrelativistic mechanics, the effect of a collision is

described in part by the conservation law of total momentum

and the conservation law of total mass . Furthermore,

because of the form of the galilean transformation

equations, these conservation laws take on the same form

relative to all inertial systems (for which each relative speed

involved is much less than c). We assume that these laws are

valid also in relativistic mechanics and that their form is the

same in all inertial reference systems. In order that this

generalization be valid, it is necessary to give up the

property that the m(a) in the above forms for the total

momentum and total mass are constants, a condition that is

valid in nonrelativistic mechanics, and to permit m(a) to

depend on the speed υ(a): m(a) = m(a)(υ(a)). The problem of

finding the form of the conservation laws compatible with

the principle of relativity and the principle of the invariance

of the speed of light reduces to determining the form of the

function m(a)(υ(a)).

 

Q.   (a)   Relative to an inertial system S, two identical

particles move along a straight line toward each other with

equal speeds, collide elastically, and recoil along the same

straight line. Describe the motion after the collision on the

basis of the assumption that the total mass and total

momentum are conserved. In particular, show that the total

momentum before and after the collision is zero.

(b)   Describe the motion relative to an inertial system S′

moving with velocity relative to S, where is along the line of



motion of the two particles.

(c)   Find the form of the function m(υ) if, relative to S′, the

total momentum is , where M′ is the total mass relative to S′.

 

A.   (a)   Let the two particles be labeled 1 and 2 with and

before the collision. Denote the corresponding entities

evaluated after the collision by a bar over the symbol for the

entity. Then the conservation laws state that

 

 

and

 

 

One solution of these equations is , which describes the case

in which there is no collision. But, since the particles are

identical,

 

 

so that

 

 



 

Hence, there exists another solution with

 

 

This solution describes an elastic collision, since, because of

the identity of the particles, all dynamical properties of the

system are the same after the collision as they were before.

Hence, the motion after the collision is described by

 

 

The total momentum is

 

 

both before and after the collision.

(b)  The velocity relative to S′ of a particle moving with the

velocity relative to S is given by

 

 

Therefore,

 



 

(c)  The relativistic masses of the particles with respect to S′

are and ; by assumption, we have

 

 

 

where M′ is the total relativistic mass with respect to S′. We

solve

 

 

for the ratio

 

 

Therefore,

 



 

We always can choose V such that , in which case we obtain,

setting ,

 

 

Example 2.8

 

Q.   A particle of mass m is incident with kinetic energy T on

an identical particle at rest relative to an inertial system 5.

The collision is elastic.

(a)  Show that the angle between the direction of motion of

the two particles after the collision is 90°, according to

nonrelativistic mechanics.

(b)  Let θ be the angle in S through which the incident

particle is scattered and ϕ be the angle in S between the

final direction of motion of the recoiling target particle and

the initial direction of motion of the incident particle (Figure

2.29). Show that, in the energy units introduced above,

 

 



 

FIGURE 2.29 Definition of the angles θ and ϕ. (a) Before the

collision, (b) After the collision.

 

(c)  Show that (θ + ϕ) < 90° for T > 0.

 

A.   Label the incident particle 1 and the target particle 2. An

unprimed entity denotes the value of the entity before the

collision; a primed entity, that after the collision.

(a)   The nonrelativistic conservation laws for an elastic two-

particle collision



 

 

reduce, since m1 = m2 and v2 = 0, to

 

 

These two equations are consistent only if so that

 

 

 

FIGURE 2.30 The relation between the angles θ and ϕ and

the momenta p1, , and .

 



hence,

 

 

Therefore, the angle between the two recoiling particles is

90°.

(b)  Let the momentum p1 lie along the x direction and the

momentum lie in the xy plane. Then, because of the

conservation of momentum, the momentum also lies in the

xy plane. The angles θ and ϕ are given by the relations (see

Figure 2.30)

 

 

We can evaluate the desired product, , most easily by finding

the momentum components involved in terms of the

components (E*/c, p*) relative to the center-of-momentum

system of the corresponding 4-momentums .

 

In the center-of-momentum system

 

 

The components of and are given in energy units by

 



 

Therefore,

 

 

The speed of the center-of-momentum system relative to S is

V. Since particle 2 is initially at rest relative to S, V is also the

initial speed of particle 2 relative to the center-of-momentum

system. Since , V is also the initial speed of particle 1 relative

to the center-of-momentum system. Furthermore, according

to the conservation law of energy-momentum, ; hence,

, and E* = E*′. Therefore, . We conclude that

 

 

Hence,

 



 

The speed V of the center-of-momentum system relative to S

is given by Equation (2.68) as

 

 

Therefore,

 

 

(c)   Since

 

 

tan (θ + ϕ) < ∞ for all T > 0. Therefore, θ + ϕ < 90° for T >

0.

 



Problem 2.25

 

A 20-MeV electron is incident on a stationary proton.

 

(a)   Calculate the speed of the electron.

(b)   Calculate the kinetic energy of the proton relative to the

electron.

(c)   Calculate the speed of the proton relative to the

electron.

(d)   Calculate the relativistic energy in the center-of-

momentum system.

(e)   Calculate the speed of the center-of-momentum system

relative to the proton.

(f)   Calculate the speed of the center-of-momentum system

relative to the electron.

 

Problem 2.26

 

A 10-GeV electron is incident on a stationary proton. Answer

parts (a) to (f) of Problem 2.25.

 

Problem 2.27

 



(a)   The 4-momentums of two particles have components

relative to the center-of-momentum reference system of

 

 

before the collision and

 

 

after the collision. Show that

 

 

also show that the initial momentums lie along one line and

that the final momentums lie along a line.

(b)   A 20-MeV electron is incident on a stationary proton.

The electron is scattered through 90° in the center-of-

momentum system. Find the angle through which the

electron is scattered in that reference system in which the

proton was initially at rest.

 

Problem 2.28

 



An electron, traveling with velocity undergoes a collision in

which its velocity is changed to .

 

(a)   Calculate the relativistic momentum and the relativistic

energy before the collision.

(b)   Calculate the relativistic momentum and the relativistic

energy after the collision.

(c)   Calculate the energy-momentum transfer to the other

particle.

(d)   Calculate the norm of the energy-momentum transfer.

 

Problem 2.29

 

(a)   Show that the total 4-momentum vector of a system of

N noninteracting particles is time-like.

(b)   Show that lies in a direction in space-time that is inside

the cone of the absolute future.

(c)   Let the components of relative to an inertial system S be

(E/c, P). Show that, relative to an inertial system S′ moving

with velocity V relative to S, the components of are (E0/c, 0),

if V = Pc²/E. Find E0.

(d)   Show that V < c.

(e)   Since is time-like and points into the absolute future and

since has zero spatial components relative to S′, it is natural

to consider the system as an object with rest mass M given



by M = E0/c² that is moving with the velocity V relative to S.

Show that

 

 

(f)   Show that . Explain why unless every one of the particles

is moving with velocity V relative to S.

 

Problem 2.30

 

A particle of mass m collides elastically with a particle of

mass M. Initially, m had a kinetic energy of Ti with respect to

an inertial system S and M was at rest relative to S. Assume

that mc²/Ti 1 and that mc²/Tf 1.

 

(a)   Show that the magnitude of the final momentum p′ of m

is given by

 

 

where p = |p| = Ti/c. Hint: Take the norm of .

(b)   Show that the kinetic energy T of the recoiling mass M is

given by



 

 

(c)   Show that the magnitude ofthe3-momentum transfer q

= p − p′ = P′ − P is given by

 

 

(d)   Show that the norm of the 4-momentum transfer is

given by

 

 

or

 

 

(e)   Let ϕ be the angle between p and P′. Show that

 

 

Hint: Eliminate |P′| from the norm of through



 

Problem 2.31

 

An electron with 100-MeV kinetic energy strikes a proton at

rest. The collision is elastic. Find the kinetic energy of the

recoiling proton if the electron is scattered through

 

(a)   10°,

(b)   90°,

(c)   180°.

 

Problem 2.32

 

An electron with kinetic energy Ti ≫ mec² strikes a proton at

rest. The electron is scattered elastically through 180°. Plot

the energy of the scattered electron versus the incident

energy for the range 10 MeV ≤ Ti ≤ 10³ MeV.

 

Problem 2.33

 

A 187-MeV electron is incident on a stationary proton. Plot

the energy of the elastically scattered electron as a function

of 6, the angle of scatter.*



 

Problem 2.34

 

The principle of the invariance of the speed of light, as

expressed by the Lorentz transformation law, is consistent

with the conservation laws of momentum and mass only if

the mass occurring in the conservation equations is the

relativistic mass . This result was demonstrated in Example

2.7 and also is a consequence of this problem.

 

Consider the elastic collision of two identical particles.

Relative to the inertial system S, the particles have the

velocities

 

 

before the collision and

 

 

after the collision, as shown in Figure 2.31.

 



 

FIGURE 2.31 The initial and final velocities.

 

(a)   Define the total momentum by mυ1v1 + mυ2v2 and the

total mass by mυ1 + mυ2, with the masses mυ1 and mυ2

being functions of the speed:

 

 

Show that the total momentum and the total mass are

conserved for the motions under consideration.

(b)   Let r1(t) denote the position of particle 1 relative to S at

time t and r2(t) the corresponding position of particle 2. Let t

= 0 denote the instant of the collision and r = 0 the position

of the collision. Show that

 



 

(c)   Let S′ be an inertial reference system that moves with

velocity with respect to S. Let the origins of S and S′ coincide

at t = t′ = 0. Show that

 

 

(d)   Show that

 



 

and that

 

 

(e)   Show that the conservation law of momentum holds

only if

 

 

(f)   Show that the result of (e) is equivalent to

 

 



and that

 

 

Problem 2.35

 

When electrons were scattered elastically off stationary

electrons, the following values of the scattering angles

(Figure 2.29) were measured.*

 

(a)   Calculate the values of θ + ϕ expected for the given

values of β1 and θ.

(b)   Why do these results corroborate relativistic mechanics

and disagree with newtonian mechanics?

 



 

Problem 2.36

 

An inertial system S′ moves with velocity V relative to

another inertial system S.

 

(a)   Find the velocity of an inertial system S″ such that the

velocity of S′ relative to S″ is equal and opposite that of S

relative to S″.

(b)   Find the velocity of S′ relative to S″.

 

Problem 2.37



 

A particle of mass m moves with 4-momentum , which has

components (E/c, p) relative to an inertial system S. Let be a

time-like 4-vector with components (X0, X) relative to S and

components relative to another inertial system S′.

 

(a)   Find the energy E′ of the particle relative to S′. Hint:

Consider the product .

(b)   Find the magnitude of the relative momentum p′ of the

particle relative to S′. Hint: The quantity (E′²/c²) − p′² is an

invariant.

(c)   Find the speed υ′ of the particle relative to S′.

 

Problem 2.38

 

Two particles have masses m1 and m2 and 4-momentums

and , respectively.

 

(a)   Find the energy, the magnitude of the momentum, and

the speed of particle 1 relative to particle 2.

(b)   Find the energy, the magnitude of the momentum, and

the speed of particle 1 relative to the center-of-momentum

system for the two-particle system.

(c)   A proton of kinetic energy 6.2 GeV is incident on a

stationary proton. Calculate the total energy in the center-of-



momentum system. Calculate the kinetic energy and speed

of each proton relative to the center-of-momentum system.

(d)   A proton of kinetic energy 6.2 GeV is incident on a

proton of kinetic energy 25 MeV. Assume that the protons are

traveling toward each other along the line joining them.

Calculate the total energy in the center-of-momentum

system. Calculate the speed and kinetic energy of one of the

protons relative to the other.

(e)   Repeat (d) for the case in which the protons are

separating along the line joining them.



2.2.3   An examination of the process

of generalization of the

nonrelativistic conservation laws

 

A greater understanding of the law of conservation of 4-

momentum can be obtained by a more careful examination

than that given above of the process of generalization from

the nonrelativistic law. Therefore, we consider in greater

detail the procedure by which we arrived at the covariant

form of the conservation law. Note that we are still

considering the values of the dynamical variables only

outside the restricted region of space-time in which they

interact (Figure 2.13).

There are two newtonian concepts, momentum and energy,

with conservation laws that must result in the nonrelativistic

limit from the laws of relativistic mechanics. One of these

nonrelativistic conservation laws is a relation between 3-

vectors (the momentums), and the other is a relation

between scalars (the energies). Since, in the appropriate

limit, the relativistic laws reduce to a nonrelativistic form,

we can expect to have, in relativity theory, laws that involve

relations between entities, one of which transforms under

spatial rotations like a 3-vector and the other like a scalar. A

nonrelativistic 3-vector equation and a nonrelativistic scalar

equation together consist of four component relations, as

does a 4-vector equation. Moreover, for a general 4-vector,

three of the four components transform under rotations like

a 3-vector and the remaining component transforms like a

scalar. Therefore, it is gratifying that nonrelativistic

mechanics involves a 3-vector law and a scalar law, since it

is possible to obtain these forms as the appropriate limit



from a 4-vector relation and, as we know, 4-vectors can be

defined independent of the observer.

The desired conservation law must relate a 4-vector that

depends on the circumstances of the particles before the

collision to a similar 4-vector dependent on the

circumstances of the particles after the collision. We can

expect, by analogy with the nonrelativistic case, that the 4-

vector in question is the sum of 4-vectors, each of which is

an attribute of an individual particle and its motion. This

expectation, which turns out to be justified, means also that

we can assign such a 4-vector to a subsystem of free

particles.

Consider now the pertinent 4-vector associated with the

particle labeled (a). In the free motion that occurs either

before or after the collision, the only 4-vector that depends

solely on the properties of the particle and its motion is the

4-velocity v(a) or a scalar times the 4-velocity, κ(a)v(a),

where the scalar κ(a) may depend on the properties of the

particle (a) (Figure 2.32).

 



 

FIGURE 2.32 The world line of a par- component of this 4-

vector direction in space-time defined by the particle and its

motion is along the world line of the particle.

 

This can be seen also from the following argument: The

spatial 3-vector component of this 4-vector lies along the

line of the direction of motion of the particle, and because of

the isotropy of space, the particle and its (free) motion

define no other direction in space. The only 4-vector whose

spatial 3-vector lies along the direction of the motion has



the form κ(a)v(a), since, if there existed another such 4-

vector ω(a), then, for an appropriate choice of κ(a), ω(a) –

κ(a)v(a) would be a nonzero 4-vector with zero spatial

components relative to all inertial systems, a circumstance

that is impossible.

 

 

FIGURE 2.33 The value of v(a) depends on the event on the

world line at which it is evaluated.

 



The 4-vector κ(a)v(a) may vary during the interaction; thus,

it depends on the event Ea on the world line at which it is

evaluated (Figure 2.33):

 

 

Consider the sum evaluated at events E1, E2, . . . , that are

simultaneous relative to one inertial observer S (Figure

2.34). These events are not simultaneous relative to other

inertial observers, and so the sum is not necessarily equal

to the sum evaluated at events simultaneous relative to

another inertial observer S′. In general, is a 4-vector

property of the system that depends on the events E1, E2,

E3, . . . .*

There do exist, however, circumstances in which this 4-

vector sum is the same when the terms are evaluated at

events that are simultaneous relative to any inertial system.

This occurs, for example, if each of the κ(a)v(a)(Ea) is

independent of the event Ea along the world line of the

particle (a), in which case for all Ea and along the particle’s

world line; thus,

 

 

a 4-vector that is an attribute of the particles and their

motions and is defined independent of the events E1, E2,....

along the world lines of the particles.

Consider now a collision between a system of particles, the

collision taking place in a finite region of space-time outside



of which the world lines of all the particles are straight.

There exists a cone consisting of world points all in the

absolute future relative to every world point in that finite

interaction region of space-time and a similar cone in the

absolute past. These cones can be shown on a space-time

diagram (Figure 2.35) as the region interior to those null

lines that are tangent to the boundary of the finite

interaction region. That cone of the absolute past relative to

all world points in the region of interaction consists of world

points all of which occur before the collision, and the cone in

the absolute future consists of world points all of which

occur after the collision. Hence, we obtain the sum by

evaluating each v(a) at any event Ea before the collision in

this absolute sense, the event lying on the world line of the

particle. The sum is independent of the choice of events E1,

E2, . . . as long as the events occur before the collision; in

particular, they can be chosen to be events that are

simultaneous relative to an inertial system S. Similarly, each

is evaluated “after the collision” in the absolute sense, so

the terms of can be evaluated at events simultaneous

relative to an inertial system S.

Before the collision, the 4-velocity of each particle is

constant, so any linear combination of the initial 4-vectors is

constant. The κ(a) are arbitrary scalars. After the collision,

the 4-velocity of each particle is again constant; therefore,

any linear combination of the final 4-velocities is constant.

 



 

FIGURE 2.34 The sum evaluated at simultaneous events

relative to S is not equal, in general, to the sum evaluated



at simultaneous events relative to S′.

 

 

FIGURE 2.35 Before and after the collision defined in an

absolute manner. (a) Boundary of the space-time region of

interaction. (b) Absolute future and absolute past relative to

the space-time region of interaction.

 

During the course of the collision, each 4-velocity υ(a) may

change as a result of the interactions and, in general, is not

equal to . Hence, the 4-vector is not equal, in general, to the

4-vector for arbitrary K(a). Indeed, these two 4-vectors are

equal for only one choice for K(a) [aside from an arbitrary

multiplicative constant that is independent of (a)], since, if

there were other choices, we would have other standard

nonrelativistic conservation laws in addition to those of



momentum and energy. This choice is determined uniquely

from the limiting case of the nonrelativistic conservation

laws, (2.50) and (2.51), and the fact that the K(a) are

scalars. The K(a) must equal the rest masses m(a). Hence,

we are led to postulate the conservation law for elastic

collisions:

 

 

SUMMARY The nonrelativistic conservation laws of

momentum and energy involve entities that transform like

rotations and scalars under spatial rotations and therefore

correspond to the spatial and time-like components of 4-

vectors. There exists a cone of the absolute past relative to

a finite interaction region in which any linear combination of

the 4-velocities of a system of particles is constant. The

same is true for a cone in the absolute future relative to the

interaction region. The only linear combination of 4-

velocities that is the same before and after the interaction

contains the rest masses as coefficients.



2.2.4   The general form of the

conservation law of 4-momentum*

 

We now consider the generalization of the conservation law

applicable to inelastic collisions. The procedure for arriving at

the form of this law is similar to that used above: We

examine the corresponding nonrelativistic laws, express

them (within the approximation υ/c 1) in terms of entities

that appear in relativistic mechanics, and then write these

laws in covariant form. As before, we restrict our

considerations to the values of dynamical variables outside

the localized region of space-time in which the particles’

world lines are curved (Figure 2.13).

 

The difference between an elastic and an inelastic collision

according to nonrelativistic mechanics is that the total

kinetic energy is conserved in an elastic collision, whereas it

is the total energy, and not the total kinetic energy alone,

that is conserved in an inelastic collision. On the other hand,

both the total momentum and the total mass are conserved

during any collisions that can be described by nonrelativistic

mechanics. Consider a collision, elastic or inelastic, in which

N particles, each labeled by an integer a, a = 1, 2,..., N,

enter the space-time region of interaction and N′ particles,

each labeled by a primed integer a′, a′ =1′, 2′,..., N′ leave

that region (Figure 2.36). The nonrelativistic conservation

laws applicable to such a collision are

 



 

The procedure outlined above yields the following as the

covariant form of these laws:

 

 

The conservation law for elastic collisions, Equation (2.123),

is a special case of this.

 

 



FIGURE 2.36 The particles labeled 1, 2, 3, 4, 5 enter the

region of interaction and the particles labeled 1′, 2′, 3′, 4′

leave it.

 

The postulated conservation law (2.125) is consistent with

the principle of relativity and reduces, for all υ(a) c, to the

correct nonrelativistic limit. These two conditions, however,

do not ensure the validity of the postulate; that depends on

the agreement of the postulated law with experiment. The

relativistic conservation law (2.125) is tested many times

every day in laboratories in which high-energy physics is

studied; to date, the validity of that law is unimpeachable.

(Some of the corroborating data are given in the examples

and problems.)

It is interesting to note that the interactions between the

particles of high-energy physics cannot be described within

the framework of the concepts that we have considered thus

far; it is necessary to use the concepts of quantum

mechanics for that description. Nevertheless, the effects of

the behavior during collisions between these particles is

restricted by the relativistic conservation laws.

Each term such as m(a)υ(a) that appears in the conservation

law (2.125) is the 4-momentum or energy-momentum vector

associated with the appropriate particle. The sum of these

vectors, all of which are evaluated either before or after the

collision,

 

 



is, respectively, the initial or final total 4-momentum or total

energy-momentum vector. Relative to an inertial system S,

the spatial 3-vector component of the total energy-

momentum vector is the total relativistic momentum P,

 

 

and the time-like component multiplied by c is the total

relativistic energy E,

 

 

The time-like component divided by c is the total relativistic

mass M,

 

 

The conservation law states that the total 4-momentum

before the collision is equal to the total 4-momentum after

the collision. Thus, the components of and , relative to a

given inertial system, are equal, and the conservation law

can be stated as a conservation law of relativistic

momentum and a conservation law of relativistic energy (or

of relativistic mass).



 

The conservation law of 4-momentum:

 

 

is equivalent to

 

the conservation law of relativistic momentum:

 

 

or

 

 

and

 

the conservation law of relativistic energy:

 



 

or

 

 

The conservation law of relativistic energy is equivalent to

the conservation law of relativistic mass,

 

 

We consider now some consequences of the energy-

momentum conservation law in inelastic collisions.

The inelastic collision that is easiest to describe occurs when

two identical particles collide and coalesce (Figure 2.37).

Relative to some inertial system S, the motions are along a

straight line and each particle approaches the point of

collision with speed υ. Let m be the mass of each particle

before the collision and M that of the coalesced particle after

the collision. If V is the speed of the particle M after the

collision, then, according to the conservation law of energy-

momentum,

 



 

and

 

 

Therefore, from Equation (2.137), V = 0, and from Equation

(2.136), the mass of the coalesced particle is

 

 

The mass M of the composite particle is not equal to the sum

of the masses of its constituent parts.

Let Ti be the total kinetic energy of the system before the

collision:

 

 

The mass M can be written, therefore, as

 



 

The kinetic energy Ti, which disappears in the collision as

energy of motion, reappears after the collision associated

with the inertial mass Ti/c². In a collision of two macroscopic

objects, say two pieces of soft clay, the energy Ti appears in

the form of internal energy that can be detected by an

increase in the temperature of the composite object over the

temperatures (which we assume were equal) of its

component parts before the collision. Therefore, we must

associate with the internal energy Ti an amount of inertial

mass equal to Ti/c².(This point is discussed in greater detail

in Section 2.2.5.)

 



 

FIGURE 2.37 A simple inelastic collision. (a) The system

before the collision, (b) The system after coalescence. (c)

Space-time diagram of the collision.

 

SUMMARY The law of conservation of 4-momentum holds for

inelastic as well as elastic collisions.

An object formed by the collision of its constituent particles

has a mass that is Ti/c² greater than the rest masses of the



constituent particles, where Ti is the initial kinetic energy of

the system.

 

Example 2.9

 

Q.   The explosion of 1 g of TNT (trinitrotoluene) results in an

energy release of 4.2 × 10³ J. Calculate the mass decrease

per unit mass in a TNT explosion.

 

A.   This amount of energy is equivalent to a mass of

 

 

Therefore, the mass decrease Am per unit mass m in a TNT

explosion is given by

 

 

Problem 2.39

 

(a)  How many 10-MeV electrons would have to be stopped

by a 1-kg block to give that block an observable change in

speed?



(b)  How many 20-GeV electrons would it require?

 

Problem 2.40

 

The burning of 1 g of coal releases 2 to 3 × 10⁴ J of energy.

 

(a)  Calculate the mass decrease per unit mass in the

process of burning coal.

(b)  Experiments on combustion in chemistry demonstrate

that the masses of the combustion products are equal to the

masses of the materials that entered into the process.

Explain.

 

Problem 2.41

 

(a)  Calculate the energy, in joules, released by 1 ton of TNT.

(The combustion of 1 g of TNT releases 4.2 × 10³ J.)

(b)  The energy that results from the explosion of a nuclear

bomb can be measured in terms of the number of tons of

TNT that produce the same amount of energy. Calculate the

energy release in

 

(i)   the explosion of a 20-kiloton bomb,



 

(ii)   the explosion of a 50-megaton bomb.

(c)  How much mass is converted to energy in the explosion

of

 

(i)   a 20-kiloton nuclear bomb,

 

(ii)   a 50-megaton bomb?

(d)  In some nuclear bomb explosions, about 10−4 of the

mass of the bomb’s core is converted to energy. Find the

mass of the active material in such a 20-kiloton bomb.

 

Problem 2.42

 

The relation between the speed and the kinetic energy of

fast electrons has been checked in an experiment* in which

the speeds of the electrons were measured directly and their

energies determined by measurement of the temperature

rise they generated on being stopped in a metal disk. A

galvanometer connected to a thermocouple on the disk was

shown to deflect one division for each 0.80 J of internal

energy increase in the disk. The charge was collected on a

capacitor that discharged through a register that clicked

once for each 7.6 × 10−8 C of charge that was discharged.

The measurements are given in the following table in terms

of the symbols defined as follows: electrons of measured

speed υ when stopped in the metal disk gave a



galvanometer reading of g divisions when the register

recorded r clicks.

 

 

(a)   Plot curves showing the relativistic and nonrelativistic

expressions for (υ/c)² as a function of T.

(b)   Determine the kinetic energies of the electrons from the

table. Mark the corresponding points on the graph of (a).

(c)   Does this result prove the validity of relativistic

mechanics? Does it prove that nonrelativistic mechanics is

not universally valid?



2.2.5   The inertia of energy*

 

The result that the kinetic energy of a coalescing system

contributes to the rest mass of the coalesced system is a

special case of a general conclusion that we can derive from

the energy-momentum conservation law and the 4-vector

character of the energy-momentum vector. This derivation

proceeds as follows: First we show that the total energy-

momentum vector of a system of particles corresponds to

that of an object of relativistic mass E/c² moving with the

velocity c²P/E. Then we show that the addition of any form

of energy in the amount ΔE corresponds to a change in the

relativistic mass of ΔE/c². Finally, we show that the

relativistic mass of a system is the measure of the inertia of

the system that is called the (inertial) mass in newtonian

mechanics. We conclude that energy exhibits the property

of inertia.

 



 

FIGURE 2.38 The sum of time-like 4-vectors pointing into the

future is itself a time-like 4-vector pointing into the future.

Since each lies within the future light cone, must also.

 

We examine first some consequences of the 4-vector

character of the total 4-momentum. Consider a system of N

noninteracting particles of masses m(1), m(2), . . . . The

total energy-momentum vector of the system,

 

 

is a time-like vector, since (Figure 2.38) the sum of any two

time-like vectors is itself time-like. Since is time-like, there

exists an inertial system S0 relative to which the spatial

components of are zero (Figure 2.39):



 

 

where S0 is the center-of-momentum system of the system

of particles. Relative to this frame, the system is described

by a 4-vector along the direction of the time axis. The

components of relative to any other inertial system S

moving with velocity –V relative to S0 are given by (see

Problem 1.57)

 

 

FIGURE 2.39 The inertial system S0 relative to which a time-

like vector has zero spatial coordinates. (a) is a time-like 4-

vector. (b) The spatial components of are zero relative to S0.

 



 

where E = E0/[1 – (V²/c²)]½ is the total relativistic energy of

the system. V is the velocity of the system relative to S, and

the 4-vector associated with the system describes a

direction in space-time of a particle moving with velocity V

(Figure 2.40).

 

 

FIGURE 2.40 depends only on the system and its motion.

Therefore, must lie along the direction of the world line of

the system and V/c = x/ct = P/P0 = Pc/E.



 

We conclude that the total energy-momentum vector,

because of its 4-vector nature, appears as the 4-momentum

of a particle of relativistic mass E/c² traveling with velocity

V. Moreover, the relativistic mass E/c² and the velocity V are

conserved if the particles in the system interact among

themselves and then become noninteracting again.

Consider now the circumstances if any form of energy, of

amount ΔE, is added to the system. The total 4-momentum

becomes , another time-like 4-vector, which, relative to S,

has the components

 

 

where E1/c² = (E + ΔE)/c² corresponds to the total

relativistic mass of the system of particles and V1 is the

velocity of the inertial frame S0′ in which has zero spatial

components. Therefore, V1 is the velocity of the system of

particles relative to S. The energy ΔE that enters the system

appears in the form of a contribution ΔE/c² to the system’s

relativistic mass.

The next step in our demonstration that energy possesses

inertia requires an analysis of an experiment that yields

numbers that give the measure of the inertia of an object.

Consider two particles of relativistic masses mυ1 and mυ2

that travel with velocities v1 and v2, respectively, before

colliding. After the collision, we shall assume that there

appear two particles of relativistic masses mυ3 and mυ4

traveling with velocities v3 and v4, respectively. Then the

parameters mυ1, mυ2, mυ3, and mυ4 satisfy the equations



 

 

 

These equations describe, in the ra’s, a measurable

property which is conserved [Equation (2.147)] that—since

 

 

according to Equation (2.148)—increases with a decrease in

the magnitude υ1 of the velocity imparted to or delivered by

the particle in the collision, other things being equal. Thus,

for example, the parameter mυ1 provides a measure of the

inertia of particle 1; Equations (2.147) and (2.148), valid for

all collisions, define that measure (Figure 2.41).

 

 



FIGURE 2.41 The equations mυ1 + mυ2 = mυ3 + mυ4 and

mυ1v1 + mυ2v2 = mυ3v3 + mυ4v4 provide a means of

determining the measure of inertia mυ of a particle. (a)

Before the collision. (b) After the collision.

 

The relativistic mass mυ = m/[1 – (υ²/c²)]½ is a measure of

the inertia of a particle of rest mass m moving with speed υ.

For this reason, the concept of relativistic mass enters into

many discussions on relativistic phenomena. On the other

hand, the rest mass m is an invariant parameter associated

with the particle that determines, with the speed υ, the

measure mυ of the inertia of the particle. Furthermore, m is

a scalar, thus having the same value relative to every

inertial system. For these reasons, the concept of rest mass

is a more useful measure of inertia than is that of relativistic

mass.

Consider now the system described above with 4-

momentum , the components taken relative to some inertial

frame S. Suppose this system of particles collides with

another system with 4-momentum , the components

measured relative to S. If two systems with 4-momentums

and appear after the collision, the conservation law of

energy-momentum gives

 

 

and

 



 

Comparison of Equations (2.147) and (2.148) with (2.150)

and (2.151) shows that the measure of inertia Mυ1 of the

system of particles whose motion is described by Equation

(2.146) is

 

 

The energy ΔE added to the system of particles increases

the inertia of the system, the increase in the relativistic

mass of the system, a measure of its inertia, being ΔE/c².*

This general conclusion is exemplified by the case studied

earlier. Other examples will appear in Section 2.2.6.

 

SUMMARY The total energy-momentum vector of a system

of particles, with components (E/c, P) relative to S,

corresponds to the 4-momentum of an object of relativistic

mass E/c² = Mυ moving with the velocity V = P/Mυ relative

to S. An addition of any form of energy ΔE to the system

corresponds to a change of ΔMυ = ΔE/c² in the relativistic

mass of the system. Furthermore, the relativistic mass of a

system is the measure of the inertia of the system that

corresponds to the inertial mass of newtonian mechanics.

Thus, energy exhibits the property of inertia.

 



Problem 2.43

 

Calculate the mass decrease per century in a 100-W

expenditure of power.

 

Problem 2.44

 

Approximately 1 J of energy can raise the temperature of a

solid object of mass l g by 1°C. Find the order of magnitude

of the relative increase in mass of an object whose

temperature is raised by 100°C.



2.2.6   The momentum associated

with a flow of energy*

 

The fact that the amount of energy ΔE corresponds to the

inertial mass ΔE/c² suggests that it is necessary to associate

some momentum with a flow of energy. The necessity for

this can be shown from the energy-momentum conservation

law and from the fact that the total energy-momentum

vector of a system of noninteracting particles is a 4-vector.

Consider a system of particles with total 4-momentum before

the emission of any form of energy in the amount ΔE relative

to some inertial frame S. After the emission the system has

4-momentum . The change in the 4-momentum,

 

 

is itself a 4-vector with a time-like component ΔE/c relative

to S (Figure 2.42). In general, the spatial component ΔP of

relative to S will not be zero, and this is the momentum

associated with the energy flow. The velocity associated with

the energy flow, as given by the argument of Figure 2.40, is

 

 



 

FIGURE 2.42 In general, the spatial component ΔP of is not

zero.

 

The speed V can be less than, equal to, or greater than c; we

shall discuss each of these cases in turn.

If V < c, the 4-momentum of the energy flow can be written

in the form

 

 

where

 



 

is the rest mass associated with the relativistic mass ΔE/c²

moving with speed V. Thus, energy that is transmitted with a

speed V < c can be considered as a manifestation of the

motion of an object of rest mass ΔM moving with the speed

V.

The particular case in which V = 0 is exemplified by the

system being bombarded by or emitting an isotropic stream

of particles. This case arises, for example, if an object is

placed in an oven and heated uniformly on all sides.

In the case in which the speed of energy transmission is c,

we cannot assign a rest mass.† There does not exist a

reference inertial system in which the 4-momentum of the

energy flow has zero spatial components. However, it is

necessary to associate a momentum with this energy flow; if

the components of the 4-momentum relative to S are (ΔE/c,

ΔP), then

 

 

or

 

 



The energy-momentum vector of energy transmitted with

the speed c is a null vector:

 

 

These results show that a directed pulse of light, which

contains energy, changes the momentum of any object upon

which the light is incident. The corresponding pressure

experienced by the object is called radiation or light

pressure.* If the light energy E is absorbed by the object, the

momentum change experienced by the object is E/c; if the

light energy E is completely reflected by the object, the

momentum change is 2E/c. Also, if the power in an absorbed

light beam is W, the force experienced by the absorbing

object is W/c.

Radiation pressure plays an important role in astronomical

phenomena. For example, it is believed to be responsible in

part for the fact that the tails of comets almost always are

directed away from the sun (Figure 2.43).† Furthermore,

radiation pressure also plays a role in stellar structure.‡

Consider now the case for which V > c, a circumstance that

was considered earlier in Problems 1.100, 1.101, and 1.102.

We also considered this case in Example 2.5, since it was

shown there that an elastic collision takes place through a

space-like energy-momentum transfer and

 



 

FIGURE 2.43 Almost all the tails of comets point away from

the sun.

 

 

An energy-momentum transfer (ΔE/c, ΔP) that travels faster

than light is space-like, so

 

 



determines a real invariant constant μ; μ corresponds to im,

m being the (inertial) rest mass of a particle. The fact that

the inertial mass m corresponding to the energy-momentum

transfer is imaginary is not of consequence here, since, on

the one hand, the inertial mass of a particle is defined by an

experiment in which υparticle/c ≈ 0 and, on the other hand,

a space-like energy-momentum transfer appears to all

observers to travel faster than c. Thus, although the energy-

momentum transfer corresponds to an imaginary inertial

mass, μ itself can be measured, and furthermore, is a real

number and an invariant. Indeed, we can conceive that a

special class of particles does exist that travels faster than c§

and that we can associate with the energy-momentum

vector of each, not an inertial mass but rather a norm – μ²c².

Let us examine briefly how a particle with a space-like

energy-momentum would behave. Since

 

 

we see that as υ → c, |E| → ∞ and |p| → ∞. Indeed, the

particle slows down as its energy increases. Alternatively, if

the particle loses energy, it speeds up and, relative to one

observer, it travels at an infinite speed when it has zero

energy. Also, no matter how much energy we impart to the

particle, as long as the energy remains finite we cannot slow

down the particle to a speed equal to or less than c. Particles

with these properties have not been observed to date,

although in relativistic quantum mechanics, space-like

energy-momentum transfers are described in terms of the

exchange of “virtual” particles, particles that are neither real

nor observable.



Consider now the space-time diagram of a space-like energy-

momentum transfer from one system to another, as shown

in Figure 2.44(a). Relative to the inertial system S, the

energy ΔE is emitted by system 1 at A and absorbed by

system 2 at B, where ΔE > 0 (see Figure 2.40). However,

relative to some other observer S′ [Figure 2.44(b)], the event

B occurs before the event A, so system 2 experiences its

energy change at B before system 1 experiences the energy

change at A. Since (ΔE/c, ΔP) transforms as (c Δt, Δr)—for

example,

 

 

—the fact that implies that ΔE′ > 0. That is, according to S′,

the energy change at B is negative, corresponding to an

energy emission, and that at A is positive, corresponding to

an energy absorption. Thus, although the two events A and B

take place in a different order in time relative to S and S′,

each of the two observers notes an energy emission before

the absorption takes place.

Finally, let us consider the use of a space-like energy-

momentum transfer mechanism for sending signals that

travel faster than light. By a signal, we mean a statement,

possibly in some code, whose sense is not predetermined

before the instant at which it is sent. A beam of negative

energy that travels into the past can be generated by the

acceleration of the source to high speeds [Figure 2.45(a)]. A

beam of this sort could be used to send a signal into the past

[Figure 2.45(b)]; if such signals were possible, we could

determine the sense of the signal long before we decide

upon the signal. This contradiction shows that we cannot use



a negative-energy energy-momentum transfer mechanism to

send signals. This does not mean that such energy-

momentum transfers cannot occur; it means only that we

cannot control those energy-momentum transfers to the

extent that we can use them for signaling [2]. This result

does not accord with our everyday experiences with time-like

energy-momentum transfer mechanisms, such as sound

waves, but it is not in disagreement with behavior evident at

the atomic level. At that level, phenomena cannot be

controlled to the extent that our everyday experiences

suggest.

 

 

FIGURE 2.44 World lines of an energy transfer at speed V >

c. (a) tB > tA. (b) .

 



 

FIGURE 2.45 Two irreconcilable points of view. (a) A fast

source of space-like “emits” energy momentum into the

past. (b) A signal carried by a space-like energy-momentum

transfer mechanism into the past.

 

SUMMARY It is sometimes necessary to associate momentum

with a flow of energy. The flow of energy associated with the

change in the 4-momentum of a system travels with the

velocity V = c² ΔP/ΔE relative to an observer who describes

by the components (ΔE/c, ΔP). A rest mass can be associated

with the flow of energy if V < c. If V = c, the equivalent rest

mass is zero, and the momentum ΔP associated with the flow

of energy ΔE satisfies the relation |ΔP| = ΔE/c. Energy-

momentum transfers that can be associated with speeds

greater than c occur in elastic collisions, for example. The

existence of particles that travel faster than c has been

conjectured, but no such particles have been observed to

date.

 

Example 2.10

 



Q.   Show that a pulse of energy transmitted at the speed of

light can be considered as a particle of zero rest mass.

 

A.   The energy-momentum and velocity of a particle of rest

mass m, relative to an inertial system S, have the form

 

 

Those of a pulse of energy traveling at speed c are given by

 

 

Consider a particle of fixed relative energy Em:

 

 

The speed υm of this particle is given by

 

 



from which we see that υm approaches c as m goes to zero.

In the limit,

 

 

the 4-momentum

 

 

is a null vector:

 

 

Thus the properties of and are identical to those of and υl,

and a pulse of energy transmitted with speed c corresponds

to a particle of zero rest mass and nonzero energy.

 

Example 2.11

 

Q.   (a)   The radiant energy emitted at the surface of the sun

is 3.9 × 10²⁶ W. Calculate the mass decrease of the sun per

day.



(b)   The energy travels with speed c. Calculate the force that

this energy exerts on the earth on the assumption that all

the radiant energy from the sun incident on the earth is

absorbed by the earth.

(c)   About 40% of the light incident on the earth is reflected

away. (The ratio of light reflected from a sphere to light

incident on it is called the albedo of the sphere.) Calculate

the maximum force that the sun’s radiant energy could exert

on the earth.

 

A.   (a)   The mass equivalent of energy E is E/c², so the mass

decrease per day is

 

 

(b)   The energy flow of 3.9 × 10²⁶ W is uniform through the

surface of a sphere of area 4π(1.50 × 10¹¹ m)² at the earth’s

distance from the sun. On this sphere, the earth appears as a

circle of area 47π(6.4 × 10⁶ m)². Therefore, the energy flow

intercepted by the earth is

 

 

The momentum per second incident on the earth is 7.1 × 10⁷

W/c. The force F experienced by an object undergoing a

momentum change of 7.1 × 10¹⁷ J/c·sec is



 

 

(c)   Upon reflection, a light pulse of energy E undergoes a

momentum change of magnitude E/c – (–E/c) = 2E/c. If only

40% of the energy is reflected directly back to the sun, the

earth must undergo a momentum change of 0.4E/c in

addition to E/c. Hence, the maximum force is

 

 

Example 2.12

 

Immediately after Einstein propounded the theory of

relativity, he asserted [3] that the amount of energy E is

equivalent to the inertial mass E/c². Among his derivations of

the inertia of energy, he presented one in which the relation

E = mc² was based on the following two premises*:

 

(a)   The center of mass of an isolated system is not

displaced by an internal process.

(b)   The momentum associated with a light pulse of energy

E is E/c. (This result was known prior to the theory of

relativity.)

 



This example derives premise (b) on the basis of (a) and the

fact that the light energy E corresponds to the inertial mass

m = E/c².

 

Q.   Consider a closed box (Figure 2.46) with a light emitter

at one end and a light absorber at the other, their separation

distance being L. Suppose the mass is distributed so that the

center of mass of the system is halfway between the emitter

and the absorber. A light pulse of energy E emitted at one

end and absorbed at the other corresponds to a transfer of

mass E/c² and thus to a shift in the center of mass by a

distance

 

 

 

FIGURE 2.46 A closed system.

 



 

FIGURE 2.47 When the center of mass is displaced, work can

be performed by the box while the center of mass is returned

to its original height. (a) Before light emission. (b) After light

emission.

 

where M + (E/c²) is the total mass of the system. Work can

be extracted from such a shift in the internal position of the

center of mass (Figure 2.47), resulting in the creation of

energy. Therefore, the center of mass cannot shift owing to

an internal process alone. Show that the correct result is

obtained if a momentum E/c is associated with the light

energy E.

 

A.   The center of mass of the system does not shift only if

the material in the box is being displaced as the light energy

travels from one end of the box to the other. This results if

the light pulse carries a momentum, say p, to be calculated.

On being emitted, the light pulse transmits a momentum –p



to the end of the box with the light emitter. Because of this,

that end of the box undergoes motion away from the light

pulse, and this movement is transmitted in the box’s

material to the other end at the speed of sound—the speed,

less than c, at which a disturbance is transmitted. Before this

movement reaches the other end, the light pulse with its

momentum p is absorbed there, imparting that momentum

to that end. This movement also is transmitted with the

speed of sound along the sides of the box. After the light is

absorbed, the total momentum of the box, (–p) + p, is zero

and the center of mass is again at rest. The material in the

box possessed the momentum –p for the time of transit t =

L/c of the light pulse, corresponding to a motion of the mass

M of the material with speed υ = –p/M or, alternatively, a

displacement of υt = –pL/Mc. Therefore, the net

displacement of the center of mass,

 

 

is zero only if

 

 

Problem 2.45

 

The sun emits radiant energy at the rate of 3.9 × 10²⁶ W. The

solar constant is defined as the energy per unit time incident



on a unit area at the mean earth-sun distance, the area

being normal to the line to the sun.

 

(a)   Calculate the solar constant.

(b)   Calculate the maximum force that the sun’s radiant

energy can exert on your body. Express your answer as a

percentage of your weight.

 

Problem 2.46

 

Calculate the relative change in the mass of the sun per

century due to the emission of radiant energy.

 

Problem 2.47

 

Calculate the ratio of the force of the light pressure exerted

by the sun on the earth to the gravitational force exerted by

the sun on the earth.

 

Problem 2.48

 

(a)   Light energy of W watts is incident normally on a flat

surface that reflects the fraction ρ. Calculate the force, in



newtons, experienced by the surface.

(b)   Calculate the force experienced by the surface if the

light is incident and reflected at an angle θ with the normal

to the surface (Figure 2.48).

 

Problem 2.49

 

(a)   Could you lift the mass equivalent of the light incident

on the earth per day?

(b)   Could you lift the mass equivalent of the radiation

emitted from the sun per second?

 

Problem 2.50

 

How much mass is converted to energy in providing light

from a 100-W bulb burning for 5 hr?

 

Problem 2.51

 

How much does 1 g of equivalent energy cost at the rate of

5¢ per kW·hr?

 

Problem 2.52



 

If the box of Figure 2.46 rests on a sufficiently rough table in

the arrangement shown in Figure 2.47, the center of mass

does shift and the process pictured there enables the box to

do work. Explain.

 

 

FIGURE 2.48 Relative directions of incident and reflected

light.

 

Problem 2.53

 

Show that some dust particles in space are pushed out of the

solar system by the radiation pressure from the sun. What

can you say about the size of these particles?

 

Problem 2.54



 

Present-day rockets can launch a spaceship into space

outside the effective range of the earth’s gravitational force;

for space voyages of distances of the order of a light-year, it

will be necessary to accelerate spaceships to speeds

(relative to the earth) near that of light. One suggestion * for

the propulsion of such a spaceship is a photon rocket, a

rocket in which the thrust is provided by an exhaust that

moves at the speed of light. This problem involves a simple

analysis of relativistic rocket thrust.† The relativistic equation

of motion for the case in which the rocket thrust is active

over a period of time can be developed in a manner similar

to that for nonrelativistic motions (see Problem 2.7) and will

not be discussed here.‡

 

(a)   Consider a rocket of mass M in a force-free region of

space. The rocket ejects a quantity of exhaust at the speed υ′

relative to the initial rest frame of the rocket; the final (rest)

mass of the rocket is αM and its final speed is V. Show that

 

 

Deduce the relation

 

 

(b)   Consider another such rocket (a photon rocket) that

emits light energy of amount E′. Show that



 

 

and deduce that

 

 

(c)   Show that the ratio of the initial to final rest mass of the

photon rocket of (b) is given by

 

 

(d)   Show that αp > α for a given value of V. Discuss the

consequences of this for interstellar space travel.

(e)   Consider a photon rocket in free space, initially at rest

relative to the earth, which is accelerated to a speed for

which the time dilatation factor is 5%, deaccelerated to rest,

and then returned to earth under the same circumstances.

Calculate the fraction of the original mass of the rocket that

returns to earth.§ What if the rocket ejects an exhaust at a

speed υ′ < c?

 

Problem 2.55



 

Draw a graph of E versus υ for a particle that travels faster

than c and for which μ equals the mass of the electron.

 

Problem 2.56

 

Draw graphs of the apex angle θ of the Čerenkov radiation

(Problem A1.3) emitted by a charged particle that travels

faster than c against

 

(a)   the speed υ of the particle,

(b)   the ratio E/μc² of the particle.

 

Problem 2.57

 

Let v, with υ > c, be the velocity of a particle relative to S

and v′ be the velocity relative to S′. Let V be the velocity of S′

relative to S. Use the result of Problem 1.78 to show that

 

 

and hence that υ′ > c if υ > c.



2.3   The Covariant Equation of

Motion for a Particle Experiencing a

Given External Force

 

Newton’s equation of motion

 

 

describes the behavior of a particle experiencing the force F

in circumstances in which every pertinent relative speed

involved is much less than c. The force function F describes

the effects of the environment on the particle’s motion, and

in general, this environment is itself dependent on that

motion. For example, if the particle of mass m is one of a

pair of interacting particles, the environment of m is the

other member of the pair whose motion is determined by

that of m (Figure 2.49). In some circumstances, however,

the motion of m does not change the environment to any

appreciable extent, so F is independent of that motion. In

this case, F is said to be a (given) external force.

This section is concerned with the generalization of the

nonrelativistic equation of motion applicable to

circumstances in which relative speeds of the order of c are

manifest. We must find for this purpose a form for the

equation of motion that is compatible with both the principle

of relativity and the principle of the invariance of the speed

of light, or in other words, a covariant generalization of

Newton’s equation of motion.



 

 

FIGURE 2.49 A simple example of a case in which the

motion of m alters the environment of m.

 

The covariant equation of motion will contain, on one side, a

dynamical variable, corresponding to d²r/dt², that is

sufficient to determine the motion in terms of an

appropriate set of initial conditions. On the other side of the

equation there will appear the dynamical variable

corresponding to F that describes the effects of the

environment on the motion. The environment may depend

on the motion, as occurs in the nonrelativistic case, but the

environment at one instant cannot depend on the

simultaneous nature of the motion in a relativistic theory.

This and other similar problems can be avoided if we restrict

our considerations to the effects of a given external

environment, as we will in this section. Thus, we restrict our

discussions below to finding the co-variant equation of

motion; we will leave out any inquiry into the mutual effects

of interactions on a system of particles.



The simplest covariant equation of motion, that for a free

particle, can be deduced from the equation υ(t0) = υ0,

where t0 is the proper time of the particle and υ0 is the

initial velocity. This equation can be written also in a

covariant form independent of the initial conditions such as

the 4-vector υ0 that takes on different values for different

motions. The constant 4-vector υ0 does not change along

the world line relative to S, so dυ0/dt = 0. Consider the

corresponding derivative

 

 

This derivative is a 4-vector, since the product of the 4-

vector Δυ and the scalar 1/Δt0 is itself a 4-vector. Hence, a

covariant equation that describes the motion of a particle

that experiences no force is

 

 

This equation can be written in a form more typical of

equations of motion by multiplication with the mass m of

the particle:

 

 



The spatial component of this 4-vector equation relative to

an inertial system is equivalent to

 

 

an equation of motion similar in form to the nonrelativistic

equation

 

 

Problem 2.58

 

Show, from the results of Problem 2.8, that the covariant

equation

 

 

ensures that, relative to any inertial system S,

 

 

Problem 2.59



 

Show that the covariant equation

 

 

is equivalent, relative to an inertial system S, to the scalar

equation

 

 

and the vector equation

 

 

State explicitly what the velocity v means.



2.3.1   The covariant equation of

motion*

 

We wish to find a covariant equation that describes the

motion of a particle experiencing a given external force. The

procedure we use is analogous to that with which we

obtained the covariant equations for conservation laws—we

begin with the 3-vector form of the equation of motion

relative to one inertial system and then generalize this

equation to a covariant form. In the present case, however,

we do not know at the start the 3-vector form of the

equation of motion relative to any inertial system, but we do

know the form, namely Newton’s equation, valid for

circumstances in which all the relative speeds involved are

sufficiently small. Therefore, we start with Newton’s equation

of motion.

This equation describes very accurately the motion of a

particle in those cases in which all the pertinent relative

speeds, including the speed of the particle relative to the

reference inertial system, are sufficiently smaller than c. It is

always possible to choose inertial systems relative to which

the particle’s speed is sufficiently small. Indeed, the motion

of the particle itself distinguishes, at each event on the world

line of the particle, one particular inertial system in which

the velocity of the particle relative to that inertial system is

undoubtedly sufficiently smaller than c. This is the inertial

system in which the particle is instantaneously at rest at that

event. It is important to note that this special inertial system

is defined by the motion under consideration and is not

defined in an absolute manner that would violate the

principle of relativity.



Consider the motion of a particle at any instant of time t

relative to an (arbitrary) inertial system S. Let v(t) denote the

velocity relative to S of the particle at that time. There exists

another inertial system S0(t) that moves relative to S with a

constant velocity V equal to the velocity v(t) of the particle

at time t relative to S (Figure 2.50). The instantaneous

velocity v0(t) of the particle relative to S0(t) at the S time t is

zero, since

 

 

The inertial system in which the particle is instantaneously at

rest at S time t is called the (instantaneous) rest (or proper)

inertial system of the particle at the S time t (Figure 2.51).

Note that, for an accelerated particle, the rest system S0(t)

at one instant t of S time may not coincide with the rest

system S0(t′) at another time t′ (Figure 2.52).

 

 

FIGURE 2.50 Motions of the reference frames and of the

particle P at the S time t. (a) Motions from the point of view

of S. (b) Motions from the point of view of S0(t).



 

Consider the motion of a particle that is described by

Newton’s equation of motion, with a given force function,

relative to an inertial system in which the speed of the

particle is sufficiently smaller than c. At the S time t,

Newton’s equation of motion gives a valid description of the

motion relative to S0(t):

 

 

where the subscript zero indicates that the entity so labeled

is defined relative to the instantaneous rest system S0(t),

that inertial system in which v0(t) = 0. A given external

force, F0 does not depend on the motion of the particle; it

depends only on the position of the particle relative to its

environment and on intrinsic properties of the particle, such

as its electric charge.

We know the form of the equation of motion, Equation

(2.185), relative to one inertial system, so our next problem

is to determine the form of the equation of motion relative to

any other inertial system. According to the principle of

relativity, the equation of motion must be expressible in

covariant form, so we look for a covariant equation that

reduces to Equation (2.185) in the instantaneous rest system

of the particle.

A time interval measured relative to S0(t) is equal to the

proper time interval Δt0 associated with the motion of the

particle, where Δt0 is a scalar quantity. Thus, the

acceleration measured in the S0(t) system at S time t,



dv0/dt0, is the derivative with respect to the scalar t0 of the

spatial part of the velocity 4-vector

 

 

FIGURE 2.51 Coordinate axes of S0(t) at S time t. (a) World

line of the particle and the axes of the S0(t) inertial system

relative to S. (b) World line of the particle relative to S0(t).

 



 

FIGURE 2.52 The instantaneous rest system S0(t) at S time t

may not coincide with the instantaneous rest system S0(t′)

at S time t′.

 

 

Note: Even though υ has the components (c, 0, 0, 0) relative

to S0(t), Δv0 will not be equal to zero unless the particle

experiences no acceleration. These statements are

compatible, since the instantaneous rest system, S0(t),



depends on the time. The time-like component, relative to

S0(t) of dυ/dt0 is zero:

 

 

Therefore, the left-hand side of the equation of motion

(2.185) is given by the nonvanishing components, which are

spatial, of the 4-vector m dυ/dt0.

We can define a 4-vector by specifying its components

relative to one inertial reference system. Therefore, we

define a force 4-vector, , to be that 4-vector with

components (0, F0) relative to the instantaneous rest frame

of the particle. The components of the force 4-vector relative

to any other inertial system can be obtained by the

appropriate Lorentz transformation; for example, if S0(t) and

hence the particle are moving with the velocity relative to S

at S time t, then the components (ft, fx, fy, fz) of relative to S

are given by

 

 

The 4-force is called the Minkowski force, because it was

Minkowski who first expressed the equation of motion in

covariant form.



The motion of a macroscopic object is described by the

equation of motion (2.185) in those cases in which the speed

of the particle relative to its environment is much smaller

than c. Under these circumstances, the equation of motion

(2.185) relative to the instantaneous rest frame of the

particle is given by the nonvanishing components of the

covariant equation

 

 

This suggests, but does not prove, that the covariant form of

the equation of motion is the 4-vector equation (2.188). It is

conceivable that the covariant form of the equation of

motion is an equation between, for example, two tensors of

the second order (see Problem 1.125) with the components

of m0 dv0/dt0 and F0 determining three of the components

of each of these tensors. It is also conceivable that the

equation of motion takes on a form different from Equation

(2.188) in those cases in which the speed of the particle

relative to its environment is comparable to c. However,

experiments support the suggestion that the covariant form

of the equation of motion for macroscopic objects is a

relation between 4-vectors; the covariant equation,

 

 

is the form of the equation of motion for macroscopic objects

that is valid relative to every inertial system.



Under some circumstances, this equation is suitable also for

the description of the motion of a single constituent particle

of matter, and not only for the conglomerations of

constituent particles that form the objects of our everyday

experience. However, as you will see later in your studies of

these constituent particles, it is necessary in general to use

other concepts, those of quantum mechanics, to describe the

behavior on an individual basis of the constituent particles of

matter.

 

SUMMARY Newton’s equation of motion F = ma can be

generalized to a covariant equation that describes the

motions of objects in circumstances in which pertinent

relative speeds of the order of c are involved. The covariant

equation relates the 4-vector or Minkowski force , which is

determined by the environment, to the rate of change of the

4-velocity with respect to the proper time of the particle: .

 

Example 2.13

 

Consider the motion of a particle of mass m described

relative to an inertial system S by

 

 

during the time 0 ≤ t < π/2ω* (Figure 2.53). The velocity of

the particle relative to S is



 

 

 

FIGURE 2.53 The world line described by x = (1/α) cos (αct).

 

so the 4-velocity υ has components relative to S given by

 

 

The Minkowski force can be calculated from the covariant

equation of motion:

 



 

The nonvanishing component F0x of the Minkowski force

relative to the instantaneous rest frame of the particle is

given by

 

 

to be

 

 

Note that F0x is referred to the instantaneous rest system,

whereas x is referred to the system S.

 

Problem 2.60

 

The history of a moving particle, relative to an inertial

system S, is represented on a space-time diagram by the

hyperbola



 

 

(a)   Show that the form of the equation for the world line is

the same relative to all inertial systems related to S by the

velocity .

(b)   Find relative to S.

(c)   Find dt0 in terms of t and dt.

(d)   Show that .

 

Problem 2.61

 

Show that by proving that this is true in the rest system S0

of the particle.

 

Problem 2.62

 

At time t relative to S, a particle is moving with velocity

relative to S. Find the components of the Minkowski force

relative to S in terms of the components (0, F0) relative to

the instantaneous rest system S0 of the particle.

 

Problem 2.63



 

Show that .

 

Problem 2.64

 

Define a 4-vector by the equation , where μ is a scalar. Show

that if μ is an invariant—that is, if dμ/dt0 = 0. Hint:

Differentiate the equation υ · υ = c².



2.3.2   Motion along a straight line

under a given external force*

 

We now examine some of the consequences of the

relativistic equation of motion (2.189). We start with the

simplest cases involving the points to be discussed and

proceed to more complicated cases.

Consider a particle moving along the x axis of an inertial

system S under a force that always lies along the x0

direction in the instantaneous rest system of the particle:

 

 

Relative to S, the nonvanishing components of the

Minkowski force are

 

 

where υ is the instantaneous velocity (in the one-

dimensional vector notation in which the vector is denoted

by its component along the x direction) of the particle

relative to S and γ = [1 – (υ²/c²)]–½. The covariant equation

of motion, , has the following component equations relative

to S:

 



 

and

 

 

The factor γ appears on each side of the equations, which

can then be simplified to the forms

 

 

and

 

 

Equation (2.201) describes how the velocity υ changes

under the action of the external force F and reduces, in the

limit of low speeds , to the nonrelativistic form of the

equation of motion,

 

 



The relativistic form of this equation, (2.201), cannot be

written in this form, but it can be expressed in a form similar

to a nonrelativistic equation equivalent to (2.202), namely,

 

 

where p0 = mυ is the nonrelativistic momentum. Since m is

an invariant, Equation (2.201) is equal to

 

 

The physical force relative to S, , is equal to the time

derivative of the relativistic momentum as measured in the

inertial system S.

The relativistic equation of motion (2.204) is similar to the

nonrelativistic form (2.203); the difference lies in the mass

coefficient mυ. The relativistic mass mυ increases with

increasing speed |υ|, whereas the (rest) mass m is a scalar.

The effect of the dependence of the relativistic mass on the

speed can be seen from the following example: Consider a

region of the motion in which the physical force F is

constant. The change in the velocity per unit time under the

action of the force decreases as υ increases, since mυ

increases with υ and the change in mυυ in the time interval

Δt is given by

 

 



We see again that the relativistic mass is a measure of the

inertia of the particle and that the relativistic mass,

 

 

is increased above its rest value m by T/c², a contribution

from the relativistic kinetic energy T. Recall that it is this

same measure of inertia that plays the role of the inertial

mass coefficients in collisions.

Let us now consider the time-like component relative to S of

the equation of motion, (2.200):

 

 

In order to obtain an interpretation for this equation, we

consider first the familiar case of the nonrelativistic limit, .

In this circumstance, we can expand mc²γ as a power series

in υ/c, mc²γ = mc² [1 + υ²/(2c²) + …], and obtain, from

Equation (2.207),

 

 

This is the nonrelativistic relation between the rate of

change of the kinetic energy and the work done by the force

per unit time, Fυ = F dx/dt, since F dx is the work done by



the force while the particle undergoes the displacement in

the time dt.

A comparison of Equations (2.207) and (2.208) suggests

that, in relativistic mechanics, we interpret d(mυc²)/dt as the

time rate of change in the kinetic energy. This suggestion is

consistent with our earlier definition of T = mυc² – mc² as

the relativistic kinetic energy, since

 

 

We see from Equation (2.207) that the time rate of change

of the relativistic kinetic energy is equal to the work done by

the physical force per unit time. Also, we have that

 

 

SUMMARY In the case in which the spatial component of the

Minkowski force is along the direction of motion, the

covariant equation of motion reduces to

 

 

in this case, F is the spatial component of the Minkowski

force in the instantaneous rest system and is called the

physical force.

 



Example 2.14

 

The Minkowski force experienced by a particle undergoing

the motion

 

 

was calculated in Example 2.13 to have the components (0,

–mc³/ωx²) relative to the instantaneous rest system.

Therefore, relative to the system S, the physical force is –

mc³/ωx², and the equation of motion is

 

 

Note that the solution of the force equation dp/dt = –k/x² is

x = (k/mc²) × cos (mc³t/k) only for the initial conditions x0 =

k/mc², υ0 = 0.

 

Example 2.15

 

The increase in the inertia of a particle with increasing

speed can also be seen from the transformation equation for

collinear velocities, Equation (1.119):

 



 

where is the velocity of a particle with respect to an inertial

system S, is its velocity with respect to another inertial

system S′, and is the velocity of S′ with respect to S. Let S′

be the instantaneous rest frame of the particle at some

event on its world line, so that V = υ(t), the velocity relative

to S at that event. Let υS′ = a0 Δt0 be the change in the

velocity with respect to the rest frame in the proper time

interval Δt0, where a0 = F0/m0 is the acceleration

experienced by the particle relative to S′ at that event. Then

υs – υ = (dυ/dt) Δt is the corresponding change in the

velocity as measured in S and is given, to first order in Δt0,

by

 

 

Hence,

 

 



or

 

 

from which we see that an acceleration a0 in the

instantaneous rest frame results in a smaller acceleration in

another inertial system as a consequence of the properties

of space and time.

 

Example 2.16

 

Q.   A particle moves from rest at the origin at time t = 0

relative to S under a constant physical force .

(a)   Calculate the velocity and the position of the particle at

time t.

(b)   Show that, for , the answers to (a) reduce to the

appropriate nonrelativistic form.

 

A.   (a)   The equation of motion is

 

 



Since υ = 0 at t = 0, one integration yields

 

 

which can be squared and then solved for (the positive) υ to

give

 

 

Note that |υ| < c for all values of t and that |υ| → c as t → ∞.

This behavior results from the fact that the relativistic mass

mυ = γm increases with increasing speed |υ|. The position x

at time t is given by the differential equation

 

 

and the initial condition x = 0 at t = 0 to be

 

 



The graphs of υ and x as functions of t are shown in Figure

2.54.

(b)   Formulas (2.219) and (2.221) can be expanded in

powers of gt/c for as

 

 

and

 

 

For , υ ≈ gt and . Therefore, for ,

 

 

 



FIGURE 2.54 The motion of a particle experiencing a

constant physical force along its direction of motion. (a) .

The dashed line is the nonrelativistic result, υ/c = gt/c. (b) .

The dashed curve is the nonrelativistic result, .

 

the nonrelativistic formulas for a particle undergoing a

constant acceleration g.

 

Problem 2.65

 

Consider a space traveler who experiences a constant

acceleration of magnitude g = 9.8 m/sec² in his rest frame.

 

(a)   Find the speed of the space traveler 1 year after he

starts from rest.

(b)   Find the time dilatation factor at the end of that year.

(c)   Find the proper time of the space traveler that has

elapsed in that interval.

(d)   How far has the space traveler moved in that time?

 

Problem 2.66

 



A particle moves from rest relative to S under the constant

physical force , where g = 9.8 m/sec².

 

(a)   Calculate the times t relative to S at which the velocity

deviates from the nonrelativistic prediction by

 

(i)   1%,

 

(ii)   10%.

(b)   Calculate the times t relative to S at which the position

deviates from the nonrelativistic prediction by

 

(i)   1%,

 

(ii)   10%.

 

Problem 2.67

 

Consider a stellar object with the same radius as the earth.

Assume that the acceleration due to gravity g′ at the

surface of the object is given by Newton’s law of gravitation.

Estimate the minimum mass of such a stellar object for

which it is necessary to use relativistic mechanics to



describe free-fall motions similar to those encountered in

everyday life.

 

Problem 2.68

 

A particle moves from rest relative to S under the constant

physical force .

 

(a)   Show that, for t sufficiently large that , the velocity υ is

given by

 

 

(b)   Show that the relativistic momentum p is given by the

product (force) × (time).

(c)   Compare the behavior of υ and p for large t, and also

compare the relativistic behavior of each with its behavior

as predicted by newtonian nonrelativistic mechanics.

 

Problem 2.69

 

Explain why the relativistic value of T is greater than the

nonrelativistic expression . Why does T → ∞ as |υ| → c?



 

Problem 2.70

 

A particle of mass m undergoes straight-line motion under

the constant relative force .

 

(a)   Show that, for , the nonrelativistic result.

(b)   Show that, for . Interpret the two factors, mg and ct.

 

Problem 2.71

 

A particle in straight-line motion undergoes a constant

acceleration relative to S (for a time less than that required

for its speed to reach the value c). The particle was at rest

relative to S at time t = 0. Calculate the components,

relative to S, of

 

(a)   the physical force,

(b)   the Minkowski force.

 

Problem 2.72

 



Consider a particle undergoing motion along the x axis of an

inertial system S described by the equation of motion

 

 

where the Minkowski force has components (T, X, 0, 0)

relative to S. Show in the following manner that :

(a)   From the definition of Δt0 show that

 

 

and hence that

 

 

(b)   Show that

 

 

so that cT = Xυ.

(c)   Show from the results of (b) that .



 

Problem 2.73

 

A particle of mass m undergoes motion along the x axis of

an inertial system S under the physical force F = –mω²x,

where ω is a positive constant. The maximum amplitude of

the motion is a.

 

(a)   Show that the equation of motion can be written in the

form

 

 

(b)   Show that

 

 

(c)   Let . Show that the period T of the motion is given by

 

 

(d)   Show that, for , T = 2π/ω the nonrelativistic form.



(e)   Show that, if ωa/c is small,

 

 

Problem 2.74

 



Consider an object whose behavior is described by the

equation

 

 

where μ(t0) is the relativistic mass of the object at proper

time t0 and is the generalized Minkowski force given by ,

with b a constant. Note that .

 

(a)   Show that the object does not experience any

acceleration.

(b)   Show that μ = bt0 + μ0, where μ0 = μ(0).

(c)   Find an expression for μ in terms of the time t relative

to any inertial system S.

 

Problem 2.75

 

An object of variable relativistic mass μ(t0) undergoes

straight-line motion along the x axis of S described by the

equation of motion

 

 



with the components of relative to S being (T, X, 0, 0).

(a)   Show that

 

 

(b)   Let (T0, X0, 0, 0) be the components of in the

instantaneous rest system of the object. Show that

 

 

(c)   Find dμ/dt0 in terms of the instantaneous velocity of the

object relative to S and the components of relative to S.



2.3.3   Relativistic effects of a force in

an arbitrary direction*

 

We now consider the case, more general than that studied

above, in which the force and the motion do not lie along the

same line at all times. Under these circumstances, the

equation of motion at time t takes on a simple form relative

to S if we choose the direction of the x axis to be along the

instantaneous direction of the velocity v(t) at the time t. The

more general form of the equation is obtained in Example

2.17 and the problems.

Let the components of the Minkowski force , relative to the

instantaneous rest system, be

 

 

Then, relative to S, the components of , as given by a

Lorentz transformation, are

 

 

Relative to S, the force law at time t takes the form

 



 

or

 

 

and

 

 

The 3-vector is the force that would be obtained by a

measurement in S of the time rate of change of the

relativistic momentum p = mυv; this is the physical force F,

 

 

with components

 

 

The equation of motion (2.229) can be written in terms of the

physical force as

 



 

similar to one form of the nonrelativistic equation of motion.

The time-like component of the covariant equation of motion

is

 

 

where (ft, f) are the components of the Minkowski force

relative to S. Relative to S0, υ = (c, 0) and , so . This

equation can be expressed in terms of the components of υ

and relative to S as

 

 

Therefore,

 

 

Since the physical force F is given by f = γF (Equation 2.230),

the time-like component of the covariant equation of motion

can be written as

 



 

Hence, the relativistic kinetic energy is given by

 

 

since the change in the relativistic kinetic energy between

the motion with velocity v1 and that with v2 is equal to the

work done by the physical force along the path of the

motion:

 

 

Moreover, this change in the relativistic kinetic energy is a

function only of the initial and final speeds of the particle; it

does not depend on the manner in which this change in

speed is brought about.

The covariant form of the equation of motion can be written

in terms of the energy-momentum vector as

 



 

the spatial components of this equation dp/dt = F describe

the motion, and the time component d(mυc²)/dt = F·v

describes the rate at which the relativistic energy changes.

 

SUMMARY The covariant equation of motion

 

 

is equivalent, relative to an inertial system S, to the

equations

 

 

where F = γf is the physical force.

 

Example 2.17

 

Q.   Consider a particle experiencing the Minkowski force

with components (ft, f) relative to an inertial system S.



(a)   Find the physical force F experienced by the particle

when it is moving with velocity .

(b)   The particle undergoes an acceleration, relative to S, in

the x direction at an instant when its velocity is . Show that

the y and z components of the physical force are not zero,

and express them in terms of Fx.

 

A.   (a)   The covariant equation of motion has spatial

components relative to S given by

 

 

with . Therefore, the physical force F equal to the time rate

of change of the relativistic momentum dp/dt is given by

 

 

This equation is the same as Equation (2.230) even though,

since , the components of F are not given by (2.231) (see

Problem 2.78).

(b)   Since the acceleration dv/dt of the particle is in the x

direction,

 

 



and

 

 

Therefore, the components of the physical force F are given

by the equation of motion dp/dt = F to be

 

 

and

 

 

Hence, the components Fy and Fz are not zero and are given

by

 



 

The y and z components of the physical force do not vanish,

even though the acceleration is only in the x direction, for

the following reason: The acceleration of the particle in the x

direction, which results in a change in υx, produces a change

in the relativistic mass mυ and, therefore, a change in the y

and z components mυυy and mυυz of the momentum, even

though υy and υz remain constant. The force components, Fy

= (dmυ/dt)υy and Fz = (dmυ/dt)υz, are required to produce

the resulting change in the corresponding components of the

momentum.

 

Problem 2.76

 

A particle of charge q experiences a magnetic force that is

given by F = qv × B, where B is a constant vector.

 

(a)   Show that the relativistic mass mυ and the magnitude p

of the relativistic momentum do not change under the action

of the force.

(b)   Show that the particle moves along a helix, by proving

each of the following statements: The component of the

velocity v|| in the direction of B remains constant, as does

the magnitude of the component of the velocity

perpendicular to B. Relative to a point that moves with the

velocity v|| of magnitude v·B/B, the particle moves in a circle

of radius , where .

 



Problem 2.77

 

A particle experiences a Minkowski force at one event on its

world line. The components of relative to the particle’s

instantaneous rest frame are (0, F0), those relative to an

inertial system S are (ft, f), and those relative to another

inertial system S′ are (ft′, f′). The velocity of S′ relative to S is

V.

 

(a)   Show that

 

 

where γ = [1 – (υ²/c²)]–½ and derive from this that

 

 

(b)   Let γV = [1 – (V²/c²)]–½. Show that

 

 

(c)   Let γ′ = [1 – (υ′²/c²)]–½. Show that the transformation

law for the physical force is given by



 

 

(d)   Show that the result of (c) reduces to Equation (2.231)

in the case where .

 

Problem 2.78

 

A particle experiences a Minkowski force with components

(0, F0) relative to its instantaneous rest frame at an instant

when the particle is moving with velocity v relative to an

inertial frame S.

 

(a)   Show that the physical force with respect to S is given

by

 

 

(b)   Show that the result of (a) reduces to Equation (2.231)

for the special case .

 

Problem 2.79

 



A particle of mass m moving with constant relativistic

momentum with respect to an inertial system S at S times t

< 0 experiences a constant physical force for t ≥ 0.

 

(a)   Show that at S time t ≥ 0

 

 

(b)   Show that at S time t ≥ 0

 

 

where

 

 

(c)   Find υx, υy, υz at S time t ≥ 0.

(d)   Explain why υx changes with t.

(e)   Find x(t), y(t), and z(t).

 

Problem 2.80

 

Two particles collide elastically. Let the interaction between

the particles be described by the Minkowski force , the



Minkowski force on the ith particle due to the presence of the

jth, and the corresponding physical force Fi(j).

 

(a)   Show that the total momentum is conserved if the

physical forces satisfy Newton’s third law

 

 

(b)   Let ti0 be the proper time of the ith particle. Show that

the equations of motion

 

 

do not necessarily lead to the conservation law of the total 4-

momentum if were true. Explain.



2.4   Nuclei and Fundamental Particles

 

Relative speeds comparable to c of macroscopic objects

have not been obtained in the laboratory, in part because of

the tremendous energies that would be required for their

achievement. Indeed, the usefulness in the laboratory of the

relativistic laws of motion is limited to applications involving

nuclei and fundamental particles.* Therefore, at this point we

introduce some of the pertinent topics of interest in the fields

of nuclear physics and fundamental particle physics. This

study will provide illustrative examples of relativistic effects,

and, through checks with experiments, it should give you

some confidence in the laws of relativity theory.

The relativistic conservation law of 4-momentum provides a

valid relation between the observed initial and final states of

free motion of these particles. Consequently, in

circumstances involving relative speeds all much smaller

than c, the conservation laws of nonrelativistic mechanics

are valid. Conservation laws, however, do not provide a

complete description of the motions; in fact, the details of

the behavior of nuclei and fundamental particles cannot be

described adequately by the concepts we have considered

up to this point. Indeed, at the present time, a

comprehensive theory that describes this detailed behavior

is not existent. There is a theory, quantum mechanics,† that

correctly describes the behavior of atoms, behavior that lies

intermediate to the level of our everyday experiences and

the level of particle behavior. Thus, the principles of

quantum mechanics are more relevant to the description of

particle behavior than are the principles of newtonian or

classical, as opposed to quantum mechanical, relativistic

mechanics. Some of the consequences of the principles of



quantum mechanics will be described in the following outline

of nuclear and particle processes. However, the method of

presentation of these and some other facts in this section

differs from that in the preceding parts of the book; the

following contains some statements for which little

corroborative evidence is presented. The justification for

statements about such matters will be left as topics for

further study.

The particles are introduced below in an order that

corresponds to the chronological order in which they were

discovered or began to play an important role in physics: the

electron, the photon, the nucleus, the nucleon, the neutrino,

antiparticles, the muon and the π-meson, strange particles,

and resonances. You can supplement the description given

below by reading some of the books and articles listed as

references in this section.‡

It is worthwhile to digress at this point, before entering into a

description of the fundamental particles, to consider sources

of highly energetic particles and methods by which these

particles can be “observed.” We will restrict our discussion to

the simplest examples and will reference more extensive

accounts for further information.

The early work on high-energy particles was accomplished

by use of natural sources of these particles. For example, in

their early studies of nuclei, Rutherford and his colleages

used a particles, the nuclei of helium atoms, which are

emitted by certain naturally radioactive substances.

However, these particles are not so energetic as those from

another natural source; particles showing extreme relativistic

behavior occur naturally in cosmic rays.*

Cosmic rays are the flux of energy in the forms, first, of high-

energy particles that are incident upon the earth’s

atmosphere from outer space and, second, of particles that



the incident primary flux produces in the earth’s

atmosphere. The high-energy particles from outer space are

called primaries, and their flux consists mainly of protons

together with a few α particles and even smaller numbers of

other nuclei.†

Cosmic-ray particles have been observed with much higher

energies than those to which it has been possible to

accelerate particles in the laboratory. For this reason, the

study of cosmic rays has provided much information on high-

energy processes. The means by which these particles

obtain such high energies are not understood at present, but

this problem is under extensive study.‡

Today it is not necessary to rely on such natural sources as

cosmic rays or radioactive materials for fast-moving

particles. Various types of machines have been developed

that generate and accelerate beams of charged particles,

such as electrons, protons, and a particles, to high energies.§

The detection of particles in much of the early research in

nuclear and particle physics was performed with the aid of

simple apparatus such as scintillation foils, which when

struck by an α particle emit a small flash of light that can be

seen in a darkened room by an observer whose eyes are

adjusted to the darkness. Another important piece of

instrumentation of that period was the cloud chamber

(Figure 2.55), invented by the English physicist Charles T. R.

Wilson (1869–1959). This chamber is an instrument that can

be used to show the paths of charged particles that traverse

its interior. It consists of a cylinder, filled with air saturated

with a vapor, whose volume can be changed by the

movement of a piston. An energetic particle will ionize the

atoms of the gas in the chamber along the path of the

charged particle. A sensing device can be set up that is

triggered by an incoming charged particle and that, in turn,



causes the piston to move and expand the air in the cylinder.

The gas becomes super-saturated, and the ions created

along the path of the charged particle act as nuclei for the

condensation of liquid droplets. These droplets produce a

visible track along the path of each charged particle; such

tracks can be photographed and examined at leisure. More

refined types of chambers* of the same basic character are

used in today’s research in nuclear and particle physics

(Figure 2.56).

 

 

FIGURE 2.55 Wilson cloud chamber.

 



 

FIGURE 2.56 These fundamental particles were identified by

their dynamical behavior in a bubble chamber picture. (a)

The lines show the tracks of fundamental particles as seen in

a bubble chamber picture. (Only particles with electric

charges leave tracks.) (b) Interpretation: An incoming

charged particle π– is responsible for the creation of two

electrically neutral particles, K° and Λ°, which in turn are

responsible for the creation of other charged particles,

namely π+ – π– and π- – p, respectively.

 

 



FIGURE 2.57 Cathode ray tube. The anode is at a higher

electric potential than is the cathode; thus, electric charge,

emitted at the cathode, streams toward the anode and on to

the end of the tube. Electric and magnetic forces can be

exerted on the cathode ray beam, and they show that it is a

beam of negative charges; in fact, cathode rays are a beam

of electrons.

 

 

FIGURE2.58 Schematic diagram of Thomson’s e/m

apparatus.



2.4.1   The electron

 

The electron was discovered as a result of experiments,

started about a century ago, that were performed to

investigate the conduction of electricity in gases.† In these

experiments, studies were made of the transmission, under

the action of a high voltage, of electric charge through

closed tubes containing gases at various pressures (Figure

2.57). The relation between science and technology is

illustrated in the progress of these studies, since advances in

these investigations depended, for example, on the

refinement of techniques for evacuating the gas from the

closed tubes.‡

The studies culminated in 1897 with the measurement of the

charge-to-mass ratio of the particle that we now call the

electron, by the English physicist J. J. Thomson (1856–1940).

The electric-charge carrier emitted at the negative cathode

in an evacuated tube was deflected by electric and magnetic

forces in turn (Figure 2.58), and from a measurement of the

deflection the ratio e/me was calculated (see Problem 2.81).

Thomson’s experiments led to a crude determination of the

mass and charge of the electron, although they did not

demonstrate conclusively that it carried an elementary unit

of charge or even that an elementary charge unit existed.

These facts were shown by the oil-drop experiment of the

American physicist Robert A. Millikan (1868–1953). The

essence of this experiment was the balancing of the

gravitational force on a drop of oil with an electric force

exerted on the charged drop (Figure 2.59). The drops were

charged with a small number of electrons so that the

discreteness of the number of charges was evident from



Millikan’s measurements (see Problem 2.82). The magnitude

of the charge of the electron is the elementary charge unit e:

 

 

The charge of an electron is –e.

By convention, the electron is denoted by e or sometimes by

e– to indicate that it carries a negative electric charge.§ This

particle plays an important role in chemical phenomena and

in the physics of solids.¶ Indeed, in principle, nearly all the

properties of ordinary matter can be deduced

mathematically in terms of the motions of the negatively

charged electrons around or past positively charged nuclei.

We shall not consider here the part played by the electron in

the study of the properties of ordinary matter; our concern is

with the nature of the electron itself and its function in the

study of nuclei and of other fundamental particles.

 



 

FIGURE 2.59 A schematic picture of the Millikan oil-drop

experiment.

 

How can we describe or identify a minute particle such as

the electron? We certainly cannot label it, say by writing

“electron” on it, for this writing would require attaching to

the electron a multitude of particles of ink, particles that are

themselves much more massive than the electron. For

similar reasons, we cannot identify an electron by its color or

shape. We can describe an electron only by presenting those

dynamical variables that determine its behavior and do not

change throughout the history of the electron. For example,

the (rest) mass me describes the inertial behavior of the



electron, and the electric charge qe = –e gives a measure of

the electric forces that an electron experiences.

The parameters me and qe are not sufficient, however, to

completely describe the behavior of electrons. It is necessary

to assign to an electron an intrinsic angular momentum

called spin. The concept of angular momentum suggests

rotational motion, and that of intrinsic angular momentum

suggests the spinning of an extended object about an

internal axis (Figure 2.60). However, within the framework of

the concepts that we have considered thus far, it is

impossible for an object to possess such an intrinsic angular

momentum unless that object has a composite structure.

The composite structure is necessary in order that every

component term r × p relative to some internal point is not

zero (Figure 2.61). Thus, the concept of an intrinsic angular

momentum is not consistent, within the framework of the

concepts we have considered, with the idea of a particle

without structure. However, within the framework of

quantum mechanics, it is possible to attribute to a particle

without structure an intrinsic angular momentum. The

possible values of the magnitude of this intrinsic angular

momentum are

 

 

according to the results of quantum mechanics. The constant

h is called Planck’s constant in honor of the German physicist

Max Planck (1858–1947) who introduced it. It is conventional

to express the intrinsic angular momentum or spin of a

particle in units of (h/2π). Within this convention, the possible

values of the magnitude of the spin S of a particle are 0, 1/2,

1, 3/2, 2, . . . .



The magnitude of the spin Se of an electron is 1/2. This spin

plays a role in the behavior of the electron in two important

ways. In the first place, the spin of the electron contributes,

together with the orbital angular momentum associated with

the motion of the electron as a whole, to the total angular

momentum of the electron. The conservation law of angular

momentum is applicable, under the appropriate

circumstances, only to the total angular momentum of the

electron and not just to that associated with the electron’s

motion.

 

 

FIGURE 2.60 A spinning object possesses an intrinsic angular

momentum in addition to the orbital angular momentum R ×

P due to the center-of-mass motion of the object as a whole.

 

Second, it is possible to distinguish between two electrons by

the directions of their intrinsic angular momentums. The fact

that two electrons may be distinguishable from one another

owing to their spins has important consequences for atomic

and molecular structure.*



A fundamental particle is described by those parameters

that determine the behavior of that particle. For many

purposes, the electron can be described as a particle with

the following properties:†

 

 

It may be possible to distinguish two electrons from each

other by the direction of their spins, but other than this, the

description of an electron requires so few parameters that it

would appear that we cannot distinguish one electron from

any other. Could we not add a little bit of mass or a small

amount of charge to an electron? The answer is no. All

negatively charged electrons are identical, and they can

exist only with the properties, the given values of mass,

charge, and spin, just described. This property of the

discreteness of the fundamental particles still awaits

explanation.

 

 



FIGURE 2.61 The contribution mr × v = r × p of the

constituent particle of mass m to the angular momentum

about c is not zero only if the radius R of the object (and

hence every r) is not zero.

 

SUMMARY A fundamental particle such as the electron is

specified by those dynamical parameters that describe the

behavior of the particle. These parameters include the mass

and the electric charge of the particle and an intrinsic spin or

angular momentum. It may not be possible to associate the

rotation of a constituent element of a fundamental particle

with this intrinsic spin.

 

Problem 2.81

 

This problem provides an analysis of Thomson’s e/m

experiment, which is illustrated in Figure 2.58.

 

(a)   Consider an electron moving freely with the

nonrelativistic speed υ until it enters a region of constant

electric force directed perpendicularly to the initial velocity

of the electron. Let E denote the magnitude of the electric

force per unit charge. Show that the angle θ, through which

the electron is deviated from its original path, is—assuming

that θ is small compared with unity—θ = (eE/m)(l/2υ²). The

distance along which the electron experiences the electric

force is l.



(b)   An electron with the same initial speed experiences the

force from a field of constant magnetic induction B over the

same distance. Show (using the same assumption) that the

angle through which the electron is deflected is θ′ = (eυB/m)

(l/2υ²).

(c)   Thomson adjusted the magnetic induction so that θ = θ′;

his measurements gave the following results:

 

 

Calculate the ratio e/m and the initial speed υ from these

results.

 

Problem 2.82

 

This problem provides an analysis of the Millikan oil-drop

experiment illustrated in Figure 2.59. Consider a spherical oil

drop of radius a and density ρ.

 

(a)   Show that the gravitational force experienced by the

drop is (4π/3)a³ρg.



(b)   Show that the buoyancy of the air of density ρa

experienced by the drop reduces the effective gravitational

force experienced by the drop to (4π/3)a³(ρ – ρa)g.

(c)   A spherical drop of radius a moving slowly with the

speed υ through air experiences a force of air resistance

given by Fa = 6πηaυ, where η is a constant called the

viscosity. Show that the oil drop achieves a constant speed of

υ = 2πa³(ρ – ρa)g/(9πηa).

(d)   The oil drop attains a charge q from the ionizing effect

of the X-rays. The plates are charged so that a constant

electric force per unit charge of magnitude E is exerted

upward on the drop. Show that the drop attains a terminal

speed υe = [|q|E – (4π/3)a³(ρ – ρa)g]/(6πηa).

(e)   One set of Millikan’s measurements gave the values

 

 

Calculate the charge on the oil drop.

(g)   Results typical of those obtained by Millikan for the

charge on one oil drop at various times are, in units of 10–10

Fr (1 Fr = 1 Franklin = 3.336 × 10–10 C):

 

 



Mark these results on a scale from 0 to 85, and from this

calculate a value for e in coulombs.

 

Problem 2.83

 

An electron is accelerated from rest through a potential

charge of V volts.

 

(a)   What is the kinetic energy of the electron, in electron

volts?

(b)   What is the kinetic energy of the electron, in joules?

(c)   Plot the final speed υ of the electron as a function of V.

Mark on this graph that point where the nonrelativistic

formula for kinetic energy gives the correct result to within

1% and also the point where the energy associated with the

rest mass of the electron is 1% of the total energy.

 

Problem 2.84

 

What is the speed of an electron that is traveling with a

kinetic energy equal to its rest energy?

 

Problem 2.85



 

In 1909, Bucherer measured the ratio qe/mυ for fast

electrons and obtained results that are equivalent to those

shown in the table.

Show that these results are consistent with the relativity

theory but not with newtonian mechanics. (Assume that qe

does not change with the speed of the electron.)

 

υ/c –qe/mυ, C/kg

0.3173 1.662 × 10¹¹

0.3787 1.629

0.4281 1.591

0.5154 1.511

0.6870 1.284



 

Problem 2.86

 

The energy of one primary cosmic-ray particle has been

measured to be 1.0 × 10²⁰ eV.

 

(a)   How many joules is this equivalent to?

(b)   Find (c – υ)/c for an electron of this energy and calculate

the Lorentz contraction factor .



2.4.2   The photon*

 

Light possesses one of the attributes—namely, momentum—

that we usually associate with a particle; the energy E

traveling in one direction with the speed c has a momentum

of magnitude E/c associated with its motion. However, the

fact that we can assign a momentum to an energy-transport

process does not endow this energy with corpuscular

properties. In particular, light exhibits wave-like properties

that are incompatible, in the framework of our usual ideas,

with particle-like behavior. Within the framework of the

concepts of quantum mechanics, on the other hand, the

boundary between a wave-like nature and a particle-like

nature is not distinct. In fact, light shows wave-like properties

in some processes and particle-like properties in others. Also,

as you will see later in your studies, particles exhibit wave-

like properties in some circumstances.

The corpuscular theory of light was believed by scientists

prior to the turn of the nineteenth century, because this

theory was consistent with their knowledge of the properties

of light, such as the fact that light propagates in straight

lines. Shortly after this, however, wave-like properties of light

were demonstrated conclusively and the wave character of

light became accepted by all scientists; the corpuscular

theory was discarded because of the belief in the

incompatibility of a wave-like nature and a particle-like

nature. Furthermore, those properties, such as that of

straight-line propagation, that had supported the corpuscular

theory were found to be explainable on the basis of a wave-

like nature because of the smallness of the wavelengths (∼

10–6 m) of light.



The belief that light is purely wave-like in character has now

been demolished. In a paper published in 1905,* Einstein

considered the processes of emission and absorption of light.

He noted that the experiments that supported the wave

theory involved time-averaged light intensities, so these

experiments were not necessarily in conflict with a

corpuscular theory. His investigations led him to the

conclusion that light exhibited corpuscular-like properties in

some circumstances. Einstein inferred that light travels, is

emitted, and is absorbed, in discrete packets. The energy E

of the ultimate bundle associated with light of frequency ν is

given by

 

 

where h is Planck’s constant. (The appearance of Planck’s

constant is characteristic of equations describing quantum

behavior.) The basic corpuscle of light energy is called a

photon. Thus, a photon is the ultimate unit of light, and a

light beam of frequency ν consists of an integral number n of

photons. The energy of such a beam is nhν, and if the light is

traveling in one direction, the beam possesses a momentum

of magnitude nhν/c.

The energy E of a photon is the fourth component of the 4-

momentum , so the value of E depends on the reference

frame relative to which the energy is measured. The

permissible values of E range over all positive numbers. The

same photon will possess different energies (or correspond

to different frequencies) relative to different inertial systems.

A monochromatic light beam is distinguished only by its

frequency (which depends on the reference frame), its

intensity (which depends on the number of photons), and its



direction of polarization; hence, aside from the two basic

choices of polarization direction, all photons are equivalent.

The photon is a particle with zero electric charge, zero rest

mass, and an intrinsic spin of unity (in units of h/2π). The

photon is denoted by the symbol γ.

 

 

The frequency ν = E/h associated with a photon extends over

the range from zero to infinity, depending on the inertial

reference frame in which the frequency is measured. Visible

light consists of photons with frequencies of a restricted

range in which light can be detected by the human eye,

corresponding to wavelengths from 4,000 to 7,000 Å.

Relative to another reference frame, such light may appear

in other forms, as shown in Figure 2.62. All these types of

radiation are called electromagnetic radiation, since they are

emitted and absorbed only by electrically charged particles.

 

 

FIGURE 2.62 The electromagnetic spectrum.

 



The existence of electromagnetic waves was inferred

theoretically, before special relativity was known, by the

Scottish physicist James Clerk Maxwell (1831–1879), who

formulated a classical theory of the interaction between

electric charged particles. This theory satisfies the principles

of special relativity, and indeed, it was an examination of the

basis for the successes of this theory that led Einstein to the

theory of special relativity.

Maxwell’s classical theory of the interactions between

electric charged particles admits solutions in which the field

of the force of interaction travels through space as waves

with the speed c. The fact that radiation that travels with the

speed c is emitted by oscillations of electric charges was

demonstrated experimentally in 1888 by Heinrich Hertz.

Einstein’s investigations showed that these waves occur in

bundles of energy, the elementary unit of energy of a wave

of frequency ν being hν.

Photons are emitted by a charged particle in processes in

which energy-momentum is exchanged by the charged

particle with some other charged system. For example, a fast

electron that is slowed down in a collision with a nucleus can

emit photons (Figure 2.63). Photons that are emitted in this

decelerating process are called bremsstrahlung, the German

word for “braking radiation.”

Bremsstrahlung forms the main component of X-rays, a form

of electromagnetic radiation that was discovered in 1895 by

the German physicist Wilhelm Konrad Röntgen (1845–1932).

Röntgen’s experiment is illustrated in Figure 2.64. The

radiation that caused the barium salts to fluoresce was

invisible and, as Röntgen showed, could travel through

opaque material. The radiation was unlike anything known to

that date and, since the symbol x is often used to designate

an unknown, Röntgen called them X-rays. Röntgen showed,



by passing X-rays through a series of slits, that they traveled

in straight lines, and since they were not deviated by electric

forces, that they did not possess an electric charge. Shortly

thereafter, it was shown that X-rays exhibited wave-like

properties, with wavelengths about 10–10 m for X-rays

produced by voltages of the order of 10⁴ V. The waves were

also found to be transverse. Hence, the X-rays were

identified as a form of electromagnetic radiation.

 

 

FIGURE 2.63 Bremsstrahlung production.

 

Conclusive proof of the corpuscular nature of

electromagnetic radiation was obtained in experiments

performed in 1922 by the American physicist Arthur Holly

Compton* (1892–1962). Compton measured the wavelengths

of X-rays scattered by electrons in matter [Figure 2.65(a)]

and found that one component of the scattered wave

showed a change in wavelength that depended only on the

angle of scatter θ. If X-rays exhibited wave-like properties

only, the electrons would oscillate with the same frequency



as the incident radiation and would reradiate the absorbed

energy in all directions in the form of electromagnetic

radiation of that frequency. The change in the frequency, or

the shift in wavelength, could be explained only on the basis

that the X-rays consisted of photons of incident energy E =

hν and momentum of magnitude P = hν/c that underwent an

elastic collision with the electrons [Figure 2.65(b)], and

emerged at the angle θ with final energy E′ = hν′ and

momentum of magnitude P′ = hν′/c (Figure 2.66). The final

energy, calculated from the conservation law of energy-

momentum, is given by Equation (2.89):

 

 

The change λ′ – λ in the wavelength is determined by the

equation E = hν for the frequency of the photon and the

relation λν = c:

 

 

Equation (2.252) determined the correct wavelength change

of the scattered X-rays in Compton’s experiment. This

change in the wavelength of the X-rays with scattering angle

is known as the Compton effect.†

 



 

FIGURE 2.64 The cathode-ray tube experiment by which

Röntgen discovered X-rays.

 



 

FIGURE 2.65 The Compton effect. (a) Schematic diagram of

the Compton experiment. (b) Schematic diagram of a

Compton scattering: (i) before the collision; (ii) after the

collision.

 

SUMMARY Light and other electromagnetic radiations exhibit

both wavelike and particle-like behaviors. These radiations

consist of bundles of energy, the basic unit of radiation of



frequency ν being E = hν. Particle-like behavior is

demonstrated by the Compton effect.

 

Problem 2.87

 

(a)   Calculate the energy of a photon of yellow-green light, λ

= 0.55 μ.

(b)   The human eye can observe flashes of light in which

only ∼5 × 10–17 J of light energy enter the eye. About 10%

of the photons reach the retina. Estimate the number of

photons that enter the eye from such a flash and the number

of photons that enter the retina.*

 

Problem 2.88

 

(a)   A photon of frequency ν is observed in the inertial

reference frame S. Find the frequency ν′ of the photon

relative to another inertial system S′ moving with the speed

V in the direction of motion of the photon.

(b)   A photon of wavelength 0.55 μ (yellow-green light) is

observed in the frame S. Calculate typical values of V in

order that this photon be observed in the various parts of the

electromagnetic spectrum (Figure 2.62) relative to S′.

 



 

FIGURE 2.66 Space-time diagram for the Compton effect: a

photon γ and an electron e collide and move off as the

photon γ′ and the electron e′.

 

Problem 2.89

 

Compton used X-rays of wavelength λ = 0.711 Å in his 1922

experiments. Calculate* the wavelengths of the X-rays

scattered at

 

(a)   45°,



(b)   90°,

(c)   135°.

 

Problem 2.90

 

Compton observed that one component of the scattered X-

rays had the same wavelength as the incident beam. Show

that a 0.711-Å photon scattered from an electron bound to

the atom, in which case the mass that undergoes recoil is

the atomic mass ∼ 10⁵me, does not undergo any appreciable

change in wavelength.

 

Problem 2.91

 

Derive the Compton formula (2.252) from the energy-

momentum conservation law applied to the photon and the

electron. Hint: Use, with appropriate simplifications, the

procedure employed in deriving Equation (2.89).

 

Problem 2.92

 

(a)   Plot, as a function of θ, the wavelength of the scattered

X-rays when a monochromatic X-ray beam of wavelength

0.213 Å is incident on a target.



(b)   How would you modify this graph so that it applies to

another wavelength for the incident beam?

 

Problem 2.93

 

(a)   Show that 4-momentum is not conserved if a free

electron emits a photon as shown in Figure 2.67.

(b)   Assume that a fast electron with kinetic energy

decelerates in a collision with a heavy nucleus . Show that

the electron can emit a photon whose energy may range

from 0 to T and that energy momentum can be conserved.

Hint: The nucleus can absorb the momentum of the electron

without absorbing any appreciable amount of energy.

(c)   Duane and Hunt showed experimentally in 1915 that the

minimum wavelength λmin of the X-rays emitted by

electrons that had been accelerated through a potential

difference V was given by

 

 

Derive this relation.

(d)   Calculate the minimum potential difference through

which electrons must be accelerated in order to produce X-

ray wavelengths of

 

(i)   0.711 Å,



 

(ii)   0.213 Å.

 

 

FIGURE 2.67 Space-time diagram of the emission of a photon

by an electron.

 

Problem 2.94

 

In his 1905 paper on photons, Einstein applied the theory to

the photoelectric effect. This effect is the ejection of

electrons from the surface of metals by the action of light

(Figure 2.68). Suppose that work in the amount ϕ (called the

work function) is required to extract an electron from the

surface of a piece of a given metal. Suppose further that an

electron in the metal absorbs a photon of frequency ν.



 

(a)   Show that the maximum kinetic energy of the electron

is given by Tmax = hν – ϕ.

(b)   The threshold frequency ν0 associated with a given

metal is the minimum frequency of light that can result in

the emission of photoelectrons. Find ν0 in terms of ϕ.

(c)   The work function for sodium is 2.46 eV. Find the

threshold frequency for the production of photoelectrons

from sodium.

 

 

FIGURE 2.68 The photoelectric effect



2.4.3   The atomic nucleus*

 

The hypothesis of the atomic structure of matter provides a

cornerstone for chemistry and the physics of matter. For

example, the elementary kinetic theory of gases pictures a

gas as consisting of small hard spheres flying, between

elastic collisions with one another, through otherwise empty

space. The word atom comes from the Greek word ατομος

meaning indivisible—a property that describes the behavior

of the particles relevant to stoichiometry in chemistry or the

kinetic theory of gases in physics. Nevertheless, the

structure of the atom is a legitimate field of investigation.

The discovery of the basic property of this structure was

published by Ernest Rutherford in 1911. To see how this

discovery came about,† we shall discuss briefly how one can

obtain information on an object the size of the atom, about

10–10 m across.

The structures of the objects of everyday experience are

revealed to us by visible light, via wavelengths greater than

10–7 m. These wavelengths correspond to several thousand

times the size of an atom and so we cannot use visible light,

an extremely coarse probe for the atom (see Problem 2.97),

to examine the structure of the atom. However, we can

examine its structure by using a different type of beam, one

of a more sensitive probe, and observing the consequent

scattering. In the early decades of this century Rutherford

and his colleagues had the use of such a probe at hand from

α-particle sources. Due to previous investigations of

Rutherford and others, it was known that α particles were

doubly positive-charged helium atoms, and were thus

expected to be of comparable size, or smaller, than the

atoms of heavier elements. Therefore α-particle sources



provided the “light” with which Rutherford could “illuminate”

atoms.

Just as we see an object by the visible light it scatters, we

can examine the structure of atoms by the distribution of the

α particles that atoms deflect (Figure 2.69). The incident

beam should be sufficiently dilute that the α particles do not

interact with one another and thus interfere with the

scattering distribution from the atoms. The beam should also

be uniform and parallel so that the relative number of α

particles scattered in any direction provides a measure of the

interactions that they experience and not a measure of

nonuniformities in the beam. Finally, the α particles in the

incident beam should be mono-energetic, for the deflection

of a projectile depends on its incident energy as well as on

the force it experiences.

 

 

FIGURE 2.69 An exaggerated diagram of a typical event in

the scattering of an α particle in the foil.

 



The intensity of the incident beam is measured by

 

 

The number of particles scattered per unit time into a given

solid angle dΩ. is proportional to the incident intensity, and

the proportionality constant is called the differential

scattering cross section dσ:

 

 

The differential cross section dσ has units of area, and the

appropriate unit for our present study is the barn, given by

 

 

The number of particles scattered into a solid angle dΩ is

proportional to dΩ. for sufficiently small solid angles. Thus

the ratio dσ/dΩ is an appropriate quantity with which to

measure scattering distributions.

For projectiles of a given energy, the variation of dσ/dΩ, with

angle provides a measure of the interaction between the

projectile and the target that results in the scattering. For

scattering by a fixed hard sphere, most projectiles that hit

the sphere are scattered through relatively large angles, and

in fact [see Problem 2.95(d)] dσ/dΩ is a constant for all

angles (Figure 2.70). For scattering by an inverse-square



force [see Problem 2.95(e)], called Rutherford scattering,

there is some scattering in the backward directions, but most

of the scattering is through small angles (Figure 2.71). The

scattering by a square-well force [Problem 2.95(f)] is

intermediate between these two cases; there is more

scattering through small angles than through large angles

(Figure 2.72). Indeed, for a sufficiently high energy there is

no scattering at all in the backward directions.

 

 

FIGURE 2.70 Differential scattering cross-section coefficient

for scattering by a fixed smooth, hard sphere of radius a.

 



 

FIGURE 2.71 Rutherford scattering cross-section coefficient.

Note the logarithmic vertical scale on the large graph.

 

The measurements in Rutherford’s laboratory of the

scattering of α particles by atoms (Figure 2.73) were

performed by Hans Geiger (1882–1947) and Ernest Marsden

(1889–). Their results are shown in Figure 2.74 together with

a plot of the differential cross section for Rutherford

scattering by a fixed inverse-square force. The coincidence



of their results with that theoretical curve shows that the

scattering experienced by the charged α particles is due to a

fixed coulomb (inverse-square) force to the closest distance

of approach, about 3 × 10–15 m (as compared to the 10–10

m size of the atom). For example, deviations from that

theoretical curve would have appeared at angles around 40°

had the force been different at 6 × 10–15 m, as shown in

Figures 2.75 and 2.76. The scattering through these large

angles also shows that the force center must have been

massive compared to the α particle or the force center would

have been knocked aside in the collision, and the α particle

not deviated very much. Rutherford concluded from an

analysis of the results of Geiger and Marsden that the atom

contains a central core, the nucleus, which has a diameter of

a few femtometers, and contains almost all the mass of the

atom. The Rutherford model of the hydrogen atom is shown

in Figure 2.77.

 

 



FIGURE 2.72 Differential scattering cross-section coefficient

for scattering by a fixed square well of depth V0 = E and

radius a.

 

 

FIGURE 2.73 The scattering experiment of Geiger, Marsden,

and Rutherford.

 



 

FIGURE 2.74 The circled dots are measurements of the

number of scintillations counted at the given angle by Geiger

and Marsden. The curves are plots of .

 



 

FIGURE 2.75 dσ(Θ)/dΩ for scattering by a coulomb force to 6

× 10–15 m and a hard-sphere force at 6 × 10–15 m. The

curve coincides with the Rutherford cross section for Θ <

38.9°.

 



 

FIGURE 2.76 dσ(Θ)/dΩ for scattering by a pure coulomb force

to 6 × 10–15 m and no force acting over distances less than

that. The curve differs very little from the Rutherford cross

section for Θ < 30°.

 

The nucleus, the core of the atom, is very small in size

compared to the atom, even though it contains most of the

atomic mass. (Nuclei range in size from 1 to 7 × 10–15 m,

and atoms, from 1 to 3 × 10–10 m.) In this respect, an atom

is similar to the solar system, with the sun corresponding to

the nucleus and the planets in their orbits to the electrons

about the nucleus. The size of the atom itself is determined

by the volume in space swept out by the electrons.



 

 

FIGURE 2.77 The Rutherford model of the hydrogen atom.

 

The chemical properties of an atom are determined by the

position of the species of the atom in the periodic table. The

various species of atoms can be listed in order according to

their positions in the periodic table; such an ordering

determines the atomic number Z of the atom. A brilliant

young associate of Rutherford’s, Henry Gwyn-Jeffries Moseley

(1887–1915), showed, through an analysis of the

characteristic X-rays emitted by atoms that had been

bombarded by fast electrons, that the atomic number

determines the electric charge on the nucleus of the atom.

The electric charge of the nucleus of the atom of atomic

number Z is Z positive fundamental charges.* Thus, a

neutral atom consists of the nucleus of charge Ze and Z

electrons, each of charge –e.

The masses of many nuclei have been determined by their

inertial effects; ionized atoms are deflected by forces that

act on the net electric charge of the atom, and the amount of

deflection depends on the inertial mass experiencing the



force.† Nuclear masses are given generally in terms of the

mass of the corresponding neutral atom: The mass of the

nucleus equals that of the atom less the mass of the Z

electrons plus the mass equivalent (generally negligible) of

the energy necessary to strip the electrons from the nucleus.

Typical values of atomic masses are shown in Table 2.1.‡ The

mass of any given neutral atom is very nearly equal to an

integral number A of atomic mass units or, alternatively, the

mass of A atoms of the lightest form of hydrogen. The

integer A is called the mass number of the given atomic

species.

 

TABLE 2.1 Selected Atomic Masses

 



 

A species of atom can be denoted by the chemical name, in

abbreviation, with the mass number in the right superscript

position.* The atomic number can be written in the left

subscript position, even though giving both the atomic

number and the chemical symbol is redundant.

A species of atom described by given values of Z and A is

called a nuclide. Nuclides with the same atomic number Z

are isotopes of one another, and nuclides with the same

mass number A are isobars. For example, three isotopes of

hydrogen have been observed, 1H¹, 1H², and 1H³. The nuclei



of these isotopes are simpler in structure than are other

nuclei, so the study of these nuclei has been important to

the science of nuclear physics. For this reason, these nuclei

are given special names; the proton p is the nucleus of the

1H¹ nuclide, the deuteron d that of 1H², and the triton t that

of 1H³. One isotope of helium, 2He³, has the same mass

number as 1H³, so 1H³ and 2He³ are isobars.

It is necessary to associate a spin, or intrinsic angular

momentum, to each species of nuclei, as was the case for

the electron. For example, the spin, in units of h/2π, of 1H² is

1, that of 8O¹⁶ is 0, and that of 92U²³⁵ is 7/2.

Since nuclei show greater effects of structure than do

electrons, they can be described in part by parameters that

will give information on their sizes and some properties of

their shapes. The size of a given nucleus can be determined

by scattering experiments involving different projectiles. The

size of a nucleus measured by a scattering experiment

depends upon the type of interaction that is effective in the

scattering. For example, the scattering of electrons† by

nuclei determines the distribution of electric charge in the

nucleus and, hence, an effective radius for the charge of the

nucleus. These experiments have shown that, for all but the

lightest nuclei, the effective radius of the charge distribution

is given by

 

 

Other types of scattering experiments result in a similar

form, r0 × A⅓, for the nuclear radius, the only difference

lying in the measured value of r0.



The volume of a nucleus is proportional to R³; hence,

scattering measurements show that the volume is

proportional to A, the mass of the nucleus. Thus,

measurements show that all nuclei except the lightest have

approximately the same density. This result indicates that

the interaction responsible for holding together the

constituents of the nucleus differs in some respects from the

coulomb electrostatic and the newtonian gravitational forces.

Consider a system of particles bound together by an inverse-

square force, as the latter forces are. The force holding any

one of these particles to the system is the vector sum of the

component forces exerted by all the other particles in the

system; thus, the force of attraction that each constituent

particle experiences increases as the number of particles of

the system increases [Figure 2.78(a)]. Therefore, such forces

would be expected to compress the heavier nuclei more and

would result in a density that increases with an increasing

number of particles. On the other hand, the interactions

responsible for binding the constituent particles in a nucleus

result in equal densities for all nuclei. This suggests that

each particle in the nucleus experiences interactions only

from its nearest neighbors [Figure 2.78(b)], so that the

nuclear interactions probably act only over a very short

range. This result is verified by other experimental evidence

that we shall examine shortly.

 



 

FIGURE 2.78 A comparison of the effects of long- and short-

range forces. (a) A particle P experiencing an inverse-square

force undergoes a greater force when a larger number of

particles are present. This results in an increased density

with an increased number of particles, (b) A particle P

experiencing forces due to its nearest neighbors only does

not undergo a greater force when more particles are added

to the system. Thus, the density does not depend on the

number of particles present.

 

A study of chemical reactions provides information on

molecular structure and molecular interactions. Similarly, a

study of reactions involving nuclei yields information on

nuclear structure and the interactions that nuclei experience.

The first nuclear reactions studied were those that occur

spontaneously in the more massive nuclei. These emit

particles in a process called radioactivity.* The radiations

emitted were found to be of three different types, which

Rutherford named α, β, and γ rays, respectively. Rutherford

showed that α particles were doubly ionized helium atoms

or, in other words, helium nuclei; β rays are electrons (and



their positively charged counterparts called positrons

described in Section 2.4.6) that are emitted in the decay of

certain radioactive nuclei and that are created at the instant

of decay: γ rays are high-energy radiations that travel with

the speed of light and are identical in all respects, except

frequency or energy, with photons of visible light.

In 1919, Rutherford produced the first artificial

transmutations, a change of an atom from one chemical

species to another induced by artificial means (Figure 2.79).

In this classic experiment, Rutherford bombarded nitrogen

with a particles to produce the reaction

 

 

This reaction can be written in an abbreviated form, which is

standard† today:

 

 

The particle emitted in this experiment, the nucleus of the

lightest species of hydrogen, was called the proton by

Rutherford, after the Greek word for first. Because the mass

of a nucleus is approximately an integral multiple of the

proton’s mass, it was believed that protons might be the

basic mass unit of nuclei. The proton p is a fundamental

particle that is described in part by the following dynamical

variables:

 

 



The development of artificial transmutations opened the way

to modern studies of nuclear structure and nuclear

interactions; changes are induced in the structure of nuclei,

and the resulting effects are investigated.* This procedure is

followed in laboratories all over the world today, and these

studies are rapidly increasing our understanding of nuclear

structure and nuclear reactions.

Nuclear reactions can be described only within the

framework of quantum mechanics, but the initial and final

systems in these reactions are related by conservation laws,

some of which we have already encountered. Nuclear

reactions satisfy the conservation law of electric charge: the

total electric charge after the reaction equals the total

electric charge before. For example, in the β decay of

83Bi²¹⁰, the emission of an electron increases the atomic

number Z by 1, so a nucleus of 84PoA results, where A is the

mass number of the daughter nucleus. Thus, the

conservation law of electric charge determines the atomic

number Z of the daughter nucleus, although not its mass

number A. Another conservation law that applies to nuclear

reactions is the conservation law of mass number: the total

mass number before the reaction equals the total mass

number after the reaction. For example, the mass number of

83Bi²¹⁰ is not changed in its β decay, the emission of an

electron of mass number 0, and so the daughter nucleus in

this reaction is that of 84Po²¹⁰.

Conservation of 4-momentum also applies to nuclear

reactions. This is illustrated by the fact that, in the

spontaneous β decay of a nucleus at rest, the time-like

component of the 4-momentum, the mass, of the parent

nucleus is equal to or greater than the mass of the daughter

nucleus plus that of an electron (see Section 2.4.5). For

example, the mass of the neutral atom 83Bi²¹⁰is 209.984121

u, while that of 84Po²¹⁰, which includes one more electron



corresponding to the particle emitted from⁸³Bi²¹⁰, is

209.982876 u. The excess mass, 0.001245 u, appears in the

form of energy of the amount 1.16 MeV.

 

SUMMARY The nucleus of an atom can be described by its

atomic number Z, which determines the electric charge on

the nucleus, its mass number A, and its spin. The radius of

the nucleus is r0 × A⅓ where r0 ∼ 1 fm. The interactions

between the constituents of nuclei have a very short range.

Some nuclear reactions, such as radioactive decay, are

natural or spontaneous, while others are induced by artificial

means. The total electric charge and the total mass number

are conserved in all nuclear reactions.

 

 

FIGURE 2.79 Rutherford’s experiment showing artificial

transmutation. Scintillations were observed on the screen

even when there was sufficient matter between the α

particle source and the screen to stop the α particles.

Rutherford interpreted the scintillations as being due to fast

protons knocked out of nitrogen nuclei in the process N¹⁴(α,

p)O¹⁷.



 

Example 2.18

 

The radioactive decay of a nuclide obeys the following laws:

 

(a)   The probability of decay per unit time, λ, is the same for

all atoms of the species.

(b)   The probability of decay per unit time does not depend

on the age of the atom.

 

Consider a system that contains N(t) atoms of a particular

species at time t. The probability of an atom decaying in a

short time interval Δt is given by –ΔN(t), the number that

decay in that time interval, divided by the number N(t)

present. Alternatively, it is equal to the probability of decay

per unit time, λ, multiplied by the time interval Δt. Hence,

 

 

or

 

 



Therefore, if N0 atoms are present at time t = 0, at time t

the number of atoms that have not decayed is

 

 

The half-life T½ is that time interval in which the probability

of a given atom decaying is equal to 1/2:

 

 

so that

 

 

The mean life τ is the average lifetime per atom. The sum of

the lifetimes of all the atoms is given by

 

 

Therefore, the mean life τ is given by



 

 

The mean life and the half-life are related by

 

 

Example 2.19

 

Q.   Two particles have 4-momentums and , respectively,

with the components (E1/c, p1) and (E2/c, p2) relative to an

inertial system S. Calculate the energy, the magnitude of the

momentum, and the speed of particle 2 relative to the rest

frame of particle 1.

 

A.   Let the components, relative to the rest system of

particle 1, of be (E21/c, p21). The corresponding components

of are (m1c, 0). We note that the scalar product of (m1c, 0)

with any 4-vector involves only the time-like component of

that 4-vector. Hence,

 

 

and



 

 

The magnitude of the momentum p21 is given by the

equation

 

 

to be

 

 

The speed υ21 of particle 2 relative to particle 1 is given by

 

 

Problem 2.95

 

(a)   Show that the scattering of a uniform parallel beam by a

central force results in a distribution that is symmetrical

about the line, through the force center, parallel to the

direction of the incident beam.



(b)   Show that the solid angle (Figure 2.80) into which are

scattered particles with impact parameters between S and S

+ dS (Figure 2.81) is given by

 

 

 

FIGURE 2.80 Solid angle ΔΩ.

 

(c)   Show that

 

 

Hint: Equate the number of incident particles with impact

parameters between S and S + dS to the number scattered

through angles between Θ and Θ + dΘ.

(d)   Show that, for scattering by a hard sphere of radius a

(see Problem 2.3),

 



 

(e)   Show that the distribution for scattering of particles of

incident energy E by a fixed inverse-square force (see

Problem 2.5) is given by

 

 

(f)   Show that the distribution for scattering of particles of

energy E = V0 incident on the fixed square well of Problem

2.4 is given by

 

 

 

FIGURE 2.81 Definition of ΔS and ΔΘ. Note that ΔΘ is

negative.

 



Problem 2.96

 

(a)   The uranium nucleus 92U²³⁸ emits α particles with an

energy of 4.2 MeV. Assume that the potential energy of

interaction between the α particle and the residual nucleus is

a repulsive coulomb potential up to the separation distance

r1 and a strong attractive potential for r < r1 similar to that

shown in Figure 2.82. Find the minimum value, according to

newtonian mechanics, of r1.

(b)   Experiments show that α particles incident on the

residual nucleus experience pure coulomb scattering up to

separation distances of 9 × 10−15 m. Find the value,

according to newtonian mechanics, of the minimum energy

E0 with which an α particle can escape from 92U²³⁸ on the

basis of this information.

(c)   Mark the values of E0, E1 and r1 on Figure 2.82 and

explain why the results of (a) and (b) show that newtonian

mechanics does not describe correctly the interaction of the

a particle and the residual nucleus.

 



 

FIGURE 2.82 An α particle with energy E1 encountering the

potential barrier shown can penetrate only to the distance r1

from the center. An a particle must have a minimum energy

of E0 to escape from the central region. Both these results

are a consequence of newtonian mechanics.

 

Problem 2.97

 

We see an object by light waves in a manner analogous to

the way in which a canoeist detects the presence of an

island by a comparison of the wave patterns on the open

water and on the water on the lee side of the island. Find the

sizes of the islands that, for water waves of 4-ft distance

from crest to crest, correspond to an atom of diameter 10−8

cm and a nucleus of diameter 10−12 cm for light waves of 5

× 10−7 m distance from “crest” to “crest.” Would you

expect that a canoeist could detect the islands from such

wave patterns?



 

Problem 2.98

 

(a)   Estimate the density of nuclear matter.

(b)   Estimate the weight, in tons, of 1 cm³ of nuclear matter.

(c)   Calculate the ratio of the mass of the electrons to that of

the nucleus for the nuclides listed in Table 2.1.

 

Problem 2.99

 

(a)   Calculate the energy that is released in the reaction

Li⁷(p, α)He⁴.

Unified atomic mass units:

 

3Li⁷ – 7.016004; 1H¹ – 1.007825; 2He⁴ – 4.002603.

 

(b)   Calculate the energy that is released in the reaction

Li⁶(d, α)He⁴.

 

3Li⁶ – 6.015125; 1H² – 2.014102.

 



(c)   The energies calculated above were determined from

mass measurements and from the relation E = Mc². Compare

these with the measured energies:*

 

Li⁷(p, α)He⁴ – 17.28 ± 0.03 MeV,

 

Li⁶(d, α)He⁴ – 22.20 ± 0.04 MeV.

 

Can these results be explained within the framework of

newtonian mechanics? State the reasons for your answer.

(d)   Calculate a value for c from values obtained by mass

and energy measurements in (a), (b), and (c). Note that you

can measure the speed of light in experiments in which light

plays no role.

 

Problem 2.100

 

(a)   The nucleus of an atom of total mass M is in an excited

state of energy ΔE above its ground state, the state of lowest

energy. The nucleus decays from rest by γ emission to its

ground state. Show that the frequency of the emitted photon

is given by

 

 



if the recoil speed V of the nucleus satisfies the relation V/c

1.

(b)   Calculate the frequency of the photon emitted in the

decay of an excited state of 6C¹² that lies 4.43 MeV above

the ground state of 6C¹².

 

 

Problem 2.101

 

Nuclide 1 undergoes α particle decay into nuclide 2.

 

(a)   Show that Z1 = Z2 + 2 and A1 + 4 = A2.

(b)   Show that the decay cannot occur spontaneously unless

M1 ≥ M2 + M2He⁴. Explain why the last term is the mass of

the neutral 2He⁴ atom and not that of the a particle.

 

Problem 2.102

 

(a)   Show that the following α particle decays satisfy the

conservation laws of electric charge and mass number, and

are consistent with that of 4-momentum.

 



 

Unified atomic mass units:

 

 

(b)   Calculate the energy, in megaelectron volts, released in

the a decays of (a).

 

Problem 2.103

 

There is reason to believe that when the earth came into

existence two isotopes of uranium, U²³⁵ and U²³⁸, were

formed in approximately equal quantities. However, today,

U²³⁵ constitutes only 0.7% of natural uranium whereas U²³⁸

constitutes the rest. The half-life of U²³⁵ is 0.71 × 10⁹ yr and

that of U²³⁸ is 4.50 × 10⁹ yr. Calculate the age of the earth.

 

Problem 2.104

 

The half-life of 92U²³⁸ is 4.5 × 10⁹ yr, and that of 92U²³⁴ is 2.5

× 10⁵ yr.

 

(a)   Calculate the mean lives of these nuclides.



(b)   The solar system is approximately 5 × 10⁹ years old. If a

mass M of each of these nuclides was present at the birth of

the solar system, what percentage of that original mass has

not decayed?

 

Problem 2.105

 

A radioactive nuclide A decays with a mean life of 1/λA into a

nuclide B that is also radioactive, and B decays with a mean

life of 1/λB into a nuclide C.

 

(a)   Show that, if NA = NA(t) is the number of atoms of A

present at time t,

 

 

(b)   Suppose that and NB(0) = 0. Show that

 

 

Show that

 

 



only if

 

 

and

 

 

Hence, show that

 

 

(c)   The activity of a radioactive nuclide is equal to the

number of decays of that nuclide per unit time. Show that,

under the conditions of (b), the activity of nuclide B is NBλB.

Explain why the activity is not equal to dNB/dt.

(d)   Nuclide 83Bi²¹⁰ decays by β emission with a half-life of

5.0 days into 84Po²¹⁰; 84Po²¹⁰ decays by α emission with a

half-life of 138 days into 82Pb²⁰⁶. A pure sample of 83Bi²¹⁰

exists at time t = 0. Calculate the following:

 

(i)   the time at which only 1% of the atoms present are

those of 83Bi²¹⁰;

 



(ii)   the time at which one-half of the atoms present are

84Po²¹⁰;

 

(iii)   the time at which 99% of the atoms are those of

82Pb²⁰⁶;

 

(iv)   the activity of 84Po²¹⁰ and 83Bi²¹⁰ at the end of two

days, seven days, 100 days, and 500 days. Hint: Use the fact

that TB ≫ TA.

 

Problem 2.106

 

(a)   A 20-GeV electron is incident on a proton at rest.

Calculate the energy and momentum of this system and the

speed of the center of momentum of this system.

(b)   Calculate the energy available in the center-of-

momentum reference frame.

 

Problem 2.107

 

Two electrons, each of energy 500 MeV, move toward each

other from opposite directions and collide.

 



(a)   Calculate the speed of one of the electrons relative to

the other.

(b)   Calculate the energy required by an electron, in collision

with a stationary electron, in order that the energy available

in the center-of-momentum reference frame is 1,000 MeV.

 

Problem 2.108

 

A proton of energy E is incident on a stationary proton.

 

(a)   Calculate, and plot on a graph, the energy available in

the center-of-momentum reference frame for E > 1 GeV.

(b)   Mark the points on the graph for the following energies:

   (i)   3 GeV (produced by the Brookhaven Cosmotron),

  (ii)   6 GeV (produced by the Berkeley Bevatron),

 (iii)   30 GeV (produced by accelerators at Brookhaven and

at CERN, the European Center for Nuclear Research).

 

Problem 2.109

 

The first stage of the 2-mi accelerator at Stanford is

designed to produce a beam of 20-GeV electrons.

(Ultimately, it will yield electrons with energies over 40 GeV.)



 

(a)   Calculate the Lorentz contraction factor for the 20-GeV

electrons. How long is the accelerator relative to the rest

frame of the 20-GeV electrons?

(b)   Assume that these electrons experience a constant

relative force down the length of the accelerator. Calculate

the force each electron experiences.

(c)   Use newtonian mechanics to calculate the distance

through which an electron would have to experience the

force of (b) in order to reach the speed c, if the newtonian

description were valid.

(d)   If newtonian mechanics described the behavior of fast

electrons, through what distance would the force of (b) have

to act on the electrons in order that they gain energy in the

amount of 20 GeV?

 

Problem 2.110

 

The 1.0 × 10²⁰-eV cosmic-ray particle whose effects were

recently observed was probably a proton.

 

(a)   Calculate the ratio (c – υ)/c for such a particle.

(b)   Calculate the Lorentz contraction factor for such a

proton. Hint: Show that for such a fast particle.

(c)   Calculate the time, relative to the proton’s rest frame,

required for our Galaxy to move past the proton. (The width



of our Galaxy is about 3 × 10⁴ parsec, where 1 parsec = 3 ×

10¹³ km.)



2.4.4   The neutron and the nucleon

 

The facts that the mass of a nucleus is approximately an

integral multiple A of the mass of the proton and that the

charge of a nucleus is a smaller integral multiple Z of the

charge of the proton suggest that a nucleus of mass number

A consists of A particles, Z protons, and A – Z neutral

particles each with the mass of the proton. This neutral

counterpart to the proton was discovered in 1932 by the

English physicist James Chadwick (1891–) in a study of

nuclear reactions induced in boron by α particles,* although

the existence of this particle had been conjectured by

Rutherford before. This neutral particle is called the

neutron.†

The neutron n is similar to the proton but has zero charge.

The neutron has a spin of , as does the proton, and is

described by the following properties:

 

 

Unlike the proton, however, the free neutron, a neutron

outside the nucleus, is not stable but undergoes β decay into

a proton with a half-life of 12 min.

The discovery of the neutron immediately provided a firm

foundation for the explanation of nuclear structure. A

nucleus of mass number A and atomic number Z consists of

Z protons and N = A – Z neutrons. The neutron number is N9

and nuclides with equal neutron numbers are called isotones.

The energy B that is equivalent to the difference between



the mass of Z protons and TV neutrons and the mass of the

bare nucleus M′,

 

 

represents the energy that would be required to decompose

the nucleus into Z protons and N neutrons. This energy is

called the binding energy of the nucleus. The relation B =

ΔMc² between the binding energy B and the mass difference

ΔM has been verified in many experiments and provides

strong corroboration for the relativistic equation E = Mc².

The binding energy per constituent particle, proton or

neutron, for some of the stable nuclei is shown in Figure

2.83. It can be seen from there that the binding energy per

particle is fairly constant over the range of the more massive

nuclei. We would not expect this result if each particle

experienced a force due to all the other particles in the

system (see Figure 2.78), so the constancy of the binding

energy per particle suggests again that the interparticle

forces have a very short range and are exerted between

near neighbors only.

The binding energy per particle is not constant, however,

and this fact can be used to explain the energy release in

two types of nuclear processes that have important and well-

known practical applications. In one of these, a heavy

unstable nucleus splits into two approximately equal-sized

parts with the release of a large amount of energy in a

process called fission.‡ Energy is released, since the total

binding energy of the unstable nucleus is less than that of

the two product nuclei, as can be seen from Figure 2.83.

Fission provides the energy in nuclear reactors; it is the



process involved in the explosion of small nuclear weapons,

and is the trigger for the large weapons.

In the opposite process, the lighter nuclei combine to form a

larger nucleus with the release of a large amount of energy.

This process is called fusion. The energy release results from

the fact that the total binding energy of the light component

nuclei is less than that of the composite nucleus, as can be

seen from the extreme left-hand side of Figure 2.83. The

fusion process is the main source of stellar energy.* The

large nuclear weapons obtain their energy from the fusion

process. Also, the hope exists that this process can be used

to provide electrical power from the heavy hydrogen,

deuterium, present in the oceans.†

 



 

FIGURE 2.83 Typical values of the binding energy per

particle.

 

Nuclear reactions can be used also to produce elements that

are not sufficiently stable to be found naturally.‡

Neutrons are useful as probes for examining the structure of

nuclei, since, because they are neutral, they do not interact



with the electric charge of the nuclei but experience only the

nuclear part of the forces. On the other hand, their lack of

electric charge does lead to difficulties in their use, since, for

example, they cannot be observed directly in cloud

chambers or in bubble chambers, nor can they be

accelerated by electric forces.§ Neutrons are useful also in

studies of crystal structure.¶

The neutron and the proton have more features in common

than mass values and the fact that they are the constituents

of nuclei. Indeed, the neutron and the proton can be

considered as different aspects of one and the same particle.

This particle is called the nucleon; its two forms, the neutron

and the proton, are distinguished only by their electric

charge. The small difference in the masses of the neutron

and proton is believed to represent the mass equivalent of

the difference in the energies required to produce their

electromagnetic properties.

That the neutron and proton are different aspects of the

same particle is supported by a study of the interactions

between neutrons and protons, between protons and

protons, and between neutrons and neutrons. These studies

show that that part of the interaction that is not

electromagnetic in origin is the same for both neutrons and

protons. These interactions are studied in scattering

experiments, such as those described in Section 2.4.3.

However, the interactions between nucleons cannot be

described in terms of newtonian mechanics; in particular, the

vector ma for a nucleon cannot be measured in a nucleon-

nucleon collision. (Hence, it is not correct to speak of

nucleon-nucleon forces, although the word “forces” is used

often in such phrases to denote “interactions.”) The concepts

of quantum mechanics must be used to describe the

nucleon-nucleon interactions and their effects.



The results of the interactions between two particles of

similar masses, such as the proton and the neutron, are most

conveniently described relative to the center of momentum

system or, in nonrelativistic cases, to the center-of-mass

reference frame. For example, Newton’s equation for the

relative position vector r(t) of two particles is

 

 

where μ = m1m2/(m1 + m2) is the reduced mass and F is

the force experienced by one particle due to the presence of

the other. The differential cross section in the center-of-mass

frame is determined by the force between the particles and

the relative incident energy only. The cross section in the

laboratory frame, on the other hand, appears distorted into

the forward direction by the center-of-mass motion (see

Problem 2.111).

The measured values of some of the cross sections for

neutron-proton and proton-proton scattering experiments are

shown in Figures 2.84 and 2.85. Now, although the results of

these experiments cannot be explained on the basis of

newtonian mechanics, we can use that mechanics to gain

some insight into the interactions or forces involved. The

rapid increase in the proton-proton scattering cross section

(Figure 2.85) that appears at small angles can be interpreted

as Rutherford scattering; as we might expect, this increase

can be explained on the basis of the electric repulsion of the

protons. Aside from this, though, we see that the differential

cross sections are approximately constant and are similar to

the case in which one hard sphere is incident upon another

(Figure 2.86). Indeed, we can use the measured cross

sections to estimate the radius of the corresponding hard



sphere. For proton-proton scattering at 19.8 MeV, we have r²

approximately equal to 20 mb, so that

 

 

FIGURE 2.84 Center-of-mass differential scattering cross-

section coefficient dσ(θ)/dΩ for neutron-proton scattering, (a)

Kinetic energy of neutron relative to the laboratory frame =

14.1 MeV. (b) Kinetic energy of the neutron relative to the

laboratory frame = 90 MeV. [Plotted from data taken from W.

N. Hess, Reviews of Modern Physics, 30: 368 (1958).]

 



 

FIGURE 2.85 Center-of-mass dσ(θ)/dΩ. for proton-proton

scattering for an incident proton energy of 19.8 MeV. [Plotted

from data taken from W. N. Hess, Reviews of Modern Physics,

30: 368 (1958).]

 

 

Notice that this value of r compares favorably with the value

of r0 in Equation (2.256), which was measured in another

way.

The shape of the neutron-proton differential cross section

[Figure 2.84(b)] for an incident neutron energy of 90 MeV can

be accounted for in the following manner: The differential



cross sections for neutron-proton scattering at low energies

suggest a hard-sphere interaction, so we must consider an

interaction that approximates a hard-sphere interaction for

low energies. This is true for the square-well interaction

described in Problem 2.4. The square-well interaction is

described by the potential energy function V(r) (Figure 2.87),

given by

 

 

where a is the range of the interaction. Figure 2.88 shows the

differential scattering cross section for square-well scattering

for the case in which the relative energy E of the two

particles is equal to V0 [see Problem 2.95(f)].

This differential cross section decreases with increasing

angle, as does the neutron-proton differential cross section

[Figure 2.84(b)] for 0 < 90°. However, the latter increases

with scattering angle for 6 > 90° and, in fact, appears

symmetrical about 90°. The increase in σ(θ) with θ is the

result that would be obtained if we erroneously measured,

instead of the recoil angle θ, the angle ϕ at

 



 

FIGURE 2.86 Hard-sphere scattering as described by

newtonian mechanics. (a) One hard sphere incident on an

identical sphere, (b) Differential scattering cross-section

coefficient [see Problems 2.95(d) and 2.3(c)].

 



 

FIGURE 2.87 The square-well potential approximates a strong

force at the surface of the sphere r = a. The potential-energy

function V(r) corresponds to a large force around a.

 

 



FIGURE 2.88 Differential scattering cross section for square-

well interaction and relative energy E = V0.

 

 

FIGURE 2.89 Differential scattering cross section as a

function of the recoil angle ϕ. (a) θ is the angle of scatter of

the projectile and ϕ is the angle of recoil of the target: θ + ϕ

= 180°: (i) before the collision; (ii) after the collision. (b)

dσ(θ)/dΩ plotted as a function of ϕ.

 



 

FIGURE 2.90 Diagrams of an interaction with a charge

transfer, (a) The proton transfers its charge to the neutron,

and the target particle becomes a neutron, (b) Space-time

diagram.

 

which the target particle moved off (Figure 2.89). Indeed,

suppose that in the collision the electric charge of the proton

was transferred to the neutron along with the energy and

momentum transfer (Figure 2.90). In this event, the proton

and the neutron interchange roles, and by measuring the

angle of scatter of the neutral particle, we actually measure

the angle ϕ of the recoil particle instead of the angle θ of the



scattered projectile. The measured differential cross section

would appear, then, as in Figure 2.89(b). This increases with

angle for values of θ > 90° and, by itself, does not show the

shape of the 90-MeV neutron-proton differential cross section

2.84(b). However, the cross sections 2.88 and 2.89 can be

combined if the charge is exchanged in only one-half the

collisions; in this case, the differential cross section appears

as shown in Figure 2.91 and is very similar to that shown in

Figure 2.84(b).

The symmetry about 90° of these two differential cross

sections indicates that charge is exchanged in about one-half

the collisions; this suggestion is verified by the quantum-

mechanical description of the interaction. The neutron-

proton interaction is said to contain an exchange force* We

shall return shortly to this property of the nucleon-nucleon

interaction.

 

 



FIGURE 2.91 Differential scattering cross section for square-

well scattering if charge is exchanged in one-half the

collisions.

 

The similarity in the curves 2.84(b) and 2.91 suggests that

the nucleon-nucleon interaction has a range a, given

approximately by

 

 

in agreement with our previous result. Similarly, the depth of

the square well V0 is approximately equal in that case to the

incident relative energy,

 

 

SUMMARY The neutral counterpart of the proton is the

neutron. A free neutron is not stable, but undergoes β decay.

Protons and neutrons are different aspects of the particle

called the nucleon. Nucleons interact strongly over distances

of the order of 1 fm. The interaction involves an exchange

force.

 

Problem 2.111

 



A particle of mass m is incident on a particle of identical

mass. The incident particle moves with speed v ‒ c, and the

target particle is at rest relative to the laboratory frame of

reference before the force of interaction takes effect. The

incident particle is scattered through the angle ϑ in the

laboratory frame and through a corresponding angle Θ in the

center-of-mass frame.

 

(a)   Show that before the collision the speed of the incident

particle was relative to the center-of-mass frame.

(b)   Use the conservation law of energy to show that after

the collision the speed of the particle is relative to the

center-of-mass frame.

(c)   Apply the galilean transformation law vfinal = VCoM +

v′final to show that ϑ = Θ/2.

(d)   Show that dσ(Θ) = dσ′(ϑ) (Figure 2.92) and hence that

 

 

(e)   Find dσ′/dΩ′ for the scattering of one hard sphere of

radius r by another identical hard sphere.

 

Problem 2.112

 

The electrostatic energy between two charged spheres of

radii r1 and r2, when they are in contact, is given by



 

 

FIGURE 2.92 The particles scattered into the solid angle 2π

sin Θ Δ Θ in the center-of-mass frame are scattered into the

solid angle 2π sin ϑ Δ ϑ in the laboratory frame.

 

 

where Q1 and Q2 are the electric charges on the spheres.

Suppose that a nucleus of 92U²³⁸ fissions into two equal

parts. Estimate the electrostatic energy of repulsion, in

megaelectron volts, when the two parts have just separated.

 

Problem 2.113

 

(a)   Calculate the energy that would be released if two

heavy hydrogen (deuterium) atoms fuse to form one helium

atom.

 



Unified atomic mass units: 1H² – 2.014102; 2He⁴ – 4.002603.

 

(b)   0.015% of the hydrogen found in nature is deuterium.

Calculate the energy that could be obtained from the fusion

into helium of all the deuterium in 1 cm³ of water.

(c)   Estimate the amount of energy available from the

oceans from the fusion of deuterium into helium.

(d)   Estimate the ratio of the energy available from the

fusion into helium of the deuterium in the water that comes

into a house daily to the energy supplied by electrical power

to the same house daily.

(e)   The radiant energy emitted at the surface of the sun is

3.9 × 10²⁶ W. Calculate the amount of deuterium undergoing

fusion into helium that would be required to produce this

power for 1 day. Express your answer as a percentage of the

mass of the sun.

 

Problem 2.114

 

Show that the free neutron is unstable against p decay.

 

Problem 2.115

 

Calculate the potential energy (1/4πε0)(e²/r) between two

protons at a separation distance of r = 1 fm and compare the



magnitude of this with the estimate given above of 45 MeV

for the depth of the square well for the nucleon-nucleon

interaction.

 

Problem 2.116

 

Use the techniques of Problems 2.4 and 2.95(f) and the

estimates of the size of the square well given above to

calculate the differential cross section for neutron-proton

scattering for a relative energy of 10 MeV. Compare your

result with that shown in Figure 2.85.

 

Problem 2.117

 

Repeat the calculation of Problem 2.116 for a relative energy

of 7 MeV and compare the result with that shown in Figure

2.84(a).

 

Problem 2.118

 

The total scattering cross section for neutrons on protons

with a relative energy E 1 MeV is given by experiments to be

σtot = 20 barns. Calculate the corresponding total cross

section for the square well estimated in the text.

 



Problem 2.119

 

Calculate to five figures the mass of the deuteron:

 

Bd = 2.226 MeV.



2.4.5   The neutrino

 

The processes of α and β decay of radioactive nuclides differ

in many important ways. In β decay, the constituents of the

particle that is emitted, two protons and two neutrons bound

together, are present in the nucleus before the decay. In α

decay, on the other hand, the electron is not present in the

nucleus before the decay but is created at the instant of

emission. In a decay, the total energy and momentum of the

emitted a particle and the daughter nucleus are equal to the

total energy and momentum of the parent nucleus. This is

not the case for the sum of the energies of the electron and

daughter nucleus in β decay; in general, that sum is less

than that of the parent nucleus, nor is their momentum that

of the parent nucleus.

 

 

FIGURE 2.93 If the parent nuclide, denoted by Z, decays only

into the daughter Z–1 and an electron, the energy and



momentum of the electron is fixed by the energy-momentum

conservation law.

 

Consider a specific β radioactive nuclide. If the emitted

electron and the daughter nuclide are the only particles that

take part in the process of β decay and if the difference in

the energies of the daughter and parent nuclides are the

same for all such nuclei, the conservation law of energy and

momentum requires that the electron be emitted with the

same energy and momentum in every decay (Figure 2.93).

Measurements of the energy and momentum of the emitted

electrons show, however, that the electrons are ejected with

varying amounts of energy and momentum (Figure 2.94).

(The maximum kinetic energy Tmax and momentum Pmax

observed in β decay are those required by 4-momentum

conservation for the electron and recoiling nuclide alone.)

Furthermore, the emitted electrons do not lose the difference

in energy by collisions with the electrons surrounding the

nucleus of the atom. This can be shown by microcalorimeter

measurements of the total kinetic energy released in the β

decay of a sample of the material; the energy measured in

this way agrees with the average energy, as calculated from

the energy spectrum for the nuclide such as that shown in

Figure 2.94.

This disappearance of energy and momentum is evident also

in the β decay of the neutron. The neutron, which has a well-

defined energy, disintegrates into an electron plus a proton,

and yet the measured values of the energies of the electrons

emitted in this process show a broad spectrum (Figure 2.95).

These results suggest that energy and momentum may not

be conserved in the β decay process, although they appear

to be conserved in every other type of process. An



explanation of β decay that is consistent with the

conservation law of energy-momentum was suggested in

1930 by the Austrian-Swiss theoretical physicist Wolfgang

Pauli (1900–1958), who pointed out that energy and

momentum could be conserved in the process if the excess

energy and momentum were carried off by a particle of very

small mass that did not possess an electric charge and

hence that would be difficult to detect (Figure 2.96). This

suggestion was developed further by the Italian-American

physicist Enrico Fermi (1901–1954), who gave the name

neutrino, meaning little neutral one, to the particle and who

formulated a theory of β decay in terms of a point interaction

between the neutron, proton, electron, and neutrino (Figure

2.97). This theory and its refinements accounted very well

for many of the properties of the β-decay process, even

though the neutrino itself was not observed for many years.

The neutrino is denoted by the symbol v.

 



 

FIGURE 2.94 Momentum (a) and energy (b) spectra of the

electrons in the β decay of 83Bi²¹⁰.

 

 

FIGURE 2.95 Spectrum of energies of the electrons emitted

in the β decay of neutrons.

 



 

FIGURE 2.96 Pauli’s suggestion to save the conservation law

of energy-momentum in p decay.

 

The difficulty in observing neutrinos results from the fact that

they scarcely interact with ordinary matter. Indeed, on the

average, a neutrino can travel through approximately 10²

light-years of solid matter before undergoing an interaction.

The fact that neutrinos do not interact very much with

ordinary matter can be seen also in the following way: With

each type of process, we can associate a typical time that

represents the time interval necessary for the process to

take place under the best of circumstances. The typical time

of 10−9 sec can be associated with processes involving

neutrinos.* This time can be compared with the typical time

for a nucleon-nucleon interaction. Fast nucleons interact with

proton targets, so a typical time for a nucleon-nucleon

interaction is r/c, where r is of the order of the size of a



nucleon; r/c 10−23 sec. Both these times appear very short

on our scale of things, but a better comparison of these

times is given by the ratio of the typical time for β decay to

that for a nucleon interaction, ∼ 10¹³. This ratio is much

larger than the age of the solar system relative to the period

of one orbit of the earth, ∼ 10⁹. Thus, in a fundamental

particle’s scale of things, a typical β decay takes longer than

the age of the universe as seen on our scale. From the point

of view of a β radioactive nuclide, β decay almost never

happens.

 

 

FIGURE 2.97 The Fermi interaction for β decay.

 

In spite of the fact that neutrinos interact so weakly, they

have been detected. The effects of an incoming beam of

neutrinos were observed in 1956 by the American physicists

Frederick Reines (1918–) and Clyde L. Cowan, Jr. (1919–), in



an elaborate experiment.* The neutrino beam came from a

nuclear reactor, a strong source of neutrinos.

The neutrino can be described by its dynamical variables. In

the first place, the neutrino has a zero electric charge.

Second, the mass of the neutrino has been shown to be

much less than that of the electron, and at present, its mass

is believed to be zero. Finally, the spin of the neutrino can be

deduced from the conservation law of angular momentum

applied to β-decay reactions; the neutrino has a spin of ,

equal to that of the electron. Thus, the neutrino appears as a

massless, neutral bundle of energy with an intrinsic spin.

 

 

The neutrino has not been observed to decay and is believed

to be a stable particle.†

Being a zero-mass particle with an intrinsic spin is not the

only peculiar property of the neutrino. This particle also

exhibits a left handedness‡; the spin of the neutrino, as

given by a left-hand rule, lies along the direction of the

momentum of the neutrino (Figure 2.98). This striking

property of the neutrino was discovered as a result of

investigations§ in 1956 by the Chinese–American physicists

Tsung Dao Lee (1926–) and Chen Ning Yang (1922–).

 



 

FIGURE 2.98 The neutrino is left handed!

 

SUMMARY The fact that the energy and momentum of the

parent nucleus are not equal in general to the energy and

momentum of the daughter nucleus and the emitted

electron led to the postulation of the neutrino, whose

existence has since been verified experimentally. The

neutrino is massless, it has zero electric charge, and the

direction of its momentum is related to the direction of its

spin by a left-hand rule.

 

Problem 2.120

 

(a)   What is the speed of a neutrino?

(b)   What is the magnitude of the momentum, in

megaelectron volts per c, of a neutrino of energy 0.93 MeV?

 

Problem 2.121



 

(a)   Calculate the kinetic energy of the electron if the

neutron underwent β decay without the emission of a

neutrino particle.

(b)   A neutron decays into a proton, and the emitted

electron is observed to possess a kinetic energy of 0.50 MeV.

Calculate the energy and momentum of the unobserved

neutrino particle.

 

Problem 2.122

 

The experiment that Lee and Yang suggested involved

measuring the relative number of β particles emitted by a

nucleus with a nonzero spin, Co⁶⁰, in the two senses along

the spin axis (Figure 2.99). The measured asymmetry in the

number emitted in the different directions distinguishes one

hand from another or, in other words, destroys the symmetry

of mirror images. Explain why a mirror image interchanges

left and right but does not interchange up and down.*

 

Problem 2.123

 

Suppose that, to produce a neutron in the inverse of β decay,

a neutrino had to interact with protons for an average length

of time equal to the mean life of the neutron. How much

solid matter would a neutrino traverse on the average before

interacting with a proton? (Take into account the size of the

nucleus as compared to the size of the atom.)



 

 

FIGURE 2.99 An asymmetry in the number of β particles

emitted up and down distinguishes one hand from the other.



2.4.6   Antiparticles

 

In 1932, the American physicist Carl David Anderson (1905–)

analyzed the cloud-chamber track of a cosmic-ray particle

(Figure 2.100) that appeared to be the track of a particle with

the mass of the electron but with a positive charge.†

Anderson suggested calling this particle the positron, as the

positive charged equivalent of the negatron, the negatively

charged electron. The existence of this particle opened the

door to the discovery, in recent years, of other particles

similar in almost all respects to the particles we have

discussed above.

 



 

FIGURE 2.100 Anderson observed a track like that illustrated

in (a). The track in (b) is that of a 63-MeV electron that loses

40 MeV in the lead plate. The particle of (a) is deviated

opposite to that of (b) and thus must be positively charged.

 

The existence of a positively charged counterpart to the

electron had been predicted before its discovery by the

English theoretical physicist Paul Adrien Maurice Dirac

(1902–), who holds the same professorship at the University

of Cambridge that once was held by Newton. Dirac had

developed a theory of the electron in a series of papers

beginning in 1928. His electron theory satisfied both the

rules of quantum mechanics and those of relativity; it agreed

in all respects with the known behavior of electrons except

for one point: the equations possessed anomalous solutions

corresponding to electrons with negative kinetic energies.

These solutions arose from the fact that the equation

 

 

is satisfied by two values of E,

 

 

Both these solutions appeared to have their place in Dime’s

theory.



We can obtain an interpretation for the negative energy

solutions in a manner different from the procedure

developed by Dirac; his method depended strongly on the

principles of quantum mechanics. Our interpretation follows

a theory of electromagnetic phenomena developed largely

by the American theoretical physicist Richard P. Feynman

(1918–).

We have seen that an energy-momentum vector can be

associated with the direction of a world line in space-time.

Up to the present, we have associated with particles only

those energy-momentum vectors whose time-like

components E are greater than zero. The corresponding

world lines can be marked with an arrow pointing into the

future to indicate this fact [Figure 2.101(a)]. The world line of

a particle with a negative time-like component E in its

energy-momentum vector is marked with an arrow pointing

into the past [Figure 2.101(b)].

Let us consider the world lines of two particles that in free

motion are described relative to an inertial system S by the

4-momentum with E > 0 and by the 4-momentum ,

respectively. The world lines are like those drawn in Figure

2.101. The norms of the energy-momentum vectors are

given by

 

 



 

FIGURE 2.101 The directions associated with world lines, (a)

The world line of a particle with E > 0. (b) The world line of a

particle with E′ < 0.

 



 

FIGURE 2.102 The effects of an electric force on positive- and

negative-energy particles: (a) E > 0. (b) E < 0.

 



and

 

 

so each of the two lines represents the motion of a particle

of mass m.

Consider now the effects of an electric force acting on the

particles. Let q be the charge of the positive-energy particle

and q′ that of the negative-energy particle. If the physical

electric force relative to S that is experienced by a particle of

charge , then the physical forces experienced by the two

particles are and , respectively. The relativistic equations of

motion for the two particles are

 

 

and

 

 

Consider the case in which and in which the energy-

momentum vectors are (mc, 0) and (–mc, 0) before the

interaction (Figure 2.102). (The more, general case is

considered in Problem 2.128.) Then, the physical force

produces in the short time dt changes in the 4-momentums

given by



 

 

These are illustrated in Figure 2.102, from which it can be

seen that, in each case, the negative-energy particle of

charge q′ behaves like a positive-energy particle of charge q

= – q′. Thus, a negative-energy electron of 4-momentum

appears as a positively charged particle with 4-momentum –

and hence with positive energy.

 

 

FIGURE 2.103 Production of an electron-positron pair.

 

This particle is the positron that was discovered by Anderson

and is denoted by the symbol e+. The positron is called the

antiparticle of the negatively charged electron e (or e”) and

can be also denoted* by . A positron can be produced, in

association with the production of an electron, by two

photons in the process illustrated in Figure 2.103. [This

process with two real photons is extremely improbable;



positron-electron pairs are usually produced in the laboratory

by the processes described in Problems 2.125(b) and

2.126(b).]

The generality of the arguments given above suggests the

existence of an antiparticle to every type of particle, not the

electron alone. Indeed, the anti-proton, antineutron,† and

even the antideuteron (discovered in 1965) have been

shown to exist.

The antiparticles of some neutral particles are identical to

the particles themselves, whereas there is a difference

between other neutral particles and their antiparticles. The

antiparticle of a photon with a given handedness is a photon

of opposite handedness, but since photons of both

polarizations can be emitted in a general process, there is

not much point in distinguishing one as the photon and the

other as the antiphoton. (This corresponds to calling the

particle e– an electron whether it spins one way or the

other.) We say that the antiparticle of a photon is a photon.

On the other hand, the neutrino-like particle emitted in a

general process always has the same handedness.

Therefore, it is convenient to consider the left-handed

neutrino-like particle as the neutrino and to distinguish the

antineutrino, which is right-handed, from the neutrino itself.

The neutrino-like particle that is involved in the β decay of

the neutron is, by convention, called the antineutrino. With

this convention, the same number of light (e or v) particles,

called leptons, enter a region of interaction as leave that

region (Figure 2.104) (with the convention that n antileptons

count as –n leptons).

 



 

FIGURE 2.104 The β decay of the neutron.

 

A particle and its antiparticle can annihilate each other; this

is illustrated in Figure 2.105 for a charged particle that

annihilates with its antiparticle to produce two photons of

radiation. The fact that antimatter annihilates with ordinary

matter explains why antiparticles are not observed in

abundance in our region of the universe. However,

antimatter is produced and studied in laboratories. Indeed,

even atoms each consisting of an electron and a positron

and called positronium have been produced and studied in

the laboratory.‡

 



 

FIGURE 2.105 The annihilation of a charged particle and its

antiparticle into two photons, γ and γ′.

 

SUMMARY A negative-energy particle of 4-momentum and

electric charge q′ appears as a positive-energy particle of 4-

momentum and charge q = –q′. The negative-energy

counterpart of a particle is called the antiparticle, and a

particle-antiparticle pair can be created or annihilated

together. For some types of particles, the antiparticle is

distinct from the particle, as the positron is from the

electron, but for other particles such as the photon, the

particle and its antiparticle are the same particle.

 

Example 2.20

 

Q.   (a)   Show that a positron cannot annihilate with an

electron alone to produce one photon only.



(b)   A positron and an electron annihilate to produce two

photons. Calculate the energies of the photons in the center-

of-momentum system of the e+ – e– system.

 

A.   (a)   Let and be the energy-momentum vectors of the

electron and positron, respectively. The total 4-momentum of

the system is

 

 

with norm

 

 

Since the norm of the 4-momentum of a photon is zero,

cannot be the 4-momentum of a photon; hence, by the

conservation law of energy-momentum, an electron and a

positron alone cannot annihilate into one photon only.

(b)   Let and have components (E−/c, p−) and (E+/c, p+)

relative to the center-of-momentum system. Then

 



 

and since the masses of the e− and the e+ are equal,

 

 

Let (E1/c, p1) and (E2/c, p2) be the components of the

photons’ 4-momentums and , respectively, relative to the

center-of-momentum system. The energy-momentum

conservation law states that

 

 

and

 

 

Therefore,

 

 

and the two photons travel off in opposite directions (relative

to the center-of-momentum system) from the region of

annihilation. Also, since E1 = |p1|c and E2 = |p2|c, they have

equal energies, given by Equations (2.290) and (2.291) as



 

 

In particular, if the electron and positron are at rest relative

to each other (p+ = p− = 0), then

 

 

Example 2.21

 

Q.   A proton of kinetic energy T is incident on a stationary

proton, and a proton-antiproton pair is produced in the

collision. Calculate the minimum value of T, the threshold

energy, for which this pair production process is possible.

 

A.   Before the collision, the initial 4-momentum of the

system has components (2Mpc + T/c, p) relative to the

laboratory system, where p is the momentum of the

incoming proton with magnitude

 

 

Because of conservation laws, the charge 2e and mass

number 2 of the initial system p + p must equal those of the

final system, including an antiproton . Therefore, the final

system must consist of . Thus, the final system comprises

four particles, each of mass Mp. The minimum energy that



this system can possess is 4Mpc², and this energy is defined

relative to a reference frame in which all the particles are at

rest. Therefore, relative to this reference system, the total

momentum is zero, and the reference system is the center-

of-momentum system. The final 4-momentum of the system

has components (4Mpc, 0) relative to the center-of-

momentum system.

 

The conservation law of energy-momentum gives

 

 

We know the components of and relative to two different

reference systems, but we can obtain a relation that does

not depend on the reference systems by equating the norms

of the two equal vectors:

 

 

or

 

 

which expands to

 



 

Hence,

 

 

Problem 2.124

 

A positron of kinetic energy T annihilates with a stationary

electron to produce two photons that travel along the line of

the incident positron’s momentum. Calculate the energy of

the photon that goes in the direction of the positron’s

momentum and that of the photon that goes in the opposite

direction.

 

Problem 2.125

 

(a)   Calculate the threshold energy for electron pair

production by electrons incident on stationary electrons.

(b)   Calculate the threshold energy for electron pair

production by electrons incident on stationary protons.

 

Problem 2.126



 

(a)   Show that a photon in an otherwise empty region of

space cannot decay into an electron-positron pair. Hint: Show

that the process violates the energy-momentum

conservation law.

(b)   Show that a photon can annihilate into an electron-

proton pair in the neighborhood of a nucleus. Hint: Consider

the case in which the energy equivalent of the mass of the

nucleus is much larger than the energy of the photon. In this

case, the nucleus can absorb momentum while absorbing a

negligible amount of energy. Use nonrelativistic mechanics to

describe the behavior of the nucleus.

(c)   Photons of energy 2.6 MeV are incident on a lead plate

to produce electron-positron pairs. The maximum total

kinetic energy of each pair has been measured to be 1.6

MeV.* Determine the mass of an electron from these results.

(d)   Draw a space-time diagram of the process described in

(b).

 

Problem 2.127

 

The kinetic energy of the protons bound in a nucleus goes up

to about 20 MeV. Find the threshold energy for proton-

antiproton production for protons incident on the protons in a

stationary nucleus.

 

Problem 2.128



 

Show, from a diagram similar to Figure 2.102, that a

negative-energy particle of 4-momentum and electric charge

q′ behaves like a positive-energy particle of 4-momentum

and electric charge q = −q′.



2.4.7   Muons and π mesons

 

Let us now consider some consequences of the existence of

nucleon-nucleon interactions. The space-time diagram of the

scattering of one nucieon by another is similar to that of the

scattering, by electric forces, of one charged particle by

another (Figure 2.106). The mechanism for the energy-

momentum transfer by which electromagnetic interactions

take place is associated with the existence of photons,

suggesting that there may also be particles associated with

the agency responsible for nucleon-nucleon interactions†

(Figure 2.107). We have seen the necessity in nucleon-

nucleon interactions of the exchange of charge along with

the energy-momentum transfer. This indicates that at least

some of the particles associated with the nucleon-nucleon

interaction are charged* (Figure 2.108).

 

 



FIGURE 2.106 Space-time diagrams of (a) nucleon-nucleon

and (b) charged-particle scattering.

 

The form of the nucleon-nucleon interaction that results in

the prediction of the existence of these particles was

proposed first by the Japanese theoretical physicist Hideki

Yukawa† (1907–). Yukawa deduced directly from the

principles of quantum mechanics that a consequence of the

short range of nucleon-nucleon interactions is that the

particle associated with the nucleon-nucleon interaction has

a nonzero rest mass; in fact, Yukawa predicted in 1934 that

the mass of the particle involved was about 200me. Particles

of this mass were called mesotrons, now contracted to

mesons, from the Greek word , for middle, and the “tron” of

electron.

Particles of about this mass were discovered by C. D.

Anderson and his colleague S. H. Neddermeyer almost

immediately after Yukawa predicted the existence of the

mesotron. The tracks of these particles were observed in

cloud chambers exposed to cosmic radiation.‡ At first it was

believed that the observed particles were Yukawa mesotrons.

However, it was shown in 1943 that these particles did not

interact sufficiently strongly with nuclei to be the particles of

the agency responsible for nucleon-nucleon interactions.

Physicists were forced to conclude that the observed

particles were not the mesotrons of Yukawa but that

Anderson had discovered another particle. The particles

discovered by Anderson are now known as muons,*

designated by μ.

 



 

FIGURE 2.107 Production of particles associated with

interaction mechanisms. (a) Production of the particle (a

photon) associated with charged-particle interactions. (b)

Production of the particle associated with the nucleon-

nucleon interaction. (The world line of the other charged

particle or the other nucleon that plays a part in the

production process has been omitted from the diagram.)

 



 

FIGURE 2.108 Some of the particles associated with the

nucleon-nucleon interaction are charged.

 

The properties† of the muon are so similar to those of the

electron that the muon can be considered to be a heavy

electron. Like the electrons, muons carry an electric charge

of + e or –e;‡ furthermore, they have a spin of . The

interactions§ that the muon experiences are identical to

those experienced by the electron. Indeed, the only

difference between muons and electrons lies in their masses;

the muon is much more massive.

Since energy is equivalent to mass, we might expect that the

various species of particles differ in mass only because there

exist differences in the type of interactions, and thus in their

energies of interaction, that these particles experience.

However, the muon and the electron appear to undergo



identical interactions even though their masses are so

different. Why this is so is one of the unsolved problems of

physics today.

Muons are not stable particles but decay with a mean life τ0

of (2.2001 ± 0.0008) × 10−6 sec relative to their rest frame.

This lifetime is sufficiently short that cosmic-ray muons,

produced high in the earth’s atmosphere by cosmic

radiation, cannot traverse the atmosphere in that time

interval (measured relative to the earth), even if they travel

at the speed c:

 

 

Nevertheless, muons produced high in the atmosphere are

observed at the earth’s surface. This results from time

dilatation, since the mean life τ measured relative to the

earth, given by

 

 

is much larger than τ0 for a muon speed υ near c.

Muons decay into electrons and neutrinos according to the

scheme

 

 

The decay (Figure 2.109),



 

 

FIGURE 2.109 Space-time diagram of the decay .

 

 

is consistent with the conservation law of leptons mentioned

in Section 2.4.6—the number of leptons entering an

interaction region equals the number leaving that region—

and the conservation law of electric charge if the muon is

considered to be a lepton. However, all the conservation

laws that we have encountered so far, in particular that of

leptons, are also consistent with the decay

 

 

although experiments to date have failed to detect this

decay mode for muons. The fact that this decay mode does



not occur suggests that it violates a conservation law. This

conservation law must be satisfied by the decay mode

(2.304), so we might expect that whatever is conserved is

related to the muon and one of the neutrino particles. If this

is true, the neutrino associated with the muon would differ in

some respects, presumably its interactions, from the

neutrino associated with the electron. The existence of the

two types of neutrinos has been demonstrated

experimentally,* with the result supporting the conservation

law of μ-family members. The neutrinos associated with the

electron and the muon are denoted by ve and vμ,

respectively, so that the decay process (2.304), shown in

Figure 2.110, can be written

 

 

The properties of the muon are given below:

 

 

The mesotron of Yukawa was discovered as a component of

cosmic rays in 1947 by the English physicist Cecil Frank

Powell (1903–) and his colleagues C. M. G. Lattes and G. T. S.

Occhialini. These particles are called τ mesons, or pions.

Pions have a mass of about 270me, in agreement with

Yukawa’s prediction. They exist in three electric charge

states—neutral and with charges of ± e. The π+ and π− are

antiparticles, and the π⁰ is its own antiparticle.

 



 

FIGURE 2.110 μ− decay. The double lines represent μ-family

members; the single lines, e-family members.

 

Pions decay with a mean life of (2.55 ± 0.03) × 10−8 sec for

the charged pions and (1.8 ± 0.3) × 10−16 sec for the

neutral pion. The difference in lifetimes arises from the fact

that the dominant modes of decay for the charged pions,

 

 

involve neutrinos, whereas the dominant decay mode of the

neutral pion,



 

 

proceeds through electromagnetic interactions.

Charged pions at rest usually decay into a muon and a

neutrino and, since the masses of these particles are well-

defined, they must emerge from the decay process with

certain values of energies and momentums (Figure 2.111). It

was this characteristic of the dominant decay mode of the

charged pions that led to their discovery by Powell.

 

 

FIGURE 2.111 Decay of a charged pion at rest. The

conservation law of 4-momentum gives the result, Equation

(2.314), , so the muon is emitted with a definite momentum,

(a) Before decay, (b) After decay.

 

The masses of the charged pions can be determined from

the mass of the muon and the energies of the muons

emitted in the decay



 

 

of pions at rest. The components of the 4-momentum of the

pion in its rest system are given by

 

 

and the 4-momentum after the decay process has the

components

 

 

relative to the same reference frame. Therefore, the

magnitudes of the momentums of the muon and the

neutrino are equal and, since the neutrino has zero rest

mass,

 

 

Hence, the conservation law of 4-momentum gives the result

 

 



Measurements of the muon momentum give the value 29.8

MeV/c for |pμ|; hence,

 

 

The strong nucleon-nucleon interactions not only are

associated with the existence of pions but, because they

contain a charge-exchange feature, they also contribute to

the electric charge structure of nucleons. Just as a neutron

experiences the strong interaction at some distance (∼ 1 fm)

from a nucleon, so also do charged particles experience an

electrical interaction as if the charge were distributed over

corresponding distances about the nucleon. This charge

structure has been observed, and in fact, as we shall see

shortly, the study of this charge structure led to the

discovery of other particles.

The properties of the pions are listed below:

 

 

 

 

The form of the nucleon-nucleon interaction [Figure 2.112(a)]

resulted in the successful prediction of the particles called

pions [Figure 2.112(b)]. This suggests that the weak

interactions such as β decay [Figure 2.112(c)] may imply the

existence of another type of particle, as shown in Figure

2.112(d). The properties of this conjectured particle have



been investigated; for example, it can be seen from Figure

2.112(d) that it should carry an electric charge, since the

corresponding interaction results in a charge exchange

between the nucleon and the lepton. The proposed particle

has been called the intermediate boson or, alternatively, the

W particle (for weak interaction). Physicists have searched

for evidence of the existence of this particle, but so far no

such evidence has been found.

 



 

FIGURE 2.112 The interactions and the particles associated

with them, (a) The nucleon-nucleon interaction, (b)

Production of the particle associated with the nucleon-

nucleon interaction, (c) The weak interaction, (d) Production



of the particle associated with the weak interaction. [In (b)

and (d), the other system, a nucleon that also plays a part in

the production mechanism, has been omitted from the

diagram.]

 

SUMMARY The successful prediction of the existence of

particles called photons that are associated with

electromagnetic interaction led to the prediction of particles

that result from the nucleon-nucleon interaction. These

particles are called pions and exist in three charge states. A

similar prediction of a particle, the W particle, associated

with the weak interaction has not been verified.

There exists another particle, the muon, that at one time was

associated erroneously with the nucleon-nucleon interaction

but that now appears to be a heavy electron. The muon, as

well as the electron, has its own type of neutrino associated

with its weak interactions.

 

Problem 2.129

 

Calculate the threshold energy for the creation of charged

pions by photons incident on stationary protons.

 

Problem 2.130

 

Calculate the threshold energy for the creation of neutral

pions by protons incident on stationary protons.



 

Problem 2.131

 

Calculate the energies of the photons emitted in the decay

n⁰ → 2γ of a neutral pion at rest.

 

Problem 2.132

 

The maximum kinetic energy of electrons produced in the

decay

 

 

has been measured to be 55 MeV. Calculate the mass of the

μ−.

 

Problem 2.133

 

The mean life of muons is 2.20 × 10−6 sec in their rest

system. Consider muons that travel a distance of 6.26 × 10³

ft at an average speed of 0.992c relative to the earth.

 



(a)   Calculate the ratio of the number of muons that survive

to the initial number that were present and at rest in the

time required for a particle to travel 6.26 × 10³ ft at the

speed 0.992c.

(b)   The ratio of the number of muons that survive to those

initially present has been measured* to be 0.72. Explain this

result.

 

Problem 2.134

 

A neutral pion traveling with the speed υ decays into two

photons that move off at equal angles to the direction of the

incident π0. Let θ be the angle between the directions of the

momentums of the π0 and one of the γ’s. Show that υ/c =

cos θ.



2.4.8   Strange particles: K mesons

and hyperons

 

In 1947, the compilation of particles appeared to have been

completed by the discovery of the pion. It seemed then that

the behavior of matter could be explained completely on the

basis of the known particles, although the theories were not

adequate (and indeed are not yet) to explain why the set of

known particles formed the building blocks of matter. The

electron and the nuclei were necessary for the explanation of

atomic behavior, the nucleons for nuclear behavior, the

neutrino for β decay, the pions and photons for the

interactions and, finally, the antiparticles were required to

satisfy the requirements of relativity theory. Only the muon

did not fit into this scheme of natural simplicity.

 

 

FIGURE 2.113 The characteristic inverted V appearance of

the tracks of the decay products of a V particle produced in

the lead plate.



 

In 1947,* however, the destruction began of this simple

scheme of the rationale for the number of fundamental

particles. Cloud-chamber photographs of cosmic-ray

particles taken by G. D. Rochester (1908–) and C. C. Butler

(1922–) of the University of Manchester showed evidence of

the decays of particles with masses of about 500 MeV.

Rochester and Butler showed that these particles could not

be any of the particle that we have studied in our previous

work. One of these particles was neutral and decayed into

two charged particles; the tracks appeared as in Figure

2.113, and because of the characteristic pattern of the

tracks, the particles were initially called V particles. The

study of V particles in the cosmic radiation was

supplemented in the early fifties when the Cosmotron at the

Brookhaven National Laboratory came into operation, at

which time man-made V particles could be studied under

laboratory conditions.

These V particles were investigated intensively after it

became evident that they indeed were different from the

particles known before. It was found that they were produced

in abundance in high-energy collisions, for example, of fast

negative pions incident on protons. The frequency with which

these particles were produced in collisions showed that the

interactions responsible for their production were strong or

comparable to the nucleon-nucleon forces. Such interactions

are called strong interactions. The typical time for their

production was found to be about 10−23 sec, the time

required for a fast pion to move past a nucleon. On the other

hand, the distance that the V particles traveled in cloud

chambers showed that their characteristic decay time

ranged from 10−8 to 10−10 sec, a time typical for weak

interactions such as those decays involving neutrinos.



This large disparity between the production and decay times

appeared strange to scientists at the beginning of the

1950’s, as shown by the following example, which is based

on the information available on particles at that time.†

Suppose that one of the neutral V particles, that called the

lambda hyperon Λ⁰ with a lifetime of 10−10 sec, was

produced in the reaction π− + p → Λ⁰ + π⁰ illustrated in

Figure 2.114(a). (This assumption is known now to be

incorrect.) Then, the π⁰ should undergo the corresponding

decay reaction Λ⁰ → π− + p + π⁰ shown in Figure 2.114(b),

or, alternatively, the π⁰ might be absorbed by the proton in

the reaction to produce the decay Λ⁰ → π− + p [Figure

2.114(c)]. Each of these reactions should take place in a time

of about 10−23 sec, so the actual decay of this particle is

10−10/10−23 ∼ 10¹³ longer than that predicted by the

assumed production mechanism. This puzzling feature of the

behavior of these particles led to the V particles being called

strange particles, a nomenclature that has survived to this

day.‡

 

 



FIGURE 2.114 Argument to suggest that if the λ° is produced

in a fast reaction, such as (a), it should decay swiftly, as

shown in (c). This result contradicts the experimental

evidence! (a) Assumed production process for the Λ°. (The

assumption is incorrect.) (b) How the A⁰ could decay if (a) is

the production reaction. (c) The decay (b) in which the

neutral pion is absorbed by the proton in the decay process.

 

The resolution of the paradox of the strong production and

weak decay of the strange particles was advanced by the

Dutch-American theoretical physicist Abraham Pais (1918–).

Pais proposed that at least two strange particles must be

involved in order that any reaction in which they take part

can proceed by a strong interaction. This hypothesis of

associated production predicted that strange particles were

created in pairs; after the two strange particles are created,

they separate, and since each is isolated from the other,

they cannot decay in the same manner by which they were

produced (Figure 2.115). This hypothesis was verified by

experiment shortly after it was proposed.

 



 

FIGURE 2.115 Associated production: Strange particles

experience the strong interactions only when they are

together, and thus they cannot decay by those interactions.

 

The principle of associated production was related to a

conservation law in 1953 by the American theoretical

physicist Murray Gell-Mann* (1929–) and independently by

the Japanese physicist Kazuhiko Nishijima (1926–). They

postulated that this conservation law, which we shall

describe briefly below, was satisfied in processes involving

the strong interactions but could be violated in the much

slower weak interactions.

The first strange particles observed were the K mesons (or

kaons), denoted by K, and the lambda hyperon, denoted by

Λ. The neutral states of these particles can be produced by

fast negative pions incident on protons:

 



 

No charged lambda particles have been observed. The Λ⁰

was observed to decay via the reaction

 

 

The mass of the Λ⁰ is about 10³ MeV,† and so the Λ⁰ was

assigned the mass number A = 1. In the new terminology,

the mass number of a particle with half-integral spin is called

its baryon number and any particle with nonzero baryon

number is called a baryon. The baryon number of an

antiparticle is the negative of that of the corresponding

particle.

The neutral K meson was observed to decay weakly through

the two processes*

 

 

Also, charged kaons were observed that decay through the

processes

 

 

The mass of the K meson is about 500 MeV, and its spin is

zero; thus, the K meson is not a baryon.

The conservation law that governs whether a process will

proceed by the fast, strong interactions or by the much

slower, weak interactions can be seen from Equations



(2.319), (2.320), and (2.321); the fast production process

(2.319) involves two strange particles, whereas the slower

decay processes (2.320) and (2.321) involve only one. This

suggests the introduction of a dynamical variable, somewhat

like the electric charge, that has, say, the value 0 for all

nonstrange particles, the value −1 for the Λ⁰, and the value

+ 1 for the K⁰; also, this dynamical variable is conserved in

strong interactions but not in weak interactions. This

dynamical variable is called the strangeness and is denoted

by S. The strangeness of an antiparticle is the negative of

that of the corresponding particle. In the production process

(2.319), the initial strangeness is 0 + 0 = 0, the final

strangeness is 1 − 1 = 0, and strangeness is conserved. On

the other hand, in the decay process (2.320), the initial

strangeness is −1 and the final strangeness is 0 + 0 = 0;

strangeness is not conserved. This process proceeds via the

slow, weak interaction, as the violation of the conservation

law of strangeness suggests.

The baryon number A is conserved in all interactions so the

conservation law of strangeness can be expressed in terms

of the hypercharge Y:

 

 

The hypercharge is conserved in strong interactions but not

in weak interactions. The hypercharge of a particle is used to

label particles in the recently developed classification

schemes for particles.

The hypercharge of a species of particles can be related to

the number of differently charged particles in that species

(Problem 2.135). If the average electric charge of the species

is , then



 

 

This relation is true, for example, for pions

, for nucleons , and for the . It is also true for the K mesons, if

K+ and K⁰ are the particles and hence and are the

antiparticles. (The neutral particles, the K⁰ and the , differ by

their strangenesses or, in other words, by their production

mechanisms.)

Other strange particles were observed that were found to

obey the conservation law of hypercharge. These particles

are produced by strong interactions, so it is convenient to

introduce the name hadrons for all particles, mesons and

baryons, that interact strongly. Baryons with nonzero

strangeness are called hyperons.

A sigma hyperon Σ was found that existed in three charge

states: Σ+, Σ⁰, Σ−. The Σ hyperon has strangeness S = −1

and hypercharge Y = 0. One further particle, the xi hyperon ,

was observed to decay weakly via the process

 

 

This decay does not take place sufficiently quickly for the to

have Y = 0, like Λ⁰ + π−, or Y = 1, like p + π−, and so Gell-

Mannand Nishijima assigned the value Y = −1 to the



hyperon. With this assignment, , which implies that there is

another particle with Q = 0, the . This neutral particle was

found subsequently and provided confirmation of the

assignment and the theory.

The properties of those strange particles described above

are listed in Table 2.2.

 

TABLE 2.2 Strange Particles

 

 

SUMMARY Strange particles are produced in pairs by the

strong interaction, and they decay singly by the weak

interaction. These processes can be distinguished if we

assign a dynamical variable called strangeness, or one called

hypercharge, to each particle. A process can proceed by a

strong interaction only if strangeness or hypercharge is

conserved, but it can proceed via the weak interaction if

these are not conserved.



 

Problem 2.135

 

(a)   On a graph, mark energies from 0 to 1,500 MeV on the

vertical axis and the electric charges of −e, 0, and +e on the

horizontal axis. Mark the positions with circles on this graph

of each of the hadrons that we have discussed so far and

mark, with squares, the corresponding positions of each of

the antiparticles.

(b)   Show from the graph of (a) that the average charge Q of

a species of particles is given by .

 

Problem 2.136

 

Determine whether the following reactions proceed via

strong interactions or via weak interactions:

 

(a)    .

(b)   π⁰ + n → Σ+ + K−.

(c)   K− + p → Σ− + π+.

(d)    .

(e)   Σ− → n + π−.

(f)   K+ → μ+ + vμ.



 

Problem 2.137

 

A particle of mass M at rest decays into two particles of

masses m1 and m2. Let , and be the 4-momentums of the

particles and let (E1/c, p1) be the components of in the rest

frame of M.

 

(a)   Show that

 

 

can be evaluated in the rest frame of M to give the relation

 

 

(b)   Let ΔM = M − m1 − m2. Show that the kinetic energy of

particle 1 relative to the rest frame of M is given by

 

 

(c)   Calculate the kinetic energies of the proton and the pion

in the decay, from rest, of the Λ given by Λ → p + π−.



 

Problem 2.138

 

A Λ decays in flight via the scheme Λ → p + π−. Let the 4-

momentums and have components (Ep/c, pp) and (Eπ/c, pπ)

relative to the laboratory frame. Show that

 

 

where θ is the angle between pp and pn.

 

Problem 2.139

 

Find the threshold energies for the following processes in

which mesons are incident on stationary protons:

 

(a)   π− + p → K⁰ + Λ⁰.

(b)   K− + p → Σ− + π+.

(c)    .

(d)   π− + p → Σ− + K+.

(e)    .



2.4.9   Resonances and other particles

 

The discovery of the kaons and the hyperons was followed,

in the 1960’s, by the discovery of many other particles. The

existence of some of these particles had been predicted

before their discovery, whereas others were found, without

any forewarning, as the result of experiments. In this part,

we shall describe illustrative examples of these recently

discovered particles.*

An indication of one of these particles had been observed

initially in 1952 by E. Fermi and his colleagues, while

measuring the cross section for the scattering of pions by

protons. This cross section (Figure 2.116) has a strong peak

at 196 MeV, showing that the pion and the proton interact

particularly strongly in that energy state. (Fermi’s

measurements extended to 200 MeV only.) The bump in the

cross-section curve is interpreted as a resonance in the state

of the rc-nucleon system that corresponds to the resonances

at the proper frequencies of waves in a confined medium.†

Further resonances have been observed at higher energies.

Each of these resonances can be interpreted as due to the

formation of a particle that quickly decays into a pion and a

nucleon (Figure 2.117); they are called resonance particles.

Consider a particle that decays via the strong interactions in

a small multiple of the characteristic time, 10−23 sec. The

track of such a particle could not be seen in a cloud or

bubble chamber because, in that time interval, the particle

only travels a few femtometers. However, in a scattering

experiment involving the decay products, such a particle

would show up as a bump in the cross section at the

appropriate energy, owing to the fact that an additional



mechanism for the interaction—namely, the formation of the

unstable particle—is allowed for the scattering of the

particles. This interpretation requires only that the definite

numbers that are used to describe a particle, such as spin,

can be assigned to the resonance. The resonance that

appears in pion-proton scattering at Tπ = 196 MeV

corresponds to a spin of 3/2, and the resonance particle is

denoted by (1236), or Δδ.

 

 

FIGURE 2.116 Cross section for the scattering of pions by

protons.

 



 

FIGURE 2.117 The formation of a short-lived resonance

particle in n-N scattering.

 

Two resonances in the interactions of pions with pions were

predicted in the late 1950’s as being necessary to explain

the charge structure of nucleons as measured by electron-

scattering experiments. The existence of the strong nucleon-

nucleon interaction with its charge-exchange feature implies

that, to an incident charged particle, a nucleon appears to

possess an electric charge distribution. This comes about in

the following manner: The nucleon-nucleon interaction has a

nonzero range and also a charge-exchange character. Thus,

associated with the interaction, there is an electric charge

distribution that extends over the range of the interaction. A

charged particle incident on a nucleon will experience the

electric force that results from the charge of the nucleon plus

that from the charge of the charge-exchange part of its

strong interaction.

Analyses of the results of electron scattering from nucleons

suggested that, although the charge associated with the

charge-exchange part of the strong interaction was usually 1

elem ch, sometimes it was 2 and sometimes 3 elem ch. This,



in turn, indicated that the interaction between pions was

such that there existed a particle, possibly unstable, that

corresponded to two pions and another that corresponded to

three pions. However, this prediction could not be tested by

π–π scattering experiments since, for example, free pions do

not exist sufficiently long that a target of pions can be

formed. Another technique was necessary for the

examination of the existence of the dipion and tripion

particles. One such technique is outlined below.

The 2π resonance was observed in the reactions

 

 

This reaction would proceed as shown in Figure 2.118(a) if

there were no dipion resonance. However, if a 2π resonance

state exists, the reaction could also

proceed as shown in Figure 2.118(b); as shown there, the

dipion is sufficiently long lived that it moves intact well away

from the region of production before it decays. The

characteristic feature of this process is that a single 2π

particle exists and possesses a fairly well-defined mass

outside the region of production. This feature can be

analyzed as follows:

Consider a system that results in the production of three

particles, labeled 1, 2, and 3, respectively. These particles

are created in some process such as that shown in Figure

2.118. Let , and be their respective 4-momentums. The mass

M of the system consisting of particles 1 and 2 is given by

the relation



 

 

where is the total 4-momentum of the initial system. We

evaluate in the center-of-momentum system in which has

components (E/c, 0) and has components (e3/c, p3):

 

 

E is fixed by the dynamical condition of the initial system,

whereas e3 is not. If all three particles move off separately

from the region of production [Figure 2.118(a)], then e3 can

take on all values from m3c² (corresponding to the

circumstance in which particle 3 is at rest relative to the

center of momentum after creation) up to some maximum

value (e3)max (corresponding to a circumstance in which

both m1 and m2 move directly away from m3). Therefore, M

can take on all values from below [(E/c²) − (e3)max/c²] up to

[(E/c²) – m3], and for a given production mechanism, there

will be a certain mass distribution PΔ(M) for the probability

that, in any such production reaction, M will lie in the range

[M – (Δ/2), M + (Δ/2)]. Calculations, based on the assumption

that there is no correlation between the directions of the

three created particles as a result of their interactions, give a

curve like that shown in Figure 2.119(a) for PΔ(M). However,

if m1 and m2 always form a particle of mass M* that does

not disassociate until that particle is well outside the region

of production, then M is determined uniquely by the

conservation law of 4-momentum to be equal to M*, and the

graph of PΔ(M) appears as shown in Figure 2.119(b). If this



unstable particle is found only in some of the reactions, then

the mass distribution appears as in Figure 2.119(c).

 

 

FIGURE 2.118 Two π− + p → p− + π⁰ + p processes: (a) π− +

p → π− + π⁰ + p. (b) π− + p → dipion + p → π⁰ + π−.

 

 



FIGURE 2.119 Mass distribution for two of three particles

created in a collision. (a) No correlation between the

separation directions of the three created particles as a

result of their interactions, (b) Particles 1 and 2 always move

away from the region of production as an unstable particle of

mass M*. (c) In some, but not all the reactions, m1 and m2

move off as the unstable particle M*.

 

An analysis similar to that described above was performed

on the 2π products of the reactions

 

 

and the results* showed that a 2π particle of mass 765 MeV

was produced in some of these reactions. This particle is

called the ρ meson. A similar analysis applied to all possible

3π final systems from the reaction

 

 

showed† the existence of a π+ − π− − π⁰ resonance state of

mass 783 MeV, called the to meson.

As these particles were being discovered, attempts were

being made to classify the known particles in a manner

somewhat similar to the classification of the chemical

elements in the periodic table of Mendeléyev. A highly

successful classification scheme was developed in 1961 by



Gell-Mann‡ and independently by the Israeli army officer and

physicist Yuval Ne’eman. The existence of one particle, the η

meson, was predicted on the basis of the classification

scheme independently by Gell-Mann and Ne’eman in

advance of its discovery in 1962. Another remarkable

success of this theory was the prediction of the Ω. particle

that was required to fit the scheme after the discovery of

some other particles. The previous successes of the

classification scheme led to the remarkable effort* that

resulted in the discovery of this particle.

These classification schemes for fundamental particles

correspond to Mendeleyev’s categorization of the chemical

elements in the periodic table. And, just as there is more to

chemistry than the periodic table, so there is more to particle

physics than the classification schemes. Physicists today are

studying the patterns that are exhibited in the behavior of

these particles and are attempting to provide a rational basis

for these relations, in the manner that the structure of atoms

provides a basis for Mendeleyev’s scheme. These

investigations are very demanding on the physicists, and the

challenge is made more stimulating by the unexpected

discoveries and apparent paradoxes that often emerge from

these investigations.

The properties of a few of the recently discovered particles

are listed in Table 2.3.†

 

TABLE 2.3 Some Recently Discovered Particle

 



 

SUMMARY Investigations of pion scattering by nucleons and

of the electric charge structure of nucleons led to the

discovery of very short-lived particles called resonance

particles. With lifetimes of about 10−22 sec, they can be

detected as peaks in the mass distribution of the system

composed of a few of the particles in the final state of a

reaction.

A classification scheme for these particles has been

developed, which, among other things, has led to the

discovery of other particles.

 

Problem 2,140

 

A pion of kinetic energy T is incident on a stationary proton,

and a resonance baryon particle is produced. Show that the

mass M* of the resonance is given by , where



and is a unit vector in the direction of the initial pion beam.

 

Problem 2.141

 

Resonance baryon particles can be created when pions with

the following energies are incident on stationary protons:

196 MeV, 550 MeV, 900 MeV, 1,354 MeV, and 2,349 MeV.

Calculate the masses of the corresponding resonance

particles.

 

Problem 2.142

 

Pions of momentum 1.89 GeV/c are incident on stationary

protons and produce the reaction

 

 

Calculate the recoil energy and momentum of the proton if

the p meson travels in the direction of the incoming pion

beam.

 

Problem 2.143



 

The U.S. Atomic Energy Commission is designing an

accelerator that will yield protons with energies of 200 BeV.

 

(a)   The protons will be accelerated from 8 to 200 BeV in 0.8

sec. Calculate the average physical force experienced by the

protons in that time interval.

(b)   Calculate (c - υ)/c for protons of 200 BeV.

(c)   Calculate the center-of-momentum energy available

from a collision between a 200-BeV proton and a stationary

proton.

(d)   Consider a 200-BeV proton passing through air with an

index of refraction of n = 1.0060. Find the angle of emission

of the Čerenkov radiation (see Problem A1.3).

(e)   (i)   What is the radius of the circle upon which a 200-

BeV proton travels in a region of constant B with B = 1.5T

(see Problem 2.76)?

   (ii)   What would the radius be for a very intense B of 107?

(f)   How many pions can be produced in the collision of a

200-BeV proton with a stationary proton?

(g)   What is the maximum energy of the π+ produced in the

reaction

 

 

for a 200-BeV proton incident on a stationary proton?



(h)   (i)   What is the maximum energy of the π+ produced in

the reaction

 

 

for a 200-BeV proton incident on a stationary proton?

 

(ii)   What is the maximum energy of the neutrino produced

in the resulting decay

 

 

(iii)   What is the mean distance that the π+ of (ii) travels

before decaying?

 

(iv)   If the μ+ and vμ are emitted in the π+ rest system at

90° to the direction of travel of the π+, what is the angle

between the direction of travel of the vμ and that of the π+

in the laboratory system?

(i)    It has been proposed that a high-energy proton beam be

stored in rings under the action of a guiding magnetic force.

 

(i)   If the magnetic induction is 1.5T, calculate the radius of

the ring for protons of energy (1) 1 BeV, (2) 5 BeV, (3) 10

BeV, (4) 50 BeV, and (5) 200 BeV.

 



(ii)   What energy would be available in the center-of-

momentum system if a proton from each of the storage rings

of (i) collided head-on with a proton from the 200-BeV

accelerator?

 

Problem 2.144

 

Scientists have proposed an accelerator that will yield

protons of 1 TeV energy. Answer parts (b), (c), (d), (e), (f), (g),

(h), and (i) of Problem 2.143 for protons of this energy.



Additional Problems

The data on particles necessary for these problems are given

in Section 2.4.

 

Problem A2.1

 

The world line of a particle is described, relative to an inertial

observer S, by the equation

 

 

Draw the world line on the space time diagram of S and draw

the 4-momentum vectors on that world line at times ct = 0,

ct = 1, ct = 2, and ct = 3.

 

Problem A2.2

 

A 1-GeV proton incident on a stationary proton is scattered

through 10°. Find the angle of recoil of the target proton.

 

Problem A2.3

 



A beam of protons passes through a transparent medium

whose index of refraction is 1.9 and emits Čerenkov radiation

at 10° to the direction of the beam. Calculate the energy of

the protons.

 

Problem A2.4

 

A 10-GeV proton is incident on a stationary proton.

 

(a)   The incident proton is scattered through 90° in the

center-of-momentum system. Find the scattering angle of the

incident photon and the angle of recoil of the target proton in

the laboratory frame.

(b)   The incident proton is scattered through 180° in the

center-of-momentum system. Find the laboratory kinetic

energy of each of the protons after the collision.

 

Problem A2.5

 

(a)   Prove that

 

 

Use this result to show that mυ is a measure of inertia.



(b)   Prove that

 

 

Show from this that, for large E, E can increase appreciably

without v undergoing a substantial change.

 

Problem A2.6

 

Consider the reaction 1 + 2 → 3 + 4, where the particles 1, 2,

3, and 4 have 4-momentums represented by , and ,

respectively. Choose energy units in which c takes on the

value unity.

(a)   Let . Show that is the total energy in the eenter-of-

momentum system.

(b)   Show that, if particle 2 is stationary in the laboratory

system,

 

 

(c)   Let

 

 



Show that

 

 

Problem A2.7

 

Two 3-ton trucks travel toward each other at 90 mi/hr and

collide head on. Find the amount of mass of the resulting

system above 6 tons.

 

Problem A2.8

 

(a)   Calculate the kinetic energies of the neutron and the

pion in the decay from rest of the Σ+: Σ+ → n + π+.

(b)   Calculate the kinetic energies of the Λ and the pion in

the decay from rest of the .

 

Problem A2.9

 

Find the threshold energy for protons incident on stationary

protons for the reaction p + p → p + n + π+.

 

Problem A2.10



 

(a)   Calculate the threshold energy for the process for pions

incident on stationary neutrons.

(b)   Calculate the threshold energy for the process K− + p →

Λ + π+ + π− for K mesons incident on stationary protons.

 

Problem A2.11

 

(a)   Find a formula for the threshold energy, for negative

pions incident on protons, for the production of TV neutral

pions.

(b)   Calculate the threshold energies for π− + p → π− + p +

Nπ⁰ for N = 1, 2, 3, and 4.

 

Problem A2.12

 

Two particles, 1 and 2, initially at rest, interact to produce

two other particles, 3 and 4. Show that

 

 

where



 

 

Problem A2.13

 

A K+ meson decays into three charged pions that are

emitted symmetrically. Find the magnitude of the momentum

of each of the pions.

 

Problem A2.14

 

A 160-lb object travels at 60 mi/hr relative to S through

empty space. A light of 100 W is attached to the object and

shines a beam directly ahead of the object.

 

(a)   Find the speed of the object, after the light is turned on,

relative to S at the end of

 

(i)   1 hr,

 

(ii)   1 day,

 



(iii)   1 week,

 

(iv)   1 yr.

(b)   How long, after the light is turned on, does it take for

one-half the mass to be radiated away?

 

Problem A2.15

 

(a)   A proton of energy 10 MeV experiences the physical

force F = ev × B, where B is a constant magnetic induction

vector of magnitude 1.5T and is perpendicular to v. Find the

radius of the orbit of the proton.

(b)   Find the radius of the orbit for a proton with a kinetic

energy of

 

(i)   100 MeV,

 

(ii)   1 GeV,

 

(iii)   10 GeV.

 

Problem A2.16



 

A beam of negative pions of kinetic energy 100 MeV is

produced in a laboratory. How does the relative intensity of

the pions vary along the beam?

 

Problem A2.17

 

(a)   Show that the angular momentum vector L = r × p

about O of a particle traveling with momentum p at the

position r relative to O is determined by the nonvanishing

components of the 3-tensor of the second order Lij = xipi −

xjpi.

(b)   The relativistic expression for the angular momentum is

given by Lαβ = xαpβ. Show that Lαβ is a skew-symmetric

tensor of the second order.

(c)   Show that Lαβ is conserved (that is, dLαβ/dt = 0) in the

motion of a free particle.

(d)   The total angular momentum tensor of a system of

particles is given by

 

 

where is the angular momentum tensor belonging to the

particle labeled n. Show that Lαβ is conserved if every

particle of the system is free.

(e)   Show that the vector L0 defined by



 

 

is conserved for a system of free particles. The bracketed

superscripts are labels denoting the various particles.

(f)   Show for a system of free particles that the point C

specified by

 

 

moves with the constant velocity

 

 

where C is called the center of inertia.

(g)   Show that the center of inertia coincides with the center

of mass in the appropriate nonrelativistic limit.

 

Problem A2.18

 



A right-angled lever (shown in Figure A2.1) is pinned at its

vertex but is free to rotate about that pin. The arms of the

lever are of equal length, lAB = lBC, in the rest system S of

the lever. The lever is constrained from rotating by two

forces FA and FC of equal magnitude (FA = FC) in the rest

system of the lever. The forces act in directions

perpendicular to the arms of the lever.

 

 

FIGURE A2.1 A right-angled lever under stress.

 

(a)   Show that relative to S the magnitude TB of the total

torque on the system about B is given by

 

 



(b)   Consider the lever from the point of view of an inertial

system S′ that moves with the constant speed V along the

direction from B to C. Show that

 

 

(c)   Show that the total torque about B relative to S′ is given

by

 

 

Does this torque result in a rotation of the lever relative to

S′? State the reasons for your answer.

(d)   Show that the force at A does work on the system in the

amount FAV per second relative to S′. Thus, energy enters

the system at A and flows out at the point B where a force

opposite to FA acts. Show that a mass of FAV/c² enters A per

second and thus results in an increase per unit time of the

angular momentum of (FAV/c²)VlAB. Resolve the paradox

encountered in (c).

(e)   A bar of length L experiences forces F1 and F2 at its

ends. The forces are equal in magnitude in the rest system S

of the bar and directed away from the center of the bar. An

inertial observer travels with the velocity F relative to S,

where F makes an angle a with the length of the bar. Repeat

the problems (a)–(d) above, with suitable modifications for

this case.



 

Problem A2.19

 

Relative to an inertial frame S, a particle experiences an

attractive inverse-square central physical force

 

 

This problem is concerned with the calculation of the orbit of

the particle.

(a)   Show that the time-like component of the 4-force

equation gives the result

 

 

where E is a constant.

(b)   Show that the spatial component of the 4-force equation

gives the result r × mυv = L, where L is a constant vector.

(c)   Show that r lies in a plane that contains the force center

O.

(d)   Let (r, θ) be the polar coordinates of r relative to O in

the plane of the motion. Show that

 



 

(e)   Introduce u[θ(t)] = 1/r. Show that

 

 

(f)   Show that

 

 

and hence that

 

 

(g)   Show that

 

 

(h)   Show that

 



 

Assume that the initial conditions are such that L > k/c.

(i)    Show that the solution of the differential equation of (h)

is

 

 

where and β and A are arbitrary.

(j)   Show that the solution in (i) also satisfies the differential

equation of (g) if

 

 

(k)   Show that r, given by

 

 

is bounded if E/c² < m. Interpret this result.

(l)    For α ≈ 1, show that the orbit approximates a rotating

ellipse. Show that, in this case, the advance per revolution in

the pericenter is given by
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No study of the laws of physics would be complete without

reference to the general theory of relativity. This is a theory

of gravitation that is primarily the result of the brilliant

investigations of one man, Albert Einstein.

A detailed discussion of the general theory of relativity

requires the introduction of a special branch of mathematics

called the tensor calculus [1]. We shall not consider this in

any detail, not because it is too difficult for a student at your

stage of study, but rather because it would carry us too far

afield to discuss it thoroughly here.* In this chapter, we shall

outline only the basic features of the theory of general

relativity and state some of its consequences.

General relativity is a theory of gravitation that provides,

within the appropriate limits, the same description of

planetary motions and other mechanical gravitational effects

as does Newton’s law of gravitation. Therefore it is

worthwhile at this point to review some features of the

newtonian theory of gravitation before proceeding to study

Einstein’s more modern theory.

Newton’s law states that the gravitational interactions of

objects can be described within the framework of newtonian

mechanics by the interparticle force law

 

 



The vector r represents the position of particle 2 relative to

particle 1, G = 6.670 × 10–11 N·m²/kg is a universal

constant, and m1 and m2 are the masses of the two

particles. The resulting description of planetary motions

agrees very well with the observations of these motions;

there are only very minor discrepancies (of the order of

motions of seconds of arc per century) between the theory

and the observational data.†

The measure of the strength of the gravitational force

exerted or experienced by a particle—a force which

corresponds to the electric charge in Coulomb’s law—is the

inertial mass of the particle. Indeed, we might call that

measure the gravitational charge, denote it by N, and

wonder at its equality with the inertial mass m—a property of

the particle that can be measured in an experiment in which

gravitation plays no part (Figure 3.1).

 

 



FIGURE 3.1 Equality of inertial mass and gravitational

charge.

 

The equality of the gravitational charge and the inertial mass

is a coincidence within the newtonian theory of gravitation.

Einstein, however, argued that scientists should not be

satisfied as long as such a fundamental result appears to be

only a coincidence; coincidences should be explainable on

the basis of general laws of nature. To explore the possibility

of such an explanation, we need to reformulate our

description of the coincidence, which up to now states only

the equality of the gravitational charge and the inertial

mass. The new description must follow in mechanics from

this equality (or Newton’s law of gravitation), and it must be

appropriate for generalization to a law of nature. A new

description of the equality may be obtained if we examine

the consequences of the force [Equation (3.1)] with N’s

replacing m’s, and distinguish between the gravitational

charge and inertial mass until equating these provides

distinct new information.

Consider a particle of inertial mass mand gravitational

charge N that experiences a gravitational force Fgrav due to

the presence of other objects and, in addition, other forces F

that are not gravitational in character. The gravitational force

Fgrav is the vector sum of the interparticle gravitational

forces given by Equation (3.1), each of which is proportional

to N. Hence, the sum is proportional to N:

 

 



where e depends only on the gravitational-charge

distribution of the other objects relative to the particle under

consideration. The equation of motion of the particle is,

therefore,

 

 

or

 

 

If we now equate N and m in this equation, it has the form of

Newton’s equation of motion

 

 

 



FIGURE 3.2 Two equivalent reference frames, (a) Inertial

reference frame and gravitational force, (b) Non-inertial

reference frame and no gravitational force.

 

for circumstances in which the gravitational forces do not

appear. The acceleration a′ is that of the particle relative to a

noninertial frame * experiencing the acceleration – e with

respect to any inertial frame [see Equation (1.10)].

 

 

Thus, insofar as mechanical effects are concerned, the

statement of the equality of inertial mass and gravitational

charge is interchangeable with the statement that the

mechanical effects of a gravitational force are equivalent to

the apparent mechanical effects of referring motions without

gravitational forces to a non-inertial reference frame (Figure

3.2). Einstein postulated that this equivalence is a law of

nature that applies not just to mechanics but to all

phenomena. The principle of equivalence thus states, for

example, that the path of a ray of light is bent near a

massive (gravitating) object (Figure 3.3), a prediction verified

by experiment.

The principle of equivalence describes the role of

(newtonian) gravitation in other than mechanical

phenomena. It extends the range of applicability of Newton’s

law of gravitation, although it does not replace it since the

acceleration – e is calculated from Equation (3.1).

The use of noninertial reference systems in the principle of

equivalence [3] and the intimate connections of space, time,

and motion in the special theory of relativity provide a hint



as to why a study of curved spaces is an important part of a

consistent theory of gravitation.

 

 

FIGURE 3.3 Path of light ray in (a) an inertial reference frame

where no gravitational forces act; (b) a non-inertial reference

frame; (c) an inertial reference frame where gravitational

forces act.

 

The theory of general relativity involves the concept of

curved space-time, and we study this by analogy with curved

surfaces, which are curved spaces of two dimensions. These

are discussed in Section 3.1. The possibility that gravitational

forces reflect a bending or curvature in space-time follows

from the principle of equivalence, as described in Section

3.2. The theory of general relativity and its test by

experiment and observation are described in Section 3.3.

 

Problem 3.1



 

(a)   Show that V(r) = –GmM/r is the gravitational potential

energy of a particle of mass m at a distance r from a particle

of mass M by proving that V(|r + dr|) – V(r) = – F(r)·dr. F(r) is

the newtonian force of gravity, and the reference point of V

is chosen such that V(r) → 0 as r → ∞. Hint: Use (r + dr)·(r +

dr) ≈ r² + 2r·dr and (1 + x)n ≈ 1 + nx, .

(b)   Show that, for , V(R + h) – V(R) = mgh, where g is the

component of the acceleration due to gravity in the direction

of the force center.

 

Problem 3.2

 

Consider an object suspended by a string at a point on the

earth where the object experiences an acceleration aR due

to the rotation of the earth, and the acceleration due to

gravity is e (Figure 3.4). Show that the direction of the force

on the object due to the tension in the string T is along the

direction of aR – Ne/m, where N is the gravitational charge

and m the inertial mass of the object. Explain why the fact

that the line of the string is the same for all objects

demonstrates the equality of N and m.*

 

Problem 3.3

 

A rifle at ground level is aimed at an object balanced

precariously on the edge of the wall of a tall building. The

rifle is fired at the same instant that the object begins free



fall from rest toward the ground. Use the principle of

equivalence to show that the bullet will hit the object if the

bullet’s range is sufficient, and if air resistance can be

neglected.

 

Problem 3.4

 

Explain, as you would to a high school student, why a light

pulse initially directed parallel to the floor across a room is

deflected in its motion.

 

Problem 3.5

 

Show within a nonrelativistic framework that the principle of

equivalence predicts that starlight that approaches to within

a distance D of a star of mass M is deflected through the

angle Φ (Figure 3.5) given by Φ = 2(GM/c²D). Hint: Consider

the orbit of a particle that travels with a speed

approximately equal to c past the gravitational charge of the

star (see Problem 2.5).

 



 

FIGURE 3.4 An experiment to measure N – m.

 

 

FIGURE 3.5 Deflection of a light ray in the neighborhood of a

mass M.



3.1   Geometry and Space

 

In newtonian mechanics, the motions of objects are

described as taking place in a three-dimensional Euclidean

space. Within the framework of special relativity, the axioms

of Euclidean geometry are valid for the spatial part, relative

to each inertial observer, of space-time. Thus, until now we

have worked under the assumption that the axioms of

Euclidean geometry are valid for space in every inertial

system. Prior to the middle of the nineteenth century, this

was a necessary assumption for physicists to make, since

there was no alternative; they were not aware of the

existence of any other form of geometry. Therefore, they

assumed that there exists in space a set of elements called

points and lines that satisfy the axioms of Euclidean

geometry,* such as the axiom that states that any two

distinct points are incident with just one line. The particular

axiom that will interest us is called the parallel postulate

(Figure 3.6): There exists one and only one straight line DE

that passes through a given point C and is parallel to a

given line AB. The Euclidean axioms imply a set of

propositions such as the one stating that “the sum of the

angles of a triangle is 180°.”

In the nineteenth century, mathematicians discovered

consistent sets of axioms specifying properties of elements

called points and lines that comprised the axioms of Euclid

other than the parallel postulate, and one distinctive axiom

replacing the parallel postulate. These systems of axioms

and their consequences are called non-Euclidean

geometries. In the following, we shall consider a two-

dimensional non-Euclidean geometry (a curved surface in a



three-dimensional Euclidean space) to show how these

geometries can be investigated. Also, we shall extend

without proof some of the results to three- and four-

dimensional non-Euclidean geometries.



3.1.1   A metric form for the surface

of a sphere

 

An introduction to non-Euclidean geometries can be provided

most simply by a study of the geometry of surfaces, spaces

of two dimensions. The relevant Euclidean geometry with

which these non-Euclidean geometries can be compared is

that of a Euclidean plane. This is the geometry applicable to

a sheet of paper or a table top and is the geometry with

which you are acquainted from your studies in high school. In

the following, we shall compare and contrast this familiar

geometry with non-Euclidean geometries.

 

 

FIGURE 3.6 Euclid’s parallel postulate: Through every point

C, there is one and only one straight line DE parallel to AB.

 



 

FIGURE 3.7 The line or geodesic joining two points P and Q

on a sphere is along the great circle passing through P and

Q.

 

An example of a corresponding non-Euclidean geometry is

the geometry of the surface of a sphere. The points of this

geometry are the points on the surface. There are, however,

no straight lines on the surface of a sphere, although there

do exist lines that satisfy many of Euclid’s axioms. Indeed,

we live on a spherical surface and often we go from one

point to another on the surface by what we consider a

“straight path,” by which we mean that curve having the

shortest distance between those two points. A path of the

shortest distance is called a geodesic and corresponds to a

line in the geometry of the sphere. It can be shown that such

a line on a sphere is a great circle given by the intersection

of the spherical surface with a plane that passes through the

center of the sphere (Figure 3.7).



The points and lines in a sufficiently small region on the

surface of a sphere cannot be distinguished by their form

from the points and lines of a small region of a Euclidean

plane. Thus, any small region on the surface of a sphere

approximates a portion of a Euclidean plane.* This is why it

is possible to consider a small region on the surface of the

earth (such as a backyard or a football field) as being flat

and to apply there the propositions of Euclidean geometry to

measurements of distances and angles.

The geometry of the surface of a sphere is non-Euclidean, as

we can show by two simple examples. Consider two lines

that are drawn through two distinct points P and Q,

respectively, and that are perpendicular to the line joining P

and Q(Figure 3.8). On a Euclidean plane, the two lines are

parallel and never meet [Figure 3.8(a)], but on the suface of

a sphere the two lines meet at a point N[Figure 3.8(b)].

Furthermore, the sum of the angles of a triangle on a non-

Euclidean surface is not necessarily 180°; for example, the

sum of the angles of triangle PQN in Figure 3.8(b) is greater

than 180° by the amount of angle at N subtended by the

lines PN and QN.

 



 

FIGURE 3.8 Two lines through P and Q, respectively, and

perpendicular to PQ are parallel on a Euclidean plane (a) but

meet at a point N on the surface of a sphere (b).

 



How can we, who live on a surface, determine whether the

surface is flat or curved? We could determine this from a

rocket ship in space outside the surface, but we shall restrict

our considerations to intrinsic methods that do not involve

leaving the surface. Indeed, we are examining the geometry

of surfaces only as an introduction to the possibilities for a

geometry for the space in which we live. Therefore, we

restrict our considerations to those methods of investigation

that can be generalized to apply to the space in which we

reside and from which we cannot escape.

 

 

FIGURE 3.9 A portion of a non-Euclidean surface that is

infinite in extent.

 

One intrinsic method of investigating the features of a

surface consists in proceeding along a line from a point P; if

we return to P along that line, we have proved that the

surface is non-Euclidean. For example, the early explorers

demonstrated conclusively, by traveling around it, that the

earth is not flat. This is a global method that involves

measurements over distances comparable to the size of the

surface; this method does not work for non-Euclidean

surfaces that are infinite in extent, such as that of the



saddle-like surface of which a portion is shown in Figure 3.9.

Moreover, we should not have to travel across the universe

in order to determine the geometry of space. For our

purposes, we want a means of determining properties of a

geometry by measurements in a small neighborhood of a

point. This can be achieved on a surface in terms of the

distances between neighboring points on the surface.

On a Euclidean plane, the distance ds between two points

with rectangular coordinates (x, y) and (x + dx, y + dy) is

given by the pythagorean theorem (Figure 3.10):

 

 

 

FIGURE 3.10 The pythagorean theorem.

 

This can be written in a notation that allows for easy

generalization to spaces of dimensions higher than two; we

set x = x¹ and y = x² (x superscript 2, not x squared) to

obtain

 



 

The formula for the distance ds can be expressed in terms of

coordinates other than the cartesian coordinates x = x¹ and

y = x². For example, the formula in terms of the polar

coordinates r = x¹′ and 0 = x²′ is (Figure 3.11)

 

 

however, this form can be reduced by the coordinate

transformation

 

 

to the Euclidean form [Equation (3.8)].

An expression similar to Equation (3.8) can be obtained for

distances in the neighborhood of a point on any non-

Euclidean surface, such as a sphere, that has the property

that the surface approximates a portion of a Euclidean plane

in sufficiently small regions. However, the characteristic

feature of the Euclidean plane is that coordinate systems

exist such that Equation (3.8) is valid for distances at all

points on the surface and not just those in the small

neighborhood about one point, such as the origin of the

coordinate system. On a non-Euclidean surface, there are no

such coordinate systems; the expression that holds at every

point on the surface has in any coordinate system the

general form

 



 

FIGURE 3.11 ds² = (dx¹′)² + (x¹′)²(dx²′)².

 

 

where the gij’s depend explicitly on the coordinates of the

point (x¹, x²) in the neighborhood of which the distance ds is

being measured; by the definition of a non-Euclidean

surface, it is impossible to choose a coordinate system on a

non-Euclidean surface such that

 



 

everywhere.

The form ∑i, j gij dxi dxj is called the metric form, and the set

of numbers gij¹, x²) is called the metric tensor. The geometry

of a space in which a metric form like Equation (3.11) can be

defined is called a Riemannian geometry, after the German

mathematician Georg Friedrich Bernhard Riemann (1826–

1866), who proposed such geometries.*

The surface of a sphere provides an example of the result

described above. To examine this, we need to introduce a

coordinate system on the sphere, which we do in the

following way: Consider any point P on the sphere of radius

R(Figure 3.12). In a small neighborhood of P, we set up a

rectangular coordinate system. The axes are extended by

lines over the sphere. Lines equidistant along the x¹ axis

from P are drawn at right angles to the x¹ axis. The x¹

coordinate of any point on one of these lines is equal to the

distance from P along the x¹ axis to that line. At points

equidistant from P along the x² axis, curves are drawn that

cut the lines x¹ = constant at right angles. The x² coordinate

of any point on one of these curves is equal to the distance

from P along the x² axis to that curve. The resulting

coordinate system is shown in Figure 3.12. Note that this

coordinate system is not the only one that we could set up

on the sphere; however, this one system is sufficient for our

purposes.

In the neighborhood of the origin P, the metric takes the

form

 



 

 

FIGURE 3.12 Coordinate system on the surface of a sphere.

 

whereas, about any other point with coordinates (x¹, x²), the

metric form is (Figure 3.13)

 

 



 

FIGURE 3.13

 

 

The distance ∆2 = R dθ′ = dx². The distance

 

 

Therefore,

 



 

This particular form of the metric results from our choice of a

coordinate system. However, there does not exist any choice

of coordinates for which this metric form reduces to the

expression (3.8) at every point on the surface. This result

can be perceived by noting the following: Suppose we

choose such a coordinate system along a small band around

a great circle, say x² = 0, through P. Since the theorem of

Pythagoras applies to the coordinates, this coordinate

system can be represented by squares along that line.

However, it is impossible to carry this hypothesized

coordinate system off the equator because we cannot fill

succeeding bands with the same number of similar squares

(Figure 3.14). The quadrilaterals become pinched in at the

side opposite the equator as we go off the equator.

This example illustrates the fact that, even though a small

neighborhood of any point on a non-Euclidean surface may

be quite similar to a portion of a Euclidean plane, deviations

do exist from a Euclidean nature that show up in a variation

of the metric tensor across the surface. Thus, we can detect

deviations from a Euclidean character in the behavior of the

rate of change or the derivatives of the metric tensor.

 

SUMMARY The geometry of the surface of a sphere is non-

Euclidean. The nature of the geometry of a surface in which

a metric form

 

 



can be defined is determined by the metric tensor. If it is

possible to choose coordinates such that the metric form is

 

 

everywhere, the surface is a Euclidean plane. Otherwise, the

surface is non-Euclidean. The non-Euclidean character of a

surface can be detected by an examination of the behavior

of the derivatives of the metric tensor.

 

 

FIGURE 3.14 We can set up a coordinate system in which

there is a band of squares around the equator. However, we

cannot introduce a band with the same number of identical

squares off the equator.

 



 

FIGURE 3.15 The path is described by the equation x¹ = f(x²).

 

Example 3.1

 

Q.   Show that the shortest distance between two points A

and B on the surface of a sphere lies along the great circle

through those points.

 

A.   The calculation of this problem can be made easier by a

suitable choice of coordinates. Let A and B lie along the x²

axis for which x¹ = 0 in a coordinate system like that shown

in Figure 3.12.

 

Consider any path along the surface that joins A and B

(Figure 3.15). This path can be specified by an equation of

the form



 

 

The distance along this path from A to B is given by

 

 

The integrand is always greater than or equal to unity, so the

integral has its minimum value for a function f(x²) such that

the integrand always has its smallest value, namely unity.

Therefore,

 

 

and since, by our choice of coordinate axes, f = 0 at A, f(x²)

= 0 for x² between A and B.

 

The line x¹ = 0 joining A and B is a great circle; thus, we

conclude that the geodesies on a sphere are great circles.

 

Problem 3.6

 



In the table you are given the shortest distances (in miles)

between the cities. Prove that the earth is not flat. Hint: Try

to draw a scale map on a sheet of paper.

 

City Miles

Miami-Moscow 5,731

Miami-Singapore 10,546

Miami-Capetown 7,658

Miami-Cairo 6,484

Moscow-Singapore 5,238

Moscow-Capetown 6,300

Moscow-Cairo 1,803

Singapore-Capetown 6,005

Singapore-Cairo 5,137

Capetown-Cairo 4,500



 

Problem 3.7

 

The components of a vector V at the point (x¹, x²) of a

spherical surface are (V¹, V²) in the coordinate system shown

in Figure 3.12. Show that the cartesian components of the

vector at that point are [V¹ cos (x²/R), V²]. The cartesian

components of the vector are equal to the (directed) lengths

of the component vectors V = V1 + V2 in the appropriate

directions, whereas the components (V¹, V²) are equal to the

relative number of coordinate lines that such lengths

encompass.

 

Problem 3.8

 

Show that the transformation

 

 

reduces the metric form

 

 

to the form

 



 

Problem 3.9

 

Show, using a rectangular coordinate system, that the path

of shortest distance between two points on a Euclidean plane

lies along a straight line.

 

Problem 3.10

 

Show, using a polar coordinate system, that the path of the

shortest distance between two points on a Euclidean plane

lies along a straight line.



3.1.2   The curvature tensor

 

A non-Euclidean surface can be distinguished from a

Euclidean plane by the way in which the metric varies from

point to point on the surface. This important feature of the

metric is illustrated below for the case of a spherical surface.

Our concern will be those combinations of the metric tensor

and its derivatives that distinguish the spherical surface from

a Euclidean plane. The appropriate derivatives of the metric

tensor can be determined geometrically in the following

manner:

Consider a vector V defined at some point (x¹, x²) on the

surface; this might represent a velocity, for example. The

components (V¹, V²) of this vector with respect to the given

coordinate system represent, as in the Euclidean plane, the

relative number of coordinate units required to describe the

perpendicular components in the direction of the x¹ and x²

coordinate curves at that point—that is, as in our previous

work on vectors like velocities and forces, a vector V is

represented through a scaling factor, say α, in terms of a

displacement ∆x: V = α ∆x or, alternatively, V¹ = α ∆x¹, V² =

α ∆x². The relevant displacement ∆x must be very small in a

curved surface, since the length of the coordinate units

varies from point to point in a curved space.

Suppose such a vector is assigned at some point, say the

origin P, and we wish to compare this vector with another

vector assigned at some point on the surface, say that

labeled Q on Figure 3.16. The comparison can be made at Q

after the vector V, defined at P, is transported to Q. At Q, the

vector V may have components different from (V¹, V²)

because the coordinate axes are not Euclidean rectangular



axes. We can proceed naively to obtain the components of V

at the point Q, as follows: Since the neighborhood of a point

on the surface is similar to a small portion of a Euclidean

plane, we can use the Euclidean concept of parallelism for

small displacements. Therefore, we can transport the vector

to the point Q along some curve such that, for each small

displacement dx = (dx¹, dx²) along the curve, the vector at

the point (x¹ + dx¹, x² + dx²) is parallel to that at (x¹ x²) in

the Euclidean sense. The change dV in the components of

the vector under such a small displacement depends linearly

on the components of the vector and also linearly on the

components of the displacement (see Example 3.2). This can

be represented as

 

 

 



FIGURE 3.16 A vector V given at P may undergo parallel

transport along the curve to Q.

 

where the entity Γ describes an operation that combines the

components of the vector V and the components of the

displacement dx to yield the change dv. On a spherical

surface with the coordinate system of Figure 3.12, the

change in the components of V under the displacement dx

can be shown (Problem A3.8) to be

 

 

By moving the vector parallel to itself through a succession

of these small displacements, we can transport the vector V

from P to Q along the given curve.

The mathematical entity Γ, called the connection, that

describes the combination of the components of V and dx

represents a measure of the rate at which the metric tensor

varies in the neighborhood of the point (x¹, x²) and involves

the first derivatives of the components of the metric tensor.

Now that we have a method of transporting a vector from P

to Q along a curve, we must inquire next whether the vector

transported to Q depends upon the curve along which it is

transported—that is, if we transport the vector to Q along

two different curves, is the result the same? It certainly is for

parallel transport on a Euclidean plane, but the vector

transported to Q on a non-Euclidean surface does depend on



the curve, as the following example shows. Consider the

vector V = (0, V) assigned at P and the triangle on the

spherical surface shown in Figure 3.17. We transport the

vector to the point Q along the curve x¹ = 0 and also along

the curve PRQ, where PR is the axis x² = 0, R has

coordinates (πR/2, 0), and RQ is the line x¹ = πR/2. We see

from Figure 3.17 that the vectors that undergo parallel

transport along the two paths are perpendicular at the point

Q. This result can be stated as follows: A vector transported

parallel to itself around a closed curve undergoes no change

on a Euclidean plane but undergoes some change on a non-

Euclidean surface. This result provides us with a means of

distinguishing a Euclidean plane from a non-Euclidean

surface, and it also provides a way of determining the

warping or curvature of a surface.

Consider a vector V with components (V¹, V²) assigned at the

point P with coordinates (x¹, x²). Transport this vector parallel

to itself around the small area shown in Figure 3.18. We

consider the area as a directed entity with the direction

being given by the right-hand rule applied to the direction of

propagation around the area. In the general case of a multi-

dimensional space, the directed area will be represented by

an entity that is described by a number of components; let

the symbol A represent that entity. Then, after being

transported parallel to itself around this area, the vector V

will be changed by ∆V, which depends linearly on the

components of V and on those of the directed area A (see

Example 3.4). We can represent this symbolically by the form

 



 

FIGURE 3.17 Parallel transport around losed curve provides a

means of inguishing (a) a Euclidean surface n (b) a non-

Euclidean surface.

 

 

where the entity R describes the operation that combines the

components of V and those of the directed area A that yield

the change ∆V. On the sphere, this equation has components

with the form (see Problem A3.9)

 

 



where A is the magnitude of the area if the area is

circumvented in the counterclockwise direction. The entity

denoted by R depends on the coordinates (x¹, x²) and is

called the curvature tensor at the point P. The curvature

tensor is a mathematical entity that, like a vector, can be

specified by a number of components relative to a given

coordinate system but, in fact, is independent of any

coordinate system (see Section 1.9). Thus, for example, if all

the components of the curvature tensor in a given space

vanish everywhere with respect to one coordinate system,

they vanish everywhere relative to any other coordinate

system in that space. The components of the curvature

tensor R are written usually as

 

and

 

 



 

FIGURE 3.18 The change in V under parallel transport around

the area is ∆V.

 

There is no change under parallel transport around a closed

curve on a Euclidean plane, so the curvature tensor is zero at

every point on a Euclidean plane. The condition for a

Euclidean surface, therefore, is the set of equations

 

 

On the other hand, the curvature tensor does not vanish at

every point on a non-Euclidean surface like a sphere; indeed,

on a sphere, the curvature tensor is proportional to 1/R² and

provides a measure of the bending or warping of the surface.



The curvature tensor R involves the rate at which the

connection Γ varies around the small area; R involves the

first derivatives of Γ and products of the Γ’s; Γ consists of

combinations of the first derivatives of the metric tensor gij.

Therefore, the curvature tensor contains second derivatives

of the components of the metric tensor; furthermore, it is not

linear in these components. These mathematical properties

of R are important in Einstein’s theory of gravitation.

We considered a two-dimensional non-Euclidean geometry

above because of the difficulties involved in visualizing a

three-dimensional geometry that does not satisfy Euclid’s

axioms. However, consistent sets of axioms for the geometry

of a three-dimensional space can be imagined for which the

space does not have a Euclidean character. We can obtain a

mental notion of a non-Euclidean space by imagining some

sort of a lumpiness or warping in the space. The bending of

space can be detected in a manner identical to that used in

our analysis of a non-Euclidean surface. We consider a vector

V designated by the components (V¹, V², V³) at a point P with

coordinates (x¹, x², x³). Under parallel transport to the point

x + dx, the components of V undergo the change

 

 

Under parallel transport around a directed area specified by

A, the vector changes by

 

 

where R denotes the curvature tensor in the three-

dimensional space. The space is Euclidean if the components



of the curvature tensor vanish everywhere; it is non-

Euclidean otherwise.

Since the possibility of a non-Euclidean space exists, we

must inquire as to whether the space in which we live is

Euclidean or non-Euclidean. This question can be decided

only by experiment. There is no a priori reason why space

should satisfy one set of axioms, such as those of Euclid,

rather than another. However, we can expect, on the basis of

our experiences, that space is Euclidean for an observer who

is concerned only with a small region of space. We do not

expect that deviations from Euclidean geometry will show up

to any appreciable extent in the laboratory.

There exists also the possibility that space-time is curved

and is not properly described by the Lorentz metric form

 

 

We shall investigate this possibility in Section 3.2.

 

SUMMARY Because a small portion of a spherical surface

approximates a region of a Euclidean plane, a vector can be

carried by parallel transport step by step along a curve in the

surface. The changes in the components of the vector

between neighboring points are determined by the

connection Γ. The change in a vector upon parallel transport

around a small area is measured by the curvature tensor R.

This tensor is zero everywhere on a Euclidean plane but not

on a non-Euclidean surface. These results can be generalized

to spaces of three or more dimensions.



 

 

FIGURE 3.19 Under parallel transport, a vector parallel to one

of the coordinate axes may acquire an additional component.

 

Example 3.2

 

The connection Γ at any point on a surface is represented by

a set of components

 

 

These components and their relation to the changes in the

components of vectors under parallel transport arise in the

following way:



Consider a vector that has only one nonvanishing component

at a point P relative to a curvilinear coordinate system

(Figure 3.19). Under parallel transport to a neighboring point

Q, this vector may acquire a component along the other

coordinate line. Thus, each component Vi of a vector may

experience a change that is linear in both the component Vi

and the other component.

Similarly, the change from parallel transport through a small

displacement dxj along the xj coordinate line is proportional

to that displacement. Since the components of small

displacements are additive, the change from parallel

transport in a small displacement dx = (dx¹, dx²) is linear in

each of the components. Therefore, in general, the change

dVi in the component of a vector under parallel transport

through the small displacement (dx¹, dx²) is linear in the

components of the vector (V¹, V²) and the components of the

displacement dxk:

 

 

The components that represent the connection are called

coefficients of connection.

The coefficients of connection at a point depend on the

relationship between neighboring coordinate lines and,

therefore, on the rate at which the metric tensor varies in

the neighborhood of that point. Thus, the depend on the

derivatives of the metric tensor gij.

 

Example 3.3



 

Q.   Find the coefficient of connection relative to a polar

coordinate system at the point (x¹, x²) = (r, θ) on a Euclidean

plane.

 

A.   The change dVi in the component Vi of the vector (V¹, V²)

at (x¹, x²) under parallel transport through the displacement

(dx¹, dx²) is given by

 

 

Our concern here is with . This coefficient appears by itself if

we find the change dV² in the component V² of the vector (0,

V²) under parallel transport through the displacement (dx¹,

0), since in this case, the sum overy and k reduces to a

single term:

 



 

FIGURE 3.20 Under parallel transport, V goes over to V.

 

 

The component V² represents the relative number of

coordinate intervals required to give the length of the vector

(Figure 3.20). The distance between the coordinate lines x²

and x² + dx², which is the length of the coordinate interval, is

given by x¹ dx²(= r dθ), so V²x¹ is a constant as the

component V² undergoes parallel transport along the x¹

coordinate line. Therefore,

 

 

or

 

 

Thus, the coefficient of connection is given by

 

 

Example 3.4



 

The components of the curvature tensor arise in the

following way:

Consider a vector (V¹, V²) defined at the point P(x¹, x²). The

changes in the components under parallel transport to are

given by

 

 

Under parallel transport from P1 to P2 (Figure 3.21), there

are additional changes

 

 

to second order in the dx’s; d(1)Vj is given by Equation

(3.34) and by

 

 

Therefore, under parallel transport around the parallelogram

PP1P2P3, the changes ∆Vi in the components are given by an



expression of the form

 

 

The set of numbers forms the components of the curvature

tensor R at the point (x¹, x²). It follows from Equation (3.35)

that the components involve the derivatives of the

coefficients of connection and hence the second derivatives

of the metric tensor; they also involve products of the and

therefore are nonlinear in the components of the metric

tensor.

 

Problem 3.11

 

Find the coefficient of connection relative to a polar

coordinate system at the point (x¹, x²) = (r, θ) on a Euclidean

plane.

 

Problem 3.12

 

Find the coefficient of connection relative to a polar

coordinate system at the point (x¹, x²) = (r, θ) on a Euclidean

plane.

 



Problem 3.13

 

Describe what happens to the components, relative to a

polar coordinate system, of a vector under parallel transport

around a small quadrilateral at (x¹, x²) = (r, θ) on a Euclidean

plane. Explain why the coefficients of connection are not

zero but the curvature tensor is.



3.2   The Principle of Equivalence and

Curved Space-Time

 

Let us assume for the moment that we are two-dimensional

creatures living on the surface of a large sphere. Let us

assume further that we had investigated the behavior of

objects in a small region on that surface (which we assumed

was a portion of a Euclidean plane) and that we had arrived

at laws of mechanics similar to those of Newton as a result

of these investigations. In particular, let us make the

assumption that objects in free motion travel along the

geodesies, the “straight lines,” of our curved space. It is

important to note that, at this stage, the “law” of geodesic

motion is an assumption that is made in addition to those of

the properties assumed for the space.

 

 

FIGURE 3.21 The parallelogram PP1P2P3.



 

 



FIGURE 3.22 Free motions on a spherical surface, (a) The

initial positions and the orbits of the two particles. (b) The

initial conditions of the motions. (c) Apparent subsequent

motions of the two particles, visualized as taking place on a

Euclidean plane.

 

At this moment, our techniques have developed to the point

where we can either make measurements over larger

distances or make more precise measurements in our small

region; so we perform the following experiment: Two objects

are given identical initial velocities along two parallel lines

and left alone to travel freely (Figure 3.22). The objects

travel along the geodesies of the curved space. If we

examined their behavior over distances smaller than πR/2,

we would observe that the objects approach each other as

shown in Figure 3.22(c).* We might try to describe this

behavior in terms of a force of attraction. Alternatively, we

might be more imaginative and attempt to explain this

behavior in terms of a curvature in the space in which we

live.†

This simple example can provide further insight into the

topic of physics in curved spaces. It shows a circumstance in

which each particle follows a curve, the geodesic,

independent of the properties of that particle. We had

studied before one class of real motions that does not

depend on the properties of the object undergoing them—

namely, motions under gravitational forces. These forces,

and the motions they describe, are independent of the

properties of the object because of the equality of

gravitational charge and inertial mass, and hence may

result from the geometry of the space or the space-time in

which we exist. In this section, we explore this suggestion

further in terms of the principle of equivalence.



3.2.1   Geodesic motion in a region of

space devoid of gravitational forces

 

The simple example given in the introduction indicates that

it may be possible to describe motions under a gravitational

force as geodesic motions in a curved space. We begin our

investigation of this possibility by examining the feasibility of

describing free motions in a region devoid of gravitational

forces as geodesic motions.

In the example illustrated in Figure 3.22, it was necessary to

specify the behavior in time of the objects as well as the

geometry of the space. As a result of the assumption of

geodesic motions, the geometry of the space determined the

orbit of a freely moving particle. However, that assumption

of geodesic motions did not determine the time development

of the motion; the direction in which the particle moves is

given by the geometry, but the rate at which it moves is not.

This raises the possibility that we should extend our

considerations from space to space-time, since the

“direction” of the world line in space-time includes both

direction in space and rate of motion (see Figure 1.106). Let

us investigate this possibility for the case of a freely moving

particle.

The Lorentz metric form

 

 

adequately describes the structure of space-time in regions

free of “gravitational forces.” For a freely moving particle, ds



is the proper time interval along the world line of the

particle, and dx, dy, and dz are related to dt by the equation

 

 

Hence

 

 

The assumption was made in the simple fictitious example of

Figure 3.22 that free particles moved along geodesies. Thus,

we could describe the characteristic feature of the orbit of

the hypothetical freely moving particle in terms of the metric

form. The characteristic feature of the free motion of a real

object is the fact that its velocity v is a constant. Can we

describe this characteristic feature of real free motions in

terms of the Lorentz metric form ds?

 



 

FIGURE 3.23 An arbitrary world line joining events 1 and 2.

 

Consider the integral

 

 

along any world line between two given events 1 and 2

(Figure 3.23). This integral corresponds to the distance along

a possible path of the motion in Figure 3.22. In that example,



the orbit corresponded to the shortest path between the

endpoints of the motion. Here, we wish to compare the

values of the integral over the various possible motions

between the two events. Since ds is an invariant, we can

evaluate this integral in any reference system, and, in

particular, in that inertial system S0 in which the events 1

and 2 occur at the same place (Figure 3.24). This particular

reference system is convenient for our purposes because the

free motion of the particle from event 1 to event 2 relative to

this frame is described by v(t) = 0. Indeed, the particle

cannot go from event 1 to event 2 with a motion described

by v(t) = 0 relative to any other reference system. For this

reason, the following argument for the result that is a

maximum for free motion is the simplest argument by which

this result can be obtained, although the same result can be

acquired if we refer the motions to any reference system

through the use of more complicated reasoning (see

Example 3.5).

 



 

FIGURE 3.24 Arbitrary world line joining events 1 and 2 in

that inertial frame S0 in which events 1 and 2 take place at

the same point in space.

 

The integrand is always less than c unless υ(t) = 0. Since the

particle can travel between event 1 and event 2 with υ(t) = 0

relative to S0, and since υ(t) = 0 is the condition in S0 for

free motion between these events, the condition in S0 and,

hence, in any inertial reference system for free motion

between the two events is that the integral be a maximum.*

This corresponds to the condition for a straight line or a



geodesic joining events 1 and 2 in space-time (Figure 3.25)

relative to any inertial system.

 

 

FIGURE 3.25 Condition for free motion.

 

Thus, we can describe the characteristic feature of free

motion in terms of the Lorentz metric. This indicates the

possibility that we can likewise describe motion under a

gravitational force in terms of a modified metric form.

 



SUMMARY The condition for free motion between event 1

and event 2 in a region of space devoid of gravitational

forces is that the proper time be a maximum, where

 

 

is the Lorentz metric.

 

Example 3.5

 

The following method can be used to show that , evaluated

between two fixed events 1 and 2, has a maximum for v

equal to a constant vector.

We choose our coordinate axes so that the space-time

coordinates of the events 1 and 2 are (0, 0, 0, 0) and (cT, X,

0, 0). The motion with constant velocity between events 1

and 2 is described by the (one-dimensional) velocity V = X/T,

or by the equation

 

 

We consider now other motions between the events 1 and 2.

Let η(t) be any function that satisfies the relations

 

 



Then, the function

 

 

where ∊ is a number, describes a motion between the two

events 1 and. 2 (Figure 3.26). We wish to show that

evaluated over this motion is less than that integral

evaluated over the motion with constant speed. Consider the

integral

 

 

This is bounded above by c(t2 – t1), and thus the integral has

a maximum value that occurs for that value of e for which

 

 

Since

 

 

this condition can be written as

 



 

An integration by parts gives

 

 

The first term vanishes, since η = 0 at the events 1 and 2.

The variable t appears within the braces in the integrand of

the second term only in the terms in ε(dη/dt); so the

derivative operator d/dt is equivalent, according to the chain

rule, to d[(ε dη/dt)/dt][d/d(ε dη/dt)] or ε(d²η/dt²) d/d(ε dη/dt).

Therefore, the last term is proportional to ε:

 

 

This expression is zero if ε = 0 or xε(t) = x(t). Hence, the

integral is a maximum for the motion described by x = Vt.

 



 

FIGURE 3.26 Two paths for the motion between events 1 and

2.

 

Problem 3.14

 

Show that is a minimum between the two events 1 and 2 for

the nonrelativistic force-free motion between those two

events.*



 

Problem 3.15

 

Use the following method to show that , evaluated between

two given events 1 and 2, has a maximum for v(t) = dr/dt =

a constant vector.

(a)   Let r0(t) describe that motion from event 1 (ct1, r1) to

event 2 (ct2, r2) for which the integral is a maximum. Let

η(t) be any vector that satisfies η(t1) = η(t2) = 0. Show that,

for s a number,

 

 

describes a motion between events 1 and 2.

(b)   Explain why the integral

 

 

has a maximum value for ε = 0.

(c)   Show that

 

 

(d)   Show that



 

 

(e)   Show that the integral of (d) vanishes for every vector

function η(t) if r0(t satisfies the relativistic equation of

motion for a free particle.



3.2.2   The general form of the metric

in the neighborhood of a massive

object†

 

We defined inertial reference systems as those systems

moving with constant velocities relative to the fixed stars. In

the absence of gravitational forces, Newton’s laws of motion

and other laws of physics take on their simplest forms when

referred to these systems; for example, light travels in

straight lines relative to an inertial reference system,

although not in the presence of gravitational forces. The

effects of gravitational forces can be taken into account

through use of the principle of equivalence. This principle

states that the laws of physics that describe the behavior of

physical systems relative to an inertial system in which a

constant acceleration due to gravity g is experienced are

equivalent to the laws of physics relative to specific

noninertial systems in which no gravitational forces act

(Figure 3.27). The equivalent noninertial systems are those

that undergo the acceleration -g relative to the fixed stars.

 

 



FIGURE 3.27 The principle of equivalence. The laws of

physics are the same in the box in (a) as in the box in (b).

Alternatively, the box in (c) is equivalent to an inertial

reference system in which no gravitational forces act.

 

Indeed, near the surface of the earth, the simplest way to

obtain the equivalent to a -local, small region of an inertial

reference frame in which objects in undisturbed motions

travel with constant velocity and in which light travels in

straight lines is to use as the reference frame a box that is

falling freely.* There is no need to take account of

gravitational forces in such a frame; the effects of the

gravitational force appear only upon transformation to a

reference system moving with a constant velocity relative to

the fixed stars.

The same transformation is not applicable to every point in

space, however. It is because of this fact that a gravitational

force, which is called a true force, differs from an inertial or

fictitious force. An inertial force arises when motions are

referred to a reference frame, extending over all space, that

is undergoing an acceleration relative to the fixed stars

[Figure 3.28(a)]. The inertial force disappears at all points in

space under a (uniform) transformation to an inertial system

[Figure 3.28(b)]. On the other hand, a gravitational force

cannot be transformed away at all points in space. A true

gravitational force varies from point to point in space [Figure

3.28(c)], and thus also the corresponding “inertial”

reference system varies from point to point [Figure 3.28(d)],

The fact that, in a region of gravitational force, we can

transform to the equivalent of an “inertial” system only

locally is reminiscent of the circumstances that we

encountered before on the surface of a sphere; in that case,



we could transform to a Euclidean plane only locally. The

fact that we were dealing there with a curved surface

manifested itself in the metric form. This suggests that we

investigate whether we can replace the effects of gravity by

the effects of a metric form that can be reduced locally to

that of an inertial system.

 

 

FIGURE 3.28 The difference between an inertial force and a

gravitational force. (a) The inertial force experienced



relative to S is the same at every point in space. (b) There

are no inertial forces anywhere relative to S′. (c) The

gravitational force, and hence the gravitational acceleration

g, varies from point to point in space, (d) The effects of a

gravitational force can be transformed away, but the

transformation varies from point to point in space.

 

The metric form appropriate for an inertial system is the

Lorentz metric,

 

 

The world lines of particles undergoing accelerated motions

relative to an inertial frame are curved (Figure 3.29); the

transformation to an accelerated frame is a transformation

among both space and time coordinates. This suggests that

the metric form appropriate for the description of the effects

of a large gravitational charge has the general form

 

 



 

FIGURE 3.29 The world lines of partides undergoing

accelerated motions relative to an inertial frame.

 

where the components gμν of the metric tensor are not

constants and, indeed (see Figure 3.28), cannot be

transformed to those in Equation (3.51) at all events in

space-time. The validity of this suggestion “is made

plausible by arguments in Sections 3.2.3 and 3.2.4.

 



 

FIGURE 3.30 Region R where the acceleration g due to

gravity is essentially constant.

 

SUMMARY The metric that describes the gravitational effects

of a massive object has the general form

 

 

The metric tensor gμν cannot be reduced to the Lorentz

metric at all points in space-time.



3.2.3   A metric form appropriate for

a reference system experiencing a

constant acceleration relative to the

stars

 

The principle of equivalence allows us to describe the

effects of gravitational forces in terms of behavior relative to

a reference system accelerated with respect to the inertial

frames. Therefore, we use this principle now to obtain an

approximation to a metric form appropriate for a region R of

constant gravitational acceleration g.

 

 

FIGURE 3.31 A small Euclidean co-ordinate system in the

neighborhood of the point P.

 



Let the extent of R in any direction be approximately H

(Figure 3.30). We shall assume that g and H are sufficiently

small that their product, (a speed)², is much less than c².

The natural measure of such an approximation is gH/c², and

since we wish to obtain only a first estimate of the effects of

g, we shall carry through calculations valid only to the first

order in this quantity.

We follow the principle of equivalence and replace the

inertial reference system in the region of gravitational

acceleration g by a reference system undergoing the

acceleration -g in a gravitation-free region of space (Figure

3.27). We wish now to incorporate the effects of this

acceleration in a metric form. Because of the condition that

the acceleration g is constant, the appropriate metric form

is that for a curved coordinate system in a flat space, the

Minkowski space-time continuum. However, the procedure

we follow is similar to that used in Section 3.1 to determine

the metric form on a spherical surface, and this similarity

will be exploited below to introduce the metric form

appropriate for a region of constant acceleration.

It should be noted that there exist many possible coordinate

systems, as was the case with the spherical surface. The

particular coordinate system described below is fitting for

our work because it allows us to generalize the metric from

that applicable to a region of constant gravitational

acceleration [Equation (3.58)] to that applicable to a region

of variable gravitational acceleration [Equation (3.62)].

 



 

FIGURE 3.32 A small Lorentz co-ordinate system in the

neighborhood of the event E.

 

In the case of the spherical surface, we first chose one point

P on that surface and, in a small neighborhood about that

point, we set up a coordinate system relative to which the

metric form was Euclidean (Figure 3.31). Here, we choose an

event E at one point O in R and, in a small space-time region



about that event, we set up a coordinate system relative to

which the metric form is Lorentz. The time axis of this

coordinate system is along the world line of O at the event

E, and one spatial axis, say the z axis, is along the direction

of the acceleration -g (Figure 3.32).

Next, in the case of the spherical surface, we extended the

axes through P and we marked off distances along these

lines. One of these lines was selected because of some

distinctive feature, such as its being the equator in the case

of the earth. Coordinates near this line were chosen in such

a way that the metric along the line was Euclidean (Figure

3.33). Here, also, we extend the axes of the local coordinate

system around E. We will be concerned with the metric form

at other points P in R relative to that at O, so we extend the

time-like axis along the world line of O and choose

coordinates in the neighborhood of that line such that the

metric is always Lorentz at O (Figure 3.34):

 

 

 



FIGURE 3.33 Extension of the co-ordinate axes through P

and the choice of a line along which the metric is taken to

be Euclidean.

 

The fact that the metric is Lorentz along the world line of O

restricts our choice of clocks and measuring rods; they must

be those appropriate to an inertial system at O at any

instant of time. At any time t during its motion, the point O

will be instantaneously at rest relative to some inertial

frame St (Figure 3.35). The clock and the elements of the

measuring rods in St coincident with O at that instant

determine appropriate inertial unit time and distance

intervals at O at that time. Thus, for example, the rate of

the clock at O is timed in turn by the various inertial clocks

that are successively at rest relative to O (at the instants at

which they are coincident with O).

Finally, in the case of the spherical surface, we selected the

“straight lines” perpendicular to that line along which the

metric had the Euclidean form and marked off unit distances

along those lines to obtain the completed coordinate system

(Figure 3.36). Here also, at an event such as E along the

time axis, we select space-like lines perpendicular to the

instantaneous direction of the time axis and mark off the

unit distances along those lines (Figure 3.37).

 



 

FIGURE 3.34 Extension of the coordinate axes through E and

the world line of O along which the metric is taken to be

Lorentz. The straight-line segments are along the direction

of the spatial axes corresponding to the instantaneous time

axes at the points where the straight lines intersect the

world line of O.

 



 

FIGURE 3.35 The clod same rate as the insta incident clock

in the that is instantaneously to O.

 

This is equivalent to determining distances in R with inertial

measuring rods in the following manner: The units of



distance are marked off by comparison with the measuring

rods of the inertial system St that is instantaneously at rest

relative to R (Figure 3.38). The inertial system St is

instantaneously at rest relative to every point in R at the

same instant of time as measured by the clocks in St.

Therefore, the distances in R are marked off simultaneously

according to the clocks in the instantaneous rest inertial

system. This ensures that the spatial distance between O

and P is the same relative to every inertial frame at the

instant that the frame is at rest relative to R. Also, because

of this, the metric at every point P in R is

 

 

 

FIGURE 3.36 The completed coordinate system.

 



 

FIGURE 3.37 The completed coordinate system. The straight

lines are the spatial axes corresponding to the

instantaneous time axes at the points where the straight

lines intersect the world line of O.

 

where dtSP is the time interval at P measured relative to the

instantaneous rest frame St.

 



 

FIGURE 3.38 Distance measurements in R. The distances are

marked off by the measuring rods of the inertial system St

that is instantaneously at rest relative to R.

 

The relation between dtSP and the corresponding time

interval dt at P that results from our choice of coordinates

can be obtained in the following way: Consider the time

interval dt between two events A and B on the world line of

P (Figure 3.39). Since AB and CD he along time-like

coordinate lines and both lie between two spatial coordinate

lines, this time interval has the same length as the time

between the two events C and D relative to the inertial

frame St.

 



 

FIGURE 3.39 AB = CD + 2z tan α.

 

The magnitude of the slope, tan α, of the spatial coordinate

lines through A and B on the space-time diagram of the



instantaneous rest system is given by υ/c, where υ is the

speed of O at the events C and D. This is the speed acquired

under the acceleration g in the time dt/2:

 

 

The time between the events A and B as measured by the

relevant inertial clock in St is dtSP, and the size of this time

interval is larger than dt by the amount

 

 

Therefore,

 

 

This result obtains also if we use the same set of clocks that

was used at O to provide the rate of the clock at any point P

below O in R (z < 0). This is shown in Figure 3.40.

The metric at every point P in R is given, to order gH/c², in

terms of the time and spatial coordinates pertinent to that

point by Equation (3.54) with the substitution from Equation

(3.57):

 



 

 

FIGURE 3.40 An approximate method for setting the rate of

the clock at P, below O in R. The interval of time dto at O is

related to that dtP at P by the relation between a single

stationary clock in the inertial system St and the set of

clocks in the inertial systems St (see Equation 1.37):

 

 

(a) The clock at O has the same rate as the coincident clock

Ct in the inertial system St that is instantaneously at rest

relative to O. (b) The clock at P is adjusted to have the same

rate as the clock Ct, which was used to set the clock at O,

when clock C is coincident with P. At that event, the clock Ct

is moving with speed relative to O.

 



The geodesies corresponding to this metric form are world

lines undergoing the constant acceleration g, as the

following argument shows: Relative to an inertial system,

the integral ds has its maximum value for motion with

constant velocity between the events 1 and 2. Therefore,

relative to R, the integral will have its maximum value with

the constant acceleration g, as shown in Figure 3.41.

 

SUMMARY The procedure used to introduce a coordinate

system on the surface of a sphere can be generalized to

provide a metric form for a small spatial region experiencing

a constant acceleration relative to an inertial system. This

metric form is

 

 

where g is the magnitude of the acceleration and is its

direction.

 

Problem 3.16

 

Use the procedure given in the text to find a coordinate

system on a Euclidean plane that is appropriate for the

description of a circular motion in that plane. You should

obtain the polar coordinate system.



3.2.4   An approximation to the

metric form in the neighborhood of a

massive object

 

The space-time metric form appropriate for a small spatial

region experiencing a constant gravitational acceleration is

given by

 

 

This metric form can be generalized, in the following way,

appropriate for any region about a spherical uniform

gravitational charge distribution. The additional term that

gives the change in the metric from O to P, 2gz/c², depends

on the position of the region R relative to the source of

gravitational acceleration, since g itself depends on that

position. We can write the product gz as Δϕ0(P), the

gravitational potential energy per unit mass at the point P

relative to that at O [see Problem 3.1(b)].

Suppose now that we consider the change in the metric

form between a series of points such that neighboring

points are sufficiently close that the acceleration g is

appreciably constant in the region between them. At some

reference point that is a large distance away from the

gravitational charge, the metric form is that of Lorentz:

 



 

As we compare the metric form between one point and its

neighbor, starting from the reference point, the metric form

changes essentially by the addition of dt² times twice the

gravitational potential energy per unit mass between the

points:

 

 

We can add up these changes to obtain, at the event (ct, r),

 

 

where (ϕ(r) is the potential energy per unit mass at r

relative to that at the reference point. For a spherical

uniform source of gravitational charge M,

 

 

[see Problem 3.1(a)], so that*

 

 



 

FIGURE3.41 If an object undergoes motion with constant

velocity V relative to an inertial system, as in (a), it will

undergo an acceleration relative to R(b).

 

This metric form,* together with the postulate that a freely

falling object travels along a geodesic, determines the

motion of an object in the neighborhood of a gravitational

charge M at the point r = 0 (Figure 3.42). Thus, we have

replaced the effects o f a gravitational force by introducing a

curvature in space-time.

Geodesic motion in the space-time with the metric form

(3.64) given by the principle of equivalence also yields other

results of physical consequence. We shall discuss these in

Section 3.3.

 



SUMMARY The metric form in the neighborhood of a mass M

is given by the principle of equivalence to be approximately

 

 

 

FIGURE3.42 Geodesic motion for a planet in a circular orbit

about the sun, as described by the metric (3.64).

 

Problem 3.17

 

Calculate GM/rc² at a point on the earth’s surface and also

at a point on the sun’s surface. Compare your results with



unity.

 

Problem 3.18

 

What is the density of a spherical uniform star with the

mass of the sun and for which GM/rc² = 1 at the star’s

surface?

 

Problem 3.19

 

Show that the integral ds, evaluated between two fixed

events 1 and 2 and with

 

 

is a maximum, for , if

 

 

Problem 3.20

 



Show that ds, evaluated between two fixed events 1 and 2

and with

 

 

is a maximum, for and and if

 

 

where

 

 

[see Problem 3.1(a)]. What is the equation of motion if ϕ(r)

= −GM/r? Solve this equation for the orbit of a planet (see

Problem 2.5).



3.3   The General Theory of Relativity

 

The concept of an inertial system plays an important role in

discussions of Newton’s laws and the special theory of

relativity. In each case, the laws of physics take on their

simplest forms relative to an inertial system. In the former,

the permissible transformation law—the galilean

transformation—between position and time measurements

relative to different inertial systems can be deduced from

the form of Newton’s equation of motion. In this case also,

the equation of motion was applicable in a Euclidean 3-

space (together with the independent 1-space of time). On

the other hand, in the special theory of relativity, we were

able to deduce the permissible transformation laws—the

Lorentz transformations—from the metric form for an inertial

system (Section 1.5). Furthermore, in special relativity, we

deduced the possible forms of the equations of motion from

these transformation laws and hence indirectly from the

form of the metric. The equation of motion of special

relativity was applicable in a space-time described by the

Lorentz metric. These results must be generalized in the

light of the results of the previous section, as the arguments

of this section demonstrate. The resulting theory of

gravitation is called the general theory of relativity.*



3.3.1   The principle of general

relativity

 

A (localized) inertial system in which a constant

gravitational force is acting is equivalent to a noninertial

system that experiences a constant acceleration relative to

the fixed stars. Therefore, the laws of physics must appear

on the same footing relative to a reference system

accelerated with respect to the fixed stars as to an inertial

system. This result appears more vividly if we consider

regions of space-time, such as that around a spherical

gravitational charge, in which a variable gravitational force

acts. This region can be described with a metric form for a

curved space-time. If we interpret an arbitrary gravitational

force in an inertial system as representing the effects of a

curved space-time, then the laws of physics must be

applicable in a space-time of an arbitrary geometry (or a

geometry subjected to very few restrictions).

The Lorentz transformation was deduced in Chapter 1 from

the form of the Lorentz metric and describes the permissible

transformations among the coordinates—distances in space

and intervals of time—under which the forms of the laws of

physics remain unchanged in conformity with the special

theory of relativity. According to the principle of

equivalence, we need not restrict our considerations to the

Lorentz metric; a metric form subject to very few restrictions

describes an inertial system in which a variable gravitational

force acts. Because the space-time metric is not restricted

to any extent, we are no longer able to impose restrictions,

such as linearity, on the permissible transformations among

the coordinates of space and time. Hence, the laws of



physics must take the same form independent of the choice

of space-time coordinates. The choice of coordinates is

restricted solely by the condition that neighboring points

have coordinates that differ by little or, in other words, that

the transformation equations relating different sets of

coordinates be continuous. We conclude that the laws of

physics must be covariant under an arbitrary (continuous)

transformation of the space-time coordinates (see Section

2.1.3).* This is Einstein’s principle of covariance [4].

The forms of the laws of physics that we have discussed in

previous chapters do not satisfy this principle of covariance,

since they retain the same form only under a transformation

from one inertial reference system to another and not, for

example, under a transformation to a noninertial reference

system. However, these or any other laws stated relative to

a particular class of coordinate systems can be expressed in

covariant form,† although in general, they would appear in

such a form to be so complicated that they would be beyond

comprehension and useless for practical applications. Thus,

on the one hand, the principle of covariance provides only a

guide to a selection between various formulations of a law

of physics on the basis of elegance and simplicity. On the

other hand, the principle of covariance determines almost

uniquely a theory of gravitation if we require that, not only

must the equations of the laws of physics have the same

form relative to every possible space-time geometry, but

also the laws of physics must determine the geometry

appropriate for a particular physical circumstance. This

expanded interpretation of the principle of covariance is

called the principle of general relativity.

 

SUMMARY The principle of covariance states that the laws of

physics must be covariant with respect to arbitrary



coordinate transformations. The principle of general

relativity states that, in addition to satisfying the principle of

covariance, the laws of physics must determine the

geometry of space-time appropriate for a particular physical

circumstance.



3.3.2   Einstein’s equations for the

metric form of space-time

 

The principle of general relativity provides us with a theory

of gravitation, as the following arguments indicate.

The newtonian law of gravity gave a force function that

determined the force of gravitational interaction between

two elements of gravitational charge in terms of their

separation distance in a Euclidean space. From this, we

could calculate (at least in principle) the gravitational force

experienced by any particle in terms of the observable

features of the particle’s environment. On the other hand,

the introductory discussion of Section 3.2 suggested that

the effects of a curved space-time could be only equivalent

to those of a gravitational force (because both effects are

independent of the properties of a test particle). Therefore,

by analogy with the corresponding state of affairs for

Newton’s law of gravity, we expect that the geometry of

space-time for a particular physical circumstance can be

deduced in terms of observable features of the environment

—namely, the distribution of mass. That is, we expect that

there are equations that determine the metric form

appropriate to a particular physical arrangement of massive

objects and, moreover, that these equations are co-variant

with respect to arbitrary continuous transformations of the

space-time coordinates. Furthermore, the metric form

calculated from these equations describes the effects of

what we have called, up to this point, the force of gravity.

Thus, with the additional insight into the problem of

gravitation provided by the principles of equivalence and



general relativity, we now look for a form for the law of

gravity that is sufficiently simple to provide a basis for

progress in our understanding of gravitational phenomena.

We want a law that appears simple when expressed in a

general covariant form and that reduces to the new-tonian

law in the correct limit. For this purpose, we first examine

the conditions on space-time for those particular cases in

which there are no gravitational effects present.

A region of space-time devoid of gravitational “forces”

appears as a four-dimensional Minkowski space-time, where

coordinate systems can be found for which the metric form

in that region is that of Lorentz:

 

 

In accordance with the principle of general relativity, the

laws of physics must take on the same form when this

metric form is expressed in terms of any space-time

coordinates (x⁰′, x¹′, x²′, x³′) obtained from the above set (x⁰,

x¹, x², x³) by a continuous transformation law:

 

 

The metric, expressed in terms of these new coordinates,

has the general form

 

 



where the gμν’s are functions of the coordinates x⁰′, x¹′, x²′,

and x³′. The characteristic feature that is not altered by the

coordinate transformation is that the 4-space is flat. Thus,

all the components of the curvature tensor Rμνρσ,

corresponding to that tensor described in Section 3.1 for a

2-space, are zero everywhere in a Minkowski space-time:

 

Condition for a region devoid of gravitational “forces”:

 

 

These equations provide sufficient restrictions on the

components gμν of the metric tensor that they allow only

for those metrics that can be reduced to the Lorentz form

[or similar unphysical forms differing from the Lorentz form

by the number of plus and minus signs, as in (dx⁰)² + (dx¹)²

− (dx²)² − (dx³)²].

Space-time in the neighborhood of matter—that is, in a

region of gravitational force—is not flat like Minkowski

space-time but is curved in the sense described in Section

3.2. The metric form

 

 

is determined by the particular physical circumstance under

consideration, and in any region, this metric form will

determine, in turn, what a local observer would call a

gravitational force field. Therefore, the theory requires a set



of covariant equations that will determine the components

gμν of the metric tensor (as Newton’s law of gravitation

specifies the force function that determines the motions).

There must be sufficient equations to determine the metric

tensor. Furthermore, the equations must admit solutions

(that satisfy Rμνρσ = 0) corresponding to the Lorentz

metric, which is applicable in regions devoid of gravitational

forces. These conditions, plus some natural criteria of

simplicity, are sufficient to determine uniquely the

equations for the metric tensor. (We state these equations

without showing that they satisfy the conditions laid down in

the above.) In the regions of space-time outside the world

lines of matter and free of electromagnetic energy, the

equations for the metric tensor have the form*

 

Einstein’s equations:

 

 

where

 

 

The set of equations Rμν = 0 is a set of nonlinear equations

in the metric tensor gαβ and its first and second derivatives.

The Einstein equations Rμν = 0 are satisfied by the

condition Rμνρσ = 0 for the Lorentz metric, but they also

admit solutions for which Rμνρσ is not zero. The tensor with

components Rμν does not vanish at those points in space-



time that are not free of both matter and electromagnetic

energy.

 

SUMMARY The equations that determine the metric form

must be covariant and admit the Lorentz metric as a

particular solution in a region devoid of gravitational forces.

The equations that are determined by natural criteria of

simplicity are Rμν = 0.

 

 

FIGURE 3.43 .



3.3.3   Some theoretical

consequences of Einstein’s equations

 

Einstein’s equations possess a solution that, to first order,

corresponds to the metric form that we deduced in Section

3.2 on the basis of the principle of equivalence.

 

Metric form for the principle of equivalence:

 

 

The solution of Einstein’s equations that corresponds to the

metric form in the neighborhood of a spherically symmetric,

time-independent gravitational charge centered at r = 0 is

called the Schwarzschild solution and is given by the

Schwarzschild metric.

 

Schwarzschild metric:

 

 

where dr (Figure 3.43) has been written as



 

 

and is perpendicular to r. The coefficient of differs from that

of because the direction of is distinguished by gravitational

effects from that of ; the equivalent gravitational force acts

along the direction of .

For the motions considered in Section 3.2,

 

 

hence, in

 

 

the term (GM/rc²)dr² is of the order of the terms that we

neglected in our approximation. Thus, in the appropriate

limit, the Schwarzschild solution gives the results of

Newton’s law of gravitation and the principle of equivalence.

The Schwarzschild solution, however, is an exact solution to

Einstein’s equations; hence, it is worthwhile to compare the

predictions that can be made from this solution to those that

follow from Newton’s law of gravitation and also to those

that follow from the metric form (3.72) given to first order by

the principle of equivalence. There are three important

predictions—the gravitational red shift, the deflection of

starlight by the sun, and the precession of the perihelion of

the planet Mercury. We shall discuss each of these in turn



after we describe the equations that determine the possible

motions of particles in a curved space-time.

The motion of an object in the curved space-time with the

first-order metric form (3.72) of the principle of equivalence

is given by the condition that the integral be a maximum.

Within the framework of general relativity, however, the

metric form is determined by the distribution of matter,

including that of the object whose motion is under

consideration. As a consequence of this, Einstein’s equations

determine the equations of motion in addition to the metric

form, as the following arguments suggest.

The Einstein equations (3.70), a set of nonlinear differential

equations for the components of the metric tensor, are

satisfied in space-time only outside the world lines of the

matter present*—for example, consider the motion of a small

test particle undergoing motion in the presence of a large

gravitational charge that, by itself, generates the

Schwarzschild metric form. The metric form of the system is

determined not only by the large gravitational charge but

also by the object undergoing motion about that charge.

Moreover, the metric form for the system of test particle plus

large gravitational charge cannot be obtained merely by the

addition of the metric forms that each would generate were

the other not present; the presence of one disturbs the

metric form of the other in a nonlinear manner. This is a

result of the fact that the equations are not linear in the gμν.

Thus, the behavior of a small test particle in the presence of

a large gravitational charge is restricted by Einstein’s

equations.

These considerations led Einstein and his collaborators,

particularly the Polish–Canadian theoretical physicist Leopold

Infeld (1898–1968), to examine the motions of a test particle

in the presence of a large gravitational charge consistent



with Einstein’s equations for the metric tensor. They showed

that Einstein’s equations determine completely the

equations of motion and that the law of motion is this: The

test particle follows a geodesic of the space-time metric of

the large gravitational charge. This consequence of

Einstein’s equations is the result we postulated previously.

Thus, Einstein s equations determine both the metric form

associated with a large gravitational charge and the

trajectory of a test particle in the presence of that charge.

 

SUMMARY The Schwarzschild solution

 

 

to Einstein’s equations is the metric form in the

neighborhood of a spherically symmetric, time-independent

mass centered at r = 0.

It is a consequence of Einstein’s equations, and not an

additional postulate, that a small object in free fall in the

neighborhood of a large mass moves along a geodesic of the

curved space-time resulting from the presence of the large

mass.

 



 

FIGURE 3.44 Schematic picture of the gravitational red shift.

The light decreases in frequency and increases in

wavelength as it moves away from a gravitational charge.



3.3.4   Tests of Einstein’s theory of

gravitation

 

The general theory of relativity is one of the most impressive

physical theories that has ever been proposed, but like all

physical theories, it must stand or fall upon its agreement

with experiment and observation. There are three classical

observational tests of general relativity and the principle of

equivalence: the gravitational red shift, the deflection of light

in the presence of a gravitational charge, and the advance in

the perihelion of Mercury. These tests are discussed below.

Other tests* have been proposed, some of which are being

carried out at the present time.

The tests of general relativity result from a comparison of

observation with the solutions for the motions of material

objects and also light rays in the curved space-time of the

Schwarzschild metric.

Both the Schwarzschild and the first-order metric forms

given by the principle of equivalence have the same

coefficient for the square of the coordinate time interval dt.

Thus, in each, the proper time interval

 

 

of a particle at rest is related to the coordinate time interval

by an equation,



 

 

that depends on the position. One result of this is that the

frequency of a light beam decreases as the light travels

away from a gravitational charge (see Problem A1.16). This

is called the gravitational red shift (Figure 3.44). The red shift

has been observed in light emitted by stars and also in

terrestrial experiments. The results obtained are in good

agreement with the predictions of the form of the proper

time interval [Equation (3.78)] given by both the principle of

equivalence and Einstein’s equations.*

 

 

FIGURE 3.45 Deflection of light by a gravitational charge.

 

We showed in the introduction to this chapter, from the

principle of equivalence, that the path of a light ray is bent in

a region of gravitational charge; on that basis, we calculated

in Problem 3.5 that a light ray that approaches only as close

as the distance D to a uniform spherical gravitational charge

undergoes a deflection through the angle (Figure 3.45)

 



 

[Also, this result is what we obtain by a calculation with the

metric form (3.72) given by the principle of equivalence.] On

the other hand, the deflection calculated on the basis of the

Schwarzschild metric is given by the formula (which we state

without proof)

 

 

The results † of a number of observations of the deflection of

starlight by the sun during solar eclipses are in agreement

with Equation (3.80) but not with Equation (3.79).

The metric form (3.72) derived on the basis of the principle

of equivalence leads back to first order in GM/rc², to the

newtonian equation of motion with Newton’s gravitational

force (Problem 3.20). Therefore, on the basis of the

argument following Equation (3.76), the geodesic motions

given by the Schwarzschild metric approximate those given

by Newton’s law. There are small differences for the motions

of the planets of the solar system, however. In particular,

general relativity predicts that the position of the perihelion

of planetary motion (Figure 3.46) does not remain fixed but

advances in time. This advance in the perihelion is shown in

exaggerated form in Figure 3.47. The advance in the

perihelion, , of a planet is given by the fraction of a

revolution (which we state without proof)

 



 

FIGURE 3.46 The perihelion of a planetary orbit.

 



 

FIGURE 3.47 Advance in the perihelion of a planet

(exaggerated).

 

 

for each revolution of the planet: M is the mass of the sun, a

is the semimajor axis, and e is the eccentricity of the orbit.

(An exact treatment with the metric (3.72) of the principle of

equivalence gives the result . This advance in the perihelion

is greatest for the planet Mercury, and the value 43 sec of

arc per century, in perfect agreement with Equation (3.81),

had been determined by astronomers before Einstein

proposed his theory. However, Einstein’s theory was



proposed independent of this fact, and the resulting

agreement between his theory and the astronomers’

observations strengthened the confidence of scientists in the

theory of general relativity. Einstein’s theory also is in

agreement with the relevant advances in the perihelia of

Venus and Earth.*

The actual observed advance in the perihelion of Mercury is

5,599.7 sec of arc per century, and various known effects,

such as the perturbations by the other planets, must be

taken into account to leave the residual advance of 43 sec of

arc per century that is explained by Einstein’s general theory

of relativity. Recently, the American physicist Robert Henry

Dicke† (1916–) performed an experiment that indicates that

the subtracted effects require correction, so the agreement

of general relativity with the additional advance may have

been fortuitous. Dicke measured the shape of the sun and

concluded that the sun may be sufficiently flattened at the

poles to contribute about 4 sec of arc per century to the

advance in the perihelion of Mercury. If this contribution is

proven beyond doubt and the other contributions, which

contain uncertainties, are found to be unalterable, it may be

necessary to introduce a modification that involves effects

other than purely geometrical ones, such as an extra force,

into the theory of relativity.

The discovery of the general theory of relativity opened up

the way to mathematical studies of cosmology, the theory of

the Universe and the general laws that govern it. This is one

of the most fascinating studies resulting from physics, but

lack of space will not permit a discussion of this topic here.*

 

SUMMARY The predictions of the general theory of relativity

are under active investigation at the present time. There

were three classical tests—the gravitational red shift, the



deflection of light by massive objects, and the advance in

the perihelion of Mercury. Current experimental techniques

allow for other tests, some of which are currently under way.

The results of the three classical tests were believed to be in

agreement with the predictions until recent evidence

appeared that casts this agreement in doubt. Further

investigation may support the general theory, or

alternatively, it may require a modification in the theory.

 

Problem 3.21

 

The measured advances in the perihelia of the three planets

Mercury, Venus, and Earth which, until recently,† could not

be accounted for by the interactions with other planets are

43.11 ± 0.45, 8.4 ± 4.8, and 5.0 ± 1.2 sec of arc per

century, respectively. Compare these results with the

predictions of the general theory of relativity.

 

 

Problem 3.22

 



(a)   Use the techniques of Problem 2.5 to show that the

polar equation for the orbit of a particle moving

nonrelativistically under the central attractive force with

magnitude

 

 

(b)   Show that for ε < 1 the orbit can be described as an

ellipse that precesses.

(c)   Find the rate at which the ellipse precesses in terms of

Δp = p − 1 for the case in which .

(d)   Find a value for α(kr0) that would account for the 43 sec

of arc-per-century advance in the perihelion of Mercury.*

(e)   Which explanation of the advance in the perihelion of

Mercury do you find most satisfying—that of general

relativity or that of part (d) above? Justify your answer.

 

Problem 3.23

 

Calculate the advance in the perihelion of Mercury according

to the special theory of relativity (see Problem A2.19), and

compare your answer with the 43 sec of arc per century,

which until recently could not be accounted for by

interactions with other planets.



Additional Problems

 

Problem A3.1

 

Consider a right circular cylinder of radius R.

 

(a)   Set up a coordinate system on the cylinder with x¹ = h,

a distance along the axis of the cylinder, and x² = θ, an

angle about that axis.

(b)   Determine the metric on the cylinder in terms of dx¹ and

dx².

 

Problem A3.2

 

Consider a right circular cone with an apex angle of a.

 

(a)   Set up a coordinate system on the cone with x¹ = h, a

distance from the vertex along the axis of the cone, and x² =

θ, an angle about that axis.

(b)   Determine the metric on the cone in terms of dx¹ and

dx².

 



Problem A3.3

 

Describe qualitatively the connection and the curvature

tensor on the surface of a right circular cylinder.

 

Problem A3.4

 

Describe qualitatively the connection and the curvature

tensor on the surface of a right circular cone.

 

Problem A3.5

 

Draw, on the space-time diagram of an inertial system, the

coordinate lines for an accelerated observer, as described in

the text (Figure 3.37). Use a scale for the z axis such that

your diagram covers distances characteristic of a laboratory

experiment. For g, use the gravitational acceleration at the

surface of the sun.

 

Problem A3.6

 

Use the diagram of Problem A3.5 as a basis for a discussion

of the statement that the small tube in space-time



corresponding to the laboratory is too small to show

significant curvature effects.

 

Problem A3.7

 

The quantity r0 = GM/c² is called the gravitational radius of

an object of mass M. Calculate the gravitational radius of

 

(a)   the sun,

(b)   the earth,

(c)   an 80-kg man.

 

Problem A3.8

 

This problem gives a method for calculating the equations

for parallel transport [Equation (3.19)] on the surface of a

sphere of radius R. Assume that the coordinates (x¹, x²)

determine the position of a point on the sphere as shown in

Figure 3.12. Let (V¹, V²) and (U¹, U²) be the components of

two vectors at the point (x¹, x²).

 

(a)   Show that the scalar product of the two vectors is given

by



 

 

(b)   Let (V¹ + δV¹, V² + δV²) and (U¹ + δU¹, U² + δU²) be the

components at (x¹ + δx¹, x² δx²) of the vectors obtained by

parallel transport of (V¹, V²) and (U¹, U²), respectively, from

the point (x¹, x²). Show that, to first order in the δV’s, δU’s,

and δx’s,

 

 

(c)   Set

 

 

and

 

 

so that, for example,

 



 

Give arguments to show that the Ί’s are independent of the

vectors (V¹, V²) and (U¹, U²) and the small displacement (dx¹,

dx²).

(d)   Insert the expressions for δVi and δUi of (c) into the

equation of (b) and derive from this the following equations:

 

 

(e)   Consider a small rectangle with a vertex at (x¹, x²) and

adjoining vertices at (x¹ + δx¹, x²) and (x¹, x² + δx²). Show

that the other vertex is at the point

 

 

or, alternatively, at

 

 

Assume that the rectangle is closed to order (δx)², and hence

show that

 

 



(f)   Solve the equations of (d) and (e) for all the . Prove

Equation (3.19).

 

Problem A3.9

 

This problem gives a method for calculating the curvature

tensor on the surface of a sphere [Equation (3.21)]. The

coordinate system used is that shown in Figure 3.12.

 

(a)   Show that, under the small displacements (δ¹, δ²) and

(ε¹, ε²),

 

 



(b)   Show that

 

 

(c)   Consider a small rectangle on the surface of the sphere

with a vertex at (x¹, x²) and adjoining vertices at and . Show

that the fourth vertex Q is at

 

 

(d)   Show that the components of a vector V after parallel

transport from (x¹, x²) to to Q are greater than are the

components after parallel transport from (x¹, x²) to to Q in

the amount

 



 

Problem A3.10

 

Let (V¹, V²) be the components of a vector at the point (x¹,

x²) on a sphere of radius R. The coordinate system used is

that shown in Figure 3.12.

 

(a)   Use the results of Problems A3.8 and A3.9 to show that,

if the vector undergoes parallel transport around a small

area ΔA, the vector is transformed through the angle given

by

 

 

Hint: Use cartesian components and the definition of the

vector product.

(b)   Find the angle through which a vector is transformed

under parallel transport around an area, on the surface of

the earth, of

 

(i)   1 acre,



 

(ii)   1 mi².

(c)   Around what area must a vector undergo parallel

transport on the surface of the earth in order that the vector

is transformed by 1°?
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*An extension of this result applicable to motions under a

given force is described in Feynman, Leighton, and Sands

(vol. 2), Addison-Wesley, Chap. 19, pp. 19–1 to 19–7.

† Taylor and Wheeler, W. H. Freeman, Chap. 3, p. 175.

* Taylor and Wheeler, W. H. Freeman, Sec. 2, pp. 5–11,

define an inertial reference frame to be a freely falling

reference frame. This definition of inertial frames is

appropriate in the physics of curved space-time, but it is not

convenient to use in an introductory study of mechanics. For

example, with this definition, familiar motions like those of a

baseball or a car are described relative to an inertial frame

undergoing an acceleration of 9.8 m/sec2 downward with

respect to the playing field or the road.

* See A. Schild, “Equivalence Principle and Red-Shift

Measurements,” American Journal of Physics, 28 : 778

(1960).

* This metric form is valid only outside a region of

gravitational charge. Hence, the singularity in the metric

form at r = 0 does not appear in the region in which the

metric form (3.64) is relevant.



* An introduction to the theory is given by Einstein himself

in A. Einstein, “On the Generalized Theory of Gravitation,”

Scientific American, 182: 13, April 1950. (The last portion of

the article contains a generalization of the theory that will

not concern us here.)

* The Lorentz covariance of special relativity applies to a flat

region (or one devoid of gravitational forces) and then only

to a restricted class of coordinate systems—namely, those

for which the metric takes the form ds² = (dx⁰)² − (dx¹)² −

(dx²)² − (dx³)².

† We carried through a similar procedure in Section 2.3,

where we deduced the Lorentz covariant form of the

equation of motion from the newtonian form valid in the

instantaneous rest system of the particle.

* These equations are given in the literature also in the form

Gμν = 0, where the Gμν are linear combinations of the

various components of Rμν. However, the two sets of

equations are completely equivalent, and the Gμν are useful

only for reasons that will not enter our discussions here.

* The modified equations that hold in the presence of

electromagnetic energy are under active investigation

today, especially by the American theoretical physicist John

Archibald Wheeler (1911–) and his collaborators [5]. See

Chapter 3 of E. F. Taylor and J. A. Wheeler, Spacetime

Physics, W. H. Freeman, San Francisco, 1966.

* For example, see I. I. Shapiro, “Fourth Test of General

Relativity,” Physical Review Letters, 13: 789 (1964) for a

discussion of a test involving measurements of the time

delays of radar pulses that pass near the sun and are

reflected from Venus or Mercury. See also V. L. Ginzburg,



“Artificial Satellites and the Theory of Relativity,” Scientific

American, 200: 149, May 1959.

* The formula for the red shift is derived, for example, in

Section 4.4 of R. Adler, M. Bazin, and M. Schiffer,

Introduction to General Relativity, McGraw-Hill, New York,

1965. Also see A. J. O’Leary, “Redshift and Deflection of

Photons by Gravitation: A Comparison of Relativistic and

Newtonian Treatments,” American Journal of Physics, 32: 52

(1964). The experimental results are discussed in Section 1-

3.1 of the article by B. Bertotti, D. Brill, and R. Krotkov

entitled “Experiments on Gravitation,” in Gravitation: An

Introduction to Current Research, L. Witten (Ed.), John Wiley,

New York, 1962.

† See Section 1-3.2 of B. Bertotti, D. Brill, and R. Krotkov, op.

cit.

* See Section 1-3.3 of B. Bertotti, D. Brill, and R. Krotkov, op.

cit.

† Just before he announced his results, Dicke described the

observational basis for general relativity and other theories

of gravitation in “Gravitational Theory and Observation,”

Physics Today, 20: 55, January 1967.

* See H. Bondi, The Universe at Large, Anchor Books,

Garden City, N.Y., 1960, or H. Bondi, Cosmology, 2nd ed.,

Cambridge Univ. Press, Cambridge, 1960.

† See the comments given above on Dicke’s work.

* See E. Gerjuoy, “Feasibility of a Nonrelativistic Explanation

for the Advance of the Perihelion of Mercury,” American

Journal of Physics, 24: 3 (1956).



Answers to Problems

 

 

Chapter 1

 

1.1     (a)   It has none.

 

(b)   Yes. (Consider a “shoe box” with V along the diagonal

and the edges along the axes.)

 

(c)   Use V – W.

 

(e)   Put two “shoe boxes” corner to corner.

1.2     (a)   Use definition of cos θ.

 

(b)   Project along the direction of c.

 

(c)   Use cos 0 = 1, cos 90° = 0.

 

(d)   Expand



and use (c).

 

(e)   It is a · b; see (a).

1.3     (a)   ω(t + 1) = ωt + 2π × (no. of oscillations per unit

time).

 

(b)   k(x + λ) = kx + 2π.

 

(c)   ω(t + T) = ωt + 2π.

 

(d)   Eq. gives kv = ω.

 

(e)   k = magnitude × (unit vector in proper direction). Use

ans. to 1.2 (d).

 

(f)   Use definition of a · b in 1.2 (a).

1.4     (a)   Use Eq. (1.11) and Prob. 1.3 (d): A sin (kx – ωt) =

A sin (kx′ – ω′t).

 

(b)   vsλ = v – V.



 

1.5     Expand (v′ + V) · (v′ + V). v′ + V, |v′ – V|.

 

1.6     Note that t is the same argument in v′ as in v.

 

1.7     6.71 x 10⁸ mi/hr.

 

1.8     0.134 sec.

 

1.9     8.31 min.

1.10   1.28 sec.

 

1.11   11.0 hr.

 

1.13   They measure the time to be 2L/c + 2/10 sec. L = 9.4

RE.

 

1.14   (a)   d = 1/2 gt² = 0.31 m.

 

(b)   4 × 10–9.



1.15   v = [2.998 × 10¹⁸/(λ/Å)]Hz. In fHz: 0.666, 0.666–0.600,

0.600–0.526, 0.526–0.508, 0.508–0.491, 0.491.

 

1.16   ω = n(1/720 rev)/(2 × 8,633/2.998 × 10⁸ sec) = 24.1 n

rev/sec, where n is an integer.

 

1.17   (b)   ω = n(1/8 rev)/(2 × 3.5 × 10⁴/2.998 × 10⁸ sec) =

535 n rev/sec, where n is an integer.

 

1.18   In 10⁸ m/sec: 2.997, 2.249, 2.29, 1.93, 1.24.

 

1.19   In 10⁸ m/sec: 1.95, 1.97, 1.99, 2.00.

 

1.21   α = 20.5″ sin (2πt/yr).

 

1.23   (a)   Use law of cosines, the solution of a quadratic

equation and the binomial expansion (1 x)n 1 + nx, . cE = c –

ν cos α - (ν² sin² α)/(2c).

 

(b)   0.01%.

1.24   3.40 × 10³.

 



1.25   1.2 × 10–7 m.

 

1.26   (a)   Use answer to 1.23: cE = c – ν cos α. T1 = SM{[c

– ν cos(θ – 45°)]–1 + [c + ν cos(θ – 45°)]–1}. Use cos²x = (1

+ cos 2x)/2. n = [2SMν²/(λc²)] sin (2θ).

 

1.27   N∝ν²∝r²/P². 1.03, 8 × 10–2, 1 × 10×2.

 

1.28   For ν = 500 mi/hr, ratio = 1.7 × 10–4 %.

 

1.29   Cf. Fig. 1.29: cE ≠ c.

 

1.30   The speed of sound is isotropic only relative to the rest

frame of the transmitting medium.

 

1.31   Cf. answer to 1.30.

 

1.32   2.7 × 10–5 sec before 4:00 P.M.

 

1.34   ±d/2c.

 



1.37   t ≠ t′ so r′/t ≠ v′ (cf. answer to 1.6).

 

1.38   No. t ≠ t′.

 

1.39   (x′ + Vt′)² + y′² + z′² = c²t′².

 

1.40   (a)   t = t′ = d/ν = –1 min.

 

(b)   x′ = 0, x = –1 mi.

 

(c)   x = x′ = 1 mi.

 

(d)   x = 2 mi, x′ = 1 mi; x = 1 mi, x′ = 0.

1.41   

.

 

1.42   For ν = 500 mi/hr, 100,000 yr. Δt = (Δt – 1)/(1 – ν²/c²)¹/

² = (Δt – 1)(1 + ν²/2c²).

 



1.43   For ν = 500 mi/hr, –3 × 10–11%. Use (1 – ν²/c²)¹/² = 1 –

ν²/2c².

 

1.44   (a)   –2.5 × 10–10 %.

 

(b)   130 yr.

1.45   (a)   7.1 × 10⁶ m/sec.

 

(b)   7.1 × 10⁶ clocks.

1.46   1.3 × 10⁷m/sec.

 

1.47   (a)   vols = vols, × (1 – ν²/c²)¹/².

 

(b)   2.60 × 10⁸ m/sec.

1.48   l² = (1 m/2¹/²)²[1 + (1 – .99)²]. 0.714 m; 82.0°.

 

1.49   [x/(1 – ν²/c²y²]² + y² = 1 m² y = x tan θ. l = (x² +y²)¹/²

= sec θ/(5.3 + tan²θ)¹/².

 

1.52   For ν = 500 mi/hr, {ν/c)² = 6 × 10–13 and ν/c² = 2.5 ×

10–15 sec/m.



 

1.53   E1: 0.75 m, 2.5 × 10–9 sec. E2: 3.33 m, –4.25 × 10–9

sec. E3: 0.375 m, 7.25 × 10”⁹ sec. E4: –0.375 m, 8.75 × 10⁹

sec.

 

1.54   (a)   2.58 m.

 

(b)   2.96 m.

 

(c)   1.13 m.

 

The pairs of events are not simultaneous relative to S or S′.

1.55   (a)   6.75 × 10–9 sec.

 

(b)   1.15 × 10–8sec.

 

(c)   1.5 × 10–9sec.

 

The pairs of events do not occur at the same position

relative to S or S′.

1.56   (a)   t = – (1 min – 1.5 × 10¹⁶ sec), t′ = – 1 min; x = –

(1 – 4 × 10”¹⁵) mi, x′ = 0; x′ = 1 mi, x′ = 1 mi – 4 × 10–,5 mi;



x = (2 – 4 × 10–15 mi), x′ = 1 mi, x = 1 mi, x′ = 0.

 

(b)   1.5 × 10–14%, 4 × 10–13%, 4 × 10–13%, 2 × 10–13%

(or zero).

 

(c)   t = –2.23 × 10–6 sec; t′ = –5.36 × 10–6 sec; x = –0.385

m, x′ = 0; x = 0.385 m, x′ = 1 mi; x = 1.66 × 10¹⁰ m(+6 ×

10² m), x′ = 1 mi, x = 1.66 × 10¹⁰ m, x′ = 0.

1.58   The student uses the same x (i.e., the same clock in

the S frame) so the student calculates the time dilatation as

observed by S′.

 

1.59   

.

 

1.60   (a)   3.6 m, 4.2 m.

 

(b)   0.2 m, –0.6 m.

 

(c)   –0.24 m, 0.12 m.

 



(d)   4.68 m, 5.16 m.

1.61   (a)   92.8 cm.

 

(b)   1 hr, 4 min, 4 sec.

1.62   71.1.

 

1.63   (a)   Bv the formula for the time dilatation of an S

clock as observed by S′.

 

1.64   Use

.

 

1.65   (a)   1.85 × 10⁸ m.

 

(b)   1.08 × 10¹² m.

1.67   Set dx/dt = νr so

 

, etc.



 

1.68   (b)   A change in origin in both space and time.

 

1.69   (b)   (i)   Mirror image in the y-z plane.

 

 (ii)   Inversion of the spatial axes through the origin.

 

(iii)   Time-reversal (e.g., running a movie backwards).

 

(iv)   Combination of space inversion and time-reversal.

 

1.70   (b)   Equate coefficients of t², xt and x² (separately) in

c²t² – x² = c²t′² – x′².

 

1.71   (a)   Use Eq. (1.103).

 

1.72   (ϕ = arctan Vt2/L′ in the notation of Ex. 1.6. In Eq.

(1.115), neglect L′² compared to 2LL′ and then use the

binomial expansion (1 + x)¹/² = (1 + x/2) for (Or just use OP

= cΔt, OP′ = VΔt in Fig. 1.66.)

 

1.73   Use Eq. (1.116) as corrected.



 

1.74   3.3 × 10–9 sec, 0.8 m.

 

1.75   The length is 1.16 m and the back is inclined at 35° to

the line of sight.

 

1.76   Use Eq. (1.116) as corrected, with appropriate

interpretations of L′, for the appearance as seen by a

“pinhole” eye.

 

1.77   There is no “Lorentz contraction” so the cube appears

distorted and rotated.

 

1.79   (a)    . This is not the speed of an object relative to S′

as observed by S′.

 

(b)   –0.99995c.

1.80   Use Eq. (1.119) with ν = –ν′ = V″. c²[1 – (1 – V²/c²)¹/

²]/V.

 

1.82   (V12 + V23)/(1 + V12V23/c²).

 



1.83   Calculate c² – ν′² using νx′ = (νx – V)/(1 – Vνx/c²), νy′, =

νy′/(1 – Vνx/c²), νz′ = νz/(1 – Vνx/c²), with νy′ = dy′/dt′, for

example.

 

1.84   20 yrs = 1.89 × 10¹⁷ m, 2 × 10¹⁹ m, 10–10 m, 10–14

m.

 

1.85   (a)   1 m/sec ∼ 3 × 10–9, 8.9 × 10–8, 3 × 10–5

 

(b)   6 × 10–4, 1.8 × 10–2, 6 sec of arc.

1.86   (a)   Time required for light to travel a distance L.

 

(b)   6 ft = 6 × 10–9 sec, 0.133 sec, 8 min 19 sec.

1.87   See Fig. 2.28.

 

1.88   (b)   Use ν = 3c/5, V = –4c/5 to get v′. Then x′ = ν′t′: x′

= 35 ct′/37.

 

(c)   x′ = 35 ct′/37 and x′ = 4ct′/5.

1.89   See the world line of M in Fig. 2.28.

 



1.90   (b)   The coordinates are (2n, 0), (2n + 1, 1) relative to

S′ and (2 + 3n/2, 2 + 5n/2) relative to S, where n is an

integer.

 

(c)   The world lines of the light pulses are inclined at 45° to

the vertical; the world lines of the mirrors at tan–13/5 and

cross the x axis at the origin and 4/5 m.

1.91   (a)   Axes inclined at 42°43′ to S axes.

 

(b)    .

1.92   (a)   The two events O and X are simultaneous relative

to S and each lies on one end of the meter stick of S′.

 

(b)   XX′ is on the world line of one end of the meter stick of

S′ and thus makes an angle of ϕ with the vertical.

 

(c)   OX′ makes an angle of ϕ with OX. (1 – β²)¹/²/sin(π/2 – Ζ)

= OX′sin(π/2 + ϕ). Use cos ϕ = (1 + tan² ϕ)¹/² and cos 2ϕ = 2

cos² ϕ – 1. OX” = [(1 + β²)/(1 – β²)¹/².

1.93   20.5 sec of arc.

 

1.94   (a)   S′ axes are inclined at 38°40′ with the S axes, and

are in the second and fourth quadrants.

 



(b)   5/3, –4/3; –4/3, 5/3; 1/3, 1/3; 10/3, –8/3; –8/3, 10/3; 2/3,

2/3; 5, –4; –4, 5; 1, 1.

 

(c)    .

1.95   (b)   The curves are hyperbolae with asymptotes x =

±τ, the light cone. (|τ² – x²|)¹/² has the same value in all

reference systems so τ² – x² = 1 calibrates the axis x′ = 0

with x = 0 and τ² – x² = –1 calibrates τ′ = 0 with τ = 0 (at

the point where each curve crosses the appropriate axis).

 

1.96   See Fig. 1.82.

 

1.98   (a)   -12c/13.

 

(b)   5.

 

(c)   Slope of τ′-axis = –12/13. .

1.99   (a)   4c/5.

 

(b)   3/c.

1.100  See Fig. 1.87.

 



1.101  See Prob. 1.100.

 

1.102  (a)   t′ = time at which the searchlights are directed at

θ = ωt′ above the horizontal. t = time at which the light

beams meet at x. Use ν = (dx/dt′)(dt′/dt). ν = cLω)/(c cos² ωt′

+ Lω) sin ωt′). ν(t′ = 0) = Lω and ν(t′ = π/2ω) = c. Write ν =

1/f(t′) and calculate dvl/dt′. Then argue that ν = c at t′ =

π/2ω or t → ∞ for ωL < c or ωL > 2c and at t′ = π/2ω and one

other t′ for c < (ωL < 2 c. v > c for Lω) > c to t′ such that sin

ωt′ = Lω)/2c.

 

(b)   x = L cot ωt′, t = t′ + (x² + L²)¹/²/c. ν = c at t′ = 0 and ν

= –ωL at t′ = π/2ω). Show dv/dt′ > 0 so ν increases to ∞ then

from – ∞ to –ωL. ν = cωL/(ωL cos (ωt′ – c sin² ωt′).

1.103  70 yr – 11 sec.

 

1.104  

.

 

1.105  (a)  E1E2, E1E2, time-like; E2E3 null.

 

(c)  0.53 m/c, 0.75 m/c.

 



(e)  –3c/4, –0.87c.

1.106  37.5 yr.

 

1.107  “Sphere” = calibration “curve” (see Prob. 1.95).

 

1.108  (a)  Choose coordinate axes such that OP lies along

the x axis, OQ along the y axis so OP = (0, x1, 0, 0) and OQ

= (0, 0, y2, 0).

 

(b)  Use Eq. (1.60).

 

(c)  Choose coordinate axes such that OP lies along the τ

axis, OQ along the x axis.

 

(d)  τ² – (x² + y² + z²) = 0 for a null line segment from (0, 0,

0, 0) to (τ, x, y, z).

1.109  (a)  –11, –82; –34.

 

(b)  19, 5; 19.

 

(c)  7, –17; –10.

1.110  (b)  (1, 1, 0, 0), (0, 0, 2, 0).



 

(c)  0, –4; 0.

 

(d)  Yes, since τ¹τ2 – x1x2 – y1y2 – Z1Z2 = 0.

1.111  See Eq. (1.173).

 

1.112  (a)   

.

 

(b)   Choose a0 = 0 so .

1.113  (b)   t0 = 3t/5.

 

1.114  (a)   t0 = 3t/5.

 

(b)   Let the plane of the motion determine the x-y plane, r(0)

the x axis, x = r cos θ with θr = ωt) so θ = 2ct/5.

 

(c)   [5ct0/3, 2 cos (2ct0/3), 2 sin (2ct0/3), 0].

 



(d)   dx/dt0 = [5c/3¹/², – (4c/3) sin (2ct/3), (4c/3) cos (2c/0/3),

0].

1.115  (a)   (c, o), (2c/3¹/², c/3¹/²), (10c/19¹/², 9ct19¹/²).

 

(b)   The length is given by (τ² + x²)¹/² whereas the norm,

which is the same for all υ/s, is τ² – x².

1.116  Use d (υ · υ)/dt0 = dc²/dt0 = 0. Space-like.

 

1.117  is a 4-vector, so use Eq. (1.173) and a = (0, 32

ft/sec²)rest frame. (–18, 37, 0, 0) ft/sec².

 

1.118  The Galilean transformation law for velocities, v′ = v –

V, differs from that, Eq. (1.127), of the Lorentz law.

 

1.119   .

 

1.121  I = 0, P1 + (–P1 = 0.

 

1.122  L0′0 = 1, L3′3 = –1, L1′1 = −COS θ, L1′2 = −sin θ,

L2′1 = sin θ, L3′3 = −cos θ, other Lμ′μ = 0.

 

1.123  (a)   β″ = β + β′)/(l + ββ′).



 

(b)   See Prob. 1.82.

1.124  (a)   An entity T described by the 64 components

Tαβγ(α, β, γ = 0, 1, 2, 3) that transtorm as Tα′β′β′ =

Lα′αLβ′βLγ′γTαβγ.

 

(b)   A scalar.

1.125  T0′i′ = L0′μLi′νTμν = Li′νT0ν = Li′iT0i′ i = 1, 2, 3.

 

1.128  1.70 × 10¹⁴ Hz.

 

1.129  6.14 × 10⁷ m/sec.

 

1.130  (a)    , ck = ω so kx′ = –βγk, kz′ = k and tan α = –βγ. α

= 20.5″.

 

(b)   γ 1.

1.131  Use νt = ω, ν′ = ω′/k′, (ν – V)/(1 – νV/c²).

 

1.132  (a)   5.38μs, 6.27μs.

 



(b)   0.9μs.

1.133  (a)   θ = 180°.

 

1.134  (a)   7.3 Hz.

 

(b)   5.1 × 10²Hz.

1.135  (b)   +.

 

A1.1   (a)   4.56 × 10⁹

m.

 

(b)   Δt = 3.55 × 10¹⁰ sin (1.721 × 10² t/day)/{c[62.8 – 23.3

cos (1.721 × 10–2t/day)]¹/²}m.

 

(c)   T = 2rE/c.

 

(d)   3.00 × 10⁸ m/sec.

A1.2   (a)   p = R/D radian.

 

(b), (c), (e), (h)



 

A1.3   (a)   Use Fig. Al.3. cos θ = cm/ν.

 

(b)   1°24′, 41°24′, 40°14′, 49°49′, 65°36′.

A1.4   (a)   c² – ν² = (c + ν)(c – ν) 2(c – ν).

 

(b)   1.41 × 10–1, 7.1; 4.47 × 10–2, 22.4; 1.41 × 10–2, 71.

 

(c)   ν differs from c by 1.5 × 10², 1.5 × 10–4 and 1.5 × 10–9

m/sec.

A1.5   (a)   x2 − x1 = V(t2 − t1).

 

(b)    .

A1.6   The clocks are (3/5) m apart according to S and the n-

th clock reads ct′ = −4n/5.

 

A1.7   The sphere appears rotated, i.e., a sphere.

 



A1.8   (c)   25(x′)²/9 + (y′)² = 1.

 

A1.9   (b)   Use v = (dx/dτ)(dτ/dt0) and determine dτ/dt0

from .

 

(c)   t0 = (2/c) ln{[τ + (τ² + 4)¹/²]/2}.

A1.10  See the reference. (At t′ = 0, y′ = ±(3/50) m, x′ =

±(2/5) m.)

 

A1.11  See the reference.

 

A1.12  See the reference.

 

A1.13  Use the binomial theorem: (1 ± vc/nc²)−1 = 1 vc/nc².

 

A1.14  (a)   Use Eq. (1.238) and v = 2π/λ.

 

(b)   0.11°, 3.6°.

 

(c)   cos 0 + cos 180° = 0.

A1.15  (a)     (i)   No. See (ii).



 

(b)   (i)   93 km/sec-Mpc.

 

(iii)   4 × 10⁴ km/sec; 4 × 10² Mpc.

 

(iv)   5 × 10⁴ km/sec; 1.1 × 10⁵ km/sec; 5 × 10² Mpc; 1.2 ×

10³ Mpc.

 

(vi)   11 × 10⁹ yr.

 

A1.16  (a)   c · Δt = h. (i) gh/c² = 2.46 × 10−15.

 

(b)   Use Δt = Δt′/(1 − v²/c²)¹/², (1 − v²/c²)¹/² = 1 − v²/2c² for

and .

A1.16  (b)     (i)   GM/(R + h) = −(GM/R)(1 + h/R)−1 = −

(GM/R)(1 − h/R).

 

(ii)   (1 − gh/c²)−1 = 1 + gh/c².

 

(iii)   g(h) dh = d(−GM/R)

 



A1.17  (a)     (i)   Since Tμν + Tνμ = 0, each diagonal

component (μ = ν) is zero.

 

(ii)   The diagonal components vanish and the off-diagonal

components are related in pairs: (4 × 4 − 4)/2 = 6. For

example, T01, T02, T03, T12, T13, T23.

 

(b)   (iv)   Each vector is perpendicular to c so consider

projections of a, b and (a + b) in the plane perpendicular to

c.

 

(v)   

.

 

(vi)   Use

.

 

(c)   (i), (ii) and (d) (iii) and (e). Determine Lυ′, μ and use

Tμ′ν′, = Lυ′, μTν′νTμν.

 



(e)   (iii) V¹′ = V¹, V²′ = γ(V²− βP³), V³′ = γ(V³ + βP²), P¹′ = P¹,

P² = γ(P² + βV³), P³′ = γ(P³ − γV²).

 

Chapter 2

 

2.1     (a)   If v = v′ + V, V = constant vector, then a = a′.

 

(b)    .

 

(c)    .

2.2     (a)   Use Eq. (2.18).

 

(b)   Use d(v · v)/dt = 2a · v.

 

(d)   1.6 × 10–5 W.

 

(e)   1.88 × 10⁹ m/sec > c.

 

(f)   10⁵ Å.

 



(g)   1.008u.

 

(h)   4.00 × 10¹⁷ kg/m³ = 0.240u/fm³, 10³ kg/m³ = 6.02 ×

10−16 u/fm³.

2.4     (a)   Use ΔV = −F · Δr, F and Δr radial.

 

(b)   sin i/sin r = vinside/voutside and conservation of energy.

 

(c)   Use i = θ/2 + r, expand sin (θ/2 + r), set cos r = (1 −

sin²r)¹/² and remove surd.

2.5     (a)   dL/dt = mv × v + mr × a.

 

(b)    and use Prob. A1. 17 (b) (iii).

 

(c)   

and .

 

(d)   Replace v² in the energy conservation law with the

expression for v² given in (c), use the hint and replace dθ/dt

using the formula for L in (b).



 

(e)   Use du/dθ = −(l/r²)dr/dθ = −u²dr/dθ.

 

(h)   cos θi = 1/ε, θ = π − 2θi.

2.6     (a)   Use a = v²/R and |v × B| = vB.

 

(b)   dv||/dt = 0 since qv × B = qv⊥ × B is perpendicular to

v.

2.7     (a)   Use the law of conservation of momentum.

 

(b)   

 

(c)   

2.8     (a)   a′ = (d/dt′)(dr′/dt′) = (1 − β²)¹/²/(l − βvx/c)d/dt[(vx

− βc, (1 − β²)¹/²vy, (1 − β²)¹/²vz)/(1 − βvx/c)].

 

(b)   a′ does not depend only on a and β: it also depends on

v.

 

2.9     Newton’s laws are much easier to apply to everyday

motions and give very accurate descriptions of these.

2.10   The relationship between inertial frames.



 

2.11   No, since Tμ′ 3′ = Lμ′μL3′ vTμv whereas bμ′ = Lμ′μbμ.

 

2.12   (a)   Unlike x, r cannot be defined independent of a

reference system.

 

(b)   Show that υ = υ0 is equivalent to v = v0.

2.13   One needs to know more than ma and β to determine

ma′.

 

2.14   (a)   8.0 × 10¹⁴ MeV.

 

(b)   2.7 × 10²³ MeV/c.

2.16   (b)   E T, [1 − (E0/E)²]¹/² = 1 − 1/2(E0/T)².

 

2.17   (a)   0.511.

 

(b)   0.511, 0.512, 1.511 MeV, 1 GeV.

 

(c)   1.00, 1.002, 2.96, 1.96 × 10³.

 



(d)   1.00, 0.937, 5.88 × 10−2, 1.30 × 10−7.

2.18   (a)   78 MeV.

 

(b)   77.5 MeV.

 

(c)   c(1 − 2 × 10−5).

2.19   (a)   Use vx = pxc²/E.

 

(b)   Use (a) and E = mυc².

2.20   (b)   The energy-momentum vectors are tangent to the

world line and have norm m²c².

 

2.21   (a)   2.488 × 10−28 kg.

 

(b)   139.6 MeV, 1.396 MeV/c; 140.3 MeV, 14.03 MeV/c;

161.2 MeV, 80.6 MeV/c; 320 MeV, 288 MeV/c; 990 GeV, 980

MeV/c; 3.12 GeV, 3.12 GeV/c; 9.87 GeV, 9.87 GeV/c.

2.22   v = pc²/E and (E/c)² − p² = m²c².

 

2.23   (a)    , α a scalar.

 



(b)    since is null.

2.25   (a)   v = {1 − [m/(m + T)]²}¹/² = 1 − 1/2[m/(m + T)]²

= 1 − 3.1 × 10−4.

 

(b)   Use Eq. (2.65). 37 GeV.

 

(c)   c(1 − 3.1 × 10−4).

 

(d)   Use Eq. (2.66). 958 MeV.

 

(e)   Use Example 2.4. 6.30 × 10⁶ m/sec.

 

(f)   1 − 3 × 10−4.

2.26   (a)   1 − 1.3 × 10−9.

 

(b)   1.8 × 10⁴ GeV.

 

(c)   1 − 1.3 × 10−9.

 

(d)   4.4 GeV.



 

(e)   0.91.

 

(f)   1 − 1.3 × 10−9.

2.27   (a)   Use conservation of e + E with p + P = 0 as well

as E²/c² = P² + M².

 

Then show that the resulting equation has, with , only the

solution ε = 0.

 

(b)   Calculate V from Eq. (2.68), then use Lorentz

transformation on to get tan ϕ = (1 − V²)¹/²/V, ϕ = 88.8°.

2.28   (a)   11.4 MeV/c , 11.4 MeV; 8.07 MeV/c, 11.4 MeV; (0,

3.37 − 8.07ŷ) MeV/c; −76(MeV/c)².

 

2.29   (a)   Each lies inside the future light cone so a diagram

shows the vector sum cannot point out of that cone.

 

(c)   E0 = (E² − P²c²)¹/².

 

(d)   Use (a).

 



(e)   Use the Lorentz transformation.

 

(f)   Transform to the center-of-momentum system. Each has

fourth component , the equality holding only if p(a) lines

along V.

2.30   (a)   Take norm of .

 

(b)   Use .

 

(c)   Use q = |P′| and (b).

 

(d)   Use .

 

(e)   Use .

2.31   Use Prob. 2.30(b).

 

(i)    0.16 MeV.

 

(ii)   9.6 MeV.

 

(iii)  17.6 MeV.



2.34   (a)   The speeds are the same.

 

(d)   Use v′x = dx′/dt′.

 

(e)   Substitute for from (d).

2.35   Use Eq. (2.119) to calculate ϕ from β1 and θ.

 

2.36   Consider particles of unit mass colliding and then S″ is

the center-of-momentum system.

 

±V/(1 + [1 - V²/c²]¹/²).

 

2.37   (a)    .

 

(b)   p′ = (E′²/c² − m²c²)¹/².

 

(c)   v′ = p′c²/E′.

2.38   (a)   

 

(b)   



.

 

(c)   3.9 GeV, 1.01 Ge, 2.6 × 10⁸ m/sec.

 

(d)   4.3 GeV, 8.1 GeV, 2.96 × 10⁸ m/sec.

 

(e)   3.5 GeV, 4.7 GeV, 2.98 × 10⁸ m/sec.

2.39   (a)   2 × 10¹⁷ for Δv = 1 mm/sec.

 

(b)   10¹⁴ for Δv = 1 mm/sec.

2.40   (a)   2-3 × 10−10.

 

(b)   See (a): .

2.41   (a)   3.8 × 10⁹ J/ton.

 

(b)   (i) 7.6 × 10¹³ J. (ii) 1.9 × 10¹⁷ J.

 

(c)   (i) 0.8 g. (ii) 2 kg.



 

(d)   8 kg.

2.42   (a)   v²/c² = 1 − 1/(1 + T/mc²)².

 

(b)   ne = 3.8 × 10¹³, 1.64 MeV, 4.80 MeV.

2.43   3.5 × 10−6 kg.

 

2.44   10−12.

 

2.45   (a)   1.4 × 10³ J/m²-sec.

 

(b)   Solar constant × area/c = 10−6%.

2.46   7 × 10−12.

 

2.47   Use Eq. (2.174). 1.0 × 10−13.

 

2.48   (a)   W(1 + ρ)/c.

 

(b)   W cos θ(1 + ρ)/c.

2.49   (a)   7 × 10⁵ kg. No.



 

(b)   4 × 10⁹ kg. No.

2.50   2 × 10−2 μg.

 

2.51   $1.25 × 10⁶.

 

2.52   The energy comes from the drop in the height of the

mass E/c².

 

2.53   Fradiation = (3.9 × 10²⁶ W/c)(πr²/4πR²).

 

r < (6 × 10−4 kg/m²)/ρ ~ 1ρ.

 

2.54   (a)   Solve the first equation for m/M, substitute in the

second and then find γ−2

 

(b)   Solve for E′/Mc² from each equation and then use the

calculation of (a).

 

(d)   The photon rocket uses less mass to attain a given

speed.

 



(e)   For the photon rocket, Mfinal/Minitial = {[(c − V)/(c +

V)]¹/²}⁴ = 4 × 10−7.

2.55   Use Eq. (2.162).

 

2.56   (a)   cos θ = c/v.

 

(b)   cos θ = |E/μc²|/[l + (E/μc)²]¹/².

2.57   Calculate v′ · v′ and expand the numerator in powers

of v · V.

 

2.58   dυ/dt0 reduces, for , to a = 0 and Prob. 2.8 shows that

if a = 0 relative to S, a′ = 0 relative to S′.

 

2.60   (b)   v = c²t/(c²t² + α²)¹/².

 

(c)   αdt/(α² + c²t²)¹/² = αdt/x.

 

(d)   Use d/dt0 = (α/x)d/dt.

2.62   Eq. (2.187) with subscripts x and y interchanged.

 

2.65   (a)   2.15 × 10⁸ m/sec.



 

(b)   0.70.

 

(c)   0.87 yr.

 

(d)   4.0 × 10¹⁵ m = 0.42 ly.

2.66   (a)   (i) 4.3 × 10⁶ sec = 0.14 yr. (ii) 1.4 × 10⁷ sec =

0.43 yr.

 

(b)   (i) 6.1 × 10⁶ sec. (ii) 1.9 × 10⁷ sec.

2.67   Use g′ = M′g/Mε. M′ ~ 10³⁵ kg.

 

2.68   (a)   v = c/[1 + (c/gt)²]¹/².

 

(b)   Multiply Eq. (2.218) by m.

 

(c)   v → c while p = mgt → ∞, whereas pNR = mvNR.

2.69   The force needed to give the same acceleration to the

particle increases with speed so ∫Fvdt is greater. T increases

indefinitely whereas v never reaches c.

 



2.70   (a)    so v = gt; T = 1/2mv² for .

 

(b)   v c so, by Eq. (2.218), (1 − v²/c²)−1/2 = gt/c. mg = force

and ct = distance.

2.71   (a)   v = gt. F = md/dt{gt/[1 − (gt/c)²]¹/²} = mg/[1 −

(gt/c)²]³/².

 

(b)   (mg²t/{c[1 − (gt/c)²]²}, mg/[1 − (gt/c)²]³/².

2.72   (a)    . Differentiate with respect to t0.

 

2.73   (a)   Use d/dt = (dx/dt)(d/dx).

 

(b)   Multiply by dx and integrate between t = 0 and t.

 

(c)   Use dt = dx/v. x goes from 0 to a in 1/4 oscillation.

 

(d),  (e) Use (b) to get γ(x) expand with the binomial

theorem.

2.74   (a)   Multiply the equation of motion with dυ/dt0 after

expanding d(μυ)/dt0.

 

Use υ · (dυ/dt0) = 0.



 

(b)   dμ/dt0 = b, by the procedure given for (a).

 

(c)   Use t0 = (1 − v²/c²)¹/² t.

2.75   (a)   Use the procedure given above for Prob. 2.74 (a).

 

(c)   (1/c)(T − vX/c)/(1 − v²/c²)¹/².

2.76   (a)   F · v = 0 so mυ and p are constant.

 

(b)   See Prob. 2.6.

2.77   (a)   See Prob. 1.57(a).

 

(b)   See Prob. 1.57(b).

 

(c)   Use f = γF.

 

(d)   S′ is the rest system.

2.78   (a)   Use f = γF in Prob. 2.77 (a),

 

(b)   Use v · F0 = vFx.



2.79   (a)   dp/dt = F.

 

(c)   Use vi = pic²/E, and v⁰ = c/(1 − v²/c²)¹/² to get vx =

vlc/(Σ(vi)² + c²)¹/² ·

, .

 

(d)   px = constant = mυ vx and mυ = mυ(t).

 

(e)   

,

.

2.80   (a)   Use dp/dt = F.

 

(b)   t10 ≠ t20 in general.

2.81   (a)   ma = eE, t = l/v, d = 1/2at² and θ = d/l.

 



(b)   ma = evB.

 

(c)   1.4 × 10¹¹ C/kg, 2.7 × 10⁷ m/sec.

2.82   (a)   F = mg; m = volume × density.

 

(b)   F = mg − (weight of displaced air).

 

(c)   Ftotal = Feffective gravity − 6πηav = 0 when

acceleration = 0.

 

(d)   Fnew total = Felectric − (Ftotal of c)).

 

(e)   Calculate a = 2.04 × 10−6 m. q = 1.13 × 10−18 C.

 

(g)   1.642 × 10−19 C.

2.83   (a)   eVJ = V electron volts.

 

(b)   (1.602 × 10−19 V)J.

 

(c)   Use the binomial theorem: (1 − v/c)−1/2 = 1 + ½v²/c² +

(3/8)(v⁴/c⁴) . . . so want v such that [(3/8)(v⁴/c⁴)]/(v²/2c²) =



.01. v = 3.5 × 10⁷ m/sec.

2.84   2.60 × 10⁸ m/sec.

 

2.85   Calculate (−qe/mυ)[l/(1 − v²/c²)¹/²].

 

2.86   (a)   16J.

 

(b)   Use Prob. 2.16(b). 1.3 × 10²⁹, 5.1 × 10¹⁵.

2.87   (a)   3.6 × 10−19 J.

 

(b)   140, 14.

2.88   (a)   ν′ = ν[(1 − V/c)/(1 + V/c)]¹/².

 

(b)   Use V/c = (ν² − ν′²)/(ν² + ν′²).

2.89   0.718Å, 0.735Å, 0.752Å.

 

2.90   λ′ = λ + [h/(10⁵mec)](1 − cos ).

 

2.92   (b)   Plot λ′ − λ.

 



2.93   (a)    only if ν = 0.

 

(b)    with .

 

(c)   hν = eV.

 

(d)   (i) 1.74 × 10⁴ V, (ii) 5.82 × 10⁴ V.

2.94   (b)   Tmax = 0. ν0 = ϕ/h.

 

(c)   5.95 × 10¹⁴ Hz.

2.95   (b) dA = (2πR sin θ)(RΔθ).

 

(c)   The number scattered into the ring between θ and dθ is

|(incident intensity)(dσ/dΩ)(dΩ)| and equals the number

incident through the ring between S and dS, |(incident

intensity)(2πSdS)|. Also dS/dθ < 0.

 

(d)   Use 2 sin (θ/2) cos (θ/2) = sin θ.

 

(e)   Use .

2.96   (a)   Use V = Kq1q2/r with q1 = 92e, q2 = 2e. r = 6.3 Γ

10−14 m.



 

(b)   V = 29 MeV.

2.97   0.2 mm, 0.02μ.

 

2.98   (a)   2.3 × 10¹⁷ kg/m³.

 

(b)   2.5 × 10⁸ tons.

 

(c)   From 5 × 10−4 to 2 × 10−4.

2.99   (a)   17.3 MeV.

 

(b)   22.4 MeV.

 

(c)   (2.99 × 10⁸ ± 5 × 10⁵)m/sec, (2.975 × 10⁸ ± 5 ×

10⁵)m/sec.

2.100 (a)   (Mc + ΔE/c, 0) = (E/c + hν/c, hν/c − P). E/c =

[(hν/c)² + M²c²]¹/². Solve conservation of mass-energy

equation for hν and use the binomial theorem to simplify the

result.

 

(b)   1.07 × 10²¹ Hz.



2.101 (a)   Use the conservation laws of charge and mass

number.

 

2.102 (a)   Use the formulae of Prob. 2.101.

 

(b)   5.25, 4.58, 4.08.

2.103 exp[λ238 − λ235)t] = 0.007/0.993. 6.0 × 10⁹ yr.

 

2.104 (a)   6.5 × 10⁹ yr, 3.6 × 10⁵ yr.

 

(b)   46%, 10−6 × 108%.

2.105 (d)   (i)   33J.

 

(ii)   Neglect exp(−λAt). 145d.

 

(iii)   925d.

 

(iv)   In units of N0/day: 1.2 × 10−3, 1.1 × 10−1; 3.1 ×

10−3, 5.3 × 10−2; 3.2 × 10−3, 1.3 × 10−7; 4.2 × 10⁴, 1.1 ×

10−31.

 



2.106 (a)   20.94 GeV, 20 GeV/c, 2.87 × 10⁸ m/sec.

 

(b)   Use Eq. (2.66). 6.20 GeV.

2.107 (a)   c(1 − 1.4 × 10¹³).

 

(b)   9.8 × 10⁵ MeV.

2.108 (a)   E* = [(E + M)² − (E² − M²)]¹/².

 

2.109 (a)   2.6 × 10−5, 8 cm.

 

(b)   1.0 × 10−12 N.

 

(c)   4.1 cm.

 

(d)   2 mi.

2.110 (a)   4.4 × 10−23.

 

(b)   9.4 × 10−12.

 

(c)   30 sec.



2.111 (a)   Use the symmetry.

 

(b)   |VMCOM| = |v′final|

 

(d)   dí ∝ sin θdθ = 2 sin (θ/2) cos (θ/2)d[2(θ/2)].

 

(e)   Use Prob. 2.95 (d) and Fig. 2.5.

2.112 260 MeV.

 

2.113 (a)   23.8 MeV.

 

(b)   8.6 × 10⁷ J.

 

(c)   ∼10³¹ J.

 

(d)   ∼105

 

(e)   3 × 10−12%.

2.114 mn > mp.

 



2.115 1.4 MeV.

 

2.118 Use Prob. 2.95: .

 

2.119 3.3434 × 10−27 kg.

 

2.120 (a)   c.

 

(b)   0.93 MeV/c.

2.121 (a) Use . 0.78 MeV.

 

(b)   Use En = Eν + Ee + Eν. 0.28 MeV, 0.28 MeV/c.

2.123 3 × 10¹⁶m.

 

2.124 mc² + T/2 ± (2Tmc² + T²)¹/²/2.

 

2.125 (a)   3.07 MeV.

 

(b)   T = 1.023 MeV.

2.126 (c)   0.5 MeV.



 

2.127 20 MeV/980 so use Newtonian mechanics. 4.44 MeV.

 

2.129 150 MeV.

 

2.130 280 MeV.

 

2.131 67.5 MeV.

 

2.132 The neutrinos are emitted in the direction opposite to

the electron’s. Also Eν = pνc. 111 meV.

 

2.133  (a)   0.054.

 

2.136  (a)   Strong.

 

(b)   Weak.

 

(c)   Strong.

 



(d)   Weak.

 

(e)   Weak.

 

(f)   Weak.

2.137  (b)   Expand the formula given for T1, and compare

that with T1 = E1 – m1c² with E1 given in (a).

 

(c)   5.4 MeV, 32.5 MeV.

2.139  (a)   767 MeV.

 

(b)   0.

 

(c)   657 MeV.

 

(d)   912 MeV.

 

(e)   663 MeV.

2.141  Use Prob. 2.140. 1.24 GeV, 1.48 GeV, 1.69 GeV, 1.92

GeV, 2.36 GeV.

 



2.142 Use . 16.3 MeV, 176 MeV/c.

 

2.143  (a)   1.6 × 10–16 N.

 

(b)   1.1 × 10–5.

 

(c)   17.5 BeV.

 

(d)   6.3°.

 

(e)   (i) 4.4 × 10² m, 67 m.

 

(f)   130.

 

(g)   The maximum occurs when the two final protons move

along the direction of the incident proton, and their energy-

momentum vectors are equal. 200 BeV.

(h)   (i)   200 BeV.

 

(ii)   200 BeV.

 



(iii)   1 – 1 × 10⁴ m.

 

(iv)   2.4′.

 

(i)    (i)   Use Prob. 2.76. (1) 2.2 m. (2) 11.1 m. (3) 22.2 m. (4)

111 m. (5) 445 m.

 

(ii)   (1) 21.4 BeV. (2) 61.1 BeV. (3) 87.5 BeV. (4) 198 BeV. (5)

398 BeV.

 

2.144 (b)   4.4 × 10–7.

 

(c)   41.5 BeV.

 

(d)   6.3°.

(e)    (i)   2.2 × 10³ m.

 

  (ii)   3.3 × 10² m.

 

(f)   302.

 



(g)   1 TeV.

(h)    (i)   1 Tev.

 

  (ii)   1 TeV.

 

 (iii)   5 × 10⁴ m.

 

 (iv)   0.48′.

 

(i)    (ii)   (1) 50 BeV. (2) 139 BeV. (3) 198 BeV. (4) 445 BeV.

(5) 893 BeV.

 

A2.1   υ = (c[1 + c²t²]¹/², c²t).

 

A2.2   Use Eq. (2.107), 74.9°.

 

A2.3   See Prob. A1.3. E = 1.11 BeV, T = 172 MeV.

 

A2.4   (a)   Use Eq. (2.107) with θ = ϕ 22.5°.

 



(b)   0,9.1 GeV.

A2.5   (a)   Differentiate p = mν/(1 – ν²/c²)¹/².

 

(b)   Differentiate E = mc²/(1 – ν²/c²)¹/². Integrate the

equation for large E to get ν = c exp (1/E²).

A2.6   (a)   See Ex. 2.66.

 

A2.7   5 × 10–11 kg.

 

A2.8   Use .

 

(a)   18.2 MeV, 92.6 MeV.

 

(b)   8.6 MeV, 57.2 MeV.

A2.9   293 MeV.

 

A2.10  (a)   2.24 GeV.

 

(b)   0.

A2.11  (a)   [(mp + mπ– + Nmπ–°)² – (mp + mπ–)²]/(2mp) =

T.



 

(b)   165 MeV, 349 MeV, 553 MeV, 776 MeV.

A2.12   Use . Multiply the zm2 term by [1 – (1 – z)¹/²]/[1 – (1 –

z)¹/²].

 

A2.13   87 MeV/c.

 

A2.14   M(t) = 160 lb – 100 Wt/c², F = -100 W/c.

 

Use .

 

(a)   Less than 60 mi/hr by

 

(i)   1.7 × 10–5 m/sec.

 

(ii)   4.0 × 10–4 m/sec.

(iii)   2.8 × 10–3 m/sec.

(iv)   1.4 × 10–1 m/sec.

 

(b)   1 billion years.



A2.15   (a)   31 cm.

 

(b)   (i)   1.0 m.

 

(ii)   3.8 m.

 

(iii)   24 m.

 

A2.16   exp(–0.094x/m).

 

A2.19   (a)   

.

 

(d)   See Prob. 2.5 (b).

 

(e)   dr/dt = (dr/du)(du/dθ)(dθ/dt).

 

(f)   ν² = (dr/dt)² + r²(dθ/dt)².

 



(k)   Energy must be supplied to free the particle with energy

.

 

Chapter 3

 

3.1     (a)   Use |r + dr = [(r + dr) · (r + dr)]¹/² and r = (r · r)¹/

².

 

(b)   g = GM/R².

 

3.5     Find θ such that 1/r → 0 and from that calculate the

scattering angle. Use the fact that ν c and D S

 

3.6     Draw a single line segment representing the distance

between two of the cities and then use a compass to find the

position of a third city. Continue with a fourth, etc.

 

3.7     The prototype of a vector is dr and every vector can

be represented by a prototype vector.

 

3.9     The calculation is simplified by choosing coordinate

axes such that the two points lie along one axis.

3.10   Choose the polar axis to contain the two points.



 

3.11    so take V = (V1, 0), dr = (0, dx²). x¹dV² = –V¹dx² so .

 

3.12   Take V = (0, V2), dr = (0, dx²). dV¹ = –(x¹V²)dx² so .

 

3.13   Draw a diagram, like Fig. 3.20, of the coordinate lines

in the neighborhood of (r, 6) and note what happens to the

vectors V1 = (V1, 0) and V2 = (0, V2), keeping in mind that

rV2 is the cartesian component, as they are transported

around the quadrilateral.

 

3.14    is a minimum if .

 

3.17   7 × 10–10, 2 × 10–6.

 

3.18   r = 1.5 km. 1.5 × 10²⁰ kg/m³.

 

3.21   42.9″, 8.6″, 3.8″.

 

3.22   (c)   The fraction Δp of one revolution per revolution.

 

(d)   1.6 × 10–7.



 

(e)   In this problem, one parameter, α, is introduced to

explain one result, 43″/century.

3.23   7″/century.

 

A3.1   (b)   ds² = (dx¹)² + R²(dx²)².

 

A3.2   (b)   ds² = sec²α(dx¹)² + (x¹)²tan²α(dx²)².

 

A3.3   The cylinder is flat, i.e., has zero curvature, as can be

seen by cutting it along a line parallel to the axis and

spreading it out on a plane: the intrinsic geometry is not

changed (except at the cut).

 

A3.4   The curvature is zero.

 

A3.7   1.47 km, 4.4 mm, 6 × 10–26 m.

 

A3.8   (b)   The scalar product is conserved under parallel

transport.

 

(e)   Go to the final vertex by parallel propagation along two

different paths.



 

(f)   

, all other components are zero.

A3.9   

 

.

 

(d)   Use Δvi = (δ1Vi + δ2Vi)0+1+2 – (δ1Vi + δ2Vi)0+2′+1′.

A3.10 (a)   Use x′ = x cos θ + y sin θ, y′ = – x sin θ + y cos θ

for small θ: x′ = x + θy, y′ = y – θx.

 

(b)   (i)   2.1 × 10–5″.

 

(ii)   1.3 × 10–2″.

 

(iii)   7.1 × 10¹¹m² = (840 km)².
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