




Bootstrapping Microservices, Second Edition
MEAP V09

1. Copyright_2023_Manning_Publications
2. welcome
3. 1_Why_microservices?
4. 2_Creating_your_first_microservice
5. 3_Publishing_your_first_microservice
6. 4_Data_management_for_microservices
7. 5_Communication_between_microservices
8. 6_The_road_to_production
9. 7_Infrastructure_as_code

10. 8_Continuous_delivery
11. 9_Automated_testing_for_microservices
12. 10_Shipping_FlixTube
13. 11_Healthy_microservices



MEAP Edition

Manning Early Access Program

Bootstrapping Microservices, Second Edition

With Docker, Kubernetes, GitHub Actions, and Terraform

Version 9

Copyright 2023 Manning
Publications
©Manning Publications Co.

To comment go to liveBook

https://livebook.manning.com/#!/book/bootstrapping-microservices-second-
edition/discussion



For more information on this and other Manning titles go to

manning.com



welcome
Thank you for joining the MEAP for Bootstrapping Microservices, Second
Edition. I’m so happy to be working on this book again for a second round,
making it even better and following up on the amazing feedback that we
received after the 1st edition.

To get the most from this book it’s best you have some existing skills in one
or another programming language. The book has examples in JavaScript, but
the code will be simple and if you have previous experience in a different
language you shouldn’t have much trouble reading and understanding it.

You might have previous experience developing HTTP servers, but that’s not
really necessary. We’ll learn how to make a basic microservice before scaling
up to an application composed of multiple microservices.

I started developing microservices applications before I knew about Docker.
Docker as a tool for packaging and deploying applications would have been
really handy back then. In those days it really was quite difficult to build and
deploy microservices and they were far from cost effective – they were
expensive to create, to maintain and to run. The build pipeline and getting
setup for continuous delivery was especially difficult – back when you had to
build most of the tooling for yourself.

The microservices-style of architecture really appealed to me though. I loved
being able to physically segregate code by process the way we do in a
microservices application. It meant that I could throw away and rewrite code
without having to pay a huge cost. The implications of microservices on
managing complex applications is what motivated me the most. We are
designing our applications for disposability and architecting them for
evolution. Having these abilities in our arsenal is important for us to be able
to meet the ever-changing needs of modern business. On top of that the
scalability aspect of microservices, being able to scale the application to a
larger customer-base or to a larger team of developers, seemed like an
incredible bonus that came with the package.



Once I understood how important the combination of Docker and Kubernetes
was, I simply had to learn and apply it. This took quite a lot of time and
Kubernetes especially seemed very complicated, but these tools ultimately
filled important gaps in my microservices application development toolkit.

However, there was a time when I almost dropped Kubernetes – it seemed
too complicated for me to apply as a solo developer, which I was at the time
either contracting for startups or working at my own startup. But I was still
enticed by Kubernetes’ promise of being an all-in-one platform for
microservices that is free from cloud-vendor lock-in.

Luckily, I then discovered Terraform. I suspected Terraform would be good.
For many years I have used Hashicorp’s other product Vagrant and loved it.
Terraform is to cloud infrastructure what Vagrant is to virtual machines, that
is to say that Terraform is a scripting language for creating infrastructure in
the cloud. Terraform enables infrastructure as code and we can use it to build
a continuous delivery pipeline for our infrastructure. Terraform made
Kubernetes more accessible for me and I hope it does for you as well.

In this book I hope to show that building your application microservices-first
is more cost-effective and easier to approach than ever before.

I look forward to seeing your comments, questions, and suggestions in the
liveBook Discussion forum!

Thanks for joining me on this journey

—Ashley Davis

In this book

Copyright 2023 Manning Publications welcome brief contents 1 Why
microservices? 2 Creating your first microservice 3 Publishing your first
microservice 4 Data management for microservices 5 Communication
between microservices 6 The road to production 7 Infrastructure as code 8
Continuous delivery 9 Automated testing for microservices 10 Shipping
FlixTube 11 Healthy microservices



1 Why microservices?
This chapter covers

The learning approach of this book
The what and why of microservices
The benefits and drawbacks of using microservices
What’s wrong with the monolith?
The basics of microservices design
A quick overview of the application we build

As software continues to become larger and more complicated, we need
better ways of managing and mitigating its complexity. As it grows alongside
our business, we need better ways of dividing it up so that multiple teams can
participate in the construction effort.

As our demanding customer base grows, we must also be able to expand our
software. At the same time, our applications should be fault-tolerant and able
to scale quickly to meet peak demand. How do we then meet the demands of
modern business while evolving and developing our application?

Microservices are an architectural pattern that plays a pivotal role in
contemporary software development. A distributed application composed of
microservices solves these problems and more, but typically it is more
difficult, more complex, and more time-consuming to architect than a
traditional monolithic application. If these terms are new—microservices,
distributed application, and monolithic application—they will be explained
soon.

Conventional wisdom says that microservices are too difficult. We are told to
start “monolith-first” and later restructure to microservices when necessary to
scale. But I argue that this attitude doesn’t make the job of building an
application any easier! Your application is always going to tend toward
complexity and, eventually, you will need to scale it. When you do decide
you need to change, you now have the extremely difficult job of safely



converting your monolith to microservices when staff and customers already
depend on it.

Now is also the perfect time to be building microservices. The confluence of
various factors—accessible and cheap cloud infrastructure, ever improving
tools, and increasing opportunities for automation—is driving an industry-
wide movement toward smaller and smaller services, aka microservices.
Applications become more complex over time, but microservices offer us
better ways to manage such complexity. There is no better time than now to
go “microservices-first.”

In this book, I will show you that a microservices-first approach is no longer
as daunting as it once was. I believe the balance is firmly tipping toward
microservices. The remaining problem is that learning microservices is
difficult. The learning curve is steep and holds back many developers in their
quest to build microservices. Together, we will break the learning curve. We
will say “Boo” to the monolith, and we’ll build from the ground up a simple
but complete video-streaming application using microservices.



1.1 This book is practical

Why are you reading this book? You are reading this because you want or
need to build a microservices application, which is an important skill set for
modern developers, but it’s a difficult skill set to obtain, and you need some
guidance. You may have read other books on microservices and been left
wondering where do I begin? I understand your torment.

Microservices are tough to learn. Not only do you have to learn deep and
complicated tools, you must also learn to build a distributed application. This
requires new design patterns, protocols, and methods of communication.
That’s a lot to learn in anyone’s book.

In this book, we cut through the seemingly impenetrable learning curve of
building microservices applications. We’ll start as simple as possible and,
piece-by-piece, we’ll build up to deploying our application to production.

This book is about busting through the learning curve and bootstrapping a
working application that will last indefinitely, an application that we can
continuously update and build on to satisfy the ongoing and changing needs
of our customers and users. Figure 1.1 illustrates this idea of cutting through
the learning curve. While our example application is small and simple, from
the start, we will build-in pathways to scalability that will later allow it to be
expanded out to a truly massive distributed application.

Figure 1.1 Cutting through the learning curve. In this book, we’ll learn only the bare minimum,
just enough to bootstrap our application.



How is this book different from all the other books on microservices? Other
books are notably theoretical. That’s a good approach for an experienced
developer or architect looking to broaden their knowledge, but acquiring
practical skills that way is challenging and doesn’t help you navigate the
minefield of bootstrapping a new application. The technical choices you
make at project inception can haunt you for a long time.

This book is different; this book is not theoretical. We will take a practical
approach to learning. There is a small amount of theory interspersed
throughout, and we will actually build a substantial microservices
application. We will start from nothing and work through bringing our
application into existence and getting it into production. We’ll build and test
the application on our development workstation (or personal computer), and
ultimately, we’ll deploy it to the cloud.

Together we’ll get our microservices application off the ground without
having to learn the deepest details of any of the tools or technologies. An
example of this book’s learning model is illustrated in figure 1.2.

Figure 1.2 The learning model for this book. We will skim the surface of these deep and



complicated technologies to only use what is necessary to bootstrap our application.

This book is about building a microservices application, starting with
nothing. Some people have already asked why I didn’t write this book to
show how to convert a monolith to a microservices application? This is
something that many people would like to learn.

I wrote the book in this way because it’s much easier to learn how to write an
application from scratch than it is to learn how to refactor an existing
application. I also believe these skills are useful because, in time, more and
more applications will be written microservices-first.



In any case, refactoring an existing application is much more complicated
than building a fresh application. It’s a process with many complex variables
and depends heavily on the particulars of the legacy codebase. I make the
presumption that it will be easier for you to figure out your own monolith
conversion strategy once you know (indeed, once you have experienced) how
to create a greenfield (new) microservices application.

I can assure you that when you can build an application microservices-first,
you will be much better equipped to clearly see a route from your existing
monolith to microservices. That journey from monolith to microservices will
no doubt still be demanding, so stay tuned. In chapter 12, we will discuss
more on this topic.

Throughout this book, you will learn concrete and practical techniques for
getting a microservices application off the ground. Of course, there are many
diverse ways to go about this and many different tools you can use. I am
teaching you one single recipe and one set of tools (albeit a popular toolset).
You will, no doubt, find many ways to improve on this recipe and enhance it
for your own situation. Other experienced developers will, of course, already
have their own recipes for doing this. What I’m trying to say is that this is my
way, and it is just one of many ways that will work; however, I can attest that
I have tried every technique in this book in production and found these to
work well. So without further ado, let us commence our journey of learning
and discovery.

1.2 What will I learn?

Throughout the book, we will progress from easy to more difficult. We’ll
start with the simplest task—creating a single microservice. Over 12 chapters,
we’ll build up to a more complex application and infrastructure, but we’ll do
it in incremental steps so that you never get lost. After reading this book and
practicing the skills taught, you can expect to be able to

Create individual microservices
Package and publish microservices using Docker
Develop a microservices application on your development workstation
using Docker Compose



Test your code, microservices, and application using Jest and Cypress
Integrate third-party servers into your application (like MongoDB and
RabbitMQ, as examples)
Communicate between microservices using HTTP and RabbitMQ
messages
Store the data and files your microservices need to operate
Deploy your microservices to a production Kubernetes cluster
Create production infrastructure using Terraform
Create a continuous delivery pipeline to automatically deploy your
application as you push changes to your code repository on GitHub

1.3 What do I need to know?

You might be wondering what you need to know going into this book. I have
made an effort to write this book with as few assumptions as possible about
what you already know. We are going on a journey that takes you from
absolute basics all the way through to some very complicated concepts. I
think there’s something here for everyone, no matter how much experience
you might have already as a developer.

It’s best coming into this book if you have some entry-level understanding of
computer programming. I don’t think you’ll need much, so long as you can
read code and get the gist of what it’s doing. But don’t worry; I’ll explain as
much as possible about anything important that is happening in the code.

If you have a background in programming, you’ll have no problem following
along with the examples in this book. If you are learning programming while
reading this book, you could find it quite challenging, but not impossible, and
you might have to put in extra work.

This book uses Node.js for examples of microservices, but starting out, you
don’t need to know JavaScript or Node.js. You’ll pick up enough along the
way to follow along. This book also uses Microsoft Azure for examples of
production deployment. Again, starting out, you don’t need to know anything
about Azure either.

Rest assured that this book isn’t about Node.js or Azure; it’s about building



microservices applications using modern tooling like Docker, Kubernetes,
and Terraform. Most of the skills you will take away from this book are
transferable to other languages and other cloud providers. Because I had to
pick a programming language and cloud vendor that I could use to
demonstrate the techniques in this book, I chose Node.js and Azure. That’s a
combination I have used extensively in production for my own software
products.

If Node.js and Azure aren’t your thing, with some extra research and
experimentation on your part, you’ll be able to figure out how to replace
Node.js and JavaScript with your favorite programming language and replace
Azure with your preferred cloud vendor. In fact, the main reason I use
Docker, Kubernetes, and Terraform in the first place is precisely because
these tools offer freedom—freedom of choice for programming language and
freedom from cloud vendor lock-in.

1.4 Managing complexity

A microservice application, like any application, will become more complex
over time. But it doesn’t need to start that way! This book takes the approach
that we can begin from a simple starting point and that each iteration of
development can also be just as simple. In addition, each microservice is
small and simple. As you read this book, you’ll find that it isn’t as difficult as
you might think to build applications with microservices (despite what some
people say).

Microservices give us a way to manage complexity at a granular level, and
it’s the level we work at almost every day—the level of a single microservice.
At that level, microservices are not complex. In fact, to earn the name
microservice, they have to be small and simple. A single microservice is
intended to be manageable by a single developer or a small team!

It is true, though, that through continued development and evolution, a
complex system will emerge. There’s no denying that a microservices
application will become complex. But such complexity doesn’t evolve
immediately; it takes time. Although our applications tend towards
complexity, microservices themselves are the cure to, rather than the cause



of, that complexity. During development we use microservices to manage the
growing complexity of our application so that it doesn’t become a burden.

It might seem that the infrastructure required for microservices can add
significant complexity to our development process. Yes, to some extent this
is the truth, but then again all applications require infrastructure and in my
experience microservices don ‘t add a whole lot more. In fact you’ll see that
by chapter 8 we’ll build a continuous delivery pipeline that automates
delivery of our application code to production. For any team that does this,
they find that the deployment and operational complexity of microservices
tends to fade into the background and seem like magic.

Maybe it’s just that we are noticing the complexity of our infrastructure more
now because we have to deal with it more frequently. In the past we had an
operations team and possibly a build or testing team who would handle most
of that work for us and hide the complexity. More and more, though,
microservices are handing power back to the developers and with that we can
clearly see the complexity that was always there in our development, testing
and operational infrastructure.

Any complexity added by microservices must be offset by their benefits. Like
all design or architectural patterns, to get value from microservices we must
be sure that their advantages outweigh the cost of using them. That’s a tough
call that we must make on a project-to-project basis, but for an increasing
number of scenarios microservices will more than pull their weight.

A microservices application is a form of complex adaptive system, where
complexity emerges naturally from the interactions of its constituent parts.
Even though the system as a whole can become far too complex for any mere
mortal to understand, each of its components remains small, manageable, and
easy to understand. That’s how microservices help us deal with complexity,
by breaking the complexity apart into small, simple and manageable chunks.
But don’t worry; the example application we will build in this book isn’t very
complex.

Development with microservices (with help from our tools and automation)
allows us to build extremely large and scalable applications without being
overwhelmed by the complexity. And, after reading this book, you’ll be able



to zoom in and look at any part of the most complex microservices
application and find its components to be straightforward and understandable.

1.5 What is a microservice?

Before we can understand a microservices application, we must first
understand what it means to be a microservice.

Definition

A microservice is a tiny and independent software process that runs on its
own deployment schedule and can be updated independently.

Let’s break that definition down. A microservice is a small, independent
software process that has its own separate deployment frequency. That is to
say that it must be possible to update each microservice independently from
other microservices.

A microservice can be owned and operated either by a single developer or a
team of developers. A developer or team might also manage multiple other
microservices. Each developer/team has the responsibility for the
microservice(s) they own. In the modern world of programming, this often
includes development, testing, deployment, and operations. We might find,
however, that when we work for a small company or a startup (as I do), or
when we are learning (as we are in this book), we must manage multiple
microservices or, indeed, even an entire microservices application on our
own.

An individual microservice might be exposed to the outside world so our
customers can interact with it or it might be purely an internal service and not
externally accessible. It typically has access to a database, file storage, or
some other method of state persistence. Figure 1.3 illustrates these internal
and external relationships.

Figure 1.3 A single microservice can have connections to the outside world or other services, and
it also can have a database and/or attached file storage.



By itself, a single microservice doesn’t do much. A well-designed system,
however, can be decomposed into such simple services. The services must
collaborate with each other to provide the features and functionality of the
greater application. This brings us to the microservices application.

1.6 What is a microservices application?

A microservices application is traditionally known as a distributed
application, a system composed of tiny components that live in separate
processes and communicate via the network. Each service or component
resides on a logically distinct (virtual) computer and sometimes even on a
physically separate computer.

Definition

A microservices application is a distributed program composed of many tiny



services that collaborate to achieve the features and functionality of the
overall project.

Typically, a microservices application has one or more services that are
externally exposed to allow users to interact with the system. Figure 1.4
shows two such services acting as gateways for web-based and mobile phone
users. You can also see in figure 1.4 that many services are working together
within the cluster. It is called a cluster because it is a group of computers that
are represented to us (the developers) as a single cohesive slab of computing
power to be directed however we like. Somewhere close by we also have a
database server. In figure 1.4, it is shown to be outside the cluster, but it
could just as easily be hosted inside the cluster. We’ll talk more about this in
chapter 4.

The cluster is hosted on a cluster orchestration platform; in this book we use
Kubernetes for that purpose. Orchestration is the automated management of
our services. This is what Kubernetes does for us—it helps us to deploy and
manage our services.

The cluster itself, our database and other virtual infrastructure, are all hosted
on our chosen cloud vendor. We will learn how to deploy this infrastructure
on Microsoft Azure, but with some work on your own, you can change the
examples in this book to deploy to Amazon Web Services (AWS) or Google
Cloud Platform (GCP).

Figure 1.4 A microservices application is composed of multiple, small independent services
running in a cluster.



A microservices application can take many forms, is very flexible, and can be
arranged to suit many situations. Any particular application might have a
familiar overall structure, but the services it contains will do different jobs,
depending on the needs of our customers and the domain of our business.

1.7 What’s wrong with the monolith?

What is a monolith and what is so wrong with it that we’d like to use
microservices instead? Although distributed computing has been around for
decades, applications were often built in the monolithic form. This is the way
that the majority of software was developed before the cloud revolution and



microservices. Figure 1.5 shows what the services in a simple video-
streaming application might look like and compares a monolithic version of
the application with a microservices version.

Definition

A monolith is an entire application that runs in a single process.

Figure 1.5 Monolith vs. microservices. You can see that building with microservices offers many
advantages over the traditional monolithic application.



It is much easier to build a monolith than a microservices application. You
need fewer technical and architectural skills. It’s a great starting point when
building a new application, say for an early-stage product, and you want to
test the validity of the business model before you commit to the higher
technical investment required by a microservices application.



A monolith is a great option for early throw-away prototyping. It also might
be all that you need for an application that has a small scope or an application
that stabilizes quickly and does not need to evolve or grow over its lifetime.
If your application will always be this small, it makes sense for it to be a
monolith.

Deciding whether to go monolith-first or microservices-first is a balancing act
that has traditionally been won by the monolith. However, in this book, I’ll
show you, given the improvements in modern tooling and with cheap and
convenient cloud infrastructure, that it’s important that you consider going
microservices-first or at least pushing towards the microservices end of the
spectrum (more on the spectrum of possibilities soon)

Most products generally need to grow and be evolved, and as your monolith
grows bigger and has more useful features, it becomes more difficult to
justify throwing away the throw-away prototype. So down the road, you
might find yourself stuck with the monolith at a time when what you really
need is the flexibility, security, and scalability of a microservices application.

Monoliths come with a host of potential problems. They always start out
small, and we always have the best of intentions of keeping the code clean
and well organized. A good team of developers can keep a monolith elegant
and well organized for many years. But as time passes, the vision can be lost
or sometimes there wasn’t a strong vision in the first place. All the code runs
in the same process, so there are no barriers and nothing to stop us writing a
huge mess of spaghetti code that will be near impossible to pick apart later.

Staff turnover has a big effect. As developers leave the team they take crucial
knowledge with them, and they are replaced by new developers who will
have to develop their own mental model of the application, which could
easily be at odds with the original vision. Time passes, code changes hands
many times, and these negative forces conspire to devolve the codebase into
what is called a big ball of mud. This name denotes the messy state of the
application when there is no longer a discernible architecture.

Updating the code for a monolith is a risky affair. It’s all or nothing. When
you push a code change that breaks the monolith, the entire application
ceases operation, your customers are left high and dry, and your company



bleeds money. We might only want to change a single line of code, but still,
we must deploy the entire monolith and risk breaking it. This risk stokes
deployment fear. Fear slows our pace of development.

In addition, as the structure of the monolith degenerates, our risk of breaking
it in unanticipated ways increases. Testing becomes harder and breeds yet
more deployment fear. Have I convinced you that you should try
microservices? Wait, there’s more!

Due to the sheer size of an established monolith, testing is problematic, and
because of its extremely low level of granularity, it is difficult to scale.
Eventually, the monolith expands to consume the physical limits of the
machine it runs on. As the aging monolith consumes more and more physical
resources, it becomes very expensive to run. I have witnessed this! To be fair,
this kind of eventuality might be a long way off for any monolith, but even
after just a few years of growth, the monolith leads to a place that you would
prefer not to be.

Despite the eventual difficulties with the monolith, it remains the simplest
way to bootstrap a new application. Shouldn’t we always start with a
monolith and later restructure when we need to scale? My answer: it depends.

Many applications will always be small. There are plenty of small monoliths
in the wild that do their job well and don’t need to be scaled or evolved. They
are not growing and they do not suffer the problems of growth. If you believe
your application will remain small and simple and doesn’t need to evolve,
you should definitely build it as a monolith.

However, there are many applications that we can easily predict will benefit
from a microservices-first approach. These are the kinds of applications we
know will continually be evolved over many years. Other applications that
can benefit are those that need to be flexible, scalable, or have security
constraints from the start. Building these types of applications is much easier
if you start with microservices because converting an existing monolith is
difficult and risky.

By all means, if you need to validate your business idea first, do so by
initially building a monolith. However, even in this case, I would argue that



with the right tooling, prototyping with microservices isn’t much more
difficult than prototyping with a monolith. After all, what is a monolith if not
a single large service?

You might even consider using the techniques in this book to bootstrap your
monolith as a single service within a Kubernetes cluster. Now you have the
best of both worlds! When the time comes to decompose to microservices,
you are already in the best possible position to do so and, at your leisure, you
can start chipping microservices off the monolith. And with the ease of
automated deployment that modern tooling offers, it is easy to tear down and
recreate your application or create replica environments for development and
testing. If you want or need to create a monolith first, you can still benefit
from the techniques and technologies presented in this book.

If you do start with a monolith, for your own sanity and as early as possible,
either throw it away and replace it or incrementally restructure it into
microservices. We’ll talk more about breaking up existing monoliths in
chapter 12.

1.8 Why are microservices popular now?

Why does it seem that right now microservices are exploding in popularity?
Is this just a passing fad?

No, it is not a passing fad. Distributed computing has been around for a long
time and has always had many advantages over monolithic applications.
Traditionally though, it has been more complex and more costly to build
applications in this way. Developers only reached for these more powerful
application architectures for the most demanding problems: those where the
value of the solution would outweigh the cost of the implementation.

In recent times, however, with the advent of cloud technology, virtualization,
and the creation of automated tools for managing our virtual infrastructure, it
has become much less expensive to build such distributed systems. As it
became cheaper to replace monolithic applications with distributed
applications, we naturally considered the ways this could improve the
structure of our applications. In doing so, the components of our distributed



systems have shrunk to the tiniest possible size so that now we call them
microservices.

That’s why microservices are popular now. Not only are they generally a
worthwhile way to build complex modern applications, but they are also
increasingly cost-effective. Distributed computing has become more
accessible than ever before, so naturally more developers are using it. Right
now, it appears to be nearing critical mass, and so it’s reaching the
mainstream.

But why are microservices so good? How do they improve the structure of
our application? This question leads to the benefits of microservices.

1.9 Benefits of microservices

Building distributed applications brings many advantages. Each service can
potentially have its own dedicated CPU, memory, and other resources.
Typically though, we share physical infrastructure between many services
and that’s what makes microservices cost-effective. But we are also able to
separate these out when necessary so that the services with the heaviest
workloads can be allocated dedicated resources. We can say that each small
service is independently scalable, and this gives us a fine-grained ability to
tune the performance of our application.

Here are the benefits of microservices:

Allows for fine-grained control—Microservices allow us to build an
application with fine-grained control over scalability
Minimizes deployment risk—Microservices help us minimize
deployment risk while maximizing the pace of development
Lets you choose your own tech stack—Microservices allow us to choose
the right stack for the task at hand so that we aren’t constrained to a
single tech stack

Having a distributed application offers us the potential for better reliability
and reduced deployment risk. When we update a particular service we can do
so without the risk of breaking the entire application. Of course, we might



still risk breaking a part of the application, but that is better and easier to
recover from than bringing down the entire application. When problems
occur, it’s easier to rollback just a small part of the system rather than the
whole. Reduced deployment risk has the knock-on effect of promoting
frequent deployments, and this is essential to agility and sustaining a fast
pace of development.

These benefits are nothing new. After all, we have been building distributed
applications for a long time, but such systems are now cheaper to build and
the tools are now easier to use. It is easier than ever before to build
applications this way and to reap the rewards. As costs decreased and
deployment convenience increased, our services tended towards the micro-
level, and this brought its own complement of benefits.

Smaller services are quicker to boot than larger services. This helps make our
system easier to scale because we can quickly replicate any service that
becomes overloaded. Smaller services are also easier to test and troubleshoot.
Even though testing an overall system can still be difficult, we can more
easily prove that each individual part of it is working as expected.

Building applications with many small and independently upgradeable parts
means we can have an application that is more amenable to being extended,
evolved, and rearranged over its lifetime. The fact that we have enforced
process boundaries between our components means that we will never be
tempted to write spaghetti code. And, indeed, if we do write terrible code (we
all have bad days, right?), the impact of bad code is controlled and isolated
because every microservice (to earn the name) should be small enough that it
can be thrown away and rewritten within a matter of weeks, if not days. In
this sense, we are designing our code for disposability. We are designing it to
be replaced over time. The ongoing and iterative replacement of our
application is not only made possible, but it is actively encouraged, and this is
what we need for our application architecture to survive the continuously
evolving needs of the modern business.

Another benefit that really excites developers using microservices is that we
are no longer constrained to a single technology stack for our application.
Each service in our application can potentially contain any tech stack. For
larger companies, this means that different teams can choose their own tech



stack; they can choose it based on their experience or based on the stack that
is best for the job at hand. Various tech stacks can co-exist within our cluster
and work together using shared protocols and communication mechanisms.

Being able to change between tech stacks is important for the long-term
health of the application. As the tech landscape evolves, as it always does,
older tech stacks fall out of favor and must eventually be replaced by new
ones. Microservices create a structure that can be progressively converted to
newer tech stacks. As developers, we no longer need to languish on out-of-
date technologies.

Technology (tech) stack

Your technology stack is the combination of tools, software, and frameworks
on which you build each microservice. You can think of it as the fundamental
underlying elements needed by your application.

Some stacks have names. For example, MEAN (Mongo, Express, Angular,
Node.js) or LAMP (Linux, Apache, MySQL, PHP). But your stack is just the
combination of tools you use, and it doesn’t need a name to be valid.

When building a monolith, we have to choose a single tech stack, and we
have to stay with that stack for as long as the monolith remains in operation.
The microservices architecture is appealing because it gives us the potential
to use multiple tech stacks within one application. This allows us to change
our tech stack over time as we evolve our application.

1.10 Drawbacks of microservices

This chapter would not be complete without addressing the two main
problems that people have with microservices:

Microservices are more difficult
People often fear complexity

The first problem is the steep learning curve. Learning how to build
microservices requires you to learn not just a complicated arrangement of



technologies, but also the principles and techniques for building distributed
applications. Although learning how to build microservices is difficult, this
book will help you shortcut the learning curve.

Note

I can understand if you feel daunted by what’s in front of you. But recently,
huge progress has been made in the development of tooling for building
distributed applications. Our tools are now more sophisticated, easier to use,
and most importantly, more automatable than ever before.

These days, a single experienced developer is now capable of bootstrapping a
microservices application on their own without the support of a team. I know
this because I have done this multiple times for startups. Still, it surprises me
how much can be achieved on one’s own. We’ll talk more about how
startups, small teams, and solo developers can work with microservices
quickly and effectively in chapter 12.

To be fair, the tools are still complicated. Ordinarily, it would take months or
longer to conquer the learning curve on your own—mastering any of these
tools takes significant time! But this book takes a different approach.
Together we will only learn the bare minimum necessary to bootstrap our
application and get it running in production. Together we will produce a
simple but working microservices application. Along the way, we’ll also
learn the basics of structuring distributed applications.

As I mentioned, there are actually two problems facing microservices
developers. The second is that building a microservices application, indeed
any distributed application, is going to be more complicated than building the
equivalent monolith. It is hard to argue with this. The first thing I would say
is that yes, building a monolith is simpler in the beginning and in many cases
it is the right decision. If your application is one of those that must later be
converted or restructured to microservices however, then you should consider
the eventual cost of unraveling your big ball of mud.

Don’t be frightened by complexity; it happens whether you like it or not.
Fortunately, microservices offer us tangible ways of managing complexity.



If you think this through, you might concede that building microservices, at
least in certain situations, is actually less complicated than building a
monolith. If this discussion hasn’t convinced you, consider this: any
significant application is going to become complex. If not at the start, it will
grow more complex over time. You can’t hide from complexity in modern
software development, it always catches up with you, eventually. Instead,
let’s take control of this situation and meet the complexity head-on. What we
want are better tools to help manage complexity. Microservices as an
architectural pattern is one such tool.

Think of microservices as a way to bring the pain forward, to a place where
it’s more economical to deal with. What do we get in return for this pain?
Microservices help us deal with complexity in our application. They provide
hard boundaries that prevent us from writing spaghetti code. Microservices
allow us to more easily rewire our application, scale it, and upgrade it over
time. Microservices also force us to apply better design. We can’t prevent
complexity, but we can manage it, and modern tooling for distributed
applications is already here to help us.

1.11 Modern tooling for microservices

This book is all about the tooling. Together, we will learn the basics of a
number of different tools. To start with, we must be able to create a
microservice. We’ll use JavaScript and Node.js to do this, and the next
chapter will teach you the basics of that.

We are using Node.js because that’s my weapon of choice. However, as far
as microservices are concerned, the technology stack within the service is not
particularly important. We could just as easily build our microservices with
Python, Ruby, Java, Go, or virtually any other language.

We’ll encounter numerous tools along our journey, but these are the most
important ones:

Docker—To package and deploy our services
Docker Compose—To test our microservices application on our
development workstation



Kubernetes—To host our application in the cloud
Terraform—To build our production infrastructure in the cloud

The technological landscape is always changing and so are the tools. So why
should we learn any particular toolset when the tools are constantly outdated
and replaced? Well, it’s because we will always need good tools to work
effectively. And with better tools, we can do a better job, or maybe we just
get to do the same job but more effectively. Either way, this helps us to be
more productive.

I selected the tools for this book because these make the job of building
microservices applications significantly easier and quicker. All technologies
change in time, but I don’t think these particular tools are going anywhere
soon. They are popular, are currently the best we have, and they all fill useful
positions in one’s toolkit.

Of course, these tools will eventually be replaced, but hopefully, in the
meantime, we’ll have extracted significant value and built many good
applications. And when the tools do change, they will certainly be replaced
by better tools that lift the bar of abstraction even higher, making our jobs
easier and less frustrating.

Docker is the one tool of them all that is ubiquitous. It seems to have come
from nowhere and taken over our industry. Kubernetes is not quite as
ubiquitous as Docker, although it does have a strong future and seems on
track to be the computing platform of choice for microservices.

Kubernetes allows us to transcend the boundaries of cloud vendors. This is
good news if you ever felt trapped with any cloud provider. We can run our
Kubernetes-based application on pretty much any cloud platform, and we
have freedom of movement when needed.

Terraform is a relative newcomer, but I think it’s a game-changer. It’s a
declarative configuration language that allows us to script the creation of
infrastructure in the cloud. The important thing about Terraform is that it’s
one language that can work with potentially any cloud vendor. No matter
which cloud vendor you choose, now or in the future, chances are that
Terraform will support it, and you won’t have to learn something new.



Think about this for a moment: Terraform means we can easily code the
creation of cloud infrastructure. This is something! In the past, we would
laboriously and physically piece together infrastructure, but now we are able
to create it with code. This concept is called infrastructure as code and it is a
key enabler for continuous delivery, something important to modern software
development that we’ll look at in chapter 8.

1.12 Not just microservices

You might already know this, but the tools we use in this book weren’t
actually designed for building microservices. Yes, we can also use Docker,
Kubernetes and Terraform for building monolithic applications! Although
one might consider it overkill to create a Kubernetes cluster to host just a
single process.

As I’ve mentioned before, microservices have become popular, in part,
because these tools have helped make microservices and the underlying
infrastructure easier to build, but you really can use these tools to build
distributed applications with services of any size, not just microservices. I
don’t want you to think that I’m particularly dogmatic about microservices.
For the purpose of this book microservices are an interesting vehicle through
which I can teach you this toolset - but the skills you learn here can take you
far beyond microservices.

How you use these tools in the future - be it for monolith, for microservices
or, more likely, somewhere in between - is entirely up to you. Let’s be
pragmatic and acknowledge that real world solutions are never as clean as the
phrase monolith vs microservices would like you to believe.

Many developers don’t care either way, so long as they are building useful
software and have a reasonably good development experience. Your
customers definitely don’t care: they would like a good user experience, but
they really don’t know or care about how the developers structure the
software they are using.

1.13 A spectrum of possibilities



The truth of the matter is that it’s not just a black and white choice between
monolith and microservices. There’s actually a spectrum of possibility,
shown in figure 1.6.

Figure 1.6 It’s not just monolith vs microservices: there’s actually a spectrum of possibilities.

Despite this being a book about microservices, I don’t advocate that we adopt
any specific position on this continuum. You want a monolith? That’s great,
it’s totally ok to have a monolith. You need microservices? Awesome,
microservices can bring many benefits.

Most likely, you’ll be somewhere in the middle of the spectrum. Maybe
towards the left with a monolith and a couple of helper services. Or maybe
towards the right with many tiny services and a few bigger services. There’s
no right answer to this question. You must take an appropriate position to
improve things for yourself, your team, your company, and ultimately who
we really should care about - our customers.

In this book I promote an idealized version of microservices development,
what I like to call the developer’s utopia of microservices. It’s a form of
development that’s most achievable when starting a greenfield (new)
application and even then only when you can stay true to the path going into



the future. Trust me, this is an amazing way to work, assuming you can
maintain the discipline. But please don’t stress when you see that real world
development is never this perfect.

The nature of development is that it’s complicated and messy. The techniques
in this book can help you bring back some level of control, but it can be
difficult to apply this in practice, especially when you are up against a legacy
code base and constantly changing requirements from business.

The good news is that we don’t need a perfect implementation of
microservices for them to start bringing benefits to our application and
development process. We can simply push towards the microservices end of
the spectrum and any kind of movement in that direction will start to bring
benefits.

1.14 Designing a microservices application

This isn’t a book about theory, but I do have to touch on some of the software
design aspects before we get into the practical stuff. I promise this is just
some foundational principles, and there are plenty of other books to help you
get a better grounding in this space.

At the outset, I’d like to say that designing a microservices application isn’t
particularly different from designing any software. You can read any good
book on software design and apply those same principles and techniques to
microservices.

There aren’t many hard and fast rules that I follow, but I feel these few are
especially important:

Don’t over design or try and future proof your architecture. Start with a
simple design for your application.
Apply continuous refactoring during development to keep it as simple as
it can be.
Let a good design emerge naturally.

I feel that the last rule is especially encouraged by microservices. You can’t



conclusively preplan a big microservices application. The architecture has to
emerge during development and over the lifetime of the application.

I’m not saying that you shouldn’t do any planning. You definitely should be
planning at every stage of development. What I am saying is that you should
be planning for your plan to change! You should be able to respond quickly
to changing circumstances, and that’s another thing that’s well supported by
microservices. Rules aside, let’s briefly discuss three principles that seem
particularly relevant to microservices:

Single responsibility principle
Loose coupling
High cohesio

Generally, we’d like to have each microservice be as small and simple as
possible. One individual service should cover only a single conceptual area of
the business. That is to say that each service should have a single, well-
defined area of responsibility. This is normally known as the single
responsibility principle.

Microservices should be loosely coupled and have high cohesion. Loosely
coupled means that the connections between services are minimal and that
they don’t share information unless necessary. When we reduce the
connections and dependencies between microservices, we make it easier to
upgrade individual services without having problems propagate through the
application. Loose coupling helps us pull apart and rewire our application
into new configurations. This makes our application more flexible and
responsive to the changing needs of the business.

The code contained within a microservice should be highly cohesive. This
means that all the code in a microservice belongs together and contributes to
solving the problem that is the service’s area of responsibility. If a
microservice solves more than one problem or has a larger area of
responsibility, then this is an indication that it is not highly cohesive.

A design paradigm that works well for microservices is called domain driven
design (DDD). Using DDD is a great way to understand the domain of a
business and to model the business as software. The technique comes from



the book, Domain Driven Design, by Eric Evans (2003). I have used it
multiple times myself and find that it maps well to designing distributed
applications. Specifically, the concept of the bounded context fits well to the
boundary of a microservice as illustrated in figure 1.7.

Figure 1.7 Bounded contexts from domain driven design (DDD) equate to the boundaries of
microservices.

This figure shows how the boundaries of concepts in our video-streaming
domain might fit into microservices. Concepts such as User, Like, and Video
live within our microservices, and some concepts (like Video) create the



relationships between microservices. For example, in figure 1.6, the idea of a
video is almost the same (but there can be differences) between the
recommendations and the video-storage microservices.

There is a coding principle that seems like it might be under attack by
microservices. Many developers live by the motto don’t repeat yourself
(DRY). But in the world of microservices, we are developing a higher
tolerance for duplicated code than what was previously considered
acceptable.

The hard process boundaries in a microservices application certainly make it
more difficult to share code, and the practice of DDD seems to encourage
duplicating concepts, if not replicating code. Also, when microservices are
owned by separate teams, we then encounter all the usual barriers to sharing
code that already exists between teams.

Be assured, there are good ways to share code between microservices, and we
aren’t simply going to throw out DRY. We’d still like to share code between
microservices when it makes sense to do so.

This book is about building microservices, so what’s coming up is much
more practical than theoretical. To learn about the theory of designing
microservices I recommend you read the book Designing Microservices by S.
Ramesh.

1.15 An example application

By the end of this book, we’ll have built a simple but complete microservices
application. In this section, we’ll develop an idea of what the final product
looks like.

The example product we will build is a video-streaming application. Every
good product deserves a name, so after much brainstorming and throwing
around various ideas, I’ve landed on the name FlixTube, the future king of
the video-streaming world. Gotta start somewhere right?

Why choose video streaming as the example? Simply because it’s a fun



example and is surprisingly easy to create (at least in a simple form). It’s also
a well-known use case for microservices, being the approach successfully
taken to the extreme by Netflix. (Reports vary, but we know they run 100s if
not 1,000s of microservices.)

We’ll use the FlixTube example application to demonstrate the process of
constructing a microservices application. It will only have a small number of
microservices, but we will build-in the pathways we need for future
scalability, including adding more virtual machines to the cluster, replicating
services for scale and redundancy, and extracting services to separate code
repositories so these can have separate deployment schedules and be
managed by separate teams.

Our application will have a browser-based front end so our users can view a
list of videos. From there they can select a video and it will begin playing.
During development, we’ll boot our application using Docker Compose,
which we’ll cover in chapters 4 and 5. We’ll build and publish Docker
images for our microservices in chapter 3. In chapters 6, 7 and 8, we’ll
deploy our application to production and set up continuous delivery. In
chapter 9, we’ll swing back to development for some automated testing.

Our application will contain services for video streaming, storage, and
upload, plus a gateway for the customer-facing front end. We’ll work up to
deploying the full application, shown in figure 1.8, in chapter 10. In chapters
11 and 12, we’ll look at all the ways this architecture can help us scale in the
future as our application grows. Are you ready to start building with
microservices?

Figure 1.8 Our example application running in production on Kubernetes.



1.16 Summary

We take a practical rather than a theoretical approach to learning how to
build a microservices application.
Microservices are small and independent processes that each do one
thing well.
A microservices application is composed of numerous small processes
working together to create the application’s features.
A monolith is an application composed of a single massive service.
Although building a microservices application is more complicated than
building a monolith, it’s not as difficult as you might think.
Applications built from microservices are more flexible, scalable,



reliable, and fault-tolerant than monolithic applications.
All applications, monolith or microservices, grow complex - using
microservices is an architecture that can help us manage complexity
instead of being overwhelmed by it.
Modern tools like Docker, Kubernetes, and Terraform make building a
microservices application much easier than it used to be.
Domain driven design (DDD) is an effective way to design a
microservices application.
Bounded contexts from DDD map well to the boundaries of
microservices.
The single responsibility principle, loose coupling and high cohesion are
design principles that are particularly relevant to microservices.
FlixTube is the example application we are building in this book, it’s a
video streaming platform based on microservices.



2 Creating your first microservice
This chapter covers

Our philosophy of development
Establishing a single-service development environment
Building a microservice for video streaming
Setting up for production and development
Using Node.js to run our microservice

Our goal for this book is to assemble an application that consists of multiple
microservices. But before we can build multiple microservices, we must first
learn how to build a single microservice.

Because we have to start somewhere, in this chapter, we’ll create our first
microservice. It’s a simple microservice, doing very little, but it illustrates the
process so that you can understand it and repeat it. Indeed, it is the process
we’ll use to create multiple microservices through the course of the book.

This first microservice is a simple HTTP server that delivers streaming video
to a user watching in a web browser. This is the first step on our road to
building FlixTube, our video-streaming application. Video streaming might
sound difficult, but the simple code we examine at this stage should not
present much trouble.

In this book, our microservices are programmed with JavaScript and run on
Node.js. It’s important to note, though, that we could use any tech stack for
our microservices. Building applications with microservices gives us a lot of
freedom in the tech stack we use.

You don’t have to use JavaScript to build microservices. You can just as
easily build your microservices using Python, C#, Ruby, Java, Go, or
whatever language is in vogue by the time you read this book. I had to make
a choice, however, because this is a practical book, and we need to get down
to the nitty-gritty of actual coding. But, keep in mind that you can just as



easily use your own favorite programming language to build your
microservices.

We are about to embark on a whirlwind tour of Node.js. Of course, we can’t
cover the full details, and as is the theme in this book, we are only going to
skim the surface of what’s possible. At the end of the chapter, you’ll find
references to other books on Node.js to drill down for a deeper knowledge.

If you already know Node.js, then you’ll find much of this chapter to be
familiar, and you might be tempted to skip it. But please skim through it
because there are some important notes on setting up your development
environment, preparing for production deployment, and getting ready for fast
iterative development that we’ll rely on throughout the book.

Hold onto your hats! This book starts out simple, but in no time at all it turns
into a pretty wild ride.

2.1 New tools

Because this book is all about the tools, in most chapters we’ll start with the
new tools you need to install to follow along with the examples in the
chapter. Starting with our first microservice, table 2.1 shows the tools we
need: Git, Node.js, and Visual Studio (VS) Code. We’ll use Git to get the
code. We’ll use Node.js to run and test our first microservice, and we’ll use
VS Code to edit our code and work on our Node.js project.

Throughout the book, I’ll tell you the version numbers for each tool used to
develop the examples in this book. This gives you a version number that you
can use to follow along with the examples.

Later versions of these tools should also work because good tools are usually
backward compatible, but occasional major increments to versions can break
old examples. If that happens, let me know by logging an issue in GitHub
(see the next section).

Table 2.1 Tools introduced in chapter 2



Tool Version Purpose

Git 2.36.1
Version control is an essential part of day-to-day
development; in this chapter, we use Git to get a copy
of the chapter 2 code.

Node.js 18.5.0 We use Node.js to run our microservices.

Visual
Studio
(VS) Code

1.68.1 We use VS Code for editing our code and other assets.

Of course, you can use some other integrated development environment
(IDE) or text editor for editing your code. I recommend VS Code because it’s
very good and very widely used.

2.2 Getting the code

Numerous working example projects accompany this book. The code for
each project is available on GitHub. You can clone or download the code
repositories there to follow along with the examples in the book. I strongly
recommend that you run these examples as you work through the book.
That’s the best way for you to get practical experience and the most out of
your learning.

Following standard conventions, these examples are easy to run and all have
a similar setup. Once you understand the fundamentals (which we’ll cover),
you’ll find it easy to run the examples. The examples become more complex
as we progress, but still, I’ll keep these as accessible as possible, explain how
they work, and help you get them up and running.

To find the Bootstrapping Microservices organization on GitHub, point your
web browser to https://github.com/bootstrapping-microservices-2nd-edition.



Here you will see a collection of code repositories organized by chapter,
starting with the chapter-2 repository for this chapter.

Each chapter has its own code repository, for example,
https://github.com/bootstrapping-microservices-2nd-edition/chapter-2. Under
each repository, you can find the code organized by the example project that
is listed throughout that chapter. If you find any problems with the code, or
you are having trouble getting it working, log an issue against the appropriate
code repository on GitHub so that I can help you get it working.

2.3 Why Node.js?

In this book, we use Node.js to build our microservices. Why is that? One of
the advantages of building microservices is that we can choose the tech stack
that we like. I happen to like Node.js, but I also have other reasons for
choosing it.

Building our microservices with Docker (which we look at in chapter 3)
means we can actually compose applications from multiple tech stacks. That
might sound like it just makes things more confusing, and it probably does,
but it gives us the ability to mix and match technologies. We can use this to
ensure we are using the most appropriate stack that each situation demands.

Note

Node.js is well suited to building microservices. It’s network orientated and
high performance. We plan to build many services, so let’s be kind to
ourselves and choose a platform that makes our work easier.

Node.js is also popular and well known. That might not sound like much, but
it’s important because it means there’s an ecosystem of people, tools, and
resources around Node.js. Having a big community to fall back on when you
need help is important. That makes it easier to find assistance while learning,
and it’s also good to have the support during ongoing software development.

Node.js is made for microservices. It’s all there in the name. Node implies its
use for building nodes in distributed network-based applications. (JavaScript



moved from the browser to the server in 2009 and has since established itself
as an extremely competent server-side programming language.)

Node.js is made for creating small, high-performance and lightweight
services, and it forgoes the baggage that comes with many other platforms.
Building an HTTP server in Node.js is trivial. This makes it easy for us to
bootstrap new microservices quickly. That’s a good motivator because we are
planning to create many small services. Node.js is also convenient for this
book because it means that you don’t need to spend a lot of time learning
how to code a basic microservice and, as you’ll soon see, that we can build a
microservice with only a small amount of code using Node.js.

Using JavaScript promotes full-stack coding. These days there aren’t many
places JavaScript doesn’t go. We can use it in our application’s backend to
build microservices. We can use it in our web-based front end (that’s where
JavaScript was born of course). Not only that, but we can also use JavaScript
for desktop development (Electron), mobile development (Ionic), embedded
development (IoT devices), and as I showed in my previous book, Data
Wrangling with JavaScript, we can use JavaScript when working with data, a
domain normally dominated by Python. Using JavaScript as much as possible
means we can go anywhere in our application without triggering a mental
context switch. 

These days many developers (including myself) use TypeScript. That’s a
language on top of JavaScript which brings static typing to JavaScript. The
beauty of TypeScript is that it’s flexible enough that we can mix and match
static and dynamic typing to get the best of both worlds.

The other big thing we get with Node.js is npm, the Node Package Manager,
which is a command-line tool used to install Node.js packages (code libraries
and command line tools). This isn’t specifically related to building
microservices, but it is extraordinarily useful to have a fantastic package
manager and a vast amount of open-source packages at our fingertips. My
superpower as a developer is that I have over 350,000 code libraries (when it
was reported in 2017) within easy access. Whatever I need to do is often just
a quick npm search away!

Note



Node.js is open source and you can find the code for it on GitHub at
https://github.com/nodejs/node.

What is npm?

Npm is the Node Package Manager. It is a command-line application that
talks to the npm repository online and allows you to manage third-party
packages in your Node.js project. Installing a readily available package is a
fast way to solve a problem you’d otherwise have to write more code to
achieve! You can search for packages on the npm website at
https://www.npmjs.com.

2.4 Our philosophy of development

Before we get into the coding, I want to brief you on my philosophy of
development, which we’ll use throughout this book. You will see this
manifested time and again, so a quick explanation is in order. I’ll sum up my
philosophy of development with the following three points:

Iterate
Keep it working
Move from simple to complex

Iteration is a key ingredient. I’m talking about personal iterations of coding
and not the larger iterations in agile that are commonly known as sprints. We
build the code for our application through a series of personal work iterations.
We’ll add code, iteration by iteration, as shown in figure 2.1. Each iteration
gives us feedback. Feedback allows us to discover when we are veering off
track and to do immediate course corrections. Fast iteration allows us to align
our work closely with our evolving goals.

Note

Small, fast-paced increments of coding are essential along the software
development journey..

At each iteration, we do a small amount of coding. How small? It depends on



what we are doing and how difficult it is. But the key is that it should be
small enough so that we can easily understand and test the code we just
wrote.

Each iteration must produce working and tested code. This is the most
important factor. Have you ever typed in a whole page of code then struggled
for hours to get it working? When we work in small and well-tested iterations
of code, the sum total at the end of a day’s coding is a large body of working
code. You can see how this works in figure 2.1.

Figure 2.1 A series of small code changes results in a large body of working code.

This notion of producing a large body of working code demonstrates my
second point: keep it working. We will rarely get into trouble if we work in
small, easily tested increments. When typing large amounts of code, we face
many difficulties getting that code to work. Most likely we’ll have a large
amount of broken (non-working) code. But even if the code does appear to
work, it probably still harbors many “nasties” that are yet to be found.

Note



Each small iteration of coding should produce working and tested code. The
sum total of a series of such iterations results in a large body of rock-solid
code.

When we get into trouble, we can easily wind our code back to the previous
iteration to restore it to working order. Because each iteration of our code is
small, we don’t give up much progress when we need to revert back. Getting
into trouble really isn’t any trouble at all!

Of course, restoration of the previous iteration implies that you are staging or
committing your code to Git or some other form of version control. That
should go without saying. Even if you aren’t using version control (you really
should be), then it’s up to you to find another way to preserve the results of
your iterations.

The third and final point in my philosophy of coding is to start simple. We
should start coding at the simplest possible starting point and iterate our
application toward greater complexity. All applications grow complex over
time; that’s unavoidable in the long run. But we definitely shouldn’t start
with complexity. Don’t try to lay down a complex system all at once in the
“big bang” style. That probably won’t work out well for you.

Note

Complexity is where applications always end up, but it doesn’t mean that’s
where they have to start. Each code change should also be simple, avoiding
too much complexity in any single iteration.

Start with the simplest possible code, then iteration by iteration, you can
build it up to something more complex. This process is illustrated in figure
2.2. Don’t be too eager to take on complexity. Keep it simple for as long as
you can. As our application becomes more and more complex, we need to
bring in tools, techniques, processes, and patterns to help us manage that
complexity.

Building with microservices is one such tool for managing complexity.
Again, any given microservice should be simple. It should be small. Making
a small update to an existing microservice should be easy. And adding a new



microservice to an existing application should be effortless. These statements
are true, even when the application itself has become extremely complex.

As our code becomes more complex, it doesn’t mean that our iterations need
to be that way. We should strive to keep every modification to the code as
simple as possible. Simple changes are easy to understand, simpler to test and
to integrate into the application. All this increases the probability that the
evolving system continues to behave as we had hoped it would.

Tip

When solving problems in complex applications, don’t be afraid to extract
the problem from the application and reproduce it in a simpler environment.
If you can isolate a problem with a smaller amount of code, that problem has
less space in which to hide!

If we encounter problems in a complex application that we can’t easily solve,
we have a new option now. As indicated in figure 2.2, where the arrow goes
from the end back to the beginning, at any time, we can extract our
problematic code from the complex application and reproduce it in a simpler
environment.

Thankfully, this is fairly easy to do when coding in JavaScript. We might
load our code in an automated test where we can repeatedly run the code to
troubleshoot and fix it. If that’s not possible, we might extract the code to a
separate Node.js project to isolate the problem and make it easier to solve. I
often start up Data-Forge Notebook (an application that I built and have
released to the public) to run isolated code and make it easier to solve
problems.

But what can we do if the code isn’t so easy to extract? In that situation, what
I like to do is teardown the application around the problematic code. Pull
code out of the application (as much as is possible) until you have isolated
the problem as best you can.

Why would we do this? It’s because when you have isolated a problem it has
nowhere to hide. Finding problems is usually much more time-consuming
than fixing them once they are found. So having faster ways to triangulate the



location of problems in our code is one of the best ways for us to enhance our
productivity. We’ll talk more about the debugging process and isolating
problems in chapter 10.

This is another thing to love about microservices. Our application is already
compartmentalized, so it should be easy for us to tear out non-essential
microservices. Having said that, eliminating code from your application in
this way is an advanced technique and can easily result in a broken
application!

Figure 2.2 Start simple and work up to complex through a series of small iterations

I’ve covered my philosophy of development here because I think it can help
you to be a better and more productive developer. The evolution of our
software in small and well-tested increments is the main goal. We are taking
our code on a journey of iterations from working state to working state. At no
time should our code ever be fundamentally broken.

You’ll see this philosophy in action in this chapter and throughout the book.
Start simple. Start small. Iterate with small changes. Keep it working. Before



you know it, we’ll have built something big and complex! But that doesn’t
happen all at once. It happens through a series of small changes that, taken
together, add up to something huge.

To learn more about my philosophy of development, please see my book
Rapid Fullstack Development where I present an expanded and updated
version.

2.5 Establishing our single-service development
environment

To create and work on a microservice, we need to set up our development
environment. This provides a way for us to create and edit code and then run
it to make sure it works. In this chapter, we’ll build a single microservice and
we’ll run it using Node.js directly on our development workstation (or
personal computer). We will edit our code using VS Code or some other IDE
or text editor of your choice.

Node.js itself is easy to install and run on any of the main operating systems,
so you can choose Linux, Windows, or MacOS for the development of your
microservice. (Your choices are summarized in table 2.2.)

Running a single service under Node.js directly is fairly easy, as you’ll see in
the coming sections of this chapter. But when it comes to developing and
testing multiple microservices, which we’ll cover in chapter 4, things become
more complicated. That’s when we’ll need to enlist the help of Docker (from
chapter 3 and on). For now, let’s focus on running our microservice directly
under Node.js in our chosen operating system.

Even after we start developing and testing multiple microservices, there will
be times during development, testing, and troubleshooting that we’ll want to
pull a single microservice out of the application and run it so that we can
focus on just that isolated part without having to worry about the application
and all the baggage that it brings. Having a single-service development
environment isn’t just a convenient stepping stone in the early stages. It is
useful to have on standby and ready to be called into action at any time
during ongoing development.



Table 2.2 Options for running Node.js

Platform Notes

Linux

Node.js was built for Linux, so it works pretty well there!

For this book, I demonstrate most commands under Ubuntu
Linux. If you also run Ubuntu or another variant of Linux, you are
well placed to follow along with the examples in the book.

Windows
Node.js also works well under Windows. In fact, I do most of my
day-to-day development, testing, and troubleshooting with
Windows.

MacOS Node.js also works well under MacOS.

Note

When working with just Node.js, you can use it on any platform, and there
really isn’t one that is better than any other!

Figure 2.3 gives you an indication of what our single-microservice
development environment looks like. We will edit our code in VS Code or an
alternative editor. Our microservice project is a Node.js project with
JavaScript code. (I’ll show you how to create this soon.) Executing our
project under Node.js produces a running instance of our microservice. All of
this is running on our development workstation on our host operating system
of choice: Linux, Windows, or MacOS.

Figure 2.3 Our single-service development environment for chapter 2



2.5.1 Installing Git

The example projects and code for this book are in GitHub under the
Bootstrapping Microservices organization (see the links in section 2.2).
Figure 2.4 shows how each code repository is structured. Each subdirectory
(example-1, example-2, and so forth) are working projects that you can run
yourself to follow along with the book (assuming you don’t want to type in
all the code yourself).

Figure 2.4 Each example project in the GitHub repository is a complete working project that you
can run for yourself.



The simplest way to get the code is to download it as a zip file from GitHub.
To do this, you should go to the code repository (e.g., the repository chapter-
2 for chapter 2) and look for the Clone or Download button. Click it and then
choose Download ZIP.

The best way to get the code, of course, is to use Git to clone the code
repository. To do this, you first need to install Git. You might already have it
installed, for instance, if you (like me) use it for everyday work. Or you
might be running a variant of Linux that comes with Git pre-installed. On



MacOS, you might have Xcode installed, which comes with Git.

How do we know if we have Git installed? To find out which version of Git
you have (if any), open a terminal (on Windows open the Command Prompt,
or even better install Windows Terminal from the Microsoft Store) and run
the following command:

git --version

If Git is already installed, you’ll see its version number, which is something
like this:

git version 2.36.1

If you don’t already have Git, installing it isn’t difficult. See the Git website
at https://git-scm.com and follow the instructions there to download and
install on your platform.

New to using the command line?

Using the command line is one of the best and most productive ways to work
as a software developer. Using UIs and visual editors is great for doing the
most common everyday tasks, but for more complex or customized tasks, we
need to be comfortable using the command line. If you are new to it, consider
first doing a tutorial for using the command line for your operating system.

2.5.2 Cloning the code repo

With Git installed, you can now clone the code repository for each chapter of
this book. For example, at this point, you should clone the repo for chapter 2
so you can follow along with this chapter:

git clone https://github.com/bootstrapping-microservices-2nd-edition/chapter-2

This command gets a copy of the code repository from GitHub and places it
on your local hard drive (in the current working directory) under a directory
named chapter-2. I won’t explain how to clone a repository again in future
chapters. But at the start of each new chapter, I’ll show you where to get the
code for that chapter; then you can use Git to get your own copy. Feel free to



return here at any time for a reminder of how to clone a code repository with
Git.

2.5.3 Getting Visual Studio (VS) Code

I use Visual Studio (VS) Code for all my coding. I’m recommending it to you
because I think it’s a great environment for editing code. You can find the
download and installation instructions for Windows, Linux, and MacOS on
the VS Code website at https://code.visualstudio.com

I like VS Code because it’s lightweight, has great performance, and is
configurable. It’s also commonly used for Node.js and JavaScript projects.
You don’t need any extra plugins for this book, but it’s worth noting, there is
a vast range of easily installable plugins for different programming languages
and tasks. You can also customize VS Code for all your development needs.

Of course, if you already have your own favorite IDE or text editor, feel free
to use it, as it doesn’t really make any difference. When I mention VS Code
throughout the book, you’ll just have to pretend it’s your preferred text editor
instead!

2.5.4 Installing Node.js

To run our microservice, we need Node.js. That’s something we can’t do
without because the example microservices in this book are Node.js projects.
All the code examples are written in JavaScript, which runs on Node.js. If
you already have Node.js installed, you can open a terminal and check the
version with the following commands:

node --version

v18.5.0

 

npm --version

8.12.1

These are the versions I currently use for node and npm. You can use these
versions or later ones.

Note



We use the npm command for installing third-party packages. When you
install Node.js, you get npm as well.

Installing Node.js for any platform is straightforward. To install Node.js, see
the Node.js website at https://nodejs.org for download and installation
instructions. It’s not difficult and you shouldn’t have any issues.

If you already have Node.js installed and want to get a newer version, or if
you’d like to manage multiple versions of Node.js, it’s worth looking at
NVM described in the second sidebar that follows.

After installing Node.js, open a terminal and double-check that it installed
OK. To do this, print the version numbers:

node --version

npm --version

Now that we have Node.js installed, we are ready to build and run our first
microservice.

It’s important to know what version you are using!

Using the --version argument is a good way to check if you have something
installed, but it’s also important to know what version you have. When you
are working on a real product, it’s crucial that you use the same version in
development as you use in production. That’s the best way to know that your
code will run in production.

Need to run different versions of Node.js?

What about if you need to run multiple versions of Node.js? This can happen
quite easily, actually.

Say you are maintaining or have to work on multiple production applications
that are built with different versions of Node.js. Or maybe that you are just
working on a single application, but it has been in development for quite
some time, and different microservices are on different versions of Node.js.
In these cases, I highly recommend you use nvm (the Node Version



Manager) to install different versions of Node.js and switch between them.

There are actually two different applications called nvm and which one you
choose depends on your operating system. See the following links for setup
instructions:

  ·    For Linux and MacOS, you want this one: https://github.com/nvm-
sh/nvm.

  ·    For Windows, use: https://github.com/coreybutler/nvm-windows.

This isn’t for the faint of heart! You must be proficient at using the command
line to install this software.

2.6 Building an HTTP server for video streaming

Now that we have our development environment, we can build our first
microservice. This isn’t a difficult project, and we are just building it to
illustrate the process of creating a basic microservice. It’s the first step in
creating our example microservices application FlixTube. You can follow
along with the code while reading this chapter, typing in the code as you see
it, or you can read it first and then try out the example projects that are
available in the chapter 2 repository on GitHub.

The microservice we are building is a simple video-streaming service.
Streaming video might sound difficult and it is something that can become
complicated in a real production application. But we are starting with
something that’s much simpler. You might be surprised at just how little code
we actually need to create this.

Figure 2.5 shows the output for the end result of this chapter’s project. Our
microservice delivers streaming video to the web browser via port 3000 and
the route video. We can watch the video directly through our browser by
pointing it at http://localhost:3000/video.

In figure 2.5, you can see we use Chrome to watch the video. The sample
video we are using was downloaded from https://sample-videos.com. Here,



we used the shortest possible video, but feel free to download one of the
larger sample videos for your own testing.

Figure 2.5 Watching the streaming video from our microservice directly in Chrome

To create our microservice, we must go through the following steps:



1. Create a Node.js project for our microservice.
2. Install Express and create a simple HTTP server.
3. Add an HTTP GET route /video that retrieves the streaming video.

After creating this basic first microservice, we’ll talk briefly about how we
can configure our microservices. Then we’ll cover some fundamentals for
production and development setup.

2.6.1 Creating a Node.js project

Before we can start writing code, we need a Node.js project where our code
can live. The project we’ll soon create is shown in figure 2.6. This is a basic
Node.js project with a single entry point: the script file index.js. You can also
see package.json and package-lock.json, which are the files that track the
dependencies and metadata for our project. The dependencies themselves are
installed under the node_modules directory. Let’s create this project!

Figure 2.6 Our first Node.js project



Definition

A Node.js project contains the source code and configuration for our Node.js
application. It’s where we edit the code that creates the features of our
microservice.

If you are creating a project from scratch (and not just running the code from
GitHub), you must first create a directory for the project. You can do this
from the terminal on Linux and MacOS using the mkdir command:

mkdir my-new-project

If you are working on Windows, you can instead use the md command:

md my-new-project



Now change into your new directory using the cd command:

cd my-new-project

You are now ready to create a stub Node.js project. What this means is that
we are creating our package.json file. We can do this using the npm init
command:

npm init -y

The -y argument means that we don’t have to answer any interactive
questions while initializing our project. That makes it a little quicker to create
our project.

After running npm init, we now have a package.json file with all its fields
set to defaults. You can see an example of this in listing 2.1. Because the
fields in this file have default values, you might want to come back later and
set these to values more appropriate to your project. For the moment though,
we’ll leave these as they are.

Listing 2.1 The empty Node.js package file we just generated

{                                                                    

  "name": "my-new-project"     #A

  "version": "1.0.0",     #B                                          

  "description": "",      #B

  "main": "index.js", #C                                               

  "scripts": {        #D

    "test": "..."     #D

  },                  #D

  "keywords": [],     #E                                            

  "author": "",       #E

  "license": "ISC"    #E

}                                                                    

After creating your Node.js project, I encourage you to open the folder in VS
Code and explore your new project by opening the package.json file and
examining it. With the project opened in VS Code, you are now ready to start
adding some code to your project.

Package.json vs. package-lock.json



Although package.json is automatically generated and updated by npm, it can
also be edited by hand. That way you can manually change the metadata and
npm module dependencies for your Node.js project.

Usually, package.json doesn’t specify exact version numbers for
dependencies (although it can if you want it to). Instead, package.json
generally sets the minimum version for each dependency, and it can also set a
range of versions. In addition, package.json only tracks top-level
dependencies for the project. You don’t need to specify dependencies of
dependencies; that’s handled automatically for you. This makes package.json
smaller, more concise, and therefore more human-readable.

The problem with package.json is that you and your colleagues can end up
running different versions of dependencies. Even worse, you could be
running different versions compared to what’s in production. That’s because
package.json usually doesn’t specify exact versions, so depending on when
you invoke npm install, you can get different versions from everyone else.
This is a recipe for chaos! Indeed, it makes it difficult to replicate production
issues because you aren’t guaranteed to be able to reproduce the exact
configuration that is running in production.

Package-lock.json was introduced in npm version 5 to solve this problem. It
is a generated file and is not designed to be hand edited. Its purpose is to
track the entire tree of dependencies (including dependencies of
dependencies) and the exact version of each dependency.

You should commit package-lock.json to your code repository. Sharing this
file with teammates and the production environment is the best way to make
sure that everyone has the same configuration for their copy of the project.

2.6.2 Installing Express

To stream video from our microservice, we’ll make it an HTTP server (also
known as a web server). That is to say that it will respond to HTTP requests
from a browser, in this case, a browser’s request to play streaming video. To
implement our HTTP server, we’ll use Express.

Note



Express is the de facto standard framework for building HTTP servers on
Node.js. It’s easier for us to do this using Express than it is to use the low-
level Node.js API.

Express is the most popular code library for building HTTP servers on
Node.js. You can find documentation and examples for it on the Express web
site at http://expressjs.com/. While there, I’d encourage you to explore the
many other features of Express as well. Of course, we could build an HTTP
server directly on Node.js without Express, but Express allows us to do this at
a higher level of abstraction, with less code, and without the nuts and bolts
code we’d otherwise need using the low-level Node.js API.

Using Express is also a good excuse for us to learn how to install an npm
package for use in our microservice. npm is the package manager for Node.js,
and it puts at our fingertips a whole world of packages. This includes many
libraries and frameworks like Express that we can use to quickly and easily
do a whole range of jobs when coding. Otherwise, we’d have to write a lot
more code (and probably cause a load of bugs in the process) to achieve the
same effect. We can install Express from the terminal using the command
npm install as follows:

npm install --save express@5.0.0-beta.1

NOTE TO EARLY ACCESS READERS:

We need Express beta v5 because it supports asynchronous route handlers
which will simplify later coding. Hopefully by the time this book is published
v5 will be out of beta and so I won’t have to explain this.

Running this command installs the express package into our project. The --
save argument causes the dependency to be added to and tracked in the
package.json file. Note that --save isn’t actually necessary anymore. In older
versions of Node.js, this was required; these days, it’s the default. I’ve
included --save explicitly so that I can highlight what it does, but you don’t
actually have to use this anymore.

You can see the result of our package install in figure 2.7 and listing 2.2.
Figure 2.7 shows that an express subdirectory was created in the



node_modules directory of our Node.js project. You’ll also note that many
other packages have been installed alongside Express. These other packages
are the dependencies for Express, and npm has automatically installed these
for us.

Figure 2.7 Note where the express subdirectory is installed into the node_modules directory.



Listing 2.2 shows our updated package.json file after installing Express. The
difference from listing 2.1 is that we now have a dependencies field that
includes Express version 4.17.1. This identifies the version of Express that
our Node.js project depends on.



Notice also in the title of listing 2.2 that there is a reference to the actual file
that exists in the chapter-2 code repository on GitHub. This shows you where
to find the working copy of that file. In this case, it’s the chapter-2/example-
1/package.json. If you go to the chapter-2 repository and then look in the
example-1 subdirectory, you’ll see the file package.json. It’s the same file
that is shown in this code listing. You can find this file directly by putting
this link in your web browser: https://github.com/bootstrapping-
microservices-2nd-edition/chapter-2/blob/main/example-1/package.json.

Most of the listings in this book follow this convention. They show a snippet
of a file (or in this case, a complete version) that is part of a working example
project on GitHub. To see this file in context, you can follow the reference to
its location in GitHub or in the copy of the code repository that you cloned
locally.

From there, you can either just inspect the code as it exists within its project,
or rather, you can (you should) run the code because every example in this
book (in this case, example-1 in chapter-2) is a working project that you can
try out for yourself to cement into place what you are learning.

Listing 2.2 The package file with Express installed (chapter-2/example-1/package.json)

{

  "name": "example-1",

  "version": "1.0.0",

  "description": "",

  "main": "index.js",

  "scripts": {

    "test": "echo \"Error: no test specified\" && exit 1"

  },

  "keywords": [],

  "author": "",

  "license": "ISC",

  "dependencies": {

    "express": "^5.0.0-beta.1"      #A

  }

}  

Having the dependencies tracked through the package.json file means you
can pass your project and code to other programmers (your teammates, for
example) so that they can replicate your work. It also means I can make this



code available to you and that you can easily get it working.

For example, say you want to get example-1 working. First you need to clone
the chapter-2 code repository as was shown in section 2.6.2, then from the
terminal, change the directory to the code repository:

cd chapter-2

Now change the directory into the particular example that you want to get
running. In this case, it’s example-1:

cd example-1

Then you can use npm to install all the dependencies:

npm install

The command npm install by itself (not specifying any particular package)
installs all the dependencies listed in package.json. In this case, it’s only
Express that is listed so only that is installed (plus its dependencies). For
other examples in this book, there will be more dependencies. But we still
only need to invoke npm install once per example, and that’s enough to
install everything you need to run each example project.

2.6.3 Creating the Express boilerplate

Before we add video streaming to our microservice, we must first create the
standard Express boilerplate HTTP server. Listing 2.3 is the customary Hello
World example that you get by following the official Express getting started
guide (available at https://expressjs.com/).

This is only a small amount of code, but it’s the simple starting point that we
need for this project. You should now create an index.js file under a src
directory in your Node.js project and type in the code. If that’s too much
work, then just open example-1 from the chapter-2 repository and find the
version that I prepared for you.

The code in listing 2.3 starts a web server, albeit the simplest possible web
server. It uses Express’, get function to define a route handler that returns the



string Hello World!. The listen function is then called to start this HTTP
server, listening for HTTP requests on port 3000.

Listing 2.3 A minimal Express web server (chapter-2/example-1/src/index.js)

const express = require('express');   #A

 

const app = express();    #B

 

const port = 3000;      #C

 

app.get('/', (req, res) => {    #D

    res.send('Hello World!');    #E

}); 

 

app.listen(port, () => {    #F

    console.log(`Example app listening 

                 [CA]on port ${port}!`);    #G

});

We called the file index.js; why is that? Because that’s the standard name for
the main entry point of a Node.js application. It’s a convention that it is
called index.js. We could just as easily have called it something else, like
main.js or server.js. The choice is up to you. By calling it index.js, we are
giving it a name that many other Node.js developers will immediately
recognize as being the main file.

We placed the file index.js under the src directory. Why is that? It’s simply a
convenient way to keep our source code files (src is short for “source”)
separated and easily distinguished from our configuration and other files. We
don’t really need this yet, but it’s worthwhile getting it in place now because
we’ll need to make use of this distinction in the next chapter. This directory
doesn’t have to be called src—you can call it anything you like, but src is a
common name for it. Don’t forget to update your package.json file to include
the location of index.js within the src directory.

The port number allows us to run multiple HTTP servers on the same
computer. The servers can each have their own port number so they won’t
conflict with each other. The choice of port 3000 is another convention. It’s
customary during development to set your Node.js application to listen on
port 3000, but in production, we’ll often want to set this to the standard



HTTP port 80. Later on, we’ll see how to set the port number as a
configuration option supplied to the microservice when it’s booted up.

We could have chosen another port and, if you are already running something
else on port 3000, you might have to do so. For example, if port 3000 doesn’t
work for you, try changing it to a different number, say port 4000.

Later, when we are running multiple microservices at the same time, instead
of just one port we’ll use a series of port numbers starting at 4000 (4000,
4001, and so forth). Now we are ready to try running our ultra simple web
server.

What is index.js?

By convention, index.js is the JavaScript file that is the entry point for the
Node.js application. When trying to understand an existing Node.js project,
index.js is the place you should start.

2.6.4 Running our simple web server

To test our fledgling HTTP server, we’ll run it from the terminal. First, we
need to make sure we are in the same directory that contains the index.js file
from listing 2.3. If you built the project yourself from scratch, you’ll have to
change to the directory that you created. For example

cd my-new-project

Otherwise, if you are using the code from the chapter-2 GitHub repository,
you should change to the example-1 directory:

cd chapter-2

cd example-1

Now you can use Node.js to run the JavaScript code and start the HTTP
server:

node src/index.js

If you are running on Windows you may need to change the forward slash to



a backslash. I’m using Windows 11 as I write the second edition of this book
and the forward slash works for me, but it may not work on older versions of
Windows.

What we are doing here is running Node.js with src/index.js as the
argument. We are telling Node.js to run our script file. Node.js executes the
JavaScript code in this file, and if successful, we’ll see the following output
in our terminal:

Example app listening on port 3000!

Now we can test that this has worked. Open your web browser and point it at
http://localhost:3000. You should see the Hello World message displayed.

We can also use cURL, which you might have if you are working on Linux
or MacOS (and Windows, if you have Git Bash), as a quick means for testing
HTTP endpoints. With your HTTP server already running in one terminal,
open a new terminal and use cURL to hit your endpoint:

curl http://localhost:3000

You should see output like this:

Hello World!

Note

Using cURL means you can run quick tests like this from the command line
without having to open your web browser.

We now have a basic HTTP server running and it’s time for us to add
streaming video to it. When you are ready to stop your HTTP server, go back
to the terminal where it is running and press Ctrl-C to quit the Node.js
application.

2.6.5 Adding streaming video

In listing 2.3, we only had a single HTTP route handler that returned Hello
World. Now we’ll change this and create a REST API for streaming video to



the browser.

A REST API (often just called an API) is a REpresentational State Transfer
(REST) application programming interface (API). The name makes it sound
complicated, but it really isn’t. A REST API in its simplest sense is just a
collection of HTTP route handlers that interface with systems and logic
running in the backend.

Often routes in REST APIs return data, but we’ll add a new route that returns
streaming video. You can see what it looks like in figure 2.8. The diagram
shows how our HTTP server will read the video from the filesystem and
deliver it to the web browser via port 3000 and the video route.

Figure 2.8 How the web browser interacts with our microservice through the video route

We define the new video route as shown in listing 2.4. If you are following
along with the code, you can update the Express boilerplate HTTP server that



you created earlier. Otherwise, you can open example-2 from the chapter-2
repository in VS Code to see how the updated index.js looks.

Listing 2.4 reads a video from the local filesystem and streams it to the
browser. This is a simple starting point that does just what we need, which is
streaming video, the core feature for our microservices application FlixTube.
The video itself can be found in the videos subdirectory under example-2.
Feel free to open Finder on MacOS or Explorer on Windows and inspect the
video yourself before running the code. We’ll use this example video
throughout the book for testing so you will come to know it very well!

Listing 2.4 Simple streaming video server with Node.js (chapter-2/example-2/src/index.js)

const express = require("express");

const fs = require("fs"); #A

 

const app = express();

 

const port = 3000;

 

app.get("/video", async (req, res) => { #B

 

    const path = "../videos/SampleVideo_1280x720_1mb.mp4"; #C

    const stats = await fs.promises.stat(path); #D

 

    res.writeHead(200, { #E

        "Content-Length": stats.size,

        "Content-Type": "video/mp4",

    });

      

    fs.createReadStream(path).pipe(res); #F

});

 

app.listen(port, () => {

    console.log(`Microservice listening ...`);

});

The code in listing 2.4 is an example of Node.js streaming. This is a more
complicated topic than we have time to get into here, but suffice it to say that
here we are opening a readable stream from the video file. Then we are
piping the stream to our HTTP response (look for the call to the pipe
function).



We have created a conduit through which to stream the video byte by byte to
the browser. We set up this pipeline for video streaming and then let Node.js
and Express take care of the rest. Node.js and Express make this easy! To run
this code, first change to the example-2 subdirectory:

cd chapter-2/example-2

Then install the dependencies:

npm install

Now start the first iteration of our streaming video microservice like this:

node src/index.js

We can now point our browser to http://localhost:3000/video to watch the
video. It’s going to look similar to what was shown earlier in figure 2.5.

Note

Don’t use cURL for testing at this point; it doesn’t work well with streaming
video. It’s going to print a massive stream of garbage into your terminal if
you do that. When viewing the output of JSON REST APIs, however, cURL
is really useful, so it’s advantageous to have in your toolbox.

To test the code for this book, I’ve used the Chrome web browser. I
discovered that such simple video streaming doesn’t work under the Safari
web browser. For details on how to make video streaming work for Safari,
see my blog post at https://www.codecapers.com.au/video-streaming-in-
safari. We’ll talk more about ways we can test our microservices in chapter 8.

2.6.6 Configuring our microservice

At this point, it’s worthwhile to spend a moment thinking about how we can
configure our microservice. This is an important concern and will help us
make better use of the microservices that we create. In future chapters, we’ll
see examples of how we can wire together microservices using their
configurations. For now, though, let’s look at a simple example of
configuring a microservice.



We need a way to configure our microservice so it knows the port number to
use when starting the HTTP server. There are a number of techniques we
might use to configure our microservice, such as configuration files or
command-line arguments. These techniques work, but another has emerged
as the standard way to configure a microservice, and it is well supported by
the tools we will be using.

We will configure our microservices using environment variables.
Specifically, in this case, we need a single environment variable to set the
port number for the HTTP server. Figure 2.9 shows how we will wire the
PORT environment variable into our microservice.

Figure 2.9 Using the PORT environment variable to configure our microservice

Using environment variables to configure our code in Node.js is quite easy.
We simply access the appropriately named field of process.env. You can see
how this works in listing 2.5, where our code uses process.env.PORT to get
the value for the port number. The code throws an error if the PORT
environment variable is not supplied. I like to add this error checking so that
the microservice clearly states the configuration it is expecting. This means
we can’t accidentally start our microservice in production without
configuring it. If we try that, the microservice will refuse to start, and it’s



going to tell us the reason why.

I think it’s better that the microservice refuse to start rather than operate on
potentially the wrong configuration simply because we forgot to configure it.
The microservice then shows us how to fix the problem. This means we don’t
have to waste time debugging the code to figure out what the problem is.

Listing 2.5 Configuring a microservice (extract from chapter-2/example-3/src/index.js)

const express = require("express");

const fs = require("fs");

 

const app = express();

 

if (!process.env.PORT) {                                               #A

    throw new Error("Please specify the port number                    #A

    [CA]for the HTTP server with the environment variable PORT.");     #A

}                                                                      #A

 

const PORT = process.env.PORT;    #B

 

// ... code omitted for brevity ...

 

app.listen(PORT, () => {    #C

    console.log(`Service listening on port ${PORT}!`);

});

Now let’s run this code:

cd example-3

npm install

node src/index.js

Oops. We forgot to configure the required environment variable, and our
microservice has thrown the error! How did we forget so soon about the
environment variable we were supposed to configure? No problem. The error
log conveniently gives us a helpful message telling us how to fix the
problem:

chapter-2\example-3\index.js:7

    throw new Error("Please specify the port number for the HTTP server 

    [CA] with the environment variable PORT.");

    ^



 

Error: Please specify the port number for the HTTP server 

[CA]with the environment variable PORT.

    at Object.<anonymous> (chapter-2\example-3\index.js:7:11)

Now we must set the PORT environment variable before trying to run the
code again. On Linux and MacOS, we’ll set it using this command:

export PORT=3000

If working on Windows, do this instead:

set PORT=3000

Run the file again:

node src/index.js

Now it should work correctly. We set the PORT environment variable so the
microservice knows which port number to use for its HTTP server. To test
this, we can point our browser at http://localhost:3000/video. We should see
our video playing the same as before.

Now that we can configure the port for the HTTP server, we could easily start
multiple separate instances of this microsevice directly on our development
workstation. We can only do that if they have different port numbers.
Because we can set the port number, we can easily start each microservice
using a different port. This doesn’t make a lot of sense with a single
microservice, but soon we’ll have multiple different microservices and to run
them at the same time we’d have to start them on separate port numbers.

Configuring our microservices through environment variables is important
and is something we’ll use again in future chapters. For example, we are
going to need it when we add the database to our application (chapter 4) and
when we connect our microservices to a message queue server (chapter 5).

We can also use environment variables to pass secret and sensitive data into a
microservice (e.g., the password for our database). We need to treat this
information carefully, and we shouldn’t store it in the code where everyone in
the company can see it. In chapter 12, we’ll touch on the important issue of



managing sensitive configuration such as passwords and API keys.

2.6.7 Setting up for production

So far, we set up our microservice to run on our development workstation.
That’s all well and good, but before we get to the fun stuff (Docker,
Kubernetes, and Terraform), we need to know how to set up our microservice
to run in the production environment.

When I say production environment what I mean is our customer-facing
environment. That’s where our application is hosted so it can be accessed by
our customers. For this book, our production environment is Kubernetes, and
we are gearing up to run our application in a Kubernetes cluster to make it
publicly accessible.

I’ve already said that to get an existing Node.js project ready to run, you must
first install dependencies like this:

npm install

Well, to get our microservice ready to run in production, we need to use a
slightly different version of this command:

npm install --only=production

We added the argument --only=production to install only dependencies that
are required in production. This is important because when creating a Node.js
project, we’ll usually have a bunch of so-called dev dependencies that we
only need for development and we don’t want to install these into our
production environment. You haven’t seen an example of dev dependencies
yet, but you will see it coming up in the next section.

Up until now, we have run our HTTP server on our dev workstation like this:

node src/index.js

That’s OK, but we’d like to run it using the following standard convention:

npm start



Invoking the command npm start is the conventional way to start a Node.js
application. This is a special case of an npm script and soon you’ll see some
more examples of different types of npm scripts. In listing 2.6, you can see
that we’ve updated the package.json file to include a start script under the
scripts field. This simply runs Node.js with index.js as the argument.

No surprises here, but the nice thing about this convention is that for almost
any Node.js project (at least those that follow the convention), you can run
npm start and you don’t have to actually know if the main file is called
index.js or if it has some other name. You also don’t need to know if the
application takes any special command-line arguments or configuration,
because those details can be recorded here as well.

This gives you a single command to remember regardless of which project
you are looking at and how the particular application is started. It makes it
much easier to understand how to use any Node.js project, even those created
by other people.

Listing 2.6 Adding a start script to package.json (chapter-2/example-1/package.json)

{

  "name": "example-1",

  "version": "1.0.0",

  "description": "",

  "main": "src/index.js",

  "scripts": {

    "start": "node src/index.js"    #A

  },

  "keywords": [],

  "author": "",

  "license": "ISC",

  "dependencies": {

    "express": "^5.0.0-beta.1"

  }

}

Try this for yourself. You’ll note in listing 2.6 that I updated the example-3
package.json to include an npm start script. To try it out, change your
directory to example-3 and run npm start (make sure you run npm install
to get the dependencies first or execute npm install --only=production if
you want just the production dependencies).



From now on in this book, we’ll use npm start to run each of our
microservices in production. In the future, I’ll refer to this as running our
microservice in production mode. It’s worth remembering this command
because so many other Node.js applications you’ll encounter in the wild
conform to this convention, and it’s a shortcut you can remember that will
help you get other people’s code working.

The commands we’ve just learned are enough for getting our microservice
working in production. They are the commands we’ll use to get our
microservice running in Docker in chapter 3, so we’ll return to them soon.

Another useful command you might have heard of is npm test. This is the
command that is conventionally used by a Node.js project to initiate
automated testing. It’s something we’ll come back to and investigate in
chapter 9.

2.6.8 Live reloading for fast iteration

Now that we have a convenient way to set up and run our microservice in
production, we can also look for a better way to run it in development. Live
reloading our code as we are editing gets us faster feedback, streamlines our
development workflow and helps us create a rapid pace of development. As
we change code, we can immediately see the results of executing the code.
Whether the result is an error or output from a successful run doesn’t matter.
What matters is that we minimize the distance between changing our code
and being able to test the result.

In this section, we’ll get set up for live reload. This way of working is
illustrated in figure 2.10, and it’s important because it automates the
restarting of our microservice (during development). This helps us cycle
more quickly through our personal coding iterations, see instant results, and
be more productive. Iteration and fast feedback are crucial in my philosophy
of development as I pointed out in section 2.4. (Live reload also works well
with test-driven development, which we’ll talk about in chapter 9.)

Figure 2.10 Setting up for live reload helps us to be more productive.



To create our live reload pipeline, we’ll install a package called nodemon.
Figure 2.10 shows how it works. We use nodemon to run our microservice,
and it automatically watches for code changes in our project. When a code
change is detected, nodemon automatically restarts our microservice for us,
saving us the effort of doing so manually.

This might not sound like it does much at all, but I have found that it makes
for a fast and fluid development cycle. Once you have tried it you might
wonder how you ever did without it in the first place. We can install
nodemon in our Node.js project as follows:

npm install --save-dev nodemon

Note that now we are using the --save-dev argument. This makes npm
install this package as a dev dependency rather than a production dependency.
I mentioned this in the previous section when talking about installing



production only dependencies for running our microservice in a production
environment. Here you can see why it’s useful for installing a dependency
that you want to have in development but be excluded from production.

We use nodemon during development, but there’s no need to have it installed
in production where, at best, it’s just useless bloat and, at worst, it might be a
security concern. Not that I have any reason to believe nodemon in particular
has any security issues. But generally, the less we install in our production
environment, the better. This is a topic we’ll return to in chapter 12 when we
talk about security.

This means that when we run npm install --only=production, then the
packages we install to help with development, like nodemon, will be
excluded. Normally, when we run our Node.js code, we do it like this:

node src/index.js

Now that we are going to be using nodemon instead, we’ll replace node with
nodemon and run it like this:

npx nodemon src/index.js

What’s this npx command that’s suddenly appeared? This is a useful
command that comes with Node.js and allows us to run locally installed
packages directly from the command line. Before npx was added to Node.js,
we used to install modules like nodemon globally. Now we can run tools like
this directly from the current project’s dependencies. This really helps us use
the right versions of modules and stops our computer being cluttered up by
globally installed modules.

Stopping the microservice running under nodemon is the same as when it’s
running under Node.js. Just type Ctrl-C at the terminal where it’s running,
and the microservice stops.

I usually like to wrap nodemon in an npm script called start:dev. This is a
personal convention of mine, but I find that many other developers have
something similar, often with a different name. You can see how our updated
project setup looks in listing 2.7. At the bottom of the package.json, nodemon
has been added as a devDependency, and you can see our new script,



start:dev, in the scripts section.

Listing 2.7 Adding a start script for development (chapter-2/example-3/package.json)

{

  "name": "example-3",

  "version": "1.0.0",

  "description": "",

  "main": "src/index.js",

  "scripts": {

    "start": "node src/index.js",    #A

    "start:dev": "nodemon src/index.js"    #B

  },

  "keywords": [],

  "author": "",

  "license": "ISC",

  "dependencies": {

    "express": "^5.0.0-beta.1"

  },

  "devDependencies": {      #C

    "nodemon": "^2.0.18"     #D

 

  }        #C

}

In the previous section you learned about the convention of using npm start.
We configured our project so that we could run our code in production mode
like this:

npm start

Now that we have defined the start:dev command, we can run our
microservice in development mode like this:

npm run start:dev

Notice the use of npm run to run our new script. We can use npm run to run
any npm script that we add to our package.json file. This is a great way to
add build scripts and other utility scripts to our project. We can omit the run
part for npm start and npm test (which we will learn about in chapter 9)
because npm has special support for these particular conventions.

Now this tells you that this start:dev script isn’t a Node.js convention the way



start and test are. That’s why we have to specifically use the npm run
command to invoke it. Using start:dev to run in development is simply my
own personal convention. We’ll use it throughout this book though, and I’m
sure you’ll also find it useful in your own development process.

With these commands in place, we can run our microservice in either
production mode or development mode. It’s important to make this
distinction so that we can cater separately to the differing needs of each
mode.

In development mode, we’d like to optimize for fast iterations and rapid
development. Alternatively, in production mode, we’d like to optimize for
performance and security. These requirements are at odds with each other;
hence, we must treat them separately. You’ll see this become important again
in chapters 6, 7 and 8 as we approach production deployment of our
application.

Note

All of the microservices that are forthcoming in this book follow the
conventions that we have laid down in the last two sections.

2.6.9 Running the finished code from this chapter

If you get to this point and you haven’t yet tried out the code in this chapter,
now is the time to do so. Here’s a quick summary to show you how easy it is
to get the examples in this chapter running. Get a local copy of the chapter-2
code, either by downloading it or cloning the chapter-2 repository from
GitHub.

To look at the streaming video, you’ll want to try out example-2.
To see the example of configuring a microservice using environment
variables, try example-3.

As an example, let’s say you want to try out example-3. Open a terminal and
change to the appropriate subdirectory:

cd chapter-2/example-3



Now install dependencies:

npm install

If you wanted to simulate a production deployment, you’d do this instead:

npm install --only=production

Now to run it like you would in production, invoke

npm start

Or to run it with live reload for fast development, invoke:

npm run start:dev

These are the main commands you need to remember to run any Node.js
example in this book. Put a bookmark on this page and jump back to it
whenever you need to remember how to do this.

2.7 Node.js review

Before we move on, we have time for a quick review of all the Node.js
commands we have learned in this chapter. Table 2.3 lists these commands.

Table 2.3 Review of Node.js commands

Command Description

node --

version
Checks that Node.js is installed; prints the version number.

npm init

-y

Creates a default Node.js project with a stub for our
package.json, the file that tracks metadata and dependencies for
our Node.js project.



npm

install -

-save 

<package-

name>

Installs an npm package. There are many other packages
available on npm, and you can install any by inserting a specific
package name.

npm

install

Installs all dependencies for a Node.js project that have been
recorded in package.json.    

node

<script-

file>

Runs a Node.js script file. We invoke the node command and
give it the name of our script file as an argument. You can call
your script main.js or server.js if you want, but it’s probably best
to stick to the convention and just call it index.js.

npm start

The conventional npm script for starting a Node.js application
regardless of what name the main script file has or what
command-line parameters it expects.

Typically this translates into node index.js in the package.json
file, but it depends on the author of the project and how they
have set it up. The nice thing is that no matter how a particular
project is structured, you only have to remember npm start.

npm run

start:dev

My personal convention for starting a Node.js project in
development. I add this to the scripts in package.json. Typically,
it runs something like nodemon to enable live reload of your
code as you work on it.

2.8 Continue your learning

This chapter has been a fast-paced introduction to building a barebones
HTTP server with Node.js. Unfortunately, we have barely scratched the
surface. But this book isn’t about Node.js; that is simply the vehicle we are



using to travel to the land of microservices. I do however have some
references for you to learn more should you wish to drill deeper and gain
more expertise in Node.js and Git:

Get Programming with Node.js by Jonathan Wexler (Manning, 2019)
Node.js in Action, 2nd ed., by Alex R. Young, Bradley Meck, and Mike
Cantelon (Manning, 2017)
Git in Practice by Mike McQuaid (Manning, 2014)

Also, see the extensive Node.js documentation that you can find online at
https://nodejs.org/en/docs/.

Next, we’ll move onto packaging and publishing our microservice so that it’s
ready for deployment to the cloud. For this, we’ll use Docker, a tool that has
become ubiquitous and indispensable in our industry. Docker has made
microservices more accessible and has done nothing less than revolutionized
the way we build and deploy our software.

2.9 Summary

Our philosophy of development: iterate, keep it working, start simple.
To create and work on individual microservices we need a development
environment on our local development workstation.
To edit code we need an editor like Visual Studio Code.
Git is used to clone the example code repository. You will also use Git
as you are working to record your code changes.
Node.js is made for developing network-oriented distributed
applications and makes it particularly easy to create individual
microservices.
Using JavaScript promotes fullstack coding and makes it easier to
switch between working on the backend and the frontend of our
application.
Express.js is the defacto standard web server framework for Node.js and
allows our microservices to handle incoming HTTP requests from the
network.
Streaming video is a simple example to use in our first microservice and
is the core feature of the FlixTube application.



Our first microservice supports running in either development or
production mode, this is important because both modes have different
needs.
Using Nodemon to run our microservice enables live reload in
development for fast feedback to help create a rapid pace of
development.
Environment variables are the way we configure microservices
throughout this book.



3 Publishing your first microservice
This chapter covers

Learning the difference between images and containers
Using Docker in your development environment
Packaging your microservice as a Docker image
Creating a private container registry
Publishing your microservice to your container registry
Instantiating your microservice in a container

By the end of this book, we’ll have deployed multiple microservices to our
production environment: a Kubernetes cluster. But before we can deploy an
entire microservices application, we must first be able to package and publish
a single microservice! In this chapter, we’ll take the video-streaming
microservice we created in chapter 2 and publish it so that it’s ready for
deployment to our cluster.

In order to deploy a microservice to a cluster running in the cloud, we have to
publish it somewhere accessible. To achieve this, we must first package our
code, assets, and dependencies into a single bundle. We’ll then need a
location in the cloud to host this package. For that, we’ll create a container
registry. If you haven’t heard of containers yet, this will be explained soon.

In this book, we want to emulate the building of a proprietary application for
a private company. Security and privacy are important, and that’s why we’ll
create a private container registry as opposed to a public one. We’ll create
this container registry manually on Azure, but later in chapter 6, we’ll learn
how we can build our registry with code.

At the end of this chapter, we’ll test that we can instantiate our published
microservice directly from the remote container registry. This allows us to
test our published microservice on our development workstation (or personal
computer).



3.1 New tools

This chapter introduces an important new tool: Docker. In this chapter, we
lay some necessary groundwork. That’s because from here on in, we’ll use
Docker extensively, and you will need some basic skills in place to
understand how it works. That’s going to help you troubleshoot when things
go wrong.

Table 3.1 Tools introduced in chapter 3

Tool Version Purpose

Docker 20.10.17 We use Docker to package, publish, and test our
microservices.

Docker works on Linux, MacOS, and Windows 10. If you are working on
Windows, you’ll first need to install WSL2 (the Windows integrated Linux
kernel); see section 3.7.1 for a link to download and install WSL2 for
Windows.

3.2 Getting the code

This chapter has only one example project, which is based on example 2 from
chapter 2. It’s the video-streaming microservice we created in that chapter.
To follow along in this chapter, you need to download the code or clone the
repository.

You can download a zip file of the code from here:
https://github.com/bootstrapping-microservices-2nd-edition/chapter-3
You can clone the code using Git like this:

git clone https://github.com/bootstrapping-microservices-2nd-edition/chapter-3

For help on installing and using Git, see chapter 2. If you have problems with



the code, log an issue against the repository in GitHub.

3.3 What is a container?

Simply put, a container (as the name implies) is something that contains
something else. What does it contain? In this situation, we’ll use it to contain
(or host) a microservice.

Definition

A container is a way of virtualizing a server.

More formally, a container provides a way of virtualizing both the operating
system and the hardware. This allows us to abstract (or virtualize) the
resources required by our microservice. Containers provide a way to divide
up the resources on one computer so that we can share these among many
such services. Containers are one of the modern technologies that help make
it cost-effective to run microservices.

Containers are often compared to virtual machines (VMs). Both VMs and
containers allow us to isolate our microservices to prevent them from
interfering with each other. Before containers were invented, we ran our
services in virtual machines, and indeed, these days we can still choose to do
that when appropriate. Figure 3.1 compares virtual machines to containers so
you can visualize the differences.

Figure 3.1 Comparing virtual machines to containers



As you can see in figure 3.1, virtual machines are more heavy-weight than
containers. A virtual machine contains a complete copy of its operating
system that’s running on fully virtualized hardware. A container, on the other
hand, virtualizes the operating system as well as the hardware. A container is
therefore smaller and does less work, which makes for more efficient use of
our computing resources.

Ultimately, we’ll have many containers running on our Kubernetes cluster.
But for now, we are aiming to instantiate just a single container to host the
video-streaming microservice we created in the previous chapter.

3.4 What is an image?

An image is a snapshot of something. The word image is used in many
different scenarios. We could be talking about an image that’s a photograph,
or we could be talking about an image that’s a snapshot of the hard drive for
a virtual machine. In this book, we are talking about Docker images.

Definition



An image is a bootable snapshot of a server (in our case, a microservice)
including all the code, dependencies, and assets that it needs to run.

In the example for this chapter, we create a snapshot of our video-streaming
microservice. Images are immutable, which means an image that has been
produced cannot be modified. Containers, on the other hand, are not
immutable. Once an image has been instantiated to a container the contents of
its file system can be modified and we’ll make use of this in chapter 5 for an
improved development experience.

That images are immutable is an important thing to know. We might have
applied tests or security checks to an image, and because we know the image
can’t be tampered with, we know that our tests and security checks will
remain valid.

You can think of an image as being a dormant version of a microservice, a
way of storing it prior to running it. It’s in a state waiting to be booted as a
container, ready for when we need to instantiate it into our application.

Figure 3.2 shows how a container is booted from an image. The image itself
contains everything needed to instantiate a container: the code for the
microservice, its dependencies, and any other assets and resources that our
microservice needs to do its job.

Figure 3.2 To run our microservice in the cloud, we’ll instantiate its Docker image in a container.



Soon, we’ll build an image for our microservice and run it as a container.
Before that, let’s learn more about Docker.

3.5 Why Docker?

Surely you have already heard about Docker? It’s probably one of the reasons
you bought this book. Almost everyone who is building cloud-based
applications is using Docker or wanting to use it. Let’s look at why this is.

Docker is quasi-ubiquitous in the software industry. There are alternatives to
Docker, but Docker as a technology for packaging and deploying containers
has captured mainstream attention. It’s well-known and well-supported.

Docker is even making inroads in other areas. For example, I’ve heard of
people using Docker to deploy applications to IoT devices. It does the job we
need. But what exactly is the job it’s doing for us?

Docker is the tool we’ll use to package and publish our microservices.
Although there is a lot you can learn about Docker, we’ll learn the minimum
we need to get this show on the road. At the end of this chapter, I’ll provide
references for you to dig deeper to understand Docker more broadly.



I like to think of Docker as the universal package manager: the one package
manager to rule them all! Normally, you wouldn’t think of Docker in this
way, but if you think it through, it makes some kind of sense. The package
manager part is fairly obvious; we use Docker to package and publish our
work. I say that it is universal because it supports many different technology
stacks. Docker is open source and you can find the code for the CLI tool
here:

https://github.com/docker/cli

You can see other open-source projects from the makers of Docker here:

https://www.docker.com/community/open-source

Standardize your environment

Docker is also really good for standardizing your environments, ensuring that
all your developers run the same development environment. This, in turn, is
the same as the production environment. It maximizes the probability that
code that works in development also works in production and that gives
developers a better chance to find problems before the code gets to the
customer.

3.6 Why do we need Docker?

Let’s break this question down. We will use Docker to

Package our microservice into a Docker image
Publish our image to our private container registry
Run our microservice in a container

It’s the last bullet point that’s most important. We want to have our
microservice running in our production environment, but we can only do that
if we have first packaged and published it.

We aren’t ready to deploy our microservice to production just yet, so instead,
we’ll focus on learning the Docker commands that we need to package,



publish, and test our image on our development workstation.

Figure 3.3 gives you the general picture of what we need to do here. We’ll
take the Node.js project for our video-streaming microservice (on the left of
figure 3.3), package it as a Docker image, and then publish it to our private
container registry. From there, we can deploy the microservice to our
Kubernetes cluster; although, that’s a job we’ll save for chapter 6.

Figure 3.3 In this chapter, we will learn how to publish Docker images to our private container
registry in the cloud.

3.7 Adding Docker to our development environment

Before we can use Docker, we must upgrade our development environment.
To follow along with this chapter, you’ll need to have Docker installed on
your own computer. In this section, we install Docker and make sure it’s
ready to go.



Figure 3.4 shows what our development environment will look like with
Docker installed. Even though you can see that we’ll run our Node.js
microservice under Docker, you won’t always have to run your microservices
this way. When we are testing an individual microservice, however, we’ll just
run it directly on our host operating system just like we did in chapter 2.

Figure 3.4 Extending our development to run our microservice in a container

Because we need to be able to package our microservice using Docker, it’s
useful to be able to test it locally, both before and after we publish it. The
ability to test will be useful later for any microservice that is misbehaving on
Kubernetes. We’ll talk more about this in chapter 11.

3.7.1 Installing Docker

To install Docker, go to the Docker website at https://docs.docker.com. Once
there, find the download/install link and follow the instructions to install
Docker Desktop for your platform. Table 3.2 provides the details for
installing Docker for your particular platform.

On Windows you need WSL2 (the Windows integrated Linux kernel)
installed before you install Docker. Follow the instructions in table 3.2 to do
that.

Table 3.2 Platforms supported by Docker



Platform Description

Linux/MacOS
Go to the Docker website at https://docs.docker.com. Click
the download/install link and follow the instructions to install
Docker Desktop on your system.

Windows

WSL2 must be installed before you can install and use
Docker.

To install WSL2 follow the instructions here:

https://docs.microsoft.com/en-us/windows/wsl/install

After installing WSL2 you can now install Docker with the
instructions here:

https://docs.docker.com/desktop/windows/install/

3.7.2 Checking your Docker installation

Once you have Docker installed, you can use the terminal to check that it’s
OK by printing the version:

docker --version

If you have the same version installed as I do (as of this writing), the output
will look like this:

Docker version 20.10.17, build 48a66213fe

But don’t worry if you are using a later version of Docker. Most likely, it will
be backward compatible.

3.8 Packaging our microservice



With Docker installed we can start to think about using it to package our
microservice for deployment. Ultimately, we want to deploy our microservice
to production. But first, we need everything bundled and ready to ship. We’ll
package our microservice with the following steps:

1. Create a Dockerfile for our microservice
2. Package our microservice as a Docker image
3. Test the published image by booting it as a container

3.8.1 Creating a Dockerfile

For every Docker image we want to create, we must create a Dockerfile. The
Dockerfile is a specification for an image created by Docker. I like to think of
the Dockerfile as a script file with instructions on how to construct the image.
You can see this illustrated in figure 3.5.

Figure 3.5 The Dockerfile is a script that specifies how to build our Docker image.



The lines in the Dockerfile define our microservice, its dependencies, and any
supporting assets. Different lines in the Dockerfile cause different files to be
copied across to the image. To the Dockerfile, we’ll add instructions for
copying across our Node.js project and for installing our npm dependencies.

Also notice in figure 3.5 that we are copying an example video into our
image. Baking the video into the image isn’t something we’ll want to do in
the final production version, but it’s useful in this example—we don’t yet



have any other way of storing this video.

Having only a single video would make for a pretty boring video-streaming
application, but fixing that will have to wait until chapter 4. For now, this
actually serves as a good example to show that it’s not just code we can
include in our image. Including other types of assets presents no problem for
Docker!

Listing 3.1 shows the Dockerfile for our video-streaming microservice.
There’s not much to it, and it’s a good example of a Dockerfile for a Node.js
application. Have a read and try to visualize what each line adds to the
resulting image.

Listing 3.1 A Dockerfile for our video-streaming microservice (chapter-3/example-1/ Dockerfile)

FROM node:18.5.0-alpine     #A

 

WORKDIR /usr/src/app     #B

 

COPY package*.json ./     #C

 

RUN npm install --only=production     #D

 

COPY ./src ./src     #E

 

COPY ./videos ./videos     #F

 

CMD npm start    #G

In listing 3.1, the first line includes the FROM instruction. This specifies the
base image from which we derive our new image. By saying our base image
is node:18.5.0-alpine, we are stating that our derived image should include
Node.js version 18.5.0. (If you are wondering what alpine means, see the
following sidebar.)

If you are working with languages or frameworks other than JavaScript and
Node.js, then you’ll choose a different base image. Choose one that is
appropriate to your own tech stack.

Being able to choose the base image is extremely useful. We might choose to
use any of the many public images available on Docker Hub



(https://hub.docker.com), or we can even create our own custom base image.
This means we can reuse existing images, and by the end of this book, we’ll
also have seen several examples of reusing third-party images.

Also in listing 3.1 are various lines with the COPY instruction. These lines
copy files into our image. You can see that package.json, package-lock.json,
our code, and the example video are all copied into the image.

The RUN instruction is worth noting too. You can run software within the
image during the build process to make changes to the image, install
dependencies, and perform other setup tasks. In this example, we use RUN to
install our npm dependencies and bake those into the image.

The last and most important line in listing 3.1 is the CMD instruction. This sets
the command that is invoked when our container is instantiated. This is how
we tell it to run our Node.js application using the npm start script we added to
our package.json file in chapter 2 (section 2.6.7).

Alpine vs. non-alpine: Part 1

When you see “alpine” in the name of an image (e.g. node:18.5.0-alpine), it
indicates that the image is based on Alpine Linux. Alpine is a lightweight
Linux distribution that includes only the bare minimum, so it is much smaller
than a regular distribution. Alpine images are great for production because of
their smaller size, which makes more efficient use of your infrastructure and
cloud resources.

3.8.2 Packaging and checking our Docker image

Now that we have created our Dockerfile, we can package our microservice
as a ready-to-run image. We’ll build the image using the docker build
command. It takes as input our Dockerfile, which contains the instructions to
build the image. Figure 3.6 shows this process in action.

Note

Before we can deploy our microservice to production, we must be able to



package it in a Docker image.

Figure 3.6 The docker build command produces a Docker image as specified by our Dockerfile.

Now comes the fun part. It’s time to create an image from our microservice.
To follow along, you’ll need a Dockerfile like the one shown in listing 3.1
and a Node.js project. You can create your own or use example-1 from the
chapter-3 code repository on GitHub (see section 3.1).

When you are ready, open a terminal and change directory to chapter-
3/example-1 (or whichever directory where you have your code and
Dockerfile). Now invoke docker build as follows:



When you run this code, you’ll see the various pieces of the base image being
downloaded. This download only happens the first time; subsequently, you’ll
already have the base image cached on your workstation. It won’t be
downloaded again (at least not until you delete all your local images as we’ll
do later in section 3.9.3). Once it completes, you should see something like
this at the end of the output:

[+] Building 2.0s (11/11) FINISHED

 

...

 

 => => writing image sha256:2c68c7c4e2989f9aaeacb30abaedf819926340b11126f90c18534af3ba7da99c

 => => naming to docker.io/library/video-streaming

This tells you that the image was successfully built. The output shows the
unique ID for your image and displays the tag that you set for it.

Note

When you invoke this command for yourself, you will see a different output
because the ID allocated to your image will be different from the ID that was
allocated to my image.

Because it’s a unique ID, it’s going to be different for every new image that
you create. You can take note of this ID if you want and use it to reference
the image in future Docker commands. You don’t really need to do that,
however, because we tagged it with a meaningful name (video-streaming).
We can use that name instead of the ID.



Note also in the output that the version was automatically set to latest
because we didn’t specify anything for it. In chapter 8, we’ll set this version
automatically as part of our continuous delivery process. This will distinguish
each new version of the image we produce as we iteratively update our code
and build new images.

Some other points to note are as follows:

The -t argument allows us to tag or name our image. You’ll want to do
this; otherwise, you’ll have to reference your image by its unique ID, the
big ugly string of numbers you saw in the previous output. Having a tag
that we can more easily remember is better than relying on the ID.
The --file argument specifies the name of the Dockerfile to use.
Technically, this is unnecessary because it defaults to the file named
Dockerfile anyway. I’m including this explicitly so that you know about
it, and it’s something we’ll make use of later in chapter 5. In that
chapter, we will separate our Dockerfiles to have different versions for
development and production.
Don’t forget the period at the end! It’s easy to miss. It tells the build
command to operate against the current directory. This means that any
instructions in the Dockerfile are relative to the current working
directory. Changing this directory makes it possible to store our
Dockerfile in a different directory from our project’s assets. This can be
useful at times, but it’s not a feature we need right now.

Here’s the general format for the docker build command:

docker build -t <your-name-for-the-image> --file <path-to-your-Dockerfile> 

[CA]<path-to-project>

After building our image, we should now check it to make sure it’s OK. We
can list our local images using this command:

docker image list

This lists the images on our local workstation. If our docker build command
from the previous section completed successfully, we should see the image
we just built:



REPOSITORY        TAG       IMAGE ID       CREATED         SIZE

video-streaming   latest    bffcbcc3f39c   6 seconds ago   185MB

You might see other images in this list if you have already been using Docker
to create other images locally or if you have been exploring the many
publicly available images on Docker Hub (see the sidebar entitled “Exploring
other containers”).

Note the columns in the preceding output. Under the REPOSITORY column,
you can see video-streaming, where video-streaming is the image for our
microservice that we just created.

TAG is the next column, and it usually shows the image’s version number.
Because we didn’t specifically choose a version for our video-streaming
image, it was automatically allocated the version latest.

The next column is IMAGE ID and shows the unique ID for each image. Note
here that the ID for our video-streaming image is a shortened version of the
same from the earlier output of the build command. Again, expect the
unique ID for your image to be different to what you see here. Other columns
in this output include CREATED, which tells you when the image was created,
and SIZE, which shows you the size of the image.

Alpine vs. non-alpine: Part 2

In this section, you can see in the output from docker image list that the
size of our video-streaming image is 185 MB. This size is due to selecting an
Alpine image as our base image.

Want to know the size if instead we use a non-alpine image? As you can see
in the comparison below, it weighs in at just over 1 GB for the non-alpine
image. That’s over 5 times the size! You can clearly see why we want to use
Alpine images in production.

REPOSITORY                 TAG     ID            CREATED         SIZE

video-streaming-non-alpine latest  63a0b5ddb0cf  12 seconds ago  1.01GB

video-streaming            latest  bffcbcc3f39c  10 minutes ago  185MB

3.8.3 Booting our microservice in a container



Before we publish our newly created Docker image, we should do a test run
on our development workstation to make sure everything is in working order.
Once we have packaged our microservice as a Docker image, we can use the
docker run command to instantiate it as a container as shown in figure 3.7.
This creates a local instance of our video-streaming microservice that we can
then test using a web browser.

Figure 3.7 The docker run command produces an instance of our microservice running in a
container.

When you are ready, open a terminal and invoke the following command to
instantiate your microservice from the image:



As output, you should see the unique ID for the container printed. Here is the
output from when I invoked the command:

460a199466896e02dd1ed601f9f6b132dd9ad9b42bbd3df351460e5eeacbe6ce

Seeing such output means your microservice started successfully. When you
run this command, you will see different output. That’s because your
container is going to have a different unique ID to mine. You’ll still see a big
long string of numbers like that shown, but  it’s going to be different. You’ll
need this ID to invoke future Docker commands that relate to the container.

Don’t worry about trying to remember it (unless you have a photographic
memory) because we can easily recall this and other details of the container
on demand, as you’ll soon see.

Points to note here are:

The -d argument causes our container to run in detached mode. This
means it runs in the background and we can’t directly see its logs. If we
omitted this, our container would run in the foreground, and we’d see its
output directly, which can be useful sometimes, but it also ties up our
terminal.
The -p argument binds the port between the host operating system and
our container. This is like port forwarding; network traffic sent to port
3000 on our development workstation is forwarded to port 3000 inside
our container. We set it up this way because we configure our
microservice to listen on port 3000 (see the next bullet point).
The -e argument sets the PORT environment variable to 3000. This
configures this microservice to run on that port.
The number 3000 itself isn’t important here. We could have used almost



any number for this, but 3000 is often used by convention when
developing/testing individual HTTP servers.
The last argument, video-streaming, is the name we gave our image.
This is how we specify which image (we could have many) will be
instantiated. This relates to the name we gave the image using docker
build and the -t argument back in section 3.8.2.

A common error at this point is when the port we are using (e.g., port 3000)
is already allocated to another application. If this happens, you’ll need to
either shut down the other application, or if you can’t do that, you’ll have to
choose a port other than 3000. You can do this by using a PORT environment
variable as we did in section 2.6.6 in chapter 2.

Here is the general format for the docker run command:

docker run -d p <host-port>:<container-port> -e <name>=<value> <image-name>

You can use this to boot other microservices by plugging in the particular
name for each image that you create.

Checking the container

We have a running container now, but let’s check to make sure it’s in
working order. To show the containers you have, invoke this command:

docker container list

Here’s a cutdown version of the output:

CONTAINER ID  IMAGE            STATUS         PORTS

460a19946689  video-streaming  Up 20 seconds  0.0.0.0:3000->3000/tcp

Your output will look different from that shown because to make it fit, I
removed the columns COMMAND, CREATED, and NAMES. But you can invoke the
command yourself to see those.

Note the CONTAINER ID column. This shows you the unique ID of the
container. It is a reduced version of the longer ID that was output from the
docker run command in the previous section. Both are the unique IDs of



your container, and as you’ll see in a moment, we’ll use the ID to identify the
container when we run Docker commands against it.

Checking your microservice

We have successfully instantiated a container from our image, and we
checked that it is running. But how do we know if our microservice inside the
container is functional? It could be throwing up all sorts of errors and, as yet,
we wouldn’t know about it. Let’s check the output of the microservice and
see what it tells us:

docker logs 460a19946689

Whoa, hold up! You can’t just invoke that command and use the unique ID
for my container. Remember, the ID will be different for the container
created on your workstation. You’ll get an error if you invoke it exactly like
this. So note the ID of your container as demonstrated in the previous section
and invoke the command like this, plugging in your own container ID:

docker logs <container-id>

Now you should see the output from your microservice. If you run the code
from example-1 in the chapter-3 code repository, you should see something
like this:

Microservice listening on port 3000, point your browser at http://localhost:3000/video

Success! We built an image. We instantiated it as a container, and we
confirmed that our microservice is operational. Now let’s test this in the web
browser. Open your browser and point it at http://localhost:3000/video. You
should see the streaming video, and the result should look the same as what
we tested in chapter 2.

Why does this work? It works because we used the -p argument with the
docker run command to forward port 3000 on our workstation (assuming
that this port wasn’t already allocated) to port 3000 in the container. Our
microservice was listening on port 3000 and it responded!



There’s obviously more we could do to test our code. But we’ll save that for
later. In chapter 9, we’ll look at how we can apply automated code-driven
testing to our microservices. Then in chapter 11, we’ll see how to monitor our
microservices, how to debug them when problems are found, and what
techniques we can use for building fault-tolerant systems. But now, we are
ready to publish our image!

Exploring other containers

Did you know that you can easily run any public image using the docker run
command? Two images we’ll use later in the book are mongodb and
rabbitmq. Try running these for yourself to get an instant database available
on localhost:27017. For example

docker run -p 27017:27107 mongo:latest

There are many public images available online, and you don’t need an
account to access these. Search Docker Hub to find more at
https://hub.docker.com.

3.8.4 Debugging the container

When we are running a container locally, especially one that is having
problems, it can be useful to shell into it and inspect it from the inside. This
can help us understand what’s actually happening inside our container.

We can open a shell into our container like this:

docker exec -it <container-id> sh

Just make sure you use the container ID for your own container (output when
we started it in section 3.8.3). From here you can use common Linux
commands like cd, ls and ps to inspect the file system and process inside the
container. Please spend some time exploring, this is a value technique for
debugging.

3.8.5 Stopping the container



Starting our container in detached mode (using the -d argument) means that
the container is running in the background and will continue running until we
explicitly tell it to stop.

To stop our container we must know its ID. That was printed in the terminal
earlier when we started the container (see section 3.8.3). If we need to find
the container ID again later we can invoke docker container list and pick
out our container ID from the list.

To stop the container, without deleting it, invoke:

docker stop <container-id>

With the container stopped, but not deleted we can shell into it as described
in the previous section to inspect and debug it.

Note that after stopping our container it no longer appears in the output of
docker container list. That’s because stopped containers are not shown
normally, but if you add the --all argument, i.e. docker container list -
-all, the output will also show any stopped containers.

After stopping our container, we can delete it like this:

docker rm <container-id>

3.9 Publishing our microservice

We are close now to having our first microservice ready for production
deployment. We have packaged it in a Docker image, but currently, that
image resides locally on our development workstation. That’s great for our
own testing and experimentation, but we still need to have our image
published somewhere, so that we can later deploy it to our Kubernetes
cluster. Figure 3.8 illustrates how we will now publish our image to a private
container registry hosted in the cloud.

Figure 3.8 Publishing our Docker image to a private container registry in the cloud



We’ll publish our microservice with the following steps:

1. We create our own private container registry on Microsoft Azure. We
only need to do this the first time we publish an image. Later, when we
publish new versions of the image and images for other microservices,
we’ll simply reuse this same registry.

2. Before publishing, we must authenticate with the registry using the
docker login command.

3. We use the docker push command to upload our image to the registry.
(This is the step that actually publishes our microservice.)

4. We use docker run again to check that we can boot our microservice



from the published image.

3.9.1 Creating a private container registry

Creating a private container registry turns out to be pretty simple. We’ll
create our registry on Microsoft Azure, but all the major cloud vendors have
support for this so you can quite easily create your container register on AWS
(using ECR), GCP or another cloud platform. Why publish to a private
registry? In this book, we are learning how to build proprietary applications
for a private company, so it makes sense to publish our images privately
instead of using a public registry such as Docker Hub.

I’m using Azure for this book because I have found it to be the simplest cloud
platform to use, and it’s a great starting point for learning how to build cloud-
native applications. Azure provides a good deal for new signups, with free
credit for your first month. That gives you some time where you can try out
the cloud infrastructure demonstrated in this book for free.

them. Incidentally, this is another reason to use Azure: Microsoft has made it
easy to find and destroy cloud resources so that we don’t forget about
something and end up paying for unused infrastructure. For now, we’ll create
our container registry manually. But in chapter 7, we’ll return to this and
learn how to create it with code using Terraform.

Open your browser and load the Azure web site: https://azure.microsoft.com.
Go through the steps to sign up. After signing up you should be able to sign
in to the Azure portal at https://portal.azure.com.

Once in the Azure portal, you should see the Create a Resource option in the
menu on the left. Click this and then in the Search input box, enter container
registry and press Enter. You’ll see matching options as shown in figure
3.9. Find Container Registry by Microsoft. Click Create -> Container
Registry.

Figure 3.9 Creating a new private container registry in the Azure portal



You should now see a page that explains more about the Microsoft Container
Registry. Have a read if you like before clicking the Create button.

Next, we fill in some details about the registry we are creating. Figure 3.10
shows that we first need to provide a name. The name is important because
that creates a URL that we’ll use later to communicate with the registry. The
name I chose for my registry is bmdk1, and this results in having a URL for
the container registry like this: bmdk1.azurecr.io.

Figure 3.10 Filling out the details for our new private container registry



Because the name chosen for the registry generates the URL, it must be
globally unique. That means you can’t choose a name that someone else has
already taken—choose your own unique name. You should take note of the
URL because you’ll need that soon when you invoke Docker commands
against your registry.

Before clicking Review + create, we need to select or create a resource
group. As its name implies, resource groups in Azure allow cloud resources



to be collected into groups for easier management. Figure 3.11 shows that
I’m creating a new resource group to contain the new registry that I call
bmdk1. To create a new resource group, click Create New, type a name, and
click OK.

Figure 3.11 Creating a new resource group to contain the private container registry

This name doesn’t matter. We can use the same name as before or we can use
any other name we like. It doesn’t need the same name as the container
registry, and it doesn’t have to be globally unique. Just make sure you give it
a name that’s meaningful to you so that when you see it again later, you are
reminded of its purpose.

Now click the Review + create button. On the next page, click Create to
create your registry.

To follow up on the creation of our registry, we’ll need to watch the
notifications in the Azure Portal. Click the Notification icon to open the
Notifications sidebar and watch the progress of our deployment. This might
take some time, but when completed, we’ll see a Deployment Succeeded
notification in the sidebar as figure 3.12 shows.



Figure 3.12 The deployment of our new container registry was successful!

From the Deployment Succeeded notification, we can click Go to Resource
to view details of the new registry. Otherwise, if we need to find our registry
again later, click All Resources on the left-hand menu. Figure 3.13 shows that
this lists all our resources (if you have created any others), along with our
new container registry.

Figure 3.13 You can find your container registry in the All Resources list. At this stage we only
have a single resource, the registry itself.



Next, click your container registry in the list to drill down to see its details,
then click Access Keys in the menu on the left. You can see what this looks
like in figure 3.14. Note here that we can see the registry’s URL.

Note

It’s important that we enable the Admin User option. We need this enabled to
authenticate with our registry when pushing and pulling our images.

Now take note of your registry’s username and password (you only need the
first password). Don’t bother noting the ones you see in figure 3.14. These
are the details for my registry, and it won’t exist by the time you read this. Be
sure to use the details for your own registry!

Figure 3.14 Viewing the authentication details of our new private container registry



That’s all there is to it! If you followed these instructions, you now have your
own private container registry. You can push your images to the registry, and
from there, you can deploy these to production. So let’s get our first image
published!

Public vs. private

For this book, we are only interested in publishing private Docker images.
But you might be interested to know that you can also publish public images.

For example, let’s say you create an open-source microservice. Create a
Docker image for it and then publish it publicly to Docker Hub. That can help
your users get it running quickly!

To publish to Docker Hub, you’ll have to sign up at https://hub.docker.com.
Then you can use the docker push command to push your image to Docker
Hub.

Docker Hub also allows you to publish private images. Although to publish
more than one of those, you’ll need to upgrade to a paid account.

3.9.2 Pushing our microservice to the registry

Now that we have a private container registry, we have a place to publish our
first microservice. We’ll publish our image by invoking the docker push



command as shown in figure 3.15.

Figure 3.15 The docker push command uploads our Docker image to our private container
registry.

Authenticating with the registry

Before we can push to our registry, we must first login. We have
authentication enabled because we don’t want just anyone to be able to
publish images to our registry.

In the last section, you created your private container registry, and you took
note of its details. To communicate with the registry, you must know its
URL. To push and pull images, you need the username and password. If you
can’t remember those, refer back to section 3.9.1 to find your registry in the
Azure portal and recall these details. To authenticate, we’ll invoke the docker
login command:



I could have shown you the full command I used complete with the URL,
username, and password of my own registry. But that won’t fit on the page!
Also, it wouldn’t help you because, at this point, you have to use the details
of your own registry. When you invoke docker login, be sure to use your
own URL, username, and password. After authenticating with docker login,
you can now invoke other Docker commands against your registry.

Tagging our image

Before we can publish our image to the registry, we must tell Docker where
the image is being pushed. We do this by tagging the image with the URL of
the registry with the command docker tag as follows:

Of course, you can’t just type that command verbatim. You have to use the
URL for your own registry!

The docker tag command has the following general format:

docker tag <existing-image> <registry-url>/<image-name>:<version>

We set the name of an existing image to be tagged and then the new tag to



apply to it. We are tagging in this case, only because we want to push to our
registry. For this reason, we are including the registry’s URL in the tag we
are applying.

We can check that our new tag was applied by invoking docker image list.
Try doing that after applying the new tag. You should see a new entry in the
table for the new tag. Note that Docker hasn’t created a new image; it has
simply applied a new tag to the existing image. We can check that this is the
case by inspecting the image’s unique ID, and we see that it is the same for
both of the tagged versions.

Pushing our image to the registry

Finally, we are ready to publish our image to the registry. To do that, we’ll
invoke the docker push command:

Again, make sure that you use the URL of your own registry here; otherwise,
this command won’t work for you.

Here is the general format for docker push:

docker push <registry-url>/<image-name>:<version>

The part of the command after the docker push identifies the image to push.
And it’s also that part that identifies the registry to push to.

If you are thinking this is a bit awkward, then I’d agree with you. It seems to
me, there should be a one-step process for pushing an existing image to a



registry without having to go through the malarky of tagging it first. But there
isn’t, and this is the way it’s done. After starting the image uploading, sit
tight and wait for it to complete.

Checking that our image made it to the registry

After we’ve pushed our image to the registry, we now want to check that it
made it there OK. How do we know that it was successful? The first clue was
in the output. It should have said that the push was successful, and we can
trust that’s correct. But let’s go back to the registry in the Azure portal
anyway and see what it looks like now.

In the Azure portal, navigate to All Resources, find your registry, and click it.
Click Repositories from the menu on the left. As you can see in figure 3.16,
you should be able to see your video-streaming image in the list of
repositories. If you look inside the repository (on the right of figure 3.16),
you can see a list of versions here. There’s only a single version at the
moment (tagged as latest), but in the future, after you have pushed updates to
this image, you can return here and see the other versions that are listed as
well.

Figure 3.16 Viewing the image pushed to the container registry via the Azure portal



You can drill down even further through the latest tag to see the details about
the image, including a manifest of its files. I encourage you to explore this
interface more to see what you can find out about the image you just
published.

3.9.3 Booting our microservice from the registry

Congratulations, you just published your first image to your very own private
registry. We could now deploy this image to our production environment, but
we’ll save that for chapter 6 where we’ll learn how to deploy microservices
to Kubernetes. Before then we still have work to do and things to learn.

Before moving on, we should confirm that our published image works. What
I mean is that we should be able to instantiate the image as a container
directly from the registry in the cloud. Just because we don’t have a
production environment yet doesn’t mean we can’t simulate a deployment on
our development workstation. This isn’t difficult, and it actually isn’t
anything different to what we already learned in this chapter.



Running a container from an image is more or less the same regardless of
whether the image is one we built locally or one that is available in a remote
registry. We’ll return to the docker run command to test our published
image as shown in figure 3.17.

Figure 3.17 We can test our published image by running it on our development workstation; in
this case, the docker run command must first pull the image from the registry.

Cleaning up our mess



Before we can test our image from the registry, there’s one thing standing in
our way. We must first remove the local versions of our image. We have to
do this; otherwise, when we invoke docker run, it will boot the container
from the local version of the image that we already have. This doesn’t help us
test the published image!

Instead, we want to test that we can pull the image from the remote registry.
If we have a version of the image already cached locally it doesn’t need to
pull the remote version. So at this point, let’s make sure we have removed 
local containers and images.

Containers don’t go away by themselves. When we create containers for
long-lived servers, the containers usually hang around! We need to shut them
down when we are done so they don’t continue to consume our system
resources. If you didn’t remove your containers already (in section 3.8.5)
we’ll have to do that now before you can remove the images.

Note

Before we can remove images, we must first remove any containers
instantiated from them. Attempting to remove images that have running
containers will result in an error.

We’ll invoke docker container list --all from our terminal. The --all
argument makes it show both running and stopped containers. If you see your
video-streaming microservice in the list of containers, that’s the one you want
to remove. Take a note of its container ID. You’ll remember from earlier that
the ID for my own container was 460a19946689. Yours will be different, of
course, so don’t expect to see that particular ID in your list of containers. I
removed my container with the following commands:

docker stop 460a19946689

docker rm 460a19946689

Just remember to use the container ID for your container.

Here’s the general format:

docker stop <your-container-id>



docker rm <your-container-id>

After removing the container, we can invoke docker ps again and check that
the container is no longer in the list. After removing any container(s), we can
now proceed with removing the image(s).

Invoke docker image list. We can see at least three images in the list. You
should see the two tagged versions of our video-streaming microservice. We
only need to remove the image for our microservice.

Note that both tagged versions of our image have the same image ID, and
these are actually just the same image referenced multiple times. We can
remove both by invoking the docker rmi command with the --force
argument as follows:

docker rmi 9c475d6b1dc8 --force

Of course, you need to run this with your particular image ID (which you can
find from the output of docker image list).

The general format is:

docker rmi <your-image-id> --force

We use --force here because, otherwise, we’d be stopped with an error
message like Image is referenced in multiple repositories. That’s
because we have multiple tagged versions of our image. We can use --force
to make sure these are all removed.

After removing the image, invoke docker image list again to check that this
worked properly and that our video-streaming image is no longer in the list.

Running a container directly from the registry

With local containers and images cleaned up, we can now instantiate a new
container directly from the image in the remote registry. We’ll use docker
run again like this:

docker run -d -p 3000:3000 -e PORT=3000 bmdk1.azurecr.io/video-streaming:latest



As always, you must use the URL for your own registry.

Here’s the general format:

docker run -d -p <host-port>:<container-port> -e <name>=<value> <registry-url>/<image-name>:<version>

This time when we invoke docker run, we use all the same arguments that
we did back in section 3.8.3. There’s -d for detached mode, -p to bind the
port and -e to set the port. The only thing we have changed here is the tag
that we use to identify the image. In this case, the tag also identifies the
remote registry from which to pull the image.

When you invoke docker run in your terminal give it some time to
download. It first has to pull your image from your private container registry.

When this process has completed, you should have a running container. But
this time, the image for it has been pulled on-demand from your private
container registry in the cloud. When the docker run command has
completed, you should see the container ID printed. We can also check that
the container is running using the steps outlined earlier in section 3.8.3. Or
we can test it directly by pointing our web browser at
http://localhost:3000/video to see the video.

3.9.4 Deleting your container registry

At the end of this chapter you have a choice. You can delete your container
registry through the Azure Portal or you can leave it running there because
you’ll need it again for chapter 6.

Chapter 6 is a long way off though and you might not want the container
registry consuming your credits on Azure in the meantime. If that’s the case,
open your browser to the Azure Portal (https://portal.azure.com/) and find
your registry through the All Resources page. Then click the Delete button in
the toolbar.

3.10 Docker review



Wow! What a trip. Docker seems simple until you try and explain it in a
single chapter! What did we just do?

We created a Dockerfile for our microservice that instructs Docker how
to build an image for it.
We invoked docker build to package our microservice as an image.
After creating our private container registry on Azure, we then invoked
docker tag, docker login, and docker push to publish our image.
We finished with a test run of our published image using docker run.

The complete pipeline we pieced together is shown in figure 3.18. Peruse this
diagram with care and revel in what you have learned so far.

Figure 3.18 A complete Docker build pipeline showing where build, push, and run fit within the
process.

Before moving on, let’s do a quick review of the commands we added to our
toolbelt in this chapter. Table 3.3 shows these.

Table 3.3 Review of Docker commands 



Command Description

docker --version
Checks that Docker is installed and prints the version
number

docker container

list
Lists running containers

docker container

list -a
Lists all containers (running and stopped)

docker image list Lists local images

docker build -t

<tag> --file

[CA] <docker-file>

.

Builds an image from assets in the current directory
according to the instructions in docker-file. The -t
argument tags the image with a name you specify.

docker run -d -p

<host-port>:

<container-port> -

e <name>=<value>

<tag>

Instantiates a container from an image. If the image
isn’t available locally, it can be pulled from a remote
registry (assuming the tag specifies the URL of the
registry).

The -d argument runs the container in detached
mode, so it won’t be bound to the terminal and you
won’t see the output. Omit this argument to see
output directly, but this also locks your terminal.

The -p argument allows you to bind a port on the
host to a port in the container.

 



The -e argument allows you to set environment
variables.

docker logs

<container-id>

Retrieves output from a particular container. You
need this to see the output when running a container
in detached mode.

docker login <url>

[CA] --username

<username>

[CA] --password

<password>

Authenticates with your private Docker registry so
that you can run other commands against it.

docker tag

<existing-tag>

[CA] <new-tag>

Adds a new tag to an existing image. To push an
image to your private container registry, you must
first tag it with the URL of your registry.

docker push <tag>

Pushes an appropriately tagged image to your private
Docker registry. The image should be tagged with
the URL of your registry.

docker exec -it

<container-id> sh

Shell into a particular container to inspect and debug
it from the inside.

docker stop

<container-id>
Stops a particular container locally.

docker rm

<container-id>

Removes a particular container locally (it must be
stopped first).



docker rmi <image-

id>

[CA] --force

Removes a particular image locally (any containers
must be removed first). The --force argument
removes images even when they have been tagged
multiple times.

3.11 Continue your learning

This chapter moved quickly. The aim is to give you the minimum you need to
bootstrap your application, but there’s so much more you could learn about
Docker. Here are some references to other books that will help you go deeper
into Docker:

Learn Docker in a Month of Lunches by Elton Stoneman (Manning,
2020)
Docker in Practice, Second Edition by Aidan Hobson Sayers and Ian
Miell (Manning, 2019)
Docker in Action, Second Edition by Jeff Nickoloff and Stephen Kuenzli
(Manning, 2019)

Docker also has good online documentation. It’s worth having a browse at

https://docs.docker.com/engine/reference/commandline/docker/

In this chapter, we explored how to use Docker to build and publish a single
microservice. We’ll build on these skills in future chapters as we roll out
more microservices and create our application. In the next chapter, we will
scale up to multiple microservices, and we’ll learn how we can easily run
multiple Docker-based microservices on our development workstation.

3.12 Summary

Docker is the ubiquitous tool used to package, publish and run
containers.
A container is a virtualized server, such as a microservice.
An image is a snapshot of a container that is ready to instantiate as a



server.
A container registry is a place (private in our case) where we can publish
images for our microservices so they are ready for deployment to our
Kubernetes cluster.
A Dockerfile is the script that is used to create an image. It specifies the
code and assets to be included in a microservice.
Docker Hub provides many free images that we can easily boot to host
our own servers. In this chapter we tried out MongoDB which we’ll use
again in future chapters, but there are many other software packages
available.
The command docker build creates an image from a Dockerfile.
The command docker run instantiates a container, and hence a
microservice, from an image.
The command docker push publishes an image to a container registry.
The docker tag command is used to tag an image with the name of a
container registry so that image can be pushed to it.



4 Data management for
microservices
This chapter covers

Using Docker Compose to build and run your microservices application
in development
Adding file storage to your application
Adding a database to your application

When building any application, typically, we’ll need to deal with data or files
and sometimes both. Microservices are no different. We need a database to
store dynamic data that’s generated and updated by the application, and we
need a place to store assets that are served by the application or uploaded to
it.

In this chapter, we add both file storage and a database to our FlixTube
example application. First, we’ll add file storage so FlixTube has a location to
store its videos. We want to have distinct areas of responsibility in our
application for streaming and video storage. That implies that we’ll need to
add another microservice to our application, and in this chapter, we will
indeed create our second microservice.

Then we’ll add a database. At this point, we need a database to record the
metadata for each video; at the moment that’s only the path to video, but
really this is just an excuse to get a database in place. Because once we have
it, we can continue to  use it for the on-going data storage needs of all our
microservices.

By adding a database server and a second microservice to our application, we
are taking an important step. In chapter 2, we built our first microservice; in
chapter 3, we used Docker to instantiate our first microservice in a container.
In this chapter, we scale up our application to host multiple containers, and
for this, we need a new tool!



4.1 New tools

This chapter introduces two ways of storing data for microservices: file
storage and database. Typically there are many different ways of doing this,
and many different tools we could choose for the job. The tools you choose
for each project will be the ones that work best for the particular project, your
team, your company, and your customer.

As for any example in the book, I need to make a choice, so starting in this
chapter, we’ll use MongoDB for our database and Azure Storage for our file
storage. We will also upgrade our development environment to run multiple
containers at the same time. We could do this with Docker’s build and run
commands as we learned in the previous chapter. But then, we’d end up
having to run the commands repeatedly for each container.

This isn’t a big problem when only working with a few containers, but it
doesn’t scale to a larger application. Imagine how much effort it would be to
run just 10 microservices this way! So we need a better way to manage
multiple microservices during development. For that, this chapter introduces
Docker Compose. Table 4.1 lists the new tools we’ll learn about in this
chapter.

Table 4.1 Tools introduced in chapter 4

Tool Version Purpose

Docker
Compose

Included
with
Docker
20.10.17

Docker Compose is included with Docker
(installed in chapter 3) and allows us to
configure, build, run, and manage multiple
containers at the same time.

Azure Storage  

Azure Storage is a service to store files in the
cloud. We can manage the assets through the
Azure Portal, through the APIs, or from the



command line. We’ll upload a video through the
Azure Portal and then use the Node.js Azure
Storage SDK to read it back.

@azure/storage-
blob v12.11.0 The npm package we use to retrieve files from

Azure Storage using JavaScript.

MongoDB 5.0.9
MongoDB is a popular NoSQL type of database.
It’s lightweight, easy to set up and use, and it’s
convenient for microservices.

mongodb 4.8.0
The Node.js “driver” for MongoDB. An npm
package we use to interact with the database from
JavaScript.

4.2 Getting the code

To follow along with this chapter, you need to download the code or clone
the repository.

You can download a zip file of the code at
https://github.com/bootstrapping-microservices-2nd-edition/chapter-4
You can clone the code using Git like this: git clone
https://github.com/bootstrapping-microservices-2nd-

edition/chapter-4

For help on installing and using Git, see chapter 2. If you have problems with
the code, log an issue against the repository in GitHub.

4.3 Developing microservices with Docker Compose

At the end of the previous chapter, we created a single microservice running



in a container on our development workstation (or personal computer). We
were able to test it using our web browser. Figure 4.1 illustrates our current
situation.

Figure 4.1 Our single microservice runs under Docker on our development workstation, which
we created in chapter 2.

A microservices application, however, is not a microservices application if it
only consists of a single microservice! The time has come to scale up our
application and add more containers to it. To develop a microservices
application, in this chapter, we’ll use Docker Compose to make the move to
multiple microservices.

We are scaling up to multiple containers in this chapter because we’d like to
add a database (that’s one container), and we’d also like to add a new
microservice to handle our file storage (that’s another container). So given
that we started with one container (our video-streaming microservice), by the
end of this chapter, we’ll have three containers as depicted in figure 4.2.



Figure 4.2 We expand our application to multiple containers.

To build, run, and manage our growing application, we could get by running
the various Docker commands multiple times (repeated for each image or
container). But this quickly becomes tedious during development because
we’ll need to stop and restart our application many times during our working
day. And this only gets worse! As our application continues to grow, we’ll
add even more containers to it. We need a better tool.

4.3.1 Why Docker Compose?

Managing multiple containers in development can be painstaking; in chapters
6 and 7 we’ll learn to use Kubernetes to manage containers in production.
However Kubernetes is a big and complex system designed to run on a
cluster of multiple computers. We could use the local version of Kubernetes
that is included with Docker Desktop (this is new since the 1st edition of this
book!), but it’s kind of resource hungry (try running it on a laptop if you want
to see poor performance) and also it’s just not that convenient to use when we
are working on multiple projects. We’ll come to Kubernetes in chapter 6, so
don’t worry—you aren’t missing out on anything. But for now we’ll
“simulate” Kubernetes on our development workstation using Docker



Compose and you’ll find this to be much easier and straightforward than
trying to dive straight into Kubernetes. Besides that, you already have Docker
Compose installed! Docker Compose is now included with Docker instead of
being separately installed (this is also new since the 1st edition!).

Why Docker Compose? In the same way that Docker allows us to build, run,
and manage a single microservice, Docker Compose gives us a convenient
way to build, run, and manage multiple microservices in development.
During development and testing, we must frequently boot and reboot our
entire application, and eventually this will contain many microservices. And
after each small increment of development, we must test the changes to our
code. We can do this through the methods already covered in earlier chapters:

Opening multiple terminals (one for each microservice) and then
running each microservice separately using Node.js or whatever our tech
stack is (as covered in chapter 2)
Using Docker to build and run each container separately (as covered in
chapter 3)

Each of these methods has been an important stepping stone for us in our
quest to build a microservices application, and indeed, we will often return to
these when working with individual microservices. But when it comes to
working with a whole microservices application, they are less effective.

Using these methods to manage our growing application means that we spend
more and more time on managing the running application. That comes at the
expense of development time. This slows down our iterative progress, saps
our productivity, and ultimately, drains our motivation.

We need a more effective way of managing our application during
development and  that’s where Docker Compose comes in. Docker Compose
v2 is an open-source tool written in Golang (v1 was Python), and you can
find the code here: https://github.com/docker/compose.

4.3.2 Creating our Docker Compose file

Docker Compose revolves around the Docker Compose file. I like to think of
this as a script file that builds a local instance of a microservices application.



Definition

The Docker Compose file is a script that specifies how to compose an
application from multiple Docker containers.

Recall the Dockerfile we created in section 3.8. That was a script for building
a single image. The Docker Compose file scales this up and allows us to
orchestrate the creation of a whole application from a collection of
Dockerfiles. Docker Compose reads the Docker Compose file and produces a
running application as figure 4.3 shows.

Figure 4.3 The Docker Compose file is like a script for building and launching a microservices
application.

Before we learn how to use Docker Compose to create an application
composed of multiple containers, let’s keep it simple and create an
application with just a single container. We’ll do some experiments for you to
get comfortable with Docker Compose. After that, we’ll add more containers
into the mix.



Example-1 for this chapter shows how to use Docker Compose to instantiate
the  video-streaming microservice we created back in chapter 2’s example-3.
Example-2  follows on  from chapter 3’s example-1. You can start with the
earlier examples if you like and make updates to them, or try out the code in
the premade examples in the chapter 4 code repository.

The first thing we need to do is to move the Dockerfile and code for our
microservice into a new subdirectory. In this case, we call it video-streaming
to match the name of the microservice. The reason we do this is that we are
now building an application that will soon have more than one microservice.
We must therefore put each microservice into its own separate subdirectory.
Our convention is that each subdirectory is named after its microservice.

Now let’s create our Docker Compose file. This file is actually called docker-
compose.yaml. Because it doesn’t belong to any single microservice, it lives
in the root directory of our microservices application. Listing 4.1 shows our
first Docker Compose file. You can type this code in yourself or just load it
into Visual Studio (VS) Code from the example-1 directory in the chapter 4
code repository.

Listing 4.1 Docker Compose file for our microservice (chapter-4/example-1/docker-compose.yml)

version: '3'   #A

services:    #B

 

  video-streaming:     #C

    image: video-streaming    #D

    build:    #E

      context: ./video-streaming   #F

      dockerfile: Dockerfile    #G    

 

 

    container_name: video-streaming    #H

 

    ports:    #I

     - "4000:80"    #J

 

    environment:    #K

      - PORT=80    #L

 

    restart: "no"   #M



Listing 4.1 is a Docker Compose file that creates a single container: our
video-streaming microservice. Note the build section. The fields here set the
subdirectory that contains the microservice’s project and the name of its
Dockerfile. This is how Docker Compose finds the information to build the
image for our video-streaming microservice.

Also note that Dockerfile is the default name of this file. We could have
omitted this, but I’ve specified this explicitly because in the next chapter,
we’ll separate our Dockerfiles. That way, we can have separate versions for
use in development and production. Also configured are various options (see
the code annotations) that you might remember from chapter 2:

Setting the image name to video-streaming
Binding the port
Setting environment variables to configure the microservice

In listing 4.1, we are starting the port numbers for our containers from 4000.
Once we have multiple containers, they’ll be numbered 4000, 4001, 4002,
and so on. This is just so that port numbers for multiple microservices don’t
conflict.

Note

The choice of port numbers is arbitrary, and for your own application, you
can use a different set of numbers if you like.

You might be wondering why we set the restart option to no in listing 4.1.
When working in development, we don’t want our microservices to
automatically restart when they crash. If they did that, we could easily miss
problems!

Instead, if these crash, we want them to stay that way so that we will notice
the problem. This is the opposite of how we’d usually like our microservices
to work in production. We’ll see later in chapter 10 how we can have
Kubernetes automatically restart our production microservices that crash.

Even though our first Docker Compose file is simple, it is already pretty
useful. This Docker Compose file only creates a single container, but it



encodes all the information we need to build and run our microservice.
Recording these configuration details already makes things a bit easier.
Otherwise, we would have to type this configuration into the terminal every
time we invoke the Docker build and run commands. Even at this early
stage, we are seeing how Docker Compose can improve our development
process.

YAML

You might have noticed that the Docker Compose file is a YAML format
file. According to Wikipedia, YAML is a recursive acronym for “YAML
Ain’t Markup Language.”

YAML, although not actually a markup language, is probably best described
as a data format or a configuration language. YAML’s purpose is similar to
JSON, but the language itself is structured to be more human-readable.

That’s why you see YAML being used by tools like Docker Compose and
Kubernetes. These are configuration files designed to be edited by humans,
while still being easily machine-readable.

4.3.3 Booting our microservices application

So far, we’ve created a Docker Compose file to build and run our video-
streaming microservice from chapter 2. We reused the entire project for this
microservice, including the Dockerfile we added in chapter 3. We will now
test the work we have done.

In this section, we use Docker Compose to boot a single service. This doesn’t
yet give us much advantage over just using Docker, but sit tight. This is just a
starting point, and soon we’ll extend our Docker Compose file to include
multiple containers. We’ll use the Docker Compose file we just created so we
can boot up our application using Docker Compose.

Open a terminal and change to the directory that contains your Docker
Compose file. If you are following along with the code from the chapter 4
code repository on GitHub, then you should change to the directory chapter-
4/example-1. Now invoke the Docker Compose up command:



docker compose up --build

The up command causes Docker Compose to boot our microservices
application. The --build argument makes Docker Compose build each of
our images before instantiating containers from these.

Technically, at this point, the --build argument is not necessary because the
first time you invoke the up command it builds your images anyway. At other
times (without the --build argument), the up command just starts our
container from the image that was previously built (this can be a quick way to
restart if you don’t want to rebuild). This means that if you change some code
in your microservice and invoke the up command again, it won’t include your
changes unless you use the --build argument. Unfortunately, this makes it
all too easy to accidentally omit the code changes you are trying to test.

When this happens, and you don’t realize it, you end up wasting time testing
changes that aren’t even there. I don’t like wasting my time; that’s why I
usually make a point to always use the --build argument every time I run the
up command. It means I don’t have to think about it. I know my code changes
will always get through to the running application.

When you invoke the up command, you’ll see the various layers of your base
image being downloaded. After that, you’ll start to see the (by now familiar)
output from your video-streaming microservice. It should look something
like the following:

video-streaming    |

video-streaming    | > example-1@1.0.0 start /usr/src/app

video-streaming    | > node ./src/index.js

video-streaming    |

video-streaming    | Microservice online

You can see on the left of the output that it shows the name of the container.
This is what identifies the output as coming from our video-streaming
microservice. The name of the container isn’t really important at the moment,
because at this point, we are only running a single container in our
application—all the output is coming from just that one container.

Now that we have our microservice running, we can test that everything is



OK. Point your browser to http://localhost:4000/video to watch the video that
you should know well from earlier chapters.

With just a single microservice, this isn’t much of a microservices
application. But now that we are set up to use Docker Compose, we can
easily add new containers, and hence more microservices, to our application.
But before we do that, let’s take some time to learn some more about
managing our application with Docker Compose.

Although we haven’t yet scaled up to multiple containers, you might already
recognize that Docker Compose has given us a more efficient process for
working with even just one single container. Using the up command saves us
from invoking separate Docker build and run commands.

That’s a small savings in time right now, but as you’ll soon see, the Docker
Compose up command is scalable to many containers. You can imagine how
much time it’s going to save when you have, say, 10 microservices and you
can use a single up command to build and run all of these at once! That’s one
command (the up command) instead of 20 commands (10 build commands
and 10 run commands).

The Docker Compose up command is probably the most important command
you will learn in this book! You will invoke it time after time as you develop
and test your application, and I’m going to make sure you don’t forget about
it!

4.3.4 Working with the application

After starting your application, Docker Compose continues to print output to
the terminal while it is running. This locks up your terminal, so we can’t do
anything with it now except watch the output. We could use the -d argument
with the up command to run in detached mode, just like we did with the
Docker run command in chapter 3. But using the -d argument hides the
application’s output. We don’t want that because being able to view the live
output is actually very useful for understanding what is going on.

Note



The output can be recovered, of course, with the Docker Compose logs
command. Still, I tend not to use the -d argument because I like the output to
be visible front and center to see what’s happening in real time.

Even though our terminal is locked up with Docker Compose, we can always
simply open a new terminal and use it to invoke other commands. Let’s try
that now. Open a new terminal, change the directory to where the Docker
Compose file is located, and invoke the following command:

docker compose ps

The ps command shows a list of our running containers. Because we only
have one microservice running in our application, you should see output
similar to this (I removed the SERVICE column to make it fit the page):

NAME             COMMAND      STATUS   PORTS

video-streaming  "docker-e…"  running  0.0.0.0:4000->80/tcp

It’s useful to recognise at this point that Docker Compose is a subcommand
of the regular Docker command. That means that all our regular Docker
commands work as well. As an example, you can try docker ps to get a list
of containers or docker push to upload an image to the private container
registry you created in chapter 3.

The output of Docker commands like docker ps can be different from the
output of docker compose ps. That’s because Docker commands relate to all
images and containers on your development workstation, whereas Docker
Compose commands only relate to the images and containers specified in
your Docker Compose file.

In this sense, we are using Docker Compose like a scoping mechanism. It
constrains the commands to apply only to images and containers in your
current project. Essentially, it restricts the scope of these commands to the
current working directory. This is another useful aspect of Docker Compose.

More specifically, docker compose ps shows us only the containers that are
listed in our Docker Compose file, whereas, docker ps shows us all
containers on our development workstation. If you invoke the docker ps
command and find that it shows more containers than docker compose ps,



that’s because you have previously created other containers on your
computer, possibly when you were following along with chapter 3.

There are many other Docker Compose commands for you to explore in the
official documentation. See the end of this chapter for a link.

4.3.5 Shutting down the application

You can stop your application in either of two ways. If you opened a second
terminal in the previous section, you can use that to invoke the stop
command:

docker compose stop

The other way to stop your application is by typing Ctrl-C at the terminal
where you invoked the up command in the first place. However, there are
some problems with this approach.

The first problem is that you have to be careful to press Ctrl-C only once. If
you press it just a single time, then the application will stop gracefully and
patiently wait for all your containers to stop. But if you are like me
(impatient), then you will tend to press Ctrl-C repeatedly until the process
completes and gives you back your terminal. Unlike at a traffic intersection
furiously pounding the walk button, this actually works. But unfortunately, it
aborts the shutdown, and it can leave some or all of your containers in a
running state.

The second problem is that stopping the application doesn’t remove the
containers. Instead, it leaves these in place in the stopped state so you can
inspect them. That’s a handy way to debug a crashed container! We’ll talk
more about debugging containers in chapter 11. Right now, though, it’s more
useful that we can remove our containers and return our development
workstation to a clean state. For that, we can use the down command:

docker compose down

I actually think we are better off always using the down command. Although
Ctrl-C is needed to unlock our terminal, it’s unreliable, and the down



command makes the stop command redundant.

Tip

Get into the habit of using the down command after pressing Ctrl-C.

We can use both the up and down commands in combination to easily reboot
our application when we want to get updated code or dependencies into it.
We can chain these commands as follows:

docker compose down && docker compose up --build

If you are starting to tire of all these complicated commands, well, I’m
hearing you. You might want to invest some time in creating shell scripts for
the commands you use most often. See the following sidebar for some
examples.

We now have some good fundamentals in place for Docker Compose that
will serve us well for development and testing of our microservices
application. We’ll learn more about using Docker Compose in chapter 5 and
chapter 9.

Shell scripts

During the daily development grind, you might find that typing some of these
commands becomes onerous. For example, typing docker compose up --
build gets old quickly, so I usually wrap it up in a shell script called up.sh.

Typically, when I write such long commands, I’ll create shell scripts that are
easier to run; at least I do this when I have to run a command many times per
day. Other shell scripts I use are

  ·   down.sh for docker compose down

  ·   reboot.sh for docker compose down && docker compose up --build

We’ll talk more about shell scripts in chapter 7.



4.3.6 Why Docker Compose for development, but not
production?

At this point, we might pause to consider why we are using Docker Compose
for development but not for production. Docker Compose seems like a great
way to define a microservices application, so why can’t we use it in
production? Why do we choose to use Kubernetes in production? Indeed,
why don’t we just use Kubernetes for both development and production?
Especially seeing as how a local Kubernetes installation is now easy because
it comes bundled with Docker Desktop.

We don’t use Kubernetes in development because it’s simply easier to boot
up a many-microservices application in development using Docker Compose:
a single configuration file and a single command to bring up the entire
application. To do this with a local Kubernetes installation we’d invoke
numerous commands to deploy numerous configurations. Of course, there are
developers who prefer developing against a local Kubernetes instance instead
of using Docker Compose, which we’ll explore in chapter 6. That’s perfectly
ok as well, but it’s just not usually my preference to work that way. You can
decide for yourself which way you like to work.

Using Docker Compose also makes it easier to change projects. If we need to
quickly drop one project and start another, it’s as simple as invoking the down
command on one project and then invoking the up command on the next. You
might even like to create multiple sub-configurations for a single project (for
example, different setups for focusing on different collections of
microservices) and then you can easily change between configurations of a
single project using up and down.

We can’t use Docker Compose in production because there are problems
doing that. We’d have to create a virtual machine (VM) in the cloud, install
Docker on it, copy our application code there and then boot our application
under Docker Compose. That’s certainly possible, but it’s clunky,
complicated and ultimately not very scalable (we’ll talk about scaling
Kubernetes in chapter 12).

We’ll learn more about Kubernetes in chapters 6 and 7, but for now, I wanted



to explain why Docker Compose is the best option for development, but
probably not the best option for production. Of course, the strategy you
choose depends on your situation, your project, and your company. Please
don’t take it as gospel!

4.4 Adding file storage to our application

Now that we are using Docker Compose, we can easily run multiple
containers. This gives us the tools we need to move on to the real topic of this
chapter—data management.

We’d like to add file storage and a database to our application. We are adding
file storage so that we have a location to store the videos used by our
application. A common approach is to use a storage solution provided by one
of the big cloud vendors. Because we are using Azure in this book, we’ll use
Azure Storage as our storage provider.

Note

Many applications, including our example application, FlixTube, need to
store files. There are various ways to do this, but one of the most common is
to use external cloud storage such as Azure Storage, AWS S3, or Google
Cloud Storage.

We could add cloud storage by directly connecting our video-streaming
microservice to the storage provider. We won’t do that. Instead, we’ll employ
good design principles, namely, separation of concerns and single
responsibility principle; and we’ll create a new microservice whose purpose
is to be an abstraction of our file storage provider. Figure 4.4 illustrates what
our application will look like once we have added the new video-storage
microservice to it.

Figure 4.4 We add a second microservice and external cloud storage to our application.



Figure 4.4 shows how the video-storage microservice will be an intermediary
between the video-streaming microservice and the external cloud storage. At
the end of this section, we’ll talk more about the reasoning behind the
separation of these microservices. For now, just be satisfied with this excuse:
this is as good a reason as any to introduce our second microservice, and we
will, thus, officially be running a microservices application (albeit a small
one).

4.4.1 Using Azure Storage

Azure Storage is a cloud storage service provided by Microsoft. We’ll use it
to add storage capability to our application. You should already have an
Azure account from the work we did in chapter 3, and in this section, we’ll
go back into Azure, create a storage account, and upload our test video. We’ll
then create a new microservice whose purpose is to retrieve the video from
storage.



Definition

Azure Storage is a Microsoft Azure service for hosting private or public files
in the cloud. You upload your files to Azure Storage and can then access
these through the Azure Storage API.

Although we can host both private and public files on Azure Storage, we’ll
use the private option. We don’t want just anyone to be able to go and
download our videos from storage. Instead, we’d like them to only be
available to our customers through the front end. The code we write for our
new microservice will authenticate with Azure and retrieve videos using the
package @azure/storage-blob, which is available via npm.

Why Azure Storage?

We have plenty of options for file storage, so why choose Azure Storage?
The truth is we could have just as easily use AWS S3 or Google Cloud
Storage. For our purposes in this book, it doesn’t make much difference. The
code we write, for the video-storage microservice, would of course be
different because if we used a different cloud vendor, we’d have to use a
different storage API.

Note

The example for this chapter demonstrates external cloud storage using
Azure. There’s nothing particularly special about Azure in this case. The
code will look different using a different API, but the structure of these
microservices will be essentially the same.

It’s convenient for us to use Azure because you have already signed up for it
from the last chapter. However, there’s no need to be locked into Azure.

One of the advantages of the architecture we are putting into place is that we
could easily swap out our Azure storage microservice and replace it with an
alternative. We can even do this while our application is running in
production! In this sense, you can think of this video-storage microservice as
hot-swappable.



Creating an Azure Storage account

Before we get our test video into storage, we must create an Azure storage
account. To do this, you’ll need to login to the Azure Portal at
https://portal.azure.com/ as you did in chapter 3. Then in the left-hand menu,
click Create a Resource and search for “storage account” as shown in figure
4.5.

Figure 4.5 Creating a new storage account in the Azure portal



Click Microsoft’s Storage Account option, then click Create. You can now
fill out the details of your new storage account as shown in figure 4.6.

You’ll need to choose a resource group. For that, you can use the resource



group you created in chapter 3, or you can click Create New to create a new
resource group. Then you’d need to choose a name for your storage account.

The other settings can be left at their defaults. After filling out the details,
click Review + create. If the details pass validation, you can then click Create
to create the storage account. If they don’t validate, then you’ll need to follow
the instructions to fix the problem.

Figure 4.6 Filling out details for the new storage account



Now, wait until you get the notification saying your storage account has been
deployed. At that point, you can click Go to Resource in the notification, or
you can find your resource in the global list like you did in chapter 3.

Once you open the storage account in the Azure portal, click Access Keys in
the left-hand menu. Here you’ll see the access keys for your storage account
like figure 4.7 shows. These are the details you need to authenticate with your
storage account. Make a note of your storage account name and one of the



keys. You only need the value for one of the keys. You don’t need the
connection string.

Figure 4.7 Viewing the authentication details of our new storage account

Uploading your video to Azure Storage

With our storage account created, we can now upload our test video. In the
Azure portal, with your storage account open, click Containers in the menu
on the left. You should see a message like figure 4.8 shows, saying you don’t
have any containers yet.

Figure 4.8 Navigating to Containers and creating our videos container



By the way, just to avoid confusion, I need to say that the container we are
talking about here is not the same as the containers we are running in our
microservices application. A container in Azure Storage is like a directory;
it’s a location to store files.

Click the + Container button in the toolbar to create your first container. Now
type in a name for your container. You can call it anything you like at this
point, but to make it work with the example code coming up, let’s call it
videos. Here you can also choose the access level, but we’ll stick with the
default, which is Private Access Only. Next, click OK to create the container.

You should see the videos container in the list now. Click it to drill down.
When viewing the contents of your new container, you’ll see a message like
in figure 4.9. In case you are wondering what a blob is, it is simply a file, and
we don’t have any of those yet. Let’s upload one now.

Click the Upload button in the toolbar to upload your video file, and select a
file on your disk to upload. You can use the test video that is included in
either of the code repositories for chapter 2 or 3; otherwise, use a video of
your own choice.

Figure 4.9 Drilling down into the videos container and clicking Upload to upload a video file



After the video is uploaded it appears in the list as shown in figure 4.10.

Figure 4.10 After the video is uploaded, you will see it in the list under the videos container.



Creating a microservice to read Azure Storage

We now have a test video uploaded to Azure Storage, so it’s time to create
our new video-storage microservice. This is our second official microservice,
and it will be a REST API to retrieve videos from our storage provider.

Note

We could directly integrate our video-streaming microservice with cloud
storage, but instead, we’ll abstract this connection behind another
microservice. This makes it trivial to later replace the storage mechanism and
can pave the way for our application to support multiple storage providers.

The first thing we need to do is to create a new directory for our second
microservice. You should either create a new subdirectory or just load



example-2 from the chapter-4 code repository into VS Code. We’ll name the
subdirectory for the new microservice as azure-storage. We name this new
project specifically to indicate that its purpose is related to Azure Storage. If
we were to add different storage providers, we would call these something
different (for example, aws-storage or google-storage).

A quick note: in case you were thinking of porting the code presented here
over to AWS or GCP, converting from the Azure store microservice over to
another provider is not a simple task. The APIs to interface with AWS and
GCP storage will be quite different to Azure, and you’ll need to read their
docs separately to figure out how to use these. Make sure you finish learning
about the Azure storage microservice in this chapter before you attempt to
convert to any other provider.

Now open a terminal and change into the azure-storage directory. If you are
creating the new microservice from scratch, you’ll need to create a new
package.json and install the express package like we did in chapter 2. You’ll
then need to install the @azure/storage-blob package like this:

npm install --save @azure/storage-blob

If you are following along with example-2 in the chapter 4 code repository,
everything you need is already there:

The package file
The code
The Dockerfile

To run the new microservice directly under Node.js, you’ll first need to
change directory to azure-storage and then install the dependencies:

npm install

Listing 4.2 presents the code for our new microservice. Before we run this
code, let’s read it and understand what it’s doing.

Listing 4.2 A microservice to retrieve videos from Azure storage (chapter-4/example-2/azure-
storage/src/index.js)



const express = require("express");

const { BlobServiceClient, StorageSharedKeyCredential } = require("@azure/storage-blob"); #A

 

const app = express();

 

const PORT = process.env.PORT;

const STORAGE_ACCOUNT_NAME = process.env.STORAGE_ACCOUNT_NAME; #B

const STORAGE_ACCESS_KEY = process.env.STORAGE_ACCESS_KEY; #C

 

function createBlobService() { #D

    const sharedKeyCredential = new StorageSharedKeyCredential(STORAGE_ACCOUNT_NAME, STORAGE_ACCESS_KEY);

    const blobService = new BlobServiceClient(

        `https://${STORAGE_ACCOUNT_NAME}.blob.core.windows.net`,

        sharedKeyCredential

    );

    return blobService;

}

 

app.get("/video", async (req, res) => { #E

 

    const videoPath = req.query.path; #F

    

    const containerName = "videos"; #G

    const blobService = createBlobService(); #H

    const containerClient = blobService.getContainerClient(containerName); #I

    const blobClient = containerClient.getBlobClient(videoPath); #J

 

    const properties = await blobClient.getProperties(); #K

 

    res.writeHead(200, { #L

        "Content-Length": properties.contentLength,

        "Content-Type": "video/mp4",

    });

 

    const response = await blobClient.download(); #M

    response.readableStreamBody.pipe(res); #N

});

 

app.listen(PORT, () => {

    console.log(`Microservice online`);

});

In listing 4.2, we use @azure/storage-blob, the Azure Storage SDK
installed via npm. We also created an HTTP server using Express in the same
way as we did in chapter 2.



There are two new environment variables to configure this microservice;
STORAGE_ACCOUNT_NAME and STORAGE_ACCESS_KEY set the
authentication details for our Azure Storage account. Note that you will have
to set these environment variables to the authentication details from your own
storage account. You’ll do that in the next section. The authentication details
are used in the helper function createBlobService to create the API object
that we need to access the storage SDK.

The most important thing in listing 4.2 is the HTTP GET route /video, by
which we can retrieve a video from storage. The route handler streams a
video from Azure Storage to the HTTP response.

Testing our new microservice independently

Before we try and integrate this microservice into our application, it’s best if
we test it independently. In this case, we could easily integrate it first and
then test it later. Working that way is feasible when our application is this
small. However, as our application grows larger and more complicated,
integration testing becomes more difficult.

Testing microservices individually works better because we can start or
reload a single microservice quickly. But doing the same isn’t as easy for the
application as a whole. Let’s therefore get into a habit of testing our
microservices individually before integration testing the application as a
whole.

Before running (and testing) the new microservice, we need to set the
environment variables to configure it. We will do this from the terminal. On
MacOS and Linux, we do it like this:

export PORT=3000

export STORAGE_ACCOUNT_NAME=<the name of your storage account>

export STORAGE_ACCESS_KEY=<the access key for your storage account>

On Windows, we do it like this:

set PORT=3000

set STORAGE_ACCOUNT_NAME=<the name of your storage account>

set STORAGE_ACCESS_KEY=<the access key for your storage account>



Note that you must insert the name and key for the storage account that you
created earlier. When running the microservice, we can choose to run it in
either production mode or in development mode as we discussed in chapter 2.
We can run it in production mode like this:

npm start

Alternatively, we can run it in development mode with nodemon for live
reload like this:

npm run start:dev

Live reload is really important for rapid development because we can make
changes to our code and have our microservice automatically restart. In the
next chapter, you’ll learn how to extend live reload to the entire
microservices application. For now, we’ll settle for using it during
development and testing of an individual microservice.

With your microservice running, you can now open your browser and
navigate to http://localhost:3000/video?
path=SampleVideo_1280x720_1mb.mp4. If you used a different name for
your video, you’ll need to adjust the name of that video in this URL to fit.
You should now see the familiar video playing, but this time, it’s streamed
from your Azure storage account.

We’ll talk more about testing microservices in chapter 9. For the moment
though, let’s move on and integrate our new microservice into the
application.

4.4.2 Updating the video-streaming microservice

The first step of integrating the new microservice with our application is to
update our video-streaming microservice. As a reminder, we ended chapter 3
with a video-streaming microservice that loaded the test video from the
filesystem. Now, we are going to update that microservice so that it instead
delegates the loading of the video to our new azure-storage microservice.

Here we update our video-streaming microservice to delegate storage to

localhost:3000.html


another microservice. We are separating our concerns so that the video-
streaming microservice is solely responsible for streaming video to our user
and so that it doesn’t need to know the details of how storage is handled.

Listing 4.3 shows the changes we’ll make to the video-streaming
microservice. Read through the code in the listing to see how we are
forwarding the HTTP request for a video through to the new video-storage
microservice.

Listing 4.3 Updated video-streaming microservice (chapter-4/example-2/video-
streaming/src/index.js)

const express = require("express");

const http = require("http");    #A

 

const app = express();

 

const PORT = process.env.PORT;

const VIDEO_STORAGE_HOST = 

[CA] process.env.VIDEO_STORAGE_HOST;             #B

const VIDEO_STORAGE_PORT =      #B

[CA] parseInt(process.env.VIDEO_STORAGE_PORT);    #B

 

app.get("/video", (req, res) => {

    const forwardRequest = http.request(    #C

        {

            host: VIDEO_STORAGE_HOST,     #D

            port: VIDEO_STORAGE_PORT,     #D

            path:'/video?path=

            [CA] SampleVideo_1280x720_1mb.mp4',    #E

            method: 'GET',     #F

            headers: req.headers    #G

        }, 

        forwardResponse => {    #H

            res.writeHeader(forwardResponse.statusCode, 

            [CA] forwardResponse.headers);     #I

            forwardResponse.pipe(res);     #J

        } 

    ); 

    

    req.pipe(forwardRequest);    #K

});

 

app.listen(PORT, () => {

    console.log(`Microservice online`);



});

In listing 4.3, we use the Node.js built-in http library to forward an HTTP
request from one microservice to another. The response that is returned is
then streamed to the client. The way this works might be difficult to
understand, but don’t worry too much about it right now. In the next chapter,
we’ll explore this more because communication between microservices is so
important that it deserves its own chapter.

Note that we have hard-coded the path to the video in storage at this point.
This is just a stepping stone, and we’ll soon fix that. But for this code to work
in the meantime, you must have uploaded the test video with this particular
file name. If you’ve uploaded to a different file name, you should update the
code to match that.

After updating our video-streaming microservice, we should test it
independently. That’s kind of difficult given that it depends on the video-
storage microservice. We could do this if we had the tools and techniques in
place to mock our dependencies.

Mocking is a technique used in testing where we replace the dependency with
a fake or simulated alternative. We don’t have those techniques yet, but this
is something we’ll explore in chapter 9, and you’ll see an example of a mock
microservice in chapter 10. Right now, let’s just press on and finish the
integration. Then we can check that the application as a whole, simple as it
currently is, works as expected.

4.4.3 Adding our new microservice to the Docker Compose file

We’ve done quite a lot of work to get to this point. We created an Azure
Storage account, and we uploaded our test video. Then we created our second
microservice, the Azure Storage microservice, which is a REST API that
abstracts our storage provider. After that, we updated our video-streaming
microservice so that instead of loading the video from the filesystem, as it did
in chapters 2 and 3, it now retrieves the video via the video-storage
microservice.

Note



The beauty of the Docker Compose file is that it makes it easier to define and
manage a whole suite of containers. It’s a convenient way to manage a
microservices application!

To integrate the new microservice into our application and test it, we now
must add it as a new section to our Docker Compose file. You can see what
this looks like in figure 4.11, which shows what the Docker Compose file
will look like later, after we add our second microservice and the database
server. You can see that the Docker Compose file on the left has three
sections that map to the three containers on the right.

Figure 4.11 Each section in our Docker Compose file defines a separate container.

You can think of the Docker Compose file as a kind of aggregate Dockerfile
that we use to describe and manage multiple containers at once. It’s an
aggregate because we use it to tie together the multiple Dockerfiles for each
of our microservices.

Listing 4.4 shows our updated Docker Compose file with the addition of the
azure-storage microservice. Note that we are reusing the environment
variables STORAGE_ACCOUNT_NAME and STORAGE_ACCESS_KEY



that we set in the terminal a few paragraphs back in section 4.4.1. If you are
working in a new terminal, you will need to set those environment variables
again before running the updated application.

Listing 4.4 Adding a new microservice to our Docker Compose file (chapter-4/example-2/docker-
compose.yaml)

version: '3'

services:

 

  azure-storage:    #A

    image: azure-storage    #B

    build: 

      context: ./azure-storage

      dockerfile: Dockerfile

    container_name: video-storage   #C

    ports:

     - "4000:80"

    environment:

      - PORT=80

      - STORAGE_ACCOUNT_NAME=${STORAGE_ACCOUNT_NAME} #D

      - STORAGE_ACCESS_KEY=${STORAGE_ACCESS_KEY} #D

 

 

    restart: "no"

 

  video-streaming:

    image: video-streaming

    build: 

      context: ./video-streaming

      dockerfile: Dockerfile

    container_name: video-streaming

    ports:

     - "4001:80"

    environment:

      - PORT=80

      - VIDEO_STORAGE_HOST=video-storage    #E    #F

      - VIDEO_STORAGE_PORT=80      #F

    restart: "no"

There are some questions you might have on your mind at this point: why is
the container name set to video-storage instead of azure-storage? We
called the microservice azure-storage, but we called the container video-
storage; why is that? This is an intentional abstraction. It’s a part of our



design that the video-streaming microservice doesn’t care where it retrieves
its videos from! It’s not interested in the fact that the videos are stored in
Azure. From its point of view, these could just as easily be stored anywhere
else, such as AWS S3 or Google Cloud Storage.

By naming our container as video-storage, we are now able to connect our
microservices to it using a name that is independent of the underlying storage
provider. This is good application structure put into practice. We have given
ourselves the flexibility of later being able to swap out azure-storage and
replace it with aws-storage or google-storage. And we can do this without
interrupting the video-streaming microservice. From its point of view,
nothing will have changed. This kind of freedom to effect change in the
future without knock-on effects is important, and it shows that we are making
the most of our microservices architecture.

4.4.4 Testing the updated application

We have updated our Docker Compose file to include both of our
microservices. Now we are finally ready to boot our application and test it
with our additional microservice. Before doing this please make sure you
have set the environment variables STORAGE_ACCOUNT_NAME and
STORAGE_ACCESS_KEY as detailed in section 4.4.1, as that’s what
connects the application to your Azure storage account.

Start the application the same as before:

docker compose up --build

The difference now is that we have booted up two containers, rather than just
the one. You can see an example of the output in the following:

video-streaming    | > example-1@1.0.0 start /usr/src/app

video-streaming    | > node ./src/index.js

video-streaming    |

video-storage      |

video-storage      | > example-1@1.0.0 start /usr/src/app

video-storage      | > node ./src/index.js

video-storage      |

video-streaming    | Forwarding video requests to video-storage:80.

video-streaming    | Microservice online.



video-storage      | Serving videos from... 

video-storage      | Microservice online.

Note in the output how the name of each container is printed on the left. This
is an aggregate stream of logging from all containers. The name on the left
allows us to differentiate the output from each microservice.

Note

We are booting our application with multiple containers using a single
command so we can test our application with multiple microservices.

Now that we have added our second microservice, this is where we start to
see the real value of Docker Compose. We could have booted up the
application without Docker Compose in either of the following ways:

Open two terminals and use Node.js directly to run the video-streaming
microservice in one terminal and the azure-storage microservice in the
other. That’s two terminals and two commands to run our application.
Use Docker to run two containers. In this case, we have to run docker
build and docker run once for each microservice. That’s one terminal
and four commands.

No one wants to spend all day repetitively typing commands. Instead, Docker
Compose allows us to boot our application with a single command, and this
is scalable to any number of containers.

Just imagine down the track a bit; let’s say we have progressed development
of our application to 10 microservices. Without Docker Compose, you will
have to type at least 20 commands to build and start your application. With
Docker Compose, we can build and run our growing application with just one
command! No matter how many containers we need, it’s still just a single
command.

At this point, we have two opportunities for testing. At a minimum, we must
test the video-streaming microservice because, currently, that’s the only
customer-facing endpoint we have. To do that, open a browser and navigate
to http://localhost:4001/video.



Yet again, you’ll see the familiar test video. Testing the video-streaming
microservice actually tests both microservices because the video-streaming
microservice depends on the video-storage microservice, so they are both
tested at the same time. We could stop here, but for completeness in testing
we can also independently test the video-storage microservice.

If you glance back to listing 4.4, you’ll see that we have bound its port to
4000. We can navigate our browser to that port and see the video playing
directly from the video-storage microservice. The video-storage
microservice, however, expects us to tell it the path where the video is
located. We do that via the URL. Let’s navigate our browser to
http://localhost:4000/video?path=SampleVideo_1280x720_1mb.mp4 and test
the video-storage microservice.

Note that testing an internal microservice from the outside like this is only
possible in development. Once we move this microservice to production, its
REST API is only available within the Kubernetes cluster. In this case, we’ll
make it private because we don’t want the outside world having direct access
to our video storage. This is a security feature of microservices! We can
control which microservices are exposed to the outside world, and we can use
that to restrict access to parts of the application that should not be directly
accessible by outsiders. We’ll talk more about security in chapter 12.

Well, there we have it. We added external file storage to our application, and
in the process, we scaled it up to two microservices. Before we congratulate
ourselves, however, let’s consider some design theory.

4.4.5 Cloud storage vs. cluster storage

At this point, if you know anything about Kubernetes, you might be
wondering why we haven’t used Kubernetes volumes for file storage as
opposed to cloud storage. That’s an important design decision, and again, it’s
the kind of thing that depends on the needs of your project, your business,
and your customers.

We used cloud storage instead of cluster storage because it’s simple, it works
when we run in development, it’s cheap, and it’s managed for us. These are



the benefits of cloud storage and why it’s in common use by many
companies. Besides, we haven’t learned anything about Kubernetes yet, so
we definitely couldn’t have used Kubernetes volumes at this point in the
book. However, there’s another important reason why I generally choose to
use cloud storage over cluster storage.

We could store the files and data for our application in the Kubernetes
cluster, but I prefer my production cluster to be stateless. That means I can
destroy and rebuild the cluster at will without risk of losing the data. Later,
this enables us to use blue-green deployment for our production rollouts,
which we’ll talk about in chapter 12. This makes it easy to build a new and
updated instance of our application that runs in parallel with the previous
version.

To upgrade our customers to the new version, we can then switch the DNS
record so that the hostname now refers to the new instance. This gives us a
low-risk way to do major upgrades to our application. It’s low risk not
because problems won’t happen, but because if problems do happen, we can
quickly switch the DNS back to the old instance so that our customers are
(almost) immediately reverted to the previous (and presumably working)
version.

4.4.6 What did we achieve?

Congratulations! We now have a small microservices application running!
That’s a big deal. Using Docker Compose, we created a scaffold into which
we can easily add new microservices and grow our application. Take a
moment to pat yourself on the back. This is a big milestone!

What did we achieve? We added file storage capability to our application.
Our microservice now has the capability to store files in external cloud
storage, and this gives our application a place to host its videos.

We also added a second microservice. With Docker Compose in place, we
can now continue to expand our application by adding new containers to it.
We’ll make use of this capability again in a moment when we add a database
server to our application.



We added the second microservice as an abstraction over our storage
provider. This is a design decision with benefits. We can now swap out and
replace our video-storage microservice with a different storage provider with
minimal impact on our application. We could even do this while the
application is running in production! It’s even possible in the future that we
might want to have multiple storage microservices running in parallel. If it
suited our product, we could upgrade it to support Azure Storage, AWS S3,
and Google Cloud Storage all at the same time!

The details of how storage works have been restricted to the internals of the
video-storage microservice. That means we can change the details
independently from the rest of the application without causing knock-on
problems. This kind of protection might seem superfluous right now, but it
becomes more important as our application grows.

Note

Eventually, our application will become a spider’s web of communication
among many microservices. Changes in one will have the potential to cause
an exponential ripple of problems across the application. Careful construction
of the interfaces between microservices to minimize their coupling helps us
make the most of our microservices architecture.

Separating our microservices, the so-called separation of concerns
(mentioned in chapter 1), is important—each microservice should look after
its own separate area of responsibility. We are also following the single
responsibility principle (also mentioned in chapter 1) that says each
microservice should look after one single thing. Our microservices now look
after their own areas of responsibility:

The video-streaming microservice is responsible for streaming a video
to a user.
The video-storage microservice is responsible for locating and retrieving
videos from storage.

The separation of the microservices in this way helps to ensure that each
microservice is small, simple, and manageable.



4.5 Adding a database to our application

The other half of data management relates to the database. Most applications
need some kind of database to store their dynamic data, and FlixTube is no
exception.

Please note, this chapter isn’t intended to teach database design or data
engineering; this chapter just serves as an example of how to integrate one
kind of database, MongoDB, with your microservices. To take your database
and data engineering skills further than this, please see the references for
more learning at the end of this chapter.

The first thing we need is metadata storage for each video. We’ll start using
our database by storing the path to each video. This fixes the problem from
earlier of having a hard-coded path to the video file in our video-streaming
microservice.

Note

Practically all applications need some kind of database to store the data that is
to be updated by the application.

Figure 4.12 shows what our application will look like after we add the
database. In addition to the two containers for our two microservices, we will
have another container that hosts a MongoDB database. You can see in the
diagram that only the video-streaming microservice connects to the database;
the video-storage microservice doesn’t require a database.

Figure 4.12 Adding a database to our application



4.5.1 Why MongoDB?

MongoDB is one of the most popular of the so-called NoSQL variety of
databases. Using Docker allows us to have an almost instant database. We
only need to specify the name of a database image, and Docker will pull it
from DockerHub and instantiate it on our development workstation.

Note

MongoDB is easy to use, provides a flexible database that stores schema-free
structured data, and has a rich query API.

But there are many different databases that we could easily boot up with
Docker, so why MongoDB? In my experience, even manually downloading
and installing MongoDB is easy compared to older and more traditional
databases; now that we have Docker it’s even easier still. Like any database,
we can use MongoDB to store rich structured data. MongoDB is also known
to have high performance and is extremely scalable.

I work with a lot of unpredictable data, and it’s hard to tell what’s going to be



thrown at me next. I like the fact that MongoDB doesn’t force me to define a
fixed schema! Although, it’s certainly possible to define a schema with
MongoDB if you use an object-relational mapping (ORM) library like
Mongoose (https://www.npmjs.com/package/mongoose).

MongoDB is also easy to query and update in many different programming
languages. It’s well supported, has great documentation, and there are many
examples in circulation. MongoDB is open source. You can find the code
here: https://github.com/mongodb/mongo.

4.5.2 Adding a database server in development

We are going to add a database to our application in development using
Docker Compose in the same way that we added our video-storage
microservice earlier in this chapter. We will add one new container to our
Docker Compose file to host a single database server. We only need a single
server, but we can host many databases on that server. This means we’ll be
set up for the future to easily create more databases as we add more
microservices to our application.

Adding the database server to the Docker Compose file

To add the database server to our application, we must update our Docker
Compose file. Docker Compose makes it easy to add a database to our
application. We just add a few lines to the Docker Compose file to specify
the public Docker image for the database and set some configurations.
Abracadabra, instant database!

Listing 4.5 shows the updated Docker Compose file. We are adding a new
section to the top of the file with the name db (short for database). The
configuration for this container is different from the configuration for the
microservices we added earlier. That’s because now we don’t need to build
the image for the new container. Instead, we use the publicly published mongo
image from Docker Hub.

Listing 4.5 Adding a MongoDB database (chapter-4/example-3/docker-compose.yaml)



version: '3'

services:

 

  db:    #A

    image: mongo:5.0.9    #B

    container_name: db     #C

 

    ports:

     - "4000:27017"    #D

    restart: always      #E

 

  azure-storage:

    image: azure-storage

    build: 

      context: ./azure-storage

      dockerfile: Dockerfile

    container_name: video-storage

    ports:

     - "4001:80"

    environment:

      - PORT=80

      - STORAGE_ACCOUNT_NAME=${STORAGE_ACCOUNT_NAME}

      - STORAGE_ACCESS_KEY=${STORAGE_ACCESS_KEY}

 

 

    restart: "no"

 

  video-streaming:

    image: video-streaming

    build: 

      context: ./video-streaming

      dockerfile: Dockerfile

    container_name: video-streaming

    ports:

     - "4002:3000"

    environment:

      - PORT=80

      - DBHOST=mongodb://db:27017    #F

      - DBNAME=video-streaming     #G

      - VIDEO_STORAGE_HOST=video-storage

      - VIDEO_STORAGE_PORT=80

    restart: "no"

In our updated application, the video-streaming microservice will be
connected to the database. Notice that we now have new environment
variables, DBHOST and DBNAME, which configure the microservice’s



connection to its database.

It’s also worth noting in the configuration for the db container how we have
mapped the container’s ports. Here we have mapped the standard MongoDB
port of 27017 to 4000. What does this mean? Within the Docker runtime,
other containers can access the database using 27017. That’s the conventional
port for MongoDB, so we’ll stick with that.

On our host operating system (OS), we have mapped the port to 4000. That’s
an arbitrary choice. We could have given it any number, including 27017. I
prefer not to give it the standard MongoDB port because that would conflict
with an instance of MongoDB that we might have running directly on our
host OS.

This is a good setup. Our application can interact with MongoDB via the
standard port, but we can also use tools (as we’ll soon see) to directly query
and edit our database from our development workstation. This is great for
development as it gives us the ability to directly interact with and query our
database.

Updating the video-streaming microservice to use a database

We added environment variables to our Docker Compose file to connect our
video-streaming microservice to its database. Now we need to update the
code for this microservice to make use of these environment variables to
establish the database connection.

Listing 4.6 shows the updated code for the video-streaming microservice that
allows it to query and read data from its database. Browse this code and
notice how it differs from the previous incarnation.

Listing 4.6 Updating the microservice to use the database (chapter-4/example-3/video-
streaming/src/index.js)

const express = require("express");

const http = require("http");

const mongodb = require("mongodb"); #A

 

const app = express();



 

const PORT = process.env.PORT;

const VIDEO_STORAGE_HOST = process.env.VIDEO_STORAGE_HOST;

const VIDEO_STORAGE_PORT = parseInt(process.env.VIDEO_STORAGE_PORT);

const DBHOST = process.env.DBHOST; #B

const DBNAME = process.env.DBNAME; #C

 

async function main() { #D

    const client = await mongodb.MongoClient.connect(DBHOST); #E

    const db = client.db(DBNAME); #F

    const videosCollection = db.collection("videos"); #G

        

    app.get("/video", async (req, res) => { #H

        const videoId = new mongodb.ObjectId(req.query.id); #I

        const videoRecord = await videosCollection.findOne({ _id: videoId }); #J

        if (!videoRecord) {

            res.sendStatus(404); #K

            return;

        }

 

        const forwardRequest = http.request( #L

            {

                host: VIDEO_STORAGE_HOST,

                port: VIDEO_STORAGE_PORT,

                path:`/video?path=${videoRecord.videoPath}`, #M

                method: 'GET',

                headers: req.headers

            }, 

            forwardResponse => {

                res.writeHeader(forwardResponse.statusCode, forwardResponse.headers);

                forwardResponse.pipe(res);

            }

        );

        

        req.pipe(forwardRequest);

    });

 

    //

    // Starts the HTTP server.

    //

    app.listen(PORT, () => {

        console.log(`Microservice listening, please load the data file db-fixture/videos.json into your database before testing this microservice.`);

    });

}

 

main() #N

    .catch(err => {



        console.error("Microservice failed to start.");

        console.error(err && err.stack || err);

    });

Listing 4.6 queries its database by video ID to retrieve the location of a video
in storage. It then passes that location to the video-storage microservice to
retrieve the video that is stored there. The rest of the code here should be
familiar. We are forwarding HTTP requests for videos to the video-storage
microservice.

This update to the video-streaming microservice has removed the hard-coded
video path. Instead, we now refer to videos by their database ID. We could
have fixed this without using IDs. We could simply refer to videos by their
path in storage. But as you might suspect, that’s not a good idea. Let’s
consider why.

If we use paths to identify our videos, that makes it difficult to later move
videos to a different location if in the future we decide we’d like to
restructure our storage filesystem. The reason this is a problem is that various
other databases and records will need to refer to our videos. This includes a
metadata database for recording information about a video such as its genre.
And we’ll later want a database for recording recommendations and views of
each video.

Each of these databases must have a way to refer to a video. If we only record
the ID for each video, we give ourselves much more freedom to make
independent changes to our storage without causing any nasty problems to
ripple through our microservices and databases.

This also makes it a bit simpler because the location of the video could
potentially be a long path, and internal details like this are not something
we’d usually like to let leak out of our application. Why? Exposing details
that hint at the internal structure can give a potential attacker an advantage.
It’s better to keep a lid on this kind of information.

Loading some test data into our database

We’ve added a database to our Docker Compose file and we’ve updated the



video-streaming microservice to use that database. We are almost ready to
test our changes!

In order to test our updated code, we must now load some test data into our
database. Later, we’ll have a way for our users to upload their own videos
and populate the database with relevant details, but we don’t yet have any
way to do this in our application.

We could test our code by replacing the database with some kind of
simulated version of it. I’m talking about mocking the database. (We first
talked about mocking earlier in this chapter.) Another way we can do this is
to use a database fixture, which is a piece of test data that we load into our
database purely for testing.

There are various ways we can load data into our database. The simplest way
to do this is to use Studio3T (formerly known as Robo3T and Robomongo).
This is a fantastic UI tool for working with MongoDB. I use it all the time
myself, which you already know if you read my first book, Data Wrangling
with JavaScript (Manning, 2018). It’s available for Windows, MacOS, and
Linux.

For download and install instructions for Studio3T, see https://studio3t.com/.
Studio3T allows you to view the collections and documents in your database.
You can easily create databases, collections, and data records.

But before we can use Studio3T to load example data into our database, we
first must have our database up and running. We can do that by booting our
application. If you haven’t yet done so, open a terminal and start your
application:

docker compose up --build

Note

You should run this command from the same directory as the updated Docker
Compose file in listing 4.5. You can find this file in the example-3
subdirectory of the chapter 4 code repository.



After starting our application, we now have a MongoDB database server
running in a container. Because we mapped the standard MongoDB port
27017 to port 4000 on our development workstation, we can now access the
database by starting Studio3T and then connecting it to localhost:4000.

Listing 4.7 shows the test data we’ll add to our database using Studio3T. This
is a single JSON document that is available under the example-3 directory
and is suitable for a copy and paste insert using Studio3T.

You can load this data using Studio3T: create a new database called video-
streaming, create a collection called videos, and then insert a new document
into that collection using the content from listing 4.7.

Listing 4.7 Loading a data record with Robo 3T (chapter-4/example-3/db-fixture/videos.json)

{    #A

    "_id" : { "$oid": "5d9e690ad76fe06a3d7ae416" },   #A   #B 

   #A

    "videoPath" : "SampleVideo_1280x720_1mb.mp4"      #A   #C 

  #A

}     #A

We’ll come back to mocking and database fixtures in chapter 9. For now,
let’s look at how to test our application.

Testing our updated application

At this stage, you can first test the microservice directly under Node.js if you
like. It’s always a good idea to test your microservices independently before
you integrate them. If you are putting this code together by yourself and
testing directly under Node.js, don’t forget to install the mongodb driver
package from npm:

npm install --save mongodb

There’s no need for me to walk you through individual testing for each new
microservice. In the interest of expediency, we’ll skip that and go straight to
running our integrated code in the application under Docker Compose.



You should already have the application running from the last section. We
needed it there for the database, so we could load our test data. If the
application isn’t running, start it now:

docker compose up --build

We can now test the application in the usual way with a web browser. This
time, though, we must provide the ID of the video we’d like to watch. The ID
that we specified in our test data was a big long string of numbers, and that’s
what we must now add to our URL to test the updated application. Open your
browser and navigate to this link: http://localhost:4002/video?
id=5d9e690ad76fe06a3d7ae416

If you change the ID in the test data, you also need to update the ID in this
URL. You should now see the test video playing. You must know this video
very well by now!

4.5.3 Adding a database server in production

So far we have only covered the case of adding a database server to the
development version of our application. This works well enough for the
moment because we haven’t yet learned how to deploy our application to
production; that’s coming in chapters 6, 7 and 8. What we can do now though
is to briefly consider how we might deploy a database server for use by our
production environment.

Docker Compose makes it easy to add a database server to our application for
development, but what about production? For production, I recommend using
a database external to the Kubernetes cluster. This keeps the cluster stateless,
which, as we discussed in section 4.4.5, means that we can tear down and
rebuild our cluster at any time without risk to our data.

Once we have built our production Kubernetes cluster, we can easily deploy a
MongoDB database in a way that is similar to what we’ve just done with
Docker Compose. In fact, that’s what we will do in chapter 6 because that’s
the easiest way for us to get our database server into production.

Beyond that though, I recommend that you keep your database separate to

localhost:4002.html


your cluster. You can run it on a separate VM, or even better in an external
managed database. The reason to keep the database separate to the cluster is
to keep the production cluster stateless. I mentioned this earlier, but having a
stateless cluster makes it easier to run multiple versions of our application in
parallel. It also means we can destroy and rebuild our cluster without fear of
losing our data.

Another advantage to using a managed database is security. The database
provider takes care of maintenance for us; it takes care of protecting and
backing up our data! If we work for a big company, our company will
probably manage this in-house. But if we work for a small company or
startup, we need all the help we can get.

4.5.4 Database-per-microservice or database-per-application?

At this point, we have only created a single database on our database server.
But we are now set up to create many more additional databases.

You probably noticed that we named the database video-streaming to
coincide with the microservice that uses it! This alludes to a rule we’ll be
following throughout the book: each microservice should have its own
database. We do this because we’d like to encapsulate our data within the
microservice in the same way we’d encapsulate data within an object in
object-oriented programming.

Do we really need one database for each and every microservice? It’s
definitely worthwhile to stick to this rule. Your databases can be hosted on a
single server, but make sure each individual microservice has its own
database. If you share databases or make a database the integration point
between microservices, you are inviting architectural and scalability
problems.

We are restricting our data from all but the code that directly encapsulates it.
This helps us to safely evolve the structure of our data over time because
changes to it can be hidden within the microservice. This is another technique
that, if we structure our REST APIs carefully, allows us to avoid propagating
breakages and problems from one microservice to other parts of the



application. Care applied when designing our microservices equates to better
design for our application.

You might think that sharing a database between microservices is a good way
for them to share data. But using a database as an integration point or
interface between microservices is a bad idea because it makes for a more
fragile and less scalable application. It reduces our ability to evolve our
microservices independently from each other.

At some point, you might find yourself wanting to share a database for
performance or some other reason. After all, rules sometimes have to be
broken to achieve a difficult goal. Carefully consider why you want to do this
and if it’s truly necessary. Bringing such anti-patterns into our application is
not something we should do blindly. We’ll talk more about databases and
scalability in chapter 12.

4.5.5 What did we achieve?

We have added a database to our application. We now have two different
methods at our disposal to manage our application’s data: we can store files
in external cloud storage and we can store data in a database. We made good
use of Docker Compose to run an application composed of multiple
containers, and we upgraded our application to two microservices and a
database.

We have hidden our storage provider behind a video-storage microservice. Its
job is to retrieve videos from storage. The abstraction we put in place allows
us to easily change our storage provider later without much disruption to our
application.

We created a database server and added a database for use by our video-
streaming microservice. We are following the rule that each microservice
should have its own database, and in the future, we can easily add more
databases to our server and continue to satisfy this rule.

We have also briefly seen how one microservice can communicate with
another. The HTTP GET request received by the video-streaming
microservice was forwarded to the video-storage microservice. This is the



first and simplest form of communication that one microservice can use to
request or delegate tasks to another. In the next chapter, we’ll more deeply
explore this and other methods of communication between microservices. In
addition, we’ll further extend our skills with Docker Compose and learn how
to apply automated live reload to our entire microservices application.

4.6 Docker Compose review

Throughout this chapter, we have seen increasing value from Docker
Compose, using it to help manage the complexity of our growing application
on our development workstation. Even when running just a single container,
it was useful because it allowed us to capture and record configuration
details. At that early stage, it magically turned two commands into one.

As we progressed through the chapter, we added two more containers to our
application, and the value of Docker Compose became even clearer. We can
add as many containers as we want to our application, we can record all their
configuration details, and no matter how many containers we have, we can
manage them all as an aggregated entity using single commands.

Figure 4.13 shows the simple lifecycle of our application running under
Docker Compose. We use the up command to boot our application and all of
its microservices. We use the down command to destroy our application and
return our development workstation to a clean state.

Figure 4.13 The lifecycle of your microservices application when using Docker Compose



Before you finish this chapter, scan table 4.2 for a quick review of the Docker
Compose commands you have learned. Put a bookmark on this page so you
can return here quickly when you need help working with Docker Compose.

Table 4.2 Review of Docker Compose commands

Command Description

docker

compose

up --
build

Builds and instantiates an application composed of multiple
containers as defined by the Docker Compose file (docker-
compose .yaml) in the current working directory

docker

compose

ps

Lists running containers that are part of the application specified
by the Docker Compose file

docker

compose

stop

Stops all containers in the application, but persists the stopped
containers for inspection

docker



compose

down
Stops and destroys the application, which leaves the
development workstation in a clean state

4.7 Continue your learning

This chapter skimmed the surface of two big topics. We added a new
microservice to our application and connected it to our Azure Storage
account. We also added a MongoDB database to our application. Both Azure
and MongoDB are technologies that each have a world of their own, we’ll
explore Azure more in chapters 6, 7 and 10, but for now.      I’ll leave you
with some references to dig deeper in these areas:

Microsoft Azure in Action by Lars Klint (Manning, est November 2022)
Learn Azure in a Month of Lunches, Second Edition by Iain Foulds
(Manning, 2020 )
MongoDB in Action, 2nd ed. by Kyle Banker, Peter Bakkum, et al
(Manning, 2016)

To learn more generally about working with data in JavaScript, there’s my
earlier book:

Data Wrangling with JavaScript by Ashley Davis (Manning 2018)

To learn more about Docker Compose, read the documentation online:

https://docs.docker.com/compose/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/reference/

In this chapter, we scaled up to multiple microservices using Docker
Compose. We also added data management capability to our application. In
the next chapter, we will learn in more detail how to make our microservices
talk to each other. We’ll also improve our skills with Docker Compose and
learn how to extend live reload so that it works across the entire application.

4.8 Summary



Docker Compose is a subcommand of Docker that allows us to script the
building and running of multiple containers. It’s a convenient way to
“simulate” Kubernetes and run a many-microservices application in
development.
A Docker Compose file is the script that configures a distributed
application from multiple Docker containers. It aggregates together a
collection of Dockerfiles.
The command docker compose up --build builds and instantiates the
distributed application.
The command docker compose down shuts down the application.
Cloud file storage is a method of storing files for an application in a
service provided by a cloud platform like Azure, AWS or GCP.
Azure Storage is the cloud file storage service provided by Microsoft
Azure.
MongoDB is an easy to use, flexible and scalable database solution that
is a perfect fit for microservices.
In development we can easily instantiate a MongoDB server under
Docker Compose and share it between all the microservices we are
running in development.
It’s ok to share a database server among microservices, but we should
try to follow the rule: only one database per microservice. A good
microservice encapsulates its database behind a REST API and doesn’t
share that data with any other service. So (for low cost and convenience
of maintenance) just have a single database server, but make sure that
each microservice has its own database on that server.
Although it’s possible to store files and run a database in a Kubernetes
cluster, for production we’d prefer to have a stateless cluster. Keeping
our files and data outside the cluster can be safer and more flexible. It
means that we can easily destroy and rebuild our cluster without fear of
losing our files and data.



5 Communication between
microservices
This chapter covers

Using live reload at the application level for faster iterations
Sending direct messages between microservices with HTTP requests
Sending indirect messages between microservices with RabbitMQ
Choosing between using direct and indirect messages

A microservices application is composed of many microservices, each
looking after its own area of responsibility. Because each microservice by
itself is small, simple, and doesn’t do much, our microservices must
collaborate to create the complex behaviors needed to implement the feature
set for our product. To work together, our microservices need ways to
communicate. If they can’t talk to each other, then they won’t be able to
coordinate their activities, and they won’t achieve much.

In this chapter, we examine the different ways that microservices can
communicate so that they can collaborate and fulfill the higher-level
requirements of the application. In the process, we’ll also revisit Docker and
Docker Compose to set up live reload for our entire application. Moving
forward, that’s essential so that we aren’t constantly rebuilding and restarting
our application as we update our code.

We already saw in earlier chapters that HTTP requests are one way that
microservices communicate. In this chapter, we’ll expand on using HTTP
requests for direct messaging, and we’ll also look at using RabbitMQ for
indirect messaging. Throughout the chapter, you’ll learn how to decide what
type of messaging to use for a given situation.

5.1 New and familiar tools



This chapter introduces the RabbitMQ software for queuing messages. This
will help us decouple our microservices. We’ll use the npm package,
amqplib, to connect our microservices to RabbitMQ so they can send and
receive messages. We’ll also revise some familiar tools, and we’ll explore in
more detail how we can use HTTP requests to send messages and upgrade
our development environment to support application-wide live reload.

Tool Version Purpose

Docker
Compose

Included
with
Docker
20.10.17

Docker Compose lets you configure, build, run, and
manage multiple containers at the same time.j

HTTP 1.1
Hypertext Transfer Protocol (HTTP) is used to send
direct (or synchronous) messages from one
microservice to another.

RabbitMQ 3.9.21
RabbitMQ is the message queuing software that
we’ll use to send indirect (or asynchronous)
messages from one microservice to another.

amqplib 0.10.0 This npm package allows us to configure RabbitMQ
and to send and receive messages from JavaScript.

5.2 Getting the code

To follow along with this chapter, you need to download the code or clone
the repository.

Download a zip file of the code from here:



https://github.com/bootstrapping-microservices-2nd-edition/chapter-5
You can clone the code using Git like this:

git clone https://github.com/bootstrapping-microservices-2nd-edition/chapter-5

For help on installing and using Git, see chapter 2. If you have problems with
the code, log an issue against the repository in GitHub.

5.3 Getting our microservices talking

At this point in the book, we have an application with two microservices:
video streaming and video storage. In the previous chapter, we added data
storage capability; the video-streaming microservice has a database, and the
video-storage microservice uses external cloud storage to store the video
files. Figure 5.1 shows what our application looks like now.

Figure 5.1 We finished the last chapter with two microservices and a database running under
Docker Compose on our development workstation. In that chapter, we also added a connection to
Azure cloud storage to store our videos.



A microservices application is built from services that collaborate to provide
the application’s features. Our application can’t do much if we have
microservices that can’t communicate! Communication between
microservices is therefore a crucial part of building with microservices, and
it’s essential that we have communication techniques at our disposal.

Actually, we wouldn’t have gotten this far without having already used
HTTP requests for communication between the video-streaming and video-
storage microservices like we did in chapter 4. We glossed over it there, but it
was really quite important. Without it, we would have stumbled at the first
hurdle: separating out the streaming and storage capabilities for our



application.

Note

Our microservices must work together to implement the features of our
application, so it’s crucial that they be able to communicate for collaboration.

In this chapter, we add a third microservice to our application: the history
microservice. The purpose of adding this new microservice is to demonstrate
communication among microservices. You can see in figure 5.2 how the
video-streaming microservice is sending a stream of messages to the history
microservice.

Figure 5.2 In this chapter, we expand our application with a new microservice and explore
methods of communication between our microservices.



Figure 5.2 shows conceptually what our application will look like at the end
of this chapter, but it doesn’t show the full technical details of what we’ll
add. To get the full picture, we need to know the various styles of
communication we can make use of, and the technologies that underpin these.
Before that though, let’s better understand the history microservice.

5.4 Introducing the history microservice

We are using the history microservice in this chapter as an example of how



microservices can send and receive messages to each other. Actually, this
new microservice really does have a proper place in FlixTube, and as the
name suggests, it records our user’s viewing history.

There are multiple ways our application can make use of this history. For
starters, our user might want to look at their own history to remember a video
they watched in the past. They might like to resume watching a video later, or
we might use it to provide recommendations for other users.

To keep the examples in this chapter simple, we’ll drop out the video-storage
microservice from the last chapter, which simplifies the video-streaming
microservice. In fact, for our starting point in this chapter, we’ll revert back
to an earlier version of the video-streaming microservice that has the example
video baked into its Docker image. We’ll use the video-streaming
microservice like it was after chapter 3. This simplification is just while we
get our heads around the communication techniques. After this chapter, we’ll
reinstate the video-storage microservice and restore the video-streaming
microservice to its former glory.

The message we’ll transmit between microservices is the viewed message.
This is how the video-streaming microservice informs the history
microservice that the user has watched a video. Figure 5.3 shows you what
the history microservice is doing. It receives a stream of messages from the
video-streaming microservice, and it records them in its own database.

Figure 5.3 As a way to explore communication methods, we’ll have the video-streaming
microservice send a viewed message to the history microservice to record our user’s viewing
history.



We haven’t yet discussed the styles of messaging we could use—that’s
coming soon. For the moment, know that we have multiple techniques we
can use to send the viewed message. Through this chapter, we’ll explore our
options, and we can decide later which one is best suited for this particular
situation. Before that though, let’s upgrade our development environment for
faster development cycles.

5.5 Live reload for fast iterations

In section 2.4, we talked about our philosophy of development and how
small, fast increments are essential for a tight feedback loop and for
maintaining a fast development pace. In chapter 2, when directly running our
first microservice under Node.js, we were able to use the npm package,
nodemon, to make our microservice live reload. This means our microservice
automatically reloads when we make changes to its code. Having an efficient



live reload mechanism is even more important at the application level than it
is at the microservice level. That’s because building and booting up the whole
application composed of multiple microservices is much slower than to boot
up each individual microservice.

In chapter 3, we used Docker and began to “bake” the code for our
microservice into the Docker image. Docker is an incredibly useful way for
us to package, publish, and deploy our microservices. That’s why we use it,
even though we’ve yet to see the deploy part of this puzzle; we’ll see our
microservices deployed to production in chapter 6.

In chapter 4, we used Docker Compose in our development environment as a
convenient way to structure and manage a local version of our growing
application. This is all well and good, but unfortunately, in transitioning from
direct use of Node.js to running our microservices in Docker containers, we
lost our ability to automatically reload our code.

Because we are baking our code into our Docker images, we aren’t able to
change it afterward! This is great for production because, for security
reasons, many companies would like to be able to verify the software supply
chain and know that no one has injected any (potentially malicious) code into
the image that isn’t supposed to be there. The problem now is that during
development, we don’t want to constantly rebuild our images and reboot our
application to include updated code. Doing this is quite slow. And for
repeated rebuilds and restarts, the time really adds up, especially as our
application grows in size.

Note

Not being able to quickly update the code in a running application is a
terrible thing for our development process and can be a huge drain on our
productivity. We’ll address this early and find a way to restore our live reload
capability.

In this section, we’ll upgrade our Docker Compose file to support sharing
code between our development workstation and our containers. Figure 5.4
shows you how the source code directory for the new history microservice is
shared from our development computer into the microservice’s container.



Figure 5.4 To enable live reload on a larger scale, we must synchronize the code between our
development workstation and the container so that changes to the code automatically propagate
through to the container.





Again, we’ll use nodemon for this, and we’ll use it across the board for all
our microservices. It will automatically restart each microservice when the
code changes. This configuration might seem onerous to put in place, but it
really is worthwhile to get this right because it’s going to have a huge impact
on our pace of development!

5.5.1 Creating a stub for the history microservice

We’ll create the live reload configuration only for the new history
microservice, but after that, we’ll need to apply this same configuration to
each and every microservice. This way live reload is supported for all the
microservices in our application.

Before we get started, read through listing 5.1 and familiarize yourself with
the newly born history microservice. This doesn’t do anything yet. It’s just a
stub and is waiting to have features added. Once we have live reload working
for this microservice, we’ll be able to boot our application using Docker
Compose. Then, we’ll make live updates and incremental changes to evolve
this new microservice without having to restart the application.

Listing 5.1 A stub for the history microservice (chapter-5/example-1/history/src/index.js)

const express = require("express");

 

// ...

 

const PORT = process.env.PORT;

 

async function main() {

 

    const app = express();

 

    // ... add route handlers here ... #A

 

    app.listen(PORT, () => {

        console.log("Microservice online.")

    });

}

 

main()



    .catch(err => {

        console.error("Microservice failed to start.");

        console.error(err && err.stack || err);

    });

 

5.5.2 Augmenting the microservice for live reload

We don’t need to do anything else to the basic code for our microservice,
other than what we already learned in chapter 2, where we set up our first
microservice and installed nodemon for live reload. Each microservice needs
nodemon installed like this:

npm install --save-dev nodemon

The npm package, nodemon, is what we’ll use to watch our code and to
automatically restart our microservice when the code changes. The
package.json file for the micro-service includes an npm script called
start:dev, according to the convention we started in chapter 2. You can see
what this looks like in listing 5.2.

Listing 5.2 Setting up package.json for live reload with nodemon (chapter-5/example-
1/history/package.json)

{

  "name": "history",

  "version": "1.0.0",

  "description": "",

  "main": "./src/index.js",

  "scripts": {

    "start": "node ./src/index.js",

    "start:dev": 

    ➥ "nodemon --legacy-watch ./src/index.js"   #A

  },

  "keywords": [],

  "author": "",

  "license": "MIT",

  "dependencies": {

    "express": "^4.17.1"

  },

  "devDependencies": {

    "nodemon": "^1.19.1"

  }



}

With the start:dev npm script in place, we can run our microservice like this:

npm run start:dev

This invokes nodemon for our microservice like this:

nodemon --legacy-watch ./src/index.js.

Obviously, you could always type out the full nodemon command, but using
npm run start:dev is shorter, and it’s always the same for all our
microservices, assuming that we apply the convention to each and every
microservice. If you just started the history microservice, now exit with Ctrl-
C. Soon, we’ll run our entire application again using Docker Compose.

You are probably wondering why I used the --legacy-watch argument with
nodemon. I used this argument because I usually run Docker and Docker
Compose under WSL2 on Windows

The --legacy-watch argument disables the filesystem watch and, instead,
uses a frequent polling mechanism to monitor for code changes. If you do
your development under WSL2 or on a VM, you need this because the
automatic file watch required by live reload doesn’t translate changes through
from the host operating system.

If you are not doing your development under WSL2 or a VM, you can safely
remove the --legacy-watch argument and your live reload will work with
slightly better performance.

5.5.3 Splitting our Dockerfile for development and production

In chapter 2, we talked about being able to run our microservices in either
development mode or production mode. We made this distinction so that we
can optimize separately for the differing needs of development and
production. In this section, you’ll see this separation start to come to fruition.

Note



At this point, we’ll create separate Dockerfiles for our development and
production modes. In each case, our needs differ. For development, we
prioritize fast iteration. For production, we prioritize performance and
security.

For all microservices, henceforth, we’ll create not just one but two
Dockerfiles. We now need one for development and another for production.
We’ll call the development one Dockerfile-dev and the production one
Dockerfile-prod.

These names are chosen to avoid confusion. Naming is so important in
software development and we should aim to select clear names to help avoid
ambiguity. We are separating our Dockefiles at this point so that we can
enable live reload in development. That isn’t something that we want enabled
in production!

Listing 5.3 shows a production Dockerfile for the new history microservice.
There’s nothing new here as this is a fairly standard Node.js Dockerfile. It’s
similar to the Dockerfile we created in chapter 3.

Listing 5.3 Creating the production Dockerfile (chapter-5/example-1/history/Dockerfile-prod)

FROM node:18.5.0-alpine #A

 

WORKDIR /usr/src/app

 

COPY package*.json ./

 

RUN npm install --only=production    #B

 

COPY ./src ./src    #C

 

CMD npm start     #D

We won’t actually make use of the production Dockerfiles in this chapter, but
we’ll definitely need these starting in chapter 6, when we deploy to our
production environment. It’s a good idea to maintain our development and
production Dockerfiles side by side so that the development version doesn’t
get too far ahead of the production one.



Listing 5.4 shows the development Dockerfile for the history microservice.
Read through it and compare it to the production Dockerfile in listing 5.3.
Notice the differences between development and production for yourself.

Listing 5.4 Creating the dev Dockerfile (chapter-5/example-1/history/Dockerfile-dev)

FROM node:18.5.0-alpine #A

 

WORKDIR /usr/src/app

 

COPY package*.json ./     #B

 

CMD npm config set cache-min 9999999 && \      #C

    npm install && \     #D

    npm run start:dev    #E

Did you pick up the differences between the two different Dockerfiles? In
listing 5.3, we installed production only dependencies, whereas in listing 5.4,
we installed all dependencies, including our dev dependencies.

Did you spot the most important change? In listing 5.3, we baked our code
into the production Docker image using the COPY instruction:

COPY ./src ./src

That command copies our code into the image. What’s most interesting in the
development version of the Dockerfile is what’s missing. You’ll note there is
no COPY instruction for our code in listing 5.4 (although there is one for the
package.json), and we are, thus, excluding our code from the development
Docker image! If we bake our code into the image, then we can’t easily
change it later. If we can’t change our code, then we can’t use live reload.

But if we aren’t copying code into our development image, then how will it
get into the container? We’ll find an answer to this in the next section. For
now, we still have one more big difference to look at between our
development and production Dockerfiles.

Note the CMD instruction that specifies how to start our microservice within
the container. In the production Dockerfile, we simply start the microservice
using the npm start convention that was described in chapter 2:



CMD npm start

The CMD instruction in the development Dockerfile is different and does a lot
more work:

CMD npm config set cache-min 9999999 && \

    npm install && \

    npm run start:dev

This command is separated over three lines using the backslash (\) line
continuation character. The first line configures the npm cache, and the
second installs the npm. The third line starts the microservice.

In the production Dockerfile, we invoke npm install during the Docker
build process, which means our dependencies are baked into the image, just
as they should be in production. In the development version, though, we do
the npm install at container startup. The reason for the difference in
development is for better performance in doing subsequent rebuilds.

The npm install can take significant time. When we do it at container
startup, we are able to cache the npm packages on the host operating system.
That’s why we configured the cache on the first line. Caching our npm
packages in this way makes subsequent npm installs much faster, and this in
turn, makes container startup faster. We’ll learn more about how this works
in the next section.

The third line of the CMD instruction in the development Dockerfile is what
actually starts the microservice. It invokes npm script start:dev to start
our microservice in development mode with live reload enabled.

5.5.4 Updating the Docker Compose file for live reload

The final part of getting our application-wide live reload working is to make
some necessary changes to our Docker Compose file to share our code and
the npm cache between the host operating system and the containers. In this
section, we use Docker volumes to share the filesystem between our
development workstation and the container. This means we can edit code in
Visual Studio (VS) Code and see the changes appear almost immediately in
our microservice running in the application under Docker Compose.



Listing 5.5 is an extract from the example-1 Docker Compose file that shows
the configuration for our new history microservice. This is similar to the
Docker Compose files we created in chapter 4, but there are some differences
and new additions.

Listing 5.5 Updating the Docker Compose file for live reload (extract from chapter-5/example-
1/docker-compose.yaml)

version: '3'

services:

  # ... other services defined here ...

 

  history:    #A

    image: history

    build: 

      context: ./history

      dockerfile: Dockerfile-dev    #B

    container_name: history

 

    volumes:     #C

      - /tmp/history/npm-cache:/root/.npm:z     #D

 

      - ./history/src:/usr/src/app/src:z     #E

 

    ports:

     - "4002:80"

    environment:

      - PORT=80

      - NODE_ENV=development

    restart: "no"

The first thing that is new in listing 5.5 is that we now use Dockerfile-dev,
which is the development version of our Dockerfile. I mentioned back in
chapter 4 that we could omit the dockerfile field and that it would default to
Dockerfile. In chapter 4, we didn’t leave it at the default value; instead, we
explicitly set it to Dockerfile. I indicated that we’d need to explicitly set this
in the near future. Well, this is where we are at now, and we are explicitly
setting it to Dockerfile-dev to use the development version of our
Dockerfile.

The next thing that is new is the addition of the volumes field, where we
create some Docker volumes to connect the filesystem on our development



workstation with the filesystem of the container. This links our source code
directly into the container. It’s the reason why we didn’t bake our code
directly into the image.

To share the code, we use one Docker volume. The other volume creates a
shared directory for the npm cache. This allows npm packages that are
installed in the container to be cached on the host operating system so that, if
we destroy and recreate the container, subsequent npm installs are faster
because we have retained the cache outside of the container.

In case you were wondering about the z flag used in the volume
configuration in listing 5.5, that simply indicates to Docker that the volume is
to be shared (potentially among multiple containers). If you like, you can
read more about it here:

https://docs.docker.com/storage/bind-mounts/

This has been quite a lot to take in, and so far, it’s only for the history
microservice! We’ll need to make these changes to all our microservices.
Fortunately, we can just use the same pattern and apply it to each
microservice as follows:

Install nodemon for each microservice.
Update package.json and implement the start:dev script to start the
microservice with nodemon (as in listing 5.3).
Create development and production versions of our Dockerfiles. The
development Dockerfile should not copy the code into the image (as in
listing 5.4).
Do the npm install on container startup; only for development, not
production (this is for performance, as in listing 5.4).
Update the Docker Compose file so that it uses the development
Dockerfile (as in listing 5.5).
Add Docker volumes to the Docker Compose file so that the source
code and npm cache are shared into the container (as in listing 5.5).

I’ve gone ahead and done this already for all examples in the chapter 5
repository so you don’t have to worry about it. But you should at least start
example-1 and then make some code changes to the history microservice so



that you can see live reload in action! So let’s do that now.

5.5.5 Trying out live reload

Enough looking at code listings! It’s time to see live reload in action so you
can truly appreciate how useful it is. Open a terminal and change directory to
the example-1 subdirectory under the chapter-5 code repository. Then use
Docker Compose to start the application:

docker-compose up --build

This example contains the simplified video-streaming microservice and the
new stub history microservice. Check the output from Docker Compose. You
should see “Hello world!” printed out by the stub history microservice as it
starts up. To test live reload, we’ll change the message that is printed by the
history microservice:

1. Open the example-1 directory in VS Code.
2. Find and open the index.js file for the history microservice.
3. Search for the line of code that prints the “Hello world!” message and

change this line of code to print “Hello computer!” instead.
4. Save the index.js file and then switch back to the Docker Compose

output.

If you switch over quickly enough, you’ll see the history microservice being
reloaded and printing your updated message. If you weren’t quick enough,
you should see that this has already happened. When you do this, note that
the video-streaming microservice didn’t reload. That’s because we didn’t
change its code. Only the history microservice was updated so only it
reloaded.

This is the promise of live reload. We can update our code in quick iterations
and receive fast and direct feedback. We don’t have to wait to build and start
the entire application. Instead, we can hot reload the code for each
microservice that needs to be updated.

So what happens if we introduce an error in our code? What do we see when
a microservice reloads with an error? The error is displayed in the Docker



Compose output. We can then correct the error and save the code file. The
microservice automatically reloads, and assuming our change actually fixes
the error, we should see clean output from the updated microservice.

At this point, I’ll actually recommend that you try and break the history
microservice to see what happens. Go on. Open the index.js file for it and
type some random gibberish that’s sure to break it. Save the file and switch
back to the Docker Compose output to see the result.

Ask yourself what the error message means and what did I do that caused it?
Now I hear you say, “But Ash, we’d like to keep our code working, so why
are we trying to break it?”

It’s actually good to practice breaking and fixing your code in a controlled
and safe environment. That way, when it comes to encountering real
problems in the wild, you’ll be more experienced and have a better
understanding of the error messages and how to deal with them. Spend some
time now breaking the code; cause problems and try to have some fun while
you’re at it.

Forcing a container to restart

Every so often we might want to force a reload of a microservice that hasn’t
changed. Say the microservice has hung or crashed and is now stuck. With
our live reload system, we can make a container restart simply by changing
the code, for example, adding some whitespace and then saving the file.

Actually, we don’t even need to go that far. We can simply save the file in
VS Code, and that’s enough to make the container restart. We don’t need to
make the change!

If you have access to the touch command from your terminal, you can also
trigger live reload from the command line for the history microservice as
follows:

cd chapter-5/example-1

touch history/src/index.js



If you don’t have live reload set up for a particular container (you only really
need live reload for microservices whose code changes frequently), then you
can use the Docker Compose restart command to make a container restart;
for example, to force the history microservice to restart, type

docker-compose restart history

5.5.6 Testing production mode in development

So far, in this chapter, we’ve split our Dockerfiles into separate files so that
we can have different versions for development mode and production mode,
but we aren’t making use of the production Dockerfiles yet. This will change
in chapter 6, when we deploy to production. But just because we aren’t ready
to deploy to production yet, doesn’t mean we can’t test in production mode.
In fact we should always and often be testing for both development and
production on our local computer.

During development, we’ll constantly make small incremental code changes
and then test that our application still works. Even though we aren’t making
quite as frequent use of our production Dockerfiles as the development
version, we should update these at the same time we update the development
versions. We should also regularly test in production, albeit less frequently
than we test in development.

For example, you might be testing in development mode every few minutes
as you make code changes. You still want to test production mode, but
maybe, you’ll only do that every few hours after substantial code changes
have been accumulated. The main point is that you also need to test your
production Dockerfiles even before you deploy these to production. What
you don’t want is to unwittingly bank up hidden problems that will only be
revealed after deployment to production.

You can easily and preemptively solve this problem by testing regularly in
production mode on your development workstation. Usually, what I do to
make this easier is to have two separate Docker Compose files: one for
development and the other for production.

When you invoke Docker Compose, you can use the -f argument to specify



the Docker Compose file. For instance, if you want to run your application in
production mode on your development workstation, you might like to create
a separate production version of your Docker Compose file and run it like
this:

docker-compose -f docker-compose-prod.yml up --build

You can get away with having a single Docker Compose file that is
parameterized by an environment variable, but generally, I keep separate
versions for testing development and production. That’s because I like to
have my production Docker Compose file mimic the real production
environment as much as feasible. Also, usually my development version will
replace various microservices with mock versions for easier and faster
testing.

We’ll talk about mocking microservices in chapter 10. And in chapter 9,
we’ll cover automated testing, which is another thing that can enhance your
productivity.

5.5.7 What have we achieved?

In section 5.5, we configured our microservices for live reload. We started
with the history microservice and applied the same pattern to the video-
streaming microservice. From now on, we’ll use this for all our
microservices.

We did this because it takes significant time to build and start our application.
We don’t want to build and restart our application for each line of code that
we change. Instead, we want to be able to quickly change code to experiment
and iterate quickly and have the application automatically update itself. Now,
we can edit code and our microservices will automatically restart. That’s why
this is called live reload—it reloads automatically while you are coding.

This makes for a very efficient and effective workflow. We can now
continuously evolve our microservices application while receiving a constant
stream of feedback. Browse the code in example-1 and make sure you
understand how the live reload configuration is applied across the entire
application.



5.6 Methods of communication for microservices

After that interlude of upgrading our development environment to support
application-wide live reload, let’s now return to the main topic of this
chapter: exploring mechanisms for communication between microservices.
But before we dive into the technology for communication, we’ll start with a
high-level overview of the two styles of communication used by
microservices: direct messaging and indirect messaging, also commonly
known as synchronous and asynchronous communication.

I prefer to use the terms direct and indirect messaging rather than
synchronous and asynchronous messaging because the words “synchronous”
and “asynchronous” have a different meaning in normal computer
programming. Also, the concept of asynchronous programming, especially,
can be difficult to learn and has sent chills down the spines of many aspiring
coders. Don’t be concerned; let’s avoid using the word asynchronous.

5.6.1 Direct messaging

Direct messaging simply means that one microservice directly sends a
message to another microservice and then receives an immediate and direct
response. We use messages for one of two purposes. To notify a microservice
of some event in the system or otherwise to trigger an action in it. So you can
think of any message as either a notification or a command (or something in
between). Direct messaging is most useful when sending a command to
another microservice, triggering some action in it and then immediately
receiving a response as to whether that action succeeded or failed.

We can also use direct messaging to sequence a strict series of behaviors
across multiple microservices. You can think of this as sending instructions
to a set of microservices (e.g., do this or do that and then tell me if you were
successful).

The recipient microservice can’t ignore or avoid the incoming message. If it
were to do so, the sender will know about it directly from the response.
Figure 5.5 shows how the video-streaming microservice directs the viewed
message to the history microservice, which provides a direct and immediate



response.

Figure 5.5 A direct message is sent to the history microservice explicitly by its name and is
handled immediately.

Direct messaging is often required for certain use cases. It has the major
drawback that it requires the tight coupling of the two microservices that are
at either end of the communication. Often, we’d prefer to avoid the tight
coupling between our microservices, and for that reason, we’ll make frequent
use of indirect messaging instead of direct messaging.



5.6.2 Indirect messaging

Indirect messaging introduces an intermediary between the endpoints in the
communication process. We add a middleman to sit between our
microservices. For that reason, the two parties of the communication don’t
actually have to know about each other. This style of communication results
in a much looser coupling between our microservices. It means two things:

Messages are sent via an intermediary so that both sender and receiver
of the messages don’t know which other microservice is involved. In the
case of the sender, it doesn’t even know if any other microservice will
receive the message at all!
Because the receiver doesn’t know which microservice has sent the
message, it can’t send a direct reply. This means that this style of
communication can’t be applied in situations where a direct response is
required for confirming success or failure.

We should use indirect messages when the sending microservice doesn’t care
if any subsequent action has been taken or not. We can also use it to
broadcast-style notifications to the entire application (e.g., a notification of an
important event that other microservices would like to know about).

Note

We use indirect messaging to announce important events that don’t need a
direct response. This kind of messaging allows a more flexible
communication structure than direct messages and makes for less coupling
between our microservices.

Figure 5.6 shows how the video-streaming microservice (on the left) sends an
indirect message through a message queue (the intermediary) to the history
microservice (on the right). Note that there is no direct connection between
the video-streaming and history microservices. This is why we can say they
are loosely coupled.

Figure 5.6 An indirect message isn’t explicitly sent to a microservice; instead, the message is
placed in a queue and can be handled later.



Indirect messaging can help us to build flexible messaging architectures to
solve many complicated communication problems. Unfortunately, with this
flexibility comes increased complexity. And as your application grows, you
will find it more difficult to map the communication pathways precisely



because these are not direct and, therefore, not as obvious.

With this overview of direct and indirect messaging out of the way, we can
dive head first into actually trying out each of these communication methods.

5.7 Direct messaging with HTTP

In the previous chapter, we used HTTP for data retrieval, which retrieved our
streaming video from storage. In this chapter, we use HTTP for a different
purpose: sending direct messages from one microservice to another.

Note

Messages sent with HTTP requests have direct responses. We can know
immediately if the handling of the message succeeded or failed.

Specifically, in this section, we’ll use HTTP POST requests to send messages
directly from the video-streaming microservice to the history microservice.
Figure 5.7 shows this process.

Figure 5.7 An HTTP POST request explicitly targets another microservice by name.



5.7.1 Why HTTP?

Hypertext transfer protocol (HTTP) is the language and foundation of the
world wide web and is the defacto standard when creating a web service. It’s
well understood by everyone, and it’s something we can depend on.

HTTP is already ubiquitous for creating representational state transfer



(REST) APIs, and we don’t need to think too hard about why we should use
it. It was made for this kind of thing, and it’s supported by every
programming language we would care to work with. We also have easy
access to huge amounts of learning resources related to it, and ironically, this
information will most likely be delivered to us via the HTTP protocol that is
underlying the world wide web.

5.7.2 Directly targeting messages at particular microservices

Before we can send a message to a microservice, we need a way to locate it.
Accompanying HTTP is another internet protocol called domain name system
(DNS). This gives us a simple and automatic means by which to direct
messages to microservices using their names.

A key question with microservices communication is how do we direct a
message to another microservice? The simplest answer to this question is to
use the ubiquitous DNS, which translates hostnames to IP addresses. This
works automatically with Docker Compose (the container name is the
hostname) and also doesn’t require much effort to have it work within our
production Kubernetes cluster.

Figure 5.8 shows how we can send an HTTP POST message to a particular
hostname. A lookup of the DNS is done automatically when sending an
HTTP request, and it translates our hostname to the internet protocol (IP)
address of the microservice.

Figure 5.8 HTTP requests are routed through the DNS lookup to translate the hostname of the
target microservice to an internet protocol (IP) address.



The IP address is the string of numbers that represents the unique internet
location for our microservice. Note that just because it’s an IP address
doesn’t necessarily mean we are talking about the public internet. The IP
address, in this case, actually represents a private server that is located in a
private network, either operating under the Docker runtime on our
development workstation or operating within our production Kubernetes
cluster. It is the IP address that we need to direct a message at a recipient
using an HTTP request, and DNS operates automatically and almost



magically under the hood when we make the request.

Using Docker and Docker Compose for development as we have been doing
means that DNS works automatically, and we can rely on it. When we deploy
to our production Kubernetes cluster, we’ll have some more work to make
our microservices accessible via DNS, but we’ll address that in chapter 6.

5.7.3 Sending a message with HTTP POST

There are two sides to the messaging equation: one microservice sends a
message and another receives it. In this section, we examine how to send a
message using an HTTP POST request.

In section 4.4.2, we looked at an HTTP GET request that was forwarded from
one microservice to another. We did that then using the builtin Node.js http
library. We’ll use that library again to make a request from one microservice
to another.

Listing 5.6 is an extract from an updated index.js file from the example-2
video-streaming microservice that shows how to send an HTTP POST
message. It implements a new function, sendViewedMessage, that sends the
viewed message to the history microservice whenever a user starts watching a
video.

Listing 5.6 Sending a direct message with HTTP POST (extract from chapter-5/example-2/video-
streaming/src/index.js)

function sendViewedMessage(videoPath) {   #A

    const postOptions = {   #B

        method: "POST",    #C

        headers: {

            "Content-Type": "application/json",    #D

        },

    };

 

    const requestBody = {    #E

        videoPath: videoPath 

    };

 

    const req = http.request(    #F

        "http://history/viewed",    #G



        postOptions

    );

 

    req.on("close", () => {

        …    #H

    });

 

    req.on("error", (err) => {

        …     #I

    });

 

    req.write(JSON.stringify(requestBody));    #J

    req.end();     #K

}

We call the function http.request to create the HTTP POST request. We
direct the request to the history microservice using the URL
http://history/viewed. This URL incorporates both the hostname (history in
this case) and the route (viewed in this case). It is this combination that
identifies the target microservice and the message we send to it.

Separate callback functions handle the success and the failure of the request.
It is here where we can detect an error and take subsequent remedial action.
Otherwise, if it succeeds, we might want to invoke follow up actions.

5.7.4 Receiving a message with HTTP POST

On the other side of the equation, we receive HTTP POST messages by
creating an Express route handler in the receiving microservice. Listing 5.7
shows an extract of the index.js file for the history microservice, which
demonstrates this.

The updated setupHandlers function adds an HTTP POST handler for the
viewed route to receive incoming messages. In this listing, we simply store
the received messages in the database to keep a record of the viewing history.

Listing 5.7 Receiving a direct message with HTTP POST (extract from chapter-5/example-
2/history/src/index.js)

const videosCollection = db.collection("videos");

 



app.post("/viewed", async (req, res) => { #A

    const videoPath = req.body.videoPath; #B

    await videosCollection.insertOne({ videoPath: videoPath }) #C

 

    console.log(`Added video ${videoPath} to history.`);

    res.sendStatus(200);

});

 

 

Did you notice in the HTTP POST handler how we access the body of the
request through req.body? We treated the body of the request as the message
payload. The body variable was automatically parsed from the JSON format
because we used the body-parser middleware for Express, installed like this:

npm install --save body-parser

If you are interested in seeing how the body-parser middleware is added to
Express, look at the code file chapter-5/example-2/history/src/index.js.

5.7.5 Testing the updated application

Now it’s time to test our latest code and see for yourself how this kind of
messaging operates. Open a terminal, change to the example-2 directory, and
start the application in the usual way:

docker-compose up --build

If you get any errors about containers already created, it might be because
you left the previous example running. When moving on from each example,
be sure to shut it down using

docker-compose down

Wait for the microservices to come online and then point your browser to
http://localhost:4001/video. The test video will play.

Switch back to the terminal to see the Docker Compose output. You should
see output confirming that the video-streaming microservice sent a viewed
message, followed up by some text that shows the history microservice
received the message.

localhost:4001.html


At this point, we can directly check to make sure that the “view” was stored
in the database. You’ll need a database viewer installed. If you have
Studio3T installed from chapter 4, you can use that.

Connect your database viewer to the database (connect on localhost:4000 as
the port that is configured in the Docker Compose file), then look at the
videos collection of the history database and confirm that a new record is
created each time you refresh your browser. Checking the database is a
simple and practical way to test the end result of this code.

5.7.6 Orchestrating behavior with direct messages

A potential benefit of direct messaging is the ability to have one controller
microservice that can orchestrate complex sequences of behavior across
multiple other microservices. Because direct messages have a direct response,
this allows a single microservice to coordinate or orchestrate the activities of
multiple other microservices.

The reason this type of messaging is called synchronous communication is
that we are able to synchronously coordinate messages as shown in figure
5.9. In the figure, Microservice A is coordinating the activities of the other
microservices.

Note

Direct messaging can be useful to coordinate behaviors in an explicit way or
well-defined order.

With direct messages, it’s easy to follow the code and understand the
sequence of messages. You’ll see in a moment that tracing the sequence of
indirect messages isn’t as easy.

Figure 5.9 Direct messaging allows one controller microservice (here, Microservice A) to
orchestrate complex behaviors across multiple other microservices.





5.7.7 What have we achieved?

In section 5.7, we explored using HTTP POST requests to directly send a
viewed message from microservice to microservice. This is called direct
messaging because we can direct these messages to particular microservices
by their name. We can also know immediately if the message was handled
successfully or if it failed.

It’s best to think of this type of message more as a command or a call to
action and less as a notification. Due to the synchronous nature of direct
messages, we can sequence multiple coordinated messages. This is useful
when we want a controller microservice that orchestrates complex behaviors
in other microservices.

Although direct messages can be useful and are sometimes necessary, these
also have some major downsides. For a start, we can only target a single
other microservice at a time. Direct messages, therefore, don’t work easily
when we’d like to have a single message received by multiple recipients.

In addition, direct messages are a point of high coupling between
microservices. Sometimes high coupling is necessary, but we’d prefer to
avoid it where possible. The ability to centrally orchestrate multiple
microservices from a controller microservice might seem like an advantage,
and it certainly can make it easier to work out what’s going on in your
application.

But the biggest problem is that this creates a single point of failure for what
could be a large and complex operation. What happens if the controlling
microservice crashes while in the middle of the orchestration? Our
application might now be in an inconsistent state, and it may have lost data.
The problems that arise from direct messaging can be solved with indirect
messaging, and that’s why we now turn to RabbitMQ.

5.8 Indirect messaging with RabbitMQ

Now that we have a handle on using HTTP POST requests for direct



messages, it’s time to look at indirect messaging, which can help us decouple
our microservices. On the one hand, it can make the architecture of our
application more difficult to understand. On the other hand, it has many
positive side effects for security, scalability, extensibility, reliability, and
performance.

Note

RabbitMQ allows us to decouple message senders from message receivers. A
sender doesn’t know which, if any, other microservices will handle a
message.

Figure 5.10 shows the structure of our application after the addition of a
RabbitMQ server. The video-streaming microservice is no longer directly
coupled to the history microservice. Instead, it is publishing its viewed
messages to a message queue. The history microservice then pulls messages
from the queue in its own time.

Figure 5.10 Using RabbitMQ to indirectly send messages to other microservices through message
queues



5.8.1 Why RabbitMQ?

RabbitMQ is well known and established software for queuing messages. It is
in common use by many companies, and it’s my go-to solution for indirect
messaging. RabbitMQ is stable and mature. It was developed over a decade
ago, and among other protocols, it implements the Advanced Message



Queueing Protocol (AMQP), which is an open standard for message-broker
communication.

Note

RabbitMQ is well-known for indirect communication between microservices,
and it allows for complex and flexible messaging architectures.

RabbitMQ has libraries for all the popular programming languages, so you’ll
have no problems using it whatever your tech stack. We are using Node.js, so
we’ll use the amqplib library available on the npm registry. RabbitMQ is
open source and fairly easy to get started with. You can find the code for the
server here:

https://github.com/rabbitmq/rabbitmq-server

5.8.2 Indirectly targeting messages to microservices

With indirect messaging, we aren’t directly targeting any particular
microservice, but we do still need to direct our messages to something. And
that something will be a RabbitMQ server. In the RabbitMQ server we direct
our message to either a named queue or a message exchange. The
combination of queues and exchanges gives us a lot of flexibility in how we
structure our messaging architecture.

Note

The message sender uses DNS to resolve the IP address of the RabbitMQ
server. It then communicates with it to publish a message on a particular
named queue or exchange. The receiver also uses DNS to locate the
RabbitMQ server and communicate with it to retrieve the message from the
queue. At no point do the sender and receiver communicate directly.

To publish a message to a queue or an exchange, we must first add a
RabbitMQ server to our application. Then we can use the AMQP code library
(called amqplib) to send and receive messages.

Under the hood, DNS resolves the RabbitMQ hostname to an IP address.



Now, rather than directing our message to a particular microservice, as we
did when sending messages via HTTP POST requests, we are instead
directing these to a particular queue or exchange on our RabbitMQ server.

The transfer of an indirect message is conducted in two parts, so I’ll use two
diagrams to explain it. We’ll first consider using queues, and later we’ll look
at using an exchange. Figure 5.11 shows the video-streaming microservice
pushing its message to the viewed queue. Then in figure 5.12, we can see the
history microservice pulling the message from the queue.

Figure 5.11 A message is sent by pushing it into a RabbitMQ queue.



Figure 5.12 A message is received by pulling it from a RabbitMQ queue.



I’ve used the verbs pushing and pulling here because that’s a good way to
visualize this transaction. Earlier with HTTP POST, we can imagine the
video-streaming microservice is pushing its message onto the history
microservice, which has no choice in the matter. The message is forced on to
the history microservice with no regard for whether it actually has the
capacity to handle it.

With indirect messaging, more control is given to the history microservice. It
now pulls messages from the queue when it is ready to do so. When it is
overwhelmed and has no capacity to accept new messages, it is free to just



ignore these, letting those pile up in the queue until it is able to handle them.

5.8.3 Creating a RabbitMQ server

Let’s add a RabbitMQ server to our application. Believe it or not, RabbitMQ
is programmed in the Erlang language. There might have been a day when it
was difficult to set up, but not anymore! These days, it’s a no brainer, thanks
to the skills we have already learned with Docker and Docker Compose.

Listing 5.8 is an extract from the example-3 Docker Compose file that shows
adding a RabbitMQ server to our application. This is another example of
instantiating a container from an image on Docker Hub, as we did in chapter
4 for our MongoDB database.

Listing 5.8 Adding a RabbitMQ server to the Docker Compose file (extract from chapter-
5/example-3/docker-compose.yaml)

version: '3'

services:

 

  # ... other services defined here ...

 

  rabbit:   #A

    image: rabbitmq:3.9.21-management     #B

    container_name: rabbit    #C

 

    ports:                #D

      - "5672:5672"       #D

      - "15672:15672"     #D

 

    expose:      #E

      - "5672"   #E

      - "15672"  #E

 

    restart: always     #F

 

  # ... more services defined here ...

5.8.4 Investigating the RabbitMQ dashboard

You might have already noticed in listing 5.8 how the RabbitMQ ports were
configured. Port 5672 is the port number we’ll soon use with amqplib to send



and receive messages through RabbitMQ. The other port is 15672 which
we’ll use to access the RabbitMQ management dashboard.

Note

RabbitMQ’s dashboard is a great way to learn about how RabbitMQ works
and to better understand the messages that are being passed around your
application.

We booted our RabbitMQ server from the image named rabbitmq:3.9.21-
management because this one comes with a built-in management dashboard.
The dashboard is pictured in figure 5.13 and serves as a graphical way to
explore message flow in our application. Let’s have a look at that now. Start
the application for yourself so you can try it out!

Open a terminal and change to the example-3 directory. Start the application
in the normal way (if nothing else, I’m going to make sure you remember this
command!):

docker-compose up -–build

Figure 5.13 The RabbitMQ management dashboard





In addition to the output from the database and your microservices, you
should also see a stream of output from your RabbitMQ server. Give it some
time to start and then point your web browser at http://localhost:15672/. You
can login with the default user name, guest, and the default password, guest.

You should now see the RabbitMQ dashboard. But unlike figure 5.13, you
won’t yet see any queues or exchanges. I took the figure’s screenshot after
the viewed queue was created. We’ll trigger the queue to be created in a
moment and then you can come back to the dashboard to see what it looks
like.

The RabbitMQ dashboard is a useful tool for debugging. I believe it’s always
better to be able to visualize what’s happening rather than just assuming we
know what’s happening. The dashboard is one of those great visual tools that
make it obvious what our application is actually doing!

You might note that we don’t have to include the RabbitMQ dashboard. We
could, instead, use the image rabbitmq:3.9.21. This is a version of the image
that doesn’t include the dashboard. This might be your preference if you are
building a lean, mean production application or if you have particular
security concerns. But generally, I prefer to leave the dashboard in place for
production (behind a private network, of course) because it’s so valuable to
have these tools to help us understand what’s happening in our production
environment.

5.8.5 Connecting our microservice to the message queue

With our RabbitMQ server in place, we can now update our microservices to
connect to it. If you are coding this from scratch, you must first install the
amqplib npm package into each microservice that needs to connect to
RabbitMQ:

npm install --save amqplib

If you are running the code from example-3 directly under Node.js, you must
first install all dependencies:

npm install

localhost:15672.html


The next listing is an extract from the index.js file for the history
microservice. It shows how we make the connection to the RabbitMQ server.

Listing 5.9 Connecting to the RabbitMQ server (extract from chapter-5/example-
3/history/src/index.js)

// ...

 

const amqp = require("amqplib"); #A

 

// ...

 

const RABBIT = process.env.RABBIT; #B

 

async function main() {

 

    // ...

 

    const messagingConnection = await amqp.connect(RABBIT); #C

 

    const messageChannel = await messagingConnection.createChannel(); #D

    

    // ...

 

    app.listen(PORT, () => { #E

        console.log("Microservice online.");

    });

}

 

main()

    .catch(err => {

        console.error("Microservice failed to start.");

        console.error(err && err.stack || err);

    });

 

One of the most important parts of listing 5.9 and listing 5.10 (which follows)
is how the RABBIT environment variable configures the connection to the
RabbitMQ server. Listing 5.10 is an extract from the example-3 Docker
Compose file. It sets the RABBIT environment variable to include the user
name (guest), the password (also guest), the hostname for the server (rabbit),
and the port number (5672) for the connection.

Listing 5.10 Configuring the history microservice (extract from chapter-5/example-3/docker-



compose.yaml)

version: '3'

services:

 

  # ... other services defined here ...

 

  history:

    image: history

    build: 

      context: ./history

      dockerfile: Dockerfile-dev

    container_name: history

    volumes:

      - /tmp/history/npm-cache:/root/.npm:z

      - ./history/src:/usr/src/app/src:z

    ports:

     - "4002:80"

    environment:

      - PORT=80

      - RABBIT=amqp://guest:guest@rabbit:5672    #A

      - DBHOST=mongodb://db:27017

      - DBNAME=history

      - NODE_ENV=development

    depends_on:

      - db

      - rabbit    #B

    restart: "no"

There’s yet another piece to this puzzle that may not have occurred to you
until you try and start this version of our application. The RabbitMQ server is
fairly heavyweight, and it takes time to start up and get ready to accept
connections. Our tiny microservices, on the other hand, are lightweight and
ready in just moments.

What happens when our microservice attempts the connection to RabbitMQ
and it’s not ready yet? It will error and abort! We now have a problem
because we have startup dependencies in our application that need to be
resolved in a particular order.

To be a fault-tolerant and well-behaved microservice, it should really wait
until the RabbitMQ server is ready before it tries to connect. Better yet, if
RabbitMQ ever goes down (say because we are upgrading it), we’d like our



microservices to handle the disconnection and automatically reconnect as
soon as possible. We’d like it to work that way, but that’s more complicated.
For the moment, we’ll solve this with a simple workaround. In chapter 11,
we’ll learn a more sophisticated way to handle this.

What’s the simplest way to solve this problem? We’ll add an extra command
to our Dockerfile that delays our microservice until the RabbitMQ server is
ready. We’ll use the handy wait-port command installed using npm:

npm install --save wait-port

Listing 5.11 shows the history microservice’s updated Dockerfile with the
addition of the wait-port command. We use this to delay the start of the
microservice until after RabbitMQ has started.

Listing 5.11 Updated Dockerfile for the history microservice, which waits for RabbitMQ
(chapter-5/example-3/history/Dockerfile-dev)

FROM node:18.5.0-alpine

 

WORKDIR /usr/src/app

COPY package*.json ./

 

CMD npm config set cache-min 9999999 && \ 

    npm install && \

    npx wait-port rabbit:5672 && \   #A

    npm run start:dev    #B

At the same time, we should update the production version of the Dockerfile.
It’s good to keep both versions in sync as we work.

Using wait-port is a simple and effective way to get up and running when
we first start building our microservices application. It’s not very robust
though. The startup ordering problem isn’t the only problem. We generally
want our microservice to be fault-tolerant and able to survive the inevitable
outages of other servers and microservices. We’ll come back to this in
chapter 11.

At this point, you might be wondering why we didn’t have this startup order
problem in chapter 4 when we started using the MongoDB database? Surely



the database also takes time to start up, but we didn’t have to wait for it to be
ready before we connected to it.

Well, this is simply down to good software engineering in the MongoDB
library. It is already programmed for automatic reconnections, so thank the
MongoDB engineers for going to this level of effort for you. This should give
you some pause for thought. When writing code libraries, a little time
considering the perspective of our users translates into a much better
experience for them.

5.8.6 Single-recipient indirect messaging

There are many ways we can configure message routing in RabbitMQ to
achieve various messaging architectures. We will focus on just two simple
configurations that will handle many of the communication problems you
will face when building your application.

The first is a setup for single-recipient messages that we’ll use to create a
one-to-one, but still indirect, messaging conduit between microservices.
Although, in this configuration you are allowed to have multiple senders and
receivers participating, you are guaranteed that only a single microservice
will receive each individual message. This is great for when you are
distributing a job to a pool of microservices, but the job should be handled
only by the first one that is capable of dealing with it.

Note

Single-recipient messages are one-to-one: a message is sent from one
microservice and received by only a single other. This is a great way of
making sure that a particular job is done only once within your application.

Receiving single-recipient messages

Let’s add code to the history microservice so that it can receive single-
recipient messages. We already added code in section 5.8.5 to connect to our
RabbitMQ server. Once connected, we can now assert a message queue and
start pulling messages from that queue. Note the new terminology I’ve used



here.

I said “assert” a message queue and not “create” a message queue. The
difference is that multiple microservices can assert a queue, so it’s like
checking for the existence of the queue and then only creating it when it
doesn’t already exist. That means the queue is created once and shared
between all participating microservices. Don’t get this confused with the
other kind of assert that is commonly used in programming—these are two
separate concepts.

Listing 5.12 is an extract of the index.js from the history microservice that
asserts the viewed queue and calls consume to start receiving messages. Our
function consumeViewedMessage is called for each new message that arrives
and it records the message in the database. This is it! There really isn’t very
much code needed to receive messages from RabbitMQ.

Listing 5.12 Consuming viewed messages from a RabbitMQ queue (extract from chapter-
5/example-3/history/src/index.js)

// ...

 

async function main() {

 

    // ...

    

    const videosCollection = db.collection("videos");

    

    // ...

    

    async function consumeViewedMessage(msg) { #A

 

        const parsedMsg = JSON.parse(msg.content.toString()); #B

        

        await videosCollection.insertOne({ videoPath: parsedMsg.videoPath }); #C

 

        messageChannel.ack(msg); #D

    };

       

    await messageChannel.assertQueue("viewed", {}) #E

 

    await messageChannel.consume("viewed", consumeViewedMessage); #F

    

    // ...    



}

The code in listing 5.12 is only slightly complicated by the fact that we’d like
to send messages in the JSON format; unfortunately RabbitMQ doesn’t
natively support JSON. We must therefore manually parse the incoming
message payload.

RabbitMQ is actually agnostic about the format for the message payload, and
from its point of view, a message is just a blob of binary data. This can be
useful in performance-critical cases where we’d probably like to replace
JSON with a more efficient binary format.

Sending single-recipient messages

Sending a simple message with RabbitMQ is even easier than receiving a
message. Listing 5.13 is an extract of the index.js file from the video-
streaming microservice. Assume that we’ve already added code like that in
listing 5.9 and connected this microservice to the RabbitMQ server. We now
call publish by specifying the name of the queue (viewed) and providing the
message payload.

Listing 5.13 Publishing viewed messages to a RabbitMQ queue (extract from chapter-5/example-
3/video-streaming/src/index.js)

// ...

 

function sendViewedMessage(messageChannel, 

➥ videoPath) {   #A

    const msg = { videoPath: videoPath };    #B

 

    const jsonMsg = JSON.stringify(msg);     #C

 

    messageChannel.publish("", "viewed", 

➥ Buffer.from(jsonMsg));     #D

}

 

// ...

Again, listing 5.13 is only slightly complicated by the fact that we have to
manually stringify (or serialize) our message payload to JSON before sending
the message. Other than that, it’s pretty straightforward. Now we have the



video-streaming microservice publishing a viewed message whenever a user
watches a video.

Testing single-recipient messages

We have everything we need in place to do another test run. We have a
RabbitMQ server. The video-streaming microservice is sending the viewed
message, and the history microservice is receiving it. If you haven’t already,
start the example-3 application:

docker-compose up --build

Wait for the database and RabbitMQ to start and the microservices to
establish their connections. Now point your web browser at
http://localhost:4001/video. Check the output to see that the message has
been sent and received. You can use Studio3T to check that the history
microservice has created a new record for the view in its database.

5.8.7 Multiple-recipient messages

Sending single-recipient messages is the first common use case for
RabbitMQ. It’s also the simplest to understand—that’s why we started with
it. Potentially, even more useful are multiple-recipient (or broadcast-style)
messages. Put simply, one microservice sends the message, but many others
can receive it.

We use this type of message for notifications (e.g., messages that indicate an
important event has occurred in the application, such as the event that a video
has been viewed). This is the kind of message that multiple other
microservices would like to know about.

Note

Multiple-recipient messages are one-to-many: a message is sent from only a
single microservice but potentially received by many others. This is a great
way of publishing notifications within your application.

localhost:4001.html


To make this work with RabbitMQ, we must now use a message exchange.
Figure 5.14 shows the video-streaming microservice publishing its message
to the viewed exchange. From the exchange, the message is routed to
multiple anonymous queues to be handled by multiple microservices
simultaneously.

When you look at figure 5.14, you might wonder where the recommendations
microservice came from? No, you didn’t miss anything! I’ve literally just
snuck a new microservice in while you weren’t looking. I had to do this;
otherwise, I don’t have a way to show you how these broadcast-style
messages work.

Figure 5.14 Broadcasting a message to be handled by multiple recipients



The recommendations microservice will later suggest videos to watch to our
users. It’s appearance here and now is only so that we can see multiple-
recipient messages in action.

Receiving multiple-recipient messages



Receiving multiple-recipient messages is not much different than receiving
single-recipient messages. The following listing is an extract of the index.js
file from the history microservice.

Listing 5.14 Consuming viewed messages from a RabbitMQ exchange (extract from chapter-
5/example-4/history/src/index.js)

const videosCollection = db.collection("videos");

 

// ...

 

async function consumeViewedMessage(msg) { #A

 

    const parsedMsg = JSON.parse(msg.content.toString()); #B

    

    await videosCollection.insertOne({ videoPath: parsedMsg.videoPath }); #C

 

    messageChannel.ack(msg); #D

};

 

await messageChannel.assertExchange("viewed", "fanout"); #E

 

const { queue } = await messageChannel.assertQueue("", { exclusive: true });  #F

 

await messageChannel.bindQueue(queue, "viewed", ""); #G

 

await messageChannel.consume(queue, consumeViewedMessage); #H

 

// ...

The difference between listing 5.14 and listing 5.12 is that we are now
asserting the viewed exchange (there’s that assert terminology again) rather
than the viewed queue. After that, we assert an anonymous queue. By
creating an unnamed queue, we get one that was created uniquely for this
microservice. The viewed exchange is shared among all microservices, but
the anonymous queue is owned solely by this microservice. That detail is an
important part of how this works.

In creating the unnamed queue, we are returned a random name generated by
RabbitMQ. The name that RabbitMQ assigned to our queue is only important
because we must now bind the queue to the viewed exchange. This binding
connects the exchange and the queue, such that messages published on the



exchange are then routed to the queue.

Every other microservice that wants to receive the viewed message (e.g., the
recommendations microservice that I snuck in here) creates its own unnamed
queue to bind to the viewed exchange. We can have any number of other
microservices bound to the viewed exchange, and these will all receive copies
of messages on their own anonymous queues as messages are published to
the exchange.

Sending multiple-recipient messages

Sending multiple-recipient messages is, again, similar to sending single-
recipient messages. Listing 5.15 is an extract of the index.js file for video-
streaming microservice. I’ve included more code in this extract because it’s
important to see how the connection to the RabbitMQ service is different in
this situation. It’s different because we are asserting the existence of the
viewed exchange when the microservice starts.

Doing this once at start up means we can rely on the existence of the
exchange for the lifetime of the microservice. In the listing, we are still
sending the message with the publish function, except now we are
specifying that the message is published to the viewed exchange rather than
the viewed queue.

Listing 5.15 Publishing viewed messages to a RabbitMQ exchange (extract from chapter-
4/example-4/video-streaming/src/index.js)

// ...

 

function sendViewedMessage(messageChannel, videoPath) { #A

        

    const msg = { videoPath: videoPath }; #B

    const jsonMsg = JSON.stringify(msg); #C

    messageChannel.publish("viewed", "", Buffer.from(jsonMsg)); #D

}

 

async function main() {

 

    const messagingConnection = await amqp.connect(RABBIT);

 



    const messageChannel = await messagingConnection.createChannel();

 

    await messageChannel.assertExchange("viewed", "fanout"); #E

 

    const app = express();

 

    app.get("/video", async (req, res) => {

 

        // ...

 

        sendViewedMessage(messageChannel, videoPath);

    });

 

    // ...

}

 

// ...

 

Testing multiple-recipient messages

Let’s test our updated code. It is for this test that I added the
recommendations microservice to our application. The new microservice is
really just a stub; it does nothing except print out the messages it receives.
That’s just enough to show that multiple microservices can handle these
messages. Open a terminal, change to the example-4 directory, and do the
usual thing:

docker-compose up --build

When you hit http://localhost:4001/video in your web browser, you should
see messages being printed to the console to show that both the history
microservice and the recommendations microservice are receiving the viewed
message.

This works because we have one exchange that is bound to two queues: we
have one queue for each receiving microservice. We can’t achieve this
behavior with only a single queue. When we publish a message to a single
shared queue, the receiving microservices compete to be the first one that
pulls the message and handles it, which you can view as a kind of load
balancing. That’s a useful technique, sometimes, but broadcast-style

localhost:4001.html


messages are more generally useful.

5.8.8 Emergent behavior with indirect messages

Indirect messages have plenty of positive benefits, but they can make it
harder to understand and control the behavior of our application. There’s no
way to get a direct response for an indirect message, and from the sender’s
point of view, the receiver may as well not even exist! The sender has no way
of knowing if there is a receiver out there waiting to pick up its message.

Note

Because there is no “central control” over indirect messages, these allow for
much more flexible, extensible, and evolvable messaging architectures. Each
separate microservice is in charge of how it responds to incoming messages
and can generate many other messages in response.

With indirect messaging, unlike direct messaging, there is no single
microservice in charge of orchestrating the others. So instead of directly
creating a controlled set of behaviors, the behavior of the application emerges
automatically from the interplay of indirect messages between microservices.
This isn’t necessarily a bad thing. Consider that having a single controlling
microservice means we have a single point of failure, and that’s undoubtedly
a bad thing. If that controlling microservice crashes in the middle of a
complex orchestration, what happens? Whatever was in progress will be lost!
That can be the terrible side effect of direct messages.

Sometimes direct messaging is useful, but generally speaking, indirect
messaging allows for much more complex and resilient networks of
behaviors. We might struggle to understand how it all fits together in its
complexity, but at least we know that it’s reliable! That’s because there is no
single point that can fail, and the connections between microservices are
implemented by reliable and fault-tolerant message queues (well, RabbitMQ
can fail, but it’s much less likely to do so than one of our own microservices).

Any particular microservice can fail, but even if it does so while handling a
message, we know that the message won’t be lost. Because messages aren’t



acknowledged when a microservice crashes, these will eventually be handled
by another microservice (usually a replica of the one that crashed). It’s the
sum of small techniques like this that contribute to us building a rock-solid
and reliable microservices application. Cast your eyes over figure 5.15 for a
more visual understanding of how indirect messages can be sequenced into a
dynamic flow of messages within your application.

Figure 5.15 Indirect messages allow for more freeform and flexible orchestration of
microservices, resulting in emergent behavior.





5.8.9 What have we achieved?

In the section, we have learned how to use RabbitMQ to send indirect
messages between our microservices. First, we tried sending single-recipient
messages. Then we changed to multi-recipient messages so that we can
broadcast application-wide messages.

Note

Using indirect multi-recipient messages seems like the right way to go for the
viewed message, and our microservices are less coupled as a result. That’s a
good win.

We could have easily planned ahead and headed straight for the indirect
broadcast-style messages, but that’s the benefit of experience. Now that we
have worked through all the options, you have that experience and are better
placed to decide for yourself what style of messaging you’ll need case by
case as you add more messages to your application.

5.9 Microservices communication review

You now have at your disposal two different styles of messaging that you can
use to make your microservices talk to each other. You’ve learned how to
send direct messages with HTTP requests and indirect messages with
RabbitMQ. With RabbitMQ, you can send single-recipient and multiple-
recipient (or broadcast) messages.

We have a flexible structure for messaging that can be extended in the future.
Later, we’ll add more microservices to this application, and each one may or
may not care about the viewed message. But those that do can simply handle
it without us having to modify the original sender of the message.

We’ve talked through various reasons why you might want to choose one
style of messaging over the other. For your convenience, this information is
summarized in table 5.1. You can refer back to this table later when you are
deciding what style of messaging you need in particular situations.



Table 5.1 When to use each type of communication 

Situation What to
use

I need to direct a message to a particular microservice by name.
Direct
messaging:
HTTP

I need confirmation that the message handling was successful
or that it failed.

Direct
messaging:
HTTP

I need to be able to sequence subsequent messages after
completion of the first.

Direct
messaging:
HTTP

I want one microservice to be able to orchestrate the activity of
other microservices.

Direct
messaging:
HTTP

I need to broadcast a message across the application to notify
zero or more microservices of an event in the system (and I
don’t care if the messages are handled or not).

Indirect
messaging:
RabbitMQ

I want to decouple the sender and the receiver (so these can
more easily change and evolve independently).

Indirect
messaging:
RabbitMQ



I want the performance of sender and receiver to be
independent (the sender can emit as many messages as it likes,
the receiver will process these in its own time).

Indirect
messaging:
RabbitMQ

I want to be sure that if message handling fails that it will
automatically be retried again later until it succeeds (so no
messages are lost due to intermittent failures).

Indirect
messaging:
RabbitMQ

I need to load balance handling of a message so it is handled by
one out of a pool of workers.

Either
HTTP or
RabbitMQ

I need to distribute the handling of a message to multiple
workers who can act in parallel.

Indirect
messaging:
RabbitMQ

5.10 Continue your learning

This chapter has been a tour through the various ways we can make our
microservices communicate. We’ve used HTTP for direct messages and
RabbitMQ for indirect messages. As usual, we only briefly touched on each
of these subjects, and there is a whole lot more you can learn. Here are some
great resources for you to learn more:

API Design Patterns by JJ Geewax (Manning, 2021)
The Design of Web APIs by Arnaud Lauret (Manning, 2019)
RabbitMQ in Depth by Gavin M Roy (Manning, 2017)
RabbitMQ in Action by Alvaro Videla and Jason J.W. Williams
(Manning, 2012)

To learn more about the amqplib package, read the documentation here:

http://www.squaremobius.net/amqp.node/



To learn more about the wait-port command, see:

https://github.com/dwmkerr/wait-port

We’ve come a long way to this point. After building our first microservice,
we quickly scaled up to developing multiple communicating microservices.
Each microservice can have its own database and/or file storage. We are now
using live reload to efficiently reload our whole application while we are
coding.

What’s next? We have a fledgling app. It can’t do much yet, but that’s no
reason to avoid moving to production. Getting our application to run in a
production environment can be a difficult affair, and it’s best done while the
application is small and simple. So without further ado, starting in chapter 6,
we’ll take our application to production!

5.11 Summary

We can use Docker volumes to share code between our development
workstation and the containers in our application.
Using nodemon for live reload means we can update our code and have
the relevant microservices in our application automatically reload
without having to rebuild and restart the entire application.
There are two styles of communication between microservices: direct
and indirect.
Direct or synchronous messaging is most useful when we want to
explicitly sequence the flow of messages or carefully orchestrate the
behavior of other microservices.
With direct messages, we know immediately if the message handling
succeeded or failed.
Indirect or asynchronous messaging helps us to decouple our
microservices from each other, which helps promote the development of
flexible and evolvable applications.
With indirect messages, we can broadcast a message throughout the
application to notify other microservices of important events in the
system.
HTTP POST requests are useful for sending direct messages between



microservices.
RabbitMQ is software for queuing messages. We can use it to send
indirect messages between microservices.
Although we used the wait-port npm package to wait until the
RabbitMQ server was ready before our microservice connected to it, in
chapter 11, we’ll learn a better way of waiting for other services that
aren’t currently available.
Deciding to use either HTTP or RabbitMQ depends on the needs of the
situation. Refer to table 5.1 in section 5.9 for help deciding which to use
based on your needs.



6 The road to production
This chapter covers

Deploying a microservice to a Kubernetes cluster
Using the local Kubernetes instance that comes with Docker Desktop for
development, experimentation and learning Kubernetes
Creating a managed Kubernbetes cluster through the Azure Portal user
interface

Finally, we arrive at the most exciting chapters of the book! The next three
chapters are the three parts of what we need to deploy our application to
production. These three chapters will also be the most difficult so far, but
please do follow along with the examples. That’s how you’ll learn the most
and gain real experience by bringing your own application to production.

Starting in this chapter we’ll deploy our first microservice to Kubernetes.
We’ll discover how easy it is to use a local Kubernetes instance to
experiment and learn.

Then, we’ll take the easy route to a production Kubernetes cluster by creating
a managed cluster in the Azure Portal user interface. In subsequent chapters
we’ll learn how to create our Kubernetes cluster through code using
Terraform and then how to put our deployment process on automatic using
GitHub Actions.

6.1 New tools

This chapter introduces Kubernetes, the Kubernetes command line tool
(Kubectl) and the Azure command line tool (the Azure CLI). Kubernetes is
pretty important, that’s why it’s in the title of this book. Kubectl is the
comment line tool that we’ll use from our local computer to interact with our
Kubernetes cluster.The Azure CLI is very useful because it can easily create
the configuration we need to connect the Kubectl to our Kubernetes cluster



running on Azure. We can then use Kubectl to deploy our microservice and
interact with our cluster.

Table 6.1 New tools in chapter 6

Tool Version Purpose

Kubernetes 1.24.1 Kubernetes is the computing platform that we use to
host our microservices in production.

Kubectl 1.24.1 Kubectl is the command-line tool for interacting with a
Kubernetes cluster.

Azure CLI 2.39.0 We’ll use the Azure CLI to configure Kubectl for
access to our Kubernetes cluster.

6.2 Getting the code

To follow along with this chapter, you need to download the code or clone
the repository.

Download a zip file of the code from here:
https://github.com/bootstrapping-microservices-2nd-edition/chapter-6
You can clone the code using Git like this:

git clone https://github.com/bootstrapping-microservices-2nd-edition/chapter-6.git

For help on installing and using Git, see chapter 2. If you have problems with
the code, log an issue against the repository in GitHub.

6.3 Going to production



The day has arrived. We are taking our application to production. It might
seem like it is too early to take this small application to production, but
actually, in normal development situations, I really do advocate going to
production as early as possible. Maybe not as early as this, but I do believe
it’s a good idea to go to production while your application is still small. Why
is that?

Going to production means putting our application where our customers can
see it and use it. Putting our product in front of users is essential to getting
feedback, adapting to their needs, and building valuable features. If we don’t
go to production, we won’t get that feedback.

Also the easiest time to go to production is precisely when our application is
small. As our application grows larger it will become more unwieldy and
more difficult to get working in production. It’s best to start deploying to
production while it’s small and then through development and continued
deployments we can evolve towards a bigger and more complicated
application.

6.4 Hosting microservices on Kubernetes

By the end of this chapter we’ll have practiced deploying a single
microservice to Kubernetes.

We’ll learn how to deploy a microservice to Kubernetes using this one simple
microservice as an example. We are not bringing our full application online
yet, we are just warming up with Kubernetes by bringing one microservice
online. Later, in chapter 10, we’ll see how to deploy the full FlixTube
application to Kubernetes.

We are taking small steps here to bring our application to life. Ultimately
we’ll have many microservices running in our cluster, but the work has to
start somewhere. So for this chapter we’ll return to our simple video-
streaming microservice as it was at the end of chapter 3 (where we first
published it to our container registry).

Note



Kubernetes is a computing platform for managing container-based
applications. It was originally created by Google but is now managed by the
Cloud Native Computing Foundation, a committee that has huge industry
support and is also responsible for many other interesting projects.

Kubernetes is commonly known as a container orchestration platform. This
tells us all we need to know. Kubernetes can manage and automate the
deployment and scaling of our containers. Kubernetes is the production
backbone of our microservices application. I like to think of Kubernetes as a
platform for microservices.

Figures 6.1 and 6.2 show what we’ll do in this chapter. First, we’ll take
advantage of the local Kubernetes instance that comes with Docker Desktop
(figure 6.1) and we’ll deploy our video-streaming microservice to it. Using
the local instance is a good starting point when learning Kubernetes, because
it’s an easy way to learn and gain experience. I say it’s easy because there’s
nothing to install; you most likely already have it on your computer and just
need to enable it.

After we are a bit more comfortable with Kubernetes, we’ll create a managed
Kubernetes cluster on Microsoft Azure (figure 6.2) and then we’ll deploy our
video-streaming microservice to that.

Yes, in the second half of this chapter it will be time for you to create your
own Kubernetes cluster! Does that sound difficult? Don’t worry it’s not, with
a few clicks in the Azure UI you’ll have a cluster up and running in only a
few minutes. (We are saving the more complicated task of creating a cluster
through code until the next chapter.)

Figure 6.1 Deploying a microservice to the local Kubernetes instance that is bundled with Docker
Desktop



Figure 6.2 Deploying a microservice to a cloud-based managed Kubernetes cluster on Microsoft
Azure



6.5 Why Kubernetes?

There are many reasons to use Kubernetes. The simplest reason is to avoid
vendor lock-in.

All the main cloud vendors offer their own container orchestration services
that are good in their own right. But each of these also offers a managed
Kubernetes service, so why use a proprietary service when you can instead
use Kubernetes? Using Kubernetes means our application is portable to
virtually any cloud vendor.

I believe it’s worthwhile to learn Kubernetes (at least the basics) because the



knowledge is transferable. Although, in this book, we host our Kubernetes
cluster on Microsoft Azure, you can take your Kubernetes skills with you and
use them on whichever cloud you most prefer.

Also, Kubernetes is rapidly becoming the standard platform for hosting
distributed applications. We can use it for any kind of distributed application,
not just the microservices kind.

Kubernetes has a reputation for being complicated. And certainly, it is if you
want to manage it directly in your own data center or if you want to deep dive
and become an expert. Fortunately, for the rest of us, building a managed
Kubernetes cluster in our favorite cloud platform is much easier, to the point
where (at least on Azure) we can create it in the GUI in a handful of clicks.
Just learning Kubernetes is even simpler than that because, since the 1st
edition of this book, Kubernetes now comes bundled with Docker Desktop.
So if you have Docker Desktop (which we have been using since chapter 3)
you should already have Kubernetes installed and ready to go (although you
need to switch it on in the Docker Desktop settings).

Kubernetes emerged from the vast experience of Google, then it was turned
over to the community. This means you can fork the code and contribute to
Kubernetes yourself—assuming you have a desire to be lost down that
particular rabbit hole!

Kubernetes allows us to build applications that are scalable in multiple ways.
That’s something we’ll talk about in chapters 11 and 12. In this chapter we’ll
learn the absolute basics. Just enough to deploy a single microservice to a
production Kubernetes cluster.

Most importantly, Kubernetes has an automatable API. This is what will
allow us to build our automated continuous delivery pipeline in chapter 8.
Kubernetes is becoming an industry standard for microservices, and I expect
it to continue in that direction. It’s well supported and has a great community
and a large ecosystem of tools.

To me, Kubernetes is the universal computing platform. It’s supported by all
the major cloud players. No matter where we end up, we can take Kubernetes
with us. Kubernetes is open source and you can find the code here:



https://github.com/kubernetes/kubernetes

6.5.1 Pods, nodes and containers

A Kubernetes cluster is normally composed of multiple computers. Each
computer is called a node. For our purposes each node will be a virtual
machine (VM), although you can also run Kubernetes on physical hardware
as well if you do all the setup work yourself. We can add as many nodes as
we need to our cluster to expand the amount of computing power available to
our application. Each node can host multiple pods. A pod is the basic unit of
computation in Kubernetes.

Figure 6.3 shows an example arrangement of nodes and pods. The depicted
cluster has three nodes (it is powered by three VMs). However, the cluster
we’ll create in this chapter will only have a single node. That’s because our
simple application doesn’t need more computing power than that. It also
means we won’t pay for more VMs than we actually need. Scaling up to
more nodes is easy though, and we’ll see an example of that in chapter 12.

Figure 6.3 The structure of a Kubernetes cluster



Each pod can actually host multiple containers, as figure 6.4 shows. This can
be the basis for many interesting architectural patterns (such as the well-
known sidecar pattern for proxies and authentication).

In this book, though, we are keeping things simple. Each pod will host only a
single container or microservice. To help simplify things for you, if you like,
you can think of a pod and a container as one and the same thing. That’s not
really true, but it works in this book because we are keeping things that
simple.

Figure 6.4 The structure of a Kubernetes pod

6.5.2 Pods, deployments and services

We could just deploy our microservice to our cluster as a pod. That would
keep things simple, and that’s how most books on Kubernetes start. The
problem, though, is that deploying a pod on its own isn’t really good enough
for a production application. When we use a pod by itself and the
microservice in the pod crashes or stops responding (hangs) there’s no
convenient way to know that our microservice has failed.

So in this book we’ll jump directly to the idea of using a Kubernetes
“deployment” to manage our microservice in production (shown in figure
6.5). It is the Kubernetes deployment that will continuously monitor the pod,
and if the microservice crashes or hangs then the deployment will detect that



and automatically start a new instance of the microservice.

You can see the structure of our first microservice running on Kubernetes in
figure 6.5. Notice how the microservice runs in the pod, the pod is managed
by the “deployment” and a DNS record is created for the pod by the
“service”.

Figure 6.5 The simple Kubernetes deployment we’ll create in this chapter

Pods, deployments and services are the main concepts from Kubernetes that
we need to know to instantiate our microservice in production.

In this book we are keeping things simple. We are only running one
microservice under a single pod that is managed by a Kubernetes deployment
and exposed by a Kubernetes service. However figure 6.6 shows where we
might take this in the future. We can scale up the number of pods for
redundancy and load balancing. The Kubernetes deployment will keep
multiple copies of our microservice running. If any should crash or hang it
instantiates new ones to take the place of those that fail. We’ll talk more



about scaling and redundancy in chapters 11 and 12.

Figure 6.6 Kubernetes can run copies of our microservice for scalability and redundancy

6.6 Enabling your local Kubernetes instance

One of the best things that’s happened since the 1st edition of this book is
that Kubernetes now comes bundled with Docker Desktop, you just have to
turn it on. That’s right, you can now experiment and learn with a local
Kubernetes instance without having to install it (assuming you installed
Docker Desktop already, which we have been using since chapter 3) or
without having to invest any time in configuration or management. This is the
best starting point for learning Kubernetes because you can just start using it,
you run it on your own computer, it costs nothing and you don’t even have to
worry about authenticating with it.

Figure 6.7 shows how to enable your local Kubernetes instance. Open the



Docker Desktop window, click the Settings button at the top, select the
Kubernetes tab, click Enable Kubernetes and finally click Apply & Restart. It
might need to install an update to Kubernetes at this point and it could take a
few minutes before it’s ready to go.

Figure 6.7 Enabling the local Kubernetes instance that comes with Docker Desktop

As you can see in figure 6.8, after enabling your local Kubernetes instance,
we now have the button: Reset Kubernetes Cluster. It’s useful to remember



this is here because it’s the fastest way to clean out your local cluster after
you have finished a session of experimenting or learning.

Whatever you have deployed to the cluster can be quickly wiped away using
this reset button, leaving you with a fresh cluster for your next session. The
reset button is also the best way to solve any problem that might be
happening. For example, if your Kubernetes instance stops responding or
seems to have crashed, come back to this settings page and click the reset
button. Or if you need to update your Kubernetes version - which you might
need to do if you installed Docker Desktop a long time ago - click the reset
button.

When you have finished a session of working with the local Kubernetes
instance, and assuming you won’t need it again soon, please go back into
Docker Desktop settings and disable Kubernetes. You don’t want to leave
this running, especially on an under-powered computer because it consumes
valuable system resources (not to mention your laptop’s battery).

Figure 6.8 Resetting your local Kubernetes instance can sometimes solve any problem you have
with it



To learn more about Kubernetes running under Docker Desktop please see
their documentation:

https://docs.docker.com/desktop/kubernetes/

6.7 Installing the Kubernetes CLI

To interact with our Kubernetes cluster and deploy our microservice to it,
we’ll use the Kubernetes CLI tool that is called Kubectl. How does one say
“Kubectl”?. I’ve heard it pronounced “coob-cuttle” or “coob-C. T. L.”, but I
tend to say “coob-control” which is fairly common, or sometimes I say the
full “Kubernetes C.L.I. tool” to avoid ambiguity.

The good news is that Kubectl, along with Kubernetes itself, comes with
Docker Desktop, so you should already have it installed. To make it available
you might have to enable Kubernetes in the Docker Desktop settings, which
we did in the previous section.

For some reason, Kubectl isn’t bundled with Docker Desktop when installed
on Linux. So if you are working on Linux you will have to install Kubectl
according to the instructions in the Kubernetes documentation:

https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/

To check if you have access to Kubectl, invoke the version sub-command:

kubectl version

The output, which can be rather difficult to read, should look something like
this:

Client Version: version.Info{Major:"1", Minor:"24", GitVersion:"v1.24.1", GitCommit:"3ddd0f45aa91e2f30c70734b175631bec5b5825a", GitTreeState:"clean", BuildDate:"2022-05-24T12:26:19Z", GoVersion:"go1.18.2", Compiler:"gc", Platform:"windows/amd64"}

Kustomize Version: v4.5.4

Server Version: version.Info{Major:"1", Minor:"24", GitVersion:"v1.24.1", GitCommit:"3ddd0f45aa91e2f30c70734b175631bec5b5825a", GitTreeState:"clean", BuildDate:"2022-05-24T12:18:48Z", GoVersion:"go1.18.2", Compiler:"gc", Platform:"linux/amd64"}

From the output we can extract the information about the version we are
using for the Kubectl client (1.24.1) and for the Kubernetes server (1.24.1).

By default, when you enable your local Kubernetes instance (see previous



section), Kubectl should automatically be connected to it. However if you
have previously installed or configured Kubectl or have previously connected
to some other Kubernetes cluster you might now be connected to something
other than the local Kubernetes instance. If that’s the case you might see a
connection error like this:

Unable to connect to the server: dial tcp: lookup <some cluster name>: no such host

If you are seeing an error like that, don’t worry, we’ll see soon how to be sure
that we are connected to the correct Kubernetes cluster.

6.8 Project structure

Before we attempt to deploy our microservice to Kubernetes, let’s briefly
look at the structure of our example microservice project and see how it
relates to Kubernetes deployment.

Figure 6.9 is an overview of example-1 for chapter 6. It should have a
familiar structure by now. You can see the JavaScript source code (index.js)
and the Node.js project file (package.json, covered in chapter 2). There’s the
production Dockerfile (Dockerfile-prod) that we use to build the production
Docker image for the microservice (covered in chapter 3).

You can see that, just like in chapter 3, we are baking a video directly into the
Docker image. This isn’t a good production practice, but we are doing it to
keep things simple while we learn how to deploy a single microservice to
Kubernetes. You’ll see when we come to chapter 10 that the real FlixTube
application uses cloud storage to store its files and a MongoDB database to
store metadata (like how we set it up in chapter 4).

The thing that’s new here is the file deploy.yaml which you can see in figure
6.9. This is the file that contains the configuration to deploy our microservice
to Kubernetes. In a moment we’ll take a look inside this file.

Figure 6.9 The structure of a microservice project that is deployable to Kubernetes



6.9 Deploying to the local Kubernetes instance

Our main aim in this chapter is to deploy to a Kubernetes cluster in the cloud,
but we haven’t yet learned how to create a cluster in the cloud. We’ll do that
soon.

An easier starting point is to first practice deploying our video-streaming
microservice to our local Kubernetes instance. We already have that, there’s
nothing we need to install, so we can simply practice deploying our
microservice.

6.9.1 Building the image for the microservice

Before we can deploy a microservice we need to build the image for it. We
already did this in chapter 3, but let’s run through the steps again there. For
this image we’ll be using example-1 from the chapter-6 code repository.

Open a terminal, clone the chapter-6 code (see section 6.2), change directory
into example-1 then build the image:

cd chapter-6

cd example-1

docker build -t video-streaming:1 --file Dockerfile-prod .



Note how we have tagged the image as video-streaming:1. After the colon
is the version number and we are starting with version one for the first
deployment of the video-streaming microservice. For future builds, after the
code has changed, you should increment this version number for each new
deployment of your microservice.

For a more detailed explanation of the Docker build command, please refer
back to section 3.8 in chapter 3.

6.9.2 We don’t need a container registry (yet)

When we published our first microservice back in chapter 3, you might recall
that we tagged our image (using the Docker tag command) and then we
published the image to our private container registry (using the Docker push
command).

Right now though, we don’t need to tag or publish our image to be able to
deploy it to our local Kubernetes instance. Because Kubernetes is running
locally on our computer, it already has access to our locally built Docker
images, so we don’t need a separate container registry to share our images
with our Kubernetes cluster. Any images that we build on our development
computer are already where they need to be for deployment to our local
Kubernetes instance.

Later in this chapter we’ll be working with a Kubernetes cluster in the cloud,
and at that point we will need to publish to a container registry before
deployment, but right now, working with a local cluster, we just don’t need it.
It’s one of the things that makes it much easier and more convenient to learn
and experiment with a local Kubernetes instance, rather than jumping straight
to a cloud-hosted cluster.

6.9.3 Creating a configuration for deployment to local
Kubernetes

Let’s take our first look at a Kubernetes deployment configuration file.
Listing 6.1 shows the deploy.yaml file from the scripts directory in example-
1 that we saw in figure 6.9. We’ll use this configuration file to create the



deployment, service and pod structure for our microservice that was shown in
figure 6.5.

By the way, there’s nothing special about the “scripts” directory, that’s just
the name that I use for keeping the deployment scripts for a project. You can
call this directory whatever you like.

Listing 6.1 Configuration file for deploying our microservice to Kubernetes (chapter-6/example-
1/ scripts/deploy.yaml)

apiVersion: apps/v1

kind: Deployment #A

metadata:

  name: video-streaming #B

spec:

  replicas: 1 #D

  selector:

    matchLabels:

      app: video-streaming #C

  template: #E

    metadata:

      labels:

        app: video-streaming #C

    spec:

      containers: 

      - name: video-streaming

        image: video-streaming:1 #F

        imagePullPolicy: Never #G

        env: #H

        - name: PORT

          value: "4000" #I

--- #J

apiVersion: v1

kind: Service #K

metadata:

  name: video-streaming #L

spec:

  selector:

    app: video-streaming #C

  type: NodePort #M

  ports:

    - protocol: TCP

      port: 80

      targetPort: 4000 #N

      nodePort: 30000 #N



 

The YAML configuration in listing 6.1 is broken up into two main sections
that are separated by three hyphens (---). The first section creates the
Kubernetes deployment that keeps our microservice alive (automatically
restarting it when it crashes).

The second section creates the Kubernetes service that exposes our
microservice to HTTP requests via DNS. Having these two sections in the
same file is optional. We could, if we wanted, create a different structure, for
instance with each section in its own file. But it’s convenient to group these
together like this because they are all the configuration for one single
microservice.

Within the first section notice the subsection for the pod template. The
deployment uses this configuration template to instance the pod, its
containers and therefore our microservice. Whenever the microservices
crashes or stops responding, the deployment will replace it with a new
instance, freshly created from this template. Note how we are referencing the
image via the tag video-streaming:1 that we applied earlier including the
version number, starting at version one. As you build new versions of the
image for your microservice you’ll need to increment this version number
and update the configuration in listing 6.1 to match (if that sounds tedious,
rest assured that in chapter 8 we’ll talk about templating our configuration so
that updated version numbers are plugged in automatically).

Deployments, services and pods are associated with each other using labels,
illustrated in figure 6.10. In listing 6.1 you can see labels, matchLabels and
selector that tie together the pieces of our configuration by setting the app
label to video-streaming. There’s nothing special about the app label or the
name video-streaming. We could have called these anything.

Figure 6.10 Deployments, services and pods are associated with each other by labels.



Towards the end of listing 6.1 notice that the type of the service is set to
NodePort. If we didn’t specify a type here, the type of the service would
default to ClusterIP which would expose the service (and hence our
microservice) only within the cluster - it would not be accessible outside the
cluster.

Using NodePort here is the simplest way to make this service accessible from
outside the cluster and in this case it's a local Kubernetes instance, so we are
only talking about making the service (and our microservice) accessible from
our local computer.

Kubernetes allows us to choose a port in the range 30000-32767 and it will
pick a port at random if we didn’t specify a particular one. Notice in listing
6.1 we have chosen to use port 30000 to access our microservice, that’s just



the first port in the allowed range. If you find any problem with port 30000
(like it’s not available on your computer) please choose a higher port number
within the allowed range.

You can read more about NodePort configuration in the Kubenetes
documentation:

https://kubernetes.io/docs/concepts/services-networking/service/#type-
nodeport

Later when we start using a cloud-hosted Kubernetes cluster we’ll have to be
more careful when exposing our microservices to the outside world, because
it opens us to attacks and abuse. That doesn’t matter right now because we
are working with a Kubernetes cluster on our local computer and the cluster
itself is not exposed to the world.

6.9.4 Connecting Kubectl to local Kubernetes

At this point we have built an image for our microservice and we have
created a Kubernetes configuration to deploy it. Before we can do the
deployment, we need to have Kubectl connected to our local Kubernetes
instance.

If this is your first time using Kubernetes and you have just installed Docker
Desktop (and enabled Kubernetes in section 6.5), then you should already be
connected. The installation process sets this up for you by default.

To be sure though, let’s check which cluster we are connected to. Open a
terminal and invoke this command:

kubectl config current-context

If you are already connected to your local cluster, the output should be
something like this:

docker-desktop

If you have used Kubectl before and connected to other clusters (say, if you
are already using it for work), you might find at this point you are connected



to some other cluster.

If that’s the case you can connect to your local cluster using the following
command:

kubectl config use-context docker-desktop

To see the list of connection contexts you have configured, invoke this
command:

kubectl config get-contexts

With Docker Desktop installed and Kubernetes enabled (see section 6.5) you
should see docker-desktop (or something similar) in the list.

Once connected to your local Kubernetes, let's run a test to make sure the
connection is working. The following command lists all pods that are running
in your cluster:

kubectl get pods

If you are running a new Kubernetes instance you should see a list that
contains nothing! We don’t have any pods running yet. If you had been
experimenting with Kubernetes already you might see some pods running
that you deployed previously, if that’s the case you might want to hit the reset
button to get a fresh empty cluster (see section 6.5).

Another good test is to view the system pods:

kubectl get pods --namespace kube-system

You should see a short list of the Kubernetes system pods that are running in
your cluster. By default these are hidden when you view pods, but we have
exposed them here by explicitly requesting to show pods in the namespace
kube-system.

For more information on working with Kubernetes under Docker Desktop,
please see the Docker documentation:

https://docs.docker.com/desktop/kubernetes/



To explore the commands available under Kubectl, invoke kubectl --help
or check out the Kubectl reference in the Kubernetes documentation:

https://kubernetes.io/docs/reference/kubectl/

6.9.5 Deploying a microservice to local Kubernetes

It’s time to deploy our video-streaming microservice to our local Kubernetes
cluster. Make sure you are connected to your local Kubernetes cluster, as
described in the previous section. Then in your terminal, change directory to
example-1 and invoke Kubectl to deploy the microservice:

kubectl apply -f scripts/deploy.yaml

The -f argument specifies which configuration file to use and the apply sub-
command creates the specified objects in our Kubernetes cluster.

If the deployment succeeded you should see output like this:

deployment.apps/video-streaming created

service/video-streaming created

Now let’s check that the requested objects are now running in our local
Kubernetes instance (like the structure that was shown in figure 6.5).

To check the pods now running:

kubectl get pods

You should see output showing that our video-streaming microservice is now
running as a pod:

NAME                               READY   STATUS    RESTARTS   AGE

video-streaming-56d66b75c7-fp44x   1/1     Running   0          92s

See how the name of the pod starts with video-streaming- but ends with a
unique number. Kubernetes has generated a unique number for this pod
because it could be one of a number of replicas that have been created for the
deployment. In this case we are keeping things simple and our configuration
file (listing 6.1) only creates a single replica, so we should only see a single



pod in this list of pods.

To check the deployments that are now running:

kubectl get deployments

You should see the video-streaming deployment listed in the output:

NAME              READY   UP-TO-DATE   AVAILABLE   AGE

video-streaming   1/1     1            1           5m25s

To check the services that are now running:

kubectl get services

In the output you’ll see at least two things. We should see our video-
streaming service. You will also see the service for the Kubernetes API:

NAME            TYPE      CLUSTER-IP   EXTERNAL-IP  PORT(S)      AGE

kubernetes      ClusterIP 10.96.0.1    <none>       443/TCP      11m

video-streaming NodePort  10.98.29.135 <none>       80:30000/TCP 6m16s

When we see the pod, deployment and a service running in our local cluster,
it means we have successfully deployed our microservice. Note in the above
output how it tells us that the video-streaming service is available on port
30000 (that’s how we configured it). This is a useful way to check the port
number (and later the IP address) where our service is exposed.

Did you have any problems deploying the microservice? If so, please see
chapter 11 for help debugging deployment problems.

6.9.6 Testing the locally deployed microservice

Now we must test that our microservice is actually working. Because we set
the type of the service to NodePort and configured the port number to be
30000 (see listing 6.1) we should now be able to test our microservice and see
the streaming video by pointing our browser at http://localhost:30000/video.
If everything worked and you can see the video playing, then congratulations,
your video-streaming microservice is now running within Kubernetes.

localhost:30000.html
localhost:30000.html
localhost:30000.html


Microservice not working? The most common problem is not being able to
access the port from the host computer. Check your configuration to make
sure the ports match up and use kubectl get services to double-check the
port number of the service. If the port 30000 isn’t working for you, try
another port in the range of 30000-32767 that is allowed by Kubernetes.
We’ll talk more about debugging microservices in chapter 11.

6.9.7 Deleting the deployment

When we are done testing our microservice, we can delete the deployment
now to clean up our cluster:

kubectl delete -f scripts/deploy.yaml

This removes the deployment, the pod and the service: everything that was
created from that configuration file should now be deleted. If you like you
can confirm that everything is deleted by invoking kubectl get pods,
kubectl get deployments and kubectl get services to confirm that it
really is all gone.

Feel free to practice deploying and deleting your microservice multiple times
to get more experience with it.

Also don’t forget that you can reset your whole cluster by clicking Reset
Kubernetes Cluster in the Kubernetes settings in Docker Desktop (see section
6.5). If you have been experimenting for a while and done a few different
deployments, it can be faster to just reset the cluster than trying to delete
everything that you created.

6.9.8 Why not use local Kubernetes for development?

You have a local Kubernetes cluster and it’s super convenient and easy to
use. So, why don’t we use our local Kubernetes during development instead
of Docker Compose? Why should we use Docker Compose for development
and then Kubernetes for production?

We’ve spoken about Kubernetes vs Docker Compose already in chapter 4
(section 4.3.6). But here, just let me say that you can absolutely use your



local Kubernetes for development if that’s how you want to work. It’s a
legitimate choice, so long as you can make it work well in your situation.

Personally I’ve loved having access to this local Kubernetes instance, it’s
been amazing for experimentation and continuing to learn about Kubernetes.
But I don’t use my local Kubernetes instance for development, because I
think it’s a bad experience for development.

Here’s my reasons:

Starting a multi-microservice application in Kubernetes is painful. You
need to run the deployment scripts for each and every microservice that
you’d like to deploy.
Changing between projects is painful. You need to reset your local
instance and then rerun the deployment scripts for all your
microservices.
Configuration for the local Kubernetes will be different to your
production configuration (you’ll see the difference soon). That means
you still need separate configurations for development and production.
The biggest problem with the local Kubernetes instance is that it’s kind
of heavy weight and doesn’t have the best performance, especially when
running on a laptop. Think about it, Kubernetes was designed to run
over multiple computers, how’s it going to perform on your
development laptop? Most of the time on my development laptop I have
Kubernetes disabled so that it isn’t draining my battery! (But I do leave
it running permanently on my desktop computer though).

So I prefer to use Docker Compose in development instead of using a
Kubernetes instance.

But having that local Kubernetes is still a great thing and you can decide for
yourself which way you prefer to work during development.

My advice: when you have finished experimenting with your local
Kubernetes, disable it in Docker Desktop settings so it doesn’t consume
resources on your computer.

6.9.9 What have we achieved?



To this point, we have built a Docker image for our microservice and
deployed it to the local Kubernetes instance that came bundled with Docker
Desktop. We created a Kubernetes deployment, pod and service within the
Kubernetes cluster by invoking kubectl apply and thus instantiated our
video-streaming microservice in a production-like environment.

I say production-like because what we have just done is really only a
simulation of what it’s like to run our microservice in production. There’s a
few more hoops we must jump through to really get our microservice into
production. And that’s what we are doing next.

6.10 Creating a managed Kubernetes cluster in
Azure

It’s time for us to create a real production Kubernetes cluster in the cloud and
deploy our video-streaming microservice to it.

Deployment to our cloud-based Kubernetes cluster will be very similar to
how we deployed to our local Kubernetes instances, but there are some
differences. For example, to deploy our microservice we’ll first need to build
it and publish it to our container registry which we first learned in chapter 3.

Before we can get to deployment though, we must create our container
registry and Kubernetes cluster and then connect to our cluster with Kubectl.

If you didn’t sign up for Azure in chapter 3, now is the time to do that. Please
see section 3.9.1 to sign up to Azure and then create your container registry.
If you still have that container register from chapter 3, then please feel free to
continue using it in this chapter.

Next we’ll go through the steps to create our Kubernetes cluster. Open the
Azure Portal (https://portal.azure.com) and search for “kubernetes” as shown
in figure 6.11 . Click the Create dropdown, then click Kubernetes Service.

Figure 6.11 Finding the “Kubernetes Service” in the Azure Portal





Now we configure the details for our Kubernetes cluster, shown in figure
6.12 . Be sure to choose your Free Trial subscription (in case you have
multiple subscriptions) so that’s it paid for by your trial credits. It might turn
out that you have to add your credit card details to Azure in order to create a
cluster; even if you have to do this the cluster should be paid for by your trial
credits. But you’ll have to be careful because if you exhaust those credits
Microsoft will then proceed to charging you real money. Once we have
finished with this Kubernetes cluster we’ll delete it anyway, just to be on the
safe side.

Choose or create a Resource Group to contain your new Kubenetes cluster.
Resource Groups in Azure allows us to group and organize our cloud
resources. You must also choose a name for your Kubernetes cluster. Please
take note of the name you use for the resource group and the cluster. You’ll
need to remember these details again soon.

Choose the location where you’ll host your cluster. For the purposes of
experimentation and learning it doesn’t matter where you place your cluster,
so feel free to use the default, but if the default location doesn’t have
availability you might have to try and create the cluster in a different location.

Figure 6.12 Creating a Kubernetes cluster, part 1





Next we scroll down and continue to configure our Kubernetes cluster,
shown in figure 6.13 . Here we can choose a virtual machine (VM) size - I
recommend clicking through to see the list of options, waiting until it
computes the estimated cost for each VM and then selecting the cheapest one
(we don’t want to burn through our credits too quickly).

To make it more affordable you can also select Manual for the Scale method
and a single node for the Node count (unless you are experimenting with
scalability; if that’s the case, feel free to experiment with autoscaling and a
larger number of nodes - just know that it’s going to burn through your
credits much faster).

When you are happy with the configuration for your cluster, click Review +
create.

Figure 6.13 Creating a Kubernetes cluster, part 2



It will take some time to create your cluster. When it’s finished you’ll see a
notification in the Azure Portal, and you can click through that to see the
details of your new Kubernetes cluster. You can also find your cluster at any
time through the All Resources list in the Azure Portal (just like how we
found our container register back in section 3.9.1 - check back there for a
reminder).

What we need to look at now are the connection details for the cluster. In the
Overview page for your cluster, click the Connect button, shown in figure
6.14 . This pops out a section on the right that shows you the Azure CLI



commands that you need to invoke locally on your computer to download
your Azure credentials and connect Kubectl to your shiny new cluster
running on Azure. So the next thing we must do is install the Azure CLI tool.

Figure 6.14 Finding the connection details for your new Kubernetes cluster

6.11 Working with the Azure CLI



Using the Azure Portal user interface is a convenient and easy way to get
started creating infrastructure on Azure. At this point though we need to
move to the command line and start using the Azure CLI tool because that’s
the easiest way to connect Kubectl to our cloud-based cluster. We also need
the Azure CLI for other tasks later in this chapter and in the next chapter. So
let’s get it installed.

6.11.1 Installing the Azure CLI

You can find the instructions for installing the Azure CLI here:

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

Choose your platform and follow the instructions to install it. After installing
the Azure CLI, you can test it from your terminal with the following
command:

az --version

At the time of writing, I’m using version 2.39.0. Future versions should be
backward compatible.

6.11.2 Authenticating the Azure CLI

Before using the Azure CLI we must authenticate it with our Azure account.

We can do that from the terminal with this command:

az login

Running this command opens a browser where you can sign into your Azure
account. If it doesn’t automatically open your browser follow the instructions
in the output:

A web browser has been opened at ... 

Please continue the login in the web browser. If no web browser is available or if the web browser fails to open, use device code flow with `az login --use-device-code`.

When the az login command completes it displays a JSON formatted list of
your Azure subscriptions. If you only just signed up for Azure for this book,



you should see only one subscription. If you already use Azure for work you
might see multiple subscriptions listed.

The authentication is saved locally, and from now on, you can issue other
commands against your Azure account without having to sign in each time.
We can see which Azure subscription we are working with using this
command:

az account show

The output from this command shows us the current default subscription. We
can also view a list of all subscriptions:

az account list

The output is a JSON formatted list of subscriptions. Each subscription has
an id field that is a unique ID for the subscription. You’ll also notice that the
current default subscription is marked by having its isDefault field set to
true. This field is set to false for any other subscriptions in the list.

At this point, you should verify that you are using the right subscription to
follow along with the examples in this book. For example, if you have access
to subscriptions from your employer, you probably shouldn’t use those for
your own learning and experimentation (or at least, check with your boss
first). If you need to change the current working subscription, you can set a
new default like this:

az account set --subscription=<subscription-id>

Replace <subscription-id> with the ID of the subscription that you want to
set as the default. After changing the default subscription, double-check it
just to be sure we are using the right subscription:

az account show

6.11.3 Connecting Kubectl to Kubernetes

Now that we have the Azure CLI installed and authenticated against our
Azure account we can invoke the command that connects Kubectl to our



Kubernetes cluster on Azure.

You can find the details of the command by clicking the Connect button in
the page for your Kubernetes cluster in the Azure Portal, which was shown in
figure 6.14 .

The command that I invoked looks like this:

az aks get-credentials --resource-group bmdk1 --name bmdk1

You’ll need to use the name of your own resource group and your own
cluster. You selected those names earlier when you created your cluster (refer
back to section 6.9).

Here’s the general format of the command, just add your own details:

az aks get-credentials --resource-group <resource-group-name> --name <cluster-name>

You should now be able to use Kubectl with your cloud-based Kubernetes
cluster. To be sure, just like we did earlier with our local Kubernetes instance,
let’s check which cluster we are now connected to. Open a terminal and
invoke this command:

kubectl config current-context

This tells you the name of the cluster you are connected to. For me it was:

bmdk1

The output will be different for you depending on the name you gave to your
cluster in section 6.9.

To see the list of connection contexts:

kubectl config get-contexts

You can easily change between any of your connection contexts with this
command:

kubectl config use-context <context-name>



Once connected to your Kubernetes cluster, we can do a test to make sure the
connection is working. The following command lists all pods that are running
in your cluster:

kubectl get pods

It’s a new cluster so we shouldn’t see anything running! Just to be sure, let’s
test that we can view the system pods:

kubectl get pods --namespace kube-system

You should see a list of the Kubernetes system pods running in your cluster.
Note that there will be some differences to the list of system pods from your
local Kubernetes instance that we looked at earlier.

6.12 Deploying to the production cluster

At this point we have created our Kubernetes cluster and we are almost ready
to deploy our microservice to it. Before we can deploy we must first publish
our image.

6.12.1 Now we need a container registry

To deploy to a cloud-based cluster, the image for our microservice must be
published to our cloud-based container registry. Feel free to reuse the
container registry you created in chapter 3 if you still have that. Otherwise
please return to chapter 3 and follow the steps in section 3.9.1 to create your
container registry through the Azure Portal.

6.12.2 Publishing the image to the container registry

Before we publish our image to our container registry we must build it. Open
a terminal, change directory into example-2 and build the image for our
video-streaming microservice:

cd chapter-6

cd example-2

docker build -t video-streaming:1 --file Dockerfile-prod .



Don’t forget that period at the end of the docker build command, it’s so
easy to miss or forget that!

Now we must tag our image according to the name of our container registry
where we intend to publish it. You’ll need to insert the URL for your
container registry when you invoke this command:

docker tag video-streaming:1 <registry-url>/video-streaming:1

As we build and publish successive versions of our microservice, don’t forget
that we need to increment that version number. The next version of the image
will be tagged video-streaming:2, then video-streaming:3, and so on.

Prior to publishing the image we must log into our container registry. You
just need to insert the URL for your container registry, invoke this command
and then enter your username and password:

docker login <registry-url>

Now we can actually publish our image by pushing it to the container
registry, again just insert the URL for your own container registry:

docker push <registry-url>/video-streaming:1

When docker push succeeds we have published our microservice and it is
ready for deployment to Kubernetes.

Did you have any problem pushing the image? If so please check that you
tagged the image correctly according to the URL for your container registry.
It’s a common problem to get the tag wrong and then not be able to push the
image.

Need more details on the process of building, tagging and publishing an
image? Please refer back to sections 3.8 and 3.9 in chapter 3 for a longer and
more detailed description of how to do this.

6.12.3 Connecting the container registry to the Kubernetes
cluster



There’s one more thing we need to do before we deploy the microservice. We
need to connect our container registry and our Kubernetes cluster so that the
cluster can pull images from the registry without having to authenticate.

Here’s the command I used to “attach” my container registry to my cluster:

az aks update -n bmdk1 -g bmdk1 --attach-acr bmdk1

You’ll need to insert the name of your own cluster, resource group and
container registry. Here’s the more general format of the command:

az aks update -n <cluster-name> -g <resource-group-name> --attach-acr <registry-name>

If we connect our cluster and container registry it makes things so much
easier because now we don’t have to encode registry authentication
credentials in our Kubernetes deployment configuration. It makes the setup of
our deployment much simpler and it’s perfectly safe to do this, given that
both our container registry and our Kubernetes cluster are both resources that
we control and that we trust, so we can safely “pre-authenticate” the cluster to
be able to talk to the container registry. This is a simplification that works
great for a simple setup like we have in this book, but it might not work for
you in production depending on where and how you are hosting your cloud
resources and what security model you are using. We’ll talk more about
security in chapter 12.

Note that if you don’t attach your container registry to your cluster then your
cluster will fail to pull your microservice’s image from the container registry.
You can also make this work by encoding the container registry
authentication in your deployment configuration file, but that’s more
complicated and unnecessary when you can just attach your registry to your
cluster. If you later see an error like ErrImagePull or ImagePullBackOff
that’s an indication that you didn’t get this step right.

6.12.4 Creating a configuration for deployment to Kubernetes

The Kubernetes configuration for production deployment from example-2
that is shown in listing 6.2 creates a deployment, pod and service for our
microservice. It’s almost the same as the configuration we used earlier in



listing 6.1 for deployment to our local Kubernetes instance. The differences
are highlighted for you to see in the code listing.

Listing 6.2 Configuration file for deploying our microservice to Kubernetes on Azure (chapter-
6/example-2/ scripts/deploy.yaml)

apiVersion: apps/v1

kind: Deployment

metadata:

  name: video-streaming

spec:

  replicas: 1

  selector:

    matchLabels:

      app: video-streaming

  template:

    metadata:

      labels:

        app: video-streaming

    spec:

      containers: 

      - name: video-streaming

        image: bmdk1.azurecr.io/video-streaming:1 #A

        imagePullPolicy: IfNotPresent #B

        env:

        - name: PORT

          value: "4000"

---

apiVersion: v1

kind: Service

metadata:

  name: video-streaming

spec:

  selector:

    app: video-streaming

  type: LoadBalancer #C

  ports:

    - protocol: TCP

      port: 80

      targetPort: 4000

 

At this point let’s take a moment to reflect on the differences between our
local and production configurations.



The differences that are highlighted in listing 6.2 are:

The image that is being deployed is the one we just published to our
container registry. Before you can deploy this code you will have to
change the URL here to the URL for your own container registry.
The image pull policy is set to IfNotPresent, meaning that if the image
doesn’t exist within the cluster it will be pulled from our container
registry. This is how the image gets to the cluster in the first place. New
versions will also be pulled as necessary, but if you attempt to deploy an
existing version again, the locally cached image will be used and it does
not need to be pulled again from the container registry.
The type of the service is now set to LoadBalancer which causes Azure
to create a load balancer and allocate an IP so we can access our
microservice from the outside world. This allows us to send HTTP
requests to our microservice from our development computer to test that
the microservice is functional. We have to be very careful when using
type LoadBalancer: it is useful for our own testing, but it also exposes
our microservice to the outside world (and thus attacks and abuse). It
doesn’t matter in this case because we are only experimenting and very
soon after we will simply delete this deployment.

The differences between local and production deployment are one of the
reasons why I generally don’t use the local Kubernetes instance for
development. If we have to maintain two sets of configuration anyway it
doesn’t help much to try and replace Docker Compose with our local
Kubernetes instance, especially when Docker Compose is convenient for
development in other ways (see sections 4.3.6 and 6.8.8 for a reminder).

6.12.5 Deploying the microservice to Kubernetes

With our image published, our container registry connected to our cluster and
our configuration ready to go, let’s deploy our video-streaming microservices
to Kubernetes.

The nice thing is that deploying to a cloud-based cluster is no different to
deploying to our local Kubernetes instance:

kubectl apply -f scripts/deploy.yaml



Again, the -f argument chooses the configuration file which specifies the
objects we’d like to create in our cluster.

With the deployment completed, invoke the following commands to check
what we just created:

kubectl get pods

 

kubectl get deployments

 

kubectl get services

We should see that we have created one deployment, one pod and one service
for our video-streaming microservice.

Did you have any problems deploying the microservice? If so, please see
chapter 11 for help debugging deployment problems.

6.12.6 Testing the deployed microservice

Our microservice is deployed, but we still have to test that it is functioning
correctly.

This is why we set the type to LoadBalancer in listing 6.2 to, so that an
externally accessible IP was allocated. We can use this to send HTTP
requests to our microservice to test it. The question is how do we find out the
IP address?

Well, you might have noticed earlier how the external IP address was listed
when you invoked:

kubectl get services

Here’s what the output looked like for me. When you see this you see that a
different IP address has been allocated for your own microservice:

NAME             TYPE          CLUSTER-IP    EXTERNAL-IP     PORT(S)

kubernetes       ClusterIP     10.0.0.1      <none>          443/TCP

video-streaming  LoadBalancer  10.0.221.252  20.127.176.147  80:32545/TCP



We can pluck the IP address from the output and use it to test our
microservice. So in this case the IP address is 20.127.176.147 and so I point
my browser at http://20.127.176.147/video. If the streaming video plays, it
means the microservice is working. You can do the same, but you’ll have to
use the IP address that was allocated to your microservice. You can’t use my
IP address, because my version of this microservice won’t even be running
by the time you read this.

Normally for a production microservice we wouldn’t make it accessible to
the outside world unless it really does have to be available to the public.
Exposing the video-streaming microservice like this is just a temporary
measure while we are experimenting and learning Kubernetes. In chapter 11
we’ll talk about other ways to test your microservices without exposing them
to the whole world.

6.12.7 Deleting the deployment

When we are done testing our microservice, we can delete the deployment
now to clean up our cluster. Invoke this command to delete the deployment:

kubectl delete -f scripts/deploy.yaml

This removes the deployment, the pod and the service: everything that was
created from that configuration file should now be gone. If you like you can
confirm that everything is deleted by invoking kubectl get pods, kubectl
get deployments and kubectl get services to confirm that everything we
created is now gone.

Practice deploying and deleting your microservice as many times as you like.

6.12.8 Destroying your infrastructure

After we have finished experimenting with our cloud-based Kubernetes
cluster we can delete it to save it consuming all our free trial credits,
assuming there’s nothing else we want to do with it.

In the next chapter we’ll be rebuilding our container registry and our
Kubernetes cluster through code using Terraform, so you don’t need to keep



this particular container registry or cluster around for anything else in this
book.

Of course feel free to leave your Kubernetes cluster running if you’d like to
continue experimenting, learning or running your application.

To delete your Kubernetes cluster, open the Azure Portal, find the page for
your cluster (click through All Resources to find it) then click the Delete
button near the top of the page. This will delete your cluster and associated
resources (like nodes). Check in All Resources to make sure it’s gone! In a
similar way you can delete your container register.

6.12.9 What have we achieved?

Up to now, we have built the Docker image for our microservice and
published it to our container registry. We then created a Kubernetes cluster
through the Azure Portal and deployed our microservice to it. This is very
close to how our production environment will work; the key difference is that
later the creation of our infrastructure and the deployment of our
microservices will be automated.

At this point, we have deployed just one single microservice, but each step
forward brings us closer to the full deployment of the FlixTube microservices
application.

6.13 Kubectl review

This has been another big chapter! I bet the Docker chapter is starting to look
simpler in retrospect.

To review, Kubectl is the command line tool we used to interact with our
Kubernetes cluster to deploy and manage our microservices. We used it to
deploy our video-streaming microservice first to our local Kubernetes
instance and then to our cloud-based managed Kubernetes cluster that we
created on Azure.

Before continuing, let’s review the Kubectl commands we have used in this



chapter.

Table 6.2 Review of Kubectl commands

Command Description

kubectl version

Shows the version number
of the Kubernetes client
and server.

kubectl config current-context

Shows which Kubernetes
cluster we are currently
connected to.

kubectl config use-context <cluster-name>

Connects to a named
Kubernetes cluster,
assuming you have the
context already
configured for it.

kubectl config use-context docker-desktop

Connects to the local
Kubernetes cluster
running under Docker
Desktop.

kubectl config get-contexts
Shows all connections we
have configured.

Applies a Kubernetes
configuration (Yaml) file



kubectl apply -f <file>

to the cluster, creating the
requested objects there.
We used this command to
deploy our microservice
to Kubernetes.

kubectl delete -f <file>

Deletes all objects
specified in the
configuration file from the
cluster.

kubectl get pods
Shows the pods that have
been created in the cluster.

kubectl get deployments

Shows the deployments
that have been created in
the cluster.

kubectl get services

Shows the services that
have been created in the
cluster.

This is particularly useful
to find the IP address and
port for externally
accessible services.

6.14 Continue your learning

In this chapter, we started learning how to create a production environment
on Kubernetes. We started simply using the local Kubernetes instance that



comes with Docker Desktop and then we graduated to creating a managed
Kubernetes cluster through the Azure Portal user interface.

Kubernetes though is a deep and complex technology, definitely the most
complex technology we will talk about in this book. You can spend many
months working with it before you dig all the way to the bottom! In this
book, we will barely scratch the surface of what Kubernetes has to offer. To
dive deeper, I recommend the following books:

Core Kubernetes by Jay Vyas and Chris Love (Manning, May 2022)
Kubernetes in Action, Second Edition by Marko Lukša (Manning, est
2023)
Kubernetes for Developers by William Denniss (Manning, est. 2023)
Learn Kubernetes in a Month of Lunches by Elton Stoneman (Manning,
February 2021)

You can learn more about Kubernetes under Docker Desktop by reading the
Docker documentation:

https://docs.docker.com/desktop/kubernetes/

You can learn more about Kubernetes by reading the Kubernetes
documentation here:

https://kubernetes.io/docs/home/

To learn more about Kubernetes objects and how to express them in Yaml
configuration files, please start here:

https://kubernetes.io/docs/concepts/overview/working-with-
objects/kubernetes-objects/

To find out what else you can do with the Azure CLI tool, read the
documentation here:

https://docs.microsoft.com/en-us/cli/azure/

You can read more about the managed Kubernetes service on Azure here:



https://docs.microsoft.com/en-au/azure/aks

6.15 Summary

Going to production early is a good idea because that’s where we need
to put our product so customers can see it and give feedback. Also
because it’s easier to go to production while our application is still
small.
Kubernetes is a container orchestration platform that is becoming an
industry standard for running microservices.
A Kubernetes cluster is composed of nodes (virtual machines), pods and
containers.
The pod is the unit of computation for Kubernetes and it can host
multiple containers.
A Kubernetes “deployment” is responsible for keeping the pod (or pods)
for our microservice running. If a pod crashes or becomes unresponsive,
the deployment will automatically replace it with a fresh instance.
A Kubernetes “service” is responsible for creating a DNS record that
exposes our microservice within the cluster and, if we choose to, makes
it available to the outside world.
Using the local Kubernetes instance that is bundled with Docker
Desktop is a great way to learn, experiment and practice creating
deployments using Kubernetes.
We use Kubectl, the Kubernetes CLI tool, to interact with Kubernetes
and create deployments.
A Kubernetes deployment is created by applying a Yaml configuration
file to our cluster.
Although setting up Kubernetes on your own hardware is quite
complicated and difficult, creating a managed Kubernetes cluster
through the Azure Portal user interface is quite simple in comparison.
We can use the Azure CLI tool to connect our container registry and
Kubernetes cluster. This effectively “pre-authenticates” the cluster to
pull images from the container registry which simplest the setup of our
deployment.



7 Infrastructure as code
This chapter covers

Building production infrastructure for your application
Working with Terraform to create infrastructure through code
Creating a Kubernetes cluster to host microservices

In this chapter we scale up the difficulty significantly and start using code to
script the creation of our instructure. That is to say we’ll now be using the
technique known as instructure as code to automated the creation of our
infrastructure.

So far in the book we have manually created our cloud-based infrastructure
through the Azure Portal. In chapter 3 we manually created a container
registry. In chapter 6 we manually created a Kubernetes cluster. In this
chapter we’ll be creating these same things again, but this time we won’t be
creating them manually and we won’t be using the Azure Portal; instead we’ll
write code and run it on our local computer to create our infrastructure in the
cloud.

This chapter is significantly more difficult than anything before it. As such
I’ve designed this chapter to be skipped, so if this is too much or not
interesting, move directly to chapter 8 if you like. You can come back to this
chapter again in the future. But if you are keen to learn Terraform,
infrastructure as code or just because you want to fully automate the creation
of your infrastructure alongside the deployment of your microservices
application, please continue reading.

7.1 New tools

This chapter introduces Terraform, another tool important enough to be in the
title of the book. We’ll use Terraform to create the infrastructure for our
microservices application, including our Kubernetes cluster.



Table 7.1 New tools in chapter 7

Tool Version Purpose

Terraform 1.3.1 Terraform allows us to script the creation of cloud
resources and application infrastructure.

7.2 Getting the code

To follow along with this chapter, you need to download the code or clone
the repository.

Download a zip file of the code from here:
https://github.com/bootstrapping-microservices-2nd-edition/chapter-7
You can clone the code using Git like this:

git clone https://github.com/bootstrapping-microservices-2nd-edition/chapter-7.git

For help on installing and using Git, see chapter 2. If you have problems with
the code, log an issue against the repository in GitHub.

7.3 Prototyping our infrastructure

How do we go about writing code that creates infrastructure? It’s not that
different to writing any code that we eventually want running in production.
We start by writing and testing the code on our local development computer.
This works a bit differently to normal coding though. With normal coding
we’ll test locally and see the result locally. When coding with Terraform
we’ll run the code locally to test it, but we’ll see the results, i.e. infrastructure
being created, in the cloud. Figure 7.1 shows how we’ll use Terraform from
our local computer to build cloud-based infrastructure.

That’s how we are working in this chapter: Running Terraform locally, but
seeing the results appear in the cloud. The ultimate goal is for updates to our



infrastructure to be completely automatic and applied via code, but we won’t
see the full automation of this until the next chapter. In this chapter we are
simply manually invoking Terraform from our local computer to run the code
and creating our infrastructure in the cloud.

Figure 7.1 Creating infrastructure with Terraform

7.4 Infrastructure as code

Infrastructure as code is the name of the technique we are using to bring our
application to production. It’s called infrastructure as code because rather
than manually creating infrastructure (say, through a GUI - the Azure Portal -
like we did in chapters 3 and 6), we are now writing code so that we can
automate the creation of our infrastructure.

Not only will this code describe our infrastructure, but we will also execute it



to actually create our infrastructure. Using code to create infrastructure means
that we can reliably and repeatedly create and recreate our infrastructure on
demand and as often as we like.

The fact that this code both describes and builds our infrastructure makes it a
form of executable documentation. It’s a statement about how we want our
infrastructure to look, and unlike normal (i.e., non-executable)
documentation, it’s a form of documentation that’s never going to go out of
date.

Through infrastructure as code, creating and updating our infrastructure
becomes a kind of coding task. The best form of infrastructure as code uses a
declarative language instead of a procedural one. This means it describes the
configuration and layout of the infrastructure instead of the step-by-step
instructions for building it. We prefer the declarative format because we can
let our tools do the heavy lifting, and these can figure out the best way to
make changes to our infrastructure.

Figure 7.2 illustrates the concept of infrastructure as code. The code for our
infrastructure lives in a code repository such as Git. From there, we execute it
to create, configure, and maintain our cloud-based infrastructure.

Figure 7.2 Infrastructure as code uses executable code to create infrastructure.



Infrastructure as code is not just important because we can use our well-tested
code to reliably and repeatedly create our infrastructure. It’s also important
because it’s what allows us to automate the creation and maintenance of our
infrastructure. As such, it’s a crucial enabler for continuous delivery, which
we’ll see in the next chapter where we build our automated deployment
pipeline.

7.4.1 Authenticate with your Azure account

Before Terraform can create infrastructure in Azure on our behalf, we must
first authenticate with Azure using the Azure CLI tool just like we did in
section 6.10 in the previous chapter.

If you aren’t already logged in, do that now with the Azure CLI:

az login



For the full details on installing the Azure CLI and authenticating with Azure,
please refer back to section 6.10.

7.5 Which version of Kubernetes?

We use the Azure CLI now to determine the versions of Kubernetes are
available in the particular region where we’d like to create our cluster. Here’s
an example that lists versions of Kubernetes in the East US region:

az aks get-versions --location eastus

The output is in JSON and shows the available versions of Kubernetes in that
location, but it isn’t very readable. We can make it readable using table
output formatting like this:

az aks get-versions --location eastus --output table

The output will look something like this:

KubernetesVersion    Upgrades

-------------------  ------------------------

1.24.6               None available

1.24.3               1.24.6

1.23.12              1.24.3, 1.24.6

1.23.8               1.23.12, 1.24.3, 1.24.6

1.22.15              1.23.8, 1.23.12

1.22.11              1.22.15, 1.23.8, 1.23.12

From this list, you should select the most recent version of Kubernetes.
That’s 1.24.6 at the time of writing. But by the time you read this, there will
be a more recent version. It’s quite possible that version 1.24.6 will have
expired (no longer available through Azure). Be sure to choose a version
number that’s currently available! Make a note of your chosen version
number. We’ll need it soon to create our cluster.

7.6 Creating infrastructure with Terraform

Now we are coming to the point where we’ll actually start to create our
infrastructure! We could build our infrastructure manually, either using the



GUI (e.g. the Azure Portal) like we did in the previous chapter or by using
the Azure CLI tool. To see how to use the Azure CLI see my blog post:

https://www.codecapers.com.au/kub-cluster-quick-2/

In this chapter, though, we are building our infrastructure in an automated
fashion using code. From here on in, we are using infrastructure as code to
automate the process of infrastructure creation and, hence, making it reliable,
repeatable and automatic. We’ll do this with Terraform, an amazingly
flexible tool for executing Hashicorp Configuration Language (HCL) code.
HCL is the declarative configuration language in which we’ll define our
infrastructure. Executing this code with Terraform actually creates our
infrastructure in the cloud.

Note

In the future, I’ll refer to HCL simply as Terraform code.

Terraform supports multiple cloud vendors through plugin providers as figure
7.3 illustrates. For the examples in this chapter, we are using Terraform to
script the creation of infrastructure on Microsoft Azure.

Figure 7.3 Using Terraform to build infrastructure with various cloud vendors



If learning HCL seems in any way daunting, remember this: HCL is actually
just like YAML or JSON, but it’s a different format. Hashicorp created HCL
to be a human-readable configuration format that is also machine-translatable
to YAML and JSON. Think of it as YAML or JSON but structured to be
more friendly for humans.

7.6.1 Why Terraform?

Terraform is a tool and a language for configuring infrastructure for cloud-
based applications. Terraform makes it easy to reliably and repeatedly create
and configure cloud infrastructure. It’s incredibly flexible, as its functionality
is extended through plugin providers. This is how it supports multiple cloud



vendors! Terraform already has robust providers implemented for Azure,
AWS, and Google Cloud.

Just like with Kubernetes, we are learning transferable skills that can be used
with all the major cloud vendors. No matter which cloud we use, we can
make use of Terraform to build our infrastructure. We can even create our
own providers and extend Terraform to work with platforms that it doesn’t
yet support.

To me, Terraform seems like the universal configuration language. It’s one
language we can use to create all of our infrastructure. Terraform is open
source, and you can find the code here:

https://github.com/hashicorp/terraform

7.6.2 Installing Terraform

Installing Terraform is simply a matter of downloading the binary executable
for your operating system and moving it to a directory that’s included in your
system’s PATH environment variable. Download the latest version of
Terraform from here:

https://www.terraform.io/downloads.html

After installing Terraform, test it from your terminal with the following
command:

terraform --version

At the time of writing, I’m using version 1.3.1. Future versions should be
backward compatible.

7.6.3 Terraform project setup

Before we get started with Terraform, let’s become familiar with what a
Terraform project looks like. In figure 7.4 we take a peek at a more complete
Terraform project that is example-3 from later in this chapter. We are
jumping ahead just to get an idea of the structure of a Terraform project.



As you can see in figure 7.4, a Terraform project is composed of a number of
Terraform code files; those are the files ending in the .tf extension. These
files contain the Terraform code that, when executed by Terraform, creates
the infrastructure for our application.

You should be able to read the filenames in figure 7.4 and get the gist of their
purpose. I’ve used a naming convention where each script file is named
according to the piece of infrastructure that it creates. When you read through
the filenames in figure 7.4 , you can read it like this: container-
registry.tf creates the container registry, kubernetes-cluster.tf creates
the Kubernetes cluster, and resource-group.tf creates the Azure resource
group. Each of these files is named so that we can easily see at a glance what
it does. See if you can guess the purpose of the files that I didn’t mention.

Figure 7.4 The structure of a more complete Terraform project (we have jumped forward to peek
at example-3 from later in this chapter).

The structure and filenames in this example project are not dictated by
Terraform. This just happens to be a convention that I like to use. For your
own projects, a different structure might be better, so feel free to experiment
and find the best structure for your own project.

7.7 Creating an Azure resource group for your
application

After looking at the project structure of example-3, let’s now dial back the



complexity and reset back to the much simpler example-1. We need to start
our Terraform journey somewhere, and our starting point should always be
simple. This is the case with example-1, which contains the simplest
Terraform code from where to start creating our infrastructure.

The first thing we must do is to create an Azure resource group that groups
together all the other Azure resources we’ll create in this chapter. Back in
chapter 3, we manually created a resource group through the GUI in the
Azure Portal. Now, we create a resource group again, but this time, we aren’t
doing it manually. We’ll build it through code using Terraform.

Example-1 contains two Terraform code files: providers.tf and resource-
group.tf. The script file, resource-group.tf, is the one that actually creates the
resource group. The other file, providers.tf, contains configurations for the
Terraform provider plugins; we’ll talk more about that soon.

We will use the command terraform apply to execute our Terraform code.
Figure 7.5 shows how our code files are input to Terraform, which executes
our code and creates the flixtube resource group in Azure.

Figure 7.5 Using Terraform to create an Azure resource group



7.7.1 Evolutionary architecture with Terraform

Terraform is a tool for building out our infrastructure little-by-little in an
iterative fashion—something we call evolutionary architecture.

Each of the examples in this chapter can be run standalone, so you can easily
create the infrastructure at each point by jumping to any of the examples and
invoking Terraform for that code. However, the usual way to develop
infrastructure is through iterative prototyping. Write a bit of code in
Terraform, then apply it and test that the right infrastructure was created.
Then write some more code, apply it and test it again. This is just like normal
coding, except the results we are getting, the infrastructure we are creating,
appears in the cloud.

This is the process we are emulating in this chapter: Repeatedly writing code,
applying and testing it until we have built out the infrastructure the way we
want it. When the code is finished we can then put it on automatic in a
continuous deployment pipeline, but that’s something we’ll explore in the
next chapter.

Figure 7.6 Iterative evolution of infrastructure with Terraform



7.7.2 Scripting infrastructure creation

Listing 7.1 shows our first Terraform code file. It doesn’t get much simpler
than this. Using the Azure provider, we will create an Azure resource group
simply by declaring it in three lines of Terraform code.

Listing 7.1 Creating an Azure resource group (chapter-7/example-1/resource-group.tf)

resource "azurerm_resource_group" "flixtube" { #A

 

  name = "flixtube" #B

 

  location = "eastus" #C

}

Through Terraform code, we are defining the components of our
infrastructure. In listing 7.1, we have defined the first piece of our
infrastructure. We have declared an Azure resource group called flixtube
with the type azurerm_resource_group. This is a Terraform resource type
that comes from the Azure provider and gives us the ability to create a
resource group on Azure. Soon we’ll run Terraform, and it will create this



resource group in our Azure account just how we have configured it in listing
7.1.

7.7.3 Fixing provider version numbers

Before we initialize our Terraform project, let’s talk about that other file in
our project. Listing 7.2 shows the code for providers.tf. This is the file where
we define and configure all of our Terraform provider plugins. Here we are
only requiring the Azure provider and we aren’t passing any parameters to
the provider, so this file is quite small.

Listing 7.2 Configuring Terraform provider plugins (chapter-7/example-1/providers.tf)

terraform {

  required_providers {

    azurerm = { #A

      source  = "hashicorp/azurerm"

      version = "~> 3.25.0" #B

    }

  }

 

  required_version = ">= 1.3.1" #C

}

 

provider "azurerm" {

  features {} #D

}

Note that the line of code in listing 7.2 that fixes the Azure provider to
version 3.25.0 can be omitted and if we do this Terraform will download the
latest version of it. This is a useful way to upgrade to a new version of a
provider. Delete the specified version and Terraform downloads the latest
version. Its version number is printed to the output, so we can copy it out and
then plug it back into providers.tf, thus fixing our project to the new version.

We should always fix the version numbers for our dependencies when that’s
possible. Not doing so can lead to unexpected problems down the road. If you
don’t fix your project to a particular version it means that it will
automatically be upgraded to new versions as they are released. As a result,
your Terraform code can break in ways that are often difficult to predict or



understand. This is even worse when you consider that this code is designed
to eventually run in an automated and unattended deployment pipeline, where
it can be much more difficult to diagnose problems. So please take care to
preemptively fix version numbers for dependencies in your projects. So in the
future, we aren’t exposed to the risk of having our dependencies
automatically changed underneath us.

7.7.4 Initializing Terraform

We have taken the first steps in creating our infrastructure. We wrote a
simple script that creates an Azure resource group. But before we invoke
Terraform and execute this script, we must first initialize Terraform.

When we initialize Terraform, it downloads the provider plugins required for
our script. At this point, we only need the Azure provider. To initialize
Terraform, first change directory to the location of the Terraform code:

cd chapter-7/example-1

Now run the terraform init command:

terraform init

You should see some output indicating that the Azure provider plugin is
downloaded; for example,

Initializing the backend...

 

Initializing provider plugins...

- Finding hashicorp/azurerm versions matching "~> 3.25.0"...

- Installing hashicorp/azurerm v3.25.0...

- Installed hashicorp/azurerm v3.25.0 (signed by HashiCorp)

 

--snip--

 

Terraform has been successfully initialized!

Once this completes, we are now ready to execute our Terraform code. We
must always run the terraform init command at least once for each
Terraform project before we execute any Terraform code in that directory.



You must also run it at least once for each new provider that you use. Each
time you invoke terraform init, it only downloads those providers that it
has not yet cached.

Don’t worry if you forget to run terraform init, it won’t cause you any
problem. When you forget, Terraform reminds you that you need to do that
first.

7.7.5 By-products of Terraform initialization

With Terraform initialized, we can now inspect the files that the init
command has created or downloaded. Have a look through the example-1
directory and see what you can find. You won’t normally need to do this, but
it can be interesting to understand a little more about how Terraform works.
Figure 7.7 shows the example-1 project after running terraform init.

Notice that the hidden subdirectory .terraform was created and contains a
bunch of files. This is where Terraform stores the provider plugins that it has
downloaded. These are cached here to be reused each time we invoke
Terraform.

Figure 7.7 Files downloaded or created while running terraform init

7.7.6 Building your infrastructure

After initializing our Terraform project, we are ready to invoke terraform



apply, executing our Terraform code and building the first iteration of our
infrastructure. If you need to, refer back to figures 7.5 and 7.6 for a graphical
depiction of the apply command.

From the same directory where you invoked the init command, now invoke
this command:

terraform apply

The apply command gathers together and executes all of the Terraform code
files in our project. (So far we only have two code files, but soon we’ll have
more.)

You should see output like this:

Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the

following symbols:

  + create

 

Terraform will perform the following actions:

 

  # azurerm_resource_group.flixtube will be created

  + resource "azurerm_resource_group" "flixtube" {

      + id       = (known after apply)

      + location = "eastus"

      + name     = "flixtube"

    }

 

Plan: 1 to add, 0 to change, 0 to destroy.

 

Do you want to perform these actions?

  Terraform will perform the actions described above.

  Only 'yes' will be accepted to approve.

 

  Enter a value:

This output describes the planned update to our infrastructure. Terraform is
telling us the changes that it is about to make. (If you like you can do this in
two phases, create the plan first with terraform plan and then invoke the
plan with apply).

Terraform is now waiting for us to approve the plan before it continues and
actually updates our infrastructure. It’s a good idea at this point to scan the



output and check that the upcoming changes are OK and what we expect.
Once happy with the plan, type yes and press Enter to allow Terraform to
proceed.

Terraform now creates the infrastructure we requested. In this case, on our
first invocation of Terraform, the flixtube resource group is created in our
Azure account. This should happen pretty quickly (because at the moment
it’s still a small script and doesn’t do much). You’ll see a success message
like this:

azurerm_resource_group.flixtube: Creating...

azurerm_resource_group.flixtube: Creation complete after 3s [id=/subscriptions/6459deaa-43cc-40e5-b1d4-d9fa50105dc7/resourceGroups/flixtube]

 

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

The output gives a quick summary of what was added, changed, and deleted.
In this case, it confirms that we have created one cloud resource, our Azure
resource group.

Now let’s manually check what the change looks like. Open your web
browser and navigate to the Azure portal at https://portal.azure.com/. Check
for yourself that an Azure resource group has indeed been created in your
Azure account. In the portal, click Resource Groups and verify that the
flixtube resource group is now in the list. This is what running your first
Terraform code has just created!

Of course, you don’t always need to check that every resource has been
created by manually inspecting the Azure Portal. Normally if Terraform
succeeds you can assume that the requested resources were created. We are
just doing this in the first instance so that you can connect the dots about
what has just happened.

7.7.7 Understanding Terraform state

At this point, after invoking terraform apply in our project for the first time,
Terraform will have generated its state file terraform.tfstate. You should see
this file in the same directory as your Terraform code files.

It’s important that we understand Terraform’s persistent state management;



although, most of the time we won’t care what’s in the state file. But it’s
good to know why it’s there and how to deal with it.

Let’s take a look at our Terraform state file and see what it looks like after we
have created our first piece of infrastructure. This is a good time to look at the
state file: while it’s still small and easily understandable. Invoke the cat
command to display the state file:

cat terraform.tfstate

Your output will look something like this:

{

  "version": 4,

  "terraform_version": "1.3.1",

  "serial": 2,

  "lineage": "e359677a-04a3-1312-3f7c-30ddd90630f7",

  "outputs": {},

  "resources": [

    {

      "mode": "managed",

      "type": "azurerm_resource_group",

      "name": "flixtube",

      "provider": "provider[\"registry.terraform.io/hashicorp/azurerm\"]",

      "instances": [

        {

          "schema_version": 0,

          "attributes": {

            --snip--

            "location": "eastus",

            "name": "flixtube",

            "tags": null,

            "timeouts": null

          },

          --snip--

        }

      ]

    }

  ],

  "check_results": []

}

You can see that our Terraform state file has one item in the resources field.
The details of the resource group we just created were recorded in this state



file.

The first time we invoke terraform apply, the state file is generated.
Subsequent invocations of terraform apply will use this state file as input.
Terraform loads the state file and then refreshes it from the live
infrastructure. Figure 7.8 shows how successive invocations of Terraform are
connected by both the live infrastructure and the state file.

Figure 7.8 Understanding Terraform state is crucial to working with Terraform.

So what exactly is the point of the state file? If our infrastructure is defined in
our Terraform code, and Terraform can know the current state directly from
the live infrastructure, why must it persist the state in a separate file? There
are two points to consider to understand why the state file is necessary:

This Terraform project doesn’t own all the infrastructure in your Azure
account.
As we make changes to our Terraform code (to change our
infrastructure), it becomes out of sync with the live infrastructure. (We
are relying on Terraform to change the live infrastructure to make it look



like our declared infrastructure.)

Let’s consider the first point. An Azure subscription may well be shared
among multiple projects. Infrastructure in that account might have been
created by other Terraform projects or even by entirely different means (e.g.,
created manually in the Azure portal or with the Azure CLI tool).

As you follow the examples in this book, you might have an entire Azure
subscription dedicated to it. But this won’t be the case if you are working for
a company that is managing multiple projects or if you are managing multiple
projects yourself. In that case, an Azure subscription is shared between
projects, with the subscription containing multiple sets of infrastructure.

The point I’m making is that Terraform can’t and, indeed, doesn’t assume
that it owns everything in the Azure account that you are allowing it to access
and modify. What this means is that Terraform doesn’t just read the live
infrastructure and assume that it owns everything. It only assumes ownership
of infrastructure that is either declared in our infrastructure code or that is
recorded in the state file. The first thing that Terraform does is load your code
and your state file. That’s how it knows the set of infrastructure that it owns.

Terraform always wants to be up to date though, so after loading the state
file, it refreshes the state directly from the live infrastructure. This allows
Terraform to handle configuration drift when the actual state has changed
(e.g., because someone tweaked it manually) from the previously recorded
state.

You can hopefully see how this affects performance. Terraform only queries
those parts of the live infrastructure for which it is responsible; those parts
which it knows about because of the recorded state. If, instead, it queried all
live infrastructure, that could be an expensive and time-consuming operation,
depending on the total amount of infrastructure that exists in our Azure
account.

Now, let’s consider the second point mentioned. As we change our Terraform
code (to change our infrastructure), it becomes out of sync with our live
infrastructure. That’s because we are leading changes to the infrastructure
with changes in the code. That’s why we call it infrastructure as code.



We can add, update, and delete infrastructure by modifying our code. How
does Terraform know what’s changed? Terraform compares its recorded state
with what’s in our code. Terraform then automatically figures out the precise
set of changes it needs to update our infrastructure. It’s amazing when you
think it through, just how smart Terraform is and how much work it can do
on your behalf.

Now you know more than you probably wanted to about Terraform state, but
honestly, it’s crucial that we have a good understanding of Terraform state
before we can implement it properly in our CD pipeline. We’ll come to that
in the next chapter. As you proceed through the examples in this chapter and
the next, feel free to look at the state file again to see how it grows and
changes.

7.7.8 Destroying and recreating your infrastructure

We have bootstrapped our infrastructure! It’s not much yet, but it’s a good
start. Before we continue evolving our infrastructure, let’s take some time out
to experiment with destroying and rebuilding it.

The reason we are choosing this moment to experiment is that it’s more
efficient to do this experimentation while our infrastructure is small. At the
end of this chapter, we’ll have added a Kubernetes cluster, and that will take
much more time to destroy and rebuild.

Not to mention that eventually, you’ll need to clean up these Azure resources
anyway. You don’t want to end up paying for them (unless, of course, you
are developing a real product). It costs money to run this infrastructure;
although, I hope you are starting with the free credit from Azure. But please,
don’t leave it running longer than you need it!

Now, go ahead and destroy your current infrastructure with the Terraform
destroy command like this:

terraform destroy

Your output will look something like this:



Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the

following symbols:

  - destroy

 

Terraform will perform the following actions:

 

  # azurerm_resource_group.flixtube will be destroyed

  - resource "azurerm_resource_group" "flixtube" {

      - id       = "/subscriptions/6459deaa-43cc-40e5-b1d4-d9fa50105dc7/resourceGroups/flixtube" -> null

      - location = "eastus" -> null

      - name     = "flixtube" -> null

      - tags     = {} -> null

    }

 

Plan: 0 to add, 0 to change, 1 to destroy.

 

Do you really want to destroy all resources?

  Terraform will destroy all your managed infrastructure, as shown above.

  There is no undo. Only 'yes' will be accepted to confirm.

 

  Enter a value:

Just like the apply command, destroy shows us its plan. These are the
changes it will make. To continue, we type yes and press Enter. Terraform
then does the work and displays a summary:

azurerm_resource_group.flixtube: Destroying... [id=/subscriptions/6459deaa-43cc-40e5-b1d4-d9fa50105dc7/resourceGroups/flixtube]

azurerm_resource_group.flixtube: Still destroying... [id=/subscriptions/6459deaa-43cc-40e5-b1d4-d9fa50105dc7/resourceGroups/flixtube, 10s elapsed]

--snip--

azurerm_resource_group.flixtube: Destruction complete after 1m23s

 

Destroy complete! Resources: 1 destroyed.

As you have finished with each example in this chapter, you should invoke
destroy to clean up the infrastructure that you created. If you are doing your
own iterative prototyping though you don’t need a destroy before doing each
new apply. Instead just make the changes to your Terraform code then
invoke terraform apply again. You can do this repeatedly as you feel your
way through the creation of your infrastructure.

You could also clean up by manually deleting Azure resources through the
Azure Portal or the Azure CLI tool. But it’s easier to do this with the destroy
command because you don’t have to think about it. It also means you won’t



accidentally delete other infrastructure, say, if you are sharing the Azure
subscription with other projects.

After a practice run with terraform destroy, it’s simple to recreate the
infrastructure by invoking terraform apply again:

terraform apply

Practice this as many times as you want. This process of destroying and
rebuilding your infrastructure helps you comprehend the fact that you are
actually managing infrastructure with executable code! You can destroy and
create your infrastructure at will with no manual effort. At this early stage, it
might not seem like much, but the significance of this increases as your
infrastructure and application grow larger and more complex.

In fact, you may have already realized that we can use our Terraform code to
create multiple copies of our infrastructure! In chapter 11, we’ll learn how to
parameterize our Terraform code to create separate instances for
development, testing, and production. If that doesn’t excite you, I don’t know
what will.

7.7.9 What have we achieved?

We now have Terraform installed and we have coded a fledgling
infrastructure. Terraform is the tool we use for infrastructure as code. This is
the technique where we store our infrastructure configuration as executable
code (e.g., in Terraform code files) that we can use to create, manage, and
destroy our infrastructure.

We created our first Terraform code files and initialized our project using
terraform init. Then we invoked terraform apply running the code to
create an Azure resource group. Then we learned how to destroy and recreate
our infrastructure using terraform destroy followed by terraform apply.

7.8 Creating your container registry

The next step for our infrastructure is to create a private container registry,



which we need to publish our Docker images before we deploy our
microservices.

If you remember back in chapter 3, we learned how to build and publish
Docker images. In that chapter, we manually created a container registry
through the GUI in the Azure Portal. Now that we have a basic understanding
of Terraform, we will revisit that territory and create our container registry
with code.

7.8.1 Continuing the evolution of our infrastructure

We are now moving to example-2 in the chapter 7 code repository which
continues on from example-1. You can move directly to the example-2
project and run terraform init to get started:

cd chapter-7/example-2

terraform init

When moving to the second example, don’t forget to first destroy any
infrastructure you created for the first example.

7.8.2 Creating the container registry

Listing 7.3 shows the newest Terraform code file that creates our container
registry. To run this code for yourself you must first change the name of
the registry. That’s because Azure container registry names must be unique.
It won’t let you use a name that has already been used (e.g. flixtube).

Listing 7.3 Creating our private container registry (extract from chapter-7/example-2/container-
registry.tf)

resource "azurerm_container_registry" "container_registry" { #A

  name                = "flixtube" #B

  resource_group_name = azurerm_resource_group.flixtube.name #C

  location            = "eastus" #D 

  admin_enabled       = true #E

  sku                 = "Basic" #F

}

 

# --snip--



Note

In case you were wondering, a SKU or stock keeping unit is a different
version of a product. It’s a weird name I know. What this means here is that
we are using the Basic version of the container registry.

Take note of how the value of resource_group_name is set from the
properties of a resource that is defined in another file (the file resource-
group.tf that we looked at in figure 6.1). These two resources are now linked
via the Terraform resource graph. This is how Terraform manages the
dependencies between resources. It’s how Terraform knows the order in
which it should execute our script files. This link is how Terraform knows it
must create the resource group before it creates the container registry.

Let’s invoke the apply command to create our updated infrastructure:

terraform apply -auto-approve

Note that we use the -auto-approve argument this time. That means we
don’t have to type yes each time to approve the changes. This is convenient
while we are prototyping our infrastructure, but it becomes essential in the
next chapter, when we create our CD pipeline.

At that point, we will need to invoke Terraform in an automated and
unattended manner. There will be no person there to do the approval!
Because of this, we’ll now start using -auto-approve to run Terraform in
non-interactive mode.

As we start to create more complex infrastructure now, you might have to
wait a bit longer than last time. Once it’s finished, you’ll see output similar to
before; Terraform is showing us what’s changed in our infrastructure.

7.8.3 Terraform outputs

Tacked on the end of the output, you can see values displayed from
Terraform outputs. These gives us the details of our new container registry:

Outputs:

 



registry_hostname = "flixtube.azurecr.io"

registry_pw = <sensitive>

registry_un = "flixtube"

Terraform (or the underlying plugin providers) often produces configuration
information that we’d like to know. We can use Terraform outputs to extract
generated configuration details from our Terraform code. In listing 7.4, you
can see outputs declared to output the URL, username and password for our
new container registry. This causes Terraform to display these values in the
terminal. Output like this can be useful to debug Terraform code and
understand the details of the infrastructure it has created on our behalf.

Listing 7.4 Terraform outputs (extract from chapter-7/example-2/container-registry.tf)

#--snip--

 

output "registry_hostname" { #A

  value = azurerm_container_registry.container_registry.login_server #B

}

 

output "registry_un" { #A

  value = azurerm_container_registry.container_registry.admin_username #B

}

 

output "registry_pw" { #A

  value = azurerm_container_registry.container_registry.admin_password #B

  sensitive = true #C 

}

 

7.8.4 Outputting sensitive values from Terraform

You may have noted in the output from the previous section that the
container registry’s password was redacted. Instead of the actual value for the
password Terraform has replaced it with <sensitive>.

This password is not displayed because it is a sensitive value. In fact in listing
7.4 we added the line sensitive = true. Without it Terraform refuses to run
this code (feel free to remove it and try running the code). Terraform forces
us to acknowledge that this value is sensitive so that we understand that we
might not actually want to output this from our code.



So what’s the point of outputting this password if it’s redacted and we can’t
even see it? Well, we can retrieve the redacted value, we just have to ask for
it by name through Terraform:

terraform output -raw registry_pw

If you do this you’ll see the actual value of the password displayed in the
terminal. You do actually need to know this password soon (along with the
URL and username) to be able to log into the container registry with Docker
to publish your images to it.

But why are sensitive values redacted in the first place? Terraform is
designed to run in an automated deployment pipeline which we’ll see in the
next chapter. What that means is the pipeline records all the output to the
terminal so that we can browse it after the fact. We need this recorded
information because it’s the only way to know what has happened in past
deployments that were fully automated. It wouldn’t be good for the security
of our deployment process to store that password in plain text output where
potentially anyone in the company might be able to see it. So Terraform
understands that values like this are sensitive, it makes us (the Terraform
coder) acknowledge they are sensitive and it then redacts these sensitive
values from its output in the terminal so they can’t be recorded by our
deployment pipeline.

But wait just a moment, doesn’t the fact that we’ve requested this sensitive
output and been able to retrieve it mean that the sensitive value is actually
stored somewhere locally? Yes it does! In fact if you simply invoke cat
terraform.tfstate to show the contents of the Terraform state file (try it
yourself) you will see the password right there in plain text!

Ok so any good continuous deployment pipeline should nuke this local state
when it has finished running, but still this doesn’t feel great leaving a plain
text password in the file system where who knows who might later be able to
see it.

7.8.5 Just don’t output sensitive values

Of course, the answer to the problem of outputting sensitive values is, just



don’t output them. It’s as simple as that. I’ve included the container registry
password in example-2 just so that we could talk about it and the problems it
presents. Feel free to use sensitive values in outputs when learning Terraform
and experimenting with it. But it’s best if we don’t use these in real
production code where security is important and you’ll see if you look in
container-registry.tf in example-3 that I’ve removed the output for password.
In fact I’ve removed all the outputs. Terraform outputs are useful for
debugging, but we don’t really need them to get the details of the cloud
resources we are creating and in the next section we’ll see a better way to
retrieve the details of our container registry.

7.8.6 Get the details of your container registry

Ok, so we’d prefer not to output sensitive values and in fact we don’t have to
output anything. Because we can easily retrieve the details of our container
registry using the Azure CLI tool and without having to store sensitive details
locally.

Invoke these two commands:

az acr show --name flixtube --output table

az acr credential show --name flixtube --output table

The first command shows general details for the container registry. The
second shows the password for the registry. Note that we have added the
option --output table for more readable output; without that these
commands display JSON formatted output.

Don’t forget to use the name for your own container registry. Here is the
general format:

az acr show --name <your-container-registry-name> --output table

az acr credential show --name <your-container-registry-name> --output table

Invoking these commands shows you the details (URL, name and password)
that you need to interact with your container registry using the Docker
command. You can also find this information by looking up the page for your
container registry in the Azure Portal.



7.8.7 What have we achieved?

We have continued to evolve our infrastructure by adding a container
registry. This is what we need to publish Docker images for our
microservices.

In this section, we added a new Terraform code file and executed it, creating
the new container registry in our Azure account. We learned about Terraform
outputs for debugging our Terraform code and that we probably shouldn’t
output sensitive values.

7.9 Refactoring to share configuration data

You might have noticed in recent code listings that we are starting to repeat
certain configuration values from file to file. This can be a problem when it
comes to changing these values. Ideally, we’d like to be able to change
important values in one place and have these shared between all our
Terraform code files. We can achieve this with Terraform variables, so now
we’ll refactor our code to use variables and share configuration data.

7.9.1 Continuing the evolution of our infrastructure

We now move to example-3 in the chapter 6 code repository. If you like,
jump directly to example-3 and invoke terraform init. If you do this, don’t
forget to first destroy any infrastructure you created for earlier examples.

7.9.2 Introducing Terraform variables

Example-3 in the chapter 7 code repository is a refactoring of example-2,
modified to share configuration values between code files, adding a new file
called variables.tf. Listing 7.5 shows the new code file.

In the listing, you can see how Terraform variables are defined for some of
our most important configuration values. We have variables defined for the
name of our application (flixtube), the location of our data center (eastus),
and more like that.



Listing 7.5 Setting Terraform variables (chapter-7/example-3/variables.tf)

variable app_name { #A

    #B

}

 

variable location { #A

  default = "eastus" #C

}

 

variable kubernetes_version { #A

    #B

}

Note that the variables app_name and kubernetes_version in listing 7.5
don’t have default values set. When you run this code in Terraform it will
request that you enter values for these variables that don’t have defaults.

Listings 7.6 and 7.7 show how we use our new variables. You can see that
the name of our resource group and the name of our container registry are
both set from the value of the app_name variable. We can also set the
locations of these resources from the location variable.

Listing 7.6 Resource group configuration with variables (chapter-7/example-3/resource-group.tf)

resource "azurerm_resource_group" "flixtube" {

 

  name     = var.app_name #A

 

  location = var.location #B

}

Listing 7.7 Container registry configuration with variables (chapter-7/example-3/container-
registry.tf)

resource "azurerm_container_registry" "container_registry" {

  name                = var.app_name #A

  resource_group_name = azurerm_resource_group.flixtube.name

  location            = var.location #B

  admin_enabled       = true

  sku                 = "Basic"

}

 



We have refactored our Terraform code and shared some pertinent
configuration values between our code files using Terraform variables. We
now have one convenient place to go to change these values. For example,
let’s say that we want to change the location of our application. We can do
this simply by changing the location variable in variables.tf.

7.10 Creating our Kubernetes cluster

Now we arrive at our most vital piece of infrastructure. We need a platform
on which to host our microservices in production, and for this, we’ll use
Terraform to create a Kubernetes cluster in our Azure account.

7.10.1 Scripting creation of your cluster

Continuing with example-3, now let’s look at the code to create our
Kubernetes cluster. Listing 7.8 is an extract from a new Terraform code file,
kubernetes-cluster.tf, that defines the configuration of our cluster.

We are making continued use of our Terraform variables here, and some of
these fields will already be familiar to you. Fields such as name, location,
and resource_group_name require no new explanation. However, there are
other fields here that will be completely new.

Listing 7.8 Creating our Kubernetes cluster (extract from chapter-7/example-3/kubernetes-
cluster.tf)

resource "azurerm_kubernetes_cluster" "cluster" { #A

    name                = var.app_name

    location            = var.location

    resource_group_name = azurerm_resource_group.flixtube.name

    dns_prefix          = var.app_name

    kubernetes_version  = var.kubernetes_version #B

 

    default_node_pool { #C

        name            = "default"

        node_count      = 1

        vm_size         = "Standard_B2s"

    }

 

    identity {



        type = "SystemAssigned" #D

    }    

}

 

# --snip--

 

Listing 7.8 is where we define the nodes and VM size that powers our cluster.
Note here that we are building our cluster on only a single node. Although we
could easily add more, but we'll save that for chapter 12.

7.10.2 Attaching the registry to the cluster

We are almost ready to create our Kubernetes cluster. There’s just one more
thing to understand. Just like in chapter 6 we must “attach” our container
registry to our cluster so that our cluster is pre-authenticated to pull images
from it. In chapter 6 we did that by invoking an Azure CLI command; in this
chapter we’ll do the same but through Terraform.

Listing 7.9 shows how we create a role assignment that gives our cluster
permission to pull images from the container registry.

Listing 7.9 Attaching the container registry to the cluster (extract from chapter-7/example-
3/kubernetes-cluster.tf)

# --snip--

 

resource "azurerm_role_assignment" "role_assignment" { #A

  principal_id                     = azurerm_kubernetes_cluster.cluster.kubelet_identity[0].object_id

  role_definition_name             = "AcrPull" #B

  scope                            = azurerm_container_registry.container_registry.id

  skip_service_principal_aad_check = true

}

7.10.3 Building your cluster

We are now ready to run our latest Terraform code to create our Kubernetes
cluster. Invoke the apply command:

terraform apply -auto-approve



It is at this point that Terraform prompts us to enter the variables that don’t
have default values. We must now enter values for app_name and
kubernetes_version because we didn’t specify default values for these in
variables.tf:

var.app_name

    Enter a value: flixtube

 

  var.kubernetes_version

    Enter a value: 1.24.6

The value I choose for app_name is flixtube, but you can’t use that. Because
the name of the container registry is derived from app_name and it must be
unique, you will have to choose a new unique name for your app.

It’s interesting to note here, that by parameterizing our code by app_name we
now have the ability to deploy multiple parallel versions of infrastructure just
using different names. For example you could deploy separate instances with
names flixtube-prod and flixtube-test to separate your production and
testing environments, we’ll talk more about this in chapter 12.

The value for kubernetes_version is the value you noted down back in
section 7.4.1. If you don’t have that you’ll need to return to that section for
instructions on how to choose an available version of Kubernetes.

Terraform now creates your Kubernetes cluster. This can take some time; you
might like to grab a cup of coffee. When it completes your Kubernetes cluster
will be ready to use.

Note

If you are trying to use the Kubernetes version number I’ve used (1.24.6) and
that isn’t working, it is probably because that version is no longer available
on Azure. See section 7.4.1 for instructions on how to choose an available
version.

7.10.4 What have we achieved?

Well done! We created a Kubernetes cluster through Terraform code. If you



had previously been convinced that creating a Kubernetes cluster is very
complicated, you might be surprised at just how much simpler it is than you
had thought!

This is a significant achievement on the road to production. We evolved our
infrastructure through code, step-by-step, finally adding a Kubernetes cluster.
Along the way, we did some refactoring and used Terraform variables to
share important values between our various Terraform code files.

7.11 Deploying to our cluster

So we have a Kubernetes cluster now. We should now try deploying a
microservice to it to make sure that everything is in working order. To test
our new cluster we’ll deploy the example-2 microservice from the chapter-6
code repository. We already deployed that in chapter-6 to test the cluster we
created there, we’ll do it again quickly just for practice and to test our new
cluster.

To start we need to ensure that Kubectl is connected to our new cluster:

az aks get-credentials --resource-group <your-resource-group> --name <your-cluster-name>

Be sure to plug in the details of your resource group and your cluster name.
These are simply derived from the app_name variable whose value you
entered in the previous section. So if your app_name was flixtube, the
command looks like this:

az aks get-credentials --resource-group flixtube --name flixtube

Now in the example-2 project from chapter-6, build the Docker image:

cd chapter-6

cd example-2

docker build -t video-streaming:1 --file Dockerfile-prod .

At this point we must know the details of our container registry. Refer back
to section 7.7.6 to look up those details.

Now tag the image with URL of your container registry:



docker tag video-streaming:1 <registry-url>/video-streaming:1

Now we can login to our container registry:

docker login <registry-url>

After logging we can publish the image for our microservice to the registry:

docker push <registry-url>/video-streaming:1

With the image published we can now deploy it to our Kubernetes cluster:

kubectl apply -f scripts/deploy.yaml

After we can check that our deployment was successful:

kubectl get pods

kubectl get deployments

kubectl get services

From the output of kubectl get services we can pull the EXTERNAL-IP
value and use that to test the web page served by our video-streaming
microservice. Be sure to view the video route of the web page or you won’t
see anything.

When finished testing, we can delete the deployment and clean up our
cluster:

kubectl delete -f scripts/deploy.yaml

We have moved very quickly through testing our cluster. For more details on
using Docker to build and publish images, please refer back to chapter 3. For
more on deploying to Kubernetes please refer back to chapter 6.

7.12 Destroying your infrastructure

Unless you are really building a production application, there’s no need to
leave your infrastructure running. Ultimately it will exhaust your free credits
on Azure and will start costing real money.



So when you are finished experimenting with Terraform and Kubernetes,
please destroy your infrastructure:

terraform destroy

Don’t be afraid to destroy your infrastructure. Because our infrastructure is
created through code we easily destroy it and create it again as many times as
we like. Of course, if you have people (customers or team members)
depending on your infrastructure you can’t destroy it! But in chapter 12 we’ll
talk about ways to minimize the risk of upgrading or replacing your
infrastructure while people are using it.

7.13 Terraform review

It seems like we are getting through big chapter after big chapter! Please
remember that you can come back to any of these chapters at any time to
practice what you have learned.

To review, Terraform is a universal tool for the creation and configuration of
cloud-based infrastructure. We have used it to create the entire infrastructure
for our microservices application. Before continuing, let’s review the
Terraform commands we have added to our toolkit.

Table 7.2 Review of Terraform commands

Command Description

terraform init
Initializes a Terraform project and
downloads the provider plugins

terraform apply -auto-approve

Executes Terraform code files in the
working directory to incrementally apply
changes to our infrastructure



terraform destroy Destroys all infrastructure that was
created by the Terraform project

7.14 Continue your learning

In this chapter, we used Terraform and the technique called infrastructure as
code to create a production environment based on Kubernetes. But there’s
much to learn on infrastructure as code and Terraform, so here some books
that will be useful if you’d like to dive deep:

Terraform in Action by Scott Winkler (Manning, est. Spring 2021)

Infrastructure as Code, Patterns and Practices by Rosemary Wang (Manning)

In addition, the best resource is the Terraform docs. I recommend you start at
their website and click through to the tutorials and documentation. As an
exercise try to find and learn more about the Terraform resources we have
used in this chapter:

https://www.terraform.io/

7.15 Summary

Infrastructure as code is a technique where we store our infrastructure
configuration as code. Editing and executing that code is how we update
our infrastructure.
Terraform is a tool and language for scripting the creation of cloud
resources and application infrastructure through code.
Writing code that creates infrastructure is not that much different to
writing any code that we eventually want running in production, except
even though we can run Terraform code on our local development
computer, the results always appear in the cloud - the resources that are
created by running Terraform code are always created in the cloud.
Terraform allows building out our infrastructure little-by-little in an
iterative fashion, something we call evolutionary architecture.
Terraform is powered by “provider plugins” that means it can be used to



create infrastructure on all the major cloud platforms: AWS, GCP,
Azure and more.
Terraform must be initialized before it can be used, and we should fix
our provider version numbers to avoid nasty surprises.
A Terraform project is initialized with terraform init.
A Terraform project is executed with terraform apply and which runs
the code and creates the resources in the cloud.
Cloud resources created by a Terraform project can be destroyed with
terraform destroy.
Terraform state maintains a record of the system we created and makes
future modifications to the system more efficient.
Terraform outputs can be useful to get output from Terraform for
debugging and understanding what our code is doing, but for production
code we shouldn’t output sensitive values from Terraform.
Terraform variables are useful for sharing configuration and data
through a Terraform project.



8 Continuous delivery
This chapter covers

Using GitHub Actions to create automated workflows
Creating a continuous integration pipeline to run automated tests for a
microservice
Creating an automated deployment pipeline to deploy a microservice to
Kubernetes
Creating an automated deployment pipeline running Terraform to create
and update cloud infrastructure

In this chapter we will reap the benefits of the work we have done in the
previous two chapters. In chapters 6 and 7 we learned how to create
infrastructure using code and how to manually deploy our microservices to
that infrastructure.

In this chapter we learn how to put our deployments on automatic.
Importantly we will learn how to build an automated continuous delivery
pipeline for a microservice using GitHub Actions. This kind of automation
will prove to be a vital part of your success with microservices.

To keep things simple we’ll focus on deploying a single microservice, but
that will give us a recipe that we can apply to all of our microservices moving
forward.

We are in very advanced waters now and you might find this quite difficult.
It’s not that it’s that difficult to build an automated workflow; I’m sure you
will find the basics quite easy in the first and second examples of this chapter.
But the third example relies on everything that you learned in chapters 3 and
6. If you aren’t yet confident using Docker and Kubectl, that will make
completing this chapter more difficult.

If you are happy tinkering with your microservices using manual
deployments, please feel free to skip this chapter and come back to it later.



After all, you really need to feel the pain and tedium of manual deployments
before you can truly appreciate how amazing it is to have a fully automated
deployment system.

Again, practice and experimentation are the key to making the most of your
learning here and by the end of this chapter, with some work on your part,
you’ll be able to trigger the deployment of your microservices and
infrastructure simply by pushing your code to GitHub.

8.1 New tools

This chapter introduces GitHub Actions, a service on top of GitHub that runs
automated workflows in response to actions on our code repository. In this
chapter we’ll use GitHub Actions to automatically test and deploy our code
whenever we push updated code to the main branch of our code repository.

Table 8.1 New tools in chapter 8

Tool Version Purpose

GitHub
Actions N/A

GitHub Actions is a cloud-based service for running
automated workflows triggered by certain events such as
pushing code to a GitHub code repository.

8.2 Getting the code

The example code for this chapter is structured differently than the code for
the rest of the book. The examples from previous chapters were located side-
by-side in a single code repository for each chapter. In this chapter though,
each example is contained in its own separate code repository.

The reason for this is to make it easy for you, the reader, to fork the code
repository and try out GitHub Actions for yourself for each example. If



forking a code repository is new for you, don’t worry; instructions are coming
up soon.

There are three example projects presented in this chapter with the first one
starting here:

https://github.com/bootstrapping-microservices-2nd-edition/chapter-8-
example-1

You can easily find each example by replacing example-1 with the next
number along, like example-2 and then example-3.

For help on installing and using Git to clone a code repository, see chapter 2.
If you have problems with the code, log an issue against the relevant code
repository in GitHub.

8.3 Running the examples in this chapter

Running the code for the example projects in this chapter is pretty different to
every other chapter. For each chapter so far we have run the code on our
personal development computers. However, when we run automated
deployment pipelines, like the examples in this chapter, our code will run in
the cloud.

To try out GitHub Actions for yourself you must fork each of the example
code repositories that accompany this chapter. Forking essentially means to
take your own copy of the code. There’s no need to do that all at once,
though; you can just fork each code repository as you work through this
chapter. At this stage, though, you should try to practice forking the code
repository for the first example, just to be sure you know how to do that.

First thing, you must sign up for a GitHub account, if you don’t have one
already:

https://github.com/.

Once logged in to your own GitHub Account, you can now click the Fork
button for the example-1 code repository as indicated in figure 8.1. Follow



the instructions presented there and it makes a copy of the code repository in
your own GitHub Account. You own the forked copy of the repository and
therefore can make whatever changes you like to it. But most importantly,
you can now push code changes to your version of the repo to trigger the
GitHub Actions workflow that is included in the code repository. What that
means and how you can make use of it will be explained soon. Before you
can trigger a workflow you must enable workflows for your forked
repository. If you switch to the Actions tab for your repo, click the button to
enable workflows as shown in figure 8.2.

When you clone a local copy of the code examples for this chapter, please be
sure to clone your own fork of the code repository like this, adding your
GitHub account name to the following command:

git clone git@github.com:<your-name>/chapter-8-example-1.git

Figure 8.1 Forking the example code repository; you need to do this so you can try out GitHub
Actions for yourself



Figure 8.2 After forking the repository go to the Actions tab and click to enable workflows for the
repository



8.4 What is continuous integration?

Before learning about continuous delivery (CD), let’s first learn about
continuous integration (CI).

Why? Because CI in many respects is a stepping stone to CD and usually
setting up a CI pipeline is simpler than setting up a CD pipeline. That’s
because CD pipelines have basically grown out of CI pipelines. Indeed, a CD
pipeline is often the same as a CI pipeline, but with the additional feature that
it also does deployment. So in the spirit of learning through simple and
incremental steps we’ll first learn how to create a GitHub Actions workflow
for continuous integration.

But what exactly is a CI pipeline? A CI pipeline is an automated process that
detects changes in our codebase and runs various checks and balances against
the code to make sure that it still functions. Often a CI pipeline includes
building the code and running a linter against it, but usually the most
important purpose of most CI pipelines is to run automated tests against our
code. We’ll learn how to create some automated tests in chapter 9, but in this
chapter we’ll see how we can have our automated tests be automatically
invoked whenever we push code changes to GitHub.

CI pipelines have traditionally been most useful when we have a team of
developers contributing to a codebase. In fact, they are called continuous
integration pipelines because they are designed to test the integrated code
being merged in from multiple developers. It can be very difficult to keep
code working in the midst of constant changes from a busy development
team. But a CI pipeline can automatically detect problems the moment they
are created. In this sense, we can think of a CI pipeline as an early warning
system for problems in our codebase.

Figure 8.3 shows the process. We have multiple developers each committing
code to their local code repositories. At some point they merge changes with
their fellow developers and then push the merged code to the code repository
hosted on GitHub. The code push (or in other cases a pull request) triggers
the CI pipeline that we have implemented as a workflow in GitHub Actions.
Usually our CI pipeline runs various checks and automated tests against our



code. If all tests pass, this particular run of the workflow is marked
successful. If anything fails, it is instead marked as failed and typically an
email is sent to the team to let them know that something was broken.

Figure 8.3 A continuous integration pipeline, integrating code from multiple developers and
running automated tests and other validation

8.5 What is continuous delivery?

Now that we have learned what continuous integration (CI) is we can move
on to continuous delivery (CD).

Continuous delivery is a technique where we do frequent automated
deployments of our code to a production (or testing) environment.

Essentially: making updates to our code automatically triggers new
deployments of our software.



A CD pipeline builds on a CI pipeline: it is very similar but adds extra steps
to deploy our code to production.

To automate our deployments we must write deployment code that can be
invoked automatically and run in an unattended fashion in the cloud. The
deployment code that we write must be as bullet-proof as possible and we
must do thorough testing to confirm that it is reliable. We’d prefer that our
deployment code doesn’t fail. When it fails in production, it’s going to be
more difficult to debug because it is running in the cloud rather than on our
local machine. So the code we write for deployment should be simple, have
minimal moving parts, and be very well-tested.

Like any other code, we’ll test our deployment code on our local
development computer before we try to run it in production. So a part of this
chapter consists of creating and testing our deployment pipeline locally, even
though the ultimate goal is to have all this code running automatically on
some other computer in the cloud under GitHub Actions.

Figure 8.4 shows a continuous delivery pipeline. Similar to figure 8.3 earlier,
it shows multiple developers integrating their code into a code repository on
GitHub. Their changes to the codebase trigger the CD pipeline implemented
in GitHub Actions. The CD pipeline does much of the same work as the CI
pipeline in figure 8.3. It runs checks and tests against the code. The addition
in figure 8.4 is that our CD pipeline also deploys our microservice to our
Kubernetes cluster. What this means is that any changes to the code for our
microservice triggers its deployment to production. This assumes of course
that building and testing the microservice succeeds. If a developer introduces
a change that breaks the build or fails the automated tests, the CD pipeline
will be aborted and marked as failed, the deployment won’t happen, and the
team will be emailed the details of the failure.

Figure 8.4 A continuous delivery pipeline automatically deploying a microservice to production in
response to changes made to the code



Does continuous delivery sound complex or difficult? Let me assure you that
it is not as difficult as you might think. In fact, building a CD pipeline isn’t
much more difficult than writing a shell script, a point that I’m sure to
belabor throughout this chapter.

So I like to explain continuous delivery as automatically running a shell
script in the cloud. I know that’s an absurd reduction, but hopefully it helps
to get the point across. And often, writing a reliable shell script is the hardest
part of creating a CD pipeline. Implementing your CD pipeline as a shell
script also has the very positive side effect that it makes testing much easier
on your local computer. Testing locally is something we must do and using a
shell script is a very practical way to achieve that.

For the examples in this chapter, we’ll create various shell scripts that invoke
Docker to build and publish our microservices, and Kubectl to deploy our
microservices to Kubernetes.

8.6 Why automate deployment?



Ok, maybe we should address the elephant in the room. Why should we even
bother automating our deployments in the first place?

Automated deployment provides numerous benefits:

Manual deployments are tedious and take time. We risk mistakes
everytime we do them. Seriously, don’t you want to automate them to
minimize time spent and risk taken?
Automated deployment creates a pipeline for delivering product features
to our customers, allowing us to make changes quickly and get fast
feedback. I believe that automated deployment should be feature number
1 for any new product, because that’s how we get the product in front of
our customers (of course, this all depends on what you are building).
When deployment is automatic, reliable and responsive it starts to feel
like a kind of magic that just fades into the background. This means we
can focus on the important work of delivering useful features to
customers and not get distracted by a complicated, tedious or error prone
deployment process.
The recorded history of our deployments forms a kind of audit trail for
our product, showing what was changed, why it was changed and who
triggered the deployment.

Ok, that’s enough with the benefits. Let’s talk about the necessity of
automated deployment.

Quite simply, if you can’t afford to automate your deployments - you
probably can’t afford to use microservices. As you build out a
microservices application and scale it up, as the number of microservices
increases, you will find yourself overwhelmed with the increased workflow
of manual deployment. Success with microservices ultimately hinges on us
having robust automated deployment pipelines for them.

I sometimes wonder if this is the reason for much of the fear around
microservices. Is it because of the bad experience people have when they
don’t successfully automate deployment of their microservices? Or maybe
because their automated deployment pipelines are badly implemented and
constantly breaking down (for whatever reason). I believe success in
automated deployment can either make or break our experience with



microservices. That’s how important this is.

Fortunately, automated deployment isn't that difficult (relatively speaking). If
you are already confident with Docker and Kubernetes, then you should have
few problems implementing a reliable deployment pipeline. This is one of the
major advantages of using Docker and Kubernetes in the first place: these
technologies were designed for automated deployments.

8.7 An introduction to automation with Github
Actions

Let’s start with a simple introduction to creating an automated workflow with
GitHub Actions. If you already know GitHub Actions you might like to skip
this section and move directly to section 8.8.

8.7.1 Why GitHub Actions?

Using GitHub Action is one good way to create automated workflows that
are triggered in response to events around our code, such as pushing our code
or submitting a pull request. But there are actually many good services that
can do this. BitBucket and GitLab have similar services for their hosted code
repositories. Then, there are dedicated services for automation like TravisCI
and CircleCI.

Most of these services are configured using YAML (similar to what you’ll
see soon for GitHub Actions) and mostly they just amount to running
commands for us automatically in response to some event. So all these
services are pretty similar and if you learn one you won’t find it difficult to
learn any of the others.

GitHub Actions is kind of special, but only because it accompanies GitHub,
which as you know is the most popular and most mainstream version control
provider and has practically taken over the software industry (yes, there are
alternatives to Git and GitHub, but you practically wouldn’t know that if you
had just entered the industry recently).

GitHub Actions integrates with GitHub almost seamlessly, allowing our code



and our automated pipelines to live side-by-side. This makes it trivial to
trigger our automated workflows from events on the code repository. It also
gives the workflow easy access to the content of the code repository.

GitHub Actions is very good, very mature, and quite extensible (by adding
custom actions). I personally use it extensively in production for various
projects. To a large extent GitHub and GitHub Actions are free, meaning you
can experiment for free and then actually go a long way on the limitations of
the free account.

8.7.2 What is a workflow?

By now I’ve mentioned the word workflow many times, but what exactly
does this mean? The concept of the workflow is exactly as it sounds: a flow
of work or a sequence of tasks that are performed one after the other. This is
also basically what I mean when I say pipeline, except with pipeline there’s a
slightly different connotation: that the pipeline is some kind of conduit. In the
case of a CD pipeline it’s a conduit that delivers working code to our
production environment.

I singled out the word workflow because that is what an automation pipeline
is actually called in GitHub Actions. If you read the GitHub Actions
documentation (and I recommend that you do) you will read that word many
times.

A workflow in GitHub Actions is written as a YAML file that runs through a
series of jobs and, in those jobs, runs steps. Each step can be a command or
series of commands… but as I’m sure to mention many times we can also
call out to a shell script containing the commands we’d like to run.

A workflow is triggered by events on our code repository. Events like code
has been pushed or a pull request has been submitted. A workflow that has
been invoked is instanced on a runner, a container or virtual machine that
executes the jobs and steps as laid out in the workflow.

In this book we won’t be going too far into the depths of a GitHub Actions
workflow. Even though a workflow can do many things, like running jobs
sequentially or in parallel, creating dependencies between jobs, or running



the workflow on a particular operating system, we won’t need anything so
advanced. Just enough so we can trigger some shell scripts to deploy our
microservices.

At the end of this chapter I’ll give you a link to the GitHub Actions
documentation in case you’d like to dive deeper.

8.7.3 Creating a new workflow

The simplest way to create a new workflow for your code repository starts by
clicking through to the Actions tab for our code repository on GitHub. If you
forked the chapter-8-example-1 code repository earlier in section 8.3 you can
navigate to that and follow along.

When looking at a code repository that doesn't yet have a workflow, we are
presented with the page Get started with GitHub Actions, shown in figure 8.5.
Otherwise, if we are looking at a code repository that already has one or more
workflows (like your fork of chapter-8-example-1), instead click through the
New workflow button to arrive at the Choose a workflow page, which should
also look similar to figure 8.5.

From here we can find many useful templates to use as starting points for
new workflows. Some popular languages, frameworks and deployment
targets are automatically listed. We can also search based on a keyword. Try
searching for “Node.js” and to see some templates for building, testing and
deploying Node.js projects. Feel free to choose any of these options and
create a workflow just to see what the result looks like. Of course, you might
not be using Node.js—you might be creating your microservices with C#,
Python, Go, Rust or some other language. Whatever language or framework
you are using, search for that and you will find a template for your new
workflow.

Figure 8.5 GitHub Actions provides template workflows for many languages, technologies and
frameworks, making it very easy to get started creating a CI or CD pipeline for your project



8.7.4 Example 1 overview

Let’s learn the basics of GitHub Actions by starting with example-1 for this
chapter. The code is available here:

https://github.com/bootstrapping-microservices-2nd-edition/chapter-8-
example-1



This is the “hello world” of GitHub Actions workflows. Seriously, all it does
is print “hello world” into the output of the workflow, but it’s enough to see
how we can trigger a workflow by pushing changes to our code repository.

Figure 8.6 shows the layout of this very basic project. There are only two
important files: the configuration file for the workflow and the shell script
that prints “hello world”.

Figure 8.6 An overview of the project for example 1

8.7.5 The Hello World shell script

The core of the workflow, the commands that it invokes, are contained within
the shell script index.sh. To be sure, this is the world’s simplest shell script
and you can see it in listing 8.1.

It runs one command that prints “hello world” into the terminal. Open a
terminal and try it for yourself:

cd chapter-8-example-1

./index.sh

If you are working on a Windows computer you’ll have to open a Linux
terminal under WSL2 to run this shell script.

Listing 8.1 The Hello World shell script (chapter-8-example-1/index.sh)

echo "Hello world!" #A

Usually before running a shell script we must mark it as executable:



chmod +x ./index.sh

In this case you shouldn’t have to do that, because I marked the script as
executable within the Git repository. When you create your own code
repository and add your own shell scripts you’ll probably have to do this as
well using the following command:

git update-index --chmod=+x <path-to-the-script-file>

When marking your shell script as executable in the Git repository you then
must add, commit and push the changes to your hosted code repository.

I didn’t have to implement the workflow this way. It would have been
simpler to just invoke the commands directly from the workflow (I will show
you that as well in a moment). But I wanted to drive home my point that if
you can write a shell script, it’s not a big leap to creating a CD pipeline.

8.7.6 The Hello World workflow

Listing 8.2 shows the workflow that runs our “hello world” shell script under
GitHub Actions. This YAML file implements (almost) the world’s simplest
workflow. Workflows can, of course, get a lot more complicated than this.

We can see that the workflow can be triggered both by code push and
manually through the GitHub Actions user interface (UI). Notice how the
steps section in the workflow first checks out the code repository and only
then invokes the shell script index.sh. When the workflow is invoked the
runner is empty, and so it must explicitly take a copy of the code repository
to make its contents available within the runner.

Listing 8.2 The Hello World workflow for GitHub Actions (chapter-8-example-
1/.github/workflows/hello-world.yaml)

name: Hello world #A

 

on:

  push: #B

 

  workflow_dispatch: #C

 



jobs: #D

  hello-world: #E

    runs-on: ubuntu-latest #F

 

    steps: #G

      - uses: actions/checkout@v3 #H

 

      - name: Run the shell script #I 

        run: ./index.sh #J

8.7.7 Invoking commands inline

Okay, so I did say this was almost the world’s simplest workflow. As I
indicated we could make it even simpler by eliminating the shell script and
just invoking commands directly from the workflow. For the “hello world”
example it would look like this:

steps

  - uses: actions/checkout@v3

 

  - name: Prints hello world 

    run: echo "Hello world!" #A

We can also use a slightly different syntax to invoke multiple commands in
sequence:

steps

  - uses: actions/checkout@v3

 

  - name: Prints hello world 

    run: | #A

        <command1> #B

        <command2> #B

        <etc> #B

You might already have imagined it, we can also have multiple steps, each
with its own set of commands:

steps

  - uses: actions/checkout@v3

 

  - name: First step

    run: | #A

        <command1>



        <command2>

        <etc>

 

  - name: Second step

    run: | #A

        <command1>

        <command2>

        <etc>

Many times I have seen and created workflows that invoke commands
directly without using shell scripts. There’s really no problem doing it that
way. The reason I have used a shell script in example-1 is just to make a
point; we really don’t need it in this case. But soon we’ll look at a real
example that does very much benefit from using a shell script that separates
the commands to run from the workflow file.

8.7.8 Triggering a workflow by code change

We have created a simple workflow and have a job for it to do (albeit only
printing “hello world”). Let’s see this workflow in action.

As mentioned in section 8.3, to try the examples in chapter you need to fork
each of the code repositories, so if you haven’t already do that now for
example-1:

https://github.com/bootstrapping-microservices-2nd-edition/chapter-8-
example-1

Then clone your own copy of the repo. Go to the Actions tab for your fork
and enable workflows if you haven’t done that yet. There should be no
workflows listed in the history because we haven’t triggered any yet.

Now try making a change, for example try changing “hello world” to “hello
computer”.  After that commit your changes to the code repos and then
invoke git push to push your code change to GitHub. This triggers the
workflow that we defined in listing 8.2.

After invoking git push, while still at our terminal, it won’t be obvious that
anything has happened. To see the result we must return to GitHub and view



the workflow history.

8.7.9 Workflow history

You can see the workflow history by visiting your code repository on GitHub
and then switching to the Actions tab. Figure 8.7 shows the history of my
version of example-1. You can see there are two runs of the workflow. You
can see at a glance that the first run failed and the second run (on top) was
successful. A little later, I’ll show you why the first run failed.

Your fork of example-1 is going to look different of course, but you should
still see a list of workflow runs. If you just pushed your first code change for
this repository you should see one run. If you haven’t triggered your
workflow yet, your list will be empty.

Figure 8.7 The history of the workflow for example 1 in GitHub Actions

If you don’t have time to fork the repo (we are all busy) and just want to see
what it looks like, feel free to check out the workflow history for my version
of example-1:



https://github.com/bootstrapping-microservices-2nd-edition/chapter-8-
example-1/actions

Now click through into one of the runs. In figure 8.8 I’ve clicked through the
successful run (the top one). You can see in the output how the workflow has
invoked our shell script index.sh and that it has printed Hello world! into
the output for the workflow. It’s simple I know and I’m sorry it isn’t a more
exciting example. But in the next section we’ll start taking this to a more
advanced level.

Figure 8.8 Viewing the successful output of the “Hello world” workflow in GitHub Actions

8.7.10 Triggering a workflow through the UI

I mentioned earlier that we can trigger our workflow in one of two ways. We
have just tried the first way: pushing code changes. But you’ll notice in
listing 8.2 that we also added a second event that triggers our workflow: we
enabled manual invocation for our workflow (read the code again if you
missed it the first time).



What that means is that we can click a button in the GitHub Actions UI to
trigger our workflow without having to make any code changes. We do this
by selecting the workflow (in this case the Hello world workflow), clicking
the Run workflow dropdown and then the Run workflow button. You can see
what this looks like in figure 8.9. This invokes the workflow and does the
same thing as if we had pushed code changes. It’s useful to be able to
manually invoke our workflow to test it. It’s also useful if we want to change
configuration and then rerun the workflow to read in the new configuration.
So I’ll refer back to this section later when we start configuring our
microservice deployment workflow with environment variables.

Figure 8.9 Triggering a workflow manually in GitHub Actions

8.7.11 What have we achieved?

So far, we have created a simple and not very useful workflow for GitHub
Actions, but hopefully you can see that this isn’t rocket science. If you can
write a small YAML file and you can write a small shell script you basically
now have everything you need to build CI and CD pipelines. My job is done.



Only joking. We can’t just leave it at that. Our next steps are to learn how to
integrate various commands into our workflows, for example commands to
build and deploy our microservices. These are nothing new, though. We built
and published our first microservice way back in chapter 3. We deployed our
first microservice to Kubernetes in chapter 6. We’ll soon learn how to
integrate these commands into our GitHub Actions workflow and thus we
will have automated the deployment of our first microservice.

8.8 Implementing continuous integration

Before creating a continuous delivery pipeline, let’s first create a continuous
integration pipeline. CI is a good stepping stone towards CD, but not only
that; CI is also useful in its own right.

In this section we’ll see our first glimpse of automated testing. We haven’t
covered automated testing yet—that’s still to come in chapter 9—but in this
section we will see how we can trigger our automated tests from within our
CI pipeline.

8.8.1 Example 2 overview

Moving on to example-2 for this chapter, you can find the code here:

https://github.com/bootstrapping-microservices-2nd-edition/chapter-8-
example-2

This example project contains the Node.js video-streaming microservice we
have been working with, but this time with the addition of some automated
tests.

The layout of the project is shown in figure 8.10. There’s no shell script in
this example. Typically a CI pipeline is implemented in one or two
commands (which we’ll see in a moment) and so there’s really no need to
have a shell script because the commands we’ll run in our CI pipeline just
aren’t that complicated and it’s easy enough to test them locally. Of course,
this will change after this section, when we are  implementing our CD
pipeline. The complexity introduced by the addition of the deployment



commands does make wrapping it up in a shell script very desirable.

Figure 8.10 An overview of the project for example 2

8.8.2 A workflow for automated tests

Listing 8.3 shows the workflow that runs the automated tests. There are two
commands to look out for. The first is npm ci which is like npm install
(that we learned about in chapter 2) in that it installs dependencies, but it is
designed to run in an unattended CI pipeline (indeed the name of the
command is ci, indicating its use in a CI pipeline).

The second command is the one that invokes the automated tests. The
command npm test is the conventional Node.js command used to run
automated tests. We’ll learn more about how to implement this command in
the next chapter.

This example is for Node.js, but you can easily adapt it to any other language
or framework just by changing a few commands. In fact you don’t even have
to think very hard about it, just search for a workflow template to use as a
starting point as described in section 8.7.3. GitHub Actions has templates
ready to use for every language and framework.



Listing 8.3 A workflow that runs automated tests for a Node.js microservice (chapter-8-example-
2/.github/workflows/ci.yaml)

name: CI #A

 

on:

  push: #B

 

jobs:

  build:

    runs-on: ubuntu-latest

 

    steps:

    

    - uses: actions/checkout@v3 #C 

 

    - uses: actions/setup-node@v3 #D

      with:

        node-version: 18.x

        cache: 'npm'

 

    - run: npm ci #E

    - run: npm test #F

To try out this example for yourself, you’ll need to fork and clone the code
repository. Make sure you go into the GitHub Actions tab and enable running
workflows. Then try making a change to the code and push your code. This
triggers the workflow and runs the automated tests. You might like to try
breaking the automated tests. Causing a problem on purpose (in a controlled
environment) is a great way for you to see what a failed workflow looks like.
Soon we’ll learn about how to tackle a failed workflow.

8.8.3 What have we achieved?

We’ve now created a useful workflow for GitHub Actions, a workflow that
can automatically test a microservice each and every time we push our code
to GitHub. I probably don’t need to spell out how useful this can be. We can
easily see how an automated testing pipeline will test all our code changes
every time without ever skipping a beat. If we push broken code, our CI
pipeline detects the problem quickly and lets us know so that we rectify the
situation. We’ll learn more about automated testing in the next chapter.



8.9 Continuous delivery for a microservice

Now we arrive at the main event and one of the most important reasons for us
to use GitHub Actions. In this section we’ll create a workflow that
automatically deploys our video-streaming microservice to Kubernetes
whenever we push code changes to GitHub.

8.9.1 Example 3 overview

Now we move to example-3 for this chapter; you can find the code here:

https://github.com/bootstrapping-microservices-2nd-edition/chapter-8-
example-3

The project layout is illustrated in figure 8.11. This is very similar to
example-2 that we saw earlier in figure 8.10. Take note of the new files
shown in figure 8.11. We can see here various shell scripts that are useful for
building, publishing and deploying our microservice. There is a YAML file
to deploy the microservice to Kubernetes and a Dockerfile to create the
production image for our microservice.

Figure 8.11 An overview of the project for example 3



8.9.2 Templating our deployment configuration

Before we can set up our microservices project for automated deployment we
first need a way to configure our deployment pipeline.  Why do we need this?
It’s because there are various details relating to our deployment that we’d
prefer not to hardcode into our project. What we need is a way to
parameterize our deployment configuration file so that we can fill in the
blanks for certain values during the execution of the CD pipeline.

In previous chapters we have used environment variables to configure our
microservices and environment variables also turn out to be a good way (not
to mention a simple way) to also configure our CD pipelines. 

It doesn’t make sense to hardcode details like container registry and version
number into our code. We might like to change the location of our container



registry later and this would be very difficult if its URL were hardcoded
across the many code repositories for the numerous different microservices
we’ll have in the future.

The version number for our microservice can’t be hardcoded because it’s
going to be changing frequently. If we hardcoded that it would mean we had
to make regular updates to our code just to keep the version number up to
date; that’s possible but it gets tedious quickly and is an impediment to fast
deployments.

These are just two examples of things that we don’t want to hardcode in a
microservice project, but any real world project is likely to have many more
examples of configurable values that we’d prefer to have separated out from
the code.

So instead of hardcoding these values, we’ll use environment variables for
details such as the container registry and the version number. We need to
plug these values into our Kubernetes deployment configuration file, but how
do we do this? There are several sophisticated (read: unnecessarily
complicated) ways to achieve this. Fortunately for us, we can use a simple
command line tool called envsubst that’s included with Linux. Seeing as
how we are running our CD pipeline on Ubuntu Linux (that’s defined in the
workflow file) we can rely on it to inject values into our configuration file
from environment variables.

This is illustrated in figure 8.12 which shows an extract of deploy.yaml, our
Kubernetes deployment configuration file (see GitHub for the full file).
Notice how we have set environment variables for VERSION and
CONTAINER_REGISTRY and that invoking the command envsubst injects these
values into the configuration file deploy.yaml.

Figure 8.12 Using the envsubst command to inject parameters into our deployment configuration
file deploy.yaml



For any tool that we include in our automated deployment pipeline, we
should already be familiar with how to use it and have practiced using it on
our local computer. We can’t automate something unless we already know
how to use it manually! So if you haven’t used envsubst before, now is your
chance to try it out directly before we add it to our workflow.

So open a terminal and try it out. If you are on Windows you’ll need to open
a Linux terminal under WSL2.

Set the following environment variables:

export CONTAINER_REGISTRY=<url-for-your-registry>

export VERSION=1

You'll need to use the URL for your own container registry. You can use the
container registry you created earlier or create a new one the easy way
(through the UI) like we did in chapter 3 (section 3.9.1) or the more difficult
way (through Terraform code) as we did in chapter 7 (section 7.7.2).

Now invoke envsubst, inputting the file deploy.yaml:

envsubst < ./scripts/kubernetes/deploy.yaml



In the output you should see that the parameters in deploy.yaml have been
replaced by the values from the environment variables CONTAINER_REGISTRY
and VERSION.

To learn more about envsubst, please just search for it on the internet. You’ll
find many tutorials, guides and videos on it.

8.9.3 Manual deployment precedes automated deployment

Before we automate our deployment process we need to have something that
we can automate. If we can't work through a process manually, we have no
business trying to automate it. Like any coding task, we must first be able to
run it locally from our development computer before we try to get it running
in production.

This is nothing more than the manual deployment process we have been
through already in chapter 6, except this time we'll create shell scripts to
contain the commands for building, publishing and deploying our
microservice.

Using shell scripts creates a framework or scaffolding for our deployment,
making it easier to test locally and be sure it works before we move it into the
cloud. It also gives us a way to test our deployment code again in the future
after we make changes to it.

If you jump straight to trying to run these commands directly under GitHub
Actions you will likely hit problems that would have been easier to debug
and solve if only you had first tried running them locally. It's always easier to
solve problems locally where possible, rather than trying to figure them out
when running in production, because debugging a remote machine is usually
a fair bit harder than debugging locally. So running our code locally first
makes us much more effective than if we committed it with no testing and
pushed it, just hoping everything works out in production. We'll talk more
about debugging in chapter 11.

WE NEED A TARGET FOR DEPLOYMENT



To be able to deploy our code to production we must have a place to which
we can deploy it. 

We can’t use our local Kubernetes instance (in Docker Desktop) for this.
That’s because ultimately we want to run our deployment code in the cloud
under GitHub Actions and code that runs there won’t be able to access our
local machine. So at this point we must have a Kubernetes cluster that is also
running in the cloud. You’ll also need a container registry.

If we were doing this for real, for example working for a tech company, we’d
probably already have multiple production or production-like environments
at our disposal. But in any case, as you have seen in chapter 6 it’s easy
enough for us to create our own Kuberneters cluster for learning, testing and
experimentation.

So please make sure you have a Kubernetes cluster (chapter 6 or 7) and a
container registry (chapter 3 or 7) ready to use. You’ll need to know the
details of each, including the URL of the container registry and its username
and password. You’ll need to know how to authenticate Kubectl with your
Kubernetes cluster, but we’ll cover that again soon.

SHELL SCRIPTS FOR BUILDING AND PUBLISHING IMAGES

Let’s now create shell scripts to codify the commands to build and publish
images for our microservices that we learned in chapter 3. Listing 8.4 is the
first of three shell scripts that we need to build the CD pipeline for our
microservice.

It makes sense to break up this deployment process into three independent
parts. The first part is for building an image, the second part is for publishing
the image and the third part is for deploying the microservice to Kubernetes.
You could of course combine all of this into a single large shell script, but
separating it into three makes each of the shell scripts smaller and easier to
test in isolation. It’s also a good way to break up the work into pieces. And
then later when something goes wrong with our CD pipeline, debugging will
be easier because it will be clearer in which stage of the deployment (which
shell script) the problem has occurred.



The shell script in listing 8.4 encapsulates the command to build the image
for our microservice. As input it takes the environment variables we have
already seen: CONTAINER_REGISTRY and VERSION. These are used to tag the
image with the registry we’ll publish it to and to set the version number of the
image.

Listing 8.4 A shell script for building an image (extract from chapter-8-example-3/scripts/build-
image.sh)

docker build -t $CONTAINER_REGISTRY/video-streaming:$VERSION --file ./Dockerfile-prod . #A

Now let’s test our first shell script locally. If you haven’t done this already,
open a terminal and set the following environment variables (on Windows
open a Linux terminal under WSL2):

export CONTAINER_REGISTRY=<url-to-your-container-registry>

export VERSION=1

 

You’ll need to plug in the URL for your own container registry.

 

Now run the shell script yourself:

 

./scripts/build-image.sh

This builds the image so that it is ready to be published. Afterward, you can
invoke docker image list to check that you now have the image locally.
We can tell which image it is by scanning the list and looking for the one that
is tagged with the URL for our registry and the version number that we set.

If you are running the shell script from the example-3 code repository its
permissions should already be set correctly. If not you’ll need to mark the
shell script as executable before you run it:

chmod +x ./scripts/build-image.sh

If you need to do this, please remember to do it for the upcoming shell scripts
as well.

Moving onto the second shell script in listing 8.5, we can see the commands
for publishing the image to our container registry. This shell script takes input



from the environment variables we set already, plus REGISTRY_UN and
REGISTRY_PW which are the username and password to authenticate with our
container registry.

Listing 8.5 A shell script for publishing an image (extract from chapter-8-example-3/scripts/push-
image.sh)

echo $REGISTRY_PW | docker login $CONTAINER_REGISTRY --username $REGISTRY_UN --password-stdin #A

docker push $CONTAINER_REGISTRY/video-streaming:$VERSION #B

Back in your terminal, set these additional environment variables:

export REGISTRY_UN=<registry-username>

export REGISTRY_PW=<registry-password>

 

You’ll need to plug in the username and password for your own container registry as the values for these environment variables.

 

Now run the shell script for yourself:

 

./scripts/push-image.sh

This publishes the image to our container registry. If you’d like to test this,
follow the instructions in section 3.9.3 to boot the microservice from the
image that we have published to the registry.

A SHELL SCRIPT FOR DEPLOYMENT

Now we arrive at the third and final shell script for deployment of our
microservice. Listing 8.6 contains the commands to fill parameters in our
Kubernetes configuration file (using envsubst that we talked about in section
8.9.2) and it pipes the resulting configuration to kubectl which then deploys
our microservice to Kubernetes. This is just like what we did in chapter 6,
except then we were sending a static (unchanging) configuration file into
Kubectl and now we are using a dynamic configuration file whose content
depends on parameters injected from environment variables.

Listing 8.6 A shell script for deployment to Kubernetes (extract from chapter-8-example-
3/scripts/deploy.sh)

envsubst < ./scripts/kubernetes/deploy.yaml | kubectl apply -f - #A



Our new shell script and the configuration file it fills out depend on the
environment variables we set earlier, so we can simply run the shell script:

./scripts/deploy.sh

This takes the image we published earlier and instantiates a container into the
Kubernetes cluster, thus deploying our microservice to production.

Congratulations! By running these three shell scripts, we have tested our
deployment pipeline locally. If we hit any problems we should solve them
here and now before moving on. Don’t save problems until you hit
production; they’ll be so much more difficult to solve if you do that.

Now for the end goal. Next, we’ll get our microservice deployment running
automatically under GitHub Actions. But first, we should clean up our cluster
and remove the test deployment we just made:

The example-3 code repository includes a shell script for this:

./script/delete.sh

This is a shell script that looks a lot like listing 8.6, except that instead of
kubectl apply it invokes kubectl delete to delete the microservice
deployment.

8.9.4 A workflow to deploy our microservice

Now that we have created and tested our shell scripts for deployment, we can
now invoke them from our GitHub Actions workflow. Looking at listing 8.7
you can see how we run each of the shell scripts in sequence.

This procedure (running three shell scripts) looks the same as what we have
done locally, except that by including them in this workflow our deployment
will now happen automatically each and every time we push code changes to
GitHub. Whenever we make changes to our code GitHub will allocate a
runner to do the deployment for us. No more manual deployments for us,
thank you very much. What a wonderful day this is turning out to be.

Listing 8.7 A workflow to deploy a microservice (chapter-8-example-



3/.github/workflows/deploy.yaml)

name: Deploy microservice

 

on:

  push: #A

 

  workflow_dispatch: #B

 

jobs:

 

  deploy:

    runs-on: ubuntu-latest

    

    env:

      VERSION: ${{ github.sha }} #C

      CONTAINER_REGISTRY: ${{ secrets.CONTAINER_REGISTRY }} #C

      REGISTRY_UN: ${{ secrets.REGISTRY_UN }} #C

      REGISTRY_PW: ${{ secrets.REGISTRY_PW  }} #C

 

    steps:

      

      - uses: actions/checkout@v3

 

      - name: Build

        run: ./scripts/build-image.sh #D

 

      - name: Publish

        run: ./scripts/push-image.sh #E

 

      - uses: tale/kubectl-action@v1 #F

        with:

          base64-kube-config: ${{ secrets.KUBE_CONFIG }} #G

          kubectl-version: v1.24.2

      

      - name: Deploy

        run: ./scripts/deploy.sh #H

There are two key elements to understand in listing 8.7:

1. How Kubectl is installed and authenticated within the workflow.
2. How the environment variables are set (the inputs to our shell scripts).

Let’s cover each of these items in turn.



8.9.5 Authenticating Kubectl

How exactly do we authenticate Kubectl to connect to our Kubernetes cluster
from within the runner that is executing our workflow? There are a few ways
to do this. Let’s see the way that I think is the simplest.

First of all you need to have authenticated with your Kubernetes cluster so
that you can run Kubectl locally and connect to your cluster. If you
successfully worked through section 8.9.3 you have done this already.

You will have already invoked the command to download configuration for
Kubectl that authenticates it with your cluster:

az aks get-credentials --resource-group <resource-group-name> --name <cluster-name>

Remember to insert the name of your cluster and the Azure resource group
that contains it.

Now look at the Kubectl configuration file under your home directory at
~/.kube/config. Try printing it out like this:

cat ~/.kube/config

You should see a (possibly rather complex) YAML file that configures your
connection(s) to your Kubernetes cluster. This file contains the authentication
details to connect to your cluster. Keep it safe.

If you are running on Windows (even under the WSL2 Linux terminal) you
may find the file is located at c:\Users\<username>\.kube\config or to
access it under WSL2 use the path
/mnt/c/Users/<username>/.kube/config (taking care to insert your
username into the path).

We are about to take a copy of our Kubectl configuration and put it in a
GitHub Secret (this will be explained soon). You should be careful at this
point that your local Kubectl configuration only has the connection details for
the one cluster that we are currently working with. For security reasons we’d
like to constrain our CD pipeline to only access the single cluster that it needs
to deploy to. So if you have previously connected to other clusters (meaning



you are now connected to multiple clusters) you might want to delete your
Kubectl configuration file and invoke az aks get-credentials again to
ensure that you only have the one set of credentials stored locally. To check
how many clusters you are connected to invoke

kubectl config get-contexts. If there is only one item in the output, it
means you have only configured the connection to one cluster, so we are
good to proceed.

To make our Kubectl configuration available to our workflow through an
environment variable we first have to base64 encode it:

cat ~/.kube/config | base64

You might want to copy the base64 encoded version to a new file to make it
easier to copy:

cat ~/.kube/config | base64 > ~/kubeconfig.txt

Now we have a Kubectl configuration that we can use in our workflow to
allow it to connect to Kubernetes on our behalf, yet it has to remain secret.
And this is where GitHub Secrets comes into play.

8.9.6 Installing and configuring Kubectl

The next question is, how do we install and configure Kubectl so that we can
use it in the runner that executes our workflow? Recall the following lines of
of code from listing 8.7:

- uses: tale/kubectl-action@v1 #A

  with:

    base64-kube-config: ${{ secrets.KUBE_CONFIG }} #B

    kubectl-version: v1.24.2 #C

This is an example of using a custom action in our workflow. Anyone can
make a custom action to package a reusable code module and share it with
other users of GitHub Actions.

There are many useful actions available on the GitHub Marketplace:



https://github.com/marketplace?type=actions

This action installs Kubectl into our workflow, targeting the particular
version we have specified (1.24.2), and extracts the Kubectl configuration
from a GitHub Secret using the following syntax:

${{ secrets.KUBE_CONFIG }}

Learn more about kubectl-action here:

https://github.com/marketplace/actions/kubernetes-cli-kubectl

8.9.7 Environment variables from GitHub Secrets

If you didn’t know already, you might have guessed by now that GitHub
Secrets is a service for storing secret and sensitive values (like our
Kubernetes configuration details, mentioned above) and for making those
secrets available within our workflow.

The main use of secrets is to set environment variables. Recall these lines of
code from listing 8.7:

env:

  VERSION: ${{ github.sha }} #A

  CONTAINER_REGISTRY: ${{ secrets.CONTAINER_REGISTRY }} #B

  REGISTRY_UN: ${{ secrets.REGISTRY_UN }} #C

  REGISTRY_PW: ${{ secrets.REGISTRY_PW  }} #C

Here we are extracting various values from GitHub Secrets and setting them
as environment variables within the workflow. These are the environment
variables we use to provide inputs to our shell scripts. So GitHub Secrets
gives us a secure and secret place to store values when we’d prefer that no
one is able to view them later. Then we use the syntax above to set
environment variables that we can use in our shell scripts for building,
publishing and deploying our microservices.

Note that we could hardcode each of these values in our YAML file (or
indeed in our shell scripts!) and not have to worry at all about configuring
GitHub Secrets. There are two problems with that. First, not hardcoding these



values into our code makes our deployment code (e.g. our YAML files and
shell scripts) more reusable, thus making it easier to use this setup for future
microservices. Second, we really don’t want to put secret and sensitive values
in our code at all. When we commit values like this to our code we run the
risk of other people being able to easily read them (like all developers who
can access the code at our company, or worse all developers in the world for
an open source project).  So using GitHub Secrets can help us reuse our
deployment pipeline and importantly it keeps your secrets safe.

You can learn more about setting environment variables in your workflow
here:

https://docs.github.com/en/actions/learn-github-actions/environment-
variables

8.9.8 Environment variables from GitHub context variables

In the code presented above there was an exception. Note that setting the
VERSION environment variable didn’t extract it’s value from a secret; instead
it extracted it from a so-called “context” variable:

VERSION: ${{ github.sha }}

In this case github.sha represents the hash of the commit that triggered the
workflow. This is a unique id and I found it to be a simple and effective way
to create a version number for the image. It means we never have to manually
increment a version number for our microservice (some people do this by
tagging a commit with a version number, e.g. v1.2.3, and then using the
addition of the tag to trigger the workflow).

Using context variables allows us to extract contextual information about the
workflow, the run, the environment, the code repository and many other
things. When it proves to be useful, we can extract these values to
environment variables as inputs to our shell scripts.

You can learn more here, but be prepared for a long reading session:

https://docs.github.com/en/actions/learn-github-actions/contexts



8.9.9 Adding GitHub Secrets

The only question that remains is, how do we set a GitHub Secret? Setting
the secrets required by the workflow is the final step and if you trigger your
workflow before you do this it will cause the workflow to fail.

Don’t worry, though—that’s not a problem. In fact, I’d encourage you to
push your code or trigger the workflow manually just to see it fail. Causing
failures on purpose is a great way to see error messages in a controlled
environment, allowing you to explore and understand them without the fear
and panic that can sometimes set in at other times when you have
unintentionally broken your workflow.

We can add secrets to the organization (if we are running a GitHub
Organization for our company) or we can keep them isolated and add them to
just the single repository. Adding secrets to the organization is a great way to
share values between many microservices, but for this example we’ll add
secrets to just this one repository. Of course, you’ll need to add them to your
fork of the example-3 repository; you can’t add them to my version because
you won’t have permission to modify the settings of my code repository.

Navigate to the Settings tab for your fork of the example-3 repository as
shown in figure 8.13. Before you have added any secrets you’ll see the
message “There are no secrets for this repository.” After you have added
secrets you’ll see the list of the ones you have added here. Click New
repository secret to create your first secret.

Figure 8.13 The secrets page in GitHub Actions



Now add the name and value for the secret as shown in figure 8.14. When
done click Add secret to save it. Once saved we can never view the value here
again; after all, it is supposed to be a secret. So if we need to remember these
values (hint: you probably do) then we must save them somewhere else, such
as in password management software.

Figure 8.14 Adding a new GitHub Actions secret to the code repository for use in our workflow



We must now add each of the secrets that is required by our workflow. You
should have these details noted down from when you created your
Kubernetes cluster and container registry:

CONTAINER_REGISTRY - the URL to your container registry.
REGISTRY_UN - the user name for your registry.
REGISTRY_PW - the password for your registry.
KUBE_CONFIG - Base64 encoded configuration that authenticates
Kubectl with your cluster (copy this value from the file you created
earlier in section 8.9.5).

With all the secrets added you can now trigger the workflow in your own
fork of example-3 and hope to achieve a successful deployment. Trigger your
workflow by pushing code or triggering it manually in the GitHub Actions
UI. 

Will it work? If you follow all the steps correctly, then yes it should, but
there's also a very good chance that it’s going to fail. We’ll talk about that in
the next section.



As always there is limited space to cover everything in this book. To learn
more about GitHub Secrets, here’s a good place to start:

https://docs.github.com/en/actions/security-guides/encrypted-secrets

8.9.10 Debugging your deployment pipeline

It’s quite difficult to get a deployment working properly on the first go. So
don’t be disheartened at the first failure of your deployment pipeline. You’ll
probably miss some environment variable or some authentication detail that
will cause the deployment to fail immediately. Then sometimes you’ll have to
work through multiple failures like this before you get it working. The
process of debugging in production is very slow and this is why it’s so
important that we thoroughly test our process (as far as we can) on our local
computer and fully understand all the environment variables that must be set
for it to work.

The first step in debugging your failed workflow is to drill down into the
GitHub Actions workflow history and read the error messages. You can see
in figure 8.15 the failure from my first deployment of the “Hello world”
workflow from earlier in section 8.7. Yes, I am not immune to failure and
you might take some solace in knowing (or at least find it amusing; don’t
worry—I’m also laughing as I write this) that my first attempt at the most
basic deployment pipeline was a failure!

In figure 8.15 you can see that the error is “Permission denied” relating to the
shell script index.sh. This might have been a very perplexing error for me if
I hadn’t seen it a dozen times before. Fixing it required marking the shell
script as executable in the Git repository (like I mentioned earlier in section
8.7.5). A fact of life for software developers is that we’ll continually see new
error messages as we cause new kinds of problems. If we don’t know what
the error message means, we must then research it (hint: start with Google) to
help figure out what caused the problem and learn how we can fix it.

Figure 8.15 Output from a failed workflow in GitHub Actions



Solving a problem in our deployment code is similar to solving problems in
any production code. We must ask the question: what caused the error? It can
take some detective work and experimentation to figure that out. For
problems we can’t immediately figure out, can we reproduce the error
locally? If the code works locally without error then we must try to
understand the differences between local and production. Study the
differences between local environment variables and the ones in the
workflow. Are they all correct? Have all required values been added to
GitHub Secrets?

For difficult problems, being able to reproduce the error locally gives us the
best and quickest chance of finding the cause of it and fixing it. Figuring out
how to replicate our production configuration on our local computer can be
tricky, but it can also help us solve the most difficult problems.

Also, if you didn’t realize it, you can use any Linux command in your
workflow (obviously this depends on the OS you are using for your runner,
but we have used Ubuntu Linux in these examples). This gives us an
extensive toolkit for debugging our workflow in production, even though we
can’t create an interactive shell into the runner.



For example, try adding the commands ls and pwd to your workflow to show
you the current directory in the runner and the list of files it contains. Then
feel free to change directory using cd and print the contents of files using cat.
It’s worthfile playing with these commands experimentally in your workflow
even if it’s working okay. That can help you understand what’s happening
and even just to recognize these commands as a valuable technique for
debugging your workflow.

Debugging is an artform unto itself and it’s hard to do it justice in the space
we have, but we will return to debugging in chapter 11.

8.9.11 Deploying directly to production is dangerous

It should be noted at this point that deploying to production directly from the
main branch of our code is very dangerous. Our main branch is typically
where integration happens, the merging of code changes from the
development team, after which it must be tested thoroughly before launching
it on your customers.

So we shouldn’t deploy directly from our main branch, but to keep things
simple in this chapter that’s what we have done.

However in chapter 12 we’ll change this. We’ll talk about using a branching
strategy where we have a main branch which triggers our continuous
integration pipeline (automatically testing code as the development team
merges it) and a separate production branch (maybe with branch protection
enabled—we’ll talk about that later) which triggers our continuous delivery
pipeline. Keeping these branches separate gives us a gateway where we can
manually test and verify our code in development before we merge it into
production and release it to our customers. A strategy like this helps stop
embarrassing mistakes (and even malicious changes) from going to
production.

8.9.12 What have we achieved?

We’ve come a long way from our “Hello world!” workflow. We have
automated the deployment of a single microservice. When we change the



code for this microservice it is automatically tested and then deployed to
production. It might seem like some kind of magic, except that it’s not, now
that you understand how it works.

We covered the basics on templating our code configuration and you can take
this further to make it easier to reuse your deployment pipeline (everything in
the scripts directory of example-3) across every other microservice that you
create in the future. This is a recipe that we can scale across many
microservices and we’ll talk more about it in chapter 12.

8.10 Continue your learning

As always, there is so much more to be learned than we can cover here. Here
is an entire book on continuous delivery, should you want to go deeper:

Grokking Continuous Delivery by Christie Wilson (Manning, September
2022)

I can also thoroughly recommend reading the documentation for GitHub
Actions, especially the pages Quickstart and Understanding GitHub Actions:

https://docs.github.com/en/actions

8.11 Summary

GitHub Actions is a service from GitHub that we can use to run
automated workflows in response to various actions on our code
repository.
A continuous integration (CI) pipeline runs automated tests against our
code (and other checks) automatically as we push changes to our code
repository. It’s like an early warning system for problems that appear in
our codebase as changes are merged in from the development team.
A continuous delivery (CD) pipeline automatically deploys our
microservices to production in response to pushing code or submitting a
pull request.
Automated deployment is the conduit that conveys our code to our
customer, making it easy to release code changes and get fast feedback.



Creating a CI or CD pipeline is not much more complicated than
creating a YAML file (to configure our pipeline) and a shell script (to
run commands, even though the commands within can be quite
complicated).
Success with microservices very much depends on having reliable
automated deployments. It is increasingly difficult to scale up
microservices if your deployments are manual or unreliable.
Wrapping our deployment process in a shell script makes it convenient
to test locally to ensure that it works correctly, before running in the
cloud, where it is more default to debug.
Environment variables are used to configure the shell scripts we run in
our automated workflows.
Values for environment variables can be set from GitHub Secrets, a
service for storing secret and sensitive values and keeping them safe.
There are many useful GitHub context variables, like github.sha which
we used to create a version number for the image created by our
workflow.
We can template our deployment configuration by using envsubst to fill
parameters from environment variables.



9 Automated testing for
microservices
This chapter covers

Using automated testing with microservices
Unit testing and integration testing with Jest
End-to-end testing with Playwright

To this point in the book while building microservices, we have tested our
code manually. In this chapter, though, we’ll shift up a gear and learn how to
apply automated testing to our microservices.

So far, we have primarily done our testing by running our code and visually
inspecting the output. Methods of manual testing are many and varied. I want
you to know that manual testing is OK, to a point. You should start with
manual testing and continue with it until you are comfortable enough to use
automated testing.

Your product should also be well enough understood that it’s worth investing
in automated testing. Doing automated testing for minimal viable products
(MVPs) or prototypes is often a waste of time and slows down development -
in those cases manual testing is adequate.

At a point, though, manual testing becomes tedious and time-consuming and
then we will want to turn to automated testing. Of course, automated testing
is generally useful in the realm of software development, but with
microservices, it becomes essential as we grow our application. It’s also
important for small teams because, at some point, the burden of manual
testing becomes overwhelming to the point that all you’ll be doing is that
testing. There’s no reason you should carry a heavy testing burden when such
great automated testing tools are within easy reach!

Think of this chapter as a guided tour through the testing landscape as it



applies to microservices. We’ll start with an introduction to testing, then
we’ll look at more advanced examples of unit testing, integration testing, and
end-to-end testing.

Automated testing is an advanced topic. I’ve included it in this book because
I believe it really is essential for scaling microservices. If you haven’t done
automated testing before, you might find this chapter a little overwhelming.
Hopefully not, but otherwise, feel free to skip this chapter and come back to
it again later. Just know that automated testing is important and that even
though you don’t need it in the early days, eventually you will need it to scale
up to beyond a handful of microservices.

9.1 New tools

In the previous chapter we added automated tests to our CI/CD pipeline. In
this chapter, we’ll learn the basics of how to create automated tests to help
ensure our microservices are reliable and robust. As modern developers, we
are spoiled with great testing tools that are free, easily available, and
straightforward to learn and here we’ll use two great testing tools, Jest and
Playwright, to run our automated tests.

Table 9.1 New tools in chapter 9

Tool Version Purpose

Jest 29.4.1 Jest is a tool for automated testing of JavaScript code.

Playwright 1.3.0 Playwright is a tool for automated testing of web pages.

9.2 Getting the code

To follow along with this chapter you need to download the code or clone the



repository.

Download a zip file of the code from here:
https://github.com/bootstrapping-microservices-2nd-edition/chapter-9
You can clone the code using Git like this:

git clone https://github.com/bootstrapping-microservices-2nd-edition/chapter-9.git

For help on installing and using Git, see chapter 2. If you have problems with
the code, log an issue against the repository in GitHub.

9.3 Testing for microservices

Like any code that we write, microservices need to be well tested so we can
know the code is robust, is difficult to break, and can gracefully handle
problems. Testing gives us peace of mind that our code functions in both
normal and unexpected circumstances.

Effective testing emulates production as closely as possible. This includes
both the environment, the configuration of the code, and the test data that we
use. Using Docker and Docker Compose allows us to configure our testing
environment to be like the production environment.

This makes the “it worked on my computer” excuse for broken code much
less common in modern development. Usually, when it works on your
computer (in a correctly configured Docker environment), you can be fairly
sure it’s going to work in the production environment. Having a stable
environment for our code is a crucial factor for reliable testing.

Manual testing is a good starting point and is a skill worth cultivating. But at
a certain point, automated testing is necessary to scale up our application. As
the number of microservices grows, we will rely more and more on
automation to keep the application running and to help us maintain a rapid
pace of development. In the previous chapter, we created our CI/CD pipeline
to automatically run tests and deploy our microservices. Now, we learn how
to write the automated tests.



9.4 Automated testing

Automated testing, put simply, is code-driven testing. We write code to
exercise our code and verify that it works correctly. Often the test code
directly invokes the code under test, but it can also be invoked indirectly, for
example, through HTTP requests or RabbitMQ messages. The test code then
verifies that the result is correct, either by checking the output or checking the
behavior.

Throughout this chapter, we’ll learn a handful of automated testing
techniques. You’ll be able to apply these techniques over and over again to
create a comprehensive suite of tests for your application.

Automated testing for microservices can be applied at multiple levels. We
can test individual functions, we can test whole microservices, we can test
groups of microservices together, or we can test the whole application (until
the application grows too large; more about that later). These levels of testing
are related to the following three types of automated testing:

Unit testing—Tests isolated code and individual functions
Integration testing—Tests whole microservices
End-to-end testing—Tests groups of microservices and/or the entire
application including the front end

You may have heard of these types of testing before, because they aren’t
specific to microservices. If not, don’t worry because we’ll look at each in
turn.

Figure 9.1 shows a diagram that is called the testing pyramid. It relates the
types of automated testing to each other and gives you an idea of how many
of each type of test you should have in your test suite.

Figure 9.1 The testing pyramid indicates the relative amounts of each type of test we should have



Unit tests run quickly, so we can afford to have many of them. They are,
therefore, at the foundation (the base) of the testing pyramid. Integration
testing and end-to-end testing are higher in the pyramid. These types of tests
are slower to run, so we can’t afford to have as many of those. (The
diminishing area as we go up the pyramid indicates that we’ll have less and
less of these types of tests.) This means we should have fewer integration
tests than unit tests and fewer end-to-end tests than integration tests.

Figure 9.2 illustrates what end-to-end testing looks like for a cut-down



version of FlixTube. End-to-end testing is the easiest type of testing to
understand, because it is like we are simulating how the customer uses our
product - therefore it is the closest type of automated testing to manual
testing. We load the entire application to test it, just like we do when testing
manually. Figure 9.2 shows running Playwright tests against a cut-down
version of our application that is running on Docker Compose.

Figure 9.2 End-to-end testing of a simplified version of FlixTube using Playwright

Automated testing coupled with a CI/CD pipeline is like an early warning
system. When the alarm goes off, we can be thankful, as it gives us the
opportunity to stop problems going into production and potentially impacting
our customers.

Note

The true payoff with automated testing is that it will save you from countless
hours of routine testing, not to mention that it can stop deployment of broken
code that might have otherwise gone into production and caused havoc.

As amazing as automated testing is, it is not a panacea! It is not a replacement
for good exploratory testing (e.g., manual testing) by actual humans. That



still needs to happen because it’s the only way to find the bugs that the
development team couldn’t even imagine.

Automated testing isn’t just about proving that our code works. It also serves
as an invaluable communication tool, a kind of executable documentation
that demonstrates how the code is intended to be used. It also gives us a safe
framework in which to refactor and restructure our application, allowing
continuous movement towards a simpler and more elegant architecture.

Let’s work through each type of testing and look at examples of tests applied
to the metadata microservice and then to the FlixTube application.

9.5 Automated testing with Jest

Testing is a huge topic, so let’s start with simple examples that aren’t directly
related to microservices. The code we’ll look at in this section is generally
applicable for testing JavaScript code, regardless of whether that code is in a
front end, a backend, or even in a mobile or desktop application.

If you can already write an automated test with Jest, and you understand
mocking, feel free to skip this section and move directly to section 9.6. In that
section, we’ll start to relate automated testing to microservices.

For this section, imagine we are creating a JavaScript math library for use in
our microservices. We’ll use Jest to do our testing as shown in Figure 9.3.

Figure 9.3 Automated testing with Jest



In the figure, on the left, we have math.test.js. This is a file that contains the
tests that we’ll run against our math library. On the right, we have math.js.
This is the file that contains the code for our math library. When we run Jest,
it loads our test code, which in turn, runs the code we are testing. From our
tests, we directly invoke our code to test it and then verify it operated as
expected.

9.5.1 Why Jest?

Jest is arguably the most popular testing tool and framework for JavaScript. It
is easy to set up with minimal configuration, so it’s great for beginners. It’s
fast, and it can run tests in parallel. Jest also has great support for live
reloading; you can run it in watch mode, where it reloads by itself while you
are coding.

Jest was created by Facebook, so has great support behind it, but also has a
huge following and many contributors outside of Facebook. The API is
extensive, supports multiple styles of testing, and has various ways of
validating tests and creating mocks.

There are other great features that we won’t even touch on in this chapter. (At
the end of the chapter, you’ll find a link to learn more about Jest.) Jest is open



source and free to use.

You can find the code here:

https://github.com/facebook/jest

9.5.2 Setting up Jest

We’ll start by looking at example-1 in the chapter-9 code repository. You can
run these tests for yourself and make changes to those to see what happens.
Example-1 already has Jest in its package.json, so we can simply install
dependencies for the project:

cd chapter-9/example-1

npm install

You can install Jest into a new Node.js project like this:

npm install --save-dev jest

We used the --save-dev argument to save Jest as a dev dependency in
package.json. Jest is something we’ll only use in our development or testing
environment, so we save it as a dev dependency so that it’s excluded from
our production environment.

Listing 9.1 shows the Jest configuration from example-1. This is actually the
default configuration that was generated by Jest. I didn’t change it, except to
remove the numerous helpful comments that had been generated into it.

Listing 9.1 Configuration file for Jest (chapter-9/example-1/jest.config.js)

module.exports = {

 

  clearMocks: true,     #A

  testEnvironment: "node",    #B

 

};

When starting a fresh project, create your own Jest configuration file like
this:



npx jest --init

Just to remind you, npx is a command that comes with Node.js and allows us
to run npm modules as command-line applications. There are many npm
installable modules that work this way, including Jest. You might recall the
wait-port command we used with npx back in chapter 5.

Figure 9.4 shows the structure of the example-1 project with Jest installed.
You can see the familiar package.json and package-lock.json files that are in
every Node.js project (from chapter 2). As for Jest, note that this project
contains the Jest configuration file (content shown in listing 9.1) and the files
for our code and tests. The code for our math library is in math.js, and the
code for our tests is in math.test.js. As with any other npm module, Jest itself
is installed under the node_modules directory.

Figure 9.4 The structure of a fairly typical Node.js project with Jest installed

Note that the test file is named after the code that it tests. When creating
math.test.js, we simply appended .test.js to the name of our library. This
naming convention is how Jest locates our test code. This is the default
convention with Jest, but we can configure it differently if we want a
different naming convention.

Notice how the test file (math.test.js) is right next to the code file (math.js) in
the same directory. This is another convention, and one that is fairly



common. We could also have placed these two files anywhere within the
directory structure of our project, and it wouldn’t make much difference.
Another common convention is to have all tests separated from the
application code and located under a test or tests subdirectory that is next to
or just under the src subdirectory.

You might have noticed that the Jest configuration file is actually a
JavaScript file itself. This means you can use JavaScript code in your
configuration. It’s actually quite common for JavaScript and Node.js tools to
have an executable configuration file, and I think it’s pretty cool that
JavaScript can be used as its own configuration language.

9.5.3 The math library to test

Now imagine we have added the first function to our new math library. The
following listing shows the square function. This is a simple function that
takes one number and returns the square of that number.

Listing 9.2 A starting point for our new math library (chapter-9/example-1/src/math.js)

function square(n) {     #A

    return n * n;        #A

}                        #A

 

...     #B

 

module.exports = {

    square,      #C

 

    ...      #D

};

In the future, we would add many more functions to math.js. But for now,
we’ll keep it short so it can be a simple demonstration of automated testing.

9.5.4 Your first Jest test

The square function is a simple function with a simple result, and more
complex functions always depend on simpler functions like this. To be sure
that the complex functions work, we must first test the simple functions. Yes,



even though this function is simple, we still want to test it.

Listing 9.3 shows the code that tests our nascent math library. The describe
function defines a test suite called square function. The test function
defines our first test called can square two.

Listing 9.3 A first test with Jest (chapter-9/example-1/src/math.test.js)

const { square } = require("./math");       #A

 

describe("square function", () => {     #B

 

    test("can square two", () => {      #C

 

        const result = square(2);      #D

        expect(result).toBe(4);       #E

 

    });        #C

 

});          #B

We have named this test suite after the function it is testing. You can imagine
in the future that we might have other test suites in this file for other
functions in our math library.

In listing 9.3, we imported our square function from the file math.js. In our
test can square two, we then called it with the number 2 as input. You can
see that we have carefully named the test to indicate its purpose.

Note

A good name for a test allows you to instantly understand what is being
tested.

We then use the expect and toBe functions to verify that the result of the
square function is the number 4. Various combinations of functions can be
chained onto the expect function (see the Jest docs for more examples at
https://jestjs.io/docs/ en/expect), which gives a rich syntax for describing the
expected output of the code being tested.



9.5.5 Running your first test

Now we are ready to run Jest and see what a successful test run looks like
(trust me, I already know this code works). From the terminal in the example-
1 directory, run the tests as follows:

npx jest

You can see the output of the successful test run in figure 9.5. We have one
test and one test suite; both have completed successfully.

Figure 9.5 The output of our successful test run with Jest

9.5.6 Live reload with Jest

Live reloading is important for developer productivity, especially while
testing. While coding and writing tests, you can run Jest in live reload mode
as follows:

npx jest --watchAll

That command works for all projects and runs all tests when any code
changes. If you are using Git, you can also use this command:

npx jest --watch



The second version has better performance because it uses Git to know which
files have changed (rather than just blindly running all the tests).

Using live reload is a great way to work. We can change some code and the
tests automatically run to show us if the change we made has broken
anything.

9.5.7 Interpreting test failures

All is good and well when our tests are passing, but what about when we
have a problem in our code and our tests are failing? Don’t wait until you
accidentally break your code to find out!

Let’s try it now. It’s as simple as changing the behavior of our code. For
instance, try changing the square function to return the wrong result:

function square(n) {

    return n & n;

}

Notice how I replaced the multiplication operator with the binary AND
operator (&). Let’s see what our tests have to say about this.

You can see the output of the failing test in figure 9.6. When a test fails, Jest
finishes with a nonzero exit code. This indicates that a failure happened. This
is how our CI/CD pipeline can detect that our tests have failed.

Figure 9.6 The output of a failed test in Jest



This test failed because we changed the expected behavior of our code. In
this case, we broke our own code on purpose to see the result, but you can
also imagine how a simple typo in our regular development process can cause
problems like this in production code. If you didn’t have the automated test in
place, this problem could easily fall through the cracks of manual testing and
later be discovered by a customer. That’s embarrassing, to say the least, but it
can cause real problems for our business, depending on the nature of the
actual bug.

Of course, the intention here is not just to test the square function. Just that
test by itself won’t be very effective. What we need is to have a large
proportion of our code covered by many such tests.



A large body of tests gives us an automatic verification system that we run to
prove, without a doubt, that our code (still) works as intended. More
importantly, it proves to us that our code continues to work in the future as
we evolve it.

It’s handy to note that we can simulate failing code anywhere we like by
throwing an exception like this:

throw new Error("This shouldn't happen.");

The best way to be fearless in the face of errors is to ruthlessly try and cause
them in our own code. When we have seen all the errors, it takes away the
fear, and we can focus on understanding and fixing the problem. Simulating
or causing problems in code to make sure that our application handles it
gracefully is known as chaos engineering (check the end of chapter 11 for a
reference to learn more about this).

9.5.8 Invoking Jest with npm

In chapter 2, we introduced the idea of adding npm scripts to our
package.json file so that we can use the conventional npm commands like
npm start. Here we’ll configure the “test” script so that we can run our test
suite like this:

npm test

This convention means that we can easily run tests for any Node.js project
without having to know any details about the project. For example, we don’t
have to know if it’s Jest or some other testing tool. Indeed, you’ll see later in
this chapter how we’ll also run Playwright tests with the same command.
Listing 9.4 shows the package.json with the test script configured to run Jest.

Listing 9.4 Package.json with npm scripts for running Jest (chapter-9/example-1/package.json)

{

  "name": "example-1",

  "version": "1.0.0",

  "scripts": {

    "test": "jest",      #A



    "test:watch": "jest --watchAll"     #B

  },

  "devDependencies": {

    "jest": "^25.4.0"      #C

  },

  "dependencies": {

          #D

  }

}

Note also in listing 9.4, there’s an npm script called “test:watch”. This is
configured so that we can run our tests in live reload mode like this:

npm run test:watch

The test:watch script is my own personal convention—it isn’t an npm
standard. I use it so that no matter which testing tool I use, I can easily
remember how to run my tests with live reload enabled.

9.5.9 Populating your test suite

So far, we have only seen a single test, but I’d also like to give you a taste of
what it looks like as we grow this test suite. Listing 9.5 shows what
math.test.js looks like after adding a second test. (Example-1 doesn’t actually
contain this new test, but feel free to add it yourself and experiment with it.)

Listing 9.5 Adding the next test (additions to chapter-9/example-1/src/math.test.js)

const { square } = require("./math");

 

describe("square function", () => {

 

    test("can square two", () => {

        ...     #A

    });

 

    test("can square zero", () => {     #B

 

        const result = square(0);

        expect(result).toBe(0);

    });      #B

 

    ...       #C



    

});

 

...      #D

As listing 9.5 shows, we can add more tests to our square function test suite
by adding more instances of the test function nested inside the test suite’s
describe function.

The new test, can square zero, is an example of an edge case. We don’t
need to add any more tests for squaring positive numbers; can square two is
enough to cover all positive cases, so we could rename it can square
positive number. If you’d like to complete this small test suite, you should
probably also add a test called can square negative number.

As we develop our math library, we’ll add more math functions and more test
suites. For example, we’ll add functions like squareRoot and average and
their test suites square root function and average function. Remember,
we named our test file math.test.js, and that name is general enough that we
can add new test suites to it using the describe function.

We could also have separate JavaScript code files for each test suite, for
instance, square.test.js, square-root.test.js and average.test.js. Note that these
are all appended with .test.js so that Jest can automatically find them. As we
add new libraries in the future, we’ll add new test files, as many as we need,
to contain all the tests that we create.

You can structure your tests in any way you want. That means you can name
those how you like and structure them across various files to suit your own
needs. When working for a company, however, you’ll be expected to follow
their existing style and conventions. Whatever convention you follow, I
would only ask (on behalf of developers everywhere) that you use meaningful
names for your tests, names that make it easy to understand the purpose of
the test.

9.5.10 Mocking with Jest

JavaScript is a great language for creating mocks! The dynamic nature of



JavaScript makes it particularly easy to create automated tests as well. But
what is mocking?

Definition

Mocking is where we replace real dependencies in our code with fake or
simulated versions of them.

The dependencies that we replace can be functions, objects, or even entire
code modules. In JavaScript, it’s easy to create functions and piece together
new objects and data structures that we can use as mocks.

Why do we do this? The purpose of mocking is to isolate the code we are
testing. Isolating particular sections of code allows us to focus on just testing
only that code and nothing else. Isolation is important for unit testing and
test-driven development.

Not only does mocking help isolate the code we are testing, but it can also
entirely eliminate the code and processes that would make testing slow. For
example, we can eliminate database queries, network transactions, and
filesystem operations. These are the kinds of things that can take a huge
amount of time compared to the code we are testing.

In section 9.6, we’ll learn about unit testing and see a real example of
mocking, but let’s first understand mocking by examining a simple example.
Let’s say that instead of using the multiply operator in our square function,
we’ll use the multiply function as follows:

function square(n) {

    return multiply(n, n);

}

You might well ask, why are we using a function to do multiplication when
there’s already a perfectly good operator? That’s a good point. Well, I
introduced the multiply function here primarily because I need a simple
example by which to explain mocking. But if you’d like, I can also concoct a
great reason why we need this!

Let’s just say that we want our math library to work with abstract data types.



Instead of working with ordinary numbers, we want it to be able to work with
vectors (arrays of numbers), and in this case, the multiply function could
very well be an extremely complex function that does the computation in
parallel on a graphics processing unit (GPU).

Now to isolate our code in the square function (which arguably isn’t much),
we need to mock the multiply function. That means we must replace it with
another function—one that we can control. We can do this using a primitive
form of dependency injection (DI). DI is a technique where we inject
dependencies into our code rather than hard-coding them. We control what
the dependencies are, and that’s useful for isolating code for unit testing. In
this case, we inject the multiply function into the square function like this:

function square(n, multiply) {

    return multiply(n, n);

}

This works because functions are first-class citizens in JavaScript, and these
can be passed around like any other value or object. Now let’s make use of
this from our test. When we call the square function, we’ll pass in our mock
version of multiply:

test("can square two", () => {

    const mockMultiply = (n1, n2) => {       #A

        expect(n1).toBe(2);                       #B

        expect(n2).toBe(2);                       #B

        return 4;       #C

    };     #A

 

    const result = square(2, mockMultiply);       #D

 

    expect(result).toBe(4);       #E

});

You are now probably wondering, what’s the point of all this? Given that our
mock function returns a hard-coded value of 4, what are we actually testing
here? You can read it like this: “we are testing that the square function
invokes the multiply function with inputs 2 and 2, and the result received
from multiply is the value returned from the square function.”

You might note at this point that we have just implemented the square



function, tested it, and proved that it works—and the real version of the
multiply function doesn’t even exist yet! (We can write the GPU powered
version of multiply later.) This is one of the superpowers of test-driven
development (TDD). TDD allows us to reliably test incomplete versions of
our code. If that doesn’t impress you, I don’t know what will!

To make this code work for real, we still need to implement the multiply
function. This can, in turn, have automated tests applied to it.

OK, so this is a crazy made-up example, but we needed a way to introduce
the concept of mocking. It’s pretty rare to see DI implemented at such a
granular level as I have demonstrated just now. Coming up soon, though,
you’ll see a more realistic example that replaces an entire code module with a
mock.

9.5.11 What have we achieved?

We have seen a simple example of unit testing JavaScript code with Jest. We
used mocking to isolate the code we were testing, ensuring that we were
running only that code and nothing else.

9.6 Unit testing for microservices

Unit testing for microservices works the same as any other kind of unit
testing. We aim to test a single unit of code by itself and in isolation from
other code. What is a unit? Typically, each test exercises a single function or
one aspect of a single function.

What’s important with unit testing is the isolation. When we test isolated
code, we focus our testing efforts on just that small piece of code. For
example, we’d like to test the code for our metadata microservice, but we
don’t care to test the code for say the Express library or the MongoDB
library. Those are dependencies that we assume have already been tested.
Instead, we want to test only the code that we have created. To focus on our
own code, we must eliminate all other code.

Isolation of a piece of code is achieved by mocking its dependencies. What



this means in terms of our metadata microservice is that we’ll substitute the
real Express and MongoDB libraries for fake instances that we can control
and can bend to our will.

Isolation is what makes unit tests run fast. Integration and end-to-end tests
don’t isolate code. In those types of testing, we exercise the integration of
code modules rather than isolated pieces of code.

When running unit tests, we won’t start a real HTTP server or connect to a
real database. This is the kind of thing that makes unit tests run quickly, and
it’s why they are at the foundation of the testing pyramid (figure 9.1). We can
afford to have 100s or even 1000s of unit tests for our code, and we won’t
have to wait a long time for our suite of unit tests to complete.

We’ll be using Jest to execute our unit tests. Figure 9.7 shows what we’ll do
with it. Our test code from index.test.js (on the left) is loaded by Jest. Our
code to be tested, the code for our metadata microservice from index.js (on
the right) is loaded by our test code.

We’ll mock Express and MongoDB instead of using the real thing. The test
code “starts” our microservice. I say starts in quotes because we won’t be
starting it in the usual way. Unlike in normal execution, Express is mocked so
we aren’t starting a real HTTP server. Likewise, MongoDB is mocked so we
aren’t connecting to a real database.

Figure 9.7 Unit testing the metadata microservice with Jest



9.6.1 The metadata microservice

We now move on to example-2 in the chapter 9 code repository. To follow
along, you’ll need to install dependencies:

cd chapter-9/example-2

npm install

Listing 9.6 shows the code we will test. This is a fledgling microservice that
will become FlixTube’s metadata microservice. This is a REST API whose
purpose is to collect, store, search, and manage the metadata associated with
each video. The basic setup in the listing is not too different from our first
microservice back in chapter 2.

Listing 9.6 The metadata microservice for unit testing (chapter-9/example-2/src/index.js)

const express = require("express");

const mongodb = require("mongodb");

 

async function startMicroservice(dbhost, dbname) {

    const client = await mongodb.MongoClient.connect(dbhost);

    const db = client.db(dbname);

    const videosCollection = db.collection("videos");

 



    const app = express();

 

    app.get("/videos", async (req, res) => { #A

        const videos = await videosCollection.find().toArray(); #B

        res.json({ #C

            videos: videos 

        }); #C

    });

 

    // Add other route handlers here.

 

    const port = process.env.PORT && parseInt(process.env.PORT) || 3000;

    const server = app.listen(port); #D

 

    return { #E

        close: () => { #F

            server.close(); #G

            client.close(); #H

        },

        db: db, #I

    };

}

 

async function main() {

 

    const DBHOST = process.env.DBHOST; #J

    const DBNAME = process.env.DBNAME; #K

 

    const client = await mongodb.MongoClient.connect(DBHOST); #L

    const db = client.db(DBNAME);

        

    await startMicroservice(DBHOST, DBNAME);

}

 

if (require.main === module) {

    main() #M

        .then(() => console.log("Microservice online."))

        .catch(err => {

            console.error("Microservice failed to start.");

            console.error(err && err.stack || err);

        });

}

else {

    module.exports = { 

        startMicroservice, #N

    };

}



Listing 9.6 starts a HTTP server using the Express library and connects to a
MongoDB database using the MongoDB library. We added a single handler
function for the HTTP GET /videos route. This route retrieves an array of
video metadata from the database.

The code we test here will be exercised by calling the function
startMicroservice. This is a new function we added to our microservice to
help make it more testable. Calling startMicroservice returns a JavaScript
object that represents the microservice. We aren’t storing the returned object
yet. We don’t need that for unit testing, but we will need it later when we
come to integration testing.

We’ve made this change to the structure of our microservice in an effort to
design for testing, and we’ll often find ourselves doing this, adapting our
code to make it more amenable to testing.

Note that we aren’t limited to calling startMicroservice. We could, in fact,
call any exported function from any of our code modules, for example we
could add our math library from earlier and test that in the same way we did
before. Keep this in mind because it’s what unit testing is really all about:
testing each and every function individually.

9.6.2 Creating unit tests with Jest

Before we can unit test our code, we need to be able to create mocks for the
dependencies. For this example, the dependencies we have are Express and
MongoDB. In other situations, you will have different dependencies, for
example with another microservice you might need to mock the amqp library
for interacting with RabbitMQ.

Listing 9.7 shows the code for our tests. This file defines a single test suite
called metadata microservice that contains three tests. We have called the
file index.test.js to indicate that it tests code contained in the main source file
index.js. As you continue to develop your microservice, you’ll end up having
many more files like this, with tests to cover all the code in your
microservice.

The first part of the test suite is devoted to setting up mocks for the Express



and MongoDB libraries. Note the use of jest.fn to create mock functions
that we can use to detect if the function was called, and if so, then what
arguments were passed to it. Next, note the use of jest.doMock, which
allows us to mock entire Node.js modules. These tools are powerful and
allow us to replace Express and MongoDB without having to adjust the code
we are testing.

The first test in listing 9.7 checks that the HTTP server has been started on
port 3000. The second test checks that a handler for the /videos route has
been registered. The third test directly invokes the /videos route handler
function and checks that it retrieves the required data from the database.

This example is actually quite advanced, but I wanted to get straight to the
point and show you some unit testing that is relevant to microservices. If you
struggle to understand this code, don’t be too concerned. Just try to read it,
get the gist of it, and understand which parts of it are for mocking and which
parts are for testing.

Listing 9.7 Testing the metadata microservice with Jest (chapter-9/example-2/src/index.test.js)

describe("metadata microservice", () => {     #A

 

    const mockListenFn = jest.fn((port, callback) => callback());       #B

    const mockGetFn = jest.fn();       #C

 

    jest.doMock("express", () => {       #D

        return () => {       #E

 

            return {      #F

                listen: mockListenFn,

                get: mockGetFn,

            };

        };

    });

 

    const mockVideosCollection = {};     #G

 

    const mockDb = {      #H

        collection: () => {

            return mockVideosCollection;

        }

    };



 

    const mockMongoClient = {      #I

        db: () => {

            return mockDb;

        }

    };

    

    jest.doMock("mongodb", () => {      #J

        return { 

 

            MongoClient: {     #K

                connect: async () => {      #L

                    return mockMongoClient;

                }

            }

        };

    });

 

    const { startMicroservice } = require("./index");      #M

    

    test("videos route retrieves data via videos collection", async () => {       #N

        

        await startMicroservice();      #O

 

 

        const mockRequest = {};      #P

        const mockJsonFn = jest.fn();

        const mockResponse = {

            json: mockJsonFn

        };       #P

 

        const mockRecord1 = {};      #Q

        const mockRecord2 = {};

 

        mockVideosCollection.find = () => {

            return {

                toArray: async () => {       #R

                    return [ mockRecord1, mockRecord2 ];

                }

            };

        };       #S

 

        const videosRouteHandler = mockGetFn.mock.calls[0][1];      #T

        await videosRouteHandler(mockRequest, mockResponse);       #U

 

        expect(mockJsonFn.mock.calls.length).toEqual(1);    #V

        expect(mockJsonFn.mock.calls[0][0]).toEqual({



            videos: [ mockRecord1, mockRecord2 ],         #W

        });

    });

 

    ...       #X

 

});

You might be wondering where the jest variable actually comes from
because there is no require statement in listing 9.7 that imports it! This is
standard JavaScript, and normally, it would be a problem, but this code is
running under Jest, which automatically imports the jest variable for us.
How nice of it to save us a line of code like that (he says in a sarcastic voice).

A large section at the start of listing 9.7 is dedicated to creating the mocks
that replace Express and MongoDB. We used jest.fn and jest.doMock to
create mocks. Jest has many other useful functions for mocking and
specifying the expectations of the test. See the reference at the end of this
chapter to read more about mocking with Jest.

We replaced Express and MongoDB with new JavaScript objects, thus
providing our own implementations for the dependencies of the code we are
testing. When the code calls these functions, it calls the replacement versions
and not the usual ones from the real Express and MongoDB libraries.

If we didn’t replace Express and MongoDB, then calling startMicroservice
would start the real HTTP server and connect to the real database. That
normal operation is exactly what we want to avoid when unit testing! It’s the
kind of thing that makes automated tests run slowly. It won’t seem like much
of a difference right now because, for the moment, we are only talking about
a tiny number of tests. But when you get to running 100s or even 1000s of
tests, you will definitely see a big difference.

9.6.3 Running the tests

After writing the code and the tests, we are ready to run Jest. From the
terminal in the example-1 directory, run the tests as follows:

npx jest



Or run

npm test

The output should show one passing test suite with three passing tests.

9.6.4 What have we achieved?

We’ve learned the basics of unit testing against our microservice using Jest.
We mocked the Express and MongoDB libraries, and we tested that our
microservice can start and that its /videos route can retrieve records from the
database.

This might not seem like much, but you can continue to create tests like this
to cover code across all of your microservices. You might even want to try
test-driven development (TDD) where you write code for tests before writing
the actual code being tested. That’s a powerful technique that puts testing
first and helps us write more testable code, and therefore more reliable code.

9.7 Integration testing

The next step up the testing pyramid (figure 9.1) is integration testing. It’s
called integration testing because, instead of testing code modules in
isolation (as we did with unit testing), the emphasis is now on testing code
modules functioning together in an integrated fashion. When it comes to
microservices, integration testing usually means that we are testing an entire
microservice, including all the code modules and code libraries that it
depends upon.

It would be nice if unit testing was enough to solve all our problems. Unit
testing is very effective because unit tests are extremely fast to run. The speed
of unit tests means that we’ll be more likely to run these frequently and thus
catch problems quickly. Unfortunately, though, many problems can still be
hidden in the spaces between code modules where they can’t be detected by
unit tests.

Note



Using the right combination of tests is a balancing act, and we do need
integration tests because that’s the only way to find problems in the
integrated code.

Typically, when we run integration tests against a microservice, we’ll interact
with it through its official HTTP interface instead of directly, calling its
functions as we did for unit testing. There are other ways we could interact
with it, depending on how the microservice is implemented. For example, if
the microservice uses RabbitMQ, then we can also interact with it by sending
it messages.

Figure 9.8 shows what we’ll do with integration testing in this section. Again,
we are using Jest to test our metadata microservice, but this time, we won’t
be making use of Jest’s mocking facilities. Instead of directly calling code in
our microservice to test it, we’ll send it HTTP requests and check the
responses that come back.

Figure 9.8 Integration testing a microservice with Jest

9.7.1 The code to test



Now we can move to example-3 in the chapter-9 code repository. You can
continue to follow along and run these tests. The code we’ll test is the same
code as in example-2; nothing has changed, so look back to listing 9.6 if
you’d like to revise that code.

9.7.2 Running a MongoDB database

When doing integration testing, we won’t replace our database with a mock
version. Instead, we need a real database, and we need to be able to load
realistic test data.

To run the integration tests for example-3, you’ll need a real MongoDB
database up and running. It’s not too difficult to download and install
MongoDB. You can install it on your development workstation if you
haven’t already done so. Follow the instructions for your platform here:

https://docs.mongodb.com/manual/installation/

As an alternative, I’ve included a Docker Compose file in example-3 that
starts MongoDB in a Docker container. You can start it like this:

cd chapter-9/example-3

docker-compose up

9.7.3 Loading database fixtures

With a database up and running, now we need a way to load database fixtures
on demand. A database fixture is a fixed set of test data that we can load into
our database for testing. It’s called a fixture because we use it to seed our
database with a fixed (a well-known or specific) set of data.

Doing this is particularly easy with Jest as we can simply create a JavaScript
helper function to load data directly into our database through the regular
MongoDB Node.js library. MongoDB is already included in the example-3
package.json, and you can install all dependencies for example-2 like this:

npm install



MongoDB can be installed in a new project as follows:

npm install --save mongodb

Note that we’ll use the --save argument instead of --save-dev because
MongoDB is actually used in our production microservice, not just in the test
code. Even though we use it for testing, we also need it installed as a
production dependency rather than a dev dependency.

Listing 9.8 shows a simple function that we can use for loading test data. We
can call this function from our test code, and you’ll see an example of that
soon. We simply need to specify the name of the collection and the data
records to load. Note how we are accessing the microservice’s database
through the db field of the microservice object (which is saved in a variable
as you can see in listing 9.6). This saves having to make multiple connections
to the database. We don’t need to do that because the microservice has
already made the connection, and we can reuse it.

Listing 9.8 A helper function to load a database fixture (extract from chapter-9/example-
3/src/index.test.js)

// ...

 

async function loadDatabaseFixture(collectionName, records) {      #A

 

    await microservice.db.dropDatabase();      #B

 

    const collection = microservice.db.collection(collectionName);

    await collection.insertMany(records);      #C

}

 

// ...

9.7.4 Creating an integration test with Jest

Creating an integration test with Jest is much the same as creating a unit test.
And because we aren’t doing any mocking, it actually simplifies our test code
quite a bit.

Instead of invoking code directly in our microservice, we’ll use HTTP



requests to trigger the code we’d like to test. To make HTTP requests, we can
use either the Node.js low-level http library that we used in chapter 5 or a
library installed through npm. In this case, we’ll use the Axios library, which
is a more modern library that directly supports async/await, so it fits nicely
with Jest’s support for asynchronous coding.

Example-3 already has Axios added to the package.json file. If you installed
all dependencies for example-3, then you already have it. Otherwise, you can
install Axios in a new project like this:

npm install --save-dev axios

We are using the --save-dev argument here because, in this case, we’ll only
use Axios in our tests. For that reason, it can be a dev dependency. If you
plan to use Axios in your production code though, be sure to install it as a
regular dependency using --save instead of --save-dev.

Listing 9.9 shows the code for our integration tests. This is similar to the code
for our unit tests, but instead of mocking dependencies and directly calling
into the code to be tested, we are starting our metadata microservice as a real
HTTP server. We then use Axios to send HTTP requests to it.

Be careful that you don’t run listing 9.9 against a production database! The
function that loads the database fixture first drops the entire database. Make
sure you only ever run this against a test database!

Listing 9.9 Code for integration testing the metadata microservice with Jest (chapter-9/example-
3/src/index.test.js)

const axios = require("axios");

const mongodb = require("mongodb");

 

describe("metadata microservice", () => {

    

    const BASE_URL = "http://localhost:3000"; #A

    const DBHOST = "mongodb://localhost:27017";      #B

    const DBNAME = "testdb";

 

    const { startMicroservice } = require("./index"); 

 

    let microservice;



 

    beforeAll(async () => {

        microservice = await startMicroservice(DBHOST, DBNAME);      #C

 

    });

 

    afterAll(async () => {

        await microservice.close();      #D

    });

 

    function httpGet(route) {

        const url = `${BASE_URL}${route}`;

        return axios.get(url);

    }

 

    async function loadDatabaseFixture(collectionName, records) {      #E

 

        await microservice.db.dropDatabase();

 

        const collection = microservice.db.collection(collectionName);

        await collection.insertMany(records);

    }                                           #E

    

    test("/videos route retrieves data via videos collection", async () => {       #F

 

        const id1 = new mongodb.ObjectId();      #G

        const id2 = new mongodb.ObjectId();

        const videoPath1 = "my-video-1.mp4";

        const videoPath2 = "my-video-2.mp4";

 

        const testVideos = [

            {

                _id: id1,

                videoPath: videoPath1

            },

            {

                _id: id2,

                videoPath: videoPath2

            },

        ];      #G

 

        await loadDatabaseFixture("videos", testVideos);      #H

        

        const response = await httpGet("/videos");      #I

        expect(response.status).toEqual(200);

 

        const videos = response.data.videos;       #J



        expect(videos.length).toEqual(2);

        expect(videos[0]._id).toEqual(id1.toString());

        expect(videos[0].videoPath).toEqual(videoPath1);

        expect(videos[1]._id).toEqual(id2.toString());

        expect(videos[1].videoPath).toEqual(videoPath2);       #J

    });

 

    ...         #K

 

});

In listing 9.9, there is only one test, but we can easily add more as we develop
the microservice. Here again, we test the /videos route. This time, though, we
do it through its normal HTTP interface, and the microservice is using a real
database instead of a mock.

Note in listing 9.9 how we use Jest’s beforeAll function to start our
microservice before testing, and then the afterAll function to shutdown the
microservice. See how we are saving a reference to the microservice object.
This means we can access its database connection and shutdown the
microservice when the test is done. Shutting down our microservice is
something we never considered before, but it’s important here because this
might not be the only test suite, and we don’t want to leave this microservice
running longer than necessary.

You might have realized that as we add more tests to this test suite, we’ll run
multiple tests against the same microservice. It’s not ideal to share the
microservice across multiple tests in this way because it makes it difficult to
know if each test is independent of the others. But it is significantly faster to
do it this way than to separately start and stop the microservice for each test
in turn. We could do that to make the test suite more reliable, but it makes
running the test suite much slower.

Other tools for integration testing microservices

Here are some other useful ways to do integration testing for your
microservices for you to explore later:

·   Supertest - A nice API that integrates with Express that makes it easy to
make requests against your microservices and test their responses.



·   Pact - A more advanced tool for testing your microservices in pairs to
ensure that the contract (i.e. communication) they have with each other
continues to work into the future.

9.7.5 Running the test

Running integration tests with Jest is the same as running unit tests. Invoke:

npx jest

Or, because we configured it in package.json, invoke:

npm test

Try running this integration test for yourself. Also, try changing code to
break the test and see what error messages come up, like we did earlier when
unit testing.

9.7.6 What have we achieved?

In this section, we learned the basics of running integration tests with Jest.
It’s pretty much like unit testing, but we left out the mocking. As a result, we
ran our code integrated with all its dependencies.

When doing integration testing, we are not trying to isolate the code under
test (that was the point of unit testing), and we aren’t trying to mock any
dependencies (which is what helps achieve that isolation). We are, instead,
aiming to test the code in its integrated state! That is to say, we are testing it
in combination with all the other code it depends on: code in other modules
and code in external libraries.

In a sense, integration testing is easier than unit testing because we don’t
have the concerns of isolation and mocking. Creating integration tests can
also be a more effective use of our time than writing unit tests. That’s
because integration tests tend to cover more code, and as such, you need to
spend less time writing tests.

The big problem with integration tests is that they are slow compared to unit



tests. That is why they have a higher position in the testing pyramid. Consider
the unit and integration tests that we have already seen in this chapter. They
have basically tested the same thing. But in the case of integration testing, we
started a real live HTTP server that connects to a real database. Using real
dependencies makes integration tests much slower to execute than unit tests.

9.8 End-to-end testing

Now we take the final step up the testing pyramid (figure 9.1) and we arrive
at end-to-end testing. This is similar to integration testing except here we aim
to test against our whole application, or at least, some cut-down version of it.
We hope to test our application in its entirety and as close as we can get to its
production configuration.

With end-to-end testing we’ll be running tests against the user interface - in
this case against FlixTube’s frontend. We don’t have to do any mocking, as
we did with unit tests, so that makes things a bit easier. But we do need
database fixtures, like we used with integration testing, so that we can load
realistic test data.

Traditionally, it would have been difficult to do end-to-end testing against a
distributed application. That’s because it takes a lot of effort to configure and
start all the services. Fortunately, we are now empowered by Docker
Compose, which we learned in chapters 4 and 5 and have used since to
develop our application. We will now use Docker Compose as a convenient
way to boot our microservices application for automated end-to-end testing.

At this point, we are leaving Jest behind and moving on to Playwright, a
testing tool for loading and testing web pages. Playwright is powerful and has
many features, but we’ll just learn some basics, enough to get started and
give a taste of what it can do.

We’ll use Playwright to run tests against FlixTube, through its frontend that
is served by the gateway microservice, as illustrated in figure 9.9.

Figure 9.9 End-to-end testing our entire application with Playwright and Docker Compose



Running end-to-end tests requires that we start our whole application
(including the database) and do the testing against the frontend running in a
web browser. This makes end-to-end tests the slowest of all the types of
testing, earning them their place at the top of the testing pyramid.

That said, having a handful of end-to-end tests should be an important part of
your testing strategy. End-to-end testing covers a lot of ground, so even
though these can take significant time to run, they deliver a lot of bang for
buck. Also, this type of testing exercises your application through the
frontend, which happens to be the point of view of your customer. Needless
to say, this is the most important perspective from which we can test our
application, and it is the primary reason we place such a high value on end-
to-end tests.

9.8.1 Why Playwright?

Playwright is a fantastic all-in-one-tool for testing web pages. It is simple to
install and start using and has a great automated configuration generator
which includes running tests on multiple browsers (it even transparently
downloads the browsers for you). By default Playwright runs in headless (not



visible) mode, which makes it easy to get working in your CI/CD pipeline.
On top of that it also has great visual reporting and debugging tools.

Playwright was created by Microsoft as an open source project. You can find
the code for it on GitHub here:

https://github.com/microsoft/playwright

9.8.2 Installing Playwright

For this book and for FlixTube, we integrate Playwright, our end-to-end tests,
and some microservices into a single code repository. But there are other
ways you could structure this. You might like to have your Playwright tests
in their own code repository or have your frontend and the tests together in
their own repository that is separate from the other microservices. I have
included everything you need under the example-4 repository just to make it
easy for you to try out.

You can install dependencies like this:

cd chapter-9/example-4

npm install

As per the Playwright getting started guide, we can install Playwright in a
new project like this:

npm init playwright@latest

This isn’t the same as installing other npm modules. You could, I imagine,
also install it like this:

npm install --save-dev @playwright/test

Except if you install it like that you’ll have to do all your own configuration.
When we install the first way, using npm init, it does the setup for us, which
includes creating a configuration file, plus example tests to help us get
started, and it will even ask us if we’d like to generate a GitHub Actions
workflow file (it creates a CI pipeline for us!). It’s an impressive starting
point for writing end-to-end tests.



You can see in figure 9.10 the structure of the example-4 project with
Playwright installed. This is similar to other project structures we have
worked with in earlier chapters. We have a docker-compose.yaml file to build
and run our application, and we have code for our microservices in
subdirectories. In addition now we have a Playwright configuration file, our
end-to-end tests and a new REST API for loading database fixtures.

Figure 9.10 Example-4 project structure with Playwright installed



Listing 9.10 shows a cutdown (the actual one is quite long) version of the
Playwright configuration file that was generated during Playwright
installation.

Listing 9.10 Configuration file for Playwright (extract from chapter-9/example-
4/playwright.config.js)

// --snip--



 

const config = {

    testDir: './tests', #A

 

    // --snip--

 

    use: {

        // --snip--

    

        baseURL: 'http://localhost:4000', #B

 

        // --snip--

    },

 

    // --snip--

};

 

module.exports = config;

Note in listing 9.10 how we set the base URL in the configuration file. This
lets Playwright know where we are running our frontend (the FlixTube
frontend). It’s a shortcut so that we don’t have to specify the full URL when
visiting each page in every test.

9.8.3 Setting up database fixtures

Before we start our application, we must be able to load database fixtures.
When using Jest earlier, we were able to load data into our database directly
from the test code. We could probably also do this directly from code running
under Playwright - but then our tests would need the code and configuration
to connect to our database (with Jest we didn’t need this because we
piggybacked directly on the microservice’s database connection). Instead, I
prefer to delegate this to another REST API, one that I can reuse from project
to project without having to clutter up my tests with database connection
details.

So, to load test data into our database we’ll use a separate REST API. That
means we can make HTTP requests to load and unload database fixtures. We
are already using Docker Compose, so it’s not difficult to add an extra
container into our application. Figure 9.11 shows the structure of our
application including the new database fixtures REST API.



Figure 9.11 Using the database fixtures REST API to seed our database with test data prior to
running tests with Playwright

Creating a REST API like this is quite a bit of work. However, I already have
one that I’ve used for testing projects in the past. I’ve included a copy of the
code for it under the example-4 project (find it under example-4/db-fixtures-
rest-api). You can also find a standalone copy of the code on GitHub:

https://github.com/ashleydavis/db-fixture-rest-api

We won’t cover the internals of the database fixtures REST API in this book.
We have to draw the line somewhere, but feel free to look over this code on
your own. Be assured that you won’t find anything particularly new here;
after all, it’s just a Node.js REST API built on Express and is similar to the
microservices you have already seen in this book.

Listing 9.11 is an extract from the example-4 docker-compose.yaml file. It



shows how we integrate the database fixtures REST API into our application
the same way as any other microservice.

Listing 9.11 Loading the db fixtures REST API with Docker Compose (extract from chapter-
9/example-3/docker-compose.yaml)

version: '3'

services:

 

  db:       #A

    image: mongo:5.0.9

    container_name: db

    ports:

      - "27017:27017"

    expose:

      - "27017"

    restart: always       #A

 

  db-fixture-rest-api:         #B

    image: db-fixture-rest-api

    build: 

      context: ./db-fixture-rest-api

      dockerfile: Dockerfile

    container_name: db-fixture-rest-api

    ports:

     - "9000:80"

    environment:

     - PORT=80

     - DBHOST=mongodb://db:27017

     - FIXTURES_DIR=fixtures

    volumes:

     - ./fixtures:/usr/src/app/fixtures:z

    depends_on:

      - db

    restart: always       #B

 

    ...       #C

Listing 9.11 adds the database fixtures REST API to our application, but we
still need a way to talk to it from our Playwright tests. For that, we’ll create
some JavaScript functions that we can use from Playwright tests to load
database fixtures. Listing 9.12 is an extract that shows the function we can
use to load a database fixture.



Listing 9.12 Loading a database fixture under Playwright (extract from chapter-9/example-
4/tests/lib/db-fixture.js)

const axios = require("axios");

 

const dbFixturesUrl = "http://localhost:9000"; #A

 

async function loadFixture(databaseName, fixtureName) { #B

    unloadFixture(databaseName, fixtureName);

 

    const url = dbFixturesUrl 

        + "/load-fixture?db=" + databaseName 

        + "&fix=" + fixtureName;

    await axios.get(url); #C

}

 

... #D

The loadFixture function uses Axios to make a HTTP GET request to the
database fixtures REST API and causes it to load a database fixture from a
file (in this case, example-4/fixtures/two-videos/videos.js). In a moment,
you’ll see how we invoke this command from our test code.

9.8.4 Booting your application

We have Playwright installed and ready to go, and we have the ability to load
database fixtures. Before we can test our application, we must boot it!

Listing 9.11 was an extract of the Docker Compose file for example-4. The
complete file contains the configuration for a cut-down version of FlixTube
with only the gateway and metadata microservices (other microservices are
omitted; we only include what we need to test). This is nowhere near the full
application, but it’s enough that we can write a test to confirm that the list of
videos is retrieved from the database and displayed in the frontend.

In this chapter, I’ve simplified FlixTube just so that I can present it as a
simple example. But it’s interesting to note that this technique of crafting
cutdown versions of our application is quite useful. In the future, when our
microservices application has grown too big to run on any single computer,
we might be required to chop it up into smaller configurations in order to
make each part of it testable. This could be the only way we can do end-to-



end testing in the future!

Now, let’s start the application using our old friend Docker Compose:

cd chapter-9

cd example-4

docker-compose up --build

9.8.5 Creating an end-to-end test with Playwright

Writing end-to-end tests with Playwright is similar to writing tests with Jest,
but there are some differences. Listing 9.13 shows an example Playwright
test; notice the familiar overall structure composed of describe and test
functions. See the page parameter that is passed to each test? This is the
interface provided to us by Playwright that allows us to control the web page
we are testing against.

Listing 9.13 An end-to-end test of FlixTube with Cypress (extract from chapter-9/example-
4/tests/frontend.test.js)

const { test, expect } = require('@playwright/test'); #A

const { describe } = test; #A

const { loadFixture } = require('./lib/db-fixture'); #B

 

describe("flixtube front end", () => { #C

 

    test("can list videos", async ({ page }) => { #D

 

        await loadFixture("metadata", "two-videos"); #E

 

        await page.goto(`/`); #F

 

        const videos = page.locator("#video-list>div"); #G

        await expect(videos).toHaveCount(2); #H

 

        const firstVideo = videos.nth(0).locator("a");

        await expect(firstVideo).toHaveText("SampleVideo_1280x720_1mb.mp4"); #I

        await expect(firstVideo).toHaveAttribute("href", "/video?id=5ea234a1c34230004592eb32"); #I

 

        const secondVideo = videos.nth(1).locator("a");

        await expect(secondVideo).toHaveText("Another video.mp4"); #J

        await expect(secondVideo).toHaveAttribute("href", "/video?id=5ea234a5c34230004592eb33"); #J

    });



 

    // Other tests go here.

});

The first line of code in our test is a call to our loadFixtures function. On
the next line, we call page.goto to make Playwright visit a web page. All
other Playwright functions operate relative to the page that is visited. Here we
are visiting the / (root) route for the FlixTube web page. Note that this is
relative to the base URL that we specified earlier in the Playwright
configuration file.

Next, we use page.locator to retrieve elements from the browser’s DOM
hierarchy and run tests against them. Our code then checks that we have two
videos in the video list and then verifies the names and links for each. We
know these videos should be displayed in the frontend because we have
seeded the database for the metadata microservice with the two-videos
database fixture. That database fixture loads test data (you can see it in
example-4/fixtures/two-videos/videos.js) into the database with all the details
of these two videos.

Now let’s run our tests. In the example-4 directory invoke Playwright like
this:

npx playwright test

In the terminal we see messages from Playwright showing us the tests in
progress and in the browser they are running in. If there is a failure,
Playwright opens a web page to view the results from the tests.

If you prefer to get all your results (pass or fail) in the terminal, like me,
instead you can choose to list the test results like this:

npx playwright test --reporter=list

Just make sure you have the application running before you try to test it! If
you haven’t done this, you won’t have any application to run tests against:

docker compose up --build

Running end-to-end tests can take significant time. They are slow because



they start a real web browser to run the tests against (even though you don’t
see it because it’s a headless browser, i.e. not displayed). They are even
slower, because Playwright (by default) is configured to run not just against
one browser, but against three! If you look near the end of the Playwright
configuration file you’ll see that it’s configured to run against Chrome,
Firefox and Safari. I don’t know about you, but I think it’s pretty impressive
that these days we can so easily run our automated tests across multiple web
browsers.

The test in example-4 should pass (you should actually see three successes,
one for each web browser). If you like, though, now you can try and break it,
just like we did earlier with our Jest tests. For example, open the file
example-4/gateway/src/views/video-list.hbs. This is the HTML that is
rendered for the FlixTube home page (in the format of a Handlebars
template). Try changing this HTML so that something different is displayed
for each video in the list. Now run the tests again, and you should see that
they are broken.

Just be careful that you never run this test against a production database.
Loading a database fixture wipes out the related database collections (it resets
them to our test data), and we never want to lose production data. We
shouldn’t be able to do this in production anyway, because we would never
run the database fixtures REST API in production or connect it to a
production database! That is what gives us the ability to load database
fixtures, but we only need it for development and testing environments. If
someday, you find yourself connecting the database fixtures REST API to a
production database, be aware that you are on the way to making a seriously
damaging mistake (like deleting your customer’s data).

Note

Running the database fixtures REST API in a production environment also
gives external access to your database. This is a recipe for disaster, so be
careful never to instantiate it in production.

There’s so much more we can do with Playwright! This includes clicking
buttons. For example, clicking the first video element from listing 9.13:



await firstVideo.click();

Or, typing values into input fields:

anInputElement.type("Hello world");

The way to learn more is to read the docs:

https://playwright.dev/docs/

Especially interesting is Playwright’s visual tracing feature that provides a
GUI for you to step through each action of your test visually:

https://playwright.dev/docs/trace-viewer-intro

Also Playwright has great support for debugging our tests:

https://playwright.dev/docs/debug

We can also mock our backend and REST APIs with Playwright. This is
really useful because it allows us to do a kind of unit testing against our
frontend. That would mean we aren’t really end-to-end testing our whole
application anymore, but it can be an extremely valuable technique for testing
our frontend in isolation. Read more about it here:

https://playwright.dev/docs/mock

9.8.6 Invoking Playwright with npm

Now we can get set up to invoke our Playwright tests with npm just like we
did with Jest. Example-4 is a separate project to the other examples for this
chapter, and we use a different testing tool (Playwright rather than Jest).
Nevertheless, we’d like to be able to run our Playwright tests with the
conventional npm test script like this:

npm test

Listing 9.14 shows the setup in package.json to make this work. We have
configured the “test” script to run our Playwright tests.



Listing 9.14 Package.json with npm scripts for running Playwright (extract from chapter-
9/example-4/package.json)

{

  "name": "example-4",

  "version": "1.0.0",

  "scripts": {

    "test": "playwright test --reporter=list  --workers 1" #A

  },

  "dependencies": {},

  "devDependencies": {

    --snip--

  }

}

Unfortunately, as yet, there is no way to run Playwright in “watch” mode. So
we can’t implement the npm script “test:watch” like we did with Jest. This
will probably change in the future though, because work on Playwright is still
progressing.

9.8.7 What have we achieved?

We’ve almost come to the end of our journey through the testing landscape.
We’ve seen examples of unit testing, integration testing, and now end-to-end
testing.

We’ve understood the relative performance of tests: integration tests are
slower than unit tests and end-to-end tests are slower than integration tests.
And we’ve seen how each unit test covers only a small amount of isolated
code. Integration and end-to-end testing can be very effective because these
cover much more code with fewer tests.

The question now is how many of each type of test should you have? There's
no exact answer to this question because it depends on the particulars of each
project.

But what I can say is that you can, and probably should, have 100s or 1,000s
of unit tests. You’ll need to have much fewer integration tests and very much
fewer end-to-end tests. It’s difficult to say how many because it really
depends on how long you are willing to wait for a test to run to completion. If



you are happy to wait overnight or over a weekend for your test suite to
complete, then you probably can afford to have 100s or 1,000s of end-to-end
tests as well.

As developers, though, we crave fast and comprehensive feedback. For this,
we can’t beat unit tests. If we can have a huge amount of code coverage
through many extremely fast unit tests, then this is what we should be aiming
for. Because fast tests will get used by the development team and slow tests
won’t (developers hate waiting for tests). If your tests are slow, developers
will tend to avoid them.

At the end of the day, it’s not black and white. There isn’t even a clear
distinction between the different types of tests. Where does unit testing end
and integration testing begin? It’s not clear. All tests fall on a spectrum, and
it’s a spectrum with many shades of gray.

9.9 Automated testing in the CI/CD pipeline

We have a suite of automated tests. Now we arrive at the real point of
automated testing: to put it on automatic!

To truly be automatic, our tests need to operate directly on our hosted code
repository. When a developer pushes code changes to the code repository,
we’d like to automatically run the test suite to check the health of the code.
To achieve this, we must run the tests from our CI/CD pipeline, where they
can be invoked automatically whenever any developer pushes code to the
code repository. Our automated tests are most valuable when used as a
checkpoint in front of production deployment, as shown in figure 9.12. If the
tests pass, our code goes to production. If they fail, our code will not be
deployed.

Figure 9.12 Automated testing within the CD pipeline



The reason we spent time earlier discussing the configuration of the npm test
script in package.json is because that’s how we integrate our automated tests
into our CI/CD pipeline. Adding automated testing to our CI/CD pipeline is
easy; whatever the project (assuming we configured it correctly) we can
invoke:

npm test

You might remember that we already made use of this in chapter 8. Review
listing 8.3 to see how npm test fits into a GitHub Actions workflow.

9.10 Review of testing

Before finishing the chapter, here is a quick review of Jest and Playwright
and how we use these to run tests.

Table 9.2 Review of testing commands

Command Description



npx jest --init Initializes the Jest configuration file.

npx jest Runs tests under Jest.

npx jest --watch

Runs tests with live reload enabled to rerun tests
when code has changed. It uses Git to know which
files have changed.

npx jest --watchAll
As above, except it monitors all files for changes
and not just those that are reported changed by Git.

npx playwright test Runs Playwright tests and opens the test report in
your web browser.

npx playwright test --
reporter=list

Runs Playwright tests, but reports results in the
terminal.

playwright test --
workers 1

Runs Playwright tests with only a single worker.
This disables parallelisation which we can’t use if
we are sharing a database between our tests.

npm test

The npm script convention for running tests. Runs
Jest or Playwright (or even both if correctly
configured).

This is the command to invoke in your CI/CD
pipeline to execute your test suite.



npm run test:watch

This is my personal convention for running tests in
live reload mode. You need to configure this script
in your package.json file to use it.

9.11 Continue your learning

In this chapter, we learned the basics of automated testing. There’s enough
here to kick start your own testing regime, but testing is such a huge subject
and is a specialization in its own right. To explore the subject further, refer to
the following books:

Unit Testing Principles, Practices, and Patterns by Vladimir Khorikov
(Manning, 2020)
The Art of Unit Testing, 2nd ed., by Roy Osherove (Manning, 2013)
Testing Java Microservices by Alex Soto Bueno, Andy Gumbrecht, and
Jason Porter (Manning, 2018)
Testing Microservices with Mountebank by Brandon Byars (Manning,
2018)

Also see Exploring JavaScript Testing by Elyse Kolker Gordon (Manning,
2019), which is a free collection of chapters about testing from other books
available from Manning:

https://www.manning.com/books/exploring-javascript-testing

To learn more about Jest, see the Jest web page and Getting Started guide
here:

https://jestjs.io/
https://jestjs.io/docs/en/getting-started

To learn more about Playwright please see the Playwright web page and
getting started guide:

https://playwright.dev/
https://playwright.dev/docs/intro



9.12 Summary

Automated testing is essential for scaling up to large numbers of
microservices and being able to know that they are all still working
correctly.
The testing pyramid diagram shows the relationship between unit
testing, integration testing and end-to-end testing and that generally you
should have more unit tests than integration tests and more integration
tests than end-to-end tests.
Unit testing aims to exercise a small unit of code (say one function, or
one aspect of one function) in isolation from the rest of the code. Testing
in isolation means we are only testing the code we care about and no
other code can interfere with the result of that.
Mocking means creating fake or simulated dependencies in order to
isolate our code.
Mocking is particularly easy in JavaScript because we can easily create
and configure new objects and new functions. This makes testing in
JavaScript a very nice experience (at least in my opinion).
Integration testing exercises a larger portion of code, say a whole
microservice.
End-to-end testing exercises our whole application or possibly a
cutdown or limited configuration of it (for example, when our
microservices application grows too big to run on a single computer or
otherwise when we’d like to test a specific cross section of it).
We can run unit and integration tests with the Jest testing framework, a
popular JavaScript testing tool.
We can perform integration tests for a microservice by starting the
whole microservice and then triggering its functionality through its
normal interface. Our test code can invoke the microservice via HTTP
requests or via messages (e.g. RabbitMQ messages).
We can perform end-to-end tests for a microservices application by
starting the application (or some limited part of it) using Docker
Compose and then using the Playwright testing framework to interact
with the application through the frontend.
Live reload can be enabled with Jest using the --watch and --watchAll
flags, which automatically reruns our automated tests while we are
coding, giving us fast feedback during the development process.



Our tests can be integrated into our CI or CD pipeline to create an
automatic warning system that will notify us when our code has been
broken. Typically, JavaScript tests are integrated by implementing the
“test” script in the package.json file and then invoking the command npm
test within the CI/CD pipeline.



10 Shipping FlixTube
This chapter covers

Revisiting the tools you’ve learned so far
Using a monorepo for microservices development
Understanding the layout, structure, and main code paths of FlixTube
Building, running, and testing FlixTube in development
Building the continuous delivery pipeline for FlixTube

Getting to chapter 10 has been a long road to travel. Along the way, we used
numerous tools to build, test and deploy microservices. In this chapter, we’ll
see the fruits of our labor come together in the completed version of the
FlixTube example application.

Through this chapter, we’ll learn how FlixTube works as a whole and meet
some new microservices. We’ll revise and consolidate our skills in the
context of a complete, although still relatively simple, microservices
application.

We will start by building and running FlixTube in development. Next, we’ll
run our tests from chapter 9 against it. Ultimately, we’ll deploy FlixTube to
our production Kubernetes cluster and see its continuous delivery (CD)
pipeline.

10.1 No new tools!

Congratulations! You have already learned all the main tools you need to
start building microservices applications. You can see the list of tools we’ll
revise in this chapter in table 10.1.

Table 10.1 The main tools we revise in chapter 10



Tool Version Purpose

Node.js 18.5.0
We use Node.js to run individual microservices (in
this chapter we use the metadata microservice as an
example).

Docker 20.10.17 We use Docker to package and publish FlixTube’s
microservices.

Docker
Compose

Included
with
Docker

We use Docker Compose to run FlixTube for
development and testing.

Kubernetes 1.24.1
We deploy FlixTube to a local Kubernetes instance
(running on Docker Desktop) and also to a production
Kubernetes instance running on the Azure cloud.

Kubectl 1.24.1 We use Kubectl to deploy FlixTube to Kubernetes.

GitHub
Actions N/A We use GitHub Actions to create a CI/CD pipeline for

FlixTube.

Jest 29.4.1 We use Jest to run tests against the metadata
microservice.

Playwright 1.3.0 We use Playwright for testing the FlixTube frontend.

There is, of course, a deeper level of knowledge to be acquired for each of



these tools. There are also many other useful tools that you could learn, and
new tools will arrive on the scene in the future.

But, for the purposes of this book, we have learned the minimum amount of
tooling to build products based on microservices. As you dive deeper into
ongoing development, you’ll find problems that are specific to your project,
and you’ll need to dive deeper to figure them out. In the future you’ll want to
learn more about Docker, Kubernetes, Terraform and GitHub Actions. For
now, though, we have enough tools in our toolbox to complete our first
version of FlixTube. So let’s get to it.

10.2 Getting the code

To follow along with this chapter, you need to download the code or clone
the repository.

Download a zip file of the code from here:
https://github.com/bootstrapping-microservices-2nd-edition/chapter-10
You can clone the code using Git like this:

git clone https://github.com/bootstrapping-microservices-2nd-edition/chapter-10.git

For help on installing and using Git, see chapter 2. If you have problems with
the code, log an issue against the repository in GitHub.

10.3 Revisiting essential skills

As we work through the complete FlixTube example, we will exercise the
essential skills we have learned to build, run, test, and deploy microservices.
When you see it in a list like this, you realize just how much ground we have
covered!

Running microservices with Node.js (from chapter 2)
Packaging and publishing our microservices with Docker (from chapters
3 and 6)
Building and running our application in development with Docker
Compose (from chapters 4 and 5)



Storing and retrieving data using a database (from chapter 4)
Storing and retrieving files using external file storage (from chapter 4)
Communication between microservices with HTTP requests and
RabbitMQ messages (from chapter 5)
Testing individual microservices with Jest (from chapter 9)
Testing the whole application with Playwright (from chapter 9)
Deploying the application to a Kubernetes cluster using Kubectl (from
chapter 6)
Creating a CD pipeline with GitHub Actions (chapter 8)

Figure 10.1 illustrates the skills we will revisit and shows their context in the
scheme of things. To make the most of this chapter, follow along with the
examples. You should get FlixTube running for yourself so you can study it
and understand how it works. To test and improve your understanding, you
should try making your own changes. Practice is the best way to cement these
skills in your mind.

Figure 10.1 Essential skills we revisit in this chapter

10.4 Overview of FlixTube



The code for this chapter only includes a single example: the complete
FlixTube project. You can find it in the chapter 10 code repository. Let’s start
with a bird’s eye view of its structure. Figure 10.2 shows the latest
incarnation of FlixTube.

Figure 10.2 Overview of the completed FlixTube example application

10.4.1 FlixTube microservices

You already know some of the microservices shown in figure 10.2. For
example

Video-streaming (first encountered in chapter 2)
Azure-storage (from chapter 4)
History (from chapter 5)
Metadata (from chapter 9)



There are also some new microservices that you haven’t seen yet, for
example: gateway and video-upload. Table 10.2 lists the purpose for each of
these microservices.

Table 10.2 FlixTube microservices

Microservice Purpose

Gateway The entry point to the application. Serves the front end and
provides a REST API.

Video-
streaming Streams videos from storage to be watched by the user.

History Records the user’s viewing history.

Metadata Records details and metadata about each video.

Video-
upload Orchestrates upload of videos to storage.

Azure-
storage Stores and retrieves videos using external cloud storage.

Mock-
storage

A replacement for the storage microservice that stores videos
in the local file system. You’ll soon see how we use this to
make development and testing a bit easier.



10.4.2 Microservice project structure

Before we look at the project structure for the entire application, let’s first
revisit the structure of an individual Node.js microservice. Open the metadata
directory under the chapter 10 code repository to follow along.

Using the metadata microservice as an example, figure 10.3 describes the
layout of its project. This is a typical Node.js project, and all of FlixTube’s
microservices have virtually this same structure.

Figure 10.3 The structure of a Node.js microservice project (the metadata microservice)

10.4.3 The FlixTube monorepo

Now, let’s look at the structure of the FlixTube monorepo. A “monorepo” is a
single code repository that contains multiple projects. Instead of each
microservice having its own code repository we combine them all into a



single “FlixTube monorepo” with the layout shown in figure 10.4. Each of
FlixTube’s microservices has its own subdirectory within the monorepo. Feel
free to open the chapter-10 directory to take a look for yourself.

Figure 10.4 The structure of the FlixTube monorepo

For simplicity, FlixTube was built in a single code repository, what we call a
monorepo. Starting a microservice project with a monorepo (instead of
multiple code repositories) is great for the following reasons:

It keeps things simple and reduces complexity;
It makes it easier to get started with microservices;
It's a perfectly acceptable way to structure a small microservices
application;



Also it’s a convenient way for me to deliver a complete microservices
example for you, the reader, to experiment with.

Having said all that, microservices in production are rarely contained in a
single code repository. That’s because, at least in the past, using a single
repository removed the biggest advantage of using microservices: that they
can be independently deployed.

However, with GitHub Actions (which is relatively new on the scene) we can
now create separate CD pipelines for subdirectories in our monorepo. We’ll
see that in action before the end of this chapter. This allows us to enjoy the
simplicity and convenience of a monorepo but combined with independently
deployable microservices. Good times. But still, if your microservices
application grows sufficiently large and unwieldy, you’ll probably want to
split it out into multiple code repositories. We’ll talk more about that in
chapter 12.

10.5 Running FlixTube in development

Our first step is to have FlixTube running on our development workstation
(or personal computer). Figure 10.5 shows how it looks in development. Note
that we have replaced the azure-storage microservice with a mock-storage
microservice. This will be explained soon.

Figure 10.5 FlixTube as it now looks in development



10.5.1 Booting an individual microservice

Before booting the whole application, it’s worth revisiting how we start an
individual microservice. When developing a new microservice or focusing
our current work on an existing microservice, we’ll frequently need to run
that microservice on its own, outside the usual context of the application.

We are using Node.js for our microservices, so that means we’ll be running
our microservices directly under Node.js on our development workstations. If
you followed along in chapter 2 and chapter 9, you’ll already have Node.js
installed. If not, return to section 2.5.4 in chapter 2 for instructions. Before
running a Node.js project, you must first install dependencies like this:

npm install



To run a Node.js project, use the npm start script convention:

npm start

This invokes a command line that is specified in the project’s package.json
file. All microservices in FlixTube follow this common Node.js convention.
That means you know how to start any microservice in FlixTube to run it
standalone in production mode.

What’s more appropriate during ongoing development is to run the
microservice in development mode. This enables live reload (first covered in
section 2.6.8), so we can edit our code and have the microservice restart itself
automatically to include the changes. We use the script start:dev (my
personal convention) to run any of the FlixTube microservices in
development mode:

npm run start:dev

(To further review production mode, development mode, and live reload, see
sections 2.6.7 and 2.6.8.)

You may have noticed that most of the FlixTube microservices now have
dependencies that make them more difficult to start on their own. Most of
these either need a database or a RabbitMQ server. Some of them require
both. We can deal with this in any of the following ways:

Install MongoDB and RabbitMQ on your development workstation. This
is annoying in the short term, but can be useful in the long term.
Instantiate MongoDB and RabbitMQ containers using Docker or
Docker Compose. This is a convenient, effective, and simple way to do
this.
Mock the libraries for MongoDB, RabbitMQ and other dependencies.
This is similar to what we did in chapter 9. You’ll probably want to do
this for your automated testing.

10.5.2 Booting the entire FlixTube application

Now let’s boot the entire FlixTube application using Docker Compose, the



useful tool we first encountered in chapter 4 and have used since. Frequently,
during day-to-day product development, we’ll build and restart our
application, and Docker Compose makes this much simpler. Often, we’ll take
time out to focus on an individual microservice, but we’ll still frequently
want to test our larger application as we evolve its constituent microservices.

Listing 10.1 reminds us of what a Docker Compose file (docker-
compose.yaml) looks like. FlixTube’s version of this file is the biggest in this
book, so listing 10.1 is just an extract for brevity.

Listing 10.1 The Docker Compose file for booting FlixTube in development (extract from
chapter-10/docker-compose.yaml)

version: '3'

services:

 

  db: #A

    image: mongo:5.0.9

    container_name: db

    # --snip--

 

  rabbit: #B

    image: rabbitmq:3.9.21-management

    container_name: rabbit

    # --snip--

 

  db-fixture-rest-api: #C

    image: db-fixture-rest-api

    build: 

      context: ./db-fixture-rest-api

      dockerfile: Dockerfile

    container_name: db-fixture-rest-api

    # --snip--

 

  video-streaming: #D

    image: video-streaming

    build: 

      context: ./video-streaming

      dockerfile: Dockerfile-dev

    container_name: video-streaming

    # --snip--

 

  # --snip-- #E



Most FlixTube microservices have been omitted from listing 10.1, but one
you can see is our old friend, the video-streaming microservice. There is also
the setup for our database (covered in chapter 4), RabbitMQ (covered in
chapter 5), and the database fixtures REST API we will use in our automated
testing (covered in chapter 9). Now use Docker Compose to build and start
FlixTube:

cd chapter-10

docker compose up --build

It takes some time to build and start, especially if you haven’t done this
before. Docker needs to download and cache the base images.

Now, with the FlixTube application running, open your browser and navigate
to http://localhost:4000 to see FlixTube’s main page. You’ll notice FlixTube
has a shiny new user interface (UI)! We’ll talk more about that soon. For
now, take some time to explore FlixTube’s UI:

1. Navigate to the upload page.
2. Upload a video (you can find an example video in the videos

subdirectory of the chapter-10 repo).
3. Navigate back to the main page to see the uploaded video in the list.
4. Click the video to play it.

When you have finished development, don’t forget to shut down FlixTube so
that it’s not continuing to consume resources on your development
workstation. You can do that by pressing Ctrl-C in the terminal where Docker
Compose is running and by then invoking

docker compose down

10.6 Testing FlixTube in development

Testing is essential to the practice of development. We can and should do
manual testing, but nothing beats automated testing for efficiency, reliability,
and repeatability.

In chapter 9, we looked at multiple ways of testing using Jest and Playwright.



We’ll revisit those again here. The various tests that we looked at in that
chapter are repeated here in the chapter 10 code repo. We’ll run those now
against the completed FlixTube example.

Of course, any real application will have many more tests than the few we are
running here. This is just a demonstration, and I haven’t aimed for anything
near complete test coverage. Follow along in the coming sections, and try
running these tests for yourself.

10.6.1 Testing a microservice with Jest

The metadata microservice in FlixTube includes the Jest unit tests from
chapter 9. Before running the tests, you’ll need to install dependencies:

cd chapter-10/metadata

npm install

Now run the tests using the standard npm test script convention as follows:

npm test

This executes the associated command line in the metadata microservice’s
package.json file that we configured in chapter 9. Figure 10.6 shows the
results of a successful test run.

You can also run the tests in live reload mode, which means you can edit
your code, and the tests will restart automatically. We do this using another
npm script called test:watch (my own personal convention):

npm run test:watch

To review Jest in more detail, return to section 9.5. To revisit the Jest setup
for npm and live reload, see section 9.5.8.

Figure 10.6 A successful run of the automated tests for the metadata microservice using Jest



10.6.2 Testing the application with Playwright

We can also run the Playwright end-to-end test from chapter 9 against the
FlixTube application. In chapter 9, we ran this test against a cutdown version
of FlixTube. Here though, we run it against the full application. To run this
test, you’ll need to install dependencies of the FlixTube monorepo:

cd chapter-10

npm install

Be sure to actually start the whole FlixTube application if you haven’t done
so already:

docker compose up --build

Wait for the message telling you the Gateway microservice is online (running
the tests won’t work before that happens).

Now, open a new terminal window and run the regular npm test script,
which in this case is configured to invoke Playwright:

npm test

That runs Playwright from the terminal and you should see results like that
shown in figure 10.7. Note how npm test has different meanings in different
projects. In the metadata microservice project this translated to running Jest.
In the larger FlixTube monorepo project instead it translates to running
Playwright.



Figure 10.7 A successful test run of the automated tests for the FlixTube UI using Playwright

10.7 FlixTube deep dive

By now, you should understand FlixTube from a high level. You know the
basic purpose of  each microservice. You know how to build, run, and test the
application on your development workstation. Before we deploy FlixTube to
production, let’s first understand some of its deeper details. Throughout this
section, we’ll look at following aspects of FlixTube:

Database fixtures
Mocking the storage microservice
The gateway
The FlixTube UI
Video streaming
Video upload

10.7.1 Database fixtures

We first talked about database fixtures in chapter 9, where we used them to
load our database with realistic sets of data prior to running automated tests.
We saw database fixtures used for automated testing, but they are also useful
for manual testing and even for product demonstrations. Being able to boot
your application and have it ready to show, complete with realistic data, is



extremely useful!

When unit testing with Jest, we didn’t need any data fixtures because we
mocked the MongoDB database library and were able to replace real data
with fake data provided through the mock version of the database library.
When integration testing with Jest, we were able to interact with our
MongoDB database within our test code by directly using the MongoDB
library. This meant we could have test data inline in our test code, but it was
convenient not to have to create separate data files for it.

To keep things simple, when doing end-to-end testing with Playwright we
delegated the loading of database fixtures to the database fixtures REST API
that I created for testing my own projects. This is a REST API that looks
similar to any of the other microservices you have seen in this book. We
won’t look at its code directly, but if you’d like to look at it yourself, you’ll
find that it’s already quite familiar. The code for the REST API is included in
the chapter 9 code repository and copied to the chapter 10 code repository so
that we can use it when running our tests against FlixTube. Additionally, you
can find the original source code for it on GitHub at
https://github.com/ashleydavis/db-fixture-rest-api. You can see the setup for
the REST API’s container in the Docker Compose file earlier in listing 10.1.

For an understanding of what a database fixture looks like, see listing 10.2.
Our database fixtures are stored under the fixtures subdirectory of chapter-10.

FlixTube only has one database fixture in the file videos.js (shown in listing
10.2). The name of the file denotes the database collection that the data will
be stored in. The data from this fixture will be loaded into the videos
collection.

The directory that contains the file denotes the name of the fixture. In this
case, the name of the directory is two-videos, so the name of the database
fixture is two-videos. I’ve given the fixture this name because its purpose is
to load metadata for two videos into our database. This isn’t really a great
name for the database fixture; normally we should give meaningful names to
our database fixtures so that we can easily remember their purpose.

Each database fixture can consist of many files. Even though here we only



have one file for our two-videos fixture, it could have more such files to set
the contents of other collections in our database.

Listing 10.2 An example database fixture for FlixTube (chapter-10/fixtures/two-videos/videos.js)

const { ObjectId } = require("mongodb"); #A

 

module.exports = [ #B

  {

    _id: ObjectId("5ea234a1c34230004592eb32"), #C

    name: "SampleVideo_1280x720_1mb.mp4" #D

  },

  {

    _id: ObjectId("5ea234a5c34230004592eb33"), #C

    name: "Another video.mp4" #D

  }

];

If you ran the Playwright test earlier in section 10.6.2, then you have already
used this database fixture! Note that the fixture shown in listing 10.2 is
actually a JavaScript file. We can use either JSON format or JavaScript for
these database fixtures. JSON is appropriate for static data, but JavaScript is a
great option for generating dynamic data. That gives us a lot of flexibility for
producing test data. In listing 10.2, see how we use the MongoDB library to
produce database IDs for our test data.

10.7.2 Mocking the storage microservice

For convenience during development, we replaced the Azure version of the
video-storage microservice with a mock version. This is similar to the
mocking we used in section 9.5.10. Except, rather than replacing functions,
objects, and libraries with mock versions, we now replace an entire
microservice with a fake version. Figure 10.8 shows what FlixTube looks like
when Azure storage has been replaced by the mock storage microservice.

Figure 10.8 Replacing cloud storage with a mock microservice for more convenient and efficient
use during development



Our mock storage microservice is not a complete fake though! It still does the
job of storage, but instead of using cloud storage, it stores videos in the local
filesystem. The main reason we do this is not just for testing; it’s for the
convenience and performance of being able to limit our entire application to
our development workstation.

When running in development, we’d prefer to eliminate external
dependencies like connections to cloud storage. In this case, limiting our
storage to the local filesystem makes the setup for development easier.
Performance is improved because videos are stored locally and not sent out to
the cloud. Besides this change, FlixTube works as normal, and the other
microservices have no idea that the Azure storage microservice has been
kicked out and replaced with a mock version.

Being able to replace complex microservices with simpler mock versions is



not just convenient, it might also be necessary at some point in the future.
Right now, FlixTube is a small application, but you can imagine as it grows
into the world-dominating streaming service it is destined to be that it will
become too big to run on a single computer.

At that point, we need to use every trick in the book to make it fit on our
development computer. This includes cutting out microservices that we don’t
need; for example, you could remove the history microservice from the
Docker Compose file if you don’t need to test it.

Note

Removing or replacing big complex microservices—possibly even whole
groups of microservices—is an important technique for reducing the size of
our application so that it can fit on a single computer and be able to run
during development.

Listing 10.3 shows the setup of our mock-storage microservice in FlixTube’s
Docker Compose file. It looks similar to the configuration of the Azure-
storage microservice. One thing that’s different is the storage subdirectory
that is shared between the host operating system and the container. This is the
directory where uploaded videos are stored. Sharing it like this means that we
can inspect uploaded videos ourselves on the host OS to test that the
microservice is functioning correctly.

Listing 10.3 Mock-storage microservice setup in the Docker Compose file (extract from chapter-
10/docker-compose.yaml)

video-storage: #A

  image: mock-storage

  build: 

    context: ./mock-storage #B

    dockerfile: Dockerfile-dev

  container_name: video-storage

  volumes:

    - /tmp/mock-storage/npm-cache:/root/.npm:z

    - ./mock-storage/src:/usr/src/app/src:z

    - ./mock-storage/storage:/usr/src/app/storage:z #C

  ports:

   - "4005:80"

  environment:



    - PORT=80

  restart: "no"

It’s a great option for development to be able to replace microservices with
mocks. It can help make development easier, but there are times when we
need to focus on the real version of the microservice; we need to test it rather
than the mock version. At those times, we can simply swap the mock version
for the real version in the Docker Compose file. If you like, you can try this
for yourself.

Listing 10.4 shows the commented out configuration for the real azure-
storage microservice. Simply uncomment this and then comment out the
configuration for the mock version. You need to set the environment
variables STORAGE_ACCOUNT_NAME and STORAGE_ACCESS_KEY in your terminal
with the authentication details for your Azure Storage account (see section
4.4.1 to remind yourself how to get these values). Now rebuild and restart
FlixTube. Now we can test the real azure-storage microservice in
development!

Listing 10.4 The real azure-storage microservice commented out (extract from chapter-
10/docker-compose.yaml)

# video-storage: #A

#   image: azure-storage

#   build: 

#     context: ./azure-storage

#     dockerfile: Dockerfile-dev

#   container_name: video-storage

#   --snip--

#   environment:

#     - PORT=80

#     - STORAGE_ACCOUNT_NAME=${STORAGE_ACCOUNT_NAME} #B

#     - STORAGE_ACCESS_KEY=${STORAGE_ACCESS_KEY} #B

#   restart: "no" #A

Listing 10.5 shows the code for the mock-storage microservice. The mock
version replaces the /video and /upload routes from the real storage
microservice with versions that use the local filesystem. The mock
microservice is a drop-in replacement because its REST API conforms to the
interface of the real azure-storage microservice.



Listing 10.5 The mock-storage microservice (extract from chapter-10/mock-storage/src/index.js)

// --snip-- 

 

const storagePath = path.join(__dirname, "../storage"); #A

 

const app = express();

 

app.get("/video", (req, res) => { #B

 

  const videoId = req.query.id;

  const localFilePath = path.join(storagePath, videoId);

  res.sendFile(localFilePath); #C

});

 

app.post("/upload", (req, res) => { #D

 

  const videoId = req.headers.id;

  const localFilePath = path.join(storagePath, videoId);

  const fileWriteStream = 

    fs.createWriteStream(localFilePath);

  req.pipe(fileWriteStream) #E

    .on("error", err => {

      console.error("Upload failed.");

      console.error(err && err.stack || err);

    })

    .on("finish", () => {

      res.sendStatus(200);

    }); #E

});

 

// --snip--

10.7.3 The gateway

FlixTube has a single gateway microservice. It’s called a gateway because it
acts as a gateway into the application for our users. For the current version of
FlixTube, this is the single entry point to the whole application. The gateway
provides the front-end UI that allows our users to interact with FlixTube in
their web browser. It also provides a REST API so the front end can interact
with the backend.

FlixTube doesn’t support any kind of authentication yet, but in the future,
we’d probably like to upgrade the gateway to authenticate our users. A



FlixTube user would have to sign in before the gateway allows them to
interact with any other microservices in the backend.

Figure 10.9 shows a potential future for FlixTube with more than one
gateway. This illustrates a well-known pattern called backends for frontends.
Each frontend has its own gateway. There is one gateway for access by a web
browser; another gateway for access by a mobile app; and another gateway
for the FlixTube admin portal.

Figure 10.9 What FlixTube would look like with multiple gateways

If possible, we’d want to keep things simple and to support only a single



gateway. It’s completely OK to share a gateway across multiple types of front
ends. But if we find our frontends having different requirements (for instance,
different forms of authentication between web and mobile or different
security considerations between the web and admin portals), then backends
for frontends is a pattern that can help.

If we do expand to have multiple gateways, we’d then want to use separate
hostnames or subdomains to access them. For example, the main gateway for
the browser could use flixtube.com, the mobile gateway could use
mobile.flixtube.com, and the admin portal could use admin.flixtube.com. To
assign domain names to your application, you’ll need to use a DNS provider
to buy domain names and configure each one to point to the IP address of a
particular gateway microservice.

Forwarding HTTP requests into the cluster is one of the main jobs of a
gateway microservice. We’ll see code examples of this in upcoming sections.
A more advanced gateway (FlixTube isn’t this advanced yet) will have REST
API routes that issue requests to multiple internal microservices. Then it will
integrate multiple responses into a single response that is returned to the front
end.

For example, imagine a REST API that retrieves an individual user’s history.
This might require HTTP requests to a user account microservice (FlixTube
doesn’t have this yet) and the history microservice before integrating a
response and sending it to the front end. In this theoretical example, the
gateway has merged the responses of both HTTP requests.

10.7.4 The FlixTube UI

If you haven’t had a chance to explore FlixTube’s UI, do so now. Build and
start the application as discussed in section 10.5.2, then navigate your web
browser to http:// localhost:4000. Try uploading a video or two.

Figure 10.10 shows the main page of FlixTube (the video list) after some
videos have been uploaded to it. We can click any video in the list to watch
it. We can click between Videos, Upload, and History in the navigation bar at
the top to switch among the main pages.



Figure 10.10 The main page of the FlixTube UI shows the list of videos that have been uploaded.

FlixTube is implemented as a traditional server-rendered web page, rather
than as a modern single-page application (an SPA) rendered in the browser.
The FlixTube frontend presented here is a multi-page application (an MPA).
If this were a real commercial application, I would most likely have coded it
as an SPA using React, Angular, or Vue, rather than an MPA. But that’s not
to say that an SPA is better than an MPA; they both have their trade-offs, and
newer ways of doing things (i.e. building SPAs) aren’t necessarily better than
older ways of doing things (i.e. building MPAs).

Why not use one of the popular modern SPA frameworks? Well, the simple
reason is that it’s outside the scope of this book. This book isn’t about UIs
and that’s why the frontend is as simple as it can be. (Besides that, I didn’t
want to choose sides and stoke the war between the SPA framework
disciples, but all the cool kids use React, right?)



FlixTube uses server-side rendering via Express and the Handlebars template
engine with vanilla JavaScript in the frontend. The FlixTube frontend is plain
old HTML, CSS, and JavaScript with no fancy modern frameworks.

Listing 10.6 is an extract from the gateway microservice’s main code file. It
shows the HTTP GET route that renders the main page. The main page
shows the list of uploaded videos. This route handler starts by making a
HTTP GET request (using Axios) to retrieve data from the metadata
microservice. It then renders the web page using the video-list template and
passes the list of videos as the template’s data.

Listing 10.6 The gateway code that renders the video list web page (extract from chapter-
10/gateway/src/index.js)

app.get("/", async (req, res) => { #A

 

  const videosResponse = await axios.get("http://metadata/videos"); #B

 

  res.render("video-list", { #C

    videos: videosResponse.data.videos #D

  });

});

I didn’t use a JavaScript framework for FlixTube, but I did use a CSS
framework (Tailwind CSS). That’s so that I could make a nice UI without
having to mess about with the nuts and bolts of CSS.

Listing 10.7 shows the main page of FlixTube. This is an HTML document
contained within a Handlebars template. Handlebars is a simple and powerful
template library that we can use to generate web pages based on data. If you
look back to listing 10.6, you’ll see that the list of videos (retrieved from the
metadata microservice) is passed as the template data. The combination of
data and template renders the HTML that will be displayed to our user in
their web browser.

Listing 10.7 The Handlebars template for the video list web page (chapter-
10/gateway/src/views/video-list.hbs)

<!doctype html> #A

<html lang="en">

    <head>



        <meta charset="utf-8">

 

        <title>FlixTube: Home</title>

 

        --snip-- #B

    </head>

    <body>

        <div class="flex flex-col">

            <div class="border-b-2 bg-gray-100"> #C

                --snip--

            </div> #C

 

            <div class="m-4"> #D

                <h1>Videos</h1>

                <div id="video-list" class="m-4"> #E

                    {{#if videos}} #F

                        {{#each videos}} #F

                            <div class="mt-1"> #G

                                <a href="/video?id={{this._id}}"> #H

                                    {{this.name}}

                                </a> 

                            </div>

                        {{/each}} #F

                    {{else}} #F

                        No videos uploaded yet. #I

                    {{/if}} #F

                </div>

            </div>

        </div>

    </body>

</html>

10.7.5 Video streaming

At the heart of FlixTube is video streaming. We first looked at this back in
chapter 2, and it’s been a theme throughout the book. Now, it’s time to see
how video streaming works in the completed FlixTube example application.
Some of this is recapping earlier chapters, but it’s important to see how it
works in the bigger context now that we have the gateway microservice and
the UI.

Figure 10.11 illustrates the path of a streaming video, starting with external
cloud storage on the left and ending with display to the user in the web
browser on the right. The streaming video passes through three microservices



on its journey to the user. Let’s now follow that journey through the code.

Figure 10.11 The path of streaming video through FlixTube

Listing 10.8 is an extract that shows where the streaming video journey starts
in the Azure version of the video-storage microservice. The HTTP GET
/video route retrieves a video from Azure Storage and streams it to the HTTP
response. The details of how this works aren’t important at the moment, but if
you’d like to remember, return to section 4.4.1.

Listing 10.8 Streaming video from Azure Storage (extract from chapter-10/azure-
storage/src/index.js)

app.get("/video", async (req, res) => { #A

 

    const videoId = req.query.id; #B

 

    const blobService = createBlobService();

    const containerClient = blobService.getContainerClient(STORAGE_CONTAINER_NAME);

    const blobClient = containerClient.getBlobClient(videoId);

    const properties = await blobClient.getProperties();

 

    res.writeHead(200, { #C

        "Content-Length": properties.contentLength,

        "Content-Type": "video/mp4",

    });

 

    const response = await blobClient.download();

    response.readableStreamBody.pipe(res);  #D

});



Continuing our journey to the video-streaming microservice, listing 10.9 is an
extract showing how the HTTP GET /video route pipes the streaming video
from azure-storage to its own HTTP response using Node.js streams.

The video-streaming microservice also has another job. It broadcasts the
“video viewed” message to other microservices in the application. This kind
of event-driven programming means that we can later decide to have other
microservices respond to the event without us having to update the code for
the video-streaming microservice.

As it stands, you might remember from section 5.8 that it is the history
microservice that picks up this message and uses it to record the user’s
viewing history. This use of indirect messaging keeps the video-streaming
and history microservices nicely decoupled from each other. It also highlights
how applications built on microservices can be flexible and extensible.

Listing 10.9 Forwarding streaming video through the video-streaming microservice (extract from
chapter-10/video-streaming/src/index.js)

app.get("/video", (req, res) => { #A

 

  const videoId = req.query.id;

  const response = await axios({ #B

    method: "GET",

    url: `http://video-storage/video?id=${videoId}`, 

    data: req, 

    responseType: "stream",

  });

  response.data.pipe(res); #C

 

  broadcastViewedMessage(messageChannel, videoId); #D

});

Our video streaming journey continues to the gateway microservice, the last
stop before the UI. The HTTP GET /video route in listing 10.10 pipes the
streaming video from the video-streaming microservice to its own HTTP
response. This is where the video leaves the cluster, thus delivering the video
to the frontend.

Listing 10.10 Forwarding streaming video through the gateway microservice (extract from
chapter-10/gateway/src/index.js)



app.get("/api/video", (req, res) => { #A

 

  const response = await axios({ #B

    method: "GET",

    url: `http://video-streaming/video?id=${req.query.id}`, 

    data: req,  #C

    responseType: "stream",

  });

  response.data.pipe(res); #D

});

Our video-streaming journey concludes in the UI. You can see the HTML
video element in listing 10.11. The source element and its src field triggers
the HTTP GET request to the gateway, which triggers the request to video
streaming, which triggers the request to video storage. The streaming video is
then piped all the way back through azure-storage, through video-streaming,
through the gateway, and finally to the frontend, displayed to the user
through the video element in their web browser.

Listing 10.11 Playing the video in the front end with the HTML video element (extract from
chapter-10/gateway/src/views/play-video.hbs)

<video controls autoplay muted> #A

    <source src={{video.url}} type="video/mp4"> #B

    Your browser does not support the video tag.

</video>

10.7.6 Video upload

Video streaming is just one side of the FlixTube equation. The other is video
upload, which is how we add videos to FlixTube in the first place. Video
upload isn’t something we have yet seen in the book, although it's similar to
how video streaming works, so you won’t have any trouble with it.

Figure 10.12 illustrates the path of video upload through the application. A
video file is selected by the user and uploaded from the frontend. The
uploaded video arrives in the cluster at the gateway microservice before
being forwarded through the video-upload microservice to the azure-storage
microservice. There it is safely and securely stored in external cloud storage.
Again we’ll follow this journey through the code.



Figure 10.12 The path of an uploaded video through FlixTube.

Figure 10.13 is a screenshot of FlixTube’s Upload web page. If you followed
along in section 10.5.2, you will have already seen this and tried uploading a
video. The user clicks Choose File and selects a file to upload. Once the
upload completes, the UI is updated (as seen in figure 10.13) to give some
feedback that the upload completed without error. If an error occurs, the error
is displayed instead.

Figure 10.13 The FlixTube UI for uploading videos



Listing 10.12 is a snippet of the frontend code that uploads the video to the
backend. This is using the fetch function to upload the video via a HTTP
POST request. At this point, you might rightly be thinking - why are we
using yet another HTTP request library? Well, normally, we would use
something like the Axios library in the frontend. But, to keep the FlixTube
frontend really simple, it is just a vanilla JavaScript web page and it has no
build process. That makes it rather difficult to install an npm package like
Axios and use it in our frontend: because we don’t have a build process, we
have no way to bundle the Axios code module into our web page. If we did
have a build process (most modern web applications do have one) then we
would definitely use Axios.

The simplest approach that remains is to use something that comes with the
browser to make the HTTP request. We could do this using the good old
XMLHttpRequest, but that’s kind of complicated. Instead, we’ll use the more
modern fetch function, which is also significantly simpler to use.
Unfortunately, fetch isn’t implemented in older versions of web browsers,



and that may impact our user base. So we only use it here in place of not
being able to use Axios.

Listing 10.12 Using fetch to upload videos in the frontend code (extract from chapter-
10/gateway/public/js/upload.js)

fetch("/api/upload", { #A

        body: file, #B

        method: "POST", #C

        headers: { #D

            "File-Name": file.name,

            "Content-Type": file.type,

        }, #D

    })

    .then(() => { 

        // ... Update the UI after the upload ... #E

    })

    .catch((err) => { 

        // ... Handle the upload error ...        #F

    });

After the upload from the web browser, the HTTP POST request lands in the
gateway where it is handled by the /api/upload route shown in the following
listing. Here we see the request forwarded to the video-upload microservice.

Listing 10.13 The gateway microservice forwards the HTTP POST to the video-upload
microservice (extract from chapter-10/gateway/src/index.js)

app.post("/api/upload", (req, res) => { #A

 

  const response = await axios({ #B

    method: "POST",

    url: "http://video-upload/upload", 

    data: req, #C

    responseType: "stream",

    headers: {

      "content-type": req.headers["content-type"],

      "file-name": req.headers["file-name"],

    },

  });

  response.data.pipe(res); #D

});

Listing 10.14 shows how the video-upload microservice handles the



incoming video. At this point, we create a unique ID for the video by creating
an instance of MongoDB’s ObjectId class. The request is then forwarded to
the video-storage microservice.

After the upload is successful, the message “video uploaded” is broadcast to
let the other microservice know that a new video is available within the
system. The metadata microservice handles this message and records the new
video in its database.

Listing 10.14 Handling video upload via HTTP POST (extract from chapter-10/video-
upload/src/index.js)

app.post("/upload", async (req, res) => { #A

 

  const fileName = req.headers["file-name"]; #B

  const videoId = new mongodb.ObjectId(); #C

  const response = await axios({ #D

    method: "POST",

    url: "http://video-storage/upload", 

    data: req, #E

    responseType: "stream",

    headers: {

      "content-type": req.headers["content-type"],

      "id": videoId, #F

    },

  });

  response.data.pipe(res);

  

  broadcastVideoUploadedMessage({ #G

    id: videoId, 

    name: fileName 

  });

});

Finally, the uploaded video arrives in the azure-storage microservice, which
you can see in listing 10.15. From here the video is saved into Azure Storage.
Once this whole chain has completed, we have successfully saved a copy of
the video the user has uploaded. If you’d like to dive deeper into how a file is
added to Azure Storage, load the full index.js for the azure-storage
microservice into VS Code.

Listing 10.15 Streaming the video from HTTP POST to Azure Storage (extract from chapter-
10/azure-storage/src/index.js)



app.post("/upload", async (req, res) => { #A

 

    const videoId = req.headers.id; #B

    const contentType = req.headers["content-type"]; #B

 

    const blobService = createBlobService();

 

    const containerClient =

        blobService.getContainerClient(STORAGE_CONTAINER_NAME); 

    await containerClient.createIfNotExists(); #C

 

    const blockBlobClient = containerClient.getBlockBlobClient(videoId);

    await blockBlobClient.uploadStream(req); #D

    await blockBlobClient.setHTTPHeaders({

        blobContentType: contentType #E 

    });

    res.sendStatus(200); #F

});

10.8 Deploying FlixTube to your local Kubernetes

Before we attempt to deploy FlixTube to a production Kubernetes cluster in
the cloud, first we should practice deploying it to our local Kubernetes
instance that comes with Docker Desktop.

Personally, I wouldn’t normally run Flixtube this way for development or
testing. That’s because it’s so much easier to boot, restart and shutdown the
entire application using Docker Compose than it is to do that with
Kubernetes. But it is worth using your local Kubernetes instance to practice
deployment before we embark on the full production deployment.

If you are just itching to get FlixTube into production, feel free to skip to the
next section. But just keep it in mind that deploying to a local Kubernetes
instance is a bit easier than deploying to a production Kubernetes cluster in
the cloud, so if you have trouble with that you should return to this section to
practice your deployment in a simpler environment.

Figure 10.14 shows what FlixTube will look like running in the local
Kubernetes instance. Note that we have replaced the azure-storage
microservice with the mock-storage microservice so that we avoid the
complication of having to connect FlixTube to the Azure Storage service.



Figure 10.14 Deploying Flixtube to a local Kubernetes instance

10.8.1 Prerequisites for local deployment

Before attempting your local Kubernetes deployment, you need to have
Docker Desktop installed with Kubernetes enabled (see section 6.5). This
should give you the Kubectl CLI tool automatically, but if not you’ll have to
install it separately (see section 6.6). If you just enabled your local
Kubernetes, Kubectl should already be connected to your local instance and
ready to go. If you need to check the connection or reconnect Kubectl to your
local Kubernetes please see section 6.8.4. For local deployment you don’t



need a container registry.

10.8.2 Local deployment

A shell script is provided in the chapter-10 code repository to do the local
Kubernetes deployment. Invoke it like this:

cd chapter-10/scripts/local-kub

./deploy.sh

This shell script is hardcoded to build and deploy all of FlixTube’s
microservices. There’s a lot of  duplication here, so it’s not the best example.
But I wanted to keep it simple so you could easily read the shell script and
understand what’s happening.

Open the shell script yourself in VS Code and see how it does the following:

Uses the Docker build command to build each microservice (like we
learned in sections 3.8.2 and revisited in 6.8.1).
Uses the Kubectl apply command to deploy each microservice to
Kubernetes (like we learned in section 6.8.5).
Passes various Yaml files to Kubectl that specify the deployment
configuration for each microservice (for an example open gateway.yaml
and take a look).

10.8.3 Testing the local deployment

With FlixTube deployed to our local Kubernetes instance, we should now
check that it works. We can use kubectl get pods, kubectl get deploy
and kubectl get svc to see that the Kubernetes resources for FlixTube are
created and operational.

From the output of kubectl get svc you can find the port number (it should
be a NodePort at or above port 30000) where we can access the gateway
microservice. Open your browser and navigate to the web page on that port
number: http://localhost:<the-port-number>. You should now be able to test
that the FlixTube frontend is functional. For more details on testing your
local deployment see sections 6.8.5 and 6.8.6.



10.8.4 Deleting the local deployment

When you are done testing, we can delete the deployment using the provided
shell script:

./delete.sh

That shell script invokes kubectl delete for each microservice to delete it
from Kubernetes.

Alternatively, to clean out your local Kubernetes instance you can simply
reset it, as was shown in section 6.5.

Don’t forget to disable your local Kubernetes instance when you are finished
with it. That will save system resources and battery life if you are using a
laptop.

10.9 Manually deploying FlixTube to production

We are not far off creating a continuous delivery (CD) pipeline for FlixTube
that automatically deploys it to production each time we push code.  Before
we can automate something, though, we should first be able to do the process
manually (otherwise what are we doing to automate?). This next step is more
difficult than deploying to your local Kubernetes cluster, so if you have
problems here please return to section 10.8 for more practice before
continuing.

Figure 10.15 highlights how we’ll then use Docker to package and publish
our images, and then Kubectl to deploy containers to our Kubernetes cluster
running on Azure.

Figure 10.15 Deploying Flixtube manually to production



10.9.1 Prerequisites for production deployment

Before we can deploy FlixTube we need to have the following in place and
ready to be used:

A container registry where we can publish the Docker images for our
microservices. You can create your registry through the Azure Portal UI
according to the steps in section 3.9.1 or you can create it via Terraform
as was shown in section 7.7. You need to note down the URL,
username, and password for your container registry; see section 3.9.1 to
remember how to find those details.
A Kubernetes cluster where we can deploy our microservices. You can
create a cluster through the Azure Portal UI like we did in section 6.9 or
using Terraform as we did in section 7.9.
Don’t forget to connect your container registry to your Kubernetes
cluster like we did in section 6.11.3, otherwise the cluster will fail to



pull images from the registry.
You need Kubectl installed as indicated in section 6.6 and authenticated
to your Kubernetes cluster as seen in section 6.10.3.

10.9.2 Production deployment

Before publishing images for our microservices to our container registry, we
must login to it and set some environment variables that are used by the
deployment shell script.

Open a terminal and set the following environment variable:

export CONTAINER_REGISTRY=<url-to-your-container-registry>

This environment variable is used in the shell script, but we can also use it to
authenticate with the registry:

docker login $CONTAINER_REGISTRY

Now enter the username and password for your registry.

After authenticating with you registry, in the same terminal, you can now run
the production deployment scripts:

cd chapter-10/scripts/production-kub

./deploy.sh

Again, this shell script is hardcoded to build and deploy all of the
microservices for FlixTube. There’s still a lot of duplication going on here,
but that’s to make it simple for you to read. Please open the shell script in VS
Code and compare it to the local deployment script (from section 10.8.2) to
see the differences.

You’ll notice that the production deployment script pushes images to our
container registry. It also uses the command envsubst (which we learned
about in section 8.9.2) to fill out the template configuration for each
microservice, plugging in the CONTAINER_REGISTRY environment variable
where it is needed. The expanded template configurations are then piped into
Kubectl, to deploy each microservice to Kubernetes.



10.9.3 Testing the production deployment

With FlixTube deployed to our production Kubernetes cluster, we should
now check that it works. Again, we can use kubectl get pods, kubectl get
deploy and kubectl get svc to see the Kubernetes resources that have been
created for FlixTube.  For more on testing the deployed microservice see
sections 6.11.5 and 6.11.6.

From the output of kubectl get svc we can find the IP address of the
gateway microservice. Open your browser and navigate to the web page at
that IP address: http://<the-ip-address>. You should now be able to test the
FlixTube frontend. For more details on testing your local deployment see
sections 6.8.5 and 6.8.6.

10.9.4 Destroying the production deployment

When you are done testing and experimenting, delete the deployment using
the provided shell script:

./delete.sh

That shell script invokes kubectl delete for each microservice, deleting 
them all from Kubernetes.

10.10 Continuous delivery to production

After testing and practicing manually deploying FlixTube to production, we
are now ready to bring the continuous delivery (CD) pipeline online.

You can follow along, but this can be even more challenging than the
previous sections. If something goes wrong you might have to return to local
or manual deployments (what we just did in sections 10.8 and 10.9) to figure
out the problem.

As we did in chapter 8, we’ll create our CD pipeline with GitHub Actions. It
should be fairly easy for you to transfer this over to any other CD platform.
Like I said in chapter 8, a CD pipeline is really just a glorified shell script,



even when some providers also give you a fancy UI. Figure 10.16 illustrates
the structure of FlixTube’s CD pipeline.

Figure 10.16 The continuous delivery (CD) pipeline for FlixTube

10.10.1 Prerequisites for continuous delivery

To follow along in this section you need your own GitHub account. You’ll
already have one if you followed along with chapter 8. Otherwise, sign up for
a free account at https://github.com/.

You also need the prerequisites (container registry and Kubernetes cluster)
from section 10.9.1. In addition, you need the authentication details for your
Kubernetes cluster encoded in base64; see section 8.9.5 to remember how to
do this.

10.10.2 Setting up your own code repository

To run the FlixTube CD pipeline for yourself, you must fork the chapter-10
code repository and create secrets as per the instructions given in section
8.9.9.

You must add the following secrets to your own fork of the code repo:

CONTAINER_REGISTRY - the URL to your container registry.
REGISTRY_UN - the user name for your registry.



REGISTRY_PW - the password for your registry.
KUBE_CONFIG - base64 encoded configuration that authenticates
Kubectl with your cluster (see section 8.9.5).

10.10.3 Deploying infrastructure

Before using continuous delivery to deploy FlixTube we should first deploy
the infrastructure the application depends on. This means deploying
MongoDB and RabbitMQ to our Kubernetes cluster manually. We don’t need
to implement continuous delivery for these because they won’t be changing,
so we only need to deploy them once at the start.

There’s a shell script in the chapter-10 repo you can use to do this:

cd chapter-10

./scripts/cd/infrastructure.sh

Take a look at the shell script yourself. It’s quite simple, invoking kubectl
apply for MongoDB and RabbitMQ configurations to deploy them to your
cluster.

Way back in chapter 4, I advocated for making our Kubernetes cluster
stateless—that is, removing our persistent MongoDB database from the
cluster and storing our data in an external (and managed) database.

The reason I’m saying to add MongoDB directly to your cluster here is
purely for your own convenience. It’s probably easier for you to deploy
MongoDB to your cluster than to create an external database and connect that
to your cluster. For a real production application though I would recommend
that you extract your database to a managed MongoDB database running
outside your cluster (search for managed MongoDB and you’ll find plenty of
options). Return to sections 4.4.5 and 4.5.3 for my full argument on why you
should do this.

10.10.4 One CD pipeline per microservice

Under the chapter-10 code repo, look in the directory .github/workflows and
you’ll see separate GitHub Actions workflow files (yaml files) for each



microservice.

For one example, open the CD pipeline configuration for the gateway
microservice; the full workflow is shown in listing 10.16. Notice that most of
the work is delegated to shell scripts that are configured by the environment
variables that are defined in listing 10.16.

Listing 10.16 Enabling a separate CD pipeline for the gateway microservice (chapter-
10/.github/workflows/gateway.yaml)

name: Deploy gateway #A

 

on:

  push: 

    branches:

      - main #B

    paths:

      - gateway/** #C

 

  workflow_dispatch: #D

 

jobs:

  deploy:

    runs-on: ubuntu-latest

   

    env:

      VERSION: ${{ github.sha }} #E

      CONTAINER_REGISTRY: ${{ secrets.CONTAINER_REGISTRY }}

      REGISTRY_UN: ${{ secrets.REGISTRY_UN }}

      REGISTRY_PW: ${{ secrets.REGISTRY_PW  }}

      NAME: gateway

      DIRECTORY: gateway #E

 

    steps:

      

      - uses: actions/checkout@v3

 

      - name: Build

        run: ./scripts/cd/build-image.sh #F

 

      - name: Publish

        run: ./scripts/cd/push-image.sh #G

 

      - uses: tale/kubectl-action@v1 #H 

        with:



          base64-kube-config: ${{ secrets.KUBE_CONFIG }}

          kubectl-version: v1.24.2

      

      - name: Deploy

        run: ./scripts/cd/deploy.sh #I

The most interesting thing in listing 10.16 is how the CD pipeline is scoped
to the gateway subdirectory. This is what connects this CD pipeline to just
the gateway microservice (the code for which is contained under that
subdirectory). This workflow is invoked only when code for the gateway
microservice has changed.

This “scoping” feature means we can focus each workflow to an individual
microservice, allowing each microservice to have an independent deployment
schedule. This gives us the true power of microservices (that they are
independent) even though for convenience we have collocated all the
FlixTube microservices in a single code repository (the FlixTube monorepo).

If you’d like to see each of the shell scripts please open the chapter-10 code
repo in VS Code and explore them for yourself. You’ll see what I hope are by
now familiar commands: using  Docker to build and publish images, with
envsubst (from section 8.9.2) for expanding templated configuration and
Kubectl to deploy our microservices.

10.10.5 Testing the CD pipeline

Now we are ready to test our CD pipeline. Don’t forget you must fork the
chapter-10 code repo into your own GitHub account and configure GitHub
secrets mentioned in section 10.10.2 for this to work.

You can trigger the CD pipeline in one of two ways. First, try making a code
change to the main branch. Try something simple like adding
console.log(“Hello world”); to the gateway microservice. Pushing your
code change should trigger the CD pipeline: the microservice will be built,
published, and deployed to Kubernetes. You can also trigger the CD pipeline
through the GitHub Actions UI as we have seen earlier in section 8.7.10.

If all is going well, you can trigger the CD pipeline for each microservice and
deploy the entire FlixTube application. With the deployment of FlixTube



done you can again use the Kubectl commands from section 10.9.3 to check
it and find the IP address to connect to the frontend.

Deployment for FlixTube has now been put on automatic. As you move
forward adding features and editing the code for FlixTube, the microservices
are automatically deployed to production, ready to be used by our customers,
without us having to think much about it. This frees us to focus on customer-
facing features and hopefully, the hassle of infrastructure and deployment
starts fading away into the background.

10.11 FlixTube in the future

Congratulations! If you have followed along in this chapter, you now have
FlixTube running in production, and you are all set up to continue developing
and evolving it. You can make code changes, test them in development, and
then deploy your updates to production.

Where to now for FlixTube? That’s for you to imagine! In chapter 12, we’ll
discuss the technical aspects of FlixTube’s future:

How do we scale up to cater to our growing user base?
How do we scale up our development and deployment processes as the
application grows and the size of the development team increases?

For now, just imagine the types of microservices you’d like to add to
FlixTube in the future. Figure 10.17 gives you some inspiration as to what it
might look like as it grows.

Figure 10.17 What FlixTube could look like in the future



10.12 Continue your learning

In this chapter, we studied the structure and layout of the FlixTube example
application. We built, ran, and tested it in development. Then we deployed it
to production through its CD pipeline.

You have FlixTube running, so what now? Reading any book will only take
you so far. The key to you retaining these skills is to practice, practice, and
then practice some more. Experiment with the code. Try to add features. Try
to add new microservices. Try to break FlixTube just to see what happens.
Practicing the art of development is what takes you to the next level.

Development is not without challenges. In fact, it is a never-ending
rollercoaster of problems and solutions. When you hit problems with any tool
or technology, go back and review the appropriate chapter in this book. You



might find the answer you need. Otherwise, you’ll need to go deeper and
explore other resources.

The final chapters in this book contain guidance that will help you navigate
your future development path with microservices. The references at the end
of each chapter (including this one) will help you continue your learning
journey. But just remember that your key to success and your key to retaining
these skills is consistent practice.

To learn about UI development, see the following books:

React Quickly, Second Edition by Morten Barklund and Azat Mardan
(Manning, est Summer 2023)
Angular in Action by Jeremy Wilken (Manning, 2018)
Getting MEAN with Mongo, Express, Angular, and Node, 2nd ed., by
Simon D. Holmes and Clive Harber (Manning, 2019)
Micro Frontends in Action by Michael Geers (Manning, 2020)

To learn more about development with microservices, see these books:

Designing Microservices by S. Ramesh (Manning, in development)
Microservices: A Practical Guide, Second Edition by Eberhard Wolff
(Manning, 2019)
Microservices in Action by Morgan Bruce, Paulo A. Pereira (Manning,
2018)
Microservices Patterns by Chris Richardson (Manning, 2018)
The Tao of Microservices by Richard Rodger (Manning, 2017)
Microservices in .NET Core, 2nd ed., by Christian Horsdal
Gammelgaard (Manning, 2020)
Microservice APIs using Python, Flask, FastAPI, OpenAPI and more by
José Haro Peralta (Manning, 2022)

10.13 Summary

We can develop, run and test individual microservices using Node.js.
We can develop, run and test an entire microservices application on our
development workstation using Docker Compose.



Testing frameworks like Jest and Playwright can be used to run
automated tests against our code libraries, microservices, and even the
entire microservices application.
The main features of FlixTube are uploading and streaming videos.
Multiple microservices play a part in providing these features.
Database fixtures can be used to load sets of test data into our database.
This is useful not just for automated testing, but also for manual testing
and conducting product demonstrations.
To reduce the size of our microservices application for local
development and testing, or even just to isolate parts of it, we can
replace entire microservices or groups of microservices with mock
versions of them. For example, in this chapter for convenience of testing
and deployment, we used the mock-storage microservice in place of the
real azure-storage microservice.
The gateway microservice is the entry-point to the FlixTube application
for our customers. It provides the frontend that our customers can use to
interact with FlixTube.
FlixTube is deployed to Kubernetes by a continuous delivery (CD)
pipeline built on GitHub Actions. It delegates the work to several shell
scripts that build, publish and deploy the microservices.
Expansion of templated configuration is done using the command
envsubst which can take values from environment variables and
substitute those values into the Kubernetes deployment configuration
files.



11 Healthy microservices
This chapter covers

Techniques to ensure your microservices remain healthy
Leveraging observability to understand the behavior of our
microservices
Debugging microservices and Kubernetes
Patterns for reliability and fault tolerance

Errors happen. Code has bugs. Hardware, software, and networks are
unreliable. Failures happen regularly for all types of applications, not just for
microservices. But microservices applications are more complex, and so
problems can become considerably more difficult to debug as we grow our
application. The more microservices we maintain, the greater the chance at
any given time that some of those microservices are misbehaving!

We can’t avoid problems entirely. It doesn’t matter if they are caused by
human error or unreliable infrastructure. It’s a certainty—problems happen.
But just because problems can’t always be avoided, doesn’t mean we
shouldn’t try to mitigate against them. A well-engineered application expects
problems, even when the specific nature of some problems can’t be
anticipated.

As our application evolves to be more complex, we’ll need techniques to
combat problems and keep our microservices healthy. Our industry has
developed many “best” practices and patterns for dealing with problems.
We’ll cover some of the most useful ones in this chapter. Following this
guidance will make your application run more smoothly and be more reliable,
resulting in less stress and easier recovery from problems when they do
happen.

This chapter isn’t immediately practical; there’s no example code in GitHub,
so there is no code to follow along with. Think of this as a toolbox of
techniques for you to try out in the future as you move forward and continue



to develop your own microservices application.

11.1 Maintaining healthy microservices

A healthy microservices application is composed of healthy microservices. A
healthy microservice is one that is not experiencing problems such as bugs,
CPU overload, or memory exhaustion. To understand the health of our
application, we need to

Observe the behavior of our microservices to understand their past and
current states
Take action when problems occur to protect our customers
Triage problems so the worst ones are addressed first
Debug issues and apply fixes as needed

Using FlixTube’s metadata microservice as an example, figure 11.1 gives
you an idea of the infrastructure for a healthy microservice in production.
Notice that there are multiple replicas of the microservice, and that requests
are evenly balanced between instances of the microservice using a load
balancer. Should any single microservice go out of commission, one of the
replicas can stand in while the failing instance is restarted.

Figure 11.1 Infrastructure for a healthy microservice in production



This redundancy ensures the ongoing reliability of the microservice and the
application. In this chapter, we’ll learn about replicating microservices on
Kubernetes and other techniques to facilitate fault tolerance and recovery
from errors.

A microservice can suffer problems even without the dramatic effect of going
out of commission. How do we know what’s going on inside a microservice?
It doesn’t have to be a black box. We often need some kind of telemetry
service (shown in figure 11.1) to record events reported from various
microservices so that we can visualize the aggregated data in a way that we
can understand.

What can we do to ensure that our microservices remain healthy? Similar to a
real medical professional, we must know how to take the temperature of our
patient. We have numerous techniques at our disposal to help us diagnose the
state and behavior of our microservices. Table 11.1 lists the main techniques



we’ll learn in this chapter to take the temperature of our microservices.

Table 11.1 Techniques for understanding the behavior of microservices

Technique Description

Logging Outputting information about the behavior of our
microservices to show what is happening as it is happening.

Error
handling Having a strategy for managing and recovering from errors.

Automatic
health checks

Configuring Kubernetes to automatically detect problems in
our microservices.

Observability Outputting and recording telemetry that we can use to
understand the interactions between our microservices.

What happens when something has gone wrong? How do we fix it? Coping
with problems that have occurred requires investigation and debugging. In
this chapter, we’ll learn the strategies to find the cause of a problem so that
we can fix it.

11.2 Monitoring and managing microservices

Getting our application into production is just the first step. After that, we
need to continually know if our application is functioning or not, especially
as new updates to the code are rolled out.

We must have transparency over what our application is doing; otherwise, we
have no idea what’s going on in there, and we can’t fix problems unless we



know about them. In this section, we’ll look at some techniques for
monitoring the behavior of our microservices:

Logging
Error handling
Automatic health checks
Observability

11.2.1 Logging in development

Logging to the console is our most basic tool for understanding the ongoing
behavior of our microservices. Through logging, we output a text stream
showing the important events, activities, and actions that have taken place
within our application.

The stream of logs coming from an application can be thought of as the
history of the application, showing every pertinent thing that has happened
over its lifetime. We can use console logging in both development and
production. Figure 11.2 illustrates how it works for the metadata
microservice in development.

Figure 11.2 Console logging during development



Every microservice, like every process, has two output streams for logging:

1. Standard output
2. Standard error

In JavaScript, we output logging to the standard output channel like this:

console.log("Useful information goes here");

We output errors to the standard error channel like this:

console.error("Useful information goes here");

Note

 If you are using a language other than JavaScript, then it will have its own
functions for outputting to standard output and standard error.

That’s all we need to output to the console. Many developers adopt a
sophisticated logging system to use for outputting logs from their
microservices, but we don’t really need that to be effective - direct console
logging is simple and it works well.

What should be logged?

Given that logging has to be added explicitly by the developer and it’s always
optional, how do we choose what to log? Here are a few examples:

What to log:

·   Pertinent events in your application and details about those

·   Success/failure of important operations

What not to log:

·   Things that can easily be ascertained from other sources

·   Anything that’s secret or sensitive



·   Any personal details about your users

If you find yourself drowning in details from too much logging, feel free to
go in and remove logging that isn’t useful. For every console log, you just
have to ask the question, can I live without this detail? If you don’t need it,
delete it.

Generally speaking, though, more logs are better than fewer logs. When it
comes to debugging in production, you need all the help you can get to
understand why a problem occurred. Tracing back through the log is an
important step in understanding the sequence of events that resulted in the
problem.

You won’t be able to add more logging after the problem has occurred! Well,
you can if you isolate and reproduce the problem, but that in itself can be
difficult. More logging is better because when you do hit a problem, you
want to have as much information as possible to help you solve it.

11.2.2 Error handling

Errors happen. Our users suffer. It’s a fundamental law of computer
programming!

Here are some examples of errors:

Runtime errors (an exception is thrown that crashes our microservice)
Bad data being input (from faulty sensors or human error in data entry)
Code being used in unexpected combinations or ways
Third-party dependencies failing (RabbitMQ, for example)
External dependencies failing (Azure Storage, for example)

How we deal with errors matters. We must plan to handle and recover from
errors gracefully to minimize the harm caused to our users and our business.
What happens when errors occur? How will our application deal with these?
We must think through these questions and develop an error-handling
strategy for our application.

Often in our JavaScript code, we’ll anticipate errors and handle these in our



code using exceptions, callbacks, or promises. In those cases, we usually
know what to do. We can retry the failed operation, or if possible, we might
correct the issue and restart the operation if there isn’t any automatic
corrective action that’s obvious. We might even have to report the error to the
user or notify our operations staff.

Sometimes we can anticipate errors, other times not. We might fail to catch a
particular type of error because we didn’t know it could occur or because
certain types of error (e.g., a hard-drive failure) happen so infrequently that
it’s not worth specifically handling them. But to be safe, we must account for
errors that we can’t even imagine!

What we need is a general strategy for how we handle unexpected errors. For
any process, including individual microservices, this boils down to two main
options: abort and restart or resume operation. You can see these error-
handling strategies illustrated in figure 11.3.

Figure 11.3 Strategies for handling unexpected errors



Abort and restart

The abort and restart strategy intercepts unexpected errors and responds by
restarting the process. The simplest way to use this strategy is to just ignore
any errors we don’t care about. Any exception that we don’t explicitly handle
with a try/catch statement in our code results in the process being aborted.

This is the simplest error-handling strategy because it literally means doing



nothing. Just allow unexpected errors to occur and let Node.js abort our
program in response. When a production microservice is aborted, we’ll rely
on Kubernetes to automatically restart it for us, which it does by default.
(This behavior in Kubernetes is configurable as well.)

Resume operation

The resume operation strategy intercepts unexpected errors and responds by
allowing the process to continue. We can implement this in Node.js by
handling the uncaughtException event on the process object like this:

process.on("uncaughtException", err => {

    console.error("Uncaught exception:");

    console.error(err && err.stack || err);

});

If we handle the uncaughtException event like this, we take explicit control
over unexpected errors. In that case, Node.js will not take its default action of
aborting the process. It is simply left to continue as best it can, and we have
to hope that the error has not left the process in a bad state.

Printing the error to the standard error channel means that it can be picked up
by our production logging system, which we’ll discuss soon. This error can
then be reported to our operations team, and it doesn’t have to go unnoticed.

Abort and restart: Version 2

Now that we understand how to handle uncaught exceptions in Node.js, we
can implement a better version of the abort and restart strategy:

process.on("uncaughtException", err => {

    console.error("Uncaught exception:");

    console.error(err && err.stack || err);

    process.exit(1);

});

In this code, we take explicit control of the handler for unexpected errors. As
before, we print the error so that it can be noticed by our operations team.
Next, we explicitly terminate the program with a call to process.exit.



We pass a nonzero exit code to the exit function. This is a standard
convention that indicates the process was terminated by an error. We can use
different nonzero error codes here (any positive number) to indicate different
types of errors.

Which error handling strategy should I use?

To restart or not to restart, that is the question. Many developers swear by
abort and restart, and in most situations, it’s a good idea to simply let our
processes crash. Because trying to recover a microservice after a crash can
leave it limping along in a damaged state.

With abort and restart, we can monitor for crashes to know which
microservices have had problems that need to be resolved. If you couple this
with good error reporting, it’s a good general strategy that you can apply by
default.

Sometimes, though, we might need to use the resume operation strategy. For
some microservices (for example, microservices that deal with customer
data), we must think through the implications of aborting the process.

As an example, let’s consider FlixTube’s video upload microservice. Is it OK
for this microservice to be aborted at any time? At any given moment it
might be accepting multiple video uploads from multiple users. Is it
acceptable to abort this microservice, potentially losing user uploads? I would
say no, but if this is your microservice, you might have a different opinion
and that’s OK. There is no right way to do this.

Note

 When deciding which strategy to use, it’s probably best to default to abort
and restart, but occasionally resume operation will be more appropriate.

11.2.3 Logging with Docker Compose

When using Docker Compose in development, we can see the logging from
all our microservices in a single stream in our terminal window. Docker



automatically collects the logging and aggregates it into a single stream as
indicated in figure 11.4. Obviously, this is useful (during development) to get
a broad overview of what our application is doing at any given time.

Figure 11.4 When using Docker Compose, Docker aggregates the logging from all our
microservices into a single stream.

Redirecting logging to a file

Here’s a trick that I find very useful. When we run Docker Compose, we can
redirect its output and capture it to a log file. The tee command means we
can both display output in the terminal and save it to a file.



Now we can load the log file (in this example, debug.log) in VS code and
browse it at our leisure. We can search for particular strings of text. For
example, if we are trying to find a problem with the database, we might
search for logs that contain the word “database.”

I even like to put special codes (character sequences) in my logging to
distinguish the logs for particular subsystems of a microservice. This makes it
easier to search or filter for the types of logs you are interested in.

 

11.2.4 Basic logging with Kubernetes

When running microservices in development under Docker Compose, we run
the application locally on our development workstation. That makes it easy to
see the logging from our application and understand what’s happening in our
code.

We can retrieve logging from our production microservices running remotely
on Kubernetes, but it is slightly more difficult. To see the logging, we must
be able to extract it from the cluster and pull it back to our development
computer for analysis.

Kubectl

We first met Kubectl in chapter 6, but we’ll use it again now to get logs from
a particular microservice running on Kubernetes. Let’s say we are running



FlixTube as it was at the end of chapter 10 (you can do this and follow along
if you like). Imagine that we’d like to get logging from an instance of our
metadata microservice.

Given that we could have multiple instances of the metadata microservice
(we don’t yet, but we’ll talk about creating replicas later in this chapter), we
need to determine the unique name that Kubernetes has assigned to the
particular microservice that we are interested in.

What we are actually looking for here is the name of the pod. You might
remember from chapter 6 that a Kubernetes pod is the thing that contains our
containers. A pod can actually run multiple containers, even though for
FlixTube, as yet, we are only running a single container in each pod. Revisit
section 6.10.3 to remind yourself how to authenticate Kubectl with your
cluster. After authenticating Kubectl, we can use the get pods command to
see the full list of pods in our cluster as shown here:

Scan down the list to pick out the name of the pod for our metadata
microservice and find its unique name. In this case, the name is metadata-
55bb6bdf58-7pjn2. Now we can use the logs command to retrieve the
logging for the metadata microservice. In this instance, there isn’t much to
see, but it’s helpful that we know how to do this.



Just remember to replace the name of the pod with the name of an actual
microservice from your cluster. The unique name is generated by Kubernetes,
so the name for your metadata microservice won’t be the same as the name
that is generated for my version of it. Here’s the general template for the
command:

kubectl logs <pod-name>

Just insert the particular name of the pod from which you’d like to retrieve
the logs.

stern

Using the command kubectl logs is a great starting point for getting logs
for a microservice on Kubernetes. It’s included with Kubectl, which is
convenient. It’s kind of a hassle though having to look up the unique name of
the microservice when you want to retrieve its logs.

A better option is to use a tool called Stern to retrieve logs. Then you don’t
have to specify the full name—a partial name will work just as well. For
example getting the logs for the metadata microservice:

stern metadata

In this case Stern will match all pods that start with the name metadata. That
means if we have multiple replicas of the metadata microservice we’ll get the
logs for all of them, which is useful and much more convenient than using
kubectl logs.

Stern also continues to output ongoing logs until you terminate it (with Ctrl-



C).

Stern is so good for finding logs across microservices that it’s part of my
essential toolkit for working with Kubernetes.

See Stern’s code repository for installation and usage instructions:

https://github.com/stern/stern

Kubernetes Dashboard

Another useful way to view logging (and other information) for your pods
(and other resources) is to use the Kubernetes dashboard. This is a visual way
to inspect and explore your cluster, and you can even make modifications to
your cluster through it (although I don’t recommend manually tweaking a
production cluster!).

We haven’t seen the Kubernetes dashboard yet in the book. The dashboard
doesn’t come by default with a Kubernetes installation. On Azure, for
example, you won’t have a dashboard unless you install it. If you are using
Kubernetes elsewhere, you might find the dashboard does come preinstalled,
for example with Kubernetes clusters on Digital Ocean. Installing and
accessing the dashboard is not difficult, and you can find the official
instructions on the Kubernetes web site:

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

With the dashboard we can quickly drill down to inspect the state of any pod.
Figures 11.5, 11.6, and 11.7 show how we do this. Note in these screenshots
there’s also other useful information (like CPU and memory usage) that can
help us understand the state of our microservices.

Figure 11.5 The Kubernetes dashboard showing all the pods in our cluster.





Figure 11.6 Viewing the details of the pod that contains our metadata microservice





Figure 11.7 Viewing the log for the metadata microservice

11.2.5 Kubernetes log aggregation

Many who are trying to debug a production Kubernetes installation would
like to have aggregated logging. By that I mean having a way that we can see
the combined logging produced by all microservices in our cluster. You will
start to want something like this as your application grows larger, because
tracking down logs individually from each microservice can be quite tedious
and time consuming.

Unfortunately Kubernetes doesn’t have any kind of log aggregation built in
(it’s not like I haven’t asked for it though). So we need to find a separate
solution for this. You could, if you want to go way down this particularly
deep rabbit hole, implement your own bespoke logging aggregation service
and install it in your cluster to capture and record logs for your microservices.
However, I don’t recommend it because it is quite difficult to get working
and maintain. It’s best to save your time and use third-party enterprise



logging or observability software.

But just in case you are interested to see what it takes to make your own
logging aggregation service for Kubernetes, check out my blog post on it:

http://www.the-data-wrangler.com/kubernetes-log-aggregation/

11.2.6 Enterprise logging, monitoring and alerts

A common solution for large-scale enterprise monitoring of microservices is
the combination of Fluentd, Elasticsearch, and Kibana. Other options
specifically for monitoring metrics are Prometheus and Grafana. These are
professional enterprise-scalable solutions for monitoring and alerting. But
they are heavyweight, resource-intensive, and not so easy to get working
anyway, so don’t rush into integrating these into your application.

We won’t dive into any details on these technologies here because it would
be beyond the scope of this book. It’s enough for now to have a brief
overview of each of these technologies.

Fluentd

Fluentd is an open-source logging and data collection service written in
Ruby. You can instantiate a Fluentd container within your cluster to forward
your logs to external log collectors.

Fluentd is flexible and can be extended by its many plugins. One such plugin
is what allows us to forward our logging to Elasticsearch. Learn more about
Fluentd by visiting the following web sites:

https://www.fluentd.org/

https://docs.fluentd.org/

Elasticsearch

Elasticsearch is an open-source search engine written in Java. Elasticsearch is



what you can use to store and retrieve logging, metrics, and other useful data.
Learn more about Elastic search at their website:

https://www.elastic.co/elasticsearch/

Kibana

Kibana is an open-source visualization dashboard built on top of
Elasticsearch. It allows us to view, search, and visualize our logs and other
metrics. You can create fantastic custom dashboards with Kibana.

The great thing about Kibana, and it can be a real lifesaver, is that you can
configure it to automatically alert you when there are problems in your
cluster. You specify the conditions under which the alert is raised and the
action that is taken.

The paid version of Kibana also has support for email notifications and some
other options including triggering of webhooks to invoke whatever custom
response you need. Learn more about Kibana from the following websites:

https://www.elastic.co/what-is/kibana

https://www.elastic.co/kibana

You can find Kibana demo dashboards here:

https://www.elastic.co/demos

You can browse the supported notifications here:

https://www.elastic.co/guide/en/kibana/master/action-types.html

Prometheus

Prometheus is an open-source monitoring system and time series database.
Alongside Kubernetes, Prometheus is a graduated project of the Cloud Native
Computing Foundation (CNCF), which puts it with some very esteemed
company.



We can configure Prometheus to scrape metrics from our microservices at
regular intervals and automatically alert us when things are going wrong.
Learn more about Prometheus here:

https://prometheus.io/

Grafana

Whilst Prometheus is great for data collection, queries, and alerts, it’s not so
good at visualization. We can create simple graphs with Prometheus, but it’s
quite limited.

It’s fortunate then that Grafana, which allows us to create visual and
interactive dashboards, is so easy to connect to Prometheus.

Learn more about Grafana here:

https://grafana.com/

11.2.7 Observability for microservices

Observability is a technique for surfacing rich and interesting details about
the behavior of our distributed application. As any fan will tell you, this is
more than just aggregated logging and monitoring. To implement
observability we preemptively output detailed telemetry from our application.
The latest standard for this is the Open Telemetry protocol. We capture this
telemetry in software such as that provided by Honeycomb, Datadog, New
Relic, Sumo Logic or others, and this allows us to observe the interactions of
our microservices.

Observability, being able to see the totality of what our system is doing, is a
great aid to our investigation of problems and figuring out which
microservice is causing problems. It allows us to query and visualize the
telemetry data from our application. We can ask questions (e.g., is this
problem related to a particular user? Is this problem related to a particular
region?) and drill down into the behavior of our application to figure out
what’s going on. Observability software like Honeycomb, shown in figure



11.8, helps us connect the dots between microservices, correlating requests
and messages between microservices and helping us to pinpoint the location
of errors.

Figure 11.8 An example trace (shown in Honeycomb) that allows us to pinpoint an error in a
multi-microservice request

To learn more about implementing Open Telemetry and Honeycomb into
your microservices, please see my intro video and example code:



http://learn.codecapers.com.au/v/alkBpw2U7rA
https://github.com/ashleydavis/open-telemetry-nodejs-microservices-
example

11.2.8 Automatic restarts with Kubernetes health checks

Kubernetes has a great feature for automated health checks that allows us to
automatically detect and restart unhealthy microservices. You may not need
this particular feature because Kubernetes already defines an unhealthy pod
as one that has crashed or exited. By default, Kubernetes automatically
restarts misbehaving pods.

If we aren’t happy with the default, Kubernetes lets us create our own
definition of “unhealthy” on a case-by-case basis. We can define a readiness
probe and a liveness probe for a microservice so that Kubernetes can query
the health of it. The readiness probe shows if the microservice has started
and is ready to start accepting requests. The liveness probe then shows
whether the microservice is still alive and is still accepting requests. Both are
illustrated in figure 11.9.

Figure 11.9 Applying automated Kubernetes health checks to the metadata microservice



We can use these two Kubernetes features to elegantly solve the problem we
discovered in chapter 5 when we first connected the history microservice to
our RabbitMQ server (section 5.8.5). The problem was that the history
microservice (or any other microservice that connects to an upstream
dependency) must wait for its dependency (in this case, RabbitMQ) to boot
up before it can connect and make use of it.

If the microservice tries to connect too early, it’s simply going to throw an
exception that could abort the process. It would be better if we could simply
make the history microservice wait quietly until RabbitMQ becomes
available. That is why we used the wait-port npm module in chapter 5, but
that was an awkward workaround. However, using Kubernetes, we now have
the tools for an elegant fix.

The problem as just described only really happens when a microservices
application is first booted up. Once your production application is running
and your RabbitMQ server is already started, you can easily and safely
introduce new microservices that depend on RabbitMQ without them having
to wait. But don’t start to think that it’s not an issue because there is another
side to this problem:

What happens when RabbitMQ crashes and is then automatically
restarted by Kubernetes?
What happens if we’d like to take RabbitMQ down temporarily to
upgrade or maintain it?

In both circumstances, RabbitMQ will go offline, and this breaks the
connection for all the microservices that depend on it. The default for those
microservices (unless we specifically handle it) is to throw an unhandled
exception that most likely aborts the microservice. Now any microservices
that depend on RabbitMQ will constantly crash and restart while RabbitMQ
is down.

This is also true of any system dependencies besides RabbitMQ. Generally
speaking, we’d like to be able to take any service offline and have the
downstream services wait quietly for that service to become available again.
When the service comes back online, the downstream services can resume
normal operation.



We can now use the readiness and liveness probes to solve these problems.
The listing 11.1 shows an update to the Kubernetes deployment YAML file
for the gateway microservice from chapter 10. It defines readiness and
liveness probes for our gateway microservice.

Listing 11.1 Adding Kubernetes readiness and liveness probes for the gateway microservice (an
addition to chapter-10/scripts/cd/gateway.yaml)

apiVersion: apps/v1

kind: Deployment

metadata:

  name: gateway

spec:

  replicas: 1

  selector:

    matchLabels:

      app: gateway

  template:

    metadata:

      labels:

        app: gateway

    spec:

      containers: 

      - name: gateway

        image: $CONTAINER_REGISTRY/gateway:$VERSION

        imagePullPolicy: IfNotPresent

        readinessProbe: #A

          httpGet:

            path: /ready #B

            port: {{PORT}}

          initialDelaySeconds: 5 #A

        livenessProbe: #C

          httpGet:

            path: /alive #D

            port: {{PORT}} #C

        env:

        - name: PORT

          value: "4000"

        - name: RABBIT

          value: amqp://test:test@rabbit:5672

To get the liveness and readiness probes from listing 11.1 working we also
have to add HTTP GET route handlers for /ready and /alive to our gateway
microservice. But what should these routes do?



In the simplest cases, we just have to return a HTTP status code of 200 to
indicate success. That’s enough to pass both probes, and it lets Kubernetes
know that a microservice is both ready and live. In certain situations (for
example, with the history microservice), we can then add additional code to
customize the definition of what it means to be ready and live. For example,
in any microservice that depends on RabbitMQ, we would add code for

A /ready route that returns status 200 only once RabbitMQ becomes
available. This tells Kubernetes that the microservice has entered its
ready state.
An /alive route that returns an error code when RabbitMQ becomes
unavailable. This causes the microservice to be restarted, but the new
microservice (due to the /ready route) won’t be placed in a ready state
until RabbitMQ comes back online.

A strategy like this solves two problems. First, if we don't use readiness and
liveness probes, our history microservice will constantly start up, crash, and
restart while RabbitMQ is down. This constant restarting isn’t an efficient use
of our resources, and it’s going to generate a ton of error logging that we’d
have to analyze (in case there’s a real problem buried in there!).

Second, we could handle this explicitly in the microservice by detecting
when RabbitMQ disconnects and then polling constantly to see if we can
reconnect. This would save the microservice from constantly crashing and
restarting, but it requires significantly more sophisticated code in our
microservice to handle the disconnection and reconnection to RabbitMQ. We
don’t need to write such sophisticated code because that‘s what the probes
are doing for us. To learn more about the pod lifecycle and the different kinds
of probes, see the Kubernetes documentation:

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/

11.3 Debugging microservices

With some form of monitoring or observability in place, we can visualize the
behavior for our application. We use this to understand its current state and
historical behavior. It is useful to have this kind of information in hand when



problems occur.

Once a problem has become apparent, we must now put on our detective hats.
We need to analyze the information we have to understand what went wrong.
We can ask questions of our data and track the clues back to the root cause to
find out why it happened. Along the way, we’ll run experiments to further
hone in on the culprit.

Usually, we can’t fix a problem until we have identified the cause. Of course,
sometimes we can randomly stumble on a solution without knowing the
cause. But it’s always sensible to be able to ascertain the root cause anyway.
That way, we can be sure that the supposed fix has actually fixed the problem
and not just hidden or changed it.

Debugging is the process for tracking down the source of a problem and
subsequently applying an appropriate fix. Debugging microservices is similar
to debugging any other kind of application; it’s a form of troubleshooting that
is part art and part science. We need to ask questions that lead to hypotheses
about the problem. We need to experiment to test those hypotheses and hope
to find an answer to the problem. It should be noted that often figuring out
which questions are the right questions to ask can be the most difficult part of
this process!

Debugging is normally quite difficult, but debugging microservices is more
so due because our application is distributed across multiple microservices.
Locating a problem in a single process can be difficult on its own, but finding
a problem in an application composed of many small interacting processes—
that’s a whole lot more trouble.

As you might already know, searching for the source of a problem is actually
the most difficult part of debugging. It’s like searching for the proverbial
needle in the haystack. If you have any inkling of where to look for the
problem, you stand a much greater chance of finding it quickly. That’s why
developers who are experienced with a particular codebase can often find
bugs in it much more quickly than those who are less familiar.

After finding the source of the problem, we must now fix it. Fortunately, it is
often (but not always) much quicker to fix a bug than it was to find it in the



first place.

11.3.1 The debugging process

In an ideal world, we’d find and fix all problems during development and
testing. Indeed, if you have a thorough testing practice and/or comprehensive
automated test suite, you will find many of your bugs before production. If
possible, that’s the best way because debugging is much easier on your
development computer.

To debug any code, we can follow this process:

1. Triage problems
2. Gather evidence
3. Mitigate customer impact
4. Isolate the problem
5. Reproduce the problem
6. Fix the problem
7. Reflection

As with anything that’s part art and part science, this isn’t a strictly defined
process. Sometimes, we must trace an iterative path through these steps in an
unpredictable way. For the purposes of explanation though, let’s pretend that
we can solve our problem by going through these steps in a straightforward
linear manner.

Triage problems

Usually it’s not just one problem that’s affecting us and our customers. Often
we’ll have many problems and we must prioritize these by their severity—
that is, how badly they affect our customers and our business.

The triage process comes from the medical world, where medical
professionals rank patients for treatment based on how urgently they need
treatment. We can do a similar thing: rank problems by how bad they are so
that we can focus on debugging the worst ones first.



Gather evidence

After triaging issues and selecting the highest priority problem to solve, our
next step is to gather as much evidence as we can. This is anything that can
help direct us more quickly to the real location of the bug. If we start
debugging close to where the problem actually is, we can narrow in on it
much more quickly. We need to learn as much as we can about the problem
as quickly as possible. The evidence includes things like

Logging and error reports
Traces for relevant request paths through the system (like the one shown
in figure 11.8)
Bug reports from users
Information from Stern, Kubectl, the Kubernetes dashboard or from our
observability software
Call stacks for any crash that might have occurred
The implicated versions, branches or tags of our code
Recently deployed code or microservices

The reason we must compile this information immediately is that, often, the
next thing we must do for the benefit of our customers is to make the problem
just disappear as quickly as possible.

Mitigate customer impact

Before attempting to solve or find the cause of the problem, we must ensure
that it is not adversely affecting our customers. If our customers are
negatively affected, then we must take immediate action to rectify the
situation.

At this point, we don’t care what caused the problem or what the real long-
term fix for it might be. We simply need the fastest possible way to restore
the functionality that our customers depend upon. They’ll appreciate our
immediate action to find a workaround that allows them to continue using our
application. There are multiple ways we can do this:

If the problem comes from a recent code update, revert that update and



redeploy the code to production. This is often easier with microservices
because if we know the microservice that was updated caused the
problem, we can easily revert that single microservice and restore it to
the previously working version, say, an earlier image in the container
registry.
If the problem comes from a new or updated feature that isn’t urgently
needed by the customer, we can disable that single feature to restore the
application to a working state.
If the problem comes from a microservice that isn’t urgently needed, we
can temporarily take that microservice out of commission.

I can’t overstate the importance of this step! It could take hours or days
(maybe even weeks at worst) to solve a problem. We can’t know ahead of
time how long it will take, and we can’t expect our customers to stand by and
wait for that to happen. It’s more likely that they’ll change allegiance to one
of our competitors instead.

What’s worse is that solving a problem under pressure (because our
customers are waiting on us) is extremely stressful and results in poor
decision making. Any fix we apply under stress is likely to add more bugs,
which only compounds the problem.

For the sake of our customers and ourselves, we must temporarily ignore the
problem and find the fastest way to restore our application to a working state
(as depicted in figure 11.10). This takes away the pressure, allows our
customers to continue without interruption, and buys us the time we need to
solve this problem.

Figure 11.10 Mitigating the risk to our customer after a problem is found by immediately rolling
back to a previous working version



Reproduce the problem

After making sure that the application is working again for our customers, we
can now move on to locating the cause of the problem and solving it. To do
this, we must be able to reproduce the problem. Unless we can definitely and
consistently repeat the problem, we can never be certain that we’ve fixed it.
What we are aiming to do is create a test case that demonstrates the bug. That
is a documented sequence of steps that we can follow to reliably cause the
bug to show itself.

Ideally, we’d like to reproduce the bug on our development computer. That
makes it easier to run experiments to track down the bug. Some problems,
though, are so complex that we can’t easily reproduce those in development,
especially when your application has grown so big (e.g., it has many
microservices) that it no longer fits in its entirety on a single computer.

In this situation, we must reproduce the problem in a test environment. This is
a production-like environment that is purely for testing (it’s not customer-
facing). Debugging in the test environment (which is similar to debugging in
production) can still be very difficult, though, and ultimately, we’d still like
to reproduce the problem in development.



In the test environment, we can run experiments to further understand which
components of the application are involved in the problem, and then safely
remove any that aren’t contributing to it. Through a process of elimination,
we can cut back our application to a point where it is small enough to run in
development. At this point, we can transfer from the test environment to our
development workstation. We’ll talk more about creating test environments
in chapter 12.

If we are doing automated testing, this is the point where we should write an
automated test that checks that the bug is fixed. Of course, this test fails
initially—that’s the point of it. We’ll use it later as a reliable way to know
that the problem has been fixed. Writing an automated test also ensures that
we can repeatedly reproduce the issue. Each and every time we run this test,
it should fail, confirming that we have indeed found a reliable way to
reproduce the bug.

Isolate the problem

Once we have reproduced the problem in development, we now start the
process of isolating it. We repeatedly run experiments and chip away at the
application until we have narrowed down the scope and pinpointed the exact
source of the bug.

We are effectively cutting away the space in which the problem can hide,
progressively reducing the problem domain until the cause becomes obvious.
We are using a divide and conquer-style of process as illustrated in figure
11.11.

Figure 11.11 Cutting away the problem space until we isolate the exact source of the bug



By the way, microservices are great for this. Our application is already nicely
factored into easily separable components. This makes it much easier to pull
our application into pieces. In general, it’s pretty easy to just drop an
individual microservice out of the application (just comment it out of your
Docker Compose file!). As you drop each microservice, ask the question: can



you still reproduce the problem?

Yes. That’s great. You’ve just reduced the problem domain by one
microservice.
No. That’s great. You’ve possibly just implicated that microservice in
the problem.

Either way, you are iterating your way towards the cause of the problem.

Sometimes we will quickly identify the source of a problem. At other times,
debugging can be a painfully slow, time-consuming, and frustrating process.
It depends on our general level of experience, our familiarity with the code
base, whether we have seen this kind of problem before, and the complexity
of the particular problem itself.

Note

Debugging at its worst requires persistence, patience, and commitment. Don’t
be afraid to reach out for help. There’s nothing worse than being stuck on a
problem that you can’t solve.

If you know where to start looking for a problem, then you already have a
massive head start. You might also be able to take an educated guess at what
is causing it. If that works out, you are quite right to skip much of this
process and immediately focus your attention on the cause of the bug.
However, if you don’t know where to look or if your guess turns out to be
wrong, you will have to be more scientific about debugging and apply this
full process.

Fix the problem

You’ve identified the root cause of the problem. Now you just have to fix it!

Fortunately, fixing problems is much easier than finding them in the first
place. Usually, identifying the broken code is enough to make you imagine
what the solution would be. Sometimes, it’s more difficult, and you’ll have to
invest some creative thinking to come up with a solution. The hardest part is



definitely over though. You have found the needle in the haystack, and now
you can work out the best way to remove it.

If you are doing automated testing, and you have already written the failing
test that reproduces the issue, then you have a convenient and reliable
yardstick to show you when the bug has been fixed. Even if the fix turns out
to be difficult, at least you have a way to know for sure that the problem is
solved. That’s a useful thing to have as you iterate and experiment your way
towards a fix.

Reflection

Every time we solve a problem, we should pause for a moment to reflect on
what can be done to prevent the problem from happening again in the future,
or what could have been done to find and fix the problem more quickly.
Reflection is important for us as individuals and as teams to continuously
refine and improve our development process.

We might have written an automated test that will prevent this specific
problem again in the future. But still, we need something more than that. We
should seek practices and habits to help us eliminate not just this specific
problem, but all of this class or kind of problem.

The amount of time that we spend reflecting and then the amount of time we
invest in upgrading our development process depends a lot on the problem
itself and the severity of it.

We should ask questions like

Is this kind of problem likely to happen in the future such that we should
proactively mitigate against it?
Are the effects of this problem severe enough that we should proactively
mitigate against it?

Answering these questions helps us understand how much effort to expend
combatting this type of problem in the future.



11.3.2 Debugging production microservices

Sometimes we can’t get away from it; we literally have to debug our
microservices in production. If we can’t reproduce an issue in test or
development, then our only option is to conduct experiments in production to
further understand the problem.

Checking pods for errors

The first step in debugging any microservice is to check its logs for relevant
error messages. We have covered this already, but here’s a reminder of the
ways you can do this:

kubectl logs <pod-name>

Or if you have Stern installed:

stern <pod-name>

It’s useful to be able to get the logs for the previous instance like this:

kubectl logs --previous <pod-name>

That last command allows us to retrieve the logging for a crashed
microservice. Inspecting those logs for errors or warnings can usually give
you some idea as to why it crashed.

Listing all pods can show us if any of the pods are currently in error or
suffering from repeated restarts:

kubectl get pods

For example, at one point when I was trying to get the video-streaming
microservice working in my cluster I was seeing the following errors:

NAME                       READY STATUS           RESTARTS AGE

video-streaming-57f4-trng4 0/1   ErrImagePull     0        6s

video-streaming-5d6f-dljr5 0/1   ImagePullBackOff 0        5m19s

Those errors are telling me that the Kubernetes cluster is failing to pull the



image from the container registry. This is a very common problem and it
means you have probably misconfigured the connection from cluster to
container registry (see section 6.11.3 if you need to remember how to do that
with Azure).

We can get a wealth of information about a particular pod and any errors it
might be suffering, say for the metadata microservice, using the following
commands:

kubectl get pod metadata-55bb6bdf58-7pjn2 -o yaml

kubectl describe pod metadata-55bb6bdf58-7pjn2

Just remember to plugin the name of the particular pod you are interested in:

kubectl get pod <pod-name> -o yaml

kubectl describe pod <pod-name>

In fact, you can find detailed information about deployments, services and
other Kubernetes resources using the general syntax of these commands:

kubectl get <resource-type> <resource-name> -o yaml

kubectl describe <resource-type> <resource-name>

Don’t forget, you can also use the Kubernetes dashboard (from section
11.2.4) to visually find any of this same information.

Shell in

To make a deeper inspection than logging can give us, we can use Kubectl to
open a shell into (open a terminal into) any pod (at least any that has a shell
installed). Once you know the name of the pod (invoking kubectl get pods
to see their names), such as the pod that contains the metadata microservice,
we can open a shell to it like this:

kubectl exec --stdin --tty metadata-55bb6bdf58-7pjn2 -- sh

You can actually use this to invoke any command within a pod. Here’s the
general format:

kubectl exec --stdin --tty <pod-name> -- <command>



Typically I use the shorter version of the command to save typing:

kubectl exec -it <pod-name> -- <command>

As you might be able to sense, we are in extremely dangerous territory here.
When you are inside a microservice like this, there is the potential for much
damage, and any mistakes could easily make the problem much worse! Don’t
shell into a production microservice on a whim, and if you do, don’t change
anything because you can easily break it.

Of course, this only matters if it affects our customers. If you are instead
debugging microservices in your own private cluster or in a test environment,
then you aren’t affecting any customers; so feel free to push, prod, and poke
your microservices however you like—it’s a great learning experience to do
this! Just be very careful if you are inspecting a microservice in a customer-
facing system.

Proxy in

Sometimes we’d like to expose an internal microservice so that we can test it
from our development computer without exposing it to the outside world. For
example, we can’t make requests directly to our metadata microservice from
outside the cluster, but we can make it accessible just for ourselves using port
forwarding. For example, here we expose the metadata microservice locally
on port 6000:

kubectl port-forward metadata-55bb6bdf58-7pjn2 6000:80

While the port-forward command is running we can make requests to
http://localhost:6000 and those requests are forwarded to port 80 on the
metadata microservice in our cluster.

This is an invaluable technique for remotely testing our microservices to
check that they are responding correctly to requests. We can also use this
technique to connect to third-party services, like the RabbitMQ dashboard,
that we might have running our cluster. Here’s the general format:

kubectl port-forward <pod-name> [<local-port>:]<pod-port>



Check pod environment variables

A common mistake when deploying microservices is to forget to add or to
misconfigure environment variables. I suffer from this with annoying
regularity.

The first defense against this is that your microservice should throw an error
if a required environment variable is missing; we covered this way back in
section 2.6.6. It means you can check the log for a microservice and it will
tell you which environment variable is missing.

We can check for badly configured environment variables by seeing all the
values that are actually set for a microservice:

kubectl describe pod metadata-55bb6bdf58-7pjn2

That gives you a wall of information relating to the microservice, but you can
quickly scan through it to pick out the names and values of the environment
variables.

TIP

I often use the grep command to pluck a particular environment variable from
the full detailed output.

Just remember to plug in the name of the pod you are interested in:

kubectl describe pod <pod-name>

Check service names and port numbers

Another common mistake is to try and make microservices communicate
with each other using misconfigured services names and port numbers.

For example, if the gateway microservice is making requests to the metadata
microservice and those requests are failing, you should check that the name
and port number are correct on either side of the request.



First check the code or environment variables for the calling microservice (in
this example the gateway microservice) to be sure that it is using the correct
name (e.g. “metadata”) and the right port number (e.g. 80) for the callee (the
metadata microservice). Then check the details of the Kubernetes service for
the callee to ensure that the actual name and port for it are what you think
they are!

You can bring up details for all services like this:

kubectl get svc

For full details on a particular service:

kubectl get svc <service-name> -o yaml

kubectl describe svc <service-name>

11.4 Reliability and recovery

We can’t avoid problems, but there are many ways that we can deal with
these in our application to maintain service in the face of failures. With our
application in production, we have an expectation that it will perform with a
certain level of reliability, and there are many tactics we can employ to
architect robust and reliable systems. This section overviews a small selection
of practices and techniques that can help us build fault-tolerant systems that
can quickly bounce back from failure.

11.4.1 Practice defensive programming

A first step is to code with the mindset of defensive programming. When
working this way, we have the expectation that errors will occur, even if we
can’t anticipate what those might be. We should always expect the following:

We’ll get bad inputs to our code.
Our code contains bugs that haven’t manifested yet.
Our code will have bugs added to it at some point in the future.
Things we depend on (e.g., RabbitMQ) are not 100% reliable and,
occasionally, have their own problems.



When we adopt the defensive mindset, we’ll automatically start looking for
ways to make our code behave more gracefully in the presence of unexpected
situations. Fault tolerance starts at the coding level. It starts within each
microservice.

11.4.2 Practice defensive testing

As you are probably aware, testing plays a huge role in building resilient and
reliable systems. We covered testing in chapter 9, so all I’d like to say here is
simply that testing the “normal” code paths is not enough. We should also be
testing that the software we create can handle errors. This is the next step up
from defensive programming.

We should be writing tests that actively attack our code. This helps us
identify fragile code that could do with some more attention. We need to
make sure our code can recover gracefully, reporting errors, and handling
unusual situations.

11.4.3 Protect your data

All applications deal with user data, and we must take necessary steps to
protect our data in the event of failures. When unexpected failures occur, we
need to be confident that our most important data is not damaged or lost.
Bugs happen; losing our data should not.

Not all data is equal. Data that is generated within our system (and can hence
be regenerated) is less important than data that is captured from our customer.
Although all data is important, it’s the source data that we must invest the
most in protecting.

The first step to protecting data, obviously, is to have a backup. The backup
should be automated. Most cloud vendors provide facilities for this that you
can enable.

Note

Don’t forget to practice restoring from your backup! Backups are completely



useless if we are unable to restore those.

At least now, should the worst happen, we can restore lost or damaged data
from the backup. In the industry, we have a saying: our data doesn’t exist
unless it exists in at least three places.

Here are some other guidelines we can follow to protect our data:

Safely record data as soon as it’s captured
Never have code that overwrites source data
Never have code that deletes source data

The code that captures our data is some of the most important code in our
application, and we should treat it with an appropriate level of respect. It
should be extremely well tested. It should also be minimal and as simple as
possible, because simple code leaves less space where bugs and security
issues can hide.

The reason we should never overwrite or delete our source data is that a bug
in that code can easily damage or destroy the data. We know bugs happen,
right? We are in the defensive mindset, so we are expecting unforeseen
problems to happen. To learn more about working with and protecting your
data, see my book, Data Wrangling with JavaScript (Manning, 2018).

11.4.4 Replication and redundancy

The best way to tackle the failure of a microservice is by having redundancy.
We do that by having multiple (usually at least three) instances of each
microservice sitting behind a load balancer, which you can see in figure
11.12. The load balancer is a service that shares incoming requests across
multiple microservices so that the “load” is distributed evenly among them.

If any microservice happens to fail, the load balancer immediately redirects
incoming requests to the other instances. In the meantime, the failed instance
is restarted by Kubernetes. This redundancy means that we can maintain a
continuous level of service even in the face of intermittent failures.

Figure 11.12 A load balancer distributes incoming requests across multiple redundant instances



of a microservice.

Redundancy is implemented by replication. We also use replication for
increased performance, but we’ll save that until chapter 12.

Just because our system can handle failures doesn’t mean we should tolerate
these. All failures should be logged and later investigated. We can use the
debugging process from section 11.3 to find and fix the cause of the failure.

Implementing replication in Kubernetes

Each of the microservices that we have deployed for FlixTube so far only had
a single instance. This is perfectly OK when creating an application for
learning (like we did with FlixTube) or when you are in the starting phase of



developing your own microservices application. It’s just not going to be as
fault-tolerant as it could be.

This is easily fixed though, because Kubernetes makes it easy for us to create
replicas. The amazing thing is that it is just as simple as changing the value of
a field in the Kubernetes deployment YAML code that we have already
written—that’s part of the power of infrastructure as code.

We can easily change the number of replicas by setting the value of the
replicas property for the gateway microservice in our Kubernetes
deployment. You can see an example of this in listing 11.2, which is an
update to the YAML code from chapter 10.

The number of replicas has been updated from one to three. We can apply
this change by invoking kubectl apply. Once completed, our gateway
microservice will have three redundant instances handling requests instead of
just one. With this small change, we have massively improved the reliability
and fault tolerance of our application!

Listing 11.2 Adding load balanced replicas to our gateway microservice (an addition to chapter-
10/scripts/cd/gateway.yaml)

apiVersion: apps/v1

kind: Deployment

metadata:

  name: gateway

spec:

  replicas: 3 #A

  selector:

    matchLabels:

      app: gateway

  template:

    metadata:

      labels:

        app: gateway

    spec:

      --snip--

11.4.5 Fault isolation and graceful degradation

One thing that microservices are really good at is fault isolation. We do have



to take some care, however, to be able to make use of this. What we are
aiming for is that problems within our cluster are isolated so that they have
minimal effect on the user.

With appropriate mechanisms in place, our application can gracefully handle
faults and prevent these from manifesting as problems in the front end. The
tools we need for this are timeouts, retries, circuit breakers, and bulkheads,
which are described in the following sections.

As an example, let’s consider the video-upload microservice. Just imagine
that something has gone wrong with it, and it is no longer functional. At this
moment, we are working hard to rectify the situation and quickly restore it to
a working state. In the meantime, our customers would like to continue using
our product. If we didn’t have mechanisms to prevent it, errors might go all
the way to the front end, bringing our service down, and badly disrupting our
customers.

Instead, we should implement safeguards that stop this wholesale disruption
of our user base. This is illustrated in figure 11.13. The top part of the figure
shows the error propagating all the way to the user and causing problems for
them. The bottom part of figure 11.13 shows how it should work: the
gateway stopping the error in its tracks, thus containing the fault within the
cluster.

Figure 11.13 Isolating faults within the cluster from the user



We can then handle the situation by showing the user an error message
saying that the video-upload feature is currently not available. Video upload
might be broken, but our users can continue using the rest of the application.

This is a huge benefit that microservices brings to the table. If we were using
a monolith and one of its components (e.g., the video-upload component) was
broken, that usually takes down the entire monolith, leaving our customers
with nothing. With microservices, however, the fault can be isolated, and the
application as a whole can continue to function, albeit in a degraded state.

This idea of fault isolation is often called the bulkhead pattern, so named
because it is conceptually similar to the actual bulkheads that are used in
large ships. When a leak occurs in a ship, it is the bulkheads that prevent the
leak from escaping to other compartments and eventually sinking the ship.
This is fault isolation in the real world, and you can see how it is similar to
fault isolation in a microservices application.



11.4.6 Simple techniques for fault tolerance

Here are some simple techniques you can start using immediately to
implement fault tolerance and fault isolation in your own microservices
application.

Timeouts

In this book, we used the built-in Node.js http.request function and the
Axios code library to make HTTP requests internally between microservices.
We control our own microservices, and most of the time, we know those will
respond quickly to requests that are internal to the cluster. There are times,
however, when a problem manifests itself and an internal microservice stops
responding.

In the future, we’d also like to make requests to external services. Just
imagine that we have integrated FlixTube with Dropbox as a means to import
new videos. When making requests to an external service like Dropbox, we
don’t have any control over how quickly these respond to our requests. Such
external services will go down for maintenance occasionally, so it’s entirely
likely that an external service like Dropbox will intermittently stop
responding to our requests.

We must consider how to handle requests to a service that doesn’t respond. If
a request isn’t going to complete anytime soon, we’d like to have it aborted
after some maximum amount of time. If we didn’t do that, it could take a
long time (if ever) for the request to complete. We can’t very well have our
customer waiting so long! We’d prefer to abort the request quickly and tell
the customer something has gone wrong, rather than have them waiting
indefinitely on it.

We can deal with this using timeouts. A timeout is the maximum amount of
time that can elapse before a request is automatically aborted with an error
code. Setting timeouts for our requests allows us to control how quickly our
application responds to failure. Failing quickly is what we want here because
the alternative is to fail slowly, and if something is going to fail, we’d like to
deal with it as quickly as possible so as not to waste our customer’s time.



Setting a timeout with Axios

Reading the Axios documentation tells me that the default timeout is infinity!
That means by default, an Axios request can literally go forever without
being aborted. We definitely need to set the timeout for any requests we
make with Axios.

You can set the timeout for each request, but that requires repeated effort.
Fortunately, with Axios, we can set a default timeout for all requests as
shown in listing 11.3.

Listing 11.3 Setting a default timeout for HTTP requests with Axios

const axios = require("axios");

 

axios.defaults.timeout = 2500;      #A

Retries

We know that HTTP requests sometimes fail. We don’t control external
services, and we can’t see their code. So it’s difficult for us to determine how
reliable these are and even the most reliable services can have intermittent
failures.

One simple way to deal with this is to simply retry the operation a number of
times and hope that it succeeds on one of the subsequent attempts. This is
illustrated in figure 11.14. In this example, you can imagine FlixTube’s video
storage microservice requesting a video to be retrieved from Azure storage.
Occasionally such requests fail for indeterminable reasons. In figure 11.14,
two successive requests have failed due to an intermittent connection error,
but the third request succeeds.

Figure 11.14 Retrying a HTTP request until it succeeds



Assuming that the network is reliable is one of the fallacies of distributed
computing and we must take steps to mitigate against request failures.
Implementation in JavaScript isn’t particularly difficult. In listing 11.4, you
can see an implementation of a retry function that I’ve used across a number
of projects. The retry function wraps other asynchronous operations such as
HTTP requests so these can be attempted multiple times.

Listing 11.4 also includes a helpful sleep function used to make pauses
between attempts. There’s no point immediately trying to make a request
again. If we do it too quickly, it’s probably just going to fail again. In this
case, we give it some time before making another attempt.

Listing 11.5 is an example of how to call the retry function, showing how it
can wrap a HTTP GET request. In this example, we allow the request to be
retried three times with a pause of 5 milliseconds between each request.

Listing 11.4 Implementation of a retry function in JavaScript

async function sleep(timeMS) {      #A

    return new Promise((resolve, reject) => {      #B

 

        setTimeout(     #C

            () => { resolve(); },     #D

            timeMS     #E

        );

    });     #B



}

 

async function retry(operation, maxAttempts, waitTimeMS) {     #F

 

    while (maxAttempts-- > 0) {     #G

        try {

 

            const result = await operation();      #H

            return result;    #I

        }

 

        catch (err) {      #J

            lastError = err;      #K

 

            if (maxAttempts >= 1) {

                await sleep(waitTimeMS);      #L

            }

        }

    }

    

    throw lastError;      #M

} 

Listing 11.5 Using the retry function (an example)

await retry(      #A

    () => axios.get("https://something/something”),     #B

    3,      #C

    5       #D

);

11.4.7 Advanced techniques for fault tolerance

We have seen some simple techniques for improving the reliability and
resilience of our application. Of course, there are many other more advanced
techniques we could deploy for improved fault tolerance and recovery from
failures.

We are almost beyond the scope of the book, but I’d still like to share with
you a brief overview of some more advanced techniques. These will be useful
in the future as you evolve a more robust architecture for your application.

Job queue



The job queue is a type of microservice found in many application
architectures. This is a different kind of thing to the message queue we saw in
RabbitMQ. It’s similar, but it’s a level of sophistication above that.

We use a job queue to manage heavy-weight processing tasks. Let’s imagine
how this could work for a future version of FlixTube. We can say that each
video requires a lot of processing after it is uploaded. For example, we’d like
to extract a thumbnail from videos. Or maybe, we’d like to convert videos to
a lower resolution for better-performance playback on mobile devices. These
are the kinds of CPU and storage intensive tasks that should happen after a
video is uploaded, but that don’t have to happen straight away.

Now imagine that 1,000 users have each uploaded a video, all roughly at the
same time. We don’t have any kind of elastic scaling yet (we’ll talk about
that in chapter 12). So how can we manage the huge processing workload
resulting from so many videos landing in FlixTube at the same time? This is
what the job queue does. You can see an illustration of how it works in figure
11.15.

Figure 11.15 A job queue microservice manages a queue of video thumbnail generation jobs.



The job queue records the sequence of jobs that need to be performed to the
database. This makes it resilient against failure. The entire application could
crash and restart, but so long as the database survives, we can reload the job
queue and continue processing where it left off. Individual jobs can also fail;
for example, the microservice doing the processing crashes, but because
failed jobs aren’t marked as complete, they’ll naturally be attempted again
later.



The job queue also allows for control over the performance of this
processing. Instead of maxing out our application to process the 1,000
uploaded videos all at once, we can spread out the load so that processing is
scheduled over a longer time period. It can also be scheduled across off-peak
hours. This means we won’t have to pay for the extra compute that might
otherwise be required if we wanted to do the processing all at once in a
massive burst.

Circuit breaker

The circuit breaker is like a more advanced version of a timeout. It has some
built-in smarts to understand when problems are occurring, so that it can deal
with these more intelligently. Figure 11.16 illustrates how a circuit breaker
works.

Figure 11.16 Illustrating how the circuit breaker works



In normal situations, the status of the circuit breaker is set to the On state, and
it allows HTTP requests to go through as usual (1). If at some point a request
to a particular resource fails (2), the circuit breaker flips to the Off state (3).



While in the Off state, the circuit breaker always fails new requests
immediately.

You can think of this as a “super” timeout. The circuit breaker knows the
upstream system is failing at the moment, so it doesn’t even bother checking.
It immediately fails the incoming request!

This failing quickly is why we used timeouts. It’s better to fail quickly than to
fail slowly. The circuit breaker works by already knowing that we are failing,
and so, instead of just failing more quickly, it can fail immediately.

Periodically, on its own time (with a delay that you can configure), the circuit
breaker checks the upstream service to see if it has resumed normal
operation. When that happens, the circuit breaker flips back to the On state
(4). Future incoming requests are now allowed through as normal.
Implementing a circuit breaker is much more difficult than implementing a
timeout or a retry, but it’s worth keeping in mind for future use, especially if
you find yourself needing a more sophisticated technique.

11.5 Continue your learning

You now have many techniques in your toolkit for keeping your
microservices healthy and reliable!

To learn more about observability, logging and monitoring in production,
read these books:

Cloud Observability in Action by Michael Hausenblas (Manning, est
Fall 2023)
Observability Engineering by Charity Majors, Liz Fong-Jones, George
Miranda (O’Reilly 2022)
Software Telemetry by Jamie Riedesel (Manning, 2021)
Logging in Action by Phil Wilkins (Manning, 2022)
Elasticsearch in Action, 2nd Edition by Madhusudhan Konda (Manning,
est Fall 2023)

There’s also a great book about crash testing your application:



Chaos Engineering by Mikolaj Pawlikowski (Manning, 2020)

11.6 Summary

Microservices applications are typically more complex than traditional
monolithic applications, and this additional complexity means it can be
more difficult to find and fix the ongoing problems that are a part of life
for any developer.
To maintain a healthy application we must:

Observe its behavior to understand its history and current state;
Take action when problems occur to protect our customers;
Triage problems so the worst ones are addressed first; and
Debug issues and apply fixes as needed

We can monitor and manage the health of our microservices through
Logging;
Error handling;
Automated health checks; and
Observability techniques

We can view logs from pods in Kubernetes using Kubectl, Stern or the
Kubernetes dashboard.
Observability is a technique for surfacing rich and interesting details
about the behavior of our distributed application.

It allows us to dig down into the behavior of our application, to ask
questions and find answers regarding problems that are occurring.
It helps us connect the dots between microservices, correlating
chains of requests and messages to really understand what’s going
on in there.

A microservices application can be made more fault tolerant than a
monolithic application. Crashes within individual microservices can be
contained within the cluster, shielding our customer from their effects.
The are many techniques for fault tolerance, to name a handful:

Automatically restarting failed microservices using Kubernetes
health checks.
Redundancy for managing crashes: If we have multiple instances of
a microservice available, when one of them crashes there is always
another ready to step in and resume its workload.
Timeouts to ensure that hung network requests are aborted in a



timely manner.
Automatic retries for failed network requests.
Using a job queue to ensure that essential jobs are handled, even if
the microservice crashes while handling a job.
Circuit breaker is an advanced combination of timeouts and retries.


	Copyright_2023_Manning_Publications
	welcome
	1_Why_microservices?
	2_Creating_your_first_microservice
	3_Publishing_your_first_microservice
	4_Data_management_for_microservices
	5_Communication_between_microservices
	6_The_road_to_production
	7_Infrastructure_as_code
	8_Continuous_delivery
	9_Automated_testing_for_microservices
	10_Shipping_FlixTube
	11_Healthy_microservices

